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ABSTRACT 

EXPULSION OF LEAVING GROUPS FROM ZWITTERIONIC INTERMEDIATES 
GENERATED via PHOTOCHEMICAL ELECTROCYCLIC RING CLOSURE 

REACTIONS AND AN INVESTIGATION ON TPE OLIGOMERS. 
 
 

Tasnuva Shahrin 

Marquette University, May 2013 

  Photochemical cleavage reactions have been found widespread use in biological 
applications that require intracellular photochemical release of biologically active 
substrates such as peptides, proteins, neurotransmitters, or nucleotide phosphates. The 
research is to devise photoremovable protecting groups (cage compounds) that can be 
used to deprotect those biological substrates by irradiation. A number of photocleavage 
reactions have been developed in recent years which release chlorides, hydroxides, 
carboxylates, thiolates, and phenolates leaving groups for use in such applications. 
Nevertheless, photochemical elimination reactions that expel such leaving group anions 
remain quite uncommon. The cleavage of cage compounds via photolysis requires 
heterolysis of a bond to the substrate or leaving group. Heterolysis of a C-Cl, C-O or C-S 
σ-bonds in a zwitterionic intermediate is proposed. The study also involves 
benzothiophene carboxanilides. The photolysis wavelength can be 365 nm by introducing 
a benzoyl group into the para position of the carboxanilide. The electrocyclization 
appears to be a triplet excited state reaction, according to the quenching studies. Heavy 
atom effect has been investigated for this system by introducing Br-atom at C-6 position 
of benzothiophene ring and also leading to a very efficient reaction. Chloride, hydroxyl, 
carboxylate, thiolate and phenolate leaving groups can be released photolytically. The 
proposed mechanism involves excited state electrocyclization to produce a ground state 
zwitterionic intermediate which eliminates the leaving group. We found quantum yields 
for leaving group expulsion decrease with the increased basicity of leaving groups, 
consistent with elimination of the leaving group directly from the zwitterionic 
intermediate. The zwitterion also likely undergoes competing ring opening to regenerate 
the photoreactant. Moreover, the inclusion of a carboxylate group at the C-6 position of 
the benzothiophene ring improves solubility in aqueous media.   

In addition, the ionic behavior of di-phenyl substituted poly(phenylene vinylene) as 
well as well-defined tetraphenyl ethylene (TPE) oligomers have been investigated as in 
another part of my research. 
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CHAPTER 1: INTRODUCTION 

Photoremovable protecting groups are enjoying a resurgence of interest since their 

introduction by Kaplan1a and Engels1b in the late 1970s. In general, photolysis reactions 

present a noteworthy and often ideal alternative to all other methods for introducing 

reagents or substrates into reactions or biological media. The ability to control the spatial, 

temporal, and concentration variables by using light to photochemically release a 

substrate provides the researcher with the ability to design more precisely the 

experimental applications in synthesis, physiology, and molecular biology. Among the 

many possible examples is the recently reported inhibition–reactivation of protein kinase 

A by photolysis of the dormant enzyme.2–4 In this demonstration, it is necessary that the 

deprotection process be initiated by photolysis of the dominant chromophore of the 

protecting group. Covalent blocking of the functional groups at the active site of an 

enzyme essentially suspends its mode of action and virtually shuts down the catalytic 

cycle. It is this feature that has attracted biochemists to the use of protecting groups for 

the investigation of biological mechanisms.  

Cage compounds or photoremovable protecting groups (PRPGs) are broadly used 

in biochemical applications, in cellular biology and physiology, because they allow light-

controlled release of bioeffectors with microscopic spatial resolution.5 Cage compounds 

can also be used for thermoelectric applications. A number of such compounds are now 

available; but there is no universal photocleavable protecting group that is satisfactory for 

all applications. Therefore there is still the need for the development of new 
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photoremovable protecting groups which could be used for some specific application. 

Many cage compounds have drawbacks: 

1.  The photolytic release step often requires use of UV-light which can cause cell 

damage and unintended side reactions of biological molecules.6 Few cage compounds are 

available that release bioeffectors upon exposure to visible light wavelengths.7   

2. Another problem is that the bioeffector may be released prematurely in the dark 

under physiological conditions,6 because many cage compounds are not  stable with 

respect to solvolysis at high ionic strengths under aqueous conditions which  are 

encountered in biological systems.   

   Neurotransmitter receptors are transiently inactivated (desensitized) during 

prolonged (milliseconds) exposure to neurotransmitter. Dark hydrolysis would lead to 

liberation of the neurotransmitter and, therefore, to transient inactivation of the receptor 

before the reaction can be investigated. 

3. Moreover, the released molecules usually are weak bases such as carboxylate or 

phosphate, while many of the functional groups that need to be released are much 

stronger bases, such as thiolate or phenolate.  

Therefore an important goal of our research is to release these stronger bases. For 

those molecules that are less basic, the goal is to design a PRPG that is more stable and 

not released prematurely. Finally, the PRPG is designed to be removed by photolysis at 

longer wavelengths with high chemical and quantum yields to minimize photolysis of 

intracellular components such as proteins, DNA, RNA etc. which would damage or kill 
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cells. And to be useful in biological applications, they and their photochemical 

byproducts must possess sufficient stability and must not interfere biologically. Studies of 

rapid biological processes also require substrate release on the microsecond or shorter 

timescale, thus avoiding any long-lived intermediates prior to substrate release. 

Moreover, the photoproduct must not absorb at the same wavelength as the activating 

radiation for cage compounds which can block the light absorbance by the cage 

compounds. 

Our research mainly focused on developing photochemically removable groups 

that would absorb light beyond 300 nm or 350 nm (for biological purpose) and would be 

capable of releasing a very wide range of leaving groups. A list of common criteria8 

should be assigned for a suitable cage compound as follows:  

1. Synthesis: Easy and inexpensive to prepare with high yield.  

2. Chromophore: The chromophore should have a reasonable absorptivity to 

capture the incident light efficiently.  

3. Wavelength: Excitation wavelengths should be longer than 300 nm that extend 

into the visible region for biological application and must not be absorbed by the media. 

4. Capability: Ability to release more basic leaving group anions than carboxylate 

or phosphate. 

5. Solubility: The cage compounds should have good aqueous solubility for 

biological studies. For synthetic applications, this requirement is relaxed. 
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6. Stability: All photoproducts should be stable to the photolysis environment. 

The caged compounds should be inert or at least benign with respect to the media or other 

reagents. 

7. Efficiency: The photochemical release must be efficient and the reaction should 

be clean. 

Neurons in human brain communicate primarily by the release of small quantities 

of chemical messengers commonly called neurotransmitters. These chemicals alter the 

electrical activity of neurons after they interact with receptors on cell surfaces. 

Photochemically removable protecting group (PRPG) can be covalently attached to a 

functional group of a molecule in order to make a cage compound which is inert to some 

particular set of reaction conditions. The PRPG is then removed by photolysis to release 

the molecule. If the released molecule is a biological agent, its photochemical 

deprotection can be conducted intracellularly or in tissue to trigger some desired 

biological responses. Usually the release step involves photolysis by a pulse of light. The 

release then can be nearly instantaneous, depending on the time period of the light pulse 

and the rate of the deprotection reaction. The time period can be, for example, minutes 

(caged protein kinase A)6, seconds (caged tyrosine Ca/calmodulin inhibitory peptide)6, 

milliseconds (caged ATP)6, and microseconds (caged neurotransmitters)6,9.  In addition, 

the site of the release can be controlled on a microscopic level by use of this technique.  

The research and development of releaseable bioeffectors from photocleavable 

groups additionally would provide opportunities for collaboration with investigators in 

diverse fields of biochemistry, biology, physiology, and medicine. Based on above, the 
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photoreleased bioeffector leaving groups may be small molecules, or they may be 

polypeptides, proteins, oligonucleotides, RNA, and DNA. There are numerous examples 

to illustrate the utility of photocleavable groups in fields outside of chemistry: 

• To identify specific receptors in neuronal circuits with the use of high microscopic 

spatial resolution. 

• To investigate the kinetics and distribution of synaptic processes through bindings of 

neurotransmitters GABA (γ-aminobutyrate) and L-glu (glutamate) at the squid giant 

synapse, for mapping connections between different regions of the brain. 

• A well known example is caged DNA microarrays prepared by photolithography 

with free 3ʹ-ends (DNA chips) which is removed photolytically in quantitative yields 

to ensure high purity of synthesized probes. 

• Photolabile Ca+2
 –caged compounds, to explore the Ca-dynamics of variety 

biological systems by two photon excitation techniques.  

• Another application is the use of photocleavable linkers to anchor bio-oligomers to a 

resin, especially in solid phase peptide synthesis. 

• The study of cAMP-dependent protein kinase A (PKA) in cell signaling by blocking 

and unblocking of a phosphorylated thr-197 of the catalytic subunit (C) using the 

caging group like 4-hydroxyphenacyl.6   

• The use of caged peptides as with caged tyrosine residue of the Ca/calmodulin 

inhibitory peptide RS-20 to probe the role of specific proteins in cell function, where 

the photoreleased peptide inhibits calmodulin or myosin light chain kinase (MLCK) 
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activity, which in turn blocks cell locomotion involving myosin II as the motor 

protein.6 

• Well-known caged neurotransmitters in investigations of the mechanisms of 

neurotransmitter-mediated reactions on cell surfaces.10   

• The photorelease of caged aspartate to study chemotaxis of Escherichia coli.11   

• The study of GTP-Ras complex in cell signaling pathways plays an important role in 

controlling cell proliferation, differentiation, and metabolism by releasing GTP from 

4-hydroxyphenacyl and ortho-nitrophenylethyl caging groups.12  

• Caged ATP is required in the study of Na+/K+-ATPase pump for ion transport across 

the cell membrane and planar lipid membrane both and for muscle contraction of the 

biological process.13   

• Additionally, caged cAMP and other caged cNMP are also utilized to investigate the 

mechanism of olefactory transduction in cilia of the olefactory cell.14 Caged cAMP 

also plays a role to investigate the mechanism of cAMP-dependent inhibition of Ca2+ 

mobilization in tissue cells.15 

Photolithographic applications have emerged in which photocleavable protecting 

groups have been used to implement a combinatorial synthesis strategy to fabricate arrays 

of oligonucleotides on chips. Such arrays have been of interest for use as sensors for 

complementary sequences of DNA. The methodology has also been applied to 

combinatorial synthesis of peptides. A very early applications in conventional 

photolithography incorporated caged carboxylic acids into methyl 
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methacrylate/methacrylic acid copolymer photoresist material. When the polymer thin 

films were irradiated through a mask, the photoreleased acid rendered the material in 

exposed regions more soluble to aqueous alkali developer.   

Photochemical electrocyclic ring closure has been previously used in this 

laboratory to generate zwitterionic intermediates that, in principle, would be capable of 

expelling leaving groups such as carboxylates and phenolates, which are functionaly 

present in many biologically important molecules. The study used a photochemical 

electrocyclic ring closure to generate zwitterionic intermediates from acrylic anilides 

(Scheme 1).16 The photochemical reaction likely proceeds via an electrocyclic ring 

closure to give an intermediate that has zwitterionic character.17,18  The zwitterionic 

intermediate is converted to a lactam photoproduct via either intramolecular 1,5-H 

rearrangement or a series of proton transfers, depending on the solvent and the 

substituents attached to the amide nitrogen.17,19,20a 

 

Scheme 1 (acrylic anilides) 
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The photochemical electrocyclization was 8-10% efficient with respect to light 

utilization.  However, the leaving groups were evidently not expelled directly from the 

putative zwitterionic intermediate, unlike Scheme 1, but instead were eliminated from an 

enolate formed upon deprotonation of the zwitterion.16 This deprotonation step had to 

compete with a 1,5-H shift in the zwitterionic intermediate that gave a product which 

retained the leaving group, and thus, leaving group expulsion did not represent 100% of 

the reaction.  Furthermore, the quantum yields for leaving group release appeared to be 

controlled by the competition between deprotonation and 1,5-H shift and were largely 

independent on leaving group basicity (Scheme 2)  which we proved afterwards.20b,c 

 

Scheme 2 
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Given the previous results, efforts then focused upon improving the efficiency of 

the electrocyclic ring closure reaction.  In addition, it was desirable to attempt to make 

the elimination of the leaving group from the zwitterionic intermediate more favorable by 

replacing the acrylanilide group by an aromatic group which had the leaving group in an 

ortho position  so that it would restore aromaticity after the electrocyclization had been 

effected.  In other words, in place of acrylic group (Scheme 1), there would be an 

aromatic ring.  The choice of aromatic ring in such place (Scheme 1) is critical.  For 

example, quantum yields are low for the electrocyclization if the aromatic ring is phenyl.  

Ultimately, the best choice  appeared to be either a furanyl ring or a thienyl ring, based on 

the following considerations. 

The energetics for electrocyclization can be made more favorable by cyclizing 

onto N-furyl and N-thienyl groups.  This principle has been exploited in photochromic 

1,2-diarylethenes (eq. 1), for which excited state electrocyclization occurs rapidly on the 

order of 10 ps.20  

 

 

             (1) 

 

 

 

  Some examples of photochemical electrocyclization of furyl and thienyl groups to 

form zwitterionic intermediates are already known (Schemes 321 and 422), but no 

quantum yields have been reported. 
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Scheme 4 

 

 

 

 

 

 

 

Irie has noted for the analogous conversions of A to B (Scheme 5) that the loss of 

aromatic stabilization energy substantially decreases when the aromatic group in structure 

A is changed from phenyl to pyrrolyl to furyl to thienyl (Table 1).23a,b
 

 

Scheme 5 
 

 

 

 

 

 

Table 1.  Aromatic stabilization energy 
difference (A→B) 
group energy (kcal mol-1) 
phenyl 27.7 
pyrrolyl 13.8 
furyl 9.1 
thienyl 4.7 
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Structures A and B are quite analogous to the structures for reactant and 

zwitterionic intermediate in the  photocyclization of methacrylanilides (Scheme 2).  

Although quantum yields were not reported, the chemical yields for 17 (Scheme 4) 

suggested that the benzothiophene carboxanilide system might be efficient in undergoing 

electrocyclic ring closure.  The paper22 also reported that the reaction could be quenched, 

which suggested that the electrocyclization might be a triplet excited state reaction. 

    Initial studies with 17 focused upon placing various leaving groups at the C-3 

position of the benzothiophene ring system. We conducted a preliminary study of the 

photochemistry of 20 (LG- = Cl-, PhCH2CO2
-, PhCH2S

-, PhO-, OH-) in deaerated aq 

CH3CN and with phosphate buffer at pH 7 (Scheme 6).23c  Upon direct photolysis, 

complete disappearance of 20 was observed with formation of 23 as the sole 

photoproduct after very short photolysis times.  For LG- = Cl-, Ф = 0.22 in deaerated 

solvent, while Ф = 0.076 in the presence of air, consistent with triplet excited state 

photoreactivity.  For LG- = PhCH2CO2
- , Ф = 0.16 and for LG- = PhCH2S

-, Ф = 0.076;  

LG- = PhO-, Ф = 0.074; LG- = PhS-, Ф = 0.10; LG- = OH-, Ф = 0.007.  

