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ABSTRACT 

COMPUTATIONAL STUDY OF VIBRATIONAL QUBITS IN 

ANHARMONIC LINEAR ION TRAPS 

 

 

Lei Wang, B.S., M.S. 

 

Marquette University, 2012 

 

 

A string of cold ions confined in a linear trap represents a man-made quantum 

object with a broad range of applications in atomic and molecular spectroscopy, such as 

high-precision measurement of atomic properties. An efficient isolation from the 

environment guarantees excellent coherent properties of such systems and makes them 

suitable for practical realization of the quantum information processing. The pioneering 

theoretical [Cirac and Zoller] and experimental [Wineland and Monroe] work in 1990s 

resulted in the explosive expansion of this field during the last decade. In this dissertation 

an alternative new method for controlling the quantized motional/vibrational states of 

ions in a trap is explored theoretically. It is proposed to create small anharmonicity in the 

trapping potential which would modify the spectrum of states and allow addressing the 

state-to-state transitions selectively. In this approach all ions remain in the ground 

electronic state and their motion is controlled adiabatically and coherently by applying 

the optimally shaped electric fields (RF). The optimal control theory, accurate numerical 

calculation of the energies and wavefunctions, and numerical propagation of wave 

packets are employed. Two sources of vibrational anharmonicity are studied: the intrinsic 

Coulomb anharmonicity due to the ion-ion interactions and the external anharmonicity of 

the trapping potential. It is shown that the magnitude of Coulomb anharmonicity is 

insufficient for the control. In contrast, anharmonicity of the trapping potential allows 

controlling the motion of ions very accurately. It is demonstrated that one ion in a slightly 

anharmonic trap can be easily controlled and used to represent one qubit. A multi-qubit 

system can be created by employing a long progression of states of a single ion, or by 

trapping multiple ions and controlling several normal vibration modes of the ion string. 

Up to four qubits are modeled in this work and accurate pulses are optimized for a set of 

universal quantum gates: NOT, conditional NOT (CNOT) and Hadamard transformation. 

The control field for Shor’s algorithm (quantum algorithm for factorization onto prime 

numbers) is also obtained. It is demonstrated that a careful choice of system properties 

allows achieving very high accuracy of qubit transformations, up to 0.999. 
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Chapter 1: Introduction 

“…It seems that the laws of physics present no barrier to reducing the size of 

computers until bits are the size of atoms, and quantum behavior holds dominant 

sway.” 

―R. P. Feynman, 1985 

1.1 Ion-trap quantum computation and the background 

In a classical computer, the unit of memory is bit, where each bit represents 

either a one or a zero. In contrast, in a quantum computer, which requires a very 

special physical environment, a sequence of quantum bits (qubits) is needed [1-3]. For 

quantum computation, a single qubit can represent a one, a zero, or, crucially, any 

quantum superposition of these:                    , where   and   are coefficients 

such that        . That means: a n bits classical computer can only be in one of 

these 2
n
 states at one time; while a n qubits quantum computer can be in an arbitrary 

superposition up to 2
n
 different states simultaneously, leading to the exponential 

increase of computer power. Further, because of the interaction between the quantum 

state and the environment, a quantum operation must be performed on the qubits 

before those states decohere. On the one hand, to limit decoherence, interaction 

between the qubits and the environment should be negligible. On the other hand, to 

http://en.wikipedia.org/wiki/Qubit
http://en.wikipedia.org/wiki/Quantum_superposition
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manipulate the quantum state, implement quantum algorithms and read out the result 

of a calculation, qubits must be easily accessible from the outside and must interact 

strongly with each other.  

 The original proposal of Cirac and Zoller [4] advanced a possible solution to 

this dilemma, where a linear radio frequency quadrupole (RFQ) ion trap, or a linear 

Paul Trap using time-varying electric fields to trap ions was employed to hold a line 

of ions in place, see Fig. 1.1. A string of atomic ions trapped and cooled in a linear 

Paul trap represents a man-made quantum system well isolated from the environment.  

In this method, the ions serve as the physical qubits of the quantum computer. States 

of qubits are encoded into electronic states of the ions, and quantum gates are 

Fig. 1. 1: Seven ions in a linear Paul trap interacting with a laser beam (from Ref. 

[61]). 

http://en.wikipedia.org/wiki/Radio_frequency
http://en.wikipedia.org/wiki/Electric_field
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achieved by excitation of ions with sharply focused laser beams [5-16]. The 

interaction between the individual ions is mediated by the Coulomb force between the 

charged particles, while the motional mode of ions in the trapping potential is used to 

create entanglement. Favorable properties of this system, such as long coherence time 

and possibility of fast and reliable manipulations with its quantum states, make it 

suitable for practical realization of quantum computation. Realization of this proposal 

in the experiment [17] led to many fascinating developments and explosive growth of 

the field [18-60]. 

1.2 The linear Paul trap 

Imagine a positively charged ion floating in free space and surrounded by 

 

 
Fig. 1. 2: Schematic of four conducting electrodes of a linear paul trap (from Ref. 

[62]). 
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four infinitely long conducting rods [3]. Two opposing rods can be connected to one 

pole of a RF voltage source, whereas the remaining two to the other pole, see Fig. 1.2. 

Then one pair of opposing rods is charged positively and the other pair negatively. 

The positively charged conductors will give a repulsive force to the positive ion and 

push it toward the center of the trap. At the same time, the negatively charged 

conductors produce an attractive force to the ion and pull it outwards. If the polarity 

of the four electrodes is reversed, the ion motion will begin to reverse. Because the 

heavy ion which has too much inertia cannot respond to this fast change of electric 

field quickly, it becomes stuck in a rapid back-and-forth motion. Since the minimum 

of electric fields locates at the trap axis, the ion is pushed toward the center by an 

effective force, where it becomes trapped. In Fig 1.1, we show a schematic of linear 

Paul trap which is from the website of the research of  group of R. Blatt in the 

University of Innsbruck [61]. In Fig. 1.2, we show a connection of electrodes of a 

linear Paul trap [62]. The axis of symmetry between the rods is the trap axis [3].  

If a positive direct-current (DC) component to the RF voltage is introduced, 

the mass selectivity in the Paul trap can be generated. Positive ions outside a certain 

mass range feel less of a restoring force from the pseudo potential and are kicked out 

of the trap by the repulsive DC field. 

1.3 The Los Alamos ion-trap quantum computing experiment 

http://heart-c704.uibk.ac.at/index.html
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An experiment developed at Los Alamos uses calcium ions to implement the 

ion-trap quantum computation [3]. Theoretically, many different ion species can be 

used as qubits and numerous qubit schemes are possible, if the qubits satisfy the 

following condition: a) the trapped ions have two long-lived internal states (electronic 

states); b) the trap’s vibrational modes can serve as the qubits communicating with 

each other. Using relatively inexpensive diode lasers it is possible to produce the 

entire range of wavelengths needed for cooling and manipulation of the calcium ions; 

In addition, a reasonable number of coherent operations can be performed during the 

lifetime of the metastable state and the calcium isotope of interest which is most 

abundant can easily be loaded into the trap.  

Any element that displays an ionic-level structure similar to that of calcium 

can be used in the basic quantum computational schemes. Recently strontium was 

Fig. 1. 3: The trap built at Los Alamos for quantum computation (from Ref. [3]). 
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employed in the quantum computing experiment for mostly technical reasons. 

Moreover, with slightly different technical approaches, ions like mercury and 

ytterbium are also applicable to quantum computation because of proper level 

schemes [3].  

A schematic diagram of the internal-level structure of calcium ions is as 

follows: The 4
2
S1/2 ground state and the metastable 3

2
D5/2 excited state are used to 

form the logical qubit states 0  and 1 , respectively. Because the decoherence is 

spontaneous emission from the excited state, a large number of computational steps 

should be performed before decoherence can destroy the internal state of the quantum 

register. The lifetime of metastable excited state is about 1 second and that is long 

enough. 

Authors including Cirac and Zoller (1995) present the initial state of the  

computer as follows [4]: all qubits are in their electronic and vibrational ground states. 

For example, in a four-qubit system this corresponds to 

                                                                                                                         

However, because of the energy from a combination of the temperature of the 

calcium oven and that imparted to the ion by the electric field, the temperature of the 

newly trapped ions is very high. In order to initialize state of quantum system and 

perform quantum logic operations, the temperature must be reduced to its lowest  
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possible value. Two steps of cooling the ions are described in the next two sections. 

1.3.1 Doppler cooling of calcium ions 

In Doppler cooling, a laser which has a frequency below the resonance 

frequency of a transition in the ion is used. Only when the ion is moving at a certain 

velocity toward the laser it can absorb these “off-resonance” photons, because only 

then does it “see” the laser frequency shift into resonance. However, due to its random 

jiggling, the ion has a probability to emit photons at any frequency within its Doppler 

broadened emission line profile. The ion has a greater probability to emit a photon 

with a higher frequency than the absorbed photon. On average, more energy is 

emitted than absorbed, which leads to a cooling of the ion [3]. 

In the momentum space, after emitting a photon in one direction, the ion will  

recoil in the opposite direction with a momentum which is equal to the photon 

momentum. The heating effect of this recoil energy eventually counteracts any 

cooling process, which means Doppler cooling has its limits. For calcium ions, the 

temperature of the Doppler limit is about 3 microkelvins. Because the kinetic energy 

of the ions is significantly less than the mutual Coulomb repulsion, they do not have 

enough kinetic energy to leap-frog each other. Eventually, the cold ions remain frozen 

in their relative locations and form a string, see Fig. 1.1. However, even at this low 

temperature of 3 microkelvins, the ions have enough energy to occupy any of several 
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vibrational modes, with many phonons per mode. After Doppler cooling, the ions in 

the trap can typically occupy the common mode states from        to about 

      . So, it requires an additional cooling scheme to get the qubits into the 

common-mode ground state        . 

1.3.2 Sideband cooling of calcium 

Because of the limit of Doppler cooling, experimentalists cannot get to the 

quantum ground state of the motion. The sideband cooling is employed to cool the 

system beyond Doppler cooling. The internal degrees of freedom of ions in the trap 

can couple with their external motion which leads to sidebands at ω0 ± ω1, where ω0 

is the internal ionic transition frequency and ω1 is the common-mode 

motional/vibrational frequency. Thus, an ion can absorb photons not only at the  

carrier frequency ω0 of their internal         transition but also on the upper and 

 

 

Fig. 1. 4: Stepping to lower vibrational states by sideband cooling (from Ref. [3]). 
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lower sidebands at the frequencies ω0 ± ω1. Assuming all ions are in the state       , 

it is possible to tune a laser with a suitably narrow linewidth to the red sideband — 

photon energy        –    and excite one of the ions to the state       –   , see 

Fig. 1.4. In essence, energy is removed from the vibrational mode (the occupation 

number is reduced by one phonon) and is used to make up the deficit in photon 

energy. After its radiative lifetime, the ion can decay to one of three states: the state 

      –   , by emitting a photon with energy            ; the state       –   , 

by emitting a photon with energy       ; or a return to its initial state, by emitting 

a photon with energy        –   . On average, the ion loses one vibrational 

photon of energy       for each excitation–decay cycle. Because usually it is 

started somewhere around       , it requires about 30 cycles to bring the 

vibrational mode to its ground state [3]. 

1.4 Motivation of the study 

While the architecture of Cirac and Zoller rely mostly on the electronic states 

of individual ions, the quantized states of collective vibrational motion of ions along 

the trap axis are also employed. These states represent quantized eigenstates and form 

the normal-mode progressions (somewhat similar to the vibrational states of naturally 

occurring molecules). In a standard setup the trapping potential is harmonic 

(quadratic) and the vibrational states are all equidistant, like the states of multi-
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dimensional harmonic oscillator. Frequencies of transitions between these states are 

usually in the few MHz region, but selective excitation/control of these states using 

the microwave fields is impossible, because all state-to-state transitions of the 

“ladder” have the same frequency and occur simultaneously. In a standard set up of 

Cirac and Zoller, the control is achieved by pumping the population of one vibrational 

state to the excited electronic state and dumping it onto another vibrational state (of 

the ground electronic state), see Fig. 1.4.  

Recently, a new alternative method for adiabatic coherent control of the 

quantized motional states of ions in a Paul trap was suggested by Zhao and Babikov 

[63]. They proposed to modify the harmonic trapping potential along the axial 

direction of the Paul trap in order to introduce small anharmonicity into the spectrum 

of collective motional/vibrational states of ions. When the spectrum of motional states 

is slightly anharmonic, different state-to-state transitions occur at slightly different 

frequencies and in principle can be controlled selectively by applying electric fields of 

appropriate amplitude, duration, phase and frequency (in the MHz range). In such 

control scenario all ions remain in the ground electronic state and the dynamics is 

adiabatic. The phase of motion can also be controlled [63], which makes this scheme 

potentially useful for coherent manipulations with ions and for quantum computation. 

In the numerical simulations of Ref. [63] the qubit states were encoded into two 
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lowest motional states 0  and 1  of a single trapped ion. But this new control 

scheme is not restricted to only two quantum states. The progression of multiple 

motional states like      ,      ,      ,      ,   can also be controlled and used for the 

quantum information processing. In such architecture the simple quantum algorithms 

could be executed using a single trapped ion. If several ions are trapped, the multi-

qubit system can be created by encoding different qubits into different motional 

modes. For example, different qubits can be encoded into different normal vibration 

modes of the ion chain (e.g., the center-of-mass motion mode and the asymmetric 

stretching mode) and addressed selectively using different frequencies. Addressing of 

individual ions is unnecessary. Opportunity of using the vibrational states of ion 

chains for encoding qubits and the time varying electric fields for applying quantum 

gates is very attractive and should be explored. Nowadays the techniques of ion 

trapping are improved quickly and multiple ion traps are placed on a single microchip 

[64-67]. Some control tasks can be performed using the electric fields instead of 

lasers, which could facilitate the ongoing miniaturization and the practical 

implementation of scalability in the future. 

1.5 Summary of our project 

In their first paper on this topic, Ref. [63], Zhao and Babikov considered only 

the simplest case – single ion in an anharmonic trap, and employed an approximate 
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analytic model in order to introduce anharmonicity into the spectrum of motional 

states. The state-to-state transition moment matrix was also described analytically and 

approximately. The optimal control theory (OCT) was employed to derive shaped 

pulses for several major quantum gates such as qubit flips, phase shifts, NOT and 

Hadamard transformation. They showed that the value of anharmonicity parameter on 

the order of 1% of the trap frequency is sufficient in order to obtain simply-shaped 

pulses optimized for accurate state-to-state transitions and for the quantum logics 

gates. Durations of predicted pulses were in the ten microsecond range; the field 

amplitudes were on the order of few mV/cm.  It was suggested that the practical 

realization of this approach is within the reach of today’s technology. 

In this work we go well beyond the assumptions of Zhao and Babikov and 

employ accurate numerically converged methods to characterize the system and carry 

out modeling of the adiabatic coherent control. We also go beyond the one-ion case 

and explore the control of two and three ions in several different trap architectures.  

In Chapter 2, we present a very detailed study of the one-ion system in the 

anharmonic ion trap. Spectra of the motional states are computed accurately and 

analysis of the anharmonicities is carried out. Then we use OCT method to derive 

shaped pulses for several universal quantum gates, the results are consistent with the 

study of Zhao and Babikov in Ref. [63]. 
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We see two methods of expanding this approach to the ion trap quantum 

computation onto larger number of qubits. The first method of scaling, discussed in 

Chapter 3, is to use more than one excited vibrational state. Indeed, even if we use 

just one single ion in an anharmonic ion trap, we may be able to access and control 

multiple excited vibrational states: 0 , 1 , 2 , 3 , etc. If the control of state-to-

state transitions in this system is feasible, it should be relatively straightforward to use 

a fair number of such states for encoding and processing the quantum information. In 

Chapter 3 we focus onto this method of scaling. Based on results of the OCT 

calculations, we argue that one should be able to control accurately the state-to-state 

transitions between sixteen lower vibrational states – enough to encode a four-qubit 

system and implement the phase estimation part of Shor’s algorithm for factorizing 

the number 15 [53, 68].  

A second method of scaling is to employ more than one ion. If a linear chain 

of trapped ions is employed, different qubits can be encoded into different normal 

vibration modes of the system. Clear advantage of this approach is that such qubits 

are relatively easy to control selectively using fields of different frequencies. Indeed, 

although all ions are identical, the normal mode frequencies of the multiple-ion 

system are quite different [69, 70]. Another advantage of this scaling method is that 

addressing individual ions is unnecessary because the control field is applied globally, 
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along the axis of the trap. This is researched in Chapter 4 and 5, where we study two 

and three ions in the harmonic (~z
2
) and anharmonic (~z

4
)  ion traps. For each of these 

systems, we first compute accurate vibrational eigenstates and characterize 

anharmonicities of the system. Two sources of anharmonicity are considered: the 

intrinsic Coulomb anharmonicity and the anharmonicity from the trapping potential. 

Unfortunately, our calculations show that anharmonicities in these systems are not 

large enough. An extensive analysis of this problem is presented. 

In a search for possible solution of this problem, we found a new architecture  

of the trapping potential [32, 71, 72] able to provide large enough anharmonicity for 

the control. It requires to create a very wide and highly anharmonic trapping potential 

by combining ~z
2
 and ~z

4
 potential terms, which is researched in Chapter 6. The 

center-of-mass motion mode and the asymmetric stretching mode in this system are 

used to represent two qubits. The overall ground vibrational state, the first excited 

state of each mode, and the combination state were used to encode four states of the 

two-qubit system: 00 , 01 , 10  and 11 , respectively. Next, we use the OCT to 

determine the control pulses for various quantum gates such as gate NOT/CNOT and 

Hadamard transformation. It is found that by carefully choosing the trap parameters, a 

very accurate control over this system and implementation of the two-qubit gates are 

possible.  



15 
 

 

 

In fact, this second method of scaling is complementary to the first one and 

can be combined with it in a composite “divide-and-conquer” approach to scaling. 

Finally, in Chapter 7 we describe several possible future research directions 

that have emerged from this study. 
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Chapter 2: Theoretical methods with applications to adiabatic and optimal 

control of one ion in the trap 

2.1 Trapping potential 

In this chapter, we explore and report the fundamental properties of the 

adiabatic control scheme for ions in a trap using the simplest case: We consider only 

one ion and restrict its motion to one dimension along the trap ( -axis), which is 

assumed to be sufficiently uncoupled from the radial motion. Thus, this model is 

essentially one dimensional. In the vast majority of experiments the trapping potential 

is harmonic: 

+
0

3

1

2

4

Fig. 2. 1: One 
111

Cd
+ 

ion
 
in the harmonic and anharmonic potential traps. Solid line: 

harmonic case; dotted line: anharmonic case. 
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where   is the force constant. For example, in the work of Monroe group [73-75] the 

cadmium ions (
111

Cd
+
) are used and the axial frequency is           MHz, related 

to the force constant through      , with 310483.12 k  MHz/a0
2
. For 

harmonic oscillator problem, solution of the Schrödinger equation is analytic and 

leads to the well-known result (atomic units are used in all equations here, a0 and 

Bohr are both the length symbol in atomic units): 

       
 

 
                                                                                

In the harmonic potential trap, as seen from this equation, the transition 

frequencies between different energy levels are all equal to         . As a 

consequence, it is impossible to selectively address and control transitions between 

two chosen energy levels. In order to achieve the control, we propose to add an 

anharmonic term to the harmonic trapping potential. Now the anharmonic trapping 

potential is: 

      
 

 
                                                                        

This should result in a non-equidistant (anharmonic) spectrum of the motional states 

and should enable the control. In this work we consider the following anharmonic 

trapping potential: 
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where    is a parameter which controls anharmonicity. The case of      correspond 

to usual harmonic potential. From the previous work by M. Zhao and D. Babikov 

[63], it is known that the anharmonicity on the order of 1% of the harmonic frequency 

is enough to achieve robust control. Larger values of    are better for the control, but 

may be difficult to create experimentally due to the microscopic size of the trapping 

region. We studied several different values of                               

                                  MHz/a0
4
 to choose a suitable 

anharmonicity parameter. Based on the above consideration the value of       

           MHz/a0
4
 was chosen for the 1D model which was estimated to provide 

anharmonicity on the order of 1% of the axial trap frequency. 

2.2 Schrödinger equation and basis set expansion 

The time-independent Schrödinger equation for the axial direction of the ion 

trap is: 

                                                                                                           

where 

    
 

  

  

   
                                                                                         

is 1D Hamiltonian operator,   is the electric charge of the ion and index   lables 

eigenstates of the system [76-78]. Using basis set expansion, the wavefunctions of the 

system can be written as: 
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where       is the basis set of known one dimensional functions of coordinate  , the 

index   labels basis functions,      are the coefficients of linear combination,   is the 

number of basis functions which is a convergence parameter determined by try-and-

error during convergence studies. In this work, we use the orthonormal basis set of 

eigenwavefunctions of harmonic oscillator. It has the following form:  

                                               

Here       is a Hermite polynomial [79], 

               
   

                                                                                        

which is normalization constant. The basis functions are orthonormal 

                 
 

  
.  

In the matrix form, the wavefunction and the basis set expansion can be 

written as follows: 

   

  

  

 
  

           

  

  

 
  

             

      

      

    

    

  
      

  
    

                   

                                                                                                                  

The time-independent Schrödinger equation in the matrix form is as follow: 
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where                

       

       
 

       

               

   
   

  
  

  
  

  
   

                                     

The transposed matrix of Eqs. (2.2.7) and (2.2.8) are as follows: 

                                                                                                               

                                                                                                             

Substituting Eq. (2.2.10) into Eq. (2.2.11), we obtain: 

                                                                                                           

Multiplying Eq. (2.2.12) by    from the left side, we obtain the following secular 

equation: 

                                                                                                                  

where        (unit matrix) and            is the Hamiltonian matrix, which 

can be written explicitly as follows: 

      
 

                    

                    

           

           

  
                    

  
           

 
                           

Here                        represent integrals over  . After numerical 

diagonalization of this matrix (see our code Program 1DIONTRAP in Appendix A), 

we obtain eigenvalues of the system: 

                                                                                                                

Here   is unitary matrix of eigenvectors obtained after numerical diagonalization 
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such that      , where    is Hermitian conjugate of  . Because the wavefunctions 

and the expansion coefficients are real in this time-independent problem, we have 

     and      . When the matrix   is known, the wavefunctions of eigenstates 

of the system can be calculated from Eq. (2.2.7).  

The elements of the Hamiltonian matrix Eq. (2.2.14) are computed as follows: 

                                                                              

         
 

  

  

   
 

 

 
    

 

  
                                            

Here we introduce kinetic energy matrix      and potential energy matrix      

separately to represent the Hamiltonian matrix: 

                                                                                                              

      
 

  
       

  

   
                                                                         

            
 

 
    

 

  
                                                                   

2.3 Construction of the potential energy matrix and kinetic energy matrix 

Integrals of Eqs. (2.2.18) and (2.2.19) can be computed numerically or 

analytically. For the potential energy part we can rewrite Eq. (2.2.19) in another form: 

        
     

 

 
    

 

  
     

  

  

                                                    

In our codes, instead of the integral from negative infinity to positive infinity, we only 
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need to determine certain integration limits and calculate the integral between them 

which gives reliable numerical results. Here we define them as      and      with 

          . Then the Eq. (2.3.1) can be written as follows: 

        
     

 

 
    

 

  
     

    

    

                                                  

In the 1D code we use the straightforward Equally-Spaced Abscissas method to 

calculate the integral [80], so we have to choose a relatively small distance step    

and replace the integral by the product of    and the sum of values of the integrand in 

different points   : 

          
      

 

 
   

  
 

  
    

         

 

   

                                   

here   is the number of integration points and   is used to label the points.   is 

calculated using the following equation: 

  
         

  
                                                                                        

The value     corresponds to      and     corresponds to     . Because   is 

integer, we change   to obtain desirable distance step size   . Since the 

wavefunctions are real,   
    . 

For the kinetic energy part, because       is a known analytic function from 

Eq. (2.2.4), the second derivative of the basis function can be calculated analytically  

using rules of Hermite polynomials: 
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It is easy to calculate the first and second derivatives of       , which are 

        
 
                                                                         

        
  

                                                       

When we calculate the derivatives of Hermite polynomials, we can use the following 

property: 

  
                                                                                                          

Now we can calculate the terms of interest. 

  
       

         
        

                                                            

  
        

          
      

 
                                                                               

     
      

 
              

 
         

                          

Substituting Eqs. (2.3.5) - (2.3.10) into Eq. (2.2.18) we obtain the following formula 

for the kinetic part: 

      
 

  
                                                                         

                                                                                         

                                                                              

Using Eq. (2.2.4), Eq. (2.3.11) can be integrated analytically [81]. For the upper  

triangle of the matrix, the result is:  
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Alternatively, we can generate Hermite polynomials and their first derivatives 

numerically using a subroutine OTHPL [82] and calculate the integral of Eq. (2.3.11) 

numerically, which serves as a check of the analytic expressions. Similar to Eq. 

(2.3.3) of the potential part, we calculate the integral along the axial   using the 

Equally-Spaced Abscissas method: 

      
 

  
                    

                                 

 

   

 

      
                            

                                         

                 
          

                                                

2.4 Matrix diagonalization and convergence studies 

After the elements of Hamiltonian matrix are calculated, we need to 

diagonalize the matrix to obtain its eigenvalues (energies) and the eigenvectors 

(parameter matrix C). Computer code 1DIONTRAP was written using FORTRAN  

language to carry out these calculations. The code is attached in Appendix A.  

In my work, my FORTRAN program jobs are run at remote computer at  
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NERSC which is high performance scientific computing facility for research 

sponsored by the U.S. Department of Energy Office of Science. I used several 

computer system provided by NERSC to do my calculation. For example, Jacquard 

Linux system was used for the first two and half years of my research. After its 

retirement, I switched to Franklin, then to the newest one, Hopper, which I use until 

now.   

Rigorous convergence studies were carried out in order to obtain reliable 

results and save the computer time. First, using very small step size        Bohr 

and very large size of basis set     , we did calculations with different grid limits 

(             and     Bohr) to determine the optimal value of      . The value 

of          Bohr was chosen for further calculations. With this     , the energy 

of eigenstates up to       (  is quantum number) is accurate within      MHz. 

Second, using          Bohr and     , we studied the effect of the number of 

points. We carried out calculations with the number of points (           

              and       along the axial direction. The value       

(corresponding to       Bohr) was chosen. With this grid the deviation of energy 

for the state      from the most accurate results (      ) is lower than      

MHz. Finally, using          Bohr and       Bohr we investigated the effect 

of the size of the basis set with               and   . Results of all these 
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calculations are summarized in Fig. 2.2 which shows    as a function of quantum 

number in different calculations. One feature seen in these calculations is that results 

for some upper states calculated with smaller basis sets are noticeably different from 

those calculated with larger basis sets. For example, comparing the results obtained 

with      basis functions against those obtained with      basis functions, one 

can see apparent differences when the quantum number comes to about     . In the 

numerical method, we can only use a limited number of basis functions in the 

 

 

Fig. 2. 2: Spectrum of energies of 
111

Cd
+ 

 ion in the anharmonic potential trap 

calculated numerically using basis sets of different sizes 50,40,30,20,10N . In all 

calculations
 

650max z  Bohr and 10z  Bohr  (N = 131) are used. Arrows indicate 

inaccurate results. 
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calculation, so there are always some deviations between calculated results with true 

values for the upper states. We have to use larger sizes of basis set if we want to 

obtain accurate results for upper states. Similarly, in calculations with       basis 

functions we cannot achieve 40 accurate eigenvalues, we need to compare their 

results with more accurate data from larger sizes of basis set to make sure how 

accurate they are. Recall that in our system the anharmonicity is small and the 

deviation of anharmonic results from harmonic ones is also small. In order to see this 

effect, the error of energy eigenvalues should be lower than    of anharmonicty, 

which is about 0.001 MHz. From our study, when the size of basis set is     , the 

states up to          are converged to      MHz compared to the more accurate 

results from     . This is accurate enough for our purpose, so our final 1D 

calculations are carried out with          Bohr,       (Equally-Spaced 

Abscissas method with       Bohr) and      basis functions. 

2.5 Analysis of results 

Figure 2.3 shows energy eigenvalues of the states with quantum number 

         . Results for the harmonic potential trap (plus) are calculated 

analytically using Eq. (2.1.2). Results for the anharmonic potential trap (circle) are 

from our numerical calculations. The third set of data points (box) in Fig. 2.3 

corresponds to Dunham expansion formula [83]:  
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We used the first three numerical values (         of the calculated anharmonic 

spectrum to fit the Dunham expansion formula and obtained the following values of  

the coefficients: 

           MHz, 

                  MHz, 

                  MHz. 

Note that the value of    is practically equivalent to the harmonic frequency, which 

 

 

Fig. 2. 3: Spectrum of the lower eleven states for 
111

Cd
+ 

 ion in the harmonic and 

anharmonic traps. 



29 
 

 

 

means that the Dunham expansion describes the low part of the spectrum very 

accurately. Also, the value of           , which is about 0.8% of  . As expected, 

it should be enough for the successful control. 

 From Fig. 2.3 it is also apparent that results of the anharmonic case are 

different from the analytic harmonic results. When    , the difference is 

vanishingly small (smaller than 0.1 MHz), but with the increase of the quantum 

number the difference increases. When     , the deviation is about 20 MHz. To 

find out the trend of the difference between the harmonic and anharmonic spectra, we 

Fig. 2. 4: Energy difference between the anharmonic spectrum and the harmonic 

spectrum of 
111

Cd
+ 

 ion (from Table 2.1). 
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plotted in Fig. 2.4 the energy differences:  

                                                                                                             

The anharmonic results from numerical calculation (Table 2.1) and from the Dunham 

fit (Eq. (2.5.1)) are both used. The data in Fig. 2.4 show that the energy differences 

increase with a trend of parabola which is the evidence that the spectrum of ion in the 

anharmonic potential trap is non-equidistant. If the numerical spectrum is harmonic, 

the data in Fig. 2.4 would show a straight line. Also note that the spectrum from 

numerical calculations is close to the results calculated from Dunham expansion 

formula for small values of  , which tells us that our fit values are qualitatively 

correct. But when the quantum number becomes larger, they are somewhat different. 

This means we can reproduce very accurately the results for several lower states with 

the Dunham fit using the lowest three states. All data used in Fig. 2.3 and 2.4 are 

summarized in Table 2.1.     

 In addition to analysis of the spectrum, we can also analyze wavefunctions of  

states of the trap. Because the matrix C is obtained during the diagonalization of the 

Hamiltonian matrix, the wavefunctions of the system can be calculated from the Eq. 

(2.2.7). In Fig. 2.5, the harmonic (red) and anharmonic(green) trapping potentials are 

both plotted, the anharmonic term (blue) of the anharmonic potential is also included. 

We also draw the wavefunctions of different energy levels in the ion traps and it can  
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Table 2. 1: Eigenvalues, assignments and deviations (from the harmonic model) of 

the vibrational states of 
111

Cd
+ 

 ion in a slightly anharmonic trap. 

 

 

Fig. 2. 5: Green line is the anharmonic trapping potential 
42 '

!4

1

2

1
)( zkkzzVa  , red 

line is the harmonic part of this potential and blue line is the anharmonic part. Black 

solid line discribes the wavefunctions and energy levels of 
111

Cd
+ 

 ion in the harmonic 

trapping potential and the dotted line is that of anharmonic case. 

# of 

state 
Eh (MHz) 

Ev 

(numerical) 

(MHz) 

Anharmonic 

spectrum from 

Dunham 

expansion 

(MHz) 

δE between Ev 

(numerical) and 

Eh (MHz) 

δE between 

anharmonic 

(Dunham fit) 

and Eh (MHz) 

0 8.7022 8.7740 8.7740 0.0718 0.0718 

1 26.1066 26.4619 26.4619 0.3552 0.3552 

2 43.5110 44.4236 44.4236 0.9126 0.9126 

3 60.9154 62.6480 62.6592 1.7326 1.7437 

4 78.3198 81.1251 81.1686 2.8053 2.8488 

5 95.7242 99.8458 99.9519 4.1216 4.2276 

6 113.1287 118.8018 119.0090 5.6731 5.8804 

7 130.5331 137.9855 138.3401 7.4524 7.8070 

8 147.9375 157.3898 157.9449 9.4524 10.0075 

9 165.3419 177.0085 177.8237 11.6666 12.4818 

10 182.7463 196.8353 197.9763 14.0891 15.2300 
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help us understand the system in terms of the probability distribution for different 

states. From Fig. 2.5, it is shown that the anharmonic trapping potential is a little 

sharper than the harmonic potential which induces a shift up of the anharmonic 

energy levels compared to the energy levels of the harmonic case. The differences 

between energy levels of harmonic and anharmonic trap increase with the quantum 

number, which is consistent with Fig. 2.4. Because the anharmonicity is quite small, 

the shape of anharmonic potential trap is very similar to the harmonic trap which 

leads to the nearly same wavefunctions of two systems. However, the sharper 

anharmonic potential results in the slightly smaller axial extent of the corresponding 

wavefunctions compared to the harmonic case. This small effect is seen in Fig. 2.5.  

2.6 The control scheme and the transition matrix 

In order to control motion of the ion we propose to apply an additional time- 

dependent electric field        along the axis of the trap, so that the Hamiltonian 

becomes:                 , where    is the Hamiltonian from Eq. (2.2.2), 

                 
 

 
 is the electric potential, and   is electric charge of the ion. 

The easiest approach is to create a spatially homogeneous field with the time-

dependent amplitude      which after trivial analytic integration gives: 

                                                                                                           

Note that this problem is very similar to the coherent control problem of  
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molecular vibrations using the ultra-fast optimally shaped laser pulses [8, 33, 37, 44, 

84-88]. Indeed, the semiclassical molecule-light interaction is given by: 

                                                                                                        

Here    is molecular Hamiltonian,      is intensity of the time-dependent laser field 

and      is the molecular dipole moment function. The dipole moment of non-polar 

molecules executing small amplitude vibrational motion is a linear function of the 

internuclear distance: 

       
  

  
 
     

                                                                                      

If only keeping the first term, the total molecular Hamiltonian becomes: 

                  
   

                                                                                    

Since this expression is mathematically equivalent to Eq. (2.6.1), the optimal control 

theory methods developed for molecular vibrations can be utilized to control the 

motion of ions in a trap [84].  

Similar to the molecular dipole moment function     , for convenience, we  

introduce the dipole moment function )(zd  of one-ion in a trap:  

qzzd )( .                                                                                        (2.6.5) 

Using this definition, the control Hamiltonian of Eq. (2.6.1) can be rewritten as: 

                                                                                                         

The transition matrix elements of ion in the trap (needed in the following  
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section) are calculated as follows: 

                                                                                                   

Here    and     are two wavefunctions of the ion which can be calculated from Eq. 

(2.2.3) for any pair of eigenstates. So the equation is rewritten as:  

                 

 

   

                

 

   

                                                           

              

 

   

 

   

  

            

 

   

                                        

 
 

    
      

                                                    

 

     

 

Here   is the mass of 
111

Cd
+
 ion,   is the axial frequency (see Eq. (2.2.4)) and   is 

the number of basis functions which are used to represent wavefunctions of the 

 

 

Fig. 2. 6: Transition matrix of 
111

Cd
+ 

 ion in the harmonic trapping potential. 
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system. Alternatively, we can calculate the elements of transition matrix numerically 

using the following equation which serves as a test: 

                          

 

   

                                                                      

                   

 

   

 

  

   

             

 

   

                        

The code for calculation of transition matrix is program 1DIONTRAP (Appendix  

A, lines 264-286) using the numerical integral with Eq. (2.6.9).  

If the trapping potential is harmonic, wavefuntions of the system are just basis  

functions from Eq. (2.2.4). In this case, the sum of Eq. (2.6.8) simplifies to only one 

term: 

 

 

Fig. 2. 7: Transition matrix of 
111

Cd
+ 

 ion in the anharmonic trapping potential. 
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Table 2. 2: Values of transition matrix (11×11) of 
111

Cd
+ 

 ion in the harmonic 

trapping potential (values are in units of ea0). 

 

Table 2. 3: Values of transition matrix (11×11) of 
111

Cd
+ 

 ion in the anharmonic 

trapping potential (values are in units of ea0). 

