Design, Synthesis and Study of the Bridged and Cofacially-Arrayed Poly-P-Phenylene Molecular Wires

Matthew J. Modjewski
Marquette University

[^0]
by

Matthew J. Modjewski

A Thesis Submitted to the Faculty of the Graduate School, Marquette University, in Partial Fulfillment of the Requirements for the Degree of

Master of Science

Milwaukee, Wisconsin

December 2009

Abstract

Two novel series of bridged and cofacially-arrayed poly-p-phenylenes have been designed synthesized and studied. The bridged poly-p-phenylenes have been synthesized from a readily available diacetylenic precursor utilizing three high yielding steps, and their structures were determined by ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$ NMR spectroscopy as well as X-ray crystallography. The racemization barrier between the two atropoisomers was found to be $\sim 12 \mathrm{Kcal} \mathrm{mol}^{-1}$; the versatility of the synthesis employed was extended to synthesis a triply bridged tetra- p-phenylene and a quadruply bridged penta- p-phenylene.

The cofacially-arrayed poly-p-phenylenes have shown that the X-ray crystal structures of the neutral compounds are largely dominated by $\mathrm{C}-\mathrm{H}--\pi$-interactions interactions while the dicationic species display an almost perfect parallel arrangement of the cofacially-arrayed poly-p-phenylene moieties. Electrochemistry of the cofaciallyarrayed poly-p-phenylenes and their model compounds consistently met the reversibility criteria. Electronic absorption spectra show that the two series are strikingly similar; however the emission spectra show that the cofacially-arrayed poly-p-phenylenes are significantly broader and bathochromically shifted in comparison to the model compounds.

Electrochemical oxidation of 2,3,6,7-tetramethoxy-9,10-dimethylanthra-cene showed that it undergoes a highly reversible electrochemical oxidation $\left(E_{\mathrm{ox}}=0.81 \mathrm{~V}\right.$ vs. SCE) and forms a modestly stable cation-radical salt in solution. The X-ray crystal structure showed the presence of a dicationic homotrimer that decomposes in the spiro adduct when allowed to sit at ambient temperatures.

Acknowledgements

- I would like to thank Dr. Rajendra Rathore for giving me the opportunity to work in his laboratory for these past two years and for his constant support and advice throughout my academic career here at Marquette.
- I would also like to express my thanks to my committee members; Dr. Mark Steinmetz and Dr. James Gardinier
- I would also like to thank all of my group members for their constant friendship, advice and support.

Dedication

- I would like to dedicate this thesis to my wife Erin Modjewski and to all of my family for their constant support, love and encouragement all throughout my life.

Table of Contents

List of Tables iv
List of Figures vi
List of Schemes ix
Chapter 1 A Versatile Preparation of Geländer-Type \boldsymbol{p}-Terphenyls from a Readily Available Diacetylenic Precursor
1.1 Introduction 2
1.2 Results and Discussion 3
1.3 Summary and Conclusion 15
1.4 Experimental Section 16
1.5 Experimental Spectra 49
Chapter 2 Isolation and X-Ray Structural Characterization of a Dicationic Homotrimer of 2,3,6,7-Tetramethoxy-9,10-Dimethylanthracene Cation Radical
2.1 Introduction 91
2.2 Results and Discussion 92
2.3 Summary and Conclusion 103
2.4 Experimental Section 104
Chapter 3 Synthesis and Optoelectronic Properties of Cofacially-StackedPoly-p-Phenylene Derivatives: X-Ray Crystallographic Evidence ofThrough-Space Charge Delocalization
3.1 Introduction. 112
3.2 Results and Discussion 117
3.3 Summary and Conclusion 134
3.4 Experimental Section 135
3.5 Experimental Spectra. 152

List of Tables

Table 1. Molecular structures of various doubly-bridged p-terphenyls obtained by X-ray crystallography. 6
Table 2. Crystal data and structure refinement of $\mathbf{4 a}$. 79
Table 3. Crystal data and structure refinement of $\mathbf{4 b}$. 80
Table 4. Crystal data and structure refinement of $\mathbf{4 c}$ 81
Table 5. Crystal data and structure refinement of $\mathbf{4 d}$. 82
Table 6. Crystal data and structure refinement of 5d. 83
Table 7. Crystal data and structure refinement of $\mathbf{4 e}$ 84
Table 8. Crystal data and structure refinement of $\mathbf{4 f}$. 85
Table 9. Crystal data and structure refinement of $\mathbf{4 g}$. 86
Table 10. Crystal data and structure refinement of $\mathbf{4 h}$. 87
Table 11. Crystal data and structure refinement of $\mathbf{5 i}$. 88
Table 12. Crystal data and structure refinement of the
bischromiumtricarbonyl complex of $\mathbf{4 a}$ 89
Table 13. DFT calculations of the bond length changes between
neutral and cation radical 1 99
Table 14. Crystal data and structure refinement of neutral 1 107
Table 15. Crystal data and structure refinement of $\mathbf{1}^{+\boldsymbol{}} \mathbf{S b C l}_{\mathbf{6}}{ }^{-}$. 108
Table 16. Crystal data and structure refinement of $\left[\mathbf{5}^{\mathbf{2 + \bullet}}\left(\mathbf{S b C l}_{\mathbf{6}}\right)_{\mathbf{2}}\right]$ 109

Table 17. The optical and electrochemical data of F2-Ar and F1-Ar
derivatives .. 124
Table 18. Crystal data and structure refinement for F2-Ph 162
Table 19. Crystal data and structure refinement for F2-Tol 163
Table 20. Crystal data and structure refinement for F1-Tol........................ 164
Table 21. Crystal data and structure refinement for F2-BP......................... 165
Table 22. Crystal data and structure refinement for F2-BPH...................... 166
Table 23. Crystal data and structure refinement for F2-An......................... 167
Table 24. Crystal data and structure refinement for F2-DMT 168
Table 25. Crystal data and structure refinement for $\left[(\mathbf{F 2} \mathbf{- P h})^{\mathbf{2 +}}\left(\mathbf{S b C l}_{\mathbf{6}}{ }_{\mathbf{-}}\right)_{\mathbf{2}}\right] .169$
Table 26. Crystal data and structure refinement for $\left[(\mathbf{F} 2 \mathbf{- T o l})^{\mathbf{2 +}}\left(\mathbf{S b C l}_{\mathbf{6}} \mathbf{-}_{\mathbf{2}}\right] 170\right.$
Table 27. Crystal data and structure refinement for $\left[(\mathbf{F} 2-\mathbf{D M T})^{\mathbf{2 +}}\left(\mathbf{S b C l}_{\mathbf{6}}{ }^{-}\right)_{\mathbf{2}}\right] 171$
Table 28. Crystal data and structure refinement for F2-Ver-Cl.................. 172
Table 29. Crystal data and structure refinement for F2-Ph-Br6 173

List of Figures

Figure 1. Showing the similarity of the shape of doubly-bridged p-terphenyl with the helical ribbons and the banister of a helical staircase .2

Figure 2. Showing the two isoenergetic atropoisomers of p-terphenyl 4a as obtained by DFT calculations 9

Figure 3. Isoenergetic conformers of $\mathbf{4 g}$ obtained within a single crystalline sample10

Figure 4. VT ${ }^{1} \mathrm{H}$ NMR spectra of the aliphatic region of $\mathbf{4 e} . ~ 11$
Figure 5. \quad X-ray crystal structure of the neutral 2,3,6,7-tetramethoxy-9,10-dimethylanthracene (1) including the extended packing....... 93

Figure 6. Cyclic voltammograms of $\mathbf{1}$ showing reversibility at scan
\qquad
Figure 7. Spectral changes attendant upon the reduction of MA^{+}* cation radical by addition of substoichiometric amounts of 196

Figure 8. X-Ray crystal structure of the dicationic homotrimer of $\mathbf{1}$............ 97
Figure 9. DFT calculations of the dicationic homotrimer of 1...................... 99
Figure 10. ORTEP and stick diagram of the dicationic spiro adduct $\left[\mathbf{5}^{\mathbf{2 + \bullet}}\left(\mathrm{SbCl}_{6}{ }^{-}\right)_{2}\right]$. .101

Figure 11. Spacing diagram of $\left[\mathbf{5}^{2+\bullet}\left(\mathrm{SbCl}_{6}{ }^{-}\right)_{2}\right]$ showing that the molecules do not overlap with each other

Figure 12. Line diagrams of bichromophoric electron donors showing the interplanar angles between a pair of veratrole moieties......... 112

Figure 13. The molecular structures of representative cation radical salts established by X-ray crystallography113

Figure 14. The crystal structure of $\mathbf{Q P}^{+\boldsymbol{}} \mathrm{SbCl}_{6}{ }^{-}$cation radical showing the stacked dimeric pairs114

Figure 15. Structure and naming scheme of cofacially-arrayed pimer cation radical precursors ($\mathbf{F 2}$-Ar) and the corresponding model compounds (F1-Ar)116

Figure 16. Electronic absorption spectra of various F2-Ar and F1-Ar 119
Figure 17. Emission and excitation spectra of various F2-Ar and F1-Ar 120
Figure 18. Cyclic voltammograms of F1-Ph and F2-Ph at scan rates between 50 and $500 \mathrm{mV} / \mathrm{s}$122

Figure 19. Cyclic and square wave voltammograms of various F2-Ar and F1-Ar at a scan rate of $200 \mathrm{mV} / \mathrm{s} . ~ 123 ~$

Figure 20. The structures and redox potentials of the aromatic oxidants used for the generation of pimeric dications125

Figure 21. Spectral changes obtained upon the redox titrations of
\qquad
Figure 22. A comparison of the absorption spectra of $\mathbf{F 2} \mathbf{-} \mathbf{A r}^{2+}$ and $\mathbf{F} 1-\mathbf{A r}^{+\bullet}$127

Figure 23. Typical aromatic-acromatic interactions observed in the solid state 128

Figure 24. The molecular structures of various (neutral) F2-Ar and a model F1-Ar derivative (F1-Tol), obtained by X-ray crystallography, are compared

Figure 25. The representative structures of F2-Tol and F2-An showing that the conformations of various F2-Ar are controlled, in part by effective intramolecular $\mathrm{CH}--\pi$ interactions .130

Figure 26. Conformations of F2-Bp and F2-BPH showing that while the conformation of $\mathbf{F} 2$-BP is dominated by $\mathrm{CH}--\pi$ interactions, the F2-BPH is controlled by efficient stacking of the nonpolar hexyl groups connected to the polyphenylenes .130

Figure 27. The molecular dicationic $\left[\mathbf{F 2} 2 \mathbf{P h}^{2+}\left(\mathrm{SbCl}_{6}{ }^{-}{ }_{2}\right],\left[\mathbf{F 2} 2-\mathbf{T o l}^{\mathbf{2 +}}\left(\mathrm{SbCl}_{6}\right)_{2}\right]\right.$, and [F2-DMT $\left.{ }^{\mathbf{2 +}}\left(\mathrm{SbCl}_{6}{ }^{-}\right)_{2}\right]$, obtained by X-ray crystallography .. 131

Figure 28. The packing arrangement of $\left.\left[\mathbf{F 2}-\mathrm{DMT}^{2+}\left(\mathrm{SbCl}_{6}\right)_{2}\right)_{2}\right] \ldots ~ . ~ 133$
Figure 29. Comparing the neutral F2-DMT and the dicationic [F2-DMT ${ }^{2+}\left(\mathrm{SbCl}^{-}\right)_{2}$] X-ray crystal structures 134

List of Schemes

Scheme 1. Synthesis of diacetylenic precursor 1 3
Scheme 2. A 3 step synthetic protocol of Geländer-type p-terphenyls 4
Scheme 3. Preparation of biscyclohexyl derivative $\mathbf{4 h}$ 5
Scheme 4. Intramolecular Friedel-Crafts cyclizations leading to both the 5 and 7 membered carbocycles 7
Scheme 5. Preparation of the quadruply-bridged penta- p-phenylene 13
Scheme 6. Preparation of the singly-bridged biphenyl and the triply-bridged tetra- p-phenylene 14
Scheme 7. Proposed mechanism for the formation of the dicationic spiro adduct $\left[\mathbf{5}^{\mathbf{2 + \bullet}}\left(\mathrm{SbCl}_{6}{ }^{-}\right)_{2}\right]$ 102
Scheme 8. Synthetic scheme for the preparation of various F2-Ar and
\qquadF1-Ar derivatives.118
Bibliography 174

CHAPTER 1

A Versatile Preparation of Geländer-Type \boldsymbol{p}-Terphenyls from a Readily Available Diacetylenic Precursor

Abstract

A series of doubly bridged p-terphenyls (4) have been synthesized utilizing a facile three step synthesis starting from the readily available diacetylenic precursor (1) in excellent overall yields and their structures were confirmed by ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$ NMR Spectroscopy as well as by X-ray Crystallography. The racemization barriers between the meso and chiral atropoisomers of the 4 were found to be $\sim 12 \mathrm{Kcal} / \mathrm{mol}$ by variable temperature NMR Spectroscopy. The versatility of the protocol developed herein was further demonstrated by the preparation of a singly-bridged biphenyl, a triply-bridged tetra- p-phenylene and a quadruply-bridged penta- p-phenylene derivative.

1.1 INTRODUCTION

The doubly-bridged p-terphenyls are helical ribbon-shaped molecules which have been coined the name "Geländer" owing to the similarity of the their shape with the banister of a spiral staircase, i.e. Figure 1. ${ }^{1-3}$

Figure 1. Showing the similarity of the shape of doubly-bridged p terphenyl with the helical ribbons and the banister of a helical staircase.

The helical biaryls, such as binaphthyls and biphenyls, have found widespread usage as chiral ligands in modern asymmetric catalysis. ${ }^{4-7}$ Although, a multi-step synthesis of Geländer-type terphenyls has been reported by Vögtle and coworkers, ${ }^{1}$ their potential either in asymmetric catalysis or for materials' applications, thus far, remains unexplored. The lack of applications may arise, in part, owing to the unavailability of a simple general synthesis of such doubly-bridged p-terphenyls as well as bridged biphenyls. ${ }^{8-10}$

Herein we report a versatile synthesis of a variety of doubly-bridged p-terphenyls from a readily available diacetylenic precursor via a simple three-step route which involves high-yielding reactions, such as Suzuki coupling, catalytic hydrogenation, and intramolecular Friedel-Crafts alkylation (see Scheme 2). Various doubly-bridged terphenyls, obtained in excellent overall yields, were characterized by NMR spectroscopy and by X-ray crystallography. Moreover, it is shown that these doubly-bridged p terphenyls, similar to the singly-bridged biphenyls, ${ }^{11-12}$ undergo a ready racemization at room temperature as probed by variable temperature ${ }^{1} \mathrm{H}$ NMR spectroscopy and by DFT calculations. The details of these findings are described herein.

1.2 RESULTS and DISCUSSION

Thus, the common diacetylenic precursor $\mathbf{1}$ for the synthesis of doubly-bridged p terphenyls was easily obtained in excellent yield via a standard Sonogashira coupling ${ }^{13}$ of the readily available 1,4-dibromo-2,5-diiodo-benzene ${ }^{14}$ and 2-methyl-3-butyn-2-ol, i.e. Scheme 1.

Scheme 1. Synthesis of diacetylenic precursor 1 for the preparation of Geländer-type p-terphenyls.

Syntheses of the various doubly-bridged p-terphenyls from 1 were accomplished via a three-step route as follows. Thus, a standard Suzuki coupling ${ }^{15-16}$ of the diacetylenic precursor 1 with various aryl boronic acids (see Table 1) in the presence of a $\operatorname{Pd}(0)$ catalyst afforded the diacetylenic p-terphenyls (2), which in most cases were easily purified by a simple filtration over a short pad of silica gel using a hexanes/ethyl acetate mixture as the eluent. The resulting diacetylenic p-terphenyls (2) were then subjected to catalytic hydrogenation in ethyl acetate in the presence of 10% palladium on activated carbon as the catalyst. The resulting reduced terphenyls (3) were then treated with methanesulfonic acid in dichloromethane at room temperature to afford the doublybridged p-terphenyls via two facile intramolecular Friedel-Crafts cyclizations ${ }^{17}$ (Scheme 2).

Scheme 2. A 3-step synthetic protocol for the preparation of Geländertype p-terphenyls from diacetylenic precursor $\mathbf{1}$.

With the use of the protocol developed in Scheme 2, a variety of doubly-bridged p-terphenyls were prepared in excellent overall yields (see Table 1) and their structures were established by ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$ NMR spectroscopy and further confirmed by X-ray crystallography (see Table 1).

It is noteworthy that the usage of 1-ethynyl-1-cyclohexanol instead of 2-methyl-3-butyn-2-ol (in Scheme 1) easily allows for the preparation of a bis-cyclohexyl derivative 4h instead of the corresponding tetramethyl derivative $\mathbf{4 e}$ (see Table 1 and Scheme 3).

Scheme 3. Preparation of bis-cyclohexyl derivative 4h.

Table 1. Molecular structures of various doubly bridged p-terphenyls obtained by X-ray crystallography and their overall yields in 3-steps.

80^{a}

76

${ }^{\text {a }}$ Yields include both of the doubly-bridged p-terphenyls 4 and the centrally cyclized isomer 5 (vide infra), i.e. 4a/5a: 83:17; 4d/5d: 38:62; $\mathbf{4 f} / \mathbf{5 f}$: 58:42. ${ }^{\mathrm{b}} \mathbf{4 f}$ did not afford single crystals and thus a tert-butyl derivative was prepared by a reaction of $\mathbf{4 f}$ with tert-butyl chloride and a catalytic amount of FeCl_{3} (see Experimental Section). ${ }^{18} \mathrm{c} \mathrm{A}$ single crystal of $\mathbf{4 g}$ contained a $1: 1$ mixture of meso (shown) and d / l mixture (see text below).

As such, the preparation of $\mathbf{4 h}$ also demonstrates that the bridge substituents (i.e dimethyl and cyclohexyl in $\mathbf{4 e}$ and $\mathbf{4 h}$, respectively) can be easily varied by employing an appropriate acetylenic tertiary alcohol, which, in turn, can be readily prepared by a reaction of the acetylene monoanion with the corresponding ketone, e.g. eq 1.

As shown in Scheme 4, the final step of the synthesis of the doubly-bridged p terphenyls (4) required that the Friedel-Crafts cyclization must occur at the terminal aryls producing a pair of entropically less-accessible 7-membered carbocycles. Indeed, the substrates which contained an activating para-substituent (i.e. at carbon 3) on the terminal aryls (i.e. $\mathbf{3 b}, \mathbf{3 c}, \mathbf{3 e}, \mathbf{3 g}$ and $\mathbf{3 h}$) exclusively produced the doubly-bridged p-terphenyls (4), without contamination from the products (i.e. 5) formed via an alternative FriedelCrafts cyclization to the central aromatic ring producing the entropically favored 5membered carbocycles (i.e. Scheme 4).

Scheme 4. Intramolecular Friedel-Crafts cyclizations leading to 7-membered versus 5 -membered isomers.

Expectedly, in the case of p-terphenyl substrates (i.e. 3a, 3d, and $\mathbf{3 f}$), which do not contain an activating substituent at carbon 3 of the terminal aryl groups (i.e. para to the carbons indicated by the red dots), the Friedel-Crafts cyclization also produced significant amounts of bis-indano products (i.e. 5a, 5d, and $\mathbf{5 f}$) where the cyclization occurred at the central aromatic ring (see Scheme 4 and Table 1). Furthermore, the structure of a representative bis-indano product (i.e. 5d) was confirmed by X-ray crystallography (see Scheme 4).

In order to further confirm that the preferential formation of doubly-bridged p terphenyls (4), containing 7-membered carbocycles in Scheme 4, did not occur via an acid catalyzed rearrangement of $\mathbf{5}$ to $\mathbf{4}$ or vice versa, samples of both $\mathbf{4 a}$ and $\mathbf{5 a}$ were subjected to the same acidic conditions employed for the Friedel-Crafts intramolecular cyclizations and the course of the reactions were monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy over several days. Under these conditions, both $\mathbf{4 a}$ and $\mathbf{5 a}$ showed no signs of interconversion as judged by the ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis of the aliquots after 3 and 6 days.

The DFT calculations at the B3LYP/6-31G ${ }^{*}$ level showed that two atropoisomers of the doubly bridged p-terphenyls, i.e. the chiral syn atropoisomer $\left(C_{2}\right)$ or the achiral anti (meso) astropoisomer $\left(C_{i}\right)$, are isoenergentic (see Figure 2).

Figure 2. The structures of the two isoenergetic atropoisomers of the doubly bridged p-terphenyl $4 \mathbf{4}$ as obtained by DFT calculations at the B3LYP/6-31G* level.

Interestingly, however, in the solid state almost all doubly-bridged p-terphenyls showed the presence of only the centrosymmetric anti (meso) conformer with the dihedral angles between the central and peripheral aryl rings varying only in a very narrow range, i.e. $45.6-49.5^{\circ}$, as determined by X-ray crystallography (see Table 1). The exception being the fluoranyl containing $\mathbf{4 g}$ which contained a $1: 1$ mixture of both syn and and anti atropoisomers in a single crystal, i.e. the meso and chiral atropoisomers (see Figure 3). The co-crystallization of both syn and anti conformers may, in part, arise owing to the fact that each half of the syn- $\mathbf{4 g}$ was structurally identical to that of the anti$\mathbf{4 g}$ (see Figure 3) with the dihedral angles of 47.6 and 46.9° between the central aryl and fluoranyl rings.

Figure 3. Isoenergetic conformers of $\mathbf{4 g}$ obtained within a single crystalline sample.

The low activation barriers for the interconversion between the (isoenergetic) syn and anti conformers of the various doubly-bridged p-terphenyls was apparent by the presence of broadened methyl signals in their ${ }^{1} \mathrm{H}$ NMR spectra at ambient temperatures (see Experimental Spectra and Figure 4).

Variable temperature ${ }^{1} \mathrm{H}$ NMR spectroscopy of a representative doubly-bridged p terphenyl (4e) in dichloromethane- d_{2} over a temperature range of +20 to $-90^{\circ} \mathrm{C}$ showed that the interchange between the two isoenergetic conformers can be frozen at $\sim-60{ }^{\circ} \mathrm{C}$; and the activation energy for the interchange into syn and anti conformers ${ }^{19}$ was
estimated to be $E_{a} \sim 12 \mathrm{Kcal} \mathrm{mol}^{-1}$ by line-shape analysis of the signals in the variable temperature ${ }^{1} \mathrm{H}$ NMR spectra in Figure 4 (see additional spectra in the Experimental Spectra Section).

Figure 4. ${ }^{1} \mathrm{H}$ NMR spectra of the aliphatic region of p-terphenyl $4 \mathbf{e}$ which shows that the broadened signal due to 4 methyl groups (at $\sim 1.1 \mathrm{ppm}$) and the methylene protons (at 2.1 and 2.5 ppm) split into two sets of peaks at $\sim-60^{\circ} \mathrm{C}$.

A substitution of the methyl groups in p-terphenyl $\mathbf{4 e}$ with cyclohexyl groups (i.e. 4h) did not change the activation barrier for the interconversion between the two atropoisomers. The broadened signals attributed to the cyclohexyl moiety, the methoxy peaks, and the aromatic peaks of $\mathbf{4} \mathbf{h}$ resolved into two sets of signals at low temperatures (see Experimental Spectra for VT ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{4 h}$).

The versatility of the synthetic protocol in Schemes 1 and 2 for the preparation of various doubly-bridged p-terphenyls, was readily extended for the preparation of a higher poly-p-phenylene homologue with fixed dihedral angles (Scheme 5). ${ }^{20}$ For example, a quadruply-bridged penta- p-phenylene 9 was obtained in good overall yield by a one-pot Suzuki coupling of the dibromo derivative $\mathbf{6}$ with monoacetylenic precursor $\mathbf{7}$ to afford $\mathbf{8}$ followed by a simple hydrogenation and a reaction with methanesulfonic acid (Scheme 5). The dibromo derivative $\mathbf{6}$ was, in turn, obtained by a bromination of $\mathbf{4 a}$ while $\mathbf{7}$ was prepared by Sonogashira coupling according to Scheme 1.

In order to complete the series of bridged ploy-p-phenylenes containing up to 5 phenylene moieties, a singly-bridged biphenyl and triply-bridged tetra-p-phenylene were also prepared by adaptation of the synthetic protocol in Schemes 1 and 2. Thus, Suzuki coupling of phenylboronic acid with monoacetylenic precursor 7 afforded 10. A simple hydrogenation of $\mathbf{1 0}$ followed by an acid-catalyzed cyclization furnished the singlybridged biphenyl 12 in good yield. The singly-bridged biphenyl $\mathbf{1 2}$ was converted to triply-bridged tetra-p-phenylene 17 (see Scheme 6) using a protocol similar to that described for the preparation of quadruply-bridged penta-p-phenylene 9 (compare Scheme 5).

Scheme 5. Preparation of quadruply-bridged penta- p-phenylene.

Scheme 6. Preparation of singly-bridged biphenyl (12) and triply-bridged tetra- p-phenylene (17).

1.3 SUMMARY and CONCLUSIONS

In summary, we have developed a facile synthesis of the doubly bridged p terphenyls from the readily available diacetylenic precursor (1) via three high-yielding synthetic steps. In most cases, the X-ray crystal structure analysis showed that the achiral (meso) atropoisomer preferentially crystallizes with the exception of $\mathbf{4 g}$ whose crystalline samples contained both the achiral and chiral atropoisomers within the same crystal. It was also shown by variable temperature ${ }^{1} \mathrm{H}$ NMR spectroscopy that the interchange between the two atropoisomers can be prevented at low temperatures. Successful syntheses of singly-bridged biphenyl 12, triply-bridged tetra-p-phenylene $\mathbf{1 5}$ and quadruply-bridged penta- p-phenylene 9 were also accomplished which further demonstrates the versatility of the synthetic protocol in Schemes 1 and 2. The availability of these homologues of bridged poly-p-phenylenes will allow the study of their optoelectronic properties in comparison to the simple poly-p-phenylenes. ${ }^{20}$

1.4 EXPERIMENTAL SECTION

General Experimental Methods and Materials. All reactions were performed under an argon atmosphere unless otherwise stated. 1,4-dibromobenzene, 2-methyl-3-butyn-2-ol, 3,4-dimethoxyphenylboronic acid, phenylboronic acid, 4-biphenylboronic acid, 1-ethynyl-1-cyclohexanol, anhydrous benzene, anhydrous toluene, anhydrous ethanol, sulfuric acid, diisopropylamine, anhydrous 1,2-dimethoxyethane, ethyl acetate, methanesulfonic acid, copper(I) iodide, bis(triphenylphosphine)palladium(II) dichloride, 3-bromoanisole, 3-bromotoluene, sodium carbonate, tetrakis(triphenylphosphine)palladium(0), 10\% palladium on activated carbon, n butyllithium, anhydrous ferric chloride, 2-chloro-2-methylpropane, trimethylborate, and triisopropylborate were all commercially available and used without further purification. 4-methoxyphenylboronic acid, and 9,9-dihexylfluoren-2-ylboronic acid were prepared according to standard literature procedures.

Anhydrous tetrahydrofuran (THF) was prepared by refluxing the commercial tetrahydrofuran over lithium tetrahydroaluminate under an argon atmosphere for 24 hours followed by distillation. It was stored under an argon atmosphere in a Schlenk flask equipped with a Teflon valve fitted with Viton O-rings. NMR spectra were recorded on 300 and 400 MHz NMR spectrometers.

Synthetic details for the preparation of various intermediates for the synthesis of \boldsymbol{p} terphenyls

1,4-Dibromo-2,5-diiodobenzene.

In a $500-\mathrm{mL} 3$-neck flask equipped with a thermometer adapter and condenser, 1,4dibromobenzene ($19.5 \mathrm{~g}, 82.7 \mathrm{mmol}$) was dissolved in 250 mL concentrated sulfuric acid with heating. Elemental iodine $(46.2 \mathrm{~g}, 181.9 \mathrm{mmol})$ was added to the solution portion wise while heating. The resulting purple mixture was stirred at $125-135^{\circ} \mathrm{C}$ for 2 days during which the sublimated iodine was washed into the reaction mixture by shaking the flask after every 2 hours. The resulting mixture was cooled to room temperature and poured into ice water (300 mL), and extracted with dichloromethane ($3 \times 30 \mathrm{~mL}$). The dichloromethane layer was then stirred with a dilute solution of sodium hydroxide (300 mL) in order to remove any excess iodine. The dichloromethane layer was separated and the aqueous sodium hydroxide layer was extracted once with dichloromethane (30 mL), and the combined organic layers were dried over anhydrous magnesium sulfate, evaporated, and dried under vacuum. A large portion of the product remained as a solid mass in the original reaction mixture which was broken up, triturated with dilute sodium hydroxide solution (300 mL), and filtered. Both portions combined gave a yellow solid which was recrystallized from a dichloromethane/methanol mixture. Yield (33.9 g, 84\%);
mp: 160-162 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 8.04(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 101.57,129.42$, 142.51.

Preparation of Diacetylenic Precursor 1.

