Generation of Diverse Molecular Complexity from Simple Hydrocarbons

Anobick Sar
Marquette University

[^0]
GENERATION OF DIVERSE MOLECULAR COMPLEXITY FROM SIMPLE HYDROCARBONS

by

Anobick Sar

A Dissertation submitted to the Faculty of the Graduate School, Marquette University, in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

Milwaukee, Wisconsin

August 2011

ABSTRACT
 GENERATION OF DIVERSE MOLECULAR COMPLEXITY FROM SIMPLE HYDROCARBONS

Anobick Sar, PhD

Marquette University, 2011

In an effort to make diverse molecular complexity from simple hydrocarbons, tricarbonyl(cyclohexadienyl)iron $(+1$) cation was prepared in two steps from 1, 3cycloxehadiene. Reactivity of the symmetric iron cation with heteroatom nucleophiles and stabilized carbon nucleophiles was studied. Nucleophilic attack of potassium phthalimide at the dienyl terminus of the cation followed by oxidative decomplexation with Ce^{4+} provided the ligand N -(2,4-cyclohexadiene-1-yl)phthalimide. A series of stereochemically diverse polyhydroxyl aminocyclohexane "aminocyclitols" derivatives and a number of racemic and optically active hydroxy-and polyhydroxy 1,3diaminocyclohexane derivatives have been synthesized from N -(2,4-cyclohexadiene-1yl)phthalimide. The relative stereochemistries of the compounds ware assigned on the basis of the ${ }^{1} \mathrm{H}$ NMR data as well as X-ray single crystal diffraction analysis.

In a similar attempt tricabonyl(η^{5}-6-styrylcyclohepta-2,4-diene-1-yl)iron $(+1)$ cation was synthesized in three steps from 1, 3, 5, 7-cyclooctatetraene. Reactivity with various nucleophiles was studied. Nucleophilic attack of lithium dimethylallyl malonate at the less hindered pentadienyl terminus of the cation, decomplexation by Ce^{4+} followed by rearranged ring closing metathesis using $1^{\text {st }}$ generation Grubbs catalyst gave skeletally unusual (5E, 7Z, 9Z)-dimethylbicyclo[4.4.1]undeca-5,7,9-triene-2,2-dicarboxylate.

Reaction of potassium phthalimide with tricabonyl(η^{5}-6-styrylcyclohepta-2,4-diene-1-yl)iron $(+1)$ cation in a similar fashion, followed by decomplexation with Ce^{4+} gave racemic 2-(1S, 6R)-6-((E)-styryl)cyclohepta-2, 4-diene-1-yl)isoindoline-1, 3-dione. Asymmetric dihydroxylation of the iron free ligand with ADmix- β followed by cycloaddition with singlet oxygen generated two optically active separable diastereomeric endoperoxides, which led to the synthesis of a number of racemic and optically active functionalized endoperoxides.

Acknowledgements

I would like to express my deepest gratitude to my advisor Professor William A. Donaldson, for his guidance and support during my study at Marquette University. He had been very encouraging to me. He is one of my best teachers and I am privileged to have him as my mentor.

I would also like to thank my committee members, Professor Mark G. Steinmetz and Professor Chae S. Yi. I was fortunate to have graduate classes with them. I have learned a lot from them. I would also thank for their comments and suggestions during personal interactions.

I am extremely appreciative of the financial assistance given by Marquette University Graduate School.

I would also like to thank Dr. Sergey Lindeman for graciously providing single crystal diffraction analysis data.

I am also grateful to all of my current and previous lab colleagues for their support and friendship.

Finally, I would like to convey my thanks to my family members for their encouragements and support.

Table of Contents

ACKNOWLEDGEMENTS i
LIST OF SCHEMES iv
LIST OF FIGURES viii
LIST OF EQUATIONS ix
CHAPTER I:
General Introduction 1
Aminocyclitols 12
Mode of Action of Aminocyclitols as Glycosidase Inhibitors 13
Recent Synthetic Studies of Aminocyclitols 15
1,3-Diaminocyclohexanes 20
Recent Synthetic Studies of 1,3-diaminocyclohexanes 21
Ring-expanded Homologs of Aminocyclitols 23
CHAPTER II:
Synthesis of Aminocyclitols from Cyclohexadiene 27
Synthesis of trans-1,3-Diaminocyclohexanes from Cyclohexadiene 48

CHAPTER III:

Synthesis of Tricarbonyl(η^{5}-6-styrylcyclohepta-2,4-dien-1-yl)iron(+1) from Cyclooctatetraene and its Reactivity study 57
Decomplexation of Iron Coordinated Compounds. 61
Singlet Oxygen Cycloaddition of Iron Free Ligands 65
Synthesis of Bicyclo[4.4.1]undecatriene 70
EXPERIMENTAL SECTION 72
REFERENCES 140
APPENDIX 146

LIST OF SCHEMES

Scheme 1 1
Scheme 2 2
Scheme 3 3
Scheme 4 3
Scheme 5 4
Scheme 6 4
Scheme 7 5
Scheme 8 6
Scheme 9 7
Scheme 10 8
Scheme 11 8
Scheme 12 9
Scheme 13 10
Scheme 14 11
Scheme 15 11
Scheme 16 12
Scheme 17 13
Scheme 18 14
Scheme 19 16
Scheme 20 17
Scheme 21 18
Scheme 22 19
Scheme 23 20
Scheme 24 21
Scheme 25 22
Scheme 26 23
Scheme 27 24
Scheme 28 24
Scheme 29 26
Scheme 30 27
Scheme 31 28
Scheme 32 30
Scheme 33 32
Scheme 34 32
Scheme 35 33
Scheme 36 36
Scheme 37 37
Scheme 38 38
Scheme 39 40
Scheme 40 44
Scheme 41 45
Scheme 42 47
Scheme 43 49
Scheme 44 52
Scheme 45 55
Scheme 46 56
Scheme 47 57
Scheme 48 59
Scheme 49 62
Scheme 50 64
Scheme 51 65
Scheme 52 66
Scheme 53 67
Scheme 54 69
Scheme 55 70
Scheme 56 71

LIST OF FIGURES

Figure 1. X-ray crystal structure of (\pm)-119... 29

Figure 2. X-ray crystal structure of $(\pm) \mathbf{- 1 2 0}$. 30

Figure 3. X-ray crystal structure of (\pm)-127... 33

Figure 4. X-ray crystal structure of $(\pm)-\mathbf{1 3 2} \ldots \ldots$

Figure 5. X-ray crystal structure of (\pm)-135... 37

Figure 6. X-ray crystal structure of (\pm)-137... 38

Figure 7. X-ray crystal structure of $(\pm)-\mathbf{1 4 0} \ldots \ldots$

Figure 8. X-ray crystal structure of (\pm)-139.. 41

Figure 9. X-ray crystal structure of (\pm)-149... 44

Figure10. X-ray crystal structure of (\pm)-154... 46

Figure 11. X-ray crystal structure of (\pm)-158.. 49

Figure 12. X-ray crystal structure of (\pm)-161... 51

Figure 13. X-ray crystal structure of (\pm)-168... 53

Figure 14. Generic structure of $(\pm) \mathbf{- 1 7 3},(\pm) \mathbf{- 1 7 4},(\pm) \mathbf{- 1 7 6}$ and $(\pm)-\mathbf{1 7 7} \ldots \ldots \ldots \ldots \ldots \ldots .$.

Figure 15. X-ray crystal structure of (\pm)-181... 63

Figure 16. X-ray crystal structure (+)-193.. 68

LIST OF EQUATIONS

Equation 1 35
Equation 2 42
Equation 3 43
Equation 4 48
Equation 5 54
Equation 6 61
Equation 7. 65

Chapter I

IA. General Introduction

Building complex molecularity starting from simple molecules is a continuing challenging task in organic synthesis. Many researchers have already made complex molecules starting from simple hydrocarbons like benzene (Scheme 2), ${ }^{1-8}$ cyclopentadiene, (Scheme 3) ${ }^{9}$ and cycloheptatriene (Scheme 4). ${ }^{10}$ These synthetic successes have very much relied on the efficient oxidation and/or functionalization of the hydrocarbons. The detailed in vivo and in vitro study of oxidation of benzene and substituted benzene derivatives by the microorganism Pseudomonas putida unfolded a key syn dihydroxylation method (Scheme 1). Over a period of time, many researchers have used this syn dihydroxylation method successfully and made diverse complex molecules (Scheme 2), such as conduritols, conduramines, sugars, azasugars, Amaryllidaceae alkaloids and sesquiterpenes.

Scheme 1. syn Dihydroxylation of benzene derivatives by P. putida.

Elegant and efficient synthetic strategies helped to make a wide variety of drug candidates and natural products from simple chemical building blocks, such as cyclopentadiene (Scheme 3) and cycloheptatriene (Scheme 4).

(+)-conduritol F

(+)-conduramine F-4

(+)-condunitol

Scheme 2. Partial list of targets prepared by P. putida dihydroxylation of benzene and substituted benzene.

(-)-prostaglandin E_{2} me thyl ester

(+)-carbocyclic uracil polyoxin C

1,3-dideoxynojirimycin

hydroxyproline

(+)-stre ptazolin

(-)-ne planocin A

4acylamino analoges of LY354740

Scheme 3. Partial list of targets prepared from cyclopentadiene.

L-glucose

zaragozic acid core

(+)-dihydrocuscohygrine

potential intermediate for pseudomonic acid B

(-)-anaferine bishydrochloride

(+)-calystegine

Scheme 4. Partial list of targets prepared from cycloheptatriene.

The use of 1,3-cyclohexadiene (1) as a diene in [4+2] cycloaddition reactions, as well as a substrate in 1,4-additions, selective dihydroxylations, or selective epoxidations is well known in organic synthesis. Many researchers have used the above protocols to prepare diverse molecular complexity (Scheme 5) from 1,3-cyclohexadiene. ${ }^{11}$

trioxaquine 10

Scheme 5. Partial list of targets prepared from 1,3-cyclohexadiene 1.

Pioneering work by Birch ${ }^{12}$ and Pearson ${ }^{13}$ have demonstrated the utility of the $\left[\left(\eta^{5} \text {-cyclohexadienyl }\right) \mathrm{Fe}(\mathrm{CO})_{3}\right]^{+}$cation $\mathbf{3}$ and its ring substituted derivatives in stoichiometric organic synthesis. The cation 3 can easily be synthesized from 1,3cyclohexadiene (Scheme 6). ${ }^{14}$

Scheme 6. Synthesis of $\left[\left(\eta^{5} \text {-cyclohexadienyl) } \mathrm{Fe}(\mathrm{CO})_{3}\right]^{+}\right.$cation 3.

Very recently the synthesis of antiostatins, carbazoles known for their pharmacological potential, was reported by Knolker's group ${ }^{15}$ based on the reaction of the cation $\mathbf{3}$ with arylamines 4 (Scheme 7).

Scheme 7. Synthesis of antiosotatins from cation 3.

Electrophilic substitution of the arylamines $\mathbf{4}$ by reaction with cation $\mathbf{3}$ followed by series of reactions gave the carbazole 5. Reaction of common precursor $\mathbf{5}$ in a divergent way leads to the synthesis of all antiosotatins.

Recently researchers have used cyclooctatetraene (6), a simple hydrocarbon which can be made by the Ni-catalyzed cyclotetramerization of acetylene, ${ }^{16}$ to make complex molecules. Compounds such as aminocyclitols, ${ }^{17 \mathrm{a}}$ bis-homoconduritols, ${ }^{17 \mathrm{~b}}$ bishomoinositol, ${ }^{17 \mathrm{c}}$ pentacycloanammoxic acid methyl ester, ${ }^{17 \mathrm{~d}}$ the polyene segment of roxaticin, ${ }^{17 e}$ and cyclooctitols ${ }^{17 \mathrm{f}}$ (Scheme 8) are made very recently from cyclooctatetraene 6.

Scheme 8. Synthesis of cyclooctatetraene and target recently prepared from this hydrocarbon.

Complexation of cyclooctatetraene 6 gives tricarbonyl(cyclooctatetraene)iron 7 $\left[(\mathrm{COT}) \mathrm{Fe}(\mathrm{CO})_{3}\right]$ (Scheme 9). ${ }^{18}$ Synthetic applications of 7 by other research groups are limited. A σ-alkyl- π-allyl complex $\mathbf{8}^{19}$ forms through rearrangement of $\mathbf{7}$ on treatment with a Lewis acid. Barbaralone 9 can be made on decomplexation of $\mathbf{8}$ under high pressure of CO. The synthesis of triquinacene-2-carboxylic acid $\mathbf{1 2},{ }^{20}$ was reported by Paquette's group based on the reaction of 7 with tetracyanoethylene to give bicyclic σ -
alkyl- π-allyl complex 10. Oxidative decomplexation followed by $\mathrm{C}-\mathrm{C}$ bond formation led to tricyclo[5.2.1.0 $0^{4,10}$]deca-2,5-diene 11. Further manipulation of $\mathbf{1 1}$ gave the final product 12.

Scheme 9. Preparation of $(\mathrm{COT}) \mathrm{Fe}(\mathrm{CO})_{3}$ and previous synthetic applications.

Reported attacks on 7 by a variety of electrophiles are shown in Schemes 10 and 11. The neutral compounds, complexed aldehyde $\mathbf{1 3}$ or styrylcycloheptatriene complex 14 were prepared by the Vilsmeyer-Hack formylation of 7 or upon electrophilic attack of tropylium cation in presence of pyridine on 7 (Scheme 10). ${ }^{21 \mathrm{a}}$

Scheme 10. Reaction of $(\mathrm{COT}) \mathrm{Fe}(\mathrm{CO})_{3}$ with electrophiles.

Scheme 11. Reactions of $(\mathrm{COT}) \mathrm{Fe}(\mathrm{CO})_{3}$ with electrophiles, generation of cationic compounds.

In contrast, a wide variety of skeletally rearranged cationic complexes $(\mathbf{1 5}, \mathbf{1 6}, \mathbf{1 7}$, and 18) ${ }^{21 b-f}$ were formed by the attack of other electrophiles on 7 (Scheme 11).

A mechanistic rationale for the formation of these rearranged structures is given in Schemes 12 and 13. The generic addition of an electrophile to a non-coordinated olefin
of 7 generates a homobutyl cation 20 (Scheme 12). The homobutyl cation 20 rearranges into a cyclopropylcarbinyl cation of structure 21. The bicyclo[5.1.0]octadienyl cation 21 was stable and isolable (i.e. products $\mathbf{1 5} / \mathbf{1 6}$) when the electrophile was H^{+}or p nitrophenyl ${ }^{+}$. ${ }^{21 \mathrm{~b}-\mathrm{d}}$

Scheme 12. generic attack of electrophile on (COT) $\mathrm{Fe}(\mathrm{CO})_{3}$.

On the other hand, for $\mathrm{El}^{+}=$acylium ion, the acyl group present at C 7 of $\mathbf{2 1}$ makes the adjacent cyclopropane bond weak and a subsequent $[1,4]$-shift relieves the strain to form the bicyclo[3.2.1]octadienyl cation 18 (Scheme 13). ${ }^{21 e, f}$ In the case of tropylium cation as an electrophile, 21 undergoes a $[3,3]$ Cope rearrangement to generates the norcaradiene intermediate 22, which upon deprotonation gives the styrylcycloheptatriene complex $14 .{ }^{21 a}$ Finally, for cyclopropenyl cation as electrophile, 20 rearranges to a bicyclo[6.3.0]nonatetraenyl cation 23 . The cation 23 transforms into a tricyclic cation 17 through an intramolecular bond formation.

Scheme 13. Proposed mechanism for the generation of the skeletal rearranged products.

The reactivity of the cationic compounds $\mathbf{1 5 a} / \mathbf{b} / \mathbf{c} \& \mathbf{1 8 b}$ with several nucleophiles has been studied by Donaldson et al. In case of $\mathbf{1 5 a} / \mathbf{b}$ most of the times exo attack of nucleophiles on the terminal carbon was observed. The (\pm)-cis-2-(2'carboxycyclopropyl)glycine, believed to be a common feature for inhibitors of glutamate transport, has been synthesized upon nucleophilic attack of potassium phthalimide on cation 15b followed by few more steps (Scheme 14). ${ }^{22}$

Scheme 14. Synthesis of (土)-cis-2-(2'-carboxycyclopropyl)glycine from $\mathbf{1 5 b}$.

The reactivity of $\mathbf{1 8 b}$ with various nucleophiles is given in Scheme 15. Attack of the nucleophiles at the η^{3}-allyl fragment gave several diene complexes (Scheme 15). This relatively unpredicted reactivity was utilized to synthesize the protected amino acid analog 29. ${ }^{23}$

27

28

29

Scheme 15. Reactivity of 18b with various nucleophiles, synthesis of protected amino acid analog 29.

IB. Aminocyclitols

Polyhydroxylated cyclohexanes are popularly known as cyclitols, and a subclass cyclohexanepentols are trivially known as the quercitols (six member carbasugar). These classes of compounds are biologically relevant because of their sugar-mimetic structure. Aminocyclitols, another subclass of cyclitols, possess important biological activity like inhibitory activity against various glycosidases. Aminocyclitols are also present as nonsugar (aglycon) units of numerous aminoglycoside antibiotics, e.g., streptomycin and fortimycin, ${ }^{24}$ which possess inhibitory activity against various glycosidases as a single structural unit. Examples of naturally occurring and synthetic aminocyclitols possessing various biological activities are given in Scheme 16.

validamine

32

valiolamine

33

30

31

34

Scheme 16. Partial list of naturally occurring and synthetic aminocyclitols and derivatives.

Naturally occurring polyhydroxyl aminocyclohexanes, such as validamine and valiolamine shows inhibitory activity against various glycosidases. ${ }^{25}$ Similarly, synthetic
analogues like $\mathbf{3 0}^{26}$ and $\mathbf{3 1}^{27}$ were found to be inhibitors of α-glucoside and α galactosides $\left(\mathrm{IC}_{50}=12.5\right.$ and $20 \mu \mathrm{M}$, respectively). 2-Deoxy-scyllo-inosamine 32 is an intermediate in the biosynthesis of deoxystreptamine, an aglycon unit of the aminoglycosidase antibiotics. ${ }^{28}$

IC. Mode of Action of Aminocyclitols as Glycosidase Inhibitors

The glycosidic bond, shown in Scheme 17, is the mixed acetal linkage between two sugar residues. This bond is very stable towards hydrolysis; in particular, the linkage between two sugar residues is known to be the most stable within naturally occurring biopolymers. The half life for the hydrolysis of glycosidic bond between cellulose and starch (β-glucoside) is in the range of 5 million years.

Scheme 17. Glycosidic bond between two sugar residues.

Glycosidase enzymes catalyze the hydrolysis reaction accelerating the cleavage reaction with rate constant up to $1000 \mathrm{~s}^{-1}$ and have the reputation of being among the most efficient enzyme catalysts. Several mechanisms have been proposed for the hydrolysis of the glycosidic linkage. ${ }^{29}$ One such mechanism with retention of configuration at the anomeric carbon is shown in Scheme 18.

Scheme 18. Mechanism of the hydrolysis of glycosidic bond with retention of configuration at anomeric carbon.

The mechanism for enzymatic glycolysis involves the presence of two carboxylic acid residues. In this particular case (retention at the anomeric carbon), the distance between the two acid residues is $\sim 5.5 \AA$. In the first step, one of the acid groups functions as a general acid catalyst and protonates the glycosidic oxygen with subsequent bond cleavage forming the oxonium ion. The oxonium ion may be stabilized by the other acid residue by forming a covalent glycosyl-enzyme intermediate. In the final step, the water molecule is directed to attack the anomeric center by the carboxylate general base.

The cleavage of the glycoside bonds is an important biological process. There are numerous natural and non-natural sugar mimics having a protonated nitrogen functionality under physiological pH which may form tight a ion pair within the active site of the acid residues of glycosidase enzymes and subsequently inhibiting the enzyme. These inhibitors may be of importance as potential antiviral, antitumor and antidiabetic agents. For example, inhibition of intestinal α-glycosidase lowers blood sugar levels and as such these inhibitors may be of use for the treatment of diabetes. Additionally,
inhibition of glycosidase can disrupt the synthesis of oligosaccharides which are involved in cell-cell or cell-virus recognition.

ID. Recent Synthetic Studies of Aminocyclitols

Several synthesis of aminocyclitols and derivatives have been reported starting from quercitols (deoxyinositols), ${ }^{26,27}$ from inositols via deoxygenation, ${ }^{30}$ from carbohydrates via Ferrier carbocyclic ring-closure, ${ }^{31,32}$ via 6 -exo radical cyclization of carbohydrate derived from oximes, ${ }^{33}$ and from chiral 1,7-octadienes via ring closing metathesis. ${ }^{34}$

Scheme 19. Synthesis of aminocyclitols from (+)-proto-Quercitol.

Synthesis of 5-amino-1,2,3,4-cyclohexanetetrols 40 and 30, found to be α glucosidase inhibitors, from naturally occurring (+)-proto-quercitol $\mathbf{3 5}$ was reported by Phuwapraisirisan, et al. (Scheme 19). ${ }^{26}$ The (+)-proto-quercitol 35, isolated from the stems of Arfeuillea arborescene was converted into bis-acetonide 36 (Scheme 19). A series of functional groups transformations of common precursor 36 in a divergent way leads to the generation of two isomeric 5-amino-1,2,3,4-cyclohexanetetrols (40 and 30).

Spencer, et al., reported the synthesis of (\pm)-2-deoxy-scyllo-inosamine (\pm)-32 from myo-inositol via deoxygenation (Scheme 20). ${ }^{30}$ Two of the cis-hydroxyls of myoinositol 45 were protected as the acetonide to give 46. Protection of the remaining hydroxyls followed by chemo-selective deprotection gave 48. Regioselective tosylation of the equatorial hydroxyl of $\mathbf{4 8}$ generated the monotosylate 49 . The displacement of the tosyl group by lithium trimethylborohydride (LTBH) gave deoxygenated product $\mathbf{5 0}$. Three more standard functional group transformation leads to the generation of 2-deoxy-scyllo-inosamine (\pm)-32.

(99\%) $\downarrow \begin{gathered}\mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}, \\ \mathrm{HCl}-\mathrm{AcOH}\end{gathered}$

$(\pm)-32$

Scheme 20. Synthesis of (\pm)- 2-deoxy-scyllo-inosamine from myo-inositol.

Many researchers have also synthesized aminocyclitols using chiral pool strategies starting from optically active carbohydrates. The synthesis of orthogonally protected 2-deoxystreptamine (2-DOS) from methyl- α-D glucopyranoside was reported by Claude Bauder (Scheme 21). ${ }^{32}$

Scheme 21. Synthesis of aminocyclitol from methyl- α-D glucopyranoside.

Methyl α-D glucopyranoside $\mathbf{5 3}$ was converted into $\mathbf{5 4}$ in four steps following literature procedure. ${ }^{32}$ Ferrier carbocyclic ring-closure ${ }^{31,32}$ of $\mathbf{5 4}$ gave exclusively a single epimeric β-hydroxy-cyclohexanone 55. Treatment of $\mathbf{5 5}$ with O-benzylhydroxylamine hydrochloride in EtOH-pyr gave benzyloxime 56. Diastereoselective reduction of oxime functionality by tetramethylammonium triacetoxyborohydride/TFA gave a derivative of 2-DOS 57.

Vankar, et al., reported the synthesis of 5-amino-5-deoxy-D-vibo-quercitol starting from commercially available D-mannitol (Scheme 22). ${ }^{34 \mathrm{a}}$ Reaction of D-mannitol derived aldehyde 58 with allyl magnesium bromide in the presence of zinc gave a diastereomeric mixture (81:19 anti : syn) of homoallyl alcohols 59. Tosylation followed
by treatment with NaN_{3} gave the corresponding diastereomeric azides $\mathbf{6 1}$. Reduction/acetylation of the mixture gave a chromatographically separable mixture of two diastereomeric acetates 62 and 63. Acetonide deprotection followed by acetate formation of the major acetonide $\mathbf{6 3}$ gave the dienetriacetate $\mathbf{6 4}$ suitable for metathesis. Ring-closing metathesis of 64, syn-dihydroxylation and acetate formation gave a derivative of 5-amino-5-deoxy-D-vibo-quercitol 66.

Scheme 22. Synthesis of aminocyclitols from D-mannitol.

Riera, et al., reported the synthesis of a series of aminocyclitols derivatives starting from readily available epoxy alcohol 67 via a ring closing metathesis protocol. ${ }^{34 \mathrm{~b}}$ Synthesis of two of the several isomers are shown in Scheme 23. Epoxy alcohol 67 was converted to amino alcohol 68 with anti configuration following literature procedure
(epoxide ring opening, azide reduction, protection). ${ }^{35}$ Protection followed by chemoselective deprotection gave the alcohol 70. Oxidation of the alcohol 70 followed by addition of vinyl magnesium bromide and acetate formation gave a chromatographically separable mixture of cis-anti-71 and cis-syn-72. Ring closing metathesis of both 71 and 72 using first generation Grubbs catalyst gave 73 and 74 respectively. Catalytic syn dihydroxylation of $\mathbf{7 3}$ or $\mathbf{7 4}$ followed by acetate formation gave two isomeric aminocyclitols derivatives $\mathbf{7 5}$ or $\mathbf{7 6}$ respectively.

Scheme 23. Synthesis of aminocyclitols from epoxy alcohol.

1E. 1,3-Diaminocyclohexanes

Just like aminocyclohexanes, trihydroxy-1,3-diaminocyclohexanes and their derivatives are important biological entities. Examples of biologically relevant 1,3diaminocyclohexanes derivatives are given in Scheme 24. Compound 77^{36} is present as
an important structural unit in kanamycin A 78 (an aminoglucoside antibiotic which binds to bacterial 16 S ribosomal RNA). While the relative orientation of the two amino functionalities in the 1,3 positions in majority of the aminoglucoside antibiotics is cis, some synthetic analogue like $\mathbf{7 9}, \mathbf{8 0}{ }^{37}$ and $\mathbf{8 1}$ possess a trans-1,3-diaminocyclohexane subunit. Compound $\mathbf{7 9}{ }^{38}$ is a sugar mimic and $\mathbf{8 1}$ was utilized as an intermediate in the synthesis of CC chemokine receptor 2 antagonists. ${ }^{39}$

77

79

80

78

81

Scheme 24. Partial list of biologically relevant 1,3-diaminocyclohexanes.

1F. Recent Synthetic Studies of 1,3-diaminocyclohexanes

Synthesis of (\pm)-79 was reported by Landais, et al., from commercially available tropylium fluoroborate $\mathbf{8 2}$ (Scheme 25). ${ }^{38}$ Silylcycloheptatriene $\mathbf{8 3}$ was synthesized from tropylium fluoroborate using trimethylsilyl methyl-magnesium chloride as nucleophile. Cycloaddition of $\mathbf{8 3}$ with an acyl-nitroso reagent gave a separable mixture of $\mathbf{8 4}$ and $\mathbf{8 5}$. Catalytic dihydroxylation of $\mathbf{8 4}$ followed by N-O bond reduction of $\mathbf{8 6}$ by SmI_{2} gave (\pm)79.

Scheme 25. Synthesis of sugar mimic (\pm)-79 from tropylium fruoroborate.

The synthesis of a derivative of 77 has been reported by Xin-Shan Ye, et al. (Scheme 26). ${ }^{37}$ The iodo precursor 87 was synthesized from methyl- α-D glucopyranoside 53 following the literature procedure. Reaction of 87 with allylbromide and sodium hydride gave the allyl protected exo-alkene $\mathbf{8 8}$. Ferrier II rearrangement of $\mathbf{8 8}$ gave the hydroxyl ketone 89. Reduction of $\mathbf{8 9}$ by NaBH_{4} gave exclusively 90. Benzylation, deprotection of allyl ether and reprotection followed by nucleophilic displacement of the axial benzoates by azide anion gave the final compound 93 .

Scheme 26. Synthesis if 1,3-diaminocyclohexane derivative from sugar.

1G. Ring-expanded Homologs of Aminocyclitols

Nature has always favored five- and six-membered ring monosaccharides as essential structural motifs over the ring-expanded homologues. Similarly, synthetic chemists are also interested in making five- and six-membered carbasugars, because of their sugar-mimetic structure, leaving preparation of the higher carbocycles largely untouched. Very recently Casiraghi, et al., ${ }^{40}$ and Landais, et al., ${ }^{41}$ have reported the synthesis of 7-membered carbocycles, shown in Scheme 27.

96

97

Scheme 27. Partial list of recently synthesized seven-membered carbasugars.

Scheme 28. Synthesis of $\mathbf{9 7}$ from commercially available tropylium fluoroborate.

Commercially available tropylium fluoroborate $\mathbf{8 2}$ was converted into silylcycloheptatriene 98 using a bis-silyl zinc reagent (Scheme 28). Sharpless dihydroxylation followed by acetylation gave 100. Cycloaddition of $\mathbf{1 0 0}$ with an acylnitroso reagent generated three isomeric compounds $\mathbf{1 0 1}, 102$ and 103. The major acylnitroso adduct $\mathbf{1 0 1}$ was transformed into the final product $\mathbf{9 7}$ following several standard functional groups manipulations.

Lewis acid catalyzed intermolecular aldol condensation between aldehyde $\mathbf{1 0 9}$ (readily available from (+)-tartrate) and pyrrole derivative 110 furnished the unsaturated lactam 111 as a single diastereomer (Scheme 29). Chemoselective reduction of the carbon-carbon double bond followed by protection of hydroxyl group gave $\mathbf{1 1 2}$. Exchange of the N-protecting group, selective deprotection and Swern oxidation gave the aldehyde 114. The silylative intramolecular aldol condensation of $\mathbf{1 1 4}$ gave compound 115 as a single diastereoisomer. Again, exchange of N -protecting group followed by reductive cleavage of the amide bond and acid hydrolysis leads to the isolation of $\mathbf{9 4}$.

Scheme 29. Synthesis of 94 from (+)-tartrate.

As part of our long term interest in the generation of molecular complexity from simple hydrocarbons, we have synthesized a series of racemic polyhydroxyl aminocyclohexane derivatives, a number of racemic and optically active trans-1,3diaminocyclohexane derivatives and some of their amine salts from commercially available 1,3 cyclohexadiene. In a similar attempt, a number of racemic and optically active functionalized endoperoxides were prepered from readily available cyclooctatetraene.

Chapter II

Polyhydroxyl Aminocyclohexanes

II A. Synthesis of Aminocyclitols from Cyclohexadiene

In an effort to synthesis stereochemically diverse polyhydroxylaminocyclohexanes like $\mathbf{3 0}$ or its isomeric derivatives, the iron cation $\mathbf{3}$ was prepared from 1,3-cyclohexadiene $\mathbf{1}$ following literature procedure (Scheme 6). ${ }^{14}$ Nucleophilic attack of potassium phthalimide (KNPhth) at the dienyl terminus of the symmetric cation 3 gave (\pm)-117. Oxidative decomplexation of $(\pm)-117$ with CAN/MeOH gave the iron free ligand (\pm)-118 (Scheme 30).

Scheme 30. Synthesis of iron free ligand (\pm)-118 from the cation 3.

The structure of the η^{4}-bonded iron complex (\pm) - 117 was assigned based on its ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data. Signals at $\delta 2.77,3.13,5.53$, and 5.67 ppm in its ${ }^{1} \mathrm{H}$ NMR spectrum and at $\delta 57.1,58.2,86.0,86.7$ in its ${ }^{13} \mathrm{C}$ NMR spectrum are consistent with the η^{4}-attachment of the iron with the diene portion of the ligand. ${ }^{42}$ Assignment of the
diastereotopic methylene protons $6-\mathrm{H}^{\alpha}(\delta 2.00, \mathrm{br} \mathrm{d}, J=15.1 \mathrm{~Hz})$ and $6-\mathrm{H}^{\beta}(\delta 2.31$, ddd, J $=4.2,11.4$ and 15.1 Hz) was based on the magnitude of their geminal coupling and splitting pattern.

