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ABSTRACT 

 

In the field of petroleum engineering, rock samples are often taken from wells during the drilling 

process. Grain partitioning of digital three-dimensional microtomography segmented images 

obtained from these samples provides valuable in-situ properties and statistics that allow for 

accurate particle and structure characterization. This information can be used directly in detailed 

production and reservoir analysis, and can also be used to generate realistic packing models for 

advanced simulation. Additionally, the partitioned image can be used as a building block for 

realistic hydraulic fracture modeling. This technology has applications in other fields as well, such 

as core analysis in soil sciences and developing novel structures in material science. Several 

automatic and manual partitioning algorithms have been developed, but these algorithms often 

perform poorly for irregularly shaped or consolidated rocks. The objective of this work is to 

improve the accuracy, reliability, and control of the grain partitioning algorithm VOX2GRAINS. 

The program is broken into two separate categories: initial partitioning, and post processing 

refinement. The initial partitioning methodology assumes that the true particle interfaces coincide 

with watershed surfaces. In order to combat the over partitioning that is common with this 

methodology and to provide smoother interfaces, several new iterative techniques have been 

implemented into the particle assembly stage along with an adjustment to the distance map 

generation. Once the initial partitioning is completed, the user has the opportunity to interact with 

the three-dimensional partitioned image. Bulk and individual properties, such as porosity, particle 

volumes, surface areas, contact areas, and aspect ratios are calculated and displayed. Results show 

that many of program’s new additions and alterations provide more accurate and realistic grain-

grain interfaces. The program’s post processing options have been expanded to include planar 

regression of grain-grain contact surfaces and the reduction of over partitioned grains through 

machine learning via logistic regression. The machine learning refinement option was found to be 

a particularly effective method that combines user control, automation, and time efficiency to 

create a more accurately partitioned image. 
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CHAPTER 1. INTRODUCTION  

 

In petroleum engineering, very little is initially known about the subsurface formations. Operators 

frequently rely solely on core samples in order to predict reservoir properties, which in turn can 

impact future production estimates and hydrocarbon recovery strategies. These samples can be 

very costly to obtain, so it is important to maximize the amount of information generated from 

each sample, and to ensure that this information is accurate. This is the overarching objective of 

rock analysis.  

 

Rock analysis is used to determine accurate particle and structural characterizations. Particle 

characterization refers to individual granular properties, such as size, shape, porosity, and density, 

whereas structural characterization refers to the microstructure of the granular material and 

granular assemblies (Williams, 2002). These properties provide a general idea of the subsurface 

formations, and can be directly used in production and reservoir analysis, such as reservoir 

simulation and nodal analysis. Additionally, this information can be useful for more advanced 

analysis like generating realistic particle packing models for flow analysis and geo-mechanical 

models for hydraulic fracturing.  

 

Although different rock analysis methods have been explored, X-ray microtomography is one of 

the only methods that provides the opportunity for obtaining accurate particle and structural 

characterizations simultaneously. In this process, a three-dimensional digital representation of a 

given core sample is generated. In an attempt to maximize the utility of these three-dimensional 

X-ray microtomographic digital images, computer algorithms have been developed that allow for 

both manual and automatic identification of individual grains within the image, each providing 

corresponding spatial statistics (Thompson, 2006, Ketcham, 2005, Sheppard and Sok, 2006, 

ThermoFisher, 2017). Although current automatic algorithms have shown the ability to arrive at 

accurate statistics from packs with simple geometries and little to no consolidation, there is a need 

for more robust algorithms to more accurately partition irregularly shaped particles that are 

commonly found in core samples. This thesis proposes and evaluates new methods to improve the 

accuracy and reliability of grain partitioning of preexisting algorithms in the program 

VOX2GRAINS (Thompson, 2006).  

 

In order to provide a more broad understanding of where this work fits, a brief background on X-

ray microtomography and other rock analysis methods is first presented. After discussing common 

preprocessing stages, various published partitioning technologies are described in detail. 

Following, program developments will be described, and the impacts of any meaningful additions 

or alterations will be shown through partitioned images.  

 

Specifically, this thesis first compares VOX2GRAIN’s in-house distance map with a true distance 

and Euclidean distance map, and investigates how each map impacts partitioning. An accurate 

distance map is of utmost importance, since this provides the foundation for the grain partition. 

Next, several iterative techniques added within the granular assembly stage of the program are 

evaluated along with a new technique for assigning voxels that border multiple grains. Like most 

partitioning algorithms, VOX2GRAINS relies upon a watershed transform, and often results in 

over partitioning grains, especially in cases of irregularly shaped grains or significant 

consolidation. To provide an efficient method for combating this issue, machine learning via 
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logistic regression is implemented and evaluated. Lastly, two separate methods of applying planar 

regression to grain-grain contact interfaces are assessed.  

  

The algorithms presented here were designed to be robust; applications for this particular 

technology extend far beyond petroleum engineering to any science involving particulate or 

granular matter, such as soil sciences, materials sciences, pharmaceutical sciences, civil 

engineering, and environmental engineering.  
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CHAPTER 2. BACKGROUND 

 

As previously mentioned, often very limited information is initially known about the physical 

properties of subsurface formations in the field of petroleum engineering. Operators frequently 

rely on core samples and well logs in order to predict reservoir properties. These properties provide 

a relative idea of the subsurface to geologists and engineers, and often provide the basis for 

subsequent analysis ranging from production inflow analysis to reserve estimations. Well logs and 

core samples can be costly to obtain, so operators seek to maximize the amount of useful 

information from these tests, and to ensure that this information is as accurate as possible. 

Occasionally, well logs and core samples are both obtained and analyzed together to corroborate 

their individual results, but it is not uncommon for operators to obtain only a core sample. While 

core analysis and well logs provide some overlapping information, there are significant differences 

between the two methodologies, and advanced core analysis provides information that cannot 

currently be derived from well logging, such as grain sizes and granular distributions. This thesis 

focuses on recent advancements in core analysis algorithms, but before detailing these methods, a 

historical overview of common core analysis techniques is presented.   

 

2.1. Analysis Methods 

 

An ideal analysis method is one that provides a broad spectrum of accurate rock characteristics on 

both the micro and macro scales. In petroleum engineering and geosciences, the common 

properties of interest for understanding and predicting flow dynamics and characterizing the 

subsurface are porosity, permeability, tortuosity, density, grain size and shape, degree of 

consolidation, anisotropy, and heterogeneity. Keeping in mind that these rock samples are often 

costly and timely to obtain, methodology that does not require destroying or dispersing the sample 

is greatly preferred so that the sample can be retested for verification purposes and used in other 

experiments. The methodology should also be able to determine sufficient parameter conclusions 

from a relatively small sample of rock, since typical core samples are usually only millimeters in 

diameter.  

 

Over the past seventy years, a number of rock analysis techniques have been developed, each 

carrying its own advantages and disadvantages. Initial techniques were relatively simple but 

provided very limited information. More recently, advanced techniques have shown promising 

results in determining a range of accurate information. 

 

Particle sieving requires dispersing the bulk sample, and passing the individual grains through a 

sieve (Ballard, 2013). While this process can provide accurate size statistics for spherically shaped 

particles, it provides no information about how the grains were organized within the rock sample. 

Thin section analysis also requires dispersing the rock sample, but additionally provides some 

measure of structural characterization. The core is cut into thin sections, and observed under a 

microscope. Methods have been proposed for analyzing particle and structural characterizations 

for rock images by combining the individual analysis of each two dimensional slice (Krumbein, 

1951). Thin section analysis can be very timely, and requires carrying out analysis in two 

dimensions many times. Afterward, the individual results from each slice can be combined with 

one another to generate a three dimensional picture, but this three dimensional image analysis is 

based upon findings from two dimensional images, and is therefore prone to errors due to the lack 
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of complete spatial comprehension. X-ray diffraction is a common method for determining 

chemical compositions for rock samples, but it requires crushing the sample into a fine power, thus 

providing no understanding of particle shapes and how they originally were oriented (Hosterman 

et al, 1981). While these methods are useful, they do not simultaneously provide the opportunity 

for accurate particle and structural information to be captured. 

 

Alternatively, X-ray Microtomography (XMT, or micro-CT) is a fairly recently developed non-

destructive and non-invasive analysis method that is well suited for the micro-scale, meaning that, 

for most rock samples, the resolution provided by this methodology is fine enough that one is able 

to distinguish between individual pores and individual grains (Wildenschild, 2012). From a given 

core sample, this technique produces a reliable, in situ, three dimensional digital image that is fully 

representative, and, because this technique is nondestructive, provides the ability for the sample to 

be retested for validation.  

 

XMT offers the advantage of preserving information about particle orientations, spatial 

correlations, and particle distributions in situ, just as they appear in the core sample. 

Simultaneously, the methodology retains individual particle information, which opens the door for 

advanced statistical calculations for particulate properties. Concretely, this method provides the 

opportunity to calculate accurate sample density distributions, particle distributions, porosity, 

heterogeneity, anisotropy, grain sizes, locations, volumes, aspect ratios, surface areas, orientations, 

particle contact areas, and particle contact locations. The disadvantages of this process are the cost 

associated with generating the digital image, and the limited software analysis packages.  

 

There are alternative methods that can produce results similar to X-ray microtomography, such as 

transmission electron microscopy (TEM) and focused ion beam/scanning electron microscope 

(Wildenschild, 2012). Although this thesis focuses on partitioning grains in XMT images, the logic 

behind the algorithms should be applicable to all image types, assuming the image contains the 

full representative elementary volume.     

 

An example of a typical XMT experimental setup is show in Figure 2.1. XMT works by passing a 

radiation source through a rock sample and measuring the corresponding X-ray attenuation 

downstream of the radiation source with a sensor (Wildenschild, 2012). The rock sample is rotated, 

and the sensor captures a series of two dimensional attenuation maps that are later reconstructed 

into a single three dimensional greyscale image. In the resulting three dimensional greyscale 

image, each voxel (three dimensional pixel) holds a numerical value that corresponds directly to 

the X-ray attenuation through the representative portion of the sample. Attenuation level is directly 

proportional to the density, atomic number, and energy of the incident X-ray. By keeping the 

energy level of the incident X-ray constant with a monochromator, materials with similar densities 

and atomic numbers will display similar greyscale values in the reconstructed image. This 

technology is capable of producing images up to approximately 20003 voxels, with a resolution of 

several microns (Blunt et al., 2013). 

 

Before the digital XMT image can be partitioned, it is common to apply preprocessing measures 

to remove or reduce the noise and any image artifacts. Once minimized or removed, the phases 

within the image can be segmented from one another. Although many segmentation processes 

exist, thresholding according to voxel intensity is a straightforward and fairly common 
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methodology (Iassonov et al., 2009). As previously mentioned, X-ray microtomography gives a 

reconstructed grey scale image, with each voxel corresponding to the X-ray attenuation, and 

therefore the density and atomic number of the material. Similar materials will provide similar 

densities, and have similar grey scale values. By applying attenuation thresholds corresponding to 

the grey scale values observed in the image, the separate phases of the grey scale image can 

segmented to create a new image with voxel values representing the separate phases.  
 

 
Figure 2.1. Typical X-ray microtomography setup (Wildenschild, 2012) 

 

Take, for example, a grey scale image of a porous material that appears to have only one solid 

phase. The grey scale image is segmented by a selected intensity value, and the resulting image is 

binary, meaning all voxels hold one of two possible values. All voxels with a value of 1 may 

represent the solid phase, whereas all voxels with a value of 0 may represent the void phase. This 

same process can be carried out for images with multiple solid phases present by specifying 

additional threshold intensity criteria. Attempts have been made to automate this process by using 

machine learning to select thresholds, but because this process is so subjective, segmentation is 

most frequently still carried out by manually selecting threshold values (Wildenschild, 2012). An 

example three phase segmentation is provided in Figure 2.2 (Mills, 2016). 

 

Understanding the segmentation process sheds light on the problems that can arise from failing to 

properly remove noise or artifacts. Each step of this process builds upon the last, and any error is 

exasperated as the process moves forward. For these reasons, a clean segmented image is crucial 

for an accurate grain partitioning.    

 

     
(a)      (b)             (c) 

Figure 2.2. XMT raw image (a), after anisotropic diffusion (b), and then after segmentation (c). 

3.5cm per side (Mills, 2016) 
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2.2. Grain Partitioning Technologies 

 

Once the grey scale image has been cleaned and segmented, the individual grains can be 

partitioned. Several research groups have worked to progress the analysis capabilities and 

accuracies for grain partitioning, but there is still a need for robust algorithms that are able to 

properly partition grains which are not spherical, and rock samples with a high degree of 

consolidation. 

 

2.2.1. Seidler et al. 

 

In 2000, Seidler et al. detail how they successfully processed a synchrotron X-ray 

microtomography image of a disordered pack of glass spheres granule-by-granule (Seidler et al, 

2000). From their reconstructed image, they were able to determine individual granular locations 

and sphere connectivity by using object recognition software. Due to this methodology, this 

algorithm is only valid for packs of spherical granules, and would not yield quality results if 

applied to granular materials with irregular shapes, unless new object recognition algorithms were 

developed. Furthermore, if this technology were to be expanded for analyzing true rock images, 

this technology would require information about expected grain shapes prior to analysis. 

 

2.2.2. BLOB3D 

 

First published in 2005, BLOB3D was the first computer program that partitioned individual grains 

from high resolution X-ray computed tomography images in three-dimensional space (Ketcham, 

2005). Prior to this program, analysis had been performed on individual two dimensional slices, 

and recreated in order to form a three-dimensional representation. As mentioned previously, 

analyzing a three-dimensional image via a series of two-dimensional representations omits 

valuable information, is less efficient, and can be a cause of inaccuracies. BLOB3D was primarily 

developed with the intention of analyzing porphyroblastic metamorphic rocks, and is capable of 

identifying up a few thousand features in a given three-dimensional image.  

 

The algorithm is broken into three primary portions: segment, separate, and extract. Unlike many 

other grain partitioning algorithms, BLOB3D segments the distinct phases internally. In the 

separate stage, the programs displays each individual continuous cluster of the phase of interest, 

and prompts the user to decide whether it is a single contiguous blob or multiple individual blobs. 

