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Abstract 

Faults intersecting target geological CO2 storage zones have important implications for storage 

integrity. Potential leakage pathways due to fluid over-pressurization are investigated in this 

project to ensure long-term containment of injected CO2. Numerical flow simulations coupled with 

a geomechanical module are presented in this work with the purpose of determining the extent of 

CO2 up-fault migration, the driving mechanisms of leakage and the corresponding response of 

quantified pore pressure and stress variations. 

This study uses dual-continuum models performed by using CMG (2017) to correctly account of 

flow through fractures in a fault damage zone. Numerical simulations were performed in three 

steps by gradually adding layers of complexity while ensuring the correctness of simulation results. 

As the first step, we verify our results by reproducing results published in the literature. In the 

second step, a simple geometry model including a vertical fault which is laterally sealing was 

simulated. The last model includes a fault resembling a real feature in a potential CO2 storage site 

in north Louisiana. Results for the three cases of study, where the initially dormant fractures of the 

damage zone become conductive with the inclusion of geomechanics, show migration of CO2 

through the opened cracks into the overlying formations. Also, effective stresses along the damage 

zone show a generalized reduction with higher fracture permeabilities and increments in pore 

pressure.  
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Chapter 1. Introduction 

1.1. Background 

Greenhouse Gas (CMG) emissions are acknowledged to be the leading cause of global warming 

and climate change. Carbon dioxide (CO2) is the most abundant of these gases in the atmosphere 

and is responsible for 64% of the greenhouse effect according to the United Nations Framework 

Convention on Climate Change (Williams, 2002). 85% of CO2 emissions are produced by the 

burning of fossil fuels, and they are expected to increase by 130% by 2050 (IEA, 2006).  Carbon 

capture and storage (CCS) is considered an option to mitigate CO2 emissions from large-scale 

fossil fuel usage. It offers a short-term solution to mitigate climate change while transitioning 

towards more efficient, sustainable, and/or low-carbon energy systems in the medium or long term. 

CCS technologies show potential to reduce CO2 emissions by 54% in the European Union and 

33% globally by 2050 (Stangeland, 2007). 

The options for CO2 geological storage include injection in active and depleted oil and gas 

reservoirs, deep saline aquifers, and coal seams (Figure 1.1). Saline aquifers provide the most 

significant storage capacity for sequestered CO2 and the closest proximity to large point sources 

of emission such as fossil-fuel power plants (NETL, 2015).  Early engineering knowledge of CO2 

sequestration in deep saline aquifers was based on the vast experience of injecting CO2 for 

enhanced oil recovery (EOR). However, the importance of the long-term fate of the sequestered 

CO2 in saline aquifers typically exceeds that of the typical EOR scenario. In addition, simultaneous 

fluid extraction and injection in the subsurface in CO2 EOR leads to minimal pressure 

perturbations.  However, due to the absence of fluid extraction in most CO2 storage applications, 

significant overpressure may be experienced that has important implications for CO2-storage 

integrity. Numerous CO2 storage projects have been deployed and significant research has been 
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conducted over the past two decades to address knowledge gaps associated with CO2 storage. 

Proper modeling at various scales is required which includes a variety of coupled physical, 

chemical, and mechanical processes namely: 

1.     Multiphase fluid flow 

2.     Fluid pressurization and changes in effective stress leading to caprock failure and 

opening of CO2 leakage pathways. 

3.     Mutual dissolution of CO2 and the in-situ brine. 

4.     Porosity and permeability alterations due to chemical reactions between fluids and   

formation minerals. 

 
Figure 1.1. Options for CO2 geological sequestration (Ketzer et al., 2012). 

This work focuses on numerical simulations to determine the effects of fault structure on seal 

integrity for CO2 sequestration in saline aquifers. Numerical modeling and simulations of these 

long-term processes are necessary for two reasons. First, it is helpful to understand and evaluate 

the parameters and processes related to successful CO2 storage in the presence of faults, which are 
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abundant in the subsurface. Second, the porosity and permeability alterations occur at rates and 

scales that may not be captured by laboratory measurements. 

1.2. Problem Statement 

Successful implementation of CO2 geological storage requires retaining carbon dioxide for at least 

1000 years with a leakage rate of less than 0.1% per year (Davidson et al., 2005; Wilson et al., 

2007). The success of CO2-storage operations depends on many factors. The first is injectivity or 

dynamic capacity, which relates to the rate and pressure required of CO2 injection. The second is 

the static capacity of the aquifer, or how much CO2 the reservoir can store. The third factor is  

long-term security, which involves the study of possible CO2 leakage and which will typically 

improve with time. These factors are challenges that need to be addressed when studying 

CO2 geological sequestration. 

In order to ensure effective and successful CO2 injection, potential leakage pathways of CO2 must 

be adequately understood. When CO2 leaks from the aquifer it could reach buffer aquifers, potable 

water sources and even the atmosphere (Liu et al., 2010). Evaluation of the storage integrity has 

to be made in order to plan possible CO2 storage locations and to identify the leakage quantities 

for contingency plans and remediation. 

Natural and hydraulic fractures are the most important factors when assessing the risk of CO2 

leakage (Liu et al., 2010), and natural fractures are common in possible CO2 storage locations.  

The present work intends to provide a better understanding of the coupled fluid flow and 

mechanical processes during and after injection of CO2 in saline aquifers, focusing on interactions 

of these phenomena with dormant fractures in fault zones. This objective is to be accomplished by 

way of numerical simulations that integrate multiphase flow with geomechanical effects using a 
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finite-difference compositional flow simulator (CMG, 2017).  These simulations are performed 

using a geological model consisting of a reservoir that is compartmentalized by a laterally sealing 

fault. The faulted structure comprises a very low-permeability fault core surrounded by dormant 

fractured damage zones (Figure 1.2). 

 

Figure 1.2. Schematic of a fault structure and fractures in its damage zone. High porosity rocks 

such as sandstones have a thicker damage zone. In this graph, a sandstone is represented by the 

formation in yellow. 

1.3. Anticipated Results 

Geomechanical processes affect long-term CO2 geological storage in saline aquifers especially 

during injection and influence the petrophysical parameters, such as permeability and porosity, of 

a storage reservoir. In this study, hydro-mechanical modeling is conducted to investigate storage 

in the presence of a fault zone crosscutting a sequence of sand-shale-sand lithology, as shown in 

Figure 1.2. This study models natural fractures surrounding a lateral sealing fault with a 

compositional reservoir simulation iteratively coupled with geomechanics that includes a modified 

Barton-Bandis model (Bandis et al., 1983) in order to obtain fracture permeabilities (Tran et al., 

2009). 
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Some anticipated results from the numerical simulations are included below. 

• The application of geomechanical calculations to the compositional flow model in a 

compartmentalized aquifer with a lateral fault will result in changes to the transport 

parameters of the fault structure. 

• The mechanically activated dormant fractures in a damaged zone near the CO2 plume will 

provide pathways for CO2 leakage. 

1.4. Research Objectives 

The objective of this work is to investigate the effects of a fault zone during CO2 injection when 

the initially dormant fractures in the fault damage zone are geomechanically activated and the 

petrophysical properties are altered by geomechanical causes. This objective will be achieved 

using coupled numerical reservoir simulations where we intend to: 

• determine the geomechanical response of the fractures in the damage zone of the fault 

and the alterations to the intrinsic permeability and/or porosity. 

• estimate pore pressure variations and underground displacements. 