The structure of $(\pm) \mathbf{- 1 1 8}$ was similarly assigned on the basis of its NMR spectral data. Signals at $\delta 2.38 \mathrm{ppm}(\mathrm{ddd}, J=5.6,10.0$ and $17.2 \mathrm{~Hz}, 6-\mathrm{H}), 2.78 \mathrm{ppm}(\mathrm{tdd}, J=3.1$, $\left.15.2,17.6,6-\mathrm{H}^{\prime}\right)$ and $5.20(\mathrm{tdd}, J=2.9,9.6,15.21 \mathrm{H})$ in the ${ }^{1} \mathrm{H}$ NMR spectrum and at δ 27.0 and 47.9 ppm in its ${ }^{13} \mathrm{C}$ NMR spectrum corresponded to the two sp^{3} hybridized carbons and their attached hydrogens.

Cycloaddition of (\pm) - $\mathbf{1 1 8}$ with singlet oxygen gave a separable mixture of endoperoxides (\pm)-119 and (\pm)-120 (Scheme 31) (Fig. 1 and 2).

Scheme 31. Synthesis of isomeric endoperoxides (\pm)-119 and (\pm)-120.

The major product comes from approach of singlet oxygen on the face opposite to the phthalimide substituent. This facial selectivity was similar to that previously reported for cycloaddition of nitrosobenzene with 3-methyl-5-phenyl-1,3-cyclohexadiene. ${ }^{43}$ The structural assignments of the two endoperoxides were based on their ${ }^{1} \mathrm{H}$ NMR spectral data. The assignment of the two diastereotopic methylene protons of $(\pm) \mathbf{- 1 1 9}, \mathrm{H}^{3^{\prime}}(\delta \mathbf{2 . 4 2}$, ddd, $J=2.0,4.4,13.6 \mathrm{~Hz})$ and $\mathrm{H}^{3}(\delta 2.80$, ddd, $J=4.0,9.6,13.6)$ were based on the magnitude of their coupling with H^{2}. Two diastereotopic protons of $(\pm) \mathbf{- 1 2 0}, \mathrm{H}^{3^{\prime}}(\delta 3.64$, $\operatorname{td}, J=4.2,13.8 \mathrm{~Hz})$ and $\mathrm{H}^{3}(\delta 1.88$, ddd, $J=1.9,11.8,13.8 \mathrm{~Hz})$ was assigned on the same basis. The upfield shift for H^{3} for $(\pm) \mathbf{- 1 1 9}$ compared to $\mathrm{H}^{3^{\prime}}$ for $(\pm) \mathbf{- 1 2 0}$ and H^{3} for $(\pm) \mathbf{- 1 2 0}$ compared to H^{3} of $(\pm) \mathbf{- 1 1 9}$ were due to the anisotropic effect of the olefin functionality. The structural assignments were finally confirmed from single crystal Xray diffraction analysis (Fig. 1 and Fig. 2).

Figure 1. X-ray crystal structure of $(\pm) \mathbf{- 1 1 9}$.

Figure 2. X-ray crystal structure of $(\pm) \mathbf{- 1 2 0}$.

The major endoperoxide (\pm)-119 was reduced to diol $(\pm) \mathbf{- 1 2 1}$ using thioureamethanol. In a similar fashion (\pm) - $\mathbf{1 2 0}$ was reduced to (\pm) - $\mathbf{1 2 2}$ (Scheme 32).

(\pm)-119
$\left\lvert\, \begin{gathered}\mathrm{NH}_{2} \mathrm{CSNH}_{2} \\ (75 \%)\end{gathered}\right.$

(\pm)-121

(\pm) $\mathbf{1 2 0}$
$\mathrm{NH}_{2} \mathrm{CSNH}_{2}$
(40%)

(\pm)-122

Scheme 32. Thiourea/methanol reduction of (\pm)-119 and (\pm)-120.

The structural characterization of each was based on their ${ }^{1} \mathrm{H}$ NMR spectral data. For $(\pm) \mathbf{- 1 2 1}$, the signal at $\delta 5.92(\mathrm{~m}, 2 \mathrm{H})$ indicates that the olefinic double bond was intact after the thiourea reduction. The relative trans-orientation of two substituents at C$1 / \mathrm{C}-5$ was assigned on the basis of the coupling patterns as well as the magnitude of the couplings of the two diastereotopic methylene protons $\mathrm{H}-\mathrm{6}_{\mathrm{eq}}(\delta 1.97 \mathrm{ppm}$, br $\mathrm{d}, J=14.0$ $\mathrm{Hz})$ and $6-\mathrm{H}_{\mathrm{ax}}(\delta 2.82 \mathrm{ppm}, \mathrm{dt}, J=4.8$ and 13.6 Hz$)$. Similarly, the trans-orientation of substituents at $\mathrm{C}-1 / \mathrm{C}-2$ was confirmed from the magnitude of the coupling between $1-\mathrm{H}_{\mathrm{ax}}$ (4.58, ddd, $\mathrm{J}=3.2,10.0$ and 13.6 Hz) and $2-\mathrm{H}_{\mathrm{ax}}(4.84$, br d, $\mathrm{J}=9.2 \mathrm{~Hz})$.

The structure of $(\pm)-\mathbf{1 2 2}$ was assigned based on its ${ }^{1} \mathrm{H}$ NMR spectral data. The splitting pattern and the magnitude of the coupling of the two-diastereotopic methylene protons $6-\mathrm{H}_{\mathrm{ax}}(\delta 2.85 \mathrm{ppm}$, ddd, $\mathrm{J}=10.8,12.8$ and 14.4 Hz$)$ and $6-\mathrm{H}_{\mathrm{eq}}(\delta 2.21 \mathrm{ppm}$, br d, $\mathrm{J}=12.8 \mathrm{~Hz}$) indicate that the substituents at $\mathrm{C}-1 / \mathrm{C}-5$ are cis to each other. In particular, three large couplings for the $6-\mathrm{H}_{\mathrm{ax}}$ were due to two diaxial vicinal coupling of $6-\mathrm{H}_{\mathrm{ax}}$ with $5-\mathrm{H}_{\mathrm{ax}}$ and $1-\mathrm{H}_{\mathrm{ax}}$ and a geminal coupling with $6-\mathrm{H}_{\mathrm{eq}}$. Signals around δ 5.96-5.97 (m, 2H) were assigned to the $\mathrm{CH}=\mathrm{CH}$ functionality.

Catalytic hydrogenation of enediols $(\pm) \mathbf{- 1 2 1}$ and $(\pm) \mathbf{- 1 2 2}$ gave the corresponding saturated N-(dihydroxycyclohexyl)phthalimides (\pm)-123 and (\pm)-124 (Scheme 33). The structures were assigned based on the the structures of their precursors. Their ${ }^{1} \mathrm{H}$ NMR spectral data were consistent with these assignments. The saturated diol $(\pm) \mathbf{- 1 2 3}$ was converted to its amine salt $(\pm) \mathbf{- 1 2 5}$.

Scheme 33. Catalytic hydrogenation of (\pm)-121 and (\pm)-122.

A brief exposure (30 min) of (\pm) - $\mathbf{1 1 8}$ to $\mathrm{OsO}_{4} / \mathrm{NMO}$ (Scheme 34) gave a diol (\pm)-
126. Acetylation of the diol (\pm) - $\mathbf{1 2 6}$ using acetic anhydride/pyridine gave the corresponding diacetate $(\pm) \mathbf{- 1 2 7}$. The structure of the diacetate was assigned based on the single crystal X-ray diffraction analysis (Fig. 3), which consequently corroborated the structural assignment of (\pm) - 126. Dihydroxylation of (\pm) - $\mathbf{1 1 8}$ occurs more rapidly at the olefin remote to the electron withdrawing phthalimide substituent.

Scheme 34. Dihydroxylation of (\pm) - $\mathbf{1 1 8}$ and related reactions.

Catalytic hydrogenation of $(\pm)-\mathbf{1 2 6}$ gave a saturated diol (\pm) - $\mathbf{1 2 8}$, whose structure was assigned based on the structure of its precursor. The saturated diol $(\pm) \mathbf{- 1 2 8}$ was converted to its amine salt (\pm)-129.

Figure 3. X-ray crystal structure of (\pm)-127.

Catalytic dihydroxylation of enediols $(\pm) \mathbf{- 1 2 1},(\pm) \mathbf{- 1 2 2}$ and $(\pm) \mathbf{- 1 2 6}$ with $\mathrm{OsO}_{4} /$ NMO is shown in Scheme 35.

Scheme 35. Dihydroxylation of (\pm)-121, (\pm) - $\mathbf{1 2 2}$ and (\pm)-126.

The structures of the tetraols $(\pm) \mathbf{- 1 3 0}$ and $(\pm) \mathbf{- 1 3 1}$ were assigned based on their ${ }^{1}$ H NMR spectral data. For $(\pm) \mathbf{- 1 3 0}$, the assignment of the C-1 phthalimide and the C-5 hydroxyl as trans is based on the appearance of the $\mathrm{H}-\mathrm{b}_{\mathrm{ax}}$ signal and magnitude of its coupling (dt, $J=2.8,13.2 \mathrm{~Hz}$). The one smaller coupling is due to an axial-equatorial disposition of $\mathrm{H}-6_{\mathrm{ax}}$ and $\mathrm{H}-5_{\mathrm{eq}}$. The trans relationship between the hydroxyls at $\mathrm{C}-2$ and $\mathrm{C}-3$ was evidenced by the large coupling between the $\mathrm{H}-2_{\mathrm{ax}}$ and $\mathrm{H}-3_{\mathrm{ax}}$ protons $(J=9.6$ $\mathrm{Hz})$. For $(\pm) \mathbf{- 1 3 1}$, the cis relationship of the C-1 phthalimide and C-5 hydroxyl was based on the appearance of the $\mathrm{H}-6_{\mathrm{ax}}$ signal and magnitude of its couplings ($\mathrm{q}, J=12.4 \mathrm{~Hz}$). These three large couplings are due to the axial-axial couplings to $\mathrm{H}-1$ and $\mathrm{H}-5$ and the geminal coupling to $\mathrm{H}-6_{\mathrm{eq}}$. The trans-diequatorial relationship of the $\mathrm{C}-4$ and $\mathrm{C}-5$ hydroxyls was evidenced by the axial-axial coupling between $\mathrm{H}-4_{\mathrm{ax}}$ and $\mathrm{H}-5_{\mathrm{ax}}(J=9.8$ $\mathrm{Hz})$. These structural assignments were consistent with the syn-dihydroxylation and the selectivity noted by Kishi, et al., ${ }^{44}$ On the other hand, the structure of $(\pm) \mathbf{- 1 3 2}$ was assigned based on the single crystal X-ray diffraction analysis (Fig. 4), which indicated that the $\mathrm{C}-1$ phthalimide and the $\mathrm{C}-2$ and $\mathrm{C}-5$ hydroxyl are equatorial and $\mathrm{C}-3$ and $\mathrm{C}-5$ hydroxyls are axial. Tetraol $(\pm) \mathbf{- 1 3 0}$ was shown to be diastereomeric with $(\pm) \mathbf{- 1 3 2}$ by NMR spectroscopy. For diol $(\pm) \mathbf{- 1 2 6}$, dihydroxylation occurs on the face opposite to phthalimide substituent. It has been noticed that the directing influence of the phthalimide group towards hydroxylation was greater than the C-4 hydroxyl group.

Due to the low yield for dihydroxylation of (\pm) - $\mathbf{1 2 6}$, the diacetate $(\pm)-\mathbf{1 2 7}$ was converted into tetraacetate $(\pm) \mathbf{- 1 3 4}$ (Eq. 1). Compound $(\pm) \mathbf{- 1 3 4}$ was shown to be the tetraacetate of $(\pm) \mathbf{- 1 3 2}$ by NMR spectroscopy.

(\pm)-127
(\pm)-134

Figure 4. X-ray crystal structure of $(\pm) \mathbf{- 1 3 2}$.

Treatment of endiols $(\pm) \mathbf{- 1 2 1},(\pm) \mathbf{- 1 2 2}$ and $(\pm) \mathbf{- 1 2 6}$ with mCPBA gave corresponding epoxides $(\pm) \mathbf{- 1 3 5},(\pm) \mathbf{- 1 3 6}$ and $(\pm) \mathbf{- 1 3 7}$ (Scheme 36).

Scheme 36. Epoxidation of (\pm)-121, (\pm) - 122 and (\pm)-126.

The structure of epoxides $(\pm)-\mathbf{1 3 5}$ and (\pm) - $\mathbf{1 3 7}$ were assigned based on their single crystal X-ray diffraction analysis (Fig. 5 and Fig. 6). In both the crystsl structures, the cyclohexane ring is in the half chair form and the phthalimide group is pseudo equatorially oriented. Structure of $(\pm) \mathbf{- 1 3 6}$ was assigned based on the comparison of its ${ }^{1} \mathrm{H}$ NMR spectrum with that of isomeric (\pm)-135. In all of these cases, epoxidation occurs on the same face of the olefin as the adjacent hydroxyl groups. The facial selectivity of epoxidation could be explained on the basis of hydrogen bonded association between the hydroxyl group of the endiol and the carbonyl group of the m-chloroperbenzoic acid (Scheme 37$).{ }^{45}$ The relative low yield (15%) of (\pm) - $\mathbf{1 3 6}$ could be potentially explained on
the basis of the steric hindrances due to the syn orientation of all the substituents, including the epoxide ring.

Scheme 37. Rational for the facial selectivity of epoxidation.

Figure 5. X-ray crystal structure of (\pm)-135.

Figure 6. X-ray crystal structure of (\pm) - 137 .

Hydrolysis followed by acetylation of epoxides (\pm)-135 and (\pm)-137 required using different acid conditions for the hydrolysis steps as is shown in Scheme 38. Epoxide $(\pm) \mathbf{- 1 3 7}$ gave a single tetraacetate (\pm) - $\mathbf{1 3 8}$. On the contrary, epoxide (\pm) - $\mathbf{1 3 5}$ gave a mixture of two tetraacetates $(\pm) \mathbf{- 1 3 9}$ and $(\pm) \mathbf{- 1 4 0}$ (ca. $2: 1$ ratio by ${ }^{1} \mathrm{H}$ NMR integration). Slow recrystallization of the mixture (139 and 140) from ethyl acetate generated two distinct crystalline forms of the two tetraacetates, which allowed them to be separated by tweezers.

(ca. 2:1 by ${ }^{1} \mathrm{H}$ NMR integration, separable by tweezers)

Scheme 38. Hydrolysis of epoxide (\pm)-137 and (\pm)-135.

The structures of tetraacetates $(\pm) \mathbf{- 1 3 9}$ and $(\pm) \mathbf{- 1 4 0}$ were assigned based on their single crystal X-ray diffraction analysis (Fig. 7 and Fig. 8). The structure of (\pm)-138 was assigned based on its ${ }^{1} \mathrm{H}$ NMR spectral data. For (\pm)-138, the trans relationship between the C-1 phthalimide and C-5 acetoxy group was assigned on the appearance and the coupling magnitude of $\mathrm{H}-6_{\mathrm{ax}}$ ($\mathrm{br} \mathrm{t}, J=11.0 \mathrm{~Hz}$). The two large couplings are due to the vicinal coupling to $\mathrm{H}-1_{\mathrm{ax}}$ and geminal coupling to $\mathrm{H}-6_{\text {eq. }}$. The absence of the third large coupling is consistent with H-5 being equatorial (i.e. a small ax-eq coupling). Furthermore the appearance of $\mathrm{H}-1(\mathrm{ddd}, J=3.3,4.5,11.1 \mathrm{~Hz}$) indicates that the C-2 hydroxyl is axial/H-2 equatorial. The two smaller coupling are due to $\mathrm{H}-1_{\mathrm{ax}} / \mathrm{H}-6_{\mathrm{eq}}$ and $\mathrm{H}-$ $1_{\mathrm{ax}} / \mathrm{H}-2_{\text {eq }}$. As anticipated, products $\mathbf{1 3 8}$ arise by a diaxial ring opening of the epoxide ring. On the contrary, the ring opening of epoxide (\pm) $\mathbf{- 1 3 5}$ (Scheme 39), could be rationalized by considering two active conformers of $(\pm) \mathbf{- 1 3 5}$. Product (\pm)-139 (the major tetraacetate) could arise either by the diaxial ring opening (path b) of the epoxide from conformer (\pm)-135x, via a twist boat-like transition state $(\pm)-\mathbf{1 3 5 x}$ ' or by diaxial ring opening of epoxide from conformer $(\pm) \mathbf{- 1 3 5 y}$, via a chair-like transition state (\pm) - $\mathbf{1 3 5} \mathbf{y}$, followed by a chair-chair inversion. The rational for the formation of the minor tetraacetate $(\pm) \mathbf{- 1 4 0}$ is also given in Scheme 39.

$-\mathrm{H}^{+} / \mathrm{b}$
a $-\mathrm{H}^{+}$

(\pm)-135x"
\downarrow

tetraol interme diate for the major tetraacetate (\pm)-139

tetraol interme diate for the minor tetraacetate (\pm)- $\mathbf{1 4 0}$

tetraol intermediate for the major tetraacetate (\pm)-139

Scheme 39. Rational for epoxide hydrolysis.

Figure 7. X-ray crystal structure of (\pm)-140.

Figure 8. X-ray crystal structure of (\pm) - $\mathbf{1 3 9}$.

Reaction of the major endoperoxide (\pm)-119 with diazabicyclo[5.4.0]undecene (DBU) (Kornblum-DeLaMare rearrangement) ${ }^{46}$ (Eq. 2) gave a mixture of $(\pm) \mathbf{- 1 4 2},(\pm)$ 143 and (\pm)-144. Purification by column chromatography gave $(\pm)-\mathbf{1 4 2}$ as a pure compound and (\pm)-143 and (\pm)-144 as an inseparable mixture. The major cyclohexenone $(\pm) \mathbf{- 1 4 2}$ arises due to the deprotonation of the sterically less hindered proton of $(\pm) \mathbf{- 1 1 9}$ by DBU (pathway a). The structure of ($\mathbf{\pm}$)- $\mathbf{1 4 2}$ was assigned by the comparison of its NMR spectral data with that of 5-azido-4-(triisopropylsolyloxy)-2-cyclohexene-1-one (145). ${ }^{47}$ In particular, signals for (\pm) - $\mathbf{1 4 2}$ at $\delta 6.11$ (d) and 7.02 (dd) ppm in the ${ }^{1} \mathrm{H}$ NMR spectrum and $\delta 129.6$ and 152.3 ppm in the ${ }^{13} \mathrm{C}$ NMR spectrum are a close match for the corresponding olefinic protons and carbons of 145 which appear at $\delta 6.01$ (d), 6.84 (dd), 129.1 and 150.5 ppm respectively. The two diastereotopic methylene protons $6-\mathrm{H} \alpha$ (δ
$2.67 \mathrm{ppm}, \mathrm{dd}, J=4.8$ and 16.4 Hz) and $6-\mathrm{H} \beta(\delta 3.43 \mathrm{ppm}, \mathrm{dd}, J=13.6$ and 16.4 Hz) were assigned based on the magnitude of their geminal coupling.

The structures of the other two cyclohexenones were also assigned based on their
${ }^{1} \mathrm{H}$ NMR spectral data. The magnitude of the coupling of $\mathrm{H}-6 \beta$ ($\delta 2.81$, $\mathrm{td}, J=11.4,14.4$ $\mathrm{Hz})$ in (\pm) - $\mathbf{1 4 3}$ indicates that the substituents at C-1/C-5 are cis. On the other hand, the presence of only a single large coupling ($J=13.2 \mathrm{~Hz}$) for H-6 $(\delta 2.26)$ in (\pm) - $\mathbf{1 4 4}$ indicates that the C-1/C-5 substituents are trans. The stereoisomer (\pm)- $\mathbf{1 4 3}$ presumably is the result of base catalyzed epimerization of the proton α to the carbonyl of $(\pm) \mathbf{- 1 4 4}$; the diequatorial stereoisomer $(\pm) \mathbf{- 1 4 3}$ being more stable than the axial-equatorial stereoisomer (\pm)-144.

Reduction of $(\pm) \mathbf{- 1 4 2}$ under Luche conditions $\left(\mathrm{NaBH}_{4} / \mathrm{CeCl}_{3}\right)^{48}$ gave a single diol $(\pm)-\mathbf{1 4 6}$ (Eq. 3). The structure of the (\pm)- $\mathbf{1 4 6}$ was assigned based on its ${ }^{1} \mathrm{H}$ NMR spectral data. In particular, the signal for the $6-\mathrm{H}_{\mathrm{ax}}(\delta 2.46 \mathrm{ppm}$, ddd, $J=10.0,12.0,13.2 \mathrm{~Hz})$ was a doublet of doublet of doublets. These three large couplings are due to the diaxial relative orientations of $6-\mathrm{H}_{\mathrm{ax}}$ with respect to $1-\mathrm{H}$ and $5-\mathrm{H}$ as well as the geminal coupling to $6-\mathrm{H}_{\text {eq }}$. This also confirms that the substituents at $\mathrm{C}-1$ and $\mathrm{C}-5$ are cis to each other.

The double bond of the diol $(\pm)-\mathbf{1 4 6}$ was reduced catalytically using $\mathrm{H}_{2}-\mathrm{Pd} / \mathrm{C}$ (Scheme 38) to afford $(\pm) \mathbf{- 1 4 7}$; the structure was assigned based on the structure of its precursor. The catalytic dihydroxylation of $(\pm) \mathbf{- 1 4 6}$ with OsO_{4} and NMO followed by acetylation with acetic anhydride/pyridine (Scheme 40) gave an equimolar mixture of two tetraacetates $(\pm) \mathbf{- 1 4 8}$ and $(\pm)-149 .{ }^{44}$ The structures of these two tetraacetates were assigned based on the ${ }^{1} \mathrm{H}$ NMR spectral data of the mixture. In particular, the $6-\mathrm{H}_{\mathrm{ax}}$ signals of each evidences three large couplings. Fortuitously, the structural assignment of $(\pm) \mathbf{- 1 4 9}$ was confirmed from single crystal X-ray diffraction analysis of a crystal selected from a recrystallization of the mixture (Fig. 9).

Scheme 40. Catalytic hydrogenation/hydroxylation of (\pm)-146.

Figure 9. X-ray crystal structure of $(\pm) \mathbf{- 1 4 9}$.
Treatment of the major endoperoxide (\pm)-119 with Grubbs $2^{\text {nd }}$ generation catalyst ${ }^{49}$ in absence of any external olefin led to the fragmentation of the endoperoxide into a mixture of 150, 151, (\pm)-152 and (\pm)-153 (Scheme 41). Chromatographic separation of the mixture gave $\mathbf{1 5 1},(\pm)-\mathbf{1 5 2}$ and (\pm) - $\mathbf{1 5 3}$ as pure fractions. The structure of $\mathbf{1 5 0}$ was assigned based on comparison of the ${ }^{1} \mathrm{H}$ NMR spectral data of the crude to the literature data. ${ }^{50} \mathrm{~N}$-vinylphthalimide 151 was identified by comparison of its literature mp and ${ }^{1} \mathrm{H}$ NMR spectral data with literature values. ${ }^{51}$ The structure of $(\pm)-\mathbf{1 5 3}$ was
assigned based on its ${ }^{1} \mathrm{H}$ NMR spectral data. In particular, the four relatively narrow oneproton signals at $\delta 3.26,3.30,3.54-3.56$ and $3.58-3.60 \mathrm{ppm}$ corresponds to the four epoxide methine protons; these signals are similar to those of other cyclohexene diepoxides. ${ }^{52}$ The structural assignment of the oxetane $(\pm)-152$ was also based on its ${ }^{1} \mathrm{H}$ NMR spectral data. In particular, signals at $\delta 10.15(\mathrm{~d}, J=7.2 \mathrm{~Hz}), 6.88(\mathrm{ddd}, 0.8,6.8$, and 11.5) and $6.07(\mathrm{dd}, J=7.2$ and 11.6 Hz$)$ were indicative of the presence of the 3-oxo-1-Z-butenyl sidechain. The signals at $6.33(\mathrm{q}, J=7.2 \mathrm{~Hz})$ and $6.40(\mathrm{ddd}, \mathrm{J}=1.2,5.0$, and 8.3 Hz) correspond to $3-\mathrm{H}$ and $1-\mathrm{H}$, and are similar to those of a 2,4-trans substituted oxetone ring. ${ }^{53}$

(\pm)-119
(74\%)

(\pm)-153
$3 \mathrm{SiO}_{2}$

Scheme 41. Reaction of $(\pm)-119$ with Grubbs $2^{\text {nd }}$ generation catalyst.

The hydrolysis of the bisepoxide (\pm) - $\mathbf{1 5 3}$ in an unusual fashion on column $\left(\mathrm{SiO}_{2}-\right.$ $\left.\mathrm{H}_{2} \mathrm{O} / \mathrm{EtOAc}\right)$ gave the epoxydiol $(\pm)-154$. The structure was assigned based on its single crystal X-ray diffraction analysis (Fig. 10). The ${ }^{1} \mathrm{H}$ NMR spectral data of (\pm) - $\mathbf{1 5 4}$ were consistent with the structure. Further hydrolysis of (\pm) - $\mathbf{1 5 4}$ using $\mathrm{H}_{2} \mathrm{O}-\mathrm{H}_{2} \mathrm{SO}_{4}$ gave a single tetraol ($\mathbf{\pm}$)-131. The structure (\pm)- $\mathbf{- 1 3 1}$ was identified by comparison of its spectral data with the sample prepared by dihydroxylation of $(\pm) \mathbf{- 1 2 2}$.

Figure 10. X-ray crystal structure of (\pm) - $\mathbf{1 5 4}$.

The transition metal-mediated fragmentation of 1,4-epiperoxides (endoperoxides), including the use of $\mathrm{Ru}(\mathrm{II})$ reagents, has been reported. ${ }^{54}$ An inner-sphere radical mechanism can be proposed to explain the formation of the products. Coordination of coordinatively unsaturated $\mathrm{Ru}(\mathrm{II})$ with the sterically less hindered oxygen of the endoperoxide $(\pm)-\mathbf{1 1 9}$ followed by a single electron exchange leads to the breaking of weak O-O bond and generating an oxyradical 156. Interaction of oxyradical with the internal double bond gave the bisepoxide $(\pm)-153$. Alternatively, the oxyradical
rearranges into a more stable nitrogen stabilized radical species 157 through a homolytic C-C bond breaking. Reaction of the carbon radical at oxygen gave the oxetane (\pm)-152 and further homolytic C-C bond cleavage of 157 gave 150 and 151. A similar mechanistic explanation was reported for the formation of β-lactones from the keto endoperoxide of phenol. ${ }^{55}$

Scheme 42. Proposed mechanistic explanation for the formation of four different products upon treatment of $(\pm)-\mathbf{1 1 9}$ with Grubbs $2^{\text {nd }}$ generation catalyst.

In conclusion, we were able to synthesize a number of stereochemically diverse polyhydroxyl aminocyclohexanes derivatives and some of their amine salts from a single precursor $(\pm) \mathbf{- 1 1 8}$.

II B. Synthesis of trans-1,3-Diaminocyclohexanes from Cyclohexadiene

In an attempt to synthesis structurally diverse 1,3-diaminocyclohexane, the cycloaddition reaction of $(\pm)-\mathbf{1 1 8}$ with nitrosobenzene was studied (Eq. 4). ${ }^{56}$

$(\pm)-158$

The cycloaddition was regio as well as diastereoselective and gave a single isomer 8-aza-7-oxabicyclo[2.2.2]oct-5-ene (\pm)-158. The structure of (\pm) - $\mathbf{1 5 8}$ was assigned based on its ${ }^{1} \mathrm{H}$ NMR spectral data. The assignment of the two diastereotopic methylene protons $\left[\mathrm{H}^{3}(\delta 2.81)\right.$ and $\left.\mathrm{H}^{3}(\delta 2.59)\right]$ was done based on the magnitude of their vicinal coupling with H^{2}, the syn-coupling 9.6 Hz (ca. 0^{0} dihedral angle) is larger than the anti-coupling 3.6 Hz (ca. 120^{0} dihedral angle). The upfield shift of H^{3} ($\delta 2.59$) compared to that of H^{3} (δ 2.81) was due to the anisotopic effect of the olefin functionality on H^{3}. The assignment was confirmed from its single crystal X-ray diffraction analysis (Fig. 11).

Figure 11. X-ray crystal structure of (\pm)-158.

To achieve the goal of synthesizing stereochemically diverse 1,3diaminocyclohexanes, several reactions were studied with the nitroso adduct $(\pm) \mathbf{- 1 5 8}$, the results are shown in Scheme 43.

Scheme 43. Reactions of nitroso adduct (\pm)-158.

The N-O bond of (\pm)-158 was selectively reduced by heating at reflux with $\mathrm{Mo}(\mathrm{CO})_{6}$ in $\mathrm{CH}_{3} \mathrm{CN}$ for one hour (Scheme 43). ${ }^{57}$ The structure of $(\pm)-\mathbf{1 5 9}$ was assigned based on its ${ }^{1} \mathrm{H}$ NMR spectral data. In particular, signals at $\delta 4.39$ and $\delta 4.84$ (downfield compare to its precursor) are consistent with the N-O bond cleavage. This structural assignment was further confirmed by derivatization. Catalytic dihydroxylation of the olefin (\pm)-159 by OsO_{4} / N-methylmorpholine N-oxide gave the triol $(\pm) \mathbf{- 1 6 0}$. Dihydroxylation occurred on the face of the olefin opposite to the C-2 hydroxyl. The anti- orientation of C-2 and C-3 hydroxyl groups was confirmed based on the magnitude of the coupling $(J=9.6 \mathrm{~Hz})$ between $2-\mathrm{H}_{\mathrm{ax}}$ and $3-\mathrm{H}_{\mathrm{ax}}$.

The olefinic double bond and the $\mathrm{N}-\mathrm{O}$ bond of $(\pm) \mathbf{- 1 5 8}$ were catalytically reduced in a single step by $\mathrm{H}_{2} /$ Raney-Ni (Scheme 43). The structure of (\pm) - $\mathbf{1 6 1}$ was assigned based on its ${ }^{1} \mathrm{H}$ NMR spectral data and subsequently confirmed from its single crystal Xray diffraction analysis (Fig. 12).

Figure 12. X-ray crystal structure of (\pm)-161.

Catalytic dihydroxylation of $(\pm) \mathbf{- 1 5 8}$ by OsO_{4} in presence of N -methylmorpholine N-oxide gave a single diol (\pm)-163 (Scheme 43). The dihydroxylation was anticipated to occur on the face of the olefin opposite to the sterically bulky phthalimide group. This relative stereochemistry was further confirmed by derivatization of (\pm)-163. The N-O bond of $(\pm)-\mathbf{1 6 3}$ was successfully cleaved using $\mathrm{H}_{2}(40 \mathrm{psi}) /$ Raney-Ni. The relative stereochemistry of $(\pm) \mathbf{- 1 6 4}$ was assigned based on its ${ }^{1} \mathrm{H}$ NMR spectral data, which also confirmed the structural assignment of $(\pm) \mathbf{- 1 6 3}$. The different splitting pattern and the magnitude of coupling of the two diastereotopic methylene protons $6-\mathrm{H}_{\mathrm{ax}}(\mathrm{dt}, J=3.2$, $13.2 \mathrm{~Hz})$ and $6-\mathrm{H}_{\mathrm{eq}}(\mathrm{td}, J=3.8,13.2 \mathrm{~Hz})$ indicates that the $\mathrm{C}-1$ phthalimide and $\mathrm{C}-5$ phenylamino substituents are trans. The small coupling between $2-\mathrm{H}_{\mathrm{ax}}(\delta 4.34$, dd, $J=$ $2.6,10.8 \mathrm{~Hz})$ and $3-\mathrm{H}_{\mathrm{eq}}(\delta 4.21, \mathrm{t}, J=2.6 \mathrm{~Hz})$ is consistent with an axial-equatorial relationship between these two protons and thus indicates that the C-2 and C-3 hydroxyl
groups are cis to each other. Compounds (\pm) - $\mathbf{1 6 1}$ and (\pm) - $\mathbf{1 6 4}$ were converted to their respective amine salts $(\pm) \mathbf{- 1 6 2}$ and $(\pm) \mathbf{- 1 6 5}$ by treatment by $6 \underline{\mathrm{~N}} \mathrm{HCl}$.

