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SYMBOLS AND ABBREVIATIONS

A = area of the porous medium
Dy = the grain size diameter
g = the gravitational acceleration
gc = a gravitational acceleration conversion factor
h = the height of the porous medium
K = the absolute permeability of the porous medium
K2, = End-point relative oil permeability
L = length of the porous medium
Ng = the Bond number
Nc = the capillary number
Ng = the gravity number
PVI = Pore Volume Injected
or = the residual oil saturation
Swi = the initial water saturation
Tp = dimensionless time
Vp = pore volume
Vb = bulk volume
Ap = the density difference between the two fluids
¢ = the porosity of the porous medium
u = viscosity of the fluid
v = the Darcy velocity

T = the tortuosity of the flow path through the porous medium



ABSTRACT

The Gas Assisted Gravity Drainage (GAGD) process was developed and patented by Dr.
Rao at LSU in the early 2000s. The process involves the use of several existing or new vertical
injection wells to inject gas and use the natural segregation of reservoir fluids from the density
difference and the gravitational forces to displace the trapped oil and mobilize the oil downwards
to be produced by a horizontal producing well. The GAGD process can be implemented as a
secondary or tertiary oil recovery method. Several physical model experiments have been

conducted to demonstrate the effectiveness of the GAGD process for improving oil recovery.

This research study is to expand the existing knowledge of the GAGD process and to apply
it for carbonate rocks as more than 60% of world’s oil is held in carbonate reservoirs. In
particular, this study focuses on the impact of type of gas injected, injection rate of gas, and the
grain size of the porous media. A glass model similar to a Hele-Shaw type model was used for
performing the experiments using carbonate rocks as the porous media, water and n-decane for
oil. The results from this study show that using nitrogen gas provides slightly higher recovery for
the GAGD process in carbonate rocks compared to carbon dioxide. Further, the optimal injection
rate is at an intermediate injection rate that doesn’t disturb the stable front which can create an
earlier breakthrough at higher injection rates. Finally, the larger grain size shows a significant
improvement in overall oil recovery since increasing grain size diameter increases permeability
and thus better overall oil recovery is obtained. The oil recovery from this study ranges from

70.9% to 87.7% of OOIP.



1. INTRODUCTION

Oil has been a fundamental ingredient to the human lifestyle development over the last
century. It has enabled some of the most vital improvements in the industrialized society and
their impacts can’t be understated. The extraction and recovery of oil is through three main
stages; primary recovery, secondary and tertiary recovery. Enhanced Oil Recovery (EOR)
processes involve injection of a fluid into a reservoir that supplements the natural energy of a
reservoir to produce the remaining oil in a reservoir (Rao, 2012). EOR methods are employed
following primary and secondary recovery in hydrocarbon reservoirs to extract the remaining oil
in place from a reservoir. Several different methods exist to extract the remaining oil such as
chemical flooding, thermal recovery, gas flooding, etc. One such method is the Gas Assisted
Gravity Drainage (GAGD). GAGD is an EOR method, invented and patented, at the Louisiana
State University EOR lab (Rao, 2012). The process involves the use of several existing or new
vertical injection wells to pump gas and use natural gravity segregation to displace the trapped
oil and mobilize the oil downwards to be produced by a horizontal producing well. The basic
idea behind the process is to take advantage of the natural segregation of different density
mixtures to allow for gas injection from top while collection of oil at the bottom of the pay zone.

A general schematic of the process is shown in Figure 1.1 below (Rao et al, 2006).

Previous studies have been conducted on the GAGD process especially on lab scale
models to test various parameters that affect the performance of the process and to determine the
optimal parameter sequence as discussed in the literature review section below. However, not

much prior work has yet been undertaken for the feasibility of GAGD in carbonate reservoirs.
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Figure 1.1. General schematic of the Gas Assisted Gravity Drainage (GAGD) Process (Rao et al,
2006)

According to a 2007 Schlumberger market analysis, more than 60% of world’s oil and
40% of world’s gas reserves are held in carbonate reservoirs. Most of the remaining world
hydrocarbon reservoirs are in carbonate reservoirs (Manrique et al, 2006) and thus this project is

undertaken to study the application of GAGD process in carbonate reservoirs.

1.1 Research Objectives

1. To visually demonstrate the GAGD process in a glass model using carbonate material as
the porous medium for the model.

2. Investigate the effects of grain size on the overall recovery by using different grain sizes
of carbonate material used for the packing of the visual model. Initial run for the
experiment uses grain size of 300-425 um particles with a 2” layer of larger sized

particles (600 um) near the horizontal well to restrict entrance of carbonate material thru



the horizontal well pores. Varying sized particles are to be used to compare the effect of
grain size on recovery rate.

Examine the effect of type of injection gas on overall recovery by varying the injection
gas used for the model. Prior physical model studies done by Ruiz in 2006 suggests a
higher recovery while using CO> gas as the injection gas. This phenomenon is primarily
due to the solubility of CO> in oil which causes swelling effect and a reduction in
viscosity of oil which eventually leads to higher recovery (Jarrell et al, 2002).
Investigate the effect of injection rate on overall recovery and breakthrough time. This is
hypothesized to be an important parameter as recovery in carbonate reservoirs is very
dependent on heterogeneity, oil quality, drive mechanism and reservoir management and
EOR processes are effective in fractured carbonate reservoirs (Adibhtla et al, 2006). A
high injection rate can create fracture type model in the model and thus would be
important to see the dependence of recovery rate due to the gas injection rate.

Compare the results for the oil recovery from GAGD in carbonate reservoirs with prior
studies using different porous materials such as sandstone, glass beads, ceramics porous
media, sintered glass beads. This would allow for comparisons in techniques and the
overall results of the process and can be used in the future for field applications or

simulation based applications.



2. THEORY AND LITERATURE REVIEW

2.1 Enhanced Oil Recovery (EOR) Process

Tertiary production from a reservoir following the completion of primary and secondary
recovery is commonly defined as Enhanced Oil Recovery (EOR). Primary recovery is driven by
the pressure difference between the reservoir and production well pressure, generally referred to
as the “natural drive” of the reservoir. Once the natural drive of the reservoir weakens and is no
longer effective, fluids such as water generally, are injected in to the reservoir to increase
reservoir pressure and hence is defined as secondary production (Muskat, 1949). Typically, oil
recoveries at the end of both primary and secondary drive are in the range of 20-40 percent of the
original oil in place (OOIP), with a very few exceptions (Stalkup, 1984). According to the US
Department of Energy (DOE) and the National Energy Technology Laboratory (NETL)
estimates close to 374 billion barrels of oil remains in ground after the primary and secondary
recovery process is completed in the United States as shown in Figure 2.1 (Kuuskraa et al, 2006).
Based on the 2014 EOR survey from the Oil & Gas Journal, there were 109 miscible CO>
projects and 48 steam injection projects currently ongoing. Also the industry injects about 3.5
billion cubic feet per day of natural and industrial CO to produce 300,000 bbl/day of oil via
EOR methods (PennEnergy EOR Survey, 2014). This makes the need for an innovative and well
developed Enhanced Oil Recovery process a vital step in unlocking the nation’s locked up oil

reserves.