• quantify the extent of CO2 migration in the reservoir rock and through the fault and its 

associated fractured damage zone. 
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Chapter 2. CO2 Trapping Mechanisms in Deep Saline Aquifers  

Primary and secondary trapping mechanisms can be identified for CO2 geological storage. 

Structural/stratigraphic trapping (described in detail in Section 2.1), considered a primary 

mechanism, refers to the act of containing CO2 by a geological structure such as a low-permeability 

confining zone or caprock. This mechanism is vital to prevent any CO2 leakage and to ensure that 

other trapping mechanisms can take place (Zhang et al., 2014). The secondary mechanisms are 

residual trapping (Section 2.2), solubility trapping (Section 2.3), and mineral trapping (Section 

2.4). 

 

 

 

 

 

 

 

Figure 2.1. A schematic representation of three trapping mechanisms of CO2 in saline aquifers 

(Blunt, 2010). 

2.1. Structural/stratigraphic Trapping 

When CO2 is injected to a geological formation, it migrates upwards due to buoyancy forces until 

it encounters a low permeability rock or structure that impedes further fluid migration. CO2 

migration is possible because it has a liquid-like density and a gas-like viscosity (Zhang et al., 

2014). The density of CO2 is lower than that of the brine in the storage formation, and its viscosity 

is about one-tenth of the viscosity of the brine (Blunt, 2010).  Possible structural and stratigraphic 

Solubility 
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traps include caprocks, sealing faults, and unconformities. CO2 sequestration by this mechanism 

depends strongly on the sealing integrity of the caprock/fault (Zhang et al., 2014). 

2.2. Residual Trapping 

Residual trapping affects the migration and distribution of CO2. Upon initial injection, CO2 moves 

through the porous space displacing the brine. When gravity force dominates the flow, brine re-

imbibes the pore space, leading to a significant amount of CO2 becoming trapped as an immobile 

phase (Zhang et al., 2014) within the pore space of the host rock. In this work, residual gas trapping 

is modeled with Land’s model based on relative permeability curves and hysteresis effects (Land, 

1968; Nghiem et al., 2009). The Land’s coefficient can be estimated with Equation 2.1 (Nghiem 

et al., 2009). 

𝐶 =
1

𝑆𝑔𝑡,𝑚𝑎𝑥
−

1

𝑆𝑔,𝑚𝑎𝑥
 2.1 

where  

 𝑆𝑔,𝑚𝑎𝑥:  Maximum gas saturation  

 𝑆𝑔𝑡,𝑚𝑎𝑥: Maximum trapped saturation 

The residual gas saturation 𝑆𝑔𝑖
∗  can then be calculated with Equation 2.2. 

𝑆𝑔𝑡
∗ (𝑆𝑔𝑖

∗ ) =
𝑆𝑔𝑖

∗

1+𝐶𝑆𝑔𝑖
∗        2.2 

where: 𝑆𝑔𝑡
∗   is the trapped residual oil saturation. 

 

 

2.3. Solubility Trapping 

Solubility trapping refers to the dissolution of CO2 in the brine, which is responsible for a 

significant portion of CO2 storage (Nghiem et al., 2009). Once CO2 dissolves in brine, it will form 
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a denser phase that will migrate downwards by gravitational segregation (Blunt, 2010). CO2 

solubility in the in-situ brine depends on several factors such as pressure, temperature and salinity 

(Zhang et al., 2014). Past studies indicate that significant CO2 solubility in brine takes hundreds 

or even thousands of years due to its minimal molecular diffusion coefficient (Zhang et al., 2014). 

In CMG-GEM, gas solubility is modeled as a phase equilibrium process, governed by Henry’s law 

in combination with the Peng-Robinson Equation of State (Nghiem et al., 2009).  

2.4. Mineral Trapping 

Ions formed by CO2 dissociation in the brine may react over time with minerals present in the rock. 

These reactions could be beneficial or deleterious for CO2 storage. Precipitation reactions that may 

occur when oxides in the rock dissolve and then precipitate as carbonates reducing porosity and 

permeability of the rock can help CO2 trapping (Blunt, 2010; Zhang et al., 2014). Dissolution 

reactions that may occur if some acid dissolves certain minerals in the rock that will result in the 

increment of porosity and permeability can facilitate CO2 migration (Blunt, 2010; Zhang et al., 

2014). Significant mineral trapping occurs at a geological timescale. Meager reaction rates result 

in prolonged precipitation/dissolution processes. Reaction rates depend on pressure, pH, 

temperature and concentration of species influence reaction rate of minerals (Zhang et al., 2014). 

 

 

 

 

 

 

 

 

 

  



9 
 

 

Chapter 3. Fault Structure and Effects on CO2 Sequestration 

A fault is a displacement zone between two blocks of rock. Faults of tectonic origin can generally 

be classified as normal faults when they are formed due to the extension of the rock, as inverse 

faults when they are the result of compressive forces and strike-slip faults that are also formed due 

to compressive forces that displace horizontally nearly parallel to the force direction (Press et al., 

2004). Figure 3.1 is a representation of these three fault types; some fault-related terminology is 

also included. 

 

Figure 3.1. Generic classification of faults: normal, reverse and strike-slip faults.  (Britannica, 

2018). For a dipping fault, the Hanging Wall is the block positioned over the fault; the Foot Wall is 

the block positioned under it. Fault strike is the direction of a line created by the intersection of a 

fault plane and a horizontal surface, 0° to 360°, relative to North.  

The structure of a fault zone depends on tectonics, depth of the formation, the magnitude of 

displacement and fluid flow. The classical structure of a fault comprises a fault core and a damage 

zone that surrounds it. In low porosity rocks, such as those rich in clay, the core is constituted by 

cohesive fine-grained materials resulting from the faulting process such as cataclasite, gouge, and 

ultracataclasite, and the fractured damage zone consists of several scale fractures distributed along 
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the fault (Faulkner et al., 2010). Fractures in the damage zone in low permeability host rocks are 

dilatant (Blenkinsop, 2007). Faults in high porosity rocks, such as sandstones, are composed of 

cores with incohesive materials, and their damage zones show deformation bands that propagate 

resulting in high permeability surfaces (Faulkner et al., 2010). Figure 3.2 shows the classical 

structure of a fault in a low porosity rock that defines a fault core and a damage zone that surrounds 

the core.   

The density of fractures in low permeability host rocks is a frequent topic of study. It has been 

found that the fracture density usually decreases exponentially with distance from the fault core. 

In high permeability rocks, the microfractures caused by the deformation bands often show no 

variation with distance along the damage zone (Anders et al., 1994). Damage zone widths have a 

close relationship with fault displacement. Past studies show that the growth in damage zone width 

will increase with displacement. However, after some hundreds of meters of displacement, the 

width-to-growth ratio decreases (Faulkner et al., 2010). 

 

Figure 3.2. Simplified scheme of a typical fault structure, where there are a fractured damage 

zone and a high-strain core (Childs et al., 2009). 
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3.1. Fault Permeability 

Flow barriers can be formed across faults, whereas flow conduits can be formed along them.  The 

ability of a fault to transmit fluids depends on several factors that include the permeability of 

fracture zone, the permeability of the host rock, the mechanical properties of the host rock, 

heterogeneity, mineralization, pressure gradients and fracture geometries (Nicol et al., 2017). 

When faults are present near a CO2 injection site, variations in pressures, temperatures and 

injection rates influence some of these factors through time. For instance, CO2 injection causes 

pore pressure increments and a reduction in effective stresses, thereby causing fracture apertures 

and/or fault slip or generating new fractures of hydraulic origin, all of which could compromise 

storage integrity and promote CO2 leakage (Nicol et al., 2017).  

