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Abstract

Throughout the history of oil well drilling, service providers have been continuously

striving to improve performance and reduce total drilling costs to operating companies.

Despite constant improvement in tools, products, and processes, data science has not played

a large part in oil well drilling. With the implementation of data science in the energy sector,

companies have come to see significant value in efficiently processing the massive amounts

of data produced by the multitude of internet of thing (IOT) sensors at the rig. The scope

of this project is to combine academia and industry experience to analyze data from 13

different wells drilled in an area of 2 x 4 miles. The data was collected in the same rig and

contains over 12 million electronic drilling recorder data points, driller’s activity logs and

well profiles. The main focus is to propose a detailed workflow to clean and process real

drilling data. Once cleaned, the data can be fed into data analytics platforms and machine

learning models to efficiently analyze trends and plan future well more efficiently. This

roadmap will serve as a basis for drilling optimization. The objective of this work is to

detail the various steps needed to prepare field drilling data for business analysis, as well

discuss about data analytics and machine learning application in drilling operations. The

results to be presented are the detailed workflow and description of the data preparation

steps, an example analysis of the drilling data and an example application of a machine

learning model in drilling.
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Chapter 1

Introduction

1.1. Petroleum Engineering Overview

The exploration for oil and gas is a very complex process that comprises a multitude

of skilled professionals, each of them working in their area of expertise to bring petroleum

fluids from the subsurface of the earth to the production facility. Once refined, petroleum

products are used in multiple forms such as fuel, petrochemicals, additives to agricultural

products, clothing, cosmetics, plastics and polymers, just to name a few. From the time

an oil company bids for an exploration lease, to when it removes all equipment used to

produce the oil and returns the area to the government, engineering work is present in all

steps. An overview of the processes performed in the search, discovery and extraction of

petroleum from the ground is depicted in Fig. 1.1.

Figure 1.1. Oil and Gas Life Cycle

The typical oil and gas life cycle comprises five main phases:

1. Exploration: Oil companies, the so-called Operators, purchase land where it is be-

lieved to have oil or gas in the subsurface to be explored. Usually appraisal seismic

is done by the government natural resources agency, in order to provide initial infor-

mation about the lithology and geology of the area beneath the lease.

Seismic is the technique used by the geologists in the attempt of describing the

layers of rocks and sediments along the Earth’s crust. With the creation of sound
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waves generated by explosives and then calculating the travel time taken for the

waves to come back, the analyst can infer how the layers are organized. From a

petroleum exploration perspective, it is very important to identify geological features

like faults and sealing layers that could facilitate the accumulation of hydrocarbon

fluids. A schematic of the seismic shooting process as well as an example of seismic

interpretation is shown in Fig. 1.2.

Figure 1.2. Seismic Shooting Schematic (top) – Example of Seismic Interpretation (bottom)

Petroleum geologists and petrophysicists analyze together this information and decide

where to drill the first exploratory well in the area, with the objective to confirm if

the target formation contains petroleum or not.
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2. Appraisal: With the confirmation of oil in the first exploratory well, then the next

step is to drill additional wells to evaluate the size and quality of the reservoir. The

objectives of the drilling campaign now are to understand the limits of the reservoir

in respect to faults or other geological features, as well as performing well tests to

collect more data from the reservoir (permeability, production rates, pressures, fluid

samples, etc).

3. Field Development: In this phase the field development plan is executed. This plan

covers the production strategy for the whole life of the field - from 10 to 30 years

depending on the size of the accumulation. Here all the wells - producers and injectors

- needed are drilled, cased and completed to allow the maximum oil extraction possible

(oil recovery).

4. Production: Once the wells are drilled and the production equipment that will receive,

store and separate the fluids produced are installed, the production phase begins. This

is denoted as the first oil of the field. As described previously, this phase is the longest

of the field life cycle and can last up to three decades. Because the production can

last many years, programmed stops are done to maintain the downhole and wellhead

equipment.

5. Decommissioning: Finally, once it is not economical to maintain production, the

operating company will decide to shut down the production facility and begins the

decommissioning phase. Common reasons for the operating costs (OPEX) becoming

prohibitive are the increasing injection costs to maintain reservoir pressure or the

volume of water produced together with the oil reaching the surface equipment limits.

The decommissioning phase is normally highly regulated by the national petroleum

agencies, which require operators to abandon the well safely. This process usually

requires the setting of cement plugs in front of producing formations and near to the

surface, and the removal of the upper part of all casing strings and surface equipment.
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1.2. Motivation

In the schematic shown in Fig. 1.1, the arrow below shows where drilling-related

operations happen along the life of a field. From Exploration to Decommissioning, the

drilling department of the operating company is involved in all steps: Drilling exploratory

wells at the exploration phase; drilling delimiting wells and helping execute well tests during

the appraisal; drilling the producers and injectors during the development; performing

workover operations during the producing period, and finally, plugging and abandoning the

well in the decommissioning phase. This description makes clear how important drilling

operations are to the whole field development process. Because drilling oil wells is a very

expensive activity, a unique network of service providers and contractors has been developed

in the last century just to provide these services to the operating companies. These drilling

service companies have multimillion-dollar budgets for research and development to employ

the best technology available to the field. Some examples of such innovative technologies

are the rotary steerable systems, the wired drill pipe and hybrid drill bits.

Closely linked to technology advances is automation. The drilling rig of today contains a

massive amount of instrumentation that collects parameters from almost every equipment

installed in the drilling rig, whether it is related to the drilling operation or not. For

example, the rig control system receives multiple data streams from the Top Drive that are

used to execute drilling: its position in respect to the derrick, temperature of the electric

motors, drill string rotation speed, oil temperature, drill pipe elevator opening status, etc.

Also other non-critical equipment have sensors measuring their state, like drilling fluid

agitators, or access baskets to lift personnel, allowing its remote and safe operation. Fig.

1.3 shows an example of a modern Top Drive, with multiple sensors installed.

With the evolution of the technology applied to the drilling rig, companies started to

store the data generated by these hundreds of sensors in their databases. The data usually

is recorded at very high frequency (1, 5 or 10Hz), and in most cases is standardized in the

Wellsite Information Transfer Standard Markup Language (WITSML), a modernization of
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Figure 1.3. National Oilwell Varco Top Drive HPS 750

the original WITS protocol, created by an Industry consortium formed by many companies,

and managed by Energistics [Energistics, 2019].

Today, many companies stream data from the sensor to the corporate office in real-

time, plotted in colorful graphs on multiple screens. Fig. 1.4 shows the whole IT network

that must be installed to make live data transmission possible. The data is transmitted

along several means that can be located hundreds of miles apart to reach the database.

Although it is very appealing to have this feature, if said company is not using it to improve

how they operate, the tremendous effort behind the real-time data transmission is nothing

more than a very high expense providing no return on investment (ROI) [Damski, 2014].

Putting together the advances of computational power, the exponential growth of data

that is generated in every well drilled, and the strong incentive of cost reduction due do the

drop of oil price in recent years, it is easy to understand why companies that own this huge

amount of data wants to extract sense from it: Business managers and decision makers

want to have insights from the operation they perform on a daily basis, in an attempt to

improve future results and remain competitive in this very tight market. Consequently,

this thesis presents a study on how to organize the raw drilling data, clean it, pre-process

it and present it in a way that will enable the drilling engineer to make better decisions

about the planning of a next well to be drilled.
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Figure 1.4. Current Real-Time Wellsite Data Flow at Saudi Aramco, From
[Al-Khudiri et al., 2008]

1.3. Objectives

When dealing with massive amounts of data (a table with more than 30 columns

and 1,000,000 rows for example), the analyst id responsible to extract meaning from

the raw data should apply some tasks in a logical order that will help them to under-

stand the patterns and relationship between variables. A very good approach to this

process is called “The Knowledge Discovery in Databases” (KDD) and was proposed by

[Fayyad et al., 1996]. Here, Fayyad proposes the KDD as a five-step process that transforms

raw data into knowledge: Data selection, Preprocessing, Transformation, Data Mining and

Interpretation/Evaluation. The KDD schematic is presented in Fig. 1.5.
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Figure 1.5. The KDD Process, Adapted From [Fayyad et al., 1996]

Having the KDD process as the base for the workflow applied to the drilling data, the

objectives of the present work are:

1. Elaborate a detailed workflow of the data selection, preprocessing and transformation

processes applied to the raw data collected from the Electronic Drilling Recorder

(EDR).

2. Describe data analytics techniques applied to analyze and understand the drilling

data.

3. Create a statistics-based (machine learning) model that will predict actual drilling

performance based on previous data.

1.4. Background

1.4.1. The Well

An oil well is the physical conduit between the reservoir and surface. It is formed of

several concentric steel tubulars – casing – that are drilled in a sequential order. Typically,

a casing configuration goes from the largest - 30 inches of outer diameter (OD) to the
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smaller - 9 3
4

inches of OD. Once the target formation is reached, a production tubing – a

steel pipe with 5-7 inches OD - is run until the bottom of the well and hung on top of the

well head on a tubing hanger. A well schematic is presented in Fig. 1.6.

Figure 1.6. Typical Well Casing Diagram

1.4.2. Making Hole

When drilling a hole in the ground, the main objective is to break the formation,

and transport the cutting material to the surface, as the well is being drilled. This is

accomplished using a drill bit that rotates clockwise against the formation. The bit has

teeth that are indented into the formation with applied force, known as Weight on Bit

(WOB). With the indentation, usually referred to as Depth of Cut (DoC) and rotation

of the bit (RPM), the drilling process occurs. The resulting performance of drilling is

described as the rate of penetration (ROP), measured in feet per hour. This process is

described in Figure 1.7. It can be seen from the diagram that the volume of rock cut at

any revolution is simply the length of the total indentation caused by the WOB multiplied

by the bit area, on every rotation.
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Figure 1.7. Single Cutter Representation of the Rock Cutting Mechanism

1.4.3. Drill String

Drill string is the name given to several equipment/components that are screwed to-

gether sequentially as drilling progresses. A typical drill string configuration comprises a

drill bit at the tip, the Bottom Hole Assembly (BHA) that contains the main equipment

that will enable the drill bit to drill in the planned direction and downhole data acquisi-

tion systems and the drill collar/drill pipe sections. Drill pipes are steel tubulars that are

threaded on both ends. Its main purpose is to connect the drill bit to the top drive, and

to transmit fluid from surface to the bit.

1.4.4. Measurement While Drilling Tool

The Measurement While Drilling (MWD) tool is a set of sensors that are run in to

the well, just behind the drill bit (Fig 1.8). These sensors record information such as

magnetic orientation, lateral and axial shock, lateral and axial vibration, temperature and

acceleration. These metrics are used to tune the directional control of the bit by calculating

the bit position over time. The data is transmitted to the surface via 10 Hz mud pulse

telemetry, and a full log is downloaded once the tool and the whole BHA is pulled out of

hole.
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Figure 1.8. Typical MWD Assembly, From JAE Smart DM 2016 Catalog

1.4.5. Mechanical Specific Energy Concept

The concept of mechanical specific energy (MSE) was derived by [Teale, 1965]. In his

work he derived a relationship between the rock strength and the energy required to destroy

the rock. To prove his theory, a laboratory test was performed and Taele realized that the

value of the MSE was equal to the rock compressive strength. The expression derived by

Teal is:

MSE =
InputEnergy

OutputROP
=

480× Torque×RPM
ROP ×Hole Size2

+
4×WOB

π ×Hole Size2
(1.1)

However, the application of MSE in drilling surveillance had only become widespread

after [Dupriest et al., 2005] published the gains in drilling performance when drillers used

MSE as a direct indicator of efficient drilling.

1.4.6. Electronic Drilling Recorder

The Electronic Drilling Recorder (EDR) is the computer systems that gathers infor-

mation of all sensors that are related to the drilling operation (Fig. 1.9). Examples of

equipment that are connected to the EDR are: Top Drive, Retractable Dolly, Drawworks,

Mud Pumps, Blow-Out Preventer (BOP), Diverter, Power Slips, Pipe Handling Crane and

Mud Bucket. The EDR system usually provides information about each machine that is

connected to it via a Human-Machine Interface (HMI) system. With this system, the driller

can easily operate and check the status of all equipment on the drill floor.
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Figure 1.9. Example of an EDR Screen, From Pason Systems

1.5. Data Formats

1.5.1. EDR File

The EDR file is the download of the recorded values during a selected time interval.

The data frequency can be set to display the values each 1, 5 or 10 seconds, being the last

two formats the average during the selected time interval. Thus, the total number of rows

depends on the time interval selected to be aggregated in the file, and the time frequency

of the recording. A simple estimation can be:

60 seconds× 60minutes× 24hours = 86, 400 rows (data points) per day

and, assuming that a well takes 60 days to be drilled, for a 5 seconds recording frequency

we have:

86, 400 rows

5 seconds
× 60 days = 1, 036, 800 rows per well
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Multiplying this number of rows by each drilling parameter that you want to analyze,

the EDR file can easily be of a size that is impossible for a human to understand in a

logical and meaningful way. It is therefore imperative that one use computational aid

when processing such large files.

Common features (columns) that usually are analyzed in an EDR file are: Date Time

(Timestamp), Hole Depth, Bit Position, Top Drive Rotation, Top Drive Torque, Pump

Pressure, Weight on Bit and Block Position. However, most commercial EDR systems

enable the inclusion of more than 200 readings from the various equipment installed, al-

though this availability might depend if the sensors are in fact installed, which often must

be included in the contract with the service company, among other factors.

A sample of an EDR file download is presented below. A common format for download

is the comma-separated-values (CSV) format. This format describes the data in text for-

mat, being parsed into columns by a comma “,”. The parsing software then understands

this pattern and the data can be read as a table.

Example of a raw EDR file in CSV format:
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The same data now displayed in tabular form, Table 1.1:

Table 1.1. EDR Data in Tabular View

DATE
TIME

HOLE
DEPTH

BIT
POSITION

BIT
WEIGHT

BLOCK
HEIGHT

DIFF
PRESS

GAMMA
RAY

HOOK
LOAD

5/12/2018 8:15:25 17434.37 17434.37 34.2 14.90 697.61 140 199.90
5/12/2018 8:15:30 17434.57 17434.57 34.0 14.70 695.14 140 199.90
5/12/2018 8:15:35 17434.78 17434.78 34.0 14.49 693.91 140 200.00
5/12/2018 8:15:40 17434.98 17434.98 34.1 14.29 700.12 140 199.80
5/12/2018 8:15:45 17435.17 17435.17 34.2 14.10 701.66 140 199.80
5/12/2018 8:15:50 17435.37 17435.37 34.1 13.90 706.06 140 199.90
5/12/2018 8:15:55 17435.57 17435.57 34.0 13.70 694.92 140 199.90
5/12/2018 8:16:00 17435.76 17435.76 34.1 13.51 682.12 140 200.00
5/12/2018 8:16:05 17435.97 17435.97 33.9 13.30 680.16 124 200.00
5/12/2018 8:16:10 17436.17 17436.17 34.1 13.11 686.31 114 199.90
5/12/2018 8:16:15 17436.36 17436.36 34.2 12.92 673.07 114 199.80

1.5.2. Well Schematic

The well schematic, or well plan, is the document that describes the trajectory to be

drilled. It should contain all the information needed for the correct execution of the well

trajectory by the field personnel. Once the well is drilled, this document can be updated

with the actual drilled path, so the planned vs actual trajectories can be compared to assess

the well directional performance. Several factors must be taken into consideration for the

trajectory design of a well:

• Surface location and target formation: The two basic inputs, first the designer has

to understand from where the well is departing and to where it is going. This will

determine the main profile of the well (J shape, S shape, Vertical, etc)

• Lease constrains: According to regulation, the limits of the leasing area apply also

for the subsurface. That way, the well path must also respect these limits.

• Underground aquifer: In case of an existing aquifer along the well path, extra care

has to be taken in the proper isolation of the aquifer to avoid contamination of the

water body. The practice is usually to case and cement any phase that is crossing an

aquifer to avoid this problem.
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• Well collision: In very prolific areas, drilling activity is very intense. That way,

the drilling companies have to take extra care in the directional control to avoid

collision with surrounding wells. The consequences of hitting a producing well can be

catastrophic. Companies operating in the same area usually share the information

about their wells so the collision avoidance can be properly planned.

