
UNLV Theses, Dissertations, Professional Papers, and Capstones 

5-2011 

Complex VS profiles to 100 m depth from Rayleigh waves and 3-D Complex VS profiles to 100 m depth from Rayleigh waves and 3-D 

VS model for Las Vegas Valley VS model for Las Vegas Valley 

Helena Murvosh 
University of Nevada, Las Vegas 

Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations 

 Part of the Civil Engineering Commons, Geophysics and Seismology Commons, and the Geotechnical 

Engineering Commons 

Repository Citation Repository Citation 
Murvosh, Helena, "Complex VS profiles to 100 m depth from Rayleigh waves and 3-D VS model for Las 
Vegas Valley" (2011). UNLV Theses, Dissertations, Professional Papers, and Capstones. 942. 
https://digitalscholarship.unlv.edu/thesesdissertations/942 

This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV 
with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the 
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from 
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself. 
 
This Thesis has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by 
an authorized administrator of Digital Scholarship@UNLV. For more information, please contact 
digitalscholarship@unlv.edu. 

http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/thesesdissertations
https://digitalscholarship.unlv.edu/thesesdissertations?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F942&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/252?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F942&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/158?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F942&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/255?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F942&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/255?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F942&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalscholarship.unlv.edu/thesesdissertations/942?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F942&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalscholarship@unlv.edu


 

 

COMPLEX VS PROFILES TO 100 M DEPTH FROM RAYLEIGH WAVES AND  

3-D VS MODEL FOR LAS VEGAS VALLEY 

 
 
 
 

by 
 
 
 

Helena Murvosh 
 
 

Bachelor of Science, Mathematics 
University of Nevada Las Vegas 

1990 
 
 

Master of Science, Mathematics 
University of Nevada Las Vegas 

1993 
 
 
 

A thesis submitted in partial fulfillment 
of the requirements for the 

 
 

Master of Science in Engineering 
Department of Civil and Environmental Engineering 

Howard R. Hughes College of Engineering 
 
 
 
 

Graduate College 
University of Nevada, Las Vegas 

May 2011 
  



 

 

 

 

 

 

 

 

 

 

Copyright by Helena Murvosh 2011 
All Rights Reserved 

 



 

ii 

 

 
 

 

THE GRADUATE COLLEGE 

 

 

We recommend the thesis prepared under our supervision by 

 

 

Helena Murvosh 

 
 

entitled 

 

 

Complex VS Profiles to 100 m Depth from Rayleigh Waves and 

3-D VS Model for Las Vegas Valley 
 

be accepted in partial fulfillment of the requirements for the degree of 

 

 

Master of Science in Engineering 
Department of Civil and Environmental Engineering 

 

 

Barbara Luke, Committee Chair 

 

Aly Said, Committee Member 

 

David James, Committee Member 

 

Carlos Calderon-Macias, Committee Member 

 

Wanda Taylor, Graduate Faculty Representative 

 

 

 

Ronald Smith, Ph. D., Vice President for Research and Graduate Studies 

and Dean of the Graduate College 

 

 

May 2011 

 



 iii

ABSTRACT 

Complex VS Profiles to 100 m Depth from Rayleigh Waves and  
3-D VS Model for Las Vegas Valley 

 
by 
 

Helena Murvosh 
 

Dr. Barbara Luke, Examination Committee Chair 
Professor of Civil Engineering 

University of Nevada, Las Vegas 
 

Abstract from Manuscript 1, “Complex Shear-Wave-Velocity Profiles to 100 m 

Depth from Rayleigh Waves for Las Vegas, Nevada”: Shear-wave velocity (VS) profiles 

were developed for 12 sites in the Las Vegas Valley, Nevada, which is situated on a deep 

alluvium-filled basin. The work was performed to support earthquake site response 

analyses. Data were acquired using the spectral analysis of Rayleigh-type surface waves 

(SASW) method. Sources used were an IVI Inc. “minivib” Vibroseis and an instrumented 

hammer. The combination of sources allowed VS profiles to be developed to 100 m and 

deeper without sacrificing resolution at shallow depths. The profiles were developed from 

the experimental dispersion data using straightforward linearized inversion and also 

following a method that incorporates the global search method of simulated annealing to 

optimize the starting model for linearized inversion. For all 12 sites, the two optimization 

processes resulted in nearly identical fits to the target dispersion curves. The VS of most 

layers from the two processes is within 20 percent. Resolution matrices for the two 

processes are comparable. Use of simulated annealing provided a measure of confidence 

in the correctness of the final VS profiles. Data from one site that is known to have a 

shallow, high-velocity inclusion were analyzed with the benefit of this independent 

information. The depth to and thickness of the high-velocity inclusion appear to be 
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modeled accurately. Overall, the VS profiles obtained are consistent with expectations 

based on previous earthquake microzonation of the Valley; VS values are lower for fine-

grained sediments than for coarse-grained and cemented sediments. Average VS profiles 

previously developed for these two sediment-response units were updated; these profiles 

will enable refinement of previously developed earthquake ground-response projection 

envelopes. 

Abstract for Manuscript 2, “Three-dimensional Shallow Shear-Wave Velocity Model 

for Las Vegas Valley”: A three-dimensional (3-D) shear wave velocity (VS) model was 

developed for the heterogeneous shallow sediments (to nearly 400 m) of the Las Vegas 

Valley (LVV), Nevada. The model was based on more than 200 VS profiles and 1400 

geologic well logs. Five sediment units including a cemented unit were defined from 

geologic log descriptions. A characteristic VS profile for four of the units was obtained 

by correlating between closely spaced pairs of VS and sediment data; a constant VS was 

assigned to the cemented unit. VS profiles were then assigned to each well location based 

on type of sediment according to the representative profiles. This assigned-velocity 

dataset was merged with measured VS profile data so that the measured data are honored 

in the model. The combined dataset results in a model with better resolution than a model 

developed using either of the two datasets independently. The software EarthVision was 

used to perform the 3-D interpolation of VS across the Valley. The model demonstrates 

the strong lateral variability of VS in the LVV. It also fits known patterns of sediment 

deposits: velocity in the central part of the Valley, where clay is the predominant 

sediment, is lower than velocity to the west and on the margins of the Valley, where 
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gravel is predominant. The model may be used to predict Valley-wide earthquake 

ground-shaking patterns. 

 

 



 v

TABLE OF CONTENTS 

ABSTRACT ....................................................................................................................... iii 
 
LIST OF TABLES ............................................................................................................ vii 
 
LIST OF FIGURES ......................................................................................................... viii 
 
ACKNOWLEDGEMENTS ................................................................................................ x 
 
CHAPTER 1 INTRODUCTION ...................................................................................... 1 
 1.1  Purpose of the Study ........................................................................................ 1 
 1.2  Overview of this Thesis ................................................................................... 1 
 1.3  Summary of Conclusions from this Thesis ..................................................... 2 
 
CHAPTER 2 COMPLEX SHEAR-WAVE-VELOCITY PROFILES TO 100 M DEPTH 
FROM RAYLEIGH WAVES FOR LAS VEGAS, NEVADA .......................................... 4 
 2.1  Introduction ..................................................................................................... 5 
 2.2  Background ..................................................................................................... 6 
 2.2.1  Basin sediments ............................................................................................... 7 
 2.2.2  Earthquake hazard and previous microzonation of LVV ................................ 8 
 2.2.3  Rationale for deep profile development .......................................................... 9 
 2.2.4  Test site selection, data acquisition, and dispersion curves .......................... 11 
 2.2.5  Inversion methods ......................................................................................... 18 
 2.3  Test site profiles ............................................................................................ 20 
 2.3.1  Procedure for VS profile development .......................................................... 21 
 2.3.2  Results for LI and SA-LI optimization: four case studies ............................. 25 
 2.3.3  Comparison of LI and SA-LI results: all sites ............................................... 30 
 2.3.4  Investigation of profile uncertainty ............................................................... 32 
 2.3.5  SA-LI with explicit search for HVL (SAES-LI; SFB site) ........................... 33 
 2.4  Summary of outcomes ................................................................................... 36 
 2.5  Recommendations ......................................................................................... 39 
 2.6  Conclusions ................................................................................................... 40 
 2.7  Paper specific acknowledgements ................................................................. 42 
 2.8  Tables and Figures ......................................................................................... 43 
 2.9  References ..................................................................................................... 59 
 
CHAPTER 3 THREE-DIMENSIONAL SHALLOW SHEAR-WAVE VELOCITY 
MODEL FOR LAS VEGAS VALLEY ............................................................................ 67 
 3.1  Introduction ................................................................................................... 68 
 3.2  LVV basin geometry and shallow sediments ................................................ 69 
 3.3  VS data compilation ...................................................................................... 73 
 3.3.1  VS profiles from body-wave and active-source surface-wave measurements ..  
   ....................................................................................................................... 74 
 3.3.2  VS profiles from passive-source surveys ...................................................... 77 
 3.4  Establishing VS mapping approach .............................................................. 80 



 vi

 3.4.1  Basis for depth and type of model ................................................................. 81 
 3.4.2  VS-sediment correlation procedure: background .......................................... 82 
 3.4.3  Geostatistical model background .................................................................. 87 
 3.5  VS-sediment correlation procedure ............................................................... 90 
 3.5.1  Determining correlation distances ................................................................. 91 
 3.5.2  Characteristic VS profile development ......................................................... 95 
 3.5.3  VS assignments for caliche, deep sediments, and bedrock ......................... 106 
 3.6  Model development: data interpolation ....................................................... 108 
 3.7  Results, discussion and future work ............................................................ 110 
 3.8  Conclusions ................................................................................................. 114 
 3.9  Tables and Figures ....................................................................................... 116 
 3.10  References ................................................................................................... 135 
 
APPENDIX A SHEAR-WAVE VELOCITY MEASUREMENT LOCATIONS, DATA 
AND SOLUTIONS ......................................................................................................... 144 
 
APPENDIX B CORRELATION DATASET ................................................................. 174 
 
APPENDIX C ESTABLISHING CREDIBLE VS RANGES FOR LVV SEDIMENT 
TYPES ............................................................................................................................ 184 
 
APPENDIX D 3-D VS MODEL .................................................................................... 195 
 
VITA ............................................................................................................................... 215 
 



vii 
 

LIST OF TABLES 

Table 2.1  Test site designations and descriptions ..................................................... 43 
Table 2.2  Key test parameters, sediment response unit, and model halfspace ......... 43 
Table 2.3  Maximum difference found comparing VS for each layer of the profile 

from the LI solution to the corresponding layer of the SA-LI solution .... 44 
Table 2.4  VS averaged over the upper 30 m depth (VS(30)) and averaged over the 

total depth (VS(TD)). ................................................................................ 44 
Table 2.5  Number of VS profiles at specific depth for the combined dataset of the 

12 new profiles. ......................................................................................... 45 
Table 3.1  Seismic Site Classification definitions with respect to VS(30) .............. 116 
Table 3.2  Layer geometry of the characteristic profiles, intervals over which depth-

average VS was calculated to create semivariogram clouds .................. 117 
Table 3.3  Numbers of VS profiles having one or more wells within the correlation 

distance. .................................................................................................. 117 
Table 3.4  Layer geometry and VS for the four characteristic profiles. .................. 118 
Table 3.5  Standard deviation (σ) and deviation of characteristic profile (σcp) for each 

layer of the four characteristic profiles. .................................................. 118 
  
 



viii 
 

LIST OF FIGURES 

Figure 2.1  The Las Vegas Valley with test site locations. ......................................... 46 
Figure 2.2  UNLV’s “minivib”, a trailer-mounted T-7000W servo-hydraulic vibrator 

built by Industrial Vehicles International. ................................................ 47 
Figure 2.3  Two- and three-receiver arrangements for SASW array. ......................... 47 
Figure 2.4  Conceptualization of zones tested (shown by ellipses) along SASW array 

with different receiver spacings and source-receiver geometry. .............. 48 
Figure 2.5  Target dispersion curves for the 12 test sites.. .......................................... 48 
Figure 2.6  Chart illustrating the steps taken to perform optimization using LI and SA-

LI methods. ............................................................................................... 49 
Figure 2.7  Locations of the 4 case study sites. ........................................................... 50 
Figure 2.8  Sediment and lithology key (a) and resolution matrix key (b). ................ 51 
Figure 2.9  Sample fine-sediment response unit site (LES), data and solutions. ........ 52 
Figure 2.10  Sample coarse-sediment response unit site (GMS), data and solutions. ... 53 
Figure 2.11  HVL site 1 (NLP), data and solutions. ...................................................... 54 
Figure 2.12  HVL site 2 (SFB), data and solutions. ...................................................... 55 
Figure 2.13  VS profiles for LI and SA-LI processes for 3 sites where difference in VS 

between the methods exceeded 20 percent in at least one layer. .............. 56 
Figure 2.14  HVL site 2 (SFB), comparison of LI and SA-LI solutions to a solution 

resolved using explicit search for stiff layer. ............................................ 57 
Figure 2.15  SA-LI profiles for the 12 test sites. ........................................................... 58 
Figure 2.16  New data combined with data from original microzonation. ................... 59 
Figure 3.1  Map of Las Vegas Valley (LVV) ............................................................ 119 
Figure 3.2  Data distribution overlying topographic map of the LVV. ..................... 120 
Figure 3.3  Example of an experimental semivariogram (open circles) fitted with an 

exponential semivariogram model (blue). .............................................. 121 
Figure 3.4  Semivariogram clouds for layers. ........................................................... 122 
Figure 3.5  Semivariograms for layers. ..................................................................... 123 
Figure 3.6  Blue line representing mean γ for the depth ranges identified with error 

bars to show the standard deviation. ....................................................... 124 
Figure 3.7  VS scatter plots for four sediment units in the 3-D sediment-lithology 

model....................................................................................................... 125 
Figure 3.8  Histograms of VS, calculated normal distribution and assigned velocity for 

each layer of the four characteristic profiles. .......................................... 126 
Figure 3.9  Statistics for the correlation dataset for the Clay unit. ............................ 127 
Figure 3.10  Statistics for the correlation dataset for the Sand unit. ........................... 128 
Figure 3.11  Statistics for the correlation dataset for the Gravel unit. ........................ 129 
Figure 3.12  Statistics for the correlation dataset for the Mixed unit. ......................... 130 
Figure 3.13  Characteristic profiles for four sediment units in the 3-D sediment-

lithology model; number of profiles used for each correlation ............... 131 
Figure 3.14  Three dimensional, shear-wave velocity models .................................... 132 
Figure 3.15  East-west cross section and surface of northern half of final 3-D VS model 

showing the Quaternary basin. ................................................................ 133 



ix 
 

Figure 3.16  For the two sites shown in Figure 3.1, measured VS profiles, profiles 
queried at the site location from the 3-D VS model created from the VS-
assigned dataset and from the final 3-D VS model. ................................ 134 

  
 



x 
 

ACKNOWLEDGEMENTS  

I wish to thank my advisor, Dr. Barbara Luke, for the opportunity to perform this 

research. She provided encouragement and guidance, lifted heavy equipment in the field, 

and answered early morning phone calls. I also wish to thank my other committee 

members, Dr. Wanda Taylor, Dr. Aly Said, Dr. David James, and Dr. Carlos Calderón-

Macías for their patience, advice, assistance and encouragement.  

This research was sponsored in part by the U. S. Department of Energy under contract 

number DE-FG52-03NA99204. Stanley Consultants, Inc. (thanks to the support of 

Dennis Brown and David Huckle) provided funding for graduate courses and for 

conference travel. Additional funding for conference travel was provided by the UNLV 

Graduate and Professional Student Association (GPSA). 

Dr. James Bay, University of Utah, programmed the analyzer and provided technical 

assistance for the minivib.  

The following persons assisted with field data acquisition: volunteers Ryan Wilson 

and Ian Wilson; UNLV undergraduate students John Amato, Dianna Feica, Eduardo 

Gonzalez, and Richard Phillips; and Geophysical Research Associate Chris Cothrun.  

Sandra Saldaña provided technical assistance for data acquisition equipment. Cathy 

Willey of the UNLV Public Lands Institute obtained site permits.  

Dr. Xiaohui Jin provided advice and technical assistance with inversion processes and 

many words of encouragement.  

Committee member Dr. Wanda Taylor with the assistance of graduate student 

Jonathan Carter provided the three-dimensional sediment-lithology model of the Las 



xi 
 

Vegas Valley. They also provided well log information and assistance with the software 

to plot and interpret the logs.  

Catherine Snelson, National Center for Nuclear Security (NCNS), National Security 

Technologies, LLC (NSTEC), provided guidance for the assignments of shear-wave 

velocity values to bedrock and Oligocene-Miocene-aged sediments.  

Jeff Wagoner, Lawrence Livermore National Laboratory, performed the velocity 

assignments to the sediment-lithology dataset and managed the interpolation process for 

model development using the computer program EarthVision. He also provided technical 

assistance and valuable insight for the correlation process.   

Werner Helmer and Ron Lynn provided web-based access to public records archived 

at Clark County. The City of Henderson, Kleinfelder, Converse Consultants, Ninyo and 

Moore, and GeoTek also provided survey location information. UNLV students Thomas 

Higgins, Wilonda Quinn, Eduardo Gonzalez, Dianna Feica and Pinthep Kittipongdaja 

searched public records for shear-wave velocity data and compiled the data.  

My gratitude to the persons listed here cannot be expressed adequately, especially to 

the students who assisted with the data acquisition. The excellent quality of their work 

and their contributions to this research cannot be overstated.   

This thesis is for my family and friends who will be very excited and pleased to learn 

of its completion.  



1 
 

   CHAPTER 1 

INTRODUCTION 

1.1. Purpose of the Study 

The goal of this research is to develop a three-dimensional (3-D) shear-wave 

velocity (VS) model of the upper sediments, to 370 m, for the Las Vegas Valley, Nevada.  

 

1.2. Overview of this Thesis 

This thesis documents the data acquisition for and development of a three-

dimensional shear-wave velocity model for the Las Vegas Valley (LVV). It consists of 

this introduction, two journal manuscripts, and appendices with data and supplemental 

information.  

Following this introduction, Chapter Two is the journal manuscript “Complex Shear-

Wave-Velocity Profiles to 100 m Depth from Rayleigh Waves for Las Vegas, Nevada”. 

This manuscript describes the field data acquisition performed for this study and the 

development of shear-wave velocity (VS) profiles through inversion of these data. The 

results of different optimization methods are compared. The manuscript was written for 

possible submission to the Journal of Soil Dynamics and Earthquake Engineering. Co-

authors will be Barbara Luke and Carlos Calderón-Macías.  

Chapter Three is the journal manuscript “Three-Dimensional Shallow Shear-Wave 

Velocity Model for Las Vegas Valley”. This manuscript documents work performed to 

develop a three-dimensional (3-D), VS model for the LVV. Data used for model 

development include, among other sources, the data described in Chapter 2. The 
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manuscript was written for possible submission to the Environmental and Engineering 

Geoscience Journal. Co-authors will be Barbara Luke, Wanda Taylor, and Jeff Wagoner.  

Because chapters 2 and 3 are journal manuscripts, the references cited in each chapter 

are included at the end of the chapter.  

Appendix A includes data and solutions for the 12 sites described in Chapter 2 where 

VS profiles were developed as part of this research. Aerial photos of each site’s location 

along with the approximate location of the array and plots of nearby well logs are also 

included.  

Appendix B includes a list of the VS measurement sites used for the correlation of 

velocity to sediment lithology described in Chapter 3. For each site, a list of wells within 

the correlation distance is also included. The VS sites that are deeper than any well within 

the correlation distance are listed with their nearest, deeper well.  

Appendix C includes the description of the work performed to establish credible VS 

ranges for use in the velocity-sediment correlations performed in Chapter 3.  A 

comparison to VS values previously published for sediments found in the Valley is also 

provided.  

Appendix D includes graphics of the 3-D VS model created by Jeff Wagoner using 

EarthVision. 

 

1.3. Summary of conclusions from this Thesis 

A 3-D VS model for the LVV was developed by combining a dataset of limited VS 

measurements (212 measurements with irregular distribution throughout the Valley) with 

a larger dataset of sediment type (1400 well logs with better distribution throughout 
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Valley than the VS measurements) that is correlated to VS. This model provides better 

resolution than models developed using either of the two datasets independently. The 

model demonstrates strong lateral variability of VS, which reflects the Valley’s 

depositional environment, history of secondary cementation, and faulting. As expected, 

VS is depth dependent. The model resolution is such that it may be used to predict 

Valley-wide earthquake ground-shaking patterns.  

Twelve new VS profiles were developed for this research from a process that uses the 

average of three profiles derived through simulated annealing (SA) as an optimized 

starting model for linearized inversion (SA-LI). The results from this process were 

compared to profiles derived using linearized inversion (LI) based on a more generic 

starting model. For 75 percent of the sites compared, velocity differences are within 

20 percent. In other words, the influence of the starting model on the inverted solution is 

relatively small. At a site where a high velocity layer (HVL) was known to exist, a VS 

profile was developed using the SA-LI approach where SA was configured for an explicit 

search for an HVL. This method accurately predicted the depth to the HVL and yielded a 

plausible result for its thickness. In all, the new profiles nearly double the number of high 

resolution profiles in the LVV and increase the number of profiles greater than 70 m deep 

by more than 10 percent. The 12 new VS profiles validate a previous microzonation 

performed for the LVV, demonstrating that sites located in the fine sediment response 

unit tend to have lower VS values compared to those for sites located in the coarse 

sediment response unit. 
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   CHAPTER 2  

COMPLEX SHEAR-WAVE-VELOCITY PROFILES TO 100 M DEPTH FROM 

RAYLEIGH WAVES FOR LAS VEGAS, NEVADA  

Abstract: Shear-wave velocity (VS) profiles were developed for 12 sites in the Las 

Vegas Valley, Nevada, which is situated on a deep alluvium-filled basin. The work was 

performed to support earthquake site response analyses. Data were acquired using the 

spectral analysis of Rayleigh-type surface waves (SASW) method. Sources used were an 

IVI Inc. “minivib” Vibroseis and an instrumented hammer. The combination of sources 

allowed VS profiles to be developed to 100 m and deeper without sacrificing resolution at 

shallow depths. The profiles were developed from the experimental dispersion data using 

straightforward linearized inversion and also following a method that incorporates the 

global search method of simulated annealing to optimize the starting model for linearized 

inversion. For all 12 sites, the two optimization processes resulted in nearly identical fits 

to the target dispersion curves. The VS of most layers from the two processes is within 20 

percent. Resolution matrices for the two processes are comparable. Use of simulated 

annealing provided a measure of confidence in the correctness of the final VS profiles. 

Data from one site that is known to have a shallow, high-velocity inclusion were 

analyzed with the benefit of this independent information. The depth to and thickness of 

the high-velocity inclusion appear to be modeled accurately. Overall, the VS profiles 

obtained are consistent with expectations based on previous earthquake microzonation of 

the Valley; VS values are lower for fine-grained sediments than for coarse-grained and 

cemented sediments. Average VS profiles previously developed for these two sediment-
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response units were updated; these profiles will enable refinement of previously 

developed earthquake ground-response projection envelopes. 

This manuscript was written for possible submission to the Journal of Soil Dynamics 

and Earthquake Engineering. Co-authors will be Barbara Luke and Carlos Calderón-

Macías. Student contributions: Ms. Murvosh is the first author for the manuscript. She led 

the team that performed the data acquisition, was responsible for applying the 

optimization processes as described in the article to obtain the VS profiles, and performed 

all other data analyses described. She wrote the article and addressed all editorial 

comments from her co-authors.  

 

2.1. Introduction  

Rayleigh-type seismic surface wave testing was conducted to develop shear-wave 

velocity (VS) profiles using the spectral analysis of surface waves (SASW) method 

(Stokoe et al., 1994) at 12 locations in the Las Vegas Valley (LVV), Nevada (USA). Data 

were acquired with a hammer source and with a Vibroseis source. The data acquisition 

process was optimized to take advantage of the frequency ranges generated by each of 

these sources. Results were merged to develop VS profiles to depths on the order of 

100 m.  

The work was performed to expand a dataset of VS profiles in the LVV that 

characterize sediments to depths important to seismic site response analysis for the 

alluvium-filled basin for incorporation in a regional VS model for the LVV. Since 2002, 

many surface-wave measurements of LVV sediments have been performed, but primarily 

to develop VS profiles to 30 m. Few measurements have been performed to develop 
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deeper profiles. The measurements presented here increase the number of profiles in our 

VS database that extend to depths of 70 m and greater by 13 percent and nearly double 

the number of deep measurements that include detail near the surface. The VS profiles 

were combined with previously compiled data (Liu et al., 2005; Scott et al., 2006; 

Murvosh et al., 2006a) to develop a three-dimensional (3-D) VS map for the Valley, 

which will ultimately be used to model earthquake site response (Luke et al., 2008; Luke 

et al., 2009).  

Development of VS profiles from surface-wave data in the LVV is challenging 

because the character of the shallow alluvial sediments can vary significantly over short 

distances. The challenge is greatest where high-velocity inclusions or layers (HVLs) exist 

at shallow depths. This study addresses challenges associated with the surface-wave 

signature of complex sediment columns. In this paper, we compare the results of 

linearized inversion to develop layered VS profiles from two starting models: 1) a 

straightforward, data-driven starting model and 2) a refined starting model developed 

from a simulated annealing optimization process. We investigate resolution matrices 

from the linearized inversion for their value in describing degree of confidence in the 

outcomes. The VS profiles resulting from the analyses are compared to nearby well logs 

and assessed in the context of an earthquake-response microzonation for the LVV 

presented by Luke and Liu (2008).  

 

2.2. Background  

For context, this section summarizes the local geologic setting, especially the 

heterogeneity of the sediments, earthquake risk and previous microzonation of the LVV. 
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The rationale for developing VS profiles deeper than 30 m in deep, sedimentary basins is 

discussed. The selection of test sites and the data acquisition process is presented. The 

background for the inversion methods is also presented.      

2.2.1. Basin sediments  

The LVV is located in an alluvium-filled basin in the Basin and Range geomorphic 

province (Wyman et al., 1993). The Spring Mountains, located on the west side of the 

Valley, are the primary source of alluvial deposits (Figure 2.1). Sediments become finer 

from west to east, with increasing distance from the source and with decreasing elevation. 

From the lowest elevations to the east (Frenchman and Sunrise Mountains), sediment size 

increases with distance. According to a geophysical study by Langenheim et al. (2001), 

the basin is deep and complex in shape, with the maximum depth to Paleozoic bedrock 

near 5 km occurring in the northeast quadrant of the basin, approximately 5 km west of 

Frenchman Mountain. The upper portion of the basin, to depths of 1 km, consists of 

Quaternary and Pliocene sediments (Taylor et al., 2008), which includes some material 

that engineers would consider to be rock: having VS approaching and in some cases 

exceeding 1000 m/s. The lower portion consists of Miocene and Oligocene material 

(Taylor et al., 2008).  

Taylor et al. (2008) developed a 3-D geometric model of basin stratigraphy and 

structure from approximately 1400 well logs, geophysical measurements, and data from 

air photos, maps and direct field observations. The model shows that clay deposits 

dominate in the deep, central and south part of the basin, and coarse- and mixed-grain 

size deposits dominate in the shallower, western part of the basin. The model also shows 

that the deposits exhibit considerable vertical and lateral heterogeneity, which presents 
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unique challenges for development of a high resolution VS model from Rayleigh-wave 

data.  

Cemented soils and dense sands and gravels present strong stiffness contrasts when 

juxtaposed with layers of clay or less dense sand and gravel. The stiffest of the sediments 

is locally known as “caliche”. It is heavily carbonate-cemented fines, sand or gravel, 

which appear in lenses that can have thickness of up to 2 m or more and can occur to 

depths of 350 m or more (Taylor et al., 2008). Caliche has a high VS: Stone and Luke 

(2001) reported VS in laboratory testing of 2350 m/s; Tecle et al. (2003) reported values 

measured in the field from 1650 to 2000  m/s; and Werle and Luke (2007) reported 

measured field values from 1000 to 1500 m/s. In contrast, Sundquist (2001) reported VS 

values of uncemented LVV sediments between 260 and 860 m/s for clay and between 

300 and 500 m/s for sand at depths less than 50 m.  