EOR process causes physical, chemical, compositional and thermal changes to the

reservoir rocks and fluids. The overall recovery efficiency (Er) is dependent on two sweep



efficiency components, namely the Displacement Sweep Efficiency (Ep) and the Volumetric

Sweep Efficiency (Ev). So, Er = Ep X Ev. These 2 fundamental efficiency factors are vital for a

Original Oil In-Place: 582 B Barrels
“Stranded” Oil In-Place: 374 B Barrels

Future Challenge
290 Billion Barrels

43 Billion Barrels with
CO.-EOR Technolagy
(Six Basins/Areas Studied to Date)

41 Billion Additional Barrels with
“Next Generation” CO.-EOR Technology

(Six Basins/Areas Studied to Date) Pronied pgetuss

22 Billion Barrels

Souree: NAC Pisiin Gate Sas. Mamtemed by DOSFE (2064

Figure 2.1. Breakdown of US discovered and future production and the estimated “stranded” oil
to be recovered through EOR Methods as referenced in Kuuskraa et al, 2006

successful EOR process, an improved mobility ratio for higher volumetric sweep efficiency and
an improved capillary number for higher microscopic displacement efficiency. Several existing
and currently practiced EOR methods take advantage of one or partially both of these
phenomenon to achieve the highest recovery. Most common methods include miscible gas
injection (generally CO2, N2, and inert gas), chemical flooding, thermal injection, or microbial
EOR. Alternatives like the Water Alternating Gas (WAG) process proposed by Caudle and Dyes
(1958) takes advantage of a higher volumetric sweep efficiency however, has limitations due to

the natural separation of water, oil and gas due to the density differences. Rao (2001) reported



the field application of WAG process yields about 5-10% OOIP. Previous studies have led to the
development and optimization of the Gas Assisted Gravity Drainage (GAGD) process. GAGD
process is similar to other EOR processes in principle to provide additional pressure to the
depleting reservoir pressure from initial production and can thus be applied in either secondary
or tertiary stage. GAGD process takes advantage of the natural segregation of fluids in the
reservoir through the presence of gravity by injection of gas in the reservoir such that the gas
pressure cap will force the oil downwards and thus be captured through the horizontal well. The
GAGD process uses CO2 and N gas as the primary sources of injection gas and its usage

achieves both a higher volumetric and microscopic sweep (Rao et al, 2003).

2.2 Previous Related Work

The following section discusses past studies performed using the GAGD technique and
summarizes the findings from the past studies. The GAGD process was invented and patented at
the Louisiana State University in Baton Rouge, LA (Rao, US Patent 8,215,392). GAGD process
has been shown to work in both secondary and tertiary recovery processes (Mahmoud, 2006).
GAGD lab based experiments were investigated at LSU beginning 2000 under a federal grant
from the Department of Energy. Several technical reports and a final technical report for the
research work was submitted to the DOE (Rao et al, 2006). Some of the major previous

experimental work is summarized below.

Sharma (2005) studied a water-wet physical model to investigate the effect of different
groups of dimensionless numbers such as Bond Number (Ng), Capillary number (N¢), and
Gravity Number (Ng) on GAGD performance. He also studied the impact of using different
types of gas for injection, namely N2 and CO> and concluded that the different gas types had no

significant impacts on recovery rates when injected at constant pressure in immiscible mode.

6



Further, injecting the gas at constant rate to control Ng and Nc it was found that the higher the Ng

the higher the oil recovery.

In 2005, Kulkarni had studied the GAGD process in comparison with other common gas
injection process such as Water Alternating Gas (WAG) and Continuous Gas Injection (CGI)
methods using scaled corefloods. His work shows that the GAGD process outperforms both of
the other processes in both secondary and tertiary mode. Furthermore, his work using scaled
corefloods at close to reservoir type pressures show that injecting gas in miscible mode can
recover almost all of the initial oil in place (IOIP). He also found that the recovery rate is higher

at higher gravity numbers (Ng).

Another study was conducted to study the GAGD process in an oil-wet reservoir. Ruiz
(2006) ran the GAGD experiments in a model with glass beads altered from water-wet to oil-wet
and discovered higher recovery for an oil-wet medium. It agrees with intuitive consideration that
oil-wet medium allows oil to be drained as a continuous film as it drains from the model through
the horizontal well. His study also examined the effects of increasing grain size of the porous
medium which increased the overall recovery as higher sized grains also increases porosity and
permeability. His study also verified the phenomenon studied by Sharma regarding higher

recovery from constant injection pressure experiments rather than constant injection rate.

Also, in 2006 Mahmoud studied GAGD process using glass model for secondary and
tertiary recovery mode. He also examined that the injection depth does not have a significant
influence on the recovery rates as long as there is a communication between reservoir layers. His
experiments also showed a higher recovery in fractured porous media versus a homogenous
porous media and also found the process to be viable for high viscosity oils. Mahmoud states

three mechanisms responsible for the high oil recovery rate through his experiments (as high as

7



83% I0IP): Darcy-type displacement until gas breakthrough, gravity drainage following

breakthrough, and film drainage in the gas invaded zones.

Similar experimental work was done for fractured porous media by Maroufi et al, (2013)
where they utilized a cylindrical geometry of unconsolidated packed models. The main
parameters studied were the extent of the matrix permeability, physical properties of oil, and the
withdrawal rate. They used a controlled gravity drainage and compared the findings with free fall
gravity drainage for 15 different test runs. It was found that the decreasing matrix permeability
reduced the ultimate recovery significantly whereas the increase in oil properties such as

viscosity or density leads to a higher ultimate oil recovery.

The experimental work conducted thus far has focused on the mechanisms of the GAGD
process and optimization of the variables of the process. To the best of author’s knowledge there
hasn’t been any experimental work conducted on GAGD process performance in carbonate
reservoirs at the beginning of this study. Due to the vast amount of hydrocarbon reserves in

carbonate formations, this study will provide insights to GAGD performance in carbonate

geology.

2.3 Forces in Oil Reservoirs: Gravity, Capillary, and Viscous Forces

A reservoir with oil, water, and gas presence is impacted by naturally occurring forces
acting upon the fluid flow through the porous media within a reservoir: gravitational force,
capillary action, and viscosity. The presence of gravity is what results in the separation of the
gas, oil, and water zones within a reservoir based on density of fluids and leads to gravity
drainage, the self-propulsion of oil in the reservoir rock (Lewis, 1942). The GAGD process

works in conjunction with the natural gravitational forces and takes advantage of the natural



phenomenon in reservoirs to push more oil downwards by injection of gas. Typically, oil drains
from the pores and flows down dip to the wells. Solution gas drive is responsible for the early
part of primary production, yet gravity drainage is evident at the lower part of the reservoir. As
the pressure depletes, even other parts of the reservoir see gravity drainage (Terwilliger et al,

1951).

Within a reservoir rock, the fluids distribution for oil, gas, and water is maintained by the
wetting characteristics and the capillary interaction of the fluids. The typical reservoir contains
an oil-water and gas-oil interface where the interface consists of many menisci, and the capillary
forces are relevant at the pore scale as shown in Figure 2.2 along with the other forces that
impact displacement of fluids. In a porous medium, like a reservoir, capillary forces have a
special importance and the capillary pressure, or the difference between the pressures at the
interface of a non-wetting phase with a wetting phase is defined by the Young-Laplace law

(Lovoll et al, 2005).

pc=pnw—pw=y(i+ 1) where,

Rq E
v = surface tension between the fluids,

R1 and Rz is the principal radius of the interface.

Saffman and Taylor (1958) studied the displacement of a fluid by another in a Hele-Shaw
cell and showed how the interface stability is impacted by the viscous forces of the fluid.
However, in a porous medium the capillary fluctuations at a pore scale and the fluctuating
viscous forces can act to stabilize or de-stabilize the displacement front. Therefore, the

displacement for drainage in a 2-D porous media depends on the relative magnitude of viscous



forces and gravity, and also their relative magnitude with respect to the heterogeneous capillary

forces (Lovoll et al, 2005).

Nonwetting _ﬂui-::l

Wetting fiuid
Figure 2.2. Laplace law explains the difference between the pressure in non-wetting and wetting

fluids. Capillary action acts against displacement during drainage and thus invasion of larger
pore space is easier (Lovoll et al, 2005).

Hence, several past studies with physical models for the GAGD process have utilized a
set of dimensionless numbers to understand the influence of different forces during the gravity
drainage process. The dimensionless numbers also allows for scaling the lab scale models to
field scale and the theory was first introduced by the Buckingham’s pi theorem (Geerstma et al,
1956). Dimensionless Gravity number which is essentially a ratio of the gravity force and
viscous forces along with dimensionless time are two important set of dimensionless variables

shown below (Sharma, 2005).

_Apg/gc (g)

Gravity Number (Ng): NG = where,
HoVd
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Ap is the fluid density difference,

g is the Newtonian gravity acceleration,

gc Is the gravity acceleration conversion factor,
K is the absolute permeability,

¢ is the porosity,
Uo is the viscosity of the displacing phase,

Vg is the velocity of the displacing phase

Similarly, dimensionless time is defined as shown below (Miguel et al, 2004).

