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ABSTRACT 

Parametric Study of Stimulus-Response Behavior Incorporating Vehicle 
Heterogeneity in Car-Following Models 

 
by  
 

Saidi Siuhi 
 

Dr. Mohamed Kaseko, Examination Committee Chair 
Associate Professor of Civil Engineering 

University of Nevada, Las Vegas 
 

The objective of this study was to develop a family of car-following models that 

address the shortcomings of car-following models developed by General Motors (GM) in 

the 1950s. The developed models consist of separate models for acceleration, 

deceleration, and steady-state responses for congested freeway traffic conditions.  The 

study calibrated the models using individual vehicle trajectory data collected on a 

segment of Interstate 101 in Los Angeles, California. Furthermore, the study validated 

the models using individual vehicle trajectory data collected on a segment of Interstate 80 

in Emeryville, California. The study used nonlinear regression with robust standard errors 

to estimate the model parameters and obtain the distribution of the model parameters 

across drivers and for different pairs of following vehicles. The stimulus response 

thresholds that delimit acceleration and deceleration responses were determined based on 

Signal Detection Theory.  

The results indicate that average drivers’ response time lag is significantly lower 

for deceleration response than for acceleration response. This is intuitive because 

deceleration response is generally related to safety, thus, drivers are expected to respond 

faster than for acceleration response. Acceleration is a response that is related to drivers’ 

desire to attain maximum speeds which is the less urgent need than safety. Additionally, 
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drivers’ response to negative stimulus is sometimes further aided by activation of brake 

lights for a leading vehicle that is braking. For similar safety reasons, the results show 

that average stimulus threshold is significantly lower for deceleration response than 

acceleration response and with higher magnitudes of parameters for deceleration response 

than acceleration response.  

The results also indicate that drivers’ behavior is significantly different for 

different vehicle being driven and/or followed. The results show that automobiles 

traveling behind large trucks have both lower magnitudes of acceleration and 

deceleration responses than when traveling behind other automobiles. These are 

unexpected results and could be due to inability of automobile drivers to see beyond large 

trucks in front of them.   

Overall, the results confirm the need for separating models for acceleration and 

deceleration responses and for different pairs of following vehicles because they impact 

drivers’ behavior differently. However, both the driver response time lags and stimulus 

thresholds are likely to depend on speed and vehicle separation. This research simplified 

the models and determined the driver response time lags and stimulus thresholds 

independent of these factors.  

 



 

v 
 

TABLE OF CONTENTS 
 

ABSTRACT ............................................................................................................................. iii 

LIST OF TABLES .................................................................................................................. vii 

LIST OF FIGURES ............................................................................................................... viii 

ACKNOWLEDGEMENTS ..................................................................................................... ix 

DEDICATION .......................................................................................................................... x 

CHAPTER 1    INTRODUCTION ........................................................................................... 1 

1.1  Motivation ................................................................................................................. 1 
1.2  History of Car-Following Models ............................................................................. 2 
1.4  Objectives of the Study ............................................................................................. 4 
1.5  Hypotheses of the Study ........................................................................................... 5 
1.6  Significance of the Study .......................................................................................... 6 
1.7  Dissertation Outline .................................................................................................. 6 

 
CHAPTER 2    LITERATURE REVIEW ................................................................................ 8 

2.1  Introduction ............................................................................................................... 8 
2.2  Traffic Simulation Models ........................................................................................ 8 
2.3  Car-Following Models .............................................................................................. 9 

2.3.1  Safe Distance Car-following Models .................................................................11 
2.3.2  Shortcomings of Safe Distance Car-Following Models ....................................16 
2.3.3  Stimulus-Response Car-Following Models .......................................................17 
2.3.4  Shortcomings of Stimulus-Response Car-Following Models............................35 
2.3.5  Psychophysical Car-Following Models .............................................................36 
2.3.6  Shortcomings of Psychophysical Car-Following Models ..................................41 
2.3.7  Fuzzy Logic-Based Car-Following Models .......................................................42 
2.3.8  Shortcomings of Fuzzy Logic-Based Car-Following Models ...........................43 

 
CHAPTER 3    PROPOSED MODELS AND ESTIMATION METHODOLOGY .............. 45 

3.1  Introduction ............................................................................................................. 45 
3.2  Acceleration and Deceleration Response Models ................................................... 47 

3.2.1  Expectation of the Signs of the Parameters .......................................................49 
3.3  Steady-State Response Model................................................................................. 49 

3.3.1  Expectation of the Signs of the Parameters .......................................................51 
3.4  Estimation of Disaggregate Parameters of the Models ........................................... 53 
3.5  Estimation of Variance of the Parameters .............................................................. 56 
3.6  Hypothesis Test ....................................................................................................... 57 
3.7  Measures of Goodness-of-Fit of the Model ............................................................ 59 
3.8  Aggregation of Parameters of the Model ................................................................ 59 
3.9  Validation of the Models ........................................................................................ 60 



 
 

vi 
 

CHAPTER 4    IMPLEMENTATION.................................................................................... 64 
4.1  Introduction ............................................................................................................. 64 
4.2  Data Description ..................................................................................................... 65 
4.3  Study Site Characteristics ....................................................................................... 65 
4.4  Data Characteristics ................................................................................................ 67 
4.5  Traffic Characteristics ............................................................................................. 69 
4.6  Preparation of Calibration Data .............................................................................. 73 
4.7  Descriptive Statistics of the Variables .................................................................... 74 
4.8  Estimation of Disaggregate Parameters .................................................................. 81 
4.9  Determination of Driver Stimulus Response Thresholds ....................................... 84 
4.10  Modeling Process .................................................................................................... 91 

 
CHAPTER 5    MODEL RESULTS AND DISCUSSIONS .................................................. 92 

5.1  Introduction ............................................................................................................. 92 
5.2  Results for Acceleration and Deceleration Response Models ................................ 92 
5.3  Discussion of the Parameters .................................................................................. 94 

5.3.1  Driver Response Time Lags...............................................................................95 
5.3.2  Driver Stimulus Response Thresholds ...............................................................98 
5.3.3  Driver Sensitivity Constant, β0 ........................................................................100 
5.3.4  Speed Parameter, β1 .........................................................................................102 
5.3.5  Vehicle Separation Parameter, β2 ....................................................................104 
5.3.6  Relative Speed Parameter, β3 ...........................................................................106 
5.3.7  Comparison of the Parameters with Other Studies ..........................................108 
5.3.8  Comparison of Performance of the Models .....................................................110 
5.3.9  Statistical Measures of Model Performance ....................................................116 

5.4  Results for Steady-State Response Model ............................................................ 117 
5.4.1  Discussion of the Parameters ...........................................................................118 
5.4.2  Comparison of the Model with Other Macroscopic Traffic Models ...............122 

 
CHAPTER 6    VALIDATION OF THE MODELS ............................................................ 125 

6.1  Introduction ........................................................................................................... 125 
6.2  Data Description ................................................................................................... 125 
6.3  Study Site Characteristics ..................................................................................... 126 
6.4  Traffic Characteristics ........................................................................................... 128 
6.4  Comparison of the Interstate 80 Site with Interstate 101 Site .............................. 129 
6.5  Statistical Measures of the Model Validity ........................................................... 130 
6.6  Comparison of Model Transferability with other Models .................................... 133 

 
CHAPTER 7    CONCLUSIONS AND RECOMMENDATIONS ...................................... 135 

7.1   Introduction ........................................................................................................... 135 
7.2   Conclusions ........................................................................................................... 136 
7.3  Limitations of the Study and Recommendations for Future Research ................. 139 

 
REFERENCES ..................................................................................................................... 140 

 
VITA ..................................................................................................................................... 144 



 
 

vii 
 

LIST OF TABLES 
 

Table 2-1.    Estimated Parameters (Chandler et al., 1958) .............................................. 19 
Table 2-2.    Estimated Parameters (Gazis et al., 1958) .................................................... 21 
Table 2-3.    Estimated Parameters (May and Keller, 1967) ............................................. 26 
Table 2-4.    Estimated Parameters (Ozaki, 1993) ............................................................ 30 
Table 2-5.    Estimated Parameters (Subramanian, 1996) ................................................. 31 
Table 2-6.    Estimated Parameters (Ahmed, 1999) .......................................................... 33 
Table 2-7.    Estimated Parameters (Toledo, 2003) .......................................................... 35 
Table 4-1.    Vehicle Types ............................................................................................... 70 
Table 4-2.    Traffic Flow Rate and Speed in 15-minutes ................................................. 70 
Table 4-3.    Traffic Flow Rate and Speed per Lane ......................................................... 71 
Table 4-4.    Descriptive Statistics of Variables ................................................................ 79 
Table 4-5.    Descriptive Statistics of the Variables by Pairs of Following Vehicles ....... 80 
Table 4-6.    Outcomes of the State of Stimulus and Responses ...................................... 86 
Table 4-7.    Observed Responses of Selected Driver from the Dataset ........................... 86 
Table 4-8.    Results for Acceleration/Deceleration Response Models for Single Driver 89 
Table 4-9.    Result for Steady-State Response Model for Single Driver ......................... 90 
Table 5-1     Results for Acceleration and Deceleration Response Models ...................... 93 
Table 5-2.    Statistical Comparison of Parameters of the Models ................................... 94 
Table 5-3.    Comparison of Parameter Estimates with other Studies ............................ 109 
Table 5-4.    Statistical Measures of Performance of the Models ................................... 116 
Table 6-1.    Vehicle Types ............................................................................................. 128 
Table 6-2.    Traffic Flow Rate and Speed ...................................................................... 128 
Table 6-3.    Traffic Flow Rate and Speed per Lane ....................................................... 129 
Table 6-4.    Comparison of the Study Sites Characteristics .......................................... 130 
Table 6-5.    Statistical Measures of Performance of the Models ................................... 131 



 

viii 
 

LIST OF FIGURES 
 
Figure 2-1.     Definitions and notations used in car-following model. ............................ 10 
Figure 2-2.     Four actions to measure reaction time (Ozaki, 1993). ............................... 29 
Figure 2-3.     Car-following logic (Wiedemann, 1974). .................................................. 39 
Figure 4-1.     Study site and camera coverage. ................................................................ 66 
Figure 4-2.     Vehicle detection and tracking process. ..................................................... 67 
Figure 4-3.     Vehicle lane changes by lane. .................................................................... 72 
Figure 4-4.     A portion of vehicle trajectories on lane 4. ................................................ 73 
Figure 4-5.     Acceleration/deceleration distributions. ..................................................... 75 
Figure 4-6.     Relative speed distributions. ...................................................................... 76 
Figure 4-7.     Speed  distributions. ................................................................................... 77 
Figure 4- 8.    Vehicle separation distributions. ................................................................ 78 
Figure 4-9.     Field observed speed profiles of two following vehicles. .......................... 81 
Figure 4-10.   Example of a driver response time lag. ...................................................... 82 
Figure 4-11.   Graphical method of estimating the driver response time lags. ................. 84 
Figure 4-12.   Distributions of expected and unexpected responses of an actual driver. .. 87 
Figure 4-13.   Optimal driver response time lags for a single driver. ............................... 88 
Figure 4-14.   Modeling process. ...................................................................................... 91 
Figure 5-1.     Distributions of the driver response time lags............................................ 97 
Figure 5-2.     Distributions of the stimulus response thresholds. ..................................... 99 
Figure 5- 3.    Distributions of the driver sensitivity constant, β0. .................................. 101 
Figure 5- 4.    Distributions of the speed parameter, β1. ................................................. 103 
Figure 5- 5.    Distributions of the vehicle separation parameter, β2. ............................. 105 
Figure 5- 6.    Distributions of relative speed parameter, β3. .......................................... 107 
Figure 5- 7.    Observed and estimated responses for "automobile following automobile".
......................................................................................................................................... 110 
Figure 5- 8.    Observed and estimated responses for "automobile following large truck".
......................................................................................................................................... 111 
Figure 5-9.     Observed and estimated responses for "large truck following automobile".
......................................................................................................................................... 112 
Figure 5-10.   Impact of relative speed on acceleration/deceleration responses. ............ 113 
Figure 5-11.   Impact of vehicle speed on acceleration/deceleration responses. ............ 114 
Figure 5-12.   Impact of vehicle separation on acceleration/deceleration responses. ..... 115 
Figure 5-13.   Variation of traffic density at the same at different time. ........................ 120 
Figure 5- 14.  Fundamental traffic flow diagrams. ......................................................... 121 
Figure 5-15.   Comparison of fundamental traffic flow diagrams for different models. 124 
Figure 6-1.     Study site and camera coverage (Cambridge Systematics, Inc., 2005). .. 127 
Figure 6-2.     Fundamental traffic flow diagrams. ......................................................... 132 
Figure 6-3.     Comparison of fundamental traffic flow diagrams for different models. 134 
 

  



 

ix 
 

ACKNOWLEDGEMENTS 
 

It is a great pleasure and honor to thank everyone who helped me to complete my 

dissertation successfully. I owe sincere and earnest thankfulness to my academic supervisor 

and the Committee Chair Dr. Mohamed Kaseko for his great intellectual thinking, guidance, 

and tireless efforts in directing this work. I have learned so much from him and I feel 

privileged to be his student. I also extend my sincere gratitude to the Committee Members: 

Dr. Edward Neumann, Dr. Hualing (Harry) Teng and Dr. Moses Karakousian for their very 

valuable contributions that significantly improved to the quality of this dissertation. I would 

also like to thank the Graduate Faculty Representative, Dr. Alan Schlottmann for the 

contributions he made in this work.  

I would like to thank the Transportation Research Center/University Transportation 

Center and Department of Civil Engineer for funding.  I also express my sincere appreciation 

to the Federal Highway Administration (FHWA) and New Generation Simulation (NGSIM) 

for providing the data for this research. 

Thanks are also due to many individuals, friends, and colleagues who made this 

educational process a success. I am truly indebted and thankful to our family friends in 

Cookeville for their numerous supports they provided us.   

Lastly, special thanks to my late parents and other family members for their moral 

supports, encouragements, and love. Furthermore, I owe everlasting gratefulness to my wife 

Judith for unconditional love and extraordinary hard work in taking care of our children 

Delbert and Shacin when I was completing this dissertation. I am proud of your strength and 

perseverance to overcome the challenges you faced during this time.   



 

x 
 

DEDICATION 
 

I dedicate this work to my late parents, sister, and brother.  Their legacy has proven to me 

that there is no mountain higher as long as GOD is on my side.  



 

1 
 

CHAPTER 1 

INTRODUCTION 

1.1 Motivation 

Traffic safety and operational problems have existed since early age of 

automobile use as a means of transportation.  Since the early 1950s, traffic has continued 

to grow at a dramatic rate (Gazis, 2002). Consequently, transportation engineers and 

planners have been concerned with their resulting implications to traffic operations and 

safety of the traveling public. One of the major challenges that are facing transportation 

professionals is the accuracy of computer models they use for planning and operational 

analysis of highways. Analyzing operational impacts of the proposed short-term and 

long-term policies and strategies require traffic performance data. However, traffic 

performance data are typically either unavailable or too expensive to collect from the 

field. Therefore, with the increase in computing power, many transportation agencies rely 

on traffic microscopic simulation to analyze the performance of transportation systems.  

Typically, traffic engineers use traffic simulation models to evaluate operational 

benefits and consequences of the proposed alternative policies and strategies for 

improving safety and traffic operational efficiency. However, the reliability of results and 

conclusions drawn from traffic simulation rely heavily on the accuracy of traffic 

simulation models used for evaluation and analysis. One of the key components in traffic 

simulation models are car-following models, which are designed to emulate drivers’ car-

following behavior in the same lane.  
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1.2 History of Car-Following Models 

Studies on car-following behavior started in the early 1950s (Reuschel, 1950 and 

Pipes, 1953). Reuschel and Pipes both were independently inspired by the vehicle 

separation law of the California Vehicle Code, which states that “A good rule for 

following another vehicle at a safe distance is to allow yourself the length of a car (about 

fifteen feet) for every ten miles per hour you are traveling”. They developed traffic 

dynamic models that emulate such driving behavior. The models expressed minimum 

separation of a following vehicle behind a leading vehicle as a linear function of speed. 

The developed models assumed that drivers responded instantaneously to the actions of a 

leading vehicle. Forbes (1963) addressed this limitation by incorporating a driver reaction 

time component into the model.  

In the mid-1950s, researchers associated with the General Motors (GM) 

(Chandler et al., 1958) developed five series of models that modeled acceleration and 

deceleration response behavior of a following vehicle due to the driving actions of a 

leading vehicle. The concept of the models pursued by GM was similar to that of 

Reuschel, Pipes, and Forbes. However, the upgraded models assumed that a driver 

response to the actions of a leading vehicle as a function of driver sensitivity and 

stimulus. The GM models define as the relative speed between the two following 

vehicles. Negative relative speed, when the leading vehicle travels slower than the 

following vehicle, triggers a deceleration response. Conversely, a positive relative speed, 

when the leading vehicle travels faster than the following vehicle, triggers an acceleration 

response. Gazis et al. (1961) generalized stimulus-response models by further improving 

on the driver sensitivity term. The resulting was a nonlinear model that had the driver 
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sensitivity term proportional to speed of the following vehicle and inversely proportional 

to vehicle spacing.  

Since then, numerous studies have attempted to modify parameters of the GM 

model with the aim of improving drivers’ car-following behavior. Some of these studies 

include Eddie (1960), May and Keller (1967), Heyes and Ashworth (1972), Ceder and 

May (1976), Ceder (1976, 1978). Similarly, Aron (1988), Ozaki (1993), and 

Subramanian (1996) modified the structure of the GM model by separating acceleration 

and deceleration models. Ahmed (1999) further improved Subramanian’s model by 

adding traffic density in the sensitivity term and assumed nonlinearity on the stimulus 

term. Similarly, Toledo (2003) re-estimated parameters of the nonlinear model proposed 

by Subramanian.  

Car-following models are one of the important components of traffic simulation 

programs. The most commonly used programs for traffic simulation applications include 

VISSIM, PARAMICS, and CORSIM. They use car-following models that are similar to 

the stimulus-response models. However, VISSIM and PARAMICS use car-following 

models that delimit driving behavior into several regimes. Demarcation of the regimes is 

based on thresholds (i.e. limits) of human perception of differential speed and distance. 

For example, VISSIM uses a car-following model with thresholds that delimit driving 

process into four types of driving behavior (Wiedemann, 1974). The types include “un-

influenced driving”, “closing process”, “following process”, and “emergency braking”. In 

each type, drivers behave differently when reacting to differential speed and distance. 

Therefore, each type has different procedures for calculating values of the acceleration or 
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deceleration responses. This brief history of car-following models indicates there is a 

need for further research in this area for improving drivers’ car-following behavior.  

In summary, the existing stimulus-response car-following models for emulating 

drivers’ car-following behavior as reviewed above have three major shortcomings.  

1. The models assume that drivers can detect even small stimulus, which is unrealistic. 

Drivers are expected to detect the stimulus if it exceeds a certain detectable threshold. 

2. The models assume the same distribution of driver response time lags for all drivers 

and ignore differences between vehicle types. Drivers are expected to have different 

response time lags and sensitivity for similar magnitudes of stimulus.   