Statistics about each blob are given to the user in order to aid in the decision making. If the image 

has several hundred or thousand initial clusters, then the separate process could be extremely 

lengthy. Also, for a sample with any degree of consolidation or even barely touching particles, the 

user would be required to spend a significant amount of time separating the individual blobs into 

their individual partitions, since the majority of the image would be defined as one contiguous 

cluster. Once all separations are completed, the final stage, extract, is carried out. Here, statistics 

based upon the quantity and orientation of the voxels in the each previously defined cluster are 

presented. These statistics include center of mass, volume, and surface area. This final stage also 

provides aspect ratio and axis orientation by fitting the outside surface of the cluster with a least 

squares ellipsoid. Lastly, the contact areas and contact orientations between particles are also 

determined. The results shown are promising, though it should be mentioned that the images used 

for testing were composed solely of spheres barely touching one another. Since the partitioning of 
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any touching particles is completely manual, a significant amount of time would be required to 

partition a true rock image.   

 

2.2.3. VOX2GRAINS 

 

Thompson et al. (Thompson, 2006) created a program that automatically identifies and partitions 

separate grains in three-dimensional space from a segmented image. This program, referred to in 

this thesis as VOX2GRAINS, was the first to offer a solution to identifying and partitioning grains 

when no previous knowledge of particulate shape is available. Since many core samples obtained 

in industry are composed of angular and odd shape grains, this is a powerful program. This thesis 

focuses on improving the accuracies, reliability, and capabilities of VOX2GRAINS. 

 

The overall algorithm is broken into five separate stages. In the first, a dual-phase burn map is 

calculated. This terminology burn map is used because this process visually resembles a grassfire 

burn, starting at the boundary of the solid and void phases and expanding both outward (into the 

void) and inward (into the solid) until all voxels of the image have been covered. This is a step-

wise procedure, and each voxel in the burn map is assigned an integer value corresponding to the 

number of incremental steps that were taken before the voxel was reached. Voxels representing 

the solid phase would be assigned a positive integer, whereas voxels representing the void phase 

would be assigned a negative integer. For two voxels representing the solid phase, a voxel closer 

to the void phase would receive a smaller burn map value than a voxel further away from the void 

phase. This map provides information about each voxel’s distance to the nearest boundary.  

    

The second stage of the automated partitioning algorithm is identifying the location of the local 

extrema. Within the burn map, voxels that are solely surrounded by smaller absolute values are 

identified as the initial grain center locations. If there are multiple voxels that hold the same local 

absolute maximum value, then the center of mass of these voxels is identified as the initial grain 

center. 

 

The grain centers can be further refined in the third step of this process. Thompson et al. note that 

for images of spherical objects with a significant number of voxels per sphere diameter, this option 

need not be used. However, for irregularly shaped grains, it can provide improved partitioned 

results. If refinement is selected, then an iterative optimization process of determining the largest 

possible inscribed sphere in each local maxima of the solid phase is performed. The center of the 

sphere acts as the grain center. If, after determining all maximum inscribed spheres, a sphere center 

is located within another sphere, the two are merged together.  

 

The fourth stage of VOX2GRAINS is particle assembly, in which each particle is constructed 

outward from the identified centers in a restricted manner. The assembly process starts at the 

identified grain centers and spreads outward until another particle or void phase is reached in a 

manner similar to the previously described burn. It begins by setting the minimum burn value equal 

to the largest global burn. A full voxel loop of the domain is performed, and any voxel that holds 

a value equal to or greater than the minimum burn value, and also touches a voxel that has already 

been assigned to a grain, is assigned to the same grain as its neighbor. The voxel loop of the domain 

with the same minimum burn value is iterated until an iteration with no additional assignments 

takes place. At this point, the minimum burn value is decreased, and the process repeats itself. This 
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continues until all voxels representing the phase of interest as assigned to a particle. The 

assumption for this stage is that the true particle-particle interfaces correspond with the watershed 

distances of the burn map. More in depth analysis of the watershed algorithm is provided by 

Beucher et al. and Vincent (Beucher et al., 1979, Beucher, 2000, Vincent et al., 1991). Often, this 

process leads to over partitioning of the grain space. 

 

The fifth and final stage is to compute physical parameters on the individually partitioned particles, 

such as volume, inscribed radius, surface area, particle aspect ratio, and contact area with other 

particles. In order to combat the previously mentioned calculation errors due to boxy nature of 

voxels, methods proposed by Lindblad (Lindblad, 2005) and Dalla et al. (Dalla et al., 2002) are 

implemented. 

  

Along with the quantitative statistics, the resulting partitioned image can be viewed and interacted 

with via a visualization package. This provides a clearer understanding of the particle size and 

spatial distributions, as well as the general shapes of the particulate matter. Being able to interact 

with the image also allows the user the opportunity to evaluate the results of the automated 

partitioning. Understanding that the use of the watershed transform in particle assembly often 

results in over partitioning, this program offers the user both manual and automated refinement 

options for merging over partitioned grains. In the case of manual refinement, the user specifies 

the grains he or she wishes to merge together by their identifying numeric values. In automated 

refinement, the user specifies a thresholding contact area to surface area ratio. This threshold value 

is compared against all neighboring pairs, and if the calculated ratio for a grain pair is greater than 

the threshold value, then the grains will automatically be merged. All statistics are updated after 

any manual or automatic merges take place.  

   

2.2.4. Australian Research Group 

 

Saadatfar et al. (Saadatfar, 2005) have shown good results for grain partitioning of three-

dimensional images with two separate methodologies, one of which is very similar to that of 

Thompson et al. (Thompson, 2006). Similarly, these methodologies are robust enough to identify 

and partition grains of spherical and irregular shape. The two separate processes and their 

capabilities are summarized below. 

 

The first methodology described begins with a three-dimensional segmented image and applies an 

erosion of the outer boundaries of the phase of interest. This erosion breaks apart the individual 

grains. This process is continued until a maximum value is reached, at which point each cluster of 

the solid phase that has not eroded is assumed to be fully isolated from all others particles, and 

therefore represents the base of a single grain. Each cluster is labeled accordingly, with a specified 

location at the center of mass of the non-eroded voxel cluster, and the image is dilated back to the 

original size. A Voronoi tessellation then separates the entire space such that each individual 

compartment contains a single identified grain seed, or what was formerly the isolated cluster’s 

center of mass. The particles are grown outward from their individual grain seeds to fill the 

Voronoi partitioned space at a constant rate. Since the grains are only dilated outward in their 

Voronoi partitioned space, the resultant grain boundaries are planes. Saadatfar et al. mention that 

this process works well, but can lead to losing smaller grains due to the nature of the erosion. For 
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this reason, it is likely not well suited for rock samples with large size distributions, or when there 

are grains only represented by a limited number of voxels, possibly due to a poor resolution. 

   

The second method described in this article begins by calculating a Euclidean distance map, where 

each individual voxel of a selected phase holds a value equal to the minimum distance from that 

voxel to any voxel of another phase. In other words, distance map values represent the distance 

from a particular voxel to the nearest surface. The result is a three dimensional image similar to 

burn map described by Thompson et al. (Thompson, 2006). The local maxima are taken as the 

grain centers, and the regions are grown outward from the center voxels in accordance with the 

watershed transformation. Voxels nearer a particular grain center will be assigned to that grain 

before voxels further away from the grain center. If a particular voxel is found to touch two 

separate grains, then the voxel is assigned to the grain it first contacted. The author mentions that 

the resulting partitioning from this watershed method provides similar results when compared to 

the Voronoi partitioning method in many cases, but this watershed method maintains the ability to 

determining accurate information about smaller particles. This algorithm is parallelized in order to 

reduce computational time. 

 

The partitioned image from either method is used to subsequently determine grain fabric and 

texture properties, such as grain size, grain size distribution, sphericity, roundness, shape class, 

grain sorting, and grain contacts. The results shown in this article are promising, but there are 

limited images of partitioned grains, and the images that are included show little contact area 

between grains. 

 

Soon after, two follow up articles were published (Sheppard, Arns, et al., 2006, Sheppard et al., 

2005). The first describes merging grain centers if one grain center is located within another grains 

inscribed sphere. The second implements a region-merging algorithm to combat the over 

partitioning that commonly results from the watershed transform in particle assembly. Sheppard 

et al. mention that the watershed partitioning methodology has been tested for many different rock 

types successfully. From the partitioned images shown, the technology looks impressive.  

However, there does appear to be some room for improvement in the images containing irregularly 

shaped grains. The images presented show that it becomes increasingly difficult to accurately 

partition the space as grain shape irregularity increases and consolidation increases.  

 

2.2.5. PerGeos 

 

PerGeos is a newly released commercially available software package that specializes in digital 

rock and core analysis (ThermoFisher, 2017). This package targets reservoir engineers and 

geologists as consumers with primary applications such as pore network extraction, determination 

of pore statistics, flow simulations, and the ability to correlate digital cores with petrophysical logs. 

This software package also provides the ability to partition grains from a segmented image, and 

provides statistics on these partitioned grains. The partitioning can be performed on both two-

dimensional and three-dimensional data sets. This software is not open sourced, meaning that the 

specific partitioning algorithms are unspecified.  
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2.2.6. Parameter Calculation Improvements 

 

There have also been a number of technological advancements in calculating accurate particle 

statistics from X-ray tomographic images. Several of the partitioning programs mentioned in the 

prior sections implement variations of the techniques described here to ensure accurate 

calculations.  

 

Voxels are discrete and inherently follow a cubic structure. This can lead to difficulties in 

attempting to calculate accurate properties like surface area and contact area for objects that have 

curvature. Several methods have been proposed for circumventing this issue and determining 

accurate area calculations.   

 

Lin and Miller showed how particle shape and size could be quantitatively measured from a 

segmented image (Lin et al., 2005). They propose two methods that they call assemblage and 

boundary method, and show how these can be applied for volume, surface area, aspect ratios of 

the principle axis, and sphericity calculations. In this work by Lin and Miller, all calculations were 

performed on isolated objects. Around the same time, Lindblad also proposed a methodology for 

calculating surface areas by using weighted local configurations (Lindblad, 2005). These methods 

were accurate when predicting surface areas exposed to void, but were not capable of determining 

total surface areas when two solid phases contact one another. Soon after, Thompson (Thompson, 

2007) proposed a methodology that built upon the method proposed by Lindblad (Lindblad, 2005) 

and allowed for accurate surface and contact areas to be calculated for granular packs. The 

calculations allow for elementwise surface areas that include both surface areas exposed to the 

void and surface areas that contact other solid elements.  

 

2.2.7. Custom Refinement and Machine Learning Via Logistic Regression 

 

Most, if not all, current partitioning algorithms incorporate the watershed transform during 

granular assembly. This inevitably leads to over partitioning, meaning the number of identified 

grains is greater than the true number of grains. The degree for which a data set is over partitioned 

is primarily dependent upon the irregularity of the shape of the grains and the amount of 

consolidation. Various programs offer different solutions to this issue, such as automatically 

merging specific regions towards the end of particle assembly (Sheppard, 2005) and, in the case 

of VOX2GRAINS, post partitioning manual or automated refinement. To the knowledge of this 

author, machine learning has not been applied to grain partitioning in any form.  

 

Machine learning has advanced rapidly over the past few decades, and has been applied to a variety 

of industries in many different forms. Examples include advanced data mining, handwriting 

recognition, product recommendations for online shopping websites, and the control of 

autonomous vehicles. The author believed that supervised machine learning could be applied to 

grain partitioning to yield more accurate partitions for irregularly shaped and consolidated grains. 

This thesis investigates this possibility through the application of logistic regression as a 

refinement method. 

  

Since, in this case, the objective is to classify a given pair of grains as sufficiently merged or 

needing to be merged, a classification algorithm is well suited. Logistic regression and linear 
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regression are two common classification methods. For the particular situation described here, the 

dependent variable is binary in that the decision is only to either merge, or to not merge a specified 

pair. For binary classification, it is common notation for the value 0 to represent the negative class, 

and 1 to represent the positive class. Represented symbolically, 

𝑦 ∈ {0,1} 
where y represents the decision, 0 represents not merging, and 1 represented merging the grains. 

It is possible to have a multiclass classification, but it is unnecessary for this particular application. 

 

Supervised machine learning uses a hypothesis function to map the dependent variable from the 

independent variable (Ng, 2017). For a specified independent variable, the hypothesis function 

will return the probability that the output is of class 1. Different regression models have different 

hypotheses equations. Equation 2.1 provides the hypothesis for linear regression whereas Equation 

2.2, 2.3 and 2.4 give the hypothesis for logistic regression. X represents the array of independent 

features and the θ values represent the learned parameter array. The superscript T represents a 

transpose of the preceding variable, as these calculations are shown out in vector form. 

 

ℎ𝜃(𝑥) = 𝜃0 + 𝜃1𝑥                                                       (2.1) 

 

ℎ𝜃(𝑥) = 𝑔(𝜃𝑇𝑥)                                                        (2.2) 

 

𝑧 = 𝜃𝑇𝑥                                                                (2.3) 

 

𝑔(𝑧) =
1

1+𝑒−𝑧                                                            (2.4) 

 

Equation 2.4 is commonly referred to as the Sigmoid Function, or Logistic Function. For Logistic 

Regression, the Sigmoid Function adds the restriction that  

 

0 ≤  ℎ𝜃(𝑥) ≤ 1 
 

In order to arrive at merge or do not merge decision, sample data must be collected with at least 

one independent variable, commonly referred to as a feature. For illustrative purposes, consider 

the following oversimplified example with only one independent variable. Suppose a total of 

fifteen merge and do not merge decisions were recorded, and for each decision, the grain pair’s 

original contact area was recorded. Ten of the fifteen data points were randomly gathered and 

plotted as shown in Figure 2.3. Let us assume that this information is sufficient for determining 

whether or not a merge should take place. 

 

From visual inspection, there is a fairly obvious threshold contact area in this example that 

separates the decision to merge and to not merge between the 5th and 6th data points. If linear 

regression were applied here, as represented by the solid line, then the resulting hypothesis 

equation would not represent the data very well. Assuming a common decision boundary of 0.5, 

the algorithm’s hypothesis would determine anything to the left of the 0.5 value to be classified as 

do not merge, and anything to the right of the 0.5 value to be classified as merge. This leads to a 

poor hypothesis function, since it could be erroneously classifying a significant number of pairs. 