 

                  
 

    
                                         

Figure 2.6 shows elements of       transition matrix for one ion in the harmonic 

trapping potential calculated using this analytic formula. As in the infrared 

spectroscopy, the selection rule       is revealed. Elements of       transition 

matrix for one ion in the anharmonic trapping potential calculated numerically using  

 

0 1 2 3 4 5 6 7 8 9 10 

0 0.00 30.56 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

1 30.56 0.00 43.22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

2 0.00 43.22 0.00 52.94 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

3 0.00 0.00 52.94 0.00 61.13 0.00 0.00 0.00 0.00 0.00 0.00 

4 0.00 0.00 0.00 61.13 0.00 68.34 0.00 0.00 0.00 0.00 0.00 

5 0.00 0.00 0.00 0.00 68.34 0.00 74.87 0.00 0.00 0.00 0.00 

6 0.00 0.00 0.00 0.00 0.00 74.87 0.00 80.87 0.00 0.00 0.00 

7 0.00 0.00 0.00 0.00 0.00 0.00 80.87 0.00 86.45 0.00 0.00 

8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 86.45 0.00 91.69 0.00 

9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 91.69 0.00 96.65 

10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 96.65 0.00 

 

0 1 2 3 4 5 6 7 8 9 10 

0 0.000 30.318 0.000 0.095 0.000 0.001 0.000 0.000 0.000 0.000 0.000 

1 30.318 0.000 42.547 0.000 0.181 0.000 0.001 0.000 0.000 0.000 0.000 

2 0.000 42.547 0.000 51.731 0.000 0.273 0.000 0.002 0.000 0.000 0.000 

3 0.095 0.000 51.731 0.000 59.322 0.000 0.370 0.000 0.003 0.000 0.000 

4 0.000 0.181 0.000 59.322 0.000 65.888 0.000 0.469 0.000 0.004 0.000 

5 0.001 0.000 0.273 0.000 65.888 0.000 71.724 0.000 0.571 0.000 0.007 

6 0.000 0.001 0.000 0.370 0.000 71.724 0.000 77.005 0.000 0.673 0.000 

7 0.000 0.000 0.002 0.000 0.469 0.000 77.005 0.000 81.848 0.000 0.878 

8 0.000 0.000 0.000 0.003 0.000 0.571 0.000 81.848 0.000 86.332 0.000 

9 0.000 0.000 0.000 0.000 0.004 0.000 0.673 0.000 86.332 0.000 94.448 

10 0.000 0.000 0.000 0.000 0.000 0.007 0.000 0.878 0.000 94.448 0.000 
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Eq. (2.6.9) are shown in Fig. 2.7. Because we only add a small anharmonicity to 

harmonic potential, the difference between the harmonic transition matrix and the 

anharmonic one is quite small. In Fig. 2.7, besides the       transitions,    

       transitions also occur which are the contributions of the double sum in Eq. 

(2.6.8), and it is the effect of anharmonicity. All the data of Figs. 2.6 and 2.7 are 

summarized in the Tables 2.2 and 2.3. 

2.7 Optimal control theory (OCT) 

The purpose of optimal control theory is to design theoretically the pulse 

shape      which maximizes the transfer probability from a given initial state    to a 

chosen target state    (both can be eigenstates or superposition states). The 

optimization can be achieved by maximizing the objective functional with the 

monotonically convergent numerical algorithm of Rabitz [8], where the objective  

functional is defined as: 

                
 
                                                                         

 

 

      

                                                 
 

 

                       

Here   presents duration of the pulse,         is the time-dependent wave function 

driven by      from its initial state              to the final state              

and         is the backward driven wave function. The first term in Eq. (2.7.1) is an 

overlap of the final wave function with the target state which is maximized; the 
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second term is required to minimize energy of the laser field and constrain its smooth 

switching on and off; the last term serves to satisfy the time-dependent Schrödinger 

equation with the evolution of the wave functions         and        . The function      

is a penalty function, which has the following form [48]: 

     
  

    
                                                                                                        

where    is a constant penalty factor,      plays a role of the smooth switching-on 

and switching-off of the pulse: 

           
 

 
                                                                                              

The brackets         in Eq. (2.7.1) denote integration over the spatial coordinate  , which 

is omitted here for simplicity. This approach can be used, for example, for state flips 

like            , when both the initial and the final states are uniquely defined. 

In quantum computation, however we have to deal with more complicated  

gate transformations of the vibrational qubit. For example, for the logical gate NOT 

we have to find a pulse to induce two transitions between the qubit states 

simultaneously: 

                                                                                                                   

                                                                                                                   

This means, the system should be driven into the state       if it was initially in the 

vibrational state      , but if it was initially in the state       it should be driven into the 
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state      . One universal gate pulse should be able to achieve the population transfer 

for two transitions of interest simultaneously, which transition is actually performed 

depends only on the initial state of the qubit. This can be achieved by maximizing the 

functional where the sum over the two transitions of interest (Eqs. (2.7.4) and (2.7.5)) 

is introduced: 

  
 

 
              

   
 

     

                                                             
 

 

    

                  
                                    

 

 

  

     

        

Here index   labels K = 2 transitions of interest. For example, for the gate NOT we 

set:   
       ,   

       , and    
       ,   

        according to Eqs. (2.7.4) and 

(2.7.5). The          and         ,        , are the laser-driven time-dependent wave 

functions for two transitions of the gate, and      is the universal gate field. 

In practice, the measure of success of the control pulse is the value of overlap 

             between the actual final wave function and wave function of the target 

state. The control pulse designed to induce multiple state-to-state transitions (e.g., 

different transitions of the quantum gate) can be assessed by the value of cumulative 

transition probability defined as:  

  
 

 
             

   
 
 

 

                                                                                  

Here the index k labels K transitions we want to optimize simultaneously, Kk 1 .   
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The goal of this theory is to derive the equations for calculation of the optimal 

pulse     . The procedure of this is very similar to the maximization of the Eq. (2.7.1) 

described in detail in the literature [89]. It is required to maximize the functional with 

respect to variations in five functions:         ,         ,        , and     . We start 

with the variation of         ,        . We get: 

                                                                                 

                  
                                     

 

 

                

Because        is chosen arbitrarily, Eq. (2.7.8) can only be satisfied if 

        
 

  
                                                                                             

By applying variations to the backward propagated wavefunctions          in Eq. 

(2.7.6) separately, we obtain the following equations for each  ,        : 

 
 

  
                                                                                                               

            
                                                                                                        

These are two time-dependent Schrödinger equations to propagate forward in time, 

each with its own initial condition   
 .  

In the similar way, variations of          and          in the Eq. (2.7.6) give: 
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Here we omit terms that depend quadratically on       . From Eq. (2.7.9), the last term 

in Eq. (2.7.11) vanishes and we obtain: 

                         
      

                                                
 

 

    

         

Due to the choice of a time-independent                 , the time derivative      

vanishes. By moving the operator        to the left, it was indicated it will work on 

        , and then we get: 

                         
       

                                     
 

 

                  

Eq. (2.7.13) holds for a          satisfying the Schrödinger equation with boundary 

condition            
 , so we obtain the following equation for each  ,        : 

 
 

  
                                                                                                               

           
                                                                                                       

These are two time-dependent Schrödinger equations propagated backward in time, 

each one with its own target state   
  as a boundary condition.  

Finally, the variations      lead to the optimal field: 
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Eq. (2.6.1) was used here. Eq. (2.7.15) can be satisfied for all       only when 

  

    

    
                

                          

     

                              

From Eqs. (2.7.10) and (2.7.14), we can obtain: 

                    

  
                                                                                           

So, 

                                                                                                         

Finally, we obtain the equation of the field: 

      
    

  
                                           

     

                            

here the sum is over the two optimized transitions of interest and the four Schrödinger 

equations (2.7.10) and (2.7.14) are coupled only through this field equation (2.7.19).  
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2.8 Numerical propagation of vibrational wavepackets 

The forward and backward propagation of the time-dependent Schrödinger 

equation is achieved by expanding the time-dependent wavefunction           and 

          over the basis set of eigenstates       of the system with time-dependent 

complex coefficients       and       : 

                                                                                                         

                 
           

 

   

                                                                   

                  
             

 

    

                                                               

where       is from Eq. (2.6.1). Indexes   and    label eigenstates of the system and   

is the total number of states in the expansion used for the propagation (   ). 

Probability of the system in states   and    can be computed as        
  and         

 . 

Substituting           from Eq. (2.8.2) into Eq. (2.8.1), we can obtain the following 

coupled equations for time evolution of coefficient       for the forward propagation: 

          
            

                                                                    

 

   

 

        
         

 

   

        
                

 

   

                             

In Dirac form, it can be rewritten as follows: 
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Or, 

                                               
 

   

                   

 

   

          

Multiplying Eq. (2.8.6) by              from the left and integrating, we obtain: 

                                     

 

   

                                                

Here       is the element of the transition matrix defined in Eq. (2.6.7).  

If we split Eq. (2.8.7) into its real and imaginary parts, the following equations 

are obtained (   ): 

    
             

               
                  

 

   

                           

    
             

               
                  

 

   

                           

where                 is the phase shift.     
     and     

     represent real and 

imaginary parts of complex coefficient        .  

Similarly, if we follow the same procedure to derive the equations for the 

backward propagation, we will come to the same equations as Eqs. (2.8.7)-(2.8.9) (but 

     substituted by     ). For simplicity, in the following derivation we only show  
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the equations for forward propagation. 

The optimized field      in Eqs. (2.8.8) and (2.8.9) is calculated using Eq. 

(2.7.19). Expansions for         and         are needed during the calculation: 

               
     

 

   

                                                                                 

                
      

 

    

                                                                              

Substituting Eqs. (2.8.10) and (2.8.11) into Eq. (2.7.19), the different parts of Eq. 

(2.7.19) are rewritten as follows: 

                     
    

 

   

                                                                        

                 
 

     
      

       
      

      

 

   

                                   

                 
 
     

      
       

      
      

 

   

                                    

                                                                            
 

    

 

   

 

                                                       

where  

         
       

       
       

                                                                

         
       

       
       

                                                                

Now everything is ready for solving Eqs. (2.8.8) and (2.8.9). 
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Note that the forward and backward propagation follow the same equations 

which simplifies our calculations a lot. But one thing we need to point out is that the 

initial condition of the forward and backward propagation have to be set up 

differently. Assume that the initial and final target states are given by: 

        

 

    

                                                                                                     

        

 

    

                                                                                                     

For the forward propagation, because at     the phase term in Eq. (2.8.10) is 

equal to 1, the wave function at     can be written as: 

                   

 

    

                                                                          

Comparing Eqs. (2.8.18) and (2.8.20) we see that the initial boundary values are equal  

to the input coefficients:              .  

For the backward propagation, the setup becomes more complicated. The 

wave function at     is: 

                          

 

    

                                                            

The final boundary values for backward propagation are obtained from       

              . Now the phase term cannot be neglected any more, so we have to 

find out the relationship between          and      in order to start propagation of 



47 
 

 

 

the wave function backward. After some mathematical manipulation, the equations 

for          are obtained: 

   
           

             
                                                               

   
           

             
                                                               

Where    
  and    

  are the real and imaginary part of    ,     
  and     

  are the real and 

imaginary parts of the input value of      for backward propagation. 

When the boundary conditions are set up, we can solve the Eqs. (2.8.8) and 

(2.8.9) both forward and backward by the fourth-order Runge-Kutta method using 

RK4 subroutine of the numerical recipes [80]. The general optimization code 

(Program MAIN, see Appendix B) was initially written by Dr. Babikov, but was 

substantially modified for this work [63, 84, 85, 90, 91]. The code solves Eqs. (2.8.8), 

(2.8.9) iteratively and calculates the field      using Eq. (2.7.19). The spectra of 

eigenvalues and the transition matrix, which are obtained from code 1DIONTRAP in 

Appendix A, are needed as input files for this code. 

2.9 Quantum bits (qubits), quantum gates and quantum computation 

An electrical circuit containing wires and logic gates; a quantum computer is 

theoretically built from a quantum circuit containing wires and elementary quantum 

gates which is analogous to the way a classical computer is built from. Changes 

occurring to a quantum state can be described using the language of quantum 
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computation in order to carry around and manipulate the quantum information. The 

simplest case is the single qubit gates [53]. 

Just as a classical bit has a state – either {0} or {1} – a qubit also has a state. 

Two possible states for a qubit are the states       and      , which as you might guess 

correspond to the states {0} and {1} for a classical bit. The difference between bits 

and qubits is that a qubit can be in a state other than       and      . It is also possible to 

form linear combinations of states, often called superpositons: 

                                                                                                                

The numbers   and   are complex numbers. Differently, we cannot examine a qubit 

to determine its quantum state, the values of   and  . When we measure a qubit we 

get either the result 0, with probability     , or the result 1, with probability     . 

Naturally,            , since the probabilities must sum to one. The state of a 

qubit is a vector in a two-dimensional complex vector space. The special states       

and       are known as computational basis states, and form an orthonormal basis for 

this vector space. 

Classical computer circuits consist of wires and logic gates. The wires are 

used to carry information around the circuit. The logic gates perform manipulations of 

the information and convert it from one form to another. For example, classical single 

bit logic gates – the only non-trivial member of this class is the NOT gate. The 
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operation of gate NOT is defined by its truth table, in which            and 

          , that means, the {0} and {1} states are interchanged by the action of 

this gate. 

To define an analogous quantum NOT gate using qubits, we can imagine that 

we had some process which took the state       to the state      , and vice versa. Such a 

process would obviously be a good candidate for a quantum analogue to the NOT gate. 

However, specifying the action of the gate on the states       and       does not tell us 

what happens to superpositions of the states       and      , without further knowledge 

about the properties of quantum gates. In fact, the quantum NOT gate acts linearly, 

that is, it takes the state 

                                                                                                                       

to the corresponding state in which the role of       and       have been interchanged,  

                                                                                                                     

There is a convenient way of representing the quantum NOT gate in matrix 

form. Suppose we define a matrix      to represent the quantum NOT gate as 

follows: 

      
  
  

                                                                                                   

If the quantum state               is written in a vector notation as 
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with the top entry corresponding to the amplitude for       and the bottom entry the 

amplitude for      , then the corresponding output from the quantum NOT gate is 

     
 
    

  
  

  
 
    

 
 
                                                                          

Notice that the action of the NOT gate is to take the state       and replace it by the 

state corresponding to the first column of the matrix     . Similarly, the state       is 

replaced by the state corresponding to the second column of the matrix     . 

So quantum gates on a single qubit can be described by two-by-two matrices.  

Recall that the normalization condition requires         for a quantum state 

             . This must also be true of the quantum state                        after 

the gate has acted. It turns out that the appropriate condition on the matrix 

representing the gate is that the matrix   describing the single qubit gate be unitary, 

that is      , where    is the Hermitian conjugate of  . 

Amazingly, this unitarity constraint is the only constraint on quantum gates. 

Any unitary matrix specifies a valid quantum gate. The interesting implication is that 

in contrast to the classical case, where only one non-trivial single bit gate exists – the 

NOT gate. There are many non-trivial single qubit gates. One important is the 

Hadamard gate, 

     
 

  
 
  
   

                                                                                          

This gate is sometimes described as being like a “square-root of NOT” gate, in  
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that it turns a       into                  (first column of     ), “halfway” between       

and      , and turns       into                  (second column of     ), which is also 

“halfway” between       and      . 

     
 
 
  

 

  
 
  
   

  
 
 
  

 

  
 
 
 
                                                           

     
 
 
  

 

  
 
  
   

  
 
 
  

 

  
 

 
  

                                                        

The other important gate is the π-rotation gate (  ): 

    
  
       

  
   

                                                                             

which leaves the state populations unchanged, but introduces the phase difference 

between the states       and      : 

   
 
 
   

  
   

  
 
 
   

 
 
                                                                           

   
 
 
   

  
   

  
 
 
   

 
  

                                                                       

It is important to note that these three gates, together with the conditional two-

qubit gate CNOT and the conditional three-qubti Toffoli gate (See section 3.2 and 

6.5), form a universal set of quantum gates sufficient to represent any quantum 

algorithm. 

2.10 Examples of pulse optimization 

Although the optimal control theory methods developed for molecular  

vibrations can be used to control the motion of ions in a trap, the computational aspect 

of the trapped ion is complicated by several special properties: i) the spatial extent of 
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the motional wave functions      of ion in a trap (    nm) is 500 times larger than 

the amplitude of a typical molecular vibration; ii) The energy differences between the 

motional states of ions in a trap (   MHz) is about 10
7
 times smaller than that in the 

molecules; iii) The time scale of ionic motion (and control) is 10
8
 times longer than 

the femtosecond scale of molecular motion. Due to these features, the time step for 

numerical propagation of ionic wavefunctions was very large,        ns. The 

penalty factor was chosen to be a large number (       ) to reduce the field 

amplitude to the optimal level. The overall convergence of iterations was very slow 

and      forward-backward propagation cycles were necessary to converge     .  

In order to start the iterative improvement of the field, we use the “guess”  

pulse in the following form: 

                                                                                               

Here A is a guessed amplitude of the electric field,    and    are the energies of the 

ground and first excited states,       and      . During the propagation,    from Eq. 

(2.7.19) is used to restrict the amplitude of the field and the shape of the pulse is 

modified step by step under the influence of Eq. (2.7.19). 

a) Qubit flips 

Here, as the simplest example, we optimize the pulse for a transition:       

     , which gives general understanding of our optimal control approach. We  
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Fig. 2. 8: Pulse optimization for the qubit flip: 10   in the 
111

Cd
+ 

ion trap. (a) The 

guess field. (b) – (k) The optimized pulse and evolution of state populations after 1, 11, 

101, 1001 and 2001 iteration steps.  
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numerically solve Eq. (2.7.19) to calculate the optimal pulses for this qubit flip with 

the ground vibrational state       being the initial boundary condition and the first 

excited vibrational state       being the final boundary condition. In Fig. 2.8 (a) we 

present the initial guess field with target time T = 10 µs. The process of optimization 

procedure is demonstrated in Fig. 2.8 (b) – (i) where the pulses after 1, 11, 101, 1001 

and 2001 iterations are shown. The guess field is from Eq. (2.10.1). Such field carries 

single frequency. The amplitude changes gradually according to simple and 

symmetric function. The transition probabilities are shown together with the pulse and 

(a)

(b) (c)

0

1

Fig. 2. 9: (a) The control pulse for qubit flip 10   in the 
111

Cd
+ 

ion trap. (b) 

Switching of state populations during the transition 10  . (c) Convergence of the 

iterative procedure and the final transition probability. 
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they go up as iterations proceed. Fig. 2.9 (a) shows the optimized pulse      for the 

transition             after 10,001 iteration steps, target time T = 10 µs. The optimized 

pulse shape is quite simple and nearly symmetric with the maximum amplitude about 

2.8 mV/cm. Figure 2.9 (b) shows time evolution of the probabilities in two vibrational 

states during the pulse action. At    , the ion is in state         with probability 

equal to 1. During the pulse, the probability in state       decreases, while the 

probability in state       increases. In the end    , the probability is transferred to 

state         almost completely (up to 0.999).   

Convergence study was carried out to make sure that our results are reliable. 

The transition probabilities of forward and backward propagations are plotted in Fig. 

2.9 (c), the curves are smooth and the results begin to converge after about 4000 

iteration steps with accuracy approaching to 0.999.  

 b) Gate NOT  

 More complicated qubit transformation is presented by the gate NOT, where 

we need to control two transitions simultaneously from Eqs. (2.7.4) and (2.7.5). For 

the gate NOT: as many as 20,001 forward-backward iteration cycles were required to  

achieve convergence. The results are summarized in Fig. 2.10. The formulas of the 

average transition probability are given by the following equations:     
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Where     is the number of transitions optimized simultaneously. 

From Fig. 2.10, we can see that the optimized pulse of gate NOT is quite 

simple and nearly symmetric with the maximum amplitude about 2.8 mV/cm. The 

 

 

Fig. 2. 10: The gate NOT in the 
111

Cd
+ 

ion trap optimized with two transitions. (a) 

Optimally shaped electric field. (b) Average probability of the gate. (c) Switching of 

population between the qubit states during the 10NOT  . (d) Switching of 

population between the qubit states during the 01NOT  . 

NOT

10NOT 

01NOT 

0

0

1

1
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pulse duration is 10 µs. The results converge very fast – within about 4000 iterations. 

Both transitions are controlled accurately, up to 0.999. If the state is first in        , it 

is excited to        . In contrast, if it is first in        , population is transferred into 

stat         after the action of the pulse. 

C)  Hadamard gate, phase control          

For the gates like Hadamard transformation: 

         
 

  
                                                                                           

         
 

  
                                                                                           

The phase information is important and gate fidelity, F, should be computed as a  

coherent sum over the optimized transitions. 

   
 

  
     

             

 

   

 

 

                                                                    

 

 

Hadamard (a) (b)

Fig. 2. 11: (a) Optimally shaped pulse for the gate Hadamard in the 
111

Cd
+ 

ion trap. 

(b) The convergence of iterations and final fidelity of the qubit transformation. 
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Here    .  

 It was shown in the literature [85, 92] that optimizing just two transitions is 

not enough. At least one (or two) additional transitions should be included into the 

optimization process, in order to constrain the common phase. For example, the 

transition  

   
 

  
                                                                                                 

and/or 

   
 

  
                                                                                                 

must be optimized simultaneously with transitions of Eqs. (2.10.4) and (2.10.5). Such 

calculations were carried out, and converged results were obtained after 40,001 

iteration steps. They are summarized in the Fig. 2.11 and 2.12. The pulse shape in Fig. 

2.11 is simple with the maximum amplitude about 2.3 mV/cm. Because we optimize 

four transitions simultaneously, the pulse is almost symmetric. Such a pulse is easy to 

create in the experiment. From Fig. 2.12 we can see that the transitions to the target 

states for Hadamard gate are not straight forward. For example, in Fig. 2.12(a), the 

population in states       and       is nearly 0.5 at about 5.5 µs. However it does not stop 

there, the population of state       is transfered further into state      . At the end of the 

pulse duration, it returns to 0.5. Still, the transition probabilities for all four transitions 
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are very high simultaneously. The fidelity of Hadamard transformation is ~0.999. 

Iterations begin to converge after about 3000 forward-backward loops.  

2.11 Conclusions 

 

Fig. 2. 12: The gate Hadamard in the 
111

Cd
+ 

ion trap. (a) Creation of linear 

superposition of the qubit states as required by )10(210HAD  . (b) The 

same during the )10(211HAD   transformation. (c) The same during the 

0)10(21HAD   transformation. (d) The same during the 

1)10(21HAD   transformation. 
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In this chapter, we developed general theory, numerical methodology and 

computer codes to calculate the eigenvalues and wavefunctions of  one ion in the 

anharmonic trap.  Small anharmonictiy (        ) was found large enough to 

carry our very accurate state-to-state transformations [55, 63, 69, 70, 84, 90, 91, 93]. 

Pulses for a set of major quantum gates were optimized, such as qubit flips, gate NOT, 

CNOT and Hadamard transformation. The fidelity of all the transformations is very 

high, ~0.999. The field patameters obtained after optimization are          mV/cm 

and        . Because the optimized pulses are simple and symmetric, such pulses 

should be easy to create in the experiment. 
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Chapter 3: Feasibility of Encoding Shor’s Algorithm into the Motional States of 

Ion in the Anharmonic Trap  

Those gates we optimized in Chapter 2 are used to control one-qubit encoded 

into states 0  and 1 . One can expand this idea onto larger number of qubits by 

controlling more states. In general, in order to represent n qubits we need 2
n
 quantum 

states. Here we consider 16 lowest vibrational states of one ion in the anharmonic trap 

to represent a four-qubit system. 

3.1 The model system 

In this study we applied the same anharmonic system (the trapping potential is 

from Eq. (2.1.4)) as in Chapter 2. The two force constants k  and k   of the 

anharmonic trapping potential are of the same values as in Chapter 2, with 

310483.12 k  MHz/a0
2
 and 710067.12  k  MHz/a0

4
. The resultant 

anharmonic potential along the axial direction of the trap is shown in Fig. 3.1.   

Energy eigenvalues for the lower sixteen vibrational states are given in Table 3.1. The 

vibrational quantum number, v , is assigned to each state. Since anharmonicity is 

relatively small, wave functions of these states (not shown here) look very similar to 

the wave functions of harmonic oscillator. However, the effect of anharmonicity is 

easy to spot if one looks at the transition frequencies. The frequencies for excitation 

of one quantum of vibration, n,n+1 , and three quanta of vibration, n,n+3 , are also 
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given in Table 3.1 for each state. These frequencies increase as the vibrational 

quantum number increases. For example, for single excitation of the ground state the 

frequency is MHz8151.22ω0,1  , while for the 16
th

 state it is 

MHz3376.32ω15,16  , which is about 19% higher. Effect of similar magnitude is 

found if we compare frequencies for excitation of three quanta of vibration:  

 

Fig. 3. 1: Weakly anharmonic trapping potential in the model system. Energies of 

thirty-two quantized motional states of one trapped 
111

Cd
+ 

ion are indicated by 

horizontal lines. Effect of anharmonicity is clearly seen. Sixteen lower states (used to 

encode qubits) are indicated by solid lines. Upper states (included for completeness) 

are shown by dashed lines. Assignment of states of the four-qubit system is indicated 

in brackets. 
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Table 3. 1: Eigenvalues, transition frequencies, qubit state assignments, optimized 

transformations and their characteristic probabilities for sixteen lower vibrational 

states in a model of 
111

Cd
+ 

ion
 
in a weakly anharmonic Paul trap. 

 

MHz5743.82ω0,3   against MHz0963.102ω15,18  . 

 Another way to quantify anharmonicity of the spectrum is to fit the spectrum  

by Dunham’s analytic expression from Eq. (2.5.1) [83]. Using numerical values of 

energies of three lower states ( v = 0, 1 and 2 from Table 3.1) we obtained: 

310214.52D  MHz,     (3.1.1a) 

v 
E/2π 

(MHz) 
n,n+1/2π 

(MHz) 

n,n+3/2π 

(MHz) 

Qubit 

states 
Transformations of the Shor’s algorithm 

Characteristic 

Probabilities 

0 1.3964 2.8151 8.5743 0000  #1         6521
2

1
0   0.9977 

1 4.2115 2.8587 8.6999 0001  #2        01   0.9979 

2 7.0702 2.9005 8.8207 0010  #3        32   0.9995 

3 9.9707 2.9407 8.9372 0011  #4         6521
2

1
3   0.9977 

4 12.9115 2.9795 9.0496 0100  #5         6521
2

1
4   0.9992 

5 15.8910 3.0169 9.1584 1001  #6         8)1(4)1(
2

1
5 ii   0.9991 

6 18.9079 3.0532 9.2639 1010  #7         11)1(7)1(
2

1
6 ii   0.9981 

7 21.9611 3.0883 9.3662 0111  #8         6521
2

1
7   0.9990 

8 25.0494 3.1224 9.4657 1100  #9         1413109
2

1
8 ii   0.9985 

9 28.1718 3.1555 9.5626 1101  #10       8)1(4)1(
2

1
9 ii   0.9986 

10 31.3273 3.1878 9.6569 1110  #11       11)1(7)1(
2

1
10 ii   0.9986 

11 34.5151 3.2192 9.7489 1111  #12       1413109
2

1
11  ii  0.9994 

12 37.7343 3.2499 9.8387 1000  #13       1413109
2

1
12 ii   0.9991 

13 40.9842 3.2798 9.9265 0101  #14      1213   0.9995 

14 44.2640 3.3090 10.0123 0110  #15      1514   0.9996 

15 47.5731 3.3376 10.0963 1011  #16       1413109
2

1
15  ii  0.9982 
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771.22    MHz,      (3.1.1b) 

210179.22    MHz.     (3.1.1c) 

Using numerical values of energies of three upper states ( v = 13, 14 and 15 from 

Table 3.1) we obtained: 

110312.42D  MHz,     (3.1.2a) 

870.22    MHz,      (3.1.2b) 

210462.12    MHz.     (3.1.2c) 

These data show that the value of anharmonicity parameter,  , is close to 0.8% of the 

trap frequency for the lower part of spectrum and is about 0.5% for the upper part of 

spectrum. The value of   from this fit is close to the harmonic frequency   (within 

the effect of small anharmonicity).  

Using the numerically computed wave functions )(zv  of vibrational 

eigenstates we calculated matrix elements of the transition dipole moment matrix for 

this system. The 16×16 part of this matrix is shown in Fig. 3.2, for the lower 16 states. 

Due to symmetry, only transitions characterized by odd values of v  are allowed, 

e.g.: 

.,7,5,3,1 etcv                                                   (3.1.3) 

Figure 3.2 shows that the dipole moment matrix is clearly dominated by 1v  

transitions, which is consistent with low anharmonicity of the system. For example, 
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the matrix element D) 77.07(~ 30.32 01,0 ea  is two orders of magnitude larger 

than the element D)0.24(~ 1079.4 0

2

3,0 ea×   , which in turn is two orders of 

magnitude larger than  D)101.27(~ 104.98 3

0

4

5,0

  ×ea×  . This property suggests 

that excitation of multiple quanta of vibration in this system might be easier to 

achieve by inducing a ladder of consecutive state-to-state transitions. For example:  

3210  vvvv , 

rather than 30  vv  directly. 

Another relevant property of the dipole moment matrix is that, when we go 

 

 

Fig. 3. 2: Transition moment matrix for sixteen lower vibrational states in a model 

system of 
111

Cd
+ 

ion in a weakly anharmonic Paul trap. Color indicates magnitudes of 

matrix elements in the logarithmic scale (dark red corresponds 0

2

15,14 1008.1 ea

D) 102.75(~ 2  and light blue corresponds D) 101.27(~ 104.98 3

0

4

5,0

  ×ea×  . 

See text for further details). 
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down along its near-diagonal line that represents the dominant 1v  transitions 

(see Fig. 3.2), the values of matrix elements slightly increase. For example, 

D) 101.96(~ 01.77 2

07,6  ea  is a factor of 2.5 larger than 1,0 , and is a factor of 

1.4 smaller than D) 102.75(~ 1008.1 2

0

2

15,14  ea×   . Again, this behavior is 

reminiscent of the harmonic oscillator.   

3.2 The quantum algorithm 

Sixteen lower vibrational states are used in this work to encode states of the 

four-qubit system with the purpose of implementing, in the computational 

experiments, the four-qubit version of Shor’s algorithm for factorizing number 15 [53, 

68]. The quantum circuit diagram for the phase-estimation part of this well known 

algorithm is shown in Fig. 3.3. Here qubits 1 and 2 represent the argument-register, 

while qubits 3 and 4 represent the function-register. The algorithm involves three 

major steps:  

i) Preparation of the argument-register in an equally weighted coherent 

superposition of states. This is achieved by Hadamard gates on qubits 1 and 2  

and is indicated by gray background in Fig. 3.3. 

ii) Modular exponentiation of the function-register. This is achieved by a 

sequence of three conditional three-qubit gates, working as a controlled 

SWAP operation, also known as Fredkin-gate, and indicated by blue  
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background in Fig. 3. Qubits 2, 3 and 4 are involved. 

iii) Inverse quantum Fourier transform of the argument-register. This is achieved 

by a sequence of three CNOT gates on qubits 1 and 2, known also as SWAP 

gate (green background in Fig. 3) with following Hadamard and conditional 

rotation gates (purple). 

In the overall factorizing algorithm, the phase estimation part described above is 

followed by measurement of populations of the qubit states.  

In the matrix form the preparation part of the algorithm (Hadamard 

transformation of two qubits) is described by the following unitary transformation 

matrix acting on four states: 




























1111

1111

1111

1111

2

1
1U .                                                 (3.2.1) 

The modular exponentiation step creates a maximally entangled state and is given by 

H

H H

H

R

1

2

3

4

M
ea

su
re

Fig. 3. 3: Quantum circuit diagram for the phase estimation part of Shor’s algorithm 

for factorizing number 15 using four qubits (read from left to right). See text for 

details. 
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the following matrix acting in the three-qubit space (eight states): 



































10000000

00100000

01000000

00010000

00001000

00000100

00000010

00000001

2U .                                     (3.2.2) 

A sequence of three two-qubit gates CNOT is given by  























1000

0010

0100

0001

3U .                                                (3.2.3) 

This transformation is also knows as SWAP. Finally, a sequence of Hadamard, 

conditional rotation and Hadamard gates for two qubits is given by: 




























ii

ii
U

11

11

1111

1111

2

1
4 .                                                   (3.2.4) 

Each of these matrixes can be easily expanded onto the entire space of four qubits 

(sixteen states) by adding the needed number of identity-blocks and zero-blocks to 

create the 16×16 matrixes: 1U , 2U , 3U   and 4U  , able to act on sixteen states of the 

entire four-qubit system. Then, the overall Shor’s algorithm can be represented by a 

single 16×16 unitary matrix obtained as a matrix product: 1234Shor UUUUU  . We let 

readers to carry out these matrix manipulations. The final result is [33]: 
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

















































































0100010000000000

10010000000000

00100100000000

0010001000000000

0000000002000000

0000000010011001

0000000010011001

0000000000200000

0100010000000000

10010000000000

00100100000000

0010001000000000

0000000000000200

0000000010011001

0000000010011001

0000000000000020

2

1
Shor

ii

ii

ii

ii

ii

ii

ii

ii

U

       

(3.2.5) 

This unitary matrix acts on the vector of sixteen states of the four-qubit system 

arranged in the following usual order: 
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            (3.2.6)   
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In principle, the sixteen vibrational states could be used in their normal order to 

encode these qubit states, namely:   
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            (3.2.7)   

However, we found that this straightforward way of encoding is not the best. The 

difficulties created by this choice are easy to spot if one looks at the state-to-state 

transitions generated by applying the unitary matrix ShorU  of Eq. (3.2.5) to the state 

vector of Eq. (3.2.7). For example, if the initial state is 0000 , represented by the 

vibrational state 0v , the unitary matrix ShorU   leads to the following 

transformation: 

 10921
2

1
0Shor  vvvvvU .   (3.2.8) 

Analogously, for the initial state 1111 , represented by 15v , we obtain 

 141365
2

1
15Shor  vvivvivU .  (3.2.9) 
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We see that these two transformations require transferring 10 quanta of vibrational 

excitation, which is quite difficult to implement with the near-diagonal dipole moment 

matrix, as one presented in Fig. 3.2. Two other difficult to implement transformations 

associated with the straightforward encoding of Eq. (3.2.7) are: 

  12)1(4)1(
2

1
13Shor  vivivU ,    (3.2.10) 

 10921
2

1
3Shor  vvvvvU    (3.2.11) 

These transformations require transferring 9 and 7 quanta of the vibrational excitation. 

In order to avoid such far state-to-state transitions, one has to search for an alternative, 

more convenient encoding of the qubit states.  

We analyzed several alternative ways to encode the four-qubit states into the  

sixteen lower vibrational states and have, finally, chosen the following order of the 

vibrational states: 
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           (3.2.12) 

This way of encoding is also outlined in Table 3.1, where states of the four-qubit 

system are assigned to sixteen vibrational states, and all transformations of the initial 

states are indicated, as dictated by unitary matrix of Shor’s algorithm, Eq. (3.2.5). 

Among those transitions, some of the most difficult to implement are:  

 6521
2

1
0Shor  vvvvvU ,   (3.2.13) 

 1413109
2

1
8Shor  vivvivvU .   (3.2.14) 

They require excitation of only up to 6 quanta of vibration, compared to 10 quanta in 

the case of straightforward encoding. Two other difficult to implement transitions are: 

 11)1(7)1(
2

1
6Shor  vivivU ,    (3.2.15) 

 6521
2

1
3Shor  vvvvvU .   (3.2.16) 
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These transformations require excitation of only up to 5 and 3 quanta of vibration, 

compared to 9 and 7 quanta in the case of straightforward encoding. So, advantages 

offered by the encoding of Eq. (3.2.12) are clearly seen. 

  Another useful (and exactly equivalent) viewpoint onto the same issue is this: 

Instead of changing the order of vibrational states in the state vector of Eq. (3.2.7), 

one could permute the order of qubit states in the vector of Eq. (3.2.6) which 

corresponds to permuting, simultaneously, the corresponding columns and rows of the 

unitary matrix ShorU  in Eq. (3.2.5). The purpose is to obtain new unitary matrix ShorU   

that will be as close to the diagonal matrix as only possible. Indeed, the original 

matrix ShorU  of Eq. (3.2.5) has several non-zero off-diagonal elements that are very 

far from the diagonal line. These matrix elements are responsible for those far state-

to-state transitions listed in Eqs. (3.2.8) – (3.2.11). Alternatively, the unitary matrix 

ShorU  , which corresponds to the encoding of Eq. (3.2.12), is given by: 
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U

   

 (3.2.17) 

Here, the off-diagonal elements describe the transitions of Eqs. (3.2.13-3.2.16), but 

the overall structure of this matrix is much closer to the near-diagonal one, compared 

to the original matrix ShorU  of Eq. (3.2.5).   