3. The models estimate a single value for each of the other model parameters including 

speed, relative speed, and separation. Estimating a single value for each parameter of 

the model does not capture individual differences between different drivers and 

different vehicle type being driven and/or followed. For example, some drivers of 

automobiles may behave differently when driving behind a large truck partly because 

of real and/or perceived safety risks imposed by large trucks. On the contrary, large 

trucks have low acceleration and deceleration capabilities than automobiles. 

Therefore, large truck drivers generally try to compensate these limitations by leaving 

longer space headways than automobile drivers. 

 

1.4 Objectives of the Study 

The objective of this study is to develop a family of car-following models that, 

among other things, address the shortcomings of the GM models. This proposed family 
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of models consists of separate models for acceleration, deceleration, and steady-state 

responses for congested freeway traffic conditions. These models are designed to: 

1. Determine driver response time lags for both acceleration and deceleration responses 

2. Determine stimulus response thresholds for both acceleration and deceleration 

responses.  

3. Incorporate vehicle heterogeneity in the models. For each acceleration or deceleration 

response, three car-following models are developed depending on the types of 

vehicles following each other. The models include “automobile following 

automobile”, “automobile following large truck”, and “large truck following 

automobile”.  

4. Capture heterogeneity in driving behavior across drivers by estimating distributions 

of drivers’ response time lags, stimulus response thresholds, and other model 

parameters for speed, relative speed, and vehicle separation for acceleration and 

deceleration responses.  

 

1.5 Hypotheses of the Study 

This research aims to test four major hypotheses: 

1. Driver response time lags are lower for deceleration response than for acceleration 

response. Deceleration is a response related to safety, therefore, one would expect a 

faster response time (i.e. small time lag). On the other hand, the acceleration response 

is related to driver’s desire to attain maximum speeds which is not a critical need, 

therefore, does not require urgent response. 



 
 

6 
 

2. For the same reasons stated above, the stimulus response thresholds are lower for 

deceleration response than for acceleration response.  

3. Drivers are likely to respond more aggressively when required to decelerate than 

when they want to accelerate. Therefore, a higher magnitude of the parameters is 

expected for the deceleration response than acceleration response. 

4. Driving response behavior is different for different vehicle types being driven and/or 

followed. This is due to the fact that different vehicle types have different physical 

and performance characteristics that may impact drivers’ response behavior.  

 

1.6 Significance of the Study 

The findings of this study are expected to significantly contribute to the 

understanding of drivers’ car-following behavior on congested limited access highways. 

This knowledge will be useful in improving the accuracy of car-following models used in 

traffic simulation. To that end, this will assist traffic researchers and practitioners in 

modeling more accurately impacts of proposed alternative policies and strategies to 

improve safety and traffic performance of existing and future planned highways. 

Additionally, the estimated drivers’ response time lags can be used in roadway design in 

calculating important design parameters such as stopping sight distance. 

 

1.7 Dissertation Outline  

This dissertation is divided into seven chapters. Chapter 1 describes the problems 

with the existing stimulus-response car-following models and presents the objectives and 

significance of the study. Chapter 2 presents the literature review on car-following 
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models. Chapter 3 describes in detail a family of car-following models proposed in this 

study. Chapter 4 discusses implementation methodology for estimating parameters of the 

models. Chapter 5 presents the results and discusses their implications in car-following 

behavior. Chapter 6 presents and describes the process for validating the models, results 

obtained and their implications. Chapter 7 presents conclusions and recommendations for 

future research in this area.  
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

The aim of this chapter is to review the existing car-following models. It 

introduces the basic concepts of the models and focuses on efforts made in improving the 

models. In addition, it summarizes the significant shortcomings of the existing car-

following models in emulating drivers’ car-following behavior. 

 

2.2 Traffic Simulation Models 

There are three types of traffic models: macroscopic, mesoscopic, and 

microscopic. The macroscopic traffic models describe traffic flow behavior on a 

segment-by-segment basis in lieu of tracking individual vehicles. As a result, the models 

produce aggregate traffic stream parameters such as speed, flow, and density and their 

corresponding relationships. The models use the equation of conservation of vehicle flow 

to describe the relationships and how disturbances such as shockwave propagate in the 

traffic stream. Examples of macroscopic models include Greenshield (1935), Greenberg 

(1959), Underwood (1961), Edie (1961), and Bell Curve (Duke et al., 1990). The most 

prevalent benefit of such models is that they can describe the spatial and temporal extent 

of traffic congestion particularly that is caused by non-occurring incidents such as traffic 

crashes.  

The microscopic traffic models describe the movement and interactions of an 

individual vehicle with a leading vehicle.  The models track vehicles on at a certain time 

interval and produce observations of vehicle longitudinal and lateral positions, speed, and 
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acceleration/deceleration at each time interval. The models use fundamental rules of 

motion and rules of driving behavior such as lane changing and car-following behavior 

for moving vehicles in the system. The most important benefit of microscopic models is 

that they are used for evaluating traffic operational performance of the existing or future 

planned highways.  

The mesoscopic traffic models describe individual vehicle interacting with other 

vehicles but aggregate parameters for all vehicles. In essence, the models combine both 

characteristics of microscopic and macroscopic models. For example, the model can be 

used to evaluate average travel time and speed of a certain highway segment using 

individual vehicles equipped with in-vehicle real-time travel information systems. The 

models are most beneficial in evaluating traveler information systems. Kinetic theory 

based models are typical examples of mesoscopic models (Prigogine, 1971). 

 

2.3 Car-Following Models 

This study uses the following definitions and notations in describing the car-

following models. Consider two following vehicles traveling from left to right as shown 

schematically in Figure 2-1. Vehicle 1  is a leading vehicle with length  and 

vehicle   is a subject vehicle. The subscript    denotes the time of observation of vehicle 

position, velocity, and acceleration/deceleration. 

 

 

 

 



 
 

10 
 

 

 

 

 

 

 

 
 

Figure 2-1. Definitions and notations used in car-following model. 

 

The following are definitions of the variables resulting from Figure 2-1. 

,   is the position of a leading vehicle 1 at time   

,    is the position of a subject vehicle  at time   

,   is the speed of the leading vehicle 1 at time   

,    is the speed of the subject vehicle  at time   

   is the length of the leading vehicle 

, ,     is the spacing between the two vehicles at time   

, ,      is the separation between the two vehicles at time   

In the car-following mode the leading vehicle influences driving behavior of a 

subject vehicle. Therefore, the driver of the subject vehicle reacts to the perceived 

stimulus resulting from driving behavior of the leading vehicle. The stimulus could be a 

speed differences and/or separation between the two vehicles. Furthermore, the driver of 

the subject vehicle responds to the stimulus after a certain time lag. This study defines the 

Subject vehicle  Leading vehicle 1

,  ,  

, ,  

,   

,  ,  ,  ,  
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time lag as the driver response time lag. The driver response time lag is the interval of 

time between occurrence of stimulus and initiation of response.  

Car-following models can be broadly divided into four main types: 

• Safe distance car-following models, 

• Stimulus-response car-following models, 

• Psychophysical car-following models, and 

• Fuzzy logic-based car-following models  

2.3.1 Safe Distance Car-following Models 

Reuschel (1950) and Pipes (1953) were the early pioneers who developed 

minimum safe distance models. They were both independently inspired by the law of 

vehicle separation stipulated in the California Vehicle Code, which states that “A good 

rule for following another vehicle at a safe distance is to allow yourself the length of a car 

(about fifteen feet) for every ten miles per hour you are traveling”. They developed traffic 

models that emulate such driving behavior. The models expressed minimum safe distance 

maintained by a subject vehicle behind a leading vehicle as a linear function of speed. 

The models assumed that drivers of vehicles obeyed this rule at all times and derived 

model that emulate such driving behavior. The developed models assumed that drivers 

reacted instantaneously to the actions of a leading vehicle. Pipes model has the following 

form:   

 

              2-1 

 

Where: 



 
 

12 
 

   is the prescribed legal distance when vehicles at standstill in feet and    in 

seconds is a time constant as prescribed by the California Driver Code i.e. 

(  
.

1.023   

 

This results in a minimum safe vehicle separation distance equal to: 

 

            2-2 

 

Where    is constant 
 

From equation 2-2, the minimum theoretical time headway approaches T seconds 

when speed is at infinity. However, field measurements indicated slight variations in the 

minimum safe time headway derived according to Pipe’s model at low and high speeds 

(May, 1990). The same study also showed that the minimum safe time headway does not 

decrease with speed at certain speed range. Furthermore, Pipe’s model predicts that 

roadway capacity occur when speed is infinite, which is unrealistic.  

Forbes (1958) developed a car-following model that incorporated a driver reaction 

time component. This was based on the fact that there is a time lag between occurrence of 

stimulus and initiation of response. The model assumed that a driver of a subject vehicle 

maintains minimum safe time headway at least equal to the driver reaction time. This 

time headway is the summation of the driver reaction time and the time taken to travel a 

distance equivalent to the length of a leading vehicle. Forbe’s model is defined as 

follows:  
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∆  

                2-3 
 

Where:  

 ∆    is the driver reaction time 

   is the length of a leading vehicle 

   is the speed of a subject vehicle 

Similarly, field results indicated considerable variations between the actual field 

measured and that obtained from Forbe’s model and for different drivers (May, 1990). 

The field results showed that the minimum values of time headway ranged from 1 to 3 

seconds. This model also has shortcomings similar to the ones discussed for Pipe’s 

model. 

Kometani and Sasaki (1958) investigated the dynamic equation developed by 

Pipes by introducing the driver response time lag. In this model, the spacing between two 

consecutive vehicles in queue is expected to depend on velocities of vehicles. For 

simplicity, the model assumed a linear function of the following the form:  

 

, ∆ , ∆ , ∆ ,            2-4 

 

Where:  

∆   is the reaction time of driver 

, ∆    is the position of a leading vehicle 1 at time  ∆  

, ∆    is the position of a subject vehicle     at time  ∆  
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, ∆    is the speed of the leading vehicle 1 at time   

,   is the speed of the subject vehicle    at time  ∆  

, ∆ , ∆   is the spacing between the two vehicles at time  ∆  

, , and   are constants 

To simplify the model, the study assumed that vehicle separation is proportional 

to the speed of the subject vehicle. Differentiating both sides of the equation 2-4 with 

respect to    results in the following equation: 

 

, ∆ , ∆ ,               2-5 

  

Kometani and Sasaki (1959) continued the efforts to determine safe separation 

based on Newtonian equations of motion. The model assumed that vehicle separation is 

proportional to both speed of the subject vehicle and the leading vehicle. The developed 

model has the following form: 

 

, ∆ , ∆ , ∆ , ,           2-6 

 

Where   and     are constants and other notations are as defined in equation 2-4.  

The parameters of the models were calibrated using data collected from pairs of 

test vehicles driving on a city street. The study collected 22 runs on a segment of 200 

meters long with average speed of less than 45 kilometer per hour. The results indicated 

that driver reaction time value ∆   of 0.5 seconds,   value of -0.00028, and   value of 

0.585.  Another experiment was conducted on the faster track and varied speeds between 
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40 and 60 kilometer per hour using two subjects. The results obtained showed that the 

value of ∆   was 0.75 seconds,   value of -0.00084, and   value of 0.78.  These 

parameters are larger than those obtained from a city street, suggesting significant 

variations in the two models. Further improvement of this model was made by Gipps 

(1981).  

Gipps (1981) derived the model by setting the limits of performance of driver and 

vehicle and used the limits to calculate a safe speed with respect to a leading vehicle. In 

other words, the driver should not exceed his/her desired maximum speed and the vehicle 

should not exceed its maximum acceleration and deceleration capabilities.  Furthermore, 

the study used additional safety margin to compensate for driver related errors equal to  

half of driver reaction time. The assumption made is that a driver of a subject vehicle 

maintains a speed which allows the driver to bring the vehicle to safe stop should a 

vehicle ahead come to a sudden stop. The model has the following form: 

 

, ,
,

2 , 2 ,
,

2  

                 2-7 
 

Where:  

,   is the position of a leading vehicle  1  at time   

, ∆   is the position of a subject vehicle    at time   

, ∆   is the speed of the leading vehicle  1 at time   

,  is the speed of the subject vehicle    at time   
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 is the length of the leading  1 vehicle 

, ,   is the separation between the two vehicles at time   

  is the reaction time of the driver 

  is the most severe braking of the leading vehicle ( 0  

  is the most severe braking of the subject vehicle ( 0  

This model was validated by simulating a three lane lanes of divided highway. 

Each of the parameter was sampled from normal distributions. The results appeared to 

logically replicate the behavior and propagation of disturbance in traffic stream both for 

pairs of following vehicles and for platoon of vehicles.  

2.3.2 Shortcomings of Safe Distance Car-Following Models  

The structure of the models developed by Reuschel, Pipes, Forbes, Kometani and 

Sasaki, and Gipps were reasonable. However, the models have the following major 

shortcomings: 

1. The models did not include other important variables such as relative speed which 

may influence how drivers maintain safe following distance. This may result in 

inaccurate modeling of drivers’ acceleration and deceleration response behavior 

2. The models assume the same driver response time lags and ignore differences 

between vehicle types. 

3. The models assume similar acceleration and deceleration response aggressiveness, 

which is unrealistic. Drivers’ behavior for acceleration and deceleration responses 

may be different because the need for acceleration and deceleration are different.  
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2.3.3 Stimulus-Response Car-Following Models 

Researchers associated with the General Motors (GM) (Chandler et al., 1958) 

developed five series of models that described acceleration and deceleration response 

behavior of a subject vehicle due driving actions of a leading vehicle. The structure of the 

models pursued by GM was similar to that of Reuschel, Pipes, and Forbes. However, the 

upgraded models assumed that a driver response as a function of driver sensitivity and 

stimulus. The GM models define stimulus as the relative speed between the two 

following vehicles. Negative relative speed, when the leading vehicle travels slower than 

the following vehicle, triggers a deceleration response. On the contrary, a positive 

relative speed, when the leading travels faster than the following vehicle, triggers an 

acceleration response. The magnitudes of the acceleration/deceleration depend on 

sensitivity term which includes speed and vehicle spacing. The models have the 

following general form: 

 

,                        2-8 

 

Chandler et al. (1958) developed the first simple linear model that assumes 

acceleration/deceleration response of a subject vehicle is proportional to the relative 

speed between two following vehicles as shown below.  

 

, , ∆ , ∆               2-9 

 

Where: 
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∆   is the driver response time lag 

,   is the acceleration/deceleration of a subject vehicle  at time   

, ∆   is the speed of a leading vehicle  1 at time  ∆  

, ∆   is the speed of the subject vehicle    at time ∆  

, ∆ , ∆   is the relative speed between the two vehicles at time ∆  

  is the driver sensitivity parameter 

The stimulus term, that is, relative speed, at any time step can be either positive, 

zero, or negative resulting in drivers’ response in form of acceleration, no response, or 

deceleration, respectively. The model assumes that the driver sensitivity is constant 

across driver population and/or vehicle types.  

The study calibrated parameters of the model using instrumented cars on test track 

of the GM.  The experiment involved two vehicles with a cable on a pulley connected 

with a wire wound around a reel mounted on the front of the leading vehicle. The 

experiment used eight drivers who drove the test cars while varying driving conditions of 

mean speed. The driver of the subject vehicle followed the leading vehicle while 

maintaining their desired safety distance. The correlation analysis between observed and 

estimated acceleration was used to estimate the parameters of the model. The values that 

produced the highest correlation were used as the estimate of the driver response time lag 

and sensitivity for a particular driver. Table 2-1 shows the estimated parameter values 

obtained from this study.  
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  Table 2-1. Estimated Parameters (Chandler et al., 1958) 

Measured Value Response Time Lag (sec) Sensitivity (sec-1) 

Minimum 1.00 0.17 
Average 1.55 0.37 
Maximum 2.20 0.74 

 
 

The results obtained from field experiment showed significant variation in the 

sensitivity values. The sensitivity term appeared to depend on the distance between the 

vehicles, therefore, suggested a modification of the sensitivity term.  

Gazis et al. (1959) addressed this weakness of the model by incorporating spacing 

between two vehicles in the sensitivity term. The second model proposed that the 

sensitivity term should have two states depending on closeness between two following 

vehicles. This means that higher sensitivity value 1 is applicable when the two vehicles 

are close together and lower sensitivity value 2 when the two vehicles are far apart. This 

suggests that drivers are more sensitive at shorter following distance and less sensitive at 

larger following distance. The model is defined as shown below:  

 

, or , ∆ , ∆                    2-10 

 

Where: 

∆   is the driver response time lag 

,   is the acceleration/deceleration of a subject vehicle  at time  

, ∆   is the speed of a leading vehicle 1 at time ∆  

, ∆   is the speed of the subject vehicle  at time ∆  
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, ∆ , ∆   is the relative speed between the two vehicles at time ∆  

is the  is the sensitivity parameter at smaller spacing 

 is the driver sensitivity parameter at bigger spacing  

This model posed significant challenges in determining the values of 1 and 2 

and the problems associated with discontinuous state. These challenges necessitated 

further field experiments to determine the means of incorporating vehicle spacing into the 

sensitivity term. The results of the field experiments and numerical solutions showed that 

acceleration was inversely proportional to the spacing between the two vehicles. 

Therefore, the model was modified by incorporating the spacing into the second model 

resulting in third model which is defined as follows: 

 

,
, ∆ , ∆

, ∆ , ∆  
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Where: 

∆   is the driver response time lag 

,   is the acceleration/deceleration of a subject vehicle  at time  

, ∆   is the speed of a leading vehicle 1 at time ∆  

, ∆   is the speed of the subject vehicle  at time ∆  

, ∆ , ∆   is the relative speed between the two vehicles at time ∆  

, ∆ , ∆   is the spacing between the two vehicles at time ∆  

 is the driver sensitivity parameter  
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The sensitivity term in this model is a function of the constant 0 and vehicle 

spacing. This model suggests that the magnitudes of the sensitivity term are higher when 

the vehicles are closer than when they are far apart. Similarly, field experiments were 

conducted to calibrate the parameter values using test drivers on the GM test track, 

Holland tunnel, and Lincoln tunnel. Table 2-2 shows the results obtained from correlation 

analysis for each test site.  

 

  Table 2-2. Estimated Parameters (Gazis et al., 1958) 

Location Number of Drivers Response Time 
Lag (sec) 

Sensitivity 
(sec-1) 

GM test track 8 1.5 40.3 
Holland tunnel 10 1.4 26.8 
Lincoln tunnel 16 1.2 29.8 

 
 

Gazis et al. (1959) further improved the sensitivity term by incorporating speed of 

the subject vehicle into the sensitivity term, thus, forming the fourth model. The concept 

of the model is based on the fact that as the speed increases, a driver of the subject 

vehicle becomes more sensitive to the relative speed than at lower speeds. The model is 

defined as shown below. 