. . . _  KKpyApg/gc
Dimensionless time, [15)

= t where,
hOu(1-Sor—Swi)

K7, is the end-point relative oil permeability,
g is the Newtonian gravity acceleration,

gc Is the gravity acceleration conversion factor,
h is the height of the porous media,

Sor is the residual oil saturation,

Swi is the initial water saturation

2.4 Sandstone and Carbonate Lithology

Carbonates are sedimentary rocks that are chemically precipitated in marine
environments and are generally of biological origin. They consist mostly of calcium carbonate
and go through different geological processes of burial and lithification than sandstones.
Carbonates that have undergone burial diagenesis typically form the sedimentary rocks in
subsurface processes. Though there are several varieties of carbonates, they are typically made of
calcite that precipitates out of shallow marine waters. Most carbonates show signs of multi-

diagenetic events, such that they begin with preliminary cementation in the marine environments
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and then with different intensity go through the shallow and deep-burial stages (Scholle, 1985).
In a very basic scenario, micro crystals of calcium carbonate (CaCO3) occur in sea water and
gets deposited at the sea bed, where it forms limey mud. Recrystallization of buried CaCO3
forms limestone. It is vital to understand the geochemistry of the reservoir rocks for a successful
reservoir development as these events can lead to the explanation and prediction of various rock
properties. For rocks within the deep subsurface several geochemical or petrographic techniques
like the light microscopy, stable isotope, trace element, fluid inclusion studies, can be utilized to

understand the diagenetic history (Morse and Mackenzie, 1990).

Sandstone can be composed of various different particles such as quartz, feldspar, mica,
lithic fragments; essentially sand-sized particles of various rocks. As the larger rocks breakdown
due to processes such as erosion, weathering, biologic impacts, etc. they can carried by the rivers
to form sand bars of a large delta similar to the Mississippi river. There is a wide range of
geologic processes that sandstones can go through and especially the sandstone reservoirs
containing oil and gas resources. In the Sandstone Petroleum Reservoirs (Barwis et al, 1990),
authors discuss 22 unique case studies from a variety of depositional settings, tectonic provinces,
and diagenetic history and the impact of the reservoir characteristics on the petrophysical
properties, reservoir composition and eventually the hydrocarbon production. Along with the
sand particles carried by the rivers, groundwater typically carries minerals that gets deposited
within the sand grains. Minerals like calcite, quartz, feldspar, hematitie, cements the sand

particles together to form sandstone (as summarized by Kelly, no year).

A world map showing the geographical distribution of carbonate reservoirs and
siliciclastic reservoirs is shown in Figure 2.3. The map doesn’t show a wide gap of geographic

representation of petroleum provinces. Fundamentally, carbonate reservoirs differ from

12



sandstone reservoir rocks in two ways. First, while sandstone rocks are produced from the
allochthonous sediments, carbonate rocks are produced from the autochthonous sediments.
Second major difference is the greater chemical reactivity of carbonate minerals (Choquette and
Pray, 1970; Moore, 2001, as cited in Ehrenberg and Nadeau, 2005). The chemical reactive nature
of carbonate minerals has a significant impact for diagenesis and reservoir quality and thus are
characterized by early lithification and porosity modification. Carbonate minerals are generally
more soluble, which can lead to the buildup of secondary porosity which is more important than
in sandstones. The minerals from carbonate reservoirs are generally more oil wet than sandstone
reservoirs. Also fractures are more common for carbonate reservoirs. This would lead to believe

that differences in fundamental properties between these two types of reservoir rocks exist.
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Figure 2.3. Global data for petroleum reservoirs based on their geographical distribution
(Ehrenberg and Nadeau, 2004)

Ehrenberg and Nadeau (2005) compiled and compared the reservoir parameters between
siliciclastic and carbonate petroleum reservoirs from essentially all producing parts of the world
in their work. They compared a total of 30,122 siliciclastic petroleum reservoirs with 10,481
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carbonate petroleum reservoirs from all petroleum-producing countries except Canada. Results
are shown for Alberta basin in Canada separately. Figure 2.4 below compares the results of the
average porosity vs. top depth and also average permeability vs. average porosity relationships
from their study. The graph, shown on the left, compares average porosity vs. top depth for
sandstone and carbonate global petroleum reservoirs (excluding Canada). The bottom image
shows the statistical trends where P90 indicated that 90% of reservoirs have greater porosity than
the value, P50 is the median porosity and P10 indicates 10% reservoirs have higher porosity.
Some interesting lithology highlighted in the chart for both sandstone and carbonate reservoirs is
also noted in the image on the left. For sandstones, the long-dashed green line in the graph is for
Tertiary sands of south Louisiana, an example of quartzose sandstone buried at low geothermal
gradient. The short-dashed green line on the graph for sandstone is from the offshore mid-
Norway of the Middle Jurassic Gam formation, another type of quartzose sandstone buried at
moderate geothermal gradient. For the carbonate reservoirs, the dashed green line is
representative of the Tertiary and Cretaceous carbonate from south Florida, a shallow-water
carbonate lithology buried at low geothermal gradient. The average porosity vs. permeability
chart on the right compares the sandstone and carbonate reservoirs from global petroleum

reservoirs study conducted by Ehrenberg and Nadeau (2005).

From the relationships shown in Figure 2.4, it is evident that carbonates tend to have
lower average and maximum porosity at given depth relative to sandstone reservoirs. The
porosity-permeability relationship shows in general slightly higher permeability for carbonates
within the 5-20% porosity range however, sandstones have higher permeability at 25-30%
porosity. Also, sandstone reservoirs are shown to have higher proportion of high porosity and

high permeability relationship. Carbonate reservoirs seem to have higher proportion of high
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permeability low porosity reservoirs and this is attributed to the fractures developing in the

carbonate reservoirs Ehrenberg and Nadeau, 2005).
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Figure 2.4. Porosity vs. depth and porosity vs. permeability relationships for global petroleum
reservoirs (Ehrenberg and Nadeau, 2005)
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3. INITIAL MODEL

As carbonate rocks are generally mixed wet or oil wet, the visualization of the flow of the
fluids through the model, particularly the flow of oil through the porous media is of high interest
for this study. Visuals models were used in past experiments studying the GAGD process in
sandstone materials as the porous medium. Past studies built the models in the lab using glass
plates and glue. For this study, a tank was ordered from an aquarium store as it could serve the
purpose well and also save time in the model building process. One drawback was the tank was
designed to be used as a fish tank thus not withholding too much pressure. However, the pressure

limits were not provided by the manufacturer.

A model was built and initial water saturation was performed. During this run, a pump was
used for injecting water into the fluid. Thus the model was connected to the TELEDYNE ISCO
series D pumps from the base of the model to inject water into the model. The outlet for the
model was connected to a produced fluid collection cylinder. To ensure gravity stabilized
flooding the general rule of thumb used to do the flooding is to inject heavier fluids (water) from
bottom to top of the model and vice versa for lighter fluids (oil and gas). Figure 3.1 shows the

pump used for injecting fluids from the pump in to the model.

The pumps control unit allows the user to control the flow rate and also enables to program
refill time and rate of the fluids in the pump. This system of pump uses gas as a source of
pressure to move the fluids across the pump. The pump has two cylinders to allow for continuous
injection however, cylinder on the left side of the pump seemed to be malfunctioning as it would
not inject at a rate set at the control system. Only one cylinder chamber was used for injection to

ensure a proper volume calculation for determining the pore volume of the system. The pump
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control system as shown in Figure 3.2 was turned to an injection rate of 1 mL/min and changed

to 3 mL/min as more fluid was injected into the model.

Figure 3.2. Pump Controls for the Series D Pump
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Set of images shown below in Figure 3.3 show the progression of the water front through the
model. The top outlet for the model is kept open while the water is injected from the bottom. The
side outlet at the bottom opposite from which the water is inject is kept shut using the valve

installed on the tubing.