The hypothesis function could also output values significantly greater than 1 and significantly less 

than 0, which does not make sense for binary classification. Alternatively, logistic regression is 
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represented by Equation 2.4, which only provides outputs between 0 and 1. When applied to the 

sample data, the logistic function fits much better, as shown in Figure 2.4. For these reasons, 

logistic regression is far more suitable than linear regression for this application. 

 

 
Figure 2.3. Illustrative Example of Merge or Do Not Merge Decision with Linear Regression 

 

 
Figure 2.4. Illustrative Example of Merge or Do Not Merge Decision with Logistic Regression 
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In this example, the ten points selected from the pool of fifteen data points comprise the training 

set data and the remaining five data points comprise the cross validation data set. Each data point 

includes an independent variable value (also known as a feature) and the corresponding dependent 

variable (the decision). In order to arrive at an accurate hypothesis equation, the appropriate θ 

parameter values must be determined. The value of these parameters are determined by the training 

set data via a cost function, which calculates the difference between the hypothesis values and the 

training set example values. By minimizing the cost function, the most appropriate parameters are 

determined. The equation for the cost function for logistic regression is provided in Equation 2.5.  

Here, m represents the number of training set data points.  

 

𝐽(𝜃) =  −
1

𝑚
∑ [𝑦(𝑖) log (ℎ𝜃(𝑥(𝑖))) + (1 − 𝑦(𝑖)) log (1 − ℎ𝜃(𝑥(𝑖)))]𝑚

𝑖=1                 (2.5) 

 

Equation 2.5 can be minimized using gradient descent or a number of well known, faster, and more 

efficient minimization methods, such as conjugate gradient descent or the Broyden-Fletcher-

Goldfarb-Shanno algorithm (BFGS) (Ng, 2017). Once minimized, the θ parameter values can be 

obtained, and the resulting hypothesis should be compared against the cross validation data points 

for verification. If the hypothesis can be used to correctly predict the dependent variable to a 

specified degree of certainty, then the algorithm can be used for further predictions when the results 

is unknown, assuming the data sets were diverse and fully representative. If, however, the 

hypothesis erroneously predicts a significant portion of the cross validation data set, then the 

hypothesis is a poor predictor. There are a number of causes that could lead to a poor hypothesis 

equation in this situation, such as not enough representative data, too few predictive features, 

overfitting the training set data, or features not properly or wholly representing the dependent 

variable.  
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CHAPTER 3. PROGRAM DEVELOPMENT 

 

As mentioned in Chapter 2, the VOX2GRAINS program is fairly developed. The program had two 

separate versions, though they both relied on the same core FORTRAN90 programming. The first 

version was runs on Linux via Louisiana State University’s supercomputer Philip. This version 

supplies no direct visualization, but has the advantage of more processing power and RAM. The 

other version runs on a desktop computer through the visualization software package Avizo and 

provides direct visualization after processing. 

  

3.1. VOX2GRAINS Initial State 

 

To summarize, VOX2GRAINS is a multistage process that starts by creating a burn map, upon 

which the entire grain partitioning is based. Next, the local extrema of the burn map are used as 

grain seeds. The option exists for these seed locations to be further refined by inscribed sphere 

optimization. Next, the particles are assembled from the centers outward in accordance with the 

burn map. This technique restricts the smaller particles from growing until larger particles have 

already begun to develop. This process is continued until all solid phase voxels are assigned to 

individual grains, at which point various statistics about each grain are calculated. The program 

outputs a PSN file, as well as an image file. The image file is a voxel image with each voxel 

holding an integer value that corresponds to its grain number; the void space is assigned a voxel 

value of 0. The PSN file is a text file that contains information about the domain size, number of 

particles, particle locations, grain contacts, and many other statistics. With both the image file and 

the text file together, all information can be saved and revisited at any point.    

 

There are several detailed operational parameters that can be adjusted for various images such as 

periodic boundaries, optimization of grain centers by inscribed spheres, maximum number of re-

optimization attempts, merge criteria for two separate inscribed spheres (overlapping or touching), 

the connectivity criteria for grain contacts, and the connectivity for individual voxels when 

determining the burn map. The two connectivity parameters arise from the manner in which voxels 

in a grid can neighbor one another. By the most restrictive definition, only voxels sharing a face 

are considered to be neighbors; assuming that a particular voxel is completely surrounded by other 

voxels, then, by this definition, the subject voxel has six neighbors. The definition could be 

expanded to include voxels with which the subject voxel also shares an entire side. This would 

mean that there would be a total of eighteen neighbors for any voxel completely engrossed by 

other voxels. By the most liberal definition, a voxel neighbors twenty six other voxels. This 

definition includes the faces, the sides, and also the corners of the subject voxel. The options for 

these connectivity criteria are therefore six, eighteen, and twenty six. The voxel neighbors are 

determined solely by these connectivity values and selecting different connectivity values can have 

a significant impacts on the resulting partitions. All algorithms described in this thesis are capable 

of functioning with all neighbor connectivity values.  
 

3.1.1. Initial Partition Quality 

 

Initially, VOX2GRAINS was applied to a number of different real and artificial segmented images 

yielding results that were often poor prior to any refinement. As is common with other partitioning 

programs, VOX2GRAINS tended to over partition and had more trouble properly partitioning 
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irregularly shaped grains and images with higher degrees of consolidation. Alternatively, the 

program performed well for images with spherical grains that did not overlapping. 

 

Specifically, this study began by analyzing the partition of a series of images donated by Masoud 

Safari Zanjani (Zanjani, 2016) showing porous quartz-feldspar and clay. The quartz-feldspar and 

clay were segmented separately. Quartz-feldspar was the material of interest for this study. The 

segmented images each were 600 voxels cubed with a voxel resolution of 0.00041cm/voxel, 

bringing length of each side to 0.246cm. Figure 3.1 shows the segmented image used for testing.  

 

 
Figure 3.1. Segmented image of quartz-feldspar and clay, 0.246cm per side, 6003 voxels 

 

These images were analyzed with VOX2GRAINS under a variety of input parameters, namely the 

connectivity variables. Figures 3.2 through 3.9 present cross sections through a variety of these 

partitioned images. Black represents the void space, and the other colors are used to distinguish 

between different grains. When looking at the full partitioned images, it can be difficult to properly 

observe the individual grain interfaces. Close up images are provided to better depict what many 

of these grain-grain contacts look like.  
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Due to the consolidation and irregular shape of the grains, it is understandable that this image 

would be quite difficult to partition accurately. It should also be mentioned that these images are 

two-dimensional slices of a three-dimensional image, and do not provide the entirety of the 

information available. However, these two-dimensional slices do provide significant insight about 

the partitions, and are a convenient method for displaying examples in this thesis. All conclusions 

drawn from any two-dimensional images were verified by closely examining the full image in 

three-dimensions. 

 

Figures 3.2 through 3.9 show that the interfaces between the grains are, for the most part, not ideal. 

There are a significant number of instances where a piece of a given grain juts out far into another 

grain. These “slots and drawers” are in no way justified by the granular geometries, and therefore 

are likely an incorrect partition. These figures also show that many grains are over-partitioned, 

breaking larger cluster into small grains that, in the physical sample, likely comprise a single grain. 

This leads to many middle grains that should not be classified as individual grains.  

 

 
Figure 3.2. Partitioned image of quartz-feldspar rock using connectivity values of six, 0.246cm 

per side, 6003 voxels 



17 

 

 
Figure 3.3. Close up view of partitioned image of quartz-feldspar rock using connectivity values 

of six, 820µm per side, 2003 voxels 

 

 
Figure 3.4. Partitioned image of quartz-feldspar rock using connectivity values of six, 820µm per 

side, 2003 voxels 
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Figure 3.5. Partitioned image of quartz-feldspar rock using connectivity values of six, 820µm per 

side, 2003 voxels 

 

 
Figure 3.6. Partitioned image of quartz-feldspar rock using connectivity values of twenty-six, 

0.246cm per side, 6003 voxels 
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Figure 3.7. Close up view of partitioned image of quartz-feldspar rock using connectivity values 

of twenty-six, 820µm per side, 2003 voxels 

 

 
Figure 3.8. Partitioned image of quartz-feldspar rock using connectivity values of six, 820µm per 

side, 2003 voxels 
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Figure 3.9. Partitioned image of quartz-feldspar rock using burn connectivity value of six and a 

connectivity for contacts of twenty-six, 820µm per side, 2003 voxels 

 

Finding specific weaknesses and problem causing scenarios in the program provides insight into 

what adjustments or alterations could provide remedies. Starting as simple as possible, artificial 

images with spheres barely touching one another were tested. Visually, this can be thought of as a 

pack of glass spheres. The program accurately determined these partitions, as shown in Figure 

3.10.  

 

Next, the radii of the each sphere was increased, which lead to the spheres to partially overlap one 

another. In this situation, the program performed well for some of the partitions, but poorly for 

others. A cross sectional slice through this partition is provided in Figure 3.11. 

 

In order to determine what could be causing these discrepancies, several artificial packs containing 

only two large overlapping spheres were generated. The sphere sizes remained constant from 

image to image, but the orientation of the grains was adjusted. In the first image, Figure 3.12, the 

grains were oriented so that their contact boundary coincided with the Cartesian coordinates of the 

grid. Figure 3.12 shows that this partition looks accurate both externally and internally. In Figure 

3.13, the two grains are intersecting each other a forty-five-degree angle with respect to each of 

the three Cartesian coordinates. While these grains appeared properly partitioned from an external 

view, the slice reveals that the interior is erroneous.  

 

These figures show that there was significant need for improved partitioning algorithms within 

VOX2GRAINS. Critically examining images like those presented in this chapter and 

understanding the specific situations that give rise to erroneous partitions provides information 

about what types of productive changes could be made.  
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Figure 3.10. VOX2GRAINS partition of unconsolidated sphere pack. 500 voxels per side with a 

nominal voxel width of 0.01 voxel 

 

 
Figure 3.11. Artificial sphere pack with increased radii 
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Figure 3.12. Two spheres with an intersection along the Cartesian coordinate direction, 100 

voxels per side with a nominal voxel width of 0.01 cm 
 

 

 
Figure 3.13. Two spheres with an intersection offset by 45 degrees in all Cartesian coordinate 

directions, 100 voxels per side with a nominal voxel width of 0.01 cm 

 

 

3.2. Main Program Alterations and Additions 

 

A number of alterations and additions were proposed for this program in an attempt to generate a 

more accurate and robust partitioning algorithm. These changes can be broken into two separate 

categories: VOX2GRAINS body adjustments and additions, and post-processing refinement 

adjustments and additions. Although both categories target the same overarching objective of a 

satisfactory partitioned image, an important distinction is that the post-processing refinement 

options ae geared toward customizability, whereas the body adjustments and alterations are 

designed to be robust and universal.  
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3.2.1. Burn Map Alterations  

 

The burn map lays the foundation for the partition. Any errors generated within the burn map 

manifest themselves when the grains are assembled. Ideally, each voxel of the burn map should 

correspond to the distance that each voxel is from the nearest surface. A sample burn map 

generated from the previous example of two overlapping spheres is shown in Figure 3.14. In order 

to determine the accuracy of the burn map, there must be a verified true distance map to use as a 

comparison. For this purpose, a true distance map generator for two overlapping spheres with 

specified radii and center locations was created.  

 

The calculations were broken into two separate categories depending on the subject voxel 

locations: the two conical sections extending from the grain centers to the plane of intersection, 

and the remaining spheres. For the voxels not within the conical sections, the distances were 

determined by simply subtracting the total grain radius from the distance of the grain center to the 

subject voxel. For voxels within the conical sections, the closest surface voxel lies somewhere on 

the ring of intersection between the two grains. First, the circle of intersect was determined from 

the grain center locations and the corresponding radii. Then, a plane was created from the subject 

voxel and the two grain centers. This plane intersects the circle of intersect in two separate 

locations. The distance from the subject voxel to both intersection points were calculated, and the 

smaller value was determined to be the minimum distance to the surface.  

 

Since the algorithm calculating the true distance map was solely designed for spheres with known 

centers and radii, it was not possible to use this program to calculate a true distance map of real 

rock images. This true distance map simply allowed for an unbiased evaluation tool.  

 

3.2.2. Grain Assembly Looping Direction and Neighbor Checking Direction 

 

During grain assembly, the program loops through all voxels in the image and checks if they meet 

both of two criteria: having a corresponding burn map value either equal to or greater than the 

current minimum, and neighboring a voxel that has already been assigned to a grain. If the subject 

voxel meets these two criteria, then the voxel is added to the grain that it neighbors. Initially, the 

program did not alter looping direction. It was believed that always starting the voxel loop with 

the same corner favor grains closer to the corner, and therefore extend their boundaries 

significantly further than it should. This issue of bidirectional looping was thought to be a 

manifesting itself in the many slots and drawers seen throughout the internal slices of the partitions. 

 

Several different voxel loop adjustments were investigated. As a control, partitions were created 

with unidirectional looping directions. To compare, two additional scenarios were generated. In 

the first, the looping direction was altered between two opposite corners. In the second, the starting 

corner was randomly selected from among the eight available domain corners for each iteration. 

  

For each individual voxel that is passed through the domain loop, the neighboring voxels are 

checked to see if they are assigned to a grain. In the event that the neighboring voxel is already 

assigned to a grain, and the subject voxel has a burn map value that is greater than or equal to the 

current minimum burn value, then the voxel is added to that grain. If the subject voxel is found to 

be touching two separate grains, then the program assigns the voxel to whichever grain’s center is 
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closer. It was believed that not altering the neighbor check starting location between two corners 

was insufficient, and was providing favoritism for grains closer to the starting corner. For this 

reason, the neighbor voxel checking direction was adjusted to alternate between several corners, 

and later randomized. In order to examine the full impact of randomization, the clause stating that 

if a new voxel touches more than one grain, it is added to whichever grain it is closest to, was 

removed for this testing. This provided more power to the inner looping direction pattern or 

randomization. 

 

 
Figure 3.14. Burn map for two overlapping spheres, 100 voxels per side with a nominal voxel 

width of 0.01 cm 

 

3.2.3. Assigning Voxels Based Upon Neighbor Counting 
 

In another attempt to further reduce the number of slots and drawers and provide cleaner interfaces, 

another piece of the grain assembly algorithm was adjusted. As previously mentioned, whenever 

a voxel has a burn value greater than or equal to the current minimum burn value and also 

neighbors a voxel already assigned to a grain, then that voxel is assigned to the grain it neighbors. 