 

,
, ∆

, ∆ , ∆
, ∆ , ∆  
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Where: 

∆   is the driver response time lag 

,   is the acceleration/deceleration of a subject vehicle  at time  



 
 

22 
 

, ∆  is the speed of a leading vehicle 1 at time ∆  

, ∆   is the speed of the subject vehicle  at time ∆  

, ∆ , ∆   is the relative speed between the two vehicles 

, ∆ , ∆   is the spacing between the two vehicles 

 is the driver sensitivity parameter  

Gazis et al. (1961) generalized stimulus-response models by further improving on 

the driver sensitivity term. The resulting was a nonlinear model that has the driver 

sensitivity term proportional to speed of the following vehicle and inversely proportional 

to vehicle spacing. The model is defined as follows:  

 

,
, ∆

, ∆ , ∆
, ∆ , ∆  
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Where: 

∆   is the driver response time lag 

,  is the acceleration/deceleration of a subject vehicle  at time  

, ∆  is the speed of a leading vehicle 1 at time ∆  

, ∆  is the speed of the subject vehicle  at time ∆  

, ∆ , ∆   is the relative speed between the two vehicles at time ∆  

, ∆ , ∆   is the spacing between the two vehicles at time ∆  

  is the driver sensitivity constant 

  is the speed parameter 

  is the spacing parameter 
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In this model, the driver sensitivity term is proportional to speed raised to power 

  and inversely proportional to spacing raised to power  . The parameter   represents 

the driver sensitivity constant. It is worthwhile mentioning that th first four models are 

the special cases of the generalized model. Furthermore, the macroscopic flow-speed 

relationship developed by Greenshields (1934) can be derived from the GM model by 

setting  0 and  2.  

When the GM researchers were developing these models, at the same time the 

researchers associated with the Port of New York were also developing and evaluating 

macroscopic flow model of speed as a function of traffic density. Greenberg (1959) used 

fluid dynamic theory to derive macroscopic model relating speed and traffic stream 

density. They developed a macroscopic model known as Greenberg model and is defined 

as follows:  

 

  

                                  2-14 

 
Where:  

   is the space mean speed in miles per hour 

   is the optimum speed in miles per hour 

   is the jam density in vehicles per lane-mile 

   is the traffic density in vehicles per lane-mile 

The results of this model motivated Gazis et al. (1959) to develop a relationship 

between microscopic car-following model and macroscopic traffic model. The translation 
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of the microscopic car-following model into macroscopic relationship was performed by 

integrating both sides of equation 2.11 assuming steady-state as follows: 

 

, ∆ , ∆

, ∆ , ∆
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 , ∆ , ∆            2-16 

 

Replacing , ∆ , ∆        yields: 

 

                2-17 
At ,   0 

 

                           2-18 

 
 

                  2-19 

 

Equation 2-19 is identical to the macroscopic model derived by Greenberg (1959).  

This bridge between the GM third microscopic car-following model and Greenberg 

macroscopic model was a very important discovery.  

Edie (1961) argued that the model proposed by Chandler et al. (1959) was 

unrealistic in modeling traffic at low density. The rationale was that at extremely low 

traffic density, there is no interaction between vehicles. Further, speed and density 
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relationship derived yields infinite speed as density approaches to zero.  According to 

Edie, lack of upper limit on traffic stream speed exhibit loss of realism because as density 

approaches zero the speed approaches infinity. Edie stated that the sensitivity of a driver 

varies with his absolute speed; the faster the driver is traveling, the greater the driver’s 

sensitivity. Therefore, Edie further modified car-following model as follows: 

 

,
, ∆

, ∆ , ∆
, ∆ , ∆  
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Where: 

∆   is the driver response time lag 

,   is the acceleration/deceleration of a subject vehicle  at time  

, ∆   is the speed of a leading vehicle 1 at time ∆  

, ∆   is the speed of the subject vehicle  at time ∆  

, ∆ , ∆   is the relative speed between the two vehicles at time ∆  

, ∆ , ∆    is the spacing between the two vehicles at time ∆  

 is the driver sensitivity parameter  

This model results in macroscopic traffic model which has demonstrated to be 

realistic at low densities. The resulting macroscopic model is shown below. 

 

                   2-21 
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May and Keller (1967) further extended the general model proposed by Gazis et 

al. (1961) shown in equation 2-13.  This study used regression analysis to estimate 

parameters of the model considering both integer and non-integer values using 

macroscopic dataset. The results showed that that non-integer values of    and 

  produced higher correlation coefficient than integer values. Table 2-3 shows the results 

obtained from the study. 

 

Table 2-3. Estimated Parameters (May and Keller, 1967) 

 
Parameter 

Estimates with integer 
,  

Estimates with non-integer 
,  

Sensitivity,  4-10×351. 4-10×331.  
Speed,  1.0 0.8 
Spacing,  3.0 2.8 
Free speed,  (mph) 48.7 50.1 
Jam density,  (vpm) ∞ 220 
Optimum speed,  (mph) 29.5 29.6 
Optimum density,  (vpm) 60.8 61.1 
Maximum flow,  (vph) 1795 1810 
 
Macroscopic model 

.  1
.

 

 
 
 

Heyes and Ashworth (1972) questioned the assumptions made in the stimulus-

response car-following models for using only relative speed as stimulus. One of the 

reasons stated is that in practice the stimulus is difficult to accurately measure. Thus, 

Heyes and Ashworth suggested using the rate of change of visual angle. This was based 

on the study on human perception of motion conducted by Michaels (1963). This study 

found that the dominant perception factor was the rate of change of visual angle. Thus, 
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Michaels suggested that the sensitivity as an inverse function of time headway and the 

model form can be written more generally as: 

 

,
, ∆

, ∆ , ∆

, ∆ , ∆

, ∆ , ∆
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Where: 

∆   is the driver response time lag 

,   is the acceleration/deceleration of a subject vehicle  at time  

, ∆   is the speed of a leading vehicle 1 at time ∆  

, ∆   is the speed of the subject vehicle  at time ∆  

, ∆ , ∆   is the relative speed between the two vehicles at time ∆  

, ∆ , ∆    is the spacing between the two vehicles at time ∆  

  is the driver sensitivity parameter  

  is the constant  

The parameters of the model were calibrated from speed-density observations 

recorded using data-logger built for the study. The range of values of    between 0.70 

and 0.90 were used for constructing fundamental diagrams of speed-density data 

corresponding to stable car-following for different locations. The best fit parameters were 

determined using regression analysis. The results and visual observation of theoretical 

equations clearly indicated that the value of  of 0.80 consistently reproduced the 

observed data regardless of location. 
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Ceder and May (1976) extended the GM model (equation 2-13) by evaluating 

single and two-regime traffic flow models. The models for both single and two-regimes 

were investigated using a sample of 32 sets of speed-concentration measurements. The 

paper evaluated the predictions using 13 new sets of data. For the single-regime model, 

the study found that optimum value of β was 0.6 and γ was 2.4. For the two-regime 

model, the study found that for congested, the value of β approached 0 while γ value was 

between 0 and 1. On the other hand, for the free-flow two-regime, the value of β was 0 

and γ was 3.  

Furthermore, Ceder (1976, 1978) proposed improvement on the sensitivity 

component of the GM general proposed by Gazis et al. (1961). The proposed model 

replaced the traditional sensitivity form of: 

 

 ,

, ∆ , ∆
  by                         2-23 

 

Where   and   are spacing and jam spacing and    is non-dimensional weighing factor. 

The proposed model was analyzed using a sample of 45 data sets and validated using a 

sample of 13 data sets. The study concluded that for the two-regime model, the proposed 

model was superior to the generalized car-following model, particularly in simplicity and 

clarity. 

Ozaki (1993) modified the structure of the GM model (equation 2-13) by 

separating acceleration and deceleration response models. Furthermore, the study defined 

four components of the driver reaction time as shown in Figure 2-2. The components 

were defined as follows:  
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1. Time taken to attain zero acceleration given the relative speed is zero, 

2. Time taken to start accelerating given the speed of the leading vehicle is greater 

than speed of the subject vehicle, 

3. Time taken to attain zero deceleration given the relative speed is zero, and  

4. Time taken to decelerate given the speed of the leading vehicle is greater than 

speed of the subject vehicle. 

 

 

Figure 2-2. Four actions to measure reaction time (Ozaki, 1993). 

 

The study used video camera to collect microscopic data on a freeway in Japan 

and conducted correlation analysis between the observed reaction time ∆  and driving 

conditions at time ∆  . Driving conditions evaluated for every driver included relative 
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speed, rate of acceleration/deceleration of the leading vehicle, spacing, speed of the 

subject vehicle, and the reciprocal of time headway. Table 2-4 shows the estimated 

parameters of the models for both acceleration and deceleration. The study found that 

spacing and acceleration of the leading vehicle were significant in explaining the reaction 

time. Furthermore, the research used simple linear regression to estimate reaction time 

reaction time using spacing and acceleration of the leading vehicle as independent 

variables. The major weakness of this model is that, in practice, a driver of a following 

vehicle may not be able to detect small change in acceleration of a leading vehicle. 

           

           Table 2-4. Estimated Parameters (Ozaki, 1993) 

Parameter Acceleration model Deceleration model 

 1.1 1.1 
β -0.2 0.9 
γ 0.2 1.0 

∆  1.5 0.01 , , 0.6 ,  1.3 0.02 , , 0.7 ,  
 
 

Subramanian (1996) extended the GM model (equation 2-13) in order to capture 

drivers’ acceleration behavior in both car-following and free-flow regimes. The study 

developed two separate models for replicating both free flow and car-following regimes. 

In the car-following regime drivers follow their leader whereas in the free-flow regime 

drivers try to attain their desired speed. Furthermore, the study developed separated 

acceleration and deceleration response models. In addition, the model incorporated the 

variations in driver reaction time across drivers in order to capture individual driver 

characteristics and aggressiveness. The study also assumed that  ,  and  ∆   followed 

normal and truncated lognormal distributions, respectively. 
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The parameters of the models were calibrated using data collected in 1983 along a 

section of Interstate 10 Westbound in Los Angeles. The study used panel data employing 

the maximum likelihood technique to estimate jointly the parameters of the model, 

distributions of reaction time, desired speed, and spacing threshold. Table 2-5 shows 

results obtained from this study. The study concluded that the spacing thresholds have 

significant impact on estimation of parameters of the model. However, the results 

obtained in this study show that the estimated mean reaction time for deceleration 

response was higher than that for the acceleration response, which is counterintuitive.  

 

Table 2-5. Estimated Parameters (Subramanian, 1996) 

 
Parameter 

Acceleration Model Deceleration Model 
Estimate t-statistic Estimate t-statistic 

Sensitivity,  9.210 1.237 15.24 4.282 
Speed, β -1.667 5.201 1.086 3.901 
Spacing, γ -0.884 3.818 1.659 9.077 
Mean, ∆   (sec.) 1.97 1.97 2.29 2.29 
Std. dev., ∆  sec. 1.38 1.38 1.42 1.42 

 
 
 
Ahmed (1999) addressed the limitations of the GM model (equation 2-13) by 

incorporating traffic density of traffic into the sensitivity term and allowed for non-

linearity in the stimulus term. Furthermore, the model assumed different reaction times 

for the sensitivity and stimulus terms. The model is defined as follows: 

 

,
, ∆

, ∆ , ∆
, ∆ , ∆ , ∆  ,  

    2-24 
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Where: 

∆   is the driver reaction time 

,   is the acceleration/deceleration of a subject vehicle  at time  

, ∆   is the speed of a leading vehicle  at time ∆  

, ∆   is the speed of the subject vehicle 1 at time ∆  

, ∆ , ∆   is the  relative speed between the two vehicles 

, ∆ , ∆    is the spacing between the two vehicles 

, ∆    is the density of traffic at time ∆   

  is the driver sensitivity constant 

  is the speed parameter 

  is the spacing parameter 

    is the traffic density parameter 

   is the relative speed parameter 

0,1    is the parameter of sensitivity time lag 

 ,    is the error term associated with the  vehicle at time   

The study assumed that the parameter  would capture the influence of traffic 

conditions in driver perception in decision-making process. In this case, =1 implies that 

the time lag for the sensitivity and stimulus are equal. This means that drivers do not 

update their perception of traffic conditions. On the other hand, <1  implies that time lag 

for the sensitivity term is smaller than that of stimulus meaning that drivers update their 

perception due to traffic conditions. The study also hypnotized that there is more 

uncertainty involved in predicting position and speed of the leading vehicle at high traffic 

density than at lower density. The expectation was that drivers are more conservative at 



 
 

33 
 

higher traffic densities than at low densities. At high density, the subject vehicle is likely 

to accelerate at a lower rate, while decelerate at higher rate, hence  could be positive or 

negative respectively. 

The study further assumed that spacing threshold follows truncated normal 

distribution with truncation on both sides. In addition, it was assumed that reaction time 

followed a truncated lognormal distribution as proposed by Subramanian (1996). 

However, the study estimated the parameters non-parametrically due to complexity in the 

formed likelihood function. The study used data collected in 1995 and 1997 from a 

section of Interstate 93 in the southbound direction in Boston using video. Table 2-6 

summarizes results obtained from this study. 

 

             Table 2-6. Estimated Parameters (Ahmed, 1999) 

 
Parameter 

Acceleration Model Deceleration Model 
Estimate t-statistic Estimate t-statistic 

Sensitivity,  0.0225 1.08 -0.0418 -1.20 
Speed, β 0.722 4.67 - - 
Spacing, γ 0.242 6.31 0.151 5.32 
Traffic density,  0.682 4.20 0.804 4.21 
Relative speed,  0.600 7.20 0.682 10.71 

 

 
The results indicated that sensitivity constants for both the acceleration and 

deceleration models for the car-following state were statistically insignificant at 5 percent 

level. For the deceleration model, speed parameter was insignificant (t-statistic = 0.64) 

and has counterintuitive sign, therefore, speed was removed from the model specification. 

For the acceleration, the results indicate that acceleration increases with speed, density, 
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and relative speed and decreases with spacing. The sign of speed and traffic density are 

counterintuitive because one would expect that the higher the speeds or traffic density, 

the lower the magnitude of acceleration response.  

Furthermore, Ahmed pointed out that the average acceleration value estimated in 

this study was smaller than those predicted by Subramanian (1996) model. He mentioned 

lack of variability in the data with acceleration observations or the influence of the 

geometric characteristics of the Boston data collection site as the possible reasons. In 

addition, he indicated that the difference in data collection years and sites might have 

contributed to the differences observed in the estimates.  

Toledo (2003) pointed out that the existing driving behavior models had several 

major limitations. First, the existing models separate different behavior and therefore do 

not capture inter-dependencies. For example, the models ignore the effect of lane 

changing in acceleration and deceleration response behavior.  This study addressed the 

limitations by proposing an integrated driving behavior that is based on the concepts of 

short-term goals and short-term plans. The study was an extension of the model proposed 

by Ahmed (1999) shown in equation 2-24.  The parameters of the model were calibrated 

using data collected in 1983 by Federal Highway Administration (FHWA) along a four-

lane section of Interstate 395 in the southbound in Arlington, Virginia.  

Table 2-7 shows the results for both acceleration and deceleration response 

models. For the acceleration response model, results indicated the acceleration response 

of the subject vehicle increases with its speed, density, and relative speed and decreases 

with vehicle spacing. The signs for parameter of speed, density, and spacing are 

counterintuitive. Toledo expected that acceleration is lower for higher speed and density 
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and higher for bigger spacing. The study also indicated the parameter for sensitivity 

constant and spacing were statistically insignificant at 5 percent level.  

For the deceleration response model, the results showed that deceleration of the 

subject vehicle increased with, density, and relative speed and decreased with spacing. 

The results also showed that speed of the following was insignificant, thus, speed was 

removed from the deceleration model. This is inconsistent with intuitive expectation. 

This result contradicts previous results obtained by Subramanian (1996) and Ozaki 

(1993) that showed that speed as a significant factor in deceleration response model.  

 

             Table 2-7. Estimated Parameters (Toledo, 2003) 

 
Parameter 

Acceleration Model  Deceleration Model  
Estimate t-statistic Estimate t-statistic 

Sensitivity,  0.0355 1.21 -0.86 -3.92 
Speed, β 0.291 5.64 - - 
Spacing, γ 0.166 1.68 0.565 9.51 
Traffic density,  0.550 2.50 0.143 2.04 
Relative speed,  0.520 7.97 0.834 12.68 

 

 
2.3.4 Shortcomings of Stimulus-Response Car-Following Models 

The stimulus-response models as reviewed in this chapter have several major 

limitations in replicating drivers’ car-following behavior. Although numerous studies 

have attempted to address the limitations of the GM model (Chandler et al., 1961) there 

still remain three major shortcomings:   

1. The models assume that the reaction time is the same for all drivers and ignore 

differences between vehicle types.   
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2. The models assume drivers can detect even small magnitudes of stimulus, which is 

unrealistic. Drivers are expected to respond to the driving actions of the leading 

vehicle only if the perceived stimulus exceeds a certain threshold.  

3. The models estimate a single value for each of the other model parameters including 

speed, relative speed, and vehicle separation. Estimating a single value for each 

parameter of the models does not capture individual differences between different 

drivers and different vehicle type being driven and/or followed. For example, drivers 

of automobiles may behave differently when driving behind large trucks as opposed 

to when driving behind other automobiles. 

2.3.5 Psychophysical Car-Following Models 

The concept of the psychophysical car-following models is similar that of the 

stimulus-response models. That is, a leading vehicle influences longitudinal movement of 

a following vehicle in the same lane. A driver perception of relative movement of the 

leading vehicle, changes in separation and speed difference both influences the 

characteristics of the following vehicle. According to Wiedemann (1974), drivers 

perceive changes in separation only if the physical impulse exceeds a certain minimum 

value called threshold. The impulse is the seen size of a leading vehicle. Drivers perceive 

these changes depending on how fast the image of the leading vehicle changes. These 

changes are also function of differential speed and distance (Wiedemann, 1974.  

Todosiev (1963) was motivated by previous studies undertaken on steady-state 

car-following and started to study vehicle following processes. This study collected 

typical vehicle trajectories and derived distance, speed, relative speed, and relative 

acceleration variables. The study found that the relative acceleration was almost constant 
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in certain portions and driver changed them at certain action points called thresholds (i.e. 

limits). Todosiev conducted simulator experiments to determine the thresholds and 

human perception thresholds causing them. The results obtained were compared from 

similar results obtained from psychophysical investigations in human perception of 

moving objects. The study used action point density as a function of relative speed and 

relative acceleration for different speed levels to determine speed thresholds. The speed 

thresholds defined limits for drivers to detect relative speed with a certain fixed 

probability at a given separation. The study found that the threshold for positive relative 

speed was greater than the threshold for negative relative speed for the same separation.  

Michaels (1965) studies three car-following modes: closing process with constant 

relative speed, steady-state following, and responses to acceleration of a lead vehicle. 

According to Michaels, in the closing process, a horizontal visual angle subtended by the 

lead vehicle keeps changing continuously. The rate of change of angular speed correlates 

to the movement of the leading vehicle, hence relative speed between the two vehicles. 

The rate of change of angular speed is defined as:  

 

 

2-25 
 

Where: 

  is the speed of a leading vehicle 

   is the speed of a subject vehicle 

   is the position of the leading vehicle 

   is the position of the subject vehicle 
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The study found that human threshold of angular speed ranged from 3

10   to  10 10 , with mean around  6 10  . During car-following state, Michaels 

proposed three distinct phases: when angular speed is below threshold, when angular 

speed is above threshold, and when angular speed is equal to threshold.  In each phase, 

driver detects angular speed and adjusts driving condition accordingly. At angular speed 

above the threshold, the driver simply employs detection of changes in separation to 

determine whether a leading vehicle is traveling slower. On the other hand, when angular 

speed is above the threshold, the driver responds by reducing speed sufficiently to keep 

angular speed at or near the driver absolute threshold of detection. Otherwise, the driver 

tries to keep relative speed to zero and maintain minimum safe separation. For steady-

state following, the angular speed between two consecutive vehicles was assumed below 

the threshold of detection. In this case, the results showed that the distance change 

required for detection was less for closing than for opening situation.  