To explore the preparation of optically active 1,3-diaminocyclohexanes, the cycloaddition reaction of $(\pm) \mathbf{- 1 1 8}$ with chiral acylnitroso compounds were studied (Scheme 44). ${ }^{58}$

Scheme 44. Cycloaddition of (\pm) - $\mathbf{1 1 8}$ with acylnitroso compounds.

Racemic and optically active mandelohydroxamic acid, (\pm)-166 and (-)-R-166 was prepared from corresponding racemic and optically active methyl mandelate following literature procedure. ${ }^{58}$ In the case of racemic mandelohydroxamic acid (\pm)-166, cycloaddition of the in situ generated acylnitroso intermediate with (\pm)-118 gave a chromatographically inseparable mixture of diastereomers (\pm)-167, $(\pm)-168$ and $(\pm)-\mathbf{1 6 9}$
(ca. 5:3:2 from ${ }^{1} \mathrm{H}$ NMR integration). Fractional crystallization from $\mathrm{CH}_{3} \mathrm{CN}$ gave (\pm)167 as a pure compound $(25 \%$, isolated yield). The structural assignment of $(\pm)-\mathbf{1 6 7}$ was based on its ${ }^{1} \mathrm{H}$ NMR spectral data and was confirmed by single crystal X-ray diffraction analysis (Fig. 13). Similarly, structural assignments for (\pm)-168 and (\pm)-169 were based on the ${ }^{1} \mathrm{H}$ NMR spectral data of the mixture. The upfield chemical shift of H^{2} of $(\pm)-\mathbf{1 6 8}$ ($\delta 4.36 \mathrm{ppm}$), relative to that of H^{2} of $(\pm) \mathbf{- 1 6 7}$ or $(\pm) \mathbf{- 1 6 9}$ ($\delta 4.81$ or 4.68 ppm respectively) was due to the anisotopic effect of the olefin functionality.

Figure 13. X-ray crystal structure of (\pm)-168.

In a similar fashion optically active mandelohydroxamic acid (-)-166 gave a chromatographically inseparable optically active mixture of diastereomeric (+)-167, 168 and $\mathbf{1 6 9}$ (ca.5:3:2 from ${ }^{1} \mathrm{H}$ NMR integration). Pure (+)-167 (11\%, isolated yield) was isolated by fractional crystallization from $\mathrm{CH}_{3} \mathrm{CN}$ and as expected the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data of $(+)-167$ was identical with the racemic compound (\pm) - $\mathbf{1 6 7}$.

In an effort to purify more isomers, the mixture of racemic compounds $(\pm) \mathbf{- 1 6 7}$, (\pm)-168 and (\pm) - $\mathbf{1 6 9}$ was acetylated using acetic anhydride and pyridine (Eq. 5). Pure (\pm)-

168* (19\%, isolated yield) was separated by preparative TLC from the mixture of (\pm)167*, $(\pm)-168^{*}$ and $(\pm)-169^{*}$. The chemical shifts for the signals of the 8-aza-7-oxobicyclo[2.2.2] octane core of acetates $(\pm)-167^{*}$ and $(\pm)-169^{*}$ were relatively similar to those for the alcohols $(\pm)-167$ and (\pm) - $\mathbf{1 6 9}$.

The diastereoselectivity for the cycloaddition (Scheme 44) could be rationalized on the basis of the energy of the transition states leading to the products. It has been proposed that the six-membered cyclic hydrogen bonded conformer of the nitrosoacyl dienophile derived from the mandelohydroxamic acid is the active form of the dienophile in the cycloaddition reaction with the diene. ${ }^{58 a}$ Keeping this proposal in consideration, different transition states can be drawn (Scheme 45). In TS 1, i.e. the approach of (R)nitroso dienophile on the exo-face of the (R)-118 does not have any major steric repulsion, leading to the major product $\mathbf{1 6 7}$. On the other hand, approach of (R)-nitroso dienophile on the endo-face of the (R)-118 (TS 2) has major steric repulsion between 4-H and the phenyl substituent and nitroso oxygen and the phthalimide substituent leading to
no cycloaddition. In comparison, approach of (R)-nitroso dienophile on the exo-face of the (S)-118 (TS 3) and endo-face of (S)-118 (TS 4) has minor steric repulsion or equally matched in energy leading to the products 168 and 169 respectively.

TS 1

167

Scheme 45. Proposed transition state explanation for the selectivity of cycloaddition of acylnitroso reagents with $(\pm) \mathbf{- 1 1 8}$.

The "N-O" bond of the racemic $(\pm)-167$ and optically active $(+)-167$ was reduced using titanocene (III) chloride (Scheme 46). ${ }^{59}$ The structures of the products (\pm)-170 and $(-)-\mathbf{1 7 0}$ were assigned based on the comparison of their ${ }^{1} \mathrm{H}$ NMR spectral data with that of previously prepared $(\pm)-\mathbf{1 5 9}$. The " $\mathrm{C}=\mathrm{C}$ " bonds of the $(\pm)-\mathbf{1 7 0}$ and $(-) \mathbf{- 1 7 0}$ was catalytically reduced by $\mathrm{H}_{2}-\mathrm{Pd} / \mathrm{C}$. The structures of $(\pm)-\mathbf{1 7 1}$ and $(-)-\mathbf{1 7 1}$ were assigned based on the comparison of their ${ }^{1} \mathrm{H}$ NMR spectral data with that of their precursors.

Scheme 46. Selective reduction of "N-O" bond of $(\pm)-167$ and (-)-167.

Chapter III

III A. Synthesis of Tricarbonyl($\boldsymbol{\eta}^{\mathbf{5}}$-6-styrylcyclohepta-2,4-dien-1-yl)iron(+1) from

Cyclooctatetraene and its Reactivity study

The synthesis of tricarbonyl(η^{5}-6-styrylcyclohepta-2,4-dien-1-yl)iron(+1) tetrafluoroborate (\pm) - $\mathbf{1 7 2}$ from cyclooctatetraene (6) was first reported by Woodward, et al., in $1984 .{ }^{60}$ Despite the structural diversity represented by this transformation an examination of the reactivity of $(\pm) \mathbf{- 1 4}$ and its application in organic synthesis is not known. To study the reactivity of tricarbonyl(η^{5}-6-styrylcyclohepta-2,4-dien-1$y l) i r o n(+1)$ cation, it was synthesized in three steps from cyclooctatetraene following the literature procedure. (Scheme 47). ${ }^{18,60}$

Scheme 47. Synthesis of cation (\pm)-172 from cyclooctatetraene 6.

The complexation of cyclooctatetraene with iron(pentacarbonyl) (Scheme 47) in the presence of trimethylamine N-oxide gave 7. Compound 7 was characterized based on its ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data. A single peak at 5.25 ppm in ${ }^{1} \mathrm{H}$ NMR and two peaks at 212.5 and 100.1 ppm in ${ }^{13} \mathrm{C}$ NMR indicated the fluxional nature of 7 on the NMR time scale at ambient temperature and was consistent with the literature. ${ }^{61}$

Compound (\pm)-14 was prepared by the reaction of tricarbonyl(cyclooctatetraene)iron 7 with tropylium tetrafluoroborate in the presence of pyridine following literature procedure. ${ }^{60}$ A slight modification in the literature procedure using one equivalent of pyridine and repeated extraction of the reaction mixture resulted in an improvement from 41% to 75% yield. The structure was assigned based on comparison of its ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data with the literature ${ }^{60}$ values.

Protonation of the $\mathbf{1 4}$ by fluoroboric acid followed by precipitation from cosolvent ether gave the cation (\pm) - $\mathbf{1 7 2}$. The cation was characterized by the comparison of its ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectral data with the literature values. ${ }^{60}$

The reactivity of $(\pm) \mathbf{- 1 7 2}$ with various heteroatom and stabilized carbon based nucleophiles was studied and the results are shown in the Scheme 48.

$(\pm)-173$

(\pm)-178
$\stackrel{+}{\text { ADMM }}$

Scheme 48. Reactivity of cation (\pm)-172 with various nucleophiles.

In all the above cases nucleophilic attack at the less hindered dienyl terminus (C1) of the cation was observed. Nucleophilic attack occurs exo to the tricarbonyliron moiety. Evidence in support of exo-attack (i.e. 5,7-cis-disubstituted cycloheptadiene) was present in the NMR spectra of $(\pm) \mathbf{- 1 7 3}(\pm) \mathbf{- 1 7 6}$ and (\pm)-177. In particular, two signals at ca. $\delta 87-91 \mathrm{ppm}$ in their ${ }^{13} \mathrm{C}$ NMR spectra and multiplets integrating to two protons at ca. $\delta 4.9-5.6 \mathrm{ppm}$ in their ${ }^{1} \mathrm{H}$ NMR spectra are consistent with the two internal carbons (C$2 / \mathrm{C}-3)$ and their attached protons. In addition, an apparent quartet at ca. $0.9-2.0 \mathrm{ppm}(J=$
ca. 12 Hz$)$ in the ${ }^{1} \mathrm{H}$ NMR spectra for (\pm) - $\mathbf{1 7 3}(\pm)$-174 (\pm) - $\mathbf{1 7 6}$ and (\pm) - $\mathbf{1 7 7}$ was assigned to H-6. The three large couplings are due to diaxial vicinal coupling of H-6 with $\mathrm{H}-5$ and H-7 and a geminal coupling to H-6' (Fig. 14).

Figure 14. Generic structure of $(\pm) \mathbf{- 1 7 3},(\pm)$-174, (\pm) - 176 and $(\pm) \mathbf{- 1 7 7}$.

For the reaction of $(\pm) \mathbf{- 1 7 2}$ with the anion from dimethyl allylmalonate, the product was isolated as an inseparable mixture of (\pm) - $\mathbf{1 7 8}$ and unreacted dimethyl allylmalonate. The stereochemistry of $(\pm) \mathbf{- 1 7 4},(\pm) \mathbf{- 1 7 6}$, and $(\pm) \mathbf{- 1 7 8}$ are eventually corroborated by decomplexation.

The reaction of cation $(\pm) \mathbf{- 1 7 2}$ with sodium cyanoborohydride gave an inseparable mixture of (\pm)-179 and (\pm)-180 in a nearly equimolar ratio (Eq. 6).

Diene complex (\pm)- $\mathbf{1 7 9}$ was formed by hydride attack at the less sterically hindered dienyl terminus (C-1). The structure of diene complex (\pm)-179 was clearly identified as non-symmetrical by the presence of two signals at $\delta 87.1$ and 89.0 ppm in the ${ }^{13} \mathrm{C}$ NMR spectrum. The structure of cycloheptene-1,5-diyl complex $(\pm)-\mathbf{1 8 0}$ was assigned on the basis of its NMR spectral data. In particular, the signal at $\delta 97.2 \mathrm{ppm}$ in the ${ }^{13} \mathrm{C}$ NMR spectrum and the triplet at $\delta 4.97 \mathrm{ppm}$ in the ${ }^{1} \mathrm{H}$ NMR spectrum were assigned to the central allyl carbon (C-4) and its attached proton. One of the overlapping signals at δ 4.38-4.49 ppm which appears as a quartet, was assigned to $\mathrm{H}-3$. The nearly equivalent couplings (ca. $J=8.4 \mathrm{~Hz}$) are due to vicinal couplings to $\mathrm{H}-4$ and $\mathrm{H}-2$ and H 2'.

III B. Decomplexation of Iron Coordinated Compounds

Successful decomplexation reactions of iron coordinated compounds $(\pm) \mathbf{- 1 7 4},(\pm)-$ 176 and (\pm)-178 are shown in Scheme 49.

Scheme 49. Decomplexation of iron coordinated cyclic dienes.

The structures of the products $(\pm)-\mathbf{1 8 1},(\pm)-\mathbf{1 8 2}$ and (\pm) - $\mathbf{1 8 3}$ were assigned based on their NMR spectral data. In particular, signals in the range of $5.5-6.0 \mathrm{ppm}$ which integrated to four protons correspond to the olefinic protons of conjugated diene portion of the molecule. The structural assignment of (\pm) - $\mathbf{1 8 1}$ was further confirmed from its single crystal X-ray diffraction analysis (Fig. 15).

Figure 15. X-ray crystal structure of (\pm)-181.

Removal of iron from the cycloheptadienol complex (\pm)- $\mathbf{- 1 7 3}$ was attempted using a variety of oxidizing agent/solvent conditions and the results are shown in Scheme 50. Use of ceric ammonium nitrate (CAN) in methanol gave the methyl ether (\pm)-184. Protection of cycloheptadienol complex (\pm)-173 as its silyl ether gave (\pm) - $\mathbf{1 8 5}$. Attempted decomplexation of $(\pm)-\mathbf{1 8 5}$ likewise gave the methyl ether $(\pm) \mathbf{- 1 8 4}$. Since we speculated that the methoxy group present in (\pm) - $\mathbf{1 8 4}$ came from the solvent, decomplexation of (\pm) 173 with CAN in either DMF or $\mathrm{CH}_{3} \mathrm{CN}$ was attempted. In each case, starting material and a complex mixture of unidentified pruducts were obtained. Similarly attempted decomplexation of (\pm) - $\mathbf{1 7 3}$ with trimethylamine N-oxide gave a complex mixture of unidentified products. Finally decomplexation of $(\pm) \mathbf{- 1 7 3}$ with alkaline hydrogen peroxide afforded the desire cycloheptadienol $(\pm) \mathbf{- 1 8 6}$.

Scheme 50. Decomplexation of (\pm)-173.

The formation of methyl ether (\pm) - $\mathbf{1 8 4}$ from alcohol (\pm) - $\mathbf{1 7 3}$ or silyl ether (\pm) - $\mathbf{1 8 5}$ was rationalized on the basis of an $\mathrm{S}_{\mathrm{N}}{ }^{1}$-like substitution from the solvent methanol (Scheme 51). As the oxidation reaction proceeds with CAN, the solution becomes acidic. Protonation of the hydroxyl of $(\pm) \mathbf{- 1 7 3}$ or the silyl ether of (\pm) - $\mathbf{1 8 5}$, followed by ionization regenerates the cycloheptadienyl cation $(\pm)-172$. Reaction of the cation thus formed with solvent gives the methyl ether complex which upon decomplexation gives (\pm)-184 (Scheme 51).

Scheme 51. Mechanistic rational for the formation of (\pm)-184 upon decomplexation of $(\pm) \mathbf{- 1 7 3}$ or (\pm) - $\mathbf{1 8 5}$ with CAN/MeOH.

III C. Singlet oxygen cycloaddition of iron free ligands

To study singlet oxygen cycloaddition reactions of some iron free ligands, compound (\pm)-187 was prepared from (\pm)-176 (Eq. 7).

Exposure of the iron free ligand $(\pm) \mathbf{- 1 8 1}$ or (\pm) - $\mathbf{1 8 7}$ to singlet oxygen cycloaddition condition generated a single endoperoxide (\pm) - $\mathbf{1 8 8}$ or (\pm) - $\mathbf{1 8 9}$ respectively (Scheme 52).

Scheme 52. Cycloaddition of (\pm)-181 and (\pm)- $\mathbf{1 8 7}$ with singlet oxygen.

Structural assignment of endoperoxides $(\pm) \mathbf{- 1 8 8}$ and $(\pm) \mathbf{- 1 8 9}$ were based on their ${ }^{1}$ H NMR spectral data. Cycloaddition occurs on the diene face opposite to syn- C-1/C-6 substituents. Similar facial selectivity was also observed by Pearson, et al., ${ }^{62}$, Seitz, et $a l .,{ }^{63}$ and others for substituted cycloheptadiene systems. In particular, peaks at $\delta 4.53$ (narrow $\mathrm{m}, 2 \mathrm{H}$) for $(\pm) \mathbf{- 1 8 9}$ and at $\delta 4.79(\mathrm{~m}, 2 \mathrm{H})$ for $(\pm) \mathbf{- 1 8 8}$ corresponds to $\mathrm{H}-2$ and $\mathrm{H}-5$ protons. Upfield shifts of H-7' protons compare to $\mathrm{H}-7$ in both (\pm) - $\mathbf{1 8 8}$ and (\pm) - $\mathbf{1 8 9}$ was due to the anisotopic effect of olefin functionality on $\mathrm{H} 7^{\prime}$.

To resolve the racemic cycloheptadienes, asymmetric dihydroxylation of (\pm)-181 with commercially available AD-mix β was studied (Scheme 53). Dihydroxylation occurs on the trans styryl double bond and gave a mixture of two diastereomeric diols (-)-190 and $(+)-191$; the mixture was separable by preparative thin layer chromatography. The absolute configuration of the diol chiral centers of (-)-190 and (+)-191 were assigned based on the Sharpless mnemonic device. ${ }^{64}$ Cycloaddition of less polar cycloheptadiene diastereomer (-)-190, with N-phenyl-1,3,5-triaza-2,4-dione (PTAD), followed by reaction with 3,5-dinitrobenzoyl chloride gave $(+)-193$. The relative stereochemistry of all chiral centers of $(+)$ - $\mathbf{1 9 3}$ were assigned based on its single crystal X-ray diffraction analysis (Fig. 16), which also allowed assignment of the C-1 and C-6 stereocenters configurations of $(-)-190$ and $(+)-191$ as indicated.

Scheme 53. Resolution of (\pm)-181 by asymmetric dihydroxylation.

Figure 16. X-ray crystal structure (+)-193.

Due to difficulties in large scale chromatographic separation of the mixture of two diastereomeric diols (-)-190 and (+)-191, the mixture was exposed to the singlet oxygen cycloaddition conditions (Scheme 54) which gave a mixture of two chromatographically separable diastereomeric endoperoxides $(+) \mathbf{- 1 9 4}$ and $(+)-\mathbf{1 9 5}$. Notably the optical rotation attributed to of the ($1^{\prime}, 2^{\prime}$-dihydroxyphenyl) side chain is presumably greater in magnitude compared to the 6,7-dioxabicyclo[3.2.2]octane. Treatment of $(+) \mathbf{- 1 9 4}$ and $(+)-$ 195 with $\mathrm{Pb}(\mathrm{OAc})_{4}$ separately, gave the corresponding diol-cleavage proructs enantiomeric aldehydes $(+)-\mathbf{1 9 6}$ and $(-) \mathbf{- 1 9 6}$. On the other hand, treatment of the mixture
of (-)-190 and $(+)-\mathbf{1 9 1}$ with $\mathrm{Pb}(\mathrm{OAc})_{4}$ followed by reduction of intermediate aldehyde by NaBH_{4} gave a primary alcohol (\pm)-197.

(33\%) separable by column chrom (25\%)

Scheme 54. Treatment of mixture of (-)-190 and (+)-191 with singlet oxygen.

The structures of $(+)$ - $\mathbf{1 9 4}$ and $(+)-195$ were assigned on the basis of the structures of their precursors and also confirmed by the independent treatment of pure (-)-190 with singlet oxygen, which generated the corresponding endoperoxide $(+)-\mathbf{1 9 4}$. The structures of enantiomeric aldehydes $(+)-196$ and (-)-196 were assigned based on the structures of their precursors. In particular, the peak at $\delta 9.63 \mathrm{ppm}$ in the ${ }^{1} \mathrm{H}$ NMR spectrum of each indicates the presence of the aldehyde functionality in the diol cleavage products $(+) /(-)-$ 196. The structure of $(\pm)-197$ was assigned on the basis of its ${ }^{1} \mathrm{H}$ NMR spectral data. A multiplate peak at $3.55-3.76(\mathrm{~m}, 2 \mathrm{H})$ in the ${ }^{1} \mathrm{H}$ NMR spectra was assigned to the hydroxy methylene portion of the primary alcohol (\pm)-197.

III D. Synthesis of Bicyclo[4.4.1]undecatriene

Treatment of (\pm)-182 with $1^{\text {st }}$ generation Grubbs catalyst gave the ring-closed product $(\pm)-199$ (Scheme 55). The structure of $(\pm)-199$ was assigned based on its ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data. In particular, the ${ }^{1} \mathrm{H}$ NMR spectrum of $(\pm)-199$ integrates to 18 Hs; five of which were olefinic. Furthermore, the ${ }^{13} \mathrm{C}$ NMR spectrum of (\pm) - $\mathbf{1 9 9}$ consisted of 15 signals with five olefinic methine carbons and one quaternary olefinic carbon. Olefin isomerization has previously been reported as a competitive side reaction of Ru-catalyzed olefin metathesis. ${ }^{65}$ The thermodynamically favored (\pm)-199 (because of extended conjugation) might form by the isomerization of initially formed $\mathbf{1 9 8}$ isomer.

Scheme 55. Generation of bicyclo[4.4.1]undecatriene from (\pm)-182.

Attempts to prepare crystalline derivatives of $(\pm)-\mathbf{1 9 9}$ were made. In that direction, reduction of the two ester functional groups of $(\pm)-199$ was unsuccessful. In an different attempt, the ester functional groups of $(\pm)-\mathbf{1 8 2}$ were reduced to the corresponding diol (\pm)-200 by diisobutylaluminium hydride (DIBAL-H) (Scheme 56). Conversion of the two primary alcohol groups of $(\pm) \mathbf{- 2 0 0}$ to different functional groups
(Scheme 54) gave (\pm)-201, and (\pm)-202. Attempted ring closing metathesis of solid (\pm) 201 and (\pm)-202 were unsuccessful.

Scheme 56. Reduction of (\pm)-182 by DIBAL-H.

In conclution, synthesis of tricarbonyl $\left(\eta^{5}\right.$-6-styrylcyclohepta-2,4-dien-1yl)iron(+1) from cyclooctatetraene and its reactivity study was achieved. Based on the reactivity pattern structural diversities were created in the forms of functionalized endoperoxides and bicyclo[4.4.1]undecatriene.

Experimental

General Data:

All non-aqueous reactions were carried out under a nitrogen atmosphere. Spectroscopic grade solvents were used without further purification with the exception of ether and tetrahydrofuran which were distilled from sodium, using benzophenone as indicator. Methylene chloride was distilled from phosphorous pentaoxide and hexane was distilled before use. Column chromatography was performed using silica gel 62 grade (60-200 mesh and 200-400 mesh, Dynamic Adsorbents Inc). Melting points were recorded using a Mel-Temp apparatus and are uncorrected. Carbon and proton NMR were recorded in Varian Mercury 300 and 400 spectrometer. Elemental analyses were obtained from Midwest Microlabs, Indianapolis. IN, and high resolution mass spectra were obtained from the University of Nebraska center for Mass Spectrometry, Lincoln, NE.

Tricarbonyl (1,3-cyclohexadiene)iron (2): To a 500 mL round-bottomed flask equipped with a condenser, was charged 1,3-cyclohexadiene ($4.20 \mathrm{~g}, 52.4 \mathrm{mmol}$), benzene (250
$\mathrm{mL})$ and $\mathrm{Fe}_{2}(\mathrm{CO})_{9}(50.00 \mathrm{~g} 137.4 \mathrm{mmol})$. After stirring for few minutes, the mixture was heated at reflux for 3 h under nitrogen. The mixture was cooled to room temperature and additional $\mathrm{Fe}_{2}(\mathrm{CO})_{9}(26.0 \mathrm{~g}, 71.4 \mathrm{mmol})$ was added. The mixture was heated at reflux for another 4 h . After cooling to room temperature, the dark reaction mixture was filtered through celite using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluent. The filtrate and the washings were concentrated. The crude mixture was purified by column chromatography $\left(\mathrm{SiO}_{2}, 100 \%\right.$ hexane $)$ to afford the product as a yellow orange oil $(10.05 \mathrm{~g}, 87 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta$ 1.54-1.64 (m, 2H), 1.66-1.76(m, 2H), 3.19-3.24(m, 2H), 5.27-5.30(m, 2H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 23.8,62.4,85.4,212.3$.

Tricarbonyl($\eta^{\mathbf{5}}$-cyclohexadienyl)iron(1+) tetrafluoroborate (3): To a 100 mL roundbottomed flask was charged triphenylcarbenium tetrafluoroborate ($7.64 \mathrm{~g}, 23.2 \mathrm{mmol}$), dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ and stirred for few min at room temperature under nitrogen. A solution of iron complex $2(4.25 \mathrm{~g}, 19.3 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ was added. After 5 min , an orange solid compound began to separate from the greenish-blue solution. The reaction mixture was stirred for 1 h and then whole mixture was poured into ether (350 mL). The yellow solid cation was isolated by filtration and dried under high vacuum
(5.96 g, 100\%). mp 207-210 ${ }^{0} \mathrm{C} ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{NO}_{2}, 100 \mathrm{MHz}\right) \delta 26.0,67.4,91.9,104.6$, 210.9.

Tricarbonyl(5-phthalimido-1,3-cyclohexadiene)iron (土)-117: In a 100 mL Schlenk flask, iron cation 3 ($920 \mathrm{mg}, 2.95 \mathrm{mmol}$) was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ with stirring at room temperature under nitrogen. Solid potassium phthalimide $(820 \mathrm{mg}, 4.43$ mmol) was added and the mixture was stirred for 5 h . The reaction mixture was quenched with water and extracted several times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane-ethyl acetate $\left.=6: 1\right)$ to afford a light yellow solid (807 mg , $75 \%) . \mathrm{mp} 166-169{ }^{0} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 2.00(\mathrm{br} \mathrm{d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.31$ (ddd, $J=4.2,11.4,15.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{ddd}, J=1.0,3.2,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.11-3.15(\mathrm{~m}, 1 \mathrm{H})$, $4.80(\mathrm{td}, J=3.7,11.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.53(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.67(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-$ 7.83 (m, 4H, NPhth); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 27.3,48.1,57.1,58.2,86.0,86.7$, 123.3, 132.1, 134.2, 168.2, 211.4. Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{NO}_{5} \mathrm{Fe}: \mathrm{C}, 55.92 ; \mathrm{H}, 3.04$. Found: C, 56.10; H, 3.18.

N-(2,4-cyclohexadien-1-yl)phthalimide (\pm)-118: In a 250 mL round-bottom flask, iron complex $(\pm) \mathbf{- 1 1 7}(800 \mathrm{mg}, 2.19 \mathrm{mmol})$ was dissolved in methanol $(110 \mathrm{~mL})$ with stirring. Solid ceric ammonium nitrate ($360 \mathrm{mg}, 6.56 \mathrm{mmol}$) was added and the mixture was stirred for 2 h . The reaction mixture was quenched with water and extracted several times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane-ethyl acetate $=4: 1)$ to give a colorless solid ($400 \mathrm{mg}, 81 \%$). $\mathrm{mp} 138-140{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}) \delta 2.38(\mathrm{ddd}, J=5.6,10.0,17.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\operatorname{tdd} J=3.1,15.2,17.7 \mathrm{~Hz}, 1 \mathrm{H})$, $5.20(\mathrm{tdd}, J=2.9,9.6,15.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.68(\mathrm{dd}, J=3.0,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.89-6.10(\mathrm{~m}, 3 \mathrm{H})$, 7.71-7.86 (m, 4H); ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 27.5,45.9,123.2,123.7,125.3,125.5$, 125.6, 132.1, 133.9, 176.2. Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{2}: \mathrm{C}, 74.65 ; \mathrm{H}, 4.92 ; \mathrm{N}, 6.22$. Found: C, 74.60; H, 4.94; N, 6.24.

Reaction of (\pm)-118 with singlet oxygen: To a 25 mL two necked round-bottomed flask, equipped with a condenser, was charged diene $(\pm) \mathbf{- 1 1 8}(1.0 \mathrm{gm}, 4.4 \mathrm{mmol})$, dry CHCl_{3} (50 mL) and tetraphenylporphine ($138 \mathrm{mg}, 5 \mathrm{~mol} \%$). The deep purple solution was stirred at $0{ }^{\circ} \mathrm{C}$ while irradiated with a 60 W tungsten-halogen lamp for 8 h . The reaction mixture was concentrated under vacuum. The residue was purified through column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane-ethyl acetate $\left.=4: 1\right)$ to give a colorless solid $(\pm) \mathbf{- 1 1 9}(593$
$\mathrm{mg}, 52 \%$). Further elution (hexane-ethyl acetate $=3: 1$) gave a colorless solid (\pm)-120 ($257 \mathrm{mg}, 18 \%$).

N-(8,9-Dioxobicyclo[2.2.2]oct-5-en-2-yl)phthalimide (土)-119: mp $155-157{ }^{0} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 2.42(\mathrm{ddd}, J=2.0,4.4,13.6, \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{ddd}, J=4.0,9.6$, $13.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.84-4.98(\mathrm{~m}, 3 \mathrm{H}), 6.65(\mathrm{ddd}, J=1.6,6.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{ddd}, J=1.6$. $6.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.71-7.74$ and $7.79-7.8\left(\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}, 4 \mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta$ $28.5,45.9,71.2,123.5,129.5,131.6,134.0,134.5,168.3$ (one peak observed by solvent). Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{O}_{4} \mathrm{~N}$: C, 65.36; H, 4.31. Found: C, 65.45; H, 4.39.

N-(8,9-Dioxobicyclo[2.2.2]oct-5-en-2-yl)phthalimide (\pm)-120: mp 216-219 ${ }^{0} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.88(\mathrm{ddd}, J=1.9,11.8,13.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{td}, J=4.2,13.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.41(\mathrm{ddd}, J=1.8,4.5,12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{qd}, J=1.7,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{qdd}, J$ $=1.8,3.6,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.75-6.87(\mathrm{~m}, 2 \mathrm{H}), 7.70-7.74$ and $7.78-7.83\left(\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}, 4 \mathrm{H}\right),{ }^{13} \mathrm{C}$

NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 21.0,47.2,70.9,75.2,123.5,130.8,132.0,134.0,134.3,168.9$. Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{O}_{4} \mathrm{~N}$: C, 65.36; H, 4.31. Found: C, 65.46; H, 4.34 .

N-(2R*,5S*-Dihydroxy-3-cyclohexene-1S*-yl) phthalimide (\pm)-121: To a 5 mL roundbottom flask was charged with the major endoperoxide $(\pm)-119(25 \mathrm{mg}, 0.097 \mathrm{mmol})$ in methanol $(1.5 \mathrm{~mL})$ at room temperature under nitrogen was added solid thiourea $(7.0 \mathrm{mg}$, $0.097 \mathrm{mmol})$. The mixture was stirred for 15 h . The reaction mixture was concentrated under vacuum and the residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexaneethyl acetate $=1: 3)$ to afford a colorless solid ($19 \mathrm{mg}, 75 \%$). mp 180-183 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.97(\mathrm{br} \mathrm{d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{br} \mathrm{s}, \mathrm{OH}, 1 \mathrm{H}), 2.35(\mathrm{br} \mathrm{s}, \mathrm{OH}$, $1 \mathrm{H}), 2.82(\mathrm{dt}, J=4.8,13.6, \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.58(\mathrm{ddd}, J=3.2,10.0,13.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.84(\mathrm{br} \mathrm{d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{~s}, 2 \mathrm{H}), 7.70-7.74$ and $7.81-7.85(4 \mathrm{H}$, Phth $){ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}\right) \delta 35.1,51.1,65.2,68.5,124.1,130.1,133.5,134.8,135.4$, 170.2. Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{4}$: C, 64.86; H, 5.05. Found: C, 64.92; H, 5.11.