In the well schematic, the main geometric parameters are plotted in a lateral view (cross

section of the vertical plane) and top view. A horizontal well that is typically divided into

three main sections: vertical or nudge, curve and lateral or horizontal section. The vertical

section is the first to be drilled, covering the shallower (thus softer) formations. At a

certain point, the trajectory has to change from vertical to horizontal, so a curved section

is drilled. The point at which the trajectory begins to deviate from vertical is called the

kick-off-point (KOP). At the end of the curve section, the point at which the trajectory is

now kept constant horizontally is called the landing point (LP). For a horizontal well as

depicted in Fig. 1.10, the lateral profile can be described simply knowing the KOP and

LP depths. However more information has to be given for a precise 3D description of the

trajectory.

The well plan also contains georeferencing information to be used to set the directional

tools such as the system datum, the ellipsoid used as reference, the direction of the true

and magnetic north, the geodetic system used, etc.
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1.5.3. Directional Driller Activity Log

At the drilling rig, several companies are hired by the operator to execute the well

together. The drilling contractor provides the rig and the main personnel to operate the

rig. The service companies provide expertise and equipment to execute specific tasks such

as well cementing, well logging, directional drilling surveying, drilling cuttings treatment

and disposal, etc.

In regards to directional drilling, the specialized professional called a Directional Driller

(DD) works together with the driller in the execution of the directional path of the well.

The driller is the main person responsible for the normal drilling operation and works based

on the same drilling rig. He controls the top drive, mud pumps, drawworks, and all drilling

related equipment. Also, he is the leader of the drilling crew (roughnecks, derrickman,

assistant driller) and is responsible for assuring that safety barriers and procedures are

begin put in place to avoid incidents. Finally, he is also the main person responsible for

observing the drilling parameters to quickly detect kick signs, and act accordingly using

the well control practices that he is trained upon.

The directional driller is a professional that is sent to the rig only when directional

control is needed. Since he works for the directional drilling company and not for the

drilling contractor, he/she is assigned on a job basis, usually working among several rigs

and crews. This professional has the skills to execute the curve section as close as possible

to the planned trajectory, and works together with the driller, providing instructions about

the drilling parameters such as angle build rate, drill string rotation speed, etc.

For reporting purposes, the directional driller has to discretize every drilling operation

in a chronological log. This report is used later to evaluate the performance of the drilling

operation, as well to calculate any non-productive time (if any). This report contains

especially useful information about operational problems that are not evident in the EDR

file. For example, a very sudden stop in the drilling operation, with no apparent reason in

the sensors reading can be explained due to a failure in the mud pump gearbox that was
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reported in the DD Activity Log. Table 1.2 shows a few rows of an activity log.

Table 1.2. Example of Directional Driller Activity Log

Job # Rig Job ID
Job

BHA
Well
BHA

Motor
MFG

Motor
Size

Motor
Bend

Motor
Stator

Motor
Stages

Hole
Size

Bit
MFG

Bit
Model

Comment

182 Rig A MD180037 1 1 X 8 1.5 0.88 4 12 1/4 ABC A1B2 CUT DRILL LINE
182 Rig A MD180037 1 1 X 8 1.5 0.88 4 12 1/4 ABC A1B2 DRILL CEMENT AND FLOAT EQUIPMENT
182 Rig A MD180037 1 1 X 8 1.5 0.88 4 12 1/4 ABC A1B2 ROTATE 1200-1285
182 Rig A MD180037 1 1 X 8 1.5 0.88 4 12 1/4 ABC A1B2 SURVEY & CONN. @1228’ INC 1.22 AZM 174.35
182 Rig A MD180037 1 1 X 8 1.5 0.88 4 12 1/4 ABC A1B2 DRILLING – (WOB:15.00;GPM :78.00;RPM:30)
182 Rig A MD180037 1 1 X 8 1.5 0.88 4 12 1/4 ABC A1B2 SURVEY & CONN. @1318’ INC 0.56 AZM 167.69

Code
Start

Datetime
End

Datetime
Start
Depth

End
Depth

Delta
Hours

Delta
Depth

Max
Axial
Shock

Max
Radial
Shock

Max
Axial
Vibe

Max
Radial
Vibe

Item
Failed

NPT V/C/L
MWD
Run

OTHER 4/28/2019 11:30 4/28/2019 13:30 1200 1200 2 0 35.84 66.78 3.16 5.28 NONE 0 WELL SPUD 1
CIRCULATING 4/28/2019 13:30 4/28/2019 14:30 1200 1200 1 0 35.84 66.78 3.16 5.28 NONE 0 WELL SPUD 1

DRILLING 4/28/2019 14:30 4/28/2019 15:00 1200 1285 0.5 85 35.84 66.78 3.16 5.28 NONE 0 VERTICAL 1
SURVEY & CONN. 4/28/2019 15:00 4/28/2019 15:30 1285 1285 0.5 0 35.84 66.78 3.16 5.28 NONE 0 VERTICAL 1

DRILLING 4/28/2019 15:30 4/28/2019 15:50 1285 1375 0.333 90 35.84 66.78 3.16 5.28 NONE 0 VERTICAL 1
SURVEY & CONN. 4/28/2019 15:50 4/28/2019 16:00 1375 1375 0.167 0 35.84 66.78 3.16 5.28 NONE 0 VERTICAL 1

1.6. Data Analytics Workflow

Data analytics combine “the procedures for analyzing data, techniques for interpreting

the results of such procedures, ways of planning the gathering of data to make its analysis

easier, more precise and more accurate” [Tukey, 1962]. This definition from the famous

mathematician John Tukey, known for creating the Tukey range test, inventing the box plot

and coining the term “bit”, among several other accomplishments, tells us two important

things: First, that besides all the hype people are talking about data science, analytics, big

data and artificial intelligence (AI), data analytics is nothing new. Second, this definition

states that the planning of gathering the data, as well the techniques for interpreting it are

equally, if not more important than the analysis itself.

For this work, the data analytics workflow chosen to be utilized is the KDD, briefly

described in section 1.3 of this work. Now, we explore in more detail what each step means

in the process of turning raw data into knowledge.

1.6.1. Selection

The first step in the KDD process is to define the target data set on which discovery

is planned to be performed. Here the data structure that will enable the user to access the

data is established. The target data set can be one or multiple tables, containing whole or

a subset of variables from different sources of data.
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1.6.2. Preprocessing

Data cleaning and preprocessing steps include the strategies for handling missing values,

remove or account for noise, removal of unnecessary portions of the data set and fixing

textual information.

1.6.3. Transformation

Transforming the data covers the actions used to create new features to better represent

the data. Most times, a reduction of uncorrelated or invariant features is performed to

decrease the dimensionality of the data set, thus making the processing steps more efficient.

For example, the [Block Position] column represents the instantaneous position of the top

drive in respect to the rotary table, storing values such as 40 feet. If two consecutive

values of the [Block Position] column are subtracted and stored in a new column called

[Block Movement], this new column now provides much more information about the same

equipment. It can be inferred the direction of the movement, given the resulting sign of

the subtraction, and the speed, represented by the magnitude of the value.

1.6.4. Data Mining

From all the steps in the KDD process, without a doubt the data mining part is the

most notorious. Widely discussed in the literature and in the mainstream media, data min-

ing consists in applying basic but well understood statistical and mathematical techniques

to search for patterns and try to understand them, predict future values, or both. The ba-

sic concepts from which most algorithms are derived from are: model representation (the

language used to describe discoverable patterns), model evaluation (criteria or functions

that evaluate how well a model meets the goals of the KDD process) and search, a concept

that can be subdivided into two components (parameter search and model search, where

basically both loop into searching for the best match that optimizes the model evaluation).

An example of data mining is the application of the Decision Trees algorithm as a represen-

tative model, using the coefficient of determination (R2), performing a parameter search

on the optimal number of leafs and nodes of the model that result in the highest R2.
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1.6.5. Interpretation and Evaluation

This step involves visualization of the resulting data extracted from the models, or

simply the patterns now visible in the data itself after all the cleaning and transformation

routines. In this step also domain knowledge is applied to support the application of the

knowledge created with the process to add some benefit to the user or task performed,

preferably compared against a well define metric. The results should be understandable

(with some postprocessing or not) and should add value to the overall process that is being

represented by the data analyzed.

It is important to note that iteration can occur between all the steps, meaning that the

overall process is due to find enhancements if an intermediate discovery affects a previous

step. This iterative nature is common to data analysis procedures but is emphasized in the

KDD process by the connecting arrows.

1.7. Literature Review – Data Analytics in Drilling Engineering

1.7.1. Drilling Data Quality and Structure

One of the main challenges in the application of data driven platforms is the setup of

the data network and the quality control of the data that is being used by the system. At

an enterprise level, it is normal to have files that are being used in daily workflows being

copied for individual use. Once a copy is created, the person runs some analysis, modifying

the data, creating metrics and visualizations from it. This might be moved forward to its

direct managers and directors, being modified at each step. If another employee uses the

same data to do another analysis, he/she will download it from the same source, but all

the transformations will happen independently. For the management of the data in the

organization, a system like this creates a complete chaos, with uncontrolled versions of

business files circulating back and forth [Damski, 2014].
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For the drilling domain, we are dealing with data coming from a variety of sources –

from EDR data to manually generated reports. [Brannigan and Co, 1992] proposed a clear

schematic on how big enterprises should organize its drilling data based on four criteria.

Once the data is structured in this format, a logical relationship between the data entities

(well number, basin, drilling phase, Authorization for Expenditure (AFE) number, etc)

can be easily queried in a relational database network. A more recent take on the same

idea of data architecture was presented by [Al-Khudiri et al., 2008]. The main advantage

of this new structure was the application of the WITSML standard, created in early 2000s

in a more effective manner. With focus in completion data, [Reddicharla, 2015] described

an automated workflow with enhanced data quality for designing completion strings. The

quality gains were achieved mainly due to standardized data entry templates applied across

its organization.

Once a company has the data structure set, the next step required is to build the infor-

mation technology (IT) structure that will enable its use in real time. [AlBar et al., 2018]

described the path taken from data collection to performance optimization. AlBar stated

that the huge bottleneck in the application of drilling data is data preparation and data

control, as well the operationalization of analytical models in real-time. In the same line,

[Spivey et al., 2017] applied physical concepts such as mechanical specific energy (MSE)

and torsional severity estimate (TSE) in the application of an advisory system installed in

the drillers chair for real time optimization. Surface data was used to estimate drilling state

and indirect downhole conditions with enough accuracy to guide the driller to parameters

change towards a better ROP without creating bit dysfunction.

Once the data collected is organized and the structure is put in place, the next step

before application of the data is the evaluation of data quality. By that, is meant not only

the pure values of the sensors, but also the combination of recordings. For values that

are calculated from readings, the verification of the calculation for each recording can be

performed for quality issues. One example is the calculation of WOB using the reading of
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the Hook Load (HL) and the input variable String Weight (SW ) in the EDR system. The

relationship between WOB, SW and HL is:

SW = HL+WOB (1.2)

SW should be simply the weight of the drill string at particular time, measured when

the drill string is being hung by the Top Drive (direct reading from HL reading). The

value of SW increases as new stands are added to the drill string with drilling progress.

To update the SW value in the EDR system the driller should zero (tare) the SW value

before drilling with the recently added stand. From Eq. 1.2, if the SW is not updated as

a new stand is being drilled, but the system is reading a HL value that is greater than the

SW (due to the added weight of the new stand), the system will apply a negative value of

WOB to hold the equation true, even though negative values of WOB have no physical

meaning.

It is important to note that the relationship described in Eq. 1.2 is only valid for vertical

wells, since the whole string weight is being supported by the hook load. For inclined and

horizontal wells where part of the string is in direct contact with the wellbore wall, a

correction for friction and inclination has to be made to correctly calculate the downhole

weight on bit (DWOB). [Mitchell, 1976] presented a detailed description of the physics

involved in weight distribution on inclined wells. More recently, [Hareland et al., 2014]

modeled the accurate calculation of the DWOB using surface measurements and friction

coefficient calculations, validating their results with directly measured DWOB. Although

a good number of technical papers can be found dealing with this issue, the application of

WOB correction for inclined wells is still not a standard practice among EDR systems.

[Neufeldt et al., 2018] did a detailed analysis of the zeroing WOB and found that

drillers forget to zero WOB in around 80% of the stands, yielding to errors as large as

100% of the measured WOB. With these numbers in mind, they developed a computational

21



routine that can correct for this error, updating the SW value based on actual readings

of the HL in a correct moment. To mitigate changes in the HL load readings, the best

moment to apply the artificial correction is before drilling is resumed after a new stand

is connected, but after the rotation is set to the actual drilling value, the mud pumps are

already on and at final value, the travelling block just starts to move down and the bit is

off bottom. These conditions are important to be met to avoid errors due to friction forces

acting on the drill string in drilling conditions but are not present in a static situation.

Since the mud motor differential pressure (difference between the pressure when the bit

is off bottom versus the pressure when drilling) also needs to be zeroed in every stand

to account for changes in the pressure losses as the drill string gets longer, the algorithm

proposed by Neufeldt can be applied also to the differential pressure variable.

An independent work performed by [Borjas et al., 2019] shows a very similar approach

to solve the issue of data quality in EDR data for these cases where a repetitive action is

needed to be executed by the driller to guarantee accurate recordings. Since both authors

work for EDR manufacturers, it is clear that data quality is getting importance not only

for the end user of the data, but for the designers of the systems that are collecting it.

Borjas also described that the routine developed to correct WOB and differential pressure

can be activated in some of the EDRs running in rigs, demonstrating a logical solution

that solves the issue at the source, rather than relying on the analyst to find and fix it at

a later time. The last two references dealt with correcting data that was being recorded

incorrectly due to human error. But a remark has to be made in regards to the quality of

the HL measure itself. The first issue arises with the fact that the total weight that is being

hung by the hoisting system is usually an indirect estimation using the tension measured

in the dead-line anchor load cell. The dead-line is the portion of the drill line that is set

to be static during normal operations, comprising the portion after the last sheave of the

crown block and the anchor that fixes the drill string. Figure 1.11 presents a schematic

view of the drill line spooling scheme in a typical drilling rig.
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Figure 1.11. Typical Drill Line Spooling Scheme, Adapted From [Eric et al., 2015]

[Eric et al., 2015] studied the implications of this indirect reading of the hook load,

including the forces generated by friction in all the pulleys in the system, the difference

in height of the travelling block, the lateral forces applied by the dolly (retraction) system

and the hydraulic hoses that are hung by the top drive, among other effects. In the work

also a model is proposed to correct for these factors, resulting in better readings of hook

load. Their work was focused primarily in the surface forces acting in the drill line spooling

system that affect the hook load readings. [Kyllingstad and Thoresen, 2018] complement

the analysis focusing in other parameters that also can cause errors in the measurement:

well bore friction, buoyancy, well inclination, lift induced by flow and nozzle jetting, etc.

These two extensive articles are good examples of all the complications that are usually

neglected when analyzing a simple measurement such as the total weight hoisted by the

travelling block. The analyst must have these factors in mind when using EDR data to

make any conclusion about the drilling process using the WOB or hook load recordings.

Together with the data issues described so far, noise and wrong measurements can

be found in practically any reading, if simple quality control measures are not put into

place. [Ashok et al., 2018] detailed how other industries reduce measurement error by
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simply having more than one sensor taking the same reading. In case of sensor malfunction,

the other readings are used to invalidate the bad reading, removing it from the recording

and also raising a flag that maintenance is needed. With the problem of data recording in

mind, Pradeepkumar developed a system that validates the readings of eight core readings

(block position, hook load, rotary speed, rotary torque, pump strokes per minute, flow rate

out, standpipe pressure and pit volume). The approach used was a statistical based model

using Bayesian network to validate data in real-time.

Finally, [Maidla et al., 2018] discussed overall misconceptions about drilling data record-

ings, the errors associated with drilling measurements, and some guidelines that should be

considered to avoid pitfalls in the analysis. Common mistakes such as evaluating gross ROP

measurements instead of net ROP (when drilling is actually taking place) are highlighted

in the work. Maidla also describes that in many drilling rigs the torque measurements are

not direct either. In these cases, the torque is calculated using the current drawn by the

top drive needed to maintain a set rotation. For these systems, it is stated that calibration

is often forgotten, which implies there would be more uncertainty regarding the data.