Hoefs et al. (1972) conducted field measurements on motorways in order to 

calibrate models developed by Todosiev (1963) and Michaels (1965). The result of the 

measurements showed the action points in the closing behavior, that is, when following 

driver starts to adapt his driving behavior to the slower leading vehicle by decelerating. 

Moreover, the measured separation and speed difference gave researchers in-depth 

insights on driving behavior under different conditions: deceleration behavior in closing 

processes and duration of oscillation processes in close following situations.  

Wiedemann (1974) combined measurements and investigations conducted by 

Todosiev (1963), Michaels (1965), and Hoefs (1972) in defining the basic functions of 

the psychophysical model. The psychophysical model emulates driver perceptions and 
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reactions using a defined set of thresholds and desired distances. These thresholds delimit 

different modes that define different situations of interactions between a subject vehicle 

and a leading vehicle. The modes include free driving, approaching, following, and 

emergency braking. Different driving procedures are associated with different modes 

representing driving behavior under given situations and drivers behave differently.   

Figure 2-3 shows different thresholds developed by Wiedemann that characterize 

separation for different driving modes between two following vehicles. In this figure, 

horizontal axis represents the difference in speed while the vertical axis shows separation 

between the two following vehicles. The positive difference in speed characterizes a 

closing process, that is, speed of leading vehicle is lower than a subject vehicle and 

negative difference in speed characterizes opening process.  

 

 

Figure 2-3. Car-following logic (Wiedemann, 1974). 
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The following is the definitions of the thresholds shown in Figure 2-3 above: 

AX: desire distance for standing vehicles, that is, front-to-front distance and is given by:  

AXmult).I(RNDAXaddLAX 1++=  

Where AXadd and AXmult define the range of desired minimum separation. 

ABX:  desired minimum following distance at low speed differences and is given by: 

 BXAXABX +=  

V))I(RND.BXmultBXadd(BX 1+=  

Where BXadd and BXmult define the range of variation.  

SDV: perception threshold of speed difference at long distances and defined as: 

2-
=

CX
AXDX

SDV
 

)))I(RND)I(RND(CXmultCXadd(CXconstCX 2+1+=  

Where CXconst, CXadd and CXmult define the range of the thresholds.  

SDX: perception of growing distance in following process and is calculated as follows: 

BX.EXAXSDX +=  

RND2(I)-NRND+= (EXmultEXaddEX  

Where NRND and RND2 (I) are random parameters.  

CLDV: perception threshold for recognizing small speed differences at short, decreasing 

distances and is defined as: 

2= EX.SDVCLDV  

OPDV: perception threshold for recognizing small speed differences at short but 

increasing distances and is defined as: 

)NRND.OPDVmultOPDVadd(CLDVOPDV --=  
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Where OPDVadd and OPDVmult define the range of the parameter while NRND 

parameter represents variations for the same driver. 

As previously stated, the thresholds described above delimit driving behavior into 

four modes: un-influenced driving, closing process, following process and emergency 

braking. In each mode, different procedures are used for estimating the parameter of 

driving behavior such as values of acceleration in longitudinal direction. In the following 

process a driver in this mode was assumed be following a leading vehicle at quite the 

same speed. The driver does not consciously react to movements of leading vehicle but 

tries to keep acceleration low. 

2.3.6 Shortcomings of Psychophysical Car-Following Models 

The psychophysical models reviewed above are designed to emulate drivers’ car-

following behavior based on limits of human perception of moving objects. The models, 

however, have four major shortcomings:  

1. Wiedemann (1974) mentioned that there was no exact knowledge of human 

distributions for different parameters was available when the models were 

developed. Therefore, random parameters including RND1 (I), NRND, and RND4 

(I) were assumed to be normally distributed with mean value of 0.5 and standard 

deviation value of 0.15 (i.e. N (0.5, 0.15).  

2. In the following process, drivers are assumed do not consciously react to the 

movement of a leading vehicle but tries to keep acceleration low, which is 

opposite of what is expected. Drivers are expected to be more conscious in the 

following process because of safety related reasons.  
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3. The models do not incorporate driver response time lags of a following vehicle. In 

other words, the models assume drivers react instantaneously after attaining their 

desired thresholds.  

4. The thresholds of the models are the same for different drivers and ignore 

differences between vehicle types.  Thus, the models do not capture differences in 

driving behaviors of different drivers depending on the type of vehicle being 

driven and/or followed.  

2.3.7 Fuzzy Logic-Based Car-Following Models 

Fuzzy logic-based and neuro-fuzzy logic-based models have recently been 

proposed for modeling driving behavior in car-following models. The basic concept of 

fuzzy logic-based model is that it transforms input factors into linguistic forms using 

certain membership functions. In other words, the models use normal language-based 

driving rules.  On the other hand, neural network approach is similar to fuzzy logic-based 

but it incorporate past driving behavior through the process of learning and training. For 

example, Kikuchi and Chakroborty (1992) proposed car-following based on fuzzy 

inference system. Drivers’ responses were based on transformed sets of driving rules into 

linguistic terms.  For example, a typical rule for a driver response can take the following 

form: 

 

IF   Separation is ADEQUATE 

  Relative speed is NEAR ZERO, 

  Acceleration response of a leading vehicle is MILD 

THEN  Subject vehicle should accelerate MILDLY 
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Inokuchi et al. (1999) presented similar approach by incorporating neural 

networks and fuzzy logic. This neuro-fuzzy model employed similar linguistic definitions 

of IF and THEN fuzzy logic rules. The study also incorporated a neural network to 

enhance the control algorithm. The neural network model is representation of the process 

that learns by experience and examples. In the proposed neuro-fuzzy car-following 

model, the characteristic of the following driver was observed from a data and the 

learning process was represented by changing the weight of the synapse or connection 

between neurons in the model. The neural network was incorporated with the fuzzy rules 

and produced an estimation of the actions of the driver. However, driver response time 

lag was considered as a constant in this model. Several other research efforts also 

considered fuzzy application of car-following theory including fuzzification of the 

MISSION model (Rekersbrink, 1995) and information of the MITRAM model (Yikai et 

al., 1993).  

2.3.8 Shortcomings of Fuzzy Logic-Based Car-Following Models 

The fuzzy logic-based car-following models have the following limitations:  

1. The models assume constant driver response time lags and ignore differences 

between vehicle types. 

2. It is difficult to calibrate the models and to select the function type and their limiting 

values. 

3. In practice, it is difficult to determine the thresholds based on linguistic driving rules 

such as ADEQUATE vehicle separation. For example, different drivers may define 

ADEQUATE vehicle separation differently for the same magnitudes of stimuli.  
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4. The models indicate important parameters in replicating drivers’ car-following 

behavior but do not indicate which parameters are statistically significant. 
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CHAPTER 3 

PROPOSED MODELS AND ESTIMATION METHODOLOGY  

3.1 Introduction 

This chapter describes in detail the stimulus-response models proposed for this 

research.  The models are an extension of the GM models (Gazis et al. (1961). Unlike the 

GM models, the models proposed for this study delimit car-following behavior into three 

separate modes: acceleration, deceleration, and steady-state responses. Generally, during 

peak periods, traffic is congested and there are therefore limited opportunities for drivers 

to attain their desired free flow speeds.  It is however as noted by other previous 

researchers (Ozaki, (1993), Subramanian (1996)) the characteristics of the responses of 

the drivers depend on whether they are reacting to a stimulus that requires an acceleration 

response or one that requires a deceleration response.  

The acceleration mode occurs when the stimulus is positive and exceeds the 

driver’s threshold. On the other hand, the deceleration mode occurs when the stimulus is 

negative and exceeds the driver’s threshold. The steady-state mode occurs when the 

stimulus is within the thresholds. Therefore, the response of a driver of subject vehicle 

  at time    is defined as follows: 

 

Response ,

acceleration           if      , ∆ , ∆

deceleration            if     , ∆ , ∆

steady-state                     otherwise                                 
                   3-1 

 

Where: 

∆     is the driver response time lag for the acceleration response 
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∆     is the driver response time lag for the deceleration response 

   is the relative speed threshold for the acceleration response 

   is the relative speed threshold for the deceleration response 

, ∆   is the speed of a subject vehicle   at time ∆  

, ∆   is the speed of a leading vehicle 1  at time ∆  

, ∆ , ∆   is the relative speed between the two vehicles at time ∆  

0   

 0 

The drivers’ response time lags for both the acceleration and deceleration 

responses are assumed to be different. The thresholds are also assumed to be different for 

different drivers and also for the same driver the magnitude of    and    may be 

different. Todosiev (1963) found that the positive response threshold is greater than the 

negative response threshold for a given vehicle separation.  Similarly, Michaels (1965) 

also found that the distance for detecting a slower leading vehicle is smaller compared to 

the one for detecting a faster leading vehicle. These findings indicate that drivers are 

more sensitive under deceleration response than acceleration response. However, the 

thresholds are likely to be a function of speed and separation. That is, at slower speeds 

and smaller separations the threshold may be smaller than the thresholds at higher speeds 

and bigger separations. This research simplified the models by determining one value of 

threshold that is independent of these factors but the values of thresholds are different for 

acceleration response and deceleration response.  
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3.2 Acceleration and Deceleration Response Models 

As previously stated in this research, the proposed family of car-following models 

is based on the GM model shown in Equation 2-13. The proposed models have four 

significant differences with the GM model: 

1. Delimit the car-following behavior into three separate modes: acceleration, 

deceleration, and steady-state responses. It is hypothesized that in each mode, drivers 

behave differently and have different response aggressiveness needs. 

2. Determine the driver response time lags and stimulus thresholds for acceleration and 

deceleration responses.  

3. Incorporate vehicle heterogeneity in the models by estimating sub-models depending 

on type of vehicle being driven and/or followed. The sub-models include automobile 

following automobile, automobile following large truck, and large truck following 

automobile. 

4. Calibrate the acceleration and deceleration response models for each driver 

separately, obtain the distributions of these parameters, and aggregate the results. 

The proposed general form for the acceleration and deceleration response models 

is shown in the following equation.  

 

, , ∆ , ∆ , ∆ , ∆ , ∆         3-2 
 
 
 
Where: 

∆   is the driver response time lag 

,   is the acceleration/deceleration of a subject vehicle   at time  



 
 

48 
 

, ∆   is the speed of a subject vehicle   at time ∆  

, ∆   is the speed of a leading vehicle 1  at time ∆  

, ∆   is the position of the leading vehicle 1  at time ∆  

, ∆   is the position of the subject vehicle   at time ∆  

  is the length of the leading vehicle 

, ∆ , ∆   is the vehicle separation at time ∆  

, ∆ , ∆   is the relative speed between the two vehicles at time ∆  

  is the driver sensitivity constant 

  is the speed parameter 

  is the relative speed parameter 

  is the vehicle separation parameter 

 As shown in the Equation 3-2, the acceleration and deceleration response modes 

have similar model form. In both models the acceleration or deceleration response is a 

function of driver sensitivity and a stimulus. The stimulus that a driver responds to is 

represented by the relative speed i.e. , ∆ , ∆  while the driver sensitivity is a 

function of vehicle speed and vehicle separation and is represented by the 

term   , ∆ , ∆ , ∆ . 

It is assumed that the parameters   are different for different drivers. The 

variations are attributed to aggressiveness and capabilities of individual drivers in 

estimating differential speeds and separations with the leading vehicle. Further, as 

discussed earlier in this study, the parameters are expected to be different for the 

acceleration and deceleration modes and for different vehicle types (automobiles versus 

large trucks). 
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3.2.1 Expectation of the Signs of the Parameters 

For the acceleration response, the larger the positive relative speed, the larger the 

magnitude of the expected acceleration for the following vehicle. Hence, the sign of the 

relative speed parameter    is expected to be positive. It is also hypothesized that 

drivers are less aggressive when accelerating from a higher speed than from a lower 

speed and also that vehicle acceleration capabilities are lower at higher speeds. Therefore, 

the magnitude of the acceleration response is expected to be lower at higher speeds and 

higher at lower speeds. This suggests that the expected sign for speed parameter    is 

negative. Equally, the magnitude of the acceleration is expected to be lower for bigger 

vehicle separation than for smaller separation between the two following vehicles. Hence, 

the sign of the vehicle separation parameter   is expected to be positive.   

Similarly, for the deceleration response, the larger the negative relative speed, the 

larger the magnitude of the expected deceleration for the following vehicle. Hence, the 

sign of the relative speed parameter    is expected to be positive. It is also hypothesized 

that, for safety reasons, drivers will respond with higher deceleration rates at higher 

speeds than at lower speeds. This implies that the expected sign for speed parameter   

is positive. For similar reasons, when the vehicle separation is smaller, the magnitude of 

deceleration response is expected to be higher. Therefore, the expected sign of vehicle 

separation parameter   is negative. It should be noted that the signs for parameters   

and    are different from those of the acceleration response.  

 
3.3 Steady-State Response Model 

As previously stated in this study, the steady-state mode occurs when the stimulus 

is within the thresholds.  In this case, speed differences are lower and undetectable to the 
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drivers. In situations, drivers are more concerned about maintaining safe vehicle 

separation with the leading vehicle. Thus, a driver will either accelerate or decelerate 

depending on whether there is a need to increase or decrease the separation between the 

two vehicles. Therefore, the stimulus is no longer the relative speed but it is both the 

vehicle separation and speed. The concept of this model is based on assumption that at 

higher speeds or smaller vehicle separations, drivers are more likely to decelerate in lieu 

of accelerating and vice versa. To emulate this driving behavior, the following model is 

proposed:      

 

, , ∆ , ∆ , ∆                   3-3 

 

Where: 

∆   is the driver response time lag 

,  is the acceleration/deceleration of a subject vehicle  at time   

,   is the speed of the subject vehicle   at time ∆  

, ∆   is the position of a leading vehicle 1  at time ∆  

,   is the position of the subject vehicle   at time ∆  

, ∆ , ∆   is the vehicle separation at  time ∆  

   is the length of the leading vehicle 

    is the constant 

   is the speed parameter 

  is the vehicle separation parameter  
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3.3.1 Expectation of the Signs of the Parameters 

Similar to the acceleration and deceleration response models, the parameters 

 are assumed to be different for different drivers. Furthermore, this study hypothesize 

that the driver response has a negative relationship with the speed and a positive 

relationship with vehicle separation. This means that the higher the speed, the higher the 

likelihood of a deceleration response. On the other hand, the bigger the vehicle 

separation, the higher the likelihood of an acceleration response. Therefore, the signs of 

both parameters  and    are expected to be positive.  

At steady-state, the subject vehicle is moving at a constant speed which results in 

zero acceleration/deceleration response i.e. 

 

0 , , ,                      3-4 

 

Rearranging the equation result in: 

 

, , ,             3-5 

 

Further simplification yields the following relationship: 

 

, , ,                  3-6 
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But , ∆ , ∆  is the spacing between the two vehicles and is the reciprocal of 

traffic density   .  Thus, substituting the spacing by density and converting speed into 

miles per hour and density into vehicles per mile establishes the relationship between 

microscopic and macroscopic traffic flow model of the following form: 

 

1
1.47

5280  
      3-7 

 
Where: 

  is the space mean speed in miles per hour 

  is the traffic density in vehicles per mile-lane 

  is the average length of the vehicles in feet 

 

The traffic flow rate,   in vehicle per hour is given as: 

 

1
1.47

5280  
      3-8 

 

The traffic jam density,   which occurs when vehicles are at standstill e.g. at zero speed 

is obtained by equating equation 3-7 to zero as follows:  

 

0
1

1.47
5280  

      3-9 
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Rearranging 3-9 gives the expression of traffic jam density shown below: 

 

 
5280

           for       0 

3-10 
 
 
In the equation 3-10, the term     represents the average vehicle separation when 

vehicles are stopped, that is, jam separation.  

 

3.4 Estimation of Disaggregate Parameters of the Models 

This study estimates the parameters of the models in two stages. The first stage 

estimates the disaggregate parameters for each individual subject vehicles. The second 

stage estimates the aggregate parameters for all vehicles selected in this research and is 

discussed in detail in Section 3.5. The equations of the models proposed in this research 

are nonlinear in parameters. The disaggregate parameters of the models for each 

individual vehicles are estimated using nonlinear least squares regression technique. The 

models proposed can be rewritten in general form as:  

 

, , , ∆ ∆ ,                       1,2, … ,       3-11 

 

Where: 

,  is the response variable at time   

  is the k-vector of unknown parameters 

, ∆   is the vector of explanatory variables at time ∆  
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∆    is the error term at time  ∆  

  is the number of observations 

The error term accounts for the unobserved factors and for estimation purpose it is 

assumed to be normally identically distributed random variable with mean zero and 

constant variance i.e.  ∆ ~ 0, ,      ∆ 0,  and  .  

In a nonlinear model the unknown parameters of the models are estimated by 

maximizing log likelihood function. The log likelihood function for the nonlinear 

regression equation is defined as: 

 

ℓ ,
1

2  

∑ , , , ∆

 

    3-12 
 

The log likelihood is maximized when the sum of squared residuals,  is minimized. 

 

, , , ∆  

3-13 
 

Differentiating the objective function,  with respect to β and equating it to zero 

yields: 

 

2 , , , ∆
, , ∆ 0 

3-14 
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Setting the partial derivatives to zero produces equations for estimating the parameters of 

the regression equation. The equations formed do not have closed form solution, thus, 

they require solution by numerical optimization method. This study uses the Stata 

program to estimate parameters of the models. The Stata implements a modified Gauss-

Newton method in estimating parameters of the models (Baum, 2008). The modified 

Gauss-Newton method finds the minimum of the sum of squares: 

 

 

3-15 
 

The modified Gauss-Newton method starts with an initial guess   for the minimum 

squares and proceeds by the iterations and generates a better estimate of the unknown 

parameters. The iterations continue until the values of the parameters do not change 

significantly within a specified precision as follows: 

 

  ∆                             3-16 

 

Where    superscript refer to iteration number,    is the fraction of increment vector that 

limits divergence to occur and takes the values in interval 0 1. The increment 

 ∆  is the solution of normal equations: 

 

∆                             3-17 
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Where   superscript denotes the matrix transpose,   is the vector of function of   , and 

   is the    Jacobian matrix of   with respect to   both evaluated at  . The 

Jacobian    is the vector of residuals    with respect to unknown parameters   and is 

defined as: 

 

,        1, . . ,   0, … ,  

                   3-18 
 

Where the    subscripts refer to a particular data point, the    subscripts refer to a 

particular fitting parameter. 

 

3.5 Estimation of Variance of the Parameters 

The parameter variances may be estimated from linearized version of the model 

based on asymptotic covariance matrix as shown in the equations that follows:  

 

Let   
, , ∆  and                

 
 

Then, the estimate of asymptotic covariance matrix of regression parameters is given as:  

 

                        3-19 

 

Where: 

   is the estimate of the variance of the error term 



 
 

57 
 

  is the covariance matrix.  