Several observations determined that fracture permeabilities may change with depth when 

geochemical interactions of dissolution or precipitation occur. Also, when geomechanical forces 

increase, fracture permeabilities follow suit due to fracture opening (Nicol et al., 2017). When 

these processes that influence fracture aperture cease, fractures rarely close completely or return 

to their initial permeabilities. In other words, fracture permeabilities that are modified due to 

geochemistry and/or geomechanics undergo irreversible alterations. Particularly on sub-geological 

time scales, self-healing of fractures due to mineral precipitation is not expected on storage 

operations where CO2 migrates through faults (Nicol et al., 2017). When referring to fracture 

closure after geomechanical events subside or conclude, fracture permeabilities will not have the 

same initial value due to misalignment of rough surfaces (Nicol et al., 2017). These fundamental 

concepts are required for this work, and they will be accounted for and explained in the following 

sections. 
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3.2. CO2 Leakage through Faults 

If the fault structure is a conductive pathway, then CO2 can migrate through it if the buoyancy 

pressure exceeds the capillary entry pressure (Smith et al., 2011). CO2 leakage through faults may 

be hazardous and detrimental, especially when there are freshwater reservoirs in the upper 

formations. However, in some cases where no environmental damage is caused, it would be 

plausible to design CO2 storage sites that dissipate CO2 injection volumes to other reservoir layers 

through the fault zones (Smith et al., 2011). Besides environmental concerns, faults that were 

formed before CO2 injection, or the reactivation of faulted zones during the injection period can 

modify storage capacity, maximum injection pressures and rates, and caprock integrity (Nicol et 

al., 2017).  

In general, CO2 may leak along the fault zone or may make its way across the fault. Clay-rich 

(low-permeability) formations may impede flow across the fault, but the congregation of the 

fractures in the damage zone can promote flow along the fault. Along-fault migration of CO2 is 

more significant where there is a higher density of small-scale fractures, a more extensive or more 

connected fracture network and/or a critically stressed fault (Figure 3.3). Previous flow simulation 

results also show that compartmentalized low permeability reservoirs promote pressure buildup 

allowing the flow of CO2 along the fault (Nicol et al., 2017). Research has been done to evaluate 

the pressure variations during fault leakage in compartmentalized reservoirs (Mosaheb et al., 

2017a, 2017b, 2018). In along-fault flow, fracture connectivity is determinant for hydraulic 

conductivity. For instance, two different fault zones may have a similar fault structure, but only 

the one with sufficiently connected high-permeability pathways will allow fluid flow (Nicol et al., 

2017). 
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Figure 3.3. Possible paths of CO2 migration due to the formation of fracture networks as a result 

of injection pressure in a naturally fractured caprock (Smith et al., 2011). 
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Chapter 4. Multiphase Fluid Flow coupled with Geomechanics for CO2 

storage in Saline Aquifers 

In general, geomechanical studies help to explain phenomena such as reservoir compaction, 

subsidence, rock failure, pore collapse or wellbore stability (Tran et al., 2004). Geomechanics 

applied specifically to the modeling of CO2 sequestration helps explain vertical displacement, the 

opening of caprock fractures or the reactivation of pre-existing fractures, and notable seismic 

events (Varre et al., 2015).   

Four different ways in which caprocks can fail have been identified: diffusive loss through the 

caprock, leakage through pore spaces when the capillary breakthrough pressure has been exceeded, 

leakage through faults or fractures, and leakage through wells that are degraded or inappropriately 

abandoned. These leakage mechanisms are reviewed by Zhang et al. (2014).  Of these leakage 

pathways, the principal concern when evaluating caprock integrity often involves leakage through 

faults or fractures (Yudhowijoyo et al., 2018). Induced fractures and reactivated fractures have a 

negative impact on the integrity of the primary trapping mechanism, and CO2 may escape through 

the fractures and reduce storage capacity.  It is during the injection period that the fluid pressures 

are highest and that the CO2 is most mobile and prone to escape. To allow large-scale storage 

without fracturing the rock or activating dormant fracture and faults during this period, both of 

which could cause encroachment into freshwater aquifers, it is essential to avoid significant 

pressure increases at the well and in the underground storage formation. Over time, the structural 

integrity improves due to CO2 dissolution, precipitation or capillary trapping (Blunt, 2010). 

The potential of leakage will depend on external loads, formation types and rates or pressures of 

CO2 injection. Tran et al. (2009) presented an approach to predict possible leakage during CO2 

injection into an aquifer by coupling reservoir fluid flow with a geomechanical module in the 
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CMG-GEM simulator (CMG, 2017). Furthermore, the authors applied a modified Barton-Bandis 

model (Bandis et al., 1983) to calculate fracture permeability so that CO2 leakage through the 

caprock towards the overburden could be modeled.  

The inclusion of geomechanics in the reservoir simulator can be achieved by three methods. The 

fully coupled model calculates fluid flow and deformation parameters simultaneously. In the 

iterative method, fluid flow parameters are calculated first and then sent to the geomechanical 

module to calculate stresses, strains and deformation vectors that are sent back to the reservoir 

simulator. Results from the geomechanical calculations are sent back to the reservoir simulator in 

the form of coupling variables: porosity and permeability. These coupling variables are used to 

obtain new pressures and temperatures that are input data of the geomechanical module. This loop 

process iterates until reaching convergence (Tran et al., 2004). Figure 4.1 explains the iterative 

process of a simulation coupled with geomechanics. The explicit coupling performs the 

geomechanical calculations once, but these results are not input data of the reservoir simulator 

until the next time step. Regarding efficiency and flexibility, the iterative method is the best choice.  

It also demonstrated comparable accuracy when compared to the fully coupled method, where the 

governing equations of fluid flow and mechanical displacements are solved simultaneously each 

time step (Tran et al., 2004). 
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Figure 4.1. Flowchart for iterative coupling of fluid flow simulation with geomechanics (Tran et 

al., 2009). 

4.1. Barton-Bandis Model for Fracture Permeability 

In a conventional iterative coupling simulation with geomechanics, porosity and permeability of 

the rock are the parameters that transfer information from the geomechanical module to the flow 

simulator. When working with CO2 leakage, there is the need to include fracture permeability for 

more accurate modeling. Fracture permeability appears when the rock cracks because the material 

strength has been surpassed by internal pore pressure and particle bonding is no longer possible.   

The Barton-Bandis model (Figure 4.2) is used to estimate fracture permeability with variations in 

normal fracture effective stress σ’n that is equivalent to the minimum effective stress (Bandis et 

al., 1983; CMG, 2017; Tran et al., 2009). Initially (point A), the rock is either non-fractured or 

includes dormant fractures. Fractures become transmissible to flow once a threshold normal 

effective stress (point B) is reached. When this stress is reached in a suitably brittle rock, the 

fracture permeability increases instantaneously to a maximum fracture permeability or hydraulic 
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fracture permeability, khf (point C). If the pore pressure reduces, the normal effective stress 

increases, and as long as σ’n is less than cero the fracture permeability remains at khf (path DCE). 

When σ’n is greater than the fracture opening stress frs and greater than cero, fracture permeability 

reduces to fracture closure permeability kccf (point F). If σ’n keeps increasing, the permeability of 

the fracture reduces asymptotically following the Barton-Bandis model to a residual value of 

fracture closure permeability krcf (path FG) (Bandis et al., 1983; CMG, 2017). If σ’n reduces 

thereafter, fracture permeability will reversibly follow the path GFED (CMG, 2017). 