1,4-Dibromo-2,5-diiodobenzene ($8.0 \mathrm{~g}, 16.4 \mathrm{mmol}$) was dissolved in anhydrous benzene $(80 \mathrm{~mL})$ and diisopropylamine $(48 \mathrm{~mL})$ in an oven dried Schlenk flask under an argon atmosphere and the flask was evacuated and filled with argon (3x). Then, CuI (120 mg) and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(100 \mathrm{mg})$ were added to the flask under an argon atmosphere and the flask was again evacuated and filled with argon (3x). Finally, 2-methyl-3-butyn-2-ol (3.2 $\mathrm{mL}, 32.8 \mathrm{mmol}$) was added to the flask via syringe and the flask was evacuated and filled with argon (3x) once more. The resulting solution was allowed to stir at room temperature overnight. The resulting yellow solution was diluted with water (100 mL) and extracted with ether ($3 \times 30 \mathrm{~mL}$). The ether layer was washed with water (100 mL), extracted, dried over anhydrous magnesium sulfate, evaporated, and dried under vacuum to give a bright orange solid. The resulting solid was filtered over a short pad of silica gel using 30% ethyl acetate/hexanes as eluent to afford $\mathbf{1}$ as a pale orange solid. Yield (6.4 g , 98\%); mp: 133-136 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 1.62(\mathrm{~s}, 12 \mathrm{H}), 2.42(\mathrm{~s}, 2 \mathrm{H}), 7.59(\mathrm{~s}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}\right) \delta: 31.37,65.90,79.74,101.30,123.94,126.13,136.22$.

General Procedure (a) for the Preparation of Various Diacetylenic Terphenyls (2).

Solid 1 and the corresponding aryl boronic acid (3 equiv.) were dissolved in anhydrous 1,2-dimethoxyethane (DME) (30 mL) in an oven dried Schlenk flask under an argon atmosphere and the flask was evacuated and filled with argon (3x). In another oven dried Schlenk flask a solution of anhydrous sodium carbonate (5.0 g) in water (20 mL) was prepared under an argon atmosphere and the flask was also evacuated and filled with argon (3x). To the DME solution, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(50 \mathrm{mg})$ and the salt solution were added sequentially under a strict argon atmosphere followed by evacuation and filling the flask with argon (3x) after each addition. The flask was covered with foil and the solution was allowed to reflux overnight. The resulting solution was cooled to room temperature, quenched with water (50 mL) and extracted with dichloromethane (3 x 20 mL). The organic layer was dried over anhydrous magnesium sulfate, evaporated and dried under vacuum. The various 2 were either filtered over a short pad of silica gel with a hexanes/ethyl acetate mixture as eluent or purified by column chromatography using a hexanes/ethyl mixture to give the pure $\mathbf{2}$.

2a: Yield ($0.97 \mathrm{~g}, 98 \%$) beige solid; $\mathrm{mp} ; 176-178{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 1.47(\mathrm{~s}, 12 \mathrm{H})$, $1.91(\mathrm{~s}, 2 \mathrm{H}), 7.36-7.47(\mathrm{~m}, 6 \mathrm{H}), 7.55(\mathrm{~s}, 2 \mathrm{H}), 7.59-7.62(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta:$ $31.21,65.81,81.78,98.19,121.40,127.97,128.11,129.38,133.92,139.47,142.71$.

2d: Yield ($0.85 \mathrm{~g},>99 \%$) beige solid; $\mathrm{mp}: 182-184{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 1.49(\mathrm{~s}$, $12 \mathrm{H}), 1.99(\mathrm{~s}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 6 \mathrm{H}), 6.95(\mathrm{~d}, 4 \mathrm{H}, J=8.8 \mathrm{~Hz}), 7.50(\mathrm{~s}, 2 \mathrm{H}), 7.55(\mathrm{~d}, 4 \mathrm{H}, J=$ $8.8 \mathrm{~Hz}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 31.28,55.53,65.83,82.04,97.92,113.49,121.14,130.53$, 131.90, 133.91, 141.74, 159.45
$2 e:$ Yield $(0.91 \mathrm{~g},>99 \%)$ brown solid; mp: $149-152{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 1.50(\mathrm{~s}$, $12 \mathrm{H}), 1.88(\mathrm{~s}, 2 \mathrm{H}), 3.94(\mathrm{~s}, 6 \mathrm{H}), 3.96(\mathrm{~s}, 6 \mathrm{H}), 6.93(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}), 7.16(\mathrm{~d}, 4 \mathrm{H}, J=$ $8.2 \mathrm{~Hz}), 7.52(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 31.36,56.10,56.14,65.75,81.84,98.13$, $110.74,112.69,121.13,121.78,132.16,134.07,141.98,148.46,148.89$

2f: Yield ($0.95 \mathrm{~g}, 91 \%$) beige solid; mp: 257-260 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 1.51(\mathrm{~s}, 12 \mathrm{H})$, $1.93(\mathrm{~s}, 2 \mathrm{H}), 7.38(\mathrm{~d}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz}), 7.48(\mathrm{t}, 4 \mathrm{H}, J=7.3 \mathrm{~Hz}), 7.63(\mathrm{~s}, 2 \mathrm{H}), 7.65-7.70$ $(\mathrm{m}, 8 \mathrm{H}), 7.71-7.73(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 31.27,65.88,81.81,98.36,121.40$, $126.83,127.32,127.69,129.07,129.82,134.09,138.36,140.80,142.18$.
$2 g:$ Yield ($1.13 \mathrm{~g}, 93 \%$) yellow solid; $\mathrm{mp}: 102-105^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 0.69-0.80$ $(\mathrm{m}, 20 \mathrm{H}), 1.07-1.14(\mathrm{~m}, 24 \mathrm{H}), 1.46(\mathrm{~s}, 12 \mathrm{H}), 1.83(\mathrm{~s} 2 \mathrm{H}), 2.02(\mathrm{t}, 8 \mathrm{H}), 7.32-7.38(\mathrm{~m}, 6 \mathrm{H})$, $7.45(\mathrm{~s}, 2 \mathrm{H}), 7.60(\mathrm{~s}, 2 \mathrm{H}), 7.65(\mathrm{~d}, 2 \mathrm{H}, J=7.9 \mathrm{~Hz}), 7.75(\mathrm{~d}, 4 \mathrm{H}, J=7.9 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 14.24,22.77,24.01,29.87,31.37,31.72,40.51,55.45,65.85,82.05,98.26$,
118.96, 120.03, 121.44, 123.21, 123.42, 127.02, 127.36, 128.51, 134.18, 138.56, 140.89, 140.95, 143.31, 151.10, 151.19.

General Procedure (b) for the Preparation of Various Diacetylenic Terphenyls (2).

In an oven dried Schlenk flask under an argon atmosphere the aryl bromide (5 equiv.) was dissolved in dry THF (20 mL) and cooled to $-78^{\circ} \mathrm{C}$, n-butyllithium (6 equiv., 2.5 M in hexane) was added dropwise and the solution was allowed to stir for one hour while the temperature was maintained at $-78^{\circ} \mathrm{C}$. Then, trimethylborate (8 equiv.) was added via syringe and the mixture was allowed to come to room temperature overnight. In a separate Schlenk flask, a salt solution was made with water (8 mL) and anhydrous sodium carbonate (6 equiv.), at the same time, toluene (20 mL) and ethanol (20 mL) were added to the reaction mixture via syringe so that the toluene:ethanol:water ratio is 3:3:1. Next, solid $\mathbf{1}$ was added to the reaction flask and a condenser attached to a bubbler was placed on the reaction vessel and the flask was evacuated and filled with argon (3x). To the reaction mixture, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(50 \mathrm{mg})$ and the salt solution were added sequentially under a strict argon atmosphere followed by evacuation and filling the flask with argon (3x) after each addition. The flask was covered with foil and the solution was allowed to reflux overnight. The resulting solution was cooled to room temperature, quenched with
water $(50 \mathrm{~mL})$ and extracted with dichloromethane ($3 \times 20 \mathrm{~mL}$). The organic layer was dried over anhydrous magnesium sulfate, evaporated and dried under vacuum. The various $\mathbf{2}$ were purified by column chromatography over silica gel using a hexanes/ethyl acetate mixture as the eluent to afford the pure various 2.

2b: Yield ($0.81 \mathrm{~g}, 76 \%$) yellow solid; mp: 139-142 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 1.48$ (s, $12 \mathrm{H}), 2.06(\mathrm{~s}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 6 \mathrm{H}), 7.18(\mathrm{~m}, 2 \mathrm{H}), 7.31(\mathrm{~m}, 2 \mathrm{H}), 7.41(\mathrm{~m}, 4 \mathrm{H}), 7.54(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}\right) \delta: 21.66,31.22,65.75,81.87,98.03,121.25,126.45,128.01,128.62$, $130.07,133.95,137.56,139.34,142.58$

2c: Yield ($1.09 \mathrm{~g}, 94 \%$) pale brown oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 1.48(\mathrm{~s}, 12 \mathrm{H}), 2.03(\mathrm{~s}, 2 \mathrm{H})$, $3.86(\mathrm{~s}, 6 \mathrm{H}), 6.92(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.17(\mathrm{~d}, 4 \mathrm{H}, J=7.7 \mathrm{~Hz}), 7.34(\mathrm{t}, 2 \mathrm{H}, J=7.7,8.0$ $\mathrm{Hz}){ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 31.24,55.53,65.80,81.69,98.40,113.41,115.17,121.33$, $121.86,129.13,133.89,140.75,142.54,159.34$

General Procedure for the Catalytic Hydrogenation of Various Diacetylenic Terphenyls.

The corresponding 2 from above was placed into a Parr apparatus along with a stir bar and dissolved in ethyl acetate. To the solution, 10% Palladium on activated Carbon catalyst (100 mg) was added. The vessel was then put under hydrogen pressure (3 bar) for 24 hours after which time the solution was filtered over a short pad of silica gel. The silica gel was washed with ethyl acetate ($2 \times 20 \mathrm{~mL}$), the solvent was evaporated and the resulting $\mathbf{3}$ was dried under vacuum and used without further purification.

3a: Yield ($0.89 \mathrm{~g}, 90 \%$) yellow solid; mp: $160-161{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 1.01(\mathrm{~s}$, $2 \mathrm{H}), 1.07(\mathrm{~s}, 12 \mathrm{H}), 1.63(\mathrm{~m}, 4 \mathrm{H}), 2.67(\mathrm{~m}, 4 \mathrm{H}), 7.15(\mathrm{~s}, 2 \mathrm{H}), 7.33-7.46(\mathrm{~m}, 10 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: \quad 27.87,29.07,45.89,71.00,127.15,128.32,129.45,131.29,137.45$, 141.20, 141.66

3b: Yield ($0.83 \mathrm{~g},>99 \%$) yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 1.01(\mathrm{~s}, 12 \mathrm{H}), 1.57(\mathrm{~m}, 4 \mathrm{H})$, $1.97(\mathrm{~s}, 2 \mathrm{H}), 2.33(\mathrm{~s}, 6 \mathrm{H}), 2.58(\mathrm{~m}, 4 \mathrm{H}), 7.06-7.26(\mathrm{~m}, 10 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 21.68$, 27.87, 29.06, 45.94, 71.02, 126.49, 127.79, 128.17, 130.17, 131.23, 137.34, 137.85, 141.16, 141.65.

3c: Yield ($1.08 \mathrm{~g}, 97 \%$) yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 1.09(\mathrm{~s}, 12 \mathrm{H}), 1.65(\mathrm{~m}, 4 \mathrm{H})$, $2.67(\mathrm{~m}, 4 \mathrm{H}), 3.85(\mathrm{~s}, 6 \mathrm{H}), 6.89-6.97(\mathrm{~m}, 6 \mathrm{H}), 7.15(\mathrm{~s}, 2 \mathrm{H}), 7.31-7.36(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 27.86,29.11,45.94,55.50,71.01,112.65,115.10,121.90,129.29,131.15$, $137.39,141.10,143.07,159.53$

3d: Yield ($0.83 \mathrm{~g}, 95 \%$) yellow solid; mp: $151-153{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 1.06(\mathrm{~s}$, $2 \mathrm{H}), 1.10(\mathrm{~s}, 12 \mathrm{H}), 1.64(\mathrm{~m}, 4 \mathrm{H}), 2.66(\mathrm{~m}, 4 \mathrm{H}), 3.86(\mathrm{~s}, 6 \mathrm{H}), 6.95(\mathrm{~d}, 4 \mathrm{H}, J=8.4 \mathrm{~Hz})$, $7.12(\mathrm{~s}, 2 \mathrm{H}), 7.29(\mathrm{~d}, 4 \mathrm{H}, J=8.4 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 27.88,29.14,45.90,55.53$, $71.05,113.73,130.49,131.46,134.12,137.58,140.57,158.80$
$3 \boldsymbol{e}$: Yield $(0.90 \mathrm{~g}, 96 \%)$ yellow solid; mp: $152-155{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 1.10(\mathrm{~s}$, $12 \mathrm{H}), 1.49(\mathrm{~s}, 2 \mathrm{H}), 1.66(\mathrm{~m}, 4 \mathrm{H}), 2.68(\mathrm{~m}, 4 \mathrm{H}), 3.90(\mathrm{~s}, 6 \mathrm{H}), 3.93(\mathrm{~s}, 6 \mathrm{H}), 6.90-6.95(\mathrm{~m}$, $6 \mathrm{H}), 7.14(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 27.91,29.21,31.41,45.89,56.13,70.97,110.99$, $112.77,121.56,131.37,134.36,137.59,140.86,148.19,148.64$

3f: Yield ($0.83 \mathrm{~g}, 86 \%$) yellow solid; mp: 229-231 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 1.10(\mathrm{~s}, 2 \mathrm{H})$, $1.12(\mathrm{~s}, 12 \mathrm{H}), 1.71(\mathrm{~m}, 4 \mathrm{H}), 2.75(\mathrm{~m}, 4 \mathrm{H}), 7.23(\mathrm{~s}, 2 \mathrm{H}), 7.35-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.51(\mathrm{~m}$, $8 \mathrm{H}), 7.66-7.70(\mathrm{~m}, 8 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 27.93,29.15,45.96,71.06,127.04$, $127.29,127.55,129.04,129.90,131.40,137.61,139.99,140.69,140.86,140.99$.
$3 g$: Yield ($0.74 \mathrm{~g}, 94 \%$) yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 0.68-0.79(\mathrm{~m}, 22 \mathrm{H}), 1.05-1.16$ $(\mathrm{m}, 36 \mathrm{H}), 1.66(\mathrm{~m}, 4 \mathrm{H}), 1.99(\mathrm{t}, 8 \mathrm{H}), 2.77(\mathrm{~m}, 4 \mathrm{H}), 7.23(\mathrm{~s}, 2 \mathrm{H}), 7.32-7.37(\mathrm{~m}, 10 \mathrm{H})$, 7.73-7.77 (t, 4H, $J=7.3 \mathrm{~Hz}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 14.24,22.83,24.08,28.03,29.18$, $29.95,31.73,40.59,45.80,55.30,70.95,119.46,119.92,123.12,124.07,126.99,127.21$, $128.08,131.45,137.66,140.10,140.47,141.03,141.76,150.93,151.05$.

General Procedure for the Intramolecular Friedel-Crafts Cyclization.

To a stirred solution of $\mathbf{3}$ (1-2 mmol; without additional purification) in dichloromethane $(15-30 \mathrm{~mL})$ at room temperature was added methanesulfonic acid $(1-2 \mathrm{~mL})$. The reaction progress was monitored by ${ }^{1} \mathrm{H}$ NMR, and when it was deemed complete, the solution was quenched with aqueous sodium bicarbonate $(50-100 \mathrm{~mL})$. The organic layer was separated and the aqueous layer was further extracted with dichloromethane ($3 \times 20 \mathrm{~mL}$). The combined organic extracts were dried over anhydrous magnesium sulfate, evaporated and dried under vacuum. The various solid 4 were purified by recrystallization from a dichloromethane/methanol mixture to give the solid 4.

4a: Yield ($0.50 \mathrm{~g}, 76 \%$), pale-yellow solid; mp: 200-202 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 1.12$ (broad s, 12H), $2.14(\mathrm{t}, 4 \mathrm{H}), 2.61(\mathrm{t}, 4 \mathrm{H}), 7.21(\mathrm{~s}, 2 \mathrm{H}), 7.31-7.38(\mathrm{~m}, 4 \mathrm{H}), 7.44-7.50(\mathrm{~m}$, $4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 31.76,32.49,37.99,49.04,125.64,126.59,127.36,127.66$, $130.55,138.07,140.69,142.25,146.37$.
$5 a$ (centrally cyclized isomer): Yield ($0.10 \mathrm{~g}, 15 \%$), pale-yellow solid; mp: $249-251^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: \quad 0.92(\mathrm{~s}, 12 \mathrm{H}), 1.67(\mathrm{t}, 4 \mathrm{H}), 2.35(\mathrm{t}, 4 \mathrm{H}), 7.18-7.22(\mathrm{~m}, 4 \mathrm{H}), 7.28-$ $7.34(\mathrm{~m}, 10 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 28.81,28.97,43.57,45.71,126.74,127.87,129.81$, $134.99,140.74,141.65,146.35$.

4b: Yield ($0.67 \mathrm{~g},>99 \%$) yellow solid; mp: $250-253{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 1.11$ (broad s, 12H), $2.12(\mathrm{t}, 4 \mathrm{H}), 2.43(\mathrm{~s}, 6 \mathrm{H}), 2.61(\mathrm{t}, 4 \mathrm{H}), 7.16(\mathrm{~d}, 2 \mathrm{H}, J=7.9 \mathrm{~Hz}), 7.21(\mathrm{~s}$, $2 \mathrm{H}), 7.28(\mathrm{~s}, 2 \mathrm{H}), 7.37(\mathrm{~d}, 2 \mathrm{H}, J=7.9 \mathrm{~Hz}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 21.08,31.88,32.54$, $37.61,48.93,125.61,127.59,127.95,131.35,135.94,138.09,140.53,142.18,143.44$.

4c: Yield ($0.73 \mathrm{~g}, 93 \%$) yellow solid; mp: 231-234 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 1.09$ (broad $\mathrm{s}, 12 \mathrm{H}), 2.09(\mathrm{t}, 4 \mathrm{H}), 2.61(\mathrm{t}, 4 \mathrm{H}), 3.87(\mathrm{~s}, 6 \mathrm{H}), 6.87(\mathrm{~d}, 2 \mathrm{H}, J=8.6 \mathrm{~Hz}), 7.01(\mathrm{~s}, 2 \mathrm{H})$, $7.21(\mathrm{~s}, 2 \mathrm{H}), 7.38(\mathrm{~d}, 2 \mathrm{H}, J=8.6 \mathrm{~Hz}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 32.02,32.52,37.30,48.82$, 55.55, 112.01, 116.27, 126.69, 127.62, 138.21, 138.73, 141.79, 142.21, 158.08.

4d: Yield ($0.17 \mathrm{~g}, 29 \%$) yellow solid; mp: 239-240 ${ }^{\circ} \mathrm{C}$: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 1.09$ (broad $\mathrm{s}, 12 \mathrm{H}), 2.10(\mathrm{t}, 4 \mathrm{H}), 2.58(\mathrm{t}, 4 \mathrm{H}), 3.87(\mathrm{~s}, 6 \mathrm{H}), 6.87\left(\mathrm{dd}, 2 \mathrm{H}, J_{l}=2.5 \mathrm{~Hz}, J_{2}=8.4 \mathrm{~Hz}\right)$, $7.04(\mathrm{~d}, 2 \mathrm{H}, J=2.5 \mathrm{~Hz}), 7.14(\mathrm{~s}, 2 \mathrm{H}), 7.37(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta:$ $31.71,32.52,38.12,48.68,55.44,110.20,112.99,127.41,131.45,133.40,137.91$, $141.49,148.03,158.85$.

5d (centrally cyclized isomer): Yield ($0.28 \mathrm{~g}, 48 \%$) pale-yellow solid; $\mathrm{mp}: 264-266{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}\right) \delta: 1.01(\mathrm{~s}, 12 \mathrm{H}), 1.75(\mathrm{t}, 4 \mathrm{H}), 2.43(\mathrm{t}, 4 \mathrm{H}), 3.87(\mathrm{~s}, 6 \mathrm{H}), 6.94(\mathrm{~d}, 4 \mathrm{H}, J$ $=8.7 \mathrm{~Hz}), 7.19(\mathrm{~d}, 4 \mathrm{H}, J=8.7 \mathrm{~Hz}) .{ }^{13} \mathrm{C}\left(\mathrm{CDCl}_{3}\right) \delta: 28.84,29.01,43.53,45.73,55.39$, 113.22, 130.74, 133.00, 134.56, 142.10, 146.73, 158.42.
$4 \boldsymbol{e}$: Yield ($0.47 \mathrm{~g},>99 \%$) white solid; mp: 281-283 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 1.11$ (broad $\mathrm{s}, 12 \mathrm{H}), 2.12(\mathrm{t}, 4 \mathrm{H}), 2.61(\mathrm{t}, 4 \mathrm{H}), 3.95(\mathrm{~s}, 6 \mathrm{H}), 3.96(\mathrm{~s}, 6 \mathrm{H}), 6.97(\mathrm{~s}, 2 \mathrm{H}), 7.02(\mathrm{~s}, 2 \mathrm{H})$,
7.18 (s, 2H). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 32.01,32.56,37.66,49.15,56.22,56.25,109.90$, 114.03, 127.40, 132.89, 138.23, 138.94, 141.75, 147.18, 147.63.

4f: Yield ($0.43 \mathrm{~g}, 55 \%$) white solid; mp: 337-338 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 1.18$ (broad s, $12 \mathrm{H}), 2.18(\mathrm{t}, 4 \mathrm{H}), 2.67(\mathrm{t}, 4 \mathrm{H}), 7.27(\mathrm{~s}, 2 \mathrm{H}), 7.37(\mathrm{t}, 2 \mathrm{H}, J=7.7 \mathrm{~Hz}), 7.48(\mathrm{t}, 4 \mathrm{H}, J=$ $7.7 \mathrm{~Hz}), 7.53(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.58(\mathrm{~d}, 2 \mathrm{H}, J=7.7 \mathrm{~Hz}), 7.68(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 31.85,32.56,38.21,49.01,124.79,125.24,127.37,127.42,127.69,128.99$, $131.02,138.21,139.77,140.07,141.77,141.99,146.80$
$\mathbf{5 f}$ (centrally cyclized isomer): Yield ($0.31 \mathrm{~g}, 40 \%$) white solid; mp: $356-358{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 1.05(\mathrm{~s}, 12 \mathrm{H}), 1.78(\mathrm{t}, 4 \mathrm{H}), 2.49(\mathrm{t}, 4 \mathrm{H}), 7.36(\mathrm{~m}, 6 \mathrm{H}), 7.47(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=$ $7.6 \mathrm{~Hz}), 7.65(\mathrm{~d}, 4 \mathrm{H}, J=7.9 \mathrm{~Hz}), 7.70(\mathrm{~d}, 4 \mathrm{H}, J=7.9 \mathrm{~Hz}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 28.91$, $29.08,43.61,45.78,126.53,127.22,127.40,128.99,130.23,134.70,139.42,139.81$, 141.15, 141.80, 146.57.

4g: Yield ($0.65 \mathrm{~g}, 92 \%$) beige solid; mp: $163-165{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 0.77(\mathrm{~m}$, $24 \mathrm{H}), 1.08($ broad s, 32H), $1.99(\mathrm{~m}, 8 \mathrm{H}) 2.21(\mathrm{t}, 4 \mathrm{H}), 2.68(\mathrm{t}, 4 \mathrm{H}), 7.24-7.37(\mathrm{~m}, 10 \mathrm{H})$, $7.77(\mathrm{~d}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz}), 7.82(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 14.25,22.81,24.05,29.95$, $31.74,32.69,38.13,40.52,48.96,54.33,55.11,116.85,119.60,123.09,125.18,126.89$, 126.91, 127.62, 138.32, 139.77, 140.04, 141.63, 143.07, 145.10, 148.78, 151.45.

Preparation of Diacetylenic Biscyclohexyl Derivative 1’.

1,4-Dibromo-2,5-diiodobenzene ($1.86 \mathrm{~g}, 3.8 \mathrm{mmol}$) was dissolved in anhydrous benzene $(20 \mathrm{~mL})$ and diisopropylamine (12 mL) in an oven dried Schlenk flask under an argon atmosphere and the flask was evacuated and filled with argon (3x). Then, CuI (120 mg) and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(100 \mathrm{mg})$ were added to the flask under an argon atmosphere and the flask was again evacuated and filled with argon (3x). Finally, 1-ethynyl-1-cyclohexanol $(0.95 \mathrm{~g}, 7.6 \mathrm{mmol})$ was added to the flask which was then evacuated and filled with argon (3x) once more. The solution was allowed to stir at room temperature overnight. The resulting solution was diluted with water (100 mL) and extracted with ether ($3 \times 30 \mathrm{~mL}$). The ether layer was washed with water (100 mL), extracted, dried over anhydrous magnesium sulfate, evaporated, and dried under vacuum to give a yellow solid which was purified by column chromatography using a 15% ethyl acetate/hexanes mixture as the eluent to afford $\mathbf{1}^{\prime}$ as a pale yellow solid. Yield ($1.6 \mathrm{~g}, 87 \%$); mp: $166-168{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 1.26(\mathrm{~m}, 4 \mathrm{H}), 1.59-1.75(\mathrm{~m}, 8 \mathrm{H}), 2.04(\mathrm{~m}, 8 \mathrm{H}), 2.12(\mathrm{~s}, 2 \mathrm{H}), 7.64(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 23.54,25.33,40.03,69.63,81.89,100.43,123.96,126.28,136.31$.

Preparation of $2 h$ via Suzuki Coupling.

Solid 1' ($0.80 \mathrm{~g}, 1.7 \mathrm{mmol}$) and 3,4-dimethoxyphenylboronic acid ($0.91 \mathrm{~g}, 5.0 \mathrm{mmol}$) were dissolved in anhydrous 1,2-dimethoxyethane (DME) (30 mL) in an oven dried Schlenk flask under an argon atmosphere and the flask was evacuated and filled with argon (3x). In another oven dried Schlenk flask a solution of anhydrous sodium carbonate $(5.0 \mathrm{~g})$ in water $(20 \mathrm{~mL})$ was prepared under an argon atmosphere and the flask was also evacuated and filled with argon (3x). To the DME solution, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(50 \mathrm{mg})$ and the salt solution were added sequentially under a strict argon atmosphere followed by evacuation and filling the flask with argon (3x) after each addition. The flask was covered with foil and the solution was allowed to reflux for 2 days. The resulting solution was cooled to room temperature, quenched with water (50 mL) and extracted with dichloromethane ($3 \times 20 \mathrm{~mL}$). The organic layer was dried over anhydrous magnesium sulfate, evaporated and dried under vacuum. The resulting yellow solid was filtered over a small pad of silica gel using an 80% ethyl acetate/hexanes mixture as the eluent to afford 2 h as a yellow solid. Yield $(0.99 \mathrm{~g},>99 \%) ; \mathrm{mp}: 172-175{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$: 1.10-1.1.65 (broad m, 16H), $1.85(\mathrm{~m}, 4 \mathrm{H}), 2.00(\mathrm{~s}, 2 \mathrm{H}), 3.92(\mathrm{~s}, 6 \mathrm{H}), 3.93(\mathrm{~s}, 6 \mathrm{H}), 6.90(\mathrm{~d}$, $2 \mathrm{H}, J=8.3 \mathrm{~Hz}), 7.09(\mathrm{~d}, 2 \mathrm{H}, J=1.8 \mathrm{~Hz}), 7.13(\mathrm{dd}, 2 \mathrm{H}, J=8.3,1.8 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR
$\left(\mathrm{CDCl}_{3}\right) \delta: \quad 23.36,25.27,40.04,56.17,69.42,83.86,97.22,110.82,112.65,121.40$, 121.81, 132.44, 134.08, 142.22, 148.58, 148.88.

Procedure for the Preparation of 3 h via Catalytic Hydrogenation.

The corresponding $\mathbf{2 h}(0.95 \mathrm{~g}, 1.6 \mathrm{mmol})$ from above was placed into a Parr apparatus along with a stir bar and dissolved in ethyl acetate (50 mL). To the solution, 10% Palladium on activated Carbon catalyst (100 mg) was added. The vessel was then put under hydrogen pressure (3 bar) for 24 hours after which time the solution was filtered over a short pad of silica gel. The silica gel was washed with ethyl acetate ($2 \times 20 \mathrm{~mL}$), the solvent was evaporated and the resulting $\mathbf{3 h}$ was dried under vacuum to afford a yellow solid which was used without further purification. Yield ($0.91 \mathrm{~g}, 95 \%$); mp: 134$137{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 1.03(\mathrm{~s}, 2 \mathrm{H}), 1.15-1.51($ broad $\mathrm{m}, 20 \mathrm{H}), 1.62(\mathrm{~m}, 4 \mathrm{H}), 2.68$ $(\mathrm{m}, 4 \mathrm{H}), 3.90(\mathrm{~s}, 6 \mathrm{H}), 3.93(\mathrm{~s}, 6 \mathrm{H}), 6.91(\mathrm{~d}, 6 \mathrm{H}), 7.14(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta:$ $22.34,25.88,26.51,37.48,44.18,56.12,56.13,71.48,110.99,112.80,121.56,131.42$, 134.42, 137.84, 140.86, 148.16, 148.63.

Intramolecular Friedel - Crafts Cyclization of 3h.