Figure 3.3. Water front propagation moving through the model upon initial water saturation run

The initial water injection through the model allowed the determination of the pososity of the
model to be 39.4%. The total volume of water inside the model was measured at 1175.58 mL

while the bulk volume for the model is measured to be 2980.8 cm?®. The fluid volume inside the
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model was calculated by eliminating all the dead volume in the tubes connecting the model and
the pumps injecting the fluid.

Since, ¢ = Z—’; , Where ¢ is porosity and Vp and Vp are pore volume and bulk volume
respectively, the porosity value yields a 39.4% porosity in the model. After measuring the
porosity for the model, the next step was to measure permeability for the model. While running
the permeability tests, model reached a pressure of 10 psi at a flow rate of 6ml/min near the inlet
of the water through the horizontal well which caused the model to break. This was a huge
learning lesson for the project as careful consideration needs to be given on the amount of
pressure applied to the model throughout the project. A new model was then built as described in
the next section as the experimentation setup was moved to the new lab in the renovated Patrick

F Taylor hall. The following Figure 3.4 shows the result of the crack that developed in the model

once it reached a pressure of 10 psi.

Figure 3.4. Cracked model due to the increased pressure
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4. APPARATUS AND EXPERIMENTAL PROCEDURES

4.1 Experimental Setup

The experiments were conducted to visualize the gas assisted gravity drainage (GAGD)
process of oil recovery by gas injection, using both CO> and N2 gas in carbonate rocks. As the
experiments were conducted in a glass tank, initial learning curve was to understand the pressure
ratings that the model can withstand without breaking. As described in the above section of
initially damaged model attempt, it was soon realized that the model can withstand extremely
low pressures before failing (< ~10psi) and some of the procedures below were since modified to
allow for minimal pressure to the model. The model setup while running the GAGD process can
be seen in Figure 4.1 below. The effects of grain size, injection rate, and injection gas were
tested. The experimental materials and procedure used for the GAGD process is described in this

chapter below.
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Figure 0.1. Experimental Setup using gravity feed for Water & Qil
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4.2 Experimental Materials

To study the GAGD process in carbonate reservoirs similar materials and procedures

have been used as in past experiments studying the GAGD procedure. A glass model is used to

visualize the process, the model used is shown in Figure 4.2. Below is a list of materials used for

the experiments.

e Glass model with outside dimensions of 12” x 2 x 20" was supplied from Planet

Aquarium in Arlington, TX. See Figure 4.2.

e Indiana Limestone in chunks were supplied from Kocurec Industries in Caldwell, TX.

See Figure 4.3. The chunks of limestone were further crushed and sieved into the

desired particle sizes for the experiment. An XRD analysis of the limestone material

shows the below composition for the material. The XRD report analysis is attached in

Appendix B.

Table 0.1. Composition of the Limestone material from a XRD analysis

Material Chemical Formula Composition
Calcium Carbonate CaCOs 98%
Silicon Dioxide SiO2 2%

e Mortar and pestle was used to crush the chunks to be used for packing the model. See

Figure 4.4.

e Ro-Tap mechanical Sieve shaker was used to sieve the crushed limestone material. The

sieve shaker was manufactured by W.S. Tyler, see Figure 4.5.

e Mechanically precise drill was used for perforating the horizontal well tubing used in the

model from the Advanced Manufacturing and Machining Facility at LSU. See Figure 4.6.

e A vacuum pump was used to remove trapped air from the model. See Figure 4.7.
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Distilled water from the lab

n-Decane, used as oil for the experiment, with 99+% purity was purchased from Fischer
Scientific Company.

Sudan black B dye from Fisher Scientific was used to differentiate Decane in the model
Hexion EPON Resin 828 was used along with EPIKURE 3125 Curing agent, both
supplied by Miller —Stephenson Chemical Company. The industrial strength epoxy has a
rated adhesive property shear strength of up to 6,000 psi along with resistance to a broad
range of chemicals including fuels and solvents. These set of properties made this an
attractive choice of epoxy to be used for our purposes. A technical data sheet for the
epoxy has been attached in Appendix C.

CO2 and N pressurized gas cylinders supplied by AirGas were used for gas injection
Pressure gauges are used to measure inlet or outlet pressure as needed.

Cole Palmer flowmeter (Model # PMR 1-010345) was used for controlling flowrate for
gas injection.

A frame was constructed at the LSU mechanical shop to hold the model in place.

22



Figure 0.2. Glass model used for the experiments

. - -

Figure 0.3. Chunks of Indian Limestone rock as received from the supplier
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Figure 0.7. Vacuum pump used to remove trapped air from the model
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4.3 Preparation of the Glass Model for GAGD Runs

As described in the materials section above and shown in Figure 4.2, a total of 3 different
glass tanks with approximate dimensions of 12 x 2” x 20” was ordered from Planet Aquarium in
Arlington, TX. The tank was delivered with 2 holes of 4" diameter drilled just above the base of
the tank to allow the placement of the tubing to be used as a horizontal well for the experiments.
The tank was further modified in the following steps to prepare it for running the GAGD

procedure.

1. Plastic tubing of 4" diameter is used as the horizontal well that is placed at the bottom
of the model. The tube has holes drilled throughout the top end of the pipe to allow
fluid flow. The length of the tube spans across the glass model. The holes are drilled to
ensure that the carbonate material right above the tubing is larger than the hole size to
ensure that they don’t pass through the well or block the holes. Thus, the holes are
drilled carefully with a 1/64” (~400 um) drill from the Advanced Manufacturing and
Machining facility (AMMF) at LSU. It is important that care is taken to keep the holes

in a consistently spaced manner. A grid type-pattern was made with three rows of holes

on the front end of the pipe. Figure 4.8 shows the process and the equipment used.
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Since the horizontal tubing holes are drilled slightly above the base of the tank for
structural integrity, a spacer was used at the bottom of the model of ¥4 height to
eliminate any “dead space” below the horizontal well. Additionally, epoxy was
injected surrounding the spacer to ensure its stability and remove the dead space not
removed by the spacer. Hexion’s Epon Resin 828 was used as epoxy with a curing
agent. Once the spacer was allowed to set in along with the epoxy giving a firm base
for the horizontal tubing, the tubing was placed in the model.

Once the horizontal well was placed and sealed using the epoxy and resin mixture, the
model was packed with carbonate material of appropriate size. The carbonate rocks
were crushed using mortar and pestle and sieved using the mechanical sieve shaker to
obtain the particle size to fill the models. 2 models are used for the experiments with
the particle size distribution as shown in table 4.2 below. While packing the model, the
materials are squeezed together various times to ensure a tightly packed model. The 2”

column with larger grain sizes used in Model # 1 was to ensure that the particles did not

escape from the horizontal well or plug the horizontal well tubing. The packing is

shown in the Figure 4.9 below.

Table 0.2. Particle Size Distribution for the models used for experimentation

Model # Model Dimensions Particle Size Particle Size
(LxW xH) (0.D.) (first 2” from (remainder of the
the bottom) model)
0 (Damaged) 11.57x 1.7” x 19.5” 600 pum 300-425 pum
1 10.75” x 1.7 x 19.5” 600 um 300-425 um
2 11.57x1.57x19.5” 600 pm 600 um
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Figure 0.9. Placement of a 2” layer of higher sized carbonate grains (600 pwm) in the model

4. The crushed composite limestone was used to measure the density of the material and
to precisely determine the requirements for the model. As such, the material
requirements were calculated with the following density calculations for the model.

Using the volume of the model at 319.6 in® = 5237 cm?, and grain density of 1.25g/cc.

5237 cm3 1259 6547g * 1.3 (S.F) = 8511 2.21b 18.7 b
- g 9% 1000 g s

It was determined that almost 19 Ibs of limestone material may be required to fill the
entire model with the crushed limestone rock.

5. The sieving process is done using a mechanical sieving machine as illustrated in Figure
4.5. A small sample is placed in the top most sieve and the machine is run in segments
of 2-3 minutes for a total sieving time of about 10 minutes per sample. This is the
ASTM recommended method for getting a fine particle distribution of the appropriate
sized particles. Sieved materials are intended to form the layers of different sized
crushed carbonate with the larger grain size material at the bottom to allow a sand

packing effect near the horizontal well at the bottom of the tank. This should also allow
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10.

the crushed rocks of larger size to restrict passing of the smaller sized grains through
the horizontal well while allowing the fluids to pass through.