  

Figure 4.2. Fracture permeability based on modified Barton-Bandis model (Tran et al., 2009). σ’n 

is the normal fracture effective stress and kf the fracture permeability. Point A represents the initial 

conditions. Fracture permeability remains constant with the reduction of σ’n until point B, the 

threshold value. When σ’n reduces to the threshold value, permeability increases to the hydraulic 

fracture permeability. As soon as σ’n increases to a value higher than cero, permeability reduces to 

a fracture closure permeability that is always higher than the initial fracture permeability. If σ’n 

continues increasing, permeability is calculated by the Barton-Bandis model (path FG). 
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The original Barton-Bandis model (Bandis et al., 1983)is an empirical failure criterion that relates 

shear strength to the normal stress, and it is expressed in Equation 4.1. 

𝜏 = 𝜎𝑛 𝑡𝑎𝑛 [𝜑𝑏 + 𝐽𝑅𝐶  𝑙𝑜𝑔10 (
𝐽𝐶𝑆

𝜎𝑛
)]                                                                                            4.1 

where: 

 𝜏: Shear strength (psi) 

JRC: Joint roughness coefficient 

 𝜎𝑛: Normal fracture stress acting on the surface of the rock joint (psi) 

 JCS: Joint compressive strength (psi) 

 𝜑𝑏: Basic angle of internal friction of the slip surface 

The fracture permeability 𝑘𝑓 (md) can be calculated by (CMG, 2017): 

𝑘𝑓 = 𝑘𝑐𝑐𝑓 (
𝑒

𝑒0
)

4

        ≥        𝑘𝑟𝑐𝑓                                                                                           4.2 

where: 

 𝑘𝑐𝑐𝑓: Fracture closure permeability (md) 

 𝑘𝑟𝑐𝑓: Residual value of fracture closure permeability (md) 

 𝑒0: Initial fracture aperture (Ketzer et al.) 

The fracture aperture e is function of the minimum effective stress, fracture closure permeability, 

residual fracture permeability, initial fracture aperture, and initial normal fracture stiffness kni. 

𝑒 = 𝑒0 − 𝑉𝑗                                                                                                                                    4.3 

𝑉𝑗 =
𝜎𝑛

′

𝑘𝑛𝑖+𝜎𝑛
′  / 𝑉𝑚

                                                                                                                             4.4 

𝑉𝑚 = 𝑒0 [1 − (
𝑘𝑟𝑐𝑓

𝑘𝑐𝑐𝑓
)

1/4

]                                                                                                               4.5 

4.2. Fault Influence on CO2 geological storage 
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Fault zones have great importance on the risk evaluation of CO2 leakage since they may behave as 

conduits of CO2 migration. Where fault zones have a lower permeability related to the host rock, 

they can behave as a seal that impedes lateral fluid flow. However, in tight rocks fault zones may 

have higher permeabilities and behave as fluid conduits for the upward migration of CO2 (Cilona 

et al., 2015). The typical hydrogeological structure of a clastic rock consists of a fault core and 

damage zones, as shown in Figure 1.2. Fault cores have very low permeabilities in brittle clastic 

rocks due the accumulation of displaced material causing a reduction of grain size, permeability, 

and porosity. In contrast, the surrounding damaged zone has considerably greater permeability 

than the fault core and the surrounding unfractured zone due to the presence of complex systems 

of natural fractures. The damage zone is also more extensive than the fault core, which makes this 

zone hydraulically more important in the contribution of bulk permeability (Loveless et al., 2014). 

Therefore, vertical faults intersecting the aquifer formations near the injection site could cause 

CO2 leakage through natural fractures in their damage zones (Liu et al., 2010). Likewise, dormant 

fractures in the structure of non-leaking zones can be geomechanically and hydraulically activated 

by the CO2 injection and provide preferential leakage routes.  This effect is exacerbated as the CO2 

plume approaches the fault structure. Additionally, Huo et al. (2010) showed that natural fractures 

could facilitate horizontal displacement of the CO2 in the saline aquifer resulting in a plume with 

a greater extent, which could significantly alleviate pressure buildup. 
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Chapter 5. Model Validation: Fluid Flow Simulation Coupled with 

Geomechanics 

This Chapter presents the validation of the simulation model developed by Tran et al. (2009) 

performed with a two-dimensional reservoir model using CMG-GEM (2017) to show the effects 

of geomechanics on CO2 sequestration in an aquifer.  The reservoir has 411 discretizations in the 

horizontal direction, and 33 in the vertical. The model has two caprock layers above the reservoir. 

The fluid flow comprises CO2 and saline water. The depth of the top layer of the reservoir is 7425 

ft. No geochemical or mineral reactions were modeled, neither was water vaporization.  The 

permeability in x-, y-, and z-direction (kx, ky, and kz) in different zones is shown in Figure 5.2. The 

vertical to horizontal permeability ratio in all cases is 1:4. The low vertical permeability of 2.5E-

08 md in the shale caprocks ensures practically no fluid exchange between zones. A constant 

porosity of 0.13 is considered for all the zones.  The reservoir is constrained at the bottom and 

sides and allows the top to move freely. Additional input parameters are shown it Table 5.1 and 

5.2, and the relative permeability curves used for this model are presented in Figure 5.1. 

For this model, CO2 is injected for the first five years at a rate of 3,500,000 ft3/day. Figure 5.3 

shows the minimum horizontal effective stress at the center of caprock-2 at different times for the 

validation model and the results obtained in the present validation. It should be noted that the 

results do not show a perfect match because (Tran et al., 2009) simulated the model using CMG-

GEM v.2009, while this model is reproduced and simulated in CMG-GEM v. 2017, in this last 

version the Barton-Bandis model presented in Section 4.1 was modified and it is different to the 

Barton-Bandis model in CMG-GEM v.2009.  A profile of vertical displacements of Caprock 2 is 

shown in Figure 5.4 for comparison at various times. Before the crack opening at 152 days, and 

when the crack opens at the 213 days, the trend in the curve displacement vs. distance is similar. 
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However, after the crack opening, the displacement has less bending when compared to the earlier 

times. 

Table 5.1. Parameters of the injection well used for the validation of the investigation performed 

by Tran et al. (2009). 

Grid blocks well perforations (I, J, K) (51, 1, 30)  (51, 1, 31)  (51, 1, 32)  (51, 1, 

32) 

Injection duration 5 years 

CO2 mole fraction 1 

Maximum BHP (psi) 7500 

Maximum injection rate (ft3/day) 3,500,000 

 

 

Table 5.2. Geomechanical rock properties used in the validation model (Tran et al., 2009). 

Young modulus (kPa) 5E6 

Poisson’s ratio 0.25 

Barton-bandis model for Caprock 1 and 2 

Initial fracture aperture (Ketzer et al.) 6.5E-5 

Initial normal fracture stiffness (psi/ft) 3.0E-6 

Fracture opening stress (psi) 0 

Hydraulic fracture permeability, (md) 35 

Residual value of fracture closure permeability, (md) 5 

Initial stress distribution 

X-direction effective stress (psi) 500 

Y-direction effective stress (psi) 500 

Z-direction effective stress (psi) 1000 

X-Y plane shear stress (psi) 0 

Y-Z plane shear stress (psi) 0 

X-Z plane shear stress (psi) 0 

Linear variation in stress components with depth 

X direction effective stress gradient (psi/ft) 0.4628 

Y direction effective stress gradient (psi/ft) 0.4628 

Z direction effective stress gradient (psi/ft) 0.9256 

X-Y plane shear stress gradient (psi) 0 

Y-Z plane shear stress gradient (psi) 0 

X-Z plane shear stress gradient (psi) 0 
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Figure 5.1. Gas and water relative permeability curves used in the validation model (Tran et al., 

2009).  