After this literature review, it became clear that most issues on drilling data are caused

by poor design of the recording systems. In my understanding, one of the causes for this

issue is that the people that design these systems are not the ones that use the data. If they

were and data users, it would be obvious that some readings are so wrong, or so poorly

estimated, that they would take some action to do something about it. This fact is what

motivated for example, [Borjas et al., 2019] to not only develop a correction for the WOB

zeroing, but to automatically implement it in their systems.

Two recent initiatives that aim to solve this issue as an industry are worth mentioning.

First, the work of [Halloran et al., 2018] describes the five types of data quality issues

in sequence: systematic, measurement, conversion, calculation and propagation. Second,

it describes the work performed by The Operators Group for Data Quality (OGDQ), a

cooperation to fix the data quality issues on the key measurements used in the drilling
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process. Another joint effort was presented recently by [Pastusek et al., 2019], and thirteen

other authors in a review of many open source models that were already published in drill

string hydraulics, dynamics, directional control and bit-rock interaction models. The idea

is to create a similar repository as the Open Porous Media (OPM, www.opm-project.org)

but for drilling engineering.

1.7.2. Classification of Drilling Operations

The process of drilling oil wells can be described as a repetition of a few operations.

The sequence of normal drilling operation can be summarized as:

• Drilling the whole in a portion equal to the drilling stand length (a drill stand usually

comprises three drill pipes of around 30 ft long each.).

• Circulating: Once the top drive reaches the rotary table, a short time is spent to

circulate the well prior to connection, where the mud pumps will be turned off and

the cuttings may settle around the BHA.

• Connection: The drill string is put on the slips and a new stand is added to the

string.

• Drilling resumes until the top drive positions reaches its lowest limit.

Less frequent operations also happen in the process of drilling wells. Tripping pipe is

the term given to the operation of moving the drill bit in and out of hole between drill

runs. Tripping operations are necessary for various reasons such as when the target depth

is reached, when the casing setting depth is reached, when the bit is suspected to be dull

(low ROP rate), when some downhole tool fails, etc. Therefore, it is also important to

identify when the current operational status is:

• Tripping in: Moving the drill bit and BHA inside the whole.

• Tripping out: Removing the drill bit out of the hole.
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Finally, specific operations that take a small percentage of the total drilling time of the

well are also important to be distinguished for further analysis and performance evaluation.

According to [Cao et al., 2018], the task of recognizing drilling activities is the basis for

all other analytics routines that are performed using drilling data. In his work, Cao also

included in the classification the Reaming and Back reaming operations, Slide off bottom

and On Surface statuses. A good work in the automated classification of drilling activities

using surface drilling parameters was performed by [Al-khudiri et al., 2015]. The scope of

the work not only describes the classification process but also the application of key per-

formance indicators (KPIs) that allow benchmarking and offset well comparison. The data

structure used in the real time application, as well as the data quality control measures and

examples of reports are described to provide the reader examples of analytics applications.

Other authors attempted to identify drilling operations using trend analysis or statis-

tical and machine learning algorithms. [Serapião et al., 2007] created a model to classify

drilling operations using support vector machine, which is a hyperplane classifier. Their

model obtained a correctness rate (ratio between right classified cases and total cases) of

92.6%. [Arnaout et al., 2012] demonstrated a technique using discrete polynomial analysis

to extract moments (patterns) for each drilling operation. Then, these patterns were ap-

plied to three test wells and obtained accuracies between 88-94%. In a similar approach of

extracting traces in the data for the different types of operations, [Kristjansson et al., 2016]

applied finite mixture modeling (or maximum-likelihood approach to clustering) to gener-

ate archetypes (patterns) for a group of drilling parameters. These archetypes were created

for depth intervals, and then the archetypes with greater ROP were combined to determine

a recommendation of the optimum drilling parameters that should yield in the best drilling

rate for a future offset well, based on historic data.
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1.7.3. Applications of Data Analytics in Drilling Engineering

• Data Analytics

Once the analyst has the drilling data organized, there are many applications of data

analytics and machine learning that can be performed to extract knowledge from it, whether

using past data or real-time recordings. [Eren and Kok, 2018] present their approach for

comparing drilling performance between forty wells using ROP indexing. As stated by

the authors, it is important to separate the flat time from the drilling time to obtain

meaningful results. The indexation calculates the rate of penetration at the same depth

and time basis, allowing comparison in the same order of magnitude. [Ashok et al., 2018]

applied the storyboarding process to answer questions that could be asked once one has

the data set at hand, such as: “what was the fastest run?” or “which well has the least

tortuosity?”. Again, once the data is structured, the idea is to pre-calculate some KPIs

that would answer such questions, and by the time the user asks them in the platform, the

answer will be presented instantaneously. In a sequence of this work, [van Oort et al., 2018]

showed the back-end processes that enable the storyboarding process to happen. The main

idea is to pass the data through a series of scrips – called bots – that will clean, process

and index the data in a way that it can be readily accessed. If cost data is available, an

analysis as the one done by [Willis and Jackson, 2018] can be performed. An important

remark from their work is the highlight of the revised budget versus original budget. This

will give the true baseline to compare with the actual cost, avoiding misleading over-cost

scenarios.

• Real-Time Optimization

Several authors presented their application of data analytics to drilling operations in

real-time. [Brooks et al., 2017] analyzed drilling parameters from offset wells to create a

model that was later applied to a drilling campaign of three wells. The real time monitoring

of MSE and ROP was used to compare the model values against the actual readings,

orienting the driller to correct the drilling parameters. This approach resulted in an overall
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improvement of 30.9% of drilling time and invisible lost time (ILT) 47% less. Focusing on

the bit-rock interaction, [Millan and Ringer, 2018] propose a workflow to estimate bit wear

and in-situ-rock strength, to further estimate ROP ahead of the bit. The model can be

used to estimate bit wear in real time, thus providing insights on when to pull the bit to

obtain the least drilling time possible. The application of real-time data in a multi-well

management level is illustrated by [Bolen et al., 2018]. Several dashboards provide a high-

level picture of the drilling performance across different rigs, when drilling different wells.

The data can provide insights on the ILT operations (tripping time, cementing, casing runs,

etc) and resulted in an average of 40% improvement in the time spent.

• Application of Analytics in Real Time Operation Centers (RTOC)

When companies spend thousands of dollars in the IT structure to read drilling data

from the rig in real-time, the logical approach is to combine these readings in one place, the

RTOCs. Placing a few experts to analyze the real-time data in the RTOCs, the benefits

can be seen in faster decision making, reduction in stuck pipe incidents, less hole cleaning

issues and fluid losses events, while increasing the wells that can be monitored with the

same number of personnel [Al-khudiri et al., 2015]. Other benefits of the application of

RTOCs were reported by [Almeida Leon et al., 2013] as hazard prevention, better work

relationships between field personnel and remote operators, reduced human intervention.

Utilizing another source of data, the mud logging,[Bermúdez Mart́ınez, 2012] combined

offset wells data in a RTOC to predict in real-time the pore pressure and fracture gradient

readings using correlations. With this data, the fluid engineer can calibrate the fluid

density and casing set points, minimizing uncertainties in the well design as well as reducing

safety risks of kicks, for example. Finally, [Mandava et al., 2018] provide best practices and

applications for those who are interested in implementing RTOC in their operations.

• Machine Learning Applications

Further applications of drilling data to optimize drilling performance is the use of sta-

tistical based models and machine learning algorithms. Since drilling data is generated at

28



very high volumes, statistical analysis tends to be well representative of the actual physics

and phenomena happening in the drilling process. This is presented by [Liu et al., 2018],

when past data was used to calibrate a statistical model to calculate wear factor to predict

the optimum time to pull the bit due to decrease in cutting efficiency. Once the wear factor

is calculated, a decision tree algorithm is applied to answer if the bit should be pulled or

not. In twenty-five bit runs, the results showed only two false alarms and a success rate of

predicting bit failure of 92%. [Evangelatos and Payne, 2016] applied spatial discretization

to calibrate drilling fluid and borehole dampening coefficients, thus identifying scenarios

of forward or backward whirl, or a mix of the two. Also, neural network algorithm was

used to predict ROP with errors less than 20%. Bayesian Network was successfully applied

to identify drilling dysfunction by [Thetford et al., 2017]. Besides identifying drilling dys-

function, this system calculates the likelihood of the cause of such dysfunction, and then

recommends the change in these parameters to solve the problem in the form of operational

cones.[Cao et al., 2018] applied data analytics and machine learning to create a full suite

of real-time drilling optimization. The individual packages include drilling activity recogni-

tion, rotation and sliding drilling guidance, torque and drag modelling, real time hydraulics

calculation, wellbore trajectory correction, among others. Another interesting application

of neural networks is to generate synthetic data to calibrate automated systems. The main

problem when generating drilling data is the lack of randomness and noise.[Yu et al., 2018]

proved that Deep Neural Networks (DNN) can represent the noises that typically occur in

EDR data, thus providing a better training data set for autonomous systems.

For a thorough review of machine learning applications in drilling operations, as well

as in exploration and production, I refer the reader also to [Noshi and Schubert, 2018] and

[Noshi et al., 2018] respectively.

29



Chapter 2

Materials and Methods

2.1. Data Set Description

The data set used in this study gathers data from thirteen wells drilled in the US

Permian Basin, located in West Texas. All the wells are placed close to each other in a

rectangle two by three miles long. The wells’ proximity is important because the lithology

found during the drilling of each well should be very similar, making any statistical analysis

much more representative. Also, since the Permian Basin is one of the most active drilling

sites in the country, any conclusion regarding optimum operating parameters should be

easily reproducible in future wells.

Figure 2.1 depicts the basin location and what pad drilling looks like. The thin traces

along the horizontal portion of the figure represent the hydraulic fracturing operation.

Hydraulic fracturing a reservoir is the process of pumping fluid with proppant material to

enhance the connectivity (permeability) of the reservoir, enabling the fluids to flow.

Figure 2.1. A Highlight of the Permian Basin in West Texas (left) - A Schematic of the
Pad Drilling (right)

Pad drilling is the drilling layout on which multiple wells depart from a close location on

surface but hit different areas in the same or multiple reservoirs. A major contributor that
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allowed the execution of this drilling pattern is the recent added capability of the drilling

rigs to move (or “walk”) with the derrick raised and all equipment installed, including

the blow out preventer (BOP). The movement is achieved with several pistons installed

beneath the rig substructure that move in small increments using hydraulic power (Fig.

2.2). With this technique, the operators are now able to drill multiple wells from the same

surface location, which represents significant savings in cost and time when compared to

conventional drilling.

Figure 2.2. An Example of the Rig Walking System, From Columbia Industries

The thirteen wells are all of similar shape profile, horizontal wells with around 8,500 to

9,000 feet of vertical (or nudge) section, then they have between 600 to 1,000 feet of curve

section, and once they achieve an inclination close to 90 degrees, the horizontal drilling

continues for around 7,000 feet, reaching a total measured depth (MD) of 17,000 feet on

average. Fig. 2.3 depicts the typical well profile used in this work.
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Figure 2.3. Typical Well Schematic From the Data Set

2.2. Table Schema

Once all data files from the different sources were collected, the first task was to organize

the information in a structure that will allow easy access, read and update during the

execution of the project. It can be noted in Table 1.2 for example, that some columns are

filled with a unique value. This is not a good practice for a few reasons. First, it makes

the table more crowded and difficult to read. Second, when you scale up for a table with

millions of rows, adding columns with just a single value can slow down any coding or

querying from that table significantly. To overcome this possible issue, the information

from the different sources – the well schematic and directional driller activity log – was

re-organized into two new tables, called reference tables.

The first reference table is called “Wells Overview” (Table 2.1). It contains basic

information regarding the profile of the wells (KOP depth and time, LP date and time,

total depth, etc). One important information is that for each well, there is a unique [Well

ID] that describes this well, meaning that all information from a particular well must be
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in the same row. The Wells Overview table also contains generic data such as the rig that

drilled the well, the well number inside the company’s code, date and time for the well spud

(the start of the actual drilling in a job) and ”well TD” (the moment when the drilling

reaches the total depth, or TD).

Table 2.1. Wells Overview Table Example

Well
ID

Pad
#

Rig
Name

EDR
Start

EDR
End

Well
Spud

Well
TD

Job Start
Depth [ft]

Job End
Depth [ft]

KOP
Depth [ft]

KOP
Datetime

LP
Depth [ft]

LP
Datetime

well1 1 Rig X
1/1/2018

00:00
3/1/2018

12:00
1/4/2018

11:33
2/28/2018

09:29
1,250 16,253 8,850

2/1/2018
02:57

10,152
2/4/2018

22:03

The second reference is Table 2.2 , called “”Wells BHA Overview”. This table gathers

information describing each BHA configuration run in each well. Since all the wells are

drilled with multiple bit runs, there is a not unique combination of either ”Well ID” or

”BHA Number” in this table. The solution is to create an aggregated column that com-

bines the two columns into one (now unique) column. Having the information organized

in such way is important and will allow the comparison between different bits, mud mo-

tor manufacturers, motor specifications and settings, that will provide insights regarding

drilling efficiency.

Table 2.2. Wells BHA Overview

Well
ID

Well
BHA

#

Motor
Bend

Motor
RPG

[rpm/gal]

Motor
MFG

Motor
Size
[in]

Motor
Stator

Motor
Stages

Bit
Size
[in]

Bit
MFG

Bit
Model

Datetime
In

Datetime
Out

Total
Circ.

Time [hr]

Depth
In
[ft]

Depth
Out
[ft]

Total
Footage

[ft]

well1 1 1 3
4

0.166 MFG X 8 0.88 4 12 1
4

A ABC12
1/4/2018

11:33
1/9/2018

08:23
82 1250 5741 4491

well1 2 2 1
4

0.28 MFG Z 6 3
4

0.88 5 8 1
2

B CDE34
1/9/2018

17:39
1/15/2018

03:00
90 5741 12487 6746

Lastly, the EDR files are downloaded per well. The columns downloaded are:

• DateTime

• Hole Depth

• Bit Position

• Bit Weight

• Block Height

• Mud Motor Differential Pressure (Diff Pressure)

• Gamma Ray
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• Hook Load

• Pump Pressure

• ROP – Average

• Top Drive RPM

• Top Drive Torque

• Flow In Rate

• Pump SPM

• ROP – Fast (instantaneous ROP value)

Fig. 2.4 shows examples of the location of the EDR readings for the main components.

Figure 2.4. Examples of the Sensors for Main EDR Readings

Using the two reference tables, now each individual EDR file can be related to either

the Wells Overview table with the [Well ID] value, or to the Wells BHA Overview table

with the [Well-ID BHA] value. A schematic of this relationship is presented in Fig. 2.5.
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Figure 2.5. Relationship Between the Three Main Data Tables

2.3. Data Wrangling

Data wrangling defines the steps that are required to transform raw data (numeric or

textual) into a format that it can be readily used for analysis, modelling, statistics, etc.

Equivalent terms for these steps are Data Cleaning or Data Munging. For the KDD diagram

(Fig. 1.5), the data wrangling steps comprise the data selection until data transformation.

Over the next sections, we will describe the data wrangling steps needed to clean drilling

data.

2.3.1. Cleaning Missing Values and Slicing the Data Set

To download an EDR file, the user has to access the EDR online repository in the

manufacturer′s website, select the time interval to be downloaded and the columns wanted

to be included in the file. But the fact that not all measurements are active during all the

operations leads to some of the values to be null, or “-999,25” as defined as the null value

for most EDR systems. This is true also if any failure happens during normal operations.

With the definition of “-999.25” as a null value, the substitution of this value for a

“null” variable should be straightforward in any programming language. But first, it has

to be verified if the -999.25 could be actually a valid reading, so one doesn’t unintentionally
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delete good data. Since all the columns downloaded in the EDR should contain only positive

values, this operation can be performed without concerns in this case.

Next, an obvious problem was detected by examining the EDR files: some rows have

the Bit Position value greater than the Hole Depth reading. Since it is physically impossible

to happen and was only observed in less than one percent of the cases, it was decided that

for the rows in which [Bit Position] > [Hole Depth], the whole row will be filled with “nulls”.