Scheme 6  
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The mechanism shown in Scheme 6 is based on Schemes 2 and 4.  The above Ф, 

which decrease with increasing basicity of LG- indicates path c is the most likely 

mechanism. Paths a or b or any combination would mean that Ф would be constant as 

LG- basicity increases.     

Our next attempt was to develop a real bioapplicable cage compounds. To do so, 

we needed to synthesize cage compounds which contain a chromophore that absorbs light 

at longer wavelengths that extend into visible region. We know that the cage compounds 

typically used have certain drawbacks, which may not always be obvious. In particular, 

UV light is most often used to photochemical release of the biologically active molecule, 

but may cause cellular damage and mortality. Cage compounds may undergo premature 

hydrolytic or even enzymatic release of the bioeffector in living cells. Our research 

attempted to address the above problems by expelling the bioeffector leaving groups via 

intermediates that have zwitterionic character. Intermediates 28 are generated upon 

photochemical electrocyclic ring closure reaction of derivatives of benzothiophene 

carboxanilides 27 (Scheme 7). Ring A subunit represents a chromophore that absorbs 

light at long wavelengths that extend into the visible region. 

 

 

 

 

 

 



13 

 

 

 

Scheme 7  

 

 

 

 

 

 

The approach of using Scheme 7 to photochemically expel leaving groups from 

the C-3 position of the benzothiophene ring system was initially tested, experimentally by 

placing phenyl-group in position A, at short wavelengths in the UV like 310 nm but in 

here we extended the absorption of the chromophoric groups to 385 nm by use of 

thiozanthone chromophore as ring A. 

 

 

 

Additionally, solubility in aqueous buffered media were greatly improved by 

attaching a C-6 carboxylate group (Y = CO2H) to the benzothiophene ring system 

(Scheme 7). 
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We reported 33 to release various leaving groups LG− (LG− = Cl−, PhCH2S−, PhS−, 
HS−) where quantum yields decreased with increasing basicity of the LG− released over 

the range Φ = 0.01–0.03. Secondly, releasing of S-containing LG− anticipates of 

developing a photoremovable protecting group incorporated with cysteine or glutathione 

bioeffectors in C-3 position of benzothiophene ring. 

To determine whether a “heavy atom effect” promoted intersystem crossing of the 

singlet excited state to the triplet excited state, work focused upon the C-7 bromide of 

thioxanthone ester 34 (LG− = Cl−). Quantum yield determinations gave Φ = 0.053±0.002 

for formation of 35, which is 38% higher than Φ = 0.039±0.002 found for ester without 

C-7 bromide of thioxanthone. These works have been recently published.23d 
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(3) 

 

 

As the quantum yields for these compounds of thiozanthone chromophore were 

found to be very low (Φ = 0.02 – 0.07), the research was moved by changing the 

chromophore to benzophenone which absorbs light at maximum of 330 nm wavelength, 

the triplet yield is 1.0 and triplet lifetime is 50 µs. We studied on this molecule 

introducing carboxylate substituent at C-6 position of benzothiophene ring system. 

 

 

 

 

 

In our next phase of research, we focused to synthesize tetraphenyl ethylene 

(TPE) oligomers in an efficient way. The oligomers from the mixture with monomer 

starts from 1 to 5 were successfully separated and their physical and electrochemical 

properties have been investigated.  
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CHAPTER 2:  Expulsion of Leaving Groups from Zwitterionic Intermediates 

Generated via Photochemical Electrocyclic Ring Closure Reactions. 

 

2.1 Introduction 

The purpose of the project is to utilize photochemical electrocyclic ring closure 

reactions of aromatic anilides to generate zwitterionic intermediates, which could expel 

leaving group anions (Scheme 8).  The compounds which use this approach for the 

expulsion of leaving groups would represent a new type of cage compound for use in 

biological and biochemical applications. 

 

Scheme 8. 
 

 

 

 

 

 

 

 

 

With modifications of the proposed compounds (vide infra), could be used as 

cage compounds for biological applications. As the cage compounds’ criteria noted 

previously are, firstly, the photoreaction should be clean and occur with high chemical 

and quantum yield. Secondly, absorption should be as high as wavelengths above 350 
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nm.  Third, they should possess sufficient stability and their byproducts should be 

biologically inert. They should also be stable with respect to premature release. Studies of 

rapid biological processes also require substrate release on the microsecond or shorter 

timescale. The release rate of the bioeffectors must be faster than that of the response 

found.  The requirement of the release rate will depend on the biological system to be 

studied.  Previously we have found that relatively nonbasic leaving groups like 

neurotransmitter carboxylates are released directly from zwitterionic intermediates 

produced by photolysis of α-keto amides on the microsecond timescale.24  

In organic synthesis, the proposed cage compounds may be important to be used 

as protecting groups as well as in array synthesis, under deaerated conditions.25  100% 

conversion of the protecting group without formation of byproducts may be completely 

removable, as noted from the preliminary results for 20(LG- = Cl-, PhCH2CO2
-, PhCH2S

-, 

PhO-, OH-) (Scheme 6).  Since the resistancy of aromatic amide functionality in our few 

proposed protecting groups to a wide variety of chemical reagents, it is certain that they 

should be used as a protecting group in organic synthesis.  High quantum yields under 

deaerated conditions will surely require short photolysis times for cleavage which may 

also require numerous light exposure steps to be important for array syntheses. This work 

constitutes our Org. Lett. communication.23c 
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However, this report extends that work by exploring ways for improving (1) the 

efficiency for the electrocyclic ring closure reaction, and (2) the solubilities under 

aqueous conditions when the anilide phenyl group is replaced by other chromophores, 

such as benzophenone which absorbs light at 330 nm (λmax) wavelength, has triplet 

lifetime 50 µs and triplet yield 1.0. 

Our investigation of replacing an acrylamide group as A (Scheme 8) with 

benzothiophene results in a large increase in the quantum yield for electrocyclic ring 

closure, which has been reported in the communication. With a single benzothiophene 

ring, as in the case of 39, the reaction was relatively efficient (Φ = 0.22). So it was 

expected that by replacing the phenyl group of the anilide with a second benzothiophene 

ring, the quantum yield for electrocyclization would show a further increase. Thus, an 

important goal of this project became to synthesize benzothiophene carboxamide 43 as 

shown below. 

 

 

 

 

 

It is possible that the increase in quantum yield in case of one benzothiophene 

ring as A is due to a change in multiplicity from singlet to triplet.  It also seems possible 

that it could reflect a decrease in aromatic stabilization energy in going from phenyl to 
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benzothiophene, as suggested in Table 1. Perhaps by replacing the anilide phenyl group 

with a second benzothiophene ring involves the electrocyclization of two less strongly 

aromatic benzothiophene rings and the formation of the pentacyclic product containing 

two five-membered rings is thermodynamically unfavorable. 

So the second purpose of the project was to determine whether efficiencies would 

improve by promoting intersystem crossing by use of the heavy atom effect.  Thus, the 

phenyl group instead of benzothiophene was retained and the 6-bromo derivative 30 was 

synthesized and studied.  The results with this compound were incorporated into the 

communication.  

 

 

 

 

A third goal of the project was to incorporate a benzophenone chromophore in 

place of the anilide phenyl to improve absorption of light at wavelengths above 310 nm, 

which is where compound 17 absorbs light.  A 6-bromo substituent was incorporated to 

provide a heavy atom effect. 
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Finally, the results of the above work led to a reformulation of the basic strategy 

for the design of a cage compound based on 17.  Chromophores would be introduced in 

place of the phenyl group of the anilide.  The benzothiophene aromatic ring would serve 

as a platform for placing the leaving group.  It was also needed to be modified to improve 

solubility in aqueous media. To improve solubility, a major effort was launched to 

introduce a 6-carboxylate group into the benzothiophene ring system, as shown with 38. 

 

 

 

 

 

 

We successfully overcame the solubility problem with the benzophenone 

chromophore by introducing C-6 carboxylate group into the benzothiophene system. But 

incorporating S-containing LG- in place of Cl- in compound 38 generated another major 

problem due to the instability of amide bond. So the plan of the project was changed by 

protecting benzophenone carbonyl group to obtain the target molecules like:  
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So, Cl- LG- can be replaced by S-containing LG- at compound 47 or 48. 

 

Scheme 9 
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2.2 Results. 

2.2.1 Photochemical Reactant.   

The synthesis of amide 43 (LG- = Cl-) involved acylation of 3-

methylaminothiophene (52) with 3-Chlorobenzo[b]thiophene-2-carbonyl chloride (49), 

which was initially prepared from the reaction of trans-cinnamic acid and thionyl 

chloride. 3-methylaminothiophene (52) was prepared from keto-enol tautomers (51) 

which was produced by a two steps process starting from 2,2’-dithiosalicylic acid (see 

Experimental). 
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2.2.2 UV- Spectra of Compound 43 (LG- = Cl-). 

The ultraviolet spectra of the starting material was taken at different 

concentrations in 20% 100 mM phosphate buffer in CH3CN at pH 7.0 to observe the 

absorption characteristics. At lower concentrations, the compound shows an absorption 

maximum below 300 nm which tailed out into the 300-320 nm region. Compound 43 was 

photolyzed without a filter to obtain the photoproduct.  

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Absorption Spectrum of 43 (LG- = Cl-) at 5.7 x 10-5 M, in 20% 100 mM 

phosphate buffer in CH3CN at pH 7.0. 
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2.2.3 Preparative Direct Photolysis.  

             Preparative direct photolysis of 0.021 M 43 (LG- = Cl-) with unfiltered light from 

a medium pressure mercury lamp in N2 saturated 20% 100 mM phosphate buffer in 

CH3CN at pH 7.0 for 3h resulted in the release of HCl to give 53 as the only 

photoproduct (eq. 5). The photoproduct (100% conversion by 1H NMR) was isolated by 

extraction with ethyl acetate and purified by recrystallizaion from 1:3 ethyl acetate in 

hexane. The product was identified and distinguished from photoreactant by 1H NMR as 

N-methyl peak shifted downfield from δ 3.55 to 4.36 ppm, and also aromatic region 

counts for 8 protons instead of 9 protons which were counted for photoreactant. Melting 

point also indicates the photoproduct as it is different by a large extent, mp found 244-

245oC, where the photorectant mp was found 132-133oC. 
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2.2.4 Quantum Yield. 

The quantum yield for the electrocyclic ring closure reaction of amide 43 (LG- = 

Cl-) was determined at 310 nm in N2 saturated 20% phosphate buffer at pH 7.0 in 

CH3CN. The light output for the photochemical reaction was 0.027 mE/h. After 16 h 

photolysis the quantum yields of the reaction were found to be: Ф = 0.006±0.002 and 

0.008±0.002. 

The quantum yield determinations involved quantifying the photoproduct formed 

by use of 1H NMR spectroscopy with DMSO as an internal standard. 

            As found, this particular photoreaction is inefficient, so the project shifted to other 

benzothiophene carboxanilides with the focus on functionalizing the efficient 

benzothiophene ring A.  

 

 

 

 

2.2.5 Photochemical Reactant.  

The synthesis of anilide 20 (LG- = OH-) involved the reaction of ester 56 with 

amide 55 in excess of sodiummethoxide. Thiosalicylate 56 was produced from 
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thiosalicylic acid in presence of 5% H2SO4 in methanol. Synthesis of amide 55 involved 

acylation of N-methylaniline with chloroacetylchloride 54 which was initially prepared 

by the reaction of chloroacetic acid with thionylchloride.  

 

Scheme 11 

 

 

 

 

 

 

 

 

2.2.6 Crystal structure of the Photoreactant 20 (LG- = OH-).   

According to the X-ray crystallographic data, the compound 20 (LG- = OH-) 

exhibits triclinic structure having empirical formula C16H13NO2S. The intra-molecular H-

bond makes benzothiophene moiety and amide group co-planar. This result in a short 

distance between S atom and plane of Ph substituent (just about 3.0 Å) that forces the Ph 

group to be rotated almost perpendicular to the amide moiety.  
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Figure 2.2 ORTEP representation of molecular structure of photoreactant 20(LG- = OH-).   
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Despite the unfavorable geometry of the crystalline material, in aqueous solution 

the compound cyclizes photochemically (vide infra). Two ortho-positions of the anilide 

ring are available in principle, for the cyclization to give the six-membered lactam. The 

distance from the carbon occupied by the hydroxyl leaving group to the two ortho-

positions of the anilide ring are 4.662 and 5.147 Å. 

2.2.7 Preparative Direct Photolysis.  

Preparative direct photolysis of 0.021 M 20 (LG- = OH-) with unfiltered light 

from a medium pressure mercury lamp in N2 saturated 30% 100 mM phosphate buffer in 

CH3CN at pH 7 for 3h resulted in the release of H2O to give 23 as the only photoproduct 

(eq. 6). The photoproduct (100% conversion by 1H NMR) was isolated by extraction with 

ethyl acetate and purified by recrystallizaion from 1:3 ethyl acetate in hexane. The 

product was identified and distinguished from photoreactant by 1H NMR as N-methyl 

peak shifted downfield from δ 3.47 to 3.92 ppm, and also aromatic region counts for 8 

protons instead of 9 protons which were counted for photoreactant. Melting point also 

indicates the photoproduct as it is different by a large extent, mp found 204-205oC, where 

the photorectant mp was found 115-117ºC.  Crystal structure and elemental analysis also 

suggest the photoproduct.  
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2.2.8 Crystal Structure of Photoproduct 23. 

According to the X-ray crystallographic data, the photoproduct 23 exhibits 

monoclinic structure having empirical formula C16H11NOS. The new bond formed by 

photochemical cyclization has a bond distance of 1.452 Å.  
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Figure. 2.3 ORTEP representation of molecular structure of photoproduct 23. 
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2.2.9 Quantum Yield. 

The quantum yield for the electrocyclic ring closure reaction of anilide 20 (LG- = 

OH-) was determined at 310 nm in N2 saturated 20% phosphate buffer at pH 7 in CH3CN. 

The light output for the photochemical reaction was 0.027 mE/h. After 15.5 h photolysis 

the quantum yields of the reaction were found to be Ф = 0.008±0.002 and 0.006±0.002. 

The quantum yield determinations involved quantifying the photoproduct formed 

by use of 1H NMR spectroscopy with DMSO as an internal standard. (Yields determined 

by 1H NMR spectroscopy using DMSO as standard) 

            The result was consistent with our previous results observed with different 

leaving group having different basicity.  Hydroxyl group is a very poor leaving group in 

compare to other leaving groups like chloride, carboxylate, phenolate or thiolate, the pKa 

of the conjugate acid is the highest for hydroxy group. Only one photoproduct was 

observed. The mechanism may be like the one shown in scheme 1.  