 

 

Figure 5.2. Reservoir description for the validation model: horizontal and vertical permeability in 

the aquifer, caprocks, overburden-1, and overburden-2 (Tran et al., 2009). 
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Figure 5.3. Normal fracture effective stress at center of Caprock 2 and the center of the base of the 

Overburden 2. The minimum horizontal stress profiles show the fractures open after 213 days 

(0.58 years) of injection. 

 

Figure 5.4. Vertical displacement of Caprock 2. Vertical displacement increases gradually during 

CO2 injection. After four years of injection, the vertical displacement is approximately 0.2 m. 
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Figure 5.6 shows the comparison of the CO2 saturation profiles for the present validation model 

and the results obtained by (Tran et al., 2009). The gas-saturation distribution in the system is 

shown four years after injection begins. Note that for this specific time Caprock 1 was also 

fractured. 

A)                                                            B) 

                 

Figure 5.6. A) Contour map of CO2 gas saturation distribution after four years of injection 

presented by (Tran et al., 2009). B) Contour map of CO2 gas saturation distribution after four years 

of injection obtained by the validation model. It can be observed that fractures in Caprocks 1 and 

2 become conductive and allow leakage of CO2 into Overburdens 1 and 2. 
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Chapter 6. Simulation of a Representative Model with an Idealized Sealing 

Fault  

This chapter describes a simple geometry simulation model for CO2 sequestration in a saline 

aquifer. We use a dual permeability approach to account for the effect of fractures on fluid flow 

along/up a vertical laterally sealing fault with an impermeable core and a damage zone. Due to the 

non-conductivity of the fault core we only model up-fault leakage through the damage zone and 

neglect across-fault leakage.  The damage zone is homogeneous and isotropic which includes 

dormant fractures. It is important to mention that capillary scaling effects have a negligible 

influence on flow through homogenous damage zones (Zulqarnain et al., 2018), so they are not 

considered in the simulation. The simulation results are presented in terms of CO2 gas moles, stress 

changes, and fracture permeability and porosity alterations for ten years of CO2 injection. The 

opening, propagation, and closure of the dormant fractures in the damage zone have been modeled 

using the Barton-Bandis model.  

6.1. Model Description 

In this representative model, the vertical fault intersects three geological formations, two of which 

are sand layers separated by a shale caprock (Figure 6.1). The damage zone, which has a porosity 

of 8%, is thicker in the lower and upper sandstones than in the shale layer. The initial horizontal 

and vertical permeability of the damage zone in the sands is 0.65 md, and in the shale formation 

is 0.1 nd. The permeability of the damage zone can be lower than the permeability of the host sand 

layers, especially in reservoirs with high confining pressures (Zulqarnain et al., 2018). The damage 

zone generally has higher permeability than the shale host. However, for simulation purposes and 

assuming that the damage zone fractures are initially dormant in the shale host, the low 

permeability of 0.1 nd is considered for the damage zone in the shale layer.  Fracture spacing is 5 
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ft in the X, Y, and Z directions. The maximum CO2 injection rate is 50,000 ft3/day and is 

maintained for ten years regardless of bottom hole pressure. CO2 injection occurs from January 

2019 to January 2029 from a well located approximately 50 ft from the fault (Figure 6.1).  

 
Figure 6.1. Cross-sectional configuration of the simple geometry model. 

This model assumes a poro-elastoplastic behavior of the rocks.  Therefore, geomechanical 

calculations are performed according to the Mohr-Coulomb constitutive model.  The initial 

effective horizontal normal stress is 5000 psi, and the effective maximum normal stress is 8500 

psi at the top of the model.  The stress gradients for the horizontal and vertical directions are 0.879 

and 1.075 psi/ft respectively, which match those typically present in deep overpressured tight shale 

systems (Padmakar, 2013).  The Barton-Bandis model is applied only to the fractures in the 

damage zone, meaning that the permeability changes will be reflected only in this region.  Table 

6.1 displays the mechanical properties of the formations, and Table 6.2 shows the variables given 
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as input data for the Barton-Bandis model. Figure 6.2 presents the relative permeability curves 

used for this model. 

Table 6.1. Mechanical properties for the sandstones and the caprock in the simple geometry model 

(Molina et al., 2017). 

 Young 

Modulus 

E (psi) 

Cohesion 

C(psi) 

Poisson’s ratio            

ν 

Lower and upper 

sandstones 

7.25E4 1E5 0.2 

Shale (caprock) 3.625E6 1E5 0.3 

Table 6.2. Barton-Bandis model parameters applied only for fracture permeability calculations in 

the damage zones of the simple geometry model. Initial fracture aperture and initial normal fracture 

stiffness were obtained from Ketzer et al. (2012), and the other four parameters shown in the table 

were assumed. 

Initial fracture aperture  6.5E-5 

Initial normal fracture stiffness (psi/ft)  3.22E6 

Differential fracture opening stress (psi) -300 

Hydraulic fracture permeability (md) 1000 

Fracture closure permeability (md) 1000 

Residual value of fracture closure permeability (md) 50 

 

 

Figure 6.2. Gas and water relative permeability curves in the Mt. Simon sandstone in Western 

Ohio used for the simple geometry model (Krevor et al., 2012).  
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6.2. Results 

As anticipated, the inclusion of geomechanics in the simulation resulted in the opening of the 

dormant fractures in the damage zone causing the loss of caprock integrity and, therefore, the 

leakage of CO2. After 120 days of injection, CO2 starts leaking through the fractures of the damage 

zone that begin to open when the differential fracture opening stress exceeds 300 psi, as specified 

in the Barton-Bandis input variables. After 851 days of injection, CO2 starts to flow from the 

fractures into the upper sand. Figures 6.3 and 6.4 present the CO2 plume migration and distribution 

contour maps through the matrix and fractures at different times during injection. The main paths 

for CO2 leakage are the geomechanically activated fractures present in the damage zone. CO2 flow 

through the matrix of the damage zone is negligible compared with flow through the fractures. 

Figure 6.5 shows the contour maps of effective minimum horizontal stresses at different times 

during CO2 injection. It can be observed that the effective normal stress will reduce as the pore 

pressure increases due to CO2 injection. The most dramatic stress changes occur in the damage 

zone in the shale, if compared with the damage zone in the sandstones. At the bottom of the damage 

zone in the shale caprock, the minimum horizontal stress reduction after the injection period is 

about 3400 psi. The minimum horizontal stress of the damage zone located at the base of the upper 

sandstone decreases by approximately 1100 psi. Similar behavior is observed in the base of the 

damage zone in the lower sandstone where the normal effective stress reduction is about 1000 psi. 