3.3 OCT pulse shaping  

Optimization of the pulse for the entire quantum algorithm, such as Shor’s 

algorithm, is a formidable task. Indeed, the optimal pulse should be able to carry out 

each of sixteen transformations listed in the 6
th

 column of Table 3.1 with high 

accuracy. Finding such a pulse is made feasible by employing a multi-target version 

of the objective functional [35, 37, 44, 63, 89, 90]. This approach requires 

propagating a set of sixteen identical Schrödinger equations (forward and backward in 
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time as explained above), but each with its own initial condition and its own target 

state, as dictated by transformations of sixteen qubit states (see Table 3.1, 6
th

 column). 

The common field )(t  is iteratively improved using all this information. See Chapter 

2, Sec. 2.7 and 2.8 for further details of the method.   

Such calculations are quite demanding. Our optimization code was 

parallelized using the MPI interface and was run in parallel on sixteen processors of 

Cray machine at NERSC center [94-96]. Numerical propagation of vibrational wave 

packets was employed. The wave packet was expanded in the basis set of 32 

vibrational eigenstates to avoid unphysical reflection of wave packet from the upper 

states. The overall optimization procedure was semi-automated. Namely, it took many 

attempts made with different pulse durations, different guess amplitudes and different 

penalty factors, before the optimal pulse of acceptable accuracy, duration and shape 

was identified. We found that for this problem it was advantageous to start the search 

with a guess pulse of very large amplitude of the field, on order of 100 V/m. In the 

course of iterative improvement the pulse amplitude dropped quickly to only about ~ 

0.4 V/m (in the final optimal pulse), but we saw that accuracy of the final pulse was 

better if amplitude of the initial guess pulse was much larger. The best penalty factors 

were between α = 2×10
12

 and 4×10
13

. The number of forward-backward iterations 

needed for convergence was on order of 10,000 or more. Durations of studies pulses 
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were between 10 and 50 s. The number of time steps for numerical wave packet 

propagation was on order of few hundred thousand.  

3.4 Results and discussion 

The field optimized for Shor’s algorithm is shown in Fig. 3.4 (a). Duration of 

the pulse is 50 s. The field amplitude does not exceed 0.4 V/m. The pulse shape is 

Fig. 3. 4: (a) Optimally shaped 50 s pulse for Shor’s algorithm in the 
111

Cd
+ 

ion 

trap. (b) Windowed Fourier transform of the pulse. Horizontal dashed lines indicate 

frequencies of the state-to-state transitions. Dotted curves encircle two spectral 

features that correspond to the ladder climbing. See text for details. 
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quite complicated, as one might expect from complexity of the optimization task that 

involves sixteen transformations optimized at the same time. Although it is very 

difficult to derive any useful information simply from the shape of the pulse in Fig. 

3.4 (a), this optimized field gives very accurate control of all sixteen transformations 

given in Table 3.1. For different transformations of the training set the characteristic 

probabilities vary between 0.9977 and 0.9996 (see last column of Table 3.1) with an 

average (over sixteen transformations) close to 0.999. From our point of view, this is 

quite high, taking into account complexity of the optimization problem. Our results 

also indicate that it is possible to improve the average probability even further by 

increasing the pulse duration, doing more forward-backward iterations, and delicately 

changing some other numerical parameters of the method. However, we decided to 

stick with this set of parameters, as one providing very reasonable accuracy of the 

qubit state transformations.   

A straightforward way to analyze the optimized pulse is to look at the state-to-

state transitions induced by this pulse. In Fig. 3.5 we present three examples (out of 

sixteen optimized transformations) that are quite typical. The first example to discuss 

is the first transformation of Table 3.1, illustrated by Fig. 3.5 (a). In this case, 

population of the initial state 0v  should be transferred in equal amounts to four 

final states: 1v , 2v , 5v  and 6v . Thus, each of the final states is expected 
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to receive the population of P = 0.25. The time evolution of state populations in Fig. 

3.5 (a) is as follows: In the first 25 s of the pulse the 10  vv  transition is 

induced and population of the ground state is converted almost entirely into 

 

 

Fig. 3. 5: Time evolution of state populations induced by the pulse optimized for 

Shor’s algorithm in three representative cases: (a) Transformation #1 in Table 3.1.  (b) 

Transformation #3 in Table 3.1. (c) Transformation #11 in Table 3.1. Thicker color 

lines indicate population of the initial and final states. Thinner black lines indicate 

population of intermediate states. 
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population of the first excited state. Transition to state 2v  starts showing up only 

after the population of state 1v  reaches a reasonably high value (P ~ 0.7 at t ~ 22 

s). Also note that the increase of population of state 2v  mirrors the decrease of 

population of state 1v . This certainly means that state 2v  is populated not 

directly from the ground state 0v , but through the state 1v . Next, the increase 

of population of state 3v  occurs only when the population of state 2v  reaches 

its maximum (P ~ 0.4 at t ~ 26 s) and, again, the population of state 3v  increases 

at the same rate as the population of state 2v  decreases. Same scenario repeats 

again for transferring population from state 3v  to state 4v . The populations of 

states 3v  and 4v  reach P ~ 0.3 in the time interval near t ~ 30-35 s. Note, 

however, that these states are expected to be unpopulated at the final moment of time. 

Indeed, from Fig. 3.5 (a) we can see that they give all of their population either further 

up to state 5v , or back down to the 2v  state. Finally, at t ~ 35-40 s, state 

6v  starts receiving population from state 5v . At the end of the pulse, the final 

populations of states 1v  and 2v  are close to P ~ 0.2632, while the final 

populations of states 5v  and 6v  are close to P ~ 0.2361. Populations of states 

3v  and 4v , and of all states above 6v , are close to zero.  

Note that Transformation #1 depicted in Fig. 3.5 (a) is typical to the Shor’s 

algorithm. For example, Transformations #4, #5 and #8 have exactly the same 
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complexity. We analyzed state populations in those cases too, and observed very 

similar behavior. The only difference is that during the Transformation #1 (and #8) all 

population of the initial state is transferred up (down) first and then some part of it is 

returned down (up), while during the Transformations #4 and #5 the population of 

initial state is split from the beginning: about 50% of it go up and the remaining 50% 

go down. The Transformations #9, #12, #13 and #16 are also similar to 

Transformation #1 (apart from the phases involved). So, our conclusion is that 

controlling the ladders of consecutive state-to-state transitions is essential for 

successful implementation of the Shor’s algorithm in this architecture.  

Next to discuss is Transformation #3 illustrated by Fig. 3.5 (b). Here the 

population transfer from  2v  to 3v  is relatively direct. The neighboring states 

1v  and 4v  receive some relatively small population “erroneously” during the 

pulse (P ~ 0.2 at t ~ 23-33 s), which is attributed to the relatively low anharmonicity 

of the system. However, this process is well controlled: By the end of the pulse this 

erroneous population is entirely returned to the target state. Final population of the 

target state is P ~ 0.9995. Similar behavior of state populations was observed during 

the Transformations #2, #14 and #15. These transformations belong to the same type,  

characterized as a state-to-the-next-state transition. 

Finally, Fig. 3.5 (c) illustrates Transformation #11, which is example of  
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splitting population of the initial state between the two target states. Here, population 

of the initial state 10v  is transferred very quickly (t ~ 15 s) and almost entirely 

into the 9v state, and then, also very quickly (by t ~ 22 s) and almost entirely into 

the 8v  state. Then, state 7v  starts receiving population. During the time period 

t ~ 20-30 s population oscillates between the states 7v , 8v  and 9v . At t ~ 

30 s the population is directed further down towards the final state 7v  and, 

through the intermediate state 10v , up into the other final state 11v . Final 

populations are P ~ 0.4972 and P ~ 0.5014. This behavior is typical to 

Transformations #6, #7 and #10 as well. 

Overall, this discussion demonstrates a very pronounced step-ladder climbing 

scenario which, undoubtedly, is a reflection of properties of the dipole moment matrix 

of this system, discussed in the Sec. 3. 2 above.  

Another way to analyze the optimized pulse is to look at its Fourier spectrum. 

Figure 3.6 (a) shows the spectrum in a broad range of frequencies. It exhibits five 

very distinct spectral structures. The first structure is in the frequency range of 

transitions between the neighboring states, 1v . Among those, the lowest 

frequency transition is at 10  and the highest frequency transition is at 1514 . Two 

arrows are given, near the top of the spectral structure in Fig. 3.6 (a), to indicate the 

corresponding range of frequencies. In the frequency range between these arrows the  
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spectral structure exhibits a plateau. Outside of this plateau the intensity drops 

exponentially. The second spectral structure corresponds to the overtone transitions, 

 

Fig. 3. 6: Fourier spectrum of the pulse optimized for Shor’s algorithm in the 
111

Cd
+
 

ion trap: (a) broad range of frequencies (up to n,n+9). (b) focus on the frequency 

range of the main spectral structure (n,n+1 transitions). (c) focus on the frequency 

range of the overtone spectral structure (n,n+3 transitions). Arrows indicate 

frequencies of the state-to-state transitions from Table 3.1. 
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3v , with the lowest frequency transition at 
30

  and the highest frequency 

transition at 1512 . Those are also indicated by arrows. And so on and so forth, up to 

the 9v  frequency range included into the Fig. 3.6 (a). Note, however, that the 

vertical axis in Fig. 3.6 (a) is in the logarithmic scale. When we go from the main 

spectral structure ( 1v ) to the next and the next, the intensity drops each time by 

two-to-three orders of magnitude, on average. This certainly means that the step-

ladder climbing transitions (described by the main spectral structure) are dominant, 

which is totally consistent with behavior observed in Figs. 3.5 (a-c) and discussed 

above. The overtone transitions, although clearly present in the pulse, play less 

important role.   

Figure 3.6 (b) shows plateau of the main spectral structure in detail (no 

logarithmic scale for the intensity). Fifteen arrows indicate frequencies of the 

neighboring state-to-state transitions n,n+1. Figure 3.6 (c) shows in detail the plateau  

of the spectral structure corresponding to the first overtone. Fourteen arrows indicate 

frequencies of the relevant state-to-state transitions n,n+3. Majority of spectral peaks 

on these two pictures are easily assignable to the corresponding state-to-state 

transitions. Note that the lower frequency part of spectrum in Fig. 3.6 (b) is 

particularly “clean” and intensity of the corresponding overtone components in Fig. 

3.6 (c) is quite low. In contrast, the higher frequency part of spectrum in Fig. 3.6 (b) is 
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more “congested” and intensity of the corresponding overtone components in Fig. 3.6 

(c) is notably higher. These features have very straightforward interpretation: Recall 

that selective control of the state-to-state transitions is facilitated by anharmonicity of 

the spectrum. For a long progression of states, like the sixteen states used in this work, 

the parameter of anharmonicity can change as we go through the spectrum. As it was 

shown in Sec. 3.2 above, the lower part of our spectrum is more anharmonic (  is 

close to 0.8% of the trap frequency) compared to the upper part of spectrum (only 

0.5%). It appears that when the spectrum is more anharmonic (lower part) the 

overtone transitions matter less and accurate control can be achieved mostly by means 

of the n,n+1. When the spectrum is less anharmonic (upper part), the role played by 

the overtone frequency components n,n+3 becomes more visible.  

The conclusion here is that one could, probably, benefit from using somewhat 

more anharmonic trapping potential. This would increase the overall anharmonicity of 

the vibrational spectrum of the system, particularly that in its upper part, and would 

lead to simpler frequency content of the optimized pulse, which normally translates 

into simpler pulse shape and higher accuracy of the qubit transformations.    

The last thing we did to analyze the optimized pulse was windowed Fourier  

transform shown in Fig. 3.4 (b). The time-frequency diagram was obtained using 

Gaussian window with half-width of ~ 190 s, applied at 501 points evenly spaced 
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along the pulse duration period. Only the frequency range of the main spectral 

structure is shown in Fig. 3.4 (b), which corresponds to the n,n+1 transition 

frequencies. Fifteen relevant frequencies n,n+1 are indicated in Fig. 3.4 (b) by 

horizontal dashed lines.     

It is instructive to analyze Fig. 3.4 (b) together with Fig. 3.5. Thus, a long 

ladder of state-to-state transitions seen in Fig. 3.5 (a) and discussed in detail above:  

6543210  vvvvvvv , 

is also clearly seen in Fig. 3.4 (b). It is located in the upper part of the figure (lower 

frequency range) and, for clarity, is encircled by thin dotted line. It spreads over a 

very broad time interval, 10 s < t < 40 s. This is one of the most pronounced 

features of the time-frequency diagram in Fig. 3.4 (b). Another important structure in 

the time-frequency diagram corresponds to the ladder of transitions depicted in Fig. 

3.5 (c): 

78910  vvvv . 

This structure is located in the middle part of Fig. 3.4 (b) and, for clarity, is also 

encircled by dotted line. Interestingly, one can see another ladder that “branches out” 

of this ladder near t ~ 35 s. It corresponds to the ladder of backward transitions: 

11109  vvv , 

this is totally consistent with discussion of Fig. 3.5 (c) above.  
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Further analysis of the time-frequency diagram of Fig. 3.4 (b) reveals several 

other shorter ladders.One can also identify several “forks” (where two ladders are 

initiated at the same state), and several points where two different ladders cross each 

other. Overall, the time-frequency diagram of Fig. 3.4 (b) is rather complicated, but it 

can be rationalized in terms of multiple ladders that can cross each other, form 

branches and forks. For completeness, the codes of the 1D Fast Fourier Transform 

(FFT) and 2D Fourier analysis are given in the Appendix C and D. 

3.5 Conclusions 

The purpose of the work in this chapter is exploratory, rather than predictive. 

We do not really expect that the Shor pulse obtained here by calculations can be 

exactly reproduced in the experiment and can lead to exactly the same result under 

experimental conditions. However, we feel it is reasonable to expect that employment 

of an advanced experimental pulse optimization technique, such as feedback loop 

with evolutionary algorithm [33, 34], may lead to experimental result of acceptable 

quality. Thus, we encourage the members of experimental community to seriously 

consider this possibility. Computational results outlined in this work could serve as 

prediction of a reasonable set of parameters for the system and for the pulse.   

Let’s start with the system. We found that small anharmonicity of the trapping 

potential, characterized by anharmonicity parameter close to 1% of the trap 
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frequency, is sufficient to alter the state-to-state transition frequencies and make the 

control feasible. In the case studied here, the sixteen lower vibrational states (used to 

encode the four-qubit system) exhibit the excitation frequencies in the range between 

roughly MHz82.2 and MHz34.3 . So, the effect of anharmonicity is apparent. The 

dipole moment matrix for single trapped ion is dominated by transitions to the nearest 

states, 1v , suggesting the ladder-climbing scenario of the population transfer.  

As for the pulse, we were able to reach the average (over sixteen states of the 

four-qubit system) transition probability of 0.999 with the pulse duration of 50 s. 

Our calculations showed that 0.999 is not a limit. We saw clear indications that 

running more iterations would improve the accuracy of qubit transformations even 

further. The pulses longer than 50 s can exhibit somewhat higher transition 

probabilities. Amplitude of the optimized control field is relatively small; it does not 

exceed 0.4 V/m. We should admit that shape of the optimized Shor pulse is rather 

complicated. Frequency content of the pulse is sharply peaked at the range of 

frequencies that corresponds to the ladder of state-to-state transitions with 1v  

for the sixteen states involved. Frequencies of the overtone transitions with 3v , 

5v , etc., are also present in the optimal pulse, but their intensity decreases 

exponentially as frequency increases. The time-frequency diagram of the pulse 

contains multiple ladders (that can cross and form branches and forks) and allows  
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explaining major features of the sequence of sub-pulses of different frequencies.  
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Chapter 4: Study of the two-ion system 

In this chapter we study a two-ion system which represents a 2D quantum 

problem. Numerical solution of Schrödinger equation  requires setting up the basis set 

in two-dimensions. Since our system is only slightly anharmonic, it is a good idea to 

use the normal mode coordinates and the normal mode frequencies to define the 1D 

basis functions for each dimension of the problem. 

4.1 Two ions in the harmonic trapping potential 

4.1.1 Harmonic trapping potential 

In this section, we consider two 
111

Cd
+ 

ions in the harmonic trapping potential, 

Eq. (2.1.1). The value of the force constant 310483.12 k  MHz/a0
2
 is the same 

as in the  one-ion case studied in Chapters 2 and 3. However, due to the Coulomb 

interaction, this is a totally different system. We restrict the motions of ions to one 

dimension along the trap (z-axis). Our initial intention was to use two normal modes 

of this system to encode two qubits. For example, one can try to use the center-of-

mass motion mode to encode the first qubit and the symmetric stretching mode to 

encode the second qubit. The trapping potential, equilibrium positions, relevant 

energy levels and the possible encoding of the two-qubit states are shown in Fig. 4.1. 

 The potential energy of the two ions in the harmonic trapping potential is  
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expressed as follows (in atomic units): 

                     
 

       
                                                               

 
 

 
   

  
 

 
   

  
 

       
                                                    

As before,   is the force constant, we use    and    to describe the positions of two 

ions and set      .  

Potential energy surface (PES) of two ions in the trap based on Eq. (4.1.1.1) is 

++

(a)

(b)

00

10

01

11

Veq

Fig. 4. 1: Two 
111

Cd
+ 

ions
 
in the harmonic potential trap: (a) Equilibrium positions of 

ions and minimum energy of the two-ion string. (b) Vibrational spectrum of this 

system and possible encoding of states of the two-qubit system. 
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shown in Fig. 4.2. When the two ions come close to each other (     ), the potential 

energy approaches infinity which is the effect of Coulomb repulsion. This part of the 

PES is shown in white color. Second, although the trapping potential from Eq. (2.1.1) 

is harmonic, the potential energy of the system is anharmonic due to ion-ion Coulomb 

interaction. The main question here: is Coulomb interaction of ions enough to 

introduce anharmonicity sufficient for accurate control? 

4.1.2 Minimization Method 

When we consider one ion in the trap, it is obvious that the equilibrium 

 

 

Fig. 4. 2: Potential energy surface of two 
111

Cd
+ 

ions in the harmonic potential trap 

using Cartisian coordinates. Anharmonicities due to Coulomb repulsion of ions are 

clearly seen. 
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position of the ion is at     (right at the center of the trap). But now there are two 

ions in the trap and we have to determine the equilibrium positions of these two ions 

first. The second-order derivative minimization methods represent powerful tools, 

because they use both the gradients and the second derivatives to locate the minimum. 

The Newton-Raphson (NR) method is the simplest second-order derivative method 

[97]. To describe this method, it is useful to recall the expression for the Taylor series 

expansion in the vicinity of   : 

                  
      

 

 
      

                                   

Keeping only terms through quadratic, we can express the derivative of this function 

as: 

                    
                                                                                                                              

At the minimum, which we’ll call   , the first derivative is zero, thus: 

                        
                                                           

      
      

      
                                                                                                                                                                                        

This equation allows us to approach the minimum    using information about    and 

   at an arbitrary initial point    from which we start the minimization. On the 

harmonic PES, the minimum energy point is found in one step. Our PES is 

anharmonic and iterations are needed. Because our system is two dimensional, in this  

method we need to calculate the inverse second derivative, which will be an inverse 
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matrix of second derivatives. 

The two dimensional minimization equation is shown as follows: 

 
   

   
   

   

   
       

       

       
                                                                  

where           characterizes the equilibrium positions of two ions and           

describes a set of arbitrary initial positions. 

Since the potential is analytic, the gradient and the second-order derivative are 

also analytic. From Eq. (4.1.1.1), we obtain the first and second derivatives of the 

potential energy for two-ion system: 

         

   
     

 

       
 
                                                                     

 

 

Fig. 4. 3: Minimization from four different arbitrary initial positions. 
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These derivatives are used in Eq. (4.1.2.5) to locate the equilibrium positions of  

these two ions in the trap with NR method. A computer code Program 2DMIN written 

in FORTRAN language is used to carry out these optimizations numerically (see 

Appendix E). In the algorithm, the equilibrium position           is approached 

iteratively from an arbitrary initial point           by consecutive application of Eq. 

Fig. 4. 4: Change of potential energy of the system during minimization from four 

different guess positions. 
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(4.1.2.5) until the convergence is achieved.  

Figure 4.3 illustrates the minimization process in four different runs when the 

initial guess positions were           = (-15000 Bohr, 15000 Bohr), (-15000 Bohr,  

10000 Bohr), (-15000 Bohr, 0 Bohr), (-10000 Bohr, -7500 Bohr). All four 

calculations resulted in the same equilibrium position after about 40 iterations. The 

results are as follows: 

                Bohr, 

                   Bohr. 

The value of potential energy at this point was                          

MHz.  In Fig. 4.4, we present the change of the potential energy of the system during 

the minimization and the minimized potential energy was found in the end. In all four 

runs, the results converged to accuracy up to      Bohr, which is the position 

difference between two subsequent steps. 

4.1.3 Normal vibration modes 

At the equilibrium point (       and       ), the Hessian matrix of the  

system is expressed by the following equation:  

    
 

   

   
 

   

      

   

      

   

   
 

 
 

         

                                                                   

To obtain the frequency of two normal vibration modes, the Hessian matrix    of Eq.  
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(4.1.3.1) must be converted into the matrix   in mass-weighted coordinates first, 

which is presented as follows: 

                                                                                                       

Substitution of Eqs. (4.1.2.8) - (4.1.2.10) into Eq. (4.1.3.2), the equation of the 

Hessian matrix at equilibrium position in mass-weighted coordinates is obtained: 

   
  
  

 
    

 
 

   

   
 

   

      

   

      

   

   
 

 
 

         

 
  
  

 
    

                             

 
 

  
 

   

   
 

   

      

   

      

   

   
 

 
 

         

                                                                        

 
 

 
  
  

 

          
 

 

          

 
 

          
  

 

          

                                            

Eq. (4.1.3.3) can be diagonalized analytically to obtain the eigenvalues and 

eigenvectors of the matrix  . The results are as follows: 

   
 

 
  

   
 

 
 

 

 

          
  

   
      

       
    

 
  

 
 

  

 

 
  

 
   
  

 

   

Here    and    are two eigenvalues of the matrix F, and the columns in matrix A 

describe two eigenvectors of the system. The first column of matrix   describes the  



97 
 

 

 

first mode with lower frequency which is the center-of-mass motion mode (    

   ) and the second column describes the higher frequency mode which is the 

symmetric stretching mode (        ). 

The frequency of each normal mode can be calculated from the eigenvalues 

using the following relationship: 

   
   

 π
 
  

 π
                                                                                                  

here   labels normal vibration modes. Using Eq. (4.1.3.4), we calculate the frequency 

of these two modes and transfer them from atomic units to MHz. For parameters of 

the system given on page 17, this gives: 

            MHz 

            MHz  

Note that here for two (and in the later Chapter for three) ions this step can be carried 

out either analytically or numerically. For four and more ions (in the future work) the 

numerical procedure is required. In order to test our computer codes we did both 

numerical and analytic diagonalization and obtained equivalent results. Program  

2DHESSIAN in Appendix F shows example of numerical calculations.  

4.1.4 Hamiltonian and transformation of coordinates 

In the Cartesian coordinates, the Hamiltonian of the system can be written as: 
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here          is the potential from Eq. (4.1.1.1),    and    are the Cartesian 

coordinates of two ions.                is the constant energy shift by the 

minimum potential energy of system when two ions are at their classical minimum 

energy point (   ,    ). In order to use simple basis functions for numerical solution 

of this problem, we need to transform the coordinates from Cartesian to the normal 

mode coordinates. First we transform the coordinates to mass scaled coordinates: 

                                                                                                      

             
 

 

  

    
  

 

 

  

    
                                                    

            
 

 

 

 
   

  
 

 

 

 
   

  
  

         
                                                

here     and     are the mass scaled coordinates of    and   . Using the following 

transformation, the  expression of Hamiltonian in the mass scaled displacement 

coordinates is achieved: 

  
              
              

                                                                                         

               
 

 

  

     
  

 

 

  

     
                                      

              
 

 
  

    

  
     

 

 
 

 
  

    

  
     

 

                                      

 
  

                       
                                       

here      and      are the mass scaled displacement coordinates for two ions. In the 

next step, we need to transform coordinates to mass-weighted normal mode  
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coordinates [98] and the transformation is as follows: 

 
    
    

   
      

       
  

  
 

  
 

    
 

  

 
 

  

 

 
  

 
   
  

 

   
  
 

  
 

                                         

here   
  and   

  are the mass-weighted normal mode coordinates of the two-ion system 

and the matrix of eigenvetors   is used in the coordinate transformation. From the 

equations above, the expression of variable      and      through   
  and   

  is 

presented: 

 
 
 

 
 
      

  

 
   

    
  

         
  

 
   

    
  

                                                                                   

Now we know the relation between the mass scaled displacement coordinates and 

mass scaled normal mode coordinates and we need to find the expression for 

Hamiltonian in the mass scaled normal mode coordinates. 

For the kinetic energy part of the Hamiltonian operator, the transformation to 

the mass scaled displacement coordinates gives (see Eq. (4.1.4.6)): 

               
 

 

  

     
  

 

 

  

     
                                                          

Using Eq. (4.1.4.9), we obtain the following expressions [98]: 
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In the same way, we obtain the second derivative of the second mode: 

  

   
 
  

 

 
 

  

     
  

  

     
   

  

          
                                              

Using Eqs. (4.1.4.13) and (4.1.4.14), we obtain the following final expression of the 

kinetic energy operator: 

  

   
 
  

  

   
 
  

  

     
  

  

     
                                                                    

This means that in the mass scaled normal mode coordinates the kinetic energy part of 

Hamiltonian is still in the same form: 

     
    

    
 

 

  

   
 
  

 

 

  

   
 
                                                                      

By substitution Eq. (4.1.4.9) into Eq. (4.1.4.7), the equation of potential energy part in 

the mass scaled normal mode coordinates is obtained: 

     
    

   
 

 
      

  
    

 

   
 

 

 
 

 
      

  
    

 

   
 

 

                             

 
   

    
               

                                                     

Here 

    
 

 
    

  
 

 
    

  
 

         
                                                      

If we expand the brackets in Eq. (4.1.4.17), we obtain: 
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Note that the Coulomb interaction is included only into the term 
 

  
 

 
              

 of 

Eq. (4.1.4.19). This term is clearly anharmonic and depends only on the symmetric 

stretching coordinate   
 . Also there is no coupling terms between the two vibration 

modes, so this potential is analytically separable. The first mode is harmonic and the 

second mode is anharmonic due to the Coulomb.  

     
   

 

 

 

 
  
 
 
 

 

 
   

                                                                              

     
   

 

 

 

 
  
 
 
 

   
          

   
 

 

  
 
   

            

 
 

 
   

       

           

Finally, the Hamiltonian in mass scaled normal mode coordinates is expressed 

by the following equation: 

     
    

    
 

 

  

   
 
  

 

 

  

   
 
       

        
                              

4.1.5 Harmonic Approximation 

It is instructive to consider an approximation to the Hamiltonian in Eq.  

(4.1.4.19), which allows solving the Schrödinger equation analytically and 

approximately. We expand the term 
 

  
 

 
              

 in the Taylor Expansion. This 

leads to the following equation: 
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We can define the equilibrium energy as: 

        
      

     
 

 
    

  
 

 
    

  
 

         
                

Next, from the expression above, using properties of the equilibrium point (  
    

  

 , eqeq zz 21    and 0/  eqzV ) we can obtain approximate analytical expressions 

for the equilibrium positions (in the harmonic approximation): 

      
 

  
 

 
 
                                                                                                  

         
 

  
 

 
 
                                                                                                  

and for the equilibrium energy (in the harmonic approximation):  

3/1
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3
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k
zzVV ee

eq .                                                         (4.1.5.5) 

Substituting Eqs. (4.1.5.3) and (4.1.5.4) into Eq. (4.1.5.1), we obtain the following 

expression: 

     
    

   
 

 

 

 
  
 
 
 

 

 

  

 
  
 
 
 

 

 
 
 

 
 

 
 

      
        

                     

Substitution Eqs. (4.1.5.5) and (4.1.5.6) in to Eq. (4.1.4.22), the Hamiltonian in 

harmonic approximation is obtained: 
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here   
  and   

  are mass scaled normal mode coordinates. This approximate 

Hamiltonian operator is separable and harmonic in   
  and   

  (two uncoupled 

harmonic oscillators) and has analytic solutions to energies and wave functions. We 

found it convenient to introduce the “unscaled” normal mode coordinates    and    

(measured in the units of length, a0) according to the following:  

 

    

   
 

 

    
  
       

  
       

                                                                          

Here (  ,   ) are the effective masses. In such unscaled coordinates the Hamiltonian 

is expressed simply as: 

           
 

   

  

   
  

 

   

  

   
  

 

 
   

  
 

 
   

                          

The Harmonic frequencies of two modes are (in the harmonic approximation): 

  mk1 ,                                                                         (4.1.5.11) 

 3
3

2 









m
k .                                                               (4.1.5.12) 

Using parameters of our model we obtain, in the harmonic approximation, 

3

1 10610.5 ez a0, 
3

2 10610.5 ez a0, 
510796.8 eqV  MHz, 770.221   

MHz and 798.422   MHz. These numbers are close to those obtained 

numerically at the beginning of this section.  

Note that analytical expressions of Eqs. (4.1.5.3) and (4.1.5.4) for the 
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equilibrium distances, Eqs. (4.1.5.11) and (4.1.5.12) for the vibration frequencies, 

obtained here within the harmonic approximation, are consistent with results of James 

and coworkers [69, 70] obtained in a different way, and also with the NIST data [99]. 

This comparison provides an important benchmark for our theory and clearly 

demonstrates that the exact framework (beyond the harmonic approximation) 

developed in this work goes beyond the existing theoretical treatments of the ion 

chains in Paul traps.  

Using conclusions of the discussion above it is convenient to rewrite the exact 

Hamiltonian of Eq. (4.1.4.22) using the mass-unscaled normal mode coordinates 

       . The resultant expression is: 
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Fig. 4. 5: Potential energy surface of two 
111

Cd
+ 

ions in the harmonic potential trap 

using normal mode coordinates. 
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This expression is exact and contains all anharmonicities. It involves no 

approximations, just the transformation of coordinates. In Fig. 4.5, the PES in the 

normal mode coordinates         is shown. Only the part of       is relevant after 

the transformation. From the picture we can see that: The motion along    goes 

parallel to the white part, where Coulomb interaction is significant. So the motion 

along this mode does not bring the system towards the region of strong Coulomb 

interaction. As a result the system remains harmonic. In contrast, the motion along    

brings the system closer to the Coulomb region, which makes this mode anharmonic. 

4.1.6 2D Basis set expansion 

Two-dimensional wavefunctions of this system and the corresponding energy 

eigenvalues are calculated using the direct product basis set expansion method in the  

normal mode coordinates: 

                

 

   

                                                                          

here        and        are given by the expression of Eq. (2.2.4). They describe the  
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basis functions of two vibrational modes of the system. Their vibration frequencies 

are    (center-of-mass motion mode   ) and    (symmetric stretching mode   ). 

Indexes   and   lable basis functions and run from 1 to  . Index   lables states of the 

two-ion system; it runs from 1 to   . The      
 are coefficients of linear combination.  

In the matrix form they can be written as        .  

Substituting the basis functions              (         ) into Eq. 

(2.2.14), we obtain the Hamiltonian matrix of the two-ion system. Similar in form to 

the one-ion case, but the dimension of this matrix is      , where   is the number 

of basis functions for each mode. The kinetic energy part and the potential energy part 

are calculated numerically using the Equally-Spaced Abscissas method. A computer 

code named 2DIONTRAP was written to carry out all these calculation numerically 

(see Appendix G). 

4.1.7 Convergence Studies 

Rigorous convergence studies were carried out to optimize different  

parameters in our calculations: the integration limit     , the step size    and the 

basis set size  . First, using a small integration step          Bohr and large size of 

the basis set     , we did calculations with different integration limits (     

             Bohr). We defined the numerical accuracy as: 
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From Fig. 4.6, we can see the difference between the results computed with      

    and      Bohr, and the difference between the results computed with      

    and      Bohr. It is found that results obtained with          Bohr are 

accurate enough and their differences from those obtained with           Bohr is 

smaller than      MHz up to 400 states. So the value of          Bohr is used in 

further calculations.  

Next, using          Bohr and     , we studied the effect of the 

integration step size (              Bohr). We defined the numerical accuracy as: 

                                                                                                  

 

 

Fig. 4. 6: Convergence study with different integration limits ( 400,500,1000max   

Bohr). 25.6  Bohr and N = 20. 
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The value       Bohr was chosen with this grid: the deviation of energies from the 

most accurate result (        Bohr) is lower than      MHz for up to 400 states.   

Finally, we fixed          Bohr and       Bohr to study the effect of the size 

of basis set (             ). The definition of the numerical accuracy in this case 

is given by the following expression: 

                                                                                                

From Fig. 4.8, we see that the results obtained using 15 basis functions per normal 

mode are good enough for the first 77 states which contain all the vibrational states  

we need with accuracy better than      MHz. In the final 2D calculations, the 

 

 

Fig. 4. 7: Convergence study with different integration steps ( 20,10,25.6  

Bohr). 500max   Bohr and N = 20. 
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following parameters are used:                 Bohr,           

(Equally-Spaced Abscissas method:            Bohr) and            .  

4.1.8 Results and analysis 

In order to elucidate the effect of Coulomb anharmonicity, we computed 

deviations of the numerical spectrum from the Harmonic one: 

                                                                                                           

where 

         
 

 
        

 

 
                                                                 

 

 

Fig. 4. 8: Convergence study with different number of basis functions N = 10, 15, 20, 

25. 10  Bohr and 500max   Bohr. 
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Table 4. 1: Eigenvalues, assignments and deviations (from the harmonic model) of 

the vibrational states of two 
111

Cd
+ 

ions
 
in a harmonic trap. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Here    and    are the normal mode frequencies obtained from diagonalization of 

Hessian matrix in Sec. 4.1.3.  

The eigenvalues calculated numerically, the harmonic spectrum and their 

assignments in terms of the normal vibration mode quantum numbers (      ) are 

given in Table 4.1. From Table 4.1, it is found that our numerical results for energies 

# of state Ev (MHz) Eh (MHz) v1 v2 δE (MHz) 

1 23.77492 23.77487 0 0 0.00005 

2 41.17934 41.17929 1 0 0.00005 

3 53.92034 53.92021 0 1 0.00013 

4 58.58375 58.58371 2 0 0.00005 

5 71.32475 71.32462 1 1 0.00013 

6 75.98817 75.98812 3 0 0.00005 

7 84.06584 84.06554 0 2 0.00031 

8 88.72917 88.72903 2 1 0.00014 

9 93.39259 93.39253 4 0 0.00005 

10 101.47026 101.46996 1 2 0.00031 

11 106.13358 106.13345 3 1 0.00013 

12 110.79700 110.79695 5 0 0.00005 

13 114.21143 114.21087 0 3 0.00056 

14 118.87467 118.87437 2 2 0.00031 

15 123.53800 123.53786 4 1 0.00014 

16 128.20142 128.20137 6 0 0.00005 

17 131.61584 131.61528 1 3 0.00056 

18 136.27908 136.27878 3 2 0.00031 

19 140.94241 140.94228 5 1 0.00014 

20 144.35710 144.35620 0 4 0.00090 

21 145.60583 145.60579 7 0 0.00005 

26 163.01024 163.01019 8 0 0.00005 

29 174.50287 174.50154 0 5 0.00133 

32 180.41466 180.41461 9 0 0.00005 

40 204.64871 204.64687 0 6 0.00185 

53 234.79465 234.79221 0 7 0.00244 

67 264.94067 264.93753 0 8 0.00314 

82 295.08676 295.08286 0 9 0.00391 
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are a little higher than the analytic spectrum from harmonic approximation. It is 

because in the harmonic approximation we only keep the first three terms of the 

Taylor series. The values of deviations from harmonic model,   , are given in Table 

4.1 and are also presented in Fig. 4.9 for the ten lowest states of each normal mode 

progression. Figure 4.9 shows very clearly that Mode 1 (center-of-mass motion) 

remains harmonic, while Mode 2 (symmetric stretching) shows a distinct effect of 

Coulomb anharmonicity. We can understand this effect more directly from Fig. 4.10. 

In Mode 1 two ions move together along the z-axis as a single pseudo-particle. Such 

simultaneous center-of-mass motion of two ions does not change the distance between  

 

 

Fig. 4. 9: Effect of anharmonicity for two modes of the vibrational spectrum of two 
111

Cd
+ 

ions in a harmonic ( 2~ z ) potential trap.  
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them, and does not change the amount of Coulomb interaction. Excitation of the 

Mode 2, however, brings ions closer together and takes them further apart, changing 

the Coulomb repulsion energy of the system.  

In order to quantify the effect of Coulomb anharmonicity we calculated the 

coefficients for the 2D-Dunham expansion [83]: 

       
         

 

 
        

 

 
 

 

                                                            

       
 

 
        

 

 
 
 

        
 

 
     

 

 
            

based on numerical values of six eigenstates (ground state, first exited states of each 

mode, their overtones, and the combination state). The results are: 

                MHz, 

            MHz, 

            MHz, 

     MHz, 

                   MHz, 

 

 

Fig. 4. 10: Description of the ion motions for two vibrational motion modes. 
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      MHz.  