2.2.2. Earthquake hazard and previous microzonation of LVV  

Characterization of the VS of local sediments has become increasingly important with 

our developing knowledge of earthquake risk and related hazards in the LVV. Price et al. 

(2009) published a preliminary report that presents estimates of total economic loss, 

number of people needing public shelter and hospital care, and number of fatalities due to 

earthquakes ranging in magnitude from 5.0 to 7.0 and occurring within 50 years and 

50 km of Nevada’s major communities. For a magnitude 6 earthquake occurring on the 

central east side of the Valley (epicenter at 115.12 degrees west longitude, 36.17 degrees 

north latitude with a depth of 10 km), the economic loss in the Valley was estimated at 

7.2 billion dollars, and the number of fatalities was estimated at 280. Four times as many 

fatalities were estimated for a magnitude 6.5 earthquake with the same rupture location.  
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As part of a broader effort to define earthquake hazard and related risks in the LVV, 

Luke and Liu (2008) used a preliminary geologic model and 16 VS measurements to 

develop a seismic microzonation for the LVV based on predominant sediment in the 

upper 30 m. They defined and developed characteristic profiles for two units: a coarse 

sediment response unit (coarse SRU) and a fine sediment response unit (fine SRU). The 

coarse SRU consists predominantly of gravel and also includes mixed-grain-sized 

deposits and cemented media that commonly occur in the alluvial fans on the margins of 

the Valley. The fine SRU has a lower VS overall and occurs in the areas of 

predominantly clay (although the presence of cemented sediments is not uncommon) in 

the intermediate-depth and deep parts of the basin, which are also lower in surface 

elevation. Luke and Liu (2008) presented ground response projection envelopes for each 

unit. In general, lower velocity sediments are expected to produce higher ground motions 

than sediments with higher velocities (e.g. Idriss, 1990); however, spectral accelerations 

modeled for the LVV coarse SRU were greater than those modeled for the fine SRU. 

Because projections for the coarse SRU were based on VS measurements from only four 

sites, Luke and Liu (2008) concluded that, for the coarse SRU, the velocity dataset used 

in their study was too sparse to permit confident comparisons. The new profiles presented 

in this paper allow the microzonation of Luke and Liu (2008) to be tested and the ground 

response projection envelopes to be refined.  

2.2.3. Rationale for deep profile development 

The International Building Code (IBC) provides guidance for engineers to consider 

VS averaged over the upper 30 m (VS(30)) for the seismic design of structures 

(International Code Council, 2009). However, as discussed below, research suggests that 
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for deep, sedimentary basins, such as the LVV, VS data deeper than 30 m are needed to 

accurately predict ground motion during an earthquake.  

In their Next Generation Attenuation project to model earthquake ground motion for 

California, Abrahamson and Silva (2008) applied in tandem VS(30) and the depth to 

engineering bedrock, which is defined in their study as the depth where VS reaches 

1000 m/s (Z1.0), for seismic site classification. They recommended the use of the 

engineering bedrock parameter Z1.0 to distinguish between shallow (Z1.0 < 200 m) and 

deep (Z1.0 > 200 m) “soil” sites.  

In a study to investigate the influence of shallow sediments on ground motion in 

LVV, Luke and Liu (2007) established a preferred depth to model half-space for one-

dimensional site response analyses. They compared the site response on the surface of a 

1-km deep sediment column to that of a “rock” site situated at the foot of Frenchman 

Mountain (Figure 2.1) for small-strain motions. They projected ground surface response 

for sediment columns having depths to half space ranging from 50 m to 500 m. The 

projections were compared to weak ground motions measured at the two sites during 

nuclear test events and during a magnitude 5.5 earthquake. The authors found the best 

matches of modeled ground motion to recorded ground motion occurred for a half-space 

depth of 375 m.  

Based on these results and considering the recommendations of Abrahamson and 

Silva (2008), VS profiles for the new sites would have ideally extended to 400 m depth. 

However, due to survey limitations discussed in the following section, maximum depths 

to halfspace of VS at the new study sites ranged from 60 to 130 m.  
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2.2.4. Test site selection, data acquisition, and dispersion curves  

Test sites were selected following criteria developed by Murvosh et al. (2006b): 

Preference was given to sites that:  

1. are located in one of the established sediment response units  

2. are located near wells that are included in the 3-D geometric model of basin 

stratigraphy and structure (Taylor et al., 2008), for geologic ground truth 

3. are located near seismic monitoring stations 

4. are located near structures of importance for public safety (e.g. schools and 

hospitals)  

5. are located where the sediment-lithology or velocity structure at depths from 

400 m to 1 km were already known through other testing; tying this dataset to the 

more shallow data discussed in this paper will allow us to produce a more 

accurate 3-D map over a greater depth range than previously studied for the LVV 

6. enhance geographic distribution of VS measurements across the LVV. 

Practical considerations also factored into the site selection process: the availability of 

land with sufficient space to perform a long, linear survey; the ability to obtain 

permission from the land owner to study the site; and the ability to safely access the site. 

Site selection is described in detail by Murvosh and Luke (2008). Ultimately, eight sites 

in the fine SRU and four in the coarse SRU were tested. The site locations are listed in 

Table 2.1 and are shown with respect to the well-log database and sediment response 

units defined by Luke and Liu (2008) in Figure 2.1. All 12 test sites could accommodate 

linear arrays of at least 128 m length (distance from source to farthest receiver); six could 

accommodate array lengths of 200 m or more.   
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Data acquisition for the sites discussed in this paper was described in detail by 

Murvosh and Luke (2008).  Key content is reviewed here.  

Accepted procedures for an SASW survey, developed by Stokoe et al. (1994), were 

employed at each site to acquire Rayleigh-wave phase velocities. Rayleigh waves are 

surface waves, produced by the interaction of compression- and vertical shear-waves at 

the ground surface (Kramer, 1996). The SASW method is based on the dispersive nature 

of these waves, meaning the variation of wave velocity with frequency (or wavelength) in 

a layered media. In an SASW survey, a vertical source is used to produce vertical ground 

motions (Stokoe et al., 1994). Then, a frequency-domain analysis of the phase differences 

of the ground motion at two discrete points along a linear array radiating from the source 

is used to develop a dispersion curve (plot of velocity as a function of frequency or 

wavelength) for the site. The dispersion curve is assumed to consist primarily of the 

fundamental mode of the Rayleigh wave, but may also consist of higher modes as well as 

other wave types; thus it is considered an “effective” dispersion curve.  

The sources used for this study were an instrumented sledge hammer (PCB impact 

hammer, model 086D50) and UNLV’s “minivib”, a servo-hydraulic vibrator built by 

Industrial Vehicles International (IVI) of Tulsa, Oklahoma, model T-7000W (Figure 2.2). 

The maximum force output of UNLV’s minivib is 26.7 kN. It was designed to operate 

between 10 and 550 Hz, but can vibrate at lower frequencies. The minimum frequency at 

which data were acquired for this study was slightly below 3 Hz. Having been designed 

originally for seismic reflection surveying, the UNLV minivib was optimized for surface-

wave measurements by lengthening the stroke of the shaft from 4.8 cm to 7.6 cm. The 

minivib is trailer-mounted and uses water for ballast, but is otherwise similar to the 
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mobile vibrator known as “Thumper”. Thumper is the smallest of three large-scale 

Vibroseis shakers operated by University of Texas as part of the National Science 

Foundation’s George E. Brown Jr. Network for Earthquake Engineering Simulation 

(NEES; Stokoe et al., 2006).  

In an optimal SASW survey, all receiver spacings share a common centerpoint 

(Stokoe, 1994); however a three-receiver layout (Figure 2.3), where the distance between 

the second and third receivers (R2 and R3) is twice the distance between the first and 

second receivers (R1 and R2), is sometimes used for convenience (Gilbert 2004). 

Measurements performed with three receivers will not share a common centerpoint, but 

can reduce the time spent in the field or provide redundancy if duplicate measurements 

are made. We used a combination of these configurations to acquire data at our test sites.  

Common-centerpoint geometry (Figure 2.4a) was used to acquire data for receiver 

spacings 1 to 16 m. The centerpoint, recorded using a handheld GPS unit, defined each 

site’s location shown in Figure 2.1. For receiver spacings 1, 2, 4 and 8 m, the source was 

an instrumented hammer, and the receivers were a pair of vertical geophones with 4.5-Hz 

resonant frequency, made by Mark Products (now Sercel). The geophones were coupled 

to the ground by metal spikes screwed into the bases. Data were acquired in both 

directions along the array by placing the source alternately on opposite sides of the 

receiver pair. The minimum frequency used from these measurements was 14 Hz.  

For receiver spacings 16 m and longer, the minivib was used with the three-receiver 

arrangement. For efficiency, the minivib was fixed at a single position. It was placed 

24 m from the midpoint of the shortest receiver spacings so that the 16-m spacing 

measurement shared the same midpoint. Each receiver spacing longer than 16 m, 
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however, had a different midpoint, and, therefore, sampled a different zone along the 

array (Figure 2.4b). Receiver spacings for minivib testing were doubled successively 

from 16 to 32 to 64 m. The maximum receiver spacing used was 128 m. Attempts were 

made at several sites to acquire data using longer arrays (to 165 m), but signal strength 

was not adequate to resolve frequencies lower than already acquired at the 128 m 

spacing. Some sites were space-limited so the maximum receiver spacings ranged 

between 64 and 128 m (Table 2.2). 

For measurements made using the minivib, Mark Products (now Sercel) vertical 

geophones with 1-Hz resonant frequency were used. These geophones are flat-bottomed. 

Where possible, they were coupled to the ground by slightly embedding them. Some of 

the test sites, however, were turf lawns, where it was not appropriate to dig holes. At 

these locations, the geophones were placed on sandbags. Geophones were positioned 

using hardware-grade post levels.  

The tests were conducted in summer, when LVV daily high temperatures are 

typically 38° C and higher. In July, temperatures frequently exceed 43° C. The 

temperature of the 1-Hz geophones was moderated by surrounding them with ice packs 

and by providing shade with buckets and reflecting foil (Murvosh and Luke, 2008). The 

buckets also provided wind isolation where the cable connects to the receiver.  

A four-channel dynamic signal analyzer (Agilent model 3567A) was used for data 

acquisition. The spectral response computations, performed in the field with the analyzer, 

incorporated output from the source (acceleration measured on the vibrating mass of the 

minivib and force measured on the head of the hammer) to improve signal-to-noise ratio 

(Gilbert, 2004).  
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 For the hammer-source measurements, both the cross-power spectrum and 

coherence, a measure of the data quality, were acquired according to standard procedures 

for the SASW method (Stokoe et al., 1994). The signals were stacked (summed) until 

additional measurements resulted in little to no observable changes in the data.  

For the minivib-source measurements, data were acquired by a stepped-sine vibration 

method, which automatically steps down through the range of frequencies specified by 

the user. The user also specifies the number of measurements averaged at each frequency 

and the size of the frequency step. For the LVV tests, these parameters varied with each 

measurement and at each test site and depended upon the receiver spacing. The duration 

of a measurement to frequencies less than 5 Hz may be as much as 30 minutes. In the 

field, the user-defined, stepped-sine test parameters were adjusted manually for each 

measurement based on experience. For each receiver spacing, measurements were 

stopped once the frequency corresponding to a phase difference of π radians was 

established; data below this frequency are not useful because they are overly 

contaminated by near-field effects (Sánchez-Salinero et al., 1986). For the longest 

receiver spacing, the measurement was stopped before this point if the calculated phase 

difference became heavily distorted. When present, this excessive distortion usually 

occurred around 2.5 Hz.  

Efficient data acquisition techniques were necessary because operating the minivib 

for long durations in the high summer temperatures caused the minivib’s hydraulic fluid 

to overheat (fluid temperatures > 90.6 °C). Special precautions were taken to avoid 

overheating (Murvosh and Luke, 2008); however, surveys on some of the hottest days of 
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summer were stopped due to soaring hydraulic fluid temperatures. The UNLV minivib 

has since been outfitted with a supplemental radiator to mitigate this problem.  

Coherence was not readily calculated by the analyzer for the stepped-sine data. Two 

measures were taken to compensate for this shortcoming of the data-acquisition process: 

(1) to provide redundancy frequency ranges for each receiver spacing were selected to 

overlap the range for the prior receiver spacing; and (2) additional measurements were 

acquired for the 32 and 64 m receiver spacings. Consistency between the overlapping 

data and the additional measurements was an indicator of data reliability.  

The data from each receiver spacing were combined into a single dispersion curve 

(velocity as a function of frequency) containing more than one thousand data points. To 

develop a reasonable target for inversion, data were logarithmically binned with respect 

to frequency and a representative velocity value was assigned to each bin by averaging. 

This condensed representation, just 40 to 50 points, was smoothed by convolving it with 

a 5- to 7-point kernel (Wu et al., 2003). The smoothed curve was visually compared to 

the measured data to verify that it fit the general trends of the measured data and that the 

smoothing process did not remove what was judged to be potentially important trends.  

The smoothed dispersion curves for the 12 sites are shown in Figure 2.5. For 

frequencies less than 50 Hz, the velocities for sites located in the fine SRU tend to be 

lower than those for sites located in the coarse SRU. One exception is the curve for the 

SFB site, which is located in the fine SRU and, from well logs and a nearby cut slope, is 

known to have a 1-m thick caliche lens between 2 and 3 m deep. The dispersion curve for 

this site exhibits anomalously high velocities for frequencies greater than 15 Hz, and, for 

frequencies above 30 Hz, has the highest velocities of all the sites. It is distinctly different 
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from the other dispersion curves, having a pronounced local maximum at 50 Hz and 

remaining flat to low frequencies.  

Another exception is the OSH site, which is located in the fine SRU, but within 

500 m of an area defined as part of the coarse SRU (Figure 2.1). This site exhibits wave 

velocities greater than those measured at other sites in the coarse SRU. The closest well 

to the site is within 0.5 km; its log indicates a mixture of clay and gravel sediments above 

30 m. Three other wells are located within 1.5 km. Above 30 m depth, one of these logs 

shows only clay, one shows only gravel and the third shows a mixture of gravel and clay. 

Because of this information from nearby wells and considering uncertainty of the 

sediment response unit boundaries defined by Luke and Liu (2008), we assigned the site 

to the coarse SRU.  

Key test parameters and sediment response unit are listed for all the sites tested in 

Table 2.2. The longest wavelength resolved was 254 m, which corresponded to a 

frequency of 3.3 Hz. This occurred at a site located within the coarse SRU. The ability to 

resolve longer wavelengths in the coarse SRU than the fine SRU is attributed to the 

generally higher average velocity of coarse-grained sediments with respect to fine-

grained sediments (Figure 2.5; Luke and Liu, 2008) because surface waves will attenuate 

more gradually in stiff material than in soft material. The lowest frequency resolved for 

the studied sites was 3.2 Hz.  This low-frequency limit was reached at two sites located in 

the fine SRU (LMN and MHS), where it corresponded to wavelengths of 186 and 166 m, 

respectively. The depth to model halfspace is also listed in Table 2.2. The method used to 

fix this depth is discussed later in this paper.  
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2.2.5. Inversion methods 

For most cases, a Rayleigh-type surface-wave dispersion curve for a sediment column 

shows velocity increasing with decreasing frequency. This is logical because sediment 

stiffness, and therefore VS, increases with increasing confining pressure, which generally 

occurs with increasing depth. However, as illustrated for the SFB site in this paper, 

dispersion curves for sites containing HVL’s can exhibit strong velocity reversals 

(decreases in velocity with decreasing frequency), which prove challenging to interpret.  

A recent series of studies addressed inversion procedures to resolve layered systems 

containing HVL’s such as the complex sediment profiles of the LVV (Luke et al., 2006; 

Calderón-Macías and Luke, 2007; Luke and Calderón-Macías, 2007; Jin et al., 2009). 

The inversion procedures incorporate two fundamental components (Menke, 1989). One 

is the forward model, which is used to construct a theoretical dispersion curve 

corresponding to a set of assumed soil properties through simulation of wave 

propagation. The other is the optimization algorithm, which iteratively adjusts the model 

parameters to reduce the misfit of the theoretical dispersion curve with respect to the 

target.  

We selected the forward model to use for the test sites described in this paper based 

upon a synthetic study by Jin et al. (2009). Their study compared the effectiveness of two 

forward models to delineate HVL’s in otherwise normally dispersive (meaning that VS 

consistently increases with depth), one-dimensional synthetic profiles. The first models 

the wave propagation along cylindrical wavefronts from a vertical disk load (cylindrical 

solution; Foinquinos-Mera, 1991). The second models strictly fundamental-mode (plane-

wave) Rayleigh-wave propagation (fundamental-mode solution) using a program 



19 
 

developed by Lai and Rix (1998). The authors concluded that the simpler forward model 

(the fundamental-mode solution) might be more successful in resolving complex profiles 

from field data than the more sophisticated alternative because the higher level of 

interpretation of the data needed to use the cylindrical solution might not be achievable in 

practice. They further recommended that the fundamental mode solution be constrained 

within a reasonable search range fixed according to independent information about a site. 

In testing simulations, Jin et al. (2009) found the recommended approach to be reliable 

for determining the depth of an HVL; however, its velocity and layer thickness were 

overestimated by averages of 29 and 41 percent, respectively. 

Jin et al. (2009) performed optimization by employing a method that incorporates the 

global search method of simulated annealing followed by linearized inversion (SA-LI; 

Calderón-Macías and Luke, 2007; Luke and Calderón-Macías, 2007). Simulated 

annealing (SA; e.g. Sen and Stoffa 1995) is a stochastic optimization process that allows 

the error between the target dispersion curve and the theoretical dispersion curve to 

increase between iterations to reduce the possibility that a solution becomes “trapped” at 

a local minimum in the error surface. The intent of employing two optimization methods 

in series is to first use SA to seek a solution that can include an HVL. This solution is 

constrained by a velocity search range for all layers and, if an HVL is known to exist, 

also by depth, thickness and velocity ranges for the HVL. Then, the linearized least-

squares minimization process otherwise known as linearized inversion (LI) is used to 

refine the solution (Jin et al., 2009). LI is an unconstrained process where the error is 

forced to decrease with each iteration. The number of iterations may be in the thousands 

for the SA process compared to less than ten for LI. Following the SA optimization with 
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LI is particularly beneficial for cases when the limits used to constrain the SA solution 

are incorrect.     

A sensitivity study performed by Luke et al. (2006) compared the results of surface-

wave data inversion by SA-LI for a statistically significant number of repetitions on the 

same profile. Like the study performed by Jin et al (2009), the authors found that between 

an HVL’s depth, thickness and velocity, depth was the most reliably resolved parameter. 

They too found that velocity was overestimated, generally by 30 percent, but as much as 

80 percent for one case. In contrast to the test performed by Jin et al. (2009), they found 

thickness to be underestimated by approximately 25 percent. 

To investigate the benefits of employing optimization by SA at locations where 

independent, site-specific information is not available, we developed VS profiles for the 

sites described in this paper using the LI method alone and also the SA-LI method. For 

the SFB site, which is known to have shallow caliche and where a velocity reversal is 

obvious in the experimental data, we used the search range capabilities of SA to converge 

upon a solution that explicitly addresses the HVL.  

 

2.3. Test site profiles 

Development of the VS profiles for the 12 test sites is described in this section. 

Results from optimization by the LI and SA-LI methods are discussed in detail for four of 

the sites: a representative fine SRU site; a representative coarse SRU site; a site found to 

have an HVL where a velocity reversal is not obvious in the target curve but where 

nearby geologic observations indicate stiff materials; and a site known to have shallow 

caliche where a velocity reversal is apparent in the experimental data. The optimization 
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outcomes for all 12 sites are compared to determine which optimization method resulted 

in the best fit to the target dispersion curve and the most reasonable VS profile with 

respect to independent information about the site. For the site known to have shallow 

caliche, development of a VS profile using the explicit SA search for an HVL is also 

described. For this site, the solutions from the optimization methods are discussed with 

respect to their success at identifying the HVL. 

2.3.1. Procedure for VS profile development 

For the profiles developed in this study, the VS values were optimized from a pre-

assigned layer geometry, density, and Poisson’s ratio. Poisson’s ratio and density were 

assigned based on local field test results (Stone and Luke, 2001; Sundquist and Luke, 

2001; Tecle et al., 2003), published ranges for soil and rocks (e.g. Sharma, 1997; Mavko 

et al., 1998), and values researched for other surface wave investigations in the LVV (Liu 

et al., 2005). We assigned a Poisson’s ratio of 0.3 above the water table and 0.4 below the 

water table and a density of 1700 kg/m3. The values of Poisson’s ratio and density 

assigned to cemented layers are discussed in the section that describes the search for the 

HVL.  

We developed layering and VS starting models using an algorithm based upon work 

by Liu et al. (2002). Dispersion curves were calculated for several trial starting-model VS 

profiles, each having different layer geometry but the same number of layers. Layer 

boundaries were set so that layers thicken exponentially with depth (Liu et al., 2002). 

Layer thicknesses increase with depth because the resolution of surface-based acquisition 

methods tends to decrease with depth (e.g., Luke and Calderón-Macías, 2007) and 

because of the unifying effect that confining pressure has on the stiffness of non-lithified 
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sediments. The shallowest and therefore thinnest layers used in this study are 0.5 to 1 m 

thick. The number of layers was assigned by trial and error. By applying LI to a small 

sample of layer geometries, we found that a 10-layer starting model provided a 

reasonable fit to the target dispersion curves with wavelengths up to roughly 100 m. For 

deeper sediment profiles, which correspond to sites having data to longer wavelengths, 

more layers are needed to maintain similar layer thicknesses near the surface. We 

assigned 10, 11 and 12 layers for datasets having maximum wavelengths in the range of 

100 m, 150 m and 200 m, respectively. A calculated dispersion curve can be compared to 

the target smoothed dispersion curve developed from the experimental data using the data 

difference (DD; Liu et al., 2002), which is defined as the root-square sum of the squared 

difference between the calculated dispersion curve and the target calculated by 

wavelength step. Identification of the best starting model is not straightforward and 

different starting models may lead to different VS profiles each having dispersion curves 

with an equally good fit to the data (i.e. a nonunique solution). Empirical evidence 

showed that inversion results tend to be superior when the starting model corresponds to 

a dispersion curve with a low DD (Liu et al., 2002; Luke and Calderón-Macías, 2007). 

Further, in a study performed using synthetic data, Jin (2006) showed that a good fit to 

the starting model’s dispersion curve at the short wavelength (high frequency) limit is 

particularly important. Therefore, from the six trial starting-model profiles we calculated 

for each target dispersion curve, we chose the starting-model VS profile that 

corresponded to the dispersion curve with a low DD and a satisfactory fit at the high 

frequency limit.  
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The resolution matrices from LI provide an opportunity to assess the quality of the 

solution obtained from the selected starting model. Calderón-Macías and Luke (2007) 

and Luke and Calderón-Macías (2007) describe the resolution matrix produced by the 

inversion process. In general, an identity matrix represents a solution with all layers 

perfectly resolved. The more the matrix diverges from the identity matrix, the poorer the 

resolution. The matrix depends on the forward model and the starting model, but not on 

the measured data; thus, a solution with perfect resolution is not necessarily the true 

solution. Solutions, therefore, can be considered nonunique.   

Additionally, non-diagonal terms with relatively high amplitudes may indicate that 

too many layers (model parameters) are being solved for the frequency range being 

analyzed. In other words, rather than solving for VS of a particular layer, the inversion 

process is solving for this layer in combination with its neighbors. In general, resolution 

matrices are more diagonal when the inversion process is solving for fewer parameters. 

Thus, it is generally preferable to solve for the smallest number of layers that can fit the 

data reasonably well. 

The depth to model halfspace was fixed as half the maximum wavelength in the 

experimental dataset. This criterion was used by Liu (2006) in resolving profiles to 300 m 

deep and deeper using a drop-weight source and passive-source energy at 12 locations in 

the LVV. We tested the resolution depth of the new profiles using a method to establish 

the depth to model halfspace followed by Rosenblad et al. (2007) for SASW data 

acquired using the NEES vibrator source “Liquidator” (designed to acquire data to 

frequencies below 1 Hz; Stokoe et al., 2006). The testing method was applied to three 

sites (Table 2.2): one site in the fine SRU, one in the coarse SRU, and the site known to 
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contain a high-velocity layer. For each of these sites, the theoretical dispersion curve for 

the VS profile resolved for the site was compared to a dispersion curve generated by 

increasing the VS of the profile’s bottom layer by 20 percent. The changes in velocity of 

the dispersion curve at the lowest frequency resulting from the increase in the bottom-

layer VS were between 7 and 10 percent. These changes in velocity are greater than the 

minimum 5 percent change accepted by Rosenblad et al. (2007); for sites where the 

change was less than 5 percent, they would include the bottom layer in the halfspace. 

Therefore, the test supported our assumption that setting the depth to halfspace equal to 

half the longest wavelength was reasonable for our datasets. 

For each of the 12 sites, two VS profiles were obtained by applying LI and SA-LI to 

the starting model using the process illustrated in Figure 2.6. For SA, the search range for 

VS was from one-half of the starting model velocity to twice the starting model velocity. 

Three different VS profiles were obtained by applying SA to the starting model three 

times. The average of these VS profiles was calculated and used as the starting model for 

LI. This SA-LI procedure improves upon that recommended by Luke and Calderón-

Macías (2007) in which they performed LI for each of three starting-model VS profiles 

obtained from SA and averaged the VS profiles from LI to obtain the final solution. A 

disadvantage of this procedure is that a dispersion curve generated by averaging of the 

three profiles might not result in an optimum fit to the target.  

The minimum and maximum, or extreme, velocities resolved from the three SA runs 

provide a convenient measure of confidence in the VS profile resolved (Luke and 

Calderón-Macías, 2007).  
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2.3.2. Results for LI and SA-LI optimization: four case studies  

The results from the four case-study sites are described here. The proximity of these 

sites to the nearest ground truth (geologic well logs or other local sediment information) 

are shown in Figure 2.7. A sediment lithology key and resolution matrix key are shown in 

Figure 2.8. The widths of the sediment symbols shown in the lithologic logs provide an 

indication of relative grain size; narrower symbols represent finer-grained sediments. For 

convenience, the symbols for the most of the mixed units (e.g. “Clay and Sand” and 

“Clay Sand Silt”) are shown at maximum widths. The site data and solutions are 

presented in Figures 2.9 to 2.12. These figures contain dispersion curves with DD values, 

lithologic logs from nearby wells, VS profiles, and resolution matrices.   

The results for both LI and SA-LI are plotted in Figures 2.9 to 2.12. The VS profiles 

display the velocity search range employed in SA and the extremes of the velocities 

resolved from the three SA runs (“solution range”). Table 2.3 lists the maximum VS 

difference found between the LI and SA-LI profiles for all 12 test sites. 

Fine SRU site (LES) 

The LES site is located in the north of the LVV (Figure 2.1) on a grassy field of a 

schoolyard. Site data and solutions are shown in Figure 2.9. Sediment lithology is 

available from a well located 325 m west of the site (Figure 2.7). Its log describes clay to 

a depth of 15 m and mixed clay, sand and silt to 98 m.  

The dispersion curves for the LI and SA-LI solutions are virtually identical and have 

a low DD (good fit to the target). The depth to model halfspace is 63 m. VS of the LI and 

SA-LI solutions differ by less than 5 percent.  
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The range of the three SA solutions for this fine SRU site is always less than 200 m/s. 