N-(2S*,5R*-Dihydroxy-3-cyclohexen-1S*-yl)phthalimide (土)-122: To a 25 mL roundbottom flask charged with the minor endoperoxide $(\pm) \mathbf{- 1 2 0}(0.10 \mathrm{gm}, 0.40 \mathrm{mmol})$ in methanol $(4 \mathrm{~mL})$ at room temperature under nitrogen was added solid thiourea (40 mg , 0.48 mmol). The mixture was stirred for 15 h . The reaction mixture was concentrated under vacuum and the residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexaneethyl acetate $=1: 4$) to afford a colorless solid ($40 \mathrm{mg}, 40 \%$). mp 168-171 ${ }^{0} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 2.21(\mathrm{br} \mathrm{d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{~d}, J=7.2 \mathrm{~Hz}, \mathrm{OH}, 1 \mathrm{H}), 2.81(\mathrm{~d}$, $J=8.8 \mathrm{~Hz}, \mathrm{OH}, 1 \mathrm{H}), 2.85(\mathrm{ddd}, J=10.8,12.8,14.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.17-4.23(\mathrm{~m}, 1 \mathrm{H}), 4.43-$ $4.45(\mathrm{~m}, 2 \mathrm{H}), 5.96-5.97(\mathrm{~m}, 2 \mathrm{H}), 7.70-7.74$ and 7.81-7.85 (4H, Phth); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right.$, $100 \mathrm{MHz}) \delta 31.2,52.7,65.8,69.1,124.1,128.3,133.4,135.4,136.8$, 170.3. Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{4}$: C, 64.86; H, 5.05. Found: C, 64.77; H, 5.08.

N-(2R*,5R*,-Dihydroxycyclohex-1S*-yl)phthalimide (\pm)-123: In a hydrogenation container, olefin (\pm)-121 ($0.20 \mathrm{~g}, 0.77 \mathrm{mmol})$ was dissolved in methanol (20 mL) at room temperature. To the mixture was added $10 \% \mathrm{Pd} / \mathrm{C}(60 \mathrm{mg})$ and the suspension was stirred under hydrogen (40 psi) for 5 h . The reaction mixture was
filtered through celite. The filtrate was concentrated, adsorbed to silica and applied to a column of silica. Elution (hexane-ethyl acetate $=1: 4$) gave a colorless solid (143 $\mathrm{mg}, 76 \%) . \operatorname{mp} 198-200{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right) \delta 1.60-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.84-$ $1.91(\mathrm{~m}, 4 \mathrm{H}), 2.42(\mathrm{dt}, J=13.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{pent}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{dt}, J=$ 6.4, 9.8, Hz, 1H), 4.47 (ddd, $J=4.0,10.0,12.8 \mathrm{~Hz}, 1 \mathrm{H}$), $7.75-7.88(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}\right) \delta 29.8,31.9,36.3,53.5,66.7,70.2,124.0,133.5,135.3,170.3$. Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{4}$: C, 64.36; H, 5.79. Found: C, $64.20 ; \mathrm{H}, 5.73$.

N-(2S*,5S*-Dihydroxycyclohex-1S*-yl)phthalimide (土)-124: In a small hydrogenation container, olefin $(\pm) \mathbf{- 1 2 2}(40.0 \mathrm{mg}, 0.154 \mathrm{mmol})$ was dissolved in methanol $(7 \mathrm{~mL})$ at room temperature. To the mixture was added $10 \% \mathrm{Pd} / \mathrm{C}$ catalyst (ca. 5 mg) and the suspension was stirred under hydrogen (40 psi) for 7 h . The reaction mixture was filtered through celite. The filtrate was concentrated, adsorbed to silica gel and applied to a column of silica. Elution (hexane-ethyl acetate $=1: 4$) gave a colorless solid (25 mg , $62 \%) . \mathrm{mp} 175-177{ }^{0} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right) \delta 1.60-1.95(\mathrm{~m}, 5 \mathrm{H}), 2.88(\mathrm{td}, J=$ $11.7,13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.60-3.72(\mathrm{~m}, 1 \mathrm{H}), 3.98(\mathrm{~s}, 1 \mathrm{H}), 4.18(\mathrm{ddd}, J=2.2,3.8,13.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.75-7.90 (m, 4H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}\right) \delta 29.5,30.4,33.6,55.4,68.5,70.8$,
124.2, 133.3, 135.5, 170.6. Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{4} .1 / 2 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 62.21 ; \mathrm{H}, 5.96$. Found: C, 62.03; H, 5.70.

1S*-(2R*,5R*-Dihydroxycyclohexyl)ammoinium chloride (\pm)- $\mathbf{1 2 5}$: To a 10 mL roundbottomed flask was charged diol $(\pm)-\mathbf{1 2 3}(0.10 \mathrm{~g}, 0.38 \mathrm{mmol})$ and aqueous $\mathrm{HCl}(6 \mathrm{~N}, 6$ mL). The mixture was heated at reflux for 15 h . The reaction mixture was dried, redissolved in deionized water (8 mL) and then extracted with ethyl acetate (8 mL X 3). The aqueous solution was concentrated, dried under high vacuum to afford a light brown gummy compound ($64 \mathrm{mg}, 100 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right) \delta 1.53-1.64(\mathrm{~m}, 2 \mathrm{H})$, $1.72-1.86(\mathrm{~m}, 3 \mathrm{H}), 2.11(\mathrm{br} \mathrm{m}, ~ J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.18-3.27(\mathrm{~m}, 1 \mathrm{H}), 3.42-3.51(\mathrm{~m}, 1 \mathrm{H})$, 4.08-4.11 (m, 1H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}\right) \delta 29.2,31.4,36.4,53.5,65.8,72.1$.

$N-\left(4 R^{*}, 5 S^{*}-\right.$ Dihydroxy-2-cyclohexane-1S*-yl)phthalimide (土)-126: To a solution of diene $(\pm)-\mathbf{1 1 8}(750 \mathrm{mg}, 3.33 \mathrm{mmol})$ in acetone $(15 \mathrm{~mL})$ was added a solution of N methylmorpholine N-oxide ($960 \mathrm{mg}, 8.19 \mathrm{mmol}$) in water $(4 \mathrm{~mL})$ followed by a solution of OsO_{4} in toluene ($2 \mathrm{~mL}, 10 \mathrm{~mol} \%$). The reaction mixture was stirred for 30 min at room temperature and then solid $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}(0.6 \mathrm{~g})$ was added and the mixture stirred for another 30 min . The crude reaction mixture was purified by column chromatography (hexaneethyl acetate $=1: 4)$ to give a colorless solid ($447 \mathrm{mg}, 52 \%$). mp $178-181{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right) \delta 2.12(\mathrm{dtd}, J=1.6,5.8,13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{ddd}, J=2.0,10.2,13.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.17-4.22(\mathrm{~m}, 1 \mathrm{H}), 4.30-4.34(\mathrm{~m}, 1 \mathrm{H}), 5.11-5.17(\mathrm{~m}, 1 \mathrm{H}), 5.63(\mathrm{dtd}, J=1.6,2.4$, $10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.73(\mathrm{dt}, J=1.6,2.0,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.78-7.85\left(\mathrm{AA}^{\prime} \mathrm{BB},{ }^{\prime}, 4 \mathrm{H}\right),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}\right) \delta 33.4,45.4,68.6,69.5,124.2,129.1,131.9,133.4,135.5,169.6$. Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{4}$: C, 64.86; H, 5.05. Found: C, 64.87; H, 5.02.

N-(4R*,5S*-Diacetoxy-2-cyclohexen-1S*-yl)phthalimide (\pm)-127: To a 10 mL roundbottom flask was charged diol (\pm) - $\mathbf{1 2 6}(30 \mathrm{mg}, 0.12 \mathrm{mmol})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.8 \mathrm{~mL})$ at room temperature. To the stirring suspension was added dropwise pyridine ($0.10 \mathrm{~mL}, 1.2$ $\mathrm{mmol})$. Upon addition of pyridine the mixture became clear. Acetic anhydride (0.10 mL , 1.2 mmol) was added and the mixture stirred for 12 h . The reaction mixture was
quenched with $1 \mathrm{M} \mathrm{HCl}(5 \mathrm{~mL})$ and extracted several times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was purified by column chromatography (hexane-ethyl acetate $=1: 1$) to afford a colorless solid ($27 \mathrm{mg}, 68 \%$). mp $151-154{ }^{0} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 2.07(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 2.19-2.28(\mathrm{~m}, 1 \mathrm{H})$, 2.54 (ddd, $J=2.1,9.3,13.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{ddd}, J=2.9,6.3,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.62-5.67(\mathrm{~m}$, $1 \mathrm{H}), 5.68-5.72(\mathrm{~m}, 1 \mathrm{H}), 5.78(\mathrm{~s}, 2 \mathrm{H}), 7.72-7.77$ and $7.82-7.88(4 \mathrm{H}, \mathrm{Phth}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 21.1,21.3,30.0,44.1,67.9,68.3,123.6,127.1,129.9,132.0,134.4$, 168.0, 170.7, 170.4. Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{6}$: C, 62.97; H, 4.99. Found: C, 63.64; H, 5.12.

N-(3S*,4R*-Dihydroxycyclohex-1R*-yl)phthalimide (\pm)-128: In a hydrogenation container, cyclohexenylphthalimide $(\pm) \mathbf{- 1 2 6}(0.10 \mathrm{mg}, 0.38 \mathrm{mmol})$ was dissolved in methanol $(10 \mathrm{~mL})$ at room temperature. To the mixture $10 \% \mathrm{Pd} / \mathrm{C}$ catalyst (ca. 5 mg) was added and the mixture was stirred under hydrogen (40 psi) for 4 h . The reaction mixture was filtered through celite. The filtrate was concentrated, adsorbed onto silica gel and then applied to a column of silica. Elution (hexane-ethyl acetate $=1: 4$) gave a colorless solid ($75 \mathrm{mg}, 74 \%$). mp 243-247 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right) \delta 1.60-1.80$ (m, 2H), 1.84-1.96 (m, 2H), $2.28(\mathrm{dq}, J=4.2,13.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{dt}, J=2.4,12.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.67(\mathrm{ddd}, J=2.9,4.5,11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.03-4.04(\mathrm{~m}, 1 \mathrm{H}), 4.58(\mathrm{tt}, J=4.1,12.6 \mathrm{~Hz}$

1H), 7.75-7.88 (m, 4H); ${ }^{13} \mathrm{C}$ NMR (d_{6}-DMSO, 100 MHz$) \delta 27.3,27.6,34.3,44.3,68.6$, 70.2, 122.9, 131.5, 134.3, 168.0. FAB-HRMS m/z 268.1157 (calcd. for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{4} \mathrm{Li}$ ($\mathrm{M}+\mathrm{Li}$) m/z 268.1161).

1R*-(3S*,4R*-Dihydroxycyclohexyl)ammonium chloride (\pm)129: To a 10 mL roundbottomed flask was charged diol (\pm)-128 ($40.0 \mathrm{mg}, 0.153 \mathrm{mmol}$) and aqueous $\mathrm{HCl}(6 \mathrm{~N}, 3$ mL). The mixture was heated at reflux for 15 h . The reaction mixture was dried, redissolved in deionized water (6 mL) and then extracted with ethyl acetate (5 mL X 3). The aqueous solution was concentrated and dried under high vacuum to afford a light yellow foamy solid ($26 \mathrm{mg}, 100 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right) \delta 1.34-2.15(\mathrm{~m}, 6 \mathrm{H})$, 3.29-3.39 (m, 1H), 3.49-3.58 (m, 1H), 3.92-3.98 (m, 1H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 75 \mathrm{MHz}\right) \delta$ 27.1, 29.3, 36.5, 46.5, 69.3, 71.2.

$N-\left(2 R^{*}, \mathbf{3 S} *, 4 R^{*}, 5 S^{*}\right.$-Tetrahydroxycyclohex-1S*-yl)phthalimide (\pm)-130: To a stirring solution of olefin $(\pm) \mathbf{- 1 2 1}(60 \mathrm{mg}, 0.23 \mathrm{mmol})$ in acetone $(1 \mathrm{~mL})$ was added a solution of N-methylmorpholine N-oxide ($70 \mathrm{mg}, 0.58 \mathrm{mmol}$) in water $(0.3 \mathrm{~mL})$ followed by a solution of OsO_{4} in toluene $(0.1 \mathrm{~mL}, 10 \mathrm{~mol} \%)$. The reaction mixture was stirred for 20 h at room temperature and then $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}(35 \mathrm{mg})$ was added and stirred for another 30 min . The mixture was concentrated, adsorbed to silica using methanol and applied to a column of silica. Elution $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$-methanol $\left.=9: 1\right)$ gave a colorless solid $(42 \mathrm{~g}, 62 \%) . \mathrm{mp} 267-$ $270{ }^{0} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right) \delta 1.69(\mathrm{td}, J=2.8,13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{dt}, J=2.8$, $13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{dd}, J=3.2,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.93-4.00(\mathrm{~m}, 2 \mathrm{H}), 4.43-4.50(\mathrm{~m}, 2 \mathrm{H}), 7.78-$ $7.87(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}\right) \delta 31.2,51.6,70.4,70.7,74.0,74.4,124.1$, 133.5, 135.4, 170.2. Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{6}$: C, 57.33; H, 5.15. Found: C, 57.29; H, 5.34 .

$N-\left(2 S^{*}, 3 R^{*}, 4 S^{*}, 5 R^{*}-T e t r a h y d r o x y c y c l o h e x-1 S *-y l\right) p h t h a l i m i d e ~(\pm)-131: ~ T o ~ a ~ s t i r r i n g ~$ solution of olefin $(\pm) \mathbf{- 1 2 2}(30.0 \mathrm{mg}, 0.115 \mathrm{mmol})$ in acetone $(1 \mathrm{~mL})$ was added a solution of N-methylmorpholine N-oxide ($30.0 \mathrm{mg}, 0.240 \mathrm{mmol}$) in water $(0.25 \mathrm{~mL})$ followed by a solution of OsO_{4} in toluene $(0.1 \mathrm{~mL}, 10 \mathrm{~mol} \%)$. The reaction mixture was stirred for 15 h at room temperature and then $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}(0.02 \mathrm{~g})$ was added and stirring continued for another 30 min . The reaction mixture was dried, re-dissolved in ethyl acetate,
adsorbed to silica gel and applied to a column of silica. Elution (100\% ethyl acetate) gave a colorless solid ($20 \mathrm{mg}, 59 \%$). mp $253-255{ }^{0} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right) \delta 1.89(\mathrm{td}$, $J=3.8,12.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{q}, J=12.4, \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{dd}, J=2.8,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.82$ $(\mathrm{ddd}, J=4.8,10.0,11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.94-3.99(\mathrm{~m}, 2 \mathrm{H}), 4.69(\mathrm{ddd}, J=2.0,4.4,14.0 \mathrm{~Hz}$, $1 \mathrm{H})$, 7.78-7.87 (m, 4H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}\right) \delta 31.3,50.1,70.5,74.0,74.1$, $74.2,124.2,133.3,135.5,170.7$. Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{6}$: $\mathrm{C}, 57.33 ; \mathrm{H}, 5.15$. Found: C, 57.53; H, 5.11.

$N-\left(2 S^{*}, 3 S^{*}, 4 R^{*} \mathbf{5 R} *-T e t r a h y d r o x y c y c l o h e x-1 R *-y l\right) p h t h a l i m i d e ~(\pm)-132: ~ T o ~ a ~ s t i r r i n g ~$ solution of olefin $(\pm) \mathbf{- 1 2 6}(0.10 \mathrm{~g}, 0.38 \mathrm{mmol})$ in acetone $(4 \mathrm{~mL})$ was added a solution of N-methylmorpholine N-oxide (0.07 gm 0.57 mmol) in water (1 mL) followed by a solution of OsO_{4} in toluene $(0.2 \mathrm{~mL}, 10 \mathrm{~mol} \%)$. The reaction mixture was stirred for 8 h at room temperature. The reaction mixture was filtered and the residue was dissolved in a mixture of methanol and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and adsorbed to silica gel and then applied to a column of silica. Elution (methanol: $\mathrm{CH}_{2} \mathrm{Cl}_{2}=1: 4$, few drops of $\mathrm{NH}_{4} \mathrm{OH}$) gave a colorless solid (22 mg, 21\%). mp 243-245 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (d_{6}-DMSO, 300 MHz) $\delta 1.79(\mathrm{td}, J=3.6,13.2$ $\mathrm{Hz}, 1 \mathrm{H}), 2.19(\mathrm{dt}, J=1.8,13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{td}, J=2.7,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.86-3.96(\mathrm{br} \mathrm{m}$, $2 \mathrm{H}), 4.02-4.10(\mathrm{br} \mathrm{m}, 1 \mathrm{H}), 4.55(\mathrm{dt}, J=4.2,12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.84-4.94(\mathrm{~m}, 3 \mathrm{H}), 5.03(\mathrm{~d}, J=$ $5.7 \mathrm{~Hz} \mathrm{1H}), 7.80-7.92(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (d_{6}-DMSO, 75 MHz) $\delta 32.4,46.5,68.3,69.2$,
70.4, 75.3, 122.8, 131.6, 134.3, 168.4. FAB-HRMS m/z 300.1067 (calcd. for $\left.\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{6} \mathrm{Li}(\mathrm{M}+\mathrm{Li}) \mathrm{m} / \mathrm{z} 300.1059\right)$.

$1 S^{*}-\left(2 R^{*}, 3 S^{*}, 4 R^{*}, 5 S^{*}-\right.$ Tetrahydroxycyclohexyl)ammonium chloride (\pm)-133: To a 10 mL round-bottomed flask was charged tetraol $(\pm)-\mathbf{1 3 0}(50 \mathrm{mg}, 0.17 \mathrm{mmol})$ and HCl ($6 \mathrm{~N}, 4 \mathrm{~mL}$). The mixture was heated at reflux for 15 h . The reaction mixture was dried, re-dissolved in deionized water $(6 \mathrm{~mL})$ and then extracted with ethyl acetate (6 mL X 3). The aqueous solution was concentrated, dried under high vacuum to afford a light yellow solid ($33 \mathrm{mg}, 100 \%$). mp 92-95 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right) \delta 1.91-2.02(\mathrm{~m}, 2 \mathrm{H})$, 3.19-3.28 (m, 1H), 3.62-3.69 (m, 2H), 3.86-3.89 (m, 1H), 3.93-3.96 (m, 1H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}\right) \delta 31.46,51.94,69.56,72.39,73.02,74.01$.

N-(3,4-Epoxy-2S*,5R*-dihydroxycyclohex-1R*-yl)phthalimide (土)-135: To a stirring solution of diol (\pm) - $\mathbf{1 2 1}(50.0 \mathrm{mg}, 0.193 \mathrm{mmol})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added a solution of mCPBA $(0.1 \mathrm{~g}, 0.4 \mathrm{mmol}, 70 \mathrm{wt} \%$, $)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ at room temperature under
nitrogen. After stirring for 7 h , the reaction mixture was quenched with a mixture of $\mathrm{Et}_{3} \mathrm{~N}$ and water $(1: 9,10 \mathrm{~mL})$ and then extracted with ethyl acetate (8 mL X 3). The combined extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was re-dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, adsorbed to silica gel, and then applied to a column of silica. Elution (100% ethyl acetate) gave a colorless solid ($22.0 \mathrm{~g}, 42 \%$). mp 203-206 ${ }^{0} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right) \delta 1.68(\mathrm{br} \mathrm{d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{ddd}, J=6.0,12.4,14.4$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.47-3.49 (narrow m, 2H), 4.25-4.29 (m, 1H), 4.52 (ddd, $J=3.2,9.6,13.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.66(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.78-7.89(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}\right) \delta 36.1$, $48.8,57.3,59.0,64.9,68.6,124.1,133.4,135.5,170.1$. Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{5}$: C, 61.09; H, 4.76. Found: C, 60.58; H, 4.80.

N-(3,4-Epoxy-2R*,5S*-dihydroxycyclohex-1R*-yl)phthalimide (\pm)-136: To a stirring solution of diol $(\pm)-\mathbf{1 2 2}(53 \mathrm{mg}, 0.20 \mathrm{mmol})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added a solution of mCPBA ($0.1 \mathrm{~g}, 70 \mathrm{wt} \%, 0.4 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ at room temperature under nitrogen and stirred for 15 h . The reaction mixture was quenched with a mixture of $\mathrm{Et}_{3} \mathrm{~N}$ and water $(1: 9,7 \mathrm{~mL})$ and then extracted several times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution was washed with sat. NaHCO_{3} solution followed by brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, adsorbed to silica gel, and then applied to a column of silica. Elution (100% ethyl acetate) gave a colorless
solid ($8 \mathrm{mg}, 15 \%$). mp $180-182{ }^{0} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 300 \mathrm{MHz}\right) \delta 1.79(\mathrm{brd}, J=12.4$ $\mathrm{Hz}, 1 \mathrm{H}), 2.78-2.92(\mathrm{~m}, 1 \mathrm{H}), 3.39-3.48(\mathrm{~m}, 3 \mathrm{H}), 3.97-4.15(\mathrm{~m}, 4 \mathrm{H}), 7.77-7.86(\mathrm{~m}, 4 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 75 \mathrm{MHz}\right) \delta 27.3,52.5,55.6,58.1,65.4,69.9,124.1,133.4,135.5$, 170.2. Due to the low yield for this epoxide, hydrolysis was not attempted.

N-(2,3-Epoxy-4R*,5R*-dihydroxycyclohex-1R*yl)phthalimide (土)-137: To a stirring solution of diol $(\pm)-\mathbf{1 2 6}(100 \mathrm{mg}, 0.400 \mathrm{mmol})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added a solution of mCPBA $(0.2 \mathrm{~g}, 0.8 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ at room temperature and stirred for 12 h . The reaction mixture was quenched with a mixture of $\mathrm{Et}_{3} \mathrm{~N}$ and water $(1: 10,10 \mathrm{~mL})$ and then extracted several times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The excess $\mathrm{Et}_{3} \mathrm{~N}$ was removed under high vacuum to give a colorless solid (73 mg, 70\%). mp 167-170 ${ }^{0} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}) \delta 2.03$ (ddd, $J=2.0,10.7,13.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{dddd}, J=1.6,4.2,6.9,13.7 \mathrm{~Hz}$, $1 \mathrm{H}), 2.89(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 3.05(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 3.48(\mathrm{dd}, J=1.6,3.6$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.65-3.68 (narrow m, 1H), 3.97-4.25 (m, 1H), 4.19 (ddd, $J=1.6,4.3,9.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.88(\mathrm{dd}, J=6.9,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.75-7.80$ and $7.85-7.89(4 \mathrm{H}, \mathrm{Phth}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 32.3,41.7,58.7,58.9,67.2,68.4,123.8,131.9,134.7,167.8$. Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{5} .1 / 4 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 60.10 ; \mathrm{H}, 4.86$. Found: C, 59.95; H, 4.69.

$N-\left(2 R^{*}, \mathbf{3 S} *, 4 R^{*}, 5 R^{*}\right.$-Tetraacetoxycyclohex-1R*-yl)phthalimide (土)-138: To a 25 mL round-bottom flask was charged with epoxide $(\pm) \mathbf{- 1 3 7}(137 \mathrm{mg}, 0.498 \mathrm{mmoL})$ and water $(10 \mathrm{~mL})$. To the suspension was added $\mathrm{HClO}_{4}(6 \mathrm{drops})$ and the suspension was heated at reflux. After 20 min of reflux the suspension turned clear. The reflux was continued for another 30 min at which time a colorless solid compound began to separate out. The mixture was stirred for 20 more min, cooled to room temperature and filtered. The colorless solid residue was dried under high vacuum ($86 \mathrm{mg}, 59 \%$). mp $265-267{ }^{\circ} \mathrm{C}$. The crude product was used in the follow step without further characterization. A 25 mL round-bottom flask was charged with tetraol $(70 \mathrm{mg}, 0.24 \mathrm{mmol})$ at room temperature. Acetic anhydride (0.20 mL) was added followed by pyridine $(0.15 \mathrm{~mL})$. The suspension was stirred overnight. The clear reaction mixture was diluted with ethyl acetate (5 mL), quenched with $1 \mathrm{M} \mathrm{HCl}(10 \mathrm{~mL})$ and extracted with ethyl acetate ($10 \mathrm{~mL} \mathrm{X} \mathrm{2)}$. combined extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was purified by column chromatography (hexane-ethyl acetate $=1: 1$) to afford a colorless solid (79 mg, 71\%). mp 67-70 ${ }^{0} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.70-7.86(\mathrm{~m}, 4 \mathrm{H})$, 5.70-5.64 (m, 1H), 5.43-5.38 (narrow m, 2H), 5.36-5.31 (narrow m, 1H), 5.04 (ddd, $J=$
$11.1,4.5,3.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.18 (br t, $J=11.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.02, 2.06, 2.11, 2.17 (m \& OAc, $13 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 20.95,21.0,21.2,27.4,44.8,67.9,68.2,69.3,70.0$, 123.6, 131.7, 134.5, 168.6, 169.7, 170.1, 170.2. Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{10}: \mathrm{C}, 57.26$; H, 5.02. Found: C, 57.15; H, 5.04.

Hydrolysis of epoxide ($\mathbf{\pm}$)-135: To a 25 mL round-bottomed flask was charged epoxide $(\pm) \mathbf{- 1 3 5}(160 \mathrm{mg}, 0.582 \mathrm{mmoL})$ and water $(7 \mathrm{~mL})$. To the suspension was added $\mathrm{H}_{2} \mathrm{SO}_{4}$ (14 drops) and the suspension was heated at reflux. After 30 min the suspension turned clear. The reflux was continued for another 30 min and during which time a colorless solid compound began to separate out. The mixture was stirred for an additional 20 min , cooled to room temperature and filtered. The colorless solid residue was dried under high vacuum ($119 \mathrm{mg}, 70 \%$). $\mathrm{mp} 270-272{ }^{\circ} \mathrm{C}$. The product was used in the next step without further characterization. To a 5 mL round-bottom flask was charged crude tetraol (136 $\mathrm{mg}, 0.464 \mathrm{mmol})$ at room temperature. Acetic anhydride $(0.5 \mathrm{~mL})$ was added followed by pyridine $(0.4 \mathrm{~mL})$. The suspension was stirred overnight. The clear reaction mixture was diluted with ethyl acetate (10 mL) and quenched with 1 M HCl solution $(20 \mathrm{~mL})$. The mixture was extracted with ethyl acetate $(10 \mathrm{~mL} \mathrm{X} \mathrm{2})$ and the combined extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was purified by column chromatography (hexane-ethyl acetate $=1: 1$) to afford a colorless solid ($137 \mathrm{mg}, 70 \%$). The colorless solid was determined to be a mixture of two tetra-acetates by ${ }^{1} \mathrm{H}$ NMR spectroscopy. Slow recrystallization of the mixture (ethyl acetate) gave two crystalline forms, which were manually separated (tweezers) to afford the pure diastereomers.

$N-\left(2 S^{*}, 3 R^{*}, 4 R^{*}, 5 R^{*}-\right.$ Tetraacetoxycyclohex-1R*-yl)phthalimide (\pm)-139: mp 215-217 ${ }^{0} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.85,2.02,2.21(13 \mathrm{H}, 4 \mathrm{Xs}$ and $\mathrm{m}, \mathrm{OAc}), 2.93(\mathrm{dt}, J=$ $2.1,14.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{ddd}, J=4.8,10.5,13.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{dd}, J=2.8,10.7 \mathrm{~Hz}, 1 \mathrm{H})$, 5.51-5.58 (m, 2H), $5.73(\mathrm{dd}, J=9.6,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-7.88(\mathrm{~m} 4 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right.$, $75 \mathrm{MHz}) \delta 20.6,20.8,20.7,21.3,28.7,47.4,67.5,70.4,71.6,71.7,123.8,131.6,134.6$, 168.0, 170.0, 170.1, 170.15, 170.17. Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{10}: \mathrm{C}, 57.26 ; \mathrm{H}, 5.04$. Found: C, 57.18; H, 4.96.

$N-\left(2 S^{*}, \mathbf{3 S} *, 4 S^{*}, 5 R^{*}-T e t r a a c e t o x y c y c l o h e x-1 R *-y l\right) p h t h a l i m i d e ~(\pm)-140: ~ m p ~ 218-~$ $221{ }^{0} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.85(\mathrm{~s}, \mathrm{OAc}, 3 \mathrm{H}), 2.00-2.13(\mathrm{br} \mathrm{d}, J=14.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.15,2.17,2.21$ ($3 \mathrm{Xs}, \mathrm{OAc}, 9 \mathrm{H}$), 2.99 (ddd, $J=3.6,12.5,14.4 \mathrm{~Hz}, 1 \mathrm{H}$), 4.92 (ddd, $J=4.2,10.9,12.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.10-5.13$ (narrow m, 1H), $5.16(\mathrm{dt}, J=1.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.48$ $(\mathrm{dt}, J=1.2,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.87(\mathrm{dd}, J=3.6,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.73-7.90(\mathrm{~m}, 4 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 20.8,21.0,21.1,21.2,29.2,44.5,68.1,68.6,68.7,69.0,123.7,131.7$,
134.5, 168.2, 169.0, 169.7, 169.74, 169.9. Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{10}: \mathrm{C}, 57.3 ; \mathrm{H}, 5.0$. Found: C, 57.17; H, 4.98.

$1 R^{*}-\left(2 R^{*}, 3 S^{*}, 4 R^{*}, 5 R^{*}-\right.$ Tetrahydroxycyclohexyl)ammonium choloride (\pm)-141: To a 25 mL round-bottomed flask was charged tetra-acetate $(\pm) \mathbf{- 1 3 8}(67 \mathrm{mg}, 0.15 \mathrm{mmol})$ and $6 \mathrm{~N} \mathrm{HCl}(4 \mathrm{~mL})$. The mixture was heated at reflux for 4 h . The reaction mixture was dried, re-dissolved in deionized water $(6 \mathrm{~mL})$ and then extracted with ethyl acetate (6 mL X 3). The aqueous solution was concentrated, dried under high vacuum to afford a light yellow solid ($27 \mathrm{mg}, 93 \%$). $\mathrm{mp} 57-60{ }^{0} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CH}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right) \delta 2.00-2.22(\mathrm{~m}$, $2 H), 3.80-3.87(\mathrm{~m}, 1 \mathrm{H}), 3.89-3.95(\mathrm{~m}, 1 \mathrm{H}), 3.97-4.03(\mathrm{~m}, 1 \mathrm{H}), 4.08-4.17(\mathrm{~m}, 2 \mathrm{H})$.

Reaction of (\pm)-119 with DBU: To a stirring solution of the major endoperoxide (\pm)-119 ($690 \mathrm{mg}, 2.68 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ at room temperature was added dropwise $1,8-$ diazabicyclo[5.4.0]undec-7-ene $(0.70 \mathrm{~mL}, 4.03 \mathrm{mmol})$. The mixture was stirred for 15 min , then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, and finally neutralized with amberlite IRC-76. The mixture was filtered and the filtrate concentrated and applied to a column of silica. Elution (hexane-ethyl acetate $=1: 1$) gave the 5-phthalimidocyclohexenone $(\pm) \mathbf{- 1 4 2}$ as a
colorless compound ($278 \mathrm{mg}, 40 \%$). Further elution gave a mixture of epimeric 6phthalimidocyclohexenone (\pm) - $\mathbf{1 4 4}$ and $(\pm) \mathbf{- 1 4 3}$ as a colorless solid ($155 \mathrm{mg}, 24 \%$).

N-(2S*-Hydroxy-5-oxo-3-cyclohexene-1S*-yl)phthalimide (土)-142: mp $175-177{ }^{0} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 2.67(\mathrm{dd}, J=4.8,16.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{dd}, J=13.6,16.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.65(\mathrm{ddd}, J=4.8,10.0, \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{br} \mathrm{d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{~d}, J=10.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.02(\mathrm{dd}, J=1.6,10.3 \mathrm{~Hz}, 1 \mathrm{H}) 7.78-7.89\left(\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}, 4 \mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75\right.$ $\mathrm{MHz}) \delta 40.2,53.6,67.7,123.8,129.6,131.8,134.8,152.4,168.5,196.4$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{4}$: C, 65.36; H, 4.31. Found: C, 65.01, H, 4.31.
N-(5-Hydroxy-2-oxo-3-cyclohexen-1-yl)phthalimide (\pm)-143/(\pm)-144. mp $192-195{ }^{\circ} \mathrm{C}$; $\delta\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right) 2.51-2.43(\mathrm{~m}, 1 \mathrm{H}), 2.81(\mathrm{td}, J=14.4,11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.84-4.75(\mathrm{~m}$, $1 \mathrm{H}), 4.98(\mathrm{dd}, J=14.6,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.09(\mathrm{dd}, J=10.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=10.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.96-7.78(\mathrm{~m}, 4 \mathrm{H})$ and $\delta\left(\right.$ partial, $\left.\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right) 2.26(\mathrm{br} \mathrm{d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.02(\mathrm{dt}, J=13.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.60-4.58(\mathrm{~m}, 1 \mathrm{H}), 5.35(\mathrm{dd}, J=13.2,4.8 \mathrm{~Hz}, 1 \mathrm{H})$.