            To observe the heavy atom effect of bromine on the quantum yield, the 

benzothiophene ring was modified by introducing a bromine atom at C-6. The compound 

44 (LG- = Cl-) was synthesized. 
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2.2.10 Synthesis of Compound 44 (LG- = Cl-).  

The synthesis of anilide 44 (LG- = Cl-) involved acylation of N-methylaniline 

with 6-bromo-3-chlorobenzothiophene carbonylchloride 57 (Scheme 12), which was 

initially prepared from the reaction of 4-bromocinnamic acid with thionyl chloride in the 

presence of a catalytic amount of pyridine.  

Scheme 12  

 

 

 

 

 

 

 

 

2.2.11 Crystal Structure of the Photoreactant 44 (LG- = Cl-).  

According to the X-ray crystallographic data, the compound 44 (LG- = Cl-) 

exhibits monoclinic structure having empirical formula C16H11BrClNOS. The molecules 

form centrosymmetric anti-parallel pairs separated by d = 3.51Å (basically a Vander-

Waals separation), possibly because of dipole-dipole interactions. There are somewhat 

shortened Br···S-C contacts (3.76 Å) that may correspond to a weak p-σ* interaction. 
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The bond distance from the carbon occupied by the chloride leaving group to two ortho-

positions of the anilide ring are 4.194 and 5.247 Å. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4 ORTEP representation of molecular structure of photoreactant 44 (LG- = Cl-).   
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2.2.12 UV- Spectra of Compound 44 (LG- = Cl-). 

The ultraviolet spectra of the starting material was taken at different 

concentrations in 20% 100 mM phosphate buffer in CH3CN to observe the absorption 

characteristics. At lower concentrations, the compound shows an absorption maximum 

below 300 nm which tailed out into the 300-350 nm region. Compound 44 was 

photolyzed without a filter to obtain the photoproduct.  

 

 

 

 

 

 

 

 

 

 

 

Figure. 2.5  Absorption Spectra of 44 (LG- = Cl-) at 3.0 x 10-3 M, 3.0 x 10-4 M, 3.0 x 10-5 

M, in 20% 100 mM phosphate buffer in CH3CN. 
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2.2.13 Preparative Direct Photolysis.  

A 0.02 M solution of 44 (LG- = Cl-) in N2 saturated 30% 100 mM phosphate 

buffer in dioxane at pH 7 was irradiated with a 450 W Hanovia medium pressure mercury 

lamp for 1 h. The photoproduct 58 was obtained by crystallization from benzene. 

Crystalline 58 (eq. 7) gave mp 262-263oC. The product was identified and distinguished 

from photoreactant by 1H NMR as N-methyl peak shifted downfield from δ 3.520 to 

3.886 ppm, and also aromatic region counts for 7 protons instead of 8 protons which was 

counted for photoreactant. Melting point also indicates the photoproduct as it is different 

by a large extent where the photorectant mp was found 131-132oc and elemental analysis 

also suggests the photoproduct.  

 

 

 

 

  

 

 

2.2.14 Quantum Yield 

The quantum yield for the electrocyclic ring closure reaction of anilide 44 (LG- = 

Cl-) was determined at 310 nm in N2 saturated 20% phosphate buffer at pH 7 in dioxane 
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mE/h. After 3 h photolysis the quantum yields of the reaction in various solvents and with 

without air present are summarized in Table 2. 

Table 2: Quantum yields of the reaction of eq. 7 

Solutions Quantum Yield 

CH3CN (N2 saturated) 0.040±0.002 

Dioxane (N2 saturated) 0.315±0.002 

Dioxane (Air saturated) 0.161±0.002 

 

            The results in two different solvents varied strongly. The variation was due to 

solubility problems. The photoproduct 58 was not soluble in CH3CN, so it crystallized on 

the front face of the sample cell, blocking the light. The solubility problem was solved by 

using dioxane, because the photoproduct 58 was soluble in it. The quantum yield was 

higher in N2 saturated solution, likely because exclusion of air presented quenching of the 

triplet excited state by oxygen. In addition, the heavy atom effect of C-6 bromine likely 

caused the quantum yield to increase from 0.22 (observed in without bromine group) to 

0.32. 
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2.2.15 Quenching Studies. 

 To obtain more information on the multiplicity of the excited state involved in the 

reaction, quenching studies were performed using 1,3-pentadiene as a triplet quencher. 

The results indicated that the triplet-excited state likely was quenched in the presence of 

1,3-pentadiene triplet quencher. The results are summarized in Table 3. 

Table 3: Quenching studies of the reaction of eq. 7 

 

 

 

 

 

 

The next stage in the project was to shift the light absorption to longer wavelength 

so that compounds that are derivatives of 58 might have use for biological applications. 

Compound 46 (LG- = Cl-) with a para benzoyl group was thus synthesized.  

 

 

 

Solution Conc. of Quencher 
(1,3-pentadiene) 

Quantum Yield 

Dioxane (N2 Saturated) 0.01 M 0.029±0.002 

Dioxane (N2 Saturated) 0.001 M 0.054±0.002 

Dioxane (N2 Saturated) 0.0005 M 0.173±0.002 
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2.2.16 Synthesis of Compound 46 (LG- = Cl-).  

The synthesis of anilide 46 (LG- = Cl-) involved acylation of 4-methyamino- 

benzophenone 61 with 6-bromo-3-chlorobenzothiophene-2-carbonyl chloride 57.  The 

compound 61 was initially prepared by a three step process starting from commercially 

available 4–aminobenzophenone (see Experimental).  

Scheme 13 

 

 

 

 

 

 

 

 

 

 

2.2.17 Crystal structure of the Photoreactant 46 (LG- = Cl-).  

According to the X-ray crystallographic data, the compound 46 (LG- = Cl-), 

exhibits triclinic structure having empirical formula C23H15ClBrNO2S. The amide group 

is planar with the Me-group trans-oriented relative to benzothiophene. Benzophenone 
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moiety is somewhat twisted. The bond distance from the carbon occupied by the chloride 

leaving group to two ortho-positions of the aniline ring are 4.073 and 3.302 Å. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6 ORTEP representation of molecular structure of photoreactant 46 (LG- = Cl-).   
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2.2.18 UV Spectra of Compound 46 (LG- = Cl-) 

           The ultraviolet spectra of the starting material was taken at different 

concentrations in 15% 100 mM phosphate buffer in CH3CN at pH 7.0 to observe the 

absorption characteristics. At lower concentrations, the compound shows an absorption 

maximum below 350 nm which tailed out into the 350-380 nm region. The compound 

was photolyzed without a filter to obtain the photoproduct.  

 

 

 

 

 

Figure 2.7 Absorption Spectra of 46 (LG- = Cl-) at 3.0 x 10-3 M, 5.0 x 10-4 M, 1.0 x 10-4 

M, 3.0 x 10-5 in 20% 100 mM phosphate buffer in CH3CN at pH 7.0. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8 Absorption spectra of 3.0 x 10-5 M 44 (LG- = Cl-) and 3.0 x 10-4 M 46 (LG- = 

Cl-) 30% 100 mM phosphate buffer in CH3CN at pH 7.0. 
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2.2.19 Preparative Direct Photolysis.  

              Preparative direct photolysis of 0.015 M 46 (LG- = Cl-) with unfiltered light 

from a medium pressure mercury lamp in N2 saturated 30% 100 mM phosphate buffer in 

dioxane at pH 7.0 for 50 mins resulted in the release of hydrochloric acid to give 62 as 

the only photoproduct (equation 8). The photoproduct (100 % conversion by 1H NMR) 

was isolated as a colorless powder, mp 264-265oC. The product was identified and 

distinguished from photoreactant by 1H NMR as N-methyl peak shifted downfield from 

δ 3.578 to 3.952 ppm, and also aromatic region counts for 11 protons instead of 12 

protons which were counted for photoreactant. Melting point also indicates the 

photoproduct as it is different by a large extent, where the photorectant mp was found 

113-114oC. 

  

 

  

 

  

2.2.20 Quantum Yield. 

            The quantum yield for the electrocyclic ring closure reaction of compound 46 

(LG- = Cl-) was determined separately at 365 nm in N2 saturated 20% phosphate buffer at 

pH 7 in dioxane at variable irradiation times. The light output for the photochemical 
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reaction was 0.097 mE/h. The results of the quantum yields of the reaction are 

summarized in Table 4. 

Table 4: Quantum yields of the reaction of eq. 8 

Solutions Irradiation time (h) Quantum Yield 

Buffer in Dioxane (N2 saturated) 3 0.179±0.002 

Buffer in Dioxane (air saturated) 11.5 0.074±0.002 

 

            The calculated quantum yields varied with irradiation time, even in the same 

solvent. This was found to be due to solubility problem of photoproduct in dioxane. 

When the photolysis was conducted for longer than 3 h, more product was produced 

which resulted in the deposition of the photoproducts onto the front face of the sample 

cell, thus blocking the light during further photolysis and resulted in incorrect Φ. Again 

the reaction was quenched by oxygen, which indicates triplet exited state photoreaction. 

However the quantum yield was not as much higher from compound 45 (LG- = Cl-) than 

observed in case of compounds from 20 (LG- = Cl-) to 44 (LG- = Cl-). 

             The solubility problems encountered with 46 and 62 required a change in strategy 

for the project. Thus, the plan became to enhance water solubility by introducing a 

carboxylic acid group onto the C-6 position of the benzothiophene ring system. This C-6 

carboxylic acid group would mean that the bromine would need to be placed in the 

chromophoric group attached to the amide nitrogen.  Further work on exploiting the 
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heavy atom effect to increase quantum yield thus was postponed. We already have been 

successful in synthesizing the compound 38 following the path described in Scheme 14.   

 

 

 

 

 

 

2.2.21 Synthesis of Photoreactant 38.  

 The synthesis of anilide 38 (LG- = Cl-) involved hydrolysis of ester (37), which 

was initially prepared by acylation of 4-methylaminobenzophenone (61) with compound 

(65). The compound (65) was prepared by refluxing methyl ester of trans-cinnamic acid 

(64) with thionyl chloride for 6 days. Acid (64) was produced by a two steps process 

starting form 4-formylbenzoic acid (see Experimental).  
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Scheme 14 

 

 

 

 

 

 

 

 

 

 

 

2.2.22 Preparative Direct Photolysis of 37 (LG = Cl
-
).  

              Preparative direct photolysis of 0.02 M 37 (LG- = Cl-) with unfiltered light from 

a medium pressure mercury lamp in N2 saturated 15% 100 mM phosphate buffer in 

dioxane at pH 7 for 40 mins resulted in the release of hydrochloric acid to give 66 as the 

only photoproduct (equation 9). The photoproduct (100 % conversion characterized by 

1H NMR) was isolated as a brown solid, mp 284-285oC. The product was identified and 

O

NH
CH3

OH

H

O

O

O

H

O

O

O

O

COOH

S

Cl

Cl

O

O

OO

N

CH3

O

S
Cl

O

O

O

N O

S
Cl

HO

O

MeOH, SOCl2

Ooc, N2

COOH

COOH , Pyr

Piperidine, N2

reflux

SOCl2, Pyr

reflux, 6-days

DMAP, NEt3
C6H6

63

64

65

3738

61

CH3

Me3SnOH

80c, N2

Cl
Cl

O

NH2

O

O O

CH3COONa

H2O/ 80 oC

O

NH

O

O

N
CH3

NaH/ CH3I

THF, N2

59
60

O

NH
CH3

2M NaOH
reflux

61

O



45 

 

 

 

distinguished from photoreactant by 1H NMR as N-methyl and O-methyl peaks shifted 

downfield from δ 3.58 and 3.93 to 3.89 and 3.99 ppm respectively, and also aromatic 

region counts for 11 protons instead of 12 protons which was counted for photoreactant. 

Melting point also indicates the photoproduct as it is different by a large extent, where the 

photorectant mp was found 213-214oC.  

 

                                                                                                                         

                                                                                                                       

 

 

 

2.2.23 Quantum Yield. 

            The quantum yield for the electrocyclic ring closure reaction of compound 37 

(LG- = Cl-) was determined separately at 365 nm in N2 saturated 14.5% phosphate buffer 

at pH 7 in CH3CN at variable irradiation time. The reaction was highly efficient and 

longer time irradiation resulted starting material conversion to photoproduct higher than 

20%. After irradiation for 22 minutes the quantum yield was found 0.133 with 98.9% of 

material balance and 6.5% of starting material conversion to photoproduct. The total light 

output for the photochemical reaction was 0.104 mE/h. However the quantum yield was 

as similar as observed in case of compound 45 (LG- = Cl-). 
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2.2.24 Preparative Direct Photolysis of 38 (LG = Cl
-
).  

A 0.015 M solution of 38 in N2 saturated 25% 100 mM phosphate buffer in 

dioxane at pH 7.0 was irradiated with an unfiltered light from 450 W Hanovia medium 

pressure mercury lamp for 1 h. The reaction mixture was acidified with dilute HCl to get 

solid precipitation. The off white powder was obtained from filtration of the mixture as 

the only photoproduct 67 (equation 10) and 100% conversion characterized by 1H NMR, 

mp 300+
oC. The product was identified and distinguished from photoreactant by 1H NMR 

as N-methyl peak shifted downfield from δ 3.60 to 3.82 and also aromatic region counts 

for 11 protons instead of 12 protons which was counted for photoreactant. Melting point 

also indicates the photoproduct as it is different by a very large extent, where the 

photorectant mp was found 75 - 77oC.  

 

                                                                                                                            

                                                                                                                         

                                                                                                                        

 

2.2.25 Quantum Yield. 

            The quantum yield for the electrocyclic ring closure reaction of compound 38 

(LG- = Cl-) was determined separately at 365 nm in N2 saturated phosphate buffer at pH 7 

in different solvent at variable irradiation times. The reaction was highly efficient and 
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longer time irradiation resulted in starting material conversion to photoproduct higher 

than 20%. The light output for the photochemical reaction was 0.104 mE/h. The results of 

the quantum yields of the reaction are summarized in Table 5. 

 Table 5: Quantum yields of the reaction of eq. 10 

  

The quantum yields varied with different solvents even in same solvent with 

variable concentration of buffer. This was found to be due to solubility problems. The 

photoproduct 67 was not soluble in CH3CN which results the deposition of the 

photoproducts onto the front face of the sample cell, thus blocking the light during further 

photolysis resulted in incorrect Φ. Thus the poor solubility of the photoproduct in CH3CN 

was solved using dioxane. But even in dioxane, the quantum yields were found higher in 

higher concentration of buffer than the same in lower. It seems possible that buffer 

Solution Irradiation time Product conversion, % Quantum Yield 

74.55% aq. Buffer in 

N2 saturated CH3CN 

3 h 18 0.019±0.002 

65.45% aq. Buffer in 

N2 saturated Dioxane 

40 min 13 0.147±0.002 

25.45% aq. Buffer in 

N2 saturated Dioxane 

30 min 12 0.137±0.002 
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facilitates the higher production of photoproduct. However the quantum yield was as 

much higher as observed in case of compound 45 (LG- = Cl-). 