The LI and SA-LI solutions fall roughly in the middle of these extremes. With the 

exception of the fourth and tenth (bottom) layers, which have slightly lower VS than their 

overlying layer, VS of the solutions increases with increasing depth. The resolution 

matrices for LI and SA-LI are virtually identical. Because the most important parameter 

controlling the matrix is layer thickness rather than velocity (Calderón-Macías and Luke, 

2007) and because layer thickness is identical while velocity is relatively close for LI and 

SA-LI, the similarity of the matrices is not surprising. For both solutions, nine of the 

eleven “layers” (10 layers plus the model halfspace) have resolution greater than 0.5 

along the diagonal of the matrix. The scale of the resolution matrix is 0 to 1, where 1 

along the diagonal is a perfectly resolved solution. Resolution generally decreases with 

increasing layer depth. Resolution is poorest for the model halfspace, which, as discussed 

later in this paper, implies that fewer, thicker layers at depth or a shallower halfspace may 

produce an equally good fit to the data at the low frequencies. 

Coarse SRU site (GMS) 

The GMS site is located in the southwest of the LVV (Figure 2.1) on a grassy field 

shared by a school and a park. Site data and solutions are shown in Figure 2.10. Sediment 

lithology is available from a well located 460 m east of the site (Figure 2.7). Its log 

describes layers of strictly gravel alternating with layers of gravel that are mixed with 

sand or clay to a depth of 152 m, except for a thin layer from 52 to 53.5 m that is logged 

as mixed sand and clay.  

The dispersion curves for the LI and SA-LI solutions are virtually identical. The DD 

values indicate a slightly poorer fit to the target with respect to the solution for the fine 
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SRU site, which is expected because the dispersion curve for this site is more complex 

than the dispersion curve for the fine SRU site. The depth to model halfspace is 127 m, 

twice as deep as resolved for the fine SRU and the deepest of all the sites in this study. 

VS of the LI and SA-LI solutions differ by at most 17 percent (Table 2.3). The range of 

three SA solutions is always less than 200 m/s above 85 m depth and 300 m/s below 85 

m. Neither the LI nor the SA-LI solutions fall consistently within the extremes of the SA 

solutions. As is true for the LES site, the resolution matrices for the GMS site do not 

differ substantially. The SA-LI process improved the resolution of some layers, but the 

resolution of an equal number slightly decreased. Out of 13 layers, LI produced 9 layers 

with resolution greater than 0.5 along the diagonal of the matrix; SA-LI produced 10 

layers with resolution greater than 0.5. The halfspace is not well resolved for either 

solution.  

HVL site 1 (NLP) 

The NLP site is located in the central part of the LVV (Figure 2.1) on a grassy field of 

a park. The site is in the fine SRU. Site data and solutions are shown in Figure 2.11. 

Sediment lithology is available from two wells, located within 700 m of the site (Figure 

2.7). The closest, well number 607, is 470 m east-southeast of the site. This log shows 

layers of mixed materials (sand, clay and silt) to 95 m. Three shallow caliche layers are 

described: having thicknesses and depths respectively of 2.7 m and 4.6 m, 1.5 m and 13.1 

m, and 2.4 m and 17.1 m. The next closest well, number 709, is 680 m south of the site. 

The log for this well describes alternating layers, 1- to 2-m thick, of clay and gravel and 

of stiff, higher velocity materials (stiff sediments with calcite) from the surface to 16 m. 

In the depth range from 16 to 68 m, according to the logs, layers of limestone from 0.5 to 
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22 m thick alternate with clay layers. Below this depth, layers are predominantly gravel. 

The static water level is 10 m.  

Because of the prevalence of stiff materials reported in the nearby logs, we suspected 

that stiff layers might be present at the NLP site. The ground-truth information, however, 

was too distant to warrant using an explicit, constrained stiff-layer-search approach in SA 

inversion.  

The dispersion curves for the LI and SA-LI solutions are virtually identical and have 

a low DD, slightly less than the DD of the fine SRU site. Although the target does not 

exhibit a strong local maximum that would indicate an HVL, both of the resolved VS 

profiles indicate a 4-m thick HVL at 6.5 m. The VS of this layer, 700 m/s, is 1.8 to 2 

times higher than VS resolved for the surrounding layers, 350 to 400 m/s. The depth of 

the HVL generally corresponds to the depths of high velocity materials shown in the two 

closest well logs. The depth to model halfspace is 61 m, slightly less than that resolved 

for the fine SRU site. VS of the LI and SA-LI solutions differ by 3 percent or less for the 

layers above the HVL, by 8 percent at the HVL and for the two layers below the HVL, 

and by 4 percent or less for the deepest layers. The range of the three SA solutions is 

always less than 175 m/s. Neither the LI nor the SA-LI solution falls consistently within 

the extremes of the SA solutions. Compared to the LI profile, the SA-LI profile exhibits 

greater fluctuations in VS between layers, especially at the HVL. The resolution matrices 

are not substantially different, which, as previously discussed, is expected. The SA-LI 

process does not notably improve the resolution of any layer and decreases the resolution 

of layer 8, which is 9 m thick and 16.5 m deep. Of the 11 layers, LI produced nine with 
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resolution greater than 0.5 along the diagonal of the matrix, and SA-LI produced eight 

with resolution greater than 0.5. The halfspace is not well resolved for either solution.   

HVL site 2 (SFB) 

The SFB site is located in the south-central part of the LVV (Figure 2.1) on a desert-

landscaped plot south of the Stan Fulton Building on the UNLV campus and 30 m south 

of a trapezoidal drainage swale. The swale is part of the Flamingo Wash, a significant 

storm-flow conduit for the LVV. The site is in the fine SRU. Site data and solutions are 

shown in Figure 2.12. A caliche layer approximately 1 m thick and roughly 2 to 3 m deep 

is visible in the side slopes of the drainage swale, which is more-or-less parallel to the 

survey array. Additional sediment lithology is available to 5 m depth for a borehole 

(designated as B-1) located approximately 150 m west of the site and to 120 m depth for 

a well located 370 m west of the site (number 741). The log for the borehole describes 

cemented material from 2.7 to 3.7 m, which roughly corresponds to the depth of the 

caliche observed in the swale. The log for the well, which is located farther from the site 

than the borehole, shows cemented materials from 6.1 to 8.2 m. Neither the presence of 

water nor the depth to groundwater was not noted in either log, which is surprising given 

the site’s proximity to the wash. 

Compared to the other case studies presented, the dispersion curve for the average of 

the SA solutions for HVL site 2 has a poor fit to the target at frequencies below 40 Hz. In 

spite of this poor fit, the dispersion curves for the LI and SA-LI solutions are virtually 

identical and have low DD values. Even with the presence of high VS contrast, the two 

different starting models converged to a similar VS profile. Both of the resolved VS 

profiles show a 2.5-m thick HVL at 3.3 m deep. The velocity of this layer, 1050 m/s, is 
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2.2 to 3 times higher than VS resolved for the surrounding layers, 350 to 475 m/s. The 

depth and thickness of the HVL roughly correspond to the depth of caliche reported in 

log for the nearest well and observed in the adjacent swale. The depth to model halfspace 

is 88 m, slightly deeper than that of the HVL site previously discussed. VS of the LI and 

SA-LI solutions differ by no more than 5 percent. The range of the three SA solutions, 

however, is as much as 550 m/s. With the exception of the HVL and the model halfspace, 

the LI and SA-LI profiles fall within these extremes.  

Comparing the resolution matrices for LI and SA-LI solutions, SA-LI has a slightly 

better resolution than LI for the 3 deepest layers and the halfspace. Elsewhere these two 

matrices are nearly identical. Neither produces well-resolved solutions for the two 

deepest layers or the halfspace. Again, the similarity of the matrices is expected.  

2.3.3. Comparison of LI and SA-LI results: all sites 

For the four case studies presented, LI and SA-LI methods produce equivalent results 

considering the expected accuracy of the inversion methods. Computed dispersion curves 

for the two methods have virtually identical fits to the target and differences in DD are 

insignificant. For each layer, VS of the two solutions are within 20 percent of one 

another. We consider a maximum difference of 20 percent to be reasonable. At all of the 

case study sites, we observed relatively poor resolution of the halfspace. The decrease in 

resolution indicates that despite the test performed to set the depth to model halfspace, we 

may be claiming a higher confidence at depth than is appropriate. More studies are 

needed to determine limitations in predicting depth to model halfspace.  

Similar patterns were observed in nine of the twelve sites tested: difference in DD 

values is less than 3 and maximum difference in VS between LI and SA-LI solutions is 
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everywhere less than 20 percent (Table 2.3).  In other words, for those nine sites, the 

impact of refining the starting model is minor. For profiles incorporated into a regional 

VS model, which is the reason these profiles were developed, the goal is to capture a 

local trend and its effect on earthquake site response rather than a VS profile for a 

specific, vertical line. In this respect, surface waves are an ideal tool to develop VS 

profiles because they express velocity averaged over broad areas.   

The three sites that do not fit this pattern are all in the fine SRU. For two of these 

sites, MHS and WLE, dispersion curves for the two optimization methods have virtually 

identical fits to the target. For the third site, SMS, the dispersion curve fits differed for 

frequencies greater than 90 Hz, which corresponds to the shallowest layers. For the three 

sites, the difference in VS was typically 20 percent or less; however, overall 30 percent of 

the layers had differences between 21 and 46 percent (Table 2.3; Figure 2.13). For all 

three sites, both the LI and SA-LI solutions appear reasonable, yielding VS profiles that 

are generally consistent with the other profiles developed in the fine SRU, although the 

SA-LI solutions show higher fluctuations of VS between layers than do the LI solutions. 

No wells are located at the sites to help establish which profile provides the better 

representation for these sites, and none of their SA-LI resolution matrices indicated an 

increase in resolution when compared to LI (not included for brevity). Although 

resolution matrices for both methods indicate slightly poorer resolution overall compared 

to the other nine sites.   

Reasons for the diverging outcomes from LI and SA-LI procedures were discussed in 

previous research by Luke et al. (2003). The authors showed that the LI process applied 

to different starting models, such as the process described here where LI is performed 
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using a starting model that has been optimized using SA, can yield solutions with 

different VS profiles, but with equally good fits to the target. Luke et al. (2003) also 

showed that the difference between VS profiles generated using the two processes was 

greater for sites with complex dispersion curves compared to sites that are normally 

dispersive. The dispersion curves for the MHS, SMS and WLE sites are not substantially 

more complex than those at sites with consistent LI and SA-LI results. The three sites 

also have HVL’s within the upper 10 meters, but the changes in velocity between the 

HVL and surrounding layers are similar to those found at the NLP and SFB sites, which 

had consistent results. Although not investigated in this study, we suspect that the 

difference in consistency of results is attributable to the complexity of sediment stiffness 

(vertically and perhaps laterally) and the quality of the starting model. Different solutions 

are not unexpected because of the nonuniqueness of the problem.   

To determine the extent to which different solutions affect VS(30) and VS averaged 

over the total depth (VS(TD)), we calculated these averages for the 12 test sites 

(Table 2.4). The model halfspace was included as a layer in the calculation for VS(TD). 

The thickness of this layer was set to one-third of the model depth to halfspace. The 

depth-averaged results for the two optimization methods are virtually identical, differing 

by 2 percent or less.    

2.3.4. Investigation of profile uncertainty 

Use of resolution matrices to evaluate uncertainty of VS profiles was investigated. 

Generally, a poorly resolved layer, defined here as a layer having resolution less than 0.5, 

had a wide SA solution range, while a well resolved layer had a narrow solution range. 

Resolution tended to decrease with increasing depth. The most poorly resolved layers did 
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not always correspond to the layers with the greatest difference in VS between LI and 

SA-LI processes. Overall, the resolution matrices for the two optimization methods differ 

only slightly, which, as previously discussed, is to be expected because the layer 

geometry is identical.  

The SA-LI process was useful to provide confidence for the LI solutions. 

Additionally, the range of the SA solutions also provides a measure of confidence 

(Calderón-Macías and Luke, 2007). For this reason and based on research to resolve 

HVL’s previously cited in this article, we selected the VS profile from the SA-LI process 

to represent the final solution for the 12 test sites.  

2.3.5. SA-LI with explicit search for HVL (SAES-LI; SFB site) 

Because of the close proximity of the independent evidence of a shallow caliche 

layer, an additional VS profile was developed for the SFB site using optimization by SA 

specifically configured to search for an HVL. The search ranges for the depth to the 

HVL, 2.5 m to 4 m, and for the thickness, 0.5 m to 1.0 m, were based on the observed 

depths to the HVL in the nearby swale and the nearest log. We assigned a Poisson’s ratio 

of 0.25 and a density of 2200 kg/m3 for cemented sediments (e.g. Stone and Luke, 2001; 

Tecle et al., 2003). 

As usual with the SA-LI approach, three SA runs were performed. To develop an 

“average” VS profile from this process, the stiff layer resolved for each of the runs was 

stripped from the profile, leaving three background profiles (underlying profile without 

the HVL). These background profiles were averaged to develop a base profile. From the 

three stiff layers we calculated an average thickness of the HVL, average depth to the 

middle of the HVL (midpoint depth), and average velocity of the HVL. The average 
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thickness and midpoint depth were then used to fix the depth to the HVL. The result, a 

0.6-m thick HVL, at 3 m depth (to top), with VS of 1551 m/s, was overlain on the base 

profile. This combined profile was used as the starting model for LI. Its dispersion curve 

has a better fit to the target compared to the average of the SA profiles developed without 

the search for the HVL, but below 20 Hz the fit is still poor (Figure 2.12).     

The dispersion curve for SA-LI resolved with the explicit search for a stiff layer 

(SAES-LI) is virtually identical to the dispersion curves from LI and SA-LI (Figure 

2.12). The DD is slightly higher than the DD for the LI and SA-LI solutions, but the 

difference between all three DD values is small.  

The VS profile resolved using SAES-LI (Figure 2.14) has an HVL with a VS of 

1530 m/s, 1.5 to 3 times higher than that of the surrounding layers. The depth to the top 

of the HVL on the SAES-LI profile (3 m) is comparable to nearby sites located 30 m, 150 

m, and 370 m away. The difference in thickness of the HVL between the measurement 

location (0.5 m thick) and the closest observation point (1 m thick) can be explained by 

the degree of variability in the thickness of a caliche horizon over short distances that has 

been observed in the Valley. For example, Stone and Luke (2001) reported a nearly 3-m 

difference in thickness of a shallow caliche layer in the LVV over a horizontal distance of 

less than 35 m. 

Our conclusion that the depth of the HVL was resolved reliably is in agreement with 

previous research by Jin et al. (2009) and Luke et al. (2006), mentioned earlier in this 

paper. Because of the lateral variability of caliche, we assume thickness was estimated 

correctly. As previously discussed, findings from the previous studies by Luke et al. 

(2006) and Jin et al. (2009) conflicted, with Luke et al. (2006) reporting thickness to be 
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underestimated by 25 percent and Jin et al. (2009) reporting thickness as overestimated 

by 41 percent. Given the data available, the reliability of VS estimated for the HVL could 

not be determined. Recall that both Jin et al. (2009) and Luke et al. (2006) found VS of 

the HVL to be overestimated; thus we suspect that the same is true for this study.  

For the SAES-LI process, the range of VS in the SA solutions for any single layer is 

as high as 525 m/s. The SAES-LI profile does not fall within the extremes of the SA 

search for every layer, although it does at the HVL. 

Comparing SAES-LI to LI and SA-LI solutions, VS for the layers above the HVL 

differs by less than 20 percent. In contrast, VS of the layers below the HVL differs 

substantially. For layers directly below the HVL, the difference is as great as 77 percent 

(Table 2.3). For layers below 26 m, differences decrease to 35 percent. Immediately 

below the HVL, fluctuations in VS are visible in the profiles of all three solutions, but are 

more dramatic, as much as 400 m/s, for the SAES-LI profile. These observed fluctuations 

are consistent with findings of Luke and Calderón-Macías (2007). For an experimental 

dataset having ground truth available from nearby boreholes, they reported large 

fluctuations in VS for layers at and below the known depth of HVL’s.  

The VS resolved for the HVL using SAES-LI is 50 percent higher than the VS 

resolved by LI and SA-LI (Figure 2.14). However, the depth-averaged VS calculated 

over the range of depths of the HVL, 3.0 to 5.8 m, for the LI and SAES-LI profiles are 

similar, 925 m/s and 900 m/s, respectively (Recall that the LI and SA-LI profiles are 

virtually identical; thus an average for SA-LI was not calculated.). Because layer 

thickness is fixed for HVL’s resolved without the stiff layer option, the VS resolved for 
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the HVL using LI and SA-LI apparently represents an average for a stiff layer with its 

surrounding layers.  

VS(30) and VS(TD) were also calculated for the SAES-LI solution (Table 2.4). Both 

depth-averaged results differ from the LI and SA-LI results by only 2 percent.    

As with LI and SA-LI, SAES-LI does not produce well-resolved solutions for the two 

deepest layers or the halfspace (Figure 2.12). Compared to LI and SA-LI, the resolution 

for SAES-LI is generally poor for most of the deeper layers and the HVL (layer 3). 

Ground truth, however, indicates that the HVL is properly resolved. Because of the 

nonuniqueness of the problem, this apparent conflict is not unusual. In the previously-

mentioned sensitivity study performed by Luke et al. (2006), the authors observed the 

solution with the best resolution matrix did not necessarily correspond to the correct 

answer, although resolution matrices are still useful to assess the quality of the solution.  

For the regional 3-D VS model, Luke et al. (2009) chose to use the results from the 

SA-LI method for this site because the authors believed the fluctuations in VS below the 

HVL to be more realistic than those resolved using SAES-LI. Additionally, the thickness 

and velocity of the HVL resolved using the SA-LI method was thought to more 

appropriately represent the area’s sediments on a regional map than the thinner, higher-

VS HVL resolved using SAES-LI.  

 

2.4. Summary of outcomes 

The VS profiles (from the SA-LI process) for all 12 test sites are plotted with respect 

to their sediment-response unit in Figure 2.15. Figure 2.15a shows the entire profile, 

while Figure 2.15b shows the upper 30 m, which, as previously mentioned in this paper, 



37 
 

is the depth over which the sediment-response unit classifications are based (Luke and 

Liu, 2008). The four coarse SRU sites generally have higher VS than the eight fine SRU 

sites. Exceptions include the following: 

1) HVL’s resolved for sites in the fine SRU generally exhibit higher VS than 

uncemented layers in the coarse SRU sites at the same depth (e.g. SFB, WLE).   

2) For sites in the coarse SRU, at depths where well logs indicate the presence of 

clay, VS values are lower than other coarse SRU sites; alternatively, for sites in 

the fine SRU, at depths where well logs indicate the presence of gravel, VS 

values are higher than other fine SRU sites. For example:  

a. The low VS of coarse SRU site GMS, compared to other coarse SRU 

sites, is attributed to the presence of lower velocity sediments; the site is 

located within 800 m of a fine SRU, and the nearest available log 

describes the presence of clay in the gravel layers.   

b. The high VS values, greater than 1000 m/s, below 30 m for fine SRU site 

SMS are attributed to the presence of high velocity sediments; the log for 

a well located within a 150 m of the site shows a change at 45 m depth 

from mixed sand and clay sediments to gravel, which is expected to have 

higher VS than clay and sand.  

Referring to Table 2.4, VS(30) and VS(TD) are typically higher for sites in the coarse 

SRU than those in the fine SRU. VS(30) for the coarse SRU sites are between 450 and 

660 m/s. This range is within a broader range described by the IBC as seismic site 

classification C, very dense soil and soft rock (VS(30)  between 360 and 760 m/s; 

International Code Council, 2009). Excluding the SFB site, VS(30) for the fine SRU sites 
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are between 320 and 450 m/s. This range falls between the high end of the VS(30) range 

for sites described as seismic site classification D, stiff soil (VS(30) between 180 and 360 

m/s) and the low end for seismic site classification C.  

The 12 new VS profiles are plotted with 16 others from the LVV compiled by Luke 

and Liu (2008) in Figure 2.16. The new site profiles are generally within the range of 

values previously measured in the site’s sediment-response unit; although, for reasons 

previously discussed, VS below 40 m for the SMS site is higher than for the other 

profiles in the fine SRU. A representative profile for each sediment-response unit was 

calculated from the 28 sites by first discretizing the continuous profiles at 0.25 m 

intervals, then, at each depth interval, by calculating the average VS of the profiles 

located in each unit (10 located in the coarse SRU; 18 in the fine SRU). The 

representative profile is shown along with the VS profiles compiled by Liu et al. (2005) 

for site response analyses. Although the sediment-response units were defined based on 

the predominant sediment type within only the upper 30 m, the 3-D geometric model of 

basin stratigraphy and structure (Taylor et al., 2008) showed that the predominant 

sediment type above 30 m tended to be the predominant sediment type below 30 m. Thus, 

VS of the updated-average profile of the coarse SRU is consistently higher than that of 

the fine SRU over all depths. From 0 to 100 m depth, the updated-average VS profile for 

the coarse SRU is 25 to 400 m/s higher than that of the fine SRU. From 100 to 150 m 

depth, the difference between the profiles increases to 1000 m/s. The updated-average 

profile for the fine SRU generally has slightly higher VS values between 85 and 130 m 

depth than the profile developed by Luke and Liu (2008), but is otherwise not 

substantially different than the previous version. In contrast, the updated-average profile 



39 
 

for the coarse SRU has VS values that are as much as 500 m/s lower between 25 to 100 

m depth. Of the relatively small number of profiles used to develop the profile for the 

coarse SRU, only four are as deep as 100 m (compared to ten in the fine SRU). More 

measurements are needed in the coarse SRU to better characterize this unit.  

As depth increases the number of VS profiles decreases. Therefore, confidence in the 

profile averages decreases for increasing depths. The number of profiles in each of the 

sediment response units with respect to depth is shown in Table 2.5.  Note that for the 

coarse SRU, the average VS below 170 m is based on only two sites (Figure 2.16). 

 

2.5. Recommendations 

Because solutions to the inversion process for Rayleigh-wave dispersion data can be 

nonunique, several methods may be incorporated to improve model results. These 

techniques include, but are not limited to, the following: acquiring complementary 

refraction data, especially to identify the depths to HVL’s; using multi-mode surface-

wave data (e.g. Casto et al., 2010); smoothing the profile (discussed below); testing for 

optimum layer geometry via parametric study; inverting the profile simultaneously for 

both depth and VS; and comparing the inverted profile to local geologic data. Not all of 

the additional measures are practical for general use. We recommend three for future 

research. 

First, layers with high, non-diagonal values in the resolution matrix may be 

candidates for smoothing of the final VS profile. Smoothing is the process of combining 

layers with the goal of removing high velocity fluctuations in the final profile that are 

considered to be unrealistic. By using the resolution matrix to identify the parts of the 
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model to smooth, one is honoring the resolution in an inverted model (also referred to as 

“model regularization”; e.g. Hansen, 1998).  In other words, model resolution might 

improve by smoothing the profile to have fewer layers, specifically, by combining those 

layers having poor resolution with adjacent layers. Because we observed relatively poor 

resolution of the halfspace at all the sites, the depths to model halfspace may be 

candidates for smoothing during model regularization.  

Second, other than for the site where we observed an HVL in a nearby embankment, 

we did not use SA to invert for layer thickness. By simultaneously inverting for VS and 

layer geometry, it may be possible to increase the resolution of the SA-LI solution.   

As previously discussed, future study is also needed to better set appropriate depth to 

model halfspace. 

 

2.6. Conclusions 

Twelve sites in the Las Vegas Valley (LVV) were surveyed using the SASW method 

to develop shear-wave velocity (VS) profiles to 100 m and deeper for use in seismic site 

response analyses.  A multi-stage optimization process for developing VS profiles using 

the average of three profiles derived through simulated annealing (SA) as a refined 

starting model for linearized inversion (SA-LI) was presented and results were compared 

to those derived using linearized inversion (LI) based on a more conventionally 

developed starting model. For all 12 test sites, results from the LI and SA-LI approaches 

have consistently similar theoretical dispersion curves that fit the target well. Layer-

velocity differences between the LI and SA-LI profiles are typically less than 20 percent. 

Similarity in results between the two processes is an indication that the inversion process 
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is robust; therefore, confidence in the outcome is enforced.  For these sites where the SA-

LI and the LI solution are not substantially different, the more straightforward LI 

approach was considered to have resolved a reasonable VS profile. At three sites, 

differences between LI and SA-LI profiles for the VS of some of the layers were as great 

as 46 percent; however, differences in depth-averaged velocity values remained small, 

3 percent or less. Different solutions are not unexpected due to the nonunique nature of 

the problem.  Large differences in velocity between the LI and SA-LI solutions likely 

occur because the solution to the inversion problem is non-unique.  This arises because of 

the complexity of sediment stiffness, vertically and perhaps also horizontally. One 

possible solution to the problem of non-uniqueness is to improve the quality of the 

starting model. Large differences between solutions imply decreased confidence in 

results. 

At a site where a high velocity layer (HVL) was known to exist, a VS profile was 

developed using the SA-LI approach configured for an explicit search for an HVL 

(SAES-LI).  Excluding the HVL, differences in VS of individual layers between the LI 

and SA-LI profiles and the SAES-LI profile were as great as 77 percent. In contrast, the 

depth-averaged velocities differed by less than 3 percent. The depth averaged VS 

calculated over the depth of the HVL also differed by less than 3 percent and indicates 

that VS for the stiff layer resolved using LI and SA-LI represents an average of a stiff 

layer and its surrounding layers. The depth to and thickness of the HVL obtained using 

the SAES-LI method appeared to be well resolved.  

The 12 new VS profiles generally fit expectations for the fine and coarse sediment 

response units in the LVV: profiles for sites located in the fine sediment response unit 
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typically have lower VS values compared to those from sites located in the coarse 

sediment response unit, and the new velocity profiles are consistent with profiles 

developed by others in the two sediment-response units. The new profiles were added to 

the VS dataset previously compiled for the sediment response units. The combined 

dataset was used to create updated-average profiles for use in site response analyses. 

Recommendations to improve data interpretation were presented for future study.  
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2.8. Tables and Figures 

Table 2.1 Test site designations and descriptions 

Test 
site 

Latitude, 
degree N 

Longitude, 
degree W Description 

CCH 36.0084 114.971 
Undeveloped lot west of College of Southern Nevada, 
Henderson, NV  

CPH 35.9934 114.961 
Undeveloped lot, intersection of College Dr. and Paradise Hills 
Dr., Henderson, NV 

GMS† 36.1128 115.231 Guinn Middle School, turf 
LES† 36.2368 115.069 Lowman Elementary School, turf 
LMN 36.2462 115.246 Undeveloped lot southeast of Lone Mountain Rd. and Hwy I-95 
MHS 36.2577 115.139 Mojave High School, turf 
NLP† 36.1621 115.195 Cragin Park, turf 
OSH 36.0386 115.042 Undeveloped lot south of Ocean Spray Plant, Henderson, NV 
SFB† 36.1135 115.146 Stan Fulton Building, UNLV campus, gravel roadside 
SMS 36.0343 115.129 Schofield Middle School, turf 
SPS 36.0592 115.116 Sunset Park, undeveloped area to south 
WLE 36.1492 115.088 Walter Long Elementary School, turf 

† Inversion process for these sites is detailed in this paper 
 

 

Table 2.2 Key test parameters, sediment response unit, and depth to model halfspace.  