But due to small inaccuracies in the calculations of the Bit Position by the EDR system,

a more expressive number of cases is identified where Bit Position is greater than the Hole

Depth no more than 0.2 feet, or 6 centimeters. These cases were kept in the analysis.

Finally, since during normal operations a total blackout of the system can happen,

resulting in rows with all values as ‘-999.25”. In some wells also, the EDR did not start to

record during the first hundred feet drilled. Since the time interval selected to download

the EDR came from the Wells Overview table, which reported the date time when the

actual drilling started, this fact also resulted in some complete null rows until the EDR

was set up properly. All these rows were deleted completely. For all the values in which

a “null” variable was set in the operations described previously, then a value of 0.00 was

input to it.

The second step in this initial data cleaning is to properly slice the data set removing

periods of time that are either invalid or out of the interest for this analysis. For example,

since the scope of this work is to only analyze data where actual drilling was being performed

(hole depth was increasing), as soon as the TD was reached, the operations that took

place after it (tripping out the bit, running the production casing, cement it, etc) are also

removed. For the cases described in the previous paragraph, where the recordings did not

begin until a certain point, we now slice these values as well based on the Well Spud date

time in the Wells Overview Table. It is important to notice here that since the data came

from a directional drilling company, the definition of Well Spud here is not the spud of the

well (usually when the conductor pipe is put in place) but when the first feet with MWD in
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the BHA was drilled. This usually happens after the first two sections of casing are drilled

and cemented.

After the first cleaning steps, a representation of the data set is shown in Fig. 2.6. It

can be seen mainly that the missing values, as well as some of the first and last rows are

now gone.

Figure 2.6. Illustration of the First Cleaning Steps. The Null Values are Cleaned, and the
Wells Overview Table Provides the [Well Spud] and [Well TD] Datetime Values That Will
Slice the EDR File

2.3.2. Creating Status Columns

Following the first cleaning step, next some calculated columns are created based on

other values. The first calculated column is the [Making Hole] column, which is of Boolean

type (TRUE or FALSE). The calculated value is simply TRUE if the actual Hole Depth is

greater than the previous one, or FALSE if it is equal. This calculation will be used later

to not only identify easily in which rows the drilling is progressing, but also to filter the

data set for visualization and analysis.
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The second status column is called [Block Movement]. It represents the difference

between two consecutive block height values, being positive if the block is moving up

(Actual height is greater then previous) or negative if the opposite happens. A column with

this information can be very useful to infer drilling operations, when evaluated together

with other values. For example, being all the other values equal, the signal of the [Block

Movement] can be useful to directly distinguish between tripping in vs tripping out, or

reaming vs back reaming. Also, if there is no movement, this column can support the

misclassification of other operations in case of bad values (ex: the hole depth could be

increasing due to an error in that reading, but if block movement is zero, it will avoid the

misclassification).

A third status column is created to point out the off-set distance between the bit and

the bottom of the hole. The column [Off Bottom Distance] is used as well to identify

drilling operations more easily, and also to take into account small errors in the readings.

As stated previously, for example, operations can still be classified as “drilling” even if the

distance between the bit and the bottom of the hole is negative by a very small amount

(0.2 feet), to account for problems in the bit position recording. Also, the [Off Bottom

Distance] is helpful to quick access if a tripping operation is underway, when the distance

is greater than one stand. The steps described in this section are represented in Fig. 2.7.

Figure 2.7. Representation of the New Status Columns Added to the EDR File

2.3.3. Referencing Well Section and BHA Number

Next, more data from the reference tables are added to the EDR file for easy slicing.

First is the [Well Section], obtained with the comparison between the actual hole depth and
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the reference KOP and LP from the Wells Overview. If actual depth is less than KOP, its

value is “Vertical”, if the value is in between KOP an LP, “Curve” and lastly if is greater

than LP, [Well Section] gets a “Lateral” value.

Using the same logic, the [BHA #] from the Wells BHA Overview is read, and this

value is added to the EDR file. With these both new columns in the EDR, any analysis of

performance for each run, or the comparison between the drilling of the curve section in

all the wells can be performed without trouble. Fig. 2.8 illustrates this step.

Figure 2.8. Addition of Well Section and BHA Number to the EDR File

2.3.4. Classifying Drilling Operations

As stated in Section 1.7.2, the process of drilling oil wells involves several different

operations that are repeated as the drilling progresses. Therefore, it is crucial to prop-

erly classify these operations in the EDR before performing any analysis of the operation.

Without proper classification, data points describing operations such as tripping, circulat-

ing, reaming will all be analyzed together with actual drilling data points. The opposite

is also true: When the analyst wants to investigate tripping performance, all other data

points should be excluded from the analysis. The present work classified drilling operations

into 10 categories, utilizing only seven columns from the preprocessed EDR file (four pre-
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existing columns plus the three status columns that were created). Table 2.3 summarizes

the classification logic.

Table 2.3. Logic for Drilling Operations Classification

Column Hole Making Off Block Top Pump Hook

Operation Depth Hole
Bottom
Distance

Movement
Drive
RPM

SPM
Total

Load

Drilling TRUE >-0.2 <0.1 >10 >10
Drilling/Rocking >10000 TRUE >-0.2 <0.1 5<x<45 >10
Sliding TRUE >-0.2 <0.1 <=10 >10
Reaming FALSE <= -0.2 <0 >10 >10
Back-reaming FALSE <= -0.2 >0 >10 >10
In Slip Connection FALSE <= -0.2 <=57
Tripping In FALSE <=-80 <0 <5 <5 >57
Tripping Out FALSE <=-80 >0 <5 <5 >57
Circulating/Survey FALSE <=-0.2 >10
Other

The criteria to classify the drilling operations was the following:

-Drilling: The Drilling label was given to the data points in which rotation drilling was

happening. This is identified when the Making Hole value is TRUE, the bit is touching the

bottom of the well, the travelling block is moving downwards, the drill string is rotating, and

the mud pumps are on. Here we highlight that a small threshold for the block movement

was given as well as for the off-bottom distance to account for errors in the measurements

of block position. It was identified that in a sequence of drilling data points, sometimes

the block position is recorded to move up, which is physically not correct. To account for

those errors, a margin of 0.1 feet (or 3 cm) upwards is included.

-Drilling/Rocking: As the drilling advances and the drill string gets longer, more torque

is developed in the drill string due to a longer contact area between the drill string and

the borehole wall. In the lateral section, the driller drills with rotation unless the bit is

deviating from the target formation, forcing it to slide to correct the trajectory. But the

capability on applying WOB is compromised in such a long string due to longitudinal drag,

the drill string elasticity causing some portions of the string to move at different velocities,

40



and cuttings accumulation in the bottom part of the annulus due to poor hole cleaning

while sliding, increasing friction significantly. These factors difficult the application of

WOB, causing sudden releases of weight on the bit, and most times making the mud motor

to stall. Frequent stalling of the motor can damage its components, so this problem must

be corrected [Duplantis, 2016].

To control the bit orientation during a slide, the driller attempts to rotate the whole

string applying successive torque clockwise and counter-clockwise, which is called “rocking”

the bit. By doing this, drag is reduced and the length of the upper part of the drill string

that is being rotated (up to the maximum rocking depth) increases (Fig. 2.9). The objective

of the rocking operation is therefore to minimize the portion of the string that is static, i.e.,

does not rotate either due to the surface torque application or due to the reactive torque

from the bit. With the static portion minimized, more control to apply WOB is obtained,

thus the driller will spend less time pulling the bit off-bottom to release torque attempting

to correct toolface orientation, resulting in better operational efficiency.

Figure 2.9. Representation of the Different Zones of the Drill String During Rocking, From
[Duplantis, 2016]

This rock operation can be performed by an automated torque control system installed

on the surface, or manually by the driller (as in the cases of this work). Details of this oper-
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ation can be found in [Maidla et al., 2004], [Maidla et al., 2005] and [Maidla et al., 2009].

For the classification of the rocking operation in our data set, it was noticed in the

directional driller activity logs that it has never occurred in depths shallower than 10,000

feet. Because of this observation, a set point on the hole depth was placed in the algorithm

for the classification of this operation. Besides this depth set point, the only difference

between the drilling and drilling/rocking operation is the top drive rotation. Because of

the variations in rotation to control the bit orientation, it was observed that the range

applied by the drillers was between 5 and 45 rpm for the majority of the cases. This

range limit was applied to the top drive rpm column when classifying the drilling/rocking

operation.

-Sliding: Sliding drilling is the operation when drilling is performed without rotation

of the drill string. The BHA contains a bent sub with a slight inclination – 0 to 3 degrees –

that will cause the well trajectory to deviate. To apply rotation to the bit, a mud motor is

installed behind the bent sub. The motor will make the bit rotate as drilling mud is flown

through the chamber. The chamber comprises of a rotor and stator, and the number of

lobes of the assembly define the motor output of rotation and torque. The more lobes in

the rotor/stator assembly, the higher the torque transmitted to the bit, but smaller is the

rotary speed. Fig. 2.10 illustrates the mud motor components.

For the classification of Sliding operations, the distinction between drilling and sliding is

made only with the top drive rotation. It is seen that even when sliding is being performed,

sometimes the driller rotates the drill string slowly (no faster than 10 rpm) for short periods

of time to overcome torque. So this value was selected as the threshold between rotating

drilling and sliding. In depths greater than 10,000 ft however, the algorithm checks for

the hole depth value before it checks the other columns, making the classification in data

points that fall in the same interval (when top drive rotation is between 5 and 10 rpm) to

be classified as drilling/rocking. This represents nature of the operation better, since at

this point, sliding drilling is not expected to occur frequently; instead the driller is rocking
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Figure 2.10. Mud Motor Assembly (top left) – Different Types of Rotors (top right) – Re-
lationship Between Lobe Configuration and Torque and Speed Output (bottom), Adapted
From [Vieira, 2009]

the drill bit in an attempt to continue drilling forward in the lateral section of the well.

An example of the intermittent rotation of the drill string during the sliding operation is

shown if Fig. 2.11, where it can be seen in three consecutive stands that small rotation

was applied during short periods of time. The rotating drilling was performed with a top

drive rotation of 55 rpm.

- Reaming: This operation is defined here simply as drilling off-bottom. Reaming is

when a reamer of slightly larger diameter is installed in the BHA to enlarge the hole. But

for the purpose of operation classification, the data points where the bit is pulled off bottom

during drilling operations is classified as reaming. This is seen more often at the end of
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Figure 2.11. Example of Small Top Drive Rotation During Sliding Operations

the drilling of a stand, when resuming drilling after a connection in preparation for pulling

out of the hole (POOH). Since this operation is not critical for classification, no threshold

in the off-bottom distance and block movement columns is necessary.

-Back Reaming: Back Reaming is the reciprocal operation to Reaming, so the only

difference is the direction of the block movement. Usually these two operations occur in

sequence: The driller reams the well back and forth to make sure the hole is in gauge prior

to trip out.

-In Slip Connection: In Slip Connection is assigned to the data points where the drill

string is put on the slips. This happens more often during a drilling or tripping connection.

The main indication of this operation is therefore the hook load, that can point out that

the string is not being hung by the top drive with a steep drop in value. If the hook load

was calibrated with the top drive and hoses installed, its value should be close to zero due

to the lack of load. However, the hook load is measured indirectly by a strain gauge in the

dead line, and the weight of the top drive, elevator bails, elevator, top drive hoses, etc, is

not taken into account during calibration. Because of this, the values read for the hook

load fluctuate around 57,000 lbf. To verify this reading, the weight of the top drive and

travelling block was read from the manufacturer website in [NOV, b] and [NOV, c] and

presented in Table 2.4. For hoses, elevator and other equipment, the weight is estimated.
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Table 2.4. Hoisting System Element Weights

Equipment Weight (lbs) Weight (kg)
Top Drive TDS-11SAE 35,000 15,875
Travelling Block 650TB-500 15,725 7,133
Hoses and Elevator Assembly 6,275 2,846
Total 57,000 25,855

Table 2.4 demonstrates that the reading of around 57,000 lbf for In Slips situation is

justified by the weight of all equipment of the hoisting system. Obviously, some fluctua-

tion around this value is observed due to block movement, block movement speed, size of

elevator and bails installed, mud hose elongation, if the mud hose is filled with fluid or not.

[Eric et al., 2015].

The classification of the In Slip Connection is then obtained when the hook load reading

is below 57,000 lbf and the bit is not touching the bottom of the well (off-bottom distance

greater than 0.2 ft).

-Tripping In: Running pipe in the hole is identified when the making hole value is

False, the bit is far from the hole bottom, more than one stand away, the block is moving

down, and the hook load is greater than 57,000 lbf. To account for possible errors in the

bit position measurements, the threshold for the off-bottom distance was reduced slightly

from 90 feet (typical Range III triple stand length) to 80 feet. With the same idea, a small

margin for errors in the top drive RPM and Pump Stroke-per-Minute (SPM) are accepted

even though in reality, there should be no rotation or flow during tripping. A remark is

made for the fact that between stands, the driller fills the well to account for the amount

of drill pipe removed from the well. This operation is performed during the whole tripping

operation, but since the top drive is not being moved, these data points are then captured

as circulating/survey that will be described next.

-Tripping Out: Is the reciprocal of the Tripping In classification, but with the block

moving upwards.

-Circulating/Survey: This operation is classified to any point where there is circulation,

and the bit is not on bottom. For example, if the whole string is away from the bottom of the
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hole by 3 feet, with the mud pumps on, this data point is classified as circulating/survey. If

the string starts to rotate, this still does not change the classification for circulating/survey.

However, if later the string is moved either up or down, this action triggers the classification

for Reaming or Back Reaming respectively.

-Other: The previous classification of operations covers more than 92% of the data

points in a typical EDR file. These data points represent either operations not classified

by the algorithm, or data points that have some sensor error that avoids its classification.

Either case, these cases are simply neglected since it is a small percentage of the total

number of data points in the set.

2.3.5. Correcting WOB and Differential Pressure

In an EDR system, there are usually three types of input data: some values are di-

rectly measured from a sensor or instrument; others are indirect measured or inferred from

other values; and some are calibrated according to operational sequence (i.e. have to be

constantly updated/zeroed). Two important values fall in the last category and deserve

special attention: The WOB and mud motor differential pressure readings.

Section 1.7.1 presented how the calculation of the WOB is made, and the issues resulting

from such indirect measurements. Because the EDR system has a static value for the string

weight (SW) measurement, if the driller does not tare this value every time a new drill stand

is added to the drill string, the system will compensate for the extra weight read in the

hook load as negative weight on bit, so the equation for SW remains true. For example, in

normal operation, if the EDR value for SW is set as 100 klbf, and a hook load of 95 klbf

is measured using the dead line anchor sensor, then, the EDR records 100 - 95 = 5klbf as

weight on bit. Now let’s assume that a new drill stand weighting 2 klbf is added to the

string, but the SW is not updated. Thus, when the bit is off-bottom, the hook load will

hang all the weight of the string (102 klbf). But, since this value is greater than the SW, a

WOB of -2 klbf is computed to be on the bit (which makes no physical sense because the

bit is off-bottom). Following that, when drilling resumes and the bit touches the bottom,

46



whatever value is being read from the WOB column will be off by the same -2 klbf. If this

error propagates long enough, the off-set in WOB becomes so large that the actual weight

applied to the bit is much greater than the computed value, leading to damages at the bit

and inefficient drilling.

The same concept applies to the mud motor differential pressure. This value is cal-

culated simply as the pressure difference when the bit is on-bottom minus the pressure

recorded when the bit is off-bottom. Since both pressures are read in the stand pipe

pressure gage (SPP), and the off-bottom pressure is called static pressure (SP), then the

equation for the differential pressure DiffP becomes:

DiffP = Pon−bottom − Poff−bottom (2.1)

The value of SP has to be updated every stand the same way as the SW to account for

changes in the hydrostatic pressure as drilling progresses [Neufeldt et al., 2018]. In case of

successive stands without zeroing, the effect in the DiffP value is the opposite to that of

WOB: Since SP will not be updated (increased), the recorded value of DiffP will be greater

than it really is. The effect of this error is that the motor will not run on its full capacity

since the DiffP will be held to a value smaller than it could be, resulting in a smaller WOB

and more likely to a slower ROP.