 

The resulting standard error of the parameter estimate is given as follows: 

 

                         3-20 
 
 

3.6 Hypothesis Test 

Hypothesis test is used for making statistical inferences and comparing 

parameters of the models. In the context of this research, the comparisons are made using 

null hypothesis  , that is, there is no statistical difference in the means of the 

parameters of the interest. Rejecting   means accepting the alternative 

hypothesis  ,  that is, there is evidence of statistical difference in the means of the 

parameters of the interest. The hypothesis test is defined as follows: 

 

 : 0 
 
  : 0                        3-21 

 
 
The hypothesis test is conducted using t-statistic test. The t-statistic for nonlinear 

regression is commonly referred as pseudo-t because it does not have Student’s 

   distribution with   degrees of freedom in finite samples when  , , ∆  is 

nonlinear in the parameters. Furthermore, , , ∆  depends on lagged values of 

 ,   and error ∆  are not normally distributed. In this case, pseudo-t is calculated as 

follows: 
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    3-22 

 

The approximate confidence interval (C.I.) of parameter estimate is computed as:  

 

. .             3-23 

 

Where  is the critical value of  which is 1.96 for two tail test at 5 percent 

significance level. Therefore, the 95 percent confidence interval of the parameter is 

simplified as follows: 

 

. . 1.96                         3-24 

 

The p-value which is the probability associated with the t-statistic value indicates the 

significance level of accepting or rejecting the null hypothesis and is calculated as: 

 

p-value  / )                                                                  3-25  

 

At 5 percent significance level, the null hypothesis     is accepted when the calculated 

p-value is greater than 5 percent. On the other hand, the null hypothesis is rejected when 

the calculated p-value is less than 5 percent and accepts the alternative hypothesis  .  
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3.7 Measures of Goodness-of-Fit of the Model 

Goodness-of-fit measures how well the estimated model able to explains the 

variation of the observed values.  In this research, the scalar measure of the model fit is 

the based on adjusted    and is calculated as shown in the following equations below: 

 

1 1
∑ , ,

∑ , ,

 

    3-26 

 

 1 1
1

 
3-27 

  
Where: 

   is the number of observations 

   is the number of parameters in the model. 

 

3.8 Aggregation of Parameters of the Model  

Parameter and variances estimates in the above equations are for individual 

drivers. To obtain the aggregate parameter and variance estimates for all drivers require 

pooling the estimates of the individual drivers. The literature review indicated that there 

are numerous methods used for aggregating parameter estimates and their corresponding 

variances.  This study assumes that estimates have similar distribution and uses simple 

mean and variance to aggregate the estimates as follows  

The mean parameter estimate is calculated using the following equation: 
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∑
 

3-28 
 

Where    is the number of vehicles used in estimation. 

 

The standard deviation  of the mean of the parameter is calculated as follows: 

 

 
∑

1  

3-29 
 

3.9 Validation of the Models 

Validation of the model is important because it shows the transferability ability of 

the model to a different spatial locations or time periods. The most widely used statistical 

measures found in the literature that have demonstrated to produce reasonable results in 

practical applications include Root Mean Square Error (RMSE) and Theil Inequality 

Coefficients (U). These measures provide a gauge of how well the estimated values 

replicate the corresponding field observed values. In other words, the measures indicate 

the degree of goodness-of-fit of the estimated values in emulating the field observed 

values.  

RMSE measures the deviations between the estimated and field observed values 

and is defined as follows: 
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1
 

3-30 
 
Where: 

   is the number of observations 

   is the estimated responses from the model 

   is the field observations of acceleration/deceleration responses 

 

U measures the scaled root mean squared difference between the estimated and 

field observed values. This measure was introduced by Henry Theil in 1967 for economic 

forecasting. The most prevalent benefits of the U measure are: First, it allows the 

comparison of different pairs of datasets at different scales, with respect to a broad 

concept of inequality. Second, the inequality coefficient U can be decomposed to provide 

additional information of its main statistic factors such as difference in mean, difference 

in variability, and lack of correlation. Theil inequality coefficient (U) is defined as 

follows:  

 

1 ∑

1 ∑ 1 ∑
 

3-31 
 

Where: 

   is the number of observations 

   is the estimated responses from the model 
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   is the field observed values  

The numerator represents the mean squared difference and the denominator 

provides the scaling factor. As a result of scaling factor, the value of  statistic lies 

between zero and unity. The value    is zero when the two datasets are identical, 

meaning there is a perfect fit between the two datasets. Similarly, the higher the value of 

   indicates disagreement between the two datasets. In addition, the coefficient can be 

separated into three components that contribute to the overall inequality between the two 

datasets. The components are important because they provide additional information on 

the difference in means between the two datasets ( ), difference in variance ( ), and 

(3) lack of correlation (  ). These three components are defined as follows: 

 

∑  

3-32 
 
 

∑  
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2 1
∑  

    3-34 
 
 

1
1  
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Where ,   ,  , and    are means and standard deviations of the field observed values 

and estimated values, respectively, whereas    is their correlation coefficient. The three 

components sum to one, i.e. 

 

 1             3-36 
 
 
 
The  measure indicates a systematic error, that is, it measures the degree to which the 

average estimated values and field observed values deviate from each other. A large 

value would indicate the presence of a systematic bias, therefore, the need for revising the 

models. The   measure indicates the ability of the model to capture the degree of 

variability between the estimated values and field observed values. Similarly, a large 

value of   indicates that the estimated values have considerable variations compared to 

the field observations suggesting model revision. The   measure indicates the 

asymmetric error, that is, it measures the remaining error after accounting for the 

deviations from the field observed values. A small value of  suggests that that there is 

large correlation between the two datasets, thus, the need further revisions of the model. 
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CHAPTER 4 

IMPLEMENTATION 

4.1 Introduction 

The focus of this chapter is to present a detailed implementation procedure used 

for estimating parameters of the models. To meet the research objectives, as previously 

stated, the study applied nonlinear least square regression with robust standard errors to 

estimate driver response time lags and other parameters of the models including speed, 

relative speed, and separation. In order to incorporate vehicle heterogeneity in the 

acceleration, deceleration, and steady state response models, three separate models are 

developed for the following pairs of following vehicles: 

• “Automobile following automobile”,  

• “Automobile following large truck”, and  

• “Large truck following automobile”.  

Due to data limitation, no model for “large truck following large truck” is 

calibrated.  For example, there were only two pairs of large trucks that satisfied selection 

criteria for inclusion in this research. Using the two pairs would not produce results that 

are representative of the observed driving behavior of large trucks traveling behind other 

large trucks. This research used vehicle trajectory data that was collected as part of the 

FHWA’s Next Generation Simulation (NGSIM) project (NGSIM, 2008) to calibrate 

parameters of the models.  
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4.2 Data Description 

The family of car-following models developed is calibrated using vehicle 

trajectory dataset collected on a segment of Interstate 101 (Hollywood Freeway) in Los 

Angeles, California. The dataset contains 45 minutes of vehicle trajectory data collected 

on Wednesday June 15, 2005 from 7:50 am to 8:35 am. The time period from 7:50 am to 

8:05 am represented build up to congestion while 8:05 to 8:35 am represented primarily 

congested traffic conditions (Cambridge Systematics, Inc., 2005). The benefits of using 

the dataset include very detailed field vehicle trajectory data collected to date by FHWA 

for traffic microsimulation research and development (FHWA, 2005). A full detailed 

description of methodology and technology used to collect and process the data are 

available at the NGSIM Web site at http://ngsim.fhwa.dot.gov. A brief summary of study 

area and other characteristics of the data are explained in the subsections that follow. 

 

4.3 Study Site Characteristics 

The vehicle trajectory data was collected on a 2100 feet long section in the 

southbound direction of the freeway. The section has five through lanes (lanes 1 to 5) and 

one auxiliary lane (lane 6). The leftmost inner lane, that is, lane 1 is the High-Occupancy 

Vehicle (HOV) lane. The auxiliary lane is approximately 698 feet long and connects the 

on-ramp at Ventura and off-ramp at Cahuenga Boulevard. The data was collected using 

eight synchronized digital video cameras installed on adjacent 36-storey building (10 

Universal City Plaza). Figure 4-1 shows a schematic diagram of the study site and camera 

coverage area. 
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Figure 4-1. Study site and camera coverage (Cambridge Systematics, Inc., 2005). 
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4.4 Data Characteristics 

To process the collected video data, a special computer program was used to 

translate the recorded video images into vehicle trajectory data. This program 

automatically detected and tracked individual vehicles from the recorded images from the 

beginning to the end of the study site.  However, in situations where the translated 

vehicle trajectory was inaccurate, manual corrections were made. Figure 4-2 shows a 

flow chart summarizing the process used for detecting and tracking vehicles.  

 

 
 

Figure 4-2. Vehicle detection and tracking process (Cambridge Systematics, Inc., 2005). 
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The generated vehicle trajectory data contained a detailed longitudinal and lateral 

positions of each vehicle in the study site every at one-tenth of a second interval. The 

available vehicle trajectory data from NGSIM has 18 vehicle trajectory variables that 

include:   

1. Vehicle identification number, 

2. Frame identification number, 

3. Total frames—total number of frames which the vehicle appears in the dataset, 

4. Global time (Epoch time)—elapsed time since January 1, 1970 (milliseconds), 

5. Local X—lateral (X) coordinate of the front center of the vehicle with respect to 

the left-most edge of the section in the direction of travel (feet), 

6. Local Y—longitudinal (Y) coordinate of the front center of the vehicle with 

respect to the entry edge of the section in the direction of travel (feet), 

7. Global X—X coordinate of the front center of the vehicle based on CA State 

Plane III in NAD83 (feet), 

8. Global Y—Y coordinate of the front center of the vehicle based on CA State 

Plane III in NAD83 (feet), 

9. Vehicle Length (feet), 

10. Vehicle Width (feet), 

11. Vehicle Class (text), 

12. Vehicle velocity—instantaneous velocity of vehicle (ft/sec), 

13. Vehicle acceleration—instantaneous acceleration of vehicle (ft/sec2), 

14. Lane Identification (number), 

15. Preceding Vehicle (number), 
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16. Subject vehicle (number), 

17. Spacing (spacing headway) (feet), and 

18. Headway (time headway) (seconds) 

However, the vehicle trajectory variables used in this study for each subject 

vehicle include the following: 

1. Time of observation in seconds,  

2. Longitudinal position (local Y) in feet,  

3. Class,  

4. Length in feet,  

5. Speed in feet per second,  

6. Acceleration/deceleration in feet per second square,  

7. Lane number (lane 2, lane 3, and lane 4),  

8. Spacing in feet, and 

9. Leading vehicle class, speed, acceleration/deceleration, length, and spacing,  

Additional post processing of the data was made to generate other variables 

including relative speed and separation between pairs of following vehicles.  

 

4.5 Traffic Characteristics 

Table 4-2 shows traffic composition during the study period as compiled by 

Cambridge Systematics, Inc. (2005). The table shows that the traffic mix consisted of 

approximately 0.7 percent motorcycles, 97.0 percent automobiles, and 2.3 percent trucks 

and buses.  
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 Table 4-1. Vehicle Types 

Time Period Motorcycles Automobiles Trucks 
& Buses Total 

7:50 a.m. - 8:05 a.m. 30 2,086 53 2,169 
8:05 a.m. - 8:20 a.m. 10 1,963 44 2,017 
8:20 a.m. - 8:35 a.m. 5 1,870 40 1,915 
Total 45 5,919 137 6,101 
Percentage 0.7% 97.0% 2.3% 100% 

 
 
 

Table 4-2 shows a summary of traffic flow rates and speeds at 15-minute 

intervals. The results show significantly low flow rates and speeds indicating congested 

freeway traffic conditions.    

 
      Table 4-2. Traffic Flow Rate and Speed in 15-minutes 

Time Period Vehicle flow rate 
(vph) 

Space Mean Speed 
mph 

7:50 a.m. - 8:05 a.m. 8,612 25.66 
8:05 a.m. - 8:20 a.m. 8,016 21.59 
8:20 a.m. - 8:35 a.m. 7,604 18.34 

 
 
 

Table 4-3 shows a summary of the traffic flow rates and speeds per lane during 

the study period.  On the average, it appears there were no appreciable differences in 

speeds on the through lanes. However, auxiliary lane had considerably higher difference 

in speeds compared to the through lanes.  
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Table 4-3. Traffic Flow Rate and Speed per Lane 

 Vehicle flow rate (vph) Space mean speed (mph) 
 
 
Lane 

7:50 a.m. 
to 

8:05 a.m. 

8: 05 a.m. 
to 

8:20 a.m. 

8: 20 a.m. 
to 

8:35 a.m. 

7:50 a.m. 
to 

8:05 a.m. 

8: 05 a.m. 
to 

8:20 a.m. 

8: 20 a.m. 
to 

8:35 a.m. 
Lane 1  1,528 1,474 1,394 21.45 21.84 16.39 
Lane 2 1,676 1,574 1,460 25.45 20.88 16.90 
Lane 3 1,660 1,474 1,390 26.68 20.90 17.07 
Lane 4 1,620 1,518 1,374 26.27 21.19 17.02 
Lane 5 1,664 1,512 1,490 27.70 23.22 19.55 
Lane 6   464 464 496 37.45 34.51 31.62 
Total 8,612 8,016 7,604 26.21 22.35 18.34 

 
 
 

Figure 4-3 shows the number of lane change made by all vehicle types during the 

study period. The results show that number of lane changes on the through lanes 

decreased from the rightmost lane to leftmost lane. In other words, lane 5 had the highest 

number of lane changes and lane 1 had the fewest number of lane changes. This could be 

related to vehicles merging from on-ramp and exiting onto off-ramp. 
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Figure 4-3. Vehicle lane changes by lane. 
 
 
Figure 4-4 shows a portion of vehicle trajectory on lane 4. It indicates interactions 

between pairs of following vehicles such as propagation of disturbances in the traffic 

stream and lane changes.  For example, a broken line indicates that the vehicle changed 

lane. From the graph, it is observed that generally large trucks on the average had bigger 

spacing than automobiles. This may be due to the fact that trucks require longer stopping 

and lane changing distances than automobiles. Further observations indicate that 

automobiles had similar spacing regardless of whether they were travelling behind large 

trucks or behind other automobiles.  
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Figure 4-4. A portion of vehicle trajectories on lane 4. 

 

4.6 Preparation of Calibration Data 

Vehicle pairs selected for this study had to satisfy the following criteria:  

1. Only pairs of vehicles that were following each other over the entire section without 

changing lanes and being interrupted by another vehicle were selected. The rationale 

of selecting only vehicles that did not change lanes is based on the assumption that 

drivers when changing lanes may exhibit different characteristics from those of car-

following behavior.  

2. Only vehicles in the three middle lanes were considered in order to avoid the impact 

of weaving movements on the auxiliary lane and the rightmost lanes as well as the 

leftmost lane, which is an HOV lane.  

This process resulted in 749 pairs of “automobile following automobile”, 25 pairs 

of “automobile following large truck”, 32 pairs of “large truck following automobile”, 

and two pairs of “large truck following large truck”.  However, for “automobile 

      Autos 
      Trucks 
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following automobiles” model, only 75 out of 749 pairs were selected at random for use 

in this study. The reason for using only 75 pairs of vehicles was to reduce the workload 

required to complete the study. Furthermore, it should be noted there was no enough pairs 

of vehicles to calibrate the model for “large truck following large truck”.  

For each subject vehicle and the leading vehicle selected based on the criteria 

above, the following variables were extracted at each time interval: 

1. Time of observation,  

2. Acceleration/deceleration,  

3. Speed of vehicles,  

4. Relative speed between the two vehicles, and  

5. Separation between the two vehicles. 

To minimize the random fluctuations of the instantaneous trajectory data, this data 

was further filtered by taking the moving averages for each of the variables over 0.5 

seconds. The problem of using unfiltered data was also observed by Treiber et al. (2008).  

 

4.7 Descriptive Statistics of the Variables 

This section presents the descriptive statistics of the response, stimulus, and 

sensitivity variables. Figure 4-5 shows distributions of acceleration/deceleration 

responses for different pairs of following vehicles and fitted normal density. The figure 

indicates symmetrical distributions with high peaks near zero for all pairs of following 

vehicles. Although, these high peaks may indicate drivers were traveling at constant 

speed, they may also be due to drivers’ incidental responses. To account for this, this 

research assumed that the responses within ±0.05 were due to drivers’ incidental 
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responses. In addition, it appears that there was no appreciable difference in the 

acceleration and deceleration responses between automobiles and large trucks.  

 

 

Figure 4-5. Acceleration/deceleration distributions. 

 

Figure 4-6 shows distributions of relative speeds for different pairs of following 

vehicles and fitted normal density curve.  The figure shows automobiles traveling behind 

large trucks or behind other automobiles had similar distribution of relative speeds. 

However, large trucks following automobiles have more spread distribution than 

0
.1

.2
.3

Fr
ac

tio
n

-10 -5 0 5 10
Acceleration/deceleration (ft/sec2)

Automobile following automobile

0
.1

.2
.3

Fr
ac

tio
n

-10 -5 0 5 10
Acceleration/deceleration (ft/sec2)

Automobile following large truck

0
.1

.2
.3

Fr
ac

tio
n

-10 -5 0 5 10
Acceleration/deceleration (ft/sec2)

Large truck following automobile



 
 

76 
 

automobiles. This may suggest that large trucks maintained relatively higher relative 

speeds compared to automobiles. 

 
 

 

Figure 4-6. Relative speed distributions. 

 
 

Figure 4-7 shows distributions of speed of a subject vehicle and fitted lognormal 

density curve for different pairs of following vehicles. The figure indicates that the speed 

distribution for “automobile following automobile” is skewed to the left while other pairs 
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average, there are no considerable differences on the average speeds between different 
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travel at relatively lower speeds, thus, it is unlikely for certain vehicle types to outpace 

the others. 

 

 

Figure 4-7. Speed  distributions. 

 

Figure 4-8 shows distributions of vehicle separation maintained for different pairs 

of following vehicles. A lognormal fitted curve is superimposed on each distribution. 

From the figure, it appears that automobiles traveling behind other automobiles 

maintained smaller separation compared to automobiles behind large trucks. For 

example, automobiles behind other automobiles had average separation of 47 feet while 
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separation of about 67 feet, which appears to be significantly bigger than automobiles. 

This observation was expected because large trucks generally need bigger safe stopping 

distance compared to automobiles.  

 

 

Figure 4- 8. Vehicle separation distributions. 

 

Table 4-4 summarizes descriptive statistics of the variables for different pairs of 

following vehicles. The results indicate that the mean value of the acceleration response 

is higher than deceleration response for different pairs of following vehicles. Similarly, 
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of following vehicles. As expected, the results indicate that large trucks traveling behind 

automobiles have bigger separation than automobiles.  