Once the model was fully packed to the top edge, another spacer (similar to the one
used at the base below the horizontal well) was placed to seal the top edge with a ¥4”
threaded hole opening for the fluid movements in and out of the model. The %4”
threaded hole was made using a NTP drill using a taper pipe reamer type drill bit. The
spacer was sealed with an epoxy and resin mixture.

NUPRO SS-4TF2 60 um filter fitting is fitted at the top end of the model as the gas
inlet valve. The model is thoroughly glued together from all edges after this step to
ensure a full leakage proof model.

Connection tubing and valves are used at the 2 openings at the bottom end of the model
and 1 opening at the top end of the model. This can be seen in Figure 4.1 above.

The next step before running the model with the GAGD procedure was to vacuum the
model for any trapped air inside the model. As shown in Figure 4.10 below, the model
was hooked up with a vacuum pump and ran for almost 30 minutes. If the model holds
vacuum, one can validate there are no leaks in the model.

Additionally, a stand was fabricated at the Advanced Manufacturing and Machining
Facility (AMMF) to hold and place the model while running the tests. Once the model
is fully sealed it is ready to begin the initial water saturation run followed by the GAGD

procedure, described in the following section.
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Figure 0.10. Vacuum Pump applied to the model prior to GAGD runs

4.4 Experimental Procedure

The experimental procedure described below was used for the different experiments
conducted for secondary mode gravity-stable gas injection. A summary of the experiments
conducted is included in the following section titled “List of experiments conducted.” Some
steps were simplified to allow for minimal pressure on the model and to attain largest visibility
of fluid flow while keeping the procedure as accurate as possible. Most fluids were gravity fed
for injection in to the model, on the other hand gas injection was controlled by valves to the

desired injection rate. The experimental procedure followed is listed below in details.

1. Once the model is fully sealed, make connection tubing to imbibe water into the model
from the bottom end near the horizontal well. Deionized water is used with a simple
hydraulic static head as shown in Figure 4.1. Ensure the top valve is open to allow for air

to escape the model and eventually once the model is saturated allowing water to escape
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the model from the top. Record the total volume of water inside the model to calculate

the pore volume using the formula below.

Where ¢ is porosity and V and Vs are pore volume and bulk volume. Pore volume is the
total volume of water inside the model and bulk volume is calculated using the inside dimensions

of the model.

2. Once the model is fully saturated with water and the flow inside the model equals the
flow out of the model, use a stop watch and a pressure gauge and allow water inside the
model to measure the permeability. Calculate the flow rate and using the below formula,

calculate the permeability for the model.

quL
K=—-—
AAP

where k is permeability, q is flowrate, p is the viscosity of water, L is the length of model

3. Once the model is fully saturated with water, begin flooding oil (dyed decane) from the
top of the model and ensure both valves at the horizontal well are open to allow water out
of the model. Again, the oil is placed above the model and gravity fed into the model.
The volume of oil entered through the model is about twice the pore volume, to ensure
full saturation of oil. Using material balance, the water remaining in the model is the
connate water saturation Swi and the oil in the model is the Initial Oil In Place or 10IP.

4. Now the model is ready for gas flooding. Connect the model from the top with the gas
cylinder with a flow control valve and pressure gas connected within the line to allow for

desired flow rate and to measure the pressure into the model. Initial tests were performed
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to ensure proper model calibration and the volume of oil and water produced from the
horizontal well is measured at set frequency.

Once the gas breakthrough point is reached, the production starts to taper off. To ensure
maximum recovery the model is flooded for several hours beyond the breakthrough
point. Generally it was found maximum recovery was reached within 5-7 hours and thus
most runs were stopped after 9 hours of gas flooding. The breakthrough points are
determined from the pressure data measured every 5 minutes, a sample of the data
collected is shown in Appendix A.

For the following set of runs with different flow rate, oil is flooded from the bottom of
the model to ensure gravity stable injection and the same procedure is followed from Step
4-5 above. Similar measurements are recorded for each run and the data is discussed in

the following section.
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5. RESULTS AND DISCUSSION

The purpose for this study is to visualize the GAGD process in carbonate rocks using a glass
model along with calculating and analyzing the recovery values from the process. The results
section presents and summarizes the experimental results obtained from this study. The
experiments are designed to visualize the GAGD performance in carbonate rocks as well to
determine the impact of injection gas type (Nitrogen or Carbon dioxide), different injection rates,
and different grain size packing of carbonate rocks on the overall recovery. The experimental
values are also scaled using dimensional time analysis to compare with real field values. The
results are for two different models packed with different grain size carbonate materials.
Secondary recovery mode was used for oil production for the GAGD experiments performed in
this study, it is assumed that the primary depletion drive has been completed. An attempt was
made to run the GAGD experiments in tertiary recovery method however, due to the limitations
of the equipment it was not feasible. Attempting vertical flooding after secondary recovery
removed all the remaining oil from the model and hence horizontal flooding was required. The
model needed to be rotated to its side to perform horizontal flooding after secondary recovery.
Therefore, tertiary mode recovery was not attempted for this study. The results for both models
are shown in the following sections. The set of experiments that were run on the two models are
described in Table 5.1 below by the labels and descriptions used in the following part of the

results.
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Table 0.1. Summary of Experimental Runs with labels and descriptions

Model # 1 (Grain size = 300-425 pm) Model # 2 (Grain size = 600 pm)
Run # Parameters Run # Parameters
RunN_ 2.5 N2 @ 2.5 cc/min Run 2N_2.5 N2 @ 2.5 cc/min
RunN 5 1 N> @ 5 cc/min_1 Run2N 5 1 N> @ 5 cc/min_1
RunN 5 2 N> @ 5 cc/min_2 Run2N 5 2 N2> @ 5 cc/min_2
RunN_7.5 N2 @ 7.5 cc/min Run 2N_7.5 N2 @ 7.5 cc/min
Run FG Free Gravity Drainage | Run 2FG Free Gravity Drainage
Run C 2.5 CO2 @ 2.5 cc/min Run 2C 2.5 CO2 @ 2.5 cc/min

RunC 5 CO2 @ 5 cc/min Run 2C 5 CO2 @ 5 cc/min

RunC_ 7.5 CO2 @ 7.5 cc/min Run2C 7.5 CO2 @ 7.5 cc/min

Initial porosity and absolute permeability were calculated for both models at the beginning of the

experiments. In addition to the packing of the models as described in the previous section, the

calculated properties for the models are summarized in Table 5.2 below.

Table 0.2. Model Parameters for the GAGD experiments performed

Model # | Model Dimensions | Grain Pore Porosity | K (mD) Sor Swi
(LxW x H) Size | Volume
(pm) (cc)
1 10.757 x 1.77 x 300- 1085 34.2% 1490.28 | 94.5% 5.5%
19.5” 425
2 11.5x 1.5 x 600 1200 40.07% 1920.73 | 87.5% 12.5%
19.5”

As seen in table 5.2, the two models were packed with different grain size of carbonate

materials which in turn results in larger porosity for the second model packed with larger grain

size diameter particles of carbonate rock. Also, the particle grain size affects the effective

permeability for the model as calculated from the two models. As permeability is measured using

Darcy’s law, the pore volume of the two models varies which creates a pressure difference at
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varying flow rates creating a larger permeability for the second model with higher pore volume.
The initial oil saturation (Sei) and initial water saturation (Swi) are determined once the model is

fully saturated with oil and water.