To a stirred solution of $\mathbf{3 h}(0.91 \mathrm{~g}, 1.51 \mathrm{mmol})$ in dichloromethane $(30 \mathrm{~mL})$ at room temperature was added methanesulfonic acid (2 mL). The solution was allowed to stir for 1 hour after which time the solution was quenched with aqueous sodium bicarbonate (100 mL) and extracted with dichloromethane (3 x 20 mL). The combined organic extracts were dried over anhydrous magnesium sulfate, evaporated and dried under vacuum resulting in a yellow solid which was recrystallized from a dichloromethane/methanol mixture to afford $\mathbf{4 h}$ as a white solid. Yield ($0.85 \mathrm{~g}, 99 \%$); mp: 239-241 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 0.80-2.40($ broad m, 24H), $2.55(\mathrm{~m}, 4 \mathrm{H}), 3.93(\mathrm{~s}, 6 \mathrm{H}), 3.96(\mathrm{~s}, 6 \mathrm{H}), 6.93(\mathrm{~s}$, $2 \mathrm{H}), 7.06(\mathrm{~s}, 2 \mathrm{H}), 7.16(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 22.57,26.36,32.20,40.58,44.93$, $53.58,56.10,56.15,110.97,113.97,126.51,133.01,138.41,138.63,141.83,146.87$, 147.41.

Procedure for the Preparation of tert-butylated 4 .

To a stirred solution of $\mathbf{4 f}(0.10 \mathrm{~g}, 0.19 \mathrm{mmol})$ in dichloromethane $(20 \mathrm{~mL})$ was added 2-chloro-2-methylpropane $(0.18 \mathrm{~g}, 1.9 \mathrm{mmol})$ and anhydrous ferric chloride $(0.31 \mathrm{~g}, 0.05$ $\mathrm{mmol})$. The solution was stirred with gentle heating for 10 minutes after which time it was quenched with methanol $(20 \mathrm{~mL})$ and poured into water $(50 \mathrm{~mL})$. The organic layer was extracted with dichloromethane (3 x 20 mL), washed with aqueous sodium bicarbonate $(50 \mathrm{~mL})$, and dried over anhydrous magnesium sulfate. The combined organic extracts were evaporated and dried under vacuum to afford a yellow solid which was purified by column chromatography using a hexane/ethyl acetate mixture as the eluent to give a bright orange solid. Yield ($0.09 \mathrm{~g}, 75 \%$); mp: $310-313{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 1.16(\mathrm{~s}, 12 \mathrm{H}), 1.39(\mathrm{~s}, 18 \mathrm{H}), 2.17(\mathrm{t}, 4 \mathrm{H}), 2.66(\mathrm{t}, 4 \mathrm{H}), 7.26(\mathrm{~s}, 2 \mathrm{H}), 7.49-7.52$ $(\mathrm{m}, 6 \mathrm{H}), 7.57(\mathrm{dd}, 2 \mathrm{H}, J=7.9,1.7 \mathrm{~Hz}), 7.62(\mathrm{~d}, 4 \mathrm{H}, J=8.3 \mathrm{~Hz}), 7.69(\mathrm{~d}, 2 \mathrm{H}, J=1.7$ $\mathrm{Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 31.61,31.81,32.56,34.74,38.17,49.01,124.69,125.09$, $125.91,127.06,127.65,130.94,138.15,138.90,139.45,139.93,141.98,146.63,150.29$.

Procedure for the Preparation of the Dibromo Derivative 6.

In an oven dried Schlenk flask equipped with a dropping funnel attached to a bubbler solid $4 \mathbf{a}(1.5 \mathrm{~g}, 4.1 \mathrm{mmol})$ and a catalytic amount of iodine were dissolved in dichloromethane (25 mL) at room temperature. A solution of bromine $(1.38 \mathrm{~g}, 8.6 \mathrm{mmol})$ in dichloromethane (5 mL) was added dropwise over the course of 10 minutes and the resulting dark red solution was allowed to stir for 3 hours after which time the reaction
was quenched with aqueous potassium hydroxide (50 mL) and extracted with dichloromethane ($3 \times 20 \mathrm{~mL}$). The combined organic extracts were dried over anhydrous magnesium sulfate, evaporated, and dried under vacuum to afford a beige solid which was used without further purification. Yield ($1.92 \mathrm{~g}, 89 \%$); mp: 268-270 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 1.08(\operatorname{broad~s}, 12 \mathrm{H}), 2.11(\mathrm{t}, 4 \mathrm{H}), 2.58(\mathrm{t}, 4 \mathrm{H}), 7.15(\mathrm{~s}, 2 \mathrm{H}), 7.28(\mathrm{~d}, 2 \mathrm{H}, J=$ $8.2 \mathrm{~Hz}), 7.47(\mathrm{dd}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}, 2.0 \mathrm{~Hz}), 7.58(\mathrm{~d}, 2 \mathrm{H}, J=2.0 \mathrm{~Hz}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta:$ $31.51,32.30,38.17,48.73,121.67,127.60,129.04,129.56,132.07,138.10,139.47$, 141.52, 148.63.

Procedure for the Preparation of the Monoacetylenic Precursor 7.

1-Bromo-2-iodobenzene ($3.1 \mathrm{~g}, 11.0 \mathrm{mmol}$) was dissolved in anhydrous benzene (20 mL) and diisopropylamine (12 mL) in an oven dried Schlenk flask under an argon atmosphere and the flask was evacuated and filled with argon (3x). Then, CuI (120 mg) and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(100 \mathrm{mg})$ were added to the flask under an argon atmosphere and the flask was again evacuated and filled with argon (3x). Finally, 2-methyl-3-butyn-2-ol (1.1 mL, 11.0 mmol) was added to the flask via syringe and the flask was evacuated and filled with argon (3x) once more. The resulting solution was allowed to stir at room temperature overnight. The resulting brown solution was diluted with water (100 mL) and extracted with ether ($3 \times 30 \mathrm{~mL}$). The ether layer was washed with water (100 mL), extracted, dried
over anhydrous magnesium sulfate, evaporated, and dried under vacuum to give a black oil. The resulting oil was filtered over a short pad of silica gel using 30% ethyl acetate/hexanes as eluent to afford 7 as a dark orange oil. Yield ($2.61 \mathrm{~g}, 99 \%$); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 1.64(\mathrm{~s}, 6 \mathrm{H}), 2.80(\mathrm{~s}, 2 \mathrm{H}), 7.11(\mathrm{t}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.21(\mathrm{t}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz})$, $7.41(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.54(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 31.46,65.86$, 81.00, 98.69, 124.96, 125.85, 127.11, 129.57, 132.48, 133.37.

Procedure for the Preparation of Penta-p-Phenylene Precursor 8.

In an oven dried Schlenk flask under an argon atmosphere $7(2.3 \mathrm{~g}, 9.6 \mathrm{mmol})$ was dissolved in dry THF (20 mL) and cooled to $-78^{\circ} \mathrm{C}$, n -butyllithium ($11.5 \mathrm{~mL}, 28.9 \mathrm{mmol}$, 2.5 M in hexane) was added dropwise and the solution was allowed to stir for one hour while the temperature was maintained at $-78^{\circ} \mathrm{C}$. Then, triisopropylborate $(5.79 \mathrm{~g}, 30.8$ mmol) was added via syringe and the mixture was allowed to come to room temperature overnight. In a separate Schlenk flask, a salt solution was made with water (8 mL) and anhydrous sodium carbonate $(1.53 \mathrm{~g}, 14.4 \mathrm{mmol})$, at the same time, toluene (20 mL) and ethanol (20 mL) were added to the reaction mixture via syringe so that the toluene:ethanol:water ratio is $3: 3: 1$. Next, solid $6(1.68 \mathrm{~g}, 3.2 \mathrm{mmol})$ was added to the reaction flask and a condenser attached to a bubbler was placed on the reaction vessel and the flask was evacuated and filled with argon (3x). To the reaction mixture, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(50$
mg) and the salt solution were added sequentially under a strict argon atmosphere followed by evacuation and filling the flask with argon (3x) after each addition. The flask was covered with foil and the solution was allowed to reflux overnight. The resulting solution was cooled to room temperature, quenched with water (50 mL) and extracted with dichloromethane (3 x 20 mL). The organic layer was dried over anhydrous magnesium sulfate, evaporated, and dried under vacuum to afford a brown oil which was purified by column chromatography using a hexane/ethyl acetate mixture as the eluent to afford a yellow solid. Yield ($0.78 \mathrm{~g}, 36 \%$); mp: 170-173 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 1.17$ (broad s, 12H), $1.52(\mathrm{~s}, 12 \mathrm{H}), 2.18(\mathrm{t}, 4 \mathrm{H}), 2.67(\mathrm{t}, 4 \mathrm{H}), 7.27(\mathrm{~s}, 2 \mathrm{H}), 7.31(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.4$ $\mathrm{Hz}), 7.41(\mathrm{t}, 2 \mathrm{H}, J=7.4 \mathrm{~Hz}), 7.47(\mathrm{~d}, 2 \mathrm{H}, J=7.4 \mathrm{~Hz}), 7.51(\mathrm{~d}, 2 \mathrm{H}, J=7.7 \mathrm{~Hz}), 7.57$, (d, $4 \mathrm{H}, J=7.7 \mathrm{~Hz}), 7.67(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 31.51,31.79,32.55,38.16,48.98$, 65.78, 82.36, 96.61, 121.19, 126.97, 127.06, 127.21, 127.69, 128.73, 129.78, 130.08, 133.31, 138.17, 139.43, 139.79, 142.06, 144.55, 145.78.

Procedure for the Preparation of Reduced Penta-p-Phenylene.

The corresponding $8(0.40 \mathrm{~g}, 0.59 \mathrm{mmol})$ from above was placed into a Parr apparatus along with a stir bar and dissolved in ethyl acetate $(50 \mathrm{~mL})$. To the solution, 10% Palladium on activated Carbon catalyst (100 mg) was added. The vessel was then put under hydrogen pressure (3 bar) for 24 hours after which time the solution was filtered
over a short pad of silica gel. The silica gel was washed with ethyl acetate ($2 \times 20 \mathrm{~mL}$), the solvent was evaporated and the resulting reduced penta-p-phenylene was dried under vacuum to afford a white solid which was used without further purification. Yield (0.40 $\mathrm{g},>99 \%) ; \mathrm{mp}: 207-209{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 1.05($ broad $\mathrm{m}, 24 \mathrm{H}), 1.59(\mathrm{~m}, 4 \mathrm{H})$, $1.97(\mathrm{~s}, 2 \mathrm{H}), 2.10(\mathrm{t}, 4 \mathrm{H}), 2.59(\mathrm{t}, 4 \mathrm{H}), 2.67(\mathrm{~m}, 4 \mathrm{H}), 7.21-7.26(\mathrm{~m}, 12 \mathrm{H}), 7.37(\mathrm{~s}, 2 \mathrm{H})$, $7.43(\mathrm{~d}, 2 \mathrm{H}, J=7.7 \mathrm{~Hz}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 28.59,29.14,31.83,32.54,38.08,45.95$, 49.01, 70.97, 126.04, 126.71, 127.26, 127.66, 129.64, 130.32, 130.35, 138.11, 139.22, 140.27, 140.59, 142.00, 142.43, 145.98.

Procedure for the Preparation of Quadruply-Bridged Penta-p-phenylene 9

To a stirred solution of the reduced penta-p-phenylene ($0.40 \mathrm{~g}, 0.58 \mathrm{mmol}$) in dichloromethane $(30 \mathrm{~mL})$ at room temperature was added methanesulfonic acid $(2 \mathrm{~mL})$. The solution was allowed to stir for 30 minutes after which time the solution was quenched with aqueous sodium bicarbonate (100 mL) and extracted with dichloromethane ($3 \times 20 \mathrm{~mL}$). The combined organic extracts were dried over anhydrous magnesium sulfate, evaporated and dried under vacuum to afford a brown solid which was purified by precipitation from an ethanol/dichloromethane mixture to afford a white solid. Yield ($0.38 \mathrm{~g},>99 \%$) mp: 377-379 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ at $50{ }^{\circ} \mathrm{C} \delta: 1.14(\mathrm{~s}, 12 \mathrm{H})$, $1.18(\mathrm{~s}, 12 \mathrm{H}), 2.17(\mathrm{~m}, 8 \mathrm{H}), 2.64(\mathrm{t}, 4 \mathrm{H}), 2.71(\mathrm{t}, 4 \mathrm{H}), 7.23(\mathrm{~d}, 2 \mathrm{H}, J=7.4 \mathrm{~Hz}), 7.28(\mathrm{t}$,
$2 \mathrm{H}, J=7.4 \mathrm{~Hz}), 7.32(\mathrm{~s}, 2 \mathrm{H}), 7.36(\mathrm{t}, 2 \mathrm{H}, J=7.4 \mathrm{~Hz}), 7.44(\mathrm{~m}, 4 \mathrm{H}), 7.51(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ at $50{ }^{\circ} \mathrm{C} \delta: 31.00,31.96,32.81,33.06,37.69,37.75,49.15,49.34,127.05$, 127.36, 127.81, 127.90, 127.96, 128.18, 128.26, 138.51, 139.19, 139.27, 140.10, 142.62, 143.81, 144.13, 144.30.

Procedure for the Preparation of Biphenyl Acetylenic Precursor 10.

The liquid monacetylenic precursor $7(4.81 \mathrm{~g}, 20.1 \mathrm{mmol})$ and phenylboronic acid (4.91 $\mathrm{g}, 40.2 \mathrm{mmol}$) were dissolved in anhydrous 1,2-dimethoxyethane (DME) (50 mL) in an oven dried Schlenk flask under an argon atmosphere and the flask was evacuated and filled with argon (3x). In another oven dried Schlenk flask a solution of anhydrous sodium carbonate $(5.0 \mathrm{~g})$ in water $(20 \mathrm{~mL})$ was prepared under an argon atmosphere and the flask was also evacuated and filled with argon (3x). To the DME solution, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ $(100 \mathrm{mg})$ and the salt solution were added sequentially under a strict argon atmosphere followed by evacuation and filling the flask with argon (3x) after each addition. The flask was covered with foil and the solution was allowed to reflux overnight. The resulting solution was cooled to room temperature, quenched with water (50 mL) and extracted with dichloromethane (3 x 20 mL). The organic layer was dried over anhydrous magnesium sulfate, evaporated and dried under vacuum. The resulting brown oil was purified by column chromatography over silica gel using a 5\% ethyl acetate/hexanes mixture as the eluent to afford an orange oil. Yield $(4.75 \mathrm{~g},>99 \%) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$:
$1.35(\mathrm{~s}, 6 \mathrm{H}), 2.07(\mathrm{~s}, 1 \mathrm{H}), 7.16(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.32(\mathrm{~m}, 5 \mathrm{H}), 7.42,(\mathrm{~d}, 1 \mathrm{H}, J=7.7 \mathrm{~Hz})$, $7.47(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 31.18,65.65,82.05,96.72,121.18,127.13,127.58$, $127.95,128.66,129.44,129.50,132.94,140.62,144.14$.

Procedure for the Preparation of the Reduced Biphenyl Precursor 11

The corresponding $10(4.75 \mathrm{~g}, 20.1 \mathrm{mmol})$ from above was placed into a Parr apparatus along with a stir bar and dissolved in ethyl acetate (100 mL). To the solution, 10% Palladium on activated Carbon catalyst (200 mg) was added. The vessel was then put under hydrogen pressure (3 bar) for 24 hours after which time the solution was filtered over a short pad of silica gel. The silica gel was washed with ethyl acetate ($2 \times 20 \mathrm{~mL}$), the solvent was evaporated and the resulting reduced biphenyl precursor (11) was dried under vacuum to afford a colorless oil which was used without further purification. Yield $(4.83 \mathrm{~g},>99 \%) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 0.98(\mathrm{~s}, 6 \mathrm{H}), 1.13(\mathrm{~s}, 1 \mathrm{H}), 1.51(\mathrm{~m}, 2 \mathrm{H}), 2.58(\mathrm{~m}$, 2H), 7.15-7.33 (broad m, 9H). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 28.35,29.03,45.80,70.99,125.99$, 127.09, 127.71, 128.26, 129.40, 129.53, 130.26, 140.11, 141.89, 142.02.

Procedure for the Preparation of the Singly- Bridged Biphenyl 12

To a stirred solution of $11(4.21 \mathrm{~g}, 17.5 \mathrm{mmol})$ in dichloromethane (75 mL) at room temperature was added methanesulfonic acid (4 mL). The solution was allowed to stir for 90 minutes after which time the solution was quenched with aqueous sodium bicarbonate (100 mL) and extracted with dichloromethane (3 x 20 mL). The combined organic extracts were dried over anhydrous magnesium sulfate, evaporated and dried under vacuum resulting in a brown oil which was filtered over a short pad of silica gel using an ethyl acetate/hexanes mixture as the eluent to afford the singly-bridged biphenyl (12) as a clear oil. Yield ($3.12 \mathrm{~g}, 74 \%$); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 0.97(\operatorname{broad} \mathrm{~s}, 6 \mathrm{H}), 2.01(\mathrm{t}, 2 \mathrm{H}), 2.46$ (t, 2H), 7.10, (d, 1H, $J=7.1 \mathrm{~Hz}), 7.16(\mathrm{td}, 1 \mathrm{H}, J=7.1 \mathrm{~Hz}, 1.9 \mathrm{~Hz}), 7.21-7.29(\operatorname{broad} \mathrm{~m}$, $5 \mathrm{H}), 7.37(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 31.72,32.75,37.91,48.83,125.55,126.65$, $127.02,127.48,127.81,128.19,130.62,139.64,140.73,143.24,146.22$.

Procedure for the Synthesis of the Dibromo Singly-Bridged Biphenyl 13

To a stirred solution of $\mathbf{1 2}(3.12 \mathrm{~g}, 14.0 \mathrm{mmol})$ and a catalytic amount of iodine in dichloromethane (40 mL) a solution of bromine ($4.9 \mathrm{~g}, 30.9 \mathrm{mmol}$) in dichloromethane (5
mL) is added dropwise. The resulting dark red solution is allowed to stir for 3 hours after which time it is quenched with aqueous potassium hydroxide $(100 \mathrm{~mL})$ and extracted with dichloromethane ($3 \times 20 \mathrm{~mL}$). The combined organic extracts were filtered over anhydrous magnesium sulfate, evaporated, and dried under vacuum to afford a beige solid which was purified by recrystallization from a dichloromethane/methanol mixture to afford the dibromo singly-bridged biphenyl (13) as a colorless solid. Yield (3.56 g, $67 \%) ; \mathrm{mp}: 125-127{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 1.05($ broad $\mathrm{s}, 6 \mathrm{H}), 2.09(\mathrm{t}, 2 \mathrm{H}), 2.50(\mathrm{t}$, $2 \mathrm{H}), 7.15(\mathrm{~d}, 1 \mathrm{H}, J=3.9 \mathrm{~Hz}), 7.17(\mathrm{~d}, 1 \mathrm{H}, J=3.7 \mathrm{~Hz}), 7.35(\mathrm{~d}, 1 \mathrm{H}, J=1.9 \mathrm{~Hz}), 7.45(\mathrm{~m}$, $2 \mathrm{H}), 7.57(\mathrm{~d}, 1 \mathrm{H}, J=2.1 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 31.51,32.40,38.05,48.24,121.55$, $122.12,129.13,129.55,129.75,130.19,130.87,131.96,138.51,141.11,141.62,148.40$.

Procedure for the Preparation of the Bridged Biphenyl Diboronic Ester 14

In an oven dried Schlenk flask equipped with a condenser attached to a bubbler, 13 (2.73 $\mathrm{g}, 7.2 \mathrm{mmol})$, bis(pinacolato)diboron $(5.47 \mathrm{~g}, 21.6 \mathrm{mmol})$, and potassium acetate $(3.17 \mathrm{~g}$, 32.3 mmol) were dissolved in anhydrous p-dioxane (50 mL) under argon and the flask was evacuated and filled with argon (3x). To this solution $\operatorname{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}(0.10 \mathrm{~g}, 0.14$ mmol) was added and the flask was again evacuated and filled with argon (3x). The resulting solution was allowed to reflux for 4 hours after which time the solvent was evaporated and the residue was taken up in dichloromethane (50 mL) and washed with water. The organic layer was separated and dried over anhydrous magnesium sulfate,
evaporated, and dried under vacuum to afford a black oil which was purified by filtering over a short pad of anhydrous magnesium sulfate using hexanes as the eluent to afford a yellow semisolid that was used without further purification. Yield ($3.4 \mathrm{~g},>99 \%$); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 1.10($ broad s, 6 H$), 1.36(\mathrm{~s}, 24 \mathrm{H}), 2.09(\mathrm{t}, 2 \mathrm{H}), 2.54(\mathrm{t}, 2 \mathrm{H}), 7.36(\mathrm{dd}$, $2 \mathrm{H}, J=7.5 \mathrm{~Hz}, 2.8 \mathrm{~Hz}), 7.63(\mathrm{~s}, 1 \mathrm{H}), 7.77(\mathrm{~m}, 2 \mathrm{H}), 7.89(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta:$ $25.09,25.21,31.78,32.51,37.97,48.70,83.93,83.97,127.58,130.09,131.75,133.24$, 133.57, 134.12, 138.94, 143.61, 145.59, 146.29.

Procedure for the Preparation of the Quarterphenyl Acetylenic Precursor 15

The liquid $7(3.43 \mathrm{~g}, 14.3 \mathrm{mmol})$ and $14(3.4 \mathrm{~g}, 7.2 \mathrm{mmol})$ were dissolved in anhydrous 1,2-dimethoxyethane (DME) (40 mL) in an oven dried Schlenk flask under an argon atmosphere and the flask was evacuated and filled with argon (3x). In another oven dried Schlenk flask a solution of anhydrous sodium carbonate (5.0 g) in water (20 mL) was prepared under an argon atmosphere and the flask was also evacuated and filled with argon (3x). To the DME solution, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(50 \mathrm{mg})$ and the salt solution were added sequentially under a strict argon atmosphere followed by evacuation and filling the flask with argon (3x) after each addition. The flask was covered with foil and the solution was allowed to reflux overnight. The resulting solution was cooled to room temperature, quenched with water (50 mL) and extracted with dichloromethane (3 x 20 mL). The
organic layer was dried over anhydrous magnesium sulfate, evaporated and dried under vacuum. The resulting brown oil was purified by column chromatography over silica gel using an ethyl acetate/hexanes mixture as the eluent to afford the tetra-p-phenylene acetylenic precursor (15) as a yellow solid. Yield ($1.88 \mathrm{~g}, 49 \%$); mp: $108-110{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 1.16($ broad s, 6 H$), 1.49(\mathrm{~s}, 6 \mathrm{H}), 1.50(\mathrm{~s}, 6 \mathrm{H}), 2.00(\mathrm{~s}, 2 \mathrm{H}), 2.18(\mathrm{~s}$, $2 \mathrm{H}), 2.66(\mathrm{~s}, 2 \mathrm{H}), 7.28-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.48(\mathrm{~m}, 5 \mathrm{H}), 7.55-7.59$ $(\mathrm{m}, 4 \mathrm{H}), 7.68(\mathrm{~d}, 1 \mathrm{H}, J=1.6 \mathrm{~Hz}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 31.38,31.48,31.82,32.85$, $38.16,48.64,65.75,65.78,82.28,82.29,96.63,96.64,121.08,121.20,126.94,127.11$, 127.32, 127.64, 128.12, 128.74, 129.66, 129.73, 130.14, 133.17, 133.32, 139.12, 139.56, 139.64, 139.78, 142.17, 143.96, 144.43, 145.73,

Procedure for the Preparation of the Reduced Tetra-p-Phenylene 16

The corresponding $\mathbf{1 5}(1.48 \mathrm{~g}, 2.75 \mathrm{mmol})$ from above was placed into a Parr apparatus along with a stir bar and dissolved in ethyl acetate (75 mL). To the solution, 10% Palladium on activated Carbon catalyst (200 mg) was added. The vessel was then put under hydrogen pressure (3 bar) for 24 hours after which time the solution was filtered over a short pad of silica gel. The silica gel was washed with ethyl acetate ($2 \times 20 \mathrm{~mL}$), the solvent was evaporated and the resulting reduced tetra-p-phenylene (16) was dried
under vacuum and used without further purification. Yield (1.38 g, 92\%); mp: 129-132 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 0.99(\mathrm{~s}, 9 \mathrm{H}), 1.03(\mathrm{~s}, 9 \mathrm{H}), 1.57(\mathrm{~m}, 4 \mathrm{H}), 2.06(\mathrm{t}, 2 \mathrm{H}), 2.54(\mathrm{t}$, $2 \mathrm{H}), 2.65(\mathrm{~m}, 4 \mathrm{H}), 7.10(\mathrm{~d}, 1 \mathrm{H}, J=1.4 \mathrm{~Hz}), 7.17-7.24(\operatorname{braod} \mathrm{~m}, 10 \mathrm{H}), 7.34-7.38(\mathrm{~m}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 28.51,28.59,29.11,29.17,31.14,31.89,32.83,38.06,45.94$, 48.86, 70.94, 71.03, 125.99, 126.05, 126.73, 127.37, 127.67, 127.68, 127.86, 127.88, 128.74, 129.62, 129.66, 130.31, 130.37, 130.41, 138.97, 139.39, 140.10, 140.28, 140.76, $141.08,141.58,141.85,142.33,145.86$.

Procedure for the Preparation of Triply-Bridged Tetra-p-Phenylene

To a stirred solution of $\mathbf{1 6}(1.18 \mathrm{~g}, 2.16 \mathrm{mmol})$ in dichloromethane $(40 \mathrm{~mL})$ at room temperature was added methanesulfonic acid (2 mL). The solution was allowed to stir for 30 minutes after which time the solution was quenched with aqueous sodium bicarbonate (100 mL) and extracted with dichloromethane (3 x 20 mL). The combined organic extracts were dried over anhydrous magnesium sulfate, evaporated and dried under vacuum to afford a brown solid which was purified by column chromatography over silica gel using an ethyl acetate/hexanes mixture as the eluent to afford the pure $\mathbf{1 7}$ as a white solid. Yield $(0.77 \mathrm{~g}, 70 \%)$; mp: 211-212 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 1.15$ (broad s, $18 \mathrm{H}), 2.17(\mathrm{~m}, 6 \mathrm{H}), 2.66(\mathrm{~m}, 6 \mathrm{H}), 7.23-7.32($ broad m, 5H), $7.35(\mathrm{~d}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz})$, $7.39(\mathrm{~d}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}), 7.46(\mathrm{~m}, 3 \mathrm{H}), 7.53(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 31.92,32.28$,
$32.93,33.01,37.59,37.71,37.81,48.90,125.47,126.99,127.00,127.33,127.36,127.90$, $127.93,128.00,128.11,128.17,128.19,130.22,137.73,139.03,139.40,139.50,139.82$, $139.98,142.05,143.20,143.61,143.99,144.12,144.79$.

Procedure for the Preparation of o-Tolyl Terphenyl Diacetylenic Precursor (2i).

In an oven dried Schlenk flask under an argon atmosphere o-bromotoluene ($1.28 \mathrm{~g}, 7.5$ mmol.) was dissolved in dry THF (20 mL) and cooled to $-78^{\circ} \mathrm{C}$, n-butyllithium (4.5 mL , $11.25 \mathrm{mmol}, 2.5 \mathrm{M}$ in hexane) was added dropwise and the solution was allowed to stir for one hour while the temperature was maintained at $-78^{\circ} \mathrm{C}$. Then, trimethylborate (1.56 $\mathrm{g}, 15.0 \mathrm{mmol}$) was added via syringe and the mixture was allowed to come to room temperature overnight. In a separate Schlenk flask, a salt solution was made with water (8 mL) and anhydrous sodium carbonate ($1.59 \mathrm{~g}, 15.0 \mathrm{mmol}$), at the same time, toluene (20 mL) and ethanol (20 mL) were added to the reaction mixture via syringe so that the toluene:ethanol:water ratio is $3: 3: 1$. Next, solid $\mathbf{1}$ was added to the reaction flask and a condenser attached to a bubbler was placed on the reaction vessel and the flask was evacuated and filled with argon (3x). To the reaction mixture, $\mathrm{Pd}_{(}\left(\mathrm{PPh}_{3}\right)_{4}(50 \mathrm{mg})$ and the salt solution were added sequentially under a strict argon atmosphere followed by evacuation and filling the flask with argon (3x) after each addition. The flask was
covered with foil and the solution was allowed to reflux overnight. The resulting solution was cooled to room temperature, quenched with water (50 mL) and extracted with dichloromethane ($3 \times 20 \mathrm{~mL}$). The organic layer was dried over anhydrous magnesium sulfate, evaporated and dried under vacuum. The resulting brown solid was purified by column chromatography over silica gel using a hexanes/ethyl acetate mixture as the eluent to afford the pure o-tolyl terphenyl diacetylenic precursor $\mathbf{2 i}$ as a yellow solid. Yield $(0.73 \mathrm{~g}, 92 \%) ; \mathrm{mp}: 189-191{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 1.22(\mathrm{~s}, 12 \mathrm{H}), 1.67(\mathrm{~s}, 2 \mathrm{H})$, $2.15(\mathrm{~s}, 6 \mathrm{H}), 7.13-7.16(\mathrm{~m}, 4 \mathrm{H}), 7.19(\mathrm{~m}, 4 \mathrm{H}), 7.29(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left(\mathrm{CDCl}_{3}\right) \delta: 20.17,31.07$, 65.59, 81.33, 98.37, 122.40, 125.53, 127.93, 129.76, 129.83, 132.38, 136.40, 139.93, 143.77.