From these data we see that the center-of-mass motion mode is strictly harmonic 

(    ). Although the Coulomb interaction introduces some anharmonicity into the 

spectrum of the symmetric stretching mode, the value of this anharmonicity is too low 

for the control. The anharmonicity parameter in this case is 2

6

2 10~   , which is 

about four orders of magnitude smaller than is needed for the successful control. 

Thus, the Coulomb anharmonicity by itself is clearly insufficient for the control. 

4.1.9 Two-dimensional wavefunctions and transition matrix 

Using eigenvectors      
 from diagonalization of Hamiltonian matrix and the 

basis functions              (         ) of the system, the wavefunctions    of 

the eigenstates in the harmonic potential trap can be computed using Eq. (2.2.7). In 

Fig. 4.11 we present wavefunctions for several lower states. Based on shapes of 

wavefunctions we can assign the normal mode quantum numbers (      ) to these 

states. 

In the two-ion system, the elements in transition matrix are computed as 

follows: 

                                                                                                    

Here 
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is the dipole moment function. The brackets  in Eq. (4.1.9.1) represent 

integration over two spatial variables. Note that the wavefunctions are obtained in the 

normal mode coordinates, while the dipole moment function of Eq. (4.1.9.2) is 

expressed in Cartesian coordinates. In order to carry out the integration of Eq. 

(4.1.9.1) using wavefunctions in the normal mode coordinates, one has to transform 

the dipole moment function into the normal mode coordinates using Eqs. (4.1.4.2), 

(4.1.4.5), (4.1.4.9) and (4.1.5.9). This can be done using the following expressions: 

    
  

 
    

  

  
                                                                                

 

 

Fig. 4. 11: Wavefunctions of two 
111

Cd
+ 

ions
 
in the harmonic potential trap. 
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Finally, we use Eq. (4.1.9.5) to rewrite the expression of the dipole moment in the 

following form: 

                                                                                             

From Eq. (4.1.9.6) we can see that the transition dipole moment depends only on one 

coordinate   . That means there are only state-to-state transitions between states of the 

first mode, the second mode is “dark” in this two-ion system. 

 

 

Fig. 4. 12: Transition matrix for two 
111

Cd
+ 

ions in the harmonic potential trap. (black 

corresponds 0

2

6,5 1006.1 ea D) 102.69(~ 2  and orange corresponds 

 22.43 01,0 ea D) 10.101(~ 2  between states of mode 1). 
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Then the elements of transition matrix in the mass unscaled normal mode  

coordinates are expressed as: 

                                                                                       

In Fig. 4.12, we show the transition matrix of the lower 20 states, calculated 

from Eq. (4.1.9.7). The dipole moment function is an anti-symmetric (linear) function 

of   . Thus, the matrix elements are non-zero only for transitions between states of  

different symmetries (e.g., symmetric-to-asymmetric states and vice versa), leading to 

the following selection rules: 

 5,3,1 v  etc.,                                                                     (4.1.9.8) 

for Modes 1. Mode 2 is “dark” and cannot be controlled using the spatially 

homogeneous electric field. 

4.2 Two ions in the anharmonic trapping potential 

4.2.1 Anharmonic trapping potential 

Here we explore the possibility of using an anharmonic trapping potential in 

order to control the two-ion system. We consider the strongly anharmonic quartic trap 

where the potential is given by: 

      
 

  
                                                                                                       

where    is a parameter which controls trap frequency. Here, we present the results of  
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calculations with                   MHz/a0
4
. This parameter was chosen in 

order to obtain vibration frequencies similar to the system of two ions in the harmonic 

trapping potential. In Fig. 4.13 we show the anharmonic trapping potential, the 

equilibrium positions of two ions and several lower energy levels of the system. 

The PES of two ions in the anharmonic trapping potential based on Eq. 

(4.2.1.1) is shown in Fig. 4.14 using Cartesian coordinates. Overall, it looks similar to 

 

 

++

(a)

(b)

00

10

01

11

Veq

Fig. 4. 13: Two 
111

Cd
+ 

ions
 
in the  4~ z potential trap: (a) Equilibrium positions of 

ions and minimum energy of the two-ion string. (b) Vibrational spectrum of this 

system and the encoding of two-qubit states. 



118 
 

 

 

Fig. 4.2, which is the PES of two ions in the harmonic trapping potential, but some 

differences are clearly seen. Again, when the two ions come close to each other, the 

potential energy approaches infinity which is the affect of Coulomb repulsion. 

As before, the NR method was used to carry out the minimization and the 

results obtained for the equilibrium positions were: 

                Bohr, 

                  Bohr. 

The value of potential energy at this point was                           

MHz.        

 

 

Fig. 4. 14: PES of two 
111

Cd
+ 

ions in the anharmonic potential trap using Cartisian 

coordinates. Anharmonicities due to Coulomb repulsion of ions are clearly seen. 
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In the next step, diagonalization of the Hessian matrix was done and 

eigenvalues were obtained: 

               a.u. 

               a.u. 

Using Eq. (4.1.3.4), we calculate the frequencies of these two modes and transform 

to the units of MHz: 

            MHz, 

            MHz. 

The eigenvectors were also obtained: 

   
      

       
   

                
                  

 . 

 

 

Fig. 4. 15: PES of two 
111

Cd
+ 

ions in the anharmonic potential trap using normal mode 

coordinates. 
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Table 4. 2: Eigenvalues, assignments and deviations (from the harmonic model) of 

the vibrational states of two 
111

Cd
+ 

ions in 4~ z potential trap. 

 

Again, the mass unscaled normal mode coordinates were used to set up the 2D 

basis set and compute the eigenvalues and eigenfunctions of the system. In Fig. 4.15, 

the PES in the normal mode coordinates is shown. Only the part of       is relevant 

after the transformation. From the picture we come to conclusions somewhat similar 

to the harmonic case: The motion along    goes parallel to the white part, where 

Coulomb interaction is significant. So this mode is somehow harmonic even in the 

anharmonic trapping potential! In contrast, the motion along    clearly brings the 

system closer to the Coulomb region, which makes this mode anharmonic as 

expected. 

# of state E (MHz) Eh (MHz) v1 v2 δE (MHz) 

1 18.54483 18.54478 0 0 0.00005 

2 34.73405 34.73406 1 0 -0.00001 

3 39.44524 39.44506 0 1 0.00019 

4 50.92324 50.92335 2 0 -0.00011 

5 55.63440 55.63434 1 1 0.00006 

6 60.34582 60.34533 0 2 0.00049 

7 67.11240 67.11263 3 0 -0.00023 

10 81.24658 81.24561 0 3 0.00097 

11 83.30153 83.30192 4 0 -0.00038 

15 99.49063 99.49120 5 0 -0.00057 

16 102.14750 102.14588 0 4 0.00161 

20 115.67970 115.68048 6 0 -0.00078 

23 123.04859 123.04616 0 5 0.00243 

26 131.86874 131.86977 7 0 -0.00103 

31 143.94985 143.94644 0 6 0.00341 

33 148.05775 148.05905 8 0 -0.00130 

41 164.85128 164.84671 0 7 0.00457 

52 185.75287 185.74699 0 8 0.00589 
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To reduce the computer time, the Gaussian Quadrature Method was used here 

in order to compute integrals numerically. After the convergence studies the following 

values were selected:           (points along the two normal modes, which was 

probably an overkill.) and             (the number of basis functions). Note 

that the Gaussian Quadrature Method does not require choosing      [100]. The 

eigenvalues calculated numerically, the harmonic spectrum to compare with, and their 

assignments in terms of the normal vibration mode quantum numbers are given in 

Table 4.2. The values of deviation from the harmonic spectrum,   , are also given in  

 

 

Fig. 4. 16: Effect of anharmonicity for two modes of the vibrational spectrum of two 
111

Cd
+ 

ions in an anharmonic ( 4~ z ) potential trap. 
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Table 4.2 and are also presented in Fig. 4.16 for nine lowest states of each normal 

mode progression. Figure 4.16 shows very clearly that Mode 1 (center-of-mass 

motion) is slightly anharmonic and this is different from the case of harmonic trap, 

illustrated in Fig. 4.9. However this anharmonicity is very weak, despite the fact that a 

strongly anharmonic trapping potential is used. Mode 2 (symmetric stretching) is 

anharmonic due to the effect of Coulomb as we expected. Compared to the case of 

harmonic trap, Mode 2 is only slightly more anharmonic (see Fig. 4.9). 

To determine anharmonicities in the     potential, the two dimensional 

Dunham expansion from Eq. (4.1.8.3) was used again to fit 6 lower states, the results 

are as follows: 

                MHz, 

            MHz, 

            MHz, 

                 MHz, 

                   MHz, 

                  MHz. 

So, the conclusion is that: In the     potential    is no more zero, which is the 

result of using the anharmonic trapping potential. The value of    is somewhat larger 

than that in harmonic trapping potential, but overall we do not see any significant 
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improvement in the case of strongly anharmonic (   ) potential trap. The 

anharmonicity parameters in this case are 1

6

1 10~  , 2

6

2 104~  . They are 

still four orders of magnitude smaller than that is needed for the successful control. It 

is particularly surprising that the Mode 1 does not gain any appreciable anharmonicity. 

Analysis of this unexpected result is given below. 

4.2.2 Analysis of the PES 

 In order to understand why the normal vibration modes of two ions in a 

strongly anharmonic potential are still nearly harmonic, we carried out analytic 

analysis of the PES in the vicinity of the equilibrium position. 

Using Eq. (4.2.1.1), the potential energy of the two ions in the anharmonic 

trapping potential can be expressed as follows (in atomic units): 

                     
 

       
                                                              

 
 

  
    

 
 

 

  
    

  
 

       
                                              

The equilibrium energy of the system can be written as: 

               
 

  
     

 
 

 

  
     

 
 

 

         
                        

Again, the procedure of transformation of coordinates was followed as in Sec. 

4.1.4 and 4.1.5. We derived the formula in the mass scaled normal mode coordinates 

and transformed the equation of PES into the mass unscaled normal mode coordinates. 

We obtained: 
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Finally, 
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As in the case of harmonic trap, the Coulomb interaction term depends on    only. 

But now, due to the cross terms of   
    and   

   
 , the PES is not separable. The  

equilibrium  energy: 

                 
 

  
     

 
 

 

  
     

 
 

 

         
            

Since the equation (4.2.2.4) is non-separable, we will analyze only the slice 

along   , keeping     : 

            
 

  
       

     
     

 

 
    

     
 
      

 
    

     
    

  

  
 

 
 

 

 
           

  
 

  
  

   
 

  
 
 

             

                 

This expression is exact. No approximations have been made. It contains the terms 

from zero order to fourth order in    and the Coulomb term. Subtracting the 

equilibrium energy Eq. (4.2.2.5) from the Eq. (4.2.2.6), we plot the contribution of 

terms with different orders of    in Fig. 4. 17. From the figure, we can see that in the 

system of two ions in the     trapping potential for the symmetric stretching mode: (i)  
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the quadratic term is much larger than the quartic and third order terms; (ii) the linear 

(first order) term and the Coulomb term cancel each other! This is beyond our 

expectation. So the total contribution to the trapping potential of Eq. (4.2.2.6) is 

mostly from the quadratic term. That means the potential in Eq. (4.2.2.6) is very close 

to harmonic. This is consistent with results of the fit by Dunham expansion in Sec. 

4.2.1. If we keep     , the same method can be applied to analyze the slice along   . 

 

 

Fig. 4. 17: Components of the potential according to different orders of 2 . 
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After the correction with equilibrium energy only quadratic and quartic terms are left 

(no Coulomb for Mode 1). Again, the quadratic term is much larger than the quartic 

term, which gives a nearly harmonic PES. 

4.3 Conclusions 

In the system of two 
111

Cd
+ 

ions in the harmonic trapping potential, the center- 

of-mass motion mode is exactly harmonic ( 01  ) and cannot be controlled. The 

Coulomb interaction of two ions introduces weak anharmonicity into the symmetric 

stretching mode at the level of 2

6

2 10~   . Clearly, this is not sufficient for the 

control. Furthermore, in this system the symmetric stretching mode is “dark” and 

cannot be excited by the spatially homogeneous electric field. 

In the case of strongly anharmonic trapping potential ( 4~ z ), the center-of-

mass motion mode gains some anharmonicity. But this anharmonicity is very weak, at 

the level of 1

6

1 10~   . Compared to the harmonic trapping potential, the  

symmetric stretching mode is only slightly more anharmonic 2

6

2 104~   .  

So, using two trapped ions does not offer any advantage over the one-ion 

system. It is even worse. In the two-ion case we cannot even control the center-of-

mass motion mode in the strongly anharmonic trap because of the small local 

anharmonicity of the 2D PES.  
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Chapter 5: Three-ion system 

5.1 Three ions in the harmonic trapping potential  

5.1.1 Harmonic trapping potential  

In this section, we consider a system of three 
111

Cd
+
 ions in the harmonic 

potential trap of the same form as in Eq. (2.1.1) and restrict the motions of ions to one 

dimension along the trap axis ( -axis). The force constant   is the same as was used in 

Chapter 2, 3 and 4 for the one-ion and two-ion systems. In the three-ion system there 

are three normal vibration modes and we can try to use them to encode qubits. In Fig. 

5.1, we show the harmonic trapping potential, the equilibrium positions and several 

lower lying energy levels of three-ion system. Based on the two-ion case considered 

in the previous chapter, we expect that here the symmetric stretching mode (Mode 2) 

is also “dark”. So, we may only be able to employ two modes for encoding qubits: the 

center of mass motion mode (Mode 1) and the asymmetric stretching mode (Mode 3). 

The following mapping between the vibrational states of the three-ion-string, labeled 

by three normal mode quantum numbers ( 321 ,, vvv ), and the four states of the two-

qubit system is proposed:  

00    (0,0,0);       01    (1,0,0);        

                             
10    (0,0,1);      11    (1,0,1).          (5.1.1.1) 
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The potential energy of the three ion system can be written as follows (in 

atomic units): 
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Fig. 5. 1: Three 
111

Cd
+ 

ions
 
in the harmonic potential trap: (a) Equilibrium positions of 

ions and minimum energy of the three-ion string; (b) Vibrational spectrum of this 

system and the encoding of two-qubit states proposed in this work. 
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where   is the force constant. We use    ,    and    to describe the positions of all  

these three ions and set         . Potential energy surface (PES) of three ions in 

the trap, based on Eq. (5.1.1.2), is shown in Fig. 5.2. When any two ions come close 

to each other, the potential energy approaches infinity due to Coulomb repulsion 

(white parts of the Fig. 5.2). Furthermore, although the trapping potential from Eq. 

(2.1.1) is harmonic, the potential energy of the system is anharmonic due to ion-ion 

 

 

Fig. 5. 2: PES of three 
111

Cd
+ 

ions in the harmonic potential trap using Cartesian 

coordinates. Three slices through the 3D-surface are shown: (a) perpendicular to 1z  

through 01 z , (b) perpendicular to 2z  through 02 z  and (c) perpendicular to 3z  

through 03 z . 
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Coulomb interaction.  

5.1.2 Minimization Method 

Again, in order to perform minimization of the potential energy function in 3D 

and find the equilibrium positions of three ions we use the Newton-Raphson (NR) 

method. It requires calculating the first and second derivatives of the potential energy 

of the system and these are available analytically: 
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Fig. 5. 3: Potential energy difference between two consequent steps of the system 
 

during the minimization. 
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A computer code 3DMIN was written using FORTRAN language (see 

Appendix H) to carry out these optimizations for three-ion system numerically. Using 

the indicated parameters of the trap, we obtained the equilibrium positions of these 

 

 

Fig. 5. 4: Absolute values of position difference between two consequent steps during 

the minimization. 
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three ions: 

                  Bohr, 

                   Bohr, 

                     Bohr. 

The value of potential energy at this point was                               

MHz. To monitor the progress of minimization, we plot potential energy difference 

between two consequent steps in Fig. 5.3. It is seen from the graph that the results are 

converged very fast and after 25 iterations the energy difference is lower than 

       MHz. In Fig. 5.4, position differences between two subsequent steps during 

minimization are presented. The results converge fast, which is consistent with data 

from Fig. 5.3. Figures 5.3 and 5.4 show that convergence is exponential in both 

energy and positions. 

5.1.3 Normal vibration modes 

To describe the vibrations of three different modes in the trap, we need to  

diagonalize Hessian Matrix to find out the different frequencies of three modes.  

The Hessian Matrix in mass-weighted coordinates is given as follows: 
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Because the system is more complicated than the two-ion case, we did the 

calculation numerically using program 3DHESSIAN to diagonalize the Hessian 

matrix in Eq. (5.1.3.1) (see appendix I). We obtained the following eigenvalues of 

three normal modes: 

               a.u. 

               a.u. 

               a.u. 

Using Eq. (4.1.3.4), we calculate frequencies of these three modes and transform to 

the units of MHz: 

            MHz 

            MHz 

            MHz 

The eigenvectors are as follows: 
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These numbers describe three familiar normal modes: the first column describes 

Mode 1 with 312111 aaa   which is the center-of-mass motion mode, where all three 

ions move together; the second column describes Mode 2 with 3212 aa   and 

022 a  which is the symmetric stretching mode, where the central ion stays still 

while two terminal ions move in the opposite directions; the third column describes 

Mode 3 with 332313 22 aaa   which is the asymmetric stretching mode, where the 

central ion moves in the direction opposite to the motion of two terminal ions, with 

twice larger amplitude. These three modes are very well known normal modes.  

5.1.4 Hamiltonian and transformation of coordinates 

Hamiltonian of three-ion system in Cartesian coordinates is expressed by the 

following formula: 

              
 

  

  

   
 
 

 

  

  

   
 
 

 

  

  

   
 
                                          

                                                                            

where              is from Eq. (5.1.1.2) and                    is the constant 

energy shift by the minimum potential energy of the system when three ions are at 

their classical minimum energy points (   ,    ,    ). 

Second, the mass scaled coordinates are introduced: 
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The Hamiltonian in mass scaled coordinates can be written as follows: 

                 
 

 

  

    
  

 

 

  

    
  

 

 

  

    
                                                      

                                                                              

                
 

 

 

 
   

  
 

 

 

 
   

  
 

 

 

 
   

  
  

         
                              

 
  

         
 

  

         
                                                       

Then, we transform equations above to the mass scaled dispalcement coordinates: 

 

          

          

          

   

              
              
              

                                                    

                    
 

 

  

     
  

 

 

  

     
  

 

 

  

     
                                      

                                                                  

                   
 

 
  

    

  
     

 

 
 

 
  

    

  
     

 

 
 

 
  

    

  
     

 

  

 
  

                       
 

  

                       
              

 
  

                       
                                                                  

Next we introduce the mass scaled normal mode coordiantes (  
 ,   

 ,   
 ), 

transformations is as follows: 

 
    
    
    

    

  
 

  
 

  
 

   

         

         

         

  

  
 

  
 

  
 

                                                      

 

          
       

       
 

          
       

       
 

          
       

       
 

                                                                     

Here matrix A in Eq. (5.1.4.8) contains eigenvectors of three modes (from  
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diagonalization of the Hessian Matrix of the three-ion system in Sec. 5.1.3). Referred 

to the derivations in Sec. 4.1.4, we obtained the formula of the kinetic energy part of 

Hamiltonian for the three-ion system: 

     
    

    
    

 

 

  

     
  

 

 

  

     
  

 

 

  

     
                                               

  
 

 

  

   
 
  

 

 

  

   
 
  

 

 

  

   
 
                                              

The potential energy part of the system can be rewritten as follows: 

     
    

    
   

 

 
  

     
       

       
 

  
     

 

                                                  

 
 

 
  

     
       

       
 

  
     

 

 
 

 
  

     
       

       
 

  
     

 

  

 
 

 
     

       
       

 

  
 

     
       

       
 

  
           

                       

 
 

 
     

       
       

 

  
 

     
       

       
 

  
           

                       

 
 

 
     

       
       

 

  
 

     
       

       
 

  
           

            

Finally, using expressions of the effective masses   ,   , and   :  

 

  
        

  
        

  
        

                                                                                                    

we can introduce the “unscaled” normal mode coordinates (  ,   ,   ) instead  

of the mass scaled normal mode coordinates: 
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Using the relationship between  and   from Eq. (4.1.3.4), we can rewrite Eq. 

(5.1.4.13) as follows: 

 

                       

      
   

     

      
   

     

                                                                     (5.1.4.14) 

Finally, the Hamiltonian in the mass unscaled normal mode coordinates can be 

written as: 
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The potential energy surface in the normal mode coordinates (  ,   ,   ) is 

shown in Fig. 5.5. Note that white area on the picture goes parallel to the   -axis. 

Recall that in this (white) area of the configuration space the Coulomb repulsion 
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become very large. Figure 5.5 shows that excitation of Mode 1 does not bring the 

system closer to the white area, which suggests that Mode 1 is probably harmonic.  

However, the motion along    and/or    does bring the system closer to the Coulomb  

interaction region, which suggests that Modes 2 and 3 are probably anharmonic.   

5.1.5 Basis set expansion  

Fig. 5. 5: PES of three 
111

Cd
+ 

ions in the harmonic potential trap using the normal 

mode coordinates. Three slices through the 3D-surface are shown: (a) perpendicular to 

1  through 01  , (b) perpendicular to 2  through 02   and (c) perpendicular to 

3  through 03  . Note that the Coulomb repulsion part (white) goes parallel to 1  

everywhere. 
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Three-dimensional wavefunctions of the system and the corresponding energy 

eigenvalues are calculated using the direct product basis set expansion method in the 

normal mode coordinates: 

                     

 

     

                                                          

here       ,        and        in the same form of Eq. (2.2.4) are used as basis 

functions of three different vibrational modes of the system. Index  ,   and    lable 

basis functions and range from 1 to  . Index   lables eigenstates in the three-ion 

system and ranges from 1 to   .        
 are the coefficients of linear combination and 

in the matrix form it can be written as        .  

Based on the formalism above, a FORTRAN code named 3DIONTRAP was 

written. The code is presented in detail (see Appendix J).  

5.1.6 Results and analysis 

In order to make the three-ion case numerically manageable we used the 

Message Passing Interface (MPI) to parallelize the calculations (see appendix K) and 

employed the Gaussian quadrature to calculate the matrix elements of the potential 

energy operator more efficiently (see appendix L). The calculations for three ions 

were run using 16 processors of Franklin computer at NERCS [96], the run time for 

an average job was about 6 wall-clock hours. In the numerical calculations the size of  
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Table 5. 1: Eigenvalues, assignments and deviations (from the harmonic model) of 

the vibrational states of three 
111

Cd
+ 

ions in a harmonic trap. 

# of state Ev (MHz) Eh (MHz) v1 v2 v3 δE (MHz) 

1 44.73272 44.73257 0 0 0 0.00015 

2 62.13713 62.13698 1 0 0 0.00015 

3 74.87813 74.8779 0 1 0 0.00023 

4 79.54155 79.5414 2 0 0 0.00015 

5 86.64832 86.64795 0 0 1 0.00037 

6 92.28254 92.28231 1 1 0 0.00023 

7 96.94597 96.94581 3 0 0 0.00016 

8 104.05273 104.05236 1 0 1 0.00037 

9 105.02356 105.02323 0 2 0 0.00033 

10 109.68696 109.68673 2 1 0 0.00023 

11 114.35038 114.35023 4 0 0 0.00015 

12 116.79381 116.79328 0 1 1 0.00053 

13 121.45715 121.45678 2 0 1 0.00037 

14 122.42797 122.42764 1 2 0 0.00033 

15 127.09137 127.09114 3 1 0 0.00023 

16 128.56409 128.56332 0 0 2 0.00077 

17 131.75479 131.75464 5 0 0 0.00015 

18 134.19823 134.19769 1 1 1 0.00054 

19 135.16902 135.16856 0 3 0 0.00046 

20 138.86156 138.86119 3 0 1 0.00037 

25 149.15921 149.15906 6 0 0 0.00015 

34 165.31451 165.31389 0 4 0 0.00062 

35 166.56363 166.56348 7 0 0 0.00015 

38 170.48003 170.47871 0 0 3 0.00132 

47 183.96805 183.9679 8 0 0 0.00015 

56 195.46004 195.45923 0 5 0 0.00081 

62 201.37245 201.3723 9 0 0 0.00015 

72 212.39613 212.3941 0 0 4 0.00203 

86 225.60559 225.60455 0 6 0 0.00104 

124 254.31241 254.30948 0 0 5 0.00293 

126 255.75117 255.74989 0 7 0 0.00128 

176 285.89679 285.89523 0 8 0 0.00156 

196 296.22885 296.22485 0 0 6 0.00400 

237 316.04242 316.04056 0 9 0 0.00186 

289 338.14548 338.14026 0 0 7 0.00522 

403 380.06223 380.05563 0 0 8 0.00660 

538 421.97900 421.97101 0 0 9 0.00799 
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the Gaussian quadrature was             and the basis set size was 

1 2 3 15 15 15N N N     . With these parameters the accuracy of lowest 420 states 

was better than 10
-9

 MHz.   

To simplify the analysis, we introduce an approximate harmonic spectrum of 

the system by the following formula: 

         
 

 
        

 

 
        

 

 
                                      

here   ,    and    are from diagonalization of Hessian matrix in Sec. 5.1.3. In the 

following study, we define: 

 

 

Fig. 5. 6: Effect of anharmonicity on three modes of the vibrational spectrum of three 
111

Cd
+ 

ions in a harmonic ( 2~ z ) potential trap. 
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Table 5. 2: Coefficients of the fit by the Dunham expansion formula, Eq. (5.1.6.3), of 

the numerically calculated spectrum in Table 5.1 (vibrational states in the harmonic 

trap). The shift parameter was 510757.12 D  MHz. 

 

                                                                                                           

in order to characterize the deviation of spectrum from the harmonic model. Table 5.1  

gives several eigenvalues computed numerically,    from Eq. (5.1.6.1), their 

assignments and deviations   . From Table 5.1, one sees that our numerical results 

are a little higher than the analytic spectrum from harmonic approximation. Figure 5.6  

shows deviations Ed  for the three normal mode progressions. These data for Mode 1 

show a straight line, which means that Mode 1 is indeed harmonic in agreement with 

the arguments given above. In contrast, the data for Modes 2 and 3 look more like a 

parabola, which means that the spectra for these modes are slightly anharmonic, due  

to Coulomb interaction. 
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At the next step, we used three dimensional Dunham expansion, described by 

the following expression, to calculate parameters of the system: 

           
         

 

 
        

 

 
 
 

       
 

 
                                           

       
 

 
 
 

       
 

 
        

 

 
 

 

        
 

 
     

 

 
  

        
 

 
     

 

 
         

 

 
     

 

 
                                  

This equation contains 10 parameters. By fitting ten lower states, we obtain the results 

of frequencies and anharmonicities, presented in Table 5.2. From the data above, we 

see that the first mode is purely harmonic (    ). We also see that 2

6

2 10~    

and 3

5

3 10~   , which means that the asymmetric stretching mode is more 

anharmonic (by about an order of magnitude) than the symmetric stretching mode. 

Still this anharmonicity (due to Coulomb) is very low and is insufficient for the 

control.   

5.1.7 Three dimensional wavefunctions and transition matrix  

After diagonalization of the Hamiltonian matrix, wavefunctions of the  

system can be obtained from the basis functions and eigenvectors using Eq. (2.2.7). 

The wavefunctions of the lower 40 states are shown in Fig. 5.7. Based on the shapes 

of wavefunctions we can assign the normal mode quantum number to these states. 

In the three-ion system, the elements of transition matrix are written as 

follows: 
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Fig. 5. 7: Wavefunctions of the lower 40 states of three 
111

Cd
+ 

ions
 
in the harmonic 

trapping potential. 
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Where the dipole moment function of three ions is 

                                                                                         

Note that wavefunctions are obtained in the normal mode coordinates, while the 

dipole moment function in Eq. (5.1.7.2) is in Cartesian coordinates. In order to carry 

out the integration in Eq. (5.1.7.1), we have to transform the dipole moment function 

into the normal mode coordinates using Eqs. (5.1.4.5), (5.1.4.9), (5.1.4.13) and 

(5.1.4.14). We start with the following equation: 

                                                                          

and substitute 

 

                                      

                                      

                                      

                         

                                                      

                                                                  

Finally, we use Eq. (5.1.7.5) to rewrite the expression for the of dipole moment in the 

following form: 
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The dipole moment function of Eq. (5.1.7.6) and the wave functions of Eq. 

(5.1.5.1) are substituted into Eq. (5.1.7.3). Using properties of the basis set functions 
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[81], the integration in Eq. (5.1.7.3) is carried out analytically and elements of the 

dipole moment matrix are expressed through coefficients 
kjivC of the basis set 

expansion: 
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Here ( 321 ,,  ) are frequencies and ( 321 ,,  ) are effective masses of the basis set 

functions, i.e., normal modes of the trap. 

For the system studied in this harmonic trapping potential the second, third 

and last terms of this sum vanish exactly and are given here only for the purpose of  

generality. Indeed, from the values of eigenvectors of Hessian matrix, it is found that: 

                                                                                             

                                                                                                     

                                                                                                     

Note that for the system of three equivalent ions the last constant term in Eq. (5.1.7.6) 

vanishes simply because eqeq zz 31   and 02 eqz . The symmetric stretching mode, 
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Mode 2, is characterized by 3212 aa   and 022 a , which means that the second term 

in Eq. (5.1.7.6) vanishes exactly. Similarly, the asymmetric stretching mode, Mode 3, 

is characterized by 332313 22 aaa  , which means that the third term in Eq. 

(5.1.7.6) also vanishes exactly. Thus, the dipole moment function does not depend on 

2  and 3  at all, which means that Mode 2 and Mode 3 are both “dark”. To better 

understand these results, we plot the motion of ions in these three modes in Fig. 5.8.  

For the center-of-mass motion mode (Mode 1), all three ions move together with the  

 

 

Fig. 5. 8: Description of the motions of ions for three vibrational modes in the 

harmonic trapping potential. Length of the arrows indicates the vibrational motion 

amplitude of each ion. 
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same amplitude, just like one ion with triple mass in the harmonic potential trap. In 

this case the dipole moment is non-zero. For the symmetric stretching mode (Mode 

2), the central ion doesn’t move while the other two ions move in the opposite 

position with the same amplitude. As a result, their contributions to the dipole 

moment cancel each other. In the asymmetric stretching mode the central ion moves 

in the opposite direction of the other two ions. Because the amplitude of its motion is 

twice larger than that of the other two ions, the total contribution to the dipole  

 

 

 

Fig. 5. 9: Transition matrix of three 
111

Cd
+ 

ions in the harmonic potential trap and the 

diagram of allowed state-to-state transitions in this system. (black corresponds 

0

2

5,4 1018.1 ea D) 103.00(~ 2  and pink corresponds  94.52 01,0 ea

D) 10.351(~ 2  between states of mode 1). 
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moment is still zero. These features lead to the result that in the harmonic trapping 

potential only transitions between states of the first mode are possible. This mode is 

active. The second and third modes are “dark”. 

In Fig. 5.9, the elements of transition matrix obtained from the harmonic 

potential trap are shown. In this picture we can only see the transitions between states 

of the first mode, while the other two modes are dark. That means they cannot be 

controlled by the spatially homogeneous fields. 

5.1.8 Effect of Coulomb interaction 

In Section 5.1.6, we showed that the symmetric stretching mode and the 

asymmetric stretching mode are only slightly anharmonic due to Coulomb 

interatction. This puts forward some questions for us: can we increase the value of 

anharmonicity by bringing ions close together (which increases Coulomb interaction) 

and would such anharmonicity be large enough for accurate control? In order to 

answer these questions, we carried out a series of calculations with different values of 

the force constant   in Eq. (2.1.1).  

The results are summarized in the Fig. 5.10, where we plot equilibrium 

positions and anharmonicities vs. axial frequencies. When we increase the value of  , 

the shape of the trapping potential becomes sharper. The equilibrium positions of the 

terminal atoms become smaller, while frequencies of vibration increase. It is found 
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that the frequencies of three vibrational modes increase very fast with the increase of 

 , while the inter-ion distances decrease. When the value of   is increased 50 times, 

the value of          Bohr is observed and the values of frequencies are about 7 

times larger (see Fig. 5.10 (a)). The values of    stay zero independently of  , while 

values of    and    both increase as expected (see Fig. 5.10 (b)). The value of    

increases much faster than   , it reaches about           MHz when        

MHz. The  intermode anharmonicities,     and     stay at low values even when the 

Fig. 5. 10: Relations between the equilibrium distances, normal mode frequencies 

and vibrational anharmonicities for three 
111

Cd
+ 

ions in the harmonic potential trap. 
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mode frequencies increase to large values. At the same time,     goes up faster and 

reaches about           MHz when        MHz. 

The conclusion here is following: by bringing ions closer together we can 

slightly increase anharmonicity of the symmetric and asymmetric stretching modes. 

However, the frequencies of the modes increase at the same time so that the ratio of 

intramode anharmonicity over vibrational frequency is still much lower than the 

required ~1%. The center-of-mass motion mode remains exactly harmonic (    ). 

Anharmonicities of the symmemetric and asymmetric stretching modes are both small 

(         ,            ). This means that bringing ions closer together cannot 

provide large enough anharmonicity for the optimal control. We need to seek some 

other sources of anharmonicity for our system. 

5.2 Three ions in the anharmonic trapping potential 

5.2.1 Anharmonic trapping potential 

Here we explore a possibility of using an anharmonic trapping potential for a 

three-ion system. As in the two-ion case, we consider the simplest form of the trap 

given by:  

      
 

  
                                                                                                       

where    is a parameter which controls trap frequency. Here, we present the results of  
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calculations with                  MHz/a0
4
. In Fig. 5.11, we show the 

anharmonic trapping potential, the equilibrium positions and several lower lying 

energy levels of the three-ion system. 

Again, NR method was used to carry out minimization. Results for 

equilibrium positions are found as follows: 

                  Bohr, 

Fig. 5. 11: Three 
111

Cd
+ 

ions
 
in the 4~ z potential trap: (a) Equilibrium positions of 

ions and minimum energy of the three-ion string. (b) Vibrational spectrum of this 

system and the encoding of two-qubit states proposed in this work. 
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                   Bohr, 

                     Bohr. 

The value of potential energy at this point was                              

MHz.        

Diagonalization of the Hessian matrix gave the following eigenvalues: 
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Fig. 5. 12: PES of three 
111

Cd
+ 

ions in the strongly anharmonic potential trap ( 4~ z ) 

using the normal mode coordinates. Three slices through the 3D-surface are shown: (a) 

perpendicular to 1  through 01  , (b) perpendicular to 2  through 02   and (c) 

perpendicular to 3  through 03  . 
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                a.u. 

               a.u. 

               a.u. 

 Using Eq. (4.1.3.4), we calculate the frequencies of these three modes and transform 

to the units of MHz: 

             MHz 

             MHz 

             MHz 

Meanwhile, the eigenvectors are obtained: 

   

         

         

         

   
                          
                           
                       

 . 

From the values of eigenvectors we can see that in the     trapping potential the first 

mode (center-of-mass motion mode) represents a different kind of motion, compared 

to the well known ~z
2
 case. Now the central ion moves almost twice further than the 

terminal ions. One can explain this feature by flattening of the ~z
4
 potential near 

location of the central ion. The central ion can move further because the potential is 

flatter in its vicinity.  

The PES in the normal mode coordinates is presented in Fig. 5.12. It is seen 

that the motion along any normal mode axis (  ,   , or   ) brings the system closer to 

the white part (strong Coulomb repulsion) and results in appearance of the Coulomb  
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Table 5. 3: Eigenvalues, assignments and deviations (from the harmonic model) of 

the vibrational states of three 
111

Cd
+ 

ions in a strongly anharmonic trap. 