Adjusting the neighbor check looping direction, in theory, minimizes any consistent favoritism. 

To ensure this reduction, a caveat was added to voxels that neighbor two or more pre-established 

grains. Originally, the program assigned the voxel to whichever grain had a closer center location. 

The algorithm was adjusted to assign the voxel to the grain that is neighbors the most number of 

times. Although this caveat reduces the impact of the randomization or pattern alterations of 

starting direction when checking the neighbor voxels, it was believed that this would generate 

more realistic interfaces. It is worth noting that corner adjustments for checking neighbor voxels 

does maintain some impact through this caveat in situations where the voxel touches multiple 
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neighbors an equal number of times. In this scenario, whichever neighbor was discovered first is 

the neighbor to which the voxel will be assigned.  

 

3.2.4. Overwriting Voxels After Grain Assembly Based Upon Neighbor Counting 
 

With all previous additions and alterations, the possibility still arose for smaller particle peninsulas 

to form during grain assembly. To reduce this phenomenon, a similar approach to assigning voxels 

based upon neighbor counting was implemented directly following the completion of granular 

assembly. After all voxels belonging to the phase of interest have been partitioned into grains, a 

full voxel loop is repeated. For each individual voxel, a tally of which grains neighbor the voxel 

and how many times each grain neighbors the subject voxel is recorded. If the subject voxel is 

assigned to grain A, but the program finds only two neighboring voxels belong to grain A, and 

four neighboring voxels belong to grain B, then the program will overwrite the value of the voxel 

and reassign it to grain B. If there is a tie between two or more grains, the original assignment 

remains. As voxels are overwritten, they in turn, could change the status of the neighbors, meaning 

that often times, this process can be iterated and provide slightly different results after each 

iteration. Eventually, the image becomes stable, and no necessary overwrites are discovered within 

the full iteration. For this reason, the overwriting process was designed to be controlled by the 

user. An input parameter directly controls how many overwrite iterations are performed. 

 

3.2.5. Iterative Grain Assembly 

 

The final addition to the body of VOX2GRAINS implemented a way to iterate over the entire 

grain assembly process. Although randomization is good in that it reduces consistent favoritism, 

it could occasionally produce undesired partitions. It was believed that performing grain 

assemblies several different times and averaging the final image would, overall, reduce any 

consistent favoritism while minimizing any undesired partitions. This relies on each individual 

grain assembly iteration creating an image that, for the most part, shows a proper partition. 

Additionally, it relies on each iteration making different partitioning mistakes. It was believed that 

this would be the case, due to the impacts of randomization previously described. In other words, 

with randomization, it was unlikely that the same exact mistake would be made consistently. This 

idea was implemented by iterating over the entirety of granular assembly and storing each iteration 

temporarily. The final, averaged image was created by examining the same voxel location on each 

image, and determining which grain it was assigned to the most number of times. In the event of 

a tie, the final voxel is randomly chosen from the tying grains. Since this method combines several 

different images, it follows that simply averaging them together could often lead to isolated voxels, 

peninsulas, and other interface details that are undesirable. For this reason, all voxels in the 

averaged image are overwritten based upon neighbor counting. This final overwrite value is equal 

to the overwrite value for each individual iteration of granular assembly, as specified by the user.  

 

3.3. Post-Processing Refinements 
 

After VOX2GRAINS has partitioned the grains and provided various statistics, the user is able to 

interact with the resultant image in the visualization package Avizo. The watershed algorithm has 

a tendency to cause grains to be over partitioned, and therefore some refinement might be required 

in order to arrive at a satisfactory image. The additions specified here aim to provide efficient 

customizability to ensure that a satisfactory image can be achieved relatively quickly. 
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3.3.1. Automerge 

 

VOX2GRAINS initially had a manual refinement feature, where two individual grains could be 

selected and merged together, but to go through an entire image with thousands of grains using 

this method would be extremely time intensive. In an effort to combat this, VOX2GRAINS 

initially also had an automatic merging feature. The user would input a threshold contact area to 

surface area ratio, and the program would compare all grain pairs in the image. Grain pairs with 

contact area to surface area ratios that surpass the specified threshold value were subsequently 

merged together, and all statistics updated accordingly. While, in theory, this is a great idea for an 

efficient post-processing feature, it was not particularly effective in merging the over partitioned 

pairs of grains. In the hopes of finding a more accurate classifier based upon the spatial statistics, 

several different simple equations, derived solely from logic, were implemented into the program.  

The initial logic for this feature is shown directly below. THRESHOLD is the user specified value, 

CONTAREA is the shared contact area between the grains, and GSURF is the surface area of the 

respective grain. All grain pairs in the image were analyzed with the algorithm. 

 
IF [(CONTAREA/GSURF1 > THRESHOLD) AND (CONTAREA/GSURF2 > THRESHOLD)] THEN 

  IF [(VOLUME(GRAIN1)>0.5) AND (VOLUME(GRAIN2)>0.5)] THEN 

   MERGE GRAINS 

  END IF 

END IF 

 

This logic was designed to ensure that grains were not erroneously merged, in situations like a 

small sphere overlapping a significantly larger sphere. Figure 3.15 shows a cross sectioned 

partition that contains many intermediate grains, and Figure 3.16 shows the result of applying a 

very aggressive ratio of 0.15. Note that the partition shown in Figure 3.15 was determined using 

several VOX2GRAINS body updates (updated distance map and voxel overwrite iterations). 

While the impact of these body features will be examined later, the point here is to examine the 

effectiveness of the initial automerge feature. These images show that even with a more aggressive 

merge criteria, the program is merging many of the wrong pairs and not merging many of the pairs 

that are over partitioned. Intermediate and low contract area to surface area criteria values were 

also tested, but found to yield similar results. 

 

The initial logic was slightly altered in an attempt to better automatically target over partitioned 

grains. The altered logic is shown below. It was believed that requiring both grains to meet the 

specified criteria was a major restricting factor, and that extending the algorithm to merge pairs 

where either grain meets the criteria would increase aggressiveness and improve results.  
 

IF [(CONTAREA/GSURF1 > THRESHOLD) OR (CONTAREA/GSURF2 > THRESHOLD)] THEN 

  MERGE GRAINS 

END IF 

 

After looking through several partitioned images for various sphere packs, it was discovered that 

the program tends to identify an extraneous grain in between two spheres, and often this extraneous 

grain has no surface area exposed to the void, or to any other phase. Although only shown in a 

two-dimensional plane here, Figures 3.15 and 3.16 contain several such instances. These 

intermediate grains are unrealistic and prohibit a favorable partition. To remedy this problem, a 
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separate feature was created to automatically reassign all grains with no exposed surface area to 

whichever grain shares the most contact area.  

 

 
Figure 3.15. VOX2GRAINS output of overlapping sphere pack showing issue of intermediate 

grains, 500 voxels per side with a nominal voxel width of 0.01 cm/voxel 

 

 
Figure 3.16. Refined output using the initial automerge logic with a contact area to surface area 

ratio of 0.15, 500 voxels per side with a nominal voxel width of 0.01 cm/voxel 
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3.3.2. Planar Regression: Single Plane 
 

As shown in many of the previous images, the program would initially often determine the grain 

interfaces to be jagged, and likely not representative of the true contact. Although there are 

situations in which a jagged interface between the grains may be correct, there are many instances 

in which this is known to not be the case. For these situations, the ability for the user to apply a 

planar regression over the grain-grain interfaces would be extremely powerful, as it would result 

in a clean interface. Furthermore, it would be beneficial if the plane could be adjusted by both 

angle and position to minimize the connected voxels between grains, as the local minimized cross 

sectional area likely constitutes the boundary between two identified grains. The assumption of 

this post-processing refinement method is very similar to that of the watershed algorithm.  

 

This can be a fairly complex process that is dependent upon the grain shapes, orientations, and 

coordination numbers (the number of other grains that each individual grain touches). In an attempt 

to design a program that was robust and could properly handle various grain orientations, two 

iterations of planar regression were implemented.  

 

The first technique performed one regression plane for each neighboring pair of grains, regardless 

of whether or not the two grains neighbored one another in separate, isolated contact locations. For 

example, the grain pair shown in Figure 3.17 would be assigned a single plane for both separate 

contact locations.  

 

 
Figure 3.17. A grain pair with more than one isolated contact region 
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The determination and application of the plane centers and normal vectors for all grain pairs is a 

multistage process. All grains are looped through in numeric order, according to the material 

number that each grain is assigned. For each grain, all voxels comprising that grain are identified 

and stored in an array. To speed up the processing time, instead of looping through the entire 

domain for each grain, the algorithm begins at the grain’s identified center, and expands outward 

radially until no additional voxels are found. The program gathers the material numbers of the 

previously identified neighbors for the subject grain. For each neighbor, the algorithm loops 

through the array containing the subject grain’s voxels, and each voxel is checked to determine if 

it directly borders that grain neighbor. If a voxel does directly touch the grain neighbor, it is added 

to a second array. Once all voxels touching the current grain neighbor are identified from the list 

of all voxels of the subject grain, the array of touching voxels is passed to a three-dimensional 

planar regression solver. This solver (Eberly, 1998) generates the least-squares planar fit from the 

contact voxels that are input. The result from this regression solver is the plane center of mass, and 

the unit vector normal to the plane. 

 

Once these parameters are determined, the voxels belonging to both of the grains in the subject 

pair are stored in an array. Next, the algorithm determines if the center of the grain with the lower 

material number is on the positive or negative side of the plane. This is calculated as shown in 

Equation 2.6. GCLOC represents the grain contact location, GPOS represents the grain position, 

and GCNV represents the grain contact normal vector. The subscripts distinguish between the 

Cartesian grid components. This calculation is used to determine what material numbers the two 

sides of the plane will be assigned. If the resultant value is greater than or equal to zero, then the 

grain center is located on the positive side of the plane, and the corresponding material number 

will be assigned to all voxels of either grain also on the positive side. If the value is less than zero, 

it is located on the negative side, and all voxels of either grain also on the negative side will be 

reassigned the corresponding material number. The voxels on the opposite side of the plane are 

then reassigned values to correspond with the other grain’s material number. It is important to note 

that this method assumes that the two grain centers are not both on the same side of the plane.  

 

(𝐺𝐶𝐿𝑂𝐶𝑥 − 𝐺𝑃𝑂𝑆𝑥) ∗ 𝐺𝐶𝑁𝑉𝑥 +  (𝐺𝐶𝐿𝑂𝐶𝑦 − 𝐺𝑃𝑂𝑆𝑦) ∗ 𝐺𝐶𝑁𝑉𝑦  

+(𝐺𝐶𝐿𝑂𝐶𝑧 − 𝐺𝑃𝑂𝑆𝑧) ∗ 𝐺𝐶𝑁𝑉𝑧                      (2.6) 

 

For each individual plane, the contact area (defined as the number of voxels of the smaller material 

number grain bordering the opposing grain) between the grains is minimized by manipulating the 

plane’s center location and normal vectors, both individually. The center is first adjusted, creating 

the effect of sliding the plane forward by a specified increment. The new number of contact points 

with the updated plane location is calculated and compared with the number of contact voxels in 

the previous location. If fewer contact voxels are found after the slide of one increment, then the 

new contact voxel number is stored, the plane is pushed further again in the same direction. This 

process continues until the number of contact voxels no longer decrease. At this point, the 

minimum contact value and the corresponding plane location are stored, and this process is 

repeated by sliding the plane in the opposite direction until the contact voxel value increases, at 

which point the previous step contact value and location are assigned to the plane, and the voxels 

are overwritten accordingly.   
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Next, the angle of the plane is altered by adjusting the components of the normal vector. This stage 

involves individually increasing and decreasing each component of the normal vector individually 

with a consistent incremental value. For each adjustment, the new contact voxels are determined 

and compared, just as described when moving the plane center. Once a component reaches a 

minimum contact value, the corresponding normal vector component is overwritten, and the next 

component is manipulated. Once all components have been minimized, then the plane is assumed 

to also have been minimized.  

 

A slight variation of this method was also tested by allowing the minimization check to continue 

adjusting whenever a slide or angle increase (or decrease) resulted in an equal number of contact 

voxels. The manipulation of the normal vectors was abandoned after ten full incremental 

adjustments if a smaller contact voxel value had not been reached. The planar slide was adjusted 

until the plane arrived at either grain center location, or until the plane arrived at a domain 

boundary. 

 

3.3.3. Planar Regression: Multiplane  

 

The second planar regression method investigated is similar, but has the important distinction of 

treating the separately isolated contact areas between grains as different interfaces, and regressing 

and minimizing upon each isolated contact area individually.  

 

The technique begins by identifying all voxels belonging to the subject grain, just as in the 

previously described method. For each neighbor, the subject grain’s voxels are looped through 

until a contact voxel is found. This voxel is stored in an array, and then the voxel is examined to 

determine if any of its voxel neighbors also touch the same neighboring grain. If so, the 

neighboring voxel or voxels is added to the array, and the algorithm continues searching through 

the list of identified contact clusters for voxel neighbors that link back to the same neighboring 

grain. This continues until each voxel that has been added to array has been searched for neighbors 

that meet this criteria. The effect of this is an array that contains all voxels within an isolated 

contact cluster. The voxel loop through the grain is continued until another voxel that neighbors 

the same grain is found. The voxel is compared with the previous contact cluster, and if the voxel 

has already been assigned to a contact cluster, then the voxel loop continues forward to the next 

voxel. However, if the voxel is not found to be in the previously defined contact cluster, then a 

new contact cluster array is created, and the algorithm proceeds with the same outward neighboring 

voxel search, resulting in a second isolated contact cluster. This continues until all voxels of the 

grain have been looped through, and results in separate voxel position arrays for each isolated 

contact cluster.  