N-(2R*,5R*-Dihydroxy-3-cyclohexene-1S*-yl)phthalimide(\pm)-146: To a stirring solution of the major cyclohexenone $(\pm) \mathbf{- 1 4 2}(270 \mathrm{mg}, 1.05 \mathrm{mmol})$ in methanol $(22 \mathrm{~mL})$ at room temperature was added $\mathrm{CeCl}_{3} .7 \mathrm{H}_{2} \mathrm{O}(0.391 \mathrm{gm}, 1.05 \mathrm{mmol})$ followed by solid $\mathrm{NaBH}_{4}(80 \mathrm{mg}, 2.1 \mathrm{mmol})$. The reaction mixture was stirred for 45 min and then quenched with water $(10 \mathrm{~mL})$. The mixture was concentrated under vacuum to removed methanol. The concentrated mixture was diluted with water (20 mL) and then extracted with ethyl acetate ($20 \mathrm{~mL} \mathrm{X} \mathrm{5)}$. NaHCO_{3} and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The solution was concentrated and dried under high vacuum to afford a colorless solid ($167 \mathrm{mg}, 61 \%$). mp $187-190{ }^{0} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right.$, $400 \mathrm{MHz}) \delta 2.09-2.15(\mathrm{~m}, 1 \mathrm{H}), 2.46(\mathrm{ddd}, J=10.0,12.0,13.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{ddd}, J=$ $3.0,9.2,13.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.39-4.46(\mathrm{~m}, 1 \mathrm{H}), 4.85-4.95(\mathrm{~m}, 1 \mathrm{H}), 5.73(\mathrm{td}, J=1.6,10.4 \mathrm{~Hz}$, $1 \mathrm{H}), 5.78(\mathrm{dq}, J=1.9,10.4, \mathrm{~Hz}, 1 \mathrm{H}), 7.78-7.89(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}, 75\right.$ $\mathrm{MHz}) \delta 36.8,54.5,67.5,67.7,123.7,131.8,133.1,134.0,135.0,169.0$. Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{4}$: C, 64.86; H, 5.05. Found: C, 64.93; H, 5.27.

$N-\left(2 R^{*}, 5 S^{*}\right.$-Dihydroxycyclohex-1S*-yl)phthalimide (\pm)-147: To a Parr apparatus was charged olefin $(\pm)-146(56 \mathrm{mg}, 0.22 \mathrm{mmol})$, methanol $(10 \mathrm{~mL})$ and 10% of $\mathrm{Pd} / \mathrm{C}(\mathrm{ca} .5$ mg) catalyst. The mixture was stirred at room temperature under hydrogen (40 psi) for 5 h. The reaction mixture was filtered through celite and the filtrate was concentrated and applied to a wet column of silica. Elution (100\% ethyl acetate) gave a colorless compound ($36 \mathrm{mg}, 64 \%$). mp $243-245{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 300 \mathrm{MHz}\right) \delta 1.38-1.55(\mathrm{~m}$, $2 \mathrm{H}), 1.93-2.18(\mathrm{~m}, 3 \mathrm{H}), 2.25(\mathrm{q}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.64-3.76(\mathrm{~m}, 1 \mathrm{H}), 4.02(\mathrm{ddd}, J=4.4$, $9.3,13.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.21-4.31(\mathrm{~m}, 1 \mathrm{H}), 7.78-7.90(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 75 \mathrm{MHz}\right) \delta$ $32.4,34.3,38.2,55.9,69.6,70.0,124.1,133.4,135.4,170.1$. Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{4}$: C, 64.36; H, 5.79. Found: C, 64.01; H, 5.76.

$N-\left(2 S^{*}, 3 S^{*}, 4 R^{*}, 5 S^{*}-T e t r a a c e t o x y c y c l o h e x-1 R^{*}-y l\right) p h t h a l i m i d e \quad(\pm)-148 \quad$ and $N-$ (2S*, 3R*,4S*,5S*-Tetraacetoxycyclohex-1R*-yl)phthalimide (土)-149: To a stirring solution of olefin $(\pm)-\mathbf{1 4 6}(160 \mathrm{mg}, 0.620 \mathrm{mmol})$ in acetone $(4 \mathrm{~mL})$ was added a solution of N-methylmorpholine N-oxide ($0.150 \mathrm{gm}, 1.24 \mathrm{mmol}$) in water $(0.8 \mathrm{~mL})$ followed by a solution of OsO_{4} in toluene ($0.4 \mathrm{~mL}, 10 \mathrm{~mol} \%$). The reaction mixture was stirred at room temperature for 30 h and then solid $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}(0.10 \mathrm{gm}, 0.62 \mathrm{mmol})$ was added and stirred for another 30 min . The crude reaction mixture was adsorbed on silica and then layered
onto a column of silica gel. Elution (ethyl acetate-methanol $=9: 1$) gave a colorless mixture of two tetraols ($82 \mathrm{mg}, 45 \%$). To a round-bottom flask was charged the mixture of tetraols ($82 \mathrm{mg}, 0.27 \mathrm{mmol}$) and acetic anhydride $(0.6 \mathrm{~mL})$ at room temperature. To the stirring mixture pyridine $(0.4 \mathrm{~mL})$ was added dropwise and the mixture was stirred overnight. The reaction mixture was diluted with ethyl acetate $(6 \mathrm{~mL})$ and quenched with aqueous $\mathrm{HCl}(1 \underline{\mathrm{M}}, 7 \mathrm{~mL})$ solution. The aqueous layer was extracted with ethyl acetate (6 $\mathrm{mL} \mathrm{X} 3)$. The combined ethyl acetate layers were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was re-dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and applied to a column of wet silica gel. Elution (hexane-ethyl acetate $=1: 1$) gave a colorless mixture of two tetraacetates (104 mg, 82\%). Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{10}: \mathrm{C}, 57.26 ; \mathrm{H}, 5.02$. Found: C, 57.27; H, 5.3. mp $150-160{ }^{0} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta$ (mixture) $2.56(\mathrm{dt}, J=$ $12.9,10.9 \mathrm{~Hz}, 0.45 \mathrm{H}), 3.14(\mathrm{q}, J=12.7 \mathrm{~Hz}, 0.55 \mathrm{H}), 4.40(\mathrm{ddd}, J=13.6,10.4,4.8 \mathrm{~Hz}$, $0.55 \mathrm{H}), 4.77(\mathrm{ddd}, J=13.4,11.0,4.8 \mathrm{~Hz}, 0.45 \mathrm{H}), 5.04(\mathrm{ddd}, J=12.0,4.4,2.0 \mathrm{~Hz}$, $0.55 \mathrm{H}), 5.07(\mathrm{dd}, J=10.4,2.8 \mathrm{~Hz}, 0.55 \mathrm{H}), 5.24-5.22(\mathrm{dd}, J=10.2,2.6 \mathrm{~Hz}, 0.45 \mathrm{H}), 5.33$ $(\mathrm{m}, 0.45 \mathrm{H}), 5.63$ (narrow m, 0.55 H$), 5.71(\mathrm{t}, J=2.8 \mathrm{~Hz}, 0.45 \mathrm{H}), 5.77(\mathrm{dd}, J=11.0,2.6$ $\mathrm{Hz}, 0.45 \mathrm{H}), 5.92(\mathrm{t}, J=10.4 \mathrm{~Hz}, 0.55 \mathrm{H}), 7.88-7.70(\mathrm{~m}, 4 \mathrm{H})$.

Rearrangement of major endoperoxide ($\mathbf{\pm} \mathbf{)} \mathbf{- 1 1 9}$ with Grubb's catalyst. In a 10 mL round-bottomed flask, major endoperoxide (\pm)-119 ($50 \mathrm{mg}, 0.19 \mathrm{mmol}$) was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$ at room temperature. To the stirring solution Grubb's II catalyst ($1.6 \mathrm{mg} 10 \mathrm{~mol} \%$) was added and the mixture was stirred for 30 min . The mixture was concentrated under reduced pressure. Analysis of the crude product by ${ }^{1} \mathrm{H}$ NMR indicated this to be a mixture of $(\pm) \mathbf{- 1 5 3}: \mathbf{1 5 1}: \mathbf{1 5 0}:(\pm) \mathbf{- 1 5 2}$ ratio $=3: 1.5: 2: 1$. Separation of
the mixture by column chromatography (hexane-ethyl acetate $=10: 1$ to $1: 4$) gave colorless solid 151 ($8 \mathrm{mg}, 24 \%$). oxetane ($7 \mathrm{mg}, 14 \%$) and diepoxide (29%)

N-Vinylphthalimide (151): mp $84-86{ }^{0} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 5.06(\mathrm{~d}, J=$ $10.3 \mathrm{~Hz} 1 \mathrm{H}), 6.10(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{dd}, J=9.9,16.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{dd}, J=3.5$, $5.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.89(\mathrm{dd}, J=3.4,5.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3} 75 \mathrm{MHz}\right) \delta 104.8,123.9$, $124.0,131.8,134.9,166.7$. This spectral data are consistent with the literarute values. ${ }^{50}$

Oxetane (土)-152: (7 mg, 14\%); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 3.04(\mathrm{td}, J=8.0,12.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.82(\mathrm{ddd}, J=4.6,7.6,12.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{dd}, J=7.2,11.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.33(\mathrm{q}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{ddd}, J=1.2,5.0,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{ddd}, J=0.8,6.8,11.5 \mathrm{~Hz} 1 \mathrm{H})$, 7.78-7.80 (m, 2H), 7.92-7.94 (m 2H), $10.15(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75\right.$ $\mathrm{MHz}) \delta 33.8,74.9,77.8,123.9,129.8,131.9,134.9,150.5,167.4,191.3$.

N-(2,4-Cyclohexadien-1-yl)phthalimide bisepoxide (\pm)-153: (14 mg, 29\%); mp 205$207{ }^{0} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 2.13(\mathrm{ddd}, J=2.6,6.6,15.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{ddd}, J$ $=2.4,9.2,14.8 \mathrm{~Hz} 1 \mathrm{H}), 3.26(\mathrm{dd}, J=2.6,3.8, \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{td}, J=2.4,4.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.54-3.56(\mathrm{~m}, 1 \mathrm{H}), 3.58-3.60(\mathrm{~m}, 1 \mathrm{H}), 4.59(\mathrm{ddd}, J=2.4,6.8,9.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.75-7.77$ (AA'BB'. 2H), 7.86-7.88 (AA'BB' 2 H$) ;{ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 26.0,43.5,47.3$, 49.3, 49.7, 50.7, 123.7, 131.9, 134.6, 168.0. Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{4}: \mathrm{C}, 65.36$; H , 4.31. Found: C, 65.15; H, 4.36.

N-(2,3-Epoxy-4R*,5S*-dihydroxycyclohex-1R*-yl)phthalimide (土)-154: In a 10 mL round-bottom flask, endoperoxide $(\pm) \mathbf{- 1 1 9}(150 \mathrm{mg}, 0.584 \mathrm{mmol})$ was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ at room temperature. To the stirring solution Grubb's II catalyst (50 mg $10 \mathrm{~mol} \%)$ was added and the mixture was stirred for 30 min . The mixture was concentrated under reduced pressure and applied to a wet (hexane) column of silica. The column was eluted with ethyl acetate and hexane mixture (1:4) for a while and then left to
stand overnight. Further elution, (100% ethyl acetate) gave a colorless solid (40 mg , $26 \%) . \mathrm{mp} 215-218{ }^{0} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CH}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right) \delta 1.81-1.91(\mathrm{~m}, 1 \mathrm{H}), 1.98(\mathrm{q}, J=$ $12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{dd}, J=1.5,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{dd}, J=1.5,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{ddd}, \mathrm{J}$ $=3.6,8.4,12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{dd}, J=1.5,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{dd}, J=6.9,11.4 \mathrm{~Hz}, 1 \mathrm{H})$, 7.78-7.90 (m, 4H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CH}_{3} \mathrm{OD}, 75 \mathrm{MHz}\right) \delta 35.3,46.6,58.8,59.8,68.3,74.8$, 124.4, 133.3, 135.8, 169.1. FAB-HRMS m/z 276.0875 (Calcd. for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{NO}_{5}(\mathrm{M}+\mathrm{H})$ $\mathrm{m} / \mathrm{z} 276.0872$). Hydrolysis of this epoxide in a fashion similar to that previously describe gave $N-\left(2 S^{*}, 3 \mathrm{R}^{*}, 4 \mathrm{~S}^{*}, 5 \mathrm{R}^{*}\right.$-tetrahydroxycyclohex-1 S^{*}-yl)phthalimide (74\%).

3-Phenyl-7-phthalimido-2-oxa-3-azabicyclo[2.2.2]oct-5-ene (土)-158: In a 25 mL round-bottom flask, nitrosobenzene $(220 \mathrm{mg}, 2.04 \mathrm{mmol})$ was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8$ $\mathrm{mL})$ at room temperature under nitrogen. Diene $(\pm) \mathbf{- 1 1 8}(230 \mathrm{mg}, 1.02 \mathrm{mmol})$ was added in one portion and the mixture was stirred for 2 h . The reaction mixture was concentrated under reduced pressure. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane-ethyl acetate $=4: 1)$ to afford a colorless solid $(224 \mathrm{mg}, 67 \%) . \mathrm{mp}=148-151{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 2.59(\mathrm{td}, J=3.6,13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{ddd}, J=3.2,9.6$, $13.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.63-4.67(\mathrm{~m}, 1 \mathrm{H}), 4.90(\mathrm{td}, J=4.0,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{dt}, J=1.6,5.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.38$ (ddd, $J=1.8,6.4,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.53$ (ddd, $J=1.6,5.6,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{t}, J=$
$7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{t}, J=7.6, \mathrm{~Hz}, 2 \mathrm{H}), 7.70-7.84(\mathrm{~m}, 4 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 27.6,48.2,57.1,69.4,117.7,122.5,123.3,128.4,128.7$, 131.7, 132.6, 134.3, 151.8, 168.5. Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 72.28; H, 4.85; N, 8.43. Found: C, $72.11, \mathrm{H}, 4.89, \mathrm{~N}, 8.46$.

$N-\left[\left(1 S^{*}, 2 S^{*}, 5 S^{*}\right)\right.$-2-Hydroxy-5-(phenylamino)cyclohex-3-enyl]phthalimide (土)-159:
To a stirring solution of olefin $(\pm) \mathbf{- 1 5 8}(200 \mathrm{mg}, 0.600 \mathrm{mmol})$ in a mixture of $\mathrm{CH}_{3} \mathrm{CN}(8$ $\mathrm{mL})$ and water $(0.7 \mathrm{~mL})$ was added $\mathrm{Mo}(\mathrm{CO})_{6}(158 \mathrm{mg}, 0.600 \mathrm{mmol})$ and the mixture was heated at reflux for 1 h . The reaction mixture was concentrated under reduced pressure and applied to a column of silica. Elution (hexane-ethyl acetate $=1: 1$) gave a light yellow foamy solid ($90 \mathrm{mg}, 45 \%$). mp $73-75{ }^{0} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right) \delta 2.05$ (br d, $J=$ $13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{dt}, J=4.8,13.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.39(\mathrm{ddd}, J=3.4,9.8,13.2$ $\mathrm{Hz} 1 \mathrm{H}), 4.84(\mathrm{dd}, J=1.4,9.8, \mathrm{~Hz}, 1 \mathrm{H}), 5.82-5.95(\mathrm{~m}, 2 \mathrm{H}), 6.64(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.71$ $(\mathrm{d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{dd}, J=7.0,8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.65-7.80(\mathrm{~m}, 4 \mathrm{H}){ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right.$, $100 \mathrm{MHz}) \delta 29.9,48.0,51.268 .4,113.3,117.9,123.4,128.4,129.6,131.9,133.8,134.2$, 146.7, 169.0. FAB-HRMS m/z 334.1321 (calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3}(\mathrm{M}+) \mathrm{m} / \mathrm{z} 334.1317$).

$N-\left[\left(1 S^{*}, 2 R^{*}, 3 R^{*} 4 R^{*}, 5 S^{*}\right)-2,3,4-T r i h y d r o x y-5-p h e n y l a m i n o\right)$ cyclohexyl]phthalimide

$\mathbf{(\pm) - 1 6 0}$: To a stirring solution of olefin $(\pm) \mathbf{- 1 5 9}(50 \mathrm{mg}, 0.15 \mathrm{mmol})$ in acetone $(0.8 \mathrm{~mL})$ was added a solution of N-methylmorpholine N-oxide ($30.0 \mathrm{mg}, 0.230 \mathrm{mmol}$) in water $(0.3 \mathrm{~mL})$ followed by a solution of OsO_{4} in toluene $(0.1 \mathrm{~mL}, 10 \mathrm{~mol} \%)$. The reaction mixture was stirred for 15 h at room temperature and then $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}(26 \mathrm{mg})$ was added and stirred for another 30 min . The reaction mixture was concentrated under reduced pressure and applied to a column of silica. Elution (hexane-ethyl acetate $=1: 4$) gave a colorless solid ($18 \mathrm{mg}, 33 \%$). $\mathrm{mp} 253-255{ }^{0} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}, 300 \mathrm{MHz}\right) \delta 1.78(\mathrm{br}$ d, $J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{dt}, J=3.9,13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.70-3.78(\mathrm{~m}$ and $\mathrm{dd} J=2.7,9.3, \mathrm{~Hz}$, $2 \mathrm{H}), 4.11$ (narrow $\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{ddd}, J=4.2,10.8,13.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J=$ 9.6, 10.2 Hz, 1H), $6.62(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{dd}, J=7.5,8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.76-7.83(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}, 75 \mathrm{MHz}\right) \delta 28.1,51.6,53.3,69.9$, 71.9, 73.7, 113.6, 117.4, 123.7, 129.8, 132.7, 135.1, 148.6, 168.8. FAB-HRMS m/z 369.1447 (calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{M}+\mathrm{H}) \mathrm{m} / \mathrm{z} 369.1450$).

N-[(1S*,2S*,5R*)-2-Hydroxy-5-(phenylamino)cyclohexyl]phthalimide (土)-161: In a hydrogenation container olefin (\pm) - $\mathbf{1 5 8}(0.3 \mathrm{~g}, 0.9 \mathrm{mmol})$ was dissolved in methanol (30 mL) at room temperature. To the reaction mixture was added an aqueous slurry of Raney$\mathrm{Ni}(0.5 \mathrm{~mL})$ catalyst and the mixture was stirred under hydrogen (40 psi) for 4 h . The reaction mixture was filtered through celite and concentrated under reduced pressure. The residue was re-dissolved in ethyl acetate, adsorbed to silica and then applied to a column of silica. Elution (hexane-ethyl acetate $=1: 1$) gave a light yellow solid ($225 \mathrm{mg}, 74 \%$). mp 242-245 ${ }^{0} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right) \delta 1.74-2.05(\mathrm{~m}, 5 \mathrm{H}), 2.51(\mathrm{dt}, J=3.6$, $13.1 \mathrm{~Hz} 1 \mathrm{H}), 3.80(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.27-4.40(\mathrm{~m}, 2 \mathrm{H}), 6.59(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 2 \mathrm{H}), 7.09(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}) 7.74-7.83(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}\right) \delta$ $29.4,30.3,33.4,54.1,70.3,114.6,118.1,124.1,130.2,133.5,135.3,149.2,170.4$, one signal obscured by solvent. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 71.41; H, 5.99. Found: C, 71.50; H, 6.04.

(\pm)-162: A round-bottomed flask was charged with diamino alcohol (\pm)-161 $(50.0 \mathrm{mg}$, $0.148 \mathrm{mmol})$ and $6 \mathrm{~N} \mathrm{HCl}(3 \mathrm{~mL})$. The mixture was heated at reflux for 15 h . The reaction
mixture was dried, redissolved in deionized water (6 mL) and then extracted with ethyl acetate (5 X 3 mL). The aqueous solution was concentrated and dried under high vacuum to afford a colorless foamy solid ($43 \mathrm{mg}, 100 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right) \delta 1.62-$ $1.89(\mathrm{~m}, 5 \mathrm{H}), 2.16-2.26(\mathrm{~m}, 1 \mathrm{H}), 3.35-3.43(\mathrm{~m}, 1 \mathrm{H}), 3.50-3.58(\mathrm{~m}, 1 \mathrm{H}), 3.76-3.83(\mathrm{~m}$, 1H), 7.35-7.46 (m, 5H); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}, 75 \mathrm{MHz}\right) \delta 24.8,28.3,29.4,52.3,59.3,69.4$, 125.1, 131.4, 131.7, 134.9.

3-Phenyl-7-phthalimido-2-oxa-3-azabicyclo[2.2.2]oct-5-ene-5,6-diol (土)-163: To a stirring solution of olefin $(\pm) \mathbf{- 1 5 8}(70 \mathrm{mg}, 0.21 \mathrm{mmol})$ in acetone $(2.5 \mathrm{~mL})$ was added a solution of N-methylmorpholine N-oxide ($73 \mathrm{mg}, 0.62 \mathrm{mmol}$) in water $(0.5 \mathrm{~mL}$) followed by a solution of OsO_{4} in toluene $(0.2 \mathrm{~mL}, 15 \mathrm{~mol} \%)$. The reaction mixture was stirred for 10 h at room temperature and then $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}(52 \mathrm{mg})$ was added and stirred for another 30 min. The mixture was concentrated and adsorbed to silica using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. This was layered onto a silica gel column. Elution (hexane-ethyl acetate $=1: 1$) gave a colorless solid ($63 \mathrm{mg}, 81 \%$). $\mathrm{mp} 183-186{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 2.29$ (ddd, $J=4.8$, $11.6,14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{ddd}, J=1.2,7.6,14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH})$, $3.71(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 3.98-4.13(\mathrm{~m}, 2 \mathrm{H}), 4.34(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{dt}, J=$
$3.2,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{ddd}, J=4.0,8.0,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{dd}, J=7.2,8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.73-7.86(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100\right.$ $\mathrm{MHz}) \delta 19.7,45.0,59.5,64.1,66.0,76.6,116.1,122.8,123.8,129.4,131.5,134.7,149.8$, 168.6. Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{5} .0 .6 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 63.69$; H, 5.13. Found: C, 63.66 ; H, 4.93.

$N-\left[\left(1 S^{*}, 2 R^{*}, 3 S^{*}, 5 S^{*}\right)-2,3,4-T r i h y d r o x y-5-(p h e n y l a m i n o) c y c l o h e x y l\right] p h t h a l i m i d e(\pm)-$ 164: In a hydrogenation container, diol $(\pm)-163(0.160 \mathrm{~g}, 0.437 \mathrm{mmol})$ was dissolved in methanol (30 mL) at room temperature. To the reaction mixture, aqueous slurry of Raney-Ni (0.3 mL) catalyst was added and the mixture was stirred under hydrogen (40 psi) for 2 h . The reaction mixture was filtered through celite. The filtrate was concentrated, adsorbed to silica gel and then applied to a column of silica. Elution (100% ethyl acetate) gave a colorless solid ($91 \mathrm{mg}, 57 \%$). mp 233-235 ${ }^{0} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right.$, $400 \mathrm{MHz}), \delta 2.03(\mathrm{td}, J=3.8,13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{dt}, J=3.2,13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{dd}, J=$ $3.0,4.3, \mathrm{~Hz}, 1 \mathrm{H}), 3.99-4.03(\mathrm{~m}, 1 \mathrm{H}), 4.21(\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{dd}, J=2.6,10.8, \mathrm{~Hz}$, $1 \mathrm{H}), 4.64(\mathrm{ddd}, \mathrm{J}=3.8,10.8,13.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.08(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.75-7.83(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}\right) \delta 30.1$,
$48.3,54.9,70.2,70.7,76.4,114.2,117.9,124.1,130.3,133.4,135.4,149.4,170.3$. FABHRMS m/z 369.1448 (Calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{M}+\mathrm{H}) \mathrm{m} / \mathrm{z} 369.1450$)

$\mathbf{(\pm) - 1 6 5}$: In a 10 mL round-bottomed flask was charged triol $(\pm) \mathbf{- 1 6 4}(35.0 \mathrm{mg}, 0.095$ $\mathrm{mmol})$ and $6 \underline{\mathrm{~N}} \mathrm{HCl}(3 \mathrm{~mL})$. The mixture was heated at reflux for 15 h . The reaction mixture was dried re-dissolved in deionized water (6 mL) and then extracted with ethyl acetate (5 mL X 3). The aqueous solution was concentrated, dried under high vacuum to afford a colorless solid ($17 \mathrm{mg}, 57 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 300 \mathrm{MHz}\right), \delta 1.74-1.89(\mathrm{~m}$, $1 \mathrm{H}), 2.20(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.56-3.69(\mathrm{~m}, 2 \mathrm{H}), 3.87-3.94(\mathrm{~s}, 1 \mathrm{H}), 3.98-4.04(\mathrm{~s}, 1 \mathrm{H})$, 4.13-4.18 (s, 1H), 7.48-7.61 (m, 5H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 75 \mathrm{MHz}\right) \delta 26.4,47.8,65.4$, 68.5, 71.9, 74.9, 125.0, 131.1, 131.7, 136.4.

3-Mandeloyl-7-phthalimido-2-oxa-3-azabicyclo[2.2.2]oct-5-enes (\pm)-167: To a rapidely stirring solution of $(\pm)-118(0.600 \mathrm{~g}, 2.67 \mathrm{mmol})$ and $\mathrm{NaIO}_{4}(0.683 \mathrm{~g}, 3.19$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, $\mathrm{DMF}(10 \mathrm{~mL})$ and water $(5 \mathrm{~mL})$ was added, over a period of 45 min , a solution of (\pm)-mandelohydroxamic acid $(0.441 \mathrm{~g}, 2.64 \mathrm{mmol})$ in DMF (10 mL). The mixture was stirred for an additional 3 h , then poured into water and extracted several times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane-ethyl acetate, 1:1) to afford a colorless solid ($0.795 \mathrm{~g}, 77 \%$). From ${ }^{1} \mathrm{H}$ NMR, mixture of $(\pm)-\mathbf{1 6 7},(\pm) \mathbf{- 1 6 8}$ and $(\pm)-\mathbf{1 6 9}$ (5:3:2). Recrystallization (MeCN) of two batches gave (\pm)-167 (0.513 g, 25\%). mp 160-162 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.49$ (ddd, J $=2.7,4.5,13.5,1 \mathrm{H}), 2.60(\mathrm{ddd}, J=3.3,9.0,13.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.73$ $(\mathrm{t}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{td}, J=4.5,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.25-5.36(\mathrm{~m}$ and d, $J=6.6 \mathrm{~Hz}, 2 \mathrm{H}$ total), $5.79(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.30(\mathrm{~m}, 5 \mathrm{H}), 7.65-7.80$ (m, 4 H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=26.6,47.6,48.6,71.6,71.8,123.5,127.8$, $128.08,128.12,128.2,131.4,134.47,134.51,137.5,168.1,173.1$. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{5}: \mathrm{C}, 67.69 ; \mathrm{H}, 4.64$. Found: C, 67.48; H, 4.65.
(7S)-3-[(R)-Mandeloyl]-7-phthalimido-2-oxa-3-azabicyclo[2.2.2]oct-5-ene [(+)-167]: Reaction of $(\pm)-118(0.300 \mathrm{~g}, 1.33 \mathrm{mmol})$ with the nitrosoacyl generated from (R) mandelohydroxamic acid $(0.212 \mathrm{~g}, 1.27 \mathrm{mmol})$ was carried out in a fashion similar to the typical procedure for 14-16 using (\pm)-mandelohydroxamic acid. Purification of the residue by column chromatography (silica gel, hexanes-EtOAc, 1:1) gave a colorless solid (0.316 g, 62\%). Recrystallization (MeCN) gave (+)-167 (57 mg, 11\%); mp 180-183 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}=+126.5\left(\mathrm{c} 0.429, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. The 'H NMR spectrum of this product was identical to that of the racemic compound.

Reaction of 3-Mandeloyl-7-phthalimido-2-oxa-3-azabicyclo[2.2.2]oct-5-ene with Acetic Anhydride(\pm)-168*: To a mixture of $\mathbf{(\pm) - 1 6 7 ,}(\pm) \mathbf{- 1 6 8}$, and (\pm) - $\mathbf{1 7 9}(80 \mathrm{mg}, 0.20$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$, at r.t. was added dropwise pyridine $(0.10 \mathrm{~mL}, 1.0 \mathrm{mmol})$ followed by $\mathrm{Ac}_{2} \mathrm{O}(0.10 \mathrm{~mL}, 1.1 \mathrm{mmol})$. The mixture was stirred for 12 h , diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and quenched with 1 M HCl . The mixture was extracted several times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the combined extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. Purification of the residue by preparative TLC (hexane-EtOAc $=7: 3$) gave
$(\pm)-\mathbf{1 6 8 *}(17 \mathrm{mg}, 19 \%)$ as a colorless oil, followed by a mixture of $(\pm)-\mathbf{1 6 7 *}$ and $(\pm)-\mathbf{1 6 9 *}$ (ca. 8:3 ratio, $39 \mathrm{mg}, 41 \%$) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.16(\mathrm{~s}, 3 \mathrm{H})$, 2.38-2.43 (m, 2 H), 4.47-4.55 (m, 1 H), 5.00-5.05 (m, 1 H), 5.33-5.38 (br s, 1 H), 6.13 (s, $1 \mathrm{H}), 6.55(\mathrm{brt}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{br} \mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.55(\mathrm{~m}, 5 \mathrm{H}), 7.70-$ $7.80(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}) δ 20.9, 26.9, 47.3, 48.9, 72.2, 73.7, 123.5, $128.4,128.5,128.9,129.2,131.5,134.3,134.5,135.0,168.2,170.7$; one CO signal not observed.HRMS (ESI): $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{NaO}_{6}$: 455.1219; found: 455.1216.

(2R*)-2-Hydroxy-N-[(1R*,4R*,5R*)-4-hydroxy-5-phthalimidocyclohex-2-enyl]-2phenylacetamide ($\mathbf{\pm} \mathbf{) - 1 7 0 :}$ To a flame dried 10 mL Schlenk flask under nitrogen at room temperature was charged titanocene dichloride ($93 \mathrm{mg}, 0.38 \mathrm{mmol}$), activated zinc dust $(50 \mathrm{mg}, 0.75 \mathrm{mmol})$ and freshly distilled THF $(1.2 \mathrm{~mL})$. The mixture was stirred for 45 \min. The mixture turned red to olive green. The green mixture was cooled to $-30^{\circ} \mathrm{C}$ and to the cooled mixture was added a solution of $(\pm) \mathbf{- 1 6 7}(60 \mathrm{mg}, 0.15 \mathrm{mmol})$ in methanol $(1.5 \mathrm{~mL})$. The reaction mixture was stirred for 1 h maintaining the temperature between 15 to $-30{ }^{\circ} \mathrm{C}$. The reaction mixture was warmed to room temperature and quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ solution. The whole mixture was filtered through celite and aqueous
layer was extracted with ethyl acetate (3 X 5 mL). The combined ethyl acetate extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated and applied to a column of silica. Elution (100% ethyl acetate) gave a colorless solid ($40 \mathrm{mg}, 66 \%$). $\mathrm{mp}=223-225{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right) \delta 1.75(\mathrm{tdd}, J=1.6,3.2,14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{dt}, J=4.8,14.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.40(\mathrm{ddd}, \mathrm{J}=3.1,9.4,13.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.49-4.54(\mathrm{~m}, 1 \mathrm{H}), 4.98(\mathrm{~s}, 1 \mathrm{H}), 5.75-5.81$ (m, 1H), $5.94(\mathrm{br} \mathrm{d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.45(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.74-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.81-7.84(\mathrm{~m}, 2 \mathrm{H})$, one signal obscured by solvent; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}\right) \delta 32.4,45.8,52.1,67.9,75.8,124.2,127.4,128.4$, $129.4,129.7,133.4,135.6,136.5,141.8,170.1,175.2 ; \operatorname{HRMS}(E S I): m / z[\mathrm{M}+\mathrm{Na}]^{+}$ calcd for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{NaO}_{5}$: 415.1270; found: 415.1274.