But in case of incorporating S-containing LG in place of Cl- had been encountered 

a lot difficulties with compound 38, required another change in strategy for the project. 

Thus, the plan became to protect the carbonyl group of the benzophenone chromophore 

to obtain our biologically important target molecules.  We already have been successful 

in synthesizing the compound 71 following the path described in Scheme 15. However, 

we could not reach our target point due to the shortage of time. But even though it is 

conceivable to reach the goal by following the reaction pathways showed in Scheme 15 

with additional steps from using 71.  
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Scheme 15 
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2.3 Discussion 

           As stated in the Introduction, the goal of the project is to develop a practically 

useful photochemically removable protecting group that is based upon a photochemical 

electrocyclic ring closure reaction to generate a zwitterionic intermediate.  The 

zwitterionic intermediate would be capable of expelling a variety of leaving group 

anions, which are expected to range in basicity from carboxylate anions to phenolate 

anions. Scheme 8 describes the general mechanism envisioned for the photoreactivity of 

such “cage” compounds. 

         This project specifically exploits the benzothiophene ring system to control the 

regioselectivity for the photochemical ring closure (Scheme 16).  Only a single pathway 

is available for the cyclization that generates the key zwitterionic intermediate.  Thus, 

there would be only a single photoproduct formed, compound 75, after the zwitterionic 

intermediate expels the leaving group, LG-.  Note that Scheme 16 corresponds to pathway 

c in Scheme 6, and thus simplifies the mechanism considerably.  Omission of paths a and 

b is justified by preliminary results obtained prior to the study.   The key from that study 

was that quantum yields for photoproduct 23 decreased with increasing leaving group 

basicity and showed an approximate linear dependence on the pKa of LG-H.  On the 

other hand, if paths  a and b governed the photochemistry of 73, the quantum yields 

would remain approximately constant as a function of LG- basicity.  For example, 

expulsion of LG- occurs subsequent to loss of a proton via path a.  The quantum yield for 

photoproduct 75 would then depend on the competition between paths a and b, which 
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would not be subject to LG- basicity.  Nearly constant Φ as the LG- is varied was 

observed previously for acrylanilides bearing a variety of LG-. 

Scheme 16 

 

 

 

         

 

 

 

 

 

 

 At the onset of the study little was known about the photochemistry of 

benzothiophene carboxanilides.  The mechanism was previously studied to determine the 

stereochemistry of the photochemical ring closure, which was found to be conrotatory.  

Since no LG- was present, the conrotatory cyclization produced a putative zwitterion, 

analogous to 74, and in aprotic solvent, a 1,5-H shift took place to afford a product with 

trans stereochemistry at the newly-formed ring junction.  This constituted good evidence 

for a conrotatory ring closure.  In protic solvent the more stable cis isomer was also 

observed due to competing protonation of the enolate and tautomerization of the resulting 

enol.   
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Scheme 17 

 

 

 

 

 

 

 

However, no quantum yields had been determined, and the multiplicity of the 

photoreaction was uncertain by this previous study. The quantum yield for 73 (LG- = Cl-) 

was determined, experimentally, by a coworker, early in the present project.  The 

benzothiophene carboxamide 73 with LG- = Cl-, photolyzed with Φ = 0.22, to give 75 

under buffered aqueous conditions. In addition, it appeared that the Φ for 

photocyclization to 75 was lower in air-saturated solvents, suggestive of triplet 

multiplicity for the photoreaction because O2 is a well-known triplet quencher and it 

quenches the triplet multiplicity of the photoreactant by gaining energy from it.  The 

project initially focused on two aspects:  (1) work was initiated to obtain a more efficient 

benzothiophene carboxamide system, and (2) studies were performed to obtain additional 

evidence for triplet multiplicity by exploiting the heavy atom effect of bromine 

substituent. 
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          Based on the studies of photochromism by Irie, the thiophene and 

benzothiophene ring systems would be expected to undergo efficient photochemical 

electrocyclic ring closure reactions.  The findings of Irie are summarized in the 

introduction.  With a single benzothiophene ring, as in the case of 73, the reaction was 

relatively efficient (Φ = 0.22).  It was expected that by replacing the phenyl group of the 

anilide with a second benzothiophene ring, the quantum yield for electrocyclization 

would show a further increase. The benzothiophene carboxamide 43 was thus synthesized 

by a convergent, six-step route (Scheme 10, Results).   

          Photolysis of 43 in aqueous buffer afforded the cyclized product 53 in essentially 

quantitative yield, and thus, the photochemistry appeared to be promising.  However, 

quantum yield determinations gave Φ = 0.006±0.002 - 0.008±0.002.  The photochemical 

electrocyclic ring closure was surprisingly inefficient. The reason for the inefficient 

photocyclization of 43 is a matter of speculation. It is possible that the increase in 

quantum yield in case of one benzothiophene ring as A is due to a change in multiplicity 

from singlet to triplet.  It also seems possible that the increase in Ф could reflect a 

decrease in aromatic stabilization energy in going from phenyl to benzothiophene, as 

suggested in Table 1. Perhaps by replacing the anilide phenyl group with a second 

benzothiophene ring involves the electrocyclization of two less strongly aromatic 

benzothiophene rings and the formation of the pentacyclic product containing two five-

membered rings is thermodynamically unfavorable. 

        Attention was next turned to obtaining additional evidence for the triplet 

multiplicity of the photocyclization of benzothiophene carboxamides by use of the heavy 
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atom effect.  This led to the synthesis of the C-6 bromide, compound 44.  An excursion 

was made from this goal to help a coworker devise a synthesis of the C-3 hydroxy-

substituted benzothiophene carboxamide 20, which was essential for introducing 

carboxylate groups into the C-3 position of the benzothiophene ring.  This excursion 

expedited the synthesis of 20, and eventually 73 (LG- = PhCH2CO2
-, which was a subject 

of our published communication.23c The excursion provided the necessary experience for 

constructing the benzothiophene ring system by the Claisen condensation route.          

Photolysis of the C-6 bromide 44 in aqueous buffer (pH = 7) produced 

photoproduct 58 in essentially quantitative yield.  The quantum yield was found to be 

0.315, which is substantially higher than Φ = 0.22 for compound 20 (without the C-6 

bromide and Cl- LG- in C-3 position of benzothiophene ring).  For 44 in air-saturated 

solvent Φ = 0.161, consistent with quenching of a triplet excited state in the presence of 

dissolved oxygen.  Addition of 1,3-pentadiene also resulted in decreased quantum yields, 

likely as a consequence of quenching of the triplet excited state.  Such quenching became 

more pronounce with increasing concentrations of the 1,3-diene.  This result was 

incorporated in the communication.23c 

         The original plan was to incorporate various long-wavelength chromophores in 

place of the phenyl substituent attached to the amide nitrogen.  As a test case, a para 

benzoyl substituent was introduced at the phenyl group of 44.  The heavy atom bromide 

was retained to determine if further increases in quantum efficiency could be achieved.  

Compound 46 was thus synthesized via acylation of a p-methylaminobenzophenone 61 

by C-6 substituted benzothiophene carbonyl chloride 57.  The UV spectrum of 46 (Figure 
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2.7) suggested that the photolysis wavelength could then be shifted to 365 nm from 310 

nm, which had been used for 44 and 20.  When a preparative photolysis was conducted in 

aqueous CH3CN containing buffer, the photoproduct 62 was formed in essentially 

quantitative yield at 100% conversion, and 62 precipitated out of the solution.  The poor 

solubility of 62 in aqueous CH3CN seriously hampered the quantum yield determinations, 

even when the quantum yield runs were conducted in aqueous dioxane, for which the 

solubility was improved.  The quantum yields were lowered by deposition of 62 onto the 

front face of the photolytic cell, which blocked further transmission of light through the 

cell. 

         The aforementioned solubility problems encountered during photolyses of 44 

required that the original research plan to be modified.  The N-phenyl group of 1 would 

be exchanged for long wavelength chromophores. The C-6 position of the 

benzothiophene ring would be reserved for a substituent which would improve water 

solubility.  Any heavy atom would be placed directly onto the chromophoric group, if 

needed. 

         In conformance with the revised plan, benzophenone derivative 38 was 

synthesized.  Compound 38 has a solubilizing carboxylate group at the C-6 position.  The 

eight step synthesis proved to be somewhat nontrivial, due to difficulties isolating good 

yields of 37.  The original literature procedure adopted used chlorobenzene as the solvent 

for the conversion of 64 to 65, using thionyl chloride as the reagent.  This solvent allowed 

the reaction to be performed at higher temperatures, which shortened the reaction times.  

However, the acid chloride 65 proved difficult to isolate from chlorobenzene.  Thus, a 
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second procedure was adopted, which involved refluxing 64 with SOCl2, and this 

procedure made it possible to isolate 65 more easily, at the expense of long reaction 

times.  Ultimately, however, the optimal procedure involved simply distilling the SOCl2 

and hydrolyzing the acid chloride to give the carboxylic acid, which was isolated.  The 

acid was then converted to the acid chloride for the acylation of p-

methylaminobenzophenone 61. After acylation, the hydrolysis of amide product 37 

proved to be difficult to isolate 38 in a reasonable yield. Several attempts were provided 

using different methods, but everytime the amide C-N bond were broken. The very first 

time following path of 0.93 eq. of KOH in aqueous MeOH was used in the ester and was 

refluxed for 2 h. 

 

                                                                                                                                   (11) 

 

                                                                                                                          

 

 

                                                                                                               

Secondly, the ester was refluxed with LiI in pyridine under N2 environment and 

the reaction mixture was then acidified, but found only 13% of acid product after even 6 
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Another method of refluxing the ester with 88% formic acid in water was followed. 

 

                                                                                                                     

 

 

The next method was refluxing with trifluoroacetic acid but no fortune. 
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It could be possible that the carbonyl oxygen of the benzoyl group is relatively 

conjugated with amide N, so in case of hydrolysis, the amide C-N single bond breaks and 

the starting materials of the acylation step were isolated. Finally we successfully 

hydrolyzed the ester to acid in reasonable amount (˃93%) following the procedure 

written in the literature by K. C. Nicolaou et. al.27b Trimethyltin hydroxide was used as a 

mild hydrolyzing agent in the presence of dichloroethane in N2-saturated reaction mixture 

at 80oC which required a longer reaction time. 

 

                                                                                                                       

 

 

 

We conducted preparative photolysis of 38 and determined its quantum yield.  

The compound reacted similarly to 45 (LG- = Cl-), whose efficiency has been measured 

previously as part of related research.   

Scheme 18 
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            As benzylthiolate was introduced successfully into 45 (Scheme 18), so it was 

expected that aqueous soluble carboxylate salt of 38 would also incorporate the other 

thiolate group like glutathione (GS-) following the same procedure under aqueous basic 

conditions (Scheme 19). However, such an attempt was beyond the scope at this part of 

our research.    

 

Scheme 19 
 

 

 

                                                                                                                                                     

                                                                                                                                                      

 

 

 

 

                                                                                                  
                                                                                                                      
 
 
 

 Although a number of attempts were conducted to incorporate S-containing LG in 

place of Cl- in 38, but we had been unsuccessful using the similar method used previously 

in our laboratory.23c,d At this point, a new approach was required to be implemented by 

protecting the carbonyl group of the benzophenone chromophore which could eliminate 

our problems to obtain our biologically important target molecules. I already have been 

successful in synthesizing the compound 71 (Scheme 15) and our target photoreactant 

was two steps away. 

+K-O2C

NH2

O

NH
N
H

O

+K-O2C

S-K+

S-O2C

Cl

O

N

R

Ar H2O

+K-O2C

NH2

O

NH
N
H

+K-O2C

S

S-O2C N

O

R

Ar

GSH 38 (LG- = Cl-)
(Ar = benzophenone,
R = CH3)

O

38 (LG = GSH) 
      (Ar = benzophenone
       R = CH3)



60 

 

 

 

2.4 Experimental 

Synthesis of o-carboxyphenylmercaptoacetic acid (50).  

 

 

 

To commercially available 10 g (0.033 mol) of 2,2ʹ-dithiosalicylic acid was added 

20 g (0.19 mol) of anhydrous Na2CO3 dissolved in 150 mL of water followed by 15 g of 

NaHS2O4. The reaction mixture was heated to reflux for 2 h. After reflux, was extracted 

by ethyl acetate, washed with aq. saturated NaHCO3, then with brine solution, dried over 

Na2SO4 and concentrated in vacuo. Which was then added in a mixture of 15 g of 

chloroacetic acid dissolved in water followed by 2M Na2CO3 to make pH = 7. The total 

water was used 200 mL. The mixture was then refluxed for 4 h followed by cooling 

down, then acidified to congo red using conc. H2SO4, filtered, recrystallized from water 

to give 13.45 g (100% yield) of a greenish powder 50, mp 217-218ºC.  The spectral data 

were as follows: 1H NMR (C2D6CO) δ  3.83 (s, 2H), 7.26 (t, J = 7.4 Hz, 1H), 7.49 – 7.58 

(m, 2H), 8.03 (d, J = 7.7 Hz, 1H).  

Synthesis of  benzothiophene-3(2H)-one (51).  
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To 13.5 g (0.06 mol) of 50 was added 30 mL of acetic anhydride followed by 8.0 

g (0.10 mol) of sodium acetate, placed over sand bath with stirring slowly to increase the 

temperature from 80º to 140º C for evolution of CO2. The reaction mixture was heated to 

reflux for 1 h, then cooled to room temperature, added >30 g of NaOH dissolved in water 

to make pH = 8. A clear purple solution was obtained after refluxing the mixture for 2 h. 

It was then acidified by diluted aq. H2SO4, filtered to remove tar. The product 51 as a 

yellow powder was isolated by steam distillation. This product is air sensitive and used 

for the next step immediately. The spectral data were as follows: 1H NMR (CDCl3) 

δ  3.79 (s, 2H), 7.22 (t, J = 7.5 Hz, 1H), 7.43 (d, J = 7.8 Hz, 1H), 7.55 (t, J = 7.5 Hz, 1H), 

7.78 (d, J = 7.7 Hz, 1H).  

Synthesis of Compound 3-(N-methyl)benzothiophene (52).  

 

 

To 9.1 g (0.06 mol) 51 was added dropwise 60 mL (0.48 mol) of methylamine in 

ethanol and stirred for 4 h under N2 environment. Then the mixture was extracted by 

ether, washed with brine solution, dried over Na2SO4 and concentrated in vacuo. It was 

then gravity chromatographed by 50-50 ethyl acetate and hexane. The product 52 was 

collected and concentrated in vacuo to obtain a dark brown viscous liquid. This product is 

air sensitive and used for the next step immediately without further purification. 
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Synthesis of 3-Chlorobenzo[b]thiophene-2-carbonyl chloride (49). 