5.1 Free Gravity Drainage

The base case experiment was run with just gravity force acting on the model by leaving
the model open at the top inlet and allowing the system to drain solely with gravitational force.
This run is called “Free Gravity Drainage” and is used as a base case to compare the results of
the gas injection recovery rates. It also helps quantify the impact of the gravity force on the
model and to ensure the presence of capillary pressure in the model similar to a field. The two
models used for the experiments are packed with different grain size diameter particles, where
model# 1 is packed with particle diameter of 300-425 um and model# 2 is packed with 600 um
carbonate particles throughout the model. The free gravity drainage for both models is almost
identical with about 60% recovery in the first 50 mins of drainage. The results are higher than the
previous study from Mahmoud (August 2006) using sand as the packing material where he
received a recovery of 43% IOIP. This increase in recovery is expected because of the oil-wet
nature of carbonate rocks which forms oil film type drainage which is also visible from the
experimental runs. The drainage is visually similar to the following runs as gravity is the
dominant force in the initial draining of the model. However, an area of the model remains
saturated with oil at the bottom part of the model towards the end of the run as shown in Figure
5.1 below. As the gravity force is unable to overcome the capillary force from the remaining oil
in the model, the residual oil remains inside the model. The recovery rates for the two models are
shown in Figure 5.2 and the recovery profile from Figure 5.2 shows that the production lasted for

a short time and then stopped completely right after breakthrough. Table 5.2 summarizes the
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model variables used with the different grain size comparisons for the separate models shown

before in Table 4.2.

Gas/oil intarface as
seen from the model
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residual o1l at the end
of the free gravity
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Figure 0.1. Model # 1 at the end of the free gravity drainage
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Figure 0.2. Oil Recovery during free gravity drainage
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5.2 Effect of Type of Gas Injected

This study tested the effect of the injection gas on the production rate for GAGD on
carbonate models. Several past studies conducted on GAGD performance in sandstone material
used both nitrogen and carbon dioxide gas as injection gases. To make the comparisons with past
studies, the experiments for this study were also conducted using Nitrogen and Carbon dioxide
gases for the GAGD runs. The model parameters were similar to as described in Table 5.2
earlier. The pressure at the gas injection point was kept minimal and never went above 0.2 psig
to avoid any damage to the glass model. The flow rate was the controlling parameter and were
kept uniform throughout the experimental run using a Cole Palmer flowmeter (Model # PMR 1-
010345). The production and recovery from the two models at various different injection rates
are shown in the charts below (Figures 5.3 to 5.8). The overall production by volume and the
production by percentage of oil recovery is summarized in Table 5.3. A propagation front of the
gas flood is shown in Figures 5.9 to 5.12, where the visualization of the GAGD process in

carbonate rocks can be observed.
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Figure 0.3. Oil Recovery for Model # 1 at 2.5 cc/min with Nitrogen and Carbon dioxide as
injected gases
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Figure 0.4. Oil Recovery for Model # 2 at 2.5 cc/min with Nitrogen and Carbon dioxide as
injected gases
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Figure 0.5. Oil Recovery for Model # 1 at 5 cc/min with Nitrogen and Carbon dioxide as injected
gases
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Figure 0.6. Oil Recovery for Model # 2 at 5 cc/min with Nitrogen and Carbon dioxide as injected
gases
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Figure 0.7. Oil Recovery for Model # 1 at 7.5 cc/min with Nitrogen and Carbon dioxide as

injected gases
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Figure 0.8. Oil Recovery for Model # 2 at 7.5 cc/min with Nitrogen and Carbon dioxide as

injected gases
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Flgure 0.9. Front propagatlon for N2 flooding at 5 cc/min for Model # 1 (1 of 2)
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Figure 0.10. Front propagatlon for N2 flooding at 5 cc/mln for Model # 1 (2 of 2)
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Figure 0.11. Front propagation for CO flooding at 5 cc/min for Model # 1 (1 of 2)
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Figure 0.12. Front propagation for CO flooding at 5 cc/min for Model # 1 (2 of 2)




The first set of images (Figure 5.9 and 5.10) of the propagation front is for N2 flooding at
5ce/min at 5 min intervals for model# 1. The second set of images (Figure 5.11 and 5.12) of the
propagation front is for CO> flooding at 5 cc/min at 5 min intervals for model # 1. The area in the
model near the bottom of the model where no oil is visible is attributed to the fact that there is a
small section of the model with higher grain size particles near the horizontal well. While the
model is flooded with oil, the permeability near that region is expected to be higher hence
causing that part of the model to be somewhat less oil saturated than the rest of the model.
Similar to the observations from Mahmoud (2016), the oil drains from the model in an almost
horizontal flood front as visible from the front propagation, further showing gravity as the
dominating force for the flooding process with a density difference between the injected gas and

oil.

This study compares the production of oil using different injection gases, namely
nitrogen and carbon dioxide. In a previous study from (Ruiz, May 2006) the recovery rates for
sandstone model were higher with injection of carbon dioxide gas. This is more prevalent in a
reservoir as at higher temperature and pressure CO> has a higher solubility with oil and hence
reduces the oil viscosity. Also, CO. tends to swell the oil which increases the relative oil

permeability.

With this study, Nitrogen gas yields higher recovery for Gas Assisted Gravity Drainage
application through all the experimental cases with carbonate rocks. In general, the production
increase is in the range of ~2.5% - 5.5% total recovery. The recovery rates are summarized in
Table 5.3. Especially for Model # 2, the oil recovery from nitrogen injection is quicker at lower
pore volume gas injection than that of CO- injection for the same model (Figure 5.6 and 5.8).

The difference in the results for the two models is discussed in the grain size effects section. The
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results are somewhat in contrast to the expectations and can be described by the physical
characteristics of Nitrogen vs. CO; gas. First, nitrogen has better injectivity in low permeability
reservoirs. Carbonates tend to have lower permeability than sandstone reservoirs as discussed in
the literature review section. Secondly, the lower molecular weight for nitrogen than that of
carbon dioxide enables nitrogen to reach small pores in the system that can’t be reached by
carbon dioxide (Lwisa and Abdulkhalek, 2018). Carbon dioxide has a molecular weight of 44.01
whereas Nitrogen gas has a lower molecular weight of 28.01. The varying molar mass of the two
gases leads to a varying density for the two gases. At standard temperature and pressure,
Nitrogen gas has a density of 1.25 g/L while CO; has a density of 1.96 g/L. Similar observations
were observed with nitrogen flooding for lab studies done by Koch and Hutchinson (1958) and
related to the vaporization gas drive from nitrogen flooding. The mechanism drives the
vaporization of the lighter oil components (C1 to C6) and hence can make nitrogen more
effective for light oil with high methane concentration. However in this study, decane was used

to represent oil.

Table 0.3. Comparison of incremental production from Nitrogen injection compared to Carbon
dioxide injection

Model # 1 (Grain size = 300-425 pm)

Total % Difference

Nitrogen Gas Recovery CO2 Gas Total Recovery | with Nzinjection
Run # (%) Run # (%) vs. COz injection
Run N_2.5 73.34 RunC_2.5 70.87 2.47

RunN 5 1 80.05 RunC_5 75.09 4.96

RunN 5 2 78.63

RunN_7.5 74.42 RunC_7.5 71.19 3.23

Model # 2 (Grain size = 600 pm)

Run 2N_2.5 80.5 Run2C_25 77.87 2.63
Run2N_5 1 87.68 Run 2C_5 82.1 5.58
Run2N_5 2 86.39

Run2N_7.5 87.07 Run2C_7.5 83.3 3.77
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5.3 Effect of Injection Rates

In this section of the study the effects of different injection rates are shown for both
models. Gas injection rate is an important parameter as the amount of gas injected is dependent
on the injection rate and the injection gas rate has a cost associated with it. Also, the gas injection
rate has impact on the oil production rate, which in turn has cost implications for any project.
From the three different injection rates used for the experiments, namely an injection rate of
2.5¢cc/min, 5 cc/min, and 7.5 cc/min, it was found that the optimal injection rate was at 5¢cc/min
injection rate. The overall recovery was highest when using the 5 cc/min injection rate however,
at a higher injection rate the recovery is faster which may also be important from an economic
point of view. To showcase this, the results are also shown against the pore volume injection for
Model # 1 for nitrogen and carbon dioxide gas injection in Figures 5.17 and 5.18. From the pore
volume injection perspective, the slower injection rate has a lager recovery during gravity
dominated flow or the earlier stages of recovery. This intuitively makes sense as slower injection
rates allows the gas flood to penetrate more thoroughly as opposed to the faster injection rates.
As Mahmoud (2006) described in his findings, the injection rate is also important as it
determines whether the flow is gravity dominated or viscous dominated. In higher injection rates
the pressure increases quickly which leads the viscous force to control the process. However, at
higher pressure, CO> in particular will have a higher oil solubility which will further reduce the
viscosity and lead to more film like drainage with higher displacement efficiency. The results
found for carbonate materials show that the largest recovery is obtained at an intermediary
injection rate. This could be due to the higher injection rates causing an earlier breakthrough and

hence the overall recovery is slightly lower at the highest injection rate. The results for both
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models with Nitrogen and Carbon dioxide injection are shown in the below charts, Figures 5.13

through 5.16.