(2R)-2-Hydroxy-N-[(1R,4R,5R)-4-hydroxy-5-phthalimidocyclohex-2-enyl]-2-
phenylacetamide (-)-170: The reduction of $(+) \mathbf{- 1 6 7}(50 \mathrm{mg}, 0.13 \mathrm{mmol})$ in methanol (1.5 mL) with titanium was carried out in a fashion similar to the reduction of $(\pm)-167$. Purification by column chromatography (100% ethyl acetate) gave a colorless foamy solid (27 mg, 54\%). $\mathrm{mp}=193-195^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}=-106(\mathrm{c} 0.270, \mathrm{MeOH})$; The ${ }^{1} \mathrm{H}$ NMR spectrum was identical to the racemic compound.

(2R*)-2-Hydroxy- N-[(1S*,4R*,5R*)-4-hydroxy-5-phthalimidocyclohexyl]-2-

phenylacetamide (\pm)-171: To a parr apparatus was charged olefin (\pm) - $\mathbf{1 7 0}(30 \mathrm{mg}, 0.077$ $\mathrm{mmol})$, methanol (6 mL) and 10% of $\mathrm{Pd} / \mathrm{C}(\mathrm{ca} .2 .5 \mathrm{mg})$ catalyst. The mixture was stirred at room temperature under hydrogen (40 psi) for 2 h . The reaction mixture was filtered through celite. The filtrate was concentrated and applied to a column of silica. Elution $\left(100 \%\right.$ ethyl acetate) gave a colorless solid ($23 \mathrm{mg}, 76 \%$). $\mathrm{mp}=150-152{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 300 \mathrm{MHz}\right) \delta 1.50-2.05(\mathrm{~m}, 6 \mathrm{H}), 2.43(\mathrm{dt}, J=3.0,12.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.04-4.34(\mathrm{~m}$, $3 \mathrm{H}), 5.03$ (br s, 1H), 7.23-7.51 (5H, Ar), 7.71-7.84 (m, 4H, Ar), one signal obscured by the solvent; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 75 \mathrm{MHz}\right) \delta 29.0,30.7,33.3,46.4,54.1,69.7,75.6,124.1$, $128.4,129.4,129.8,133.4,135.4,141.8,170.2,175.1 . \operatorname{HRMS}(E S I): m / z[M+\mathrm{Na}]^{+}$ calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{NaO}_{5}: 417.1426$; found 417.1422

(2R)-2-Hydroxy- N-[(1S,4R,5R)-4-hydroxy-5-phthalimidocyclohexyl]-2-

phenylacetamide (-)-171: The reduction of (-)-170 ($25 \mathrm{mg}, 0.064 \mathrm{mmol})$ with H_{2} in the presence of $10 \% \mathrm{Pd} / \mathrm{C}$ was carried out in a fashion similar to the reduction of $(\pm)-170$. Purification by column chromatography (100% ethyl acetate) gave colorless oil (20 mg , $80 \%) \cdot[\alpha]_{\mathrm{D}}=-84(\mathrm{c} 0.20, \mathrm{MeOH}) ;$ The ${ }^{1} \mathrm{H}$ NMR spectral data was identical to the racemic compound.

Tricarbonyl $\left(\boldsymbol{\eta}^{4}\right.$-cyclooctatetraene)iron(0) (7): To a 500 mL round-bottomed flask was added cyclooctatetraene $(5.0 \mathrm{~mL}, 48 \mathrm{mmol})$ dissolved in benzene (200 mL). Iron pentacarbonyl ($14 \mathrm{~mL}, 96 \mathrm{mmol}$) was added followed by the addition of trimethylamine N -oxide dihydrate ($21.33 \mathrm{~g}, 191.9 \mathrm{mmol}$). The reaction mixture was heated at reflux for 2 h then filtered and concentrated. The solid residue was washed several times with
benzene and the washings were filtered and concentrated. The deep-brownish residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane-ethyl acetate $\left.=20: 1\right)$ to afford a deep brown crystal like solid $(9.83 \mathrm{~g}, 100 \%)$. $\mathrm{mp} 82-86^{\circ} \mathrm{C}$ (lit. $\left.{ }^{27}, 92-93.5^{\circ} \mathrm{C}\right)$; IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$ 2043, 1960; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 5.25(\mathrm{~s}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta$ 100.1, 212.5.

Tricarbonyl $\left(\eta^{4}\right.$-6-styrylcyclohepta-1,3,5-triene)iron (0) (\pm)-14: To a 1 L roundbottomed flask, (cyclooctatetraene) $\mathrm{Fe}(\mathrm{CO})_{3}(10.0 \mathrm{~g}, 40.9 \mathrm{mmol})$ was dissolved in dry acetone (50 mL) at $-23{ }^{0} \mathrm{C}$ under N_{2}. Dry pyridine ($3 \mathrm{~mL}, 40.9 \mathrm{mmol}$) was added and mixture stirred for 5 min . A solution/suspension of tropylium tetrafluoroborate (8.73 g , $49.1 \mathrm{mmol})$ in dry acetone $(400 \mathrm{~mL})$ was added and the reaction mixture was stirred for 8 h maintaining the temperature at $-23{ }^{\circ} \mathrm{C}$. The reaction mixture was warmed to room temperature and stirred overnight. The clear reddish solution was concentrated under reduced pressure and dried. To the solid residue was added ether $(200 \mathrm{~mL})$ and the slurry stirred for 2 h and filtered. The above process was repeated three times with the solid residue. The combined filtrates were concentrated and the residue was purified by column chromatography (100% hexane) to give a bright yellow solid (10.42 g, 75%). mp 43-47 ${ }^{\circ} \mathrm{C}$ (lit. $60, \mathrm{mp} \mathrm{64-66}{ }^{0} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 3.10-3.03(\mathrm{~m}, 1 \mathrm{H}), 3.34-$
$3.21(\mathrm{~m}, 2 \mathrm{H}), 5.18-5.10(\mathrm{~m}, 1 \mathrm{H}), 5.43-5.33(\mathrm{~m}, 2 \mathrm{H}), 5.92-5.82(\mathrm{~m}, 2 \mathrm{H}), 6.46(\mathrm{~d}, J=16.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.37-7.19(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 46.9,55.8,64.9,87.6,95.3$, 126.4, 127.4, 127.6, 128.9, 129.1, 130.4, 134.2, 137.6, 211.3. The NMR spectral data obtained for the product were consistent with the literature values. ${ }^{60}$

Tricarbonyl($\boldsymbol{\eta}^{5}$-6-styrylcyclohepta-2,4-dien-1-yl)iron(+1) tetrafluoroborate (\pm)-172:
To a 250 mL round-bottomed flask, (7-styrenyl-1,3,5-cycloheptatriene) $\mathrm{Fe}(\mathrm{CO})_{3}(8.0 \mathrm{~g}$, $24 \mathrm{mmol})$ was dissolved in acetic anhydride $(150 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ with stirring. An ice-cold solution of fluoroboric acid ($60 \mathrm{wt} \%, 23.40 \mathrm{~mL}, 240.0 \mathrm{mmol}$) in acetic anhydride (25 mL) was added dropwise to the stirring mixture. After 20 min of stirring a yellow-gray precipitate began to form. The reaction mixture was added dropwise into a large excess of ether (3.5 L). The solid yellow cation was isolated by filtration and dried under high vacuum ($8.88 \mathrm{~g}, 88 \%$). IR (KBr) 2112, 2067, 760, $697 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (d d_{6}-acetone, 300 $\mathrm{MHz}) \delta 1.23-1.34(\mathrm{~m}, 1 \mathrm{H}), 2.50-2.63(\mathrm{~m}, 1 \mathrm{H}), 4.25(\mathrm{br} \mathrm{d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.80-4.96(\mathrm{~m}$, 2H), $5.93(\mathrm{dd}, J=16.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{~m}, 1 \mathrm{H}), 6.62(\mathrm{~m}, J=16.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~m}$,
$5 \mathrm{H}), 7.47(\mathrm{tq}, J=6.0,1.0 \mathrm{~Hz}, 1 \mathrm{H})$. The NMR spectral data obtained for the product were consistent with the literature values. ${ }^{60}$

Tricarbonyl $\left(\boldsymbol{\eta}^{4}\right.$-6-styrylcyclohepta-2,4-diene-1-ol)iron (\pm)-173: In a 500 mL round bottomed flask, solid cation (\pm) - $\mathbf{1 7 2}(4.10 \mathrm{~g}, 9.71 \mathrm{mmol})$ was dissolved in water (250 mL) and the mixture was stirred for 20 min . To the clear light yellow solution was added solid sodium bicarbonate $(8.07 \mathrm{~g}, 95.2 \mathrm{mmol})$. After a few minutes, a yellow colored solid began to precipitate. The reaction mixture was stirred for 45 min , at which time it was extracted several times with dichloromethane. The combined extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The yellow sticky, foamy residue was purified by column chromatography $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right.$, hexane-ethyl acetate $\left.=4: 1\right)$ to give the product as a yellow solid ($2.37 \mathrm{~g}, 70 \%$). mp $122-126^{\circ} \mathrm{C}$; IR (KBr) 3200-3400, 2049, $1979,746,693 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.04(\mathrm{br} \mathrm{d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.64(\mathrm{~d}$, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.75(\mathrm{br} \mathrm{d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.81-2.96(\mathrm{~m}, 3 \mathrm{H}), 4.12$ (pentet, $J=5.5 \mathrm{~Hz}$, $1 \mathrm{H}), 5.30-5.37(\mathrm{~m}, 1 \mathrm{H}), 5.38-5.45(\mathrm{~m}, 1 \mathrm{H}), 5.98(\mathrm{dd}, J=8.0,16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.37(\mathrm{~d}, J=$
$16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.38(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 38.6,43.1,62.0,62.2$, $70.8,88.17,88.2,126.4,127.6,128.8,128.9,135.7,137.4,210.0$.

Tricarbonyl[dimethyl 2-(6-styryl-2-4-cycloheptadien-1-yl)propanedioate]iron (土)177: To a stirring solution of dimethyl malonate ($0.060 \mathrm{~mL}, 0.43 \mathrm{mmol}$) in THF (6 mL) at $0{ }^{0} \mathrm{C}$ under nitrogen was added a solution of $\mathrm{n}-\mathrm{BuLi}(0.20 \mathrm{~mL}, 1.6 \underline{\mathrm{M}}$ in hexane, 0.43 $\mathrm{mmol})$ and stirred for 30 min . To the stirring mixture was added cation (\pm) - $\mathbf{1 7 2}(100 \mathrm{mg}$, 0.24 mmol) and the mixture was stirred for an additional 45 min and gradually warmed to room temperature. The reaction was quenched with water and extracted several times with ether, washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane - ethyl acetate $\left.=7: 3\right)$ to give a yellow oil (50 $\mathrm{mg}, 46 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 0.83-0.85(\mathrm{~m}, 1 \mathrm{H}), 1.05(\mathrm{q}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H})$, 2.74-2.84 (m, 3H), $2.90(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, \mathrm{OMe}, 3 \mathrm{H})$, 3.74 (s, OMe, 3H), 5.30 (pentet, $J=4.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.93(\mathrm{dd}, J=8.8,16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.33(\mathrm{~d}$, $J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.32(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 33.5,39.1,42.9$, $52.7,58.6,59.8,61.6,87.9,88.3,126.2,127.4,128.7,128.8,136.3,137.3,168.6$. The
signal for the metal carbonyl was not observed. FAB-HRMS (calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{O}_{7} \mathrm{Fe}\left(\mathrm{M}^{+}\right)$ 466.0715), m/z 466.0707.

Tricarbonyl[(6-styryl-2,4-cycloheptadien-1-yl)phthalimide]iron (\pm)-174: To a stirring suspension of cation $(\pm) \mathbf{- 1 7 2}(1.00 \mathrm{~g}, 2.37 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ under N_{2} at room temperature was added solid potassium phthalimide ($0.659 \mathrm{~g}, 3.56 \mathrm{mmol}$). The reaction mixture was stirred for 12 h and then quenched with water. The mixture was extracted several times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane-ethyl acetate $\left.=4: 1\right)$ to afford a light yellow solid ($820 \mathrm{mg}, 72 \%$). mp $185-188{ }^{0} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.62-1.68$ $(\mathrm{m}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.13(\mathrm{q}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{br} \mathrm{d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.07-3.14(\mathrm{~m}$, $J=3.9,8.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.88(\mathrm{dd}, J=3.6,12.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.56(\mathrm{dd}, J=5.1,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.69$ (dd, $J=5.1,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{dd}, J=8.1,15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-$ $7.46(\mathrm{~m}, 5 \mathrm{H}), 7.84(\mathrm{dd}, J=3.0,5.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.94(\mathrm{dd}, J=3.1,5.6 \mathrm{~Hz}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 33.8,43.7,50.8,56.5,61.9,88.6,89.6,123.4,126.4,127.6,128.8$,
129.2, 132,2, 134.3, 135.5, 137.4, 168.2, 210.1. Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{NO}_{5} \mathrm{Fe}: \mathrm{C}, 64.88$; H, 3.98. Found: C, 64.85; H, 3.97.

Tricarbonyl[(6-styryl-2,4-cycloheptadien-1-yl)triphenylphosponium
tetrafluoroborate]iron (\pm)-175: To a suspension of the iron cation $(\pm) \mathbf{- 1 7 2}(300 \mathrm{mg}$, $0.710 \mathrm{mmol})$ in dichloromethane $(15 \mathrm{~mL})$ was added triphenylphosphine $(0.186 \mathrm{~g}, 0.710$ $\mathrm{mmol})$ at room temperature under nitrogen. The mixture was stirred for 45 min , the clear light yellow solution was concentrated and dried. The glassy solid residue was washed with pentane and dried under high vacuum to afford a glassy light yellow solid (410 mg , $83 \%) . \mathrm{mp} \quad 155-158{ }^{0} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.04-1.10(\mathrm{~m}, J=5.2,12.0 \mathrm{~Hz}$, $1 \mathrm{H}), 1.86(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.72(\mathrm{dd}, J=7.2,15.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{br} \mathrm{t}, J$ $=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{t}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{br} \mathrm{t}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{~m}, 1 \mathrm{H}), 5.88$ (dd, $J=8.4,15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.31(\mathrm{~m}, 5 \mathrm{H}), 7.76-7.81(\mathrm{~m}$, $15 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}, 75 \mathrm{MHz}\right) \delta 30.1,34.5\left(\mathrm{~d}, J_{\mathrm{PC}}=35.8\right), 42.8\left(\mathrm{~d}, J_{\mathrm{PC}}=14.1\right)$, $49.4\left(\mathrm{~d}, J_{\mathrm{PC}}=6.4\right), 62.5,88.4,\left(\mathrm{~d}, J_{\mathrm{PC}}=1.7\right), 90.9,118.5,\left(\mathrm{~d}, J_{\mathrm{PC}}=81.3\right), 127.1,128.3$,
$129.4,129.5\left(\mathrm{~d}, J_{\mathrm{PC}}=6.6\right), 130.0\left(\mathrm{~d}, J_{\mathrm{PC}}=44.0\right), 131.4\left(\mathrm{~d}, J_{\mathrm{PC}}=11.9\right), 134.4\left(\mathrm{~d}, J_{\mathrm{PC}}=\right.$ 19.6), $135.1\left(\mathrm{~d}, J_{\mathrm{PC}}=9.2\right), 136.0\left(\mathrm{~d}, J_{\mathrm{PC}}=2.8\right), 206.4$.

2-propargyl-2-(6-styrenyl-2-4-cycloheptadien-1-

Tricarbonyl[dimethyl

yl)propanedioate]iron (土)-176: To a flame-dried 10 mL Schlenk flask was charged THF $(4 \mathrm{~mL})$, dimethyl propagyl malonate $(0.100 \mathrm{~mL}, 0.462 \mathrm{mmol})$ and $\mathrm{n}-\mathrm{BuLi}(0.200 \mathrm{~mL}$, 2.5 M in hexane, 0.497 mmol) at $0{ }^{\circ} \mathrm{C}$ under nitrogen. The mixture was stirred for 45 min , iron cation (\pm)-172 ($150 \mathrm{mg}, 0.355 \mathrm{mmol}$) was added and stirred for another 3 h . The reaction mixture was quenched with water, extracted several times with ether, and the combined ether extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane-ethyl acetate, $\left.4: 1\right)$ to afford a light yellow oil ($136 \mathrm{mg}, 77 \%$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 0.90(\mathrm{br} \mathrm{m}, J=$ $12.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.38(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.07$ (narrow $\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.71-2.91(\mathrm{~m}$, 4H), 2.99-3.08 (m, 2H), $3.76(\mathrm{~s}, \mathrm{OMe}, 3 \mathrm{H}), 3.77(\mathrm{~s}, \mathrm{OMe}, 3 \mathrm{H}), 5.28(\mathrm{~m}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H})$, $5.93(\mathrm{dd}, J=8.4,15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.34(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.35(\mathrm{~m}, 5 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 22.7,31.2,42.3,43.4,52.9,53.0,58.2,61.2,62.9,71.9,79.3,88.0$,
89.2, 126.3, 127.5, 128.7, 136.4, 137.3, 169.8, 170.0. The signal for the metal carbonyl was not observed.

$(\pm)-179$ and $(\pm)-180:$ A flame-dried 10 mL Schlenk flask was charged THF (2.5 mL), iron cation (\pm)-172 (100 mg, 0.237 mmol$)$ at $0{ }^{0} \mathrm{C}$ under nitrogen. To the stirring suspension was added $\mathrm{NaBH}_{3} \mathrm{CN}(0.023 \mathrm{~g}, 0.360 \mathrm{mmol})$ and the mixture was stirred for 30 min . The reaction mixture was warmed to room temperature and stirred for another 30 min. The light yellow mixture was quenched with water, extracted several times with ether, and the combined ether extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane-ethyl acetate, $4: 1$) to afford a yellow oily fraction ($64 \mathrm{mg}, 81 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ mixture, $\delta 1.11-1.19(\mathrm{bm}, 1 \mathrm{H}), 1.27(\mathrm{dd}, J=4.5,12.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.57-1.70(\mathrm{~m}, 1 \mathrm{H}), 2.03-$ $2.30(\mathrm{~m}, 3 \mathrm{H}), 2.43-2.62(\mathrm{~m}, 1 \mathrm{H}), 2.72-2.87(\mathrm{~m}, 3 \mathrm{H}), 3.01(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{md}, J$ $=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.38-4.49(\mathrm{~m}, 2 \mathrm{H}), 4.97(\mathrm{bt}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, 5.38-5.51 (m, 2H), 6.03-6.17 (m, $J=9 \mathrm{~Hz}, 2 \mathrm{H}), 6.40(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=$
15.9 Hz, 1H), 7.27-7.49 (m, 10H); ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 16.4,27.8,29.9,30.1$, $30.3,42.7,58.1,59.4,61.3,62.3,74.6,87.1,88.9,97.2,126.1,126.3,127.1,127.3,128.3$, 128.7, 128.73, 128.8, 137.4, 137.6, 137.8.

(6-Styrenyl-2,4-cyclohepta-1-yl)phthalimide (土)-181: In a 200 mL Schlenk flask, iron complex (\pm)-174 ($500 \mathrm{mg}, 1.04 \mathrm{mmol}$) was dissolved in $\mathrm{MeOH}(75 \mathrm{~mL})$ at room temperature under N_{2}. Solid ceric ammonium nitrate ($1.71 \mathrm{~g}, 3.12 \mathrm{mmol}$) was added and the mixture was stirred for 1 h . After 2 h of stirring a white insoluble compound began to separate from the clear brown solution. The reaction mixture was stirred overnight and then quenched with water and extracted several times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane-ethyl acetate $\left.=3: 1\right)$ to afford a light yellow solid. ($315 \mathrm{mg}, 88 \%$). $\mathrm{mp} 110-112{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 2.05(\mathrm{md}, J$ $=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{td}, J=11.1,13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.56-3.58(\mathrm{~m}, 1 \mathrm{H}), 5.29(\mathrm{~d}, J=10.5 \mathrm{~Hz}$, $1 \mathrm{H}), 5.78-5.89(\mathrm{~m}, 4 \mathrm{H}), 6.18(\mathrm{dd}, J=8.4,15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-$ $7.35(\mathrm{~m}, 5 \mathrm{H}), 7.72(\mathrm{dd}, J=3.1,5.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.87(\mathrm{dd}, J=3.1,5.4 \mathrm{~Hz}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 38.2,44.0,50.5,123.3,123.9,124.0,126.2,127.3,128.6,129.8$,
132.0, 132.2, 133.6, 134.1, 136.9, 137.2, 167.7. Anal. calcd for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{NO}_{2}: \mathrm{C}, 80.91 ; \mathrm{H}$, 5.61. Found: C, 80.61; H, 5.67.

Dimethyl 2-allyl-2-(6-styryl-2-4-cycloheptadien-1-yl)propanedioate (\pm)-182: A flamedried 200 mL Schlenk flask was charged with freshly distilled ether $(120 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under nitrogen. Dimethyl allylmalonate ($1.00 \mathrm{~mL}, 6.16 \mathrm{mmol}$) was added followed by dropwise addition of a solution of n-butyl lithium ($4.5 \mathrm{~mL}, 7.1 \mathrm{mmol}, 1.6 \mathrm{M}$ in hexane). The mixture was stirred for 1 h . Solid iron cation (\pm)-172 (2.0 g, 4.7 mmol$)$ was added and stirred for 3 h at room temperature. The reaction mixture was quenched with water and extracted several times with ether. The combined ether extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane-ethyl acetate $\left.=4: 1\right)$ to afford a mixture of product and dimethyl allylmalonate (2.608 g). The mixture (2.608 g) was dissolved in methanol (100 mL) and ceric ammonium nitrate ($7.50 \mathrm{gm}, 13.7 \mathrm{mmol}$) was added, and the mixture stirred for 1 h at room temperature. The mixture was concentrated, diluted with water and extracted several times with ether. The combined ether extracts were washed with brine,
dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane-ethyl acetate $\left.=20: 1\right)$ to give the product as a colorless oil $(1.17 \mathrm{gm}, 67 \%)$. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.68-1.55(\mathrm{~m}, 1 \mathrm{H}), 2.09(\mathrm{dd}, J=5.4,13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.60-$ $2.78(\mathrm{dd}, J=8.2,10.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.11(\mathrm{bd}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.38-3.48(\mathrm{bm}, 1 \mathrm{H}), 3.72(\mathrm{~s}$, $6 \mathrm{H}), 5.05(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.08(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.69-5.87(\mathrm{br} \mathrm{m}, 5 \mathrm{H}), 6.11(\mathrm{ddd}, J=1.1$, 8.1, $15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.41(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.15(5 \mathrm{H}, \mathrm{Ar}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100\right.$ $\mathrm{MHz}) \delta 37.9,38.8,43.0,47.4,52.5,61.7,119.1,124.4,124.7,126.3,127.3,128.7,129.6$, 132.8, 133.2, 134.3, 137.0, 137.6, 171.4. ESI-HRMS m/z 389.1728 (calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{Na} \mathrm{m} / \mathrm{z} 389.1729$).

Dimethyl 2-propargyl-2-(6-styryl-2-4-cycloheptadien-1-yl)propanedioate (\pm)-183: To a stirring solution of iron complex $(\pm) \mathbf{- 1 7 6}(136 \mathrm{mg}, 0.270 \mathrm{mmol})$ in methanol $(4 \mathrm{~mL})$ at room temperature under nitrogen was added ceric ammonium nitrate ($0.44 \mathrm{~g}, 0.81 \mathrm{mmol}$). The mixture was stirred for 2 h , and then concentrated. Water was added to the residue and the mixture was extracted several times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was purified by
column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane-ethyl acetate, $\left.4: 1\right)$ to afford a yellowish liquid (42 $\mathrm{mg}, 59 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.69(\mathrm{md}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.06$ (narrow $\mathrm{t}, J=$ $2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{dd}, J=5.7,13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.41(\mathrm{bd}, J=9.3$ $\mathrm{Hz}, 1 \mathrm{H}), 3.52(\mathrm{bm}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 6 \mathrm{H}), 5.76-5.85(\mathrm{~m}, 4 \mathrm{H}), 6.14(\mathrm{dd}, J=7.8,15.9 \mathrm{~Hz}, 1 \mathrm{H})$, $6.46(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.36(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 23.8,27.0$, $37.4,42.5,47.2,52.8,60.2,71.9,79.1,124.5,124.8,126.2,127.3,128.6,129.6,132.6$, $133.4,137.1,137.5,170.3$

Methyl 6-Styryl-2,4-cycloheptadienyl ether (\pm)-184: To a 100 mL round-bottomed flask complexed alcohol $(\pm) \mathbf{- 1 7 3}(820 \mathrm{mg}, 2.34 \mathrm{mmol})$ was charged. Methanol $(30 \mathrm{~mL})$ was added at room temperature followed by the addition of solid ceric ammonium nitrate ($2.56 \mathrm{gm}, 4.66 \mathrm{mmol}$). The reaction mixture was stirred for 30 min , and then water (15 mL) was added. The mixture was extracted several times with ether, washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane-ethyl acetate $\left.=20: 1\right)$ to give a colorless oil $(0.26 \mathrm{~g}, 49.0 \%)$. IR 1098, 747, $691 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 2.05(\mathrm{q}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{~d}, J=12.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.39(\mathrm{~s}, 4 \mathrm{H}), 4.15(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{~m}, 3 \mathrm{H}), 5.88(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.19$ $(\mathrm{dd}, J=8,16 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75\right.$
$\mathrm{MHz}) \delta 38.1,42.8,56.5,79.8,122.7,124.2,126.3,127.5,128.8,129.6,132.8,136.6$, 136.7, 137.7.

6-Styryl-2,4-cycloheptadiene-1-ol (\pm)-186: To a 100 mL round-bottomed flask alcohol $(\pm)-\mathbf{1 7 3}(0.30 \mathrm{~g}, 0.85 \mathrm{mmol})$ was dissolved into methanol $(12 \mathrm{~mL})$ with slight warming. A solution of $\mathrm{H}_{2} \mathrm{O}_{2}(5.70 \mathrm{~mL}, 51.0 \mathrm{mmol}, 30 \mathrm{wt} \%)$ was added to the reaction mixture at $0{ }^{0} \mathrm{C}$ under N_{2}. A solution of $\mathrm{NaOH}(240.0 \mathrm{mg}, 5.950 \mathrm{mmol})$ in methanol $(8 \mathrm{~mL})$ was added to the reaction mixture dropwise. The reaction mixture immediately turned deep brown in color. The mixture was stirred for 30 min at $0^{\circ} \mathrm{C}$ followed by another 30 min at room temperature. The mixture was quenched with water (30 mL) and extracted several times with ether. The combined extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane-ethyl acetate $=4: 1)$ to give the product as a colorless foamy solid ($90.0 \mathrm{mg}, 50 \%$) $\mathrm{mp} 59-$ $63{ }^{\circ} \mathrm{C}$; IR (KBr) 3200-3400, 746, $692 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.64(\mathrm{~d}, J=6.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.13-2.27(\mathrm{~m}, 2 \mathrm{H}), 3.40-3.48(\mathrm{~m}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.66-5.87(\mathrm{~m}$, $4 \mathrm{H}), 6.18(\mathrm{dd}, J=8.0,16.0, \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.37(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 41.9,42.0,71.1,122.7,124.3,126.4,127.5,128.8,129.6$, 132.7, 136.9, 137.5, 138.1.

${ }^{\text {t}}$ Butyldiphenylsilyl 6-Styryl-2,4-cycloheptadienyl ether (\pm)-187: In a 25 mL oven dried round-bottomed flask was dissolved alcohol $(\pm) \mathbf{- 1 8 7}(0.11 \mathrm{~g}, 0.51 \mathrm{mmol})$ into dry dichloromethane $(5 \mathrm{~mL})$ at room temperature under N_{2}. Solid imidazole ($80.0 \mathrm{mg}, 1.17$ mmol) was added and stirred the mixture for 30 min . t-Butyldiphenylsilyl chloride (0.20 $\mathrm{mL}, 0.76 \mathrm{mmol}$) was added dropwise and the resultant mixture stirred for 3 h , at which time additional imidazole ($40.0 \mathrm{mg}, 0.58 \mathrm{mmol}$) was added followed by additional tbutyldiphenylsilyl chloride ($0.10 \mathrm{~mL}, 0.38 \mathrm{mmol}$). The reaction mixture was stirred for 14 h . Water (10 mL) was added, and the mixture was extracted several times with dichloromethane. The light yellow solution was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The oily residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexaneethyl acetate $=20: 1)$, to give the product as colorless oil $(0.19 \mathrm{~g}, 82 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $300 \mathrm{MHz}) \delta 1.07(\mathrm{~s}, 9 \mathrm{H}), 1.93(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.09-2.25(\mathrm{~m}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.91$ $(\mathrm{m}, 1 \mathrm{H}), 4.62(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.54-5.65(\mathrm{~m}, 2 \mathrm{H}), 5.66-5.77(\mathrm{~m}, 1 \mathrm{H}), 5.93-6.12(\mathrm{~m}$, $2 \mathrm{H}), 6.18(\mathrm{dd}, J=3.0,16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.52(\mathrm{~m}, 10 \mathrm{H}), 7.67-7.79(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 19.4,27.24,42.5,42.7,72.6,121.3,124.2,126.3,127.3,127.87$, 127.9, 128.7, 129.4, 129.88, 129.9, 132.9, 134.2, 134.5, 136.09, 136.1, 136.6, 137.7, 140.0.

$\mathbf{(\pm) - 1 8 8}$: To a 50 mL two-necked round-bottomed flask, equipped with a condenser, was charged diene $(\pm)-181(200 \mathrm{mg}, \quad 0.5 \quad 80 \mathrm{mmol})$, dry $\mathrm{CHCl}_{3}(10 \mathrm{~mL})$ and tetraphenylporphine ($35 \mathrm{mg}, 10 \mathrm{~mol} \%$). The deep purple solution was irradiated with a 60 W tungsten-halogen lamp for 10 h , while ultra-pure O_{2} was bubbled through the solution. The reaction mixture was concentrated under vacuum. The residue was purified through column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane-ethyl acetate $\left.=1: 1\right)$ to give a colorless solid (70 $\mathrm{mg}, 50 \%$ based on the recovered starting material). mp $175-177{ }^{\circ} \mathrm{C},{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}) \delta 1.77(\mathrm{md}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.11(\mathrm{q}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{q}, J=3.3 \mathrm{~Hz}$, $1 \mathrm{H}), 4.66-4.81(\mathrm{~m}, 2 \mathrm{H}), 4.84(\mathrm{dd}, J=3,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.98(\mathrm{dd}, J=6.3,11.1 \mathrm{~Hz}, 1 \mathrm{H})$, 6.43-6.51 (m, 2H), $6.89(\mathrm{dd}, J=6.3,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.33(\mathrm{~m}, 5 \mathrm{H}), 7.75(\mathrm{dd}, J=3.6$, $5.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.86(\mathrm{dd}, J=3.5,5.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 29.8,45.8$, $52.0,80.4,81.1,123.6,123.8,126.4,127.9,128.7,128.8,130.8,131.8,131.9,134.5$, 136.8, 167.8. Anal. Calcd. for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{NO}_{4}$: C, 73.98 ; H, 5.13. Found: C, $73.87 ; \mathrm{H}, 5.27$

Cycloaddition product with oxygen (\pm)-189: To a 50 mL oven dried - necked roundbottomed flask fitted with a condenser, was added a solution of diene $(\pm) \mathbf{- 1 8 7}(70.0 \mathrm{mg}$, $0.15 \mathrm{mmol})$ in dry dichloromethane (4 mL). Solid tetraphenylporphine ($0.9 \mathrm{mg}, 1 \mathrm{~mol} \%$) was added to the reaction mixture. The deep purple solution was irradiated with a 60 W tungsten-halogen lamp for 8 h , while ultra-pure O_{2} was bubbled through the solution. The reaction mixture was evaporated under reduced pressure, re-dissolved in methanol (10 mL) and filtered through celite. The filtration was repeated several times to remove tetraphenylporphine and then finally the solution was concentrated. The residue was purified to give a colorless oil column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane-ethyl acetate $=$ 20:1), (50 mg, 69\%). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.08(\mathrm{~s}, 9 \mathrm{H}), 1.43-1.65(\mathrm{~m}, 1 \mathrm{H})$, $1.75-2.10(\mathrm{~m}, 1 \mathrm{H}), 2.55-2.73(\mathrm{~m}, 1 \mathrm{H}), 4.03-4.21(\mathrm{~m}, 1 \mathrm{H}), 4.43-4.67(\mathrm{~m}, 2 \mathrm{H}), 5.99(\mathrm{dd}, J$ $=16,8 \mathrm{~Hz}, 1 \mathrm{H}), 6.38(\mathrm{~d}, J=16 \mathrm{~Hz}, 1 \mathrm{H}), 6.41-6.63(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.39(\mathrm{~m}, 5 \mathrm{H}), 7.40-$ $7.55(\mathrm{~m}, 5 \mathrm{H}), 7.59-7.73(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 19.4,27.1,34.6,41.9$, 73.4, 80.9, 81.2, 126.3, 127.2, 127.7, 127.9, 127.93, 128.0, 128.8, 130.0, 130.2, 130.3, 130.7, 133.7, 133.8, 135.8, 135.9, 137.0.