 

 

 

To commercially available 29.6 g (0.20 mol) of trans cinnamic acid in 150 mL 

chlorobenzene was added 119 g (1.00 mol) of thionyl chloride followed by dropwise 

addition of 1.6 mL of pyridine. The reaction mixture was heated at reflux for 72 h. To 

remove color particles the mixture was refluxed with norit for 2 h followed by vacuum 

filtration through celite. The filtrate was concentrated in vacuo and then suspended in 500 

mL of hot hexane followed by immediate vacuum filtration. The filtrate was left 

overnight to be crystalized.  The crystals were filtered, washed with cold hexane and 

dried to give 24.1 g (52.1 % yield) as brown needles, mp 112-114oC. The spectral data 

were as follows: 1H NMR (CDCl3) δ 7.55 (t, J = 7.7 Hz, 1H), 7.63 (t, J = 7.7 Hz, 1H), 

7.86 (d, J = 8.4 Hz, 1H), 8.02 (d, J = 8.4 Hz, 1H).  

Synthesis of benzothiophene-3-chloro-2-(benzothiophene-3-N-methyl)carboxamide 

(43).  
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To 2.6 g (0.016 mol) of 52 in 20 mL anhydrous dichloromethane was added 15 

mL triethylamine followed by 4.6 g (0.020 mol) of 49 dissolved in 30 mL anhydrous 

dichloromethane at 5-8oC. The reaction mixture was warmed to room temperature and 

stirred overnight. It was then filtered to remove triethylamine-hydrochloride salt, the 

filtrate was concentrated in vacuo, and the residue was dissolved in benzene. To remove 

color particles, the mixture was heated at reflux with norit (activated C) for 2 h followed 

by vacuum filtration through celite. The benzene solution was washed with aq. saturated 

NaHCO3, with brine, dried over Na2SO4, and concentrated in vacuo to a get dark red oil 

containing  amide 43 (LG- = Cl-). The oil was chromatographed on silica gel, eluting with 

50% ethyl acetate in hexane to isolate the product 3.90 g (0.011 mol, 68% yield) as a 

yellow powder, mp 132 - 133oC. The spectral data were as follows; 1H NMR (CDCl3) 

δ 3.55 (s, 3H), 7.12-7.47 (m, 7H), 7.59-7.79 (m, 2H); 13C NMR (CDCl3) δ 38.24, 120.60, 

122.50, 122.56, 125.17, 126.49, 126.62, 127.48, 128.91, 129.17, 129.47, 130.84, 135.49, 

137.69, 142.95, 162.81.  

Synthesis of Compound 53 by Preparative Direct Photolysis of compound 43.  
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Preparative direct photolysis of 0.021 M 43 (LG- = Cl-) with unfiltered light from 

a medium pressure mercury lamp in N2 saturated 20% 100 mM phosphate buffer in 

CH3CN at pH 7 for 3h resulted in the release of HCl to give 53 as the only photoproduct 

(eq. 3). The product (100% conversion characterized by 1H NMR) was isolated by 

extraction with ethyl acetate and purified by recrystallizaion from 1:3 ethyl acetate in 

hexane to give 53 as a pale yellow powder, m.p. 244.4 – 245.1 ºC. 1H NMR (CDCl3) 

δ 4.24 (s, 3H), 7.41-7.55 (m, 4H), 7.85-7.93 (m, 2H), 8.25-8.33 (m, 2H); 13C NMR 

(CDCl3) δ 33.50, 114.48, 123.70, 123.75, 123.87, 124.70, 125.12, 125.35, 126.20, 127.96, 

128.91, 129.73, 130.22, 134.68, 135.26, 138.98, 142.72, 159.06. 

Synthesis of 2-chloroacetyl chloride (54).
6
  

 

 

To a stirred solution of 10.0 g (105 mmol) of 2-chloroacetic acid in 100 mL of 

benzene was added 1.0 mL of DMF followed by 12.5 g (105 mmol) of thionylchloride. 

The mixture was heated at reflux overnight. Upon cooling the entire reaction mixture was 

used for the next step.  

Synthesis of 2-chloro-N-methylacetanilide (55).  
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To a stirred solution of 8.41 g (78.6 mmol) of N-methylaniline in 15 mL 

triethylamine was added 11.87 g (105 mmol) of 2-chloroacetyl chloride 54 (33% excess) 

at 5-8oC. The reaction mixture was heated at reflux overnight. Upon cooling, the 

triethylamine hydrochloride salt was removed by filtration and the filtrate was washed 

with aq. saturated NaHCO3, with brine, dried over Na2SO4, and concentrated in vacuo to 

give 11.5 g (80% yield) dark black solid of amide 55, This compound was used for the 

next step without further purification. The spectral data were as follows: 1H NMR 

(CDCl3) δ 3.32 (s, 3H), 3.86 (s, 2H). 7.24 (d, J = 6.4 Hz, 2H), 7.33-7.57 (m, 3H).   

Synthesis of thio-methylsalicylate (56).  

 

 

To a stirred solution of 31.4 g (0.2 mol) of thiosalicylic acid, was added 500 mL 

of 5% H2SO4 in methanol. The mixture was refluxed for 36 h in N2 atmosphere. The 

reaction mixture was concentrated in vacuo. To the mixture was added a large amount of 

H2O. The solution was made basic with solid NaHCO3, extracted two times with 

benzene, washed with brine, dried over Na2SO4 and concentrated in vacuo to give  28.6 g 

(85 % yield) of ester 56 as a yellow liquid. The spectral data were as follows: 1H NMR 

(CDCl3) δ 3.91 (s, 3H), 4.69 (s, 2H), 7.09-7.18 (br, 1H), 7.24-7.36 (m, 2H), 7.99 (d, J = 

7.8 Hz, 1H).  
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Synthesis of 3-hydroxybenzo[b]thiophene-2(N-methyl-N-phenyl) carboxamide 20 

(LG
-
 = OH

-
).   

 

 

 

To a stirred solution of 3.5 g (0.02 mol) of thiomethylsalicylate 56 in 50 mL 

methanol was added 1.1 g (0.02 mol) of sodium methoxide. After stirring the mixture for 

10 min was added 3.8 g (0.02 mol) of amide 55, followed by addition of 2.3 g (0.04 mol) 

of sodium methoxide. The reaction mixture was heated at reflux for 24 h. Upon cooling 

the solution was acidified with 10% HCl (pH = 3), and extracted with ethyl acetate. The 

extract was washed with H2O, brine, dried over Na2SO4, and concentrated in vacuo. The 

oil was chromatographed on silica gel, eluting with 50% ethyl acetate in hexane. The 

isolated product was purified by crystallization from 1:10 ethyl acetate in hexane to 

obtain 1.70 g (30 % yield) of pure crystal of compound 20, mp 115-117oC.  The spectral 

data were as follows: 1H NMR (CDCl3) δ 3.47 (s, 3H), 7.23-7.61 (m, 8H), 7.92 (d, J = 7.5 

Hz, 1H); 13C NMR (CDCl3) δ 38.64, 101.59, 122.08, 122.66, 124.00, 128.25, 129.42, 

129.47, 129.98, 130.04, 138.99, 141.66, 161.82, 167.72. Anal. Calcd for C16H13NO2S : C 

67.82%, H 4.59%, N 4.95%; found 67.94.10%, 4.68%, 4.88%. 
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Synthesis of 5-methyl-[1]benzothiopheno[2,3-c]quinolin-6-one (23) by photolysis of 

20 (LG = OH
-
).   

 

 

 

A 0.019 M solution of 20 (LG- = OH-) in N2 saturated 30% 100 mM phosphate 

buffer in CH3CN at pH 7 was irradiated with a 450 W Hanovia medium pressure mercury 

lamp for 30 min. The product was isolated by extraction with ethyl acetate and purified 

by recrystallizaion from 1:3 ethyl acetate in hexane to give 23 as a solid white crystal,  

mp 204-205oC. The spectral data were as follows: 1H NMR (CDCl3) δ 3.92 (s, 3H), 7.46 

(t, J = 8.1, 1H), 7.55-7.67 (m, 4H), 8.05 (d, J = 8.1 Hz, 1H), 8.72 (d, J = 8.1 Hz, 2H); 13C 

NMR (CDCl3) δ 29.83, 115.24, 119.24, 122.40, 123.67, 123.75, 125.19, 125.32, 126.83, 

128.45, 132.62, 134.93, 135.70, 138.33, 142.44, 158.28. Anal. Calcd for C16H11NOS: C 

72.45%, H 4.15%, N 5.28%; Found 72.10%, 4.31%, 5.31%. 

Synthesis of 6-bromo-3-chlorobenzo[b]thiophene-2carbonyl chloride (57).
9
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To commercially available 22.7 g (0.10 mol) of 4-bromocinnamic acid in 80 mL 

chlorobenzene was added 59.5 g (0.50 mol) of thionyl chloride followed by dropwise 

addition of 0.8 mL of pyridine. The reaction mixture was heated at reflux for 72 h. To 

remove color particles the mixture was heated to reflux with norit for 2 h followed by 

vacuum filtration through celite. The filtrate was concentrated in vacuo and then 

suspended in 250 mL of hot hexane followed by immediate vacuum filtration. The filtrate 

was left overnight to crystalize.  The crystals were filtered, washed with cold hexane and 

dried to give 17.05 g (55 % yield) of yellow needles 57, mp 107-109 oC. The spectral 

data were as follows: 1H NMR (CDCl3) δ 7.59 (d, J = 8.9 Hz, 1H), 7.80 (d, J = 8.9 Hz, 

1H), 7.96 (s, 1H).  

Synthesis of 6-bromo-3-chloro-benzo[b]thiophene-2(N-methyl-N-phenyl) 

carboxamide (44). 

 

 

 

 

To a stirred solution of commercially available 1.345 g (12.57 mmol) of N-

methylaniline and 15 mL of triethylamine in 20 mL of anhydrous dichloromethane was 

added 5.4 g (17.28 mmol) of 6-bromo-3-chlorobenzo[b]thiophene-2-carbonyl chloride 

(57) dissolved in 10 mL of anhydrous dichloromethane at 5-8oC in an ice bath under N2. 

+
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A catalytic amount of DMAP was added. The reaction mixture was warmed to room 

temperature and stirred for 24 h. The reaction mixture was filtered to remove 

triethylamine hydrochloride salt and the filtrate was washed with aq. saturated NaHCO3, 

with H2O, dried over Na2SO4, and concentrated in vacuo to give 2.176 g (45.49% yield) 

of a brown solid (44). The crude product was chromatographed on silica gel, eluting with 

50% ethyl acetate in hexane to obtain brown crystals, mp 130-131oC. The spectral data 

were as follows; 1H NMR (CDCl3) δ 3.52 (s, 3H), 7.12-7.31 (m, 5H), 7.48 (d, J = 8.9 Hz, 

1H), 7.57 (d, J = 8.9 Hz, 1H), 7.81 (s, 1H); 13C NMR (CDCl3)  δ 38.85, 120.78, 120.84, 

123.99, 125.19, 126.86, 127.86, 128.94, 129.45, 131.45, 134.59, 139.21, 143.02, 162.49. 

Anal. Calcd for C16H11NOClS: C 50.46%, H 2.89%, N 3.68%; Found 50.67%, 2.97%, 

3.54%. 

Synthesis of  5-methyl-1-[6-bromo-benzothiopheno]-[2,3-c]quinolin-6-one (58)  by 

photolysis of 6-bromo-3-chloro-benzo[b]thiophene-2(N-methyl-N-phenyl) 

carboxamide (44).  

 

 

 

 

A 0.02 M solution of 44 in N2 saturated 30% 100 mM phosphate buffer in 

dioxane at pH 7 was irradiated with a 450 W Hanovia medium pressure mercury lamp for 
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1 h. The product was purified by recrystallizaion from benzene to give compound 58 as a 

solid light orange crystal, mp 262-263oC. The spectral data were as follows: 1H NMR 

(CDCl3) δ 3.89 (s, 3H), 7.43 (t, J = 7.7, 1H), 7.52-7.74 (m, 3H), 8.17 (s, 1H), 8.53 (d, J = 

9.4 Hz, 1H), 8.61 (d, J = 8.5 Hz, 1H); 13C NMR (CDCl3) δ 30.28, 67.31, 115.82, 119.31, 

121.60, 122.93, 124.01, 126.60, 128.97, 129.21, 133.21, 134.85, 134.95, 138.86, 144.23, 

158.43. Anal. Calcd for C16H10NOSBr: C 55.81%, H 2.91%, N 4.07%; Found 55.94%, 

3.01%, 4.05% respectively. 

Synthesis of 4-acetamidobenzophenone (59).  

 

 

 

To commercially available 10.1 g (0.05 mol) of 4-aminobenzophenone was added 

3.8 g (0.04 mol) of acetic anhydride followed by 100 mL of H2O. The mixture was stirred 

for 10 min before adding 4.4 g (0.05 mol) of sodium acetate. The reaction mixture was 

heated to 80oC with stirring for overnight. Upon cooling the mixture was extracted with 

ethyl acetate, washed with H2O, aq. saturated NaHCO3, with brine, dried over Na2SO4 

and concentrated in vacuo to give 9.5 g (80% yield) of a yellow solid of compound 59.  

The spectral data were as follows: 1H NMR (CDCl3) δ 2.21 (s, 3H), 4.08-4.25 (br, 1H), 

6.58 (d, J = 8.8 Hz, 2H), 7.45 (t, J = 7.4 Hz, 2H), 7.52 (t, J = 7.4 Hz, 1H), 7.71 (d, J = 7.8 

Hz, 2H), 7.76 (d, J = 8.2 Hz, 2H).   
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Synthesis of  4-(N-methylacetamido)benzophenone (60).  

 

 

 

To a stirred solution of 8.0 g (0.03 mol) of 4-acetamidobenzophenone (59) in 50 

mL of THF was added 1.7 g (0.04 mol) of NaH (60%) in N2 atmosphere. The mixture 

was stirred for 15 min followed by the dropwise addition of 7.0 g (0.05 mol) of methyl 

iodide. The reaction mixture was stirred at room temperature overnight. The solution was 

concentrated in vacuo to obtain 6.50 g (80% yield) of compound 60. The spectral data 

were as follows: 1H NMR (CDCl3) δ 1.84 (s, 3H), 3.74 (s, 3H), 6.58 (d, J = 8.8 Hz, 2H), 

7.45 (t, J = 7.4 Hz, 2H), 7.52 (t, J = 7.4 Hz, 1H), 7.71 (d, J = 7.8 Hz, 2H), 7.76 (d, J = 8.2 

Hz, 2H).   

Synthesis of 4-(methylamino)benzophenone (61).  