Procedure for the Preparation of o-Tolyl Terphenyl Alkane 3 i via Catalytic Hydrogenation.

The corresponding $2 \mathbf{i}(0.70 \mathrm{~g}, 1.66 \mathrm{mmol})$ from above was placed into a Parr apparatus along with a stir bar and dissolved in ethyl acetate (75 mL). To the solution, 10% Palladium on activated Carbon catalyst (100 mg) was added. The vessel was then put under hydrogen pressure (3 bar) for 24 hours after which time the solution was filtered over a short pad of silica gel. The silica gel was washed with ethyl acetate ($2 \times 20 \mathrm{~mL}$),
the solvent was evaporated and the resulting o-tolyl terphenyl alkane 3i was dried under vacuum to afford a yellow solid which was used without further purification. Yield (0.70 $\mathrm{g}, 99 \%$); mp: $146-149{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 0.93(\mathrm{~s}, 12 \mathrm{H}), 1.14($ broad s, 2 H$), 1.47$ $(\mathrm{m}, 4 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~m}, 2 \mathrm{H}), 2.41(\mathrm{~m}, 2 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}), 6.95(\mathrm{~s}, 1 \mathrm{H})$, 7.15-7.20 (m, 8H). ${ }^{13} \mathrm{C}\left(\mathrm{CDCl}_{3}\right) \delta: \quad 20.28,20.47,27.90,28.93,45.49,70.93,125.54$, $125.56,127.44,127.46,129.83,129.94,130.09,130.36,136.16,136.22,137.46,137.55$, $140.24,140.29,141.23,141.28$.

Intramolecular Friedel - Crafts Cyclization of o-Tolyl Terphenyl Alkane 3i to 5i

To a stirred solution of the o-tolyl terphenyl alkane $\mathbf{3 i}(0.65 \mathrm{~g}, 1.51 \mathrm{mmol})$ in dichloromethane (30 mL) at room temperature was added methanesulfonic acid (2 mL). The solution was allowed to stir for 2 hours after which time the solution was quenched with aqueous sodium bicarbonate (100 mL) and extracted with dichloromethane (3 x 20 $\mathrm{mL})$. The combined organic extracts were dried over anhydrous magnesium sulfate, evaporated and dried under vacuum resulting in a brown solid which was purified by column chromatography using a hexanes/ethyl acetate mixture as the eluent to afford the centrally cyclized o-tolyl terphenyl $\mathbf{5 i}$ as a yellow solid. Yield ($0.28 \mathrm{~g}, 47 \%$); mp: 228$230{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 0.75(\mathrm{~d}, 6 \mathrm{H}), 1.00(\mathrm{~d}, 6 \mathrm{H}), 1.66(\mathrm{~m}, 4 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H}), 2.01$
(s, 3H), $2.19(\mathrm{~m}, 2 \mathrm{H}), 2.29(\mathrm{~m}, 2 \mathrm{H}), 7.12-7.17(\mathrm{~m}, 8 \mathrm{H}) .{ }^{13} \mathrm{C}\left(\mathrm{CDCl}_{3}\right) \delta: 20.09,20.36$, $26.84,27.33,28.52,28.68,29.06,29.24,43.34,43.39,45.62,45.64,125.15,125.22$, $127.04,127.09,129.80,129.83,129.92,130.07,133.70,133.75,136.21,136.65,140.08$, $140.23,141.37,141.54,145.91,145.94$. [Note that none of the desired product from cyclization on the terminal rings was obtained.]

Procedure for the Preparation of the Bischromiumtricarbonyl Complex of 4a

Solid terphenyl $4 \mathbf{a}(0.17 \mathrm{~g}, 0.45 \mathrm{mmol})$ and hexacarbonylchromium ($0.10 \mathrm{~g}, 0.45 \mathrm{mmol}$) were dissolved in anhydrous dibutyl ether (20 mL) and dry THF (2 mL) in an oven dried Schlenk flask equipped with a condenser attached to a bubbler under an argon atmosphere and the flask was evacuated and backfilled with argon (3x). The resulting yellow solution was allowed to reflux for 24 hours after which time the flask was cooled to room temperature and allowed to sit for 2 days after which time yellow single crystals that were suitable for X-ray crystallography were formed. Yield ($0.16 \mathrm{~g}, 70 \%$); mp: 178$180^{\circ} \mathrm{C}$.

The X-ray structure of bis-chromiumtricarbonyl Complex of 4a showed that its conformation is frozen into chiral (syn) conformation (see below its molecular structure obtained by X-ray crystallography).

1.5 EXPERIMENTAL SPECTRA

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 1,4-dibromo-2,5-diiodobenzne

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 2 a (crdue)

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 3 a (crude)

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of $\mathbf{4 a}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of the Centrally Cyclized Isomer 5a

PPM	130.0	110.0	90.0	70.0	50.0	30.0

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 6

PPM	130.0	110.0	90.0	70.0	50.0	30.0

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 2 b (crude)

$\begin{array}{lllllll}\text { PPM } & 130.0 & 110.0 & 90.0 & 70.0 & 50.0 & 30.0\end{array}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of $\mathbf{4 b}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 2 c (crude)

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of $\mathbf{3 c}$ (crude)

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 2 d (crude)

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 3d (crude)

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 4 d

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 2e (crude)

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 3 e (crude)

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 2 f (crude)

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 3 f (crude)

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of $4 f$

PPM	130.0	110.0	90.0	70.0	50.0	30.0

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of the Centrally Cyclized Isomer $5 f$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 4 g

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of diacetylenic biscyclohexyl derivative 1,

$$
\begin{array}{lllllll}
\hline \text { PPM } & 130.0 & 110.0 & 90.0 & 70.0 & 50.0 & 30.0
\end{array}
$$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 2 h (crude)

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 3 h (crude)

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of $\mathbf{4 h}$ (see below the VT NMR)

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of \boldsymbol{o}-Tolyl Terphenyl Diacetylenic Precursor (2i)

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of \boldsymbol{o}-Tolyl Terphenyl Alakane (3i)

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 7

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of Reduced Penta- p-Phenylene

${ }^{1}$ H NMR Spectra of 9

${ }^{13}$ C NMR Spectra of 9

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of Biphenyl Acetylenic Precursor 10

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of the Reduced Biphenyl Precursor 11

PPM	7.0	6.0	5.0	4.0	3.0	2.0	1.0	0.0

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of Bridged Biphenyl 12

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of the Dibromo Bridged Biphenyl 13

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of Bridged Biphenyl Diboronic Ester 14

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of the Tetra-p-Phenylene Acetylenic Precursor 15

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of the Reduced Tetra-p-Phenylene Precursor 16

PPM	7.0	6.0	5.0	4.0	3.0	2.0	1.0

PPM	120.0	100.0	80.0	60.0	40.0

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of Tetra-p-Phenylene 17

Variable Temperature ${ }^{1} \mathrm{H}$ NMR of 4 e in $\mathrm{CD}_{\mathbf{2}} \mathrm{Cl}_{\mathbf{2}}$

Variable Temperature ${ }^{1} \mathrm{H}$ NMR of 4 e in $\mathrm{CD}_{\mathbf{2}} \mathrm{Cl}_{\mathbf{2}}$

Methoxy Region (4e)

Variable Temperature ${ }^{1} \mathbf{H}$ NMR of 4 e in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$

Aliphatic Region (4e)

Variable Temperature ${ }^{\mathbf{1}} \mathbf{H}$ NMR of $\mathbf{4 h}$ in $\mathbf{C D}_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}}$

Variable Temperature ${ }^{\mathbf{1}} \mathbf{H}$ NMR of $\mathbf{4 h}$ in $\mathbf{C D}_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}}$

Methoxy Region (4h)

Variable Temperature ${ }^{\mathbf{1}} \mathrm{H}$ NMR of $\mathbf{4 h}$ in $\mathrm{CD}_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}}$

Aliphatic Region (4h)

Table 2. Crystal data and structure refinement for raj13h (4a)

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=68.01^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [I>2sigma(I)]
R indices (all data)
Extinction coefficient
Largest diff. peak and hole
raj13h
C28.50 H31 Cl
408.98

100(2) K
$1.54178 \AA$
Monoclinic
C 2/c
$\mathrm{a}=25.9973(4) \AA \quad \alpha=90^{\circ}$.
$\mathrm{b}=12.3802(2) \AA \quad \beta=93.7240(10)^{\circ}$.
$\mathrm{c}=13.8796(2) \AA \quad \gamma=90^{\circ}$.
4457.74(12) \AA^{3}

8
$1.219 \mathrm{Mg} / \mathrm{m}^{3}$
$1.583 \mathrm{~mm}^{-1}$
1752
$0.25 \times 0.19 \times 0.12 \mathrm{~mm}^{3}$
3.41 to 68.01°.
$-31<=\mathrm{h}<=31,0<=\mathrm{k}<=14,0<=1<=16$
18639
$4001[\mathrm{R}(\mathrm{int})=0.0178]$
98.2 \%

Semi-empirical from equivalents
0.8327 and 0.6930

Full-matrix least-squares on F^{2}
4001 / 2 / 286
1.013
$\mathrm{R} 1=0.0397, \mathrm{wR} 2=0.1076$
$R 1=0.0427, w R 2=0.1101$
0.00010(3)
0.240 and -0.340 e. \AA^{-3}

Table 3. Crystal data and structure refinement for raj14j4 (4b)

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=69.87^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F2
Final R indices [I>2sigma(I)]
R indices (all data)
Largest diff. peak and hole
raj14j4
C30 H34
394.57

100(2) K
1.54178 A

Triclinic
P-1
$a=11.075(3) \AA \quad \alpha=118.089(11)^{\circ}$.
$b=14.841(3) \AA \quad \beta=91.405(14)^{\circ}$.
$\mathrm{c}=15.693(4) \AA \quad \gamma=92.655(12)^{\circ}$.
2270.1(9) \AA^{3}

4
$1.155 \mathrm{Mg} / \mathrm{m}^{3}$
$0.479 \mathrm{~mm}^{-1}$
856
$0.16 \times 0.14 \times 0.10 \mathrm{~mm}^{3}$
3.20 to 69.87°.
$-13<=\mathrm{h}<=13,-17<=\mathrm{k}<=15,0<=1<=18$
27474
$7875[\mathrm{R}($ int $)=0.1460]$
98.8 \%

Semi-empirical from equivalents
0.9536 and 0.9273

Full-matrix least-squares on F^{2}
7875 / 0 / 553
1.846
$\mathrm{R} 1=0.0993, \mathrm{wR} 2=0.2565$
$\mathrm{R} 1=0.1270, \mathrm{wR} 2=0.2693$
0.501 and -0.420 e. \AA^{-3}

Table 4. Crystal data and structure refinement for raj14d (4c).

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=67.48^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [I>2sigma(I)]
R indices (all data)
Extinction coefficient
Largest diff. peak and hole
raj14d
C30 H34 O2
426.57

100(2) K
1.54178 Å

Monoclinic
P 21/c
$a=10.6975(6) \AA \quad \alpha=90^{\circ}$.
$\mathrm{b}=10.0435(6) \AA \quad \beta=101.430(3)^{\circ}$.
$\mathrm{c}=10.8065(6) \AA \quad \gamma=90^{\circ}$.
$1138.03(11) \AA^{3}$
2
$1.245 \mathrm{Mg} / \mathrm{m}^{3}$
$0.585 \mathrm{~mm}^{-1}$
460
$0.15 \times 0.12 \times 0.04 \mathrm{~mm}^{3}$
4.22 to 67.48°.
$-12<=\mathrm{h}<=12,0<=\mathrm{k}<=11,0<=1<=12$
9187
$2009[\mathrm{R}(\mathrm{int})=0.0275]$
97.8 \%

Semi-empirical from equivalents
0.9770 and 0.9174

Full-matrix least-squares on F^{2}
2009 / 0 / 149
1.036
$\mathrm{R} 1=0.0367, \mathrm{wR} 2=0.0961$
$R 1=0.0440, w R 2=0.1005$
0.0023(6)
0.241 and -0.173 e. \AA^{-3}

Table 5. Crystal data and structure refinement for raj14a (4d).

Identification code	raj14a
Empirical formula	C30 H34 O2
Formula weight	426.57
Temperature	100(2) K
Wavelength	1.54178 A
Crystal system	Monoclinic
Space group	P 21/c
Unit cell dimensions	$\mathrm{a}=14.0575(3) \AA \AA^{\circ} \quad \alpha=90^{\circ}$.
	$\mathrm{b}=10.3006(2) \AA \AA^{\text {a }}$ ($\quad \beta=99.5330(10)^{\circ}$.
	$\mathrm{c}=8.0732(2) \AA \AA^{\circ} \quad \gamma=90^{\circ}$.
Volume	$1152.86(4) \AA^{3}$
Z	2
Density (calculated)	$1.229 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.577 \mathrm{~mm}^{-1}$
F(000)	460
Crystal size	$0.32 \times 0.26 \times 0.15 \mathrm{~mm}^{3}$
Theta range for data collection	3.19 to 67.69°.
Index ranges	$-16<=\mathrm{h}<=16,0<=\mathrm{k}<=12,0<=1<=9$
Reflections collected	9572
Independent reflections	$2055[\mathrm{R}(\mathrm{int})=0.0162]$
Completeness to theta $=67.69^{\circ}$	98.4 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9184 and 0.8368
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	2055 / 0 / 149
Goodness-of-fit on F^{2}	1.002
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0358, \mathrm{wR} 2=0.0921$
R indices (all data)	$\mathrm{R} 1=0.0368, \mathrm{wR} 2=0.0928$
Extinction coefficient	0.0030(6)
Largest diff. peak and hole	0.223 and -0.175 e. \AA^{-3}

Table 6. Crystal data and structure refinement for raj13p (5d).

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=67.72^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [I>2sigma(I)]
R indices (all data)
Extinction coefficient
Largest diff. peak and hole
raj13p
C30 H34 O2.96
441.86

100(2) K
1.54178 Å

Trigonal
R-3
$a=21.0561(3) \AA \quad \alpha=90^{\circ}$.
$\mathrm{b}=21.0561(3) \AA \quad \beta=90^{\circ}$.
$\mathrm{c}=14.3941(2) \AA \quad \gamma=120^{\circ}$.
$5526.76(14) \AA^{3}$
9
$1.195 \mathrm{Mg} / \mathrm{m}^{3}$
$0.589 \mathrm{~mm}^{-1}$
2139
$0.26 \times 0.24 \times 0.12 \mathrm{~mm}^{3}$
4.20 to 67.72°.
$-25<=\mathrm{h}<=12,0<=\mathrm{k}<=25,0<=\mathrm{l}<=17$
15234
$2211[\mathrm{R}(\mathrm{int})=0.0150]$
99.1 \%

Semi-empirical from equivalents
0.9327 and 0.8619

Full-matrix least-squares on F^{2}
2211/0/159
1.030
$\mathrm{R} 1=0.0433, \mathrm{wR} 2=0.1127$
$\mathrm{R} 1=0.0450, \mathrm{wR} 2=0.1139$
0.00008(2)
0.552 and -0.185 e. \AA^{-3}

Table 7. Crystal data and structure refinement for raj13u (4e).

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=67.64^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [I>2sigma(I)]
R indices (all data)
Largest diff. peak and hole
raj13u
C32 H38 O4
486.62

100(2) K
1.54178 Å

Monoclinic
P 21/n
$\mathrm{a}=9.6612(4) \AA \quad \alpha=90^{\circ}$.
$b=6.9042(3) \AA \quad \beta=94.574(3)^{\circ}$.
$\mathrm{c}=19.3657(9) \AA \quad \gamma=90^{\circ}$.
1287.63(10) \AA^{3}

2
$1.255 \mathrm{Mg} / \mathrm{m}^{3}$
$0.640 \mathrm{~mm}^{-1}$
524
$0.22 \times 0.16 \times 0.10 \mathrm{~mm}^{3}$
4.58 to 67.64°.
$-11<=\mathrm{h}<=11,0<=\mathrm{k}<=8,0<=\mathrm{l}<=22$
10386
$2282[\mathrm{R}(\mathrm{int})=0.0435]$
98.0 \%

Semi-empirical from equivalents
0.9388 and 0.8721

Full-matrix least-squares on F^{2}
2282 / 0/167
1.033
$\mathrm{R} 1=0.0442, \mathrm{wR} 2=0.1215$
$\mathrm{R} 1=0.0480, \mathrm{wR} 2=0.1253$
0.282 and -0.206 e. \AA^{-3}

Table 8. Crystal data and structure refinement for raj14t (4f).

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=66.99^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [I>2sigma(I)]
R indices (all data)
Extinction coefficient
Largest diff. peak and hole
raj14t
C48 H54
630.91

100(2) K
1.54178 Å

Monoclinic
P 21/c
$a=21.8162(14) \AA \quad \alpha=90^{\circ}$.
$b=9.4664(6) \AA \quad \beta=90.648(4)^{\circ}$.
$\mathrm{c}=8.9027(6) \AA \quad \gamma=90^{\circ}$.
1838.5(2) \AA^{3}

2
$1.140 \mathrm{Mg} / \mathrm{m}^{3}$
$0.473 \mathrm{~mm}^{-1}$
684
$0.23 \times 0.21 \times 0.04 \mathrm{~mm}^{3}$
4.05 to 66.99°.
$-24<=\mathrm{h}<=24,0<=\mathrm{k}<=11,0<=1<=10$
14075
$3161[\mathrm{R}(\mathrm{int})=0.0488]$
96.3 \%

Semi-empirical from equivalents
0.9813 and 0.8989

Full-matrix least-squares on F^{2}
3161 / $0 / 223$
1.005
$\mathrm{R} 1=0.0690, \mathrm{wR} 2=0.1722$
$R 1=0.0996, w R 2=0.1935$
0.0010(3)
0.555 and -0.278 e. \AA^{-3}

Table 9. Crystal data and structure refinement for raj13z (4g).

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=68.05^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [I>2sigma(I)]
R indices (all data)
Largest diff. peak and hole

raj13z
C66 H86
879.35

100(2) K
1.54178 Å

Monoclinic
P 21/n
$a=11.9837(2) \AA \quad \alpha=90^{\circ}$.
$\mathrm{b}=36.2583(5) \AA \quad \beta=95.0130(10)^{\circ}$.
$\mathrm{c}=18.6597(3) \AA \quad \gamma=90^{\circ}$.
8076.8(2) \AA^{3}

6
$1.085 \mathrm{Mg} / \mathrm{m}^{3}$
$0.445 \mathrm{~mm}^{-1}$
2892
$0.32 \times 0.27 \times 0.25 \mathrm{~mm}^{3}$
2.44 to 68.05°.
$-14<=\mathrm{h}<=14,0<=\mathrm{k}<=43,0<=1<=22$
67930
$14519[\mathrm{R}($ int $)=0.0187]$
98.4 \%

Semi-empirical from equivalents
0.8969 and 0.8707

Full-matrix least-squares on F^{2}
14519 / 0 / 904
1.013
$\mathrm{R} 1=0.0421, \mathrm{wR} 2=0.1054$
$R 1=0.0465, w R 2=0.1089$
0.298 and - 0.276 e. \AA^{-3}

Table 10. Crystal data and structure refinement for raj14q (4h).

Table 11. Crystal data and structure refinement for 5 i (raj16e).

Table 12. Crystal data and structure refinement for raj16ia (biscromiumtricarbonyl complex of 4a).

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=67.79^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [I>2sigma(I)]
R indices (all data)
Largest diff. peak and hole
raj16ia
C34 H30 Cr2 O6
638.58

100(2) K
1.54178 A

Monoclinic
P 21/c
$a=6.9910(2) \AA \quad \alpha=90^{\circ}$.
$\mathrm{b}=18.8426(6) \AA \quad \beta=92.012(2)^{\circ}$.
$\mathrm{c}=21.7466(7) \AA \quad \gamma=90^{\circ}$.
2862.88(15) \AA^{3}

4
$1.482 \mathrm{Mg} / \mathrm{m}^{3}$
$6.637 \mathrm{~mm}^{-1}$
1320
$0.52 \times 0.32 \times 0.09 \mathrm{~mm}^{3}$
3.10 to 67.79°.
$-8<=\mathrm{h}<=8,0<=\mathrm{k}<=22,0<=1<=25$
23525
$4980[\mathrm{R}(\mathrm{int})=0.0243]$
98.8 \%

Numerical
0.5928 and 0.1289

Full-matrix least-squares on F^{2}
4980 / 0 / 423
1.022
$\mathrm{R} 1=0.0360, \mathrm{wR} 2=0.0959$
$\mathrm{R} 1=0.0395, \mathrm{wR} 2=0.0987$
0.392 and - 0.445 e. \AA^{-3}

CHAPTER 2

Isolation and X-ray Structural Characterization of a Dicationic Homotrimer of 2,3,6,7-Tetramethoxy-9,10-Dimethylanthracene Cation Radical

Abstract: Electrochemical oxidation of 2,3,6,7-tetramethoxy-9,10-dimethylanthracene (1) showed that it undergoes a highly reversible electrochemical oxidation ($E_{\mathrm{ox}}=0.81 \mathrm{~V}$ vs. SCE) and forms a modestly stable cation-radical salt in solution. X-ray crystallography established that $\mathbf{1}^{+\bullet} \mathrm{SbCl}_{6}{ }^{-}$crystallizes as a (centrosymmetric) dicationic homotrimer via a close cofacial association of a pair of cationic and one neutral molecule of $\mathbf{1}$ with an interplanar separation of $\sim 3.2 \AA$. The structure of the dicationic homotrimer was also reproduced by DFT calculations. Furthermore, the structure of a dicationic spiro adduct, formed by a slow decomposition of a solution of $\mathbf{1}^{+\bullet} \mathrm{SbCl}_{6}{ }^{-}$, was also established by X-ray crystallography.

2.1 INTRODUCTION

The stable organic cation radicals are not only critical reaction intermediates when (poly)aromatic electron donors are exposed to various oxidants or subjected to different electrochemical, photoinduced, and radiolytic (activation) methodologies, ${ }^{21-23}$ they also pertain directly to the contemporary interest in organic materials science for molecular devices such as electrical and photoconductors, ferromagnets, sensors, optical and electrochemical switches, etc. ${ }^{24-29}$

Our continued interest in the design and synthesis of various (poly)aromatic hydrocarbons (such as substituted benzenes, naphthalenes, anthracenes, pyrenes, poly- p phenylenes, hexa-peri-hexabenzocoronenes, etc.), ${ }^{20,30}$ which form stable cation radicals (or hole carriers) prompted us to examine the possibility of isolation and X-ray crystallographic characterization of the cation radical of 2,3,6,7-tetramethoxy-9,10dimethylanthracene (1), ${ }^{31}$ whose deriaties have been extensively explored for various modern materials ${ }^{32-33}$ owing to the potential applications in the emerging areas of molecular electronics and nanotechnology. ${ }^{34-35}$

Herein, we now report that anthracene 1 can be quantitatively oxidized to its cation radical using either a stable aromatic oxidant ${ }^{36}$ or inorganic oxidant such as NO^{+} $\mathrm{SbCl}_{6}{ }^{-37}$ The cation radical of $\mathbf{1}$ was found to be stable at low-temperatures and allows the isolation of single crystals of a unique dicationic homotrimer, formally represented as a sandwich of a neutral molecule of $\mathbf{1}$ between the two cationic molecules of $\mathbf{1}^{+\boldsymbol{}}$, as established by X-ray crystallography and corroborated by DFT calculations. Moreover, it is shown that the cation radical of anthracne $\mathbf{1}$ undergoes a slow multi-step
transformation to a novel dicationic spiro product $\left(\mathbf{5}^{\mathbf{2 + \bullet}}\right)$, at room temperature, whose structure was also determined by X-ray crystallography. The details of these preliminary findings are discussed herein.

2.2 RESULTS and DISCUSSION

The tetramethoxy-9,10-dimethylanthracene (1) was readily obtained by a simple condensation of 1,2-dimethoxybenzene with acetaldehyde in a mixture of sulfuric acid and acetic acid at $0{ }^{\circ} \mathrm{C}$, i.e. eq $1 .^{31}$

The structure of anthracene 1 was established by ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$ NMR spectroscopy and was further confirmed by X-ray crystallography (see Figure 5). In the crystals, the molecules of anthracene 1 occupy a crystallographic inversion center and have an ideal planar geometry. Moreoer, the molecules of $\mathbf{1}$ form layers along the crystallographic 'ab' plane, and within these layers, neighboring parallel anthracene moieties are separated at van-der-Waals distances of $\sim 3.4 \AA$. Based on the obseravation of the limited π, π-overlap of the molecules of $\mathbf{1}$ in the layers, it is suggested that the crystal packing is largely dominated by C-H... π contacts (see Figure 5).

Figure 5. The unit cell of anthracene 1 showing the limited π, π-overlap between the molecules of $\mathbf{1}$ (top) and its extended packing arrangement in the crystals (bottom) largely dominated by C-H... π contacts.

The electron donor strength and the initial indication of the cation radical stability of $\mathbf{1}$ were evaluated by electrochemical oxidation at a platinum electrode as a $1 \times 10^{-3} \mathrm{M}$ solution in dichloromethane containing $0.1 \mathrm{M} n$ - $\mathrm{Bu}_{4} \mathrm{NPF}_{6}$ as the supporting electrolyte. The cyclic voltammogrames of $\mathbf{1}$ (Figure 6) consistently met the reversibility criteria at various scan rates of $50-600 \mathrm{mV} / \mathrm{s}$, as they all showed cathodic/anodic peak current ratios
of $i_{d} / i_{c}=1.0$ (theoretical) as well as the differences between anodic and cathodic peak potentials of $E_{\mathrm{pa}}-E_{\mathrm{pc}}=70 \mathrm{mV}$ at $22^{\circ} \mathrm{C}$. The reversible oxidation potential of $\mathbf{1}\left(E_{o x}=0.81\right.$ V vs. SCE) was calibrated with added ferrocene ($E_{\mathrm{ox}}=0.45 \mathrm{~V}$ vs. SCE as an internal standard. It is also noted that under similar conditions as above, the parent 9,10dimethylanthracene undergoes an electrochemical oxidation at $E_{\mathrm{ox}}=1.16 \mathrm{~V}$ vs. SCE owing to the absence of 4 electron donating methoxy groups.

Figure 6. Cyclic voltammograms of $1 \times 10^{-3} \mathrm{M} 1$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ containing 0.1 M tetra-n-butylammonium hexafluorophosphate $\left[(n-\mathrm{Bu})_{4} \mathrm{NPF}_{6}\right]$ at $22^{\circ} \mathrm{C}$ at scan rates between 50 and $600 \mathrm{mV} \mathrm{s}^{-1}$.

The electrochemical reversibility and relatively low oxidation potential of $\mathbf{1}$, prompted us to generate its cation radical by electrochemical oxdiataion using a stable aromatic cation radical $\left(\mathrm{MA}^{+\bullet} \mathrm{SbCl}_{6}^{-} ; E_{\text {red }}=1.11 \mathrm{~V}\right.$ vs. SCE$)$ as a one-electron oxidant. ${ }^{36}$

Thus Figure 7 shows the spectral changes attendant upon an incremental addition of substoichiometric amounts of $\mathbf{1}$ to a $3.4 \times 10^{-5} \mathrm{M} \mathrm{MA}^{+\bullet}\left[\lambda_{\max }(\log \varepsilon)=518 \mathrm{~nm}(3.86)\right]$ in dichloromethane at $22{ }^{\circ} \mathrm{C}$. It is noted that the formation of green-colored $\mathbf{1}^{+\boldsymbol{}}$ (i.e. increase in the absorbance at 700 nm) and concomitant disappearance of $\mathrm{MA}^{+\bullet}$ (i.e. decrease in the absorbance at 518 nm) was complete after the addiction of 1 equiv. of $\mathbf{1}$; and the resulting highly structured absorption spectrum of $\mathbf{1}^{+\bullet}\left[\lambda_{\max }=277,387,409(\log \varepsilon=4.61), 497\right.$, 473,627 , and 706 nm] remained unchanged upon further addition of neutral 1 (i.e. eq 2). Furthermore, the presence of (multiple) well-defined isosbestic points (i.e. $\lambda=294,334$, 503, and 508 nm) in Figure 7 attest to an uncluttered character of electron transfer from 1 to $\mathrm{MA}^{+\boldsymbol{}}$ (i.e. eq 2).

It is also noted that the $\mathbf{1}^{\boldsymbol{+}}$ did not show either the self aggregation (i.e. pimer formation) or the formation of dimmer cation radical [i.e. $\mathbf{1}+\mathbf{1} \leftrightarrow(\mathbf{1})_{2}{ }^{+\bullet}$] in the presence of excess neutral 1 in dichloromethane solutions, as judged by the singular absence of any new absorption band in the near infrared region. The dichloromethane solution of the cation radical of anthracene 1 showed modest stability at ambient temperatures but was stable for several days at $-10^{\circ} \mathrm{C}$, as discerned by the periodic monitoring of the solutions of $\mathbf{1}^{+\boldsymbol{}}$ by UV-vis spectroscopy.

Figure 7. Spectral changes observed upon the reduction of $3.4 \times 10^{-5} \mathrm{M}$ $\mathrm{MA}^{+\bullet}$ (red line) by addition of sub-stiochiometric increments of 1.0×10^{-3} M anthracene 1 to its radical cation (gray lines) in anhydrous dichloromethane at $22^{\circ} \mathrm{C}$. The final plot (green line) of $\mathbf{1}^{+\bullet}$ obtained after the addition of one equivalent of $\mathbf{1}$ which remained unchanged upon further addition of neutral 1.