# of state Ev (MHz) Eh (MHz) v1 v2 v3 δE (MHz) 

1 470.8868 470.8802 0 0 0 0.0066 

2 665.8705 665.8593 1 0 0 0.0112 

3 823.1980 823.1868 0 1 0 0.0112 

4 860.8562 860.8384 2 0 0 0.0178 

5 865.3718 865.3549 0 0 1 0.0169 

6 1018.1835 1018.1660 1 1 0 0.0175 

7 1055.8441 1055.8176 3 0 0 0.0265 

8 1060.3585 1060.3340 1 0 1 0.0245 

9 1175.5116 1175.4935 0 2 0 0.0181 

10 1213.1710 1213.1451 2 1 0 0.0259 

11 1217.6852 1217.6615 0 1 1 0.0237 

12 1250.8340 1250.7968 4 0 0 0.0372 

13 1255.3473 1255.3131 2 0 1 0.0342 

14 1259.8645 1259.8296 0 0 2 0.0349 

15 1370.4989 1370.4727 1 2 0 0.0262 

16 1408.1606 1408.1243 3 1 0 0.0364 

17 1412.6737 1412.6406 1 1 1 0.0331 

18 1445.8260 1445.7758 5 0 0 0.0503 

19 1450.3383 1450.2922 3 0 1 0.0460 

20 1454.8542 1454.8087 1 0 2 0.0455 

21 1527.8278 1527.8002 0 3 0 0.0276 

22 1565.4883 1565.4518 2 2 0 0.0365 

23 1570.0010 1569.9681 0 2 1 0.0328 

24 1603.1525 1603.1033 4 1 0 0.0492 

25 1607.6643 1607.6198 2 1 1 0.0446 

26 1612.1801 1612.1362 0 1 2 0.0438 

27 1640.8202 1640.7549 6 0 0 0.0653 

28 1645.3312 1645.2714 4 0 1 0.0598 

29 1649.8461 1649.7878 2 0 2 0.0582 

30 1654.3647 1654.3043 0 0 3 0.0604 

31 1722.8169 1722.7793 1 3 0 0.0376 

32 1760.4799 1760.4308 3 2 0 0.0491 

33 1764.9913 1764.9473 1 2 1 0.0441 

34 1798.1464 1798.0824 5 1 0 0.0640 

41 1880.1464 1880.1068 0 4 0 0.0396 

55 2048.8728 2048.7791 0 0 4 0.0938 

68 2232.4675 2232.4133 0 5 0 0.0542 

92 2443.3884 2443.2537 0 0 5 0.1348 

104 2584.7913 2584.7200 0 6 0 0.0713 

148 2837.9119 2837.7285 0 0 6 0.1833 
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anharmonicity. This means we can expect that the PES is anharmonic along all the 

three normal mode coordinates.  

In numeric calculations the size of the Gaussian quadrature was       

      and the basis set size was 1 2 3 15 15 15N N N     . This provided accuracy  

better than 10
-9

 MHz to the lower 250 vibrational states. The spectrum of states is 

given in Table 5.3. Deviations of the normal mode progressions from the harmonic 

model are presented in Fig. 5.13. Figure 5.13 shows very clearly that in the 

anharmonic trap all three normal modes are slightly anharmonic (contrast to Fig. 5.6).   

 

 

Fig. 5. 13: Effect of anharmonicity on three modes of the vibrational spectrum of 

three 
111

Cd
+ 

ions in a strongly anharmonic ( 4~ z ) potential trap. 
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Anharmonicities of the Modes 1 and 2 are very similar. Mode 3 is the most 

anharmonic mode. 

To determine anharmonicity in the     potential, the three dimensional 

Dunham expansion from Eq. (5.1.6.3) was used to fit 10 lower states, the results for 

frequencies and anharmonicities are shown in Table 5.4. It was quite surprising to 

find that the spectrum of three ions in the highly anharmonic trap is only slightly 

anharmonic. It was especially unexpected to see that the center-of-mass motion mode 

(Mode 1) is the less anharmonic mode: 1

6

1 105~   . Based on general arguments 

one might expect that the center-of-mass motion mode of three ions in an anharmonic 

trap describes the motion similar to vibration of one ion in an anharmonic trap. Since 

anharmonicity of the one-ion spectrum was very pronounced (see Chapter 2), we 

expected to see the effect of similar magnitude in the three-ion case. It appears, 

however, that the Mode 1 in the anharmonic trap is special; it is different from the 

center-of-mass mode in the harmonic trap. Namely, in the anharmonic potential the 

terminal ions are allowed to move less than the central atom, which compensates for 

anharmonicity of the trapping potential and makes the Mode 1 less anharmonic. Put 

another way, for Mode 1 in the anharmonic trap the arrangement of three ions is not 

rigid and adjusts to the changes of the potential, minimizing the effect of 

anharmonicity. The positive outcome of this effect is that all three modes become 
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Table 5. 4: Coefficients of the fit by the Dunham expansion formula, Eq. (5.1.6.3), of 

the numerically calculated spectrum in Table 5.3 (vibrational states in the strongly 

anharmonic trap). The shift parameter was 42 5.269 10D      MHz. 

 

anharmonic. The negative outcome is that the values of anharmonicity parameters 

remain small. The magnitude of anharmonicity for Mode 2 is similar to that of Mode 

1, 2

6

2 104~   . These data show that for the most anharmonic Mode 3 

(asymmetric stretching mode) the parameter of anharmonicity reaches only 

3

5

3 10~   , insufficient for the control. This means that in a three-ion case a 

strongly anharmonic trap offers no improvements over the purely harmonic trap.   

5.2.2 Three-dimensional wavefunctions and transition matrix 

 Using the basis functions and eigenvectors from diagonalization of the 

Hamiltonian matrix in Eq. (2.2.7), wavefunctions of the system can be obtained. The  

 

Mode frequency  

                

(MHz) 

 

Intramode anharmonicity   

                 

(MHz) 

 

Intermode anharmonicity  

         

(MHz) 

 

31.032 

 

-1.667×10
-4

                    

 

 

56.071 

 

-1.989×10
-4

                     

 

 

62.783 

 

-6.103×10
-4
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Fig. 5. 14: Wavefunctions of the lower 40 states of three 
111

Cd
+ 

ions
 
in the 4~ z

trapping potential. 
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wavefunctions of lower 40 states are shown in Fig. 5.14. Based on shapes of the 

wavefunctions we can assign the normal mode quantum numbers to these states.  

The transition matrix can be calculated using the Eqs (5.1.7.3) and (5.1.7.6). 

The coefficients of three vibration modes in Eq. (5.1.7.6) are shown here:   

                                                                                             

                                                                                                    

                                                                                          

 

 

Fig. 5. 15: Description of the motions of ions for three vibrational motion modes in 

the 4~ z trapping potential. Length of the arrows indicates the vibrational motion 

amplitude of each ion. 
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The motions of three vibration modes are plotted in Fig. 5.15 in order to help us 

understand this system better. Note that the Modes 1 and 3 of the anharmonic trap are 

different from those of the harmonic trap. We see that in the eigenvector matrix of 

anharmonic trapping potential: 311121 aaa   and 331323 aaa  . This happens 

 because the ~ 4z  potential is flatter in the center and is sharper near the turning 

points, compared to the harmonic case. As a result, the amplitude of motion of the 

central ion is larger than the amplitudes of motion of the terminal ions. 

These features lead to the following result: The third mode (asymmetric 
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Fig. 5. 16: Transition matrix of three 
111

Cd
+ 

ions in the 4~ z potential trap and the diagram 

of allowed state-to-state transitions in this system. (black corresponds 05,4 57.33 ea

D) 5.338(~  between states of mode 1 and light yellow corresponds 01,0 50.3 ea

D) .908(~  between states of mode 3). 
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stretching) becomes active and can be excited in principle. The first mode is also 

active, while the second mode (symmetric stretching) stays dark in the     potential. 

The transition matrix of two ions in the anharmonic trapping potential is shown in 

Fig. 5.16. From this picture, it is seen that the second mode is “dark”, while  the 

transitions between the states of the first and third modes are possible.   

5.2.3 Effect of Coulomb anharmonicity 

We hoped to increase the values of anharmonicity parameters in this system 

by raising the value of force constant k . A number of computational experiments 

were carried out. Their results are presented in Fig. 5.17. As one might expect, the 

frequencies of three vibrational modes increase as k  is raised, while the eqilibrium 

internuclear distances decrease (see Fig. 5.17 (a)). Frequenicies of Modes 2 and 3 

remain close to each other and are about twice higher than the frequency of Mode 1. 

As k  is raised all three intramode anharmonicity parameters (see Fig. 5.17 (b)) and 

all three intermode anharmonicity parameters (see Fig. 5.17 (c)) grow about linearly. 

The Mode 3 remains most anharmonic. When k  is raised by a factor of 525, 

anharmonicity of this mode reaches almost 23  = –6.4×10
-4

 MHz. However, the 

frequency of this mode grows at the same time and reaches almost 23  = 64 

MHz, leading to about the same relative effect of anharmonicity: 3

5

3 10~   . 

Indeed, the linear dependencies in Figs. 5.17 (b, c) here and in Figs. 5.10 (b, c) above 
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demonstrate very clearly that raising force constant has negligible effect on the ii /  

ratios in both harmonic and strongly anharmonic traps. 

The conclusion here is following: by bringing ions closer together we can 

slightly increase anharmonicity of all three vibration modes. However, the frequencies 

of the modes increase at the same time so that the ratio of intramode anharmonicity 

over vibrational frequency is still much lower than the required ~1%. Anharmonicities 

of the center-of-mass motion mode and the symmemetric stretching mode are 

 

 

Fig. 5. 17: Relations between the equilibrium distances, normal mode frequencies and 

vibrational anharmonicities for three 
111

Cd
+ 

ions in the strongly ( 4~ z ) anharmonic 

potential trap. 
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comparable (           ,            ). The most anharmonic mode is the 

asymmetric stretching mode,          . This means that bringing ions closer 

together cannot provide large enough anharmonicity for the optimal control in the ~z
4
 

trapping potential. 

5.3 Conclusions 

In the system of three 
111

Cd
+ 

ions in the harmonic trapping potential, the first  

mode (center-of-mass motion mode) is exactly harmonic ( 01  ) and cannot be 

controlled. The second mode (symmetric stretching mode) and the third mode 

(asymmetric stretching mode) are anharmonic even in the harmonic trapping potential 

due to Coulomb interaction (         ,            ), but this anharmonicity is 

very weak. Clearly, this is not sufficient for the control.  

In the case of strongly anharmonic trapping potential ( 4~ z ), the center-of-

mass motion mode gains some anharmonicity. But this anharmonicity is very weak, at 

the level of            . Anharmonicities of symmetric and asymmetric 

stretching mode are not improved a lot (           ,          ). This is only 

about 3 times larger than in the harmonic trap and is much smaller than requiement 

for accurate control. So, using three trapped ions does not offer any advantage over 

the one-ion system. It is even worse. In this three-ion case we cannot even control the 

center-of-mass motion mode in the strongly anharmonic trap because of the small  
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local anharmonicity of the 3D PES.  

Furthermore, in this system the symmetric stretching mode is “dark” and 

cannot be excited by the spatially homogeneous electric field. 
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Chapter 6: Three ions in the combined potential traps with applications to 

adiabatic and optimal control of three ions in the trap 

6.1 Combined anharmonic potential  

In Chapter 5, we found that for the system of three ions in the purely harmonic 

(   ) or purely anharmonic (   ) potential traps, we could not obtain enough 

anharmonicity for the optimal control. One possibility is to check whether some kind 

of combination potentials is better. Here we will use the trapping potential in general 

form: 

       
 

 
     

 

  
                                                                                

where   and    are two force constants. The axial frequency is           MHz, 

related to the force constant through      , with 310483.12 k  MHz/a0
2
, as 

it was used in Chapters 2 to 5. The value                  MHz/a0
4
 was 

chosen again, like in Sec. 5.2. We can control the shape of the trap by changing the 

unitless parameters   and   in Eq. (6.1.1). We will determine anharmonicity of the 

system as a function of the     ratio.  

We carried out calculations of the spectra for twelve values of this ratio in the 

range                      . In each case we did the Dunham expansion 

fit to determine the frequencies, intramode and intermode anharmonicities of three 

vibration modes. All the results are summarized in the Fig. 6.1.  From the picture, it is 
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seen that although the intramode and intermode anharmonicities increase as we raise 

the     ratio, the frequencies of three normal vibration modes increase at the same 

time. It means that even if we keep on increasing the value of ratio    , we will 

never reach the situation when the anharmonicity would approach 1% of the 

frequency. 

As for the transition matrix, we saw that transitions between states of the first 

Fig. 6. 1: Relations between the equilibrium distances, normal mode frequencies and 

vibrational anharmonicities for three 
111

Cd
+ 

ions in the anharmonic combined 

potential trap (
42 '

!4

1

2

1
zkkz   , 0 , 0 ). 
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mode in this system are possible. The second mode (symmetric stretching mode) 

always stays “dark”. The third mode (asymmetric stretching mode) becomes active 

due to introduction of the quartic term, and in principle can be excited. 

Conclusion for this combined anharmonic potential is following: the spectrum 

of three ions is only slightly anharmonic. The most anharmonic mode is Mode 3 (the 

asymmetric stretching mode), where the parameter of anharmonicity reaches 

3

6

3 106~   . Anharmonicities of the center-of-mass motion mode and the 

symmemetric stretching mode are comparable (           ,            ). 

Clearly, this is insufficient for the control. In the combined potential anharmonicity is 

always lower than in the      potential, which makes sense. This means that the 

anharmonic potential with     and     carries no improvement. So, in the 

combined trapping potential increasing the value of ratio     cannot provide large 

enough anharmonicity for the optimal control. 

6.2 Inverted combined potential (   ,    ) 

Here we consider the case of inverted combined potential trap, where   is 

positive, but   is a negative number [32, 71, 72]. When the  /  ratio is very 

large this expression describes a double well potential with two (separated, almost 

independent) wells, but we are far from that limit. In the cases considered here the 

first term of Eq. (6.1.1) lifts, just slightly, the potential in the middle of the 4z  well, 
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creating a wide, strongly anharmonic trap, with the vibrational zero-point energy well 

above the top of the barrier at z = 0. The shape of this kind of potential trap is shown 

in Fig. 6.2, where 310483.12 k  MHz/a0
2
, same as in the harmonic case. The 

value of                  MHz/a0
4
 is the same as in Chapters 5 and 6. 

Parameters 100  and 01.0  are chosen for this example. 

Again, the NR method was used to carry out minimization. The results of 

Fig. 6. 2: (a) Equilibrium positions of 
111

Cd
+ 

ions and minimum energy of a three-ion 

string trapped in a flat anharmonic potential of the form 
42 '

!4

1

2

1
zkkz   . (b) 

Vibrational spectrum of this system and the encoding of two-qubit states proposed in 

this work. 
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equilibrium positions are: 

                  Bohr, 

                   Bohr, 

                     Bohr. 

The value of potential energy at this point is                            

    MHz.        

Next, the diagonalization of Hessian matrix was done and the following 

eigenvalues were found: 

               a.u.  

               a.u. 

               a.u. 

Using Eq. (4.1.3.4), we calculate the frequencies of these three vibration in the units 

of MHz: 

             MHz, 

              MHz, 

              MHz. 

Note that the frequencies of Mode 2 and 3 are very close to each other. They are 

nearly degenerate. 

Meanwhile, the eigenvectors of the system are obtained: 



172 
 

 

 

   

         

         

         

   
                          
                           
                       

 . 

The PES of this system, transformed into the normal mode coordinates is 

shown in Fig. 6.3.  From analysis of Fig. 6.3 one can expect that in this system Mode 

1 is the most anharmonic. Somewhat less obvious but still possible to derive from Fig. 
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Fig. 6. 3: PES of three 
111

Cd
+ 

ions in the inverted combined potential trap using the 

normal mode coordinates. Three slices through the 3D-surface are shown: (a) 

perpendicular to 1  through 01  , (b) perpendicular to 2  through 02   and (c) 

perpendicular to 3  through 03  . 
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6.3 is that the Modes 2 and 3 are also somewhat anharmonic. 

Referring to the matrix   we can see that: The normal Modes 1 and 3 are very 

unusual. Mode 1 describes motion where amplitude of the central ion is almost an 

order of magnitude larger than amplitudes of the terminal ions: 311121 aaa  . Mode 

3 shows just opposite: 331323 aaa  . The behavior of Mode 1 is easy to explain. 

The central atom sits on the top of a small “hill” so that its deviation from the 

equilibrium point reduces the potential energy, compensating for increase of potential 

energy due to the motion of terminal atoms. As a result, the PES is very flat along 1  

and is very anharmonic. The behavior of Mode 3 is less intuitive, or even somewhat 

counterintuitive. We think that the Mode 3 is as it is simply because it must be 

orthogonal to the Modes 1 and 2. Overall, the Mode 1 (low frequency mode) 

describes mostly the motion of central ion, while the Modes 2 and 3 (high frequency, 

nearly degenerate modes) describe mostly the motion of two terminal ions.  

In numerical calculations, due to very different frequencies of the modes, we 

used the following parameters:      ,          for the Gaussian quadratures 

in 1 , 2  and 3 , respectively, and 1 2 3 15 10 10N N N      for the basis set size. 

Accuracy was comparable to or better than in the calculations presented above (10
-9

 

MHz for the lower 364 vibrational states). The spectrum of numerical eigenvalues is 

given in Table 6.1, along with the state assignments and deviations of their energies 
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Table 6. 1: Eigenvalues, assignments and deviations (from the harmonic model) of 

the vibrational states of three 
111

Cd
+ 

ions in a combined inverted trap with 100    

and 1  . See text for details.  

 

from the analytic harmonic model. Figure 6.4 shows deviations from the harmonic 

model for the three normal mode progressions. From this picture we see that all three 

normal modes are strongly anharmonic, with the Mode 1 being the most anharmonic. 

Anharmonicities of the Modes 2 and 3 seem to be comparable.  

To determine anharmonicity in the inverted combined potential, the three 

dimensional Dunham expansion from Eq. (5.1.6.3) was used to fit 10 lower states, the 

results of frequencies and anharmonicities are shown in Table 6.2. 

# of 

state E(MHz) Eh (MHz) v1 v2 v3 δE(MHz) 

1 352.6682 352.4980 0 0 0 0.1702 

2 370.4720 369.6774 1 0 0 0.7945 

3 388.8237 386.8568 2 0 0 1.9669 

4 407.6818 404.0362 3 0 0 3.6457 

5 427.0121 421.2155 4 0 0 5.7965 

6 446.7856 438.3949 5 0 0 8.3907 

7 466.9779 455.5743 6 0 0 11.4036 

16 695.5058 695.4293 0 1 0 0.0765 

17 697.4395 697.3835 0 0 1 0.0560 

46 1038.3293 1038.3605 0 2 0 -0.0311 

48 1042.2279 1042.2690 0 0 2 -0.0411 

89 1381.1338 1381.2917 0 3 0 -0.1580 

94 1387.0280 1387.1545 0 0 3 -0.1266 

149 1723.9099 1724.2229 0 4 0 -0.3130 

153 1731.8368 1732.0400 0 0 4 -0.2032 

222 2066.6421 2067.1541 0 5 0 -0.5120 

229 2076.6531 2076.9255 0 0 5 -0.2725 

311 2409.3013 2410.0854 0 6 0 -0.7842 

318 2421.4751 2421.8110 0 0 6 -0.3359 
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Table 6. 2: Coefficients of the fit by the Dunham expansion formula, Eq. (5.1.6.3), of 

the numerically calculated spectrum in Table 6.1 (vibrational states in the combined 

inverted trap). The shift parameter was 22 2.115 10D      MHz. 
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Fig. 6. 4: Effect of anharmonicity on three modes of the vibrational spectrum of three 
111

Cd
+ 

ions in an inverted combined potential trap (with 100    and 1  ). 
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In the inverted combined potential, frequencies of the second and third mode 

are very close to each other and are much larger than the frequency of Mode 1. 

Anharmonicity parameters in this system show dramatic improvement compared to all 

cases studied above. We see that 1

2

1 10~   , which is well sufficient for the 

successful control. Mode 2 and 3 are less anharmonic: 2

5

2 102~    and 

3

5

3 103~   . Still, they are more anharmonic than any mode in the 2~ z  or 4~ z  

potentials studied in Chapters 4 and 5.  

6.3 Three-dimensional wavefunctions and the transition matrix  

Using the basis functions and eigenvectors from diagonalization of 

Hamiltonian matrix in Eq. (2.2.7), the wavefunctions of the system can be obtained. 

The wavefunctions of some useful states without excitation of mode 2 (which is 

anyway “dark”  and cannot be controlled) are shown in Fig. 6.5. The normal mode 

quantum numbers can be assigned based on shapes of the wavefunctions. 

From the matrix of eigenvectors, one can obtain: 

                                                                                               

                                                                                                      

                                                                                             

The motions of ions in these three vibrational modes are plotted in Fig. 6.6. The 

normal Modes 1 and 3 are very unusual. Mode 1 describes motion where amplitude of 



177 
 

 

 

  

Fig. 6. 5: Wavefunctions of 40 states with excitation to the first and the third modes 

of three 
111

Cd
+ 

ions in the inverted combined trapping potential. 
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the central ion is almost an order of magnitude larger than amplitudes of the terminal 

ions: 311121 aaa  . The symmetric stretching mode (Mode 2) remains the same as 

in harmonic case due to symmetry. Mode 3 shows some opposite attribute to Mode 1:
 

331323 aaa  , the amplitudes of motion of the terminal ions are about 3 times 

larger than the amplitude of motion of the central ion. 

As a result, the second mode (symmetric stretching mode) stays “dark” in 

inverted combined potential, while the third mode (asymmetric stretching mode) 

 

 

Fig. 6. 6: Description of the motions of ions for three vibrational motion modes in 

inverted combined trapping potential with 100  and 1 . Length of the arrows 

indicates the vibrational motion amplitude of each ion. 
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becomes active and in principle can be excited. Using Eqs. (5.1.7.3) and (5.1.7.6), the 

transition matrix for three ions in the inverted combined potential was calculated in 

the normal mode coordinates. The results are shown in the Fig. 6.7. Because the 

second mode is always dark, we picked up only the states with     . For the first 

mode the        selection rule is lifted, because this mode is highly anharmonic. 

Thus, the transitions with             are allowed. Transitions between the 

states of the third mode are also allowed. Since Mode 3 is much less anharmonic 

(compared to the Mode 1), we see mostly the         transitions. 

Fig. 6. 7: Transition matrix of three 
111

Cd
+ 

ions in inverted combined potential trap with 

100  and 1 and the diagram of allowed state-to-state transitions in this system. 

Color indicates magnitudes of matrix elements in the logarithmic scale (dark purple 

corresponds 05,4 77.82 ea D) 102.10(~ 2  between states of mode 1 and light pink 

corresponds D) 0.082(~ 90.7 01,0 ea between states of mode 3). 
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 6.4 Study of anharmonicity 

We also studied how the anharmonicity of the three-ion system in the inverted 

combined potential changes as the ratio of     is changed. The value of   was 

 

 

Fig. 6. 8: Relations between the equilibrium distances, normal mode frequencies and 

vibrational anharmonicities for three 
111

Cd
+ 

ions in the inverted combined potential 

trap. 
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chosen fixed at       , while the value of   was varied. In Fig. 6.8, we show the 

values of frequencies and anharmonicities of this system versus  , when       . 

The following values were studied:                             . Different 

values of   correspond to different equilibrium positions. For example,     

corresponds          Bohr and         corresponds          Bohr.  

Variations of   reveal an important and interesting property of this system. 

When   is raised (from 1  to 43.1 in Fig. 6.8) the frequencies of all modes 

increase (see Fig. 6.8 (a, b)) while the values of anharmonicity parameters all drop 

(see Fig. 6.8 (c-f)). This behavior is exactly opposite to that seen in the 2~ z  and 4~ z  

traps studied above. It appears that in the case of inverted combined potential there is 

no reason to raise  . When 100   , small values of 1  are appropriate. The 

dependence of anharmonicity vs. frequency in Fig. 6.8 is quite dramatic. Note that the 

case we presented here in detail ( 100   , 1 ) is, in fact, just on the edge of the 

region where anharmonicity increases very sharply. If we move further into the region 

of small   or, alternatively, increase the value of  , even more anharmonic system 

is obtained. For example, we tried several smaller values of   and found that for 

        the Dunham parameters are even more attractive. The results of 

frequencies and anharmonicities are shown in Table 6.3. We conclude that the low 

frequency/high anharmonicity system can be readily created by the appropriate choice  
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Table 6. 3: Coefficients of the fit by the Dunham expansion formula, Eq. (5.1.6.3), of 

the numerically calculated spectrum (vibrational states in the strongly anharmonic 

combined inverted trap). The shift parameter was 331.02 D  MHz. 

 

of the two force constants in the combined potential of Eq. (6.1.1).   

6.5 Optimal control of three-ion system  

We propose to create a purely vibrational two-qubit system by encoding the 

first (control) qubit into the states of less anharmonic asymmetric stretching vibration 

mode, while the second qubit is encoded into the states of a more anharmonic center-

of-mass motion mode. The third mode of this system, symmetric stretching, appears 

to be dark and should not interfere. Using tools of the optimal control theory, we carry 

out modeling of this two-qubit system and derive RF fields for direct adiabatic control 

of state-to-state transitions. Pulses for the major quantum gates are obtained and  

 

Mode frequency  

                

(MHz) 

 

Intramode anharmonicity   

                 

(MHz) 

 

Intermode anharmonicity  

         

(MHz) 

 

7.210×10
-2

 

 

-0.562                       

 

 

54.425 

 

2.372×10
-2

                     

 

 

54.583 

 

-3.677×10
-2
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properties of the qubit transformations in this system are explored. 

a) One qubit control and the gate NOT  

Here we focus on the gate NOT on second qubit in the two-qubit system:  

                                                                                                                

                                                                                                                

                                                                                                                

                                                                                                                

Recall that in our approach the qubits are encoded into collective vibration 

modes, not into individual ions, and the control field is applied to the entire system, 

not to the individual qubits. For this reason, the state of the first qubit should also be 

reflected in the training set of transitions, even if we are trying to optimize the pulse 

for controlling the second qubit only. In this sense our gates are global. First two 

transitions of the training set describe action of gate NOT on first qubit with the 

second qubit being in state 0 . Next two transitions of the training set describe gate 

NOT on second qubit with the first qubit being in state 1 . Due to anharmonicities, 

the frequencies of corresponding 0100   and 1110   transitions are slightly  

different.  

The optimization procedure is not fully automated. The pulse duration and the 

maximum allowed field amplitude should be tuned “by hand”. A number of 
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independent computational experiments were carried out with different values of the 

target time in the range between 2 μs and 20 μs and different values of the penalty 

factor between 10
11

 and 10
13

. The following values led to the simplest pulse shape and 

were finally adopted for the gate NOT on the second qubit: T = 4 μs and α0 = 2.0 × 

10
12

. A very large number of iterations, 4000 forward-backward loops, were needed 

in order to converge the pulse shape. The length of time-step in the wave packet 

propagation was on the order of 0.5 nanosecond (9000 time steps total).  

The 4 μs pulse derived for the gate NOT on the second qubit is presented in 

Fig. 6.9. The pulse is quite symmetric and its shape is simple, the maximum field is 

achieved in the middle of the pulse. This shape reflects the envelope function (see  

Sec. 2.7) used to switch the pulse on and off smoothly. Amplitude of the electric field 

does not exceed 5.7 mV/cm. Such pulses should be relatively easy to produce in the 

experiment. 

Fig. 6. 9: Optimally shaped electric field of the gate NOT in the 
111

Cd
+
 ion trap with 

inverted combined potential optimized with four transitions. (α0 = 2.0 × 10
12

) 
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Figure 6.10 shows evolution of state populations during the pulse. Four frames 

of this picture correspond to four optimized transitions of the training set. We see that, 

overall, the population transfer is quite direct, in a sense that population of the initial 

state(s) is monotonically transferred to the final state(s), without any reverse transfer. 

Fig. 6. 10: The gate NOT on second qubit in the 
111

Cd
+
 ion trap with inverted 

combined potential. (a) Switching of population between the qubit states during the 

0100NOT  . (b) Switching of population between the qubit states during the 

1110NOT  . (c) The same during 0001NOT  transformation. (d) The same 

during 1011NOT   transformation.  
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Note, however, that the system does not behave as an isolated four-state system of 

two qubits. The upper states of the normal mode progressions gain some population 

during the pulse. Here, the states 02  and 12  are excited most significantly 

(populations exceeds 0.1), which can be seen in Fig. 6.10 without any magnification. 

However, the system is well controlled – by the end of the pulse all population is 

dumped into the target state(s) of two qubits. The value of cumulative transition 

probability, as defined in Eq. (2.7.7), reaches P = 0.996.  

In Fig. 6.11, the Fourier analysis of the pulse in Fig. 6.9 is carried out and it is 

shown that the spectrum is dominated by structure in the  2 2.7-to-3.2 MHz 

region, which corresponds to excitation of one quantum of vibration in the first qubit. 

The structure is asymmetric. Its most intense peak corresponds to frequency of 

10   transition in the second qubit. A wing, composed of series of less intense 

peaks, expends into the blue part of spectrum and covers 21  , 43   and 

54 
 
transitions in the second qubit, which means that this pulse is trying to 

controll selectively the ladder of transitions (an anharmonic oscillator). Note that all 

these transitions are well resolved by the pulse – the widths of peaks in the spectrum 

are narrower than frequency differences. However, the transitions 0100   and 

1110   etc., are not resolved. Frequencies of these transitions are very close to 

each other because anharmonicity of first qubit is very small. Widths of peaks in the 
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spectrum are much broader than this frequency difference, which means that the 

0100   and 1110   transitions are controlled together, but not selectively.  

Intensity of the signal near the frequency of 32   transition
 
is suppresed, relative 

to others, which explains why the population of state 3  remains low during the 

pulse.  Fourier analysis shows no frequency components near 2  for the second 

qubit (consistent with selection rules described in Section 6.3) and only small 

intensity near  23 8.8 MHz region, 30   transition in the second qubit, 

consistent with low population of state 3 . Nothing in the spectrum corresponds to 

transitions between states of the first qubit.  

 

 

Fig. 6. 11: Fourier analysis of the pulse in Fig 6.9 for the gate NOT. 
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Results obtained with longer pulses (T > 4 μs) indicate that increase of the 

pulse duration leads to decrease of the field amplitude and decrease of population of 

the interfering upper states. For example, we found that during the pulse optimized 

with T = 20 μs the field does not exceed 2.5 mV/cm, the populations of states 02  and 

12  do not exceed 0.02, while the cumulative transition probability reaches P = 

0.9998.  

b) Two-qubit control and the Conditional NOT Gate (CNOT)   

For the gate CNOT, we need to control the following four transitions: 

                                                                                                               

                                                                                                               

                                                                                                               

                                                                                                               

 

 

Fig. 6. 12: Optimally shaped electric field of the gate CNOT for the two-qubit system 

in the 
111

Cd
+
 ion trap with inverted combined potential. Large penalty factor α0 = 6.0 

× 10
12

. 
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Here when the control (first) qubit is in state      , the target (second) qubit stays 

unchanged. But if the control qubit is in state      , the target qubit flips. 

Experimentation with pulse duration showed that CNOT gate requires much longer 

pulses than NOT gate. In order to obtain accurate CNOT gate, we had to 

 

 

Fig. 6. 13: The gate CNOT for the two-qubit control in the 
111

Cd
+
  ion trap optimized 

with four transitions. Large penalty factor α0 = 6.0 × 10
12

. (a) Switching of population 

between the qubit states during the 0000CNOT  . (b) Switching of population 

between the qubit states during the  1110CNOT  . (c) The same during 

0101CNOT   transformation. (d) The same during 1011CNOT   

transformation.  
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increase the pulse duration to T = 30 μs. The number of time steps for wave packet 

propagation was increased to 18,000. Variation of the penalty factor revealed an 

interesting feature. This feature is demonstrated below using results for two pulses, 

one with α = 6.0 × 10
12

 and second with α0 = 8.0 × 10
11

.  

The pulse optimized with larger penalty factor, α0 = 6.0 × 10
12

, is shown in 

Fig. 6.12. This pulse is simply shaped, symmetric, and consists of two time-delayed 

sub-pulses. The maximum field amplitude of about 0.6 mV/cm is achieved at 

approximately t = 7.5 and 22.5 μs. The state-to-state transitions driven by this pulse 

are shown in Fig. 6.13. Four frames correspond to four optimized transitions of the 

training set. When the control qubit is in state 1  the population transfer is monotonic 

 

 

Fig. 6. 14: Fourier analysis of the pulse in Fig 6.12 for the gate CNOT. 
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and is very much direct, see Figs. 6.13 (b) and (d). Only two states of the system are 

involved and those are states 10  and 11  of the qubit. Transitions to any upper states 

of the system are suppressed. When the control qubit is in state 0  the population 

transfer is not monotonic: The first sub-pulse creates a superposition state 

of 00  and 01 , while the second sub-pulse returns population back to the initial 

state(s), as required by this gate, see Figs. 6.13 (a) and (c). Cumulative accuracy of the 

qubit transformation is very high, P ~ 0.9995. Fourier analysis of the optimized pulse 

in Fig. 6.14 shows that the 1110   transition is induced, while the frequenciy of 

the 0100   transition is somewhat reduced. This is different from the 

unconditional gate NOT. The frequencies of all other transitions are completely 

suppressed. Even the frequency of 21 
 
transition in the second qubit is entirely 

suppressed, which explains why population is restricted to only states 0
 
and  1  of 

Fig. 6. 15: Optimally shaped electric field of the gate CNOT for the two-qubit control 

in the 
111

Cd
+
 ion trap with inverted combined potential. Small penalty factor α0 = 8.0 

× 10
11

. 
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the second qubit. 

The fact that transitions to the upper states of the system can be suppressed 

and population is restricted to only four states of the 2×2 qubit space is very 

interesting. We believe that such high selectivity is made possible by the relatively 

 

Fig. 6. 16: The gate CNOT for the two-qubit control in the 
111

Cd
+
 ion trap optimized 

with four transitions. Small penalty factor α0 = 8.0 × 10
11

 . (a) Switching of 

population between the qubit states during the 0000CNOT  . (b) Switching of 

population between the qubit states during the  1110CNOT  . (c) The same 

during 0101CNOT   transformation. (d) The same during 1011CNOT   

transformation.  
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low amplitude of field of the pulse in Fig. 6.12, leading to very delicate control of 

vibrational excitations.  

In order to support this hypothesis we present results for another pulse, 

optimized with lower penalty factor α0 = 8.0 × 10
11

. In general, lowering the penalty 

factor allows raising amplitude of the field during the optimization procedure. The 

optimized pulse shape for this case is presented in Fig. 6.15. The maximum field 

amplitude of this pulse is roughly 5.1 mV/cm, about an order of magnitude higher 

compared to the previous case. The pulse shape is much more complicated, 

asymmetric, containing multiple sub-pulses of different amplitudes. This shape 

reflects complicated evolution of state populations presented in Fig. 6.16. During the 
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Fig. 6. 17: Fourier analysis of the pulse in Fig 6.15 for the gate CNOT. 
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pulse, the populations are exchanged back and force between the initial and the final 

states of the qubit, and are also transferred to the excited states of the system, 02  and

12 . Despite complicated evolution during the pulse, at time Tt  the population is 

directed towards the target states, leading to high accuracy of qubit transformation, P 

~ 0.9996. Fourier analysis of this optimized pulse in Fig. 6.17 shows a spectral 

structure that covers 10  , 21   and 43   transitions in the second  

qubit,  which clearly corresponds to control of the ladder. The frequency of 32 

transition in the second qubit is, again, somewhat suppresed. 

Two examples of CNOT gate presented above suggest that a careful choice of 

constrains on the control field, such as pulse duration and field amplitude, may be 

necessary in order to obtain the control pulses of desirable accuracy and simplicity.   

c) Phase control and the Hadamard Gate  

For the Hadamard gate, to achieve the phase control, we need to optimize five 

transitions at the same time and the training set of transitions for the Hadamard 

transformation of the second qubit is: 
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The fifth transition here is the sum of the first four transitions and is included 

in order to achieve control over phases, which is essential for this gate:       

     . Note that the cumulative probability of Eq. (2.7.7) neglects phases of 

transitions, since moduli squared of overlaps are used. However, the accuracy of gates 

like Hadamard should be measured by a phase-sensitive moiety, like the fidelity F 

defined on page 57 and 58 [35, 37]. One solution is to replace P by F in the functional 

of Eq. (2.7.6) and re-derive the equations [35, 37], but this approach was not followed 

here. A simpler fix to the standard procedure is to include, in addition to four 

transitions of the training set, one more transition that represents sum of the previous 

four [85, 92]. In order to ensure that the phase is indeed controlled, the fidelity rather 

Fig. 6. 18: Optimally shaped electric field of the gate Hadamard on the second qubit 

in the 
111

Cd
+
 ion trap with inverted combined potential optimized with five transitions. 

(α0 = 1.0 × 10
12

) 
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than probability of Eq. (2.7.7), should be monitored as convergence criterion. 