Asymmetric dihydroxylation of $(\pm) \mathbf{- 1 8 1}$: To a 25 mL round-bottomed flask was charged a mixture of ${ }^{\mathrm{t}} \mathrm{BuOH}(3 \mathrm{~mL})$ and water $(3 \mathrm{~mL})$ and stirred for 5 min at room temperature. Solid AD mix- β (0.826 g) was added to the stirring solution followed by the addition of methylsulfonamide ($60 \mathrm{mg}, 0.59 \mathrm{mmol}$). The mixture was stirred until the two layers were separated. The mixture was cooled to $0{ }^{0} \mathrm{C}$ upon which inorganic salt was precipitated out. Alkene ($200 \mathrm{mg}, 0.59 \mathrm{mmol}$) was added in one portion and the mixture was stirred for 72 h maintaining the temperature at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was quenched with water, extracted several times with ethyl acetate, and the combined extracts were washed with brine. The organic layer was concentrated under reduced pressure. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane-ethyl acetate $=1: 1$) to give a mixture of diastereomers as colorless oily liquid ($149 \mathrm{mg}, 71 \%$). The diastereomers could be separated by preparative $\mathrm{TLC}\left(\mathrm{SiO}_{2}\right.$, hexane-ethyl ether $=$ 1:1).

Less polar diol (F1) (-)-190: $[\alpha]_{\mathrm{D}}=-5.1\left(\mathrm{c}, 0.500, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right),{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}) \delta 1.89(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{OH}, 1 \mathrm{H}), 2.93(\mathrm{q}, J=$ $11.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{OH} 1 \mathrm{H}), 3.71(\mathrm{~m}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{dd}$, $J=3,11.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.63(\mathrm{dd}, J=1.5,11.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.77-5.90(\mathrm{~m}, 3 \mathrm{H}), 7.29-7.35(\mathrm{~m}$, $5 \mathrm{H}), 7.68(\mathrm{dd}, J=3,5.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.80(\mathrm{dd}, J=3.1,5.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75\right.$ $\mathrm{MHz}) \delta 35.4,41.5,50.9,75.1,79.2,123.4,124.6,125.8,126.9,128.5,128.9,132.1$, 132.9, 133.1, 134.2, 140.9, 167.9. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{O}_{4} \mathrm{~N} .3 / 4 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 71.02 ; \mathrm{H}, 5.83$. Found: C, 71.19; H, 5.83.

More polar diol (F2) (+)-191: $[\alpha]_{\mathrm{D}}=+74.1\left(\mathrm{c}, 0.486, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right),{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}) \delta 1.99(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{q}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H})$, $2.72(\mathrm{OH}, 1 \mathrm{H}), 2.91(\mathrm{OH}, 1 \mathrm{H}), 3.73(\mathrm{dd}, J=3.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H})$, $4.99(\mathrm{dd}, J=11.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.61(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.70-5.83(\mathrm{~m}, 3 \mathrm{H}), 7.22-7.34$ $(\mathrm{m}, 5 \mathrm{H}), 7.65(\mathrm{dd}, J=3.3,5.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.77(\mathrm{dd}, J=3.1,5.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right.$, $75 \mathrm{MHz}) \delta 31.5,41.2,51.2,75.3,79.3,123.5,124.5,125.4,126.7,128.5,128.9,132.2$, $132.9,134.2,136.5,141.0,167.9$.

PTAD adduct 192: To a colorless solution of less polar diol (-)-190 ($69.0 \mathrm{mg}, 0.184$ $\mathrm{mmoL})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$ at room temperature was added dropwise a solution of 4-phenyl-1,2,4-triazoline-3,5-dione in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the mixture was occasionally stirred. The process was continued until the light red color of unreacted 4-phenyl-1,2,4-triazoline-3,5-dione persisted. The mixture was concentrated and applied to a column of silica. Elution: (hexane-ethyl acetate, 1:4) gave a color less solid (94 mg, 93\%). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.58(\mathrm{td}, J=3.9,12.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.09(\mathrm{td}, J=3.9,12.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.28$ $(\mathrm{q}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{bs}, 1 \mathrm{H}), 4.51(\mathrm{dd}, J=4.2,12.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{~d}, J=6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.02(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{dd}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.61$ (dd, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.49(\mathrm{~m}, 10 \mathrm{H}), 7.72-7.84(\mathrm{~m}, 4 \mathrm{H})$.

Bis(dinitrobenzoate) PTAD adduct (+)-193: To a stirring solution of 4-phenyl-1,2,4-triazoline-3,5-dione adduct (192) $(94.0 \mathrm{mg}, 0.171 \mathrm{mmoL})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ at room temperature under nitrogen was added 4-(dimethylamino)pyridine ($0.045 \mathrm{~g}, 0.376$ mmoL) and the mixture was stirred for 15 min . To the stirring reaction mixture was added 3,5-dinitrobenzoyl chloride $(0.085 \mathrm{~g}, 0.376 \mathrm{mmoL})$ and the mixture was stirred for 3 h . The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ and washed with $0.1 \underline{\mathrm{M}} \mathrm{HCl}$ solution. The combined $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ washings were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane-ethyl acetate, $1: 1$) to afforded a light yellow solid (131 mg, 81\%). $\mathrm{mp}=240-242{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}=+$ 50.1, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta, 1.74(\mathrm{td}, J=3.9,12.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.11-2.27$ (m, 1H), $2.35(\mathrm{bd}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{dd}, J=4.2,12.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, $1 \mathrm{H}), 5.55(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.86(\mathrm{dd}, J=2.4,9 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{dd}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.59$ (d, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{dd}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.53(\mathrm{~m}, 8 \mathrm{H}), 7.65-7.84(\mathrm{~m}, 6 \mathrm{H})$,
8.97-9.35 (m, 6H); ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 28.7,41.4,50.7,51.3,54.9,78.3,78.7$, $123.0,123.4,123.7,124.6,125.6,127.4,128.6,129.4,129.5,129.6,130.5,131.3,131.4$, $132.2,132.8,134.2,134.7,148.8,148.9,151.6,152.4,161.6,162.5,167.4$. Anal. Calcd. for $\mathrm{C}_{45} \mathrm{H}_{30} \mathrm{~N}_{8} \mathrm{O}_{16} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 57.57 ; \mathrm{H}, 3.22$. Found: C, $57.04 ; \mathrm{H}, 3.58$

N-(6-Hyroxymethylene-2,4-heptadien-1-yl)phthalimide (\pm)-197: In a 25 mL roundbottom flask the mixture of diastereomeric diols (-)-190 and (+)-191 (300 mg, 0.808 mmol) was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{~mL})$ at $0{ }^{0} \mathrm{C}$ under N_{2}. After 5 min of stirring solid $\mathrm{Pb}(\mathrm{OAc})_{4}(0.43 \mathrm{~g}, 0.97 \mathrm{mmol})$ was added and the mixture was stirred for 1 h . The reaction mixture was quenched with water, extracted several times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The crude mixture (204 mg) was re-dissolved in a mixture of $\mathrm{MeOH}(5 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ at $0^{0} \mathrm{C}$ and solid $\mathrm{NaBH}_{4}(1.0 \mathrm{mg}, \mathrm{O} .26 \mathrm{mmol})$ was added. After stirring for 1 h , the reaction mixture was quenched with water, extracted several times with ethyl acetate and the combined extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane-ethyl acetate $\left.=1: 1\right)$ to afford the product as a colorless liquid ($88 \mathrm{mg}, 40 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.95-1.84(\mathrm{~m}$, $1 \mathrm{H}), 2.03-1.96(\mathrm{~m}, 1 \mathrm{H}), 2.66-2.56(\mathrm{~m}, 1 \mathrm{H}), 2.86-2.77(\mathrm{~m}, 1 \mathrm{H}), 3.67-3.55(\mathrm{~m}, 2 \mathrm{H}), 5.19$
(dd, $J=3.0,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.75-5.65(\mathrm{~m}, 2 \mathrm{H}), 5.88-5.77(\mathrm{~m}, 2 \mathrm{H}), 7.71(\mathrm{dd}, J=5.5,3.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.83(\mathrm{dd}, J=5.1,3.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 33.9,42.5,50.7$, $66.5,123.3,124.1,124.9,131.9,132.9,134.0,134.6,167.9$.

Singlet oxygen cycloaddition of the mixture of (-)-190 and (+)-191: To a 100 mL two-necked round-bottomed flask, equipped with a condenser, was charged dienediol mixture 190 and $191(500 \mathrm{mg}, 1.33 \mathrm{mmol})$, dry $\mathrm{CHCl}_{3}(40 \mathrm{~mL})$ and tetraphenylporphine ($82 \mathrm{mg}, 10 \mathrm{~mol} \%$). The deep purple solution was irradiated with a 60 W tungsten-halogen lamp for 72 h to consume all the starting material, while ultra-pure O_{2} was bubbled through the solution. The reaction mixture was concentrated under vacuum, and the residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane-ethyl acetate $\left.=1: 1\right)$ to afford a less polar (F1) foamy endoperoxide 194 ($179 \mathrm{mg}, 33 \%$) and a more polar (F2) foamy endoperoxide 195 ($133 \mathrm{mg}, 25 \%$).

Less polar endoperoxide $(+)-194:[\alpha]_{\mathrm{D}}=+46.0\left(\mathrm{c}, 0.214, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $300 \mathrm{MHz}) \delta 1.60(\mathrm{md}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.03-2.10(\mathrm{~m}, 1 \mathrm{H}), 2.29(\mathrm{dd}, J=5.7,12.3 \mathrm{~Hz}$, $1 \mathrm{H}), 2.48(\mathrm{~d}, J=4.8 \mathrm{~Hz}, \mathrm{OH}), 2.68(\mathrm{~d}, J=3.9 \mathrm{~Hz}, \mathrm{OH}), 3.43(\mathrm{~m}, 1 \mathrm{H}), 4.68-4.73(\mathrm{~m}, 3 \mathrm{H})$,
$5.18(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.41(\mathrm{dd}, J=7.5,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{dd}, J=7.2,9.1 \mathrm{~Hz}, 1 \mathrm{H})$, 7.26-7.39 (m, 5H), $7.73(\mathrm{dd}, J=2.7,5.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.82(\mathrm{dd}, J=3.3,5.7 \mathrm{~Hz}, 2 \mathrm{H}) ;\left(\mathrm{CDCl}_{3}\right.$, $75 \mathrm{MHz}) \delta 27.6,43.8,52.2,74.0,76.9,78.1,79.8,123.6,125.8,126.5,128.4,128.8$, $128.9,131.8,134.5,141.0,167.8$.

More polar endoperoxide (+)-195: $[\alpha]=+29.9\left(\mathrm{c}, 1.175, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $300 \mathrm{MHz}) \delta 1.61(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.96(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{q}, J=12.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.14(\mathrm{OH}, 2 \mathrm{H}), 3.73(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{dd}, J=3.9$, $12.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.43(\mathrm{dd}, J=8.7,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{dd}, J=8.8$, $9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.36(\mathrm{~m}, 5 \mathrm{H}), 7.72(\mathrm{dd}, J=3.1,5.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.80(\mathrm{dd}, J=3.3,6.1 \mathrm{~Hz}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 23.4,43.9,52.4,75.1,77.0,79.7,81.4,123.5,126.5$, 126.6, 127.3, 128.6, 129.0, 131.7, 134.4, 140.7, 167.8.

2-Formyl-4-phthalimido-6,7-dioxabicyclo[3.2.2]non-8-ene (-)-196: In a 25 mL roundbottom flask more polar endoperoxide $(+)-195(46 \mathrm{mg}, 0.11 \mathrm{mmol})$ was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ at room temperature under N_{2}. After 5 min of stirring solid $\mathrm{Pb}(\mathrm{OAc})_{4}(60$ $\mathrm{mg}, 0.14 \mathrm{mmol}$) was added and the mixture was stirred for 10 min . The reaction mixture was quenched with water, extracted several times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane-ethyl acetate $\left.=1: 1\right)$ to give the product as a colorless oil $(23 \mathrm{mg}, 73 \%) .[\alpha]_{\mathrm{D}}=-100\left(\mathrm{c} 0.287, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 2.11(\mathrm{q}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{dd}, J=5.2,12.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.78-4.83$ $(\mathrm{m}, 3 \mathrm{H}), 5.24(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.41(\mathrm{dd}, J=8.4,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{dd}, J=8.0,12.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.75(\mathrm{dd}, J=3.6,5.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.84(\mathrm{dd}, J=3.4,5.8 \mathrm{~Hz}, 2 \mathrm{H}), 9.63(\mathrm{~s}, 1 \mathrm{H}){ }^{13} \mathrm{C}$ $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 23.8,52.1,54.3,75.4,80.0,123.7,124.6,129.7,131.7,134.6$, 167.7, 199.0.

2-Formyl-4-phthalimido-6,7-dioxabicyclo[3.2.2]non-8-ene (+)-196: In a 25 mL roundbottom flask less polar endoperoxide (+)-194 ($190 \mathrm{mg}, 0.467 \mathrm{mmol}$) was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ at room temperature under N_{2}. After 5 min of stirring solid $\mathrm{Pb}(\mathrm{OAc})_{4}(0.248 \mathrm{~g}, 0.560 \mathrm{mmol})$ was added and the mixture was stirred for 10 min . The
reaction mixture was quenched with water, extracted several times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane-ethyl acetate $\left.=1: 1\right)$ to give the product as a colorless oil $(94 \mathrm{mg}, 70 \%) .[\alpha]_{\mathrm{D}}=+112\left(\mathrm{c}, 0.424, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 2.11(\mathrm{q}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{dd}, J=5.2,12.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.78-4.83$ $(\mathrm{m}, 3 \mathrm{H}), 5.24(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.41(\mathrm{dd}, J=8.4,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{dd}, J=8.0,12.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.75(\mathrm{dd}, J=3.6,5.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.84(\mathrm{dd}, J=3.4,5.8 \mathrm{~Hz}, 2 \mathrm{H}), 9.63(\mathrm{~s}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 23.8,52.1,54.3,75.4,80.0,123.7,124.6,129.7,131.7,134.6$, 167.7, 199.0.

5,5-Bis(methoxycarbonyl) bicyclo[4.4.1]undeca-1,7,9-triene (\pm)-199: To a stirring solution of $(\pm) \mathbf{- 1 8 2}(30.0 \mathrm{mg}, 0.080 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ at room temperature was added Grubbs $1^{\text {st }}$ generation catalyst ($3 \mathrm{mg}, 5 \mathrm{~mol} \%$). The reaction mixture was stirred for 45 min , concentrated and the residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane-ethyl acetate $=20: 1)$ to gave the product as a colorless oil $(19 \mathrm{mg}, 88 \%) .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 2.27(\mathrm{dd}, J=14.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{dd}, J=14.2,1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.85-2.75(\mathrm{~m}, 1 \mathrm{H}), 2.96-2.89(\mathrm{~m}, 2 \mathrm{H}), 3.29(\mathrm{dq}, J=17.3,2 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H})$, $3.66(\mathrm{~s} 3 \mathrm{H}), 3.84-3.76(\mathrm{~m}, 1 \mathrm{H}), 5.66-5.57(\mathrm{~m}, 2 \mathrm{H}), 6.12-6.18(\mathrm{~m}, 1 \mathrm{H}), 6.31-6.26(\mathrm{~m}, 1 \mathrm{H})$,
6.44-6.39 (m, 1H); ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 32.8,40.3,43.6,50.6,52.5,52.9,63.0$, 127.4, 128.4, 131.4, 132.5, 132.9, 146.8, 171.1, 173.0. ESI-HRMS m/z 262.1198 (calcd for $\left.\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{~m} / \mathrm{z} 262.1205\right)$.

$\mathbf{(\pm) - 2 0 0}:$ A flame dried 100 mL Schlenk flask was charged with $(\pm) \mathbf{- 1 8 2}(582 \mathrm{mg}, 1.59$ mmol) and freshly distilled $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ under nitrogen. To this was added dropwise a solution of DIBAL-H ($10.0 \mathrm{~mL}, 9.54 \mathrm{mmol}, 1 \underline{\mathrm{M}}$ solution in hexane) and the resultant mixture was stirred for 1 h . The reaction mixture was warmed to room temperature and stirred for 2 h . The mixture was cooled to $0^{\circ} \mathrm{C}$ and quenched with water $(0.4 \mathrm{~mL}), \mathrm{NaOH}$ solution $(0.4 \mathrm{~mL}, 15 \% \mathrm{w} / \mathrm{v})$. Water $(1 \mathrm{~mL})$ was added and stirred for 15 min at room temperature. MgSO_{4} was added followed by ethyl acetate (30 mL) and stirred for another 15 min , filtered, concentrated and applied to a column of silica. Elution (hexane-ethyl acetate $=1: 1$) gave a colorless oil ($317 \mathrm{mg}, 64 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.71-1.59(\mathrm{~m}, 1 \mathrm{H}), 2.29-2.03(\mathrm{~m}, 3 \mathrm{H}), 2.55(\mathrm{~s}, \mathrm{OH}, 1 \mathrm{H}), 2.67(\mathrm{~s}$, $\mathrm{OH}, 1 \mathrm{H}), 2.84(\mathrm{dm}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.43-3.30(\mathrm{bm}, 1 \mathrm{H}), 3.88-3.67(\mathrm{~m}, 4 \mathrm{H}), 5.07(\mathrm{bs}$, $1 \mathrm{H}), 5.12(\mathrm{br} \mathrm{d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.91-5.72(\mathrm{~m}, 4 \mathrm{H}), 6.05-5.96(\mathrm{dd}, J=4.2,10.9 \mathrm{~Hz}, 1 \mathrm{H})$,
$6.18(\mathrm{dd}, J=8.2,15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.18(\mathrm{~m}, \mathrm{Ar}, 5 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 35.4,35.9,40.3,44.2,47.0,67.7,67.8,118.3,124.8,125.1$, 126.3, 127.3, 128.7, 129.4, 133.3, 134.4, 135.1, 137.0, 137.6.

$\mathbf{(\pm) - 2 0 1 : ~ T o ~ a ~ s t i r r i n g ~ s o l u t i o n ~ o f ~}(\pm) \mathbf{- 2 0 0}(170 \mathrm{mg}, 0.540 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$ at room temperature was added pyridine ($0.100 \mathrm{~mL}, 1.37 \mathrm{mmol}$), DMAP ($6 \mathrm{mg}, 10 \mathrm{~mol} \%$) and $\mathrm{TsCl}(260 \mathrm{mg}, 1.37 \mathrm{mmol})$. The reaction mixture was stirred overnight, quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution and the aqueous layer were extracted several times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was purified by column chromatography. (hexane-ethyl acetate $=1: 1)$ to give colorless foamy solid ($109 \mathrm{mg}, 32 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.52-$ $1.41(\mathrm{~m}, 1 \mathrm{H}), 1.83(\mathrm{dd}, J=5.4,13.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{bd}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 6 \mathrm{H})$, $2.58(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.01-3.86(\mathrm{~m}, 4 \mathrm{H}), 5.07-4.96(\mathrm{~m}, 2 \mathrm{H}), 5.82-5.54$ (m, 5H), 6.06-5.98 (dd, $J=8.1,15.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.19(\mathrm{~m}$, 9H, Ar), 7.77-7.72 (m, 4H, Ar); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 21.8,27.0,35.3,35.7$, $40.9,42.9,46.8,70.1,70.4,120.1,124.5,125.3,126.2,127.4,128.08,128.11,128.7$, 129.7, 130.12, 130.14, 131.8, 131.8, 131.8, 131.8, 132.25, 132.28, 132.3, 132.7, 136.9, 137.4, 145.27, 145.3.

(\pm)-202: To a stirring solution of (\pm) - $\mathbf{2 0 0}(50 \mathrm{mg}, 0.16 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5 \mathrm{~mL})$ at room temperature under nitrogen was added DMAP ($66.0 \mathrm{mg}, 0.352 \mathrm{mmol}$) and stirred for 10 min . To the stirring solution was added 4-nitrobenzoyl chloride $(60 \mathrm{mg}, 0.51$ $\mathrm{mmol})$. The reaction mixture was stirred for overnight, diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and quenched with sat. NaHCO_{3}. The aqueous layer was extracted several times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was purified by column chromatography (hexane-ethyl acetate $=1: 1$) to give a light yellow glassy solid ($45 \mathrm{mg}, 47 \%$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.85-1.72(\mathrm{~m}$, $1 \mathrm{H}), 2.25-2.16(\mathrm{dd}, J=5.2,13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.47-2.21(\mathrm{~m}, 2 \mathrm{H}), 2.84(\mathrm{bd}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, 3.37-3.25 (bm, 1H), 4.58-4.44 (m, 4H), $5.12(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~s}, 1 \mathrm{H}), 5.92-5.69$ $(\mathrm{m}, 4 \mathrm{H}), 6.15-5.99(\mathrm{~m}, 2 \mathrm{H}), 6.36(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.14(5 \mathrm{H}, \mathrm{Ar}), 8.24-8.08(8 \mathrm{H}$, $\mathrm{Ar}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 36.5,36.7,42.1,43.2,47.2,67.1,67.2,119.9,123.9$, 124.7, 125.6, 126.2, 127.6, 128.8, 129.9, 130.9, 132.4, 132.5, 133.5, 135.2, 137.1, 137.3, 150.9, 164.6.

References

1) Gibson, D. T.; Koch, J. R.; Kallio, R. E. Biochemistry 1968, 7, 2653-2662.
2) Gibson, D. T.; Gschwendt, Brigitte; Yeh, W. K.; Kobal, V. M. Biochemistry 1973, 12, 1520-1528. Patel, R. T.; Gibson, D. T. J. Bacteriology 1976, 128, 842-850. Hudlicky, T.; Boros, E. E.; Olivo, H. F.; Merola, J. S. J. Org. Chem. 1992, 57, 1026-1028. Doyd, D. R.; Sharma, N. D.; Byrne, B.; Hand, M. V.; Malone, J. F.; Sheldrake, G. N.; Blacker, J.; Dalton, H. J. Chem. Soc, Perkin Trans. 1 1998, 1935-1944.
3) Ley, S. V.; Sternfeld, F. Tetrahedron Lett. 1988, 29, 5305-5308. Ley, S. V.; Sternfeld, F. Tetrahedron 1989, 45, 3463-3476. Ley, S. V.; Parra, M.; Redgrave, A. J.; Sternfeld, F.; Vidal, A. Tetrahedron Lett. 1989, 30, 3557-3560. Ley, S. V.; Parra, M.; Redgrave, A. J.; Sternfeld, F. Tetrahedron 1990, 46, 4995-5026. Ley, S. V.; Parra, M.; Redgrave, A. J. Synlett 1990, 393-394.
4) Carless, H. A. J.; Oak, O. Z. Tetrahedron Lett. 1989, 30, 1719-1720. Carless, H. A. J; J. Chem. Soc., Chem. Comm. 1992, 234-235. Carless, H. A. J.; Malik, S. S. J. Chem. Soc.,Chem. Commun. 1995, 2447-2448.
5) Johnson, C. R.; Ple, P. A.; Adams, J. P. J. Chem. Soc., Chem. Comm. 1991, 10061007. Johnson, C. R.; Ple, P. A.; Su, L.; Heeg, M. J.; Adams, J. P. Synlett 1992, 388-390.
6) Hudlicky, T.; Price, J. D.; Rulin, F.; Tsunoda, T. J. Am. Chem. Soc. 1990, 112, 94399440. Hudlicky, T.; Price, J. D.; Olivo, H. F. Synlett 1991, 645-646. Hudlicky, T.; Rouden, J.; Luna, H.; Allen, S. J. Am. Chem. Soc. 1994, 116, 5099-5107. Hudlicky, T.; Olivo, H. F.; McKibben, B. J. Am. Chem. Soc. 1994, 116, 5108-5118. Hudlicky, T.; Tian, X.; Konigsberger, K.; Maurya, R.; Rouden, J.; Fan, B. J. Am. Chem. Soc. 1996, 118, 10752-10765. Akgun, H.; Hudlicky, T. Tetrahedron Lett. 1999, 40, 3081-3084. Hudlicky, T.; Rinner, U.; Gonzalez, D.; Akgun, H.; Schilling, S.; Siengalewicz, P.; Martinot, T. A.; Gettit, G. R. J. Org. Chem. 2002, 67, 8726-8743. Finn, K. J.; Collins, J.; Hudlicky, T. Tetrahedron 2006, 62, 7471-7476.
7) Sanfilippo, C.; Patti, A.; Piattelli, M.; Nicolosi, G. Tetrahedron Asymmetry 1997, 8, 1569-1573.
8) Banwell, M. A.; McLeod, M. Chem. Commun. 1998, 1851-1852. Banwell, M.; Blakey, S.; Harfood, G.; Longmore, R. J. Chem. Soc., Parkin Trans. 1 1998, 34413442. Banwell, M. G.; Edwards, A. J.; Harfoot, G. J.; Jolliffe, K. A. J. Chem. Soc., Perkin Trans. 1 2002, 2439-2441. Banwell, M. G.; Edwards, A. J.; Harfoot, G. J.; Jolliffe, K. A. Tetrahedron 2004, 60, 535-547.
9) Medich, J. R.; Kunnen, K. B.; Johnson, C. R. Tetrahedron Lett. 1987, 28, 41314134. Johnson, C. R.; Pending, T. D. J. Am. Chem. Soc. 1988, 110, 4726-4735.