Test  
site 

Frequency 
range, Hz 

Wavelength 
range, m 

Model 
halfspace 
depth, m 

Sediment 
response 

unit Receiver spacings, m min max min max 
CCH 5.7 57 2.6 117 55.6 Coarse 2, 4, 8, 16, 32, 64 
CPH† 6.5 214 0.6 127 63.7 Coarse 1, 2, 4, 8, 16, 32, 64 

GMS†† 3.3 172 0.8 254 127.0 Coarse 1, 2, 4, 8, 16, 32, 64, 128 
LES†† 3.7 253 0.5 126 63.1 Fine 1, 2, 4, 8, 16, 32, 64, 128 
LMN 3.2 193 1.0 186 93.2 Fine 2, 4, 8, 16, 32, 50, 64, 100 
MHS 3.2 76 2.7 166 83.1 Fine 2, 4, 8, 16, 32, 64, 128, 165††† 
NLP†† 4.6 179 0.7 121 60.5 Fine 1, 2, 4, 8, 16, 32, 64, 69 
OSH 7.5 301 0.4 115 57.6 Coarse 1, 2, 4, 8, 16, 32, 54, 64, 108 
SFB 3.4 192 1.8 176 87.8 Fine 2, 4, 8, 16, 32, 60, 91 
SMS 4.7 155 1.2 127 63.3 Fine 2, 4, 8, 16, 32, 64 
SPS 3.5 188 0.8 191 95.5 Fine 1, 2, 4, 8, 16, 32, 64, 128 

WLE 3.8 92 0.7 128 64.0 Fine 1, 2, 4, 8, 16, 32, 42.5, 64, 85 
† Site is located less than 1 km south of the coarse SRU’s defined boundary. 
†† Site used to test depth to model halfspace. 
††† The lowest frequency was resolved from the data acquired at 128 m receiver spacing.  
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Table 2.3 Maximum difference found comparing VS layer-by-layer between the LI and 

SA-LI solutions.  

Test site Difference, % 
CCH 9 
CPH 3 
GMS 17 
LES 4 
LMN 12 
MHS 46 
NLP 8 
OSH 11 
SFB 5 (77†) 
SMS 46 
SPS 7 
WLE 40 

† Maximum difference found comparing LI solution to a solution derived using an 
explicit search for stiff-layer (SAES-LI). 

 

 

Table 2.4 VS averaged over the upper 30 m depth (VS(30)) and averaged over the total 

depth (VS(TD)).   

Test  
site 

LI 
VS(30), 

m/s 

SA-LI 
VS(30), 

m/s 

 VS(30) 
Difference, 

% 

LI 
VS(TD), 

m/s 

SA-LI 
VS(TD), 

m/s 

VS(TD) 
Difference 

% 

Sediment-
response 

unit 
CCH 463 462 0 656 657 0 Coarse 
CPH 580 581 0 819 821 0 Coarse† 
GMS 456 453 1 824 832 1 Coarse 
LES 373 373 0 476 477 0 Fine 
LMN 445 450 1 608 610 0 Fine 
MHS 377 373 1 539 548 2 Fine 
NLP 447 450 1 565 566 0 Fine 
OSH 658 660 0 863 871 1 Coarse† 
SFB 499 499 0 636 635 0 Fine 
SFB†† 499 511 2 636 646 2 Fine 
SMS 314 316 1 608 616 1 Fine 
SPS 324 324 0 654 658 1 Fine 
WLE 338 343 1 493 501 2 Fine 

† Assumed 
†† Explicit search for stiff-layer used in SA-LI (SAES-LI) 
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Table 2.5  Number of VS profiles at specific depth for the combined dataset of the 

12 new profiles and the profiles presented by Luke and Liu (2008). 

Depth, m Fine SRU Coarse SRU 
30 18 10 
75 15 7 
100 10 4 
150 5 3 
200 5 2 
250 3 2 
350 2 2 
400 1 1 

> 400 N/A 1 
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Figure 2.1 The Las Vegas Valley with test site locations (dark red squares are sites in 

coarse SRU; blue circles are sites in fine SRU) shown with respect to well locations (red 

circles) and sediment-response units according to Luke and Liu (2008; fine in green and 

coarse in blue).  
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Figure 2.2 UNLV’s “minivib”, a trailer-mounted T-7000W servo-hydraulic vibrator 

built by Industrial Vehicles International:  a) mass and baseplate and b) truck with trailer 

attached.  

 

 

 
Figure 2.3 Two- and three-receiver arrangements for SASW array. For surveys 

performed with two receivers, receivers are centered on midpoint 1 (MP1). For the three 

receiver arrangement, receivers R1 and R2 are centered on MP1, and receivers R2 and R3 

are centered on midpoint 2 (MP2). 

 

L 

Source R1 R2 

2L

MP1 R3 MP2 

L

a. b. 
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Figure 2.4 Conceptualization of zones tested (shown by ellipses) along SASW array 

with different receiver spacings and source-receiver geometry (z = investigation depth) 

(from Murvosh and Luke, 2008). 

 

 

 

 

 

 

 

 

 

 
Figure 2.5 Target dispersion curves for the 12 test sites. Most of the fine SRU sites 

shown in green; all coarse SRU sites shown in blue. Sites in fine SRU, but known to have 

high velocity inclusions, are shown in red.   

a. Conventional SASW array 
geometry, having common 
centerpoint and moving 
source (shown with 
inverted triangle), used for 
spacings up to 16 m 

 
 
b. Array geometry having 

common source location, 
used for spacings greater 
than 16 m z 

z 
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Figure 2.6 Chart illustrating the steps taken to perform optimization using LI and SA-LI methods.  

Linearized inversion

Simulated 
annealing, SA1 

Simulated 
annealing, SA2

Compute average 

Linearized inversion

Target  
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Search 
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Optimized starting 
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VS profile VS profile VS profile
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annealing, SA3

VS profileVS profile

Result/ 
input 

Process 

Legend 
LI process SA-LI process 
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Figure 2.7 Locations of the 4 case study sites: array locations (yellow lines) with respect 

to nearby wells (black triangles). Latitude and longitude for each site are listed in 

Table 2.1. 
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a) 

 
 
b) Well no. 620 c) d) 
  

       
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.9 Sample fine-sediment response unit site (LES), data and solutions: 

a) dispersion curves, b) well log information (depth in meters), c) VS profiles, and 

d) resolution matrices. 
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a) 

 
b) Well no. 684 c) d) 
 
 

   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.10 Sample coarse-sediment response unit site (GMS), data and solutions: 

a) dispersion curves, b) well log information (depth in meters), c) VS profiles, and d) 

resolution matrices. 
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a) 

 
b) Well no.’s c) d) 
709 (L) and 607 (R) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.11 HVL site 1 (NLP), data and solutions: a) dispersion curves, b) well log 

information (depth in meters), c) VS profiles, and d) resolution matrices. 
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b) Well no.’s c) d) 
741 (L) and B-1 (R) 

 
 

Figure 2.12 HVL site 2 (SFB), data and solutions: a) dispersion curves including curve 

for SA-LI with the explicit search for a stiff layer (SAES-LI, discussed in Section 2.3.5), 

b) well log information (depth in meters), c) LI and SA-LI VS profiles and d) resolution 

matrices. 

a) 
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MHS SMS WLE  

 
Figure 2.13 VS profiles for LI and SA-LI processes for 3 sites, all in fine SRU, where 

difference in VS between the methods exceeded 20 percent in at least one layer. Bottom 

layer shown is halfspace.  
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Figure 2.14 HVL site 2 (SFB), comparison of LI and SA-LI solutions (Figure 2.12) to a 

solution resolved using explicit search for stiff layer, (a) VS profiles from LI, SA-LI and 

SAES-LI and (b) expanded view of upper 6 m showing depth range over which an 

average velocity was calculated for the HVL (yellow arrow, see text). Note the search 

range for SA is the same for SA-LI and SAES-LI except that SAES-LI includes an 

additional search range for a stiff layer (HVL SA search). The SA solution range shown 

is the range for SAES-LI.  
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Figure 2.15 SA-LI profiles for the 12 test sites: a) to 130 m depth and b) to 30 m depth. 

Sites located in the fine-sediment response unit shown in green; sites in the coarse-

response unit shown in blue. 
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Figure 2.16 New data (red) combined with data from previous microzonation by Luke 

and Liu (2008): (a) VS profiles for sites in the fine sediment response unit and their 

average (yellow); (b) VS profiles for sites in the coarse sediment response unit and their 

average (cyan); and (c) updated average profiles (yellow and cyan) and previous profiles 

(black) originally published by Luke and Liu (2008).  
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   CHAPTER 3  

THREE-DIMENSIONAL SHALLOW SHEAR-WAVE VELOCITY MODEL FOR 

LAS VEGAS VALLEY  

Abstract: A three-dimensional (3-D) shear wave velocity (VS) model was developed 

for the heterogeneous shallow sediments (to nearly 400 m) of the Las Vegas Valley 

(LVV), Nevada. The model was based on more than 200 VS profiles and 1400 geologic 

well logs. Five sediment units including a cemented unit were defined from geologic log 

descriptions. A characteristic VS profile for four of the units was obtained by correlating 

between closely spaced pairs of VS and sediment data; a constant VS was assigned to the 

cemented unit. VS profiles were then assigned to each well location based on type of 

sediment according to the representative profiles. This assigned-velocity dataset was 

merged with measured VS profile data so that the measured data are honored in the 

model. The combined dataset results in a model with better resolution than a model 

developed using either of the two datasets independently. The software EarthVision was 

used to perform the 3-D interpolation of VS across the Valley. The model demonstrates 

the strong lateral variability of VS in the LVV. It also fits known patterns of sediment 

deposits: velocity in the central part of the Valley, where clay is the predominant 

sediment, is lower than velocity to the west and on the margins of the Valley, where 

gravel is predominant. The model may be used to predict Valley-wide earthquake 

ground-shaking patterns  

This manuscript was written for possible submission to the Environmental and 

Engineering Geoscience Journal. Co-authors will be Barbara Luke, Wanda Taylor, and 

Jeff Wagoner. Student contribution: Ms. Murvosh is the first author for the manuscript.  
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She developed the procedures to determine the correlation distance and, with assistance, 

to perform the sediment-velocity correlations. She established the velocity cutoff values 

and performed the sediment-velocity correlations. She developed the equation to quantify 

the deviation of the characteristic profile and performed the statistical analysis to quantify 

the fit of the characteristic profiles to the data. She wrote the document and addressed all 

editorial comments from the co-authors. 

 
3.1. Introduction  

The Las Vegas Valley (LVV) urban area, which is in Clark County, Nevada, has a 

population estimated at 1.9 million and an average daily visitor population of roughly 

250 thousand (Clark County, 2009). The LVV’s population and geologic setting warrant 

studies in earthquake hazard and related risks. Price et al. (2009) performed loss estimate 

modeling for earthquakes that could occur in the LVV using a model developed by the 

Federal Emergency Management Agency. They found that a magnitude 6 earthquake 

occurring on the east side of the Valley could cause nearly 300 fatalities and over $7 

billion in building-related economic loss. For the Las Vegas Valley fault system 

(LVVFS), which consists of normal faults located in the more populated central portion 

of the Valley, maximum earthquake magnitude estimates range from 6.3 to 6.9 (dePolo 

and Taylor, 2008). Earthquake events that threaten the Valley are not limited to faults 

located in the Valley. Su et al. (1998) found that a magnitude 7.4 event on the Death 

Valley Fault system, located 150 km west of LVV, is capable of inducing accelerations 

that could exceed 0.2 g at sediment sites in the Valley. These known hazards, the 

heterogeneity of Valley sediments, and the population of the Valley are reasons that 
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seismic hazard mapping is needed for the Valley. Development of a shear-wave velocity 

model is a necessary step in map development. 

As part of an interdisciplinary effort to investigate earthquake hazards and related 

risks to human safety and structures in southern Nevada, a three-dimensional (3-D) 

model of shear-wave velocity (VS) was developed for the LVV. The model is intended 

for use in studying earthquake site response in the Valley and developing earthquake 

hazard maps. It was generated by correlating a relatively sparse dataset of VS profiles to 

a larger dataset of sediment lithology. Model development began in 2004. Model 

evolution has been documented by Luke et al. (2006), Luke et al. (2008), and Luke et al. 

(2009).   

This paper describes the process used to build the model, which includes compiling 

VS data and lithologic well logs, determining appropriate correlation distances between 

pairs of VS profiles and well logs, correlating VS to sediment lithology, constructing the 

model, and verifying it. Images from the 3-D VS model are presented along with VS 

profiles queried from the model.  

 

3.2. LVV basin geometry and shallow sediments 

Situated on an alluvium-filled basin in the Basin and Range geomorphic province, the 

LVV is roughly 30 km across from east to west and 50 km from north to south and is 

surrounded by mountain ranges (Figure 3.1). The Sheep and Las Vegas ranges are 

located to the north; Frenchman and Sunrise mountains are located to the east; the River 

Mountains and the McCullough Range are located to the south; and the Spring Mountains 

are located to the west. Wyman et al. (1993) describe the tectonic movement that formed 
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the mountain ranges and basin as well as the volcanism and plutonic emplacement during 

the Miocene and the different periods of alluvial fan deposition. Basin geometry and 

alluvium, with emphasis on the shallow sediments for which VS data are needed to 

perform seismic site response analyses, from Wyman et al. (1993) and others (as noted) 

are summarized here. 

A geophysical study by Langenheim et al. (2001) modeled the LVV’s Paleozoic 

bedrock surface. The authors found a complex bedrock surface including three sub-

basins, the deepest of which parallels the mapped scarps of the Frenchman Mountain 

fault system. Here, approximately 5 km west of Frenchman Mountain in the northeast 

quadrant of the basin, the depth to Paleozoic bedrock approaches its maximum of nearly 

5 km (Langenheim et al., 2001). Subsequent to the study by Langenheim et al. (2001), 

Tkalčić et al. (2008) used data acquired from a broadband seismic array to investigate the 

structure of the basin. The authors’ findings suggest that the location of the eastern wall 

of the deepest part of the basin is 2 km west of the location shown in the bedrock surface 

model by Langenheim et al. (2001). According to dePolo and Taylor (2008), the 

interaction of a right-lateral, strike-slip fault known as the Las Vegas Valley Shear Zone 

(LVVSZ), and the Frenchman Mountain fault created the deep sub-basin that contains the 

oldest material. Then, in the late Cenozoic, the LVVFS shifted the depocenter from near 

Frenchman Mountain towards the center of the Valley (dePolo and Taylor, 2008).  The 

shift is significant because it indicates that the deeper parts of the Quaternary-aged 

sediments are located beneath a more densely populated area than previously thought.  

The upper portion of the basin fill, to depths of about 1 km, consists of Quaternary 

and Pliocene sediments (referred to here as the Quaternary basin), while the lower portion 
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consists of Miocene and Oligocene material (Taylor et al., 2008). These lower 

sedimentary and volcanic units correlate to the Muddy Creek and Horse Springs 

formations, both of which contain gypsum beds (Wyman et al., 1993). Units equivalent to 

the Red Sandstone are also included in the lower basin fill. The Horse Springs Formation 

includes limestone and other sedimentary rocks, and, having accumulated during the time 

of active volcanism, some basalt flows and tuff beds (Wyman et al., 1993). The 

Quaternary basin sediments also include cemented materials, some of which, because of 

their high stiffness, would be classified as rock for engineering purposes. 

The Valley is northwest-trending, generally subparallel to the LVVSZ (Figure 3.1; 

Wyman et al., 1993). It is underlain by coalescing alluvial fans. The Spring Mountains 

are the major source of the alluvial deposits. These deposits become increasingly finer 

from west to east, with increasing distance from the source and with decreasing elevation. 

A small coalesced alluvial fan, sourced from the Frenchman and Sunrise mountains, is 

located east of the lowest elevations in the Valley. Another small alluvial fan, the Pittman 

Fan, is located at the southeast end of the Valley and is sourced from the River 

Mountains and the McCullough Range, and small fans in the north are sourced from the 

Sheep and Las Vegas ranges (Plume, 1989). Plume (1989) describes the different host 

rocks of each of the alluvial fans.  

Taylor et al. (2008) compiled an extensive database of the shallow basin lithology 

from over 1400 well logs (primarily from Nevada Division of Water Resources archives), 

geophysical measurements, and data from air photos, maps and the field. Well locations 

are shown in Figure 3.2a. Eight of the wells were greater than 1 km deep with an average 

depth of 2.7 km. The rest of the wells ranged in depth from 12 to 1,000 m with an 
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average depth of 171 m. Taylor et al. (2008) used the database to develop a 3-D 

geometric model of the Quaternary basin sediment-type distribution and structure 

(referred to here as 3-D sediment-lithology model) using the software package 

EarthVision, developed by Dynamic Graphics, Inc. for 3-D model building. To facilitate 

interpolation of the data by the program, the authors compiled well log descriptions into 

nine sediment-lithology units: gravel, sand, clay, gypsum, mixed, limestone, volcanic, 

cemented, and bedrock. A logged layer was assigned a unit based on its predominant 

sediment. The designation “Mixed” was assigned where no sediment was predominant. 

From their 3-D sediment-lithology model, Taylor et al. (2008) verified that clay deposits 

dominate in the deeper, central and south parts of the Quaternary basin, coarse- and 

mixed-grain size deposits dominate in the shallower, western, part of the basin, and 

coarse- and fine-grained deposits interfinger at their interfaces.  

Cemented soils and medium-dense to dense sands and gravels occur in alluvial fans 

surrounding the Valley (Wyman et al., 1993). The most extremely cemented deposits are 

known locally as caliche and most probably formed as soil or ground water carbonate 

deposits. Werle and Luke (2007) summarized the geologic processes that occur in the 

LVV that result in caliche. Thicknesses of caliche lenses can range from a few 

centimeters to 2 to 3 m (Wyman et al., 1993), and lateral variability is high (Taylor et al., 

2008). For example, Stone and Luke (2001) observed a change in thickness of 

approximately 3 m over a distance of less than 35 m. Caliche deposits are typically 

located in the western and central portions of the Valley (Wyman et al., 1993), but also 

occur in areas where clay deposits are predominant (Taylor et al., 2008). Taylor et al. 

(2008) included caliche in their 3-D sediment-lithology model (the Cemented unit) where 
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it was logged individually (in contrast to a logged interval description such as “gravel 

with caliche”). With strength and stiffness as high as concrete, a fully formed caliche 

deposit can be a desired bearing stratum for structural foundations or a hindrance to 

excavation (Werle and Luke, 2007). Caliche has a high VS: Stone and Luke (2001) 

reported laboratory values of 2350 m/s; Werle and Luke (2007) reported measured field 

values from 1000 to 1500 m/s; and Tecle et al. (2003) measured field values as high as 

2000 m/s. Caliche adds significantly to the variability of the mechanical stiffness of 

Valley sediments and, thus, to the complexity of developing the 3-D VS model.  

 

3.3. VS data compilation 

Key to model development is adequate VS data. The acquisition, interpretation and 

compilation of seventy-seven of the pre-existing profiles used in this study were 

previously described in detail (Liu et al., 2005; Liu, 2006; Scott et al., 2006). The efforts 

made to acquire new measurements and to amass publicly available VS data into a VS 

database are described in this section. In all, 212 surveys were compiled (Figure 3.1) and 

are the basis for the 3-D VS model for the LVV. These include profiles developed from 

both body-wave and surface-wave (including active- and passive-source surveys) 

measurements. The velocity of the model halfspace was included as a layer in developing 

the 3-D VS model and in performing VS-sediment correlations. In general, the thickness 

of this layer was set to one-third of the model depth to halfspace. For this paper, the 

bottom depth of this “layer” is considered the bottom, or total depth, of the profile.   

The 3-D VS model described in this paper was developed to provide detail of the 

shallow layers as well as information to depths of 370 m. Separate from and coincident 
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with the research described in this paper are two data acquisition projects for the LVV, 

each being performed by a different agency. The first is a project by the Clark County 

Building Department to acquire VS data in the unincorporated parts of the LVV over an 

area of approximately 1300 km2 (Louie, 2008). This project consists of acquisition and 

processing of Rayleigh-type seismic surface wave data using the passive-source surface-

based Refraction Microtremor method (ReMi; Louie, 2001). The data are being 

considered for development of a depth-averaged shear-wave velocity map for the upper 

30 m (VS(30)) and other average VS maps (Nevada Earthquake Safety Council, 2009). 

The second project is being performed by the Nevada Seismological Laboratory, which 

began work in 2008 to develop a Western Basin and Range Community Velocity model 

(Louie et al., 2009). In combination, the three research projects will benefit the people of 

the LVV by providing the VS models needed to understand earthquake risk in the Valley. 

Coincidentally, overlapping datasets from the three projects provide opportunities to test 

the accuracy of the various models.  

3.3.1. VS profiles from body-wave and active-source surface-wave measurements 

Twenty-eight of the seismic surveys that preceded this research were acquired using 

either body-wave measurements, specifically downhole and crosshole seismic methods, 

or the active-source spectral analysis of surface waves method (SASW; Stokoe, 1994) 

(Liu, 2006). At 12 of these sites, Liu et al. (2005) combined active-source SASW 

measurements with passive-source ReMi measurements.  

Downhole and crosshole seismic methods are intrusive methods that require drilling 

to produce VS profiles. In contrast, SASW and ReMi are methods whereby Rayleigh-

wave phase velocities are acquired non-intrusively to develop a one-dimensional VS 
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profile through inversion. Due to their dispersive nature, Rayleigh waves of different 

lengths (or frequencies) excite the earth’s materials to different depths, allowing different 

depths of a soil column to be sampled in a single spectral measurement. Both the SASW 

and ReMi methods employ a linear array.  

Profiles developed using active-source surface wave methods typically have better 

resolution of shallow layers than profiles developed using passive-source methods. An 

active source can be used to generate the high frequency seismic waves that are needed to 

sample the shallow layers in relatively close proximity to the receivers. In contrast, 

seismic waves from ambient vibrations tend to originate far from the receiver array and, 

thus, the high frequency waves attenuate before reaching the receivers. In the LVV, detail 

of the shallow layers is desirable for characterizing the heterogeneity of LVV sediments, 

especially to characterize the effects of lenses of cemented material including soil 

carbonates (a.k.a caliche). 

A disadvantage of active-source survey methods is that they require a heavy source to 

generate low frequency vibrations necessary to characterize deeper sediments, which may 

not always be practical. Ambient vibrations, however, tend to include these low 

frequencies.  

One disadvantage of a linear array for a passive-source survey is that when a 

predominant signal approaches the array at an oblique angle, phase velocity estimates 

would be erroneously high. In contrast, active-source methods, such as SASW, by 

definition have a known, off-end source location so the testing is not subject to this error.  
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Data from active- and passive-source surveys can be combined to take advantage of 

the strengths of both survey types. For example, the profiles developed by Liu et al. 

(2005) were nearly 400 m deep and maintained detail at shallow depths.  

To increase the number of VS profiles deeper than 50 m that also have shallow 

resolution in the LVV, 12 seismic surveys were performed during the Summer and Fall 

of 2007 (Murvosh et al., 2008). The surveys were performed using the SASW method 

and conformed to the general procedures for the method (Stokoe, 1994). These 

procedures typically involve placing two receivers and a source in a linear array at the 

ground surface such that the distance from the source to first receiver is equal to the 

distance separating the receivers. Vertical ground motions produced by a source applied 

vertically at the surface are recorded at the receivers. Receiver spacings double with each 

successive measurement, allowing measurements over an increasing range of 

wavelengths. A frequency-domain analysis of the phase differences of the ground motion 

between the two receivers is used to develop a dispersion curve (plot of velocity as a 

function of frequency or wavelength) for the site. The VS profile is developed through 

inversion of the dispersion data. 

Because different sources produce different energy content, a variety of sources may 

be used. For this study, two sources were used: a “minivib” trailer-mounted Vibroseis 

source, designed and built by Industrial Vehicles International, and an instrumented 

sledge hammer. The minivib source has a maximum hold-down weight of approximately 

29 kN and a maximum force output of nearly 27 kN (6,000 lbf) (Industrial Vehicles 

International, 2006). It was used for receiver spacings from 16 to 128 m. The sledge 

hammer was used for receiver spacings less than 16 m. Field data acquisition was 
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described in detail by Murvosh et al. (2008). Data acquired with the hammer and minivib 

were combined to develop the dispersion curves.  

The dispersion curves were used to develop VS profiles through an optimization 

process that incorporates the global search method of simulated annealing followed by 

linearized inversion (Calderón-Macías and Luke, 2007). The new profiles were 

approximately 100 m in depth and were separated into 10 to 12 layers. The thinnest 

layers were 0.5 to 1 m thick.  

3.3.2. VS profiles from passive-source surveys 

Driven by building codes, geotechnical investigations performed in the Valley often 

include VS measurements to determine VS(30) from which seismic site classification is 

assigned (Table 3.1) and upon which design is based. Because of the large amount of new 

construction performed in LVV since the adoption of this code in 2002, a large number of 

surveys has been performed by private consulting firms and filed with local government 

agencies as part of a site’s geotechnical report. While active-source measurements might 

be preferred for their shallow detail and potentially higher accuracy, the ReMi method is 

more frequently used by private firms performing site investigations because it is cost 

effective. 

One hundred forty-five measurements, all of which were performed using the ReMi 

method, were compiled from geotechnical reports submitted to the building departments 

of unincorporated Clark County and the City of Henderson (Murvosh et al., 2006). Each 

of these measurements was examined to determine suitability for the VS database. 

Ideally, the examination would incorporate the picks made on the slowness-versus-

frequency plots (p-f plots; Louie, 2001) to obtain an experimental dispersion curve. 
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However, in most instances, the p-f plot was either not available or its scanned black-and-

white image (all that was made available in the public record) was of too poor a quality to 

examine the picks. Lacking this information, we established, with assistance from the 

developer of the ReMi method (Louie, personal communication, 2007), a process to 

determine from the available data in the filed reports whether or not a survey was 

performed in a manner consistent with standard ReMi data acquisition and analysis 

techniques (Louie, 2001). This consistency check was based on the following: profile 

depth, dispersion curves, and profile stability. Each is discussed below. Measurements 

deemed inconsistent were assumed unrepeatable and were not included in the VS 

database. 

Profile depth 

Considering the relationships between frequency, wavelength, velocity, and depth of 

resolution for surface waves propagating in a halfspace (e.g., Gazetas, 1992), the depth to 

halfspace of a ReMi survey is not expected to exceed its array length. Possible exceptions 

are locations with thick, continuous high-velocity materials, within which surface waves 

are likely to attenuate more gradually than in softer sediments. Because the target depth 

of these surveys was 30 m, most of the arrays were 100 m long. While most of the VS 

profiles were more than 30 m deep, only two sites had profiles with depths greater than 

their array lengths. One was located near a rock outcrop. The second profile was 111 m 

deep and located near a well log that reported cemented gravel, considered by the authors 

to be a high-velocity material, below 60 m. Except for the shallowest layers, both profiles 

consist of high, greater than 1,000 m/s, VS layers. Therefore, none of the profiles 

obtained from the public record were disqualified based on depth.  
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For eleven sites, only VS(30) was provided; no layered profile was included in the 

reports for these sites. With no way to perform a consistency check for depth and with no 

layered profile to include, we disqualified these measurements.  

Dispersion curves 

The experimental dispersion curves were usually included in the reports. We 

examined the fit of the theoretical dispersion curve corresponding to the reported VS 

profile to the experimental dispersion curve. Nine profiles were removed from the 

database due to what we judged to be a poor fit. The theoretical dispersion curves for 

these profiles only vaguely fit the corresponding experimental curves. Twenty-six 

profiles for which the dispersion curve plots were not provided were used in the model. 

All met the depth and stability criteria; eleven of these had at least one additional ReMi 

measurement taken at the same site.  

We also checked the minimum frequency of each experimental dispersion curve. 