Different values of pulse duration and penalty factor were tried and the 

following parameters were finally adopted: α0 = 1.0 × 10
12

 and T = 35 μs. The number 

of time steps was also adjusted to 55,000.  
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The optimized pulse is presented in Fig. 6.18. The pulse is asymmetric and 

consists of three sub-pulses of sligtly different amplitudes. Maximum amplitude of the 

field is about 1.3 mV/cm. Roles of these sub-pulses are revealed by analysis of state 

populations presented in Fig. 6.19. The first sub-pulse achieves a significant transfer 

of populations, creating a superposition state with probabilities close to the needed 

50/50, while the second sub-pulse manipulates phases of the optimized transitions 

Fig. 6. 20: The gate Hadamard on the second qubit in the 
111

Cd
+
 ion trap. Frames (e) 

and (f): Switching of population of states 00  and 01  during the 

    51000
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(with only minor population transfer). Third sub-pulse finalizes the entire 

transformation by minor transfer of remaining populations and fine phase correction. 

Analysis of phase angle of the optimized transitions supports this conclusion:  During 

the first sub-pulse phases are not controlled at all. Second sub-pulse reduces phase 

differences monotonically to only ~ 30-50º. Third sub-pulse reduces phase differences 

to less than 4º at the end of the pulse.  

Fourier analysis of the optimized pulse shows two spectral structures. First 

structure in Fig 6.21 is in the  2 2.7-to-3.0 MHz region (excitation of one 

quantum in the second qubit). Here the 10   transition is clearly dominant, while 

 

Fig. 6. 21: Fourier analysis of the pulse in Fig 6.18 for the gate Hadamard (lower 

frequency part). 



2.6 2.7 2.8 2.9 3.0 3.1

In
te

ns
it

y

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

Hadamard

(MHz)

|0
0>
→
|0
1>

|1
0>
→
|1
1>

|0
1>
→
|0
2>

|1
1>
→
|1
2>

|0
2>
→
|0
3>

|1
2>
→
|1
3>

|0
3>
→
|0
4>

|1
3>
→
|1
4>



199 
 

 

 

the 21   transition is significantly suppressed, consistent with low population of
 

states 02
 
and 12  in Fig. 6.19. The second spectral structure in Fig. 6.22 is in the  

 2 54.8-to-54.9 MHz region, which corresponds to excitation of one quantum of 

the first qubit. Transitions between 10  ,
 

21  , 43   and 54   

states of the first qubit are covered by the blue-side wing of this spectral structure. We 

tend to state that these transitions are partially resolved because they all have different 

intensities, due to slope of the wing and some minor oscillations of intensity.  

Note that frequency components that control first qubit have not been  

observed in the optimized NOT and CNOT pulses discussed above. We found that 

 

Fig. 6. 22: Fourier analysis of the pulse in Fig 6.18 for the gate Hadamard (higher 

frequency part). 
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these frequencies appear only when we include fifth transition into the training set  

(e.g., Eq. (6.5.13)) in order to control phases of the optimized transitions. The pulses 

optimized for such truly coherent manipulations of the qubit states always contain 

frequency components for control of both qubits of the two-qubit system.   

In Fig. 6.20 we can see that average probability P converges much faster than 

the fidelity F. After about one hundred iterations, probability in the backward and 

forward propagations already converge, while it takes almost one thousand iterations 

for the convergence of the fidelity. This is evidence that controlling the phase is more 

difficult than controlling only the state populations. The cumulative transition 

probability for this Hadamard gate is P ~ 0.998. Its fidelity is slightly lower, F ~ 

0.990, due to small residual difference of phases (~4º). 

6.6 Conclusions 

In this chapter we carried out the first optimal control study of a system of 

multiple ions in an anharmonic linnear trap. The method of encoding qubits into the 

quantized collective motional/vibrational states of the linear ion-string was proposed 

and explored computationally. The time-varying microwave fields were used to  

achive adiabatic control over these states.  

Although all ions are identical, the vibration modes of the ion-string are 

different and the qubits, encoded into these modes, are also different. Numerical 
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analysis of frequencies and anharmonicities of the vibration modes was used to 

identify modes most suitable for encoding qubits. It was shown that in a strongly 

anharmonic trap, obtained by combining a repulsive quadratic with an attractive 

quartic potentials, the center-of-mass motion mode is the most anharmonic. It is most 

suitable for encoding states of the target qubit. The control qubit can be encoded into 

a less anharmonic asymmetric stretching mode. The symmetric stretching mode 

remains dark.  

Optimal control theory was used to derive pulses for a set of universal 

quantum gates. It was shown that if parameters of the pulse, such as pulse duration 

and maximum field amplitude, are carefully chosen the qubit transformations (gates) 

are accurate and the pulses are simple. Durations of the pulses obtained were in the 4 

μs to 40 μs range. Amplitudes of the control fields were on the order of few mV/cm.  

Only one set of parameters for the shape of the trap was considered in this 

paper. It seems feasible, however, to further increase anharmonicity of the vibrational 

spectrum of the system by changing parameters of the trapping potential. Higher 

anharmonicities, in turn, should simplify the control and allow deriving more accurate 

and shorter gate pulses. Exploring a system of more than three ions offers more 

opportunities. There may be more than one anharmonic mode that can be efficiently 

controlled and used for encoding qubits.  
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Chapter 7: Future research directions 

In this dissertation, we studied two scaling methods for the adiabatic optimal 

control scheme and its applications in quamtum computation. First method of scaling 

is to use more than one excited vibrational state (Chapter 3). But only if the 

anharmonicity is large enough, we may be able to access and control multiple excited 

vibrational states: 0 , 1 , 2 , 3 , etc. It would be interesting to repeat such 

optimization calculations for an even more anharmonic system with more than 16 

states. For example, the 6-qubit system requires 2
6 

states. Can we control such a 

system? It seems that the limit in this approach is due to complxcity of the pulse. Thus, 

incorporation of the experimental constrains onto the pulse optimization 

instrumentation is desirable. 

Note that the quantum circuit diagram shown in Fig. 3.3 represents a standard 

implementation of Shor’s algorithm, in which it is assumed from the beginning that 

registers of information are represented by qubits – the physically distinct two-state 

quantum objects. In our physical system (vibrational states of trapped ion) the two-

state qubits do not really exist. Physically, we operate with information registers of 

arbitrary length: q-words rather than q-bits. It would be very interesting to employ a 

better use of q-words, than simply splitting them onto a number of two-state qubits. 

There may be a better way of formulating Shor’s algorithm using the language of q-
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words. In particular, the inconveniences brought by the near-diagonal structure of the 

dipole-moment matrix could be minimized which, hopefully, could lead to simpler 

shaped and more accurate pulses.  This interesting opportunity will be explored in the 

future. 

The second method of scaling is to employ more than one ion. In Chapter 6, 

we presented an architecture for the two-qubit system based on a linear chain of three 

trapped ions in the inverted combined trap. If we want to control more than two 

qubits, four of more ions should be trapped and different qubits should be encoded 

into different normal vibration modes of the system. Bad news is that the symmetric 

stretching modes will always be dark (using the spatially homogeneous control field), 

but there will be more than one asymmetric stretching mode in the four-ion case. Also, 

the system of four trapped ions is totally different from the three-ion system. For three 

ions in the inverted combined trapping potential, the central ion sits on top of the hill 

+

Va

+

z

+ +

Fig. 7. 1: A four-ion string trapped in a flat anharmonic potential of the form 

42 '
!4

1
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1
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(see Fig. 6.2). In the four-ion system: four ions sit over two wells symmetrically (see 

Fig. 7.1). One can expect that this system carries more anharmonicity, because no 

ions are located near the hill, where the PES is flat. Thus, it would be very interesting 

to study the four-ion system in the inverted combined potential in the future. 

Note that the symmetric stretching mode is dark only in the case when a 

spatially homogeneous field is used, as assumed in this work. Creating a quadrupole 

potential would allow controlling the symmetric stretching mode too. This 

opportunity will be studied theoretically and computationally in the future work.    

We have done some preliminary investigation related to trapping molecular 

ions, such as H3O
+
. In this case we could encode the quantum information into the 

motional energy levels like in this dissertation, but also into the inversion-rotation 

energy levels of each ion. It was found that the frequency of transitions between the 

inversions-rotation energy levels is four orders of magnitude higher than the 

frequency of transitions between the motional modes. It may be not straightforward to 

implement trasitions within these two kinds of energy levels with single control pulse. 

But two or more consequent pulses may work, which gives us another interesting 

possibility for the futute research. 

  



205 
 

 

 

BIBLIOGRAPHY 

[1] Feynman, R, Int. J. Theor. Phys. 1982, 21, 467-488. 

[2] Johnson, G, A Shortcut Through Time : The Path to the Quantum Computer. 2003. 

[3] Holzscheiter, M. H. Los Alamos Science, 2002, 27, 264-283. 

[4] Cirac, J. I.; Zoller, P., Phys. Rev. Lett. 1995, 74, 4091-4094. 

[5] Peirce, A. P.; Dahleh, M.A.; Rabitz, H, Phys. Rev. A. 1988, 37, 4950-4964. 

[6] Judson, R. S.; Rabitz, H., Phys. Rev. Lett. 1992, 98, 1500-1503. 

[7] Warren, W. S.; Rabitz, H. S.; Dahleh, M., Science, 1993, 1581-1589. 

[8] Zhu, W.; Botina, J.; Rabitz, H., J. Chem. Phys. 1998, 108, 1953-1963. 

[9] Ren, Q.; Balint-Kurti, G. G.; Manby, F. R.; Artamonov, M.; Ho, T. S.; Rabitz, H., 

J. Chem. Phys. 2006, 125, 021104. 

[10] Rabitz, H; Turinici, G., Phys. Rev. A. 2007, 75, 043409. 

[11] Toth, G. J.; Lorincz, A.; Rabitz, H., J. Chem. Phys. 1994, 101, 3715-3722. 

[12] Cheng, T.; Brown, A., J. Chem. Phys. 2006, 124, 144109. 

[13] Lozovoy, V. V.; Dantus, M., ChemPhysChem. 2005, 6, 1970-2000. 

[14] Dela Cruz, J. M.; Lozovoy, V. V.; Dantus, M., J. Phys. Chem. A. 2005, 109, 

8447-8450. 

[15] Lozovoy, V. V.; Gunaratne, T. C.; Shane, J. C.; Dantus, M., ChemPhysChem. 

2006, 7, 2471-2473. 

[16] Lozovoy, V. V.; Xu, B. W.; T. C.; Shane, J. C.; Dantus, M., Phys. Rev. A. 2006, 

74, 041805. 

[17] Monroe, C.; Meedhof, D. M.; King, B. E.; Itano, W. M.; Wineland, D. J., Phys. 

Rev. Lett. 1995, 75, 4714-4718. 



206 
 

 

 

[18] Meekhoff, D. M.; Monroe, C.; King, B. E.; Itano, W. M.; Wineland, D. J., Phys. 

Rev. Lett. 1996, 76, 1796-1799. 

[19] Sackett, C. A.; Kielpinski, D.; King, B. E.; Langer, C.; Meyer, V.; Myatt, C. J.; 

Rowe, M.; Turchette, Q. A.; Itano, W. M.; Wineland, D. J.; Monroe, C., Nature. 

2000, 404, 256-259. 

[20] Garcia-Ripoll, J. J.; Zoller, P.; Cirac, J. I., Phys. Rev. Lett. 2003, 91, 157901. 

[21] Schmidt-Kaler, F.; Haeffner, H.; Riebe, M.; Gulde, S.; Lancaster, G. P. T.; 

Deuschle, T.; Becher, C.; Roos, C. F.; Eschner, J.; Blatt, R., Nature. 2003, 422, 

408-411. 

[22] Haeffner, H.; Haensel, W.; Roos, C. F.; Benhelm, J.; Chek-al-kar, D.; Chwalla, 

M.; Korber, T.; Rapol, U. D.; Riebe, M.; Schmidt, P. O.; Becher, C.; Guhne, O.; 

Dur, W.; Blatt, R., Nature. 2005, 438, 643-646. 

[23] Leibfried, D.; Knill, E.; Seidelin, S.; Britton, J.; Blakestad, R. B.; Chiaverini, J.; 

Hume, D. B.; Itano, W. M.; Jost, J. D.; Langer, C.; Ozeri, R.; Reichle, R.; 

Wineland, D. J., Nature. 2005, 438, 639-642. 

[24] Schmidt-Kaler, F.; Häffner, H.; Gulde, S.; Riebe, M.; Lancaster, G.P.T.; 

Deuschle, T.; Becher, C.; Hänsel, W.; Eschner, J.; Roos, C. F.; Blatt, R., Appl. 

Phys. B. 2003, 77, 789-796. 

[25] Bushev, P.; Rotter, D.; Wilson, A.; Dubin, F.; Becher, C.; Eschner, J.; Blatt, R.; 

Steixner, V.; Rabl, P.; Zoller, P., Phys. Rev. Lett. 2006, 96, 043003.  

[26] Monroe, C.; Wineland, D., Scientific American. 2008, 64-71. 

[27] Leibfried, D.; Blatt, R.; Monroe, C.; Wineland, D., Rev. Mod. Phys. 2003, 75, 

281-324. 

[28] Blatt, R.; Wineland, D., Nature. 2008, 453, 1008-1015.  

[29] Kim, K.; Chang, M. S.; Islam, R.; Korenblit, S.; Duan, L. M.; Monroe, C., Phys. 

Rev. Lett. 2009, 103, 120502. 

[30] Kim, K.; Chang, M. S.; Korenblit, S.; Islam, R.; Edwards, E. E.; Freericks, J. K.; 

Lin, G. D.; Duan, L. M.; Monroe, C., Nature. 2010, 465, 590-593. 



207 
 

 

 

[31] Duan, L. M.; Monroe, C., Rev. Mod. Phys. 2010, 82, 1209-1224. 

[32] Lin, G. D.; Zhu, S. L.; Islam, R.; Kim, K.; Chang, M. S.; Korenblit, S.; Monroe, 

C.; Duan, L. M.; Europhysics. Lett. 2009, 86, 60004. 

[33] Weidinger, D.; Gruebele, M., Mol. Phys. 2007, 105, 1999-2008.  

[34] Weidinger, D.; Gruebele, M., Chem. Phys. 2008, 350, 139-144. 

[35] Palao, J. P.; Kosloff, R., Phys. Rev. Lett. 2002, 89, 188301. 

[36] Vala, J.; Amitay, Z.; Zhang, B.; Leone, S. R.; Kosloff, R., Phys. Rev. A. 2002, 

66, 062316. 

[37] Palao, J. P.; Kosloff, R., Phys. Rev. A. 2003, 68, 062308. 

[38] Menzel-Jones, C.; Shapiro, M., Phys. Rev. A. 2007, 75, 052308. 

[39] Suzuki, S.; Mishima, K.; Yamashita, K., Chem. Phys. Lett. 2005, 410, 358-364. 

[40] Shioya, K.; Mishima, K.; Yamashita, K., Mol. Phys. 2007, 105, 1283-1295. 

[41] Mishima, K.; Yamashita, K., Chem. Phys. 2009, 361, 106-117. 

[42] Mishima, K.; Yamashita, K., J. Chem. Phys. 2009, 130, 034108. 

[43] Tesch, C. M.; Kurtz, L.; Vivie-Riedle, R. De., Chem. Phys. Lett. 2001, 343, 633-

641. 

[44] Tesch, C. M.; Vivie-Riedle, R. De., Phys. Rev. Lett. 2002, 89, 157901. 

[45] Tesch, C. M.; Vivie-Riedle, R. De., Chem. Phys. 2004, 121, 12158-12168. 

[46] Korff, B. M. R.; Troppmann, U.; Kompa, K. L.; Vivie-Riedle, R. De., J. Chem. 

Phys. 2005, 123, 244509. 

[47] Troppmann, U.; Vivie-Riedle, R. De., J. Chem. Phys. 2005, 122, 154105. 

[48] Gollub, C.; Troppmann, U.; Vivie-Riedle, R. De., New J. Phys. 2006, 8, 48. 

[49] Troppmann, U.; Gollub, C.; Vivie-Riedle, R. De., New J. Phys. 2006, 8, 100. 



208 
 

 

 

[50] Sugny, D.; Kontz, C.; Ndong, M.; Justum, Y.; Dive, G.; Desouter-Lecomte, M., 

Phys. Rev. A. 2006, 74, 043419. 

[51] Sugny, D.; Ndong, M.; Lauvergnat, D.; Justum, Y.; Desouter-Lecomte, M., J. 

Photochem. Photobiol. A. 2007, 190, 359-371. 

[52] Teranishi, Y.; Ohtsuki, Y.; Hosaka, K.; Chiba, H.; Katsuki, H.; Ohmori, K., J. 

Chem. Phys. 2006, 124, 114110. 

[53] Nielsen, M. A.; Chuang, I. L., Quantum Computation and Quantum Information 

(Cambridge University Press, Cambridge), 2000. 

[54] Nielsen, M. A.; Dowling, M. R.; Gu, M.; Doherty, A. C., Phys. Rev. A. 2006, 73, 

062323. 

[55] Cheng, T.; Brown, A., J. Chem. Phys. 2006, 124, 034111. 

[56] Ndong, M.; Lauvergnat, D.; Chapuisat, X.; Desouter-Lecomte, M., J. Chem. 

Phys. 2007, 126, 244505. 

[57] Bomble, L.; Lauvergnat, D.; Remacle, F.; Desouter-Lecomte, M., J. Chem. Phys. 

2008, 128, 064110. 

[58] Grace, M.; Brif, C.; Rabitz, H., Walmsley, I.; Kosut, R.; Lidar, D., New J. Phys. 

2006, 8, 35. 

[59] Lozovoy, V. V.; Dantus, M., Chem. Phys. Lett. 2002, 351, 213-221. 

[60] Babikov, D.; Mozhayskiy, V. A.; Krylov, A. I., J. Chem. Phys. 2006, 125, 84306. 

[61] www.quantumoptics.at 

[62] Ostendorf, A.; Roth, B.; Lammerzahl, C.; Schiller, S., Poster : “Preparation and 

Storage of Ultracold Complex Molecules” in Cold Molecules(CM), 2002. 

[63] Zhao, M.; Babikov, D., Phys. Rev. A. 2008, 77, 012338. 

[64] Kielpinski, D.; Monroe, C.; Wineland, D. J., Nature. 2002, 417, 709-711. 

[65] Schulz, S.; Poschinger, U.; Singer, K.; Schmidt-Kaler, F., Fortschr. Phys. 2006, 

54, 648-665. 



209 
 

 

 

[66] Stick, D.; Hensinger, W. K.; Olmschenk, S.; Madsen, M. J.; Schwab, K.; 

Monroe, C., Nature Physics. 2006, 2, 36-37. 

[67] Hensinger, W. K.; Olmschenk, S.; Stick, D.; Hucul, D.; Yeo, M.; Acton, M.; 

Deslauriers, L.; Monroe, C., Appl. Phys. Lett. 2006, 88, 034101. 

[68] Beckman, D.; Chari, A. N.; Devabhaktuni, S.; Preskill, J., Phys. Rev. A. 1996, 54, 

1034. 

[69] Meyrath, T. P.; James, D. F. V., Phys. Lett. A. 1998, 240, 37-42. 

[70] James, D. F. V., Appl. Phys. B. 1998, 66, 181-190. 

[71] Wang, L.; Babikov, D., Phys. Rev. A. 2011, 83, 022305. 

[72] Wang, L.; Babikov, D., Phys. Rev. A. 2011, 83, 052319. 

[73] Blinov, B. B.; Moehring, D. L.; Duan, L.-M.; Monroe, C., Nature. 2004, 428, 

153-157. 

[74] Deslauries, L.; Olmschenk, S.; Stick, D.; Hensinger, W. K.; Sterk, J.; Monroe, 

C., Phys. Rev. Lett. 2006, 97, 103007. 

[75] Deslauriers, L.; Acton, M.; Blinov, B. B.; Brickman, K. A.; Haljan, P. C.; 

Hensinger, W. K.; Hucul, D.; Katnik, S.; Kohn, R. N.; Lee, Jr. P. J.; Madsen, M. 

J.; Maunz, P.; Olmschenk, S.; Moehring, D. L.; Stick, D.; Sterk, J.; Yeo, M.; 

Younge, K. C.; Monroe, C., Phys. Rev. A. 2006, 74, 063421. 

[76] James, D. F. V., Phys. Rev. Lett. 1998, 81, 317-320. 

[77] Milburn, G. J.; Schneider, S.; James, D. F. V., Fortschritte der Physik. 2000, 48, 

801-810. 

[78] Schneider, S.; James, D.; Milburn, G. J., J. Mod. Opt. 2000, 47, 499-505. 

[79] Shankar, R.,  Principles of Quantum Mechanics (Second edition). 1994. 

[80] Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; Vetterling, W. T.,  Numerical 

recipes. 1989. 

[81] Bransden, B. H.; Joachain, C. J., Introduction to Quantum Mechanics. 1989. 



210 
 

 

 

[82] Zhang, S.; Jin, J., Computation of Special Functions. 1996. 

[83] Demtröder, W., Molecular Physics. 2005. 

[84] Zhao, M.; Babikov, D., J. Chem. Phys. 2007, 126, 204102. 

[85] Zhao, M.; Babikov, D., J. Chem. Phys. 2006, 125, 024105. 

[86] Ho, T. S.; Rabitz, H., J. Photochem. Photobiol. A. 2006, 180, 226-240. 

[87] Rabitz, H.; Zhu, W. S., Acc. Chem. Res. 2000, 33, 572-578. 

[88] Ren, Q.; Balint-Kurti, G. G.; Manby, F. R.; Artamonov, M.; Ho, T. S.; Rabitz, 

H., J. Chem. Phys. 2006, 124, 014111.  

[89] Sundermann, K.;  Vivie-Riedle, R. de, J. Chem. Phys. 1999, 110, 1896-1904. 

[90] Babikov, D, J. Chem. Phys. 2004, 121, 7577-7585. 

[91] Gu, Y. Y.; Babikov, D, J. Chem. Phys. 2009, 131, 034306. 

[92] Tesch, C. M.; Vivie-Riedle, R. de, J. Chem. Phys. 2004, 121, 12158. 

[93] Zaari, R. R.; Brown, A., J. Chem. Phys. 2011, 135, 044317. 

[94] www.mhpcc.edu/training/workshop/mpi/MAIN.html. 2003. 

[95] hpcf.nersc.gov/training/tutorials/mpi/intro/. 2002. 

[96] National Energy Research Scientific Computing Center (www.nersc.gov). 

[97] Leach, A. R., Molecular Modelling-Principles and Applications (Second edition). 

2001. 

[98] Jensen, F., Introduction to Computational Chemistry. 1999. 

[99] Wineland, D.J.; Monroe, C.; Itano, W.M.; Leibfried, D.; King, B.; Meekhof, 

D.M., Journal of Research of the National Institute of Standards and 

Technology. 1998, 103, 259-328. 

[100] Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P., Numerical 

Recipes (Third edition). 2007. 

http://www.mhpcc.edu/training/workshop/mpi/MAIN.html
http://www.nersc.gov/


211 
 

 

 

[101] DSYEV from LAPACK is a software package provided by Univ. of Tennessee, 

Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd, 2006. 

 

  



212 
 

 

 

Appendix A 

This code is written to diagonalize the Hamiltonian matrix of one 
111

Cd
+ 

ion
 
in 

the anharmonic potential trap to obtain its eigenvalues (energies) and the eigenvectors 

(parameter matrix C in Sec. 2.2). Lines 1-24 of this code contain the definition of 

variables; Lines 26-59 are the input data and step size definition; Lines 61-149 

describe the basis set expansion; Lines 151-166 define kinetic energy matrix and lines 

168-185 are definition of potential energy matrix; Hamiltonian matrix is constructed 

in lines 187-210; DSYEV subroutine from ACML library is used in lines 212-226 for 

matrix diagonalization [101]; Lines 228-262 are the construction of wavefunctions of 

the system; Transition matrix is calculated in lines 264-286; Lines 288-300 are the 

subroutine NVJ which is used to calculate    of Eq. (2.2.5) and the subroutine OTHPL 

in lines 302-361 describe calculation of Hermite polynomials and their first 

derivatives [82]. In this program, during the numerical calculations for the spectrum 

of vibrational states, I used atomic units. It was transformed into the units of MHz at 

the end. 
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Program 1DIONTRAP 

implicit real*8 (a-h,o-z) 

integer mv,nz 

real*8 towpi,autonm 

parameter(mv=20,max=60) 

parameter(nz=501) 

parameter(twopi=6.28318530717959d0) 

parameter(autonm=0.05291772d0) 

character*1 UPLO, JOBZ 

parameter(JOBZ ='V',UPLO ='U') 

integer INFO 

double precision EV(mv), WORK(3*mv-1),Hamil(mv,mv) 

real*8 energy1,energy2,delta1,delta2 

real*8 mass1,mu,n1,beta1,y1,sum 

double precision 

z(nz),psi1(max,nz),psi2(max,nz),h(max),dh(max) 

double precision psi(max,nz),psir(max,nz),psii(max,nz) 

double precision 

norm1(max,max),norm2(max,max),norm3(max,max) 

double precision 

norm(max,max),wavef(max,nz),dipole(max,max) 

dimension v1(nz),v2(nz),p2s2m(nz) 

real*8 dp,n,b 

pi=acos(-1.d0) 

 

ccc Parameters for Cd ion from experiment(in a.u.): 

 

mass1=111.d0 

mass1=mass1*1822.8885d0 

mu=1.d0 

w=2770.0*2*pi 

delta=27.7*2*pi     !(unit=KHz=3.33*10^-8cm^-1) 

delta1=15.0*2*pi 

delta2=30.0*2*pi 

 

w=w*3.33564d-8/219474.63d0 

delta=delta*3.33564d-8/219474.63d0 

delta1=delta1*3.33564d-8/219474.63d0 

delta2=delta2*3.33564d-8/219474.63d0 

 

ccc Definition of distance step: 

zi=-650.d0 

zf=650.d0 

dz=(zf-zi)/(nz-1) 

write(8,*) zi*autonm,zf*autonm,dz*autonm 

 

do iz=1,nz 

z(iz)=zi+(iz-1)*dz 

end do 

 

open(100,file='uneigen.dat',status='unknown') 

do i=0,mv-1 

energy1=w*(i+0.5d0)-delta1*(i+0.5d0)*(i+0.5d0) 

energy2=w*(i+0.5d0)-delta2*(i+0.5d0)*(i+0.5d0) 

energy1=energy1*219474.63*2.997924d4 

energy2=energy2*219474.63*2.997924d4 

write(100,*) energy1,energy2 

end do 

close(100) 

 

ccc Hamonic parameters for mode 1 (in a.u.): 

w01=w 

dk1=dsqrt(mass1)*w01         !dk=dsqrt(k) 

beta1=dsqrt(mass1)*dk1 

 

ccc Basis functions for mode 1: 

do iz=1,nz 

y1=dsqrt(beta1)*z(iz) 
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iv=0 

psi1(iv+1,iz)=(beta1/pi)**0.25d0*dexp(-1*y1**2/2.d0) 

ccc Call the subroutine which will give the value of 

Hermite: 

call othpl(4,mv,y1,h,dh) 

do iv=1,mv-1,1 

n=iv 

call nvj(n,b) 

n1=dsqrt(dsqrt(beta1/pi)/(2**n)/b) 

psi1(iv+1,iz)=n1*h(iv+1)*exp(-1*y1**2/2.d0) 

end do 

end do 

 

ccc Normalization of wavefunctions for mode 1: 

open(9,file='gp.dat',status='unknown') 

do iv=1,mv 

sum=0.d0 

do iz=1,nz 

sum=sum+psi1(iv,iz)**2 

end do 

sum=sum*dz 

write(9,10) sum 

do iz=1,nz 

psi1(iv,iz)=psi1(iv,iz)/dsqrt(sum) 

end do 

end do 

close(9) 

 

ccc Output of basis functions: 

open(10,file='basisset.dat',status='unknown') 

do iz=1,nz 

write(10,10) z(iz),(psi1(iv,iz),iv=1,mv) 

end do 

close(10) 

 

ccc Test of orthonormality: 

do iv=1,mv 

do jv=1,mv 

sum=0.d0 

do iz=1,nz 

sum=sum+psi1(iv,iz)*psi1(jv,iz) 

end do 

norm3(iv,jv)=sum*dz 

end do 

end do 

 

open(20,file='matrix.dat',status='unknown') 

do iv=1,mv 

write(20,20) (norm3(iv,jv),jv=1,mv) 

end do 

close(20) 

 

ccc Calculation of second derivative of kinetic part: 

do iz=1,nz 

y1=dsqrt(beta1)*z(iz) 

call othpl(4,mv,y1,h,dh) 

G=exp(-1*y1**2/2.d0) 

G1=-1*beta1*z(iz)*exp(-1*y1**2/2.d0) 

G2=beta1*exp(-1*y1**2/2.d0)*(y1**2-1) 

iv=0 

psi(iv+1,iz)=dsqrt(dsqrt(beta1/pi))*G2 

do iv=1,mv-1 

n=iv 

call nvj(n,b) 

n1=dsqrt(dsqrt(beta1/pi)/(2**n)/b) 

H1=dsqrt(beta1)*dh(iv+1) 

H2=2*iv*dh(iv)*beta1 

psi(iv+1,iz)=n1*(G2*h(iv+1)+2*G1*H1+G*H2) 
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end do 

end do 

do iv=1,mv 

do iz=1,nz 

psir(iv,iz)=-psi(iv,iz)/(2*mass1) 

end do 

end do 

 

open(30,file='secwavr.dat',status='unknown') 

do iz=1,nz 

write(30,30) z(iz),(psir(iv,iz),iv=1,mv) 

end do 

close(30) 

 

ccc Kinetic part for Hamitonian: 

do iv=1,mv 

do jv=1,mv 

sum=0.d0 

do iz=1,nz 

sum=sum+psi1(iv,iz)*psir(jv,iz) 

end do 

norm1(iv,jv)=sum*dz 

end do 

end do 

 

open(35,file='kinetic.dat',status='unknown') 

do iv=1,mv 

write(35,50) (norm1(iv,jv),jv=1,mv) 

end do 

close(35) 

 

ccc Potential part for Hamitonian: 

do iv=1,mv 

do jv=1,mv 

sum=0.d0 

do iz=1,nz 

v1(iz)=0.5d0*dk1**2*z(iz)**2+3.0d-6*dk1**2*z(iz)**4 

sum=sum+psi1(iv,iz)*v1(iz)*psi1(jv,iz) 

end do 

norm2(iv,jv)=sum*dz 

end do 

end do 

 

open(40,file='potential.dat',status='unknown') 

do iv=1,mv 

write(40,50) (norm2(iv,jv),jv=1,mv) 

end do 

close(40) 

 

ccc Hamitonian matrix: 

do iv=1,mv 

do jv=1,mv 

norm(iv,jv)=norm1(iv,jv)+norm2(iv,jv) 

end do 

end do 

 

open(50,file='Hamitonian.dat',status='unknown') 

do iv=1,mv 

write(50,50) (norm(iv,jv),jv=1,mv) 

end do 

close(50) 

 

do iv=1,mv 

do jv=1,mv 

Hamil(iv,jv)=0 

end do 

end do 
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do iv=1,mv 

do jv=iv,mv 

Hamil(mv+iv-jv,jv)=norm(iv,jv) 

end do 

end do 

 

ccc Diagonalization of Hamiltonian Matrix: 

call DSYEV( JOBZ, UPLO, mv, Hamil, mv, EV, WORK, 

$           3*(mv)-1, INFO ) 

 

open(60,file='Eigenvalue.dat',status='unknown') 

do iv=1,mv 

write(60,50) EV(iv)*219474.63*2.997924d4 

end do 

close(60) 

 

open(70,file='Eigenvector.dat',status='unknown') 

do iv=1,mv 

write(70,50) (Hamil(iv,jv),jv=1,mv) 

end do 

close(70) 

 

ccc Wavefunctions of the system: 

do iz=1,nz 

do jv=1,mv 

wavef(jv,iz)=0.d0 

do iv=1,mv 

wavef(jv,iz)=wavef(jv,iz)+Hamil(iv,jv)*psi1(iv,iz) 

end do 

end do 

end do 

 

open(80,file='wavef1.dat',status='unknown') 

do iz=1,nz 

write(80,10) z(iz),(wavef(jv,iz),jv=1,mv) 

end do 

close(80) 

 

do iz=1,nz 

do jv=1,mv 

if(jv.eq.2) then 

wavef(jv,iz)=-wavef(jv,iz) 

else if(jv.eq.12) then 

wavef(jv,iz)=-wavef(jv,iz) 

else if(jv.eq.16) then 

wavef(jv,iz)=-wavef(jv,iz) 

else 

wavef(jv,iz)=wavef(jv,iz) 

end if 

end do 

end do 

 

open(90,file='wavefunction.dat',status='unknown') 

do iz=1,nz 

write(90,10) z(iz),(wavef(jv,iz),jv=1,mv) 

end do 

close(90) 

 

ccc Transition Matrix: 

do iv=1,mv 

do jv=1,mv 

sum=0.d0 

do iz=1,nz 

sum=sum+wavef(iv,iz)*mu*z(iz)*wavef(jv,iz) 

end do 

dipole(iv,jv)=sum*dz 

end do 

end do 
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open(100,file='transitiondipole.dat',status='unknown') 

do iv=1,mv 

write(100,20) (dipole(iv,jv),jv=1,mv) 

end do 

close(100) 

 

10 format(e24.16,150(x,f24.16)) 

20 format(150(x,e30.16)) 

30 format(e24.16,150(x,f24.14)) 

40 format(150(x,f24.16)) 

50 format(150(x,e30.16)) 

End 

c----------------------------------------------------- 

CCC FACTORIAL OF N 

SUBROUTINE NVJ(M,A) 

REAL*8 I,M,A 

 

IF(M.EQ.0) THEN 

A=1.0 

ELSE 

A=1.0 

DO I=1,M 

A=A*I 

END DO 

END IF 

END 

C----------------------------------------------------- 

SUBROUTINE OTHPL(KF,N,X,PL,DPL) 

C ================================================ 

C PURPOSE: COMPUTE ORTHOGONAL POLYNOMIALS: TN(X) OR 

UN(X), 

C   OR LN(X) OR HN(X), AND THEIR DERIVATIVES 

C INPUT :  KF --- FUNCTION CODE 

C    KF=1 FOR CHEBYSHEV POLYNOMIAL TN(X) 

C   KF=2 FOR CHEBYSHEV POLYNOMIAL UN(X) 

C   KF=3 FOR LAGUERRE POLYNOMIAL LN(X) 

C   KF=4 FOR HERMITE POLYNOMIAL HN(X) 

C   N ---  ORDER OF ORTHOGONAL POLYNOMIALS 

C   X ---  ARGUMENT OF ORTHOGONAL POLYNOMIALS 

C OUTPUT:  PL(N) --- TN(X) OR UN(X) OR LN(X) OR HN(X) 

C   DPL(N)--- TN'(X) OR UN'(X) OR LN'(X) OR 

HN'(X) 

C =============================================== 

C 

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 

DIMENSION PL(0:N),DPL(0:N) 

A=2.0D0 

B=0.0D0 

C=1.0D0 

Y0=1.0D0 

Y1=2.0D0*X 

DY0=0.0D0 

DY1=2.0D0 

PL(0)=1.0D0 

PL(1)=2.D0*X 

DPL(0)=0.0D0 

DPL(1)=2.0D0 

IF (KF.EQ.1) THEN 

Y1=X 

DY1=1.0D0 

PL(1)=X 

DPL(1)=1.0D0 

ELSE IF (KF.EQ.3) THEN 

Y1=1.D0-X 

DY1=-1.0D0 

PL(1)=1.0D0-X 

DPL(1)=-1.0D0 
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END IF 

DO 10 K=2,N 

IF (KF.EQ.3) THEN 

A=-1.0D0/K 

B=2.0D0+A 

C=1.0D0+A 

ELSE IF (KF.EQ.4) THEN 

C=2.0D0*(K-1.0D0) 

END IF 

YN=(A*X+B)*Y1-C*Y0 

DYN=A*Y1+(A*X+B)*DY1-C*DY0 

PL(K)=YN 

DPL(K)=DYN 

Y0=Y1 

Y1=YN 

DY0=DY1 

10    DY1=DYN 

RETURN 

END
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Appendix B 

This code is written to calculate the optimized control pulse, transition 

probability and fidelity during the control of  quantum gates. Lines 1-42 of this code 

contain the definition of variables; Lines 43-55 are used to initialize Message Passing 

Interface (MPI) calculation; Lines 57-110 are the step size definition and input data; 

Lines 112-206 are used to restart this code; Lines 208-264 are the names of output 

files;  Lines 266-291 are used to calculate the phase term during the propagation of  

the time-dependent wavefunction; Lines 293-333 are used to propagate the backward 

wavefunction; Lines 335-387 are used to calculate the probability and fidelity versus 

time for the last but one iteration (backward); Lines 389-432 are used to output 

backward probability and fidelity; Lines 434-572 are used for forward propagation; 

Lines 574-587 are used to create the file for restarting the code; Lines 589-694 are 

used to output the optimized control pulse, state-to-state transition probability and 

finalize MPI; Lines 696-708 define the guess field and lines 710-809 are used to 

calculate the control pulse; Coefficients of the time-dependent wavefunctions are 

calculated in lines 811-876; RK4 subroutine is used in lines 878-915 [80]. Note that 

the optimization code is parallelized using MPI to carry out N propagations of the 

Schrödinger equations using N different processors of the parallel computer. 
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program main 

c this code was extracted from timeprop.f. (1-

dimension)(09/22/05) 

c this code can be used for restart,which means when the 

code was running, the power was off, 

c then the code can be restarted from the checkpoint of 

restart file (refer to the Parameter file). 