 

          Table 4-4. Descriptive Statistics of Variables 

Automobile following automobile 
Variable Mean Std Minimum Maximum 

Acceleration (ft/sec2) 2.03 1.80 0.05 11.04 
Deceleration (ft/sec2) 1.91 1.81 0.05 11.00 
Positive relative speed (mph) 1.95 1.74 0.00 14.45 
Negative relative speed (mph) 1.85 1.66 0.00 17.91 
Speed (mph) 16.40 8.14 0.00 46.17 
Vehicle separation (ft) 46.66 24.41 0.78 237.05 

Automobile following large truck 
Acceleration (ft/sec2) 2.04 1.76 0.05 9.61 

Deceleration (ft/sec2) 1.37 1.44 0.05 8.98 

Positive relative speed (mph) 1.96 1.67 0.00 2.10 

Negative relative speed (mph) 1.78 1.65 0.00 16.29 

Speed (mph) 20.08 8.57 0.00 44.41 

Vehicle separation (ft) 49.77 27.82 1.83 150.40 
Large truck following automobile 

Acceleration (ft/sec2) 2.01 1.76 0.05 9.07 

Deceleration (ft/sec2) 1.57 1.67 0.05 9.36 

Positive relative speed (mph) 3.79 3.87 0.00 32.24 

Negative relative speed (mph) 2.48 2.24 0.00 20.83 

Speed (mph) 20.85 8.57 0.00 45.30 

Vehicle separation (ft) 66.44 35.67 7.88 191.64 
 

 
Table 4.5 shows the same data in Table 4-4 but arranged by different pairs of 

following vehicles. When comparing acceleration responses between pairs of the 

following vehicles, it appears that there is no difference in the means of the acceleration 

responses for different pairs of following vehicles. However, the deceleration responses 



 
 

80 
 

appear to be different. Similarly, automobiles traveling behind other automobiles have 

relatively higher difference in speed than other pairs of following vehicles. Furthermore, 

observation indicates that automobiles traveling behind other automobiles have higher 

speed than when traveling behind large trucks. Also the results indicate that, on the 

average, large trucks have bigger vehicle separation compared to automobiles. More 

interestingly, automobiles traveling behind large trucks have almost maintained the same 

vehicle separation regardless of vehicle being followed.   

 

Table 4-5. Descriptive Statistics of the Variables by Pairs of Following Vehicles 

Variable Statistic 
Automobile 
following 

automobile 

Automobile 
following 
large truck 

Large truck 
following 

automobile 

Acceleration (ft/sec2) 

Mean 2.03 2.04 2.01 
Std 1.81 1.76 1.76 
Minimum 0.000 0.05 0.05 
Maximum 11.04 9.61 9.07 

Deceleration (ft/sec2) 

Mean 1.92 1.37 1.57 
Std 1.81 1.44 1.67 
Minimum 0.00 0.05 0.05 
Maximum 11.01 8.98 9.36 

Positive relative speed (mph) 

Mean 1.95 1.96 3.79 
Std 1.74 1.67 3.87 
Minimum 0.00 0.05 0.05 
Maximum 14.45 2.10 32.24 

Negative relative speed (mph) 

Mean 2.74 1.78 2.48 
Std 2.472 1.65 2.24 
Minimum 0.05 0.05 0.05 
Maximum 26.33 16.29 20.83 

Speed (mph) 

Mean 28.81 20.08 20.85 
Std 13.05 8.57 8.57 
Minimum 0.05 0.05 0.05 
Maximum 74.51 44.41 45.30 

Vehicle separation (ft) 

Mean 46.66 49.77 66.44 
Std 24.41 27.82 35.67 
Minimum 0.78 1.83 7.88 
Maximum 237.05 150.40 191.64 
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4.8 Estimation of Disaggregate Parameters  

This section discusses in detail methodology used for estimating the driver 

response time lags for both acceleration and deceleration responses for each individual 

driver. Figure 4-9 shows the field observed speed profiles of two following vehicles. The 

figure shows a portion of the speed profiles when the two vehicles were decelerating, 

accelerating, and traveling at somewhat constant speed. The figure indicates a similar 

trend of the speed profiles between the following vehicle and the leading vehicle. This 

implies that a driver of the following vehicle was being impacted by the driving actions 

of the leading vehicle. Also the figure shows the following vehicle had higher peaks than 

the leading vehicle, suggesting that the driver of the following vehicle was unable to 

estimate accurately the speed of the leading vehicle. 

 

 
Figure 4-9. Field observed speed profiles of two following vehicles. 
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Figure 4-10 is the section of the graph highlighted is shown in Figure 4-9 above. 

The figure shows the time lag that the driver of the following vehicle responded to the 

driving actions of the leading vehicle. This time lag represents the driver response time 

lag. As shown on parts of the figure, the driver response time lag varied for the driver. 

However, this study assumes that the driver response time lag is the same for each 

individual driver but may be different for different drivers depending on the type of 

vehicle being driven and/or followed.  

 

Figure 4-10. Example of a driver response time lag. 
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concept for estimating the driver response time lag. The figure shows how the driver time 

lag can be estimated based on stimulus, which is the relative speed between the two 

vehicles. In the figure, three cases of the driver time lags are plotted: smaller, optimal, 

and bigger. The first plot represents the case where a driver response time lag is 0.0 

seconds. In this case, the driver is reacting instantaneously to the driving actions of the 

leading vehicle. The second plot represents the driver response time lag of 0.70 seconds. 

The third plot represents the case where a driver response time lag is 2.0 seconds. As can 

be seen from the figure, in both the smaller and bigger driver response time lags, the 

observed accelerations and deceleration responses are more scattered and less correlated 

with corresponding R2 of 0.1712 and 0.0437, respectively.  On the other hand, 0.70 

seconds of the driver response time lag shows the responses are less scattered and more 

correlated with corresponding R2 of 0.5329. This suggests that there is an optimal time 

lag that maximizes the correlation between acceleration/deceleration responses and the 

stimulus.  

This study assumes that the driver response time lag is the time that produces the 

maximum correlation as measured by adjusted R2. The driver response time lag depends 

on individual driver’s stimulus response threshold for acceleration and deceleration 

responses. The section that follows describes in detail the methodology used for 

determining the stimulus response thresholds for acceleration and deceleration responses 

for each individual driver. 
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Figure 4-11. Graphical method of estimating the driver response time lags. 

 

4.9 Determination of Driver Stimulus Response Thresholds 
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deceleration or acceleration. As has been previously discussed, it is expected that drivers 

are more sensitive under deceleration response than acceleration response. Therefore, a 

lower magnitude of the threshold is expected for deceleration response than for 

acceleration response. In this study, these thresholds were determined using signal 

detection theory (SDT). The SDT theory has been used widely in situations with two or 

more discrete states of the world that cannot be easily discriminated (Wickens and 

Hollands, 2003). For the car-following situations, a driver is normally faced with three 

possible scenarios of the stimulus, namely, positive relative speed, zero relative speed, 

and negative relative speed. The driver is expected to respond by accelerating when faced 

with positive stimulus, drive at constant speed when the stimulus is zero, and decelerate 

when faced with a negative stimulus. This section discusses the methodology used to 

determine the threshold values for the stimulus that would trigger these expected 

responses.  

The combination of state of the stimulus and three possible driver responses is 

shown in Table 4-6. Intuitively, when the stimulus is positive, zero, or negative, the 

driver is expected to respond with acceleration, keep constant speed, or deceleration, 

respectively. However, since the stimulus may be too small to be detected, or for other 

reasons, unexpected responses will occur, and so field data will generally show 

observations in all the six cells of Table 4-6.       
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Table 4-6. Outcomes of the State of Stimulus and Responses 

  State of the Stimulus 
  Negative Zero Positive 
 Acceleration unexpected unexpected expected 
Response Constant speed unexpected expected unexpected 
 Deceleration expected unexpected unexpected 

 
 
 
Table 4-7 shows the observed responses of a selected driver in the dataset used in 

this study. For example, the table shows that the driver was faced with a total of 87 

situations when the relative speed was -1.4 miles per hour. In 47 of those situations, the 

driver decelerated as expected. However, in 40 of those situations the driver remained in 

steady-state or accelerated the responses that were unexpected.  

 

Table 4-7. Observed Responses of Selected Driver from the Dataset 

  Stimulus (miles per hour) 

  -2.7 -2.0 -1.4 -0.7 0.0 0.7 1.4 2.0 2.7 2.7 

Response 

Acceleration 0 6 18 27 65 60 41 35 44 35 

Constant speed 0 9 22 39 63 38 21 2 1 0 

Deceleration 26 32 47 47 66 38 12 4 0 0 

Total responses 26 47 87 113 192 136 74 41 45 35 

 

 
Figure 4-12 is a plot of the data shown in Table 4-7 expressed as proportions. 

Based on Signal Detection Theory, the threshold values Xacc. and Xdec. are the points on 

the curves where the driver made equal numbers of expected and unexpected responses. 

These thresholds delimit the acceleration, steady-state, and deceleration responses for the 
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driver. The thresholds depends on the driver response time lags, therefore, each driver 

response time lag may have different threshold values. 

 

 

Figure 4-12. Distributions of expected and unexpected responses of an actual driver. 
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done by running the models in Equation 3-2 for different driver response time lags, each 

with different stimulus response thresholds using Stata statistical program. In other 

words, the driver response time lag was estimated jointly with other parameters of the 

models. The time lag that produced the best statistically model fit as measured by 

adjusted R2 at 5 percent significance level represents the driver response time lag. The 

stimulus response thresholds that result from the best model is used as the stimulus 

response thresholds for that particular driver.  

Figure 4-13 shows a plot indicating variation of goodness-of-fit of the model for 

different driver response time lags as measured by adjusted R2 for different stimulus 

response threshold values. From the figure, the estimated driver response time lag for the 

acceleration response is 0.80 seconds resulting from the stimulus threshold value of 1.0 

mph. For the deceleration response, the driver response time lag is 0.6 seconds resulting 

from the stimulus threshold value of 0.54 mph.    

 

Figure 4-13. Optimal driver response time lags for a single driver. 
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Table 4-8 shows the results for a single driver for both the acceleration and 

deceleration responses for “automobile following automobile” model based on equation 

3-2. 

 

Table 4-8. Results for Acceleration/Deceleration Response Models for Single Driver 

Parameter Response Coeff. Std error t-stat. p-value 

Driver sensitivity constant, β0 
Acceleration 1.000 - - - 
Deceleration 0.523 0.282 1.85 0.065 

Speed, β1 
Acceleration -0.469 0.105 -4.45 0.000 
Deceleration 0.771 0.201 3.84 0.000 

Vehicle separation, β2 
Acceleration 0.434 0.122 3.54 0.000 
Deceleration -1.208 0.201 -6.01 0.000 

Relative speed, β3 
Acceleration 0.902 0.079 11.35 0.000 
Deceleration 1.853 0.151 12.22 0.000 

Number of observations Acceleration 447    
Deceleration 364    

Adjusted R2 Acceleration 0.631    
Deceleration 0.518    

 

 
For this particular driver, the results indicate that in both the acceleration and 

deceleration responses, coefficients have the expected signs. The acceleration response 

shows that the speed parameter β1 has negative sign, indicating that acceleration response 

is lower at higher speeds and higher at lower speed. The results also shows that vehicle 

separation parameter β2 has positive sign implying that acceleration response is lower at 

smaller separation and higher at bigger separation.  Similarly, the positive sign of relative 

speed parameter β3 indicate that acceleration magnitude is higher at higher speed 

difference than at lower speed. It should be noted that the driver sensitivity constant for 

the acceleration model was insignificant at 5 percent level.  
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The deceleration model shows that the speed parameter β1 has positive sign, 

indicating that deceleration response is higher at lower speeds and vice versa. The results 

also shows vehicle separation parameter β2 has negative sign indicating that the 

deceleration magnitude is higher when separation at smaller and lower when separation is 

bigger. Similarly, the positive sign of relative speed parameter β3 indicate that the 

deceleration response is higher at higher speed difference.   

The results also show that all parameters have higher magnitudes for the 

deceleration response than acceleration response. As expected, this may be related to the 

drivers’ desire for both safety and mobility.  Drivers when decelerating, they are trying to 

keep their desired safe distance partly due to safety related reasons. On the contrary, 

drivers when accelerating, they are trying to attain their desired maximum speed, which 

is less critical and urgent than safety.   

Table 4-9 shows the results for the steady-state response for a single driver from 

the data set based on equation 3-3. The speed parameter is β1 while vehicle separation 

parameter is β2. The sign of the parameters are both positive and according to intuitive 

expectation. This implies that at higher travel speeds, the response is likely to be 

deceleration while at lower speeds the response is likely to be acceleration. On the other 

hand, at bigger vehicle separation, the response is likely to be acceleration and vice versa.  

 

Table 4-9. Result for Steady-State Response Model for Single Driver 

Parameter Coefficient Std error t-stat. p-value 95% C.I. 
β0 -1.296 0.216 -6.00 0.000 [-1.721, -0.871] 
β1 0.338 0.060 5.67 0.000 [0.220, 0.454] 
β2 0.495 0.035 14.30 0.000 [0.426, 0.563] 
Adjusted R2       0.172 
Number of observations  447 
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4.10 Modeling Process 

As explained above, it is clear that parameters of the models are interrelated and 

cannot be estimated independently. This study estimated the parameters jointly in an 

iterative process. Figure 4-14 summarizes the entire process of estimating the model 

parameters.  

 
 

Figure 4-14. Modeling process. 
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CHAPTER 5 

MODEL RESULTS AND DISCUSSIONS 

5.1 Introduction 

This chapter presents and discusses results of models developed for acceleration, 

deceleration and steady-state responses. It is worthwhile mentioning that measurements 

taken over time such as vehicle trajectory generally are serially correlated. This violates 

homoskedasticity assumption on error term. Even with stringent model specifications, 

error term in trajectory data similar to that used in this study will exhibit 

heteroskedasticity. The presence of heteroskedasticity will inflate test statistics used for 

making inferences and hypothesis testing of parameters of the models. The Stata program 

handles this problem using robust command. The robust estimation produces t-statistic of 

parameters based on asymptotic covariance matrix, therefore, accounting for 

heteroskedasticity in the error term. Furthermore, the results for each of the models are 

separated depending on type of vehicle being driven and/or followed. This include: 

“automobile following automobile”, “automobile following large truck”, and “large truck 

following automobile”.  

 

5.2 Results for Acceleration and Deceleration Response Models 

Table 5-1 summarizes the results of parameter estimates for the acceleration and 

deceleration response models with their corresponding standard deviations in parenthesis. 

The results are for models for: “automobile following automobile”, “automobile 

following large truck”, and “large truck following automobile”. The sign of the 

parameters in the table is based on equation 3-2.  
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Table 5-1 Results for Acceleration and Deceleration Response Models 
 

Response 
 

Parameter 
Automobile 
following 

automobile 

Automobile 
following 
large truck 

Large truck 
following 

automobile 
 
 
 
 
 
Acceleration 

Stimulus threshold,  (mph) 1.29 
(0.64) 

1.24 
(0.57) 

1.33 
(0.77) 

Driver response time lag, ∆  (sec) 0.80 
(0.25) 

0.82 
(0.25) 

0.78 
(0.20) 

Driver sensitivity constant,  1.839 
(3.24) 

0.906 
(0.24) 

1.492 
(1.58) 

Speed,  -0.961 
(1.06) 

-1.012 
(1.07) 

-1.447 
(2.11) 

Vehicle separation,  0.737 
(0.50) 

0.746 
(0.94) 

0.672 
(1.45) 

Relative speed,  0.667 
(0.51) 

0.778 
(0.61) 

0.844 
(0.85) 

 
 
 
 
Deceleration 

Stimulus threshold,  (mph) -0.96 
(0.56) 

-1.03 
(0.65) 

-1.06 
(0.54) 

Driver response time lag, ∆  (sec) 0.71 
(0.18) 

0.68 
(0.14) 

0.67 
(0.15) 

Driver sensitivity constant,  -3.247 
(4.81) 

-1.161 
(0.77) 

-1.224 
(1.00) 

Speed,  1.298 
(1.38) 

1.766 
(1.68) 

2.329 
(3.99) 

Vehicle separation,  -1.544 
(1.22) 

-1.975 
(1.60) 

-2.352 
(2.90) 

Relative speed,  1.243 
(0.62) 

1.226 
(0.91) 

1.490 
(1.46) 

 

Table 5-2 shows the results used for comparing difference means of parameter 

estimates between the acceleration response and deceleration response models. The table 

indicates for each parameter, the mean, standard deviation, mean difference, pooled 

standard deviation, and p-value.  The section that follows discusses in detail the 

interpretations and implications of these results in emulating the observed field car-

following behavior.  
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Table 5-2. Statistical Comparison of Parameters of the Models 

Automobile following automobile 

 Acceleration 
model 

Deceleration 
model Comparison statistics 

Parameter Mean Std 
dev. Mean Std 

dev. 
Mean 
diff. 

Pooled 
Std dev. p-value 

Driver response time lag (sec) 0.80 0.26 0.70 0.18 0.10 0.22 0.025 

Stimulus threshold (mph) 1.29 0.64 0.96 0.56 0.33 0.60 0.001 

Driver sensitivity, β0 1.839 3.247 -3.247 4.808 5.086 4.113 0.000 

Speed, β1 -0.961 1.062 1.298 1.379 -2.259 1.234 0.000 

Vehicle separation, β2 0.737 0.501 -1.544 1.216 2.281 1.018 0.000 

Relative speed, β3 0.667 0.507 1.243 0.617 -0.576 0.523 0.000 

Automobile following large truck 

Driver response time lag (sec) 0.82 0.25 0.68 0.14 0.14 0.28 0.016 

Stimulus threshold (mph) 1.24 0.57 1.03 0.65 0.21 0.62 0.210* 

Driver sensitivity, β0 0.906 0.242 -1.161 0.769 2.067 0.571 0.120* 

Speed, β1 -1.012 1.066 1.766 1.681 -2.778 1.368 0.000 

Vehicle separation, β2 0.746 0.943 -1.975 1.599 2.729 1.289 0.000 

Relative speed, β3 0.778 0.613 1.226 0.914 -0.262 0.784 0.084 

Large truck following automobile 

Driver response time lag (sec) 0.78 0.20 0.67 0.15 0.11 0.170 0.04 

Stimulus threshold (mph) 1.33 0.77 1.06 0.54 0.27 0.655 0.058 

Driver sensitivity, β0 1.492 1.583 -1.224 1.000 2.716 8.297 0.026 

Speed, β1 -1.447 2.113 2.329 3.991 -3.776 3.205 0.000 

Vehicle separation, β2 0.672 1.453 -2.352 2.895 3.024 2.294 0.000 

Relative speed, β3 0.844 0.851 1.490 1.458 -0.646 1.202 0.054 
Note: * indicate the difference in means is statistically insignificant 

 
 
5.3 Discussion of the Parameters  

The following is a discussion of each of the parameter values and their 

distributions for acceleration and deceleration responses. The parameters include the 

driver response time lags, stimulus thresholds, driver sensitivity constant, parameters for 

speed, relative speed, and vehicle separation. As previously stated in this study, the 
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acceleration and deceleration responses have similar model form. Therefore, the results 

of each parameter of the models are superimposed in one plot. This is helpful when 

comparing drivers’ behavior for the acceleration and deceleration responses.  

5.3.1 Driver Response Time Lags 

Figure 5-1 shows the estimated distributions of drivers’ response time lags for 

both the acceleration and deceleration responses and for different pairs of following 

vehicles. On the average, the results for “automobile following automobile” indicate that 

the driver response time lag for acceleration response is 0.80 seconds with standard 

deviation of 0.25 seconds. For the deceleration response, the average driver response time 

lag is 0.70 with standard deviation of 0.18 seconds.  

Hypothesis test conducted to evaluate if there is statistical differences in the 

means for the acceleration and deceleration responses is shown in Table 5-2. The null 

hypothesis in this context is that there is no difference in means between the acceleration 

response and deceleration response. Using a 5 percent significance criterion, the mean 

difference in the drivers’ response time lags for the acceleration and deceleration was 

found to be statistically different from zero. The results are in agreement with intuitive 

expectation, that is, drivers have lower response time lag when decelerating than 

accelerating partly due to safety reasons. This could be related to drivers’ aggressive need 

to maintain safe vehicle separation when decelerating as opposed to the less critical need 

to attain desired maximum speed related to acceleration response. In addition, drivers’ 

response to negative stimulus is further aided by the activation of brake lights for the 

leading vehicle that is braking.  
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  These results contradict results obtained by Subramanian (1996) that drivers’ 

response time lag was higher for the deceleration response than acceleration response. 