 

Once the separate contact clusters for each grain pair have been identified, the contact clusters are 

each regressed individually. The first step is to determine the contact plane center of mass and 

normal unit vector by passing the subject contact cluster’s voxels to the planar regression solver 

(Eberly, 1998). Next, the algorithm generates a “box” that extends directly above and below all 

voxels in subject contact cluster, fifteen units in each direction. The cross section of the box is the 

same shape as the cross section of the contact area between the grains. Any voxel within this region 

is stored in a third array that will be referred to as the planar box array. In order to assign the 

material numbers that belong on each side of the contact plane, the program loops through all 
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voxels within the planar box array and tallies the number of voxels belonging to each material on 

both sides of the calculated plane. This information is then used to assign which material number 

will overwrite the positive side of the plane, and which material number will overwrite the voxels 

on the negative side of the plane. The voxels within the planar box array are overwritten 

accordingly. For multiplane planar regression, minimization is a specified input. If no 

minimization is desired, the algorithm stops at this point, and continues to the next grain pair after 

regressing over each isolated contact cluster. If planar minimization is selected, the program 

continues as described below. 

 

Since it is possible that resulting plane is not at the true interface, but somewhat receded into one 

of the two grains, it is important to be able to extend the boundary of the plane in all directions 

until another phase is met. However, it is important that this plane not be extended too far, or else 

it could impact the interface between other contact clusters of the same pair. This is an especially 

crucial step for minimization, because the algorithm seeks to minimize the contact area. If the 

initial contact area is calculated incorrectly or incompletely, then the resultant interface will likely 

be far from ideal. An algorithm was developed to allow for restricted growth by individual voxel 

through this process. The program first identifies and stores all voxels in the planar box array that 

are within a distance of one voxel from the true plane. The array that these voxels are stored in is 

referred to here as the planar extension array. The voxels in this planar extension array are looped 

through, and the voxel neighbors of each are checked. If a voxel neighbor is identified as being 

within one voxel of the true plane, and if the voxel exactly opposite this voxel with respect to the 

true plane is identified as either of the subject grains, then the voxel is added to the planar extension 

array, and the value is overwritten accordingly. This newly added voxel’s neighbors will then be 

searched to extend the plane further. Once all voxels within the planar extension array have had 

their neighbors checked and no additional voxels are determined to meet the specified criteria, then 

the planar extension is complete. In theory, this process allows the plane to grow to the complete 

planar location, but prevents it from interfering with other contact clusters.  

 

After the plane has been extended, there may be isolated chunks of the two grains that need to be 

overwritten as they were caught under the extension of the plane. For each grain individually, 

starting at the grain center, the program expands outward, expanding the neighbor search 

continuously. Unlike the previously described radial expansion from the grain center, this 

algorithm searches only through direct neighbor contacts. This ensures that every voxel checked 

has a direct path back to the grain center location. Once this has been completed for both grains 

and there are two arrays containing the subject grains traceable voxels, the program loops through 

all voxels marked with either material number and verifies that the locations specified are included 

in the array leading back to the centers. If a voxel is found to not be traced back to the center, then 

there is an isolated voxel or cluster, and the voxel will be reassigned the material number of the 

other grain in the pair. The assumption of this method is that both grains have at least at least one 

direct path from the grain centers to the voxels aligning the planar contact.  

 

Once the plane has been extended and all voxels have been overwritten accordingly, the user has 

the ability to automatically adjust the plane so that the contact area between the two grains is 

minimized. The minimization is with respect to the number of contact voxels of the grain with the 

smaller material number, as designed in the single plane method. The user has the ability to select 

between minimization options based upon sliding the plane by adjusting the center of mass, alter 
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the planar angle by manipulating the normal vector, or both separately. While the basic concept 

and approach of this minimization technique is similar to the previously described method, there 

is a difference between the two with respect to how the plane is extended. For each incremental 

adjustment that is made, the program expands the plane using the same extension method 

previously described. After the minimization is complete, the voxels of the two grains forming 

continuous maps back to the centers are stored, and any isolated clusters are once again reassigned. 

This final step is necessary because during the minimization and extension process, only the voxels 

directly linked to the new plane are overwritten. This saves computational time by minimizing the 

number of total voxel overwrites necessary.     

 

3.3.4. Machine Learning 

 

VOX2GRAINS tends to over partition grains, as is common for all programs utilizing the 

watershed transform. Initially the program was equipped with several tools to try to combat this 

issue, such as manual merging by specifying two grains and automatic merging by specifying a 

threshold contact area to surface area ratio. Manual merging is effective, but very time consuming 

if the image contains a significant number of grains. Automatically merging, on the other hand, is 

quick, but was not highly effective in merging the over partitioned grains. In an effort to combine 

the effectiveness and control of manual merging and the efficiency of automatic refinement, an 

additional option was developed that uses machine learning through logistic regression.  

 

The underlying assumption of the approach taken is that the spatial statistics available in 

VOX2GRIANS can reasonably determine whether or not a grain pair should be merged. For a 

given image, a collection of examples displaying both merge and do not merge decisions were 

recorded with all corresponding available statistics for the subject pair. These spatial statistics and 

corresponding merge or do not merge decisions were input into a logistic regression algorithm, 

and the output produced an equation that could be used to predict whether or not two grains should 

be merged together, based solely upon their spatial statistics. The advantage of this method is that 

the user is able to control which grains should or shouldn’t be merged by selecting the pairs for 

the training set, and the program will, in theory, automatically merge similar grains across the full 

image and other images of similar rock type. This provides customizability, control, and is 

relatively efficient with respect to time required, especially if there are many images of the same 

rock type. The process and the required program development is described in detail below. 

   

VOX2GRAINS initially performed very well regarding individual grain statistics like surface 

areas, contact areas, grain volumes, inscribed radii, center of mass positions, major axes, and aspect 

ratios. This program was expanded to also include statistics about the grain contact locations and 

grain contact normal vector components. Additionally, a numeric value indicating whether or not 

the grain touches any of the outer domain boundaries was also added to the grain statistics. This 

indicator was included because grains touching the outer boundary are not fully representative. 

The grains touching the domain boundary are chunks of various sizes of grains, and have often 

presented significant problems for partitioning. Although the program does not partition the 

interior grains perfectly, the nature of the partitioning issue appears far different for interior and 

domain boundary touching grains. For this reason, it was this author’s belief that these grains 

should include an identifying distinguished feature in the grains’ spatial statistics, so that these 

data points could be filtered or removed from the training and cross validation sets. 
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In order to arrive at an accurate logistic regression equation, a significant number of training set 

examples must be provided. Alternatively, in order to verify that the regression equation can be 

used to accurately predict a merge or do not merge decision, a significant number of additional 

examples, often referred to as the cross validation set, must also be gathered.  

 

To aid in data collection, a new feature through the visualization software Avizo was developed. 

The user selects a button labeled “ML Data Generation” in the created visualization module, and 

the program automatically shows a particular pair of grains and all of their neighbors in three 

dimensions. All other grains not directly touching the subject pair are removed from view. The 

subject grains are always displayed in black and white, and the corresponding material numbers, 

which can be checked by clicking on the grain of interest, are displayed in the corner of the module 

to avoid any possible confusion. The grain cluster can be examined in detail by rotating, 

translating, zooming in and out, and viewing slices through the visible grains. By visually 

inspection of the pair, the user is prompted to decide if the grain pair should be merged or not 

merged. Once a decision has been made, the subject grains are assigned random colors, a new pair 

of subject grains and their neighbors are displayed, and the user is again prompted for a decision. 

This continues until the user chooses to process the merges by selecting the indicated button. If 

the user decides to merge a particular pair, and selects the merge option accordingly, the grain 

values are stored in an array until the user processes the merges. The grains-to-merge array is 

capable of handling up to one thousand grain pairs. Once it is full, the user is notified and instructed 

to process the merges. The program was set up this way to make the data generation process 

quicker for the user. Whenever a merge is processed, it requires reloading the entire updated image, 

which can be timely for large images. If multiple merges are processed at the same time, the image 

only needs to be updated once after all merges have been internally processed. After a grain has 

been marked to be merged but the program has not yet processed the merge, the program will not 

prompt the user for any subsequent merges pertaining the subject grain. This was implemented to 

circumvent the issue of possibly merging grain A into B, and grain A into C all in one stage, only 

to find that grain A is not able to be merged with C since it has already been merged with B. With 

this system in place, grain A can be merged into B, and after this merge is process, grain B can be 

merged with grain C.  

 

For the first iteration of this feature, the program looped through all grain pairs in numerical order 

according to the individual grain’s material numbers. A slight restriction was later added to display 

only internal grain pairs, where neither grain touched the domain boundary. Additionally, the 

manual merge feature was adapted to also export all grain statistics with the merge decision to the 

text file, so that this refinement method could also allow for machine learning data collection. This 

was useful since the number of do not merge decisions in the automatically prompted method 

typically far outweighs the number of merge decisions. Although the total number of each decision 

for the example sets do not need to be equal or even approximately equal, there needs to be a 

sufficient number of both in order to achieve meaningful and useful results. Manual refinement 

provided the opportunity to generate a reasonable amount of merge decisions in the training set. 

 

The three dimensional segmented images used to evaluate this refinement option were graciously 

donated by Dr. Ning Lu of the Colorado School of Mines Department of Civil and Environmental 

Engineering. These images have been analyzed before using a previous iteration of 

VOX2GRAINS (Willson, 2012), though never with this particular refinement method. These 
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images are ideal for this sort of testing because all five samples were of the same rock type, Ottawa 

(F-75) sand. This is important because it is believed that a logistic regression equation determining 

merge probability would only be applicable to the same or similar rock types. Additionally, as 

discovered in (Willson, 2012) the grain sizes are fairly consistent throughout all the separate 

images, and the rock shapes are angular, which provides additional difficulty for VOX2GRAINS. 

The five images were cropped so that each was a cube with 275 voxels, each side representing a 

length of 3.025 mm. Smaller images have the advantage of displaying grain pairs faster during the 

decision process, thus saving time, but also come with the disadvantage of having fewer interior 

grains, which results interior fewer data points. Cropping the images to 275 voxels per side was 

found to be fairly quick when updating the visualization (approximately 5-10 seconds for each 

pair) while simultaneously providing enough interior data points.   

 

Once a merge or do not merge decision is made, a text file is appended in the working directory 

with the grain numbers, all available corresponding spatial statistics, and the decision to merge or 

to not merge. Each decision constitutes one example. A total of 1985 examples were gathered, 

taken from each of the five similar images. After filtering out all examples that contained a grain 

touching the domain boundary, the examples were randomized and divided into a training set and 

a cross validation set made up of approximately 60% and 40%. Tables 3.1 and 3.2 shows the origin 

and breakdown of the training and cross validation sets. 

 

Once the data sets were separated, a logistic regression equation was generated from the training 

set data through a script in MATLAB. The resulting output was the θ array that minimized the 

difference between the logistic regression equation’s prediction and the training sets recorded 

decision value (0 for do not merge, and 1 for merge). This logistic regression equation was then 

used to predict whether or not each pair should be merged for the cross validation set. The 

predictive accuracy with respect to the cross validation set was recorded. This process was repeated 

several times, after adjusting which original features were and were not included, adding 

interaction features, applying regularization to the equation to minimize overfitting of the training 

set, and feature scaling to determine the relative weight of each variable. Table 3.3 summarizes 

the different specifications for the different trials.  

 

Table 3.1. Machine learning data origin 

Image 

ID 

Merge 

Count 

Do Not Merge 

Count 

CSM1 76 185 

CSM3 68 148 

CSM5 65 386 

CSM7 99 368 

CSM10 67 305 

Total 375 1392 
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Table 3.2. Training and cross validation set breakdown 

  Total Merge 

Count 

Do Not Merge 

Count 

% 

Merged 

Training Set 1060 206 854 19.43% 

Cross Validation 707 169 538 23.90% 

Combined 1767 375 1392 21.22% 

 

Table 3.3. Specifications for each machine learning logistic regression Trials 1.3 

Trail 

Number 

Trail 1 Trial 2 Trial 3 

 

Description 

No Feature Scaling, No 

Regularization, Only 

Interior Grains 

Regularization Included, 

Only Interior Grains 

Feature scaling included, 

interior grains only 

Features Surface Area Grain 1 Surface Area Grain 1 Surface Area Grain 1 

Surface Area Grain 2 Surface Area Grain 2 Surface Area Grain 2 

Volume Grain 1 Volume Grain 1 Volume Grain 1 

Volume Grain 2 Volume Grain 2 Volume Grain 2 

Inscribed Radius Grain 1 Inscribed Radius Grain 1 Inscribed Radius Grain 1 

Inscribed Radius Grain 2 Inscribed Radius Grain 2 Inscribed Radius Grain 2 

Number of Contacts Grain 1 Number of Contacts Grain 1 Number of Contacts Grain 1 

Number of Contacts Grain 2 Number of Contacts Grain 2 Number of Contacts Grain 2 

X Location Grain 1 X Location Grain 1 X Location Grain 1 

Y Location Grain 1 Y Location Grain 1 Y Location Grain 1 

Z Location Grain 1 Z Location Grain 1 Z Location Grain 1 

X Location Grain 2 X Location Grain 2 X Location Grain 2 

Y Location Grain 2 Y Location Grain 2 Y Location Grain 2 

Z Location Grain 2 Z Location Grain 2 Z Location Grain 2 

Contact Area Contact Area Contact Area 

X Major Axis Grain 1 X Major Axis Grain 1 X Major Axis Grain 1 

X Major Axis Grain 2 X Major Axis Grain 2 X Major Axis Grain 2 

Y Major Axis Grain 1 Y Major Axis Grain 1 Y Major Axis Grain 1 

Y Major Axis Grain 2 Y Major Axis Grain 2 Y Major Axis Grain 2 

Z Major Axis Grain 1 Z Major Axis Grain 1 Z Major Axis Grain 1 

Z Major Axis Grain 2 Z Major Axis Grain 2 Z Major Axis Grain 2 

Aspect Ratio Grain 1 Aspect Ratio Grain 1 Aspect Ratio Grain 1 

Aspect Ratio Grain 2 Aspect Ratio Grain 2 Aspect Ratio Grain 2 

Contact Center Location X Contact Center Location X Contact Center Location X 

Contact Center Location Y Contact Center Location Y Contact Center Location Y 

Contact Center Location Z Contact Center Location Z Contact Center Location Z 

Contact Normal Vector X Contact Normal Vector X Contact Normal Vector X 

Contact Normal Vector Y Contact Normal Vector Y Contact Normal Vector Y 

Contact Normal Vector Z Contact Normal Vector Z Contact Normal Vector Z 
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CHAPTER 4. RESULTS 

 

Grain partitioning can sometimes be subjective, especially in situations where the individual grains 

are more irregularly shaped and there is significant consolidation. The evaluation of all results 

presented here are based purely upon visual inspection, unless otherwise stated. In an attempt to 

minimize any personal bias of the author and to accurately portray the progression and impact of 

each portion of the code, many before and after images are presented. Unless otherwise stated, the 

“before” images were generated using all techniques that the results have previously presented. In 

other words, the program continued to use each addition and alteration, so the “before” images 

include each technique for which the results have previously been shown. This allows for a relative 

understanding of the impact for each individual technique. Also, many of the images presented 

here are two-dimensional slices of a full three-dimensional image. Although it has been noted that 

two dimensional representations and slices do not provide the full understanding as they lack some 

information, they are useful and necessary for detailed analysis of the grain-grain interfaces. The 

conclusions drawn and trends observed from any two-dimensional images were verified 

throughout the full three-dimensional images.    