The implementation of the Barton-Bandis model and the iterative geomechanical coupling allowed 

the simulation to change the fracture permeability in the damage zone. Figure 6.6 depicts the 

fracture permeability in the damage zone after one year of CO2 injection and at the end of the 

injection period. Initially, the fracture permeability is 0.1 nd, but after one year there is a fracture 

permeability change from the bottom of the damage zone to the mid-height of the shale.  In this 
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zone, the fracture permeability immediately increases to 1000 md.  At the end of the injection 

period the fracture permeability in all the extension of the damage zone in the shale changes to 

1000 md.  Porosity changes, computed on the basis of porosity coefficients which were estimated 

in the geomechanics module in a previous time step, are also calculated as a function of pressure, 

temperature and total mean stress (CMG, 2017). Figure 6.7 shows the porosity in the fractures 

of the damage zone at different times. The results show that porosity increases from 8% to values 

in the range of 9.5 to 10.3%. 
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  CO2 mole fraction-matrix, 1 year                CO2 mole fraction-matrix, 6 years                  CO2 mole fraction-matrix, 10 years 

 
  

Figure 6.3. CO2 mole fraction in the matrix for the dual-permeability fault model with simple geometry. After six years of injection, a 

considerable amount of CO2 saturated the vicinity of the fault in the upper sandstone. The lack of continuity of CO2 plume between the 

sands is because the main conduit for fluid migration is the opened fractures in the damage zone. After ten years of injection, more grid 

blocks in the sands are saturated by CO2.  
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    CO2 mole fraction-fractures, 1 year               CO2 mole fraction-fractures, 6 years        CO2 mole fraction-fractures, 10 years 

   
 

Figure 6.4. CO2 mole fraction in the fractures of the damage zone for the dual-permeability fault model with simple geometry. 
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      Minimum horizontal stress (psi),               Minimum horizontal stress (psi),             Minimum horizontal stress (psi), 

       1 year         6 years      10 years 

 
 

Figure 6.5. Minimum horizontal stress in the matrix for the dual-permeability fault model with simple geometry. Minimum horizontal 

stresses decrease in the damage zone and the sandstones as a consequence of injection-induced overpressures.  
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Fracture permeability profile (md), 1 year  Fracture permeability profile (md), 10 years 

                       
  

Figure 6.6. Vertical fracture permeability changes due to Geomechanics. Contour graphs of the damage zone for the dual-permeability 

fault model with simple geometry. After ten years of simulation, all the fractures in the shale have permeabilities in the range of 900 to 

1000 md. 
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Porosity Profile, 1 year      Porosity Profile, 10 years 

                            
  

Figure 6.7. Porosity changes due to Geomechanics– Matrix. Contour graphs of the damage zone for the dual-permeability fault model 

with simple geometry. Porosity in the shale increases from 8% to an average of 9.5% after ten years of injection. 
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In the following we investigate the pressure/stress behavior at different locations along the CO2 

migration path. The locations of interest are shown in Figure 6.8 and are listed explicitly below. 

1. 850 ft from the core of the fault in the upper sand and 90 ft from the top of the domain. 

2. 30 ft from the core of the fault in the damage zone of the upper sand, and 160 ft from the 

top of the domain. 

3. 850 ft from the core of the fault in the lower sand, and 960 ft from the top of the domain. 

4. 30 ft from the core of the fault in the damage zone of the upper sand, and 910 ft from the 

top of domain.  

5. 560 ft from the core of the fault in the shale, and 520 ft from the top of the domain.  

6. 60 ft from the core of the fault in the shale, and 510 ft from the top of the domain.  

7. 30 ft from the core of the fault in the damage zone of the shale and 170 ft from the top of 

the domain.  
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Figure 6.8. Location of the seven blocks used to study permeability, pressure and normal effective 

stresses during ten years of CO2 injection. 

Due to the proximity of the injection well to the damage zone and given the injection rate and flow 

capacity of the sandstone, there is relatively fast CO2 migration in the lower sand. Figure 6.9 

demonstrates that the normal effective stress changes non-monotonically at the lower portion of 

the damage zone of the shale (location 4). The early drop of the effective stress is simply due to 

the increase in the pressure. However, the pore pressure plateaus as more of the fractures open up 

inside the damage zone, allowing the injected fluid to dissipate.  The increment of stress observed 

after the pressure plateau is caused by the breakthrough of brine from the shale into the upper sand. 

Since the damage zone in the sand has a higher permeability than that in the shale, brine influx 

causes a reduction of pressure and an increase of stress. After the fractures are opened throughout 
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the damage zone the pressure continuously increases while the injection continues, causing the 

stress to drop. The dormant fractures in the shale begin to open after 149 days of injection when 

the normal fracture effective stress in the block reaches a value of approximately 3812 psi. Once 

the fractures open, their permeabilities can reach a maximum of 1,000 md. As a result, CO2 flows 

upwards through the damage zone fractures toward the upper zone (location 7 at the top of the 

shale damage zone). CO2 reaches location 3, about 800 feet from the injection site in the lower 

sandstone, after 609 days of injection when the normal fracture effective stress is around 4492 psi, 

at which fracture permeability also reaches 1,000 md as specified for the Barton-Bandis input 

parameters.  

 

Figure 6.9. Normal effective stresses and permeability changes for blocks 4 and 7 throughout the 

injection period. Fractures at the bottom of the shale (Location 4) open after 149 days (0.4 years). 

Dormant fractures at the top of the shale (Location 7) are activated after 609 days (1.7 years). 
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Figure 6.10 includes several stress profiles for locations 1 to 6. It can be observed that minimum 

horizontal stresses in location 1 experiences a reduction of 830 psi, and location 2 shows a 

reduction of 1210 psi after ten years of injection. Minimum horizontal stresses decrease by 880 psi 

in location 3, and by 3,530 psi in location 4 at the end of the injection period. For location 5 situated 

in the middle of the shale but far from the damage zone it is evident that pore pressure does not 

change because brine nor CO2 pressure is enough to allow fluid entrance into the shale host rock 

because of its very low permeability (0.1 nd). However, minimum horizontal stress shows a 

decrement of 20 psi at the end of the injection period as a result of deformation in the damage 

zone. In location 6, however, there are stress changes that may be caused by both deformations in 

the damage zone and brine or CO2 flow. Minimum horizontal stress in location 6 shows a reduction 

of 625 psi after 10 years.  
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A)                                                                                                                             B) 

                                             
 

C)                                                                                                                             D)                

                                         
Figure 6.10. Figures A to D represent minimum horizontal stress changes for locations 1, 2, 3, 4, 5 and 6.
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Chapter 7. Coupled Modeling of a Geologically Realistic Fault Effect on CO2 

Storage Integrity  

In departure from the idealized fault structure modeled in the previous chapter, we present a more 

realistic fault which may represent faults present in potential CO2 storage sites in Louisiana 

(Zulqarnain et al., 2017). Like the previous chapter, the model includes a dual permeability 

approach to account for fractures in the damage zone. Initially, the fractures in the damage zone 

are dormant; fractures could allow the fluid to pass along the damage zone only if they are activated 

due to geomechanical forces.  

7.1. Model Description 

The model is similar to the one in Chapter 6 in the sense that it comprises two sandstone layers 

and a shale formation lying in the middle of the sandstones. The lateral sealing fault has an 

impermeable core and a damage zone with different geometrical and petrophysical characteristics 

in the sandstones and the shale. The damage zone contains fractures that are not active at the 

beginning of injection. Mechanical properties of the sands and the shale are presented in Table 7.1. 

The properties were applied to the damage zone and the host rock. 

Table 7.1. Mechanical properties used for the simulation and study of a realistic model (Molina et 

al., 2017; Rutqvist et al., 2013). 