Furthermore, the mean values are closer to 0.70 seconds for expected situations reported 

in the studies by Colbourn (1978) and Ma and Andreasson (2006). In congested freeway 

traffic conditions, drivers are more cautious and they are likely to expect driving actions 

of the leading vehicle.  

Similar analysis was conducted for “automobile following large truck” and “large 

truck following automobile” models. The results as shown in Figure 5-1 also indicate 

similar distributions for the driver response time lags. This suggests that during congested 

freeway traffic conditions, drivers have similar response time lags regardless of type of 

vehicle being driven and/or followed. The results are intuitive because under congested 

traffic conditions, drivers are more concerned with longer travel times as a result of lower 

travel speeds. Furthermore, drivers usually maintain smaller separation when driving in 

congested freeway traffic conditions than uncongested traffic conditions.  Consequently, 

drivers are expected to be more vigilant and respond with smaller response time lags 

when decelerating than when accelerating partly due to safety related reasons.  
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Figure 5-1. Distributions of the driver response time lags. 
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5.3.2 Driver Stimulus Response Thresholds 

Figure 5.2 shows the distributions of stimulus response thresholds for both the 

acceleration and deceleration responses and for different pairs of following vehicles.  For 

the “automobile following automobile” model, the average threshold for the acceleration 

response is 1.29 miles per hour with standard deviation of 0.64 miles per hour. For the 

deceleration response, the average threshold is -0.96 miles per hour with standard 

deviation of 0.56 miles per hour. The mean difference is statistically different at 5 percent 

significant criterion. As expected, these results are intuitive, in that, drivers are expected 

to respond to smaller stimulus when decelerating than when accelerating. The reason for 

this is similar to the one for the driver response time lags discussed above.   

These results are in line with those obtained by Todosiev (1963) and Michaels 

(1965). However, these threshold values are significantly lower than the ones reported in 

study by Evans and Rothery (1974) which found that under optimal driving conditions in 

a field the lowest perceptible closing relative speed was 3.0 miles per hour with a 

probability of 0.99 of correct detection at 197 feet over a 4.0 seconds observation period. 

However, individual differences in ability to detect motion are large and dependent on 

speed of the subject vehicle and separation.  

Comparison of the results for the acceleration and deceleration responses for 

different pairs of following vehicles, indicate insignificant difference in the means. This 

means that in congested freeway traffic conditions drivers detect almost the same 

magnitudes of stimulus that triggers a response regardless of vehicle being driven and/or 

followed.  This could be partly due to the activation and deactivation of brake light from 

the leading vehicle that is braking.  
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Figure 5-2. Distributions of the stimulus response thresholds. 
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5.3.3 Driver Sensitivity Constant, β0 

Figure 5-3 show the magnitude of distributions of the driver sensitivity constant, 

β0 (refer equation 3-2) for the acceleration and deceleration response models. The figure 

shows very similarly skewed distributions of the driver sensitivity constant for both the 

acceleration response and deceleration responses and for different pairs of following 

vehicles. For “automobile following automobile” the average driver sensitivity constant 

for the acceleration response is 1.839 with standard deviation of 3.25. For the 

deceleration response, the mean value is 3.06 with standard deviation of 4.81. The results 

confirm the expectation that drivers are likely to be more sensitive for deceleration 

response than for acceleration response due to safety concerns and activation of brake 

lights of leading vehicle that is braking. However, the distributions are skewed to the left 

creating a dilemma whether the mean, mode, or median should be used as the measure of 

the driver sensitivity constant. This study used the mean values as the estimate of the 

driver sensitivity constant. The mean difference is statistically significant at 5 percent 

level.  

When comparing the driver sensitivity for different pairs of following vehicles, 

the results for acceleration response indicate insignificant difference in the mean values 

of the driver sensitivity constant.  For the deceleration response, the results show that 

automobiles traveling behind other automobiles have significantly higher mean values 

than other pairs of following vehicles. However, the driver sensitivity is interrelated with 

other sensitivity parameters such as speed and separation, thus, the results may be 

inconclusive in explaining the drivers’ sensitivity to stimulus.   
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Figure 5- 3. Distributions of the driver sensitivity constant, β0. 
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5.3.4 Speed Parameter, β1 

Figure 5-4 shows plots of distributions of speed parameter, β1 for both the 

acceleration and deceleration response models and for different pairs of following 

vehicles. For “automobile following automobile” model, the average parameter value for 

the acceleration response is -0.961 with standard deviation of 1.06 and that for 

deceleration response is 1.298 with standard deviation of 1.38. The mean difference is 

statistically significant at 5 percent level. As expected, signs of the parameters for both 

the acceleration response and deceleration response are intuitive. For the acceleration 

response, the negative sign implies that at higher speeds drivers have lower magnitudes 

of acceleration response than at lower speeds. The reasons for this include reduced 

vehicle acceleration capability and less drivers’ desire to drive faster at higher speeds. For 

the deceleration response, the positive sign indicates that drivers have higher magnitudes 

of deceleration response at higher speeds than at lower speeds. The higher magnitude for 

the deceleration response compared to acceleration response suggests that drivers are 

more sensitive to speed when decelerating than accelerating. These results contradict 

those obtained by Ahmed (1999) and Toledo (2002) who found that speed was 

statistically insignificant in the deceleration response.   

Comparison of the results for different pairs of following vehicles, indicate 

insignificant difference in the mean values for the acceleration response. For the 

deceleration response, the results indicate large truck traveling behind automobiles have 

significantly higher mean value of speed parameter than automobiles. This is intuitive 

result because large trucks are heavier and require longer stopping and lane changing 
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distances than automobiles. Therefore, large trucks are likely to be more sensitive to 

speed when decelerating compared to automobiles.  

 

 
Figure 5- 4. Distributions of the speed parameter, β1. 
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5.3.5 Vehicle Separation Parameter, β2 

Figure 5-5 is a plot of distributions of calibrated vehicle separation parameter, β2 

for both the acceleration and deceleration responses and for different pairs of following 

vehicles. For “automobile following automobile”, the average value for acceleration 

response is 0.737 with standard deviation of 0.50 and, for deceleration response it is -

1.544 with standard deviation of 1.22.  As expected, the signs obtained for this parameter 

is intuitive, with the positive sign for the acceleration indicating that drivers have higher 

magnitudes of acceleration response when separation is bigger and lower when 

separation is smaller. On the contrary, the negative sign for the deceleration response 

indicates that drivers apply higher magnitudes of deceleration response when the 

separation is smaller and lower when separation is bigger. The mean difference is 

statistically different from zero at 5 percent significance level. 

Comparison of the results for different pairs of following vehicles indicated no 

difference in the mean values of the vehicle separation parameter for acceleration 

response. For the deceleration response, results showed that large trucks traveling behind 

automobiles have significantly higher mean of parameter value than automobiles.  The 

results are intuitive because generally drivers of large trucks are more safety cautious 

than automobiles due to their awareness of large trucks limitations.  
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Figure 5- 5. Distributions of the vehicle separation parameter, β2. 
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5.3.6 Relative Speed Parameter, β3 

Figure 5-6 shows distributions of the calibrated relative speed parameter, β3 both 

for the acceleration and deceleration response models and for different pairs of following 

vehicles. As expected, the parameter is positive for both the acceleration and deceleration 

responses. This means that the bigger the magnitude of the stimulus, that is, relative 

speed, the bigger the magnitude of the response, regardless whether it is acceleration or 

deceleration response. However, the average magnitude of parameter value for the 

deceleration response is bigger than acceleration response. For example, the results for 

“automobile following automobile” indicate the mean value for the acceleration is bigger 

at 1.243 compared to 0.667 for acceleration response. With corresponding standard 

deviations of 0.62 and 0.51, the difference in magnitude is statistically significant at 5 

percent level.  This difference in the magnitudes of the parameter confirms that driver 

drivers are more likely to respond with higher magnitude when decelerating than when 

accelerating. Furthermore, both average values are statistically different from one as 

proposed in the GM models with corresponding t-statistic values of 5.74 and 3.41 for the 

acceleration response for deceleration response, respectively. 

Comparison of the results for different pairs of following vehicles, for both 

acceleration and deceleration responses indicates insignificant difference in the mean 

values. The results could be due to smaller separation that drivers generally maintain 

when driving in congested freeway traffic conditions.  
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     Figure 5- 6. Distributions of relative speed parameter, β3. 
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5.3.7 Comparison of the Parameters with Other Studies 

Table 5-3 compares the results of parameter estimates obtained from this study 

with other previous similar studies. For comparison purpose, the values in the table 

represent the average values for all vehicle types. This creates the basis for comparison 

because other studies estimated aggregate values for all vehicle types. The signs of the 

parameters are based on equation 3-2 and the parameters in italics are those that have 

counterintuitive signs and/or magnitudes. For example, Subramanian’s study indicates 

that drivers’ response time lag is smaller for acceleration than deceleration, which 

contradicts intuitive expectation. As explained previously in this research, deceleration is 

a response that is related to safety and therefore, drivers are more likely to respond faster, 

which results in smaller time lags as opposed to acceleration response. Acceleration is a 

less critical response as it is related to drivers’ need for attaining their desired maximum 

speeds.  

Furthermore, for acceleration response, Ozaki (1993), Ahmed (1999), and Toledo 

(2003) indicate that vehicle separation parameter, β2 is negative. This implies that the 

magnitude of acceleration response is lower when the separation is bigger and lower 

when separation is smaller, which are counterintuitive results. Bigger separation is more 

likely to entice drivers to accelerate at higher magnitude in order to attain their desired 

maximum speeds. Similarly, studies by Ahmed and Toledo indicate that the speed 

parameter, β1, is positive, meaning that acceleration is higher when the speed is higher, 

which are also unexpected results. Logically, drivers are unexpected to accelerate faster 

at higher speeds for two reasons. First, the need to accelerate is less at higher speeds than 
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at lower speeds. Secondly, the vehicle capability to accelerate is less at higher speeds 

than at lower speeds.  

Furthermore, both studies by Ahmed and Toledo left out speed in the deceleration 

response because it was statistically insignificant. Having a deceleration response that is 

not a function of speed is counterintuitive. In addition, both studies did not determine 

drivers’ response thresholds that delimit acceleration and deceleration responses. On the 

basis of these results, it is clear that this study obtained intuitive results that addressed 

significant shortcomings of the previous similar studies.   

 

Table 5-3. Comparison of Parameter Estimates with other Studies 

  Study 

Parameter Model Ozaki 
(1993)

Subramani
an (1996) 

Ahmed 
(1999) 

Toledo 
(2003) 

Siuhi 
(2009) 

Driver response 
time lag (sec) 

Acceleration - 1.97 - - 0.80 
Deceleration - 2.29 - - 0.70 

Stimulus 
threshold (mph) 

Acceleration - - - - 1.30 
Deceleration - - - - 1.00 

Driver sensitivity 
constant, β0 

Acceleration 1.1 9.21 0.0225 0.0355 1.578 
Deceleration 1.1 15.24 0.0418 0.860 2.274 

Speed, β1 
Acceleration -0.2 -1.667 0.722 0.291 -1.088 
Deceleration 0.9 1.086 - - 1.637 

Vehicle 
separation, β2 

Acceleration -0.2 0.884 -0.242 -0.166 0.723 
Deceleration -0.9 -1.659 -0.151 -0.565 -1.822 

 
Relative speed,β3 
 

Acceleration 1 1 0.600 0.520 0.731 

Deceleration 1 1 0.682 0.143 1.300 
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5.3.8 Comparison of Performance of the Models 

This section compares the results for different pairs of following vehicles in 

emulating the field observed driver’s car-following behavior. Figure 5-7 is the plot of 

field observed values and estimated acceleration/deceleration responses for automobiles 

traveling behind other automobiles. These response values are for average speed of 20.4 

miles per hour and vehicle separation of 40 feet. The figure indicates that the estimated 

values for both the acceleration and deceleration responses emulate reasonablly the field 

observed values. As expected, the results indicate that both acceleration and deceleration 

response magnitude increases as the relative speed increases.  

 

 

Figure 5- 7. Observed and estimated responses for "automobile following automobile". 

 
 

Figure 5-8 shows the field observed and estimated acceleration and deceleration 

responses for automobiles traveling behind large trucks. Similarly, the results show that 

-10

-8

-6

-4

-2

0

2

4

6

8

10

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8

Relative speed (mph)

A
cc

el
er

at
io

n/
D

ec
el

er
at

io
n 

(f
t/s

ec
2)

Field observed
Model estimated



 
 

111 
 

the acceleration and deceleration magnitude increases as relative speed increases. This 

figure also indicates that on the average the magnitudes of the deceleration response are 

higher than acceleration response at the same value of stimulus.  

 

 

Figure 5- 8. Observed and estimated responses for "automobile following large truck". 

 
 

Figure 5-9 is a display of the field observed and estimated values of the 

acceleration and deceleration responses for large trucks traveling behind automobiles. 

The results also indicate higher magnitudes of the deceleration response compared to 

acceleration response for the same value of stimulus. 
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 Figure 5-9. Observed and estimated responses for "large truck following automobile". 

 

 
Figure 5-10 shows superimposed plots for different pairs of following vehicles.  

For the acceleration response, the results show that automobiles traveling behind other 

automobiles have higher acceleration response, followed by automobile traveling behind 

large trucks, and then large trucks traveling behind automobiles. These are intuitive 

results because automobiles generally have higher acceleration capabilities, shorter 

stopping and lane changing distances compared to large trucks. However, the results 

indicate lower acceleration response for automobiles traveling behind large trucks. This 

could due the fact that large trucks blocks visibility of drivers of automobiles to see in 

front of the large trucks.   

For the deceleration response, the results indicate that large trucks have higher 

deceleration response compared to automobiles. The results could be associated to the 

facts that large trucks are heavier and need longer stopping distances compared to 
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automobiles. Therefore, large truck drivers are more cautious than automobiles. More 

importantly, the results indicate that automobiles traveling behind large trucks have lower 

deceleration responses than when traveling behind other automobiles. This finding could 

be due to two reasons: First, drivers of the automobiles may feel to be safer when 

traveling behind large trucks because drivers of large trucks are more cautious than 

drivers of automobiles. Second, large trucks have longer dimensions that block visibility 

of automobile drivers’ traveling behind, thus, the drivers of automobiles do not respond 

to vehicles in front of the large trucks.   

 

 

Figure 5-10. Impact of relative speed on acceleration/deceleration responses. 
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Figure 5-11 shows the field observed and estimate response values for average 

relative speed of 3.4 miles per hour and vehicle separation of 40 feet. The results also 

indicate that automobiles traveling behind other automobiles have higher acceleration 

response, followed by automobile behind large truck, and then large truck behind 

automobile. Likewise, the same reasons mentioned above apply in this case. For the 

deceleration response, as expected, the deceleration response increases as speed 

increases.  

 

  
Figure 5-11. Impact of vehicle speed on acceleration/deceleration responses. 

 
 
 

Figure 5-12 also shows the driver responses for the average relative speed of 3.4 
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results show that acceleration response increases as separation increases. Furthermore, 

the results indicate that automobile have higher acceleration response compared to large 

trucks.  Similarly, this could be related to large trucks’ limited acceleration capability and 

higher weight to horse power ratio compared to automobiles. For the deceleration 

response, the results indicate that large trucks have higher deceleration than automobiles 

for the same stimulus. This could be due to longer stopping distance that large trucks 

need than automobiles.  

 

 
Figure 5-12. Impact of vehicle separation on acceleration/deceleration responses. 
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5.3.9 Statistical Measures of Model Performance 

The graphs presented above showed the performance of the models in replicating 

the field observed drivers’ car-following behavior. The discussion was based on visual 

observations of how well the models emulated the observed response values. This section 

further evaluates the performance of the models using statistical measures of performance 

typically used in such statistical analysis. Table 5-4 shows results of statistical measures 

of performance of the models. The measures include Root Mean Square Error (RMSE) 

and Theil inequality coefficient  U   and its main components ,  , and  .   

 

Table 5-4. Statistical Measures of Performance of the Models 

  Statistical Measure 
Model Response RMSE U Um Us Uc 

Automobile 
following 

automobile 

Acceleration 8.401 0.400 0.274 0.044 0.681 

Deceleration 8.626 0.395 0.260 0.094 0.645 

Automobile 
following 
large truck 

Acceleration 6.048 0.378 0.057 0.055 0.887 

Deceleration 4.318 0.403 0.021 0.045 0.934 

Large truck 
following 

automobile 

Acceleration 3.942 0.440 0.096 0.008 0.893 

Deceleration 7.928 0.434 0.155 0.193 0.651 

Recommended threshold 
 (Hourdakis et a., 2002) < 15% < 0.3 0.1 0.1 0.9 

 
 

The results for the RMSE indicate that all models have prediction error of less 

than 10 percent. These values lie within the recommended thresholds by Hourdakis et al. 

(2002). This implies that there is statistical agreement between the field observed and 

estimated responses. The results for the Theil Inequality Coefficient (U) values are closer 

to 0.40, which is slightly higher than recommended threshold value of less than 0.3. The 
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results also indicate that the components of   , that is, “bias proportion”,  and 

“variance proportions”,  are small than the “covariance proportions”,   for all 

models. This suggests that the prediction errors are concentrated on , which is desired 

for model prediction. Although, the some of the measures obtained violated these 

thresholds, the values may be acceptable. This is based on the fact that Hourdakis et al. 

(2002) did not state the rationale and the basis thereof of selecting the range of the 

thresholds. In addition, it appears from the literature that the thresholds for deciding 

whether the model is acceptable or unacceptable are study specific. In other words, the 

analyst should decide the thresholds based on the accuracy needed for the model. 

 

5.4 Results for Steady-State Response Model 

This section presents and discusses the results obtained for the steady-state model. 

It should be noted here that the result are for all vehicle types regardless of vehicle being 

driven and/or followed. This aggregation of parameters was deemed appropriate because 

the purpose of the model development is to translate microscopic behavior into 

macroscopic traffic flow characteristics. The result for steady-state model is summarized 

in the equation below: 

 
 

, 1.743 ,
.

, ,
.

           5-1 
 
 
 
Where: 

,  is the acceleration/deceleration of a subject vehicle   at time   

,  is the speed of the subject vehicle   at time  
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,  is the position of the leading vehicle 1  at time  

,   is the position of the subject vehicle   at time  

, ,   is the vehicle separation  at time  

 is the length of the leading vehicle 

5.4.1 Discussion of the Parameters 

The parameters shown in the equation 5-1 emulate the observed driving behavior 

near steady-state mode. This model is transformed into macroscopic traffic flow 

characteristics. Based transformed equation the speed—density relationship (equation 3-

7) is given as follows:  

 

1.743 1 15
. .

             5-2 
 

 
Where   the speed of a subject vehicle in feet per second is,    is the density of traffic 

stream in vehicles per feet, and 15 is the average length of vehicles in feet used for 

estimating the parameters. Converting the speed to miles per hour and density to vehicles 

per mile yields the following relationship: 

 

.
1.743 5280 15             5-3 

 
 
The resulting traffic flow in vehicles per hour is given as: 
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.

1.743 5280 15
. .