In order to isolate crystalline salts of $\mathbf{1}^{+\boldsymbol{}}$, a solution of sufficient amounts of $\mathbf{1}^{+\boldsymbol{}}$ was prepared by chemical oxidation using nitrosonium hexachloroantimonate ${ }^{37}$ as a $1-\mathrm{e}^{-}$ oxidant according to the stoichiometry in eq 3.

$$
\begin{equation*}
\mathbf{1}+\mathrm{NO}^{+} \mathrm{SbCl}_{6}^{-} \xrightarrow[0^{\circ} \mathrm{C}]{\mathrm{CH}_{2} \mathrm{Cl}_{2}} \mathbf{1}^{+} \mathrm{SbCl}_{6}^{-}+\mathrm{NO} \uparrow \tag{eq3}
\end{equation*}
$$

Thus, a solution of $\mathbf{1}$ in anhydrous dichloromethane was added to crystalline $\mathrm{NO}^{+} \mathrm{SbCl}_{6}{ }^{-}$ under an argon atmosphere at $\sim 0{ }^{\circ} \mathrm{C}$. The gaseous nitric oxide produced was entrained by bubbling argon through the solution to yield a dark green solution, which upon
spectrophotometric analysis indicated the formation of $\mathbf{1}^{+\boldsymbol{}} \mathrm{SbCl}_{6}{ }^{-}$(see Figure 7). Repeated attempts to isolate single crystals of $\mathbf{1}^{+\bullet} \mathrm{SbCl}_{6}{ }^{-}$by a slow diffusion of toluene or hexane into the solution of $\mathbf{1}^{+\bullet}$ in dichloromethane, during a period of 4 days at $-10{ }^{\circ} \mathrm{C}$, did not result in suitable single crystals. However, a solution of a $1: 1$ mixture of neutral 1 and $\mathbf{1}^{+\bullet} \mathrm{SbCl}_{6}{ }^{-}$in dichloromethane afforded dark-colored crystals, suitable for X -ray crystallographic studies, by a slow diffusion of hexanes at $-10^{\circ} \mathrm{C}$.

Figure 8. Crystal structure of the tetramethoxydimethylanthracene cation radical with the packing diagram (A) showing that it crystallizes as a centrosymmetric homotrimer (B and C) with a pair of cationic charges $\left[(\mathbf{1})_{3}{ }^{2+\bullet}\left(\mathrm{SbCl}_{6}\right)_{2}\right)_{2}$. The thermal ellipsoids are shown in 50% probability and the hydrogens and solvent molecules $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ are omitted for the sake of clarity.

The crystal structure of 2,3,6,7-tetramethoxy-9,10-dimethylanthracene (1) cation radical revealed that it forms isolated (centrosymmetric) dicationic homotrimers resulting from a close cofacial association of a pair of cationic $\mathbf{1}^{+\bullet} \mathrm{SbCl}_{6}{ }^{-}$and one neutral molecule of $\mathbf{1}$ (see Figure 8) with an interplaner distance of $\sim 3.2 \AA$, which is considerably shorter than the van-der-Waal's contact. Within a homotrimer, the central anthracene ring is found to be completely planar whereas the two outer anthracene molecules are bent inward by ~ 7 deg. (see Figure 8). Unfortunately, the limited precision of the structure of the dicationic homotrimer (i.e. esd $=1 \mathrm{pm}$) did not allow an accurate estimation of the distribution of the cationic charges onto the three anthracene molecules. However, a pair of counter anions $\left(\mathrm{SbCl}_{6}{ }^{-}\right)$associated with each homotrimer are located in closer proximity to the outer anthracene molecules than to the central anthracene molecules (see Figure 8 A), and thus suggest that the charge distribution may not be similar amongst the three anthracene moieties in the dicationic homotrimer. Calculation of the molecular structure of the dicationic (triplet) homotrimer using DFT calculations at the B3LYP/631G* level reproduced a similar arrangement of the three anthracene molecules. Furthermore, an examination of the bond length changes in various anthracene molecules (see Figure 9 and Table 13A-C) showed that the cationic charge was largely ($\sim 70 \%$) localized onto the outer (bent) anthracene molecules whereas the central (planar) anthracene molecule conatained only a partial cation charge ($\sim 30 \%$)..$^{38-39}$

From the calculated bond length data in Tables 13A-13C, it is apparent that the central molecule of $\mathbf{1}$ undergoes much less shortening/lengthening of various bonds as compared to the top and bottom (BENT) molecules of $\mathbf{1}$ in the centrosymmetric dicationic (triplet) homotrimer obtained by DFT calculations.

Figure 9. Three different vies of the calculated molecular structure of the dicationic (triplet) homotrimer obtained by DFT calculations at the B3LYP/6-31G* level (Spartan '08). The calculated structure reproduces the structure obtained by X-ray crystallography (see Figure8).

Table 13A. Theoretical bond lengths of the neutral and cation radical of 1 presented in picometers (pm) by DFT calculations at the B3LYP/6-31G* level (Spartan '08).

B3LYP/6-31G*

Bond 1	$\mathbf{1}$	$\mathbf{1}^{+\bullet}$	$\boldsymbol{\Delta}\left(\mathbf{1}^{+\boldsymbol{}} \mathbf{- 1}\right)$
\mathbf{a}	136.1	133.8	-2.3
\mathbf{b}	137.0	138.7	+1.7
\mathbf{c}	143.5	142.0	-1.5
\mathbf{d}	141.2	142.6	+1.4
\mathbf{e}	144.3	143.7	-0.6
\mathbf{f}	143.9	143.2	-0.7
\mathbf{g}	141.7	143.0	+1.3
\mathbf{h}	151.7	150.8	-0.9
Average of equivalent bonds			

Table 13B. Bond lengths (in picometers) of the top and bottom (BENT) molecules of $\mathbf{1}$ in the centrosymmetric dicationic (triplet) homotrimer obtained by DFT calculations at the B3LYP/6-31G* level (Spartan '08). Bond lengths of netural 1 were taken from Table 13A.

Bond ${ }^{1}$	B3LYP/6-31G*	
	$\mathbf{1}_{\text {T/B }}{ }^{+\bullet}$	$\Delta\left(1_{T / B}{ }^{+\bullet}-1\right)$
a	134.4	-1.7
b	138.5	+1.5
c	142.1	-1.4
d	142.4	+1.2
e	143.8	-0.5
f	143.2	-0.7
g	143.4	+1.7
h	150.7	-0.7
σ	--	--
${ }^{1}$ Avera	ge of e	quivalent bon

Table 13C. Bond lengths (in picometers) of the central (PLANAR) molecule of $\mathbf{1}$ in the centrosymmetric dicationic (triplet) homotrimer obtained by DFT calculations at the B3LYP/6-31G* level (Spartan '08). Bond lengths of neutral 1 were taken from Table 13A.

B3LYP/6-31G*

Bond 1	$\mathbf{1}_{\mathbf{C}}{ }^{+\bullet}$	$\boldsymbol{\Delta}\left(\mathbf{1}_{\mathbf{C}}{ }^{+\boldsymbol{\bullet}} \mathbf{- 1}\right)$
\mathbf{a}	135.4	-0.7
\mathbf{b}	137.5	+0.5
\mathbf{c}	143.2	-0.3
\mathbf{d}	141.6	+0.4
\mathbf{e}	144.2	-0.1
\mathbf{f}	143.9	0.0
\mathbf{g}	142.8	+1.1
\mathbf{h}	151.1	-0.6
$\boldsymbol{\sigma}$	--	--
${ }^{1}$ Average of equivalent bonds		

The instability of $\mathbf{1}^{+\bullet} \mathrm{SbCl}_{6}{ }^{-}$at ambient temperatures was further probed by allowing its dichloromethane solution to stand for a period of 1-2 days at $22{ }^{\circ} \mathrm{C}$. After which time, the solution deposited shiny dark-colored needles which were analyzed by X-ray crystallography as follows.

Figure 10. ORTEP (top) and stick (bottom) diagrams of a (doublet) dicationic spiro adduct $\left[\mathbf{5}^{2+\bullet}\left(\mathrm{SbCl}_{6}\right)_{2}\right.$] formed via the decomposition of a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of $\mathbf{1}^{+\bullet} \mathrm{SbCl}_{6}{ }^{-}$at $22{ }^{\circ} \mathrm{C}$. The thermal ellipsoids are shown in 30% probability and the hydrogens and solvent molecules $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ are omitted for the sake of clarity.

The X-ray structure in Figure 10 showed that the decomposition of a dichloromethane solution of $\mathbf{1}^{+\bullet} \mathrm{SbCl}_{6}{ }^{-}$at $22{ }^{\circ} \mathrm{C}$ produces a (doublet) dicationic spiro adduct $\left[\mathbf{5}^{\mathbf{2 + \bullet}}\left(\mathrm{SbCl}_{6}{ }^{-}\right)_{2}\right]$ via a multi-step transformation. The decomposition of $\mathbf{1}^{+\boldsymbol{\bullet}} \mathrm{SbCl}_{6}{ }^{-}$to the dicationic spiro adduct in Figure 10 can be reconciled by a sequence of transformations as elucidated in Scheme 7.

Scheme 7. Proposed mechanism for the formation of dicationic spiro adduct $\left[\mathbf{5}^{2+\bullet}\left(\mathrm{SbCl}_{6}\right)_{2}\right]$ by a decomposition of a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of $\mathbf{1}^{+\bullet}$ $\mathrm{SbCl}_{6}{ }^{-}$at $22^{\circ} \mathrm{C}$.

The 1-e oxidation of a methylbenzene to its cation radical is known to enhance the acidity of methyl protons by several orders of magnitude. ${ }^{40}$ Thus, a loss of H^{+}from $\mathbf{1}^{+\cdot} \mathrm{SbCl}_{6}^{-}$generates a benzyl-type radical $\mathbf{2}^{\boldsymbol{+}}$ which undergoes self dimerization to produce an electron-rich dianthrylethane $\mathbf{3}^{41-42}$ The $1-\mathrm{e}^{-}$oxidation of $\mathbf{3}$ with $\mathbf{1}^{+\boldsymbol{+}} \mathrm{SbCl}_{6}{ }^{-}$ affords $\mathbf{3}^{+\boldsymbol{}}$ which undergoes an efficient intramolecular Friedel-Crafts-type alkylation to form a distonic cation radical ${ }^{43} \mathbf{4}^{+\bullet}$. A facile loss of a proton and a pair of electrons then furnishes the dicationic sprio adduct $\left[\mathbf{5}^{\mathbf{2 + \bullet}}\left(\mathrm{SbCl}_{6}{ }^{-}\right)_{2}\right]$ shown in Figure $10 .{ }^{44}$

2.3 SUMMARY and CONCLUSIONS

In summary, we have demonstrated that the readily-available 2,3,6,7-tetramethoxy-9,10-dimethylanthracene (1) cation radically crystallizes as a unique dicationic homotrimer with the stoichiometry $\left[(\mathbf{1})_{3}{ }^{2+\bullet}\left(\mathrm{SbCl}_{6}\right)_{2}\right]$ as established by X-ray crystallography. The molecular structure of the dicationic homotrimer was reproduced by DFT calculations at the B3LYP/6-31G* level which provided evidence that the charge distribution is dissimilar amongst the three anthracene moieties and that central anthracene molecule bears only a partial charge in the dicationic homotrimer. It was also shown that prolonged storage of $\mathbf{1}^{+\boldsymbol{}} \mathrm{SbCl}_{6}{ }^{-}$at $22{ }^{\circ} \mathrm{C}$ leads to its decomposition to a (double) dicationic spiro adduct $\left[\mathbf{5}^{\mathbf{2 + \bullet}}\left(\mathrm{SbCl}_{6}{ }^{-}\right)_{2}\right]$ as established by X-ray crystal structure analysis. Studies will continue for a more comprehensive investigation of the structure modulation of the anthracene ring system for the preparation and study of a covalentlylinked homotrimer and their homologues.

2.4 EXPERIMENTAL SECTION

General Experimental Methods and Materials. All reactions were performed under an argon atmosphere unless otherwise noted. All commercial reagents were used without further purification unless otherwise noted. Dichloromethane (Aldrich) was repeatedly stirred with fresh aliquots of concentrated sulfuric acid ($\sim 10 \%$ by volume) until the acid layer remained colorless. After separation it was washed successively with water, aqueous sodium carbonate, water, and aqueous sodium chloride and dried over anhydrous calcium chloride. The dichloromethane was distilled twice from $\mathrm{P}_{2} \mathrm{O}_{5}$ under an argon atmosphere and stored in a Schlenk flask equipped with a Teflon valve fitted with Viton O-rings. The hexanes and toluene were distilled from $\mathrm{P}_{2} \mathrm{O}_{5}$ under an argon atmosphere and then refluxed over calcium hydride ($\sim 12 \mathrm{~h}$). After distillation from CaH_{2}, the solvents were stored in Schlenk flasks under an argon atmosphere. NMR spectra were recorded on Varian 300 and 400 MHz NMR spectrometers.

Cyclic Voltammetry (CV). The CV cell was of an air-tight design with high vacuum Teflon valves and Viton O-ring seals to allow an inert atmosphere to be maintained without contamination by grease. The working electrode consisted of an adjustable platinum disk embedded in a glass seal to allow periodic polishing (with a fine emery cloth) without changing the surface area ($\sim 1 \mathrm{~mm}^{2}$) significantly. The reference SCE electrode (saturated calomel electrode) and its salt bridge were separated from the catholyte by a sintered glass frit. The counter electrode consisted of a platinum gauze that was separated from the working electrode by $\sim 3 \mathrm{~mm}$. The CV measurements were carried out in a solution of 0.1 M supporting electrolyte (tetra- n-butylammonium
hexafluorophosphate, TBAH) and $1.0 \times 10^{-3} \mathrm{M}$ substrate in dry dichloromethane under an argon atmosphere. All the cyclic voltammograms were recorded at a sweep rate of 200 $\mathrm{mV} \mathrm{sec}{ }^{-1}$, unless otherwised specified and were IR compensated. The oxidation potentials ($E_{1 / 2}$) were referenced to SCE , which was calibrated with added (equimolar) ferrocene ($E_{1 / 2}=0.45 \mathrm{~V}$ vs. SCE) the $E_{1 / 2}$ values were calculated by taking the average of anodic and cathodic peak potentials in the reversible cyclic voltammograms.

Procedure for the Spectra Titration of $\mathbf{M A}^{+\bullet} \mathbf{S b C l}_{\mathbf{6}}{ }^{-}$with $\mathbf{2 , 3 , 6 , 7 -}$ tetramethoxy-9,10-dimethylanthracene. An orange-red solution of $\mathbf{M A}^{+\boldsymbol{}} \mathbf{S b C l}_{6}{ }^{-}$in dichloromethane ($3 \mathrm{~mL}, 3.4 \times 10^{-5} \mathrm{M}$) was transferred under an argon atmosphere in a 1cm quartz cuvette at room temperature. A dichloromethane solution ($1 \times 10^{-3} \mathrm{M}$ of) $\mathbf{1}$ in $10 \mu \mathrm{~L}$ increments was added to this solution. The UV-vis spectra of the resulting solutions, after the addition of each increment, were recorded at $22^{\circ} \mathrm{C}$.

Synthesis of 2,3,6,7-tetramethoxy-9,10-dimethylanthracene (1).

To a cooled solution $\left(\sim 0^{\circ} \mathrm{C}\right)$ of veratrole ($32 \mathrm{~mL}, 250 \mathrm{mmol}$) in acetic acid (125 mL) was slowly added an ice-cold solution of acetaldehyde ($21 \mathrm{~mL}, 375 \mathrm{mmol}$) in methanol (20 mL). The resulting mixture was then stirred for 1 h and concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ $(95 \%, 125 \mathrm{~mL})$ was added dropwise over 2 h . The reaction mixture was then stirred at 0 ${ }^{\circ} \mathrm{C}$ for 20 h and pured onto ice-water which precipitated the product out as a beige solid and collected by vacuum filtration. The product was further purified by recrystallization in chloroform to afford the final prduct as a yellow solid. Yield ($8.4 \mathrm{~g}, 20 \%$) : mp: >350
${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 2.95(\mathrm{~s}, 6 \mathrm{H}), 4.08(\mathrm{~s}, 12 \mathrm{H}), 7.40(\mathrm{~s}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta:$ 15.00, 55.90, 102.80, 124.08, 125.99, 148.90. [Reference: Chung, Y.; Duerr, B. F.; McKelvey, T. A.; Nanjappan, P.; Czarnik, A. W. J. Org. Chem. 1989, 54, 1018-32.]
${ }^{1}$ H NMR spectrum of 2,3,6,7-tetramethoxy-9,10-dimethylanthracene (1)

${ }^{13}$ C NMR spectrum of 2,3,6,7-tetramethoxy-9,10-dimethylanthracene (1)

$\begin{array}{llllllll}\text { PPM } & 140.0 & 120.0 & 100.0 & 80.0 & 60.0 & 40.0 & 20.0\end{array}$

Table 14. Crystal data and structure refinement for neutral 1 (raj15c).

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=67.56^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices $[\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})]$
R indices (all data)
Extinction coefficient
Largest diff. peak and hole

raj15c
C20 H22 O4
326.38

100(2) K
1.54178 Å

Monoclinic
P 21/c
$a=5.01890(10) \AA \quad \alpha=90^{\circ}$.
$\mathrm{b}=7.3462(2) \AA \quad \beta=92.9410(10)^{\circ}$.
$\mathrm{c}=21.7143(4) \AA \quad \gamma=90^{\circ}$.
799.55(3) \AA^{3}

2
$1.356 \mathrm{Mg} / \mathrm{m}^{3}$
$0.758 \mathrm{~mm}^{-1}$
348
$0.12 \times 0.07 \times 0.06 \mathrm{~mm}^{3}$
4.08 to 67.56°.
$-6<=\mathrm{h}<=6,0<=\mathrm{k}<=8,0<=1<=26$
6572
$1422[\mathrm{R}($ int $)=0.0200]$
99.0 \%

Semi-empirical from equivalents
0.9560 and 0.9146

Full-matrix least-squares on F^{2}
1422 / 0 / 113
1.002
$R 1=0.0381, w R 2=0.1059$
$\mathrm{R} 1=0.0419, w R 2=0.1098$
0.0021(6)
0.376 and -0.292 e. \AA^{-3}

Table 15. Crystal data and structure refinement for $\left.[(1))^{\mathbf{2 + \bullet}}\left(\mathbf{S b C l}_{\mathbf{6}}{ }^{-}\right)_{2}\right]$ (raj14y).

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=67.81^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [I>2sigma(I)]
R indices (all data)
Extinction coefficient
Largest diff. peak and hole
raj14y5
C63 H72 Cl18 O12 Sb2
1902.81

100(2) K
1.54178 A

Triclinic
P-1
$a=10.8352(16) \AA \quad \alpha=65.447(6)^{\circ}$.
$\mathrm{b}=13.4975(19) \AA \quad \beta=76.831(7)^{\circ}$.
$\mathrm{c}=14.690(2) \AA \quad \gamma=73.988(7)^{\circ}$.

1
$1.696 \mathrm{Mg} / \mathrm{m}^{3}$
$12.171 \mathrm{~mm}^{-1}$
954
$0.11 \times 0.04 \times 0.02 \mathrm{~mm}^{3}$
3.34 to 67.81°.
$-12<=\mathrm{h}<=12,-14<=\mathrm{k}<=15,0<=1<=17$
28451
$6280[\mathrm{R}(\mathrm{int})=0.1630]$
98.8 \%

Semi-empirical from equivalents
0.8385 and 0.3478

Full-matrix least-squares on F^{2}
6280 / 3 / 448
1.009
$\mathrm{R} 1=0.0651, \mathrm{wR} 2=0.1398$
$\mathrm{R} 1=0.1095, \mathrm{wR} 2=0.1595$
0.00057(12)
1.778 and -0.857 e. \AA^{-3}

Table 16. Crystal data and structure refinement for $\left.\left[5^{2+\cdot}\left(\mathbf{S b C l}_{6}\right)_{2}\right)\right]$ (raj15ga).

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=67.86^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices $[\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})]$
R indices (all data)
Largest diff. peak and hole
raj15ga
C44 H49 Cl17.5 O8 Sb2
1569.70

100(2) K
1.54178 A

Triclinic
P-1
$a=10.8843(9) \AA \quad \alpha=108.194(3)^{\circ}$.
$b=16.9006(14) \AA \quad \beta=104.146(3)^{\circ}$.
$\mathrm{c}=19.2674(16) \AA$
$\gamma=96.119(3)^{\circ}$.
$3200.0(5) \AA^{3}$
2
$1.629 \mathrm{Mg} / \mathrm{m}^{3}$
$13.789 \mathrm{~mm}^{-1}$
1553
$0.62 \times 0.09 \times 0.03 \mathrm{~mm}^{3}$
4.27 to 67.86°.
$-12<=\mathrm{h}<=12,-19<=\mathrm{k}<=19,0<=1<=23$
25909
$10858[\mathrm{R}(\mathrm{int})=0.0804]$
98.5%
Numerical
0.6988 and 0.0429

Full-matrix least-squares on F^{2}
10858 / 21 / 732
0.997
$\mathrm{R} 1=0.0775, \mathrm{wR} 2=0.2106$
$R 1=0.1521, w R 2=0.2707$
1.570 and -0.788 e. \AA^{-3}

Figure 11. The packing diagram shows that molecules of dicationic [$\mathbf{5}^{\mathbf{2 +}}$ $\left.\left(\mathrm{SbCl}_{6}{ }^{-}\right)_{2}\right)$] do not overlap with each other. Instead, they are surrounded by counter ions and disordered solvent $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ molecules. The structure contains large channels along the x axis that are filled out by the disordered solvent $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ molecules.

CHAPTER 3

Synthesis and Optoelectronic Properties of Cofacially-Stacked Poly-p-phenylene Derivatives: X-ray Crystallographic Evidence of Through-Space Charge Delocalization

Abstract

A novel series of cofacially-arrayed poly-p-phenylenes (F2-Ar) has shown that the X-ray structural characterization of the neutral molecules are largely dominated by effective intramolecular $\mathrm{C}-\mathrm{H}--\pi$ interactions while the dicationic species display an almost perfect parallel arrangement of the cofacial poly-p-phenylene moieties. Electrochemistry of the various F2-Ar and F1-Ar consistently met the reversibility criteria and the first $2 \mathrm{e}^{-}$oxidation event of the various $\mathbf{F} 2$ - $\mathbf{A r}$ occurred at a relatively lower potential $(\sim 170 \pm 10 \mathrm{mV})$ as compared to the corresponding $\mathbf{F 1 - A r}$. The electronic absorption spectra of F2-Ar and F1-Ar were strikingly similar as opposed to their emission spectra which showed that the F2-Ar derivatives were relatively broad and bathochromically shifted in comparison to the model F1-Ar derivatives.

3.1 INTRODUCTION

Interactions between aromatic rings via cofacial stacking are at the origin of many phenomena of organic material science and biological chemistry; including the electron transport in DNA through stacked π-bases. ${ }^{45-53}$ Through space aromatic-aromatic interaction also controls the spatial relationship between the molecular subunits in bulk materials and thus plays a critical role in controlling their bulk optoelectronic and materials' properties. In this context, it is also noteworthy that numerous pentacene derivatives with different substituents are continually synthesized and studied ${ }^{54-55}$ in order to influence their packing in solid-state devices. Pentacene and its derivatives have enjoyed unprecedented attention owing to their successful usage for the preparation and study of modern functioning photovoltaic devices.

Studies in our laboratory using well-defined polyaromatic architectures have demonstrated that the effective electronic coupling amongst cofacially oriented aryl moieties can occur with drastically varied interplanar angles, from 0-120 degrees (Figure 12), which suggested that a minimal orbital overlap between the interacting π-systems is sufficient for electronic coupling to occur. ${ }^{29-30}$

C

Figure 12. Line diagrams of bichromophoric electron donors A,B and \mathbf{C} showing the interplanar (dihedral) angles between a pair of veratrole moieties as obtained by X-ray crystallography
The extent of electronic coupling amongst the cofacially oriented aryl moieties in various polychromophoric molecules can be gauged by the significant lowering of their oxidation potentials as compared to the monochromophoric model donors (such as 3,4-dimethyl-1,2-dimethoxybenzene for A-C). Furthermore, the isolation and X-ray crystal structure determination of the neutral and cation radicals of various polychromophoric donors (such as A-C and many others) provide unequivocal evidence as to the extent of charge (or polaron) distribution over the cofacially-oriented aryl moieties, e.g. Figure 13.

Figure 13. The molecular structures of representative cation radical salts established by X-ray crystallography: (D) A single charge resides on the three cofacially oriented veratrole rings (at an angle of $\sim 120^{\circ}$) in the hexamethoxytriptycene cation radical. (E) Dimeric octamethylbiphenylene $\mathrm{SbCl}_{6}{ }^{-}$salt. (\mathbf{F}) A single charge is delocalized onto the two cofacially oriented veratrole moieties in a bichromophoric system built on the [4.4.1]undecane framework. (G) An ORTEP diagram of the cofaciallyarrayed terafluorene (F4) cation radical salt showed that a single charge is delocalized onto all four fluorene moieties. (H) Self-association of the di-tert-butylquaterphenyl cation radical salt.

Importantly, a one-electron oxidation of an organic electron donor (D) generates the paramagnetic cation-radical, which spontaneously associates with its neutral counterpart to form a stabilized dimeric cation-radical with a single charge (entry ' \mathbf{E} ' in Figure 13, referred to hereafter as dimer cation radicals), i.e. eq. 1.

Also noteworthy is the entry ' \mathbf{H} ' in Figure 13 in which a quarter- p-phenylene cation radical, which existed largely as a monomer in solution, due to the presence of bulky tert-butyl groups, crystallizes in dimeric pairs bearing a pair of charges (referred to hereafter as pimer cation radicals), despite the presence of bulky tert-butyl groups, i.e. Figure 14. ${ }^{20,56}$

Figure 14. The crystal structure of $\mathbf{Q P}^{+\bullet} \mathrm{SbCl}_{6}{ }^{-}$cation radical showing the stacked dimeric pairs.

In order to evaluate the cause and effect of the formation of such pimer cation radicals (i.e. Figure 14), it was conjectured that if a series of soluble polyp-p-phenylene derivatives are constructed using cofacially stacked polyfluorenes (such as F2), i.e. Figure 15, these materials with well-defined polyphenylene-polyphenylene interactions both in neutral and oxidized forms, may mimic the charge-delocalization characteristics in a pimer cation radical. Note that the study of π-conjugated organic polymers, such as poly-p-phenylenes, ${ }^{20,56}$ has attracted considerable attention owing to their potential applications as functional materials in the emerging areas of molecular electronics and nanotechnology. ${ }^{34,57-60}$ Moreover, the synthesis of the necessary difluorene (F2) platform for the construction of cofacially-arrayed pimer cation radical precursors have been earlier developed in our laboratories using readily available precursors i.e. fluorene and formaldehyde (see Figures $13 \mathbf{G}$ and 15). ${ }^{17}$

Accordingly, herein we will describe the syntheses of a series of soluble poly-pphenylene derivatives ($\mathbf{F 2}$-Ar) containing up to six phenylene moieties (i.e. F2-BP). The availability of various F2-Ar derivatives allows us to evaluate the optoelectronic and electrochemical properties of these cofacially-arrayed polyphenylenes. Moreover, the generation and comparison of the spectral characteristics of their cation radical salts as well as their X-ray crystallography is investigated. The details of these finding are described herein.

Figure 15. Structures and naming scheme of cofacially-arrayed pimer cation radical precursors ($\mathbf{F 2}$-Ar) and the corresponding model compounds (F1-Ar).

3.2 RESULTS and DISCUSSION

Synthesis of F2-Ar. In order to obtain the desired $\boldsymbol{F} \mathbf{2 - A r}$, we have resorted to the Pd-catalyzed Suzuki reaction, which has emerged as a favored reaction for aryl-aryl bond formation particularly in the synthesis of π-conjugated systems. ${ }^{15}$ The starting difluorene tetrabromide ($\mathbf{F} 2-\mathbf{B r}$) was prepared from difluorene (F2) ${ }^{17}$ by a simple two-step sequence, i.e. alkylation of $\mathbf{F} 2$ using 1-bromohexane and potassium tert-butoxide in THF followed by a simple bromination in dichloromethane (Scheme 8). The various boronic acids were prepared according to a standard literature procedure from the readilyavailable arylbromides with the exception of 4-bromo-4'-hexylbiphenyl which was synthesized starting from 4-bromobiphenyl by a sequence of Friedel-Crafts acylation with hexanoyl chloride followed by a standard Wolf-Kishner reduction. Thus a standard Suzuki coupling ${ }^{15}$ of $\mathbf{F} 2-\mathbf{B r}$ with various aryl boronic acids in the presence of a $\operatorname{Pd}(0)$ catalyst afforded the corresponding F2-Ar which were purified by column chromatography over silica gel using an ethyl acetate/hexanes mixture as the eluent. This simple protocol produced the various $\mathbf{F 2}$-Ar in good overall yields and their structures were established by ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$ NMR spectroscopy as well as X-ray crystallography.