Parameters Shale Upper and lower sand 

Young’s modulus, E (psi) 4.3E6 2.9E6 

Poisson’s ratio, ν (-) 0.25 0.2 

Joint cohesion (psi) 870 100,000 

The model is representative of a 780 ft thick shale formation that is bounded at the top by a 130 ft 

thick sandstone and at the bottom by a 270 ft sand formation in north Louisiana. The same 

hydraulic and mechanical properties are used for both sandstones. This 3-layer system is 

intersected by a normal fault with a dip angle of 70° and an initial offset displacement of 155 ft. 
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Fractures in the damage zone are equally distributed with a constant fracture spacing of 5 ft in the 

sands and 10 ft in the shale. The damage zone in the upper and lower sands has a thickness of 68 

ft measured perpendicular to the fault plane. The thickness of the damage zone in the shale has an 

average thickness of 57 ft also measured perpendicular to the fault plane (See Figure 7.1).  

 

Figure 7.1. Cross-sectional configuration used for the realistic simulation. The model resembles a 

CO2 storage site in Louisiana (Zulqarnain et al., 2018) 

The initial pore pressure gradient is 0.465 psi/ft, and the thermal gradient is 8.54 °F/1000 ft.  

In this study, the stress field is typical of a normal fault where the vertical stress (σv) is the 

maximum compressive stress, and the minimum compressive stress is the minimum horizontal 

stress (σh). Therefore, σv > σH > σh, where σH signifies the maximum horizontal stress. We set the 

maximum principal stress gradient (vertical stress) to 1.17 psi/ft corresponding to a gradient of 

168.6 lb/ft3 density of overburden (Cipolla et al., 2010; Rutqvist et al., 2013; Starr, 2011). The 

minimum compressive stress gradient was set to 0.7 psi/ft. 

252 ft 
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Shale formations generally tend to be brittle (Rutqvist et al., 2013). For a rock with a composition 

of 25% clay and a Poisson’s ratio of 0.25, the Young’s modulus is 4.3E6 psi (equivalent to 30 

GPa) (Guo et al., 2012). The cohesion for the shale is set to 870 psi (6 MPa). Sand is less friable 

with a Young’s modulus of 7.25E5 psi (5 MPa) and a Poisson’s ratio of 0.2 (Molina et al., 2017). 

For the simulation the cohesive strength of the sandstone is set to 100,000 psi. 

The permeability of the damage zone of the fractures is a crucial parameter for the simulation. The 

vertical permeabilities are one tenth of the horizontal permeabilities. The matrix and fractures in 

the damage zone located in the shale are assumed to have very low conductivity with a horizontal 

permeability of 100 nd and vertical permeability of 10 nd. Similar permeability values are found 

in real shale formations such as the Opalinus shale in Switzerland where both the matrix and the 

damage zone are hydraulically undistinguishable having a permeability of 20 nd despite the fact 

that the damage zone is highly fractured, meaning that the fractures are practically closed (Croisé 

et al., 2004; Rutqvist et al., 2013). Input data for permeability in the damage zones and host rocks 

are displayed in Table 7.2. 

Table 7.2. Permeability table for the matrix and fractures for the system in the realistic simulation 

model (Croisé et al., 2004; Rutqvist et al., 2013). 

  Host rock Damage zone 

  Horizontal 

permeability 

kh (md) 

Vertical 

permeability 

kv (md)  

Horizontal 

permeability 

 kh (md) 

Vertical 

permeability 

 kv (md) 

Upper and lower 

sandstone 

Matrix 600 60 6 0.6 

Fractures - - 0.1 0.01 

Shale Matrix 2E-5 2E-6 0.0001 1E-5 

Fractures - - 0.0001 1E-5 

 

When fractures that were once closed are activated, a change in fracture width occurs along with 

permeability and porosity changes. This fracture aperture is usually between 100 and 200 µm. 
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With this change of fracture aperture permeability increases by 3 to 5 orders of magnitude 

(Rutqvist et al. (2013). For the present study, the maximum permeability after activating the 

dormant fractures is set to 10 md. Table 7.3 provides the necessary input parameters for the Barton-

Bandis model. 

Table 7.3. Variables used for calculation of permeability after fractures activation with the Barton-

Bandis model in the realistic model setup (Ketzer et al., 2012; Rutqvist et al., 2013). 

Initial fracture aperture, E0 (Ketzer et al.)  6.5E-5 

Initial normal fracture stiffness, kni (psi/ft) 3.2284E-6 

Fracture opening stress (psi) -300 

Hydraulic fracture permeability, frs (md) 10 

Fracture closure permeability, kccf (md) 10 

Residual value of fracture closure permeability, krcf (md) 1 

The relative permeability curves used for the realistic model were also obtained from Krevor et al. 

(2012) and they are the same used for the simple geometry model (Figure 6.2).  

7.2. Simulation results 

The simulation results are obtained for a constant CO2 injection rate of 500,000 ft3/day for 30 

years. The perforated interval for injection is located at the lowermost 500 ft. The well is vertical 

and is located 252 ft from the core of the fault, distance measured at the top of the lower sandstone. 

Due to the geomechanical opening of the fractures, CO2 starts leaking through the bottom of the 

shale after approximately six years of injection. The CO2 mole fraction is still meager and therefore 

not graphically represented in Figure 7.3. However, CO2 flow in the damage zone does not 

accompany fracture initiation. The first opened fractures in the shale’s damage zone occur after 

180 days of injection due to a pressure buildup of the brine in the lower sandstone. Fracture 

openings in the damage zone of the upper sand start occurring at the 25th year of injection, while 

CO2 starts breaking in after 27 years of injection. 
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      CO2 mole fraction - matrix, 6 years            CO2 mole fraction - matrix, 10 years 

     

 

CO2 mole fraction - matrix, 30 years                CO2 mole fraction - matrix, 40 years 

                 (end of injection)            

         

Figure 7.2. Contour maps of CO2 mole fraction distribution in the matrix for the dual-permeability 

model with real geometry at different times during the injection period (after 10, 20 and 30 years) 

and post-injection (after 40 years of simulation). 
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CO2 mole fraction-fractures 
                       6 years                10 years       30 years (end of injection)       40 years 

 

Figure 7.3. CO2 mole fraction in the fractures of the damage zone for the model with realistic 

geometry at different times during the injection period (after 10, 20 and 30 years) and post-

injection (after 40 years of simulation). 

Figures 7.2 and 7.3 present the CO2 mole fraction in the matrix and the fractures at different times 

during and after the injection period. As in the simple geometry model of the previous chapter (see 

Figure 7.2), the main pathway for the CO2 plume from the lower to the upper sand is through the 

fractures in the damage zone. 

An important observation in Figures 7.2 and 7.3 is that even 10 years after the injection well is 

shut-in, CO2 continues flowing along the fault and towards the upper sand. Reasons for this 

behavior include gravitational segregation where the CO2 moves upwards due to its lighter density 

and continued overpressurization in the injection zone providing a driving force for continued 

leakage. The pressure dissipates over time leading to the closure of fractures in the damage zone 

when the pressures fall below the closure pressure. 
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                 Minimum horizontal stress (psi), 10 years                                 Minimum horizontal stress (psi), 20 years 

     

        Minimum horizontal stress (psi), 30 years (end of injection)              Minimum horizontal stress (psi), 40 years 

     

 

Figure 7.4. Minimum horizontal stress contour graphs for the realistic model at different times during the injection period (after 10, 20 

and 30 years) and post-injection (on 2059 and after 40 years of simulation). 