Combining the work of [Neufeldt et al., 2018] with [Borjas et al., 2019], an algorithm

to correct for both WOB and DiifP is run on the EDR files in the data set. The first

reference provided the main logic to perform the correction, whereas the second provided

the actual values used to calibrate the logic. The zeroing logic starts as follows:

• A new drill stand is added to the string after a connection

• Once the connection is made up, the driller turns the mud pumps back on gradually

until it reaches the stable final value. Waiting for mud flow stabilization is important

because the constant rate will have a steady effect in the hook load (friction) as well
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as in the DiffP (which is directly related to flow rate).

• Next, the driller resumes rotation gradually as well. Again it is important to wait for

top drive rotation to stabilize for the same reasons as for the flow rate.

• The final requirement to achieve a good zeroing is to have the block moving down-

wards to resume drilling. [Neufeldt et al., 2018] make reference to a work where it

was found that lowering the travelling block results in smaller errors when compared

to raising it, thus downward movement is favored when zeroing for WOB and DiffP.

Fig. 2.12 shows the logic in the algorithm, and Fig. 2.13 depicts the same logic using a

sample of EDR data set. Note in Fig. 2.12 that a verification is set for the cases where the

bit is not held off-bottom long enough before all the parameters are met. If that happens,

drilling will resume, and then it will avoid the zeroing in such non-ideal conditions until

the next stand is drilled.
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Figure 2.12. Flowchart Representing the Zero WOB and DiffP Logic

Figure 2.13. Demonstration of the Ideal Moment to Zero WOB and DiffP
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2.3.6. Removing Outliers

The last step in the data wrangling process is the removal of outliers, that can be easily

identified in box plots. In a box plot, the data is divided into five intervals: minimum, first

quartile (Q1), median, third quartile (Q3) and maximum. The definition of this division

explained by logical definition (not in order) is:

• Median: The middle value of the data set. (not the mean)

• First Quartile (Q1 or 25th percentile): the middle number between the smallest

number (not the minimum) and the median of the data set.

• Third Quartile (Q3 or 75th percentile): the middle number between the highest

number (not the maximum) and the median of the data set.

• Interquartile Range (IQR): The range from the 25th to the 75th percentile.

• Minimum: Q1 - 1.5 x IQR

• Maximum: Q3 + 1.5 x IQR

Following the definition above, outliers are defined as any data points that are outside

the range of 1.5 times the interquartile range. Fig.2.14 depicts a box plot with its definitions,

as well as a comparison with a probability density function (PDF) for a normal distribution.

It can be seen from Fig. 2.14 that considering outliers, the values outside 1.5 times

the IQR, will keep 2.698 standard deviations from the mean of the data, or 99.3 % of it.

This means that using this criteria will remove a very small amount of the data, still not

compromising its distribution.

During the previous steps of the data cleaning process, many bad values were auto-

matically excluded (for example, a bad data point of 100,000 ft/hr ROP at the beginning

of the data set when the EDR was being set up). Because data points like this one could

skew the calculation of the IQR range, this step is performed as the last one of the data
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Figure 2.14. Comparison of a Box Plot of a Nearly Normal Distribution and a PDF for a
Normal Distribution, From [Galarnyk, 2018]

wrangling process. To demonstrate this fact, box plots of several values are plotted below

in three steps: As raw data, just after the last wrangling process (step described in 2.3.5)

and the same cleaned values but filtered only for data point where drilling is happening

(meaning where the drilling operation is classified either as ”Drilling”, ”Drilling/Rocking”

or ”Sliding”). The reason for filtering the cleaned data point for drilling only is because

it was noticed that some values can be consistently bad in other operations, for example

the gamma ray values spike when the operation is circulating, or the ROP - Instant spikes

during tripping operations.

2.3.7. Bit Weight

It can be seen from Fig. 2.15 that the problem with the WOB still remains after the

null values are cleaned. This is mainly due to the problems already discussed of lack of

51



Figure 2.15. Box Plots of Bit Weight using Raw Data, Without Nulls, and Drilling Oper-
ations Only

zeroing, and affects mainly when the bit is not on bottom. When we filter the data for

drilling operations only (drilling, sliding and rocking) we can see that the variance reduces

significantly, with most of the data above zero and below 100,000 lbf.
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Figure 2.16. Bit Weight and Bit Weight Corrected Zoomed Between -25 and 75 klbf

Fig. 2.16 shows the expected overall increase with the correction of the WOB due to

the algorithm implementation. However, it is still noted some outliers of negative values,

specially in well number 4, that need further investigation.

After analyzing Figs. 2.15 and 2.16, it was decided not to remove any outliers artifi-

cially, because the very few occurrences observed in the bottom plot of Fig. 2.15, reveal

that there are a very few high values, in ranges that still might be actual true values of

some operational problem (such as sudden release of weight on the bit due to stuck pipe

or bit stalling). Further investigation will be performed in the data analysis section of this

work to understand these data points.
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Figure 2.17. Box Plots of Block Height Using Raw Data, Without Nulls, and Drilling
Operations Only

2.3.8. Block Height

An analysis of the Block Height values shows no problems with outliers. The last well

presented errors in the calibration of the sensors, recording values in a wider range than

really exist (the derrick has a fix value since the rig used to drill the wells is the same).

54



Another important observation is that most of the very negative values are removed by

simply filtering the data set for drilling values only. A possible explanation for this issue

is that the sensor is more likely to perform poorly during tripping operations, in which the

top drive moves at much higher speeds than during drilling. Even though, for all the wells

it is observed that the actual zero in the block height occurs in values below zero, being

close to -4 ft. This does not pose any harm for human operated top drives, but is a problem

that will have to be addressed more seriously when moving to automated operations.

2.3.9. Mud Motor Differential Pressure

Regarding the mud motor differential pressure, filtering for drilling operations only

results in most of the negative values to be removed from the analysis (Fig. 2.18). This

is good, and once again confirms the issues with the zeroing operation described earlier in

2.3.5. When the box plots for the differential pressure and corrected differential pressure

are zoomed between -2000 and 4000 psi (Fig. 2.19), the variance of the data increased

considerably for the corrected values. This is not the behavior expected with the zeroing

algorithm, therefore it is an indicator that the zeroing routine for DiffP should be reviewed.

A possible cause for this issue is the zeroing point selected not being at the final pressure

state. Again, further investigation in the data analysis will be performed to answer this

question. It is also noted however that for some of the wells (Numbers 12 and 13 for

example) the zeroing routine seems to be working, i.e., not increasing data variance and

also reducing the overall values of the variable, as expected by the problem with no zeroing

DiffP.
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Figure 2.18. Box Plots of Differential Pressure using Raw Data, Without Nulls, and Drilling
Operations Only
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Figure 2.19. Box Plots of Differential Pressure and Differential Pressure Corrected Zoomed
Between -2000 and 4000 psi

2.3.10. Gamma Ray

The gamma ray box plots show that most values are within the expected range (0 to

120◦API.) after performing the null values cleaning, filtering for drilling points and zooming

in. The only well that presented negative values is Well 7, with this issue being most likely

an isolated recording issues. A comparison between the second and third plot shows that

some outliers with very high readings disappear when filtered for drilling operations. But

in the third plot it is still possible to see a consistent appearance of very high values for

gamma ray even after the filtering. This phenomena is understood as a tool problem and

thus all values equal to or above 200◦API where replaced by 200◦API to remove this issue.

The value of 200◦API was chosen because it still a realistic high value for gamma ray

readings, thus still providing information about the high radioactivity of the formation.
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Figure 2.20. Box Plots of Gamma Ray Using Raw Data, Without Nulls, Drilling Operations
Only, and Zoomed Between -50 and 250 ◦API
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2.3.11. Hook Load

Figure 2.21. Box Plots of Hook Load Using Raw Data, Without Nulls, and Drilling Oper-
ations Only

The hook load values plotted present a consistent behavior for all wells once cleaned

and filtered on drilling only data points. In the second box plot it is observed a decrease

in the Q1 position, being for most of the wells, close to the In Slips value (around 57 klbf).

This behavior might be explained if the overall tripping performance was slower, or more

time was spent on surface (in between trips). Regarding the data quality of the values, the

last plot shows no signs of problems with the measurements.
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2.3.12. Pump Pressure

Figure 2.22. Box Plots of Pump Pressure Using Raw Data, Without Nulls, Drilling Oper-
ations Only, and Zoomed Between -220 and 5000 psi
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The pump pressure, or stand pipe pressure values also do not present evident incon-

sistencies or problems in measurements. Since all wells are drilled up to similar measured

depths, it is expected the pump pressure (hydraulics) to be similar as well. The average

value when drilling is being around 3500 psi, with some wells having the data skewed

towards smaller values. From Fig 2.22 it is concluded that no further treatment to this

variable is necessary.

2.3.13. ROP - Average

Figure 2.23. Box Plots of Average ROP Using Raw Data, Without Nulls, and Drilling
Operations Only
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The rate of penetration is the most important parameter in drilling analysis, since it

represents the rate in which the bit advances, that can be translated to efficiency to drill.

The calculation of ROP is therefore of utmost importance, since the aggregation of wrong

values can result in completely wrong values and or conclusions. For this reading, the EDR

calculates the average of the last 5 seconds. Fig. 2.24 shows that an increase in values

for ROP by just filtering the data to drilling only operations. Since it seems that all of

the wells’ data show consistent outliers from 300 to 800 ft/hr, a detailed analysis may be

conducted in sequence.

Figure 2.24. Box Plots of Average ROP for Raw Data and Cleaned Drilling-only Values
Zoomed Between 0 and 500 ft/hr
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2.3.14. Top Drive Rotation

Figure 2.25. Box Plots of Top Drive Rotation Using Raw Data, Without Nulls, and Drilling
Operations Only

The top drive rotation presents consistent measurements once null values are cleaned.

No negative values, and most of the data for all the wells is between 0 and 60 rpm, which

is the interval where most of the operations occur. For the drilling only values (third plot)

the most upper limit is still at 60 rpm, however for some of the wells there are more data
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points pushing the distribution towards 25 rpm approximately. This could be an indication

of more rocking for these wells.

2.3.15. Top Drive Torque

Figure 2.26. Box Plots of Top Drive Torque Using Raw Data, Without Nulls, and Drilling
Operations Only

Torque measurements recorded in the thirteen wells from the data set are consistent and

in accordance with the expected physical values for mud motors of 8.5 inches of diameter

(but most BHAs are of this size). For the drilling only plot, only one well presented
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some outliers, meaning that there is no reason to believe that there are problems with this

variable, so no further edits will be performed.

2.3.16. Flow Rate In

When plotting the flow rate values, a very small quantity of outliers dominated the

plot, even when cleaned and filtered for drilling values only, as seen in Fig. 2.27.

Figure 2.27. Box Plot of Flow Rate In for Data Without Nulls and Filtered for Drilling
Operations Only

That way, all data values above 1600 gpm are cut from the plot, to allow interpretation.

After the first cleaning routine, most of the flow rate values lie between zero and 600 gpm,

which seems to be reasonable according to the pump specifications for a well of such depth.

When the values are filtered for drilling only, the values are now concentrated in a higher

interval - 600 to 800 gpm - indicating that the pumps are on at sufficient values to promote

hole cleaning. In at least four wells however (3, 8, 10 13) some outliers show flow rates

up to 1200-1400 gpm, but these values look unrealistic, especially for such a small period

of time. Because the flow rate is calculated by the EDR using the pump rate (strokes

per minute), liner size, stroke length and piston rod diameter, the most likely explanation

for such values is that the pump rate for these points is off, resulting in an equally off

calculation of the flow rate. This will be evaluated in the next column (pump rate).

65



Figure 2.28. Box Plots of Flow Rate In Using Raw Data, Without Nulls, and Drilling
Operations Only, With a Cutoff at 1600 gpm

2.3.17. Pump Rate

The pump rate is the count of pump speed in strokes per minute, usually measured

by a micro limit switch sensor installed in one of the pistons of the pump. The sensor

is actuated when the piston touches the sensor’s rod, increasing the count of mud pump

strokes.
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Figure 2.29. Example of Micro Limit Switch, From HDI Gauges

Since these sensors count a stroke every time it detects movement, this measure is

susceptible to ”false” readings. Because the mud pump rod seals frequently present some

leaking, splashing of the mud due to the piston movement could trigger the stroke counter

to read before the actual piston completes a full stroke. Although the sensor is designed

to withstand equipment vibration, unusual movement of the pump could also trigger false

strokes. This false reading then makes the stroke per minute calculator compute an ex-

tremely high value for the pump rate.

When we compare the last plots of Fig. 2.28 and 2.30 it seems that the outliers for the

pump rate indeed caused the EDR to calculate equally high flow rates in another column.

According to a mud pump manufacturer [NOV, a], a pump of similar specification has a

maximum pump speed of 120 spm. Since the rig used in this work has three triplex pumps

and the channel feeding the EDR system calculates the sum of all pump speeds (Pump SPM

- Total), it is known that any value greater than 360 spm is due to faulty measurements.

Because of this reason, the values of this column will be all set to a maximum of 360 spm.

Fig. 2.31 shows that this assumption is reasonable since most values lie below the threshold

applied.
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Figure 2.30. Box Plots of Pump Rate Using Raw Data, Without Nulls, and Drilling
Operations Only
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Figure 2.31. Box Plot of Pump Rate Using Data Without Nulls Filtered to Drilling Oper-
ations Only and Zoomed to Values Between 0 and 600 spm

2.3.18. Instantaneous ROP

The instantaneous ROP column (ROP - Fast) is the column name given to the top drive

velocity calculation. It is measured by dividing the displacement of the top drive (using the

block height measurement) over time. This calculated column is sample dependent because

it is updated only once every 5 seconds. So, if the same physical movement of the top drive

begins at a x:xx:00 time or xx:xx:03, the value for the ”ROP - Fast” is likely to be different.

Also, for tripping operations where the block is moving at much faster speeds, this effect

of sampling can result in even higher positive or negative ”ROP - Fast” recordings.

This issue is evident in Fig. 2.32 which shows instantaneous velocity of positive 400,000

ft/hr and negative of up to 1,000,000 ft/hr. The third plot shows that the negative effect

is removed for drilling only operations, because in drilling the top drive is always moving

downwards (ROP positive). It is also noted that this filter removed most of the very

high values, since no tripping data points are included in the analysis now. However,

the existence of these outliers even in drilling is attributed to bad readings in the block

height, already discussed in Section 2.3.1 when dealing with bit position values greater

than the hole depth. Because the reliability of this column is compromised, which in turn

is useful only for qualitative analysis, these outliers are left as is. No drilling optimization
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Figure 2.32. Box Plots of Instantaneous ROP Using Raw Data, Without Nulls, and Drilling
Operations Only

conclusion is seen to be derived from the evaluation of this column’s values, besides using

it as a guideline by the driller during actual drilling. A zoom in for instantaneous ROP

values below 500 ft/hr is presented in Fig. 2.33. Now it is visible that most instantaneous
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ROP plots look similar to the ones in Fig. 2.24. In the zoomed plot some negative values

can be seen, confirming that misreadings of block position and block movement occur in

the EDR.

Figure 2.33. Box Plot of Instantaneous ROP Using Data Without Nulls Filtered With
Drilling Operations Only, Zoomed to Values Between -450 and +450 ft/hr

The conclusion of individual analysis of all drilling parameters collected from the EDR

result in only two values to be artificially corrected:

• Gamma Ray: The ”Gamma Ray” column is limited to 200 ◦API.

• Pump Rate: The ”Pump SPM - Total” column is limited to 320 gpm.

This fact does not mean that other columns do not need some sort of fixing. As

discussed along the individual sessions, some variables affect the drilling operation more

direct than others, and thus for these further investigation is done before changing its

values.
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Chapter 3

Data Visualization and Analysis

3.1. Data Analysis Overview

Data analysis is the process of extracting meaning from data and using it to improve

a process or activity. In this work, drilling data of previously drilled wells is being used to

provide insights on the performance of future wells. In the previous chapter, a complete

description of the cleaning process for drilling data was proposed, based on a mixture of the

experience of the analysts and published work in the literature. This resulted in a method

that was not yet described in the literature with the same degree of detail.

With the data cleaned and organized, the next step is to visualize the data in plots,

trying to identify patterns or relationships that would help explain a certain behavior.

With the advent of computers in the last decades, an particular tool to analyze data

became ubiquitous in almost every PC: Microsoft Excel R©. This software contains a wide

array of numerical, statistical and visualization tools that enable an easy manipulation of

the data, helping tremendously in the analysis process.