 

implicit real*8 (a-h,o-z) 

include 'parameter.h' 

c------------------------------------------------------ 

real*8 mij(nv,nv),e(nv),tt 

common/hamiltonian/mij,e,amp,omega,tpulse,pi 

common/iteration/iter,idir,it 

 

dimension c0(2*nv,nt+1),c1(2*nv,nt+1) 

dimension c0Re(2*nv,nt+1),c0Im(2*nv,nt+1)   

!real and imaginary part of the backward wavefuncition 

including the phase. 

dimension c1Re(2*nv,nt+1),c1Im(2*nv,nt+1)  

!real and imaginary part of the forward  wavefuncition 

including the phase. 

common /wavefunct/c0,c1 

dimension field0(nt+1),field1(nt+1) 

common /field/ field0,field1 

dimension fbsinij(nv,nv,2*nt+1),fbcosij(nv,nv,2*nt+1) 

common/phase/fbsinij,fbcosij 

c------------------------------------------------------ 

dimension cre(nv),cim(nv),dcdt(2*nv) 

dimension time(nt+1),time1(nt+1),time2(2*nt+1) 

dimension strtre(mv),strtim(mv),targre(mv),targim(mv) 

dimension FRE(mv),FIM(mv),fidelity1(nt+1),fidelity2(nt+1) 

dimension probability1(nt+1),probability2(nt+1) 

dimension back_re(mv,nt+1),back_im(mv,nt+1) 

dimension back_cos(mv,nt+1),back_sin(mv,nt+1) 

dimension forw_re(mv,nt+1),forw_im(mv,nt+1) 

dimension forw_cos(mv,nt+1),forw_sin(mv,nt+1) 

character*13 fileout 

character*19 filepop 

  

external derivs,field_gess,field_iter 

!------------------- MPI STAFF ----------------! 

include 'mpif.h' 

integer rc,comm 

common/pedat/mype,npe,comm 

!----------------------------------------------! 

c MPI start: 

call MPI_INIT(ierror) 

comm=MPI_COMM_WORLD 

call MPI_COMM_RANK(comm,mype,ierror) 

call MPI_COMM_SIZE(comm,npe,ierror) 

write(6,*) 'mype=',mype,' npe=',npe 

call MPI_BARRIER(comm,ierror) 

call mysecond(ts) 

 

c Pulse parameters: 

 

tpulse=tt/automisec  !(unit: atomic) 

 

dt=tpulse/nt 

 

do it=1,nt+1 

time(it)=(it-1)*dt     !(unit: atomic) 

time1(it)=(it-1)*dt*automisec    !(unit: microsec) 

end do 

 

do it=1,2*nt+1 
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time2(it)=(it-1)*dt/2.d0      !(unit: atomic, for sin 

and cos funcition) 

end do 

 

pi=acos(-1.d0) 

c Open and read in eigenvalues: 

 

open(20,file='eigen.dat',status='old') 

read(20,*) n_read 

if(n_read.lt.nv) then 

print*,'ERROR: Problem reading eigenvalues.dat' 

stop 

end if 

 

do iv=1,nv 

read(20,*) e(iv) 

end do 

close(20) 

 

c Open and read in transition moments matrix: 

 

open(30,file='dipol.dat',status='old') 

read(30,*) n_read 

if(n_read.lt.nv) then 

print *,'ERROR: Problem reading matrix.dat' 

stop 

end if 

 

do iv=1,nv 

read(30,*) (mij(iv,jv),jv=1,nv) 

end do 

close(30) 

  

c Open and read in starting and target qubit states: 

 

fileout='transition_ ' 

write (fileout(12:13),'(i2.2)') mype+1 

open(40, file=fileout,status='old') 

do l=1,mv 

read(40,*) strtre(l),strtim(l),targre(l),targim(l)          

end do 

close(40) 

 

c RESTART: 

 

if (restart) theN 

filepop= 'restart_  .dat' 

write (filepop(9:10),'(i2.2)') mype+1 

open(16,file=filepop,status='old', form='unformatted')    

read (16)  iter 

read (16) (field1(it),it=1,nt+1)  

read (16) ((c1(j,it),j=1,2*nv),it=1,nt+1) 

close(16) 

 

fileout='iter_back_ ' 

write(fileout(11:12),'(i2.2)') mype+1 

open(19,file=fileout,status='unknown') 

 

fileout='iter_forw_ ' 

write(fileout(11:12),'(i2.2)') mype+1 

open(20,file=fileout,status='unknown') 

 

fileout='re_back_ ' 

write(fileout(9:10),'(i2.2)') mype+1 

open(21,file=fileout,status='unknown')         

 

fileout='im_back_ ' 

write(fileout(9:10),'(i2.2)') mype+1 
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open(22,file=fileout,status='unknown')           

 

fileout='re_forw_ ' 

write(fileout(9:10),'(i2.2)') mype+1 

open(25,file=fileout,status='unknown')           

 

fileout='im_forw_ ' 

write(fileout(9:10),'(i2.2)') mype+1 

open(26,file=fileout,status='unknown')         

 

fileout='back_fidel_ '                            

write(fileout(12:13),'(i2.2)') mype+1 

open(23,file=fileout,status='unknown') 

 

fileout='forw_fidel_ '                              

write(fileout(12:13),'(i2.2)') mype+1 

open(24,file=fileout,status='unknown') 

 

fileout='back_aprob_ '                              

write(fileout(12:13),'(i2.2)') mype+1 

open(29,file=fileout,status='unknown') 

 

fileout='forw_aprob_ '                             

write(fileout(12:13),'(i2.2)') mype+1 

open(31,file=fileout,status='unknown') 

 

do j=0,(iter-1)/2 

read (23,*) iter, prob1 

read (24,*) iter, probab2 

read (29,*) iter, prob2 

read (31,*) iter, probab4 

read (19,*) iter, probab 

read (20,*) iter, probab 

read (21,*) iter, sum1 

read (22,*) iter, sum2 

read (25,*) iter, sum3 

read (26,*) iter, sum4 

end do 

 

print *, "restart info obtained." 

 

c Sin and Cos of (Ei-Ej)*t,for Interaction Representation 

only (phase term in subroutine): 

 

do it=1,2*nt+1 

do i=1,nv 

fbsinij(i,i,it)=0.d0 

fbcosij(i,i,it)=1.d0 

end do 

 

do j=1,nv-1 

do i=j+1,nv 

det=(e(i)-e(j))*time2(it) 

 fbsinij(i,j,it)=sin(det) 

fbcosij(i,j,it)=cos(det)          

end do 

end do 

 

do j=2,nv 

do i=1,j-1 

fbsinij(i,j,it)=-fbsinij(j,i,it) 

fbcosij(i,j,it)= fbcosij(j,i,it) 

end do 

end do 

 

end do 

 

goto 10 
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end if 

 

c First start: 

 

fileout='iter_back_ ' 

write(fileout(11:12),'(i2.2)') mype+1 

open(19,file=fileout,status='unknown') 

 

fileout='iter_forw_ ' 

write(fileout(11:12),'(i2.2)') mype+1 

open(20,file=fileout,status='unknown') 

 

fileout='re_back_ ' 

write(fileout(9:10),'(i2.2)') mype+1 

open(21,file=fileout,status='unknown')           

 

fileout='im_back_ ' 

write(fileout(9:10),'(i2.2)') mype+1 

open(22,file=fileout,status='unknown')           

 

fileout='re_forw_ ' 

write(fileout(9:10),'(i2.2)') mype+1 

open(25,file=fileout,status='unknown')           

 

fileout='im_forw_ ' 

write(fileout(9:10),'(i2.2)') mype+1 

open(26,file=fileout,status='unknown')     

 

fileout='ini_state_ ' 

write(fileout(11:12),'(i2.2)') mype+1 

open(27,file=fileout,status='unknown') 

 

fileout='fin_state_ ' 

write(fileout(11:12),'(i2.2)') mype+1 

open(28,file=fileout,status='unknown') 

 

fileout='back_fidel_ '                            

write(fileout(12:13),'(i2.2)') mype+1 

open(23,file=fileout,status='unknown') 

 

fileout='forw_fidel_ '                              

write(fileout(12:13),'(i2.2)') mype+1 

open(24,file=fileout,status='unknown') 

 

fileout='back_aprob_ '                              

write(fileout(12:13),'(i2.2)') mype+1 

open(29,file=fileout,status='unknown') 

 

fileout='forw_aprob_ '                             

write(fileout(12:13),'(i2.2)') mype+1 

open(31,file=fileout,status='unknown') 

 

 do l=1,mv 

write(27,*) strtre(l),strtim(l) 

 end do 

 

do l=1,mv 

write(28,*) targre(l),targim(l) 

end do 

 

c Sin and Cos of (Ei-Ej)*t,for Interaction Representation 

only (phase term in subroutine): 

 

do it=1,2*nt+1 

 

do i=1,nv 

fbsinij(i,i,it)=0.d0 

fbcosij(i,i,it)=1.d0 
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end do 

 

do j=1,nv-1 

do i=j+1,nv 

det=(e(i)-e(j))*time2(it) 

 fbsinij(i,j,it)=sin(det) 

fbcosij(i,j,it)=cos(det)          

end do 

end do 

 

do j=2,nv 

do i=1,j-1 

fbsinij(i,j,it)=-fbsinij(j,i,it) 

fbcosij(i,j,it)= fbcosij(j,i,it) 

end do 

end do 

 

end do 

 

c ITERATIONS 

 

iter=-1 

 

10  continue 

call MPI_BARRIER(comm,ierror) 

 

c Iteration number: 

 

iter=iter+1 

 

c Set up target wavefunction: 

 

do l=1,nv 

cre(l)=0.d0 

cim(l)=0.d0 

end do 

 

do l=1,mv  

cre(l)=targre(l)                                         

cim(l)=targim(l)                                         

end do 

 

c Set up real vector out of Cre & Cim: 

 

do l=1,nv 

c0(   l,nt+1)=cre(l)*cos(e(l)*tpulse) 

$     -cim(l)*sin(e(l)*tpulse)          

c0(nv+l,nt+1)=cre(l)*sin(e(l)*tpulse) 

$     +cim(l)*cos(e(l)*tpulse)          

end do 

 

c Backward propagation: 

 

idir=-1 

 

do it=nt+1,2,-1 

call derivs(time(it),c0(1,it),dcdt,0) 

call rk4(c0(1,it),dcdt,2*nv,time(it),-dt, 

$    c0(1,it-1),derivs) 

end do 

 

c -------prob and fidelity etc. versus time for the last 

but one iteration 

 

if(iter.eq.(niter-1)) then 

 

do it=1,nt+1 

sum1=0.d0 
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sum2=0.d0 

do l=1,mv 

sum1=sum1+strtre(l)*(c0(   l,it)*cos(e(l)*time(it)) 

$        +c0(nv+l,it)*sin(e(l)*time(it))) 

$        +strtim(l)*(c0(nv+l,it)*cos(e(l)*time(it)) 

$        -c0(   l,it)*sin(e(l)*time(it)))                

sum2=sum2-strtim(l)*(c0(   l,it)*cos(e(l)*time(it)) 

$        +c0(nv+l,it)*sin(e(l)*time(it))) 

$  +strtre(l)*(c0(nv+l,it)*cos(e(l)*time(it)) 

$        -c0(   l,it)*sin(e(l)*time(it)))           

back_re(l,it)=c0(l,it)*cos(e(l)*time(nt+2-it)) 

$      -c0(nv+l,it)*sin(e(l)*time(nt+2-it))                

!real part of backward wavefunction for state l 

back_im(l,it)=c0(nv+l,it)*cos(e(l)*time(nt+2-it)) 

$      +c0(l,it)*sin(e(l)*time(nt+2-it))                    

!imaginary part of backward wavefuntion for state l 

end do 

 

probab5=sum1**2+sum2**2   

                                   

ccc Consider the fidelity. 

 

call MPI_ALLREDUCE(sum1,sum5,1,MPI_DOUBLE_PRECISION,     

$ MPI_SUM,comm,ierror) 

call MPI_ALLREDUCE(sum2,sum6,1,MPI_DOUBLE_PRECISION,     

$ MPI_SUM,comm,ierror) 

call 

MPI_ALLREDUCE(probab5,probab6,1,MPI_DOUBLE_PRECISION,   

$ MPI_SUM,comm,ierror) 

 

fidelity1(it)=(sum5**2+sum6**2)/N**2 

probability1(it)=probab6/N 

end do 

 

filepop='    _backfidprb_ ' 

write(filepop(1:5),'(i5.5)') iter 

write(filepop(18:19),'(i2.2)') mype+1 

open(130,file=filepop,status='unknown') 

 

do it=1,nt+1,printstep 

write(130,100) 

time1(it),fidelity1(it),probability1(it), 

& (back_re(i,it),i=1,mv),(back_im(i,it),i=1,mv) 

end do 

close(130) 

end if 

 

c Output final overlap and energy of the field: 

 

sum1=0.d0 

sum2=0.d0 

 

do l=1,mv 

sum1=sum1+strtre(l)*(c0(   l,1)*cos(e(l)*time(1)) 

$       +c0(nv+l,1)*sin(e(l)*time(1))) 

$        +strtim(l)*(c0(nv+l,1)*cos(e(l)*time(1)) 

$       -c0(   l,1)*sin(e(l)*time(1)))           

sum2=sum2-strtim(l)*(c0(   l,1)*cos(e(l)*time(1)) 

$       +c0(nv+l,1)*sin(e(l)*time(1))) 

$        +strtre(l)*(c0(nv+l,1)*cos(e(l)*time(1)) 

$       -c0(   l,1)*sin(e(l)*time(1)))       

end do 

 

probab=sum1**2+sum2**2 

 

write(19,50) iter, probab 

write(21,50) iter,sum1                                  

write(22,50) iter,sum2                                   
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call myflush(19) 

call myflush(21)                                         

call myflush(22) 

 

print*,'pe #',mype,' Iteration',iter,' Transfer:',probab 

call MPI_BARRIER(comm,ierror) 

 

call MPI_ALLREDUCE(sum1,sum5,1,MPI_DOUBLE_PRECISION,     

$ MPI_SUM,comm,ierror) 

call MPI_ALLREDUCE(sum2,sum6,1,MPI_DOUBLE_PRECISION,     

$ MPI_SUM,comm,ierror) 

Call MPI_ALLREDUCE(probab,probab1,1,   

$ MPI_DOUBLE_PRECISION,MPI_SUM,comm,ierror) 

 

prob1=(sum5**2+sum6**2)/N**2                       

!backward fidelity 

probab2=probab1/N                                  

!backward average prob 

write(23,50) iter,prob1 

write(29,50) iter,probab2 

call myflush(23) 

call myflush(29) 

 

c Iteration number: 

 

iter=iter+1       

 

c Set up initial wavefunction: 

 

do l=1,nv 

cre(l)=0.d0 

cim(l)=0.d0 

end do 

 

do l=1,mv 

cre(l)=strtre(l)                                       

cim(l)=strtim(l)                                       

end do 

 

c Set up real vector(size ntot) out of Cre & Cim: 

  

do l=1,nv 

c1(   l,1)=cre(l)                      

c1(nv+l,1)=cim(l)                      

end do 

 

c Forward propagation: 

 

idir=1 

 

do it=1,nt 

call derivs(time(it),c1(1,it),dcdt,0) 

call rk4(c1(1,it),dcdt,2*nv,time(it),dt, 

$   c1(1,it+1),derivs) 

end do 

 

c-----------prob and fidelity etc. versus time for the 

last iteration 

 

if(iter.eq.niter) then 

 

do it=1,nt+1 

sum3=0.d0 

sum4=0.d0 

do l=1,mv 

sum3=sum3+targre(l)*(c1(   l,it)*cos(e(l)*time(it)) 

$        +c1(nv+l,it)*sin(e(l)*time(it))) 

$        +targim(l)*(c1(nv+l,it)*cos(e(l)*time(it)) 
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$        -c1(   l,it)*sin(e(l)*time(it)))             

sum4=sum4-targim(l)*(c1(   l,it)*cos(e(l)*time(it)) 

$        +c1(nv+l,it)*sin(e(l)*time(it))) 

$        +targre(l)*(c1(nv+l,it)*cos(e(l)*time(it)) 

$        -c1(   l,it)*sin(e(l)*time(it)))             

forw_re(l,it)=c1(l,it)*cos(e(l)*time(it)) 

$       +c1(nv+l,it)*sin(e(l)*time(it))                              

!real part of forward wavefunction for state l 

forw_im(l,it)=c1(nv+l,it)*cos(e(l)*time(it)) 

$      -c1(l,it)*sin(e(l)*time(it))                                 

!imaginary part of forward wavefunction for state l 

end do 

 

probab7=sum3**2+sum4**2   

                                   

ccc Consider the fidelity. 

 

call MPI_ALLREDUCE(sum3,sum7,1,MPI_DOUBLE_PRECISION,     

$ MPI_SUM,comm,ierror) 

call MPI_ALLREDUCE(sum4,sum8,1,MPI_DOUBLE_PRECISION,     

$ MPI_SUM,comm,ierror) 

call MPI_ALLREDUCE(probab7,probab8,1,   

$ MPI_DOUBLE_PRECISION,MPI_SUM,comm,ierror) 

 

fidelity2(it)=(sum7**2+sum8**2)/N**2 

probability2(it)=probab8/N 

end do 

 

filepop='    _forwfidprb_ ' 

write(filepop(1:5),'(i5.5)') iter 

write(filepop(18:19),'(i2.2)') mype+1 

open(140,file=filepop,status='unknown') 

 

do it=1,nt+1,printstep 

write(140,100) 

time1(it),fidelity2(it),probability2(it), 

&  (forw_re(i,it),i=1,mv),(forw_im(i,it),i=1,mv) 

end do 

close(140) 

end if 

 

c Output overlap and energy of the field: 

 

sum3=0.d0 

sum4=0.d0 

 

do l=1,mv 

sum3=sum3+targre(l)*(c1( l,nt+1)*cos(e(l)*time(nt+1)) 

$    +c1(nv+l,nt+1)*sin(e(l)*time(nt+1))) 

$    +targim(l)*(c1(nv+l,nt+1)*cos(e(l)*time(nt+1))          

$    -c1(   l,nt+1)*sin(e(l)*time(nt+1))) 

sum4=sum4-targim(l)*(c1( l,nt+1)*cos(e(l)*time(nt+1)) 

$    +c1(nv+l,nt+1)*sin(e(l)*time(nt+1))) 

$    +targre(l)*(c1(nv+l,nt+1)*cos(e(l)*time(nt+1))          

$    -c1(   l,nt+1)*sin(e(l)*time(nt+1))) 

FRE(l)=c1(l,nt+1)*cos(e(l)*time(nt+1)) 

$   +c1(nv+l,nt+1)*sin(e(l)*time(nt+1))                 

!real part of forward function at time T, which can be 

output with iter vs. real value. 

FIM(l)=c1(nv+l,nt+1)*cos(e(l)*time(nt+1)) 

$   -c1(l,nt+1)*sin(e(l)*time(nt+1))                     

!imaginary part of forward funciton at time T, it was used 

for checking the phase during coding. 

end do 

 

probab=sum3**2+sum4**2 

 

write(20,50) iter,probab 
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write(25,50) iter,sum3                                   

write(26,50) iter,sum4  

                                  

call myflush(20) 

call myflush(25)                                         

call myflush(26)                                        

print*,'pe #',mype,' Iteration',iter,'Transfer:',probab 

 

ccc Consider the fidelity. 

 

call MPI_ALLREDUCE(sum3,sum7,1,MPI_DOUBLE_PRECISION,    

$ MPI_SUM,comm,ierror) 

call MPI_ALLREDUCE(sum4,sum8,1,MPI_DOUBLE_PRECISION,    

$ MPI_SUM,comm,ierror) 

call MPI_ALLREDUCE(probab,probab3,1,  

$ MPI_DOUBLE_PRECISION,MPI_SUM,comm,ierror) 

 

prob2=(sum7**2+sum8**2)/N**2               !forward 

fidelity 

probab4=probab3/N                          !forward 

average probability 

write(24,50) iter,prob2 

write(31,50) iter,probab4 

call myflush(24) 

call myflush(31) 

call MPI_BARRIER(comm,ierror)                           

 

c Restart file: 

 

if (chkflag.gt.0) then 

if (MOD(iter,nchkpt) .EQ. 1) then 

filepop= 'restart_  .dat' 

write (filepop(9:10),'(i2.2)') mype+1 

open(16,file=filepop,status='unknown',form='unformatted

') 

write (16) iter 

write (16) (field1(it),it=1,nt+1) 

write (16) ((c1(j,it),j=1,2*nv),it=1,nt+1) 

close(16) 

end if 

end if 

 

c Output field and states populations during the run: 

  

if(iter.eq.niter) then 

 

c By one processor only: 

 

if(mype.eq.0) then 

fileout='    _fields' 

write(fileout(1:5),'(i5.5)') iter 

open(16,file=fileout,status='unknown') 

 

do it=1,nt+1,nprint 

field0(it)=field0(it)*automvcm 

field1(it)=field1(it)*automvcm 

write(16,100) time1(it),field0(it),field1(it) 

end do 

close(16) 

 

end if 

call MPI_BARRIER(comm,ierror) 

 

c By each processor: 

 

filepop='    _transf_ ' 

write(filepop(1:5),'(i5.5)') iter 
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write(filepop(14:15),'(i2.2)') mype+1 

open(17,file=filepop,status='unknown') 

 

do it=1,nt+1,printstep 

sum3=0.d0 

sum4=0.d0 

do l=1,mv 

sum3=sum3+targre(l)*(c1(   l,it)*cos(e(l)*time(it)) 

$        +c1(nv+l,it)*sin(e(l)*time(it))) 

$        +targim(l)*(c1(nv+l,it)*cos(e(l)*time(it))  

$        -c1(   l,it)*sin(e(l)*time(it)))            

sum4=sum4-targim(l)*(c1(   l,it)*cos(e(l)*time(it)) 

$        +c1(nv+l,it)*sin(e(l)*time(it))) 

$        +targre(l)*(c1(nv+l,it)*cos(e(l)*time(it))  

$        -c1(   l,it)*sin(e(l)*time(it)))     

end do 

write(17,100) time1(it),sum3**2+sum4**2 

end do 

close(17) 

 

filepop='    _populs_ ' 

write(filepop(1:5),'(i5.5)') iter 

write(filepop(14:15),'(i2.2)') mype+1 

open(18,file=filepop,status='unknown') 

 

do it=1,nt+1,printstep 

sum9=0.d0 

sum10=0.d0 

do i=1,nv 

sum9=sum9+c0(i,it)**2+c0(nv+i,it)**2 

sum10=sum10+c1(i,it)**2+c1(nv+i,it)**2 

c0Re(i,it)=c0(   i,it)*cos(e(i)*time(it)) 

$     +c0(nv+i,it)*sin(e(i)*time(it)) 

c0Im(i,it)=c0(nv+i,it)*cos(e(i)*time(it)) 

$     -c0(   i,it)*sin(e(i)*time(it)) 

c1Re(i,it)=c1(   i,it)*cos(e(i)*time(it)) 

$     +c1(nv+i,it)*sin(e(i)*time(it)) 

c1Im(i,it)=c1(nv+i,it)*cos(e(i)*time(it)) 

$     -c1(   i,it)*sin(e(i)*time(it)) 

end do 

write(18,100)   time1(it), 

& (c0(i,it)**2+c0(nv+i,it)**2,i=1,nv), 

& (c1(i,it)**2+c1(nv+i,it)**2,i=1,nv), 

& (c0Re(i,it),c0Im(nv+i,it),i=1,nv), 

& (c1Re(i,it),c1Im(nv+i,it),i=1,nv),sum9,sum10 

end do 

close(18) 

 

call MPI_BARRIER(comm,ierror) 

end if 

 

c Iterations: 

if(iter.lt.niter) goto 10 

 

close(19) 

close(20) 

close(21)                           

close(22)                           

close(23)                           

close(24)                           

close(25) 

close(26) 

close(27) 

close(28) 

close(29) 

close(31) 

 

50 format(i4,5(x,e18.12)) 
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100 format(e16.8,300(x,e24.12)) 

200 format(10(x,e24.16)) 

800 format(g16.11,5x,g16.10) 

807 format(a25,f7.2,2x,a8) 

 

call mysecond(tf) 

write(6,*) 'PE: ',mype,' Exiting...to Barrier' 

write(6,807) 'Final CPU Time= ',(tF-tS)/60.0d0,' (min)' 

 

call MPI_BARRIER(comm,ierror) 

call MPI_FINALIZE(rc) 

 

end 

c------------------------------------------------------ 

function field_gess(t) 

implicit real*8 (a-h,o-z) 

include 'parameter.h' 

 

real*8 mij(nv,nv),e(nv),guessf 

common /hamiltonian/mij,e,amp,omega,tpulse,pi 

 

amp=guessf/automvcm 

omega=abs(e(2)-e(1)) 

field_gess=amp*sin(omega*t) 

        

return 

end 

c------------------------------------------------------ 

function field_iter(c,t,point) 

implicit real*8 (a-h,o-z) 

 

include 'parameter.h' 

 

real*8  mij(nv,nv),e(nv) 

common /hamiltonian/mij,e,amp,omega,tpulse,pi 

dimension fbsinij(nv,nv,2*nt+1),fbcosij(nv,nv,2*nt+1) 

common/phase/fbsinij,fbcosij 

common /iteration/iter,idir,it 

dimension c0(2*nv,nt+1),c1(2*nv,nt+1),c(2*nv),cpr(2*nv) 

common /wavefunct/ c0,c1 

real*8 Im0,Re0,ReCC,ImCC,ReM,ImM 

integer point 

 

c Coefficients from previous iteration: 

 

select case(idir) 

case(1) 

 

select case(point) 

case(0) 

do l=1,2*nv 

cpr(l)=c0(l,it) 

end do 

case(1) 

do l=1,2*nv 

cpr(l)=(c0(l,it)+c0(l,it+1))/2.d0 

if((it.gt.1).and.(it.lt.(nt-1))) then 

cpr(l)=cpr(l)-(c0(l,it-1)-c0(l,it) 

$      -c0(l,it+1)+c0(l,it+2))/16.d0 

end if 

end do 

case(2) 

do l=1,2*nv 

cpr(l)=c0(l,it+1) 

end do 

end select 
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jt=2*it-1+point         !forward segment number of fbsin 

and fbcos 

 

case(-1) 

 

select case(point) 

case(0) 

do l=1,2*nv 

cpr(l)=c1(l,it) 

end do 

case(1) 

do l=1,2*nv 

cpr(l)=(c1(l,it)+c1(l,it-1))/2.d0 

if((it.gt.2).and.(it.lt.(nt+1))) then 

cpr(l)=cpr(l)-(c1(l,it+1)-c1(l,it) 

$     -c1(l,it-1)+c1(l,it-2))/16.d0 

end if 

end do 

case(2) 

do l=1,2*nv 

cpr(l)=c1(l,it-1) 

end do 

end select 

 

jt=2*it-1-point         !backward segment number of 

fbsin and fbcos 

   

end select 

 

c Overlap <psi_pr|mu|psi>:                                               

 

ReM=0.d0 

ImM=0.d0 

 

do i=1,nv 

do j=1,nv 

ReCC=c(   i)*cpr(   j)+c(nv+i)*cpr(nv+j) 

ImCC=c(nv+i)*cpr(   j)-c(   i)*cpr(nv+j) 

ReM=ReM+(ReCC*fbcosij(j,i,jt)-

ImCC*fbsinij(j,i,jt))*mij(i,j) 

ImM=ImM+(ImCC*fbcosij(j,i,jt)+ReCC*fbsinij(j,i,jt))*mij

(i,j) 

end do 

end do 

  

c Overlap <psi|psi_pr>: 

Re0=0.d0 

Im0=0.d0 

 

do i=1,nv 

Re0=Re0+(c(   i)*cpr(   i)+c(nv+i)*cpr(nv+i))    

Im0=Im0+(c(   i)*cpr(nv+i)-c(nv+i)*cpr(   i)) 

end do 

 

c Field Im(<psi|psi_pr><psi_pr|mu|psi>):idir is used to 

modify the equation for backward propagation,because  

c cpr is now backward wavefuncition in this case. 

 

field_iter=-idir*(Im0*ReM+Re0*ImM) 

return 

end 

c------------------------------------------------------ 

subroutine derivs(t,c,dcdt,point) 

implicit real*8 (a-h,o-z) 

 

include 'parameter.h' 

 

real*8  mij(nv,nv),e(nv),alpha 
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common /hamiltonian/ mij,e,amp,omega,tpulse,pi 

dimension fbsinij(nv,nv,2*nt+1),fbcosij(nv,nv,2*nt+1) 

common/phase/fbsinij,fbcosij 

common /iteration/iter,idir,it 

dimension field0(nt+1),field1(nt+1) 

common /field/field0,field1 

dimension c(2*nv),dcdt(2*nv) 

integer point 

!----------------- MPI STAFF--------------------------- 

include 'mpif.h'  

integer comm 

common/pedat/mype,npe,comm 

!------------------------------------------------------ 

c Remember the field: 

if(iter.eq.0) then 

field=field_gess(t)*(sin(pi*t/Tpulse))**2  

else 

field2=field_iter(c,t,point)*(sin(pi*t/Tpulse))**2/alpha 

call MPI_BARRIER(comm,ierror) 

call MPI_ALLREDUCE(field2,field,1,MPI_DOUBLE_PRECISION, 

$ MPI_SUM,comm,ierror) 

end if 

 

c Remember the field: 

 

if(point.eq.0) then 

select case (idir) 

case(1) 

field1(it)=field 

case(-1) 

field0(it)=field 

end select 

end if 

 

c Laser field action (interaction representation): 

select case (idir) 

case(1) 

jt=2*it-1+point 

case(-1) 

jt=2*it-1-point 

end select 

do j=1,nv 

sum_re=0.d0 

sum_im=0.d0 

 

do i=1,nv 

sum_re=sum_re+(c(   i)*fbsinij(i,j,jt) 

$       -c(nv+i)*fbcosij(i,j,jt))*mij(i,j) 

sum_im=sum_im+(c(   i)*fbcosij(i,j,jt) 

$       +c(nv+i)*fbsinij(i,j,jt))*mij(i,j) 

end do  

     

dcdt(   j)=field*sum_re 

dcdt(nv+j)=field*sum_im 

end do 

  

return 

end 

c------------------------------------------------------ 

subroutine rk4(y,dydx,n,x,h,yout,derivs) 

implicit real*8 (a-h,o-z) 

 

dimension dydx(n),y(n),yout(n) 

external derivs 

parameter(nmax=80)     !should be larger than 2*nv. 

dimension dym(nmax),dyt(nmax),yt(nmax) 

integer comm 
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hh=h*0.5d0 

h6=h/6.d0 

xh=x+hh 

  

do i=1,n                           !!! First step 

yt(i)=y(i)+hh*dydx(i) 

end do 

 

call derivs(xh,yt,dyt,1)           !!! Second step 

 

do i=1,n 

yt(i)=y(i)+hh*dyt(i) 

end do 

 

call derivs(xh,yt,dym,1)           !!! Third step. 

 

do i=1,n 

yt(i)=y(i)+h*dym(i) 

dym(i)=dyt(i)+dym(i) 

end do 

 

call derivs(x+h,yt,dyt,2)          !!! Fourth step 

 

do i=1,n 

yout(i)=y(i)+h6*(dydx(i)+dyt(i)+2.d0*dym(i)) 

end do 

 

return 

end 

c------------------------------------------------------ 

subroutine mysecond(t) 

  

real*8 t 

include 'mpif.h' 

 

t=MPI_WTIME() 

 

return 

end 

c------------------------------------------------------ 

subroutine myflush(iout) 

 

integer iout 

 

flush(iout) 

 

return 

end 

c------------------------------------------------------
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Appendix C 

This code is written to carry out 1D FFT. Lines 1-17 of this code contain the 

definition of variables; Lines 19-34 are the input data and step size definition; Lines 

36-64 describe the process of FFT; Lines 66-75 are used to output final data. 
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Program 1DFFT 

implicit real*8 (a-h,o-z) 

integer nt,nj,n,mj 

real*8 towpi,pi,deltat,maxw,dw  

parameter(nm=600001,mm=1,nt=(nm-1)/mm+1,nj=2) 

parameter(mj=81,n=mj*nt,automhz=6579682606.6812d0) 

parameter(pi=3.1415926535897932384d0,twopi=6.2831853071795

9d0) 

Parameter(automvcm=5.14221d12,automisec=0.0242d-

9,st=100,stp=5) 

integer INFO 

double precision COMM(3*n+100),X(n,nj),time(nt),tim(nt) 

double precision 

field0(nt),field1(nt),field2(nm),field3(nm) 

double precision w((n-1)/2),amp((n-1)/2,nj),phi((n-

1)/2,nj) 

common /field/ amp,phi,X,w 

 

open(5,file='04001fields',status='old') 

do it=1,nm 

read(5,*) tim(it),field2(it),field3(it) 

end do 

close(5) 

 

do it=1,nt 

time(it)=tim((it-1)*mm+1) 

field0(it)=field2((it-1)*mm+1) 

field1(it)=field3((it-1)*mm+1) 

end do 

 

deltat=time(2)-time(1) 

maxw=0.5d0/deltat/twopi 

dw=maxw/(((n-1)/2)-1.d0) 

write(12,*) maxw 

 

open(6,file='fields.dat',status='unknown') 

do it=1,nt 

write(6,100) time(it),field0(it),field1(it) 

end do 

close(6) 

     

do i=1,nj   

do it=1,n 

X(it,i)=0.d0    

end do 

end do 

 

do it=((mj-1)/2)*nt+1,((mj+1)/2)*nt 

X(it,1)=field0(it-nt*((mj-1)/2)) 

X(it,2)=field1(it-nt*((mj-1)/2)) 

end do 

 

do it=1,(n-1)/2 

w(it)=(it-1)*dw 

end do 

 

call DZFFTM( nj, n, X, COMM,  INFO ) 

 

do i=1,nj 

do it=1,(n-1)/2 

amp(it,i)=dsqrt(X(it+1,i)**2+X(n-it+1,i)**2) 

phi(it,i)=atan(X(n-it+1,i)/X(it+1,i)) 

end do 

end do 

 

open(10,file='FastFourier.dat',status='unknown') 

do it=1,2*nt,stp 

write(10,40) w(it),(amp(it,i),phi(it,i),i=1,nj) 
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end do 

close(10) 

 

40 format(150(x,e24.16)) 

100 format(e16.8,100(x,e24.12)) 

End
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Appendix D 

This code is written to carry out 2D Fourier analysis. Lines 1-23 of this code 

contain the definition of variables; Lines 25-64 are the input data and step size 

definition; Lines 66-91 describe the process of 2D Fourier transform; Lines 93-123 

are used to output final data. 
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Program 2DFT 

implicit real*8 (a-h,o-z) 

integer nt,nj,n,mj,ntst,nted,lgwd,alpha,cs,step,st,nop 

real*8 towpi,pi,deltat,maxw,dw,dt 

parameter(nm=600001,mm=200,nt=(nm-1)/mm+1, 

nj=501,mj=85,n=mj*nt) 

Parameter(alpha=100,cs=80,st=200,stl=20,nop=1001) 

parameter(pi=3.1415926535897932384d0,twopi=6.2831853071795

9d0) 

Parameter(automvcm=5.14221d12,automisec=0.0242d-9) 

Parameter(automhz=6579682606.6812d0) 

integer INFO 

double precision tim(nm),field2(nm),field3(nm) 

double precision COMM(3*n+100),X(n,nj),t(nop),gauss(nop) 

double precision field0(nt),field1(nt),time(nt),time1(nj) 

double precision w((n-1)/2),amp((n-1)/2,nj), 

phi((n-1)/2,nj) 

common /field/ amp,phi,X 

 

character*8 filedat 

character*14 fileout 

                 

open(5,file='04001fields',status='old') 

do it=1,nm 

read(5,*) tim(it),field2(it),field3(it) 

end do 

close(5) 

 

do it=1,nt 

time(it)=tim((it-1)*mm+1) 

field0(it)=field2((it-1)*mm+1) 

field1(it)=field3((it-1)*mm+1) 

end do 

 

open(6,file='fieldsa.dat',status='unknown') 

do it=1,nt 

write(6,100) time(it),field0(it),field1(it) 

end do 

close(6) 

  

dt=cs/(nop-1) 

do i=1,nop 

t(i)=(i-1)*dt 

gauss(i)=alpha*exp(-(t(i)-cs/2.d0)**2.d0/2/cs**2) 

end do 

 

open(7,file='gaussian.dat',status='unknown') 

do i=1,nop 

write(7,100) t(i),gauss(i) 

end do 

close(7) 

 

deltat=time(2)-time(1) 

maxw=0.5d0/deltat/twopi 

dw=maxw/(((n-1)/2)-1.d0) 

write(13,*) maxw 

 

do it=1,(n-1)/2 

w(it)=(it-1)*dw 

end do  

       

step=(nt-1)/(nj-1) 

 

do i=1,nj 

 

time1(i)=time((i-1)*step+1) 

 

do it=1,n   
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X(it,i)=0.d0    

end do 

 

do it=((mj-1)/2)*nt+1,((mj+1)/2)*nt 

X(it,i)=field1(it-nt*((mj-1)/2)) 

end do 

    

ntst=((mj-1)/2)*nt+(i-1)*step+1 

do it=1,n 

X(it,i)=X(it,i)*alpha*exp(-(it-ntst)**2.d0/2/cs**2)  

  

end do 

 

call DZFFTM( i, n, X, COMM,  INFO ) 

 

do it=1,(n-1)/2 

amp(it,i)=dsqrt(X(it+1,i)**2+X(n-it+1,i)**2) 

phi(it,i)=atan(X(n-it+1,i)/X(it+1,i)) 

end do 

 

end do 

 

open(17,file='FFT2Da.dat',status='unknown') 

write(17,50) (time1(i),i=1,nj) 

do it=nt*23,nt*31,stl 

write(17,50) w(it),(amp(it,i),i=1,nj) 

end do 

close(17) 

 

open(18,file='FFT2D1a.dat',status='unknown') 

write(18,50) (time1(i),i=1,nj) 

do it=1,(n-1)/2,st 

write(18,50) w(it),(amp(it,i),i=1,nj) 

end do 

close(18) 

 

open(19,file='FFT2D2a.dat',status='unknown') 

write(19,50) (time1(i),i=1,nj) 

do it=nt*23,nt*31,stl 

write(19,50) w(it),(log(amp(it,i)),i=1,nj) 

close(19) 

 

open(20,file='FFT2D3a.dat',status='unknown') 

write(20,50) (time1(i),i=1,nj) 

do it=1,(n-1)/2,st 

write(20,50) w(it),(log(amp(it,i)),i=1,nj) 

end do 

close(20) 

 

50 format(1000(x,e21.13)) 

100 format(e16.8,100(x,e24.12)) 

 

End 
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Appendix E 

This code is written to carry out minimization for two-ion system. Lines 1-6 of 

this code contain the definition of variables; Lines 8-29 are the definition of potential 

energy of the system; Lines 33-58 describe the process of minimization; Lines 60-63 

are used to output final data. 
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Program 2DMIN 

parameter(nz=2,niter=2000,z1g=-15000,z2g=15000) 

Parameter(automhz=6579682606.6812d0,std=1.0d-8) 

real*8 mass1,mu,w,w01,dk1,beta1,V,V1,zd 

double precision z(nz),sdz(nz),fdz(nz),minz(nz) 

pi=acos(-1.d0) 

 

c harmonic parameters for Cd ion(in a.u.): 

 

mass1=111.d0 

mass1=mass1*1822.8885d0 

mu=1.d0 

w=2770.0*2*pi 

w=w*3.33564d-8/219474.63d0 

 

c Hamonic parameters for mode 1 (in a.u.) 