47 
 

 

  

 

 

Fracture permeability (md) 

Initial fracture permeability           10 years                          20 years            30 years (end of injection)             40 years 

       
 

 

Figure 7.5.  Evolution of vertical fracture permeability in the damage zone at different times of CO2 injection and after ten years of 

injection ceases. 
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The effective minimum horizontal stress is shown in Figure 7.4. As observed, the average 

minimum horizontal stress in the lower sand reduces by about 2500 psi at the end of the 30 years 

of injection. The stress in the damage zone of the shale decreases by an average of 600 psi after 

the injection period due to the increasing pore pressures caused by CO2 injection. 

The vertical permeabilities evolution in the fractures is shown in Figure 7.5. Ten years after 

injection ceases (or 40 years of simulation), fracture vertical permeabilities in several grid blocks 

reduce to values between 0.1 and 1 md. This phenomenon is observed because, in the absence of 

injection, the normal effective stress increases until surpassing its threshold value. When this 

happens, fracture apertures start closing, which translates to a permeability reduction. However, 

permeabilities do not reach initial values due to the plasticity of the rock. 

 

Figure 7.6. Location of the 7 blocks used for the analysis of permeability, pressure and minimum 

effective stress. 

 1 

3 

2 

4 

5 

6 

7 
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Similar to Chapter 6, we present the leakage pressure behavior at several locations of interest. The 

locations of interest are shown in Figure 7.5 and are listed in detail below. 

1. 1250 ft from the core of the fault in the upper sand and 80 ft from the top of the upper 

sandstone. 

2. 20 ft from the core of the fault in the damage zone of the upper sand, and 100 ft from the 

top of the upper sandstone.  

3. 880 ft from the core of the fault in the lower sand and 120 ft from the top of the lower 

sandstone. 

4. 50 ft from the core of the fault in the damage zone of the lower sand, and 220 ft from the 

base of the lower sandstone.  

5. 470 ft from the core of the fault in the shale, and 530 ft from the top of the upper sandstone.  

6. 60 ft from the core of the fault in the shale, and 450 ft from the top of the upper sandstone.  

7. 30 ft from the core of the fault in the damage zone of the shale and 70 ft from the top of the 

upper sandstone.  

For locations 3 and 4 (both in the lower sandstone) pressure increases due to CO2 injection for 

approximately 27 years. After this period, pore pressure declines because the CO2 plume reaches 

the upper sand and pressure is then dissipated in the lower sand. When injection stops after 30 

years, the CO2 plume continues flowing towards the upper sand, resulting in an additional pressure 

reduction in the lower sand for ~1.5 years. When all the pressure dissipates, and under the absence 

of injection, the pore pressure remains almost constant until the end of the simulation, which is ten 

years after the end of injection. Minimum horizontal stresses reduce at different rates until 27 years 

of injection. In location 4 (near the base of the caprock damage zone) there is a marked change in 

stress at the 9th year of injection that may arise from a significant fracture permeability change in 
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the base of the shale. The stress remains almost constant from the 21st to the 27th year of injection 

as more fractures open in the damage zone. When the CO2 breaks through at the upper sand, the 

minimum horizontal stress increases as a result of pore pressure reduction. After the injection well 

is shut in, the stress will continue increasing for about 1.5 years due to the contained overpressure 

after the injection. After this period, stress will remain more or less constant until the end of the 

simulation (Figure 7.7). 

 
Figure 7.7. Minimum horizontal stress and pore pressure profiles for locations 3 and 4, both located 

in the lower sand. The profiles show results for the 30 first years of injection and ten more years 

of post-injection. 

 

For the locations of study in the upper sand, we can observe that pore pressure will remain constant 

until fluids start to enter the formation after 26 to 27 years of injection. At that period of time, the 

pressure in location 2 (at the top of the caprock damage zone) rises considerably until 1.5 years 

after injection. The pressure in location 1 (located far from the fault in the upper sandstone) 

increments more slowly than that in location 2.  Stresses in locations 1 and 2 continue increasing 
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for a short period after the injector well is closed. After the 32nd year of simulation the pressure in 

location 1 continues increasing with a lower slope. 

 
Figure 7.8. Minimum horizontal stress and pore pressure profiles for blocks 1 and 2, both located 

in the lower sand. The profiles show results for the 30 first years of injection and ten more years 

of post-injection. 

 

For location 5, which is in the middle of the shale but far from the damage zone of the fault, pore 

pressure remains constant throughout the injection and post-injection periods. Minimum 

horizontal stress shows a reduction in the first 10 years of injection and an increase for the next 17 

years where the stress starts decreasing due to the intrusion of fluids in the upper sandstone (Figure 

7.9). 
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Figure 7.9. Minimum horizontal stress and pore pressure profiles in the middle of the caprock 

(location 5). The profiles show results for the 30 first years of injection and ten more years of post-

injection. 

 

In the shale pores neighboring the damage zone in the middle of the confining unit (location 6) 

there are pressure and stress changes that may be caused purely by geomechanical forces or due 

to brine displacement that occurs due to the proximity to the damage zone. The pressure remains 

constant until the 8th year of injection, and it increases until the fluid breaks in the upper sandstone 

after 25 years of injection, then it starts decreasing until the 34th year of simulation. Finally, for the 

last 6 years of post-injection, pressure increases slightly and then remains almost constant. The 

minimum horizontal stress increases slightly after the first eight years of injection, then reduces 

3617 psi until the 25th year of injection, but when there’s breakthrough of fluids in the upper 

sandstone, the stress starts increasing until the 34th year.  After this year the stress has some minor 

variations (Figure 7.10). 
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Figure 7.10. Minimum horizontal stress and pore pressure profiles for location 6 (in the caprock 

and contiguous to the damage zone). The profiles show results for the 30 first years of injection 

and ten more years of post-injection. 
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Chapter 8. Conclusions 

In this work, three different simulation cases were conducted by using CMG-GEM (2017) to 

investigate the effect of a fault on the storage of CO2 in underground saline aquifers. This study 

can be concluded with three major conclusions as follows. 

• This study numerically shows the importance of poro-elastic/plastic behavior of fault zone 

and hysteresis in fracture permeability change for realistic modeling of flow through fault 

zone in CO2 sequestration applications. When CO2 is injected near a fault zone, injection 

pressure causes the fractures in the damage zone to be geomechanically activated. The 

fractures in the damage zone then have a higher permeability forming conductive pathways 

for CO2 migration. 

• When an ideal model with multiple horizontal layers and a vertical lateral sealing fault is 

investigated, three major observations can be reported from the simulation results. First, 

the breakthrough of CO2 into the lower sand occurrs after 120 days of injection and into 

the upper sand after 1.7 years of injection. Second, the fractures permeability in the damage 

zone in the caprock reaches a maximum hydraulic permeability of 1000 md. Third, the 

porosity in the damaged zone increases from 8% to values in the range of 8.7 to 10.3%.  

• When a model based on a tilted lateral sealing fault located in a potential site of CO2 storage 

in Louisiana is studied, the three major observations are summarized as follows. First, the 

times of fracture activation and CO2 breakthrough are not the same; in fact the fractures 

are open long before CO2 reaches these fractures. Second, permeability of most fractures 

in the shale’s damage zone reach the hydraulic permeability of 10 md after the injection 

period ends. After 10 years of post-injection several regions experience a reduction in 

permeability to values higher than the residual permeability following the Barton-Bandis 
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model. Third, the porosity in the shale’s damage zone increases from 1% to values in the 

range of 1.11 to 1.59% at the end of injection. 

This work did not account for heterogeneities in the damage zone, capillary pressure effects, or 

geochemical reactions. Future research work may include these processes for more detailed and 

accurate simulations results. 
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