Synthesis of F1-Ar. In an analogous manner to the synthesis employed for the preparation of the various F2-Ar, a Pd-catalyzed Suzuki coupling reaction was utilized for the synthesis of the various F1-Ar. The F1-Br precursor was also prepared in a simple two step manner in which fluorene was first subjected to alkylation with 1-
bromohexane and potassium tert-butoxide in THF followed by a simple bromination in dichloromethane. A standard Suzuki coupling ${ }^{15}$ between $\mathbf{F 1 - B r}$ and the various aryl boronic acids in the presence of a $\operatorname{Pd}(0)$ catalyst thus afforded the corresponding F1-Ar which were purified by column chromatography over silica gel using an ethyl acetate/hexanes mixtures as the eluent. The various F1-Ar were prepared in excellent overall yields and their structures were confirmed by ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$ NMR spectroscopy.

Scheme 8. Synthetic scheme for the preparation of various F2-Ar and F1-Ar derivatives in Figure 15.

Absorption/Emission Spectroscopy of F2-Ar and F1-Ar. With the various F2-Ar and F1-Ar derivatives at hand, we next recorded their absorption and emission spectra in dichloromethane at $22{ }^{\circ} \mathrm{C}$ (Figures 16 and 17). While the absorption bands of F2-Ar and F1-Ar were rather similar (Figure 16), the emission bands of cofacially stacked F2-Ar
derivatives were found to be relatively broad and bathochromically shifted (or redshifted) in comparison to the model F1-Ar derivatives (see Figure 17 and Table 17).

Figure 16. Electronic absorption spectra of various F2-Ar (left) and F1Ar (middle) at varying concentrations in dichloromethane at $22{ }^{\circ} \mathrm{C}$. (Right) Comparison of F2-Ar (left) and F1-Ar spectra.

Figure 17. Emission (red and blue) and excitation (black) spectra of various F2-Ar (left) and F1-Ar (middle) at varying concentrations in
dichloromethane at $22{ }^{\circ} \mathrm{C}$. (Right) Comparison of F2-Ar (left) and F1-Ar spectra.

Electrochemistry. Next, the redox properties of the F2-Ar and F1-Ar derivatives were evaluated by subjecting them to electrochemical oxidation at a platinum electrode as a $1 \times 10^{-3} \mathrm{M}$ solution in dichloromethane containing 0.1 M tetra- n-butylammonium hexafluorophosphate $\left(n-\mathrm{Bu}_{4} \mathrm{NPF}_{6}\right)$ as the supporting electrolyte. The cyclic voltammograms of various derivatives in Figure 19 consistently met the reversibility criteria at various scan rates of $50-500 \mathrm{mV} / \mathrm{s}$, as they all showed cathodic/anodic peak current ratios of $i_{\mathrm{a}} i_{\mathrm{c}}=1.0$ (theoretical) at $22{ }^{\circ} \mathrm{C}$ (see Figure 18 for representative examples). The reversible oxidation potentials of various polyphenylene derivatives were calibrated with ferrocene as an internal standard ($E_{\mathrm{ox}}=0.45 \mathrm{~V}$ vs SCE) and are compiled in Table 17.

Except the phenyl and the tolyl analogues (i.e. F1-Ph and F1-Tol), both of which only show one single reversible oxidation wave, the biphenyl (i.e. F1-BP and F1-BPH), anisyl (F1-An), and dimethoxytolyl (F1-DMT) derivatives showed two well defined $1-\mathrm{e}^{-}$ oxidation waves, corresponding to the formation of mono cation radical and dication, respectively (see Figure 19, middle). In contrast, the first reversible oxidation wave of the phenyl and tolyl analogues of F2 derivatives (i.e. F2-Ph and F2-Tol) consist of two closely spaced 1-e ${ }^{-}$oxidation waves while the biphenyl (i.e. F2-BP and F2-BPH), anisyl (F2-An), and dimethoxytolyl (F2-DMT) derivatives showed a single 2-e- oxidation wave. Except for F2-DMT which showed two well-defined 2-e- oxidation waves, the second oxidation wave corresponding to the formation of a tetracation (i.e. 4-e oxidation)
was found to be quasi-reversible for F2-BP, F2-BPH and F2-An and was not observed for F2-Ph and F2-Tol [see Figure 19 (right) and Table 17].

The first 2-e oxidation event (corresponding to the first oxidation wave for \mathbf{F} 2-Ar derivatives) occurred at a relatively lower potential (by $\sim 170 \pm 10 \mathrm{mV}$) as compared to the corresponding F1-Ar derivatives. As such, the lowering of the first oxidation potentials suggests that the cofacially-stacked difluorene derivatives (i.e. F2-Ar) stabilize a pimeric dication much more effectively as compared to the monomeric cation radical of the model F1-Ar derivatives.

Figure 18. Cyclic voltammograms of $1 \times 10^{-3} \mathrm{M}$ F1-Ph and F2-Ph in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ containing $0.1 \mathrm{M} n-\mathrm{Bu}_{4} \mathrm{NPF}_{6}$ at scan rates between 50 and 500 mV s^{-1} at $22^{\circ} \mathrm{C}$.

Figure 19. Cyclic voltammograms of $1 \times 10^{-3} \mathrm{M}$ F2-Ar (left) and F1-Ar (middle) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ containing $0.1 \mathrm{M} n-\mathrm{Bu}_{4} \mathrm{NPF}_{6}$ at a scan rate of 200 mV s^{-1} at $22{ }^{\circ} \mathrm{C}$. (Right) Comparison of the square-wave voltammograms of F2-Ar (red) and F1-Ar (blue) derivatives.

Table 17. The optical and electrochemical data of F2-Ar and F1-Ar derivatives.

Properties	Units	$\begin{gathered} \text { F2-Ph } \\ \text { (F1-Ph) } \end{gathered}$	$\begin{gathered} \text { F2-Tol } \\ \text { (F1-Tol) } \end{gathered}$	$\begin{gathered} \text { F2-An } \\ \text { (F1-An) } \end{gathered}$	$\begin{gathered} \text { F2-DMT } \\ \text { (F1-DMT) } \end{gathered}$	$\begin{gathered} \text { F2-BP } \\ \text { (F1-BP) } \end{gathered}$	$\begin{gathered} \text { F2-BPH } \\ \text { (F1-BPH) } \end{gathered}$
$\begin{gathered} E_{\mathrm{ox} 1} \\ \text { V vs. SCE } \end{gathered}$	V	$\begin{gathered} 1.24 \\ (1.42) \end{gathered}$	$\begin{gathered} 1.17 \\ (1.33) \end{gathered}$	$\begin{gathered} 1.02 \\ (1.20) \end{gathered}$	$\begin{gathered} 0.99 \\ (1.16) \end{gathered}$	$\begin{gathered} 1.19 \\ (1.35) \end{gathered}$	$\begin{gathered} 1.16 \\ (1.32) \end{gathered}$
$\begin{gathered} \Delta E_{\mathrm{ox} 1} \\ (\mathbf{F} 2-\mathrm{Ar} \\ \text { F1-Ar) } \end{gathered}$	mV	180	160	180	170	160	160
$\begin{gathered} E_{\mathrm{ox} 2} \\ \text { V vs. SCE } \end{gathered}$	V	$\begin{gathered} 1.30 \\ (1.90) \\ \hline \end{gathered}$	$\begin{gathered} 1.91 \\ (1.74) \end{gathered}$	$\begin{gathered} 1.57 \\ (1.42) \end{gathered}$	$\begin{gathered} 1.29 \\ (-) \\ \hline \end{gathered}$	$\begin{gathered} 1.77 \\ (1.62) \end{gathered}$	$\begin{gathered} 1.66 \\ (1.57) \end{gathered}$
λ max (UV-vis)	nm	$\begin{gathered} 326 \\ (328) \end{gathered}$	$\begin{gathered} 327 \\ (331) \end{gathered}$	$\begin{gathered} 331 \\ (335) \end{gathered}$	$\begin{gathered} 334 \\ (-) \end{gathered}$	$\begin{gathered} 341 \\ (341) \end{gathered}$	$\begin{gathered} 343 \\ (342) \end{gathered}$
$\varepsilon_{\text {max }}$	$\left(\mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$	$\begin{gathered} \hline 50,500 \\ (40,870) \end{gathered}$	$\begin{gathered} 52,459 \\ (44,545) \end{gathered}$	$\begin{gathered} \hline 72,932 \\ (42,727) \end{gathered}$	$\begin{gathered} 66,000 \\ (-) \end{gathered}$	$\begin{aligned} & \hline 122,449 \\ & (59,880) \end{aligned}$	$\begin{aligned} & \hline 140,930 \\ & (70,677) \end{aligned}$
$\begin{gathered} \lambda \max \\ \text { (emission) } \end{gathered}$	nm	$\begin{gathered} 460 \\ (370) \end{gathered}$	$\begin{gathered} 460 \\ (370) \end{gathered}$	$\begin{gathered} 468 \\ (381) \end{gathered}$	$\begin{gathered} 408 \\ (-) \end{gathered}$	$\begin{gathered} 470 \\ (397) \end{gathered}$	$\begin{gathered} 470 \\ (399) \end{gathered}$
$\begin{gathered} \mathbf{F} 2-\mathbf{A r}^{+2} \\ \left(\mathbf{F} 1-\mathbf{A r}^{+\bullet}\right) \\ \lambda_{\max } \end{gathered}$	nm	$\begin{gathered} 1026 \\ (1062) \end{gathered}$	$\begin{gathered} 1116 \\ (1158) \end{gathered}$	$\begin{gathered} 1288 \\ (1346) \end{gathered}$	$\begin{gathered} 1900 \\ (-) \end{gathered}$	$\begin{gathered} 1276 \\ (1368) \end{gathered}$	$\begin{gathered} 1370 \\ (1518) \end{gathered}$
$\begin{gathered} \mathbf{F} 2-\mathbf{A r}^{+2} \\ \left(\mathbf{F} 1-\mathbf{A r}^{+\bullet}\right) \\ \varepsilon_{\max } \\ \hline \end{gathered}$	$\left(\mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$	$\begin{gathered} 25,610 \\ (21,973) \end{gathered}$	$\begin{gathered} 34,797 \\ (69,515) \end{gathered}$	$\begin{gathered} 42,927 \\ (55,603) \end{gathered}$	$17,434$ (-)	$\begin{gathered} 41,893 \\ (33,869) \end{gathered}$	$\begin{gathered} 53,325 \\ (49,956) \end{gathered}$

Generation of the F2-Ar and F1-Ar Cation Radicals and their Electronic

Spectroscopy. The reversibility of the first oxidation potentials of various F2-Ar and F1-
Ar derivatives suggested that their pimeric dications and cation radicals, respectively, should be sufficiently stable, and may be generated using stable cation-radical salts [such as $\mathbf{M A}^{+\bullet}, E_{\text {red }}=1.14 \mathrm{~V}$ vs. SCE and $\mathbf{N A P}^{+\bullet}, E_{\text {red }}=1.34 \mathrm{~V}$ vs. SCE$]^{36,61}$ or a
dichlorodicyano-p-benzoquinone (DDQ)-acid system ${ }^{62}$ as one-electron aromatic oxidants in dichloromethane as follows.

Figure 20. The structures and redox potentials of the aromatic oxidants used for the generation of pimeric dications (i.e. F2-Ar ${ }^{\mathbf{+ 2}}$) and monomeric cation radicals (i.e. $\mathbf{F 1}-\mathbf{A r}^{+\bullet}$).

Thus Figure 21 (left) shows the spectral changes attendant upon an incremental addition of sub-stoichiometric amounts of $\mathbf{F 2} \mathbf{- A r}$ to a $2.7 \times 10^{-5} \mathbf{M} \mathbf{N A P}^{+\boldsymbol{}}\left(\lambda_{\max }=672\right.$, 616,503 , and $\left.396 \mathrm{~nm} ; \varepsilon_{672}=9300 \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)^{61}$ in dichloromethane at $22{ }^{\circ} \mathrm{C}$. Furthermore a plot of formation of the $\mathbf{F 2 - T o l}{ }^{\mathbf{2 +}}$ dication (i.e. increase in the absorbance at 1006 nm) against the increments of added neutral F2-Tol (see Figure 21, far left), established that $\mathbf{N A} \mathbf{P}^{+\boldsymbol{}}$ was completely consumed after the addition of $1 / 2$ equiv. of $\mathbf{F} \mathbf{2 - T o l}$; and the resulting absorption spectrum of the dication $\mathbf{F 2}$ - $\mathbf{T o l}^{\mathbf{2 +}}$ was transformed to the mono cation radical $\mathrm{F} 2-\mathrm{Tol}^{+\bullet}$ upon addition of another $1 / 2$ equiv. of neutral $\mathbf{F} 2-\mathrm{Tol}$ (i.e. eq 2).

(eq. 2)

Figure 21. Spectral changes obtained upon the redox titrations of F2-Ar to $\mathbf{F 2}$-Ar ${ }^{2+}$ (left) and $\mathbf{F 1 - A r}$ to $\mathbf{F 1 - A r ^ { + }}$ (right) using NAP ${ }^{+\boldsymbol{}}$ (for $\mathbf{F 2 - P h}$, F2-Tol, F2-BP, F2-BPH, F1-BP, and F1-BPH), MA ${ }^{+\bullet}$ (F2-An and F2DMT), and a DDQ/H ${ }^{+}$system (i.e F1-Ph and F1-Tol) in dichloromethane at $22^{\circ} \mathrm{C}$.

Similarly, the dication and cation radicals of various F2-Ar and F1-Ar were generated using $\mathrm{NAP}^{+\bullet}, \mathrm{MA}^{+\bullet}$, or $\mathrm{DDQ} / \mathrm{H}^{+}$(see Figure 21) and are further compared in Figure 22. The absorption spectra of the pimeric dications (i.e. F2-Ar ${ }^{\mathbf{2 +}}$) were not profoundly different when compared to model mono cation radicals (i.e. $\mathbf{F 1}-\mathbf{A r}^{+\boldsymbol{}}$), see Figure 22.

Figure 22. A comparison of the absorption spectra of $\mathbf{F 2}-\mathbf{A r}^{\mathbf{2 +}}$ and $\mathbf{F} 1-\mathbf{A r}^{+\boldsymbol{}}$

X-ray Crystallography of Neutral F2-Ar and its Dications. The F2-Ar

 dications, obtained according to eq 2 , are highly persistent at ambient temperatures and did not show any decomposition during a 24 h period at $0^{\circ} \mathrm{C}$, as confirmed by UV-vis spectroscopy. The single crystals of various $\mathbf{F 2} \mathbf{- A r}{ }^{2+}$, suitable for X-ray crystallography, were obtained by a slow diffusion of toluene into the dichloromethane solutions of $\left[\mathbf{F 2}-\mathbf{P h}^{\mathbf{2 +}}\left(\mathrm{SbCl}_{6}{ }^{-}\right)_{2}\right],\left[\mathbf{F} 2-\mathbf{T o l}^{2+}\left(\mathrm{SbCl}_{6}{ }^{-}\right)_{2}\right]$, and $\left[\mathbf{F} 2-\mathbf{D M T}^{\mathbf{2 +}}\left(\mathrm{SbCl}_{6}^{-}\right)_{2}\right]$ at $-10^{\circ} \mathrm{C}$ during the course of 2 days.The crystal structure of various neutral F2-Ar and the representative model F1Tol were also determined and are compared in Figure 24. The expected cofacial arrangement of various poly-p-phenylene groups in the \mathbf{F} - $\mathbf{A r}$ derivatives is based on the fact that these derivatives are built on the rigid framework of difluorene (i.e. F2) which is permitted to adapt a conformation where the fluoranyl moieties are oriented cofacially. Interestingly, however, the observed large distortions from the perfect cofacial arrangement of attached aryl groups on the F2 framework in various \mathbf{F} 2-Ar derivatives arises, in part, due to the most common (stabilizing) aromatic-aromatic interactions (largely observed in solid state) between the two aromatic rings in neutral form, i.e. Figure $23 .{ }^{63}$

Figure 23. Typical aromatic-acromatic interactions observed in the solid state.

F2-Ph

F2-Tol

F2-An

F1-Tol

F2-DMT

F2-BP

F2-BPH

Figure 24. The molecular structures of various (neutral) F2-Ar and a model F1-Ar derivative (F1-Tol), obtained by X-ray crystallography, are compared.

Figure 25. The representative structures of F2-Tol and F2-An showing that the conformations of various $\mathbf{F} 2$-Ar derivatives are controlled, in part, by effective intramolecular $\mathrm{C}-\mathrm{H}--\pi$ interaction.

Figure 25. Conformations of F2-BP and F2-BPH showing that while the conformation of $\mathbf{F 2}-\mathbf{B P}$ is dominated by $\mathrm{C}-\mathrm{H}--\pi$ interaction, the $\mathbf{F 2}-\mathbf{B P H}$ conformation is controlled by efficient stacking of the nonpolar hexyl groups connected to the polyphenylenes (shown by red circles).

Indeed, as shown in Figures 25 and 26, the conformations of various F2-Ar derivatives are dominated by these aromatic-aromatic interactions listed in Figure 23.

The molecular dicationic $\left[\mathbf{F} 2-\mathbf{P h}^{2+}\left(\mathrm{SbCl}_{6}^{-}\right)_{2}\right]$, $\left[\mathbf{F} 2-\mathbf{T o l}^{\mathbf{2 +}}\left(\mathrm{SbCl}_{6}\right)_{2}\right]$, and $[\mathbf{F 2} 2-$ $\left.\mathbf{D M T}^{2+}\left(\mathrm{SbCl}_{6}{ }^{-}\right)_{2}\right]$ are compared in Figure 27 and they all show almost perfect parallel arrangement of the cofacial poly-p-phenylene moieties.

Figure 27. The molecular dicationic $\left[\mathbf{F 2}-\mathbf{P h}^{2+}\left(\mathrm{SbCl}_{6}^{-}{ }_{2}\right]\right.$, $\left[\mathbf{F 2}-\mathbf{T o l}^{\mathbf{2 +}}\left(\mathrm{SbCl}_{6}{ }^{-}\right.\right.$ $)_{2}$], and [$\mathbf{F 2}$-DMT ${ }^{2+}\left(\mathrm{SbCl}_{6}^{-}\right)_{2}$], obtained by X-ray crystallography.

Theoretically, the removal of one electron each from the opposing poly- p phenylene moieties in the dicationic F2-Ar derivatives should result in a significant Coulombic repulsion between the positive charges of the cofacially-oriented poly-pphenylene moieties. However, the X-ray structures of the dicationic $\left[\mathbf{F} 2-\mathbf{P h}^{\mathbf{2 +}}\left(\mathrm{SbCl}_{6}\right)_{2}{ }_{2}\right]$, $\left[\mathbf{F 2}-\mathbf{T o l}^{2+}\left(\mathrm{SbCl}_{6}^{-}\right)_{2}\right]$, and $\left[\mathbf{F} 2-\mathbf{D M T}^{\mathbf{2 +}}\left(\mathrm{SbCl}_{6}^{-}\right)_{2}\right]$ show that the coupling between the halffilled electronic orbitals of the two cation-radical moieties (from each poly-p-phenylene unit) provide an attractive/bonding force between them.

Apparently, after the $2-\mathrm{e}^{-}$oxidation, the coupling/attractive forces between the cationic poly-p-phenylene moieties is much stronger than the expected Coulombic repulsion between them. The resulting species are characterized by reduced values of their cleft angles as compared to the corresponding neutral derivatives. The almost eclipsed conformations of the two cofacial poly-p-phenylene moieties in dications as compared to neutral F2-Ar derivatives (compare Figures 24 and 27) further attest that two charges are effectively stabilized by the cofacial arrangement of the poly-pphenylene moieties.

Unfortunately, the experimental precision of geometric parameters of the $\mathbf{F 2} \mathbf{- A r}$ dications does not allow a detailed analysis of their bond lengths re-distribution upon a 2-e^{-}oxidation. However, it is easily seen that all of them have a characteristic quinonoidal distortion of their biphenyl fragments described by the contraction of the central C-C bond from $1.465 \AA$ in neutral molecules to $1.437 \AA$ in $\left(\mathbf{F 2}\right.$ - $\mathbf{D M T}^{\mathbf{2 +}}$) and to 1.414 and $1.419 \AA$ in $\mathrm{F} 2-\mathrm{Tol}^{2+}$ and $\mathrm{F} 2-\mathrm{Ph}^{2+}$, respectively. The average precision of the bond lengths in various dications varies from 0.007 to $0.01 \AA$. Moreover, the reduced quinonoidal distortion in $\mathbf{F 2}$-DMT ${ }^{\mathbf{2 +}}$ along with an additional quinonoidal distortion in its peripheral
dimethoxytolyl groups (characterized by the shortening of C-O bonds from 1.376 to $1.362 \AA$) are a result of an extended delocalization of its positive charge, involving the outer Ar groups (see Figure 28).

Figure 28. The packing arrangement of $\left[\mathbf{F 2}-\mathbf{D M T}^{2+}\left(\mathrm{SbCl}_{6}\right)_{2}\right]$ showing that dications form layers along the [101] crystallographic plane. In these layers, dications form antiparallel dimers, which in turn are connected in a honeycomb 2-dimensional framework through close (3.3-3.4 Å) Ar...Ar contacts. Ar groups form infinite parallel stacks and $\mathrm{SbCl}_{6}{ }^{-}$anions and solvent molecules (together with hexyl groups are not shown for clarity) occupy positions between the layers.

3.3 SUMMARY and CONCLUSION

In summary, a novel series of cofacially-arrayed poly-p-phenylenes (F2-Ar) has shown that the X-ray structural characterization of the neutral molecules are largely dominated by effective intramolecular $\mathrm{C}-\mathrm{H}--\pi$ interactions while the dicationic species display an almost perfect parallel arrangement of the cofacial poly-p-phenylene moieties (Figure 29).

Figure 29. Comparing the neutral F2-DMT and dicationic [F2-DMT ${ }^{\mathbf{2 +}}$ $\left(\mathrm{SbCl}^{-}\right)_{2}$] X-ray crystal structures.

Cyclic voltammetry of the various F2-Ar and F1-Ar consistently met the reversibility criteria at scan rates between 50 and $500 \mathrm{mV} / \mathrm{s}$ and the first $2 \mathrm{e}^{-}$oxidation event of the various F2-Ar occurred at a relatively lower potential ($\sim 170 \pm 10 \mathrm{mV}$) as compared to the corresponding F1-Ar. The electronic absorption spectra of $\mathbf{F 2}$-Ar and F1-Ar were strikingly similar as opposed to their emission spectra which showed that the F2-Ar derivatives were relatively broad and bathochromically shifted in comparison to the model F1-Ar derivatives. The initial findings described herein will be further probed in the future and the results will be reported accordingly.

3.4 EXPERIMENTAL SECTION

General Experimental Methods and Materials. All reactions were performed under an argon atmosphere unless otherwise stated. Fluorene, p-formaldehyde, potassium tert-butoxide, N,N-dimethylformamide, 1-bromohexane, bromine, 4-bromobiphenyl, hexanoyl chloride, anhydrous aluminum chloride, carbon disulfide, hydrazine hydrate, potassium hydroxide, diethylene glycol, n-butyllithium, triisopropylborate, sulfuric acid, tetrakis(triphenylphosphine)palladium(0), 1,2-dimethoxyethane, anhydrous sodium carbonate, phenylboronic acid, 3,4-dimethoxyphenylboronic acid, 4-biphenylboronic acid, and anhydrous ferric chloride were all commercially available and used without further purification. 4-methylphenylboronic acid, 4-methoxyphenylboronic acid, and 2,5dimethoxytolylboronic acid were all prepared according to standard literature procedures, F1-DMT was prepared according to a previously published work from our laboratory.

Anhydrous tetrahydrofuran (THF) was prepared by refluxing the commercial tetrahydrofuran over lithium tetrahydroaluminate under an argon atmosphere for 24 hours followed by distillation. It was stored under an argon atmosphere in a Schlenk flask equipped with a Teflon valve fitted with Viton O-rings. Dichloromethane (Aldrich) was repeatedly stirred with fresh aliquots of concentrated sulfuric acid ($\sim 10 \%$ by volume) until the acid layer remained colorless. After separation it was washed successively with water, aqueous sodium bicarbonate, water, and aqueous sodium chloride and dried over anhydrous calcium chloride. The dichloromethane was distilled twice from $\mathrm{P}_{2} \mathrm{O}_{5}$ under an argon atmosphere and stored in a Schlenk flask equipped with a Teflon valve fitted with Viton O-rings. The hexanes and toluene were distilled from $\mathrm{P}_{2} \mathrm{O}_{5}$ under an argon
atmosphere and then refluxed over calcium hydride ($\sim 12 \mathrm{~h}$). After distillation from CaH_{2}, the solvents were stored in Schlenk flasks under an argon atmosphere. NMR spectra were recorded on Varian 300 and 400 MHz NMR spectrometers.

Cyclic Voltammetry (CV). The CV cell was of an air-tight design with high vacuum Teflon valves and Viton O-ring seals to allow an inert atmosphere to be maintained without contamination by grease. The working electrode consisted of an adjustable platinum disk embedded in a glass seal to allow periodic polishing (with a fine emery cloth) without changing the surface area $\left(\sim 1 \mathrm{~mm}^{2}\right)$ significantly. The reference SCE electrode (saturated calomel electrode) and its salt bridge were separated from the catholyte by a sintered glass frit. The counter electrode consisted of platinum gauze that was separated from the working electrode by $\sim 3 \mathrm{~mm}$. The CV measurements were carried out in a solution of 0.1 M supporting electrolyte (tetra- n-butylammonium hexafluorophosphate, TBAH) and $1-5 \times 10^{-3} \mathrm{M}$ substrate in dry dichloromethane under an argon atmosphere. All the cyclic voltammograms were recorded at a sweep rate of 200 $\mathrm{mV} \mathrm{sec}{ }^{-1}$, unless otherwise specified and were IR compensated. The oxidation potentials $\left(E_{1 / 2}\right)$ were referenced to SCE , which was calibrated with added (equimolar) ferrocene $\left(E_{1 / 2}=0.450 \mathrm{~V} v s . \mathrm{SCE}\right)$. The $E_{1 / 2}$ values were calculated by taking the average of anodic and cathodic peak potentials in the reversible cyclic voltammograms.

Procedure for the Spectral Titration of $\mathbf{M A}^{+\bullet} \mathbf{S B C l}_{6}{ }^{-}$) with $\mathbf{F} 2$-Ar. An orangered solution of $\mathbf{M A}{ }^{+\bullet} \mathrm{SbCl}_{6}{ }^{-}$in dichloromethane ($3 \mathrm{~mL}, 3.4 \times 10^{-5} \mathbf{M}$) was transferred under an argon atmosphere in a $1-\mathrm{cm}$ quartz cuvette at room temperature. A dichloromethane solution $\left(1 \times 10^{-3} \mathbf{M}\right)$ of $\mathbf{F 2}$ - $\mathbf{A r}$ in $10 \mu \mathrm{~L}$ increments was added to this
solution. The UV-vis spectra of the resulting solutions, after the addition of each increment, were recorded at $22{ }^{\circ} \mathrm{C}$.

Procedure for the Spectral Titration of $\mathrm{NAP}^{+\bullet} \mathrm{SBCl}_{6}{ }^{-}$) with F 2 -Ar and F1-Ar. A dark blue solution of $\mathbf{N A P}{ }^{+\bullet} \mathrm{SbCl}_{6}{ }^{-}$in dichloromethane ($3 \mathrm{~mL}, 2.7 \times 10^{-5} \mathrm{M}$) was transferred under an argon atmosphere in a $1-\mathrm{cm}$ quartz cuvette at room temperature. A dichloromethane solution $\left(8.1 \times 10^{-4} \mathbf{M}\right)$ of $\mathbf{F 2}$ - $\mathbf{A r}$ or $\mathbf{F 1}$-Ar in $10 \mu \mathrm{~L}$ increments was added to this solution. The UV-vis spectra of the resulting solutions, after the addition of each increment, were recorded at $22^{\circ} \mathrm{C}$.

Synthesis of F2-H2.

In an oven dried schlenk flask under argon fluorene $(5.0 \mathrm{~g}, 30 \mathrm{mmol})$ is dissolved in N, N dimethylformamide (40 mL). To this solution, potassium tert-butoxide $(0.17 \mathrm{~g}, 1.5$ $\mathrm{mmol})$ is added and allowed to stir for 5 minutes after which para-formaldehyde (0.45 g , 15 mmol) is added to the solution which is allowed to stir for 20 minutes at room temp. The resulting solution is then poured into a $5 \% \mathrm{HCl}$ solution $(100 \mathrm{~mL})$, filtered, washed with water ($3 \times 30 \mathrm{~mL}$), and dried under vacuum to afford a beige solid. Yield (5.01 g , 97%); mp: 203-206 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 2.25(\mathrm{t}, 2 \mathrm{H}), 4.42(\mathrm{t}, 2 \mathrm{H}), 7.30(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=$ $7.4 \mathrm{~Hz}), 7.41(\mathrm{t}, 4 \mathrm{H}, J=7.4 \mathrm{~Hz}) 7.57(\mathrm{~d}, 4 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.83(\mathrm{~d}, 4 \mathrm{H}, J=7.6 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}\right) \delta: 39.03,46.05,120.29,125.21,127.18,127.46,141.16,147.64$.

Synthesis of F2.