 

 

 

To 6.5 g (0.03 mol) of 4-(N-methylacetamido)benzophenone (60) was added 100 

mL of aqueous 2 M NaOH. The mixture was heated to reflux for 12 h. Upon cooling the 
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reaction mixture was extracted with ether, washed with enough water for ˃3 times, 

washed over brine solution then Na2SO4 and concentrated in vacuo to give crude product 

which was then recrystallized from ethyl acetate and hexane mixture to obtain a pure 

orange solid 4.6 g (87% yield) of compound 61. The spectral data were as follows; 1H 

NMR (CDCl3) δ 2.91 (s, 3H), 4.13-4.70 (broad, 1H), 6.58 (d, J = 8.8 Hz, 2H), 7.45 (t, J = 

7.4 Hz, 2H), 7.52 (t, J = 7.4 Hz, 1H), 7.71 (d, J = 7.8 Hz, 2H), 7.76 (d, J = 8.2 Hz, 2H).  

 

Synthesis of 6-bromo-3-chloro-benzo[b]thiophene-2(N-benzoylphenyl-N-methyl) 

carboxamide  46 (LG
-
 = Cl

-
).   

 

 

 

 

To a stirred solution of 2.3 g (11.06 mmol) of compound 4-

methylaminobenzophenone (61) and 15 mL of triethylamine in 25 mL of anhydrous 

CH2Cl2 under N2, was added catalytic amount of DMAP followed by 4.51 g (14.5 mmol) 

of 6-bromo-3-chlorobenzo[b]thiophene-2-carbonyl chloride 57 at 5-8 oC in an ice bath. 

The reaction mixture was warmed at room temperature and stirred for 24 h. The solution 

was filtered off to remove Et3N-HCl salt, washed three times with aq saturated NaHCO3 

solution, then with brine, dried over Na2SO4, and concentrated in vacuo to give 3.8 g (7.9 
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mmol, 71% yield) of compound 46 (LG- = Cl-) as a viscous oil. The oil was 

chromatographed on silica gel, eluting with 20% ethyl acetate in hexane to obtain pure 

brown crystals, mp 113-114oC. The spectral data were as follows: 1H NMR (CDCl3) δ 

3.58 (s, 3H), 7.29 (d, J = 8.5 Hz, 2H), 7.43 (t, J = 7.8 Hz, 2H), 7.50 (d, J = 8.7 Hz, 1H), 

7.56 (t, J = 8.5 Hz, 2H), 7.68 (t, J = 8.1 Hz, 4H), 7.84(s, 1H);  13C NMR (CDCl3) δ 38.18, 

121.19, 121.24, 124.18, 125.35, 126.22, 126.48, 128.59, 129.24, 130.11, 131.29, 132.48, 

132.86, 134.60, 136.21, 137.39, 139.25, 146.65, 162.50, 195.60.  

Synthesis of 5-benzoyl-9-methyl-1-(6-bromobenzothiopheno)-[2,3-c]quinolin-10-one 

(62) by photolysis of 6-bromo-3-chloro-benzo[b]thiophene-2(N-benzoylphenyl-N-

methyl) carboxamide  46.   

 

 

 

 

Preparative direct photolysis of 0.015 M 46 (LG- = Cl-) with unfiltered light from 

a 450 W Hanovia medium pressure mercury lamp in N2 saturated 30% 100 mM 

phosphate buffer in dioxane at pH 7 for 50 min resulted in the release of hydrochloric 

acid to give 62 as the only photoproduct. The photoproduct (100 % conversion 

characterized by 1H NMR) was isolated by filtration as a colorless powder, mp 264-

265oC. The spectral data were as follows: 1H NMR (CDCl3) δ 3.94 (s, 3H), 7.57 (t, J = 
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7.6 Hz, 2H), 7.66 (t, J = 8.6 Hz, 3H), 7.89 (d, J = 7.5 Hz, 2H), 8.09 (d, J = 8.7 Hz, 1H), 

8.17 (s, 1H), 8.39 (d, J = 8.7 Hz, 1H), 9.13 (s, 1H); 13C NMR (CDCl3) δ 30.62, 115.54, 

119.30, 124.19, 125.69, 126.0, 127.07, 127.64, 128.74, 130.26, 130.56, 131.58, 132.86, 

133.64, 135.32, 135.82, 137.92, 141.62, 144.97, 158.62, 195.40. 

Synthesis of Methyl 4-formylbenzoate (63).  

 

 

 

To commercially available 10 g (0.067 mol) of 4-formylbenzoic acid dissolved in 

150 mL of anhydrous MeOH was added 10 mL (0.137 mol) of thionyl chloride dropwise 

at 0 ºC under N2 environment. The reaction mixture was slowly brought to room 

temperature and stirred for overnight. The solvent was removed in vacuo by co-

evaporation with dichloromethane (3 X 100 mL) to remove the excess of thionyl chloride 

to give 98.2% conversion of 63 as a brown crystal. The m.p. of the compound 63 was 

found 51 - 52 ºC.  The spectral data were as follows: 1H NMR (CDCl3) δ 3.96 (s, 3H), 

7.95 (d, J = 6.7 Hz, 2H), 8.20 (d, J = 6.7 Hz, 2H), 10.11 (s, 1H).  

 Synthesis of 4-Methoxycarbonylcinnamic acid (64).  
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To a solution of commercially available malonic acid (3.5 g, 0.03 mol) dissolved 

in 20 mL of anhydrous pyridine was added at room temperature 4.3 g (0.026 mol) of 

methyl-4-formylbenzoate 63 dissolved in another 20 mL anhydrous pyridine followed by 

1 mL piperidine (cat. amount) dropwise under N2 environment. The mixture was then 

placed over a sand bath and slowly stirred while the temperature was increased to 80º to 

90º C for evolution of CO2, then heated to reflux until the formation of CO2 stopped. 

After cooling to room temperature, the reaction solution was poured onto iced-concd. 

HCl to begin forming acid precipitation. The acid 64 was filtered off, washed with water 

several times, dried to give pure 64 as a creamy white solid with 97% yield; m.p. 234.5 – 

236.2 ºC. The spectral data were as follows: 1H NMR (CDCl3) δ 3.84 (s, 3H), 6.63 (d, J = 

7.9 Hz, 1H), 7.62 (d, J = 8.2 Hz, 1H), 7.80 (d, J = 8.3 Hz, 2H), 7.95 (d, J = 8.2 Hz, 2H), 

12.59 (s, 1H). 

Synthesis of 6-Methoxycarbonyl-3-chlorobenzo[b]thiophene-2-carbonyl chloride 

(65).  

 

 

 

To a stirred solution of 10.0 g (0.05 mol) of 4-methylester cinnamic acid 64 in 

52.5 mL (0.72 mol, 15 x SM) of thionyl chloride, was added dropwise 0.8 mL of 

pyridine. The reaction mixture was heated at reflux for 6 d. The hot reaction mixture was 

filtered off to remove pyridine-hydrochloride salt. Enough water was added to the filtrate 
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to convert the dissolved acid chloride to carboxylic acid precipitation. Conc. HCl was 

added to make pH 2, filtered off and the residue was again refluxed with 3.5 mL (0.05 

mol) thionyl chloride in 40 mL benzene with catalytic amount of DMF under N2 to 

convert again acid to acid chloride 65 as off white solid which is air sensitive. The 

reaction mixture was then used for the next step without further purification, only after 

evaporating the solvent. 

Synthesis of 6-Methoxycarbonyl-3-chloro-benzo[b]thiophene-2(N-benzoylphenyl-N-

methyl) carboxamide  37 (LG
-
 = Cl

-
).   

 

 

 

 

To a stirred solution of 6.4 g (0.03 mol) of compound 4-

(methylamino)benzophenone (61) and 15 mL of triethylamine in 50 mL of anhydrous 

C6H6 under N2, was added a catalytic amount of DMAP followed by the reaction mixture 

of 6-methoxylcarbonyl-3-chlorobenzo[b]thiophene-2-carbonyl chloride (65) at 5-8 oC in 

an ice bath. The reaction mixture was warmed to room temperature and stirred for 24 h, 

then filtered to remove Et3N-HCl salt. The filtrate was diluted with ether, washed three 

times with aq. saturated Na2CO3, three times with 1 N HCl and then washed with water, 

brine and finally dried over Na2SO4, concentrated in vacuo to give 5.6 g (0.012 mol, 40% 
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yield) of compound  37 (LG- = Cl-) as a viscous oil. The oil was chromatographed on 

silica gel, eluting with 20% ethyl acetate in hexane to obtain a solid. This solid was 

recrystallized from benzene to get pure crystal, mp 213-214oC. The spectral data were as 

follows: 1H NMR (CDCl3) δ 3.58 (s, 3H), 3.93 (s, 3H), 7.31 (d, J = 8.6 Hz, 2H), 7.42 (t, J 

= 7.8 Hz, 2H), 7.55 (t, J = 7.4 Hz, 1H), 7.67 (d, J = 8.2 Hz, 2H), 7.70 (d, J = 8.6 Hz, 2H), 

7.77 (d, J = 9.0 Hz, 1H), 8.06 (d, J = 9.0 Hz, 1H), 8.43 (s, 1H). 13C NMR (DMSO-D6) 

δ 38.20, 57.72, 121.05, 122.91, 125.00, 126.26, 126.38, 128.59, 128.78, 130.11, 131.33, 

132.88, 134.31, 136.30, 137.35, 137.59, 138.83, 146.50, 162.46, 166.58, 195.61. 

Synthesis of 5-Benzoyl-9-methyl-1-(benzothiopheno-6-methylcarboxylate)-[2,3-

c]quinolin-10-one (66) by photolysis of 6-methoxycarbonyl-3-chloro-

benzo[b]thiophene-2(N-benzoylphenyl-N-methyl) carboxamide  37 (LG
-
 = Cl

-
).    

 

 

 

 

Preparative direct photolysis of 0.02 M 37 (LG- = Cl-) with unfiltered light from a 

450 W Hanovia medium pressure mercury lamp in N2 saturated 15% 100 mM phosphate 

buffer in CH3CN at pH 7 for 30 min resulted in the release of hydrochloric acid to give 

66 as the only photoproduct (and 100 % conversion characterized by 1H NMR). The 

photoproduct was isolated as a brown solid followed by extraction with CH2Cl2, wash 
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with water (x 3), saturated brine wash, dry over NaSO4, rotovap and concentrated in 

vacuo, mp 284-285oC. The spectral data were as follows: 1H NMR (CDCl3) δ: 3.89 (s, 

3H), 3.99 (s, 3H), 7.54 (t, J = 8.2 Hz, 2H), 7.63 (t, J = 7.4 Hz, 2H), 7.88 (d, J = 7.9 Hz, 

2H), 8.06 (d, J = 8.4 Hz, 1H), 8.14 (d, J = 8.4 Hz, 1H), 8.44 (d, J = 9.0 Hz, 1H), 8.61 (s, 

1H), 9.05 (s, 1H); 13C NMR (CDCl3) 

δ 30.38, 52.58, 115.32, 118.62, 125.08, 125.58, 126.25, 126.70, 128.53, 128.73, 129.96,  

130.52, 131.41, 132.69, 134.40, 135.82, 137.50, 138.53, 141.28, 142.21, 158.22, 166.22, 

195.03. 

Synthesis of 3-Chloro-benzo[b]thiophene-2(N-benzoylphenyl-N-methyl 

carboxamide)-6-carboxylic acid (38).  

 

 

 

 

To a stirred solution of 5.0 g (0.01 mol) methyl ester 37 in 30 mL dichloroethane 

at 80oC under N2 environment was added 5.4 g (0.03 mol) of trimethyltinhydroxide and 

was heated to reflux until it was hydrolyzed off into carboxylic acid 38 by checking with 

1H NMR. After completion, the acid was separated out from the solid formation by 

filtration, the filtrate was then washed with water and extracted by dichloromethane to 

obtain pure acid as brown powder (˃93% yield), mp: 75 – 77oC. 1H NMR (CDCl3): 

38

O

N

CH3

O

S
Cl

O

O

O

N

CH3

O

S
Cl

HO

O

CH3

Me3SnOH

80c, N2

Cl
Cl

37



79 

 

 

 

δ 3.60 (s, 3H), 7.34 (d, J = 8.3 Hz, 2H), 7.43 (t, J = 8.1 Hz, 2H), 7.56 (t, J = 7.5 Hz, 1H), 

7.68 (d, J = 7.5 Hz, 2H), 7.72 (d, J = 8.7 Hz, 2H), 7.80 (d,  J = 9.1 Hz, 1H), 8.12 (d, J = 

9.1 Hz, 1H), 8.51 (s, 1H), 11.94 (broad s, 1H); 13C 

NMR(CDCl3)δ 38.0, 120.9, 122.8, 125.5, 126.1, 126.5, 127.7, 128.4, 129.9, 131.2, 132.7,

 134.6, 136.1, 137.1, 137.4, 139.2, 146.2, 162.3, 171.1, 195.5.   

Synthesis of 5-benzoyl-9-methyl-1-(benzothiopheno-6-carboxylic acid)-[2,3-

c]quinolin-10-one (67) by photolysis of 3-chloro-benzo[b]thiophene-2(N-

benzoylphenyl-N-methyl carboxamide)6-carboxylic acid (38).  

 

 

 

 

A 0.015 M solution of 38 in N2 saturated 25% 100 mM phosphate buffer in 

dioxane at pH 7 was irradiated with an unfiltered light from 450 W Hanovia medium 

pressure mercury lamp for 1 h. The reaction mixture was acidified with dilute HCl to get 

solid precipitation. The off white powder was obtained from filtration of the mixture as 

the only photoproduct 67 and 100% conversion characterized by 1H NMR, mp 300+
oC. 

The spectral data were as follows: 1H NMR (DMSO-D6) δ 3.82 (s, 3H), 7.62 (t, J = 7.8 

Hz, 2H), 7.72 (t, J = 7.8 Hz, 1H), 7.81 (d, J = 8.7 Hz, 1H), 7.84 (d, J = 7.8 Hz, 2H), 8.00 

(d, J = 9.1 Hz, 1H), 8.04 (d, J = 8.7 Hz, 1H), 8.37 (d, J = 8.7 Hz, 1H), 8.65 (s, 1H), 8.98 
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(s, 1H); 13C NMR (DMSO-D6) δ 30.56, 116.66, 118.26, 124.67, 125.55, 126.38, 127.05, 

128.98, 129.82, 129.85, 130.30, 131.44, 132.83, 134.49, 138.06, 141.64, 141.94, 157.98, 

194.73. 

Synthesis of (68). 

 

 

In a stirred solution of 10 g (44 mmol) 4-nitrobenzophenone in 100 mL toluene 

was added 7.4 mL (102.6 mmol) of propane-1,3-diol and 85 mg (0.44 mmol) of 4-tosylic 

acid (p-TsOH). The reaction mixture was heated to reflux for 24 h. After reflux, the 

mixture was cooled to room temperature and kept for crystals growing. The pure product 

68 was isolated from the mixture and recrystallized from benzene – ether solvent mixture 

as colorless crystals with 99.8% yield; mp: 117-118oC. 1H NMR analysis (CDCl3) δ: 1.70 

(m, 1H), 1.97 (m, 1H), 4.05 (m, 1H), 7.29 (t, J = 7.1 Hz, 1H), 7.38 (t, J = 7.9 Hz, 2H), 

7.53 (d, J = 7.9 Hz, 2H), 7.73 (d, J = 8.8 Hz, 2H), 8.17 (d, J = 8.9 Hz, 2H) and 13C NMR 

analysis(CDCl3)δ: 25.4, 61.8, 100.2, 123.7, 126.5, 127.0, 128.3, 128.9, 140.5, 150.3, 201.