 

A majority of the initial development testing was performed on artificially generated sphere packs. 

When partitioning spheres, there is little room for argument about what constitutes a single grain, 

and what constitutes multiple grains, assuming the spheres do not overlap extensively. This 

allowed for objective testing for various algorithms. Also, it is relatively easy and quick to 

manipulate sphere packs to meet certain specifications, such as sphere overlap and orientation of 

sphere-sphere contacts. Lastly, it was known that the program was capable of accurately 

partitioning sphere packs in which the spheres barely touched one another, however it was also 

known that program had trouble with more consolidated sphere packs. It was believed that if there 

were robust partitioning improvements that objectively showed enhanced capabilities through the 

partitions of overlapping sphere packs, then the program would also perform better when 

partitioning more realistic images with angular and irregularly shaped grains. 

 

4.1. VOX2GRAINS Body Improvements 

 

Overall, the VOX2GRAINS body alterations and additions combine to yield significantly more 

realistic particle partitions for the images that have been tested. 

 

4.1.1. Burn Map Alterations  

 

The burn map lays the foundation for all grain partitioning, since the particle assembly phase is 

restricted according to the individual burn map value for each voxel. The VOX2GRAINS 

generated burn map and the geometrically calculated true distance map were compared to one 

another for an image containing two overlapping spheres, offset by 45 degrees in all three Cartesian 

grid dimensions. Figure 4.1 shows a slice through the VOX2GRAIN generated burn map, and 

Figure 4.2 shows the same slice through the geometrically calculated true distance map. Each color 

represents a different burn level that, in theory, corresponds the distance from that voxel to the 

nearest surface.  
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Figure 4.1. Burn map for two overlapping spheres, 100 voxels per side with a nominal voxel 

width of 0.01 cm 
 

 
Figure 4.2. True distance map for two overlapping spheres, 100 voxels per side with a nominal 

voxel width of 0.01 cm 
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From a cursory examination, there are very obvious differences between the burn map and the true 

distance map. The burn map appears boxier in parts, and has a bullet shaped artifact protruding 

from the top left grain into the bottom right grain near the overlapping region. The true distance 

map, on the other hand, appears far smoother through all parts of the image.  

 

The true distance map calculations were designed only for the case of two overlapping spheres 

with known radii and center locations. While the true distance map algorithm was useful for 

pointing out flaws of the burn algorithm, it was not robust enough to generate a true distance map 

for more realistic rock images, or even larger sphere pack images. For this reason, a procedural 

way to generate accurate distance maps for segmented images containing particulate matter of any 

shape was required. Once generated, the distance map could be passed into the program and 

replace the burn map. Avizo, the visualization software used throughout this work, has the 

capability of calculating a Euclidean distance map. Since the Avizo distance map was generated 

solely from the segmented image, and required no prior knowledge of geometry or center 

locations, the tool was considered as a universal distance map generator. The Avizo Euclidean 

distance map is shown in Figure 4.3 for the same overlapping two spheres. The map is very similar 

to the true distance map, which means that the Avizo Euclidean distance map provides a 

sufficiently accurate and robust map that can be passed into the program and used as the burn map. 

The partitions generated from the burn, true distance, and Euclidean distance map are shown in 

Figure 4.4. 

 

 
Figure 4.3. Avizo Euclidean distance map for two overlapping spheres, 100 voxels per side with 

a nominal voxel width of 0.01 cm 
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(a)        (b)        (c) 

 
(d)     (e)      (f) 

    
(g)     (h)      (i) 

Figure 4.4. Three slices through partitions for two overlapping spheres generated by burn map (a, 

d, g), true distance map (b, g, h), and Euclidean distance map (c, f, i) holding all other parameters 

constant, 100 voxels per side with a nominal voxel width of 0.01 cm 

 

The partitions generated from the true distance map and Euclidean distance map are far more 

favorable than the partition generated from the burn map. Though still not ideal, these results show 

that a more accurate distance map is able to eliminate and reduce some of the peaks and valleys 

that appear in the partition.  

 

In order to make general use of the Avizo Euclidean distance map, several issues in the raw 

distance map needed to be accounted for. By default, the Euclidean distance map produced by 
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Avizo erodes the most external layer of the phase of interest. The program rounds the real 

distances, so if the distance is less than 0.5, then the voxel is assigned a value of zero. In order to 

combat this problem, all distance map values initially holding a value are increased by one, and all 

distance map values that have a value of zero are compared with the corresponding voxel in the 

segmented image. If the corresponding voxel in the segmented image holds the value of the phase 

of choice, then the distance map voxel is given a value of one. This process ensure that the distance 

map does not erode the image, and that the image is also not over-enlarged. 

 

Although the HPC version of this program was able to handle images with multiple phases, the 

Avizo version could not. This functionality was expanded, but added an additional hurdle for 

calculating the distance map. When calculating a distance map, Avizo lumps all material values 

greater than zero into one category, meaning the resultant distance map would be for two or more 

phases lumped together. This issue is circumvented by a short algorithm that overwrites the voxel 

values of the phases not of interest to a value of zero, which represents void. Once this was 

completed, the only positive value that remains is the phase of interest, and the distance map can 

be calculated as normal. This is strictly internal, so no damage is done to the original image since 

VOX2GRAINS creates and exports the final partitioned image by default. Finally, one last 

distance map issue arises when the void phase is input as a positive number in the segmented 

image, and the phase of interest is zero. In this situation, all voxels belonging to the phase of 

interest are assigned an extremely large dummy value, and all voxels that are not of the phase of 

interest are assigned a value of 0. This reorders all the voxels so that the phase of interest is positive, 

all other phases are zero, and the distance map can now correctly be calculated. 

 

In order to make quicker and more efficient use of the Euclidean distance map capabilities as they 

pertain to grain partitioning, a user defined module within Avizo was created that rearranges any 

necessary phases and provides an isolated distance map for the phase of interest. The output can 

easily be exported so that it may be passed into the HPC version of the program, just as the 

segmented image is passed. If performing grain partitioning within Avizo, this process will be 

carried out automatically, and the Euclidean distance map will be passed into the program to act 

as the distance map.  

 

4.1.2. Grain Assembly Looping Direction and Neighbor Checking Direction  

 

During the grain assembly process, the voxel looping direction of the program initially never 

changed. The program was expanded to alternate between two opposite starting corners and also 

to randomly select the starting position of each iteration from the eight available corners. Similarly, 

each voxel’s neighbors were checked originally in the same direction with each iterations. The 

program was expanded to alter between two and four separate corners. The impact of these 

expansions were tested on an artificially generated sphere pack containing only two spheres. 

Recalling that the program originally did not struggle significantly with determining the interface 

locations on spheres as seen from the exterior, attention here is focused on the interior interface. 

Figures 4.6 shows three slices through two overlapping spheres. The left images (a, d, g) show the 

partition generated by keeping the looping direction constant, the middle (b, e, h) was created by 

alternating between two inner and outer opposite starting corners, and the right image (c, f, i) was 

generated by randomizing both the interior and the exterior starting positions.  
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    (a)          (b)      (c) 

   
    (d)         (e)      (f) 

   
   (g)         (h)      (i) 

Figure 4.6. Partitioned impact of always using the same looping corner (a, d, g), alternating 

between two corners (b, e, h), and randomizing the corners (c, f, i) for two overlapping spheres, 

100 voxels per side with a nominal voxel width of 0.01cm 
 

From Figure 4.6, the results show that two alternating corners appears to yield slightly better 

partitions. When applied to more difficult geometries that are found in true rock samples, as shown 

in Figure 4.7, the results are less conclusive.  
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(a)              (b) 

 
(c) 

Figure 4.7. Partitioned impact of always using the same looping corner (a), alternating between 

two corners (b), and randomizing the corners (c) for quartz-feldspar image, 820µm per side, 2003 

voxels 

 

4.1.3. Assigning Voxels Based Upon Neighbor Counting  

 

During the grain assembly stage, the program initially assigned voxels that touched two or more 

grains to whichever grain had the closest center. As mentioned previously, this was removed to 

implement randomization into neighbor checks. Instead of randomly assigning every voxel with 

multiple grain neighbors, all neighbors are counted, and the voxel is assigned to the grain the voxel 

neighbors the most. In the event of a tie, the grain is assigned to whichever grain was first found 

to be a contact. Since there are usually a significant number of voxels to be assigned that have 

equal number of neighbors, randomization of the neighbor check direction remained in place to 

hinder any continuous bias development. Figure 4.8 compares several slices through the partitions 

generated from this neighbor counting method with randomization and the original method with 

randomization. The images on the left show the partition generated by assigning the voxel to 

whichever identified center is closest, and the images on the right show the same slices through 

the partition generated by neighbor counting. These images can also be compared with the 

complete randomized partitions showed in Figure 4.6. Although still not completely ideal, the 

images show that assigning voxels with multiple grain contacts using an algorithm based on the 

number of neighboring voxels each grain provides the most accurate grain-grain interfaces for the 

images tested.  
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(a)     (b)  

  
(c)     (d)  

  
(e)     (f)  

  
(g)     (h)  

Figure 4.8. Slices through partitions generated by using the closest center method (a, c, e, g) and 

neighbor counting (b, d, f, h), 100 voxels per side with a nominal voxel width of 0.01cm 
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4.1.4. Overwriting Voxels After Grain Assembly Based Upon Neighbor Counting 
 

Overwriting each voxel after grain assembly based upon the values of the neighboring voxels was 

implemented in an effort to reduce the slots and drawers at grain-grain interfaces. This user 

controls the number of voxel overwrite iterations through an input. Values analyzed range from 

zero to ten. To best illustrate the impact of this feature on the overall partition, a cropped version 

of the previously described quartz-feldspar and clay image from (Zanjani, 2016) was tested with 

various iterations of voxel overwrites, holding all other parameters constant. Figure 4.9 shows a 

cross section of this segmented image. The black voxels represent the void phase, the grey voxels 

represent the clay phase, and the white voxels represent the quartz-feldspar phase, which, for the 

tests performed, was the phase of interest. This image is a total of 200 voxels cubed, and each 

voxel has an individual length of 4.1 µm, meaning that each side of this cubed image is 820 µm.     

  

 
Figure 4.9. Segmented image prior to partitioning, 820µm per side, 2003 voxels 

 

Figure 4.10 shows a slice through the partitioned image with zero voxel overwrite iterations. Many 

of the grain-grain interfaces of this slice show that there are slots and drawers present, and that the 

interfaces are not very smooth. 

 

Figure 4.11 shows the same slice through the partitioned image, whenever there are three voxel 

overwrite iterations. The interfaces between the grains are significantly smoother than in Figure 

4.10, and there are no longer any slots or drawers in this cross section. The colors representing the 

grains are different in Figures 4.9 and 4.10. This is because there are fewer grains in Figure 4.10 
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and the color map has been shifted accordingly. Zero voxel overwrite iterations resulted in a 

partition containing 1190 total grains, whereas three voxel overwrite iterations resulted in 1041 

grains.  

 

 
Figure 4.10. Partitioned quartz-feldspar image after 0 voxel overwrite iterations, 820µm per side, 

2003 voxels 

 

Figure 4.12 shows the same cross section of the partition resulting from ten voxel overwrite 

iterations. Once again, fewer grains are identified, as hinted by the different colors. Ten voxel 

overwrite iterations results with a total of 1037 partitioned grains, only four fewer grains than the 

result from three voxel overwrite iterations. Comparing Figures 4.12 with 4.11, we see that the 

interfaces are, for the most part, slightly more refined and smoother when ten iterations are applied. 

Over partitioning still exists, but has been reduced, and the grain-grain interfaces look far more 

realistic than those of Figure 4.10.  
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Figure 4.11. Partitioned quartz-feldspar image after 3 voxel overwrite iterations, 820µm per side, 

2003 voxels 
 

 
Figure 4.12. Partitioned quartz-feldspar image after 10 voxel overwrite iterations, 820µm per 

side, 2003 voxels 
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4.1.5. Iterative Grain Assembly 
 

Iterating upon grain assembly and averaging the resulting image has proven to yield sharper 

interfaces between the grains. Figure 4.13 illustrates slices through a two sphere pack with (a) one 

grain assembly iteration, (b) three grain assembly iterations, and (c) five grain assembly iterations. 

There were 0 voxel overwrite iterations based upon neighbor checks for this test, and all other 

parameters were held constant. 

 

 
        (a)                                                                 (b) 

 
(c)                                                            

Figure 4.13. One (a), three (b) and five (c) grain assembly iterations for a two sphere pack, 100 

voxels per side with a nominal voxel width of 0.01cm 
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Although these results show that increasing the number of grain assembly iterations creates a more 

realistic interface, one could argue that the additional computational expense exhausted through 

these iterations is not the additional increase in image quality. While this may be true for these 

particular images, it should be noted that spheres have a very simple geometry, and any minute 

signs of deviation from an ideal interface in this scenario could very quickly compound within the 

algorithm for more realistic grain shapes.  

 

To better illustrate the relative impact of iterating within then granular assembly, the quartz-

feldspar image was once again analyzed. Two versions of this image were processed. In the first 

image, Figure 4.14, there was only one iteration of grain assembly. The resultant partition is the 

same image that would result prior to adding the iterative grain assembly feature. For this reason, 

this image can be thought of as a control. In the second image, Figure 4.15, there were ten iterations 

of granular assembly. In both images, there were no grain overwrite iterations. 