Based on frequency ranges published by Louie (2001) for a sensor’s accuracy below its 

resonant frequency and for survey measurements performed using 8 Hz and lower 

geophones, dispersion curve picks below 2 Hz were not considered consistent with 

standard practices. The experimental dispersion curve for one of the profiles did not meet 

this criterion, having a minimum frequency pick of 1.7 Hz. We compared this profile to a 

second ReMi measurement taken at the same site (within 150 m) that passed the 

consistency test. The depths to layer boundaries for the two profiles were within 20 

percent of one another; the VS of the layers themselves were also within 20 percent. The 

VS of the halfspaces are within 30 percent. Given that the reported accuracy of ReMi to 

determine VS(30) is within 20 percent (Louie, 2001), the profile was kept in the database.  
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Profile stability 

In an otherwise homogeneous medium, VS will increase with depth due to effects of 

confining pressure (Kramer, 1996). At sites with caliche or other high-velocity 

inclusions, however, VS profiles with large fluctuations in velocity, approaching 

1000 m/s, might be expected. Profiles at five sites exhibited either large velocity 

fluctuations between layers or consisted of a single layer for which nearby geologic 

information was either not available or did not substantiate the VS profile. These five 

sites were removed. Two of these sites were also disqualified from the database due to 

poor dispersion curve fits.  

Final profiles used in model 

Of the 145 public-record VS profiles considered 123 measurements satisfied the 

consistency criteria and were used for model development. An additional 49 VS profiles 

that were developed using ReMi measurements were also used. These measurements 

were performed along a 13-km transect running roughly northeast to southwest across a 

central part of the Valley by Louie and colleagues (Scott et al., 2006).  

 

3.4. Establishing VS mapping approach  

The approach used to develop the 3-D VS model took into consideration the specific 

geologic conditions of the LVV and methods previously used by others to develop VS 

models in the Valley and in other urban areas. This section presents the background and 

reasons for developing a 3-D VS model for the Valley as well as the selection of the 

model depth. The background for the VS-sediment correlation procedure, including brief 

discussion of statistical methods, is also presented.  
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3.4.1. Basis for depth and type of model 

VS models and maps have been developed for many urban areas as part of a process 

to generate earthquake hazard maps (e.g. Frankel and Stephenson, 2000; Wills et al. 

2000; Wong et al., 2002; Cramer et al, 2004; Frankel et al., 2007). VS data and maps are 

also used for seismic site classification needed for code-based design of structures. For 

example, both the International Building Code (IBC; International Code Council, 2009) 

and National Earthquake Hazards Reduction Program (NEHRP; Building Seismic Safety 

Council, 2009) provide recommendations for engineers to consider VS(30) for the 

seismic design of structures. For this reason, an increasing number of VS(30) maps and 

site classification maps based on VS(30), including projects previously described as 

being performed in the LVV, are being generated for urban areas throughout the United 

States (e.g. Wills et al., 2000; Louie et al., 2008).  

Utility of a 3-D VS model beyond that of depth-averaged VS maps includes 

accurately modeling the variable depth to important stratigraphic boundaries of a 

complex area such as the LVV basin. A 3-D VS model of the LVV can capture the 

heterogeneity of the sediments and, therefore, may be used to perform the analyses 

necessary to predict ground motion in the LVV during an earthquake. It can be used to 

help explain more complex site-response phenomena observed in the LVV, such as basin 

amplification and near-fault effects. Of course, maps of VS averaged over any depth of 

interest may be developed from a 3-D model. 

Recent research suggests that in deep, sedimentary basins, such as the LVV, VS 

profiles to depths greater than 30 m are required to accurately predict site response during 

an earthquake. Abrahamson and Silva (2008) classified sites using both VS(30) and the 
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depth to “engineering bedrock”, which they defined as the depth where VS equals 

1000 m/s. By using this engineering bedrock parameter, they were able to distinguish 

between “shallow soil sites” (depth to engineering bedrock less than 200 m) and “deep 

soil sites” (depth to engineering bedrock greater than 200 m). As part of a study to 

investigate the influence of shallow sediments on earthquake ground motion, Luke and 

Liu (2007) established a preferred depth to model halfspace in the LVV. To establish this 

depth they modeled the one-dimensional response of two sites: a 1-km deep sediment 

column in the LVV and a reference site with shallow bedrock situated at the foot of 

Frenchman Mountain. For both sites, they used weak-input ground motions to project 

surface response for columns with varying depths to model half space. The projections 

were compared to ground motions measured at the two sites during nuclear test events 

and during a magnitude 5.5 earthquake. The authors reported that the best matches of 

modeled ground motion to recorded ground motion occurred for a model halfspace depth 

of 375 m. Based on this research, 400 m is the target depth for the LVV 3D VS model.   

3.4.2. VS-sediment correlation procedure: background 

Because vast amounts of geologic data may be available for a developed area, 

whereas the number of VS datasets is typically limited, VS model development regularly 

includes correlation of VS to local geology (e.g. Wills et al., 2000; Wong et al., 2002; 

Gomberg et al., 2003). Once the correlation is performed, the larger dataset including VS 

based upon sediment-type is used for interpolation of velocity to obtain a continuous 

model of VS. Different correlation methods, including those previously applied to LVV 

basin-fill sediments, are summarized here.  
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In the development of earthquake-scenario and probabilistic ground-shaking maps for 

Salt Lake City, Utah, Wong et al. (2002) correlated a sparse VS dataset to a larger dataset 

of surficial geologic units. They defined five distinct site-response units on the basis of 

predominant grain size. For each of the units where VS data were available, they then 

developed a characteristic VS profile by averaging profiles resolved at multiple locations 

in each unit. For one of the units, a smoothed average was used. The smoothed profile 

was preferred over the arithmetic mean by the authors because the mean profile exhibited 

local velocity reversals rather than having velocity strictly increasing with depth.  

Romero and Rix (2001) used a similar method to develop characteristic VS profiles 

for the Mississippi embayment. They broadly defined regions based on age and type of 

geologic deposit. The characteristic profile for each region was based upon a subjective 

analysis of the profiles resolved within each area rather than the arithmetic mean of the 

profiles. In this manner the authors could edit features, such as local velocity reversals, 

that have physical significance at a specific measurement site, but were not considered 

representative of the overall area. As part of this research, Romero and Rix (2001) also 

performed site specific analyses at two sites in the greater Memphis area to assess 

uncertainty and randomness in VS profiles due to test-related factors and local variability 

of soil properties. To quantify their observations, they computed a mean VS profile for 

each site and its standard deviation and coefficient of variation. Both sites had seven VS 

profiles with depths of 20 m or deeper and with a maximum distance between any two 

measurement locations of 325 m. For the two sites, the authors found that standard 

deviation increased with depth. They noted this result was expected because, while local 

variations in soil properties will decrease with depth (e.g. lateral variation of VS will 
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decrease with increasing confining pressure), the uncertainty in measuring VS generally 

increases with depth. They also reported a general increase in the coefficient of variation 

with depth and reported ranges from a minimum around 4 percent to a maximum of 34 

percent. 

Wills et al. (2000) employed surficial geology to develop a seismic site-classification 

map for California. In contrast to Wong et al. (2002) and Romero and Rix (2001), who 

created characteristic profiles, Wills et al. used over 550 VS(30) measurements to assign 

a site classification to surficial geologic units shown on 1:250,000 scale geologic maps. 

The site classifications (B, C, D and E; Table 3.1) were subdivided to develop 

intermediate categories (BC, CD, and DE), which were applied to the surficial units with 

VS(30) values that straddled the boundaries of the site classifications.   

A similar approach was used by Scott et al. (2006) to develop a shallow VS model for 

the LVV. They correlated VS(30) to surficial units using the 49 VS measurements of the 

13-km transect that was previously described. Then they assigned VS(30) throughout the 

Valley based on surficial units. To test the map, they compared the values assigned from 

the surficial units to the original values measured along the roadway and to values 

measured at eight additional test sites not located on the roadway. Predictably, the 

locations on the roadway had a good correlation to the measured data; however, only 

three of the eight off-roadway locations had measured VS(30) values within 20 percent of 

VS(30) assigned as a result of the correlation. The authors then developed a model by 

correlating velocity at 79 locations (the 30 body-wave and active-source surface-wave 

measurements compiled by Liu, 2006 plus the 49 measurements of the 13-km ReMi 

transect) to a 3-D stratigraphic model based on six summary units: Paleozoic bedrock, 
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Oligocene-Miocene deposits, carbonate, gravel, sand and clay. For all units except sand, 

where VS data were not available, the authors developed VS(30) histograms. Each 

stratigraphic unit was assigned a single VS(30) value from the mode of occurrence. Then 

a VS(30) model of the Valley was calculated from the VS values assigned to the 

stratigraphic model. For this VS(30) model, four of the assigned VS(30) values were still 

not with 20 percent of the measured values, but were closer than those values developed 

using surficial units. The authors, therefore, recommended geographic partitioning (i.e. 

dividing the Valley geographically into areas expected to have similar velocity values) to 

perform the VS-sediment correlations.  

Geographic partitioning was used by Wills and Clahan (2006) to refine the seismic 

site-classification map for California developed by Wills et al. (2000) that was previously 

described. Wills and Clahan used topography to subdivide the boundaries of the original 

map geographically into areas that were anticipated to be more homogeneous in grain 

size and thickness (e.g. areas where alluvium was expected to be shallow, such as narrow 

valleys and small basins, were separated from areas where alluvium was expected to be 

deep, such as the centers of major basins). They then developed a mean VS value from 

profiles measured within each area. The authors concluded that partitioning based on 

surficial geology can be used to produce a regional map (such as the one they developed 

for California), but that detailed subsurface information was needed to produce detailed 

and accurate maps on a local scale.  

For the LVV, Luke and Liu (2008) used geographic partitioning to divide the Valley 

into two sediment response units: 1) fine (predominantly clay) and 2) coarse 

(predominantly gravel). Rather than rely on surficial geologic units, they incorporated 
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subsurface information by defining the units according to the sediments that dominate in 

the upper 30 m. For each unit, they calculated a representative VS profile in a manner 

similar to the methods of Wong el al. (2002) and Romero and Rix (2001). The authors 

observed that VS values in the profile developed for the fine-sediment response unit were 

consistently lower than those of the coarse-sediment response unit.  

One challenge for applying geographic partitioning in the LVV is the extent to which 

the high-velocity cemented deposits (caliche) can be accurately represented in the model. 

Boundaries separating areas that are predominantly caliche could potentially be used to 

develop depth-averaged maps; however, the variable depths and thickness of caliche 

lenses preclude using this boundary for development of 3-D Valley-wide models.  

Gomberg et al. (2003) developed a 3-D VS model for the basin environment of 

Memphis, TN, from a sediment-lithology model without using geographic partitioning. 

First, they compiled a 3-D sediment-lithology model from a database of more than 1200 

well and borehole logs. Then, they used the logs to identify the depths to the interfaces 

between the five uppermost, major-lithologic units. Using a dataset of 76 VS profiles, the 

authors produced velocity histograms for each unit and then assigned VS based on the 

unit’s mean VS, which did not differ substantially from the median. Because the 

lithologic units of the Memphis model are fairly homogeneous laterally, depth inherently 

becomes a part of the correlation despite not being specifically addressed.  

In contrast to the geologic model for Memphis, TN, the geologic models for the LVV 

shallow sediment types (and, therefore, velocities) can vary significantly over short 

distances both vertically and laterally (Taylor et al., 2008). According to Luke and Liu 

(2007), accurate representation of variability of dynamic material properties is required to 
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accurately model earthquake ground motion. Thus, the correlation method used in the 

LVV to build a VS model from sediment lithology should preserve the complex 

heterogeneity of the Valley sediments where possible.  

3.4.3. Geostatistical model background 

The previous section discussed some of the limitations of using geologic data to 

predict VS. To overcome these limitations, Thompson et al. (2007) proposed a 

geostatistical method to develop depth-averaged VS maps. Their method accounts for 

horizontal variability of VS without employing correlations of velocity to sediment-

lithology. For a 140 km2 area of the San Francisco Bay, California, they developed a 

continuous map of VS averaged over the upper 10 m (VS(10)) from 189 sites 

characterized by seismic cone penetration tests (SCPT). The VS(10) estimates were made 

using geostatistical methods, specifically ordinary kriging and a model semivariogram 

determined from the measured VS(10) values. A similar method has been used to map 

liquefaction hazard (e.g. Baise et al., 2006) and has been shown to be useful to model 

other soil properties (e.g. soil moisture, Western and Blöschl, 1999; agricultural soil 

properties, Kravchenko, 2003).    

A model seimvariogram is a function that may be used to interpolate between two 

data points (Henley, 1981). It is developed from the empirical semivariogram, γ(h), 

defined for VS measurements in Equation 3.1, which describes the spatial structure of a 

dataset, specifically VS(10) in the study by Thompson et al. (2007).  

Equation 3.1 γ(h) = ∑
=

N

iN 12
1 [VS(si+h) – VS(si)]2, 

where h is the separation distance between the measurements, 
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N is the number of sample pairs, in this case VS measurements, separated by distance h, 

and VS(s) is the velocity at location s.  

For datasets regularly distributed in space, where each sample pair is separated by a 

distance that is a multiple of h, γ(h), γ(2h), γ(3h), etc. are calculated. Then, the successive 

γ values are plotted versus separation distance to obtain an experimental semivariogram, 

which is illustrated in Figure 3.3. For datasets that are not regularly spaced, a range of 

distance values may be considered together. For example, Thompson et al. (2007) used 

400 m distance bins for the SCPT data.  

Model semivariograms are the functions for the curves that are fit to experimental 

semivariograms. Henley (1981) summarizes several common semivariogram models and 

many geostatistical texts provide more information on the subject. One common model is 

the exponential model (Figure 3.3). For this model, γ increases with separation distance 

until a maximum γ value is reached. The separation distance where the curve flattens out 

is referred to as the range, and the value of γ at this distance is referred to as the sill. 

Beyond this point, γ is no longer a function of separation distance. The point where this 

theoretical curve intersects the ordinate is referred to as the nugget. For VS data, this 

value will ideally be zero because measurements taken at the same location should be 

identical.  

The VS(10) data of the Thompson et al. (2007) study were fit using an exponential 

model. Then the authors used the model semivariogram and kriging to interpolate 

between the measured points and produce a continuous VS(10) map. 

For the same area, Thompson et al. (2007) also attempted to develop a VS(30) map 

from 48 sites where SASW data were acquired. These sites were not as closely spaced as 
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the sites where SCPT data were acquired, nor were they as spatially extensive, being 

generally located in two areas. The authors noted that because geostatistics improve 

spatial prediction only where the data being interpolated have a spatial structure, the 

spacing of the VS data used for interpolation needed to be dense enough to establish that 

the closely spaced samples were more similar than those spaced farther apart. For the 

SASW measurements, Thompson et al. (2007) concluded that the dataset was too sparse 

to determine an appropriate semivariogram model for the interpolation.  

Compared to the 48 SASW measurements in a 140 km2 area used by Thompson et al., 

(2007), the ratio of the number of VS measurements in the LVV (212 profiles in 

1600 km2 ) is small. If LVV VS profiles were evenly spaced, only one profile would be 

located in every 7 km2. While this density might be adequate, the measurement locations 

occur in clusters, leaving areas of the LVV without adequate coverage (Figure 3.2).  The 

sparseness of the dataset increases with depth because, while nearly all of the VS profiles 

of the LVV dataset extend to 30 m depth, only 46 profiles extend to 200 m depth and 

only 20 extend to 300 m depth. Additionally, most of the deep profiles are located along 

the 13-km transect. Such clustering of data limits the applicability of geostatistical 

methods to interpolate velocity across the LVV. An additional limitation of using the 

method proposed by Thompson et al. (2007) is that it does not produce a 3-D model. We 

note, however, that Dawson and Baise (2005) adapted the 2-D semivariogram approach 

to develop a 3-D semivariogram, which they used to model volume of liquefiable soil.  

In contrast to the velocity dataset, if the wells used to develop the shallow-sediment 

model for the LVV were evenly spaced, there would be approximately one well per every 

square kilometer. Despite being a denser dataset and covering a much broader area of the 
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Valley than the VS locations, there are still areas in the Valley with little or no sediment-

lithology data (Figure 3.2). Due to the availability of a relatively rich sediment-lithology 

dataset and the relatively sparse number of profiles, especially with depth, and uneven 

distribution of the LVV VS dataset, we correlated VS to sediment lithology to develop 

the LVV 3-D VS model rather than applying geostatistical methods to the velocity data 

alone. A similar method to the one employed by Dawson and Baise (2005) may be viable 

in the LVV once more VS data, especially below 100 m, is available.   

 

3.5. VS-sediment correlation procedure  

Considering the advantages and disadvantages of the modeling methods previously 

described, we opted to correlate velocity to the 3-D sediment-lithology model developed 

by Taylor et al. (2008) in order to interpolate VS across the Valley. The VS 

measurements were directly included in the dataset. By using both measured VS and VS 

correlations to sediment type for map creation, we expect that velocity will be more 

accurately interpolated than using either of the two datasets independently. 

We developed a VS-sediment correlation method similar to that used by Gomberg et 

al. (2003) rather than use surficial units or geographic partitioning. Correlations were 

performed for four of the five sediment units in the 3-D sediment-lithology model: Clay, 

Sand, Gravel and Mixed. Velocity histograms were created for each of these sediment 

units and used to assign a velocity value that is representative of each unit over an 

established depth range. The individual assignments culminated in depth-dependent 

correlations of VS to sediment unit. A constant VS was assigned to the fifth sediment 

unit, the Cemented unit. 
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Ideally, the histograms would be created using only those VS profiles that are located 

at sites with well logs. Because most of the well and VS data were not acquired 

specifically for the purpose of this research, these datasets were not co-located. Thus, we 

used semivariograms to study the spatial structure of VS in the Valley and determine 

appropriate correlation distances between VS and well locations.  

The VS-sediment correlation process is described in this section. The assignment of 

VS to the Cemented unit (caliche), deep sediments, and bedrock is also described. The 

process preserves the location and depth of high VS zones, thereby capturing some of the 

heterogeneity of the LVV sediments. 

3.5.1. Determining correlation distances 

Sediment deposits tend to have a spatial structure; thus we expect that the VS of these 

sediments will also have a spatial structure. In the LVV, the spatial structure of the 

sediments is evident in the 3-D sediment-lithology model (Taylor et al., 2008), while the 

spatial structure of VS was demonstrated by the VS profiles developed by Luke and Liu 

(2008) for the two sediment response units. Based on these previous findings, we assume 

that VS of the LVV sediments has a spatial structure. If true, a maximum distance exists 

within which a VS profile can be located from a well and still be used to develop the VS-

sediment correlation. This distance is referred to here as the correlation distance. 

Furthermore, we can use geostatistics, specifically empirical semivariograms (γ, Equation 

3.1), to quantify how VS of the Valley sediments changes with distance and define the 

correlation distance.  
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Semivariogram development 

We used ArcMap (Geostatistical Analyst Toolbox; version 9.3.1) to calculate γ for all 

possible combinations of pairs of the VS datapoints and plotted the results. The plot is 

known as a semivariogram cloud (Figure 3.4). For this study, semivariogram clouds were 

developed from depth-averaged VS for the depth intervals listed in Table 3.2. These 

intervals correspond to the seven layer boundaries used for the characteristic profiles; 

selection of the layer geometry is described later in this paper. The depth-averaged VS 

for these intervals are referred to as layer averages. In addition to the layer average 

velocities, we also calculated the depth-average VS from the ground surface to the 

bottom of each layer boundary, referred to as overall averages, and VS(30). For the 

shallowest layers, where all 212 VS measurements were used, γ was calculated for 22366 

site pairs. The semivariogram clouds for the site pairs separated by less than 15 km are 

shown in Figure 3.4. Depth-averaged velocity values for any depth interval (avgVS) are 

calculated by summing the time for a wave to travel through each layer of the depth 

interval, then dividing the thickness of the depth interval by the sum of the travel times 

(Equation 3.2).  

Equation 3.2  avgVS = 
∑
=

N

i i

i

VS
t

T

1

, 

where N is the number of layers in the depth interval,  ti and VSi are, respectively, the 

thickness and velocity of layer i in the depth interval, and T is the thickness of the depth 

interval (note T is equal to the sum of all the individual layers, t, in the depth interval). To 

discern local trends from the overwhelming amount of data plotted in the semivariogram 

clouds and because the data were not regularly spaced, we grouped the semivariogram 
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cloud data by separation distance between velocity pairs in increments of 100 m. The 

results from this grouping is a mean γ value for site pairs located between 0 and 100 m, 

for those located between 100 and 200 m, etc., plotted in Figure 3.5. As previously 

discussed, distance bins were also used by Thompson et al. (2007) for their analysis of 

SCPT data. 

Selection of correlation distance 

The semivariogram clouds for both the overall average and layer average data show a 

broad range of γ at any distance (Figure 3.4). However, a general trend for close site pairs 

to have a smaller difference in VS compared to site pairs that are farther apart is apparent 

for the upper bounds of γ. This trend is easily observed in the semivariogram clouds for 

the overall averages, but is not as apparent in the semivariogram clouds of the layer 

averages.  

Trends in VS are more apparent in the plots of the binned data (Figure 3.5). In these 

plots, mean γ increases with separation distance to approximately 20 km. This clear trend 

for the binned data indicates that once an adequate number of VS measurements is 

obtained, a semivariogram model could be fit to the data, and kriging could be used 

reliably to develop a 3-D VS model for the LVV. Beyond 20 km, scatter in the values for 

γ increases dramatically. Decreases in mean γ values observed for separation distances of 

more than 20 km appear to be a function of fewer datapoints being available for 

comparison and are not an indication of spatial structure.  

For both the semivariogram clouds and the binned semivariograms, γ for the layer 

average tends to be greater than that of the overall average. The higher γ value for the 
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layer average is expected because VS is averaged over a smaller depth interval, which 

does not provide as much opportunity for high or low velocity values to average out. 

The binned γ for site pairs separated by distances to 1.5 km are plotted in Figure 3.6 

with error bars representing the standard deviation. Referring to this plot, for the first few 

hundred meters of separation distance, both mean γ and standard deviation generally (but 

not uniformly)  increase with increasing separation distance. Compared to the rest of the 

data, a sharp increase in the mean γ for site pairs located 300 to 400 m apart was 

observed in most of the overall- and layer-average data. For the overall averages (top row 

of Figure 3.6), the mean and standard deviation generally decrease as the depth to the 

bottom of the interval increases, which, as previously mentioned, is expected because the 

high and low velocity values average out. For the layer averages (bottom row of Figure 

3.6), the opposite is observed (γ and standard deviation increase as depth to bottom 

increases). This increase in γ with depth may be due in part to fewer data pairs at the 

deeper depths. For the layer-average data, the increase in the standard deviation with 

depth is consistent with findings reported by Romero and Rix (2001).  

Based on our observations of the semivariograms and on data availability, we chose 

300 m for the correlation distance. Sixty-four VS profiles are located within 300 m of at 

least one well location. For the Mixed unit, the correlation distance was increased to 500 

m to provide sufficient data for correlation. This distance increased the numbers of 

profiles used in the correlation for that unit from 20 to 32. The locations of these profiles 

are shown in Figure 3.2. The number of wells within the correlation distance of each 

profile is also shown in Figure 3.2. A summary of the number of profiles having 1, 2, 3, 

or more wells within the correlation distance is in Table 3.3.  
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The correlation distances do not account for discrepancies between the depths of the 

VS profiles and the wells. Thus, eleven of the VS profiles are deeper than the deepest 

logged well within the correlation distance. The shallowest of these VS profiles, about 

130 m, is only 14 m deeper than the nearest well. Because the profile extends into the 

100-m thick, 100- to 200-m layer of the characteristic profiles, use of the bottom 14 m of 

the profile in the VS-sediment correlations was judged reasonable. For the ten remaining 

profiles, the distance to the nearest well of equal or greater depth increases with depth; 

however, the homogeneity of VS is expected to increase with depth due to confining 

pressure. Therefore, the need for a well to be located within the correlation distance is 

less important for these deeper measurements. Of the remaining profiles, seven have 

profile depths ranging from 175 to 300 m and have at least two wells that are deeper than 

the profile within 2 km. The other three profiles are nearly 400 m deep and have two to 

three deeper wells within 3 km.  

3.5.2. Characteristic VS profile development 

An 8-layer characteristic profile was developed for four of the sediment units (Clay, 

Sand, Gravel, and Mixed) in the 3-D sediment-lithology model. The profiles were 

developed from scatter plots of depth versus velocity and from velocity histograms. The 

process is described in this section and was also presented by Luke et al. (2010). This 

section also presents the mean, standard deviation, and coefficient of variation of VS for 

each sediment unit. The deviation of the characteristic profile from the measured VS data 

is also quantified.   
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Scatter plot generation and data filtering 

The VS profiles were discretized for use in EarthVision. The discretization process 

assigned VS values at regular, fixed depth intervals, such that only one VS value was 

associated with any depth: VS was assigned to every 1-m depth increment in the upper 

65 m, and, because layer thickness increases with depth, every 3-m depth increment 

below 65 m. To honor the degree of detail in the original profile, additional layer 

boundaries were inserted to preserve layers less than 1 m thick and to preserve the depth 

to the bottom of each layer. The top of each successive layer was assigned a depth 0.01 m 

below the bottom of its overlying layer; this increment preserves the depth of each layer 

boundary and is less than the precision of the measurements used to develop the profiles.  

The 3-D sediment-lithology model was queried to assign a unique sediment unit at 

each discrete depth point of the 76 VS profiles used for the correlations. The result was a 

dataset pairing velocity and sediment unit with depth. This dataset was sorted by 

sediment unit and a scatter plot was created for each unit (Figure 3.7). 

VS in the scatter plots increases with increasing depth, which, as previously noted, is 

expected. Ideally, this depth-dependent relationship would allow a velocity versus depth 

gradient (e.g. Ni et al., 1998) to be developed, which would be the characteristic profile. 

However, for the LVV, the scatter plots also show that even within the established 

correlation distance, the range of VS values for a particular sediment type at a particular 

depth can be more than 1000 m/s.  

Anomalously high velocities are attributed to cementation and to shallow bedrock and 

were excluded from the correlations. As previously discussed, highly-carbonate cemented 

sediments may occur at any location in the Valley (i.e. in any sediment unit). Shallow 
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bedrock occurs at sites near the Valley margins. Because VS profiles are derived from 

surface wave techniques, they represent characteristics of broad volumes of earth beneath 

the measurement array. As profile depth increases, the volume represented by the profile 

also increases. Thus, deeper VS measurements in sediments on the Valley edges can be 

influenced by sloping bedrock in the vicinity. In contrast, a nearby well log describes 

only sediments. Thus, a high velocity layer of a profile located at a shallow bedrock site 

can be assigned to a sediment unit that is based on the nearby log, but that does not 

accurately describe the volume of sediment and rock measured by the surface-wave 

survey (Luke et al., 2010).   

Cutoff velocities for the Clay, Sand and Gravel units were set based on velocity 

ranges observed in the scatter plots and our previous experience in the LVV. The 

assumptions were checked against published values of wave velocities according to 

sediment type and depth. For these units, all VS greater than 1300 m/s and VS greater 

than 1000 m/s occurring shallower than 50 m were not used for the correlation 

(Figure 3.7).  

The Mixed unit was assigned where none of the other three sediments predominate in 

the well log. While this unit can include some cemented materials (Taylor et al., 2008), a 

thick, heavily cemented unit would be assigned to the Cemented unit. Because the Mixed 

unit includes materials that have higher VS than clay, sand and gravel, this unit has a 

potential for higher representative VS values. Therefore, we slightly modified the cutoff 

velocities. For this case, VS greater than 1300 m/s and VS greater than 1000 m/s 

occurring shallower than 5 m were excluded from the correlation (Figure 3.7).  
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Because the Gravel unit has the highest-measured VS, the cutoffs affected far more 

data in this unit than any other. These high values are expected because the Gravel unit 

tends to be located in the areas of the LVV with the most caliche and on the Valley 

margins closest to bedrock (Wyman et al., 1993).  