But with the growth of the size of the data sets generated in the past 5-8 years, mainly

because of the advance in remote sensors, wireless data transmission and computational

processing power, the size of these so called ”Big Data” data sets exceeds the limit of Excel

of 1,048,576 rows per file. Not to mention that the software gets slow when the number

or rows is around half of the limit, depending of the number of columns and calculations

performed in the spreadsheet.

To overcome this issue, data analysts needed a tool that would enable them to manipu-

late, transform, model, and plot the data with ease and speed. For this reason, open source

languages such as Python and R gained popularity, and continue to gain space even when

commercial tools were created to address the same problem (dealing with the growing size

of data sets).
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In the present work, we used Python to perform all the data manipulation and box

plots described in Chapter 2. For the data visualization we utilize two widely used commer-

cial platforms Microsoft PowerBI R© and Tibco Spotfire R©. The decision to use commercial

programs instead of open source tools is simply to facilitate future implementation of the

analysis process by the sponsor company. A great advantage of these products is the ability

to interact with the visuals created, highlighting portions of data in other visuals as you

select or filter a single plot. When this feature is combined with a plot of various graphs

in a single screen (called a dashboard), many interesting conclusions can be derived after

some analysis. Figure 3.1 illustrates a dashboard with a high level view of the data set, as

well as the interactive feature of these programs.

To begin our analysis, first we summarize general information in Table 3.1 to provide

an overview of the nomenclature used in the analysis.

Table 3.1. Summary of Wells Classification

Well Number Pad Number Well ID Well Spud Well TD
1 1 MDM1210020 12/13/2016 12/25/2016
2 2 DMD17006978 8/29/2017 9/30/2017
3 2 MD170072 9/3/2017 9/18/2017
4 3 DMD18000301 1/5/2018 1/31/2018
5 4 DMD18001624 2/20/2018 3/30/2018
6 4 MD180017 2/27/2018 3/15/2018
7 5 DMD18002707 4/5/2018 6/9/2018
8 5 DMD18003203 4/13/2018 6/1/2018
9 5 DMD18003441 4/20/2018 5/20/2018
10 5 MD180037 4/28/2018 5/12/2018
11 6 DMD18101127 6/17/2018 7/20/2018
12 6 MD181017 6/24/2018 7/8/2018
13 7 DMD18103258 7/26/2018 9/22/2018

A detailed look in the well spud and TD dates shows that the wells were not drilled in

chronological order. In a same pad, the sequence was to first drill all the vertical sections

one after another. For the last well in the pad, the drilling continued until the final depth.

Then, the remaining curve and lateral section of the previous wells was drilled in reverse

order. This procedure is better illustrated in Fig. 3.2.
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Figure 3.1. Dashboard Example Created Using a Commercial Software. All Wells View
(top) and Highlight of a Single Well (bottom)
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Figure 3.2. Depth vs Time For All Wells in the Data Set

3.2. Vertical Section Data Analysis

Because of the nature of the drilling process, the analysis will be divided into well

sections. The first section is the vertical. It covers the shallower formations, thus the less

consolidated, softer ones. Also, because the drilling cuts the formations perpendicularly,

within a few feet drilled you usually find several changes in lithology.

The analysis begins comparing the average ROP per well, divided by pads. This should

provide a first look into the learning curve between wells in the same pad, meaning that the

crew learned with the problems from a previous well, and acted to correct in the present

one. Fig. 3.3 illustrates this together with the footage drilled to allow comparison. Note

that for the first well (Well 1 or MDM1210020), data from the vertical section is missing,

so it was removed from this part of the analysis.
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Figure 3.3. Visualization of the Average ROP in the Vertical Section

Analyzing Fig. 3.3, we cannot see any tendency of increase in ROP as new wells are

being drilled. In fact, for Pads number 2 and 6 the average ROP decreased on the second

well. For the pad with most wells however, Pad 5, the ROP consistently increased, showing

improvements in terms of learning.

Another simple metric that can be correlated to average ROP is the percentage of

drilling versus sliding for a given section. Figure 3.4 shows the percentage of the rotating

and slide drilling in the vertical section for all wells but Well 1, and Fig 3.5 provides the

percentage of rotating drilling against average ROP for the same wells.

Figure 3.4. Percentage of Rotating and Slide Drilling in the Vertical Section
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Figure 3.5. Comparison Between Percentage of Rotational Drilling Versus Average ROP
in the Vertical Section

From both figures, a direct correlation is not visible when comparing all the wells in

terms of average ROP, having the best performer, Well DMD17006978 not having the

lowest sliding rate. The opposite is also true: the worst performers in ROP are not the

ones with the highest slide percentage. But in a pad level, the tendency seems to exist in

all but Pad 2, as seem in Fig. 3.5.

Next we investigate if the bit model used in the wells can provide information about

the drilling performance, indicating an effect in bit design when drilling the area.

From Fig. 3.6 it is seen that all wells used bit model CF616 to drill most of the section.

Outside of these cases, bit models CF513, CF516 and U513M were used to drill the curve

section, but since they started a few hundred feet above the KOP, they appear on this

analysis but can be neglected since their contribution to the vertical section metrics are

minimal.
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Figure 3.6. Visualization of the Footage Drilled per Bit Model in All Vertical Sections

From a manufacture’s catalog, the bit nomenclature is the following [Ulterra, 2019]:

Model Example: A616S

• First letter (A): Represents the product line.

• First number (6): Number of blades of the bit.

• Second and third numbers (16): The size of the cutter in mm.

• Last letter: Denotes the bit body material (M for Matrix, S for Steel).

Although the bit used is the same in all the wells, it can be seen from Fig. 3.6 that

out of thirteen wells, in seven cases (Wells 2, 3, 6, 8, 10, 12 and 13) the bit was able to

drill the whole vertical section. In the remaining four wells, the bit drilled less than 4,000

feet in two of them (Wells 5 and 11). A search in the DD activity log indicates that in

these wells the first bit run was interrupted due to MWD tool failure. However, for Well

11 (DMD18101127) a third run was necessary to drill only 200 feet. In Wells 4, 7 and 9

there is no evident reason for the bits to be pulled out, so we analyze how these bits were

operated with the objective to find insights on why the bit had to be pulled.
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To do this analysis, we first introduce the concept of hydraulic horsepower per square

inch (HSI). This metric is the division of the hydraulic horsepower (HHP) provided to the

bit by the hole area (bit area). The expression to calculate the bit hydraulic power in field

units (flow rate in gpm and pressure in psi) is:

HHP =
FlowRate× PumpPressure

1714
(3.1)

With the HHP in hand, we divide it by the bit area to obtain the HSI [hp/in2]:

HSI =
HHP

BitDiameter2×π
4

(3.2)

By grouping the HSI values into bins of size 4 hp/in2, we can compare the resulting

output ROP in terms of the two most important drilling parameters: the WOB and RPM

- in this case, the bit RPM. Due to the use of a downhole mud motor, the total rotation

of the bit when drilling in rotating mode is the sum of the top drive rotation plus the

rotation due to the motor. This last term is calculated multiplying the motor factor (given

in rotations per gallon, or RPG) by the total flow rate (in gpm):

BitRPM = Motor RPG× FlowRate (3.3)

First we analyze Well Number 4 with the aid of another dashboard, called Bit Report.

This dashboard contains collected information about the BHA (bit and motor specifica-

tions), the plot of average ROP and MSE per foot, and the heat map of WOB vs Bit RPM

for each bin of HSI. Fig. 3.7 shows in detail this view.

At a first glance, the average ROP shows a downward trend with depth. The colors in

the Average ROP plot (left middle of the figure) represent the groups of HSI. The plot just

below this is the surface MSE, showing an increase as drilling advances, in accordance with

the ROP decrease. The right middle plot represents the heat map. Further investigation

will be performed now filtering this view for the HSI Bins of 8-11, 12-15 and 16+ hp/in2.
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Figure 3.7. Bit Run Report Dashboard View

Fig. 3.8 shows the HSI of 8-11 hp/in2. We can see that the well was drilled for a

small portion of time with this power, and the average ROP was 143.34 ft/hr. In the heat

map on the right it is seen that the best combination for the WOB and Rotation was with

around 10 klbf and 200 rpm.

Because the HSI Bin of 12-15 hp/in2 was used in almost the entire section, it was

divided into two segments: from 2,000 to 5,000 feet, and from 5,000 to 8,000 feet (Figs.

3.9 and 3.10). For the first part, the decrease in ROP is due to an increase in the slide

percent. The points in the left part of the Bit RPM and WOB heat map represents sliding

(no top drive rotation), and the right portion denotes rotating sliding. For the second half

(Fig. 3.10), we see that almost all the section was drilled with no sliding, but obtained a

slower average ROP due to improper WOB. The heat map shows that for this portion of

the well the WOB should be increased to around 30 klbf, showing more yellow data points

in this area.
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Lastly the final portion of the well was drilled with most of the footage at HSI of 16

hp/in2 or more. The heat map map of Fig. 3.11 shows a maximum of 200 ft/hr (excluding

outliers), meaning that the flounder point was reached for this set of parameters. The

misuse of the bit during the final 1,000 feet might explain the reason the bit was not

performing well, forcing the crew to pull it out of the hole.

Performing the same analysis for Wells 7, 8 and 9 (all from Pad 5) we can see that for

Well 7, most of the section was drilled with a low HSI (8-11 hp/in2 range) that resulted in

inefficient drilling (Fig. 3.12).

Figure 3.12. Bit Run Report for Well 7, Run 1

In the same pad, the following well had the vertical section drilled up to TD, using the

same bit and motor assembly. A clear difference by looking at the average ROP plot (Fig.

3.13) is that most of this well was drilled with HSI in the range of 12-15 hp/in2.

Filtering only the HSI Bins of 8-11 and 12-15 hp/in2, the respective heat maps show

that the sweet-spot for the drilling parameters is around 150 rpm and 15-20 klbf.

Dividing the drilling of the first run of Well 8 into two segments - HSI of 8-11 and 12-15

hp/in2, we can see the parameters that resulted in better ROP, as shown in Fig. 3.14.
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Figure 3.13. Bit Run Report for Well 8, Run 1

Figure 3.14. Heat Map of WOB vs Bit RPM for Well 8, Run 1. Data Points With HSI of
8-11 hp/in2 (left), and With HSI of 12-15 hp/in2 (right)

Fig. 3.14 shows that for the lowest HSI range, during sliding, the best ROP was

achieved with lower rotation (around 90 rpm) and WOB close to 5 klbf. For rotating

drilling, most points with higher ROP happened with rotation around 150 rpm and WOB

of 15 klbf. When the hydraulics was increased, the new range of best performance in this

well was similar, but with increased WOB to around 20 klbf.

This bit run however did not present the best performance in the whole data set.

Attempting to identify the best parameters to achieve the highest performance from previ-

ously drilled wells, we first combine in the plot all wells that were able to drill the vertical
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section in a single run, namely Wells 2, 3, 6, 8, 10, 12 and 13. Next, we divide the total

drilled section into 1,000 feet intervals of depth (besides the first and final 2,000 feet).

Figure 3.15. Heat Map of WOB vs Bit RPM for the First Half of Depth Intervals
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Figure 3.16. Heat Map of WOB vs Bit RPM for the Second Half of Depth Intervals
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The recommendations based on Figs. 3.15 and 3.16 are:

• 0 - 2,000 feet: Drill with HSI of 8-11 hp/in2, with bit rotation of 183 rpm and WOB

of 10 klbf.

• 2,000 - 3,000 feet: Drill with HSI of 12-15 hp/in2, with bit rotation of 183 rpm and

WOB of 15 klbf.

• 3,000 - 4,000 feet: Drill with HSI of 12-15 hp/in2, with bit rotation of 188 rpm and

WOB of 20 klbf.

• 4,000 - 5,000 feet: Drill with HSI of 12-15 hp/in2, with bit rotation of 188 rpm and

WOB of 25 klbf.

• 5,000 - 6,000 feet: Drill with HSI of 12-15 hp/in2, with bit rotation of 188 rpm and

WOB of 40 klbf.

• 6,000 - 7,000 feet: Drill with HSI of 16+ hp/in2, with bit rotation of 189 rpm and

WOB of 50 klbf.

• 7,000 - Final Depth: Drill with HSI of 12-15 hp/in2, with bit rotation of 174 or 180

rpm and WOB of 30 or 40 klbf.

3.3. Learning Curve Analysis

The behavior of ROP with time, seen in Fig. 3.3, suggests that there are issues on

how the drilling contractor handles the lessons learned from previous wells. According to

[Brett and Millheim, 1986], the time taken to drill a section should decrease exponentially,

with the rate represented by the equation:

tn = C1e
C2(1−n) + C3 (3.4)
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where:

• tn: Total time to drill the nth well.

• C1: Learning potential.

• C2: Learning rate.

• C3: Operational/technical limit.

[Damski, 2014] explains that the learning rate C2 reduces the gap between C1 and

C3. The greater C2. the faster tn reaches C3. A good learning curve is represented by

C2 between 0.45 and 0.80. Fig. 3.17 depicts the learning curve behavior, as well as the

mathematical meaning of the constants.

Figure 3.17. Typical Learning Curve for a Drilling Campaign, From [Damski, 2014]

Using the learning curve theory, we plot the average time taken to drill the wells versus

the well sequence for the three sections: Vertical, Curve and Lateral. Fig. 3.18 shows the

curve for all wells. It is important to reiterate that in all plots in this section, only data

points representing drilling operations (drilling, sliding or rocking) are being used.
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Figure 3.18. Learning Curve for All Wells in the Data Set

The overall learning coefficient when considering all wells is 0.11. This denotes that

there is a room for improvement regarding previous performance to be communicated along

the drilling crews. However, because the wells were drilled in the course of one year (Fig.

3.2), and we do not know if the drilling crews were the same during the whole campaign,

we nail down the learning curve analysis for the wells in Pad 5, since it is the pad with the

largest number of wells. The following plots (Fig. 3.19) show the learning curve behavior

by well section. In the vertical part of the well, the improvement is maintained until the

third well, resulting in a learning rate of 0.36. In the curve section, the behavior found

is defined as ”loss of learning” [Millheim et al., 1998], where a past performance level is

not obtained again. For this case, we calculate the learning curve from the second well,

achieving a high learning coefficient of 0.9643, since the time to drill the curve section went

from 18.1 to 10.1 hours. Lastly, the analysis for the lateral section presents inconsistent

performance, with learning coefficient of 0.14.
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Figure 3.19. Learning Curve for Pad 5 Divided by Vertical (top), Curve (middle) and
Lateral (bottom) Sections
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The learning curve analysis demonstrates that there is room for improvement when

evaluating the wells in the data set. Some recommendations to overcome this issue are:

• Enhance Documentation: The drillers could document and classify all drilling prob-

lems encountered in a well into a structured database for further analysis.

• Knowledge Sharing: The drilling contractor should promote knowledge sharing among

the drilling crews by issuing performance alerts to be read by all relevant crew mem-

bers (Toolpushers, Drillers and Assistant Drillers).

• Active Performance Monitoring: The company should keep track of the metrics as

the wells are being drilled to get the benefits of the knowledge created in real time.

• Rotate Crew Members: One good approach is to rotate key crew members between

crews and track the performance changes. This usually results in good practices being

shared between the crews, and can raise equipment issues that are hard to detect if

the rotation is done between rigs.

• Methods-Time Measurements (MTM) Analysis: This method calculates the time

spent for each task as well the positioning of each member of the system (drilling

equipment) to execute the task. The MTM analysis can result in significant perfor-

mance improvements, for example leaving the slips ready and close to the well before

a connection, rather than placing it at random on the drill floor.
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Chapter 4

Machine Learning Modelling

Machine learning (ML) is a field inside computer science that has as a goal to teach

the computer to provide answers (by calculating probabilities) by example. The fact that

the computer learns by example differs than traditional coding because the computer was

never explicitly programmed to perform a task, but it learns with the data how the data

points are distributed in a data set, therefore it can infer the outcome for a new row of

data never seen before.