      
                 5-4 
 
 
The traffic jam density   which occurs when vehicles are at standstill—e.g. when 

speed is zero is given by:  

 

 
5280

1.743 . 15 292  

      5-5 
 

The resulting macroscopic traffic flow model was compared to the field observed 

traffic flow parameters extracted from the same vehicle trajectory data. The parameters 

extracted included space mean speed and traffic density per lane.   The speed and density 

were measured by taking snapshots of the entire length of the study site at every 30 

seconds time intervals for duration of 45 minutes. The density was measured as the 

number of vehicles occupying the length at each time intervals, expressed in vehicle per 

mile. Figure 5-13 shows an example of the field observed traffic densities at the same 

location at 30 seconds time interval 

.   



 
 

120 
 

 

Figure 5-13. Variation of traffic density at the same at different time. 
 

 
Figure 5-13 shows fundamental diagrams of the field observed traffic flow 

parameters and those estimated from the model. The results indicate a closer agreement 

between the observed parameter values and the model estimates. The statistical measures 

of performance produce the values that are within the recommended thresholds. For the 

speed comparison, the results show RMSE value of 0.135, U value of 0.073, Um value of 

0.042, Us value of 0.004, and Uc value of 0.956. For the traffic flow rate comparison, the 

RMSE value of 0.135, U value of 0.071, Um value of 0.074, Us value of 0.060, and Uc 

value of 0.869. These results indicate that the model emulates the observed field 

parameters quite well. However, the model captures the speed—density relationship at 

high traffic densities.  
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         Figure 5- 14. Fundamental traffic flow diagrams. 
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5.4.2 Comparison of the Model with Other Macroscopic Traffic Models 

Further analysis was conducted to compare the results of the model to other 

existing macroscopic traffic models. The models compared with this model include the 

Greenshields model, Greenberg model, Underwood model, and Bell Curve model. A 

brief description of the models is presented in the following paragraph. 

Greenshields (1934) proposed a linear speed-density relationship based on field 

observations. The model form is as follows: 

 

1  

      5-6 
 
 
Where   is the speed,    is the traffic density,    is the free flow speed,     is the jam 

density. The advantage of this model form is that it is simple and straight forward but 

field observations indicated that the speed-density relationship is not perfectly linear.  

  The Greenberg model assumes a logarithmic relationship for the speed-density 

relationship of the following form: 

 

   

      5-7 
 

Where    is the speed,    is the traffic density,   is the critical speed,   is the jam 

density. The critical speed is the speed when the flow is maximal. The major 

disadvantage of this model is poor at estimating speeds at low densities. 
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The Underwood model assumes exponential relationship between speed-density 

of the following form: 

 

 
                 5-8 
 

Where   is the critical density and it is the density at maximum traffic flow. This model 

produces reasonable speed at low densities but is unreliable at higher densities where 

speed asymptotically approaches zero.   

The bell curve model developed by Duke et al. (1967) assumes a bell-shaped 

curve for the speed-density relationship of the following form: 

 

0.5  
                 5-9 
 

The disadvantage of this model is similar to that of the Underwood model, that is, the 

speed asymptotically approaches zero as speed increases.  

Figure 5-15 is a plot of fundamental traffic flow diagrams resulting from different 

models from the same parameters obtained in the calibration. The parameters of other 

models were calibrated using the same data using Stata program. The figure shows that 

all models capture the speed-density relationship reasonably. However, it appears from 

the figure that the model developed in this research produces a better agreement with 

field observed speed-flow and flow-density relationships than other models. The model 

developed can be used for analysis of macroscopic traffic flow characteristics including 

freeway level of service, ramp metering control, etc. 
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Figure 5-15. Comparison of fundamental traffic flow diagrams for different models. 
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CHAPTER 6 

VALIDATION OF THE MODELS 

6.1 Introduction 

This chapter presents and discusses the validation process and the results obtained 

for the family of car-following model developed. The aim of validating the models is to 

determine whether the parameters calibrated can be transferred to other limited access 

highways with relatively comparable characteristics. This study used the field data 

collected from a different site.  This study used vehicle trajectory data collected on a 

segment of Interstate 80 in Emeryville, San Francisco, California. The subsections that 

follows describe in detailed the data used, characteristics of the study site, comparison of 

the site with calibration site, that is, Interstate 101 in Los Angeles, and results of 

statistical measures of model performance.  

 

6.2 Data Description   

The family of car-following models developed was validated using vehicle 

trajectory data collected on a segment of Interstate 80 in Emeryville, San Francisco, 

California. The dataset was also collected as part of the FHWA’s Next Generation 

Simulation (NGSIM) project. The dataset contains 45 minutes of vehicle trajectory that 

was collected in the afternoon peak hour on Wednesday April 13, 2005 from 4:00 pm to 

4:15 pm and from 5:00 pm to 5:30 pm. The time period from 4:00 pm to 4:15 pm 

represented a transitional traffic from uncongested to congested traffic conditions 

whereas the period from 5:00 pm to 5:30 pm represented congested freeway traffic 

conditions. The models were calibrated using the 45 minutes data. A full detailed 
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description of methodology and technology used to collect and process the data are 

available at the NGSIM Website (http://ngsim.fhwa.dot.gov.)  

 

6.3 Study Site Characteristics 

The vehicle trajectory data was collected on a 1,650 feet long section in the 

northbound direction on the freeway. The section has five through lanes (lanes 1 to 5) and 

one auxiliary lane (lane 6). The leftmost inner lane—i.e. number lane 1 is the High-

Occupancy Vehicle (HOV) lane. The auxiliary lane is approximately 1,230 feet long. 

This data was collected using seven synchronized digital video cameras installed on an 

adjacent 30-storey building (Pacific Park Plaza). Figure 6.1 shows a schematic diagram 

of the study site and camera coverage area.  

Similar procedures and criteria used for selection of vehicles used for calibration 

of the model parameters were also used for preparation of the validation data. From the 

dataset selected and based on the selection criteria, similar variables were extracted for 

each time step for each subject vehicle including:  

1. Time of observation,  

2. Acceleration/deceleration response,  

3. Speed of a subject vehicle,  

4. Relative speed between the two vehicles, and  

5. Separation  

Based on the vehicle selection criteria, the resulting sample consisted of 675 

“automobile following automobile”, 37 “automobile following large truck”, and 23 “large 

truck following automobile”.   
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Figure 6-1. Study site and camera coverage (Cambridge Systematics, Inc., 2005). 
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6.4 Traffic Characteristics 

Table 6-1 shows the summary statistics of traffic mix at the validation site during 

the study period. The statistics show that 1.0 percent of all vehicles were motorcycles, 

95.2 percent automobiles, and 3.8 percent trucks and buses.  

 

Table 6-1. Vehicle Types 

Time Period Motorcycles Automobiles Trucks 
& Buses Total 

4:00 p.m. - 4:15 p.m. 14 1942 96 2052 
5:00 p.m. - 5:15 p.m. 24 1742 70 1836 
5:15 p.m. - 5:30 p.m. 17 1724 49 1790 
Total 55 5408 215 5678 
Percentage 1.0% 95.2% 3.8% 100% 

 

 
Table 6-2 summarizes the average traffic flow rates and space mean speeds at 15-

minute time intervals. The table shows low vehicle speeds indicating congested freeway 

traffic conditions.    

 
Table 6-2. Traffic Flow Rate and Speed 

 

Time Period Flow 
(vph) 

Space mean speed 
mph 

4:00 p.m. - 4:15 p.m. 8,144 17.86 

5:00 p.m. - 5:15 p.m. 7,288 14.04 

5:15 p.m. - 5:30 p.m. 7,048 11.93 
 
 
 

Table 6-3 is a summary of average traffic flow rates and spacing mean speeds by 

lane. The table indicates that through lanes had less flow rates and speeds compared to 
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auxiliary lane. This may suggests that congestion on the middle lanes force a significant 

number of vehicles to shift to the auxiliary lane.  

 

Table 6-3. Traffic Flow Rate and Speed per Lane 

 Vehicle flow rate (vph) Space mean speed (mph) 
 
 
Lane 

4:00 p.m. 
to 

4:15 p.m. 

5:00 p.m. 
to 

5:15 p.m. 

5:15 p.m. 
to 

5:30 p.m. 

4:00 p.m. 
to 

4:15 p.m. 

5:00 p.m. 
to 

5:15 p.m. 

5:15 p.m. 
to 

5:30 p.m. 
Lane 1  1,420 1,592 1,544 30.03 23.51 22.62 
Lane 2 1,042 1,196 1,042 20.28 11.28 10.32 
Lane 3 900 952 900 20.55 10.06 8.45 
Lane 4 1,036 1,032 1,036 14.50 10.53 9.12 
Lane 5 1,094 1,080 1,094 15.18 11.24 7.23 
Lane 6   1,432 1,436 1,432 14.41 10.81 9.39 
Total 8,144 7,288 7,048 19.17 13.58 11.93 

 

 
6.4 Comparison of the Interstate 80 Site with Interstate 101 Site 

Table 6-4 compares the characteristics of the study sites namely, Interstate 101 in 

Los Angeles used for calibrating the parameters of the models and Interstate 80 in 

Emeryville used for validating the models.  As can be seen from the table, the two study 

sites have two major differences in geometric characteristics: First, Interstate 101 study 

site has longer segment length compared to that of Interstate 80 site. Second, Interstate 80 

study site has longer length of weaving segment than that of Interstate 101 site. The 

observation of traffic characteristics indicate Interstate 80 site had lower average speed 

and flow rate than Interstate 101 site. Furthermore, Interstate 80 site had 4 percent of 

large truck compared to 2 percent for Interstate 101 site. On the overall, the two study 

sites have comparable geometric and traffic characteristics.   
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Table 6-4. Comparison of the Study Sites Characteristics 

Variable Interstate 101 Interstate 80 
Length of segment (feet) 2,100 1,650 
Length of weaving segment (feet) 698 1,230 
Number of through lanes 5 5 
Number of auxiliary lanes 1 1 
Time-of-day 7:50-8:35 am 4:00-4:15 pm, 5:00-5:30 pm 
Duration of study (minutes) 45 45 
Freeway segment type weaving weaving 
Average flow rate (vph) 8,016 7,493 
Average speed (mph) 21.59 14.77 
Peak 15-minutes flow rate (vph) 7,428 7,048 
Peak 15-minutes speed (mph) 17.94 12.40 
Large trucks 2% 4% 

 
 

6.5 Statistical Measures of the Model Validity 

The statistical measures used for evaluating the performance of the models 

include Root Mean Square Error (RMSE) and Theil Inequality Coefficient (U). Table 6-5 

shows the validation results for different statistical measures considered in this study. The 

table also contains the range of the recommended thresholds by Hourdakis et al. (2002) 

for calibrating and validating microscopic traffic simulation models.  

Using the RMSE measure, the results indicate all models have values less than 10 

percent, which is less than the recommended threshold of 15 percent. Furthermore, the 

Theil inequality coefficient, U produces the values that higher than the recommended 

values of less than 0.3 for all models. However, both models indicated major proportion 

of U is concentrated on the covariance proportion, which is a desirable characteristic. As 

previously discussed in this study, no justification was stated for selecting the thresholds. 

Although some models violated these thresholds still the results may be acceptable for 

the intended purpose of the developed models. On the overall, the validation results 
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indicated that the models can be transferred to different sites with relatively comparable 

geometric and traffic characteristics and emulate reasonably drivers’ car-following 

behavior. 

 

Table 6-5. Statistical Measures of Performance of the Models 

 
Model 

 
Response 

Statistical Measure of Performance 
Measure 

RMSE U Um Us Uc 
Automobile 
following 

automobile 

Acceleration 7.778 0.430 0.230 0.069 0.700 

Deceleration 9.401 0.460 0.217 0.121 0.661 
Automobile 
following 
large truck 

Acceleration 6.048 0.378 0.057 0.055 0.887 

Deceleration 4.318 0.403 0.021 0.045 0.934 
Large truck 
following 

automobile 

Acceleration 3.942 0.440 0.096 0.008 0.895 

Deceleration 7.928 0.434 0.155 0.193 0.651 
Recommended threshold 
(Hourdakis et al. (2002)) < 15% < 0.3 0.1 0.1 0.9 

 
 

The steady-state response model was also validated using the same data. Figure 6-

2 shows the fundamental traffic diagrams of the field observed and model estimates. The 

figure shows that the model emulates the observed macroscopic traffic flow 

characteristics reasonably. However, the results indicate that the model seems to 

underestimate speed-flow relationship.   
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              Figure 6- 2. Fundamental traffic flow diagrams. 
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6.6 Comparison of Model Transferability with other Models 

Figure 6.2 shows the fundamental traffic diagrams of the field observed and 

estimated values by different macroscopic models. The parameters of each model used 

are the same as ones obtained in the calibration of the models using data from Interstate 

101 site. From the figure, the results indicate that the model developed in this study and 

the Underwood model capture well the field observed values at higher densities 

compared to other models. It is tempting to conclude that the model developed in this 

study and Underwood model can be transferred to a different site and emulate well 

macroscopic traffic flow characteristics.  
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Figure 6-3. Comparison of fundamental traffic flow diagrams for different models. 
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CHAPTER 7 

CONCLUSIONS AND RECOMMENDATIONS 

7.1  Introduction 

This study developed a family of car-following models that address shortcomings 

of the existing stimulus-response car-following models. The developed models consist of 

separate models for acceleration, deceleration, and steady-state responses. The objectives 

of the study were to address the following four shortcomings of the existing stimulus-

response models:  

1. To determine driver response time lags for both acceleration and deceleration 

responses. 

2. To determine stimulus response thresholds for both the acceleration and deceleration 

responses.  

3. To incorporate vehicle heterogeneity in the models. For each acceleration or 

deceleration response, three car-following models were developed depending on the 

types of vehicles following each other. The models include “automobile following 

automobile”, “automobile following large truck”, and “large truck following 

automobile”.  

4. To capture heterogeneity in driving behavior across drivers by estimating 

distributions of the driver response time lags, stimulus response thresholds, and other 

model parameters for speed, relative speed, and vehicle separation for both 

acceleration and deceleration responses.  

This study calibrated the parameters of the models using 45 minutes of individual 

vehicle trajectory data collected on a segment of Interstate 101 in Los Angeles, 
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California. The study used nonlinear regression with robust standard errors implemented 

in Stata statistical program to estimate parameters of the models and obtain the 

distribution of each of parameters across drivers and for different pairs of following 

vehicle types. The Stata program implements a modified Gauss-Newton method for 

estimating the parameters of the model that minimizes sum of squared residuals. The 

parameters used in this study include the driver response time lags, driver sensitivity 

constant, parameters for speed, relative speed, and vehicle separation.  

The stimulus response thresholds that delimit acceleration and deceleration 

responses were determined based on Signal Detection Theory. The driver response time 

lags and other model parameters for relative speed, speed and separation were calibrated 

based on the combined effect of speed, relative speed, and vehicle separation.  

The study also validated the models using 45 minutes of vehicle trajectory data 

collected on a segment of the Interstate 80 in Emeryville, California. The statistical 

measures used for assessing the validity of the models included Root Mean Square Error 

(RMSE) and Theil Inequality Coefficient (U).   

 

7.2  Conclusions 

On the overall, the results demonstrate the need to use separate models for the 

acceleration and deceleration responses, since the stimulus, relative speed, speed, and 

vehicle separation impact these responses differently. Furthermore, the results confirm 

the need to use separate models depending on type of vehicle being driven and/or 

followed such as “automobile following automobile”, “automobile following large 

truck”, and “large truck following automobile”. The results show that drivers’ 
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acceleration and deceleration responses are significantly different for different pairs of 

following vehicles. These conclusions are made based on the following observations: 

1. As expected, driver response time lag is lower for deceleration response than for 

acceleration response. The average values are 0.70 seconds and 0.80 seconds for 

deceleration and acceleration responses, respectively. The difference is statistically 

significant at 5 percent significant criterion. These results are intuitive, since drivers’ 

deceleration response is generally related to safety and, therefore, one would expect 

drivers to be more sensitive in responding to negative stimulus as opposed to positive 

stimulus. Additionally, drivers’ response to negative stimuli is sometimes further 

aided by the activation of brake lights for a leading vehicle that is braking.  The 

acceleration response is less critical as it is related to drivers’ need to attain their 

desired maximum speed.  

2. For similar safety reasons, the stimulus response threshold value is lower for 

deceleration response than for acceleration response. The thresholds are about 1.0 

miles per hour and 1.3 miles per hour for deceleration and acceleration responses, 

respectively.  

3. The models confirm the intuitive expectation that for the same magnitudes of speed 

and separation, drivers are more aggressive under deceleration response than 

acceleration response. This is indicated by the higher magnitudes of the model 

parameters for the deceleration response than for acceleration response. This 

observation is consistent regardless of type of vehicle being driven and/or followed. 

4. The results show that there are significant differences in driving behavior between 

different types of pairs of following vehicles. They show that under similar positive 
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stimulus conditions, drivers of automobiles respond with higher acceleration rates 

compared to drivers of large trucks. On the other hand, under similar negative 

stimulus response conditions, drivers of large trucks respond with higher deceleration 

rates than drivers of automobiles. It appears that drivers of large truck drivers are 

more safety conscious and respond more aggressively under deceleration response. 

5. The results also show that drivers of automobiles traveling behind large trucks have 

both lower acceleration and deceleration response magnitudes than when traveling 

behind other automobiles. In other words, automobiles drivers respond more 

aggressively when behind automobiles than when traveling behind large trucks. This 

could be related to the fact that large trucks block the visibility of drivers of 

automobiles traveling behind them due to their large dimensions compared to 

automobiles. This limits the ability of automobile drivers to see beyond large trucks 

when traveling them.   

6. Comparisons of the results for different pairs of following vehicles indicate 

insignificant differences in the means of the driver response time lags and stimulus 

response thresholds for both acceleration and deceleration responses.  

7. The results for steady-state response model show the same magnitudes of parameters 

for speed and vehicle separation. These results are intuitive because at steady-state 

drivers are traveling near constant speeds, therefore, less aggressive response to 

stimuli such as speed and vehicle separation.  

8. By validating the models using similar data from a different site, the results show that 

the models were able to emulate the field observed driver behavior and macroscopic 
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traffic flow characteristics reasonably. Based on these results, the models demonstrate 

the potential for transferability between different sites or locations.  

 

7.3 Limitations of the Study and Recommendations for Future Research  

The family of the models developed in this study addresses some of the 

shortcomings of the existing stimulus-response car-following models for the observed 

driver car-following behavior in congested freeway traffic conditions. The following is a 

summary of the limitations of this study and recommendations for future related research.  

1. Both driver response time lags and stimulus response thresholds are likely to be a 

function of speed of the vehicle and vehicle separation. This research simplified the 

models by estimating the driver response time lags and stimulus response thresholds 

independent of these factors. 

2. The data used in this study were collected on a segment with adjacent weaving 

section. Drivers’ behavior in vicinity of weaving section may be different from their 

behavior in basic freeway segments that are reasonably far from diverging and 

merging areas. 

3. The family of car-following models developed is primarily calibrated for freeway 

congested traffic conditions. The models may not be appropriate for use under 

uncongested freeway traffic conditions. Therefore, there is a need to calibrate the 

models for such uncongested conditions. 

4. Due to data limitations, this study did not calibrate model for “large truck following 

large truck”. Drivers’ behavior for such situations may be significantly different from 

other pairs of following vehicles calibrated in this study.   
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