9.  

Synthesis of (69). 

 

 



81 

 

 

 

In a stirred solution of 1.0 g (3.5 mmol) of 68 in 20 mL DMF was added 300 mg 

(9.4 mmol) of 32S and 880 mg (10.5 mmol) of NaHCO3 and the reaction mixture was 

heated to reflux for 18 h. After reflux, the mixture was diluted with CH2Cl2   and filtered 

to remove inorganics. The filtrate was then washed with water several times to remove 

DMF, then with saturated brine solution and finally dried over Na2SO4 and concentrated 

the CH2Cl2 layer in vacuo to obtain pure product 69 as a red viscous liquid with ˃94% 

yield. 1H NMR analysis (CDCl3) δ: 1.71 – 1.86 (m, 2H), 3.64 (broad s, 2H), 3.94 – 4.09 

(m, 4H), 6.63 (d, J = 8.7 Hz, 2H), 7.22 (t, J = 7.4 Hz, 1H), 7.26 (d, J = 8.4 Hz, 2H), 7.32 

(t, J = 7.4 Hz, 2H), 7.49 (d, J = 8.7 Hz, 2H). 

Synthesis of (70). 

 

 

 

To a stirred solution of 1.0 g (3.9 mmol) of 69 in 8 mL acetic anhydride was 

added a catalytic amount of acetic acid (0.1 mL) and the reaction mixture was heated to 

80oC for 5.5 h. After heating, excess of acetic anhydride was removed very carefully by 

simple distillation under reduced pressure and the residue was then diluted with CH2Cl2 

and filtered to remove when any solid was appeared. The filtrate was then washed with 

water several times, then with saturated brine solution, dried over Na2SO4 and 

concentrated in vacuo respectively to obtain a crude mixture of product. The mixture was 

then purified through SiO2 column chromatography and recrystallized from ethyl acetate-
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hexane solvent mixtures to finally acquire 70 as nice colorless crystals. 1H NMR (CDCl3) 

δ: 1.75 – 1.86 (m, 2H), 2.12 (s, 3H), 4.02 (t, J = 5.5 Hz 4H), 7.14 (broad s, 1H), 7.23 (t, J 

= 7.4 Hz, 1H), 7.32 (t, J = 7.9 Hz, 2H), 7.42 – 7.54 (m, 6H); 13C NMR (CDCl3) 

δ: 24.8, 25.8, 61.9, 101.0, 120.1, 126.6, 127.5, 128.0, 128.7, 137.6, 138.5, 142.7, 168.7.  

Synthesis of (71). 

 

 

 

To a stirred solution of 1 g (3.37 mmol) of 70 in 10 mL of THF was added very 

carefully 175 mg (1.3 eq. of 70 = 4.38 mmol) of 60% NaH under N2 gas flow. After 

stirring for 15 minutes to the mixture was added 0.3 mL (1.5 eq. of 70 = 5.06 mmol) of 

CH3I and stirred the resulting mixture for overnight in N2 environment. The pure product 

71 was obtained by removing THF by simple distillation under reduced pressure followed 

by diluted the residue with CH2Cl2 and washed several times with water, then with 

saturated brine solution and dried over NaSO4, concentrated in vacuo respectively. 1H 

NMR (CDCl3) δ: 1.59 – 1.69 (m, 1H), 1.83 (s, 3H), 1.95 – 2.07 (m, 1H), 3.20 (s, 3H), 

4.02 – 4.08 (m, 4H), 7.12 (d, J = 8.4 Hz, 2H), 7.30 (t, J = 7.4 Hz, 1H), 7.39 (t, J = 7.6 Hz, 

2H), 7.55 (d, J = 6.1 Hz, 2H), 7.56 (d, J = 6.7 Hz, 2H); 13C NMR 

(CDCl3)δ: 22.51, 25.52, 29.74, 37.11, 61.73, 100.61, 126.83, 126.87, 127.43, 127.99, 128

.74, 140.89, 143.11, 143.88, 170.57. 
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General Procedure for Product Quantum Yield Determinations. A semi-

micro optical bench was used for quantum yield determinations, similar to the apparatus 

described by Zimmerman.26, 27 Light from a 200 W high-pressure mercury lamp was 

passed through an Oriel monochromator, which was set to 310 nm or 365 nm 

wavelengths. The light was collimated through a lens. A fraction of the light was diverted 

90° by a beam splitter to a 10 x 3.6 cm side quartz cylindrical cell containing an 

actinometer. The photolysate was contained in a 10 x 1.8 cm quartz cylindrical cell of 25 

mL volume. All quantum yields reported herein were the average of two or more 

independent runs.  Behind the photolysate was mounted a quartz cylindrical cell 

containing 25 mL of actinometer. Light output was monitored by ferrioxalate 

actinometery using the splitting ratio technique. Products were analyzed by 1H NMR 

spectroscopy using DMF or DMSO as the internal standard and the conversions were 

between 12 and 18%. 

 

General Procedure for Quenching Studies.  Solutions of ca. 0.005 M of 

investigated compound and various amounts of 1,3-pentadiene in N2 saturated 15% 

phosphate buffer in CH3CN at pH 7 were photolyzed at 310 nm for 2-5 h while 

performing  actinometry, as in the quantum yield determinations. Yields were determined 

by 1H NMR spectroscopy using DMSO as the internal standard.  

 

2.5 Supporting Information: See Appendix I 
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CHAPTER 3:  An Investigation on TPE Oligomers 

3.1 Introduction 

In the field of chemistry, polymer consists of a nearly unlimited number of 

monomers where an oligomer in principle, is a molecule that consists of a relatively small 

and specifiable number of monomer units.28 Dimers, trimers, tetramers etc. are oligomers. 

Oligomerization is a chemical process that converts monomers to a finite degree of 

polymerization. The actual figure is a matter of debate- often a value between 10 and 

100.29 Unlike a polymer, if one of the monomer is removed from an oligomer, its 

chemical properties are altered. Many oils are oligomeric such as liquid paraffin. 

Plasticizres are oligomeric esters widely used to soften the thermoplastics such as PVC. 

They could be made from monomers by linking them together or by separation from the 

higher fractions of crude oil. In biochemistry, the term oligonucleotide or normally 

"oligo" - is used for short, single-stranded nucleic acid fragments, such as DNA or RNA, 

or similar fragments of analogs of nucleic acids such as peptide nucleic acid or 

morpholinos. Such oligos are used in hybridization experiments, as probes for in situ 

hybridization or in antisense experiments such as gene knockdowns. It can also refer to a 

protein complex made of two or more subunits. In this case, a complex made of several 

different protein subunits is called a hetero-oligomer or heteromer where only one type of 

protein subunit used in a complex is homo-oligomer or homomer. A biomolecule formed 

of four same units such as ConcanavalinA (homotetramer) and different units such as 

hemoglobin (heterotetramer). Hemoglobin has four different sub-units while 
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immunoglobulins have 2 very different sub-units where each have their own activities or 

have a common biological property. 

In the last few decades conjugated polymers such as polyacetylene (PA), poly(p-

phenylene) (PPP), poly(p-phenylenevinylene) (PPV), polypyrrole (PPy), polythiophene 

(PTh) etc. have acquired a vast interest mainly because of their  high conductivity in 

reduced or oxidized ionic states. Oxidation and reduction of conjugated polymers are 

combined with the phenomena of charge storage and electroluminescence. Moreover, the 

photo-induced ionization processes are known to be the origin of the photoconductivity 

and it is also connected with the nonlinear optical phenomena observed in transparent 

polymer films. This is how, electrochemical methods play an increasing role in the 

investigation of conjugated polymers. Thus, the development of the electrochemical 

techniques, especially cyclic voltammetry (CV), electrochemical potential spectroscopy 

(ECPS) and differential pulse polarography (DPP) have revealed more information in the 

understanding of the behavior of conjugated polymers.30, 31a,b 

My research focuses on to characterize the ionic behavior of tetraphenyl ethelene 

(TPE) oligomers and their verification in the corresponding di-phenyl substituted 

poly(phenylene vinylene) DP-PPV by conducting cyclic voltammetry (CV).  
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3.2 Results and Discussion 

The reductive coupling of carbonyl compounds to produce olefins through low 

valent titanium in presence of zinc, known as the Cross McMurry Coupling,32 has 

achieved enormous interest in the field of organic synthesis which can be expressed by a 

number of reviews outlining the synthetic applications and mechanism.33 The couplings 

are particularly prominent in preparation of (a) sterically hindered alkenes through 

homocouplings and (b) of cycloalkenes with ring sizes ranging from 3 to 72 via 

intramolecular couplings.34 The utility of the reaction is highlighted as the key step in 

numerous syntheses of natural products.35 

There are, however, remarkably few recorded examples of cross McMurry 

couplings between two different carbonyl compounds. It is generally believed that this 

kind of cross coupling will generate a roughly statistical mixture of the possible coupling 

products. For synthetic purposes, such mixed couplings are useful when conducted with 

one component in excess or when the products are easily separable.36, 37    

Our purpose was to synthesize tetraphenylethelene oligomers with the use of 

benzophenone and 1,4-dibenzoylbenzene in the solutions of Pyridine and THF with Zn 

and TiCl4 following this method found in the procedure of J. Org. Chem.
38
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But the reaction was unsuccessful forming the oligomers led to change in 

strategy. So, the reaction pathways were changed and followed the procedure written in 

the literature Makromol. Chem.31a They produced first the corresponding di- and tetra-

chlorides of the ketones. Then the chlorides were used together to react with freshly 

prepared chromium acetate in benzene and DMF in 70oC under Ar –atmosphere where Cr 

provides e- to the reaction mixture and the di- and tetra- chlorides reduces to form the 

alkenes of tetraphenylethelene oligomers.  
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The reaction was again unsuccessful producing enough amount of oligomers. So 

the plan of the reaction was moved to follow another reported procedure of Organic 

Syntheses
39 of reacting these chloride reactants with Cu powder in benzene and refluxed 

to obtain the oligomers and the reaction was in success.  

 

                                                                                                                         

 

 

The TPE oligomeric mixtures were able to be synthesized following above Eq. by 

suitably substituted dichlorides with the corresponding tetrachlorides. Matrix Assisted 

Laser Desorption Ionization (MALDI) was performed to obtain mass spectra of the 

oligomers produced in this reaction and found models from n = 1 to ~ 30. 
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Figure 3.1: MALDI spectrum of the reaction mixture of equation 20.1 (ratio 1:1) 

The particular reaction was further explored by varying the compositions of dichlorides 

and tetrachlorides as follows:   

 

 

 

 

 

 

MALDI spectra are as follows respectively, 
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Figure 3.2: MALDI spectrum of the reaction mixture of equation 20.2 (ratio 2:1) 

 

          

 

 

 

 

 

 

Figure 3.3: MALDI spectrum of the reaction mixture of equation 20.3 (ratio 1:2) 
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Figure 3.4: MALDI spectrum of the reaction mixture of equation 20.4 (ratio 4:1) 

 

The intensities of the product mass from these spectra show that when the ratio of 

dichlorides are larger than the corresponding tetrachlorides, oligomers with less 

molecular  weight form more than the higher ones. Simitarly, when the ratio of 

dichlorides are lower than the corresponding tetrachlorides, oligomers with higher 

molecular weight form more than in previous case.  

The obtained oligomeric mixtures were treated by column chromatoghaphy to 

separate the oligos where n = 1, 2, 3, 4, 5 and a mixture of other oligomers. All oligomers 

were yellow, strongly fluorescent solids except colors of model, n = 1 was colorless 

crystal, model, n = 2 was colorless crystal to white solid and model, n = 3 was light 

yellow solid. Although our goal was to separate more oligomers, it was quite difficult to 
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accomplish the job by using conventional method. The following MALDI spectra 

demonstrate the level of difficulties we faced to isolate the higher oligomers, even after 

carrying out flash column chromatography multiple times. 

 

 

 

 

 

 

Figure 3.5: MALDI spectrum of the mixture of oligomers, n = 4, 5 and 6  

 

 

 

 

 

 

Figure 3.6: MALDI spectrum of the mixture of oligomers, n = 5 and 6 
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Figure 3.7: MALDI spectrum of the mixture of oligomers, n = 5 and 6 

 

 

 

 

 

 

 

Figure 3.8: MALDI spectrum of the mixture of oligomers, n = 5, 6 and 7 
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Figure 3.9: MALDI spectrum of the mixture of oligomers, n = 6 and 7 

Isolation by using preparative HPLC could be investigated for a better result. 
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3.3 Electrochemistry:  

Here are the Oxidation potentials for the Oligomers 82 - 86(n = 1, 2, 3, 4, 5) 

conducted by CV and Square-wave Voltammetry described in Table 5. 

Table 6: Oxidation potentials of the oligomeric models 82 – 86 and 78 (DP-PPV) 

(Electrolyte: 1.2 x 10-3 M tetra-n-butylammonium hexafluorophosphate, TBAPF6 in 

CH2Cl2, Pt electrode) 

Models n E1 E2 E3 E4 E5 

82 1 1.358 1.646    

83 2 1.215 1.387    

84 3 1.146 1.286 1.617   

85 4 1.129 1.234 1.430 1.557  

86 5 1.125 1.208 1.337 1.408 1.866 

DP-PPV, 78  1.198 1.320 1.500 2.060  

 

In Table 5, the square-wave voltammetry peak potentials of both the oligomeric 

series 82 – 86 and the corresponding DP-PPV are listed. E1 and E2 represent the 

formation of radical cations and dications, respectively. With increasing n, these 

potentials decrease as well as their difference. At higher potentials and with increasing n 
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additional peaks were observed indicating the transfer of upto 5 electrons; the E3, E4 and 

E5 clearly represent the formation of tri-, tetra- and penta- radical cations as well. The 

oxidation potential values here are consistent with the results obtained by H. -H. Horhold 

et al. in an electrochemical study on the reduction of soluble PPV oligomers.31 From the 

figures 3.10 and 3.11 down, it is clear that for oligomers n = 1 and 2, 1st two oxidative 

electrons are chemically reversible but for the higher oligomers only one oxidative 

electrons show reversibility according to Cyclic Voltammogram. 