A common example of ML is picture recognition. For example, if a data set containing

lots of pictures of chairs and random objects, the computer will first learn the traces that

differentiate them. In this example, it is important that the pictures are labeled (have the

information if they are chairs or not chairs), so the computer can learn about it. Also, it is

important to highlight that no other information about the differences between a chair and

”not a chair” is provided (i.e., a chair has four chairs, a back seat, etc). The computer will

analyze all the pictures (in this example the pictures will be converted into one dimensional

vectors containing the pixels of each picture) and identify the relationship between them.

Because it is trained by example, another key aspect of ML is to have a good number of

data points in the training set to result in accurate models.

Once the model is trained, meaning it calculated the important traces for all the pic-

tures that have labels as ”chair” and ”not chair”, it can be exposed (or tested) to a new

picture, and be asked if the picture contains a chair or not. The way the computer model

does that is to calculate the features (pixels) of the new picture and answer the value

that the picture has the greatest probability to be. They way this procedure is normally

performed, 60% to 70% of the data goes to training, and the remaining part to testing.

4.1. The Boosted Decision Trees Algorithm

Besides classification, another type of problem usually solved using ML is regression.

Regression is the analog of classification, but instead of returning a class, it returns a
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numerical value. There are several algorithms that are used to estimate new values given

a training data set. For this work, we will focus on the method that resulted in the best

performance, or the smallest error, called Boosted Decision Trees.

”Decision Trees” is the name given to algorithms that provide an output by asking

multiple questions to the data by comparing multiple data points and checking the outcome.

The reasoning is similar to how humans perform this action, dividing possible outcomes

into new branches (or leaves) after a new outcome is analyzed. For example, lets assume if

we have the data set represented in Fig. 4.1. This data set contains answers of customers

for the question ”if they would wait for a table in a restaurant”. In order to answer, they

were given some features about the restaurant (if they have other options, type of food,

location, price) as well as the occasion (special date, is it crowded, etc). After considering

all the aspects of the decision, the customers provide the answer (label) if they would stay

or not at the restaurant.

Figure 4.1. Example Data Set to Explain the Decision Tree Algorithm

Now, taking this table to a computer using decision trees, the computer will try to

predict which combinations of questions will result in the answer with the best confidence

(least error). To do that, it will divide each column into separate trees, and proceed to a

new question until an answer is found, meaning that there is no more ambiguity left. For

example, in Fig. 4.2 we see that the first questions ”if the restaurant is crowded or not”

can lead to multiple answers, so another layer (node) is created. The next level checks the
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values in the ”do you have plans?” column, and evaluates if it still can provide a definite

answer. Since it still cannot, another questions is asked, until there is a clear difference

between the answers depending on the value of the column.

Figure 4.2. Example of a Decision Tree

Because of the way it is created, a particular tree will only perform well if the sequence

of questions asked is the same. To avoid this limitation, thus making the process more

generalized, boosting is performed. Boosting is the combination of several decision trees

made with different orders of questions. A boosted decision tree model therefore, is the

model that returns an answer to the combination of the answers from all the trees in the

model.

4.2. ROP Prediction of the Curve Section Using Decision Trees

In the present work, an example of ML application will be the prediction of the ROP

in the curve section of a well. The platform used to program the ML algorithm is the

Microsoft R© Azure Machine Learning Studio. First, we select eight wells to be used as the

training wells. These wells were chosen in such way that no two wells from the same pad

were used to train the model. Also, between wells of the same pad, always the first well is

chosen as the training well (so we can assess the model’s ability to predict the next wells’

performance). The training workflow begins by compiling the cleaned data, after running

the process described in Section 2.3.1 into a single table (Fig. 4.3).
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Figure 4.3. Combination the Data From the Eight Training Wells

Next, minor preparation steps are performed for the given application. In this example,

we are interested only in the drilling of the curve section, so the column ”Well Section” is

filtered for values of ”Curve”. Also, we look for values where ”Making Hole” is ”True”, and

”Operations” is not ”Other”, resulting in only data points where drilling occurs. Finally,

to avoid bias in the training regarding the magnitude of the features, all data columns are

normalized to values between 0 and 1. This way, the column of Hole Depth - average of

8,500 feet - will not have a greater weight in the training than top drive rotation - 0 to

60 rpm, even having much smaller influence in the resulting ROP. Lastly, the data set is

partitioned into equally sized folds for cross validation. Cross validation is the procedure

of dividing the training data set into smaller parts, and training separately in search of

sampling bias. For example, lets say that in the random split between 60% of the data

for the training set, and 40% for testing, no data points of ”sliding” are in the training

set, so the model has never seen this operation when training. So, when asked to infer

the test points containing ”sliding” drilling, the model will perform poorly because of this

sampling bias. Cross validating the training set into equally divided sets can verify if the

model performs with the same accuracy in all subsets. These steps as shown in Fig. 4.4.
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Figure 4.4. Filtering and Normalization of the Data

In the sequence of partitioning and sampling, the model is trained. Fig. 4.5 shows

that the training uses also another technique called ”tuning hyperparameters”. To each

boosted decision trees model, it is possible to customize its parameters such as the total

number of trees in the model, the depth of each tree (number of questions), the number

of leaves (nodes) in each level, etc. Since it is a heuristic model, there is no guarantee

that one configuration will be better than another, being completely dependent on the

data set size and values. In that way, this tuning method trains the model in several

configurations until it finds the best configuration. The time spent for a computer to train

all these combinations will depend on the number of the parameters sweep that is passed

to the tuning method. In this work, we sampled a total of 180 combinations, varying the

maximum number of leaves per tree (from 2 to 128), the minimum number of cases to form

a leaf (from 1 to 100), the learning rate, which is the steps taken to reach the final answer
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(from 0.025 to 0.4) and the number of trees constructed (from 20 to 500). Fig. 4.6 show

examples of the overall shape of the first nine trees, and Fig. 4.7 presents details of the

decision logic in part of a tree.

Figure 4.5. Training the Boosted Decision Trees Algorithm

Figure 4.6. Overall Shape of the First Nine Decision Trees

The resulting best model (with the smaller error) has 350 trees, a learning rate of

0.375257, minimum of 26 cases per leaves, and 90 leaves. Besides sweeping for the best

parameters to achieve good learning, and performing cross validation to avoid sampling

bias, we also executed a task called ”permutation feature importance”. This procedure

removes one column at a time from the training set and computes the overall performance.

The individual results from each trial missing a different column is then compared with the

training using all columns. The features that cause the greatest penalty in performance, are
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Figure 4.7. Example of the Decision Logic of Some Leaves of One Tree

attributed the highest importance; for those that barely affected the overall performance it

was assigned lower importance. The resulting importance estimation in the ROP is shown

in Table 4.1.

Table 4.1. Feature Importance When Predicting ROP

Feature Score
Hook Load 0.092441
Block Movement 0.082389
Bit Weight 0.080794
Pump Pressure 0.075463
Top Drive Torque 0.044885
Diff Pressure 0.044694
Block Height 0.043641
Hole Depth 0.038213
Flow In Rate 0.025674
Pump SPM Total 0.02061
Top Drive RPM 0.020033
Bit Position 0.019743
Gamma Ray 0.016839
Operation 0.000041
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Table 4.1 shows that the hook load (and the associated WOB), the block movement

speed and the pump pressure are the top features when predicting accurately the ROP.

The top drive RPM resulted in a lower value mainly because almost all points represent

slide drilling, so this columns has almost all values close to zero. The formation (gamma

ray) also does not play a big role in the curve section since it is drilled through a fairly

consistent lithology due to the angle build.

Then the model is evaluated, to check if the performance predicting the ROP is good

or not. The two main metrics analyzed are the root mean squared error (RMSE) and

the coefficient of determination (R2). The RMSE represents the amount of error in the

predictions, thus the less the better. The R2 is a measure of how well the model represents

the variation of the data, and the greater the better (goes between 0 and 1). The present

model performed the cross validation with a RMSE of 0.033949 and a R2 of 0.97751. These

metrics suggest that the model is predicting well the ROP of the data set that it was trained

upon.

The next step is to upload data from a new well (never exposed to the model) to check

its ability to reproduce the results. We selected Well Number 10 (MD180037) since it is

the last well of Pad 5 (Fig 4.8).

Since we used 2 wells from this pad in the training set, we expect a good result in

the testing. The resulting performance for Well 10 was an RMSE of 0.137218 and R2 of

0.560061. Although the performance is not as good as for the training set, the resulting

model covers most of the variations of the ROP, as seen in Fig. 4.9.

With the satisfactory results of the model, the following steps are to change values of

the test variables to see the resulting effect in the ROP, in the attempt to predict a better

performance in a future drilling for a similar well. In this example, we test three scenarios

multiplying the WOB by 1.3, 2 and 3. The equivalent reduction in hook load was also

taken into account, since these values are dependent on each other. The resulting ROP is

presented in Fig. 4.10.
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Figure 4.8. Testing of Well 10 Against the Trained Model

Figure 4.9. Comparison Between the Recorded and Predicted ROP for the Curve Section
of Well 10
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Figure 4.10. Resulting ROP Prediction for ROP of 1.3, 2 and 3 Times Higher

Fig. 4.10 presents an interesting result. The model shows that the ROP will not

increase indefinitely with increase of WOB. For example, from the performance of Well 10,

it can be seen that a somewhat steady performance is present from 8,900 until 9,250 feet.

After this point, the ROP becomes very unsteady. Similarly, for a doubled value of the

WOB (yellow curve), the ROP seems to be the best in this first interval (up to 9,250 feet).

However, for the troubled part, it seems that more WOB (as represent by the green line,

with a multiplier of 3) would have resulted in a better ROP. To assess this result further,

plots of the two regions are presented in Figs 4.11 to 4.14.

Figure 4.11. Resulting ROP Predictions Zoomed Between 9,040 and 9,250 feet

Figs. 4.11 and 4.12 show a zoom in the first part of Fig. 4.10. From the drilling

parameters plot, we can see that during the two stands drilled (observed by the red line

of Block Height), all important parameters were steady, namely the Differential Pressure,
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Figure 4.12. Drilling Parameters Zoomed Between 9,040 and 9,250 feet

the WOB and HL, top drive rpm and torque. This shows sections that presented efficient

drilling, and an increase in the WOB, for example, would not increase rate of penetration.

This is exactly what is seen in Fig. 4.11, where all predicted lines with WOB increase (the

red, yellow and green lines) show almost identical values of ROP.

Figure 4.13. Resulting ROP Predictions Zoomed Between 9,400 and 9,600 feet

Figure 4.14. Drilling Parameters Zoomed Between 9,400 and 9,600 feet

Figs. 4.13 and 4.14 show now a zoom at the second half of Fig. 4.10, where the ROP

was very inconsistent. Further examination of the drilling parameters show that around

half of each drilling stand, something happened that resulted in a sudden drop of ROP.

The behavior seen is a increase in WOB and Differential Pressure, high values of oscillating

torque and a surface RPM greater than zero (note that the drilling parameters plot has
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the values normalized between 0 and 1 to be used in the model, as described previously).

This behavior represents an attempt to overcome the torque and drag by rocking the

drill bit, and the sudden drop in ROP is when the mud motor stalls, as explained by

[Duplantis, 2016]: ”At the driller’s console, an impeding stall might be indicated by an

increase in WOB but with no corresponding upsurge in downhole pressure to signal that

an increase in downhole WOB has actually occurred. At some point, the WOB indicator

will show an abrupt decrease, indicating a sudden transfer of force from the drill string

to the bit”. The red arrows in Figs. 4.13 and 4.14 denote the moment when the mud

motor stalled. This pattern of motor stalling around the half point of the drilling stand is

consistent along the second half of the curve section of Well 10. The predicted ROP from

the model shows a better separation between the lines of higher WOB, suggesting that

an increase in weight on bit could help prevent this issue, resulting in better performance.

However, as explained in [Duplantis, 2016], [Maidla et al., 2004] and [Maidla et al., 2005],

the most important parameter to overcome torque is the control of string rotation from

the surface to counterbalance the reacting torque applied to the lower portion of the drill

string.

The resulting ML application example in drilling could result in another ML model,

one that can predict mud motor stalling. Because of the distinguishable pattern of a motor

stall in Fig. 4.14, a new model could be trained in a data set where the points prior to the

stall are labeled as such, as well as the actual moment when the motor stall occurs. With a

model like that calibrated, a real implementation of it could help the driller predict when a

motor stall is going to happen, raising a flag that can result in action, resulting in a longer

motor life and wellbore quality.
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Chapter 5

Conclusions and Future Directions

5.1. Conclusions

From the work of this thesis we can conclude that:

• Data Wrangling is the most difficult and time consuming task in a Data Science

workflow.

• A detailed workflow to guide a drilling engineer to clean drilling data is presented in

this work. This can result in significant time savings from the raw data collection to

data analysis.

• Once the drilling engineer has the data cleaned and structured, a vast number of anal-

ysis can be performed with the data to extract valuable information about previous

drilling performance.

• The operation of the drill bit is the most important factor in drilling. Thus the close

monitoring of actual and previous operational parameters can result in significant

performance gains.

• Most companies already have the data to perform data analytics in drilling. The

missing part usually is an organized workflow to treat the massive data influx, and a

systematic way to evaluate previous performance against well defined metrics.
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5.2. Future Directions

Directions for a future work following what was done here are:

• The zero WOB and Diff Pressure algorithm needs a fine tune in its logic, since noticing

that it missed the zeroing point in some drilling stands. Proper zeroing is important

to correct the parameters.

• The downhole data (MWD) was available but not included in the scope of the current

work. The addition of the downhole parameters (bit vibration, rotation, loads, etc)

plus the geometry of the well (inclination, dog leg, tortuosity) could improve even

further the analysis performed. With the 3D plot of the well geometry, the drilling

parameters can be plotted in the space domain. Plotting wells drilled in the same pad

in three dimensions can provide insights of the directions where the trouble formations

are, helping in the well plan for future wells in the same pad.

• The machine learning modelling and analysis can be expanded in the prediction of

drilling problems, if the problems are properly categorized. Thus, it is recommended

to accurately identify the time portions where drilling dysfunction happened to un-

derstand the causes of drilling problems with the aid of ML techniques.