Defining layer geometry 

The layer geometry (number of layers, layer thicknesses, and depth to halfspace) for 

the characteristic profiles was established empirically from observation of the scatter 

plots and from experience. The geometry established is identical for each of the 

predominant sediment units. The three uppermost layers are 5 m thick. Luke et al. (2009) 

discussed that the geophone spacing used for the ReMi surveys compiled from the public 

record search (typically 7.5 m) and the maximum frequencies obtained by these surveys 

(roughly 50 Hz) should be adequate to resolve an average velocity for the upper 5 m of 

the profile. Below 15 m, layers increase in thickness with increasing depth. The depth to 

the halfspace is 200 m. 

VS assignments from histograms and profile statistics 

For each characteristic-profile layer, a representative VS was assigned manually from 

velocity histograms. The histograms were created for each layer of each sediment unit 

using the software MATLAB, by MathWorks; a normal distribution was also calculated 

(Figure 3.8). Velocities above the cutoffs were not plotted on the histograms or included 

in the calculation of the normal distribution curves. For the Mixed unit, the 5 to 10 and 10 

to 15 m layer intervals were combined into a single layer because of the similarity of VS 

values for these layers and because of the limited number of profiles available for the 

correlation of these layers (as few as 5). 
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In general, VS assignments were made from the following: the peak of the normal 

distribution curve, the mode, or the median velocity for the depth interval. Additionally, 

VS was required to increase with increasing depth. Judgment played a considerable role 

in the selection process. The selected values are shown by the arrows on Figure 3.8 and 

listed in Table 3.4. The characteristic profile of each sediment unit is superimposed on its 

respective scatter plot to verify reasonable fit to the data. (Figure 3.7). 

The mean VS (μ), standard deviation (σ), and coefficient of variation (COV) were 

calculated for each layer of the characteristic profiles for each sediment unit. Similar 

values for each 1-m interval of the discretized dataset (μ1m, σ1m, and COV1m) were also 

calculated. These values along with the number of points in the dataset are plotted for 

each sediment unit in Figures 3.9 through 3.12. Although several profiles were used to set 

the VS value for each layer of each characteristic profile, there are 1-m interval depths for 

which only a single profile provides information for the sediment unit. At these depths, 

the single datapoint is, by definition, equal to μ1m, and σ1m is, therefore, equal to zero. The 

number of instances that these “zero” values occur increases with increasing depth, 

further illustrating how the data density decreases with depth (Figures 3.9 through 3.12). 

The mode of each layer of the velocity histograms (referred to as layer mode) is also 

shown.  

Because the characteristic profiles were not developed strictly from the mean VS of 

the measured profiles, we performed an additional calculation to quantify the deviation of 

the characteristic profile from the dataset. This deviation was determined by substituting 

the VS value of each layer of each characteristic profile for the mean VS in the equation 

for standard deviation, Equation 3.3.  
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Equation 3.3 ∑ =
−=

N

i icp CPx
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Where σcp is the deviation of the dataset from the characteristic profile, 

N is number of data points in the sediment unit for the characteristic profile layer (e.g. 

the number of datapoints in the Clay unit from 0 to 5 m, from 5 to 10 m, etc.),   

CP is the VS value of the layer in the characteristic profile, and  

x1, x2,... xN are the VS data for the layer (shown in the scatter plots). 

We also calculated a “coefficient of variation from the characteristic profile”, COVcp, 

which is defined as the ratio of σcp to the VS of the corresponding layer of the 

characteristic profile. Both σcp and COVcp are plotted on Figures 3.9 through 3.12. A 

comparison of σ and σcp  is provided in Table 3.5.  

Discussion of variability and trends 

Referring to Figures 3.9 to 3.11, μ of the Clay, Sand and Gravel units generally tracks 

μ1m to a depth of roughly 50 m. For the Mixed unit (Figure 3.12), μ has a poor fit to μ1m in 

the shallow layers, due to the wide range of values of μ1m, but a better fit from 15 to 50 m 

deep. Below 50 m, the range of values for μ1m increases. This increase is expected 

because of the decreasing number of profiles below 50 m depth. The characteristic profile 

for the Clay unit has a good fit with the μ value for the unit. Thus, σ and σcp for the Clay 

unit are also similar, as are COV and COVcp. This pattern is also true for the Sand and 

Mixed units. For the Gravel unit, the characteristic profile has a good fit with the mode to 

15 m; below this depth, the profile has a good fit with μ. Thus, σ and σcp for the Gravel 

unit are similar below 15 m, as are COV and COVcp. The fits of the characteristic profiles 

to the mean and mode values highlight the manner in which the representative VS for 

each layer was assigned: the shallow layers of the Gravel unit fit the mode because the 
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representative VS values for these layers were assigned at the mode (Figure 3.8), and the 

deeper layers fit the mean because they were assigned at the peak of the normal 

distribution.  

As expected, for layers where VS for the characteristic profile was assigned from the 

mode, the difference between σ  and σcp  increases as the difference between the mode and 

μ increases (Table 3.5). The variability of the Valley sediments is evident by the σ and σcp 

values, which range from 64 to 263 m/s (Table 3.5). These values are substantially higher 

than those reported by Romero and Rix (2001); the authors noted a maximum σ of 102 

m/s in their study performed for the Greater Memphis area. The relatively high σ and σcp 

values of the Valley sediments provide some measure of the uncertainty associated with 

assigning VS to sediment units in the LVV.  

For the Clay unit, σ and σ1m generally increase with depth to 50 m, while COV and 

COV1m are generally constant (Figure 3.9). The values of σ and σcp are typically lower for 

the Clay unit than the other sediment units from 0 to 50 m (Table 3.5). From 50 to 200 m 

depth, the range of values for σ1m and COV1m increases as the number of datapoints in the 

Clay unit correlation dataset decreases. Below 200 m, the smaller range of σ1m and 

COV1m values is due to the decrease in the range of VS values in the correlation dataset 

(Figures 3.7 and 3.8). The layer COVs range from 20 to 34 percent. This range is 

consistent with the upper bound reported by Romero and Rix (2001).  

For the Gravel unit, σ and σ1m generally decrease with depth to 50 m along with COV 

and COV1m (Figure 3.11). The high σ of the shallow layers of this unit demonstrates the 

heterogeneity of LVV sediments in locations that are predominantly gravel. The range of 

values for σ1m for this unit increases with depth to 200 m. This increase corresponds to a 
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decrease in the number of profiles used for the correlation. As with the Clay unit, the 

smaller range of σ1m values below 200 m for the Gravel unit is due to the decrease in the 

range of VS values in the correlation datasets (Figures 3.7 and 3.8). Values for layer 

COV range from 15 to 33 percent.  

For the Sand and Mixed units, σ and COV generally decrease with depth to 25 m 

(Figures 3.10 and 3.12). In contrast, σ1m and COV1m do not have a consistent pattern over 

this depth interval, and their range of values is consistently broad between the depths of 0 

and 100 m. As previously noted, the smaller range of σ1m and COV1m values below 100 m 

is due to the decrease in the range of the VS values in the correlation datasets (Figures 3.7 

and 3.8). Values for COV of the Sand unit range from 13 to 44 percent; values for layer 

COV of the Mixed unit ranges from 12 to 46 percent. The high layer COV values for the 

Sand and Mixed units compared to the Clay and Gravel units are expected because the 

Sand and Gravel units have significantly fewer datapoints in the correlation dataset 

(Figure 3.13).  

The characteristic profiles are shown together in Figure 3.13. For all four profiles, 

velocity increases with depth, which is expected given that the VS data also increases 

with depth and because of the manner in which VS was assigned to the sediment units. 

The number of profiles used for each correlation is also shown in Figure 3.13 and 

generally decreases with depth. Above 200 m, the numbers of profiles used to develop 

the characteristic profiles for the Clay and Gravel units are 1.5 to 2 times greater than the 

numbers used for the Sand and Mixed units. From 0 to 50 m, σ1m of the Clay and Gravel 

units have narrower ranges than σ1m of the Sand and Mixed units (Figures 3.9 through 

3.12). The Clay and Gravel units also have substantially more datapoints in the 
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correlation dataset than the Sand and Gravel units (Figure 3.7). Therefore, the Clay and 

Gravel characteristic profiles are more accurate than the other two profiles, especially 

above 50 m, and the Clay unit, which has lower σ and σcp than the Gravel unit above 

25 m, is the most accurate of the profiles.  

As previously discussed, the range of σ1m increases with depth (to 200 m) for all four 

units, which implies that variability of VS of all four sediment units increases with depth. 

However, the increase is in part due to a decrease in the density of the correlation data 

with depth (Figure 3.13) and may also be due to the selection process of VS profiles for 

the correlation. Recall that the basis for inclusion of a VS profile does not take depth into 

account and that eleven of the velocity profiles are deeper than any well log within the 

correlation distance. Although the distances from these profiles to the nearest deeper 

wells (less than 3 km) were judged acceptable because of expectations for increasing 

homogeneity of VS of sediments with depth, the uncertainty of the sediment-unit 

assignment at depth for these site pairs remains higher than that for profiles having 

deeper wells within the correlation distance.  

The VS of the characteristic profile layers for the Clay unit are less than their 

corresponding layers in the characteristic profile for the Gravel unit, which was expected. 

The difference in VS decreases with depth, possibly due to the influence of confining 

pressure. The characteristic profile for clay has a large increase in velocity, about 

200 m/s, at 50 m depth. A corresponding (although slightly more gradual) increase in μ1m 

(from 50 to 65 m deep; Figure 3.9) indicates the increase may be an actual shift in the 

velocity of the sediments rather than an artifact due to the selection of the profile 

geometry. Luke et al. (2010) estimated that alluvium at 50 m was deposited about 25,000 
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years ago during the early stages of the last glaciation of the region (the early part of 

Tioga time during the Wisconsin glacial episode). The authors proposed that the 

increased velocities of the clays below 50 m might be related to changes in moisture, and 

thus, depositional environment resulting from climate change.  

The characteristic profiles for the Sand and the Mixed units have a more regular 

increase in velocity with depth. Below 50 m, the characteristic velocities for these 

sediment types are lower than those for the Clay and Gravel units, by approximately 200 

m/s. As previously discussed, the characteristic profiles for these units are more uncertain 

than for the Clay and Gravel units because of lower data density.  

Overall, the variability in the data and the characteristic profiles demonstrates the 

degree of complexity of the Las Vegas basin sediments. 

Comparison to previous profiles 

The characteristic profiles described here differ from earlier versions developed for 

this research project and published by Luke et al. (2009) using the same VS dataset. 

Notably, the VS of shallowest layers are as much as 125 m/s (45 percent) higher than the 

previously published values and those of the deepest layers are as much as 175 m/s (25 

percent) higher. Differences result from adjustments to the velocity cutoff ranges and an 

increase in the number of layers in the characteristic profiles from six to eight. The 

revised characteristic profiles have a good fit with the mean/mode profiles calculated for 

each sediment unit. 

Seismic site classification of the characteristic profiles 

VS(30), which is used to assign seismic site classifications, was calculated for each 

characteristic profile (Table 3.3) and was compared to the VS(30) ranges of soil 
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classification published in the IBC (Table 3.1). VS(30) for all four units is in the range 

for seismic site classification “C”. These resulting classifications for the characteristic 

profiles are similar to findings of the study presented by Louie(2008). The author 

reported a prevalence of alphabetically lower (stiffer) than expected seismic site 

classifications in the LVV, “C” rather than “D”.   

Taken individually, VS(30) for the Clay, Sand and Gravel units have distinctly 

different values. The value for the Clay unit is at the lowest quarter of the range for 

seismic site classification “C”. The value for the Sand unit is higher than the clay unit, 

but is still within the lower half of the range. In contrast, the value for the Gravel unit is 

nearly in the highest quarter of the range. The VS(30) for the Mixed unit (477 m/s) is 

essentially the same as that calculated for sand (473 m/s). This value falls between the 

clay and gravel values, where a mixed material without caliche would be expected. 

However, because the amounts of gravel and caliche included in the Mixed unit would be 

higher than those included in the predominantly clay or sand units, we expected the 

characteristic profile for the Mixed unit to have higher VS values (approximately midway 

between the values for Sand and Gravel). 

Although the characteristic profiles all have seismic site classification of “C”, VS(30) 

calculations of individual measurements result in some “D” and “B” as well as “C” 

classifications. This difference illustrates one of the limitations of a regional model based 

solely on VS assigned to sediment type. By including depth-dependent VS measurements 

in the regional model, locations with site classifications other than “C” will be more 

accurately represented in the model and in depth-averaged VS maps created from the 

model.  



106 
 

3.5.3. VS assignments for caliche, deep sediments, and bedrock 

This section describes the selection of the VS values for the 3-D model to represent 

sediments and lithology that were not specifically tested as part of this study (e.g. 

bedrock and sediments below ~400 m).  

Cemented sediments (caliche)  

As previously discussed, several studies performed in the LVV have measured the VS 

of caliche. Caliche behaves like hard rock in that VS would not be expected to be 

affected significantly by confining pressure in the upper few hundred meters. We 

considered 1000 m/s to be a lower bound VS for caliche, because lower values more 

likely represented fractured rather than intact caliche. As previously mentioned, caliche is 

included in the 3-D sediment-lithology model only where it was logged individually 

(Taylor et al., 2008); therefore, we assigned caliche a VS of 1500 m/s independent of 

depth. This value is the midpoint of our lower bound (1000 m/s) and the highest field 

measurement (mentioned previously, 2000 m/s).  

Deep sediments and bedrock 

In order to model the entire basin, constant VS values were assigned to sediments 

below 370 m and to bedrock. The assignments were based on research by others and are 

described here. For the purposes of our model, the LVV basin Quaternary-aged deposits 

(Taylor et al., 2008) are subdivided into a shallow basin and an intermediate basin, while 

the Oligocene-Miocene-aged sediments are referred to as the deep basin.  

In the model, the shallow basin is considered to be the upper portion of the basin fill. 

Because VS data were available for all the sediment units to roughly 370 m, this depth 

was set as the bottom of the shallow basin Thus, this basin extends from the surface to 
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370 m or to the top of Miocene (30 m to 1 km; Taylor et al., 2008), whichever is 

shallower. The top-of-Miocene boundary for the model was developed by Taylor et al. 

(2008) and does not extend Valley-wide. In places where bedrock is shallower than 

370 m, therefore, the shallow basin extends to the top of bedrock. Where the bedrock is 

shallow, it is possible that bedrock was exposed during the Miocene and covered with 

sediment later than that time. The VS of the shallow basin is what was modeled using the 

sediment-unit and caliche correlations previously described in this paper. The 370 m 

maximum depth of the shallow basin is within 1 percent of the 375 m depth to halfspace 

that Luke and Liu (2007) recommended be used for site response analyses in the LVV. 

The intermediate basin of the model represents sediments from 370 m to the top of 

Miocene. The deep basin represents the sediments from the top of Miocene to Paleozoic 

bedrock (as deep as 5 km). VS for the sediments of the intermediate and deep basins and 

for bedrock have been addressed in several studies (McEwan, 2005; Snelson et al., 2005; 

Scott et al., 2006).    

McEwan (2005) developed VS profiles to depths of 1 km and deeper from earthquake 

data recorded in the LVV by a broadband array for five locations in the LVV. All the 

stations of the array were located in the deepest part of the basin, roughly, the northeast 

portion of the Valley. The profiles were developed through inversion of fundamental 

mode Rayleigh wave group velocities generated from regional earthquakes. From the five 

profiles, we calculated an average profile, and then determined the depth averaged VS 

from 370 m to 1 km. This depth-averaged value, 1,100 m/sec, was assigned to the 

intermediate basin.  
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For the deep basin, we assigned a VS value of 1,500 m/sec, which correlates well 

with VS values developed by others over these depths: (1) the depth-averaged VS from 1 

km to 4 km calculated from the average of the five profiles developed by McEwan (2005) 

is 1,600 m/sec; (2) the range in VS over these depths from seismic refraction experiments 

performed by Snelson et al. (2005) to image the geometry of the basin is 1,400 to 

2,600 m/s (considering compression-wave velocity values in the referenced study and 

assuming Poisson’s ratio of 0.25, which is a generally accepted conversion value for 

these “consolidated” sediments; Snelson, personal communication, 2010); and (3) from 

surface-based measurements, Scott et al. (2006) used histograms of velocity to assign a 

constant VS value of 1,500 m/s to the Oligocene-Miocene material. The measurements 

by Stott et al. (2006) were previously discussed. 

The VS value assigned to bedrock, 2.6 km/sec, is taken from Snelson et al. (2005), 

again converting the reported compression velocity from the refraction study to VS using 

a Poisson’s ratio of 0.25. The histogram of VS developed by Scott et al. (2006) for 

Paleozoic bedrock shows peak velocity ranges between 2.0 and 2.7 km/s.  

 

3.6. Model development: data interpolation  

For 3-D VS model development, interpolation of the VS data was performed using 

EarthVision. The software’s 3-D minimum tension gridding algorithm calculates a 

smooth surface that closely fits the input data values (Dynamic Graphics, 2009). This 

software and gridding method have been used by others to develop 3-D models of 

geologic data (e.g. Jachens et al., 2001). For the LVV 3-D VS model, east-west grid 

spacing is 195 m, north-south is 180 m, and depth is 1.8 m. The location and orientation 
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of faults in the Valley were incorporated into the model. Interpolation of VS did not 

extend across the faults.   

Ultimately, three 3-D models were developed (Figure 3.14): 

1. VS-measured, which was created solely from the database of measured VS 

profiles.  

2. VS assigned from lithology (referred to as VS-assigned), which was created 

from the database where VS values from the characteristic profiles were 

assigned to each log in the geologic database based on the sediment type 

described and depth of occurrence. Assignments were made to over 1400 well 

logs, to create the VS-assigned dataset. 

3. Final model, which was created by combining the VS-measured and VS-

assigned datasets.  

Combining the datasets for the final model assures a more detailed and more accurate 

model than one created using only the VS-measured or VS-assigned datasets. This 

additional detail is considered more important to accurately model the heterogeneous 

nature of LVV sediments. The model can be applied to develop Valley-wide predictions 

of earthquake ground-shaking patterns needed for earthquake hazard map development. 

Given the uneven and in some areas sparse distribution of VS measurements across the 

Valley and the uncertainty associated with the characteristic profiles, site-specific 

predictions would still require site-specific measurements.  

A primarily top-view of each of the three models is shown in Figure 3.14. A cutaway 

showing the north half of the final model, including the location and orientation of 

several faults, is shown in Figure 3.15.  
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Several VS-measurement locations were queried to verify that the final model honors 

the measured data. Figure 3.16 shows velocity profiles for two of these locations (Figure 

3.1). The plots show the discretized data of the measured profile, the profile queried from 

the model created from the VS-assigned dataset, and the profile queried from the final 

model created from the combined datasets. Logs from nearby wells are also shown on the 

figure, and characteristic profiles for the sediments shown in the logs are plotted with the 

queried profiles. The shallowest depths of the queried profiles are below 0 m depths, 

which is a function of the models’ resolution. The gradual transitions between layers, as 

opposed to a step-wise looking transition, are also a function of model resolution.  These 

plots are discussed in the next section.  

 

3.7. Results, discussion and future work 

The differences between the three 3-D VS models and the increased detail provided 

by the final model are apparent in Figure 3.14. All of the models indicate higher VS in 

the west end of the Valley compared to the east, which reflects the general locations of 

the higher-velocity coarse-sediment response unit and the lower velocity fine-sediment 

response unit (Luke and Liu, 2008). Edge effects of the model are apparent in the varying 

colors (red, purple and green) of the mountain ranges. 

The VS-measured model has large areas with high velocities, most notably the 

1,800 m/s area (yellow) in the west side of the basin, which indicates a large, contiguous 

area of a high-velocity material. From the 3-D sediment-lithology model (Taylor et al., 

2008), which shows the heterogeneity of the Valley’s sediments, we know that high-VS 

sediments are localized. Thus, the high-VS areas shown in this model are probably due to 
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a small number of VS measurements being interpolated across a large area and not a 

large volume of high velocity material. An exception is the high VS area (1400 m/s, 

green) at the southwest end of the Valley. This area is represented by several VS 

measurements (Figure 3.2) and is known to have caliche and cemented gravel and sands.  

Because of the relatively large number of wells compared to the number of VS 

measurements, the VS-assigned model better represents the heterogeneous nature of the 

sediments compared to the VS-measured model (Figure 3.14). In the VS-assigned model, 

areas with high VS tend to be localized rather then spread over broad areas, a pattern that 

is consistent with the discontinuous nature of the sediments. From the VS-assigned 

model, we note the faults tend to be located along areas with high VS. Compared to the 

VS-measured model, the VS values in the southwest end of the Valley do not indicate 

high VS material. As previously discussed, the Gravel unit potentially includes greater 

incidences of stiff material that was either not logged, or was included in the unit because 

the amount of material was judged to be small. For these cases, the VS-assigned value 

would be lower than the actual VS of the sediment.  

The final model created from the combined dataset is more similar to the VS-assigned 

model than the VS-measured model (Figure 3.14), which is expected given the large 

number of wells, 1400, compared to the number of VS measurements, 212. The influence 

of the measured data is prominent at the southwest end of the Valley, which has higher 

VS values compared to the VS-assigned model. The high VS observed at the west end of 

the Valley in the VS-measured model is not prominent in the final model, which is also 

expected because the thickness and presence of cemented sediments can vary 
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substantially over short distances. The final model also has more detail than the VS-

assigned model along the east side of the Valley.  

Referring to Figure 3.15, the magnitude of the difference in sediment volume between 

the Quaternary basin (primarily purple and blue), to 1 km, and the lower Oligocene-

Miocene deposits (green), to 5 km, is illustrated in the figure. The intermediate basin is 

evident at roughly the 669000 m easting (1100 m/s; thin, blue section above the 

Oligocene-Miocene deposits and east of a fault located toward the center of the Valley).  

VS generally increases with depth. An inversion of VS values is observed above the 

Oligocene-Miocene boundary; this is especially notable between the 670000 and the 

675000 m eastings. This inversion is unexpected and remains to be investigated further.   

The two sites used to verify that the VS-measured data are being honored in the final 

model were selected for study based on their proximity to nearby wells and the 

complexity of their profiles. The LES site is relatively close to a well, within 325 m, and 

its VS profile generally increases with depth (Figure 3.16). In contrast, the MNL site is 

relatively far from its closest well, 1.3 km, and has a shallow velocity inversion at 10 m 

depth (Figure 3.16).  

The first site, LES, is in the fine sediment response unit (Luke and Liu, 2008), and its 

nearby log indicates predominantly clay material to 15 m depth and a mixture of clay, 

sand and silt material (designated as “Mixed” in the geologic database used for the 

correlations) to 100 m depth (Figure 3.16a). For this site, the shallowest velocities of the 

profile from the VS-assigned dataset are roughly twice those of the measured profile, but 

from 5 to 12 m depth are consistent with characteristic profiles for the Clay unit profile. 

This consistency is expected because of the clay sediments described in the log and 
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because clay is the predominant sediment in the fine sediment response unit. From 50 m 

depth to the bottom of the well log, the VS-assigned dataset tracks the Mixed unit profile. 

Again, this consistency is expected due to the sediments described in the well log. Below 

10 m depth, the measured VS profile and the profile queried from the VS-assigned model 

differ, but not substantially, to 50 m depth. In contrast, the VS profile queried from the 

final model tracks the measured data over the entire profile.  

The second site, MNL, is located in the northwest end of the Valley (Figure 3.1). 

From 0 to 25 m depth, VS queried from the VS-assigned model is more than twice that 

from the VS-measured profile (Figure 3.16b). The nearest well log indicates  “mixed” 

material (Figure 3.16); however a well located 2 km northwest of the site indicates a 

nearly 9-m thick lens of caliche at the surface. Taken together, the information from the 

two logs explains the high-VS values at shallow depth of the VS-assigned model. The 

difference between profiles of the VS-measured and the VS-assigned models decreases 

below 25 m, but is still more than the difference observed in the plots for the site in the 

fine sediment response unit (Figure 3.16a). As with the site in the fine sediment response 

unit, the profile from the final tracks the measured data to a depth of 210 m, the top of the 

Oligocene-Miocene boundary. Below this boundary, a constant velocity of 1500 m/s is 

assigned, which is represented in the profiles from the VS-assigned and final models. At 

the MNL site, the top of the Oligocene-Miocene boundary, 210 m deep, occurs at a depth 

above the top of the defined middle basin, 370 m; thus, the profiles have no constant VS 

assignment for the middle basin.  

The profiles presented for the LES and MNL sites show that model accuracy depends 

upon data density. Model users should, therefore, compare the location of data queried 
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from the model to locations of VS measurements and wells (Figure 3.1) to assess the 

precision of the data queried. For example, the roughly 5-km wide band of low VS values 

(~300 m/s, purple; Figure 3.15) from the north to northeast along the northern mountain 

ranges has neither VS nor lithology data (Figure 3.1). Profiles queried within this area 

will, therefore, not be as reliable as profiles queried from locations near sites with 

measured VS profiles or well logs.   

Further, independent model verification, such as verification by leave-one-out cross 

validation method (e.g. Thompson et al., 2010) is yet to be performed.   

 

3.8. Conclusions 

A three-dimensional (3-D), shear-wave velocity (VS) model was developed for the 

Las Vegas Valley (LVV) using a combination of limited VS measurements and a richer 

database of sediment type that is correlated to VS. Incorporating both datasets into the 

model provides better resolution than a model developed using either of the two datasets 

independently.   

The assignments of VS to sediment type were based on four characteristic profiles 

developed by correlating velocity to four sediment-lithology units defined for the LVV. 

The characteristic profiles generally fit the mean VS values calculated for each sediment 

unit. They also fit expected patterns for VS of the sediment types, with the Clay and Sand 

units having lower VS than the Gravel unit. For all sediment units, accuracy of the 

characteristic profiles, and therefore, the accuracy of the 3-D VS models, decreases with 

increasing depth because the number of VS profiles available for correlation decreases. 

Because of the amount of data available, the correlations for the Clay and Gravel units 
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are considered more accurate than those for Sand and Mixed. The correlation for the Clay 

unit is considered more accurate than Gravel because of the greater potential for 

cemented material to be present in the Gravel unit.  

The model is valuable for predicting Valley-wide earthquake ground-shaking 

patterns; however, site-specific predictions require site-specific measurements. As 

expected, the 3-D VS model for the LVV demonstrates strong vertical and lateral 

variability, the latter being related to depositional environment, secondary cementation, 

and faulting. It also fits known patterns of sediment deposits in that VS is lower in the 

central part of the Valley, where clay sediments predominate, than on the edges where 

gravel is predominant. Accuracy of the model is expected to be greatest at those locations 

with greatest data density. 
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3.9. Tables and Figures 

Table 3.1 Seismic Site Classification definitions with respect to VS(30) (International 

Code Council, 2009).  

Seismic Site 
Classification

Description VS(30), m/s 

A Hard rock 1500 < VS(30) 
B Rock 760 < VS(30) ≤ 

1500 
C Very dense soil and soft rock 360 < VS(30) ≤ 760
D Stiff soil 180 < VS(30) ≤ 360
E Soil profile or any profile with more than 3 m 

of soft clay defined as soil with plasticity index 
(PI) > 20, water content < 40 percent, and 
undrained shear strength (su) < 25 kPa 

VS(30) < 180 

F Soils requiring site-specific evaluations:  
1) Soils vulnerable to potential failure or 
collapse under seismic loading such as 
liquefiable soils, quick and highly sensitive 
clays, collapsible weakly cemented soils;  
2) Peat and/or highly organic clays with 
thicknesses (H) > 3 m;  
3) Very high plasticity clays, thickness > 8 m, 
PI > 75; and  
4) Very thick, soft/medium stiff clays, 
H > 36 m with su < 50 kPa 
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Table 3.2 Layer geometry of the characteristic profiles, the intervals over which depth-

average shear-wave velocity (VS) was calculated to create semivariogram clouds, and the 

number of VS profiles included in the semivariogram cloud calculation for each layer.  