In an oven dried schlenk flask under argon F2-H2 ($5.01 \mathrm{~g}, 14.5 \mathrm{mmol})$ is dissolved in tetrahydrofuran (125 mL). To this solution, potassium tert-butoxide ($3.58 \mathrm{~g}, 31.9 \mathrm{mmol}$) and 1-bromohexane ($5.27 \mathrm{~g}, 31.9 \mathrm{mmol}$) are added sequentially, the resulting purple solution is allowed to stir for 1 hour at room temperature. The solution is then quenched with water $(100 \mathrm{~mL})$ and extracted with dichloromethane ($3 \times 20 \mathrm{~mL}$). The combined organic extracts are dried over anhydrous magnesium sulfate, filtered, evaporated under reduced pressure and dried under vacuum to produce a yellow liquid that is used without further purification. Yield ($7.4 \mathrm{~g},>99 \%$); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 0.26(\mathrm{~m}, 6 \mathrm{H}), 0.71(\mathrm{t}, 6 \mathrm{H})$, $0.91(\mathrm{~m}, 8 \mathrm{H}), 1.02(\mathrm{~m}, 4 \mathrm{H}), 1.81(\mathrm{~m}, 4 \mathrm{H}), 3.04(\mathrm{~s}, 2 \mathrm{H}), 6.77(\mathrm{~d}, 4 \mathrm{H}, J=7.7 \mathrm{~Hz}), 6.81(\mathrm{td}$, $4 \mathrm{H}, J=7.5 \mathrm{~Hz}, 1.2 \mathrm{~Hz}), 6.97(\mathrm{td}, 4 \mathrm{H}, J=7.5 \mathrm{~Hz}, 1.2 \mathrm{~Hz}), 7.06(\mathrm{~d}, 4 \mathrm{H}, J=7.7 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 14.17,22.73,29.68,31.54,42.96,49.47,53.53,119.01,123.50$, $125.82,125.85,140.95,148.90$.

Synthesis of F2-Br.

To a solution of F2 (7.38 g, 14.4 mmol$)$ in dichloromethane (125 mL), a solution of bromine ($9.67 \mathrm{~g}, 60.5 \mathrm{mmol}$) in dichloromethane (20 mL) is added dropwise. The resulting dark red solution is allowed to stir for 90 minutes after which time it is quenched with concentrated aqueous potassium hydroxide (100 mL) and extracted with dichloromethane ($3 \times 20 \mathrm{~mL}$). The combined organic extracts were dried over anhydrous magnesium sulfate and filtered. The solvent was evaporated under reduced pressure and the beige solid is dried under vacuum. Recrystallization from a dichloromethane/methanol mixture produces a white solid that is used without further purification. Yield (7.63 g, 64\%); mp: 166-169 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 0.18(\mathrm{~m}, 4 \mathrm{H})$, $0.73(\mathrm{t}, 6 \mathrm{H}), 0.93(\mathrm{~m}, 8 \mathrm{H}), 1.03(\mathrm{~m}, 4 \mathrm{H}), 1.82(\mathrm{~m}, 4 \mathrm{H}), 2.89(\mathrm{~s}, 2 \mathrm{H}), 6.90(\mathrm{~d}, 4 \mathrm{H}, J=8.1$ $\mathrm{Hz}), 6.96(\mathrm{~d}, 4 \mathrm{H}, J=1.7 \mathrm{~Hz}), 7.17(\mathrm{dd}, 4 \mathrm{H}, J=8.1 \mathrm{~Hz}, 1.7 \mathrm{~Hz}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta:$ $14.15,22.45,22.71,29.47,31.49,42.24,49.26,54.05,120.37,121.09,127.07,130.44$, 138.77, 150.03.

Synthesis of 1-(4'-Bromobiphenyl-4-yl)-hexan-1-one.

In a 500 mL schlenk flask equipped with a dropping funnel and condenser, hexanoyl chloride ($6.73 \mathrm{~g}, 50 \mathrm{mmol}$), is dissolved in carbon disulfide (100 mL) at $0^{\circ} \mathrm{C}$ under an argon atmosphere. To this solution, anhydrous aluminum chloride ($8.67 \mathrm{~g}, 65 \mathrm{mmol}$) is added portion wise over 20 minutes after which time a solution of 4-bromobiphenyl $(11.66 \mathrm{~g}, 50 \mathrm{mmol})$ in carbon disulfide $(50 \mathrm{~mL})$ is added dropwise over the course of 20 minutes while maintaining the $0^{\circ} \mathrm{C}$ temperature. The resulting solution is heated at $60^{\circ} \mathrm{C}$ overnight, after which time it is allowed to come to room temp and cooled using a dry ice

- acetone bath, quenched with a $10 \% \mathrm{HCl}$ solution $(40 \mathrm{~mL})$, and extracted with dichloromethane ($3 \times 30 \mathrm{~mL}$). The combined organic extracts were dried over anhydrous magnesium sulfate, evaporated, and dried under vacuum to produce an off white solid that was used without further purification. Yield $(15.03 \mathrm{~g}, 91 \%) ; \mathrm{mp}: 96-98{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 0.92(\mathrm{t}, 3 \mathrm{H}), 1.38(\mathrm{~m}, 4 \mathrm{H}), 1.76(\mathrm{~m}, 2 \mathrm{H}), 2.99(\mathrm{t}, 2 \mathrm{H}), 7.48(\mathrm{~d}, 2 \mathrm{H}, J=$ $8.6 \mathrm{~Hz}), 7.59(\mathrm{~d}, 2 \mathrm{H}, J=8.6 \mathrm{~Hz}), 7.64(\mathrm{~d}, 2 \mathrm{H}, J=8.6 \mathrm{~Hz}), 8.03(\mathrm{~d}, 2 \mathrm{H}, J=8.6 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 14.19,22.75,24.29,31.75,38.85,122.77,127.19,128.95,128.99$, 132.27, 136.23, 138.99, 144.40, 200.26.

Synthesis 4-Bromo-4'-hexylbiphenyl

In a schlenk flask under argon, 1-(4'-bromobiphenyl-4-yl)-hexan-1-one (15.03 g, 45.4 $\mathrm{mmol})$ is dissolved in diethylene glycol $(125 \mathrm{~mL})$ with stirring. Hydrazine hydrate (6.6 $\mathrm{mL}, 136.2 \mathrm{mmol})$ and potassium hydroxide $(10.16 \mathrm{~g}, 181.6 \mathrm{mmol})$ are then added to the solution which is allowed to reflux for 24 hours. The resulting yellow solution is cooled to room temperature, quenched with a $5 \% \mathrm{HCl}$ solution $(50 \mathrm{~mL})$, and extracted with dichloromethane ($3 \times 30 \mathrm{~mL}$). The combined organic extracts were dried over anhydrous magnesium sulfate, evaporated, and dried under vacuum to give a white solid that was purified by filtering over a short pad of silica gel using 5\% ethyl acetate/hexanes as the eluent. Yield ($13.6 \mathrm{~g}, 94 \%$); mp: 88-89 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 0.89(\mathrm{~m}, 3 \mathrm{H}), 1.33(\mathrm{~m}$, $6 \mathrm{H}), 1.64(\mathrm{~m}, 2 \mathrm{H}), 2.64(\mathrm{t}, 2 \mathrm{H}), 7.25(\mathrm{~d}, 2 \mathrm{H}, J=8.3 \mathrm{~Hz}), 7.43-7.48(\mathrm{~m}, 4 \mathrm{H}), 7.55(\mathrm{~d}, 2 \mathrm{H}$,

$J=8.6 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 14.33,22.84,29.25,31.64,31.96,35.83,121.36$, $126.95,128.73,129.15,131.99,137.46,140.27,142.77$

Synthesis of 4'-hexyl-4-biphenylboronic acid

In a schlenk flask under argon, 4-bromo-4'-hexylbiphenyl ($7.5 \mathrm{~g}, 23.6 \mathrm{mmol}$) is dissolved in anhydrous tetrahydrofuran (225 mL) and cooled to $-78^{\circ} \mathrm{C}$. To this solution, n butyllithium ($14.2 \mathrm{~mL}, 35.5 \mathrm{mmol}$) is added dropwise and the resulting solution is allowed to stir for 1 hour after which time triisopropylborate $(8.2 \mathrm{~mL}, 35.5 \mathrm{mmol})$ is added. After stirring overnight, the solvent is evaporated and $10 \% \mathrm{H}_{2} \mathrm{SO}_{4}(100 \mathrm{~mL})$ is added to the solution which is then allowed to stir for 3 hours after which time it is extracted with diethyl ether ($3 \times 20 \mathrm{~mL}$) and dried over anhydrous magnesium sulfate. The combined organic extracts are then concentrated and triturated with hexanes to produce a beige colored precipitate which is filtered, dried under vacuum, and used without further purification. Yield ($5.8 \mathrm{~g}, 87 \%$); mp: 117-119 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta$: $0.82(\mathrm{~m}, 3 \mathrm{H}), 1.23(\mathrm{~m}, 6 \mathrm{H}), 1.53(\mathrm{~m}, 2 \mathrm{H}), 2.52(\mathrm{t}, 2 \mathrm{H}), 7.12(\mathrm{~d}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}), 7.42(\mathrm{~d}$, $2 \mathrm{H}, J=8.3 \mathrm{~Hz}), 7.47(\mathrm{~d}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}), 7.69(\mathrm{~d}, 2 \mathrm{H}, J=6.7 \mathrm{~Hz}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right)$ $\delta: 14.60,23.83,30.22,32.79,33.03,36.69,127.00,127.93,130.01,135.52,139.68$, 143.50, 143.99.

General Procedure for the Synthesis of Various F2-Ar

Solid F2-Br and the corresponding aryl boronic acid (5 equiv.) were dissolved in anhydrous 1,2-dimethoxyethane (DME) (30 mL) in an oven dried Schlenk flask under an argon atmosphere and the flask was evacuated and filled with argon (3x). In another oven dried Schlenk flask a solution of anhydrous sodium carbonate (5.0 g) in water (20 mL) was prepared under an argon atmosphere and the flask was also evacuated and filled with argon (3x). To the DME solution, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(50 \mathrm{mg})$ and the salt solution were added sequentially under a strict argon atmosphere followed by evacuation and filling the flask with argon (3x) after each addition. The flask was covered with foil and the solution was allowed to reflux overnight. The resulting solution was cooled to room temperature, quenched with $5 \% \mathrm{HCl}(50 \mathrm{~mL})$ and extracted with dichloromethane ($3 \times 20 \mathrm{~mL}$). The organic layer was dried over anhydrous magnesium sulfate, evaporated and dried under vacuum. The various F2-Ar were purified by column chromatography using an ethyl acetate/hexanes mixture as the eluent to afford the pure F2-Ar.

F2-Ph: Yield (1.12 g, 76\%) clear solid; mp: 196-198 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 0.31$ (m, $4 \mathrm{H}), 0.70(\mathrm{t}, 6 \mathrm{H}), 0.95($ broad m, 12H), $1.94(\mathrm{~m}, 4 \mathrm{H}), 3.16(\mathrm{~s}, 2 \mathrm{H}), 7.02(\mathrm{~s}, 4 \mathrm{H}), 7.08$ (dd, $4 \mathrm{H}, J=7.8 \mathrm{~Hz}, 1.4 \mathrm{~Hz}), 7.14(\mathrm{~d}, 4 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.20-7.23(\mathrm{~m}, 8 \mathrm{H}), 7.29-7.32(\mathrm{~m}$, $12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 14.15,22.60,22.66,29.56,31.40,42.80,50.45,53.79$, $119.25,122.12,125.88,126.69,127.42,128.64,139.00,140.22,141.82,149.70$.

F2-Tol: Yield ($0.90 \mathrm{~g}, 85 \%$) yellow solid; $\mathrm{mp}: 173-175{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 0.32$ $(\mathrm{m}, 4 \mathrm{H}), 0.69(\mathrm{t}, 6 \mathrm{H}), 0.94($ broad m, 12H), $1.90(\mathrm{~m}, 4 \mathrm{H}), 2.42(\mathrm{~s}, 12 \mathrm{H}), 3.12(\mathrm{~s}, 2 \mathrm{H}), 6.97$ $(\mathrm{s}, 4 \mathrm{H}), 7.03(\mathrm{~d}, 4 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.07-7.14($ broad $\mathrm{m}, 20 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 14.15$, $21.35,22.60,22.67,29.57,31.40,42.79,53.73,119.09,122.03,125.67,127.37,129.27$, 136.29, 138.86, 139.13, 140.03, 149.61.

F2-BP: Yield ($0.58 \mathrm{~g}, 43 \%$) yellow solid; mp: 279-281 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 0.36$ $(\mathrm{m}, 4 \mathrm{H}), 0.71(\mathrm{t}, 6 \mathrm{H}), 0.99($ broad m, 12H), $2.02(\mathrm{~m}, 4 \mathrm{H}), 3.24(\mathrm{~s}, 2 \mathrm{H}), 7.13(\mathrm{~s}, 4 \mathrm{H}), 7.18$ $(\mathrm{m}, 8 \mathrm{H}), 7.34(\mathrm{~d}, 8 \mathrm{H}, J=8.2 \mathrm{~Hz}), 7.38(\mathrm{~d}, 4 \mathrm{H} J=7.1 \mathrm{~Hz}), 7.44(\mathrm{~m}, 8 \mathrm{H}), 7.51(\mathrm{~d}, 8 \mathrm{H}, J=$ $8.2 \mathrm{~Hz}), 7.58(\mathrm{~d}, 8 \mathrm{H}, J=7.8 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 14.17,22.67,29.61,31.43,35.70$, $42.80,50.35,53.87,119.34,121.99,125.73,127.11,127.25,127.37,127.58,129.00$, 138.24, 139.40, 140.26, 140.54, 140.91, 149.65.

F2-BPH: Yield $(0.37 \mathrm{~g}, 42 \%)$ white solid; mp: $182-185{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 0.40$ $(\mathrm{m}, 4 \mathrm{H}), 0.73(\mathrm{t}, 6 \mathrm{H}), 0.97(\mathrm{~m}, 24 \mathrm{H}), 1.41(\mathrm{~m}, 24 \mathrm{H}), 1.73(\mathrm{~m}, 8 \mathrm{H}), 2.03(\mathrm{~m}, 4 \mathrm{H}), 2.72(\mathrm{t}$, $8 \mathrm{H}), 3.25(\mathrm{~s}, 2 \mathrm{H}), 7.14(\mathrm{~s}, 4 \mathrm{H}), 7.18(\mathrm{~m}, 8 \mathrm{H}), 7.28(\mathrm{~d}, 8 \mathrm{H}, J=8.1 \mathrm{~Hz}), 7.33(\mathrm{~d}, 8 \mathrm{H}, J=$ $8.3 \mathrm{~Hz}), 7.52(\mathrm{~d}, 8 \mathrm{H}, J=8.3 \mathrm{~Hz}), 7.53(\mathrm{~d}, 8 \mathrm{H}, J=8.1 \mathrm{~Hz}) .{ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}\right) \delta: 14.17$, $14.39,22.68,22.91,29.40,29.61,31.43,31.82,32.04,35.93,42.79,53.84,119.29$, 121.96, 125.69, 126.97, 127.07, 127.55, 129.04, 138.24, 138.32, 139.36, 140.22, 140.26, 142.20, 149.64.

F2-An: Yield ($0.85 \mathrm{~g}, 50 \%$) yellow solid; mp: $169-171{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 0.34$ (m, 4H), $0.68(\mathrm{t}, 6 \mathrm{H}), 0.94(\mathrm{~m}, 12 \mathrm{H}), 1.93(\mathrm{~m}, 4 \mathrm{H}), 3.14(\mathrm{~s}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 12 \mathrm{H}), 6.83$ (d, $8 \mathrm{H}, J=8.7 \mathrm{~Hz}), 6.99(\mathrm{~s}, 4 \mathrm{H}), 7.02(\mathrm{~d}, 4 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.08(\mathrm{~d}, 4 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.17(\mathrm{~d}$, $8 \mathrm{H}, J=8.7 \mathrm{~Hz}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 14.14,22.59,22.66,29.59,31.40,42.88,50.32$, $53.73,55.49,113.96,119.07,121.72,125.30,128.34,134.49,138.33,139.73,149.55$, 158.81.

F2-DMT: Yield $(0.40 \mathrm{~g}, 70 \%)$ clear solid; mp: $150-153{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 0.49$ (m, 4H), $0.70(\mathrm{t}, 6 \mathrm{H}), 0.94(\mathrm{~m}, 12 \mathrm{H}), 1.80(\mathrm{~m}, 4 \mathrm{H}), 2.24(\mathrm{~s}, 12 \mathrm{H}), 2.96(\mathrm{~s}, 2 \mathrm{H}), 3.63(\mathrm{~s}$, $12 \mathrm{H}), 3.78(\mathrm{~s}, 12 \mathrm{H}), 6.55(\mathrm{~s}, 4 \mathrm{H}), 6.71(\mathrm{~s}, 4 \mathrm{H}), 7.10(\mathrm{~m} 8 \mathrm{H}), 7.30(\mathrm{~d}, 4 \mathrm{H}, J=8.1 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 14.16,16.40,22.81,23.21,29.90,31.61,42.51,54.28,56.26,56.75$, 113.67, 115.51, 118.62, 125.60, 126.04, 127.68, 129.54, 136.17, 139.54, 149.51, 150.43, 152.00.

F2-Ver: Yield ($0.50 \mathrm{~g}, 82 \%$) beige solid; mp: $148-150{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 0.37$ $(\mathrm{m}, 4 \mathrm{H}), 0.70(\mathrm{t}, 6 \mathrm{H}), 0.95(\operatorname{broad} \mathrm{~m}, 12 \mathrm{H}), 1.93(\mathrm{~m}, 4 \mathrm{H}), 3.16(\mathrm{~s}, 2 \mathrm{H}), 3.92(\mathrm{~s}, 24 \mathrm{H}), 6.77$ $(\mathrm{s}, 8 \mathrm{H}), 6.88(\mathrm{~s}, 4 \mathrm{H}), 7.01(\mathrm{~s}, 4 \mathrm{H}), 7.06(\mathrm{~d}, 4 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.15(\mathrm{~d}, 4 \mathrm{H}, J=7.8 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 14.12,22.61,29.50,31.37,42.83,53.89,56.14,56.21,110.66,111.31$, $119.15,119.72,121.87,125.37,134.73,138.57,139.77,148.40,149.05,149.73$.

Attempted cyclization of $\mathbf{F 2 - V e r}$ with FeCl_{3}.

To a stirred solution of F2-Veratrole ($0.40 \mathrm{~g}, 0.38 \mathrm{mmol}$) in dichloromethane (50 mL), anhydrous ferric chloride $(0.49 \mathrm{~g}, 3.04 \mathrm{mmol})$ is added and the resulting solution is allowed to stir overnight. The reaction is then quenched with methanol $(30 \mathrm{~mL})$ and washed with water ($3 \times 50 \mathrm{~mL}$). The organic layer is then separated, dried over anhydrous magnesium sulfate, passed over a short pad of silica gel, evaporated, and dried under vacuum. The crude solid was recrystallized from a dichloromethane/methanol mixture to give a brown solid. Yield ($0.37 \mathrm{~g}, 93 \%$); mp: 100-102 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta: 0.45(\mathrm{~m}, 4 \mathrm{H}), 0.70(\mathrm{t}, 6 \mathrm{H}), 0.94(\mathrm{~m}, 12 \mathrm{H}), 1.84(\mathrm{~m}, 4 \mathrm{H}), 3.14(\mathrm{~s}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 12 \mathrm{H})$, $3.90(\mathrm{~s}, 12 \mathrm{H}), 6.62(\mathrm{~s}, 4 \mathrm{H}), 6.90(\mathrm{~s}, 4 \mathrm{H}), 6.99(\mathrm{~m}, 8 \mathrm{H}),, 7.28(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta: 14.13,22.64,23.03,29.59,31.57,43.31,53.62,53.95,56.39,113.03,114.49,118.84$, $123.61,125.33,127.90,133.08,136.99,139.98,147.71,148.63,149.54$.

Procedure for the Synthesis of F2-Ph-Br ${ }_{6}$

With the intentions of synthesizing higher homologues of the F2-Ar series via a tetrabromo F2-Ph derivative, the bromination of $\mathbf{F 2}$-Ph was carried out as follows. In a Schlenk flask equipped with a dropping funnel, F2-Ph $(0.50 \mathrm{~g}, 0.61 \mathrm{mmol})$ was dissolved in dichloromethane $(25 \mathrm{~mL})$. To this a solution of bromine $(0.40 \mathrm{~g}, 2.5 \mathrm{mmol})$ in dichloromethane (5 mL) was added dropwise and the resulting dark red solution was allowed to stir for 2 hours after which time it was quenched with aqueous potassium hydroxide (50 mL) and extracted with dichloromethane ($3 \times 20 \mathrm{~mL}$). The combined organic extracts were dried over anhydrous magnesium sulfate, evaporated and dried under vacuum. The resulting solid was recrystallized from a dichloromethane/methanol mixture to afford a beige colored solid which was confirmed to be a mixture of both the cis and trans hexabrominated F2-Ph derivative as established by ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$ NMR Spectroscopy a well as X-ray crystallography. Yield ($0.63 \mathrm{~g}, 80 \%$) ; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$: $0.23(\mathrm{~m}, 4 \mathrm{H}), 0.70(\mathrm{t}, 6 \mathrm{H}), 0.94(\mathrm{~m}, 12 \mathrm{H}), 1.97(\mathrm{~m}, 4 \mathrm{H}), 3.08(\mathrm{~s}, 2 \mathrm{H}), 6.90(\mathrm{~d}, 4 \mathrm{H}, J=$ $10.6 \mathrm{~Hz}), 7.03(\mathrm{t}, 6 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.12(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}), 7.27(\mathrm{~s}, 2 \mathrm{H}), 7.48(\mathrm{~m}, 8 \mathrm{H})$, $8.04(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 14.13,22.36,22.60,29.40,31.32,42.30$, $53.81,116.69,120.29,121.24,121.46,121.95,122.88,125.62,128.54,128.86,130.97$, $131.85,132.01,138.08,138.26,138.43,138.57,139.42,139.95,149.65,152.21$.

Preparation of F1.

In an oven dried schlenk flask under argon, fluorene ($10 \mathrm{~g}, 60.2 \mathrm{mmol}$) is dissolved in tetrahydrofuran (250 mL). To this solution, potassium tert-butoxide ($14.85 \mathrm{~g}, 132.44$ $\mathrm{mmol})$ and 1-bromohexane $(21.8 \mathrm{~g}, 132.44 \mathrm{mmol})$ are added sequentially, the resulting light blue solution is allowed to stir for 2 hours at room temperature. The solution is then quenched with water $(200 \mathrm{~mL})$ and extracted with dichloromethane $(3 \times 30 \mathrm{~mL})$. The combined organic extracts are dried over anhydrous magnesium sulfate, filtered, evaporated under reduced pressure and dried under vacuum to produce a yellow liquid that is used without further purification. Yield $(20.13 \mathrm{~g},>99 \%) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$: $0.74(\mathrm{~m}, 4 \mathrm{H}), 0.86(\mathrm{t}, 6 \mathrm{H}), 1.15(\mathrm{~m}, 12 \mathrm{H}), 2.07(\mathrm{~m}, 4 \mathrm{H}), 7.37-7.43(\mathrm{~m}, 6 \mathrm{H}), 7.79(\mathrm{~m}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 14.22,22.80,23.93,29.96,31.72,40.65,55.19,119.83,122.99$, $126.88,127.18,141.31,150.84$

Preparation of F1-Br.

In an oven dried schlenk flask equipped with a dropping funnel, F1 (10.0 g, 29.9 mmol$)$ is dissolved in dichloromethane $(100 \mathrm{~mL})$ and cooled to $0^{\circ} \mathrm{C}$ using an ice bath. A solution of bromine $(9.55 \mathrm{~g}, 59.8 \mathrm{mmol})$ in dichloromethane $(10 \mathrm{~mL})$ is added dropwise. The resulting dark red solution is taken off the ice bath and allowed to stir for 1 hour after which time it is quenched with aqueous potassium hydroxide (100 mL) and extracted with dichloromethane ($3 \times 20 \mathrm{~mL}$). The combined organic extracts were dried over
anhydrous magnesium sulfate, evaporated, and dried under vacuum to give a yellow oil which is recrystallized from a dichoromethane/methanol mixture to afford a yellow solid that is used without further purification. Yield (12.0 g, 82\%); mp: 62-64 ${ }^{\circ} \mathrm{C},{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 0.60(\mathrm{~m}, 4 \mathrm{H}), 0.79(\mathrm{t}, 6 \mathrm{H}), 1.06(\mathrm{~m}, 12 \mathrm{H}), 1.93(\mathrm{~m}, 4 \mathrm{H}), 7.44-7.47(\mathrm{~m}, 4 \mathrm{H})$, $7.52(\mathrm{~d}, 2 \mathrm{H}, J=8.6 \mathrm{~Hz}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 14.21,22.78,23.84,29.78,31.65,40.40$, 55.87, 121.32, 121.67, 126.35, 130.34, 139.24, 152.73.

Synthesis of Various F1-Ar.

Solid F1-Br and the corresponding aryl boronic acid (3 equiv.) were dissolved in anhydrous 1,2-dimethoxyethane (DME) (30 mL) in an oven dried Schlenk flask under an argon atmosphere and the flask was evacuated and filled with argon (3x). In another oven dried Schlenk flask a solution of anhydrous sodium carbonate (5.0 g) in water (20 mL) was prepared under an argon atmosphere and the flask was also evacuated and filled with argon (3x). To the DME solution, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(50 \mathrm{mg})$ and the salt solution were added sequentially under a strict argon atmosphere followed by evacuation and filling the flask with argon (3x) after each addition. The flask was covered with foil and the solution was allowed to reflux overnight. The resulting solution was cooled to room temperature, quenched with $5 \% \mathrm{HCl}(50 \mathrm{~mL})$ and extracted with dichloromethane ($3 \times 20 \mathrm{~mL}$). The organic layer was dried over anhydrous magnesium sulfate, evaporated and dried under
vacuum. The various F1-Ar were purified by column chromatography over silica gel using an ethyl acetate/hexanes mixture as the eluent to afford the pure F1-Ar.

F1-Ph: Yield ($0.77 \mathrm{~g}, 78 \%$) colorless solid; mp: 47-49 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 0.85$ $(\mathrm{m}, 10 \mathrm{H}), 1.15(\mathrm{~m}, 12 \mathrm{H}), 2.14(\mathrm{~m}, 4 \mathrm{H}), 7.44(\mathrm{t}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz}), 7.56(\mathrm{t}, 4 \mathrm{H}, J=7.9 \mathrm{~Hz})$, $7.68(\mathrm{~m}, 4 \mathrm{H}), 7.77(\mathrm{~d}, 4 \mathrm{H}, J=7.9 \mathrm{~Hz}), 7.86(\mathrm{~d}, 2 \mathrm{H}, J=8.3 \mathrm{~Hz}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$: 14.22, 22.80, 24.01, 29.94, 31.68, 40.70, 55.47, 120.21, 121.72, 126.26, 127.32, 127.40, 128.99, 140.26, 140.27, 141.90, 151.86.

F1-Tol: Yield ($0.83 \mathrm{~g}, 79 \%$) white solid; $\mathrm{mp}: 83-85^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 0.81(\mathrm{~m}$, $10 \mathrm{H}), 1.12(\mathrm{~m}, 12 \mathrm{H}), 2.09(\mathrm{~m}, 4 \mathrm{H}), 2.47(\mathrm{~s}, 6 \mathrm{H}), 7.34(\mathrm{~d}, 4 \mathrm{H}, J=7.7 \mathrm{~Hz}), 7.63(\mathrm{~m}, 8 \mathrm{H})$, $7.80(\mathrm{~d}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 14.22,21.34,22.80,23.99,29.94,31.67$, $40.69,55.40,120.10,121.53,126.00,127.23,129.70,137.07,139.05,140.06,140.09$, 151.80 .

F1-BP: Yield (1.04 g, 80\%) yellow solid; mp: 168-170 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 0.77$ $(\mathrm{m}, 10 \mathrm{H}), 1.09(\mathrm{~m}, 12 \mathrm{H}), 2.08(\mathrm{~m}, 4 \mathrm{H}), 7.39(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 7.49(\mathrm{t}, 4 \mathrm{H}, J=7.2 \mathrm{~Hz})$, $7.64(\mathrm{~d}, 4 \mathrm{H}, J=5.9 \mathrm{~Hz}), 7.68(\mathrm{~d}, 4 \mathrm{H}, J=8.5 \mathrm{~Hz}), 7.73(\mathrm{~d}, 4 \mathrm{H}, J=8.5 \mathrm{~Hz}), 7.79(\mathrm{~d}, 4 \mathrm{H}, J$ $=8.5 \mathrm{~Hz}), 7.81(\mathrm{~d}, 2 \mathrm{H}, J=7.9 \mathrm{~Hz}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 14.23,22.82,24.03,29.95$, 31.70, 40.73, 55.52, 120.29, 121.61, 126.16, 127.27, 127.56, 127.75, 129.06, 139.72, 140.20, 140.37, 140.79, 140.97, 151.95.