• A natural sequence of data analysis and ML modelling would be to upscale it to

real-time data. Once the analysis and model are considered accurate enough for real

time application, the interested company can install the structure needed for real

time transmission of the data, as referenced in section 1.7.3.
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1 import numpy as np

2 import pandas as pd

3 import operator

4 import math

5

6

7

8 de f c r e a t e s t a t u s c o l s l i c e ( f i l e , overview ) :

9 #func t i on to c r e a t e the three s t a tu s columns Making Hole , Block Movement

and Off Bottom Distance

10 #Also , t h i s func t i on s l i c e s the raw EDR f i l e between the Well Spud and

Well TD va lues from the MDB

11

12 df = pd . r ead c sv ( f i l e )

13

14 #Rename columns

15 df . columns = df . columns . s t r . r ep l a c e ( ” − ” , ” ” )

16 df . columns = df . columns . s t r . r ep l a c e ( ” ” , ” ” )

17

18 #get s the name o f the f i l e to f i nd the we l l f i l e in the overview tab l e

19 we l l i d = f i l e [ : −4 ]

20 #convert some columns in the overview tab l e to datet ime so the comparison

below can work

21 overview . i l o c [ : , [ 7 , 8 , 9 , 1 0 , 1 1 , 1 2 , 1 6 , 1 8 ] ] = overview . i l o c

[ : , [ 7 , 8 , 9 , 1 0 , 1 1 , 1 2 , 1 6 , 1 8 ] ] . apply (pd . to date t ime )

22

23 #c o l l e c t the s t a r t and end va lue s to compare

24 s t a r t = overview . Well Spud [ overview . Well ID == we l l i d ]

25 s t a r t = s t a r t . t o s t r i n g ( index = False )

26 end = overview .Well TD [ overview . Well ID == we l l i d ]

27 end = end . t o s t r i n g ( index = False )

28

29 #s l i c i n g the datase t
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30 df = df [ df [ ’ Date Time ’ ] > s t a r t ]

31 df = df [ df [ ’ Date Time ’ ] < end ]

32

33 #clean the nu l l va lue s

34 df = df . r ep l a c e (−999.25 ,np .NaN)

35 #make nu l l i f b i t p o s i t i o n i s g r e a t e r than ho le depth by more than 0 .02

f t , then drop them

36 df = df . mask ( df . Hole Depth − df . B i t Po s i t i o n < −0.02)

37 df = df . dropna ( subset=[ ’ Hole Depth ’ ] )

38 #Drop rows with nu l l va lue s in a l l columns

39 df = df . dropna (how = ’ a l l ’ )

40

41 #Now rep l a c e any nu l l va lue remaining with 0

42 df = df . f i l l n a (0 )

43

44 #Create the s t a tu s columns

45 #Making Hole compares i f Hole Depth i s i n c r e a s i n g

46 df [ ’ Making Hole ’ ] = df . Hole Depth . eq ( df . Hole Depth . s h i f t ( ) )

47 df [ ’ Making Hole ’ ] = np . i nv e r t ( df [ ’ Making Hole ’ ] )

48

49 #Block Movement simply shows the d i f f e r e n t between two su c c e s s i v e rows

50 df [ ’ Block Movement ’ ] = df . Block Height . d i f f ( )

51

52 #Off Bottom Dist c a l c u l a t e s the b i t d i s t anc e to the bottom o f the ho le

53 df2 = df . i l o c [ : , [ 1 , 2 ] ] . d i f f ( ax i s=1)

54 df [ ’ Off Bottom Dist ’ ] = df2 . B i t Po s i t i o n

55

56 #Create the Well ID Column , and then put i t as the f i r s t column

57 df [ ’Well ID ’ ] = we l l i d

58 o u t pu t f i l e = we l l i d + ’ . csv ’

59 df = df [ [ ’Well ID ’ , ’ Date Time ’ , ’ Hole Depth ’ , ’ B i t Po s i t i o n ’ , ’ Bit Weight

’ , ’ Block Height ’ , ’ D i f f P r e s s ’ , ’Gamma Ray ’ , ’ Hook Load ’ , ’ Pump Pressure

’ , ’ROP Average ’ , ’Top Drive RPM ’ , ’ Top Drive Torque ’ , ’ Flow In Rate ’ , ’
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Pump SPM Total ’ , ’ Flow Out Rate ’ , ’ROP Fast ’ , ’ Making Hole ’ , ’

Block Movement ’ , ’ Off Bottom Dist ’ ] ]

60

61

62

63 df . t o c sv ( ou tpu t f i l e , index=False )

64

65

66

67 #th i s i s a support func t i on f o r the c r e a t e bha func t i on

68 de f removeDupl icates ( l i s t o fE l emen t s ) :

69

70 # Create an empty l i s t to s t o r e unique e lements

71 un iqueL i s t = [ ]

72

73 # I t e r a t e over the o r i g i n a l l i s t and f o r each element

74 # add i t to uniqueList , i f i t s not a l r eady the re .

75 f o r elem in l i s t o fE l emen t s :

76 i f elem not in un iqueL i s t :

77 un iqueL i s t . append ( elem )

78

79 # Return the l i s t o f unique e lements

80 re turn un iqueL i s t

81

82 de f c r ea te bha ( f i l e , bha in fo ) :

83 df = pd . r ead c sv ( f i l e )

84

85

86 we l l i d = f i l e [ : −4 ]

87

88 #f ind the we l l in bhain fo

89 dfrange = bhainfo [ bha in fo [ ’Well ID ’ ] == we l l i d ]

90
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91 #crea t e the range index to be input l a t e r in the bhanumbers dataframe

92 ranges = [ ( i , j ) f o r i , j in z ip ( df range [ ’ Depth In ’ ] , d f range [ ’ Depth Out

’ ] ) ]

93 ranges = [num f o r elem in ranges f o r num in elem ]

94 ranges = removeDupl icates ( ranges )

95

96 #crea t e the dataframe o f ranges

97 bhanumbers = l i s t ( enumerate ( ranges ) )

98 bhanumbers = pd . DataFrame ( bhanumbers ) . drop (1 , ax i s=1) . drop (0 , ax i s=0)

99

100 #apply the ranges c rea ted as indexes f o r l a t e r comparison

101 bhanumbers . index = pd . In t e rva l Index . f rom breaks ( ranges )

102 bhanumbers = bhanumbers . rename ( columns={0: ’BHA’ })

103

104 f o r i in df . index :

105 ho le depth = df . at [ i , ’ Hole Depth ’ ]

106 #crea t e the bha column , comparing the depth with the ranges from

bhanumbers

107 df . at [ i , ’BHA’ ] = bhanumbers . l o c [ ho l e depth ] .BHA

108

109 o u t pu t f i l e = we l l i d + ’ . csv ’

110

111 df . t o c sv ( ou tpu t f i l e , index=False )

112

113

114

115 de f c r e a t e w e l l s e c t i o n ( f i l e , overview ) :

116 df = pd . r ead c sv ( f i l e )

117

118

119 we l l i d = f i l e [ : −4 ]

120 #crea t e kop and lp va r i ab l e s , and convert them to numbers so they can be

compared with
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121 kop = overview .KOP Depth [ overview . Well ID == we l l i d ]

122 kop = kop . to numpy ( )

123 lp = overview . LP Depth [ overview . Well ID == we l l i d ]

124 lp = lp . to numpy ( )

125

126 f o r i in df . index :

127 ho le depth = df . at [ i , ’ Hole Depth ’ ]

128

129 #crea t e Well Sec t i on column , populat ing i t s va lue s based on the

depth

130 i f ho l e depth < kop :

131 df . at [ i , ’ We l l Sec t ion ’ ] = ’ Ve r t i c a l ’

132 e l i f ho l e depth >= kop and ho le depth <lp :

133 df . at [ i , ’ We l l Sec t ion ’ ] = ’Curve ’

134 e l i f ho l e depth >=lp :

135 df . at [ i , ’ We l l Sec t ion ’ ] = ’ Late ra l ’

136

137 o u t pu t f i l e = we l l i d + ’ . csv ’

138

139 df . t o c sv ( ou tpu t f i l e , index=False )

140

141

142

143 de f c l a s s i f y w e l l ( f i l e ) :

144 df = pd . r ead c sv ( f i l e )

145

146 f o r i in df . index :

147 #crea t e the v a r i a b l e s to be used as opera t i on d e f i n e r

148 ho le depth = df . at [ i , ”Hole Depth” ]

149 making hole = df . at [ i , ”Making Hole” ]

150 o f f b o t t om d i s t = df . at [ i , ’ Of f Bottom Dist ’ ]

151 block mov = df . at [ i , ’ Block Movement ’ ]

152 td rpm = df . at [ i , ’Top Drive RPM ’ ]
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153 tota l spm = df . at [ i , ’Pump SPM Total ’ ]

154 hook load = df . at [ i , ’ Hook Load ’ ]

155

156

157 #c l a s s i f y the opera t i on based on the va r i ab l e va lue s

158 i f ho l e depth > 10000 and making hole == True and o f f b o t t om d i s t >

−0.2 and block mov < 0 .1 and td rpm >5 and td rpm< 45 .1 and total spm>10

:

159 df . at [ i , ’ Operation ’ ] = ’ D r i l l i n g / S l i d i n g Rocking ’

160 e l i f making hole == True and o f f b o t t om d i s t > −0.2 and block mov <

0 .1 and td rpm >10 and total spm >10:

161 df . at [ i , ’ Operation ’ ] = ’ D r i l l i n g ’

162 e l i f making hole == True and o f f b o t t om d i s t > −0.2 and block mov <

0 .1 and td rpm <=10 and total spm >10:

163 df . at [ i , ’ Operation ’ ] = ’ S l i d i n g ’

164 e l i f making hole == False and o f f b o t t om d i s t <= −0.2 and block mov <

0 and td rpm >10 and total spm >10:

165 df . at [ i , ’ Operation ’ ] = ’Reaming ’

166 e l i f making hole == False and o f f b o t t om d i s t <= −0.2 and block mov >

0 and td rpm >10 and total spm >10:

167 df . at [ i , ’ Operation ’ ] = ’Back Reaming ’

168 e l i f making hole == False and o f f b o t t om d i s t <= −0.2 and hook load

<=57:

169 df . at [ i , ’ Operation ’ ] = ’ In S l i p Connection ’

170 e l i f making hole == False and o f f b o t t om d i s t <= −80 and block mov <

0 and td rpm < 5 and total spm<5 and hook load >57:

171 df . at [ i , ’ Operation ’ ] = ’ Tripping In ’

172 e l i f making hole == False and o f f b o t t om d i s t <= −80 and block mov >

0 and td rpm < 5 and total spm<5 and hook load >57:

173 df . at [ i , ’ Operation ’ ] = ’ Tripping Out ’

174 e l i f making hole == False and o f f b o t t om d i s t <= −0.2 and tota l spm >

10 :

175 df . at [ i , ’ Operation ’ ] = ’ C i r cu l a t i ng /Survey ’
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176 e l s e :

177 df . at [ i , ’ Operation ’ ] = ’ Other ’

178

179 df . t o c sv ( f i l e , index=False )

180

181

182 de f z e r o wob pd i f f ( f i l e ) :

183 df = pd . r ead c sv ( f i l e )

184

185 #Create the v a r i a b l e s that w i l l be used to t r i g g e r the z e ro ing l o g i c

186 newstr ing = False

187 pre s su r e = 0 .0

188 h l e r r o r = 0 .0

189 #Create the new column , wich zero va lue s

190 df [ ’ HL Error ’ ] = 0 .0

191 df [ ’ZWOB’ ] = ’Normal ’

192 f o r i in df . index :

193 #crea t e the v a r i a b l e s to be used as s t a tu s i nd i c a t o r f o r the bes t

moment to zero WOB and Pd i f f

194 opera t ion = df . at [ i , ”Operation ” ]

195 b l o ck he i gh t = df . at [ i , ”Block Height ” ]

196 o f f b o t t om d i s t = df . at [ i , ’ Of f Bottom Dist ’ ]

197

198 td rpm = df . at [ i , ’Top Drive RPM ’ ]

199 tota l spm = df . at [ i , ’Pump SPM Total ’ ]

200 hook load = df . at [ i , ’ Hook Load ’ ]

201

202 #This i s to r e s e t the cond i t i on va r i ab l e o f a new s t r i ng , which w i l l

t r i g g e r the next e l i f as soon as we s t a r t reaming

203 i f ope ra t i on == ’ In S l i p Connection ’ :

204 newstr ing = True

205 #This checks i f d r i l l i n g opera t i on s t a r t ed be f o r e the ZWOB could be

t r i gg e r ed , avo id ing l a t e z e ro ing with wrong measures
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206 e l i f newstr ing == True and ( operat i on == ’ D r i l l i n g ’ or operat i on == ’

S l i d i n g ’ or opera t i on == ’ D r i l l i n g / S l i d i n g Rocking ’ ) :

207 newstr ing = False

208

209 #This statement checks a l l the cond i t i on s f o r the z e ro ing a lgor i thm

to update the Error and the SP va lue s

210 e l i f ope ra t i on == ’Reaming ’ and o f f b o t t om d i s t <= −2 and tota l spm >

50 and hook load > 100 and b l o ck he i gh t > 80 and td rpm > 15 and

newstr ing == True :

211 h l e r r o r = abs ( df . at [ i , ’ Bit Weight ’ ] )

212 pre s su r e = df . at [ i , ’ Pump Pressure ’ ]

213 df . at [ i , ’ZWOB’ ] = ’ Zero ’

214 newstr ing = False

215

216 e l i f ope ra t i on == ’ Tripping Out ’ :

217 h l e r r o r = 0

218 pre s su r e = 0

219

220 #f i l l the HLERROR and SP f o r each row , no matter i f they were updated

or not

221 df . at [ i , ’ S t a t i c P r e s s u r e ’ ] = pre s su r e

222 df . at [ i , ’ HL Error ’ ] = h l e r r o r

223

224

225 #After c r e a t i n g the new va r i a b l e s HlError and SP pre s su r e to the whole

dataset , we c a l c u l a t e the i nd i c a t o r columns SW, SWcorr , WOBcorr and

D i f f p r e s s c o r r

226 df [ ’ Str ing Weight ’ ] = df [ ’ Hook Load ’ ] + df [ ’ Bit Weight ’ ]

227 df [ ’ S t r ing Weightcor r ’ ] = df [ ’ Str ing Weight ’ ] + df [ ’ HL Error ’ ]

228 df [ ’ Bit Weightcorr ’ ] = df [ ’ S t r ing Weightcor r ’ ] − df [ ’ Hook Load ’ ]

229 df [ ’ D i f f P r e s s c o r r ’ ] = df [ ’ Pump Pressure ’ ] − df [ ’ S t a t i c P r e s s u r e ’ ]

230

231 df . t o c sv ( f i l e , index=False )
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232

233 de f r emove ou t l i e r s ( f i l e ) :

234 df = pd . r ead c sv ( f i l e )

235

236 #Clean the remaining negat ive va lue s f o r WOB

237 df . l o c [ df . Bit Weight < 0 , ’ Bit Weight ’ ] = 0

238

239 #Clean the remaining negat ive va lue s f o r D i f f e r e n t i a l Pres sure

240 df . l o c [ df . D i f f P r e s s < 0 , ’ D i f f P r e s s ’ ] = 0

241

242 #Fix Gamma Ray Values , s e t t i n g va lue s h igher than 200 as 200

243 df . l o c [ df .Gamma Ray < 0 , ’Gamma Ray ’ ] = 0

244 df . l o c [ df .Gamma Ray > 200 , ’Gamma Ray ’ ] = 200

245

246 #Fix very high f low in va lue s

247 df . l o c [ df . Flow In Rate > 1100 , ’ Flow In Rate ’ ] = 1100

248

249 #Fix very high Pump SPM Values

250 df . l o c [ df . Pump SPM Total > 300 , ’Pump SPM Total ’ ] = 300

251

252 df . t o c sv ( f i l e , index=False )

253

254

255

256 de f c reate mse ( f i l e , bha in fo ) :

257 df = pd . r ead c sv ( f i l e )

258

259

260 we l l i d = f i l e [ : −10 ]

261 f o r i in df . index :

262 #get the diameter from the bhainfo , us ing the rows i z e and bha va lue s

f o r each row

263 diam = bhainfo . Ho l e S i z e . l o c [ operator . and ( bha in fo . Well ID == we l l i d ,
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bhain fo .Well BHA == df .BHA[ i ] ) ] . to numpy ( )

264

265 #crea t e the v a r i a b l e s to use in the mse c a l c u l a t i o n

266 td rpm = df . at [ i , ’Top Drive RPM ’ ]

267 td torque = df . at [ i , ’ Top Drive Torque ’ ]

268 rop avg = df . at [ i , ’ROP Average ’ ]

269 wob = df . at [ i , ’ Bit Weight ’ ]

270

271

272 #ca l c u l a t e MSE, check ing i f ROP i s not zero , so we w i l l not d i v id e by

zero

273 i f rop avg != 0 :

274 df . at [ i , ’MSE’ ] = ((480 ∗ td torque ∗ td rpm ) /( diam∗∗2 ∗ rop avg ) )

+ ((4∗wob) /( diam∗∗2 ∗ math . p i ) )

275 e l s e :

276 df . at [ i , ’MSE’ ] = 0

277

278 o u t pu t f i l e = we l l i d + ’ . csv ’

279

280 df . t o c sv ( ou tpu t f i l e , index=False )

281

282

283

284

285 de f c o nv e r t t o f t a v g ( f i l e ) :

286 #lambda func t i on to approximate va lue s to the nea r e s t 0 . 5 decimal

287 n e a r e s t h a l f = lambda x : round (x ∗ 2) / 2

288

289 df = pd . r ead c sv ( f i l e )

290

291 #group the ho le depth va lues to i t s nea r e s t ha l f , and then c a l c u l a t e the

mean o f a l l columns

292 #EX: depths 401 .00 and 401.02 columns w i l l be averaged in to 401 .00 , and
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401 .25 , 401 .40 , 401 .59 w i l l be averaged in to 401 .5

293 #Since we do not want to average a l l va lue s at the same ho le depth , we

f i l t e r va lue s when making ho le equa l s t rue

294 df = df . groupby ( n e a r e s t h a l f ( df [ df [ ’ Making Hole ’ ] == True ] [ ’ Hole Depth ’ ] )

) . mean ( )

295 df = df . drop ( ’ Hole Depth ’ , ax i s=1) . r e s e t i n d e x ( )

296

297 df . t o c sv ( f i l e , index=False )
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