100.00%
90.00%
80.00%
70.00%
60.00%
50.00%
40.00%

30.00%

% Volume Recovery

20.00%

10.00%

0.00%

o

100 200 300 400 500 600
Time (min)
N2 at 2.5 cc/min —@— N2 at 5 cc/min —— N2 at 7.5 cc/min

Figure 0.13. Oil recovery for Model # 1 (smaller grain size packing) with Nitrogen injection gas

100.00%
90.00%
80.00%
70.00%
60.00%
50.00%

40.00%

% Volume Recovery

30.00%

20.00%

10.00%

0.00%

0 100 200 300 400 500 600
Time (min)

—&— CO2 at 2.5 cc/min —@— C02 at 5 cc/min —— CO2 at 7.5 cc/min

Figure 0.14. Oil recovery for Model # 1 (smaller grain size packing) with CO; injection gas
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Figure 0.15. Oil recovery for Model # 2 (larger grain size packing) with Nitrogen injection gas
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Figure 0.16. Oil recovery for Model # 2 (larger grain size packing) with CO: injection gas
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Interestingly, model# 2 shows a very similar overall recovery at 5 cc/min and 7.5 cc/min.
The higher porosity in the model leads to an earlier gas breakthrough which may cause the
difference between Model # 1 and Model # 2. These effects are discussed further in the
following section while comparing the grain size effect on the recovery rates. It is noted that the
overall recovery rate is not significantly different to imply a clear relationship between the

observed results.
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Figure 0.17. Oil recovery for Model # 1 (smaller grain size packing) with Nitrogen injection gas
(PVI basis)

As seen from the above charts in Figure 5.17 and 5.18, from a pore volume injection
basis the slower injection rates yields a better volumetric sweep and thus a higher initial
recovery. The overall recovery is still highest at the intermediate injection rate and in order to
keep the timings consistent for the experiments, the experimental runs were run for a similar time
period, not similar gas injection volume. Section 5.5 discusses the impact of the pore volume

injection with different gases used as injection gas.
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Figure 0.18. Oil recovery for Model # 1 (smaller grain size packing) with CO; injection gas (PVI
basis)

5.4 Effect from Different Grain Size

The two models used for this study were packed with different grain size of carbonate
material in order to observe the effects of varying the grain size on the overall recovery rates.
The first model was packed with carbonate grain size of 300-425 pm with a 2 column of 600
um particles near the horizontal well to allow for a gravel packing type effect and to ensure that
none of the smaller diameter grains escape through the horizontal well. As a contrast, the second
model was packed with 600 pum particles throughout the model. As hypothesized, the larger grain
size yielded a higher porosity of 40.07%, while the first model with smaller grain size particles
had a 34.2% porosity. This approximately 6% higher porosity in Model # 2 is further translated

into higher recoveries for the same injection fluid and injection rate. A summary of the results is
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shown in Table 5.4 below. The comparison shows a higher recovery across each run for the
second model with an increased recovery of between 7% - 12.65%. The largest difference is at

the 7.5 cc/min injection rate while the difference between 2.5 cc/min and 5cc/min is marginal.

Table 0.4. Comparison of incremental production between the two models

Nitrogen Injection

Model # 1 (Grain size | Total Model # 2 (Grain Total % Difference
= 300-425 pm) Recovery | size = 600 pm) Recovery | between Model #
Run # (%) Run # (%) 1 and Model # 2
Run N_2.5 73.34 Run 2N_2.5 80.5 7.16
RunN 5 1 80.05 Run2N 5 1 87.68 7.63
RunN 5 2 78.63 Run2N 5 2 86.39 7.76
RunN_7.5 74.42 Run 2N _7.5 87.07 12.65

Carbon Dioxide Injection
RunC_2.5 70.87 Run2C 25 77.87 7
Run C_5 75.09 Run2C 5 82.1 7.01
RunC_7.5 71.19 Run2C_7.5 83.3 12.11

The charts below in Figures 5.19 to 5.21 show the recovery profile for the pore volume gas
injected for the two models comparing the overall recovery rate from the OOIP.

The recovery profiles clearly shows a faster and higher recovery for the model with larger
grain size particles. This effect is related to the fundamental principles of the Carmen-Kozeny
relationship for porous medium. The equation for calculating the absolute permeability is a
function of the particle diameter and porosity and tortuosity.

po _ Do®
72t(1 — )2
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Figure 0.19. Oil recovery with Nitrogen injection for two different grain size
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Figure 0.20. Oil recovery with Carbon dioxide injection for two different grain size
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Figure 0.21. Oil recovery with Nitrogen injection for two different grain size

Permeability is a function of the square of particle size diameter and thus higher grain
size tends to lead to a larger permeability which eventually leads to a larger oil recovery as seen
above. In the study, Model # 2 has the larger grain size diameter with a higher porosity and
higher permeability compared to Model # 1. These results vary from Ruiz’s study (2006) where
it was found that the larger grain size glass beads yielded lower recovery however, his results
were unexpected in his study and were claimed to be because of “a departure from normal
procedure for the packing of the physical model... The model was filled by introducing the glass
beads into the cavity by hand-packing prior to assembly of the physical model along. This
resulted in relatively tighter packing and, therefore, decreased porosity and permeability
resulting in a decrease in oil recovery compared with the looser packed 0.13 mm porous media.”
(Ruiz, 2006). The results from this study confirmed higher recovery for larger grain size

particles.
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5.5 Effect of Type of Gas Injection & Gas Injection Rate on Oil Production

At the field scale, the gas injection rate is a very important consideration as that equals to
both time and money spent for injecting any gas into the reservoir and get oil production in
return. The summary of findings from the gas injection rate plotted as a function of the overall
recovery percentage of OOIP has been shown in Figures 5.22 and 5.23 below. As per intuition,
model 1 shows that the lower injection rate yields higher recovery of oil production in the early
stages of injection (0-0.4 PVI) as the lower injection rate has a better front propagation that
moves slower compared to the higher injection rates which may not fully sweep the model. This
is valid for either carbon dioxide or nitrogen injection. This is also evident from the experimental
runs from the visual analysis. There is slightly different observation for the second model from
the results shown in Figure 5.23 where the nitrogen injection at higher injection rate (7.5 cc/min)

yields higher production during the early injection stage (0-0.25 PVI).
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Figure 0.22. Effect of Gas type and injection rate on oil recovery for Model # 1 (Dp = 300-425
pm)
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Figure 0.23. Effect of Gas type and injection rate on oil recovery for Model # 2 (Dp = 600 pum)
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In addition to the gas injection volume vs. recovery, the below charts in Figure 5.22 and
5.23 show the percentage of volume recovery vs. time on a log scale. This analysis shows the
recovery from a more enhanced time scale for early production and most importantly shows the
gravity dominated flow in the beginning of the production. These results show similarities to
observations from Mahmoud’s study (2006) as three different mechanisms of oil recoveries:
Darcy-type displacement until gas breakthrough, gravity drainage after breakthrough, and film
drainage in the gas invaded zones. There is a remarkable difference between model 1 and model
2 results though and as discussed in the grain size effects section the larger grain size model has

a general tendency of higher production throughout the study.
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Figure 0.24. Oil Recovery vs. Time on a log scale for Model # 1 (Dp = 300-425 pum)
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Figure 0.25. Oil Recovery vs. Time on a log scale for Model # 2 (Dp = 600 um)

Additionally, using the dimensional analysis, a time scale analysis has been done to
compare the results from the lab scaled models to a prototype field using the dimensionless time
expression below. The expression for dimensionless time (tp) for gravity drainage process as

discussed in the literature review section, is shown again for reference.