  

 
Figure 4.14. Partitioned quartz-feldspar image with 0 voxel overwrites and 1 grain assembly 

iteration, 820µm per side, 2003 voxels 

 

The image improvement from Figure 4.14 to Figure 4.15 appears fairly minute. Both zero and ten 

grain assembly iterations result in the same number of partitioned grains, and the grain-grain 

interfaces improve slightly in some scenarios, but appear to slightly worsen in others. The 
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conclusion from these images is that iterative grain assembly, by itself, is not highly advantageous. 

However, it must be stated again that for these images, there were zero voxel overwrite iterations 

based upon neighbor counting. If iterative grain assembly is used in conjunction with iterative 

voxel overwrites based upon neighbor counting, then the resulting image quality improves 

significantly, as is shown in the following section. 
 

 
Figure 4.15. Partitioned quartz-feldspar image with 0 voxel overwrites and 10 grain assembly 

iterations, 820µm per side, 2003 voxels 

 

4.1.6. Combined Impact of Voxel Overwrite and Grain Assembly Iterations  
 

So far, results have been shown for images generated from grain assembly iterations, with no voxel 

overwrite iterations based upon neighbor counting, and from voxel overwrite iterations, with no 

grain assembly iterations. In this section, the interactive impact of these two parameters is 

investigated.  

 

Figure 4.16 shows the resultant partition from one voxel overwrite iteration based upon neighbor 

counting and one grain assembly iterations. In this image, the program identifies a total of 1044 

grains. The interfaces are not very refined, and there are some jagged grain boundaries that do not 

appear to be justified by the grain shapes. There is a voxel cluster that, on all sides, is surrounded 

by the same grain. Furthermore, this cross section shows that the grains are likely over partitioned.  
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Figure 4.16. Partitioned quartz-feldspar image after 1 grain assembly iteration and, 1 voxel 

overwrite iteration based upon neighbor counting, 820µm per side, 2003 voxels 
 

Figure 4.17 shows the same cross section for the partition generated from three voxel overwrite 

and grain assembly iterations, and identifies a total of 1041 grains. The voxel cluster that was 

surrounded on all sides by the same grain has been removed, and there are significantly fewer 

unjustified jagged grain-grain interfaces. Although the grains still are still likely over partitioned, 

the total grain count has dropped by three grains.   

 

Figure 4.18 results from ten voxel overwrite and grain assembly iterations, partitioning 1035 total 

grains. The increase in iterations decreases over partitioning by six total grains, and for the most 

part, further refines the interfaces between the grains. Many of the smaller grains that are likely a 

piece of a large grain shrink, when comparing their size changes from Figure 4.16 through Figure 

4.18.  
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Figure 4.17. Partitioned quartz-feldspar image after 3 grain assembly iterations and 3 voxel 

overwrite iterations based upon neighbor counting, 820µm per side, 2003 voxels 
 

 
Figure 4.18. Partitioned quartz-feldspar image after 10 grain assembly iterations and 10 voxel 

overwrite iterations, 820µm per side, 2003 voxels 
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Although the partition shown in Figure 4.18 is still not completely ideal, it must be stated that this 

is a fairly difficult image to process for several reasons. Primarily, there are very few fully 

represented (or interior) grains in this image. Whenever a grain touches the outer boundary, it is 

difficult for the program to properly partition, which makes sense because the grain is not presented 

in its entirety. Furthermore, this image has many small void spaces that, although possibly correct, 

could also be caused by an improper segmentation. Lastly, partitioning this image is fairly 

subjective, and what the author perceives as a correct partition may differ from what other 

individuals believe. Taking these factors into consideration, it is easier to objectively quantify the 

power of the program’s additions and alterations by comparing Figures 4.16 through 4.18 to the 

original program’s output. The images will be compared in detail in the following section.  

 

A second, more objective image was also analyzed in a similar manner to observe the combined 

impacts of the iterative techniques. This Ottawa (F-75) sand has been analyzed with a previous 

version of VOX2GRAINS (Willson, 2012), finding that the grains, for the most part, are fairly 

similar in size to one another. As shown in the segmented image in Figure 4.19, the sample is 

contains many angular grains, which can be more difficult for the program to partition than simpler 

geometries like spheres. Due to the lack of consolidation, there is little room for argument about 

what does and does not constitute a whole grain, especially when viewing the sample in three 

dimension.  

 

 
Figure 4.19. Ottawa sand segmented image, 3.025 mm per side, 2753 voxels 

 

Figure 4.20 shows a cross section through the Ottawa sand image generated by the updated 

VOX2GRAINS with one voxel overwrite iteration and one grain assembly iteration. The program 

finds many interfaces correctly, but there are a significant number of poor interfaces also, usually 

in cases where the grain appears to be over partitioned. This image resulted in 5040 total grains.  
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Figure 4.20. Partitioned Ottawa sand after 1 grain assembly iteration and 1 voxel overwrite 

iteration, 3.025 mm per side, 2753 voxels 
 

The original segmented image was then processed with three grain assembly iterations and three 

voxel overwrite iterations. Figure 4.21 provides a cross sectional slice through this image. In total, 

5039 grains were identified. While over partitioning still exists in this image, the interfaces 

between the grains make more sense with the surrounding geometries. There are fewer slots and 

drawers, and the grain-grain contacts are more planar.  

 

This trend continues when the image is process with ten voxel overwrite and grain assembly 

iterations, resulting in a total of 5033 identified grains. A cross section of this image is shown in 

Figure 4.22. The interfaces are close to ideal for almost all interior grains, with the exception being 

single grains that have been incorrectly partitioned into multiple grains.  
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Figure 4.21. Partitioned Ottawa sand after 3 grain assembly iterations and 3 voxel overwrite 

iterations, 3.025 mm per side, 2753 voxels 
 

 
Figure 4.22. Partitioned Ottawa sand after 10 grain assembly iterations and 10 voxel overwrite 

iterations, 3.025 mm per side, 2753 voxels 
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4.1.7. VOX2GRAINS Before and After Comparison  

 

The partition presented in Figures 4.18 and 4.22 includes all main body adjustments and additions 

implemented into VOX2GRAINS. Provided the segmented images, these are among the best 

partitions that the program is capable of generating without any refinement. In order to see the full 

impact that the additions and alterations have on generating the initial partition, Figures 4.18 and 

4.22 are compared to the program’s initial outputs for the same segmented images. Figure 4.23 is 

compared with Figure 4.18 and Figure 4.22 is compared with Figure 4.24.    

 

 
Figure 4.23. Partitioned quartz-feldspar using original program, 820µm per side, 2003 voxels 

 

Comparing these images, we see that Figure 4.18 provides a much more believable partition. The 

slots and drawers have been almost completely removed, and the interfaces are far more consistent 

with the information available. The original program identified a total of 1467 grains, whereas the 

updated software identifies 1037, meaning that the algorithm reduces over partitioning 

significantly. In a fairly subjective image like this, defining the true number of grains can be very 



56 

 

subjective, so it is difficult to exactly quantify the degree of over partitioning. However, it can be 

stated objectively that the partition shown in Figure 4.18 is much more realistic than the partition 

shown in Figure 4.23.  

 

It is significantly less subjective to identify the grains in Figures 4.22 and 4.24. Looking at Figure 

4.24, we see that the program identified a number of interfaces fairly accurately initially, but there 

are many instances of unjustified slots and drawers, and many grains are over partitioned. A total 

of 5,847 grains were identified from the initial program, whereas 5,033 were identified with the 

updated program. Comparing these images, we see that the updated reduced over partitioning in 

many instances, and provided more realistic contacts for more grain-grain interfaces. Figure 4.22 

still contains some over partitioned grains, but the improvement in overall image quality from the 

program’s initial state is significant. The remaining, but reduced issue of over partitioning is 

addressed through post processing refinements.   
 

 
Figure 4.24. Partitioned Ottawa sand from original program, 3.025 mm per side, 2753 voxels 
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4.2. Post Processing Refinements 
 

Overall, the post-processing refinements added provided mixed results for the images tested. 

Automerge features were not found to be particularly effective, but machine learning and planar 

regression provide significant advantages for combating over partitioning and smoothing grain-

grain interfaces. 

 

4.2.1. Automerge 

 

Altering the logic of automerge was not very effective in merging the over partitioned grains. 

Figures 4.25 and 4.26 show the resulting refinement when threshold values of 0.95 and 0.85 are 

applied, respectively. More aggressive values were also tested, and although the intermediate 

grains were merged under these more aggressive conditions, the vast majority of initially identified 

grains in the image were merged into one, and thus the partition was nonsensical. Overall, the 

results from this alteration were extremely poor.   

 

 
Figure 4.25. Partitioned overlapping sphere pack with updated automerge logic and a contact 

area to surface area ratio of 0.95, 500 voxels per side with a nominal voxel width of 0.01 cm 
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Figure 4.26. Partitioned overlapping sphere pack with updated automerge logic and a contact 

area to surface area ratio of 0.85, 500 voxels per side with a nominal voxel width of 0.01 cm 

 

While automatically overwriting the grains that have no exposed surface area is an added option, 

it still leaves many over partitioned grains in the resulting image, since any grain that has any 

exposed surface area is not considered for merging. A highly consolidated artificial sphere pack 

was tested. The goal was to provide something that is difficult for the program, so that there will 

be multiple instances of over partitioned grains. Figure 4.27 shows the VOX2GRAINS output with 

one grain assembly iteration and three grain overwrite iterations. This image (500 voxels along 

each side) contains 1985 total grains. Figure 4.28 shows the same image after automatically 

reassigning all grains with no exposed surface area. In this image, this process reduces the grain 

count to 1810. Many of the images that are fixed are very small, since the larger grains are more 

likely to touch the void space. 

 

This feature provides a quick way of reassigning grains that were obviously over partitioned, 

though Figure 4.28 shows that several instances of over partitioned grains remain. This was not 

designed to identify and remediate all over partitioned grains, but to provide a robust way of 

quickly performing a pass to ensure that any obviously over partitioned grains are reassigned. 

VOX2GRAINS identifies more grains as consolidation and angularity of grain shape increase, so 

the number of merges this feature performs can vary widely between images of different rock 

types.  
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Figure 4.27. Partitioned artificial sphere pack with 1 grain assembly iteration and 3 voxel 

overwrite iterations, 500 voxels per side with a nominal voxel width of 0.01 cm 
 

 
Figure 4.28. Partitioned artificial sphere pack after automatically overwriting all grains with no 

exposed surface area, 500 voxels per side with a nominal voxel width of 0.01 cm 
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4.2.2. Planar Regression: Single Plane 

 

This version of planar regression was first implemented with simple three sphere packs, and was 

found to be highly effective in these scenarios. Recall that in this version of planar regression, the 

program treated each interface between grain pairs as a single plane, regardless of whether or not 

there were multiple isolated contact clusters. Figure 4.29 (a) shows a three dimensional 

representation of the image presented in Figures 4.29 (b) and (c). Figure 4.29 (b) shows a slice 

through the image after planar regression without minimization has been applied and Figure 4.29 

(c) shows the same slice after both planar regression and planar minimization. Though there is 

little difference between the two images, the minute adjustments made by the program from (b) to 

(c) provide a proof of concept for this method.  

 
(a) 

  
(b)                                                                          (c) 

Figure 4.29. Simple three sphere pack tested for single contact plane planar regression, 100 

voxels per side with a nominal voxel width of 0.01 cm 
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When tested on more populated sphere pack images with low degrees of consolidation, the 

program performed significantly worse. The same was true for more realistic rock images, Figures 

4.30 (a) and (b) show examples of common errors the program would make when applied to sphere 

packs with varying contact orientations.  

 

In Figure 4.30 (a), the algorithm assigned every voxel on one side of the calculated contact plane 

to the yellow grain, and every voxel on the other side of the plane to the red grain. Although this 

worked well for the grain pack shown in Figure 4.29, the algorithm fails in the scenario. This issue 

is compounded further as planar regression continues, as shown in Figure 4.30 (b).  Although the 

red grain in Figure 4.30 (a) and (b) likely should not be a single grain, this image provides an 

understanding of the limitations of this methodology. These errors were very common with more 

complex orientations and geometries. Also, there were many instances with real rock images where 

two grains neighbor one another in two isolated clusters, often with two very different contact 

orientations. In these more realistic scenarios, the single plane planar regression algorithm for each 

grain pair is not sufficient. 

 

   
(a)                                                                        (b) 

Figure 4.30. Sphere pack after single-plane planar regression was applied 

 

4.2.3. Planar Regression: Multiplane  
 

Similarly to single plane, multiplane planar regression was first tested on spheres. The images used 

for testing were manipulated to ensure multiple isolated interfaces between a single grain pair. 

Figure 4.31 (a) and (b) illustrate separate cross sections through one such example. Note that in 

these figures, planar regression has not yet been applied; these show the VOX2GRAINS output 

with no prior refinement. For the purpose of this study, spheres that, in reality, would constitute 

separate grains, were merged together, as shown by the three sphere pieces on the top of the image. 

Figure 4.32 (a) and (b) show the same cross sections after multiplane planar regression has been 

applied. Figure 4.33 displays the three dimensional image after planar regression is applied to each 

isolated contact cluster. The other spheres in this image were visually removed for illustrative 

purposes.  
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(a)                                                                     (b) 

Figure 4.31. Sphere pack prior to multiplane planar regression with no minimization, 100 voxels 

per side with a nominal voxel width of 0.01 cm 
 

 
(a)                                                                         (b) 

Figure 4.32. Sphere pack after multiplane planar regression with no minimization, 100 voxels per 

side with a nominal voxel width of 0.01 cm 

 

Here, planar regression was designed as a final step in refining the grain interfaces. For this reason, 

the images to best test planar regressions are images that have already been sufficiently cleaned of 

over partitioned grains. To illustrate this point, refer to Figure 4.34. Although the over partitioning 

has been significantly reduced when compared against the original program’s output, there are still 
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visible occurrences. Note that after proving this methodology through sphere testing, the algorithm 

was adjusted to only apply planar regression interfaces to interior grain pairs, with neither grain 

touching the boundary.  

 

 
Figure 4.33. Grains with multiple isolated contact points after multiplane planar regression with 

no minimization is applied 

 

 
Figure 4.34. Partitioned Ottawa sand with 3 grain assembly iterations and three voxel overwrite 

iterations after planar regression with no minimization, 3.025 mm per side, 2753 voxels 
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Although this figure shows that the program is working correctly, the results for the originally over 

partitioned grains are not ideal. If the image is first cleaned for all over partitioned grains, as shown 

in Figure 4.35, then the resulting planar partition is far more desirable, shown in Figure 4.36. 