Layer geometry 
(depth interval) for 
layer-average 
calculation, m  

Depth interval 
for overall-
average 
calculation, m 

Number 
profiles 
incl. 

Depth of shallowest profile 
included / number profiles 
shallower than layer bottom, m 

0-5 0-5 212 11 / 0 
5-10 0-10 212 11 / 0 
10-15 0-15 211 19 / 0 
15-25 0-25 210 23 / 5 

Not applicable 0-30 204 29 / 2 
25-50 0-50 165 46 / 37 
50-100 0-100 107 74 / 38 
100-200 0-200 56 169 / 10 

 

 

Table 3.3 Numbers of VS profiles having one or more wells within the correlation 

distance.  

Number of wells within correlation distance Number of profiles 

1 44 
2 20 
3 9 

4 or more 3 
Total number profiles used in correlation = 76 
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Table 3.4 Layer geometry and VS for the four characteristic profiles. VS averaged over 

the upper 30 m (VS(30)) of each profile also listed.  

 VS, m/s
Depth range, m Clay Sand Gravel Mixed

0-5 350 400 425 400
5-10 400 450 500

45010-15 425 450 550
15-25 475 500 700 525
25-50 550 575 725 550

50-100 750 600 775 625
100-200 900 775 950 775
200-370 950 900 1050 900

VS(30), m/s 437 473 577 477
 

 

Table 3.5 Standard deviation (σ) and deviation of characteristic profile (σcp) for each 

layer of the four characteristic profiles.  

 Clay Sand Gravel Mixed
Depth 

 range, 
m 

σ, 
m/s σcp, m/s σ, m/s σcp, m/s σ, m/s σcp, m/s σ, m/s σcp, m/s

0-5 120 120 170 168 195 263 216 226
5-10 94 94 137 137 207 248 

179 17610-15 115 115 104 104 193 233 
15-25 125 125 67 66 205 205 152 151
25-50 147 147 171 173 134 134 64 65

50-100 234 233 137 136 201 201 133 131
100-200 230 234 224 220 202 202 230 240
200-370 187 189 235 221 167 171 171 174
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Figure 3.1 Map of Las Vegas Valley (LVV) with mountain ranges, faults (navy lines; 

Taylor et al., 2008), and shear-wave velocity (VS) measurement locations (body-wave 

and active-source surface-wave measurements as orange squares; passive-source surface-

wave measurements as smaller, red squares). For the two sites labeled, measured VS 

profiles and profiles queried from the 3-D VS model are provided in Figure 3.16. 
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a) b) 

 
Figure 3.2 Data distribution overlying topographic map of the LVV; major streets shown in black: (a) orange squares indicate 64 VS 

measurements that were used to correlate velocity to sediment-lithology; blue squares indicate 12 additional velocity measurements 

that were used only for the mixed-sediment type correlations; red squares indicate velocity measurements that were not included in the 

correlations; and small dots (navy) indicate wells; (b) locations of measurement sites used for the correlations and the number of wells 

located within the correlation distance of each site; the fine-sediment response unit (Luke and Liu, 2008) is shown in green.  
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Figure 3.3 Example of an experimental semivariogram (open circles) fitted with an 

exponential semivariogram model (blue). 
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Figure 3.4 Semivariogram clouds for layers (identified by depth range). Blue circles represent the depth averaged VS from the 

surface to the layer bottom (overall averages); red dots represent the depth averaged VS over the layer (layer average).  
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Figure 3.5 Semivariograms for layers (identified by depth range) with site pairs binned by separation distances that are multiples of 

100 m. Blue circles represent the overall averages; red dots represent the layer averages.  
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Figure 3.6 Blue curve representing mean γ for the depth ranges identified, with error bars to show the standard deviation (overall 

averages in top row and layer averages in bottom row). Dotted vertical line shown at 400 m is distance where γ increases for most 

layer intervals.  
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Figure 3.7 VS scatter plots for four sediment units in the 3-D sediment-lithology model. Grey dots indicate the velocity is above the 

cutoff boundary. The characteristic VS profile developed for each unit is shown by the black line.  
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Figure 3.8 Histograms of VS (blue), calculated normal distribution (red curve) and 

assigned velocity (orange arrow) for each layer, identified by its depth range, of the four 

characteristic profiles: predominantly clay- (a), gravel- (b), sand- (c) and mixed- (d) 

sediment units. For the mixed sediment unit, the 5 to 10 m and 10 to 15 m layers are 

combined. Size of velocity bins is generated automatically by MATLAB’s “histfit” 

function. 

N
um

be
r o

f o
cc

ur
re

nc
es

  
N

um
be

r o
f o

cc
ur

re
nc

es
  



127 
 

 
Figure 3.9 Statistics for the correlation dataset for the Clay unit: a) velocity mean, mode, and the characteristic profile (CP); 

b) standard deviation for each profile layer and for 1-m depth intervals and the deviation from the CP; c) coefficient of variation for 

the profile layers and for 1-m intervals and from the CP; d) number of profiles in each layer of the dataset.  
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Figure 3.10 Statistics for the correlation dataset for the Sand unit: a) velocity mean, mode, and the characteristic profile (CP); b) 

standard deviation for each profile layer and for 1-m depth intervals and the deviation from the CP; c) coefficient of variation for the 

profile layers and for 1-m intervals and from the CP; d) number of profiles in each layer of the dataset.  
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Figure 3.11 Statistics for the correlation dataset for the Gravel unit: a) velocity mean, mode, and the characteristic profile (CP); b) 

standard deviation for each profile layer and for 1-m depth intervals and the deviation from the CP; c) coefficient of variation for the 

profile layers and for 1-m intervals and from the CP; d) number of profiles in each layer of the dataset.  
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Figure 3.12 Statistics for the correlation dataset for the Mixed unit: a) velocity mean, mode, and the characteristic profile (CP); b) 

standard deviation for each profile layer and for 1-m depth intervals and the deviation from the CP; c) coefficient of variation for the 

profile layers and for 1-m intervals and from the CP; d) number of profiles in each layer of the dataset. 
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Figure 3.13 Characteristic profiles for four sediment units in the 3-D sediment-lithology 

model (left); number of profiles used for each correlation (right). The total number of 

profiles used for each unit’s correlation is shown in parentheses in the legend.  
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Figure 3.14 Three dimensional, shear-wave velocity models (with four times vertical 

exaggeration): from measured VS data (top); from data where VS was assigned to 

sediment-lithology (center); final model that honors VS-measured data while also using 

VS-assigned from sediment-lithology (bottom). The offset topography at the surface 

locations of the local faults appears as thin white or black lines. 
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Figure 3.15 East-west cross section and surface of northern half of final 3-D VS model showing the Quaternary basin (primarily blue 

and purple) overlying the Oligocene-Miocene fill (green, Taylor et al., 2008) and the Paleozoic bedrock (red; Langenheim et al., 2001) 

and the fault locations (red lines in cross section, Taylor et al., 2008). Vertical exaggeration is four times the horizontal scales.  
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a) b) 

    

Figure 3.16  For the two sites shown in Figure 3.1, measured VS profiles, profiles queried at the site location from the 3-D VS model 

created from the VS-assigned dataset and from the final 3-D VS model created from the combined dataset, and log for closest well. 

Characteristic profiles for the predominant sediment units shown in the logs are also plotted.  
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APPENDIX A 

SHEAR-WAVE VELOCITY MEASUREMENT LOCATIONS, DATA AND 

SOLUTIONS 

Data and results for the 12 sites where Spectral Analysis of Surface Waves (SASW) 

surveys were performed in the Las Vegas Valley, Nevada, are included in this appendix. 

The following are included for each site: 

• A map showing the array location and nearby well data 

• A table of the starting models for the inversion process, the linearized 

inversion solution (LI), the solution obtained using the average of three 

simulated annealing runs as the starting model for LI (SA-LI), and the 

solution for the one site where an explicit search for a high-velocity layer was 

performed (SAES-LI) are listed  

• A plot containing the experimental dispersion curve and the dispersion curves 

for the solutions 

• Well log information 

• A plot containing the profiles for the starting model and solutions as well as 

the search and solution ranges 

• Resolution matrices for the solutions 

Keys for the sediments in the well logs and for the resolution matrices are also 

included at the end. 
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Data and solutions for CCH site  

 
 

Figure A.1. Location of CCH, a coarse sediment-response-unit (coarse SRU) site: array 

locations (yellow lines) with respect to nearby wells (black triangles).  Longitude and 

latitude listed on Table 2.1. 

 

Table A.1. VS starting model and solutions for CCH site. 

Layer 
number 

Poisson's 
ratio 

Density, 
kg/m3 

Thickness, 
m 

Starting 
model 

VS, m/s 

Solutions 
LI         

VS, m/s 
SA-LI   

VS, m/s 
1 0.3 1700 1.50 145 157 156 
2 0.3 1700 1.91 213 341 344 
3 0.3 1700 2.43 296 451 442 
4 0.3 1700 3.09 354 545 569 
5 0.3 1700 3.93 394 437 423 
6 0.3 1700 5.00 433 736 740 
7 0.3 1700 6.35 468 509 547 
8 0.3 1700 8.07 502 566 518 
9 0.3 1700 10.26 555 817 889 

10 0.3 1700 13.05 622 927 931 
Halfspace 0.3 1700 N//A 656 1050 1039 
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a) 

 
 
b) Well no. 1170 c) d) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure A.2. Coarse SRU site CCH, data and solutions: a) dispersion curves, b) well log 

information (depth in meters), c) VS profiles, and d) resolution matrices. 
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Data and solutions for CPH site 

 

Figure A.3. Location of CPH, a coarse SRU site: array locations (yellow lines) with 

respect to nearby wells (black triangles). Longitude and latitude listed on Table 2.1. 

 

Table A.2. VS starting model and solutions for CPH site. 

Layer 
number 

Poisson's 
ratio 

Density, 
kg/m3 

Thickness, 
m 

Starting 
model VS, 

m/s 

Solutions 
LI         

VS, m/s 
SA-LI   

VS, m/s 
1 0.3 1700 0.51 126 122 122 
2 0.3 1700 0.77 158 216 218 
3 0.3 1700 1.17 209 279 276 
4 0.3 1700 1.78 269 403 411 
5 0.3 1700 2.71 339 495 482 
6 0.3 1700 4.13 417 615 636 
7 0.3 1700 6.29 506 715 694 
8 0.3 1700 9.57 599 908 928 
9 0.3 1700 14.60 677 798 796 

10 0.3 1700 22.20 766 1003 988 
Halfspace 0.3 1700 N/A 831 1381 1429 



148 
 

a) 

 
 
 b) c)  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A.4. Data and solutions for CPH site: a) dispersion curves, b) VS profiles, and c) 

resolution matrices. Site is 1,800 m south of its nearest well (no. 1170; Figure A.3), 1,900 

m southwest of CCH site, and 700 m north of rock outcrops. 
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Data and solutions for GMS site 

 
 

Figure A.5. Location of GMS, a coarse SRU site: array locations (yellow lines) with 

respect to nearby wells (black triangles). Longitude and latitude listed on Table 2.1. 

 

Table A.3. VS starting model and solutions for GMS site. 

Layer 
number 

Poisson's 
ratio 

Density, 
kg/m3 

Thickness, 
m 

Starting 
model VS, 

m/s 

Solutions 
LI         

VS, m/s 
SA-LI   

VS, m/s 
1 0.3 1700 0.52 133 125 126 
2 0.3 1700 0.77 172 255 254 
3 0.3 1700 1.15 257 477 490 
4 0.3 1700 1.72 313 422 401 
5 0.3 1700 2.57 338 387 426 
6 0.3 1700 3.83 358 397 352 
7 0.3 1700 5.71 396 482 565 
8 0.3 1700 8.52 442 647 608 
9 0.3 1700 12.71 466 478 457 

10 0.3 1700 18.96 505 579 639 
11 0.3 1700 28.29 596 936 824 
12 0.3 1700 42.20 744 1218 1280 

Halfspace 0.3 1700 N/A 844 1618 1777 
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a) 

 
b) Well no. 684 c) d) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure A.6. Data and solutions for GMS site: a) dispersion curves, b) well log 

information, c) VS profiles, and d) resolution matrices. 
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Data and solutions for LES site 

 
Figure A.7. Location of LES, a fine sediment-response-unit (fine SRU) site: array 

locations (yellow lines) with respect to nearby wells (black triangles).  Longitude and 

latitude listed on Table 2.1. 

 

Table A.4. VS starting model and solutions for LES site. 

Layer 
number 

Poisson's 
ratio 

Density, 
kg/m3 

Thickness, 
m 

Starting 
model VS, 

m/s 

Solutions 
LI        

VS, m/s 
SA-LI   

VS, m/s 
1 0.3 1700 0.32 117 127 126 
2 0.3 1700 0.52 168 238 237 
3 0.3 1700 0.84 202 245 246 
4 0.3 1700 1.36 214 244 242 
5 0.3 1700 2.20 228 261 264 
6 0.3 1700 3.56 249 285 281 
7 0.3 1700 5.75 287 364 372 
8 0.3 1700 9.29 348 500 485 
9 0.3 1700 15.01 406 545 563 

10 0.3 1700 24.25 444 524 508 
Halfspace 0.3 1700 N/A 466 622 646 
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a) 

 
 
b) Well no. 620 c) d) 
  

       
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A.8. Data and solutions for LES site: a) dispersion curves, b) well log 

information, c) VS profiles, and d) resolution matrices. 
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Data and solutions for LMN site 

 
Figure A.9. Location of LMN, a fine SRU site: array locations (yellow lines) with 

respect to nearby wells (black triangles).  Longitude and latitude listed on Table 2.1. 

 

Table A.5. VS starting model and solutions for LMN site. 

Layer 
number 

Poisson's 
ratio 

Density, 
kg/m3 

Thickness, 
m 

Starting 
model VS, 

m/s 

Solutions 
LI         

VS, m/s 
SA-LI   

VS, m/s 
1 0.3 1700 0.59 191 194 193 
2 0.3 1700 0.84 204 239 239 
3 0.3 1700 1.20 217 251 251 
4 0.3 1700 1.70 235 244 244 
5 0.3 1700 2.41 271 431 436 
6 0.3 1700 3.42 323 404 395 
7 0.3 1700 4.85 380 589 626 
8 0.3 1700 6.89 430 613 572 
9 0.3 1700 9.78 453 519 564 

10 0.3 1700 13.87 471 570 511 
11 0.3 1700 19.69 498 532 595 
12 0.3 1700 27.94 536 671 603 

Halfspace 0.3 1700 N/A 591 1011 1132 
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a) 

 
 
b) Well no. 454 c) d) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A.10. Data and solutions for LMN site: a) dispersion curves, b) well log 

information, c) VS profiles, and d) resolution matrices. 
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Data and solutions for MHS site 

 
Figure A.11. Location of MHS, a fine SRU site: array locations (yellow lines) with 

respect to nearby wells (black triangles).    Longitude and latitude listed on Table 2.1. 

 

Table A.6. VS starting model and solutions for MHS site. 

Layer 
number 

Poisson's 
ratio 

Density, 
kg/m3 

Thickness, 
m 

Starting 
model VS, 

m/s 

Solutions 
LI         

VS, m/s 
SA-LI   

VS, m/s 
1 0.3 1700 1.37 208 208 209 
2 0.3 1700 1.79 229 296 296 
3 0.3 1700 2.36 233 215 214 
4 0.3 1700 3.09 267 551 607 
5 0.3 1700 4.06 299 329 282 
6 0.3 1700 5.34 329 393 574 
7 0.4 1700 7.01 356 473 387 
8 0.4 1700 9.21 390 521 500 
9 0.3 1700 12.10 420 460 588 

10 0.3 1700 15.89 453 518 413 
11 0.3 1700 20.88 504 693 745 

Halfspace 0.3 1700 N/A 535 898 1059 
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a) 

 
b) Well no. 1238 c) d) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A.12. Data and solutions for MHS site: a) dispersion curves, b) well log 

information, c) VS profiles, and d) resolution matrices. 
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Data and solutions for NLP site 

 
Figure A.13. Location of NLP, a fine SRU site: array locations (yellow lines) with respect 

to nearby wells (black triangles). Longitude and latitude listed on Table 2.1. 

   

Table A.7. VS starting model and solutions for NLP site. 

Layer 
number 

Poisson's 
ratio 

Density, 
kg/m3 

Thickness, 
m 

Starting 
model VS, 

m/s 

Solutions 
LI         

VS, m/s 
SA-LI   

VS, m/s 
1 0.3 1700 0.48 121 120 120 
2 0.3 1700 0.73 161 229 230 
3 0.3 1700 1.11 225 339 335 
4 0.3 1700 1.69 271 357 364 
5 0.3 1700 2.58 310 359 349 
6 0.3 1700 3.93 367 646 700 
7 0.3 1700 5.98 405 437 412 
8 0.3 1700 9.09 430 545 590 
9 0.3 1700 13.84 463 529 509 

10 0.3 1700 21.07 512 597 601 
Halfspace 0.3 1700 N/A 551 894 905 
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a) 

 
b) Well no.’s c) d) 

709 and 607 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A.14. Data and solutions for NLP site: a) dispersion curves, b) well log 

information, c) VS profiles, and d) resolution matrices. 
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Data and solutions for OSH site 

 
Figure A.15. Location of OSH, a coarse SRU site: array locations (yellow lines) with 

respect to nearby wells (black triangles).   Longitude and latitude listed on Table 2.1. 

 

Table A.8. VS starting model and solutions for OSH site. 

Layer 
number 

Poisson's 
ratio 

Density, 
kg/m3 

Thickness, 
m 

Starting 
model VS, 

m/s 

Solutions 
LI         

VS, m/s 
SA-LI   

VS, m/s 
1 0.3 1700 0.46 130 172 172 
2 0.3 1700 0.70 234 359 360 
3 0.3 1700 1.06 266 274 273 
4 0.3 1700 1.61 312 485 496 
5 0.3 1700 2.45 385 465 453 
6 0.3 1700 3.74 471 789 840 
7 0.3 1700 5.69 564 680 649 
8 0.3 1700 8.65 646 1079 1161 
9 0.3 1700 13.17 710 762 738 

10 0.3 1700 20.05 765 926 922 
Halfspace 0.3 1700 N/A 858 1614 1789 
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a) 

 
b) Well no. 1152 c) d) 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A.16. Data and solutions for OSH site: a) dispersion curves, b) well log 

information, c) VS profiles, and d) resolution matrices. 
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Data and solutions for SFB site 

 
Figure A.17. Location of SFB, a fine SRU site: array locations (yellow lines) with respect 

to nearby wells (black triangles).   Longitude and latitude listed on Table 2.1. 

 

Table A.9. VS starting model and solutions for SFB site. 

Layer 
number 

Poisson's 
ratio 

Density, 
kg/m3 

Thickness, 
m 

Starting 
model VS, 

m/s 

Solutions 
LI         

VS, m/s 
SA-LI   

VS, m/s 
1 0.3 1700 1.44 353 370 370 
2 0.3 1700 1.89 412 475 474 
3 0.3 1700 2.49 494 1052 1047 
4 0.3 1700 3.27 477 343 346 
5 0.3 1700 4.29 450 485 483 
6 0.3 1700 5.64 448 607 605 
7 0.3 1700 7.41 452 473 472 
8 0.3 1700 9.73 462 540 550 
9 0.3 1700 12.78 471 387 376 

10 0.3 1700 16.78 501 640 669 
11 0.3 1700 22.05 555 892 907 

Halfspace 0.3 1700 N/A 595 1025 990 
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a) 

 
b) Well no. c) d) 
 741 and B-1  

 
 

Figure A.18. Data and solutions for SFB site: a) dispersion curves, b) well log 

information, c) VS profiles, and d) resolution matrices. 
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Table A.10. VS starting model and solution for SFB site with an explicit search 

performed for the stiff layer. 

Layer 
number 

Poisson's 
ratio 

Density, 
kg/m3 

Thickness,  
m 

SAES-LI Solution 
VS, m/s 

1 0.3 1700 1.44 375 
2 0.3 1700 1.58 443 
3 0.25 2200 0.63 1529 
4 0.3 1700 2.16 802 
5 0.3 1700 3.27 359 
6 0.3 1700 4.29 736 
7 0.3 1700 5.64 343 
8 0.3 1700 7.41 692 
9 0.3 1700 9.73 586 

10 0.3 1700 12.78 337 
11 0.3 1700 16.78 861 
12 0.3 1700 22.05 782 

Halfspace 0.3 1700 N/A 1109 
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Figure A.19. HVL site 2 (SFB), comparison of LI solution to solution resolved using 

explicit search for stiff layer, (a) VS profiles from LI and SAES-LI and (b) expanded 

view of upper 6 m. 
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Data and solutions for SMS site 

 
Figure A.20. Location of SMS, a fine SRU site: array locations (yellow lines) with 

respect to nearby wells (black triangles).   Longitude and latitude listed on Table 2.1. 

 

Table A.11. VS starting model and solutions for SMS site. 

Layer 
number 

Poisson's 
ratio 

Density, 
kg/m3 

Thickness, 
m 

Starting 
model VS, 

m/s 

Solutions 
LI         

VS, m/s 
SA-LI   

VS, m/s 
1 0.3 1700 0.22 190 180 224 
2 0.3 1700 0.35 190 166 192 
3 0.3 1700 0.69 229 475 417 
4 0.3 1700 1.06 211 173 176 
5 0.3 1700 1.51 217 230 236 
6 0.3 1700 2.17 245 305 246 
7 0.3 1700 3.11 268 234 339 
8 0.3 1700 4.00 301 362 259 
9 0.3 1700 6.85 345 431 541 

10 0.3 1700 9.16 396 305 302 
11 0.3 1700 14.90 524 1107 1048 
12 0.3 1700 19.34 600 1397 1463 

Halfspace 0.3 1700 N/A 600 1252 1452 
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Table A.12. VS profiles derived from the average of three separate SA-LI runs for SMS 

site. Method used to obtain better fit of target DC. SA-LI AVG was used in 3-D VS 

model.  

Layer 
number 

Thickness, 
m 

Solutions 

SA-LI 1 SA-LI 2 SA-LI 3 

SA-LI 
AVG  

VS, m/s 
1 0.22 201 191 280 224 
2 0.35 162 166 249 192 
3 0.69 475 423 353 417 
4 1.06 170 199 160 176 
5 1.51 236 212 259 236 
6 2.17 263 257 217 246 
7 3.11 297 331 390 339 
8 4.00 271 249 256 259 
9 6.85 518 595 510 541 

10 9.16 299 294 312 302 
11 14.90 1066 1160 920 1048 
12 19.34 1476 1499 1413 1463 

Halfspace N/A 1467 1483 1408 1452 
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a) 

 
 

b) Well no. 1070 c)  

 
 
Figure A.21. Data and solutions for SMS site: a) dispersion curves, b) well log 

information, c) VS profiles. 
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Figure A.22. Resolution matrices for SMS site: LI and SA-LI optimizations 1, 2, and 3.  
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Data and solutions for SPS site 

 
Figure A.23. Location of SPS, a fine SRU site: array locations (yellow lines) with respect 

to nearby wells (black triangles).   Longitude and latitude listed on Table 2.1. 

 

Table A.13. VS starting model and solutions for SPS site. 

Layer 
number 

Poisson's 
ratio 

Density, 
kg/m3 

Thickness, 
m 

Starting 
model VS, 

m/s 

Solutions 
LI         

VS, m/s 
SA-LI   

VS, m/s 
1 0.3 1700 0.31 155 151 150 
2 0.3 1700 0.53 164 187 189 
3 0.3 1700 0.91 191 235 232 
4 0.3 1700 1.57 229 291 298 
5 0.3 1700 2.69 249 311 302 
6 0.3 1700 4.62 267 288 296 
7 0.3 1700 11.07 308 355 347 
8 0.3 1700 10.45 331 367 375 
9 0.3 1700 23.33 420 738 729 

10 0.3 1700 40.03 592 1067 1052 
Halfspace 0.3 1700 N/A 670 1175 1262 
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a) 

 
b) Well no.’s c) d) 
        1002         1003     
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A.24. Data and solutions for SPS site: a) dispersion curves, b) well log 

information, c) VS profiles, and d) resolution matrices. 
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Data and solutions for WLE site 

 
Figure A.25. Location of WLE, a fine SRU site: array locations (yellow lines) with 

respect to nearby wells (black triangles).  Longitude and latitude listed on Table 2.1. 

 

Table A.14. VS starting model and solutions for WLE site. 

Layer 
number 

Poisson's 
ratio 

Density, 
kg/m3 

Thickness, 
m 

Starting 
model VS, 

m/s 

Solutions 
LI        

VS, m/s 
SA-LI   

VS, m/s 
1 0.3 1700 0.51 68 79 79 
2 0.3 1700 0.77 112 179 181 
3 0.3 1700 1.18 177 512 429 
4 0.3 1700 1.79 248 658 820 
5 0.3 1700 2.73 304 289 245 
6 0.3 1700 4.15 320 329 459 
7 0.3 1700 6.32 328 465 379 
8 0.3 1700 9.62 344 323 354 
9 0.3 1700 14.64 369 396 373 

10 0.3 1700 22.28 432 736 729 
Halfspace 0.3 1700 N/A 485 873 1019 
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a) 

 
b) Well no. 840 c) d) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A.26. Data and solutions for WLE site: a) dispersion curves, b) well log 

information, c) VS profiles, and d) resolution matrices. 
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Figure A.27. Sediment and lithology key (left); resolution matrix key (right). 
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APPENDIX B 

CORRELATION DATASET 

VS measurement locations used in the correlation dataset and their nearest wells are 

listed in this appendix.   
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Table B.1 List of shear-wave velocity profiles used in the VS-sediment correlation, and wells within the correlation distance.  

 

 

VS measurement site Well site 

Site  
designation 

Longitude,  
degree W 

Latitude,  
degree N 

Total depth,  
m 

UNLV well 
no. 

Longitude,  
degree W 

Latitude,  
degree N 

Total  
depth,  
m 

No. wells in 
correlation 
distance 

1 034RS1 115.31673 36.08219 30.48 D6 115.319 36.08361 578.23 1

2 038RS1 115.24438 36.07978 45.72 695 115.246 36.07780 182.88 3
 1380 115.245 36.07783 182.88
 1545 115.247 36.07860 153.92

3 0P3RS2 115.26872 36.01415 38.1 D12 115.268 36.01778 215.49 1

4 0P3RS3 115.26785 36.01716 45.72 D12 115.268 36.01778 215.49 1

5 0P4RS1 115.18892 36.02309 45.72 1093 115.188 36.02500 91.44 2
 1577 115.188 36.02111 60.96

6 0P4RS2 115.18794 36.02000 45.72 1577 115.188 36.02111 60.96 2
 1578 115.186 36.02111 106.68

7 142RS1 115.16158 36.13312 76.20 715 115.161 36.13560 397.76 1

8 211RS1 115.21044 36.00052 60.96 967 115.211 36.00073 131.06 2
 1428 115.213 35.99972 131.06

9 211RS2 115.21391 36.00050 60.96 966 115.217 36.00097 139.00 3
 967 115.211 36.00073 131.06
 1428 115.213 35.99972 131.06

10 213RS2 115.29299 36.02430 45.72 984 115.293 36.02077 182.88 1

11 221RS2 115.25046 36.05153 54.86 D5 115.250 36.04889 495.91 3
 903 115.251 36.05000 192.02
 1547 115.249 36.05110 194.46
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VS measurement site Well site 

Site  
designation 

Longitude,  
degree W 

Latitude,  
degree N 

Total depth,  
m 

UNLV well 
no. 