_  KK?Apg/gc
to

= t
h@u(1-Sor—Swi)

The dimensionless time expression tp (Miguel et al, 2004), the variables used are as follows:
K is the absolute permeability,

K72, is the end-point relative oil permeability,

Ap is the fluid density difference,

g is the Newtonian gravity acceleration,

gc is the gravity acceleration conversion factor,

h is the height of the porous media,

¢ is the porosity,
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U is the viscosity of oil (decane in the experimental case),
Sor is the residual oil saturation,

Swi is the initial water saturation, and

tis time

Using the dimensionless time and comparing the results found from Sharma (2005), helps
visualize the results for the GAGD experiments in carbonate to field values and also compares it
to previous lab scale studies using sandstone as the porous medium. Similar to the gravity
drainage field used by Sharma, the Dexter Hawkins field data is used to compare the time from
the lab models to the field data. The properties from the Dexter Hawkins field used for
dimensionless time calculations are summarized in Table 5.5 and are taken from Carlson (1988)

as used by Sharma (2005).

Table 0.5. Field Scale Properties used for the dimensionless time calculations

Field Scale Properties Value
Absolute Permeability K (D) 1.2
End-point relative oil permeability (K;%,) | 0.31
Oil Density (po(kg/m?)) 908
Gas Density (pg (kg/m?)) 10

¢ 0.25
Ho 3.75
Swi 0.27
Sor 0.1

h (ft) 175
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The field data from the Dexter Hawkins field used for the scaling calculations are for a
field that was subject to gravity drainage for 15 years with an 81% oil recovery under gravity-
stable gas injection. Table 5.6 is a comparison of the values obtained from the lab scale model at
the 10 minute experimental value to a corresponding time to the field. The values obtained from
the dimensional time analysis indicate a performance of the first 10 minutes of the lab scaled
experiments to be roughly 3-4 months in the field. As seen from the Figures 5.25 and 5.26 with
oil production on a log scale, the lab scale models reach their breakthrough point within the first
100 minute of the experiments. These values are also similar to the values obtained by Sharma
from his study as shown in Figure 5.26. Thus, it can be observed that the physical model

experiments compares with the field study and previous experimental study.

Table 0.6. Scaled time for the Dexter Hawkins field using dimensional analysis at 10 minutes of
lab scale model

Nitrogen Injection

Model # 1 (Grain size | Days in Dexter Model # 2 (Grain size | Days in Dexter
= 300-425 um) Hawkins Field for 10 | = 600 pm) Hawkins Field for 10
Run # minutes Run # minutes
RunN 2.5 91 days Run 2N 2.5 117 days
Run N 5 83 days Run 2N_5 107 days
RunN_7.5 90 days Run 2N_7.5 106 days

Carbon Dioxide Injection
RunC 25 95 days Run2C 2.5 121 days
RunC_5 89 days Run 2C 5 114 days
RunC_7.5 95 days Run2C 7.5 112 days
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6. CONCLUSIONS AND FUTURE RECOMMENDATIONS

6.1 Conclusions

The purpose of this study was to conduct physical model experiments for the GAGD process
with carbonate porous media and to study the effects of injection rate, injection gas type, and
grain size variations on the overall oil recovery. A 2-D Hele-Shaw type model was used to
conduct the experiments for the study using carbonate rocks for the porous medium and decane
and water were used to mimic natural reservoir conditions. The GAGD process was performed in
a secondary displacement mode (tertiary mode was impractical for the model used) using carbon
dioxide or nitrogen gas as injection gas. Different gas injection rates were used for the
experiments. From the above results section, a summary of the findings and conclusions from

this study are listed below:

e The GAGD process is valid and successful in crushed carbonate rocks as used in this
study for the porous medium within the physical models.

e Gravity force is dominantly present in the recovery process and from the visual findings
shown, forms a very stable front that propagates through the model and minimizes
viscous fingering.

e From the carbonate model studies for the GAGD process, it was found that nitrogen
produced higher recovery in all instances with a range of 2.5% - 5.5% incremental
recovery compared to carbon dioxide injection.

e The injection rate was varied for the study using three different injection rates to mimic
slow, intermediate, and faster injection rates. It was found that the ultimate oil recovery
for all cases except one, were higher at the intermediate injection rate. The intermediate
injection rate provides a balance between the front propagation and the higher pressures
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at the higher injection rate which may lead to an earlier breakthrough. It must be noted
that the Model # 1 was packed with a higher grain size particles near the bottom of the
well and thus may cause some entrance and exit effects.

e The most significant impact was found to be due to the particle size of carbonate
material for this study. The model with the larger grain size diameter had a higher
porosity and permeability and also yielded the highest recovery rate with an increased
recovery rate between 7% to 12.6% from the various injection rates and injection gas.

The overall recovery range was 70.9% to 87.7% of OOIP.

6.2 Future Recommendations

The importance of the application of GAGD process in carbonate reservoirs is vital. This
study proves that the process is relevant and useful for higher recovery in carbonate reservoirs
and can work successfully as a secondary or tertiary oil recovery method. As a result of the
model design, this study did not conduct experiments in tertiary mode and this is certainly
something that can be performed for a future study. The author would also like to note that the
carbonate material was crushed and sieved in order to pack the material in the model used for
this study. This results in the loss of some fundamental properties of the material however, the
results are still valid as the carbonate material retains the chemical characteristics. Also, design
parameters for this study can be further proven with other similar studies and simulation efforts.
The vast difference that was found in the grain size diameter, for example, can be further
narrowed down with using more models with more grain size variations. Further, even though
the study shows Nitrogen as a more effective injection gas, it is the author’s belief that carbon
dioxide is still a better option due to the added benefit of environmental impact from carbon
dioxide injection for oil recovery. There are also economic incentives for carbon injection that
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would mitigate the marginal incremental recovery from nitrogen injection. A future study can
consider the cost-benefit of carbon dioxide injection in conjunction with the latest incentive

policy for applicable region of the world.
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APPENDIX A: PRESSURE DATA FROM THE EXPERIMENTS

As noted in the experimental procedure section, the pressure data is collected sparsely
throughout the experiments, generally at the 5 minute intervals for the experiments conducted.
The pressure was minimal in all cases while injecting gas, never exceeding over 1 psi. Below
image shows the pressure data from the Model # 1 with smaller grain size diameter with

Nitrogen injection at 5 cc/min. The breakthrough was noted to be at 107 minutes for this case.

Pressure Data for N2 @ 5cc/min
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APPENDIX B: XRD ANALYSIS OF THE INDIANA LIMESTONE

XRD Analysis-powder reflection analysis-performed on the limestone sample used for packing

the model, shows a composition of 98% Calcium carbonate material and 2% Silicon dioxide. The
analysis was performed at the LSU Shared Instrumentation Facility (SIF) labs with the assistance
of the staff at the SIF. The PANalytical Empyrean X-Ray Diffractometer at the SIF was used for

the analysis. Below image are the results produced from the powder reflection analysis.

69



T T T

Hi“lﬁfﬂﬂ.j“jﬁi“iﬂ*ﬂ I:“.llﬂ.iﬂ

e

0 84

ATy WL iy .

. —

- §
3]

= s T e e Pl

ot L

.!.n.lu-_ll -.___In._.l-...

[ D% e ter i
Lrﬁﬂﬁ?ﬁitﬂadlﬁ. %Hﬁ_

f.ﬁfl

T ==F

e ) |

L & .._s..!_!-. ]_Il._— .

RN - R R T I

iiiil_l ilj} i

S —— = e




APPENDIX C: TECHNICAL DATA SHEET FOR THE EPOXY USED

The following set of images are screenshots of the technical data sheet from the manufacturer of
the Epoxy used to seal the model
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RAW DATA FROM THE GAGD EXPERIMENTAL RUNS FOR

NITROGEN INJECTION AT 5 CC/MIN FOR MODEL #1
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RAW DATA FROM THE GAGD EXPERIMENTAL RUNS FOR

NITROGEN INJECTION AT 5 CC/MIN FOR MODEL # 2
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