Figure 4.36 was generated without minimizing the interface plane.  

 

 
Figure 4.35. Partitioned Ottawa sand with 3 grain assembly iterations and three voxel overwrite 

iterations prior to planar regression; after manually refining over partitioned grains, 3.025 mm 

per side, 2753 voxels 
 

Within the program, the user has the ability to easily turn minimization on or off when applying 

planar regression to the grain contacts. Figure 4.37 shows the program output whenever slide 
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minimization is included. Minimization involves extending the plane outward, which causes the 

streaks that are visible in Figure 4.37. Although this is only occurs on a fraction of the total grain 

interfaces, it is extremely undesirable. These results show that the planar extension method needs 

to be further refined. The issue arises in finding the balance of extending the plane while ensuring 

that the extension does not extrude into other sections of the grain. 
 

 
Figure 4.36. Partitioned and manually refined Ottawa sand after planar regression applied with 

no minimization, 3.025 mm per side, 2753 voxels 
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Figure 4.37. Partitioned and manually refined Ottawa sand after planar regression applied with 

minimization, 3.025 mm per side, 2753 voxels 
 

4.2.4. Machine Learning  
 

For the images tested, machine learning proved to be a viable method of efficiently and accurately 

merging grains that were initially over partitioned. The accuracies of the generated logistic 

regression equations are shown below in Table 4.1 for each corresponding Trial. Since the number 

of merge decisions in the training and cross validation sets was only about 20%, predictive 

accuracies are not the only output that should be examined. Consider an exaggerated example 

where only five percent of the data points should be merged. If the algorithm determines that all 

pairs should not be merged, then the algorithm is still operating at 95% accuracy. For this reason, 

it is also important to consider the number of false positives and false negatives. False positives 

refer to examples where the algorithm predicted that the pair should be merged, but the user 

specified that the pair should not be merged. Conversely, false negatives refer to examples in which 

the user specified that the example should be merged, but the algorithm determined that the pair 

should not be merged. 
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Table 4.1. Machine learning results for each trial 

Trial No. Predictive Accuracy for CV Set Incorrect Decisions False Positives False Negatives 

Trial 1 97.88% 15 11 4 

Trial 2 98.16% 13 10 3 

Trail 3 97.74% 16 6 10 

 

Trial 2 generated the most accurate prediction equation. The values for this equation are shown in 

Table 4.2. Since this trial did not include feature scaling, the value of the theta parameters cannot 

be considered as weights or importance for the equation.  

 

Table 4.2. Calculated theta values for Trial 2 

  Corresponding Statistic Value 
 

Intercept  1.5133 

theta 2 Surface Area G1 -0.0344 

theta 3 Surface Area G2 -0.0306 

theta 4 Volume G1 -0.0218 

theta 5 Volume G2 -0.0097 

theta 6 Inscribed Radius G1 0.1956 

theta 7 Inscribed Radius G2 -0.1024 

theta 8 Coord. Number G1 0.1471 

theta 9 Coord. Number G2 -0.2525 

theta 10 X Pos. G1 -0.0512 

theta 11 Y Pos. G1 0.2257 

theta 12 Z Pos. G1 -0.2189 

theta 13 X Pos. G2 0.0133 

theta 14 Y Pos. G2 -0.2505 

theta 15 Z Pos. G2 -0.0971 

theta 16 Contact Area 0.4513 

theta 17 X Major Axis G1 -0.2741 

theta 18 X Major Axis G2 0.5148 

theta 19 Y Major Axis G1 0.0987 

theta 20 Y Major Axis G2 0.2609 

theta 21 Z Major Axis G1 -0.1548 

theta 22 Z Major Axis G2 -0.3228 

theta 23 Aspect Ratio G1 -0.0374 

theta 24 Aspect Ratio G2 0.6617 

theta 25 Contact Loc. X 0.0144 

theta 26 Contact Loc Y -0.0029 

theta 27 Contact Loc Z 0.1885 

theta 28 Contact Norm Vect X -0.1056 

theta 29 Contact Norm Vect Y 0.8446 

theta 30 Contact Norm Vect Z -0.0522 
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The logistic regression equation was subsequently applied to all interior grains for the five images 

that data was taken from. Since the exterior grains are not fully presented, this logistic regression 

equation was not believed to be valid for these grains. For the first image, referred to here as 

Ottawa sand 1, VOX2GRAINS identified 5039 grains before any refinement. After the logistic 

regression equation was applied, a total of 3723 grains were identified. Figure 4.38 provides a 

cross section through the partitioned image before any refinement, and Figure 4.39 shows the same 

cross section after the image was refined using the logistic regression equation developed from 

Trial 2.  

 

Comparing these two images, we see that the program correctly merged several pairs of grains that 

appear to be over partitioned, but it also appears to falsely merge some pairs that should be 

separate. Cross sections showing before and after the application of the Trial 2 logistic regression 

equation for the other four images used in data collection are shown in the Appendix.  

 

 
Figure 4.38. Ottawa sand 1 VOX2GRAINS updated output, 5039 grains, 3.025 mm per side, 

2753 voxels 
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While this feature is useful, the over merging is not desirable. The logistic regression equation 

developed from Trial 3 was also applied to each of the five images, since this trial resulted in a 

satisfactory accuracy while maintaining a lower number of false positives. Similarly, the cross 

sections for Ottawa sand 1 resulting from Trial 3 logistic regression equation is shown in Figures 

4.40. For this image, the Trial 3 logistic regression equation identified a total of 3944 grains. When 

compared with the image in Figure 4.39, Figure 4.40 shows fewer over merged instances, while 

still correctly merging many of the initially over partitioned grains. The cross sections of the other 

four similar images after refined using the logistic regression equation derived from Trial 3 are 

also shown in the Appendix.   

 

The weights of the equation and their corresponding spatial statistic are shown in Table 4.3. This 

trial included feature standardization. Normally, this would mean that the resulting equation 

weights could be interpreted as relative importance, assuming no multicollinearity. However, in 

this situation, many of the features likely contain similar information, and therefore 

multicollinearity likely impacts many of the variable magnitudes. For the trials presented, no effort 

was made to reduce multicollinearity, since multicollinearity has no impact on predictive power 

of the logistic regression equation.   

  

 
Figure 4.39. Ottawa sand 1 after logistic regression applied: trial 2 equation, 3723 grains, 3.025 

mm per side, 2753 voxels 
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Figure 4.40. Ottawa sand 1 with trial 3 logistic regression applied, 3944 grains, 3.025 mm per 

side, 2753 voxels 

 

Comparing the images before and after the logistic regression equation has been applied, the 

images show the capability of distinguishing between over partitioned and correctly partitioned 

grains within a reasonable accuracy. Regarding machine learning, algorithms are only as good as 

the quality of the data, and a significant amount of time was spent generating the data used for the 

training and cross validation sets. While the equations have been useful for all five images tested 

here, these images are all of the same rock type. Different rock types can have very different 

characteristics and physical features, which ultimately can lead to very different partitions. Since 

the refinement equations are based solely on the spatial statistics, it follows that the equations 
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presented here would likely not be well suited for rocks with significantly different spatial 

characteristics. 

 

Table 4.3. Logistic regression equation parameters from trial 3 

  Corresponding Statistic Value 
 

Intercept  -4.8476 

theta 2 Surface Area G1 -1.2298 

theta 3 Surface Area G2 -1.1896 

theta 4 Volume G1 -0.4561 

theta 5 Volume G2 -0.6566 

theta 6 Inscribed Radius G1 -0.9082 

theta 7 Inscribed Radius G2 -0.7760 

theta 8 Coord. Number G1 -0.1244 

theta 9 Coord. Number G2 -0.7111 

theta 10 X Pos. G1 -0.2461 

theta 11 Y Pos. G1 0.0441 

theta 12 Z Pos. G1 0.8293 

theta 13 X Pos. G2 -0.1450 

theta 14 Y Pos. G2 -0.5933 

theta 15 Z Pos. G2 0.7462 

theta 16 Contact Area 4.7915 

theta 17 X Major Axis G1 -0.2638 

theta 18 X Major Axis G2 0.2625 

theta 19 Y Major Axis G1 -0.1099 

theta 20 Y Major Axis G2 0.1506 

theta 21 Z Major Axis G1 -0.2106 

theta 22 Z Major Axis G2 -0.1746 

theta 23 Aspect Ratio G1 -0.7501 

theta 24 Aspect Ratio G2 -0.2175 

theta 25 Contact Loc. X 0.4648 

theta 26 Contact Loc Y 0.1384 

theta 27 Contact Loc Z 0.9463 

theta 28 Contact Norm Vect X 0.0200 

theta 29 Contact Norm Vect Y 0.4332 

theta 30 Contact Norm Vect Z -0.1616 
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CHAPTER 5. CONCLUSION AND RECOMMENDATIONS 

 

5.1. Conclusions 

 

Overall, many of the algorithms described in this thesis enhance the accuracy and reliability of 

automated grain partitioning for microtomographic segmented images through the computer 

program VOX2GRAINS. Specifically, regarding the VOX2GRAINS main body adjustment and 

alterations: 

 The results show that an accurate distance map greatly improves partition quality and 

reduces the over partitioning inherent to programs that make use of the watershed 

transform. 

 Adjusting the outer looping directions of the image during the granular assembly process 

was investigated and found to impact the image, but not to significantly improve the 

interfaces.  

 Iterating granular assembly and reassigning voxels based upon neighbor counting is highly 

effective at reducing slots and drawers, resulting in cleaner grain-grain interfaces. 

Combined, these techniques are also proven to slightly reduce over partitioning even 

further.  

Post processing refinement options extend the control that the user has when combating the 

remaining over partitioning due to the watershed transform. Specifically, the results showed: 

 Automatic refinements have been developed to reassign obviously over partitioned grains 

with no exposed surface area. This method is insufficient for capturing all over partitions.  

 Machine learning based upon particle and pair statistics such as contact area, surface areas, 

and aspect ratios, was found to be 98% accurate for determining whether or not two grains 

should or should not be merged together for several Ottawa (F-75) sand images. Although 

the applicability of this technology to other rock types is not known for certain, the results 

shown here were extremely satisfactory.   

 Single plane planar regression was found to be effective for very simple geometries in 

packs with a small number of grains, but the image quality quickly deteriorates with 

increases in consolidation, shape irregularities, and grain populations.  

 Multiplane planar regression is found to be well suited for simple and more complex 

geometries and consolidation states. While minimization of planar regression interfaces is 

implemented into the program, the results often yield undesirable outcomes.  

 

5.2. Recommended Future Work 
 

 It is recommended that more rock images be processed and refined using machine learning.  

Although it is believed that different rock types will have different logistic regression 

equations, this should be verified. Since it can be timely to collect data and generate a 

decision equation, the verified equations for each rock type analyzed should be stored with 

a description in a library for quick refinement testing.  

 Although multiplane planar regression without minimization has provided good results for 

the images tested, an accurate minimization algorithm would increase the capabilities of 

the program. The current approach breaks the minimization into translation and rotation. It 

is recommended to implement a minimization technique that combines these two 
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components into one to more efficiently find the true minimum. Furthermore, the planar 

extension method required for plane minimization should be further refined. 

 For the testing in this thesis, the machine learning equation generation was carried out 

externally in MATLAB. A similar algorithm could be developed directly within 

VOX2GRAINS through the visualization software Avizo.  

 Although a fairly rare occurrence for the images tested, there are scenarios in which the 

user may desire a single grain to be split into two. While manual refinement is an option, 

it seems possible that a particular rock partition could result in many such instances. As a 

preventative measure, it is recommended to investigate split refinements through machine 

learning just as shown here for merge decisions.   

 VOX2GRAINS is currently not parallelized. Images of up to 600 cubed voxels have been 

successfully analyzed on the desktop version of the program, and images of up to 1000 

cubed voxels have been analyzed on the HPC version. For larger images, processing time 

can take several hours. It is believed that by parallelizing the program, computation 

performance time can be significantly reduced. 

 The partition qualities in this thesis were evaluated solely via visual inspection. To truly 

verify the results, it is recommended that a real rock image be tested and compared with a 

physical geologic interpretation of the same sample for more definitive conclusions on 

what constitutes individual grains. The logistic regression machine learning decisions 

should also be verified with physical geologic interpretations.  
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APPENDIX. MACHINE LEARNING OUTPUTS 

 

 
Figure A.1. Ottawa sand 3, VOX2GRAINS updated output, 3450 grains, 3.025 mm per side, 

2753 voxels 
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Figure A.2. Ottawa sand 3 after trial 2 logistic regression equation, 2584 grains, 3.025 mm per 

side, 2753 voxels 
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Figure A.3. Ottawa sand 3 after trial 3 logistic regression equation, 2661 grain, 3.025 mm per 

side, 2753 voxels 
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Figure A.4. Ottawa sand 5 VOX2GRAINS updated output, 3775 grains, 3.025 mm per side, 2753 

voxels 
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Figure A.5. Ottawa sand 5 after trial 2 logistic regression equations, 2792 grain, 3.025 mm per 

side, 2753 voxels 
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Figure A.6. Ottawa sand 5 after trial 3 logistic regression equation, 2892 grains, 3.025 mm per 

side, 2753 voxels 
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Figure A.7. Ottawa sand 7 VOX2GRAINS updated output, 4006 grains, 3.025 mm per side, 2753 

voxels 
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Figure A.8. Ottawa sand 7 after trial 2 logistic regression equation, 2993 grains, 3.025 mm per 

side, 2753 voxels 
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Figure A.9. Ottawa sand after trial 3 logistic regression output, 3108 grains, 3.025 mm per side, 

2753 voxels 



89 

 

 
Figure A.10. Ottawa sand 10 VOX2GRAINS updated output, 3960 grains, 3.025 mm per side, 

2753 voxels 
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Figure A.11. Ottawa sand 10 after trial 2 logistic regression equation, 3045 grains, 3.025 mm per 

side, 2753 voxels 
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Figure A.12. Ottawa sand 10 after trial 3 logistic regression equations, 3149 grains, 3.025 mm 

per side, 2753 voxels 
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