Longitude,  
degree W 

Latitude,  
degree N 

Total  
depth,  
m 

No. wells in 
correlation 
distance 

12 221RS3 115.25605 36.04964 54.86 1389 115.255 36.05055 192.02 2
 1548 115.255 36.05028 198.12

13 221RS4 115.25169 36.04218 111.25 902 115.251 36.04030 201.17 3
 1390 115.250 36.04111 201.17
 1549 115.254 36.04194 216.41

14 222RS1 115.15562 36.03602 76.20 1560 115.156 36.03805 76.20 10
 1561 115.156 36.03778 67.06
 1563 115.156 36.03694 39.62
 1564 115.157 36.03610 76.20
 1566 115.157 36.03833 76.20
 1567 115.158 36.03583 91.44
 1568 115.159 36.03583 121.92
 1569 115.157 36.03556 85.34
 1570 115.156 36.03444 91.44
 1571 115.157 36.03805 82.30

15 252RS1 115.27755 36.01021 45.72 977 115.276 36.00830 190.20 1

16 253RS1 115.30810 36.29761 45.72 280 115.307 36.29805 181.36 2
 284 115.307 36.29580 198.12

17 291RS1 115.21952 36.03097 38.10 907 115.219 36.03060 152.40 5
 1391 115.219 36.03095 136.55
 1394 115.222 36.03083 123.75
 1550 115.221 36.03167 143.26
 1554 115.220 36.03361 152.40
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VS measurement site Well site 

Site  
designation 

Longitude,  
degree W 

Latitude,  
degree N 

Total depth,  
m 

UNLV well 
no. 

Longitude,  
degree W 

Latitude,  
degree N 

Total  
depth,  
m 

No. wells in 
correlation 
distance 

18 312RS1 115.16859 36.12424 45.72 726 115.169 36.12444 256.03 1

19 312RS2 115.16698 36.12400 45.72 726 115.169 36.12444 256.03 2
 727 115.165 36.12444 257.56

20 312RS3 115.16762 36.12410 45.72 726 115.169 36.12444 256.03 2
 727 115.165 36.12444 257.56

21 312RS4 115.16950 36.12343 45.72 726 115.169 36.12444 256.03 1

22 312RS5 115.16829 36.12501 45.72 726 115.169 36.12444 256.03 1

23 312RS6 115.16898 36.12416 28.65 726 115.169 36.12444 256.03 1

24 331RS1 115.17468 36.04065 60.96 1045 115.179 36.04170 67.67 2
 1054 115.172 36.04376 91.44

25 342RS2 115.21751 36.00049 76.20 966 115.217 36.00097 139.00 2
 1427 115.218 36.00027 139.00

26 342RS3 115.21103 36.00121 76.20 967 115.211 36.00073 131.06 2
 1428 115.213 35.99972 131.06

27 351RS1 115.18682 36.06654 45.72 1461 115.187 36.06611 91.44 1

28 ANNSS1 115.31144 36.26443 409.72 118 115.315 36.26490 230.12 4
 125 115.310 36.26270 152.40
 1313 115.311 36.26264 152.40
 1314 115.311 36.26666 214.27

29 C02RS1 115.10285 36.02007 45.72 1516 115.105 36.02083 91.44 1

30 C09RS1 115.04869 36.04045 30.48 1152 115.046 36.04030 213.36 1

31 C24RS1 115.24844 35.98711 65.53 1443 115.247 35.98583 201.17 1
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VS measurement site Well site 

Site  
designation 

Longitude,  
degree W 

Latitude,  
degree N 

Total depth,  
m 

UNLV well 
no. 

Longitude,  
degree W 

Latitude,  
degree N 

Total  
depth,  
m 

No. wells in 
correlation 
distance 

32 C24RS2 115.24532 35.98539 91.44 989 115.246 35.98330 201.17 2
 1443 115.247 35.98583 201.17

33 C49RS1 115.24829 36.05810 36.58 895 115.246 36.05586 198.12 2
 1384 115.245 36.05583 198.12

34 D11RS1 115.25693 36.03245 30.48 915 115.256 36.03223 213.36 1

35 D13RS1 115.29055 36.00720 38.10 1434 115.294 36.00694 201.17 1

36 D13RS2 115.29504 36.00723 38.10 1434 115.294 36.00694 201.17 1

37 D17RS1 115.22888 36.12646 45.72 1374 115.227 36.12861 237.74 1

38 D1HRS1 115.10207 36.01938 30.48 1106 115.103 36.01670 121.92 2
38 1516 115.105 36.02083 91.44

39 D32RS1 115.23487 36.28515 76.20 298 115.236 36.28320 178.31 2
 336 115.236 36.28550 178.31

40 D32RS2 115.23211 36.28627 76.20 332 115.231 36.28690 121.92 1

41 D35RS1 115.25081 36.14304 76.20 666 115.252 36.14200 129.54 1

42 D3FRS1 115.02038 36.27352 30.48 1208 115.018 36.27444 137.16 1

43 D50RS1 115.13831 36.01446 45.72 1099 115.138 36.01250 91.44 2
 1509 115.138 36.01499 91.44

44 DOESS1 115.14576 36.21086 205.63 857 115.147 36.21098 60.96 1

45 E16RS2 115.03499 36.05408 76.20 1154 115.038 36.05280 73.15 1

46 E48RS1 115.16137 36.06696 45.72 1021 115.161 36.06810 152.40 2
 1458 115.160 36.06528 48.77

47 GRPSS1 115.26452 36.10362 52.51 682 115.263 36.10580 283.46 2
 1544 115.263 36.10583 228.60
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VS measurement site Well site 

Site  
designation 

Longitude,  
degree W 

Latitude,  
degree N 

Total depth,  
m 

UNLV well 
no. 

Longitude,  
degree W 

Latitude,  
degree N 

Total  
depth,  
m 

No. wells in 
correlation 
distance 

48 LESSS1 115.06879 36.23682 84.13 620 115.072 36.23850 304.80 1

49 LMNSS1 115.24608 36.24623 124.24 450 115.244 36.24520 106.68 3
 451 115.244 36.24620 110.34
 454 115.243 36.24690 106.68

50 LVSCS1 115.18957 36.171619 30.00 606 115.188 36.17380 365.46 1

51 lvspref 115.19116 36.172305 49.85 603 115.186 36.17390 304.80 3
 605 115.196 36.17390 305.41
 606 115.188 36.17380 365.46

52 LVSRS1 115.18163 36.17355 200.00 554 115.180 36.17440 390.14 2
 557 115.182 36.17360 393.19

53 LVSSS1 115.18698 36.17524 32.50 603 115.186 36.17390 304.80 3
 603 115.186 36.17390 304.80
 606 115.188 36.17380 365.46

54 LVSSS2 115.18532 36.17501 19.27 603 115.186 36.17390 304.80 2
 606 115.188 36.17380 365.46

55 LVSSS3 115.19113 36.17275 58.67 603 115.186 36.17390 304.80 3
 605 115.196 36.17390 305.41
 606 115.188 36.17380 365.46

56 LVSSS4 115.18846 36.175501 41.71 603 115.186 36.17390 304.80 2
 606 115.188 36.17380 365.46

57 LVSSS6 115.18921 36.17039 47.00 603 115.186 36.17390 304.80 3
 606 115.188 36.17380 365.46
 608 115.188 36.16760 341.38
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VS measurement site Well site 

Site  
designation 

Longitude,  
degree W 

Latitude,  
degree N 

Total depth,  
m 

UNLV well 
no. 

Longitude,  
degree W 

Latitude,  
degree N 

Total  
depth,  
m 

No. wells in 
correlation 
distance 

58 NLPSS1 115.19516 36.16206 80.67 607 115.190 36.16040 362.71 1

59 SMSSS1 115.12914 36.03428 84.46 1070 115.130 36.03335 92.96 1

60 SPSSS1 115.11587 36.05920 127.36 1002 115.114 36.06110 152.40 1

61 transect2002A 115.14854 36.17900 148.20 892 115.149 36.17712 281.94 1

62 transect2002B 115.14854 36.17693 200.00 892 115.149 36.17712 281.94 1

63 transect2002C 115.14854 36.17486 176.80 892 115.149 36.17712 281.94 1

64 transect2102A 115.16019 36.15739 400.00 707 115.160 36.15690 164.59 1

65 transect2102B 115.16113 36.15537 400.00 707 115.160 36.15690 164.59 1

66 transect2102C 115.16206 36.15334 197.10 707 115.160 36.15690 164.59 1

67 transect2200A 115.17900 36.13524 400.00 713 115.177 36.13470 152.40 1

68 transect2200B 115.17987 36.13301 202.30 713 115.177 36.13470 152.40 1

69 transect2201C 115.17775 36.13733 226.90 713 115.177 36.13470 152.40 1

70 transect2203C 115.18558 36.12345 269.70 1438 115.188 36.12295 76.20 1

71 transect2501A 115.19000 36.12146 173.50 1438 115.188 36.12295 76.20 1

72 transect2501B 115.18992 36.11921 200.00 1437 115.187 36.11815 158.50 1

73 transect2501C 115.18983 36.11696 234.20 1437 115.187 36.11815 158.50 1

74 transect2502A 115.15530 36.16715 225.00 610 115.157 36.16880 268.83 1

75 transect2502B 115.15623 36.16500 179.60 610 115.157 36.16880 268.83 1

76 transect2503C 115.15386 36.16909 187.20 610 115.157 36.16880 268.83 1
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Table B.2 List of shear-wave velocity profiles that are shallower than any well within the correlation distance. Nearby wells that are 

deeper than the profile and their approximate distance from the profile are also listed.  

VS measurement location and bottom depth Closest well location and depth and closest, deeper well 

Easting, 
UTM 

Northing, 
UTM Profile bottom, m UNLV well No. 

Latitude,  
degree N 

Longitude, 
degree W 

Well bottom,  
m 

Separation 
distance, 

m
666166.821 3989316.740 76 1563 36.037 115.156 40 104
      1564 36.036 115.157 76 within 300 m
      1569 36.036 115.157 85 within 300 m
      1570 36.034 115.156 91 within 300 m

676995.826 3991532.950 76 1154 36.053 115.038 73 267
      well depth is within 3 m of profile depth 

657595.015 4012484.805 124 451 36.246 115.244 110 223
      595 36.251 115.242 175 within 700 m

662892.863 3998735.945 174 1438 36.123 115.188 76 257
      729 36.128 115.173 367 within 2000 m
      730 36.130 115.196 259 within 2000 m
      733 36.110 115.177 332 within 2000 m

662905.010 3998486.490 200 1437 36.118 115.187 158 291
      729 36.128 115.173 367 within 2000 m
      730 36.130 115.196 259 within 2000 m
      733 36.110 115.177 332 within 2000 m

663780.897 4000034.795 202 713 36.135 115.177 152 291
      714 36.136 115.166 436 within 2000 m
      729 36.128 115.173 367 within 2000 m
      730 36.130 115.196 259 within 2000 m
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VS measurement location and bottom depth Closest well location and depth and closest, deeper well 

Easting, 
UTM 

Northing, 
UTM Profile bottom, m UNLV well No. 

Latitude,  
degree N 

Longitude, 
degree W 

Well bottom,  
m 

Separation 
distance, 

m
666685.074 4008728.965 206 857 36.211 115.147 61 69
      586 36.209 115.148 223 within 325 m
      587 36.216 115.140 372 within 800 m

663966.140 4000517.476 227 713 36.135 115.177 152 293
      714 36.136 115.166 436 within 2000 m
      729 36.128 115.173 367 within 2000 m
      730 36.130 115.196 259 within 2000 m

662917.157 3998237.034 234 1437 36.118 115.187 158 291
      729 36.128 115.173 367 within 2000 m
      730 36.130 115.196 259 within 2000 m
      733 36.110 115.177 332 within 2000 m

663286.254 3998964.298 270 1438 36.123 115.188 76 209
      729 36.128 115.173 367 within 2000 m
      730 36.130 115.196 259 within 2000 m
      733 36.110 115.177 332 within 2000 m

665500.411 4002772.495 400 707 36.157 115.160 165 54
      607 36.160 115.190 363 within 3000 m 
      600 36.178 115.169 270 within 3000 m 
      601 36.178 115.168 274 within 3000 m 
665420.392 4002546.445 400 707 36.157 115.160 165 190
      717 36.139 115.146 622 within 3000 m
      554 36.174 115.180 390 within 3000 m
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VS measurement location and bottom depth Closest well location and depth and closest, deeper well 

Easting, 
UTM 

Northing, 
UTM Profile bottom, m UNLV well No. 

Latitude,  
degree N 

Longitude, 
degree W 

Well bottom,  
m 

Separation 
distance, 

m
663853.957 4000283.259 400 713 36.135 -115.177 152 156
      729 36.128 -115.173 367 within 1000
      714 36.136 -115.166 436 within 1200 m

651686.498 4014399.398 410 1313 36.263 -115.311 152 208
      118 36.265 -115.315 230 within 300 m
      1314 36.267 -115.311 214 within 300 m
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APPENDIX C 

ESTABLISHING CREDIBLE VS RANGES FOR LVV  

SEDIMENT TYPES 

Correlations were made between shear-wave velocity (VS) and sediment lithology 

using a 3-D sediment model of the Las Vegas Valley (LVV), created from over 1400 well 

logs and other available geologic information (Taylor et al., 2008), and a dataset of 74 VS 

profiles developed for the LVV (Luke et al., 2010). As part of the correlation process, 

credible shear-wave velocity ranges were established for the Clay, Gravel, Sand and 

Mixed units of the sediment-lithology model. As discussed below, the VS ranges were 

needed because of the heavily carbonate-cemented fines, sand or gravel, locally known as 

caliche, that occur in the LVV. While caliche is typically located in the western and 

central portions of the valley (Wyman et al., 1993), it has also been found at other 

locations throughout the valley (Taylor et al., 2008). Thicknesses can range from a few 

centimeters to 2 to 3 m (Wyman et al., 1993) and can vary within relatively short 

distances (e.g. Taylor et al., 2008; Stone and Luke, 2001). The strength and stiffness of 

caliche can be as high as concrete; thus caliche can have a high in situ VS, 1000 to 

2000 m/s (Werle and Luke, 2007; Tecle et al., 2003).  

The heterogeneous nature of caliche can result in anomalously high VS values for the 

sediment units in the correlation dataset because a cemented layer occurring at a site 

where VS was measured may not be present at the nearest well site. In other words, a 

high velocity is measured and then extrapolated to the well site that does not have high-

velocity cementation. Additionally, the wells were logged for various reasons and by 

different people; therefore, a well site may have heavy cementation that was not logged. 
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By establishing credible ranges for VS, we can filter the high VS values that do not 

represent the uncemented clay, gravel, sand and mixed units of the 3-D sediment-

lithology model from the data used for sediment-lithology correlation. 

To establish the credible VS ranges, depth versus velocity scatter plots were created 

by querying the 3-D sediment model (Taylor et al., 2008) at each VS profile located 

within a specified distance (referred to as the correlation distance) of a well log: 300 m 

for the Clay, Gravel and Sand units; 500 m for the Mixed unit (Luke at al., 2010). From 

these plots, shown in Figure C.1, and from site specific information, typical ranges of VS 

were visually identified. These ranges were depth dependent; therefore, we defined 

depth-dependent upper boundaries of VS. These boundaries were used to filter data from 

the correlation dataset that appeared to be non-representative of the uncemented 

sediments.  

Once defined, the upper-limit velocity boundaries were checked against VS depths 

and ranges for clay, gravel and sand reported in the literature (Table C.1 and Figure C.2). 

For the reported values, we observed that VS ranges overlapped across the different 

sediment types and that the ranges reported for a sediment type varied depending upon 

the reference (Figure C.2). For cases where depth was reported, VS tended to increase 

with depth. Overall, we determined the boundaries we established for credible VS ranges 

for sediments in the LVV were supported by the velocity ranges reported in the literature.  

The following sections describe the selection of upper-limit velocity boundaries for 

each sediment unit and compare the values to VS values previously published.  
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Clay-sediment velocity:  

The scatter plot developed for the Clay unit consists of data from 39 VS profiles 

(Figure C.1). In general, VS for the Clay unit tends to increase with depth. Above 50 m, 

VS is typically between 100 and 1000 m/s; below this depth VS is typically between 400 

and 1300 m/s.  Locations of sites with data that are outside these ranges are shown in 

Figure C.3. Three sites have VS greater than 1000 m/s for depths between 0 and 50 m. 

Two of these are located near the margins of the valley and both are within 1 km of a 

rock outcrop. The third is located in the fine-sediment-response unit (fine SRU; Luke and 

Liu, 2008) near the center of the valley (the I515/I15 interchange). Three additional sites 

have VS greater than 1300 m/s for depths below 50 m. All three are located in the fine 

SRU along Las Vegas Blvd near the center of the valley.  

For the sites near rock outcrops, we expect that the relatively high VS values are 

representative of the rock and not the nearby clay. For sites in the fine SRU, we expect 

that the relatively high VS values are local to these sites due to the nature of caliche 

formation, especially, its lateral variability. In other words, the high VS values are more 

likely a measurement of a dense material at the site rather than being generally 

representative of the Clay unit. 

In a study comparing geophysical methods to characterize alluvial soils in the Las 

Vegas Valley, Sundquist (2001) developed VS profiles for nine sites within a 0.3 km2 

area at the Las Vegas Springs Preserve, a location in the predominantly clay area of the 

valley, using the Spectral Analysis of Surface Waves method (SASW; Stokoe et al., 

1994). He reported a range of VS values for clay between 260 and 860 m/s over depths 

from the ground surface to 30 m. The velocities in the individual profiles generally 
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increased with depth; however, the velocity at a specific depth at one site did not closely 

match the velocity at that same depth at another site. For example, one site had a VS of 

400 m/s at 10 m deep while another had a VS of 300 m/s.  Wong et al. (2002) present 

average VS profiles for four surficial geologic units, which were developed from 

downhole and surface-based measurements as part of their study to develop ground 

shaking maps for Salt Lake City. For the lacustrine-alluvial silt and clay profile, VS 

increases from roughly 150 m/s to 320 m/s over depths of 0 to 60 m. Sharma (1997) 

provides a table summarizing ranges of compression-velocity (VP) values for various 

sediment and rock types. He reported compression-velocity (VP) values for clay between 

1100 and 2500 m/s. No depths or locations were provided by Sharma; therefore, we 

varied Poisson’s ratio from 0.3 (representative of sediments in LVV; Liu et al., 2005) to 

0.45 (increased to represent a more saturated clay) to estimate a range of VS from the VP 

values. Given the assumptions needed to determine VS, we consider that the calculated 

range of VS, from 330 and 1340 m/s, provides only a rough estimate of velocity. Mavko 

et al. (1998) reported VS values for kaolinite, Gulf clays, and mixed clays of 900 m/s, 

1640 to 1880 m/s, and 160 m/s, respectively. Depths and locations of the values were not 

reported.  

Sand-sediment velocity:  

The scatter plot developed for the Sand unit consists of data from 40 VS profiles 

(Figure C.2). Although the number of profiles is about the same as for the Clay unit, 

fewer datapoints are assigned to a “sand” than to “clay” because most of the locations 

within the correlation distance are located in areas shown to be either predominantly clay 

or predominantly gravel (Taylor et al., 2008; Luke and Liu, 2008).  
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As expected, VS for the Sand unit tends to increase with depth. Above 50 m, VS is 

typically between 150 and 1000 m/s; below this depth VS is typically between 490 and 

1300 m/s. Locations of sites with data that are outside these ranges are shown in 

Figure C.3.  Four sites have VS greater than 1000 m/s for depths between 0 and 50 m; 

specifically, the high VS values occur at depths above 10 m. All four sites are located in 

areas where caliche has been observed (Taylor et al., 2008). Three additional sites have 

VS greater than 1300 m/s for depths below than 50 m. They are the same three sites 

located along Las Vegas Blvd. that exhibit relatively high VS below 50 m for the Clay 

unit.  

For the sites located in areas where caliche has been identified, we expect that the 

relatively high VS values are representative of caliche rather than the nearby sand. For 

the same reasons as discussed in the previous section, we expect that the relatively high 

VS values below 50 m depth are more likely a measurement of a cemented material at the 

site rather than being generally representative of the Sand unit. 

Sundquist (2001) reported VS values for sand, measured at the Las Vegas Springs 

Preserve, between 300 and 500 m/s from 0 to 20 m deep. Velocity generally increased 

with depth in each profile, but, as with the clay profile, velocity at a specific depth at one 

site did not necessarily match that at another site.  This range is within the VS range he 

reported for clay. In their Salt Lake City study, Wong et al. (2002) present an average VS 

profile for lacustrine sand. VS in this profile increases from roughly 180 m/s to 760 m/s 

over depths of 0 to 60 m. This range is slightly higher than the range they reported for 

clay and within the range they reported for gravel. Sharma (1997) reported VP values for 

dry alluvium and water-saturated sand ranging respectively from 300 to 1000 m/s, and 
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1200 to 1900 m/s. For a Poisson’s ratio of 0.3, VS values calculated from the VP for dry 

alluvium range from 160 to 530 m/s. For a Poisson’s ratio of 0.4, VS values calculated 

from the VP for water-saturated sand range from 490 to 780 m/s.  

Gravel-sediment velocity:  

The scatter plot developed for the Gravel unit consists of data from 53 VS profiles 

(Figure C.1). VS for the Gravel unit tends to increase with depth; however, this unit 

exhibits a significantly broader range of VS values. Nineteen sites have VS greater than 

1000 m/s between depths of 0 and 50 m. Their locations are shown in Figure C.3. All are 

located along the margin of the LVV and are either near rock outcrops or in areas where 

caliche has been observed. Ten sites have VS greater than 1300 m/s for depths below 

50 m; seven are included in the 19 sites previously discussed. The three additional sites, 

also shown in Figure C.3, are the same sites described in the Clay and Sand sections.  

In their Salt Lake City study, Wong et al. (2002) present an average VS profile for 

lacustrine-alluvial gravel.  VS in this profile increases from roughly 150 m/s to 800 m/s 

over depths of 0 to 45 m. These values are higher than the values they reported for clay; 

however, the minimum is lower than the minimum clay VS reported by Sundquist 

(2001); no gravel values were reported by Sundquist. Burger (1992) reported a VP range 

for alluvium from 500-2000 m/s. No depths or locations were reported. For a Poisson’s 

ratio of 0.3 (Liu et al., 2005), the corresponding VS is roughly 270-1070 m/s. We note 

that the maximum VP value reported by Burger might be representative of a stiff 

sediment with a lower Poisson’s ratio and, thus, a higher VS value. 



   
 

190 
 

Credible sediment ranges: 

Based on the ranges reported by others and those measured in the LVV, VS values 

greater than 1000 m/s and occurring from 0 to 50 m depth were not considered 

representative of either Clay, Gravel or Sand units and were filtered from the correlation 

dataset. For depths greater than 50 m, VS values greater than 1300 m/s were not 

considered representative of these sediment types and were also filtered from the dataset. 

A lower-bound VS filter was not applied to any of the sediment units.  

Selection of credible velocity ranges for Mixed unit:  

For their 3-D model of VS sediment, Taylor et al. (2008) defined a Mixed unit to 

describe layers where none of the three sediment types is predominant. Thus, the range of 

VS values used for the correlation of mixed-sediment type is based on those used for 

clay, gravel and sand. “Mixed” layers as defined by Taylor et al. (2008) may also include 

cemented materials, which would result in a higher VS value for the layer; therefore, the 

upper bound for reasonable values was assumed higher than those of the other sediment 

types. For the mixed sediment type, VS values greater than 1000 m/s occurring between 

0 and 5 m, were not considered credible. For depths greater than 5 m, values greater than 

1300 m/s were not considered credible and were filtered from the correlation dataset. A 

lower bound-filter was not applied.   

Because only 20 VS profiles with mixed-unit layers were located within 300 m of a 

well, the scatter plot for this unit was developed from profiles located within 500 m of a 

well. Thus the plot consists of data from 32 wells (Figure C.1). The scatter plot for the 

mixed unit was not specifically used to determine the cutoff boundary, but is included to 

show the relationship of the boundary to the dataset. Of the four defined units, the Mixed 
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unit had the fewest profiles and datapoints with which to perform the correlations. The 

locations of the four sites from which data were filtered from the correlation dataset for 

the Mixed unit are shown in Figure C.3.   

 

 

 
Table C.1 Shear-wave velocity (VS) ranges  

 
Sediment 
unit 

Range used in 
correlation 1 VS values from previously published studies 

Depth, m VS, m/s 
Depth range, 
m VS m/s Reference 

Clay 
  
  
  
  
  

0-50 100-1000 0-30 280-690 Sundquist, 2001 
50-400 300-1300 0-60 160-320 Wong et al., 2001 
    not provided 330-1340 2 Sharma, 1997 

    not provided 900 
kaolinite; Mavko et al., 
1998 

    not provided 1640-1880 
Gulf clays;  
Mavko et al., 1998 

    not provided 160 
mixed clays;  
Mavko et al., 1998 

Sand 
  
  
  

0-50 150-1000 0-20 300-400 Sundquist, 2001 
50-400 490-1300 0-60 180-760 Wong et al., 2001 
    not provided 160-530 2 Sharma, 1997 
    not provided 490-780 2 Sharma, 1997 

Gravel 
  

0-50 190-1000 0-45 150-800 Wong et al., 2001 
50-400 470-1300 not provided 270-1070 2 Burger, 1992 

1 Minimum values reported are lowest VS measured VS value for the unit 
2 VS listed was calculated from a reported VP 
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Figure C.1 Discretized VS with respect to depth for LVV predominant sediment units 

(blue symbols). Values greater than cutoff values derived from these datasets are 

superimposed on the grey background. Minimum and maximum values from literature 

shown for Clay, Gravel, and Sand (red).  
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Figure C.2 VS ranges reported in the cited references and the range of VS allowed in the 

correlation dataset.  
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Figure C.3 Locations of shear-wave velocity (VS) profiles used for the correlation of VS 

to lithology for each of the sediment units. Locations where no data was filtered from the 

correlation dataset (blue circles), and where were filtered from the correlation dataset. For 

the Clay, Sand and Gravel units, filtered values are VS greater than 1000 m/s occurring 

between depths of 0 and 50 m (blue triangles) and VS greater than 1300 m/s for depths 

below 50 m (red squares). For the mixed unit, VS greater than 1000 m/s occurring 

between depths of 0 and 5 m (blue triangles) and VS greater than 1300 m/s for depths 

below 5 m (red squares) were filtered. 
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APPENDIX D 

3-D VS MODEL 

This appendix includes graphics of the 3-D VS model created using EarthVision. The 

vertical exaggeration shown in the figures is four times the horizontal (northing and 

easting) scales. 
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Figure D.1 Aerial view of Las Vegas Valley (LVV) overlayed on three-dimensional (3-D) shear-wave velocity (VS) model.  



   
 

197 
 

 
Figure D.2 3-D VS model with both VS measured and VS assigned data 
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Figure D.3 3-D VS model with east-west view of below surface sediments. 
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Figure D.4 3-D VS model with east-west view of below surface sediments. 
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Figure D.5 3-D VS model with east-west view of below surface sediments. 
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Figure D.6 3-D VS model with east-west view of below surface sediments. 
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Figure D.7 3-D VS model with east-west view of below surface sediments. 
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Figure D.8 3-D VS model with east-west view of below surface sediments. 
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Figure D.9 3-D VS model with east-west view of below surface sediments. 
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Figure D.10 3-D VS model with east-west view of below surface sediments. 
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Figure D.11 3-D VS model with east-west view of below surface sediments. 
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Figure D.12 3-D VS model with east-west view of below surface sediments. 
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Figure D.13 3-D VS model with east-west view of below surface sediments. 
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Figure D.14 3-D VS model with east-west view of below surface sediments. 
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Figure D.15 3-D VS model with east-west view of below surface sediments. 
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Figure D.16 3-D VS model with location of VS profiles shown in pink. 

Northing, m 
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Figure D.17 3-D VS model with location of VS profiles and VS assigned to well lithology shown in pink.    

Northing, m 
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Figure D.18 3-D VS model with north-south view of below surface sediments.    
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Figure D.19 3-D VS model with east-west view of below surface sediments.   
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