Johnson, C. R.; Braun, M. P.; Sundrum, H. Tetrahedron Lett. 1994, 35, 1833-1834. Sundrum, H.; Golebiowski, A.; Johnson, C. R. Tetrahedron Lett. 1994, 35, 69756976. Li, F.; Brogan, J. B.; Gage, J. L.; Zhang, D.; Miller, M. J. J. Org. Chem. 1998, 63, 755-759. Lee, W.; Miller, M. J. J. Org. Chem. 2004, 69, 4516-4519. Li, F.; Warshakoon, N. C.; Miller, M. J. J. Org. Chem. 2004, 69, 8836-8841. Li, F.; Miller, M. J. J. Org. Chem. 2006, 71, 5221-5227.
10) Johnson, C. R.; Golebiowski, A.; Steensma, D. H. J. Am. Chem. Soc. 1994, 116, 9414-9418. Johnson, C. R.; Bis, S. J. J. Org. Chem. 1995, 60, 615-623. Xu, Y.; Johnson, C. R. Tetrahedron Lett. 1997, 38, 1117-1120. Honda, T.; Kimura, N. Org. Lett. 2002, 4, 4567-4570.
11) Dechy-Cabaret, O.; Benoit-Vical, F.; Loup, C.; Robert, A.; Gornitzka, H.; Bonhoure A.; Vial, H.; Magnaval, J. F.; Séguéla, J.P.; Meunier, B. Chem. Eur. J. 2004, 10, 16251636. Errasti G.; Kounde C.; Mirguet O.; Lecourt, T.; Micouin, L. Org. Lett., 2009, 11, 2912-2915. Arns S.; Barriault, L. J. Org. Chem. 2006, 71, 1809-1816. Fabio, B.; Paolo, C.; Ben, L. F.; Franco, M.; Mauro, P. Synthesis, 2001, 3, 483-486. Arthurs, C. L.; Morris, G. A.; Piacenti, M.; Pritchard R. G.; Stratford, I. J.; Tatic, T.; Whitehead, R. C.; Williams, K. F.; Wind, N. S. Tetrahedron 2010, 66, 9049-9060.
12) Birch, A. J.; Bandara, B. M. R.; Chamberlain, K.; Dahler, P.; Day, A. I.; Jenkins, I. D.; Kelly, L. F.; Khor, T. C.; Kretschmer, G.; Liepa, A. J.; Narula, A. S.; Raverty, W. D.; Rizzardo, E.; Sell, C.; Stephenson, G. R.; Thompson, B. J.; Williamson, D. H. Tetrahedron, 1981, 37 (Suppl. 1), 289.
13) Pearson, A. J. "Comprehensive Organometallic Chemistry"; Wilkinson, G.; Stone, F. G. A., Abel, E. W., Eds.; Pergamon Press: Oxford, 1982, Vol. 8, Chapter 58.
14) Fischer, E. O.; Fischer, R. D. Angew. Chem. 1960, 72, 919. D.; Pratt, J. L.; Wilkinson, G. J. Chem. Soc., 1962, 4458-4463. Tao, C. in Encyclopedia of Reagents in Organic Synthesis, ed. Paquette, L. A. John Wiley \& Son, 1995, Vol. 7, pp. 5043-5044.
15) Knott, K. E.; Auschill, S.; Jager, A.; Knolker, H.-J. Chem. Commun. 2009, 14671469.
16) Reppe, W.; Schichting, O.; Klager, K.; Toepel, T. Ann 1948, 560, 1-92. Barnes, C. E. U.S. Patent 2579 106, 1951; Chem. Abstr. 1952, 46, 39223. Canale, A. J.; Kincaid, J. F. U.S. Patent 2613 231, 1952; Chem. Abstr. 1953, 47, 44714. Matsuzawa, K.; et al. Japanese Patent 29002 967, 1954; Chem. Abstr. 1955, 49, 84432.
17) (a) Kelebekli, L.; Celik, M.; Sahin, E.; Kara, Y.; Balci, M. Tetrahedron Lett. 2006, 47, 7031-7035. (b) Kelebekli, L.; Kara, Y.; Balci, M.; Carbohydrate Res. 2005, 340, 1940-1948. (c) Kara, Y.; Balci, M. Tetrahedron 2003, 59, 2063-2066. (d) Masciti, V.; Corey, E. J. J. Am. Chem. Soc. 2004, 126, 15664-15665. (e) Evans, D. A.; Connell, B. T. J. Am. Chem. Soc. 2003, 125, 10899-10905. (f) Mehta, G.; Pallavi, K. Chem. Commun. 2002, 2828-2829.
18) Shvo, Y.; Hazum, E. J. Chem. Soc., Chem. Comm. 1975, 829-830.
19) Heil, V.; Johnson, B. F. G.; Lewis, J.; Thompson, D. J. J. Chem. Soc., Chem. Comm. 1974, 270-271.
20) Paquette, L. A.; Ley, S. V.; Broadhurst, M. J.; Truesdell, D.; Rayos, J.; Clardy, J. Tetrahedron Lett. 1973, 2943-2946. Paquette, L. A.; Ley, S. V.; Farnham, W. B. J. Am. Chem. Soc. 1974, 96, 312-313. Paquette, L. A.; Ley, S. V.; Maiorana, S.; Schneider, D. F.; Broadhurst, M. J.; Boggs, R. A. J. Am. Chem. Soc. 1975, 97, 4658-4667.
21) (a) Broadley, K.; Connelly, N. G.; Graham, P. G.; Howard, J. A. K.; Risse, W.; Whiteley, M. W.; Woodward, P. J. Chem. Soc. Dalton Trans. 1985, 777-781. (b)
Davison, A.; McFarlane, W.; Pratt, L.; Wilkinson, G. J. Chem. Soc. 1962, 4821-4829. (c)
Johnson, B. F. G.; Lewis, J.; Randall, G. L. P. J. Chem. Soc. (A) 1971, 422-429. (d)
Brookhart, M.; Davis, E. R.; Harris, D. L. J. Am. Chem. Soc. 1972, 94, 7853-7858. (e) Connelly, N. G.; Lucy, A. D.; Whiteley, M. W. J. Chem. Soc. Dalton Trans. 1983, 111115. (f) Charles, A. D.; Diversi, P.; Johnson, B. F. G.; Karlin, K. D.; Lewis, Rivera, A. V.; Scheldrick, G. M. J. Organomet. Chem. 1977, 128, C31-C34.
22) Wallock, N. J.; Donaldson, W. A. J. Org. Chem. 2004, 69, 2997-3007.
23) Chaudhury, S.; Lindeman, S.; Donaldson, W. A. Tetrahedron Lett. 2007, 48, 78497852.
24) Hooper, R. In "Aminoglycoside Antibiotics"; Umezawa, H., Hooper, I. R., Eds.; Springer, Berlin, 1981; p 7.
25) Ogawa, S. Trends Glycosci. Glycotechnol. 2004, 16, 33-53.
26) Wacharasindhu, S.; Worawalai, W.; Rungprom, W.; Phuwapraisirisan, P. Tetrahedron Lett. 2009, 50, 2189-2192.
27) Ogawa, S.; Asada, M.; Ooki, Y.; Mori, M.; Itoh, M.; Korenaga, T. Bioorg. Med. Chem. 2005, 13, 4306-4314.
28) (a) Tamegai, H.; Nango, E.; Kuwahara, M.; Yamamoto, H.; Kuriki, Y. H.; Eugchi, T.; Kakinuma, K. J. Antibiot. 2002, 55, 707-714. (b) Huang, F.; Li, Y.; Yu, J.; Spencer, J. B. Chem. Commun., 2002, 2860-286. (c) Huang, F.; Haydock, S. F.; Mironenko, T.; Spiteller, D.; Li, Y.; Spencer, J. B. Org. Biomol. Chem., 2005, 3, 1410-1419.
29) Zechel, D. L.; Withers, S. G. Acc. Chem. Res. 2000, 33, 11-18.
30) Yu, J.; Spencer, J. B. Tetrahedron Lett. 2001, 42, 4219-4221.
31) Pelyvas, I. F.; Toth, M. Z. G.; Varga, Z.; Batta, G.; Saztaricskai, F. Carbohydr. Res., 1995, 272, C5-C9.
32) Bauder, C. Org. Biomol. Chem., 2008, 6, 2952-2960.
33) Marco-Contelles, J.; Pozuelo, C.; Jimeno, M. L.; Martinez, L.; Martinez-Grau, A. J. Org. Chem. 1992, 57, 2625-2631.
34) (a) Doddi, V. R.; Kumar, A.; Vankar, Y. D. Tetrahedron 2008, 64, 9117-9122 ; (b) Alegret, C.; Benet-Buchholz, J.; Riera, A. Org. Lett. 2006, 8, 3069-3072.
35) Alcón, M.; Moyano, A.; Pericàs, M. A.; Riera, A. Tetrahedron: Asymmetry 1999, 10, 4639-4651.
36) Wang, J.; Chang, C.W. T. Aminoglucoside Antibiotics From Chemical Biology to Drug Discovery, Ayra DP,John Wiley \& Sons; Hoboken: 2007. p.141. Busscher, G. F.; Rutjes, F. P. J. T.; van Delft, F. L. Chem. Rev. 2005, 105, 775-791.
37) Pang, L.-J.; Wang, D.; Zhou, J.; Zhang, L.-H.; Ye, X.-S. Org. Biomol. Chem. 2009, 7, 4252-4266.
38) Beniazza, R.; Desvergnes, V.; Landais, Y. Org. Lett. 2008, 10, 4195-4198.
39) Cherney, R. J.; Brogan, J. B,; Mo, R.; Lo, Y. C.; Yang, G.; Miller, P. B.; Scherle, P. A.; Molino, B. F.; Carter, P. H.; Decicco, C. P. Bioorg. Med. Chem. Lett. 2009, 19, 597601.
40) Rassu, G.; Auzzas, L.; Pinna, L.; Zambrano, V.; Zanardi, F.; Battistini, L.; Gaetani, E.; Curti, C.; Casiraghi, G. J. Org. Chem. 2003, 68, 5881-5885.
41) Girard, E.; Desvergnes, V.; Tarnus, C.; Landais, Y. Org. Biomol. Chem. 2010, 8, 5628-5634.
42) Birch, A. J.; Liepa, A. J.; Stephenson, G. R. J. Chem. Soc., Perkin Trans. 1, 1982, 713-717.
43) Anson, C. E.; Hartmann, S.; Kelsey, R. D.; Stephenson, G. R. Polyhedron, 2000, 19, 569-571.
44) Cha, J. K.; Christ, W. J.; Kishi, Y. Tetrahedron Lett., 1983, 24, 3943-3946. Christ, W. J.; Cha, J. K.; Kishi, Y. Tetrahedron Lett., 1983, 24, 3947-3950. Cha, J. K.; Christ, W. J.; Kishi, Y. Tetrahedron, 1984, 40, 2247-2255.
45) Henbest, H. B.; Wilson, R. A. J. Chem. Soc. 1957, 1958-1965
46) Kornblum, N.; DeLaMare, H. E. J. Am. Chem. Soc. 1951, 73, 880-881. Kelly, D. R.;

Bansal, H.; Morgan, J. J. G. Tetrahedron Lett. 2002, 43, 9331-9333.
47) Larouche-Gauthier, R.; Belanger, G. Org. Lett. 2008, 10, 4501-4504.
48) Gemal, A. L.; Luche, J. L. J. Am. Chem. Soc. 1981, 103, 5454-5459.
49) Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Org. Lett. 1999, 1, 953-956. Sanford, M.; Love, J. A.; Grubbs, R. H. J. Am. Chem. Soc. 2001, 123, 6543-6554.
50) Wahlen, J.; Moens, B.; De Vos, D. E.; Alsters, P. L.; Jacobs, P. A. Adv. Synth. Catal. 2004, 346, 333-338.
51) (a) Benn, M. H.; Mitchell, R. E. Can. J. Chem. 1972, 50, 2195-2202. (b) Griesbeck, A. G.; Henz, A.; Hirt, J.; Ptatschek, V.; Engel, T.; Loffler, D.; Schneider, F. W. Tetrahedron 1994, 50, 701-714.
52) Block, O.; Klein, G.; Altenbach, H.-J.; Brauer, D. J. J. Org. Chem. 2000, 65, 716721.
53) Kitagawa, M.; Hasegawa, Saito, S. S.; Shimada, N.; Takita, T. Tetrahedron Lett. 1991, 32, 3531-3534. Hahn, D. R.; Graupner, P. R.; Chaplin, E.; Gray, J.; Heim, D.; Gilbert, J. R.; Gerwick, B. C. J. Antibiot. 2009, 62, 191-194.
54) a) Herz, W.; Ligon, R. C. J.; Turner, A.; Blount, J. F. J. Org. Chem. 1977, 42, 18851895. (b) Sutbeyaz, Y.; Secen, H.; Balci, M. J. Org. Chem. 1988, 53, 2312-2317. (c) Suzuki, M.; Ohtdake, H.; Kameya, Y.; Hamanaka, N.; Noyori, R. J. Org. Chem. 1989, 54, 5292-5302.
55) Adam, W.; Balci, M.; Kilic, H. J. Org. Chem. 2000, 65, 5926-5931.
56) Cookson, R. C.; Gilani, S. S. H.; Stevens, I. D. R. Tetrahedron Lett. 1962, 3, 615618. Jones, D.; Pratt, L.; Wilkinson, G. J. Chem. Soc. 1962, 4458-4463.
57) Cicchi, S.; Goti, A.; Brandi, A.; Guarna, A.; DeSarlo, F. Tetrahedron Lett. 1990, 31, 3351-3354.
58) Kirby, G. W.; Nazeer, M. J. Chem. Soc., Perkin Trans. 1 1993, 1397-1402. Miller, A.; Procter, G. Tetrahedron Lett. 1990, 31, 1043-46. Ritter, A. R.; Miller, M. J. J. Org. Chem. 1994, 59, 4602-4611. Yamamoto, Y.; Yamamoto, H. J. Am. Chem. Soc. 2004, 126, 4128-4129. Yamamoto, Y.; Yamamoto, H. Angew. Chem. Int. Ed. 2005, 44, 7082-7085. Jana, C. K.; Studer, A. Angew. Chem. Int. Ed. 2007, 46 65426544. Jana, C. K.; Studer, A. Chem. Eur. J. 2008, 14, 6326-28.
59) Cesario, C.; Tardibono, L. P.; Miller, M. J. J. Org. Chem. 2009, 74, 448-451.
60) Broadley, K.; Connelly, N. G.; Mills, R. M.; Whitely, M. W.; Woodward, P. J. Chem. Soc. Dalton Trans, 1984, 683-688.
61) Manuel, T. A.; Stone, F. G. A. J. Am. Chem. Soc. 1960, 82, 366-372.
62) Pearson, A. J.; Bansal, H. S.; Lai, Y. S. J. Chem. Soc. Chem. Commun. 1987, 519520.
63) Imming, P.; Seitz, G. Chem. Ber. 1989, 122, 2183-2185.
64) Kolb, H. C.; Van Nieuwenhze, M. S.; Sharpless, K. B. Chem. Rev,. 1994, 94, 24832547.
65) (a) Dinger, M. B.; Mol, J. C. Organometallics 2003, 22, 1089-1095. (b) Hong, S. H.; Sanders, D. P.; Lee, C. W.; Grubbs, R. H. J. Am. Chem. Soc. 2005, 127, 17160-17161. (c) Courchay, F. C.; Sworen, J. C.; Ghiviriga, I.; Abboud, K.A.; Wagener, K. B. Organometallics 2006, 25, 6074-6086.

Appendix

Crystal data and structure refinement for (\pm)-158.

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
dont4
C20 H16 N2 03
332.35

100(2) K
1.54178 Å

Monoclinic
C $2 / \mathrm{c}$
$a=25.6400(13) \AA \quad a=90^{\circ}$.
$b=5.4993(3) \AA \quad b=99.259(3)^{\circ}$.
$c=22.3486(12) \AA \quad \mathrm{g}=90^{\circ}$.
3110.1(3) \AA^{3}

8
$1.420 \mathrm{Mg} / \mathrm{m}^{3}$
$0.789 \mathrm{~mm}^{-1}$
1392
$0.32 \times 0.02 \times 0.02 \mathrm{~mm}^{3}$

Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=67.88^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [$\mathrm{I}>2$ sigma(I] $]$
R indices (all data)
Extinction coefficient
Largest diff. peak and hole
3.49 to 67.88°.
$-30<=\mathrm{h}<=29,0<=\mathrm{k}<=6,0<=\mathrm{l}<=26$
21439
2775 [$\mathrm{R}(\mathrm{int})=0.0603]$
97.7 \%

Semi-empirical from equivalents
0.9844 and 0.7864

Full-matrix least-squares on F^{2}
2775 / 0 / 227
1.025
$R 1=0.0433, w R 2=0.1001$
$R 1=0.0602, w R 2=0.1064$
$0.00024(6)$
0.262 and -0.202 e. \AA^{-3}

Crystal data and structure refinement for ($\mathbf{\pm}$)-119.
Identification code
donu
Empirical formula
C14 H11 N 04
Formula weight
257.24

Temperature
100(2) K
Wavelength
$1.54178 \AA$
Crystal system
Space group
Unit cell dimensions
Monoclinic
P 21/c

$$
\begin{array}{ll}
a=11.2217(2) \AA & a=90^{\circ} . \\
b=6.91770(10) \AA & b=
\end{array}
$$

$106.3860(10)^{\circ}$.

$$
\mathrm{c}=14.8259(2) \AA \quad \mathrm{g}=90^{\circ} .
$$

Volume
Z

Density (calculated)
Absorption coefficient
F(000)
1104.16(3) \AA^{3}

4
$1.547 \mathrm{Mg} / \mathrm{m}^{3}$
$0.962 \mathrm{~mm}^{-1}$
536

Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=67.93^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [I>2sigma(I)]
R indices (all data)
Extinction coefficient
Largest diff. peak and hole
$0.20 \times 0.15 \times 0.09 \mathrm{~mm}^{3}$
4.11 to 67.93°.
$-13<=\mathrm{h}<=12,0<=\mathrm{k}<=8,0<=\mathrm{l}<=17$
9222
1969 [$\mathrm{R}(\mathrm{int})=0.0183$]
97.7 \%

Semi-empirical from equivalents
0.9184 and 0.8309

Full-matrix least-squares on F^{2}
1969 / 0 / 217
1.009
$\mathrm{R} 1=0.0327, \mathrm{wR} 2=0.0871$
$R 1=0.0338, w R 2=0.0881$
0.0021(4)
0.256 and -0.197 e. A^{-3}

Crystal data and structure refinement for (\pm)-120.

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
donv
C14 H11 N 04
257.24

100(2) K
1.54178 Å

Orthorhombic
P 212121
$\begin{array}{ll}\mathrm{a}=6.77800(10) \AA & \mathrm{a}=90^{\circ} . \\ \mathrm{b}=8.5059(2) \AA & \mathrm{b}=90^{\circ} . \\ \mathrm{c}=19.6445(4) \AA & \mathrm{g}=90^{\circ} .\end{array}$
$1132.56(4) \AA^{3}$

Z

Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=67.63^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices $[\mathrm{I}>2$ sigma(I] $]$
R indices (all data)
Absolute structure parameter
Largest diff. peak and hole

4
$1.509 \mathrm{Mg} / \mathrm{m}^{3}$
$0.938 \mathrm{~mm}^{-1}$
536
$0.15 \times 0.12 \times 0.03 \mathrm{~mm}^{3}$
4.50 to 67.63°.
$0<=\mathrm{h}<=8,0<=\mathrm{k}<=10,0<=\mathrm{l}<=23$
9242
$1191[\mathrm{R}(\mathrm{int})=0.0210]$
98.6 \%

Semi-empirical from equivalents
0.9724 and 0.8721

Full-matrix least-squares on F^{2}
1191 / 0 / 172
0.994
$\mathrm{R} 1=0.0290, \mathrm{wR} 2=0.0763$
$\mathrm{R} 1=0.0305, \mathrm{wR} 2=0.0773$
0.6(3)
0.176 and -0.191 e. \AA^{-3}

Crystal data and structure refinement for $(\pm) \mathbf{- 1 2 7 .}$		
Identification code	donw	
Empirical formula	C18 H17 N O6	
Formula weight	343.33	
Temperature	$100(2) \mathrm{K}$	
Wavelength	$1.54178 \AA$	
Crystal system	Monoclinic	
Space group	$\mathrm{P} 21 / \mathrm{c}$	
Unit cell dimensions	$\mathrm{a}=8.4527(2) \AA$	$\mathrm{a}=90^{\circ}$.
	$\mathrm{b}=8.9213(2) \AA$	$\mathrm{b}=91.6100(10)^{\circ}$.
	$\mathrm{c}=21.1061(5) \AA$	$\mathrm{g}=90^{\circ}$.
Volume	$1590.96(6) \AA \AA^{3}$	
Z	4	
Density (calculated)	$1.433 \mathrm{Mg} / \mathrm{m}^{3}$	
Absorption coefficient	$0.912 \mathrm{~mm}{ }^{-1}$	
F(000)	720	
Crystal size	$0.53 \times 0.41 \mathrm{x} 0.07 \mathrm{~mm}^{3}$	

Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=67.86^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [$\mathrm{I}>2$ sigma(I] $]$
R indices (all data)
Extinction coefficient
Largest diff. peak and hole
4.19 to 67.86°.
$-10<=\mathrm{h}<=10,0<=\mathrm{k}<=10,0<=\mathrm{l}<=23$
13190
2766 [$\mathrm{R}(\mathrm{int})=0.0195]$
95.8 \%

Semi-empirical from equivalents
0.9389 and 0.6436

Full-matrix least-squares on F^{2}
2766 / 0 / 229
1.032
$\mathrm{R} 1=0.0322, \mathrm{wR} 2=0.0806$
$\mathrm{R} 1=0.0331, \mathrm{wR} 2=0.0812$
$0.0016(2)$
0.268 and -0.188 e. \AA^{-3}

Crystal data and structure refinement for (\pm)-132.
Identification code
donx
Empirical formula
C14 H15 N 06
Formula weight
293.27

Temperature
100(2) K
Wavelength
1.54178 Å

Crystal system
Monoclinic
Space group
Unit cell dimensions

Volume
P 21/n
$a=12.0696(6) \AA \quad a=90^{\circ}$.
$\mathrm{b}=6.9279(4) \AA$
$b=108.536(2)^{\circ}$.
$\mathrm{c}=15.8178(8) \AA$
$\mathrm{g}=90^{\circ}$.

Z
$1254.02(11) \AA^{3}$
4
Density (calculated)
$1.553 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient
$1.042 \mathrm{~mm}^{-1}$

F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=67.59^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [I>2sigma(I)]
R indices (all data)
Largest diff. peak and hole

616
$0.23 \times 0.11 \times 0.04 \mathrm{~mm}^{3}$
4.05 to 67.59°.
$-14<=\mathrm{h}<=13,0<=\mathrm{k}<=8,0<=\mathrm{l}<=18$
10253
$2215[\mathrm{R}(\mathrm{int})=0.0278]$
97.6 \%

Semi-empirical from equivalents
0.9595 and 0.7956

Full-matrix least-squares on F^{2}
2215 / 45 / 185
1.013
$\mathrm{R} 1=0.0891, \mathrm{wR} 2=0.2428$
$\mathrm{R} 1=0.0996, \mathrm{wR} 2=0.2512$
0.571 and -0.564 e. A^{-3}

Crystal data and structure refinement for $(\pm) \mathbf{1 6 1 .}$		
Identification code	dony	
Empirical formula	C 20 H 20 N 2 O 3	
Formula weight	336.38	
Temperature	$100(2) \mathrm{K}$	
Wavelength	$1.54178 \AA$	
Crystal system	Monoclinic	
Space group	$\mathrm{P} 21 / \mathrm{c}$	
Unit cell dimensions	$\mathrm{a}=14.9286(4) \AA$	$\mathrm{a}=90^{\circ}$.
	$\mathrm{b}=6.8883(2) \AA$	$\mathrm{b}=99.053(2)^{\circ}$.
	$\mathrm{c}=16.4514(5) \AA$	$\mathrm{g}=90^{\circ}$.
Volume	$1670.67(8) \AA \AA^{3}$	
Z	4	
Density (calculated)	$1.337 \mathrm{Mg}^{\circ} / \mathrm{m}^{3}$	
Absorption coefficient	$0.735 \mathrm{~mm}^{-1}$	
F(000)	712	
Crystal size	$0.24 \times 0.16 \mathrm{x} 0.05 \mathrm{~mm} 3$	

Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=67.49^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [I>2sigma(I)]
R indices (all data)
Extinction coefficient
Largest diff. peak and hole
3.00 to 67.49°.
$-17<=\mathrm{h}<=16,0<=\mathrm{k}<=8,0<=\mathrm{l}<=18$
13354
2920 [R (int) $=0.0217$]
96.7 \%

Semi-empirical from equivalents
0.9642 and 0.8434

Full-matrix least-squares on F^{2}
2920 / 0 / 235
1.009
$\mathrm{R} 1=0.0344, \mathrm{wR} 2=0.0923$
$\mathrm{R} 1=0.0402, \mathrm{wR} 2=0.0969$
0.0008(2)
0.232 and -0.167 e. A^{-3}

Theta range for data collection	4.33 to 68.17°.
Index ranges	$-6<=\mathrm{h}<=6,0<=\mathrm{k}<=21,0<=\mid<=15$
Reflections collected	10319
Independent reflections	$2194[R($ int $)=0.0196]$
Completeness to theta = 68.17	97.9%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9354 and 0.8228
Refinement method	Full-matrix least-squares on F2
Data / restraints / parameters	$2194 / 0 / 234$
Goodness-of-fit on F	0.990
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0322, \mathrm{wR2}=0.0839$
R indices (all data)	$\mathrm{R} 1=0.0343, \mathrm{wR2}=0.0858$
Extinction coefficient	$0.0013(3)$
Largest diff. peak and hole	0.266 and -0.173 e. $\mathrm{A}^{\circ}-3$

Crystal data and structure refinement for (\pm)-154.

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z

Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
don1a
C14 H13 N 05
275.25

100(2) K
1.54178 Å

Monoclinic
P 21/n
$a=7.2305(4) \AA \quad a=90^{\circ}$.
$b=20.6353(11) \AA \quad b=104.012(4)^{\circ}$.
$c=8.5115(5) \AA \quad g=90^{\circ}$.

4
$1.484 \mathrm{Mg} / \mathrm{m}^{3}$
$0.961 \mathrm{~mm}^{-1}$
576
$0.24 \times 0.15 \times 0.04 \mathrm{~mm}^{3}$
4.28 to 67.47°.

Index ranges
Reflections collected
Independent reflections
Completeness to theta $=67.47^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [$\mathrm{I}>2$ sigma(I] $]$
R indices (all data)
Extinction coefficient
Largest diff. peak and hole
$-8<=\mathrm{h}<=8,0<=\mathrm{k}<=24,0<=\mathrm{l}<=10$
10020
$2145[\mathrm{R}(\mathrm{int})=0.0249]$
98.8 \%

Semi-empirical from equivalents
0.9626 and 0.8021

Full-matrix least-squares on F^{2}
2145 / 56 / 251
1.007
$\mathrm{R} 1=0.0407, \mathrm{wR} 2=0.0918$
$R 1=0.0481, w R 2=0.0959$
0.0004(2)
0.211 and -0.200 e. \AA^{-3}

Identification code	don1b	
Empirical formula	C14 H13 N 05	
Formula weight	275.25	
Temperature	100(2) K	
Wavelength	1.54178 Å	
Crystal system	?	
Space group	?	
Unit cell dimensions	$\mathrm{a}=5.4050(3) \AA$	$\mathrm{a}=76.891(3)^{\circ}$.
	$\mathrm{b}=7.6853(4) \AA$	$\mathrm{b}=89.431(4)^{\circ}$.
	$\mathrm{c}=15.2798(8) \AA$	$\mathrm{g}=78.624(3)^{\circ}$.
Volume	605.62(6) \AA^{3}	
Z	2	
Density (calculated)	$1.509 \mathrm{Mg} / \mathrm{m}^{3}$	
Absorption coefficient	$0.978 \mathrm{~mm}^{-1}$	
F(000)	288	
Crystal size	$0.42 \times 0.18 \times 0.04$	

Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=67.23^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [$\mathrm{I}>2$ sigma(I] $]$
R indices (all data)
Extinction coefficient
Largest diff. peak and hole
2.97 to 67.23°.
$-6<=\mathrm{h}<=6,-8<=\mathrm{k}<=9,0<=\mathrm{l}<=18$
4840
2009 [$\mathrm{R}(\mathrm{int})=0.0155$]
98.2 \%

Semi-empirical from equivalents
0.9619 and 0.6843

Full-matrix least-squares on F^{2}
2009 / 72 / 253
1.023
$\mathrm{R} 1=0.0598, \mathrm{wR} 2=0.1653$
$\mathrm{R} 1=0.0635, \mathrm{wR} 2=0.1689$
0.0035(9)
0.368 and -0.546 e. \AA^{-3}

Identification code	don1c	
Empirical formula	C22 H23 N 010	
Formula weight	461.41	
Temperature	100(2) K	
Wavelength	1.54178 Å	
Crystal system	Monoclinic	
Space group	P 21/n	
Unit cell dimensions	$\mathrm{a}=8.8800(3) \AA$	$\mathrm{a}=90^{\circ}$.
	$b=10.6102(3) \AA$	$\mathrm{b}=91.799(2)^{\circ}$.
	c = 23.7595(8) \AA	$\mathrm{g}=90^{\circ}$.
Volume	2237.48(12) A 3	
Z	4	
Density (calculated)	$1.370 \mathrm{Mg} / \mathrm{m}^{3}$	
Absorption coefficient	$0.931 \mathrm{~mm}^{-1}$	
F(000)	968	
Crystal size	$0.45 \times 0.13 \times 0.12 \mathrm{~mm}^{3}$	
Theta range for data collection	3.72 to 67.79°.	
Index ranges	$-10<=\mathrm{h}<=10,0<=\mathrm{k}<=12,0<=\mathrm{l}<=28$	

Reflections collected
Independent reflections
Completeness to theta $=67.79^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices $[\mathrm{I}>2$ sigma(I$)]$
R indices (all data)
Extinction coefficient
Largest diff. peak and hole

18364
$3972[\mathrm{R}(\mathrm{int})=0.0193]$
98.6 \%

Semi-empirical from equivalents
0.8965 and 0.6795

Full-matrix least-squares on F^{2}
3972 / 0 / 303
1.012
$\mathrm{R} 1=0.0325, \mathrm{wR} 2=0.0821$
$\mathrm{R} 1=0.0348, \mathrm{wR} 2=0.0839$
$0.00039(8)$
0.271 and -0.198 e. \AA^{-3}

Identification code	don1d	
Empirical formula	C22 H23 N 010	
Formula weight	461.41	
Temperature	100(2) K	
Wavelength	1.54178 Å	
Crystal system	Monoclinic	
Space group	P 21/c	
Unit cell dimensions	$\mathrm{a}=7.3527(2) \AA$	$\mathrm{a}=90^{\circ}$.
	$\mathrm{b}=21.4079(7) \AA$	$\mathrm{b}=93.921(2)^{\circ}$.
	c = 14.1359(5) \AA	$\mathrm{g}=90^{\circ}$.
Volume	2219.87(12) \AA^{3}	
Z	4	
Density (calculated)	$1.381 \mathrm{Mg} / \mathrm{m}^{3}$	
Absorption coefficient	$0.938 \mathrm{~mm}^{-1}$	
F(000)	968	

Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=67.16^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices $[\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})]$
R indices (all data)
Largest diff. peak and hole
$0.20 \times 0.18 \times 0.18 \mathrm{~mm}^{3}$
3.75 to 67.16°.
$-8<=\mathrm{h}<=8,0<=\mathrm{k}<=25,0<=\mathrm{l}<=16$
17338
3890 [$\mathrm{R}(\mathrm{int})=0.0265]$
98.8 \%

Semi-empirical from equivalents
0.8493 and 0.8346

Full-matrix least-squares on F^{2}
3890 / 0 / 302
0.997
$R 1=0.0391, w R 2=0.0966$
$R 1=0.0479, w R 2=0.1019$
0.244 and -0.191 e. \AA^{-3}

Crystal data and structure refinement for $(\pm)-139$.		
Identification code	don1e	
Empirical formula	C22 H23 N 010	
Formula weight	461.41	
Temperature	$100(2) \mathrm{K}$	
Wavelength	$1.54178 \AA$	
Crystal system	Monoclinic	
Space group	C $2 / \mathrm{c}$	
Unit cell dimensions	$\mathrm{a}=27.7646(12) \AA$	$\mathrm{a}=90^{\circ}$.
	$\mathrm{b}=11.6104(5) \AA$	$\mathrm{b}=123.535(2)^{\circ}$.
	$\mathrm{c}=16.3768(7) \AA$	$\mathrm{g}=90^{\circ}$.
Volume	$4400.5(3) \AA^{3}$	
Z	8	
Density (calculated)	$1.393 \mathrm{Mg} / \mathrm{m}^{3}$	
Absorption coefficient	$0.946 \mathrm{~mm}-1$	
F(000)	1936	
Crystal size	$0.44 \times 0.12 \times 0.05 \mathrm{~mm}{ }^{3}$	
Theta range for data collection	3.82 to 67.98°.	
Index ranges	$-33<=\mathrm{h}<=26,0<=\mathrm{k}<=13,0<=\mathrm{l}<=19$	

Reflections collected	17563
Independent reflections	$3843[\mathrm{R}(\mathrm{int})=0.0431]$
Completeness to theta $=67.98^{\circ}$	98.1%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9542 and 0.6809
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	$3843 / 0 / 302$
Goodness-of-fit on F^{2}	0.995
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0373, \mathrm{wR} 2=0.0972$
R indices (all data)	$\mathrm{R} 1=0.0464, \mathrm{wR} 2=0.1035$
Largest diff. peak and hole	0.236 and $-0.200 \mathrm{e} . \AA_{-}^{-3}$

Crystal data and structure refinement for (\pm)-181.

Identification code
Empirical formula
Formula weight
341.39

Temperature / K
Crystal system
Space group
a / Å, b / Å, c / Å
21.4535(7)
$\alpha /{ }^{\circ}, \beta /{ }^{\circ}, \gamma /{ }^{\circ}$
70.498(4)

Volume / \AA^{3}
1740.99(12)

Z
$\rho_{\text {calc }} / \mathrm{mg} \mathrm{mm}^{-3}$
μ / mm^{-1}
F(000)
720

Crystal size / mm³
Theta range for data collection
Index ranges
$1 \leq 26$
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes $[\mathrm{I}>2 \sigma(\mathrm{I})]$
Final R indexes [all data]
Largest diff. peak/hole / e \AA^{-3}
$0.15 \times 0.08 \times 0.05$
4.20 to 71.15°
$-10 \leq h \leq 10,-11 \leq k \leq 12,-26 \leq$

23107
$6592[\mathrm{R}(\mathrm{int})=0.0283]$
6592/0/462
1.066
$\mathrm{R}_{1}=0.0428, \mathrm{wR}_{2}=0.1268$
$\mathrm{R}_{1}=0.0505, \mathrm{wR}_{2}=0.1334$
0.273/-0.239

Crystal data and structure refinement for (+)193.

Identification code
Empirical formula
Formula weight
Temperature / K
Crystal system
Space group
a / Å, b / Å, c / Å
30.2568(8)
$\alpha /{ }^{\circ}, \beta /{ }^{\circ}, \gamma /{ }^{\circ}$
Volume / \AA^{3}
don1o
$\mathrm{C}_{49} \mathrm{H}_{38} \mathrm{~N}_{8} \mathrm{O}_{18}$
1026.87
100.6
monoclinic
P2 1
12.2658(2), 12.6155(3),
90.00, 100.078(2), 90.00
4609.66(19)

Z
$\rho_{\text {calc }} / \mathrm{mg} \mathrm{mm}^{-3}$
μ / mm^{-1}
F(000)
Crystal size / mm³
2Θ range for data collection
Index ranges
37
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes $[I>2 \sigma(I)]$
Final R indexes [all data]
Largest diff. peak/hole / e \AA^{-3}

4
1.480
0.979

2128
$0.33 \times 0.08 \times 0.03$
7.4 to 147.64°
$-11 \leq \mathrm{h} \leq 14,-14 \leq \mathrm{k} \leq 15,-37 \leq \mathrm{l} \leq$

25828
$14394[\mathrm{R}(\mathrm{int})=0.0389]$
14394/1/1355
1.072
$\mathrm{R}_{1}=0.0682, \mathrm{wR}_{2}=0.1886$
$\mathrm{R}_{1}=0.0758, \mathrm{wR}_{2}=0.1973$
0.570/-0.591

[^0]: Recommended Citation
 Sar, Anobick, "Generation of Diverse Molecular Complexity from Simple Hydrocarbons" (2011). Dissertations (2009 -). Paper 140. http://epublications.marquette.edu/dissertations_mu/140