F1-BPH: Yield ($0.60 \mathrm{~g}, 49 \%$) white solid; mp: $104-106{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 0.77$ $(\mathrm{m}, 10 \mathrm{H}), 0.92(\mathrm{~m}, 6 \mathrm{H}), 1.07(\mathrm{~m}, 12 \mathrm{H}), 1.36(\mathrm{~m}, 12 \mathrm{H}), 1.68(\mathrm{~m}, 4 \mathrm{H}), 2.08(\mathrm{~m}, 4 \mathrm{H}), 2.68$ $(\mathrm{t}, 4 \mathrm{H}), 7.30(\mathrm{~d}, 4 \mathrm{H}, J=8.2 \mathrm{~Hz}), 7.60(\mathrm{~d}, 4 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.63-7.67(\mathrm{~m}, 4 \mathrm{H}), 7.72(\mathrm{~d}$, $4 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.77(\mathrm{~d}, 4 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.80(\mathrm{~d}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta:$ $14.23,14.36,22.82,22.86,24.03,29.31,29.96,31.70,31.74,31.99,35.88,40.74,55.50$, $120.25,121.57,126.12,127.09,127.56,127.68,129.12,138.25,139.77,140.17,140.32$, 140.46, 142.47, 151.92.
$\boldsymbol{F 1 - A n}:$ Yield ($0.62 \mathrm{~g}, 86 \%$) yellow solid; mp: $101-102{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 0.76$ $(\mathrm{m}, 10 \mathrm{H}), 1.07-1.17(\mathrm{~m}, 12 \mathrm{H}), 2.03(\mathrm{~m}, 4 \mathrm{H}), 3.87(\mathrm{~s}, 6 \mathrm{H}), 7.02(\mathrm{~d}, 4 \mathrm{H}, J=8.8 \mathrm{~Hz}), 7.53$ $(\mathrm{d}, 4 \mathrm{H}, J=8.8 \mathrm{~Hz}), 7.62(\mathrm{~d}, 4 \mathrm{H}, J=8.8 \mathrm{~Hz}), 7.73(\mathrm{~d}, 4 \mathrm{H}, J=7.7 \mathrm{~Hz}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right)$ $\delta: 14.22,22.80,23.99,29.94,31.67,40.67,55.37,55.58,114.41,120.05,121.25,125.75$, 128.38, 131.48, 139.71, 139.77, 151.77, 159.23.

3.5 EXPERIMENTAL SPECTRA

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of F2-H2

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of $\mathbf{F} \mathbf{2}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of $\mathrm{F} 2-\mathrm{Br}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 1-(4'-Bromobiphenyl-4-yl)-hexan-1-one

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 4-Bromo-4'-hexylbiphenyl

PPM	7.0	6.0	5.0	4.0	3.0	2.0	1.0

PPM	130.0	110.0	90.0	70.0	50.0	30.0

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 4 '-hexyl-4-biphenylboronic acid

PPM	7.0	6.0	5.0	4.0	3.0	2.0	1.0	

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of F2-Ph

PPM 7.0	6.0	5.0	4.0	3.0	2.0	1.0	0.0

PPM	140.0	120.0	100.0	80.0	60.0	40.0	20.0

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of F2-Tol

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of F2-BP

PPM	7.0	6.0	5.0	4.0	3.0	2.0	1.0	0.0

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of $\mathrm{F} 2-\mathrm{BPH}$

PPM	7.0	6.0	5.0	4.0	3.0	2.0	1.0	0.0

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of F2-An

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of F2-DMT

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of F 2 -Ver-Cl

| PPM 7.0 | 6.0 | 5.0 | 4.0 | 3.0 | 2.0 | 1.0 | 0.0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | | |
| | | | | | | | |
| PPM | 130.0 | 110.0 | 90.0 | 70.0 | 50.0 | 30.0 | 10.0 |

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of F 1

PPM	7.0	6.0	5.0	4.0	3.0	2.0	1.0

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of F1-Br

PPM	140.0	120.0	100.0	80.0	60.0	40.0	20.0

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of F1-Ph

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of F1-BP

PPM	8.0	7.0	6.0	5.0	4.0	3.0	2.0	1.0

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of F1-BPH

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of F1-An

PPM	7.0	6.0	5.0	4.0	3.0	2.0	1.0	0.0

Table 18. Crystal data and structure refinement for raj11b (F2-Ph).

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=32.12^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]
R indices (all data)
Largest diff. peak and hole
raj11b
C63 H60
817.11

100(2) K
0.71073 Å

Monoclinic
P 2/n
$a=17.048(2) \AA \quad \alpha=90^{\circ}$.
$\mathrm{b}=21.875(3) \AA \quad \beta=91.537(2)^{\circ}$.
$\mathrm{c}=24.758(3) \AA \quad \gamma=90^{\circ}$.
9229.4(18) \AA^{3}

8
$1.176 \mathrm{Mg} / \mathrm{m}^{3}$
$0.066 \mathrm{~mm}^{-1}$
3504
$0.23 \times 0.21 \times 0.21 \mathrm{~mm}^{3}$
0.93 to 32.12°.
$-25<=\mathrm{h}<=25,0<=\mathrm{k}<=32,0<=1<=37$
151550
$30595[\mathrm{R}(\mathrm{int})=0.0546]$
98.5 \%

Semi-empirical from equivalents
0.9863 and 0.9850

Full-matrix least-squares on F^{2}
30595 / 363 / 1027
1.035
$\mathrm{R} 1=0.1020, \mathrm{wR} 2=0.2484$
$\mathrm{R} 1=0.1475, \mathrm{wR} 2=0.2734$
0.743 and -0.496 e. \AA^{-3}

Table 19. Crystal data and structure refinement for raj111 (F2-Tol).

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=67.74^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F2
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]
R indices (all data)
Largest diff. peak and hole
raj111
C68.91 H71.82 Cl3.82
1035.54

100(2) K
1.54178 Å

Monoclinic
P 21/c
$a=23.6767(15) \AA \quad \alpha=90^{\circ}$.
$b=12.4995(8) \AA \quad \beta=106.411(4)^{\circ}$.
$\mathrm{c}=19.5888(12) \AA \quad \gamma=90^{\circ}$.
5561.1(6) \AA^{3}

4
$1.237 \mathrm{Mg} / \mathrm{m}^{3}$
$2.165 \mathrm{~mm}^{-1}$
2201
$0.60 \times 0.30 \times 0.08 \mathrm{~mm}^{3}$
3.89 to 67.74°.
$-27<=\mathrm{h}<=25,0<=\mathrm{k}<=14,0<=1<=22$
43082
$9690[\mathrm{R}(\mathrm{int})=0.0509]$
98.2 \%

Semi-empirical from equivalents
0.8459 and 0.3567

Full-matrix least-squares on F^{2}
9690 / 3 / 678
1.005
$R 1=0.0684, w R 2=0.1596$
$\mathrm{R} 1=0.0746, \mathrm{wR} 2=0.1622$
0.577 and -0.567 e. \AA^{-3}

Table 20. Crystal data and structure refinement for raj16m (F1-Tol).

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=67.94^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]
R indices (all data)
Extinction coefficient
Largest diff. peak and hole
raj16m
C46 H36 O4
652.75

100(2) K
1.54178 Å

Monoclinic
P 21/n
$\mathrm{a}=9.7701(2) \AA \quad \alpha=90^{\circ}$.
$\mathrm{b}=24.4149(5) \AA \quad \beta=91.6700(10)^{\circ}$.
$\mathrm{c}=14.1159(3) \AA \quad \gamma=90^{\circ}$.
$3365.72(12) \AA^{3}$
4
$1.288 \mathrm{Mg} / \mathrm{m}^{3}$
$0.639 \mathrm{~mm}^{-1}$
1376
$0.33 \times 0.14 \times 0.07 \mathrm{~mm}^{3}$
3.62 to 67.94°.
$-11<=\mathrm{h}<=11,0<=\mathrm{k}<=29,0<=1<=16$
28063
$5928[\mathrm{R}(\mathrm{int})=0.0177]$
98.7 \%

Semi-empirical from equivalents
0.9566 and 0.8169

Full-matrix least-squares on F^{2}
5928 / 0 / 456
1.012
$\mathrm{R} 1=0.0329, \mathrm{wR} 2=0.0891$
$\mathrm{R} 1=0.0342, \mathrm{wR} 2=0.0902$
0.00076(10)
0.209 and - 0.161 e. \AA^{-3}

Table 21. Crystal data and structure refinement for raj11s (F2-BP).

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=68.29^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]
R indices (all data)
Largest diff. peak and hole
raj11s
C87.13 H76.25 Cl0.25
1132.20

100(2) K
1.54178 Å

Monoclinic
P 2/n
$\mathrm{a}=30.1607(9) \AA \quad \alpha=90^{\circ}$.
$b=29.6275(8) \AA \quad \beta=112.7550(10)^{\circ}$.
$\mathrm{c}=31.1218(9) \AA \quad \gamma=90^{\circ}$.
$25645.5(13) \AA^{3}$
16
$1.173 \mathrm{Mg} / \mathrm{m}^{3}$
$0.590 \mathrm{~mm}^{-1}$
9653
$0.44 \times 0.25 \times 0.04 \mathrm{~mm}^{3}$
2.29 to 68.29°.
$-36<=\mathrm{h}<=33,0<=\mathrm{k}<=34,0<=1<=37$
214741
$46096[\mathrm{R}($ int $)=0.0580]$
98.0 \%

Semi-empirical from equivalents
0.9768 and 0.7813

Full-matrix least-squares on F^{2}
46096 / 78 / 3162
1.059
$R 1=0.0632, w R 2=0.1710$
$R 1=0.0894, w R 2=0.1860$
1.016 and -0.687 e. \AA^{-3}

Table 22. Crystal data and structure refinement for raj11x (F2-BPH).

Identification code	raj11x
Empirical formula	C111 H124
Formula weight	1458.10
Temperature	100(2) K
Wavelength	1.54178 Å
Crystal system	Monoclinic
Space group	P 21/n
Unit cell dimensions	$\begin{array}{ll} \mathrm{a}=14.57620(10) \AA & \alpha=90^{\circ} . \\ \mathrm{b}=48.1622(5) \AA & \beta=99.6950(10)^{\circ} . \\ \mathrm{c}=24.4636(2) \AA & \gamma=90^{\circ} . \end{array}$
Volume	16928.7(3) \AA^{3}
Z	8
Density (calculated)	$1.144 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.475 \mathrm{~mm}^{-1}$
F(000)	6320
Crystal size	$0.25 \times 0.10 \times 0.06 \mathrm{~mm}^{3}$
Theta range for data collection	2.59 to 68.33°.
Index ranges	$-17<=\mathrm{h}<=17,0<=\mathrm{k}<=57,0<=\mathrm{l}<=29$
Reflections collected	145022
Independent reflections	$30438[\mathrm{R}($ int $)=0.0288]$
Completeness to theta $=68.33^{\circ}$	97.9\%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9720 and 0.8904
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	30438 / 9 / 2007
Goodness-of-fit on F2	1.008
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0459, \mathrm{wR} 2=0.1136$
R indices (all data)	$\mathrm{R} 1=0.0589, \mathrm{wR} 2=0.1203$
Largest diff. peak and hole	0.338 and -0.312 e. \AA^{-3}

Table 23. Crystal data and structure refinement for raj11fn (F2-An).

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=67.74^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [I>2sigma(I)]
R indices (all data)
Absolute structure parameter
Largest diff. peak and hole
raj11fn
C67 H68 O4
937.21

100(2) K
1.54178 A

Monoclinic
Pn
$\mathrm{a}=17.3016(3) \AA \quad \alpha=90^{\circ}$.
$b=9.8397(2) \AA \quad \beta=104.5870(10)^{\circ}$.
$\mathrm{c}=31.1932(6) \AA \quad \gamma=90^{\circ}$.
5139.23(17) \AA^{3}

4
$1.211 \mathrm{Mg} / \mathrm{m}^{3}$
$0.567 \mathrm{~mm}^{-1}$
2008
$0.50 \times 0.36 \times 0.09 \mathrm{~mm}^{3}$
2.68 to 67.74°.
$-20<=\mathrm{h}<=20,0<=\mathrm{k}<=11,0<=1<=37$
42040
$9142[\mathrm{R}(\mathrm{int})=0.0206]$
98.1 \%

Semi-empirical from equivalents
0.9507 and 0.7647

Full-matrix least-squares on F^{2}
9142 / 2 / 1291
1.011
$\mathrm{R} 1=0.0406, \mathrm{wR} 2=0.1113$
$R 1=0.0416, w R 2=0.1124$
0.03(19)
0.489 and -0.250 e. \AA^{-3}

Table 24. Crystal data and structure refinement for raj16f (F2-DMT).

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=67.88^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]
R indices (all data)
Extinction coefficient
Largest diff. peak and hole
raj16f
C75 H84 O8.40
1119.90

100(2) K
$1.54178 \AA$
Monoclinic
P 21/n
$\mathrm{a}=17.8132(4) \AA \quad \alpha=90^{\circ}$.
$b=11.2790(2) \AA \quad \beta=102.9640(10)^{\circ}$.
$\mathrm{c}=31.9469(6) \AA \quad \gamma=90^{\circ}$.
6255.0(2) \AA^{3}

4
$1.189 \mathrm{Mg} / \mathrm{m}^{3}$
$0.598 \mathrm{~mm}^{-1}$
2405
$0.53 \times 0.21 \times 0.08 \mathrm{~mm}^{3}$
2.62 to 67.88°.
$-21<=\mathrm{h}<=20,0<=\mathrm{k}<=13,0<=1<=37$
52249
$11185[\mathrm{R}($ int $)=0.0196]$
98.3 \%

Semi-empirical from equivalents
0.9537 and 0.7422

Full-matrix least-squares on F^{2}
11185 / 0 / 767
0.998
$\mathrm{R} 1=0.0421, \mathrm{wR} 2=0.1069$
$\mathrm{R} 1=0.0454, \mathrm{wR} 2=0.1096$
0.00011(3)
0.504 and -0.428 e. \AA^{-3}

Table 25. Crystal data and structure refinement for raj13aa $\left[(\mathbf{F} 2-\mathrm{Ph})^{2+}\left(\mathbf{S b C l}_{6}\right)_{2}\right]$.

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=68.07^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [I>2sigma(I)]
R indices (all data)
Largest diff. peak and hole
raj13aa
C77 H73 Cl12 Sb2
1667.25

100(2) K
$1.54178 \AA$
Monoclinic
P 21/c
$\mathrm{a}=25.9123(6) \AA \alpha=90^{\circ}$.
$b=23.5515(5) \AA \quad \beta=114.5170(10)^{\circ}$.
$\mathrm{c}=26.4084(6) \AA \quad \gamma=90^{\circ}$.
14663.3(6) \AA^{3}

8
$1.510 \mathrm{Mg} / \mathrm{m}^{3}$
$10.194 \mathrm{~mm}^{-1}$
6728
$0.18 \times 0.09 \times 0.03 \mathrm{~mm}^{3}$
2.63 to 68.07°.
$-31<=\mathrm{h}<=28,0<=\mathrm{k}<=28,0<=1<=31$
122759
$26344[\mathrm{R}($ int $)=0.0646]$
98.5 \%

Numerical
0.7496 and 0.2612

Full-matrix least-squares on F^{2}
26344 / 150 / 1637
1.023
$\mathrm{R} 1=0.0532, \mathrm{wR} 2=0.1205$
$R 1=0.0883, w R 2=0.1338$
2.015 and -0.753 e. \AA^{-3}

Table 26. Crystal data and structure refinement for raj16ja $\left[(\mathbf{F 2}-\mathbf{T o l})^{2+}\left(\mathrm{SbCl}_{6}\right)_{2}\right]$.

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=67.60^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [I>2sigma(I)]
R indices (all data)
Largest diff. peak and hole
raj16ja
C74 H76 Cl12 Sb2
1634.25

100(2) K
1.54178 A

Triclinic
P-1
$\mathrm{a}=12.3732(5) \AA \quad \alpha=71.830(2)^{\circ}$.
$\mathrm{b}=15.0430(6) \AA \quad \beta=86.905(2)^{\circ}$.
$\mathrm{c}=21.9499(9) \AA \quad \gamma=68.804(2)^{\circ}$.
3611.2(3) \AA^{3}

2
$1.503 \mathrm{Mg} / \mathrm{m}^{3}$
$10.333 \mathrm{~mm}^{-1}$
1652
$0.71 \times 0.09 \times 0.03 \mathrm{~mm}^{3}$
3.32 to 67.60°.
$-14<=\mathrm{h}<=13,-16<=\mathrm{k}<=17,0<=1<=26$
29041
$12127[\mathrm{R}(\mathrm{int})=0.0531]$
98.0 \%

Numerical
0.7607 and 0.0511

Full-matrix least-squares on F^{2}
12127 / 36 / 814
1.001
$R 1=0.0788, w R 2=0.1892$
$\mathrm{R} 1=0.1120, \mathrm{wR} 2=0.2139$
2.042 and -0.999 e. \AA^{-3}

Table 27. Crystal data and structure refinement for raj16ga [(F2-DMT) $\left.{ }^{2+}\left(\mathbf{S b C l}_{6}{ }^{-}\right)_{2}\right]$.

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=67.87^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]
R indices (all data)
Largest diff. peak and hole
raj16ga
C77.01 H88.01 C116.01 O8 Sb2
1952.81

100(2) K
$1.54178 \AA$
Monoclinic
P 21/n
$a=17.0139(7) \AA \quad \alpha=90^{\circ}$.
$\mathrm{b}=23.5773(10) \AA \quad \beta=91.232(2)^{\circ}$.
$\mathrm{c}=21.4402(9) \AA \quad \gamma=90^{\circ}$.
8598.6(6) \AA^{3}

4
$1.508 \mathrm{Mg} / \mathrm{m}^{3}$
$9.971 \mathrm{~mm}^{-1}$
3953
$0.56 \times 0.09 \times 0.03 \mathrm{~mm}^{3}$
2.79 to 67.87°.
$-20<=\mathrm{h}<=20,0<=\mathrm{k}<=28,0<=1<=25$
70707
$15257[\mathrm{R}(\mathrm{int})=0.0587]$
98.6 \%

Numerical
0.7280 and 0.0717

Full-matrix least-squares on F^{2}
15257 / 3 / 983
1.019
$\mathrm{R} 1=0.0590, \mathrm{wR} 2=0.1427$
$R 1=0.0782, w R 2=0.1526$
1.452 and -1.007 e. \AA^{-3}

Table 28. Crystal data and structure refinement for raj11c (F2-Ver-Cl).

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=66.64^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F2
Final R indices [I>2sigma(I)]
R indices (all data)
Largest diff. peak and hole
raj11c
C71 H72 Cl4 O8
1195.09

100(2) K
1.54178 A

Triclinic
P-1
$a=13.5163(4) \AA \quad \alpha=83.4080(10)^{\circ}$.
$\mathrm{b}=14.6913(4) \AA \quad \beta=88.474(2)^{\circ}$.
$\mathrm{c}=15.4938(4) \AA \quad \gamma=80.116(2)^{\circ}$.
3010.86(14) \AA^{3}

2
$1.318 \mathrm{Mg} / \mathrm{m}^{3}$
$2.247 \mathrm{~mm}^{-1}$
1260
$0.43 \times 0.25 \times 0.18 \mathrm{~mm}^{3}$
2.87 to 66.64°.
$-15<=\mathrm{h}<=15,-17<=\mathrm{k}<=17,0<=\mathrm{l}<=18$
23541
$9795[\mathrm{R}(\mathrm{int})=0.0214]$
98.1 \%

Semi-empirical from equivalents
0.6879 and 0.4450

Full-matrix least-squares on F^{2}
9795 / 0 / 748
1.070
$\mathrm{R} 1=0.0512, \mathrm{wR} 2=0.1410$
$\mathrm{R} 1=0.0623, \mathrm{wR} 2=0.1506$
0.930 and -0.289 e. \AA^{-3}

Table 29. Crystal data and structure refinement for raj12qa (F2-Ph-Br6).

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=67.79^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F2
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]
R indices (all data)
Largest diff. peak and hole
raj12qa
C64.85 H57.70 Br6 Cl1.70
1376.83

100(2) K
$1.54178 \AA$
Monoclinic
P 21/c
$a=14.7051(3) \AA \alpha=90^{\circ}$.
$b=26.6887(5) \AA \beta=101.4120(10)^{\circ}$.
$\mathrm{c}=14.5892(3) \AA \gamma=90^{\circ}$.
$5612.48(19) \AA^{3}$
4
$1.629 \mathrm{Mg} / \mathrm{m}^{3}$
$6.221 \mathrm{~mm}^{-1}$
2743
$0.52 \times 0.28 \times 0.12 \mathrm{~mm}^{3}$
3.31 to 67.79°.
$-17<=\mathrm{h}<=17,0<=\mathrm{k}<=31,0<=1<=17$
46029
$9987[\mathrm{R}(\mathrm{int})=0.0336]$
98.0 \%

Numerical
0.5223 and 0.1403

Full-matrix least-squares on F^{2}
9987 / 69 / 670
1.130
$\mathrm{R} 1=0.0725, \mathrm{wR} 2=0.1687$
$\mathrm{R} 1=0.0795, \mathrm{wR} 2=0.1721$
1.114 and -1.006 e. \AA^{-3}

Bibliography

1. Kiupel, B.; Niederalt, C.; Nieger, M.; Grimme, S.; Vogtle, F. Angew. Chem. Int. Ed. 1998, 37, 3031-3034.
2. Grimme, S.; Harren, J.; Sobanski, A.; Vogtle, F. Eur. J. Org. Chem. 1998, 14911509.
3. Hill, D. J.; Mio, M. J.; Prince, R. B.; Hughes, T. S.; Moore, J. S. Chem. Rev. 2001, 101, 3893-4011.
4. Kočovský, P.; Vyskočil, S.; Smrčina, M. Chem. Rev. 2003, 103, 3213-3245.
5. Jeulin, S.; de Paule, S. D.; Ratovelomanana-Vidal, V.; Genêt, J.-P. ; Champion, N.; Dellis, P. PNAS, 2004, 101, 5799-5804.
6. Vachon, J.; Perollier, C.; Monchaud, D.; Marsol, C.; Ditrich, K.; Lacour, J. J. Org. Chem. 2005, 70, 5903-5911.
7. Goncalves-Farbos, M.-H.; Vial, L.; Lacour, J. Chem. Commun. 2008, 829-831.
8. Griffin, G. W.; Horn, K. A. Org. Prep. Proc. Int. 1985, 17, 187-190.
9. Muellen, K.; Heinz, W.; Klaemer, F. G.; Roth, W. R.; Kindermann, I.; Adamczak, O.; Wette, M.; Lex, J. Chem. Ber. 1990, 123, 2349-2371.
10. Pomerantz, M.; Dassanayake, N. L.; McManus, T. R.; Reynolds, C. H. J. Org. Chem. 1984, 49, 4029-4032.
11. Jaime, C.; Font, J. J. Org. Chem. 1990, 55, 2637-2644.
12. Mislow, K.; Glass, M. A. W.; Hopps, H. B.; Simon, E.; Wahl, G.H., Jr. J. Am. Chem. Soc.1964, 86, 1710-1733.
13. Sonogashira, K. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon: Oxford, 1991; Volume 3, pp 521-548.
14. Chanteau, S. H.; Tour, J. M. J. Org. Chem. 2003, 68, 8750-8766.
15. Suzuki, A. Chem. Commun. 2005, 4759-4763.
16. Hassan, J.; Sevignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M. Chem. Rev. 2002, 102, 1359-1469.
17. Rathore, R.; Abdelwahed, S. H.; Guzei, I. A. J. Am. Chem. Soc. 2003, 125, 8712.
18. Rathore, R.; Burns, C. L. J. Org. Chem. 2003, 68, 4071-4074.
19. Franco, G.; Alberti, A.; Guerra, M.; Seconi, G.; Vivarelli, P. J. Chem. Soc., Perkin Trans. 2, 1976, 173-178.
20. Banerjee, M.; Shukla, R.; Rathore, R. J. Am. Chem. Soc. 2009, 131, 1780-1786.
21. Eberson, L. Electron-Transfer Reactions in Organic Chemistry; Springer: New York, 1987.
22. Yoshida, K. Electrooxidation in Organic Chemistry. The Role of Cation Radicals as Synthetic Intermediates; Wiley: New York, 1984.
23. Rathore, R.; Kochi J. K. Adv. Phys. Org. Chem. 2000, 35, 193.
24. Shirota,Y.; Kageyama, H. Chem. Rev. 2007, 107, 953.
25. Carroll, R. L.; Gorman, C. B. Angew. Chem. Int. Ed. 2002, 41, 4378.
26. Miller, J. S.; Epstein, A. J.; Reiff, W.M. Science 1988, 240, 40.
27. Rovira, C. Chem. Rev. 2004, 104, 5289.
28. Segura, J. L.; Martın, N.; Guldi, D. M. Chem. Soc. Rev. 2005, 34, 31.
29. Chebny, V. J.; Shukla, R.; Lindeman, S. V.; Rathore, R. Org. Lett. 2009, 11, 1939.
30. Chebny, V. J.; Navale, T. S.; Shukla, R.; Lindeman, S. V.; Rathore, R. Org. Lett. 2009, 11, 2253.
31. Davidson, I. M.; Musgrave, O. C. J. Chem. Soc. 1963, 3154.
32. Zhu, X.-Z.; Chen, C.-F. J. Am. Chem. Soc. 2005, 127, 13158.
33. Zhu, X.-Z.; Chen, C.-F. J. Org. Chem. 2005, 70, 917.
34. Introduction to Molecular Electronics, Petty, M. C., Bryce, M. R., Bloor, D., Eds.; Oxford Univ. Press: New York, 1995.
35. Organic Electronics; Klauk, H., Ed.; Wiley-VCH: Weinheim, 2006.
36. Rathore, R.; Burns, C. L.; Deselnicu, M. I. Org. Synth. 2005, 82, 1.
37. Rathore, R.; Burns, C. L.; Deselnicu, M. I. Org. Lett. 2001, 3, 2887.
38. Le Magueres, P., Lindeman, S.V., Kochi, J. K. Org. Lett. 2000, 2, 3567.
39. Lee, S.; Chen, B.; Fredrickson, D. C.; DiSalvo, F. J.; Lobkovsky, E.; Adams, J. A. Chem. Mater. 2003, 15, 1420.
40. Schlesener, C. J.; Amatore, C.; Kochi, J. K. J. Am. Chem. Soc. 1984, 106, 7472.
41. Parker, V. D.; Eberson, L. Tetrahedron Lett. 1969, 2839.
42. Parker, V. D.; Eberson, L. Acta Chem. Scand. 1970, 24, 3542.
43. Wadumethrige, S. H.; Rathore, R. Org. Lett. 2008, 10, 5139.
44. Becker, H. D.; Sanchez, D. J. Org. Chem. 1979, 44, 1787.
45. Dekker, C.; Ratner, M. A. Physics World 2001, 14, 29.
46. Maiya, B. G.; Ramasarma, T. Current Science 2001, 80, 1523.
47. Grinstaff, M. W. Angew. Chem. Int. Ed. Engl. 1999, 38, 3629.
48. Kelley, S. O.; Barton, J. K. Metal Ions in Biological Systems 1999, 36, 211.
49. Barton, J. K. Pure Appl. Chem. 1998, 70, 873.
50. Lewis, F. D.; Wu, T.; Liu, X.; Letsinger, R. L.; Greenfield, S. R.; Miller, S. E.; Wasielewski, M. R. J. Am. Chem. Soc. 2000, 122, 2889.
51. Lewis, F. D.; Liu, X.; Wu, Y.; Miller, S. E.; Wasielewski, M. R.; Letsinger, R. L.; Sanishvili, R.; Joachimiak, A.; Tereshko, V.; Egli, M. J. Am. Chem. Soc. 1999, 121, 9905.
52. Kan, Y.; Schuster, G. B. J. Am. Chem. Soc. 1999, 121, 11607.
53. Lewis, F. D.; Letsinger, R.L.; Wasielewski, M.R. Acc. Chem. Res. 2001, 34, 159.
54. Anthony, J. E.; Brooks, J. S.; Eaton, D. L.; Parkin, S. R. J. Am. Chem. Soc. 2001, 123, 9482-9483.
55. Swartz, C. R.; Parkin, S. R.; Bullock, J. E.; Anthony, J. E.; Mayer, A. C.; Malliaras, G. G. Org. Lett. 2005, 7, 3163-3166.
56. Banerjee, M.; Lindemann, S. V.; Rathore, R. J. Am. Chem. Soc. 2007, 129, 8070.
57. Feringa, B. L.; Jager, W. F.; Lange, B. de Tetrahedron 1993, 49, 8267.
58. Fabbrizzi, L.; Poggi, A. Chem. Soc. Rev. 1995, 198.
59. Watson, M. D.; Fechtenkotter, A.; Mullen, K. Chem. Rev. 2001, 101, 1267.
60. Rathore, R.; Le Magueres, P.; Lindeman, S.V.; Kochi, J.K. Angew. Chem. Int. Ed. Engl. 2000, 39, 809.
61. Rathore, R.; Burns, C. L.; Abdelwahed, S. A. Org. Lett. 2004, 6, 1689-1692.
62. Zhai, L.; Shukla, R.; Rathore, R. Org. Lett. 2009, 11, 3474.
63. Burley, S.K.; Petsko, A. J. Am. Chem. Soc. 1986, 108, 7995-8001.

[^0]: Recommended Citation
 Modjewski, Matthew J., "Design, Synthesis and Study of the Bridged and Cofacially-Arrayed Poly-P-Phenylene Molecular Wires" (2009). Master's Theses (2009-). Paper 21.
 http://epublications.marquette.edu/theses_open/21