 

 

 

 

 

 

 

Figure 3.10: Cyclic- and SW voltammogram of 82 (Oligo, n = 1) as a 0.2 mM solution in 

CH2Cl2 containing 0.12 M TBAPF6 as the supporting electrolyte at 22oC and scan rate of 

200 mV s-1 for the left figure and 50, 100, 200 and 400 mV s-1 for the right figure. 
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Figure 3.11: Cyclic- and SW voltammogram of 83 (Oligo, n = 2) as a 0.2 mM solution in 

CH2Cl2 containing 0.12 M TBAPF6 as the supporting electrolyte at 22oC and scan rate of 

400 mV s-1 for the left figure and 50, 100, 200 and 400 mV s-1 for the right figure. 

 

 

 

 

 

 

Figure 3.12: Cyclic- and SW voltammogram of 84 (Oligo, n = 3) as a 0.2 mM solution in 

CH2Cl2 containing 0.12 M TBAPF6 as the supporting electrolyte at 22oC and scan rate of 

200 mV s-1. 
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Figure 3.13: Square-Wave voltammogram of 85 (Oligo, n = 4), 86 (Oligo, n = 5) and 

DP-PPV as 0.2 mM solution in CH2Cl2 containing 0.12 M TBAPF6 as the supporting 

electrolyte at 22oC. 
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3.4 Experimental Section 

General Experimental Methods and Materials.  

All reactions were performed under argon atmosphere using conventional 

vacuum-line techniques unless otherwise noted. All commercial reagents were used 

without further purification unless otherwise noted. Anhydrous tetrahydrofuran (THF) 

was prepared by refluxing the commercial tetrahydro-furan (Aldrich) over lithium 

aluminumhydried under an argon atmosphere for 24 hours followed by distillation. It was 

stored under an argon atmosphere in a Schlenk flask equipped with a Teflon valve fitted 

with Viton O-rings. Dichloromethane (Aldrich) was repeatedly stirred with fresh aliquots 

of conc. Sulfuric acid (~10% by volume) until the acid layer remained colorless. After 

separation it was washed successively with water, aqueous sodium bicarbonate, water, 

and saturated aqueous sodium chloride and dried over anhydrous calcium chloride by 

stirring the mixture for overnight. The dichloromethane was distilled twice from P2O5 

under an argon atmosphere and stored in a Schlenk flask equipped with a Teflon valve 

fitted with Viton O-rings. Hexane and toluene were distilled from P2O5 under an argon 

atmosphere and then refluxed over calcium hydride (~12 hrs). After distillation from 

CaH2, the solvents were stored in Schlenk flasks under argon atmosphere.  
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Cyclic Voltammetry (CV).  

The CV cell was of an air-tight design with high vacuum Teflon valves and Viton 

O-ring seals to allow an inert atmosphere to be maintained without contamination by 

grease. The working electrode consisted of an adjustable platinum disk embedded in a 

glass seal to allow periodic polishing (with a fine emery cloth) without changing the 

surface area (~1 mm2) significantly. The reference SCE electrode (saturated calomel 

electrode) and its salt bridge were separated from the catholyte by a sintered glass frit. 

The counter electrode consisted of a platinum gauze that was separated from the working 

electrode by ~3 mm. The CV measurements were carried out in a solution of 0.1 to 0.2 M 

supporting electrolyte (tetra-n-butylammonium hexafluorophosphate, TBAPF6) and the 

substrate 1-3 x 10-3 M in dry dichloromethane under an argon atmosphere. All the cyclic 

voltammograms were recorded at a sweep rate of 50 - 400 mV sec-1, unless otherwise 

specified and were IR compensated. 

The oxidation potentials (E1/2) were referenced to SCE, which was calibrated with added 

(equimolar) ferrocene (E1/2 = 0.450 V vs. SCE). The E1/2 values were calculated by taking 

the average of anodic and cathodic peak potentials in reversible cyclic voltammograms or 

directly from square-wave voltammograms in irreversible cyclic voltammograms. 
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Preparation of dichlorodiphenylmethane (80): 

 

 

 

To a solution of benzophenone (10 g, 54.95 mmol) in DMF (5.5 mL, 71 mmol) 

under Ar flow, was added SOCl2 (18 mL, 248 mmol) drop wise and heat the mixture to 

90ºC for 6 h. After completion of the reaction, simple vacuum distillation was performed 

promptly by adding hexane and distilling several times to remove excess of SOCl2 as to 

prevent reversibility of the reaction. Overnight vacuum was used as well. After removing 

SOCl2, the mixture was washed with water several times by extracting with CH2Cl2, 

dried over MgSO4 and concentrated in vacuo. The sample was then diluted in hexane, 

filtered through celite and the filtrate was then kept in fridge to remove any dark brown 

precipitation (impurities) and finally obtained pure product 80 (12.46 g, 95.8% yield) as a 

colorless and odorless oil. 1H NMR (CDCl3, 400 MHz): δ: 7.35 – 7.40 (m, 6H), 7.61 – 

7.65 (m, 4H); 13C NMR (CDCl3, 400 MHz): δ: 92.02, 127.46, 128.17, 129.1, 144.1. 

Preparation of 1,4-bis(1,1-dichlorobenzyl)benzene (81): 

 

 

To a solution of 1,4-dibenzoylbenzene (10 g, 34.96 mmol) in DMF (7 mL, 90.4 

mmol) under Ar flow, was added SOCl2 (25 mL, 344.5 mmol) dropwise and heat the 

O Cl Cl

SOCl2

cat. DMF
Reflux

O

O Cl Cl

Cl Cl

SOCl2

cat. DMF
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mixture to 90ºC for 5 h. After completion of the reaction, simple vacuum distillation was 

performed promptly by adding hexane and distilling several times to remove excess of 

SOCl2 as to prevent reversibility of the reaction. Overnight vacuum was used as well 

which converts the mixture as brown solid. After removing SOCl2, the solid was diluted 

in hexane, filtered through celite to remove any dark brown precipitation (impurities) and 

the filtrate was then kept in fridge to finally obtain pure product 81 (11.44 g, 82.9% 

yield) as stinky brown crystals; mp: 74 - 75ºC;  1H NMR (CDCl3, 400 MHz): δ: 7.354 – 

7.424 (m, 6H), 7.597 (s, 4H), 7.617 – 7.667 (m, 4H); 13C NMR (CDCl3, 400 MHz): δ: 

91.1, 127.22, 127.39, 128.27, 129.27, 143.34, 144.85. 

Preparation of tetra-phenylethelene (TPE) (82): 

 

 

 

The TPE was produced following the reported procedure of Organic Syntheses, 

1951.39 To a solution of dichlorodiphenylmethane (2.37 g, 10 mmol) dissolved in 10 mL 

anhydrous C6H6 under Ar was added Cu powder (1.5 g, 28 mmol) and the reaction 

mixture was heated to reflux for 3 h. After the completion of the reaction, the solution 

was hot filtered to remove inorganic solids out, wash the filtrate with water by extracting 

with CH2Cl2, dried the organic layer over MgSO4, then keep in fridge to grow white 

crystals as pure product 82 (1.53 g, 92.2% yield), mp: 219ºC. 1H NMR analysis: δ 

Cl Cl

Cu

C6H6, Reflux

2
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(CDCl3, 400 MHz): 7.01 – 7.06 (m, 4H), 7.07 – 7.16 (m, 6H); 13C NMR (CDCl3, 100 

MHz): δ: 126.44, 127.68, 131.36, 140.96, 143.75. 

Preparation of tetraphenylethelene (TPE) oligomers, 79:  

 

 

 

 

To a mixture of Cu powder in anhydrous C6H6 under Ar flow, 

dichlorodiphenylmethane and 1,4-bis(1,1-dichlorobenzyl)benzene dissolved in anhydrous 

C6H6 under Ar was added dropwise and the reaction mixture was heated to reflux for 4 h. 

After the completion of the reaction, the solution was hot filtered to remove inorganic 

solids out, wash the filtrate with water by extracting with CH2Cl2, dried the organic layer 

over MgSO4, then concentrated in vacuo. The obtained oligomeric mixture was treated by 

column chromatography to separate the models where n = 1, 2, 3, 4, 5 and a mixture of 

other oligomers. All oligomers were yellow, strongly fluorescent solids except colors of 

model, n = 1 was colorless crystal, model, n = 2 was colorless crystal to white solid and 

model, n = 3 was light yellow solid. 

 

 



104 

 

 

 

NMRs and mp data of, 

model, n = 1 (82): mp : 219.0 - 219.6ºC; 1H NMR (CDCl3, 400 MHz) : δ: 7.01 – 7.06 (m, 

2H), 7.07 – 7.16 (m,3H); 13C NMR (CDCl3, 100 MHz) : δ: 126.44, 127.68, 131.36, 

140.96, 143.75. 

model, n = 2 (83): mp : 223.2 – 223.7ºC; 1H NMR (CDCl3, 300 MHz) : δ: 6.75 (s, 2H), 

6.93 – 7.04 (m, 6H), 7.04 – 7.16 (m, 9H); 13C NMR (CDCl3, 75 MHz) : δ: 126.58, 

126.67, 127.77, 127.84, 130.88, 131.57, 141.03, 142.1, 143.74, 143.96, 143.99. 

model, n = 3 (84): mp : 254.5 – 255.3ºC; 1H NMR (CDCl3, 400 MHz) : δ: 6.69 – 6.75 

(m, 4H), 6.92 – 7.01 (m, 8H), 7.03 – 7.14 (m, 12H); 13C NMR (CDCl3, 100 MHz) : δ: 

126.36, 126.42, 126.44, 126.45, 127.53, 127.54, 127.61, 130.63, 130.66, 131.33, 131.39, 

131.42, 140.68, 140.77, 140.81, 141.84, 141.91, 143.52, 143.57, 143.74, 143.76. 

model, n = 4 (85): mp : 291.8 – 292.5ºC; 1H NMR (CDCl3, 400 MHz) : δ: 6.71 (s, 2H), 

6.72 - 6.75 (m, 4H), 6.91 – 7.04 (m, 10H), 7.04 – 7.18 (m, 15H); 13C NMR (CDCl3, 100 

MHz) : δ: 126.34, 126.39, 126.42, 127.42, 127.52, 127.59, 130.61, 130.64, 131.32, 

131.37, 131.39, 140.63, 140.66, 140.75, 140.79, 141.81, 141.85, 141.89, 143.50, 143.54, 

143.72, 143.74. 

model, n = 5 (86): mp : 312.0 – 313.6ºC; 1H NMR (CDCl3, 400 MHz) : δ: 6.69 (s, 4H), 

6.69 – 6.75 (m, 4H), 6.90 – 7.01 (m, 12H), 7.02 – 7.14 (m, 18H); 13C NMR (CDCl3, 100 

MHz) : δ: 126.22 - 126.55 (multiple pks), 127.25 - 127.73 (multiple pks), 130.41 - 130.78 

(multiple pks), 131.17 - 131.59 (multiple pks), 140.56 - 140.84 (multiple pks), 141.70 – 

142.03 (multiple pks), 143.47 - 143.83 (multiple pks). 
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Appendix I: NMR and MALDI SPECTRA 
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time domain size: 26264 points
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SpinWorks 2.5:   13C OBSERVE
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time domain size: 68492 points
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number of scans: 256
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processed size: 131072 complex points

LB:    0.200    GB: 0.0000
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processed size: 65536 complex points
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transmitter freq.: 399.745875 MHz
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width: 24509.80 Hz = 243.815251 ppm = 0.384468 Hz/pt

number of scans: 256

freq. of 0 ppm: 100.515577 MHz
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processed size: 65536 complex points

LB:    0.000    GB: 0.0000
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SpinWorks 2.5:   STANDARD 1H OBSERVE
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file: C:\Users\Rathore User\Desktop\Tasnuva NMR\Rxn3\R3altst4-P2-feb28.fid\fid  block# 1 expt: "s2pul"
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number of scans: 8
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processed size: 32768 complex points

LB:    0.200    GB: 0.0000
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SpinWorks 2.5:  13C OBSERVE
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file: C:\Users\Rathore User\Desktop\Tasnuva NMR\Rxn3\R3altst4-P2-feb28-C13.fid\fid  block# 1 expt: "s2pul"

transmitter freq.: 75.476336 MHz

time domain size: 68492 points

width: 18867.92 Hz = 249.984639 ppm = 0.275476 Hz/pt
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processed size: 131072 complex points
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SpinWorks 2.5:   STANDARD 1H OBSERVE - profile
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time domain size: 63750 points

width: 24509.80 Hz = 243.815251 ppm = 0.384468 Hz/pt

number of scans: 256

freq. of 0 ppm: 100.515577 MHz

processed size: 65536 complex points

LB:    0.000    GB: 0.0000
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file: C:\Users\Rathore User\Desktop\Tasnuva NMR\Rxn3\R3Altst4\R3altst4-fr2prev+pres-6sol3-dec31.fid\fid  block# 1 expt: "s2pul"

transmitter freq.: 399.745875 MHz

time domain size: 26264 points

width:  6410.26 Hz = 16.035829 ppm = 0.244070 Hz/pt

number of scans: 8

freq. of 0 ppm: 399.743513 MHz

processed size: 65536 complex points

LB:    0.000    GB: 0.0000
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SpinWorks 2.5:    13C OBSERVE

PPM   150.0    140.0    130.0    120.0    110.0    100.0    90.0     80.0     70.0     60.0     50.0     40.0     30.0     20.0     10.0   

 1
4

3
.7

3
6

5
 1

4
3

.7
1

9
1

 1
4

3
.5

4
1

4

 1
4

3
.4

9
5

0

 1
4

1
.8

8
8

5

 1
4

1
.8

4
6

6
 1

4
1

.8
1

2
6

 1
4

0
.7

8
8

8

 1
4

0
.7

4
6

1

 1
4

0
.6

6
3

4

 1
4

0
.6

2
7

8

 1
3

1
.3

8
7

9
 1

3
1

.3
6

7
6

 1
3

1
.3

1
5

6
 1

3
0

.6
3

8
7

 1
3

0
.6

1
3

0
 1

2
7

.5
8

8
0

 1
2

7
.5

2
0

3
 1

2
7

.4
2

2
6

 1
2

6
.4

1
9

2
 1

2
6

.3
9

2
6

 1
2

6
.3

4
1

7

  
7

7
.4

3
7

0
  

7
7

.0
1

3
7

  
7

6
.5

9
0

3

file: C:\Users\Rathore User\Desktop\Tasnuva NMR\Rxn3\R3Altst4\R3altst4-fr2prev+pres-6sol1-jan2-c13.fid\fid  block# 1 expt: "s2pul"

transmitter freq.: 75.476336 MHz

time domain size: 68492 points

width: 18867.92 Hz = 249.984639 ppm = 0.275476 Hz/pt

number of scans: 12400
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processed size: 131072 complex points

LB:    0.000    GB: 0.0000
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transmitter freq.: 399.745875 MHz

time domain size: 26264 points

width:  6410.26 Hz = 16.035829 ppm = 0.244070 Hz/pt

number of scans: 8

freq. of 0 ppm: 399.743506 MHz

processed size: 65536 complex points

LB:    0.000    GB: 0.0000
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