 

w01=w 

dk1=dsqrt(mass1)*w01         !dk=dsqrt(k) 

beta1=dsqrt(mass1)*dk1 

 

c potential 

 

z(1)=z1g 

z(nz)=z2g 

iter=0 

V1=0.5*dk1**2*z(1)**2+0.5*dk1**2*z(nz)**2 

$                      +1/abs(z(nz)-z(1)) 

write(10,20) iter,V1,z(1),z(nz) 

 

10    continue 

 

iter=iter+1 

 

do iz=1,nz 

sdz(iz)=dk1**2+2/(z(nz)-z(1))**3 

write(20,*) sdz(iz) 

end do 

 

do iz=1,nz 

fdz(iz)=dk1**2*z(iz)+(-1)**(iz-1)/(z(nz)-z(1))**2 

write(30,*) fdz(iz) 

end do 

 

do iz=1,nz 

minz(iz)=z(iz)-fdz(iz)/sdz(iz) 

write(40,*) minz(iz) 

end do 

 

V=0.5*dk1**2*minz(1)**2+0.5*dk1**2*minz(nz)**2 

$                      +1/abs(minz(nz)-minz(1)) 

 

write(60,20) iter,V,minz(1),minz(nz) 

Zd=abs(minz(2)-z(2)) 

z(1)=minz(1) 

z(nz)=minz(nz) 

 

if(std.lt.zd) goto 10 

 

write(50,20) iter,V,minz(1),minz(nz) 

 

20 format(i6,10(x,e25.16)) 

end
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Appendix F 

This code is written to dianonalize the Hessian matrix for two-ion system. 

Lines 1-10 of this code contain the definition of variables; Lines 12-35 are the input 

data; Lines 37-83 describe the construction of Hessian matrix; Lines 85-101 are used 

to diaganalize the Hessian matrix and output final data. 
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Program 2DHESSIAN 

parameter(nz=2) 

real*8 mass1,mu,w,w01,dk1,beta1 

double precision 

z(nz),m(nz,nz),V(nz,nz),F(nz,nz),sqrtm(nz,nz) 

character*1 UPLO, JOBZ 

parameter(JOBZ ='V',UPLO ='U') 

double precision Eigenv(nz),WORK(3*nz-1) 

integer INFO 

pi=acos(-1.d0) 

 

c harmonic parameters for Cd ion(in a.u.): 

 

mass1=111.d0 

mass1=mass1*1822.8885d0 

mu=1.d0 

w=2770.0*2*pi 

w=w*3.33564d-8/219474.63d0 

 

c Hamonic parameters for mode 1 (in a.u.) 

 

w01=w 

dk1=dsqrt(mass1)*w01         !dk=dsqrt(k) 

beta1=dsqrt(mass1)*dk1 

 

c potential 

open(100,file='equilibrium.dat',status='old') 

read(100,*) (z(iz),iz=1,nz) 

close(100) 

 

open(30,file='position.dat',status='unknown') 

do iz=1,nz 

write(30,20) z(iz) 

end do 

close(30) 

 

do iz=1,nz 

do ix=1, nz 

if(ix.eq.iz) then 

m(iz,ix)=mass1 

else 

m(iz,ix)=0 

end if 

end do 

end do 

 

do iz=1,nz 

do ix=1, nz 

if(ix.eq.iz) then 

sqrtm(iz,ix)=m(iz,ix)**(-0.5) 

else 

sqrtm(iz,ix)=0 

end if 

end do 

end do 

 

open(40,file='mass.dat',status='unknown') 

do iz=1,nz 

write(40,20) (sqrtm(iz,ix),ix=1,nz) 

end do 

close(40) 

 

do iz=1,nz 

do ix=1,nz 

if(ix.eq.iz) then 

V(iz,ix)=dk1**2+2/(z(nz)-z(1))**3 

else 

V(iz,ix)=-2/(z(nz)-z(1))**3 
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end if 

end do 

end do 

 

do iz=1,nz 

do ix=1,nz 

F(iz,ix)=V(iz,ix)/mass1 

end do 

end do 

 

open(50,file='function.dat',status='unknown') 

do iz=1,nz 

write(50,20) (F(iz,ix),ix=1,nz) 

end do 

close(50) 

 

call DSYEV( JOBZ, UPLO, nz, F, nz, Eigenv, WORK, 3*nz-1, 

INFO ) 

 

open(10,file='Eigenvalue.dat',status='unknown') 

do iz=1,nz 

write(10,20) Eigenv(iz) 

end do 

close(10) 

 

open(20,file='Eigenvector.dat',status='unknown') 

do iz=1,nz 

write(20,20) (F(iz,ix),ix=1,nz) 

end do 

close(20) 

 

20 format(10(x,e25.16)) 

end
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Appendix G 

This code is written to diagonalize the Hamiltonian matrix of two 
111

Cd
+ 

ions
 

in the harmonic potential trap to obtain its eigenvalues (energies) and the eigenvectors 

(parameter matrix C in Sec. 2.2). Lines 1-32 of this code contain the definition of 

variables; Lines 34-78 are the input data and step size definition; Lines 80-299 

describe the basis set expansion based on two normal vibration modes; Lines 300-348 

define kinetic energy matrix and lines 350-387 are definition of potential energy 

matrix; Hamiltonian matrix is constructed in lines 389-413; DSYEV subroutine from 

ACML library is used in lines 415-428 for matrix diagonalization [101]; Lines 430-

539 are the construction of wavefunctions of the system; Transition matrix is 

calculated in lines 541-667; Lines 670-683 are the subroutine NVJ which is used to 

calculate    of Eq. (2.2.5) and the subroutine OTHPL in lines 684-741 describe 

calculation of Hermite polynomials and their first derivatives [82]. In this program, 

during the numerical calculations for the spectrum of vibrational states, I used atomic 

units. It was transformed into the units of MHz at the end.  
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Program 2DIONTRAP 

implicit real*8 (a-h,o-z) 

integer mv,nz,mz,ciz1,ciz2,dz1,dz2 

real*8 towpi,autonm 

parameter(mv=15,max=60) 

parameter(nz=101,mz=2,dz1=10,dz2=10) 

parameter(twopi=6.28318530717959d0) 

parameter(autonm=0.05291772d0) 

Parameter(automhz=6579682606.6812d0) 

character*1 UPLO, JOBZ 

parameter(JOBZ ='V',UPLO ='U') 

integer INFO 

double precision EV(mv*mv),EZ(mv*mv,mv*mv),WORK(3*(mv*mv)-

1) 

 

real*8 

mass1,mu,n,n1,n2,y1,y2,sum1,sum2,sum3,sum4,sum,G,G1,G2 

real*8 alpha1,alpha2,dk1,w,w1,w2 

double precision ek(mz),cz(mz), z1(nz),z2(nz) 

double precision psi1(mv,nz),psi2(mv,nz),h(max),dh(max) 

double precision psi1r(mv,nz),psi2r(mv,nz),V(nz,nz) 

double precision norm1(mv,mv),norm2(mv,mv) 

double precision psi11(mv,nz),psi22(mv,nz) 

double precision bs1(mv*mv,nz,nz),bs2(mv*mv,nz,nz) 

double precision bs3(mv*mv,nz,nz),wavef(mv*mv,nz,nz) 

double precision hk1(mv*mv,mv*mv),hk2(mv*mv,mv*mv) 

double precision KE(mv*mv,mv*mv),PE(mv*mv,mv*mv) 

double precision Hamil(mv*mv,mv*mv),Hamil1(mv*mv,mv*mv) 

double precision KE1(mv*mv,mv*mv),PE1(mv*mv,mv*mv) 

double precision 

AEV(mv,mv),Evalue(mv,mv),dipole(mv*mv,mv*mv) 

pi=acos(-1.d0) 

 

c harmonic parameters for Cd ion(in a.u.): 

 

mass1=111.d0 

mass1=mass1*1822.8885d0 

mu=1.d0 

w=2770.0*2*pi 

w=w*3.33564d-8/219474.63d0 

dk1=dsqrt(mass1)*w         !dk=dsqrt(k) 

 

open(5,file='Eigenvalue.dat',status='old') 

do iz=1,mz 

read(5,*) ek(iz) 

end do 

close(5) 

 

open(3,file='position.dat',status='old') 

do iz=1,mz 

read(3,*) cz(iz) 

end do 

close(3) 

 

do i=1,mv 

do j=1,mv 

AEV(i,j)=(i-0.5d0)*dsqrt(ek(1))+(j-0.5d0)*dsqrt(ek(mz)) 

AEV(i,j)=AEV(i,j)*automhz 

end do 

end do 

 

open(2,file='ApproEigen.dat',status='unknown') 

do i=1,mv 

write(2,50) (AEV(i,j),j=1,mv) 

end do 

close(2) 

 

Zmax=dz1*(nz-1) 
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zi=-Zmax/2 

zf=Zmax/2 

 

do iz1=1,nz 

z1(iz1)=zi+(iz1-1)*dz1 

end do 

 

do iz2=1,nz 

z2(iz2)=zi+(iz2-1)*dz2 

end do 

 

c Basis functions for mode 1 (in a.u.) 

w1=dsqrt(ek(1)) 

alpha1=dsqrt(mass1*w1) 

do iz1=1,nz 

y1=alpha1*z1(iz1) 

iv1=0 

psi1(iv1+1,iz1)=dsqrt(alpha1)/(pi**0.25d0)*dexp(-

y1**2/2.d0) 

 

!!!!!!!! call the subroutine which will give the value 

of Hermite. 

call othpl(4,mv,y1,h,dh) 

do iv1=1,mv-1,1 

n=iv1 

call nvj(n,b) 

n1=dsqrt(alpha1/dsqrt(pi)/(2**n)/b) 

psi1(iv1+1,iz1)=n1*h(iv1+1)*dexp(-y1**2/2.d0) 

end do 

end do 

 

cc Normalization of wavefunctions for mode 1. 

do iv1=1,mv 

sum1=0.d0 

do iz1=1,nz 

sum1=sum1+psi1(iv1,iz1)**2 

end do 

sum1=sum1*dz1 

do iz1=1,nz 

psi1(iv1,iz1)=psi1(iv1,iz1)/dsqrt(sum1) 

end do 

end do 

 

c Test of wavefunction 

 

open(10,file='basisset1.dat',status='unknown') 

do iz1=1,nz 

write(10,10) z1(iz1),(psi1(iv1,iz1),iv1=1,mv) 

end do 

close(10) 

 

c Test of orthonormality: 

 

do iv1=1,mv 

do jv1=1,mv 

sum1=0.d0 

do iz1=1,nz 

sum1=sum1+psi1(iv1,iz1)*psi1(jv1,iz1) 

end do 

norm1(iv1,jv1)=sum1*dz1 

end do 

end do 

 

open(20,file='matrix1.dat',status='unknown') 

do iv1=1,mv 

write(20,20) (norm1(iv1,jv1),jv1=1,mv) 

end do 

close(20) 
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c Basis functions for mode 2 (in a.u.) 

 

w2=dsqrt(ek(mz)) 

alpha2=dsqrt(mass1*w2*ek(1)/ek(mz)) 

c Hamonic wavefunctions for ion 2 

do iz2=1,nz 

y2=alpha2*z2(iz2) 

iv2=0 

psi2(iv2+1,iz2)=dsqrt(alpha2)/(pi**0.25d0)*dexp(-

y2**2/2.d0) 

 

!!!!!!!! call the subroutine which will give the value 

of Hermite. 

call othpl(4,mv,y2,h,dh) 

do iv2=1,mv-1,1 

n=iv2 

call nvj(n,b) 

n2=dsqrt(alpha2/dsqrt(pi)/(2**n)/b) 

psi2(iv2+1,iz2)=n2*h(iv2+1)*dexp(-y2**2/2.d0) 

end do 

end do 

 

cc Normalization of wavefunctions for mode 2. 

do iv2=1,mv 

sum2=0.d0 

do iz2=1,nz 

sum2=sum2+psi2(iv2,iz2)**2 

end do 

sum2=sum2*dz2 

do iz2=1,nz 

psi2(iv2,iz2)=psi2(iv2,iz2)/dsqrt(sum2) 

end do 

end do 

 

c Test of wavefunction 

 

open(30,file='basisset2.dat',status='unknown') 

do iz2=1,nz 

write(30,10) z2(iz2),(psi2(iv2,iz2),iv2=1,mv) 

end do 

close(30) 

 

c Test of orthonormality: 

 

do iv2=1,mv 

do jv2=1,mv 

sum2=0.d0 

do iz2=1,nz 

sum2=sum2+psi2(iv2,iz2)*psi2(jv2,iz2) 

end do 

norm2(iv2,jv2)=sum2*dz2 

end do 

end do 

 

open(40,file='matrix2.dat',status='unknown') 

do iv2=1,mv 

write(40,20) (norm2(iv2,jv2),jv2=1,mv) 

end do 

close(40) 

 

c calculate Hamitonian 

 

c second direvative of kinetic energy part for mode 1 

 

do iz1=1,nz 

y1=alpha1*z1(iz1) 

call othpl(4,mv,y1,h,dh) 
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G=exp(-1*y1**2/2.d0) 

G1=-1*alpha1**2*z1(iz1)*exp(-1*y1**2/2.d0) 

G2=alpha1**2*exp(-1*y1**2/2.d0)*(y1**2-1) 

iv1=0 

psi11(iv1+1,iz1)=dsqrt(alpha1/dsqrt(pi))*G2 

do iv1=1,mv-1 

n=iv1 

call nvj(n,b) 

n1=dsqrt(alpha1/dsqrt(pi)/(2**n)/b) 

H1=alpha1*dh(iv1+1) 

H2=2*iv1*dh(iv1)*alpha1**2 

psi11(iv1+1,iz1)=n1*(G2*h(iv1+1)+2*G1*H1+G*H2) 

end do 

end do 

 

do iv1=1,mv 

do iz1=1,nz 

psi1r(iv1,iz1)=-psi11(iv1,iz1)/2.d0/mass1 

end do 

end do 

 

c second derivative of first mode  

 

open(50,file='secwavr1.dat',status='unknown') 

do iz1=1,nz 

write(50,30) z1(iz1),(psi1r(iv1,iz1),iv1=1,mv) 

end do 

close(50) 

 

c second direvative of kinetic energy part for mode 2 

 

do iz2=1,nz 

y2=alpha2*z2(iz2) 

call othpl(4,mv,y2,h,dh) 

G=exp(-1*y2**2/2.d0) 

G1=-1*alpha2**2*z2(iz2)*exp(-1*y2**2/2.d0) 

G2=alpha2**2*exp(-1*y2**2/2.d0)*(y2**2-1) 

iv2=0 

psi22(iv2+1,iz2)=dsqrt(alpha2/dsqrt(pi))*G2 

do iv2=1,mv-1 

n=iv2 

call nvj(n,b) 

n2=dsqrt(alpha2/dsqrt(pi)/(2**n)/b) 

H1=alpha2*dh(iv2+1) 

H2=2*iv2*dh(iv2)*alpha2**2 

psi22(iv2+1,iz2)=n2*(G2*h(iv2+1)+2*G1*H1+G*H2) 

end do 

end do 

 

do iv2=1,mv 

do iz2=1,nz 

psi2r(iv2,iz2)=-psi22(iv2,iz2)*ek(mz)/ek(1)/2.d0/mass1 

end do 

end do 

 

c second derivative of second mode 

 

open(60,file='secwavr2.dat',status='unknown') 

do iz2=1,nz 

write(60,30) z2(iz2),(psi2r(iv2,iz2),iv2=1,mv) 

end do 

close(60) 

 

c basis set of the system 

 

do iv=1,mv 

do jv =1,mv 

do iz1=1,nz 
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do iz2=1,nz 

bs1((jv-1)*mv+iv,iz1,iz2)=psi1(iv,iz1)*psi2(jv,iz2) 

end do 

end do 

end do 

end do 

 

do iv=1,mv 

do jv =1,mv 

do iz1=1,nz 

do iz2=1,nz 

bs2((jv-1)*mv+iv,iz1,iz2)=psi1r(iv,iz1)*psi2(jv,iz2) 

end do 

end do 

end do 

end do 

 

do iv=1,mv 

do jv =1,mv 

do iz1=1,nz 

do iz2=1,nz 

bs3((jv-1)*mv+iv,iz1,iz2)=psi2r(jv,iz2)*psi1(iv,iz1) 

end do 

end do 

end do 

end do 

 

c kinetic energy matrix 

 

do i=1,mv*mv 

do j=1,mv*mv 

sum3=0.d0 

do iz1=1,nz 

do iz2=1,nz 

sum3=sum3+bs1(i,iz1,iz2)*bs2(j,iz1,iz2) 

end do 

end do 

hk1(i,j)=sum3*dz1*dz2 

end do 

end do 

 

do i=1,mv*mv 

do j=1,mv*mv 

sum3=0.d0 

do iz1=1,nz 

do iz2=1,nz 

sum3=sum3+bs1(i,iz1,iz2)*bs3(j,iz1,iz2) 

end do 

end do 

hk2(i,j)=sum3*dz1*dz2 

end do 

end do 

 

do i=1,mv*mv 

do j=1,mv*mv 

KE(i,j)=hk1(i,j)+hk2(i,j) 

end do 

end do 

 

open(70,file='kinetic.dat',status='unknown') 

do i=1,mv*mv 

write(70,50) (KE(i,j),j=1,mv*mv) 

end do 

close(70) 

 

do i=1,mv*mv 

do j=1,mv*mv 

KE1(i,j)=KE(i,j)*automhz 
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end do 

end do 

 

open(700,file='kinetic1.dat',status='unknown') 

do i=1,mv*mv 

write(700,50) (KE1(i,j),j=1,mv*mv) 

end do 

close(700) 

 

c potential energy matrix 

do i=1,mv*mv 

do j=1,mv*mv 

sum4=0.d0 

do iz1=1,nz 

do iz2=1,nz 

V(iz1,iz2)=0.5d0*dk1**2*z1(iz1)**2 

$     +0.5d0*dk1**2*z2(iz2)**2*ek(1)/ek(mz) 

$     +dk1**2*z2(iz2)*(cz(mz)- 

$ cz(1))*dsqrt(ek(1)/ek(mz)/2.d0) 

$     +1/abs(dsqrt(2.d0*ek(1)/ek(mz)) 

$ *z2(iz2)+cz(mz)-cz(1)) 

$     +dk1**2*cz(mz)**2-0.5d0*dk1**2*cz(1)**2 

$     -0.5d0*dk1**2*cz(mz)**2-1/abs(cz(mz)-cz(1)) 

sum4=sum4+bs1(i,iz1,iz2)*V(iz1,iz2)*bs1(j,iz1,iz2) 

end do 

end do 

PE(i,j)=sum4*dz1*dz2 

end do 

end do 

 

open(80,file='potential.dat',status='unknown') 

do i=1,mv*mv 

write(80,50) (PE(i,j),j=1,mv*mv) 

end do 

close(80) 

 

do i=1,mv*mv 

do j=1,mv*mv 

PE1(i,j)=PE(i,j)*automhz 

end do 

end do 

 

open(800,file='potential1.dat',status='unknown') 

do i=1,mv*mv 

write(800,50) (PE1(i,j),j=1,mv*mv) 

end do 

close(800) 

 

c Hamitonian matrix 

 

do i=1,mv*mv 

do j=1,mv*mv 

Hamil(i,j)=KE(i,j)+PE(i,j) 

end do 

end do 

 

open(90,file='Hamitonian.dat',status='unknown') 

do i=1,mv*mv 

write(90,50) (Hamil(i,j),j=1,mv*mv) 

end do 

close(90) 

 

do i=1,mv*mv 

do j=1,mv*mv 

Hamil1(i,j)=Hamil(i,j)*automhz 

end do 

end do 
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open(900,file='Hamitonian1.dat',status='unknown') 

do i=1,mv*mv 

write(900,50) (Hamil1(i,j),j=1,mv*mv) 

end do 

close(900) 

 

call DSYEV( JOBZ, UPLO, mv*mv, Hamil, mv*mv, EV, WORK, 

$           3*(mv*mv)-1, INFO ) 

 

open(100,file='Eigen.dat',status='unknown') 

do i=1,mv*mv 

write(100,50) EV(i)*automhz 

end do 

close(100) 

 

open(110,file='Eigenvector.dat',status='unknown') 

do i=1,mv*mv 

write(110,50) (Hamil(i,j),j=1,mv*mv) 

end do 

close(110) 

 

do iz1=1,nz 

do iz2=1,nz 

do j=1,mv*mv 

sum=0.d0 

do i=1,mv*mv 

sum=sum+Hamil(i,j)*bs1(i,iz1,iz2) 

end do 

wavef(j,iz1,iz2)=sum 

end do 

end do 

end do 

 

c Output of wavefunctions 

open(120,file='wavefunction00.dat',status='unknown') 

write(120,50) (z1(iz1),iz1=1,nz) 

do i=1,1 

do iz2=1,nz 

write(120,50) z2(iz2),(wavef(i,iz1,iz2),iz1=1,nz) 

end do 

end do 

close(120) 

 

open(121,file='wavefunction10.dat',status='unknown') 

write(121,50) (z1(iz1),iz1=1,nz) 

do i=2,2 

do iz2=1,nz 

write(121,50) z2(iz2),(wavef(i,iz1,iz2),iz1=1,nz) 

end do 

end do 

close(121) 

 

open(122,file='wavefunction01.dat',status='unknown') 

write(122,50) (z1(iz1),iz1=1,nz) 

do i=3,3 

do iz2=1,nz 

write(122,50) z2(iz2),(wavef(i,iz1,iz2),iz1=1,nz) 

end do 

end do 

close(122) 

 

open(123,file='wavefunction20.dat',status='unknown') 

write(123,50) (z1(iz1),iz1=1,nz) 

do i=4,4 

do iz2=1,nz 

write(123,50) z2(iz2),(wavef(i,iz1,iz2),iz1=1,nz) 

end do 

end do 
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close(123) 

 

open(124,file='wavefunction30.dat',status='unknown') 

write(124,50) (z1(iz1),iz1=1,nz) 

do i=6,6 

do iz2=1,nz 

write(124,50) z2(iz2),(wavef(i,iz1,iz2),iz1=1,nz) 

end do 

end do 

close(124) 

 

open(125,file='wavefunction02.dat',status='unknown') 

write(125,50) (z1(iz1),iz1=1,nz) 

do iz2=1,nz 

do i=7,7 

write(125,50) z2(iz2),(wavef(i,iz1,iz2),iz1=1,nz) 

end do 

end do 

close(125) 

 

open(126,file='wavefunction40.dat',status='unknown') 

write(126,50) (z1(iz1),iz1=1,nz) 

do iz2=1,nz 

do i=9,9 

write(126,50) z2(iz2),(wavef(i,iz1,iz2),iz1=1,nz) 

end do 

end do 

close(126) 

 

open(127,file='wavefunction50.dat',status='unknown') 

write(127,50) (z1(iz1),iz1=1,nz) 

do iz2=1,nz 

do i=12,12 

write(127,50) z2(iz2),(wavef(i,iz1,iz2),iz1=1,nz) 

end do 

end do 

close(127) 

 

open(128,file='wavefunction03.dat',status='unknown') 

write(128,50) (z1(iz1),iz1=1,nz) 

do iz2=1,nz 

do i=13,13 

write(128,50) z2(iz2),(wavef(i,iz1,iz2),iz1=1,nz) 

end do 

end do 

close(128) 

 

open(129,file='wavefunction60.dat',status='unknown') 

write(129,50) (z1(iz1),iz1=1,nz) 

do iz2=1,nz 

do i=16,16 

write(129,50) z2(iz2),(wavef(i,iz1,iz2),iz1=1,nz) 

end do 

end do 

close(129) 

 

open(130,file='wavefunction04.dat',status='unknown') 

write(130,50) (z1(iz1),iz1=1,nz) 

do iz2=1,nz 

do i=20,20 

write(130,50) z2(iz2),(wavef(i,iz1,iz2),iz1=1,nz) 

end do 

end do 

close(130) 

 

open(131,file='wavefunction05.dat',status='unknown') 

write(131,50) (z1(iz1),iz1=1,nz) 

do iz2=1,nz 
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do i=29,29 

write(131,50) z2(iz2),(wavef(i,iz1,iz2),iz1=1,nz) 

end do 

end do 

close(131) 

 

open(132,file='wavefunction06.dat',status='unknown') 

write(132,50) (z1(iz1),iz1=1,nz) 

do iz2=1,nz 

do i=40,40 

write(132,50) z2(iz2),(wavef(i,iz1,iz2),iz1=1,nz) 

end do 

end do 

close(132) 

 

open(133,file='wavefunction11.dat',status='unknown') 

write(133,50) (z1(iz1),iz1=1,nz) 

do iz2=1,nz 

do i=5,5 

write(133,50) z2(iz2),(wavef(i,iz1,iz2),iz1=1,nz) 

end do 

end do 

close(133) 

 

open(134,file='wavefunction12.dat',status='unknown') 

write(134,50) (z1(iz1),iz1=1,nz) 

do iz2=1,nz 

do i=10,10 

write(134,50) z2(iz2),(wavef(i,iz1,iz2),iz1=1,nz) 

end do 

end do 

close(134) 

 

open(135,file='wavefunction13.dat',status='unknown') 

write(135,50) (z1(iz1),iz1=1,nz) 

do iz2=1,nz 

do i=17,17 

write(135,50) z2(iz2),(wavef(i,iz1,iz2),iz1=1,nz) 

end do 

end do 

close(135) 

 

open(136,file='wavefunction21.dat',status='unknown') 

write(136,50) (z1(iz1),iz1=1,nz) 

do iz2=1,nz 

do i=8,8 

write(136,50) z2(iz2),(wavef(i,iz1,iz2),iz1=1,nz) 

end do 

end do 

close(136) 

 

open(137,file='wavefunction22.dat',status='unknown') 

write(137,50) (z1(iz1),iz1=1,nz) 

do iz2=1,nz 

do i=14,14 

write(137,50) z2(iz2),(wavef(i,iz1,iz2),iz1=1,nz) 

end do 

end do 

close(137) 

 

open(138,file='wavefunction23.dat',status='unknown') 

write(138,50) (z1(iz1),iz1=1,nz) 

do iz2=1,nz 

do i=22,22 

write(138,50) z2(iz2),(wavef(i,iz1,iz2),iz1=1,nz) 

end do 

end do 

close(138) 
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open(139,file='wavefunction31.dat',status='unknown') 

write(139,50) (z1(iz1),iz1=1,nz) 

do iz2=1,nz 

do i=11,11 

write(139,50) z2(iz2),(wavef(i,iz1,iz2),iz1=1,nz) 

end do 

end do 

close(139) 

 

open(140,file='wavefunction32.dat',status='unknown') 

write(140,50) (z1(iz1),iz1=1,nz) 

do iz2=1,nz 

do i=18,18 

write(140,50) z2(iz2),(wavef(i,iz1,iz2),iz1=1,nz) 

end do 

end do 

close(140) 

 

open(141,file='wavefunction33.dat',status='unknown') 

write(141,50) (z1(iz1),iz1=1,nz) 

do iz2=1,nz 

do i=27,27 

write(141,50) z2(iz2),(wavef(i,iz1,iz2),iz1=1,nz) 

end do 

end do 

close(141) 

 

c Transition matrix: 

 

do i=1,mv*mv 

do j=1,mv*mv 

sum=0.d0 

do iz1=1,nz 

do iz2=1,nz 

sum=sum+wavef(i,iz1,iz2)*mu*(-

dsqrt(2/mass1)*z1(iz1)) 

$   *wavef(j,iz1,iz2) 

end do 

end do 

dipole(i,j)=sum*dz1*dz2 

end do 

end do 

 

open(200,file='transitiondipole.dat',status='unknown') 

do i=1,mv*mv 

write(200,20) (dipole(i,j),j=1,mv*mv) 

end do 

close(200) 

 

10 format(e24.16,150(x,f24.16)) 

20 format(150(x,e24.16)) 

30 format(e24.16,150(x,f24.16)) 

40 format(150(x,e24.16)) 

50 format(550(x,e24.16)) 

End 

 

c------------------------------------------------------ 

SUBROUTINE NVJ(M,A) 

REAL*8 I,M,A 

 

IF(M.EQ.0) THEN 

A=1.0 

ELSE 

A=1.0 

DO I=1,M 

A=A*I 

END DO 
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END IF 

 

C WRITE(200,*) A 

END 

C----------------------------------------------------- 

SUBROUTINE OTHPL(KF,N,X,PL,DPL) 

C ================================================ 

C PURPOSE: COMPUTE ORTHOGONAL POLYNOMIALS: TN(X) OR 

UN(X), 

C   OR LN(X) OR HN(X), AND THEIR DERIVATIVES 

C INPUT :  KF --- FUNCTION CODE 

C    KF=1 FOR CHEBYSHEV POLYNOMIAL TN(X) 

C   KF=2 FOR CHEBYSHEV POLYNOMIAL UN(X) 

C   KF=3 FOR LAGUERRE POLYNOMIAL LN(X) 

C   KF=4 FOR HERMITE POLYNOMIAL HN(X) 

C   N ---  ORDER OF ORTHOGONAL POLYNOMIALS 

C   X ---  ARGUMENT OF ORTHOGONAL POLYNOMIALS 

C OUTPUT:  PL(N) --- TN(X) OR UN(X) OR LN(X) OR HN(X) 

C   DPL(N)--- TN'(X) OR UN'(X) OR LN'(X) OR 

HN'(X) 

C ================================================ 

C 

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 

DIMENSION PL(0:N),DPL(0:N) 

A=2.0D0 

B=0.0D0 

C=1.0D0 

Y0=1.0D0 

Y1=2.0D0*X 

DY0=0.0D0 

DY1=2.0D0 

PL(0)=1.0D0 

PL(1)=2.D0*X 

DPL(0)=0.0D0 

DPL(1)=2.0D0 

IF (KF.EQ.1) THEN 

Y1=X 

DY1=1.0D0 

PL(1)=X 

DPL(1)=1.0D0 

ELSE IF (KF.EQ.3) THEN 

Y1=1.D0-X 

DY1=-1.0D0 

PL(1)=1.0D0-X 

DPL(1)=-1.0D0 

END IF 

DO 10 K=2,N 

IF (KF.EQ.3) THEN 

A=-1.0D0/K 

B=2.0D0+A 

C=1.0D0+A 

ELSE IF (KF.EQ.4) THEN 

C=2.0D0*(K-1.0D0) 

END IF 

YN=(A*X+B)*Y1-C*Y0 

DYN=A*Y1+(A*X+B)*DY1-C*DY0 

PL(K)=YN 

DPL(K)=DYN 

Y0=Y1 

Y1=YN 

DY0=DY1 

10    DY1=DYN 

RETURN 

END 

C===================================================== 
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Appendix H 

This code is written to carry out minimization for three-ion system. Lines 1-7 

of this code contain the definition of variables; Lines 9-34 are the definition of 

potential energy of the system; Lines 36-80 describe the process of minimization; 

Lines 82-93 are used to output final data.  
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Program 3DMIN 

Real*8 automhz,std 

parameter(nz=3,z1g=-15000,z2g=-20,z3g=15000) 

Parameter(automhz=6579682606.6812d0,std=2.4d-8) 

real*8 mass1,mu,w,w01,dk1, Vi,Zd 

double precision z(nz),sdz(nz),fdz(nz),minz(nz),V,V1 

pi=acos(-1.d0) 

 

c harmonic parameters for Cd ion(in a.u.): 

 

mass1=111.d0 

mass1=mass1*1822.8885d0 

mu=1.d0 

w=2770.0*2*pi 

w=w*3.33564d-8/219474.63d0 

w01=w 

dk1=dsqrt(mass1)*w01         !dk=dsqrt(k) 

 

dl=(1/mass1/(w01**2))**(1.d0/3.d0) 

x1=(-1)*(5.d0/4.d0)**(1.d0/3.d0)*dl 

x2=0.d0*dl 

x3=(5.d0/4.d0)**(1.d0/3.d0)*dl 

 

c potential 

 

z(1)=z1g 

z(2)=z2g 

z(nz)=z3g 

iter=0 

Vi=0.5*dk1**2*z(1)**2+0.5*dk1**2*z(2)**2 

$ +0.5*dk1**2*z(nz)**2 

$ +1/abs(z(2)-z(1))+1/abs(z(nz)-z(1))+1/abs(z(nz)-z(2)) 

write(10,20) iter,Vi,z(1),z(2),z(nz) 

 

open(60,file='potential.dat',status='unknown') 

 

10    continue 

 

iter=iter+1 

 

sdz(1)=dk1**2+2/(z(2)-z(1))**3+2/(z(nz)-z(1))**3 

sdz(2)=dk1**2+2/(z(2)-z(1))**3+2/(z(nz)-z(2))**3 

sdz(nz)=dk1**2+2/(z(nz)-z(1))**3+2/(z(nz)-z(2))**3 

do iz=1,nz 

write(20,*) sdz(iz) 

end do 

 

fdz(1)=dk1**2*z(1)+1/(z(2)-z(1))**2+1/(z(nz)-z(1))**2 

fdz(2)=dk1**2*z(2)-1/(z(2)-z(1))**2+1/(z(nz)-z(2))**2 

fdz(nz)=dk1**2*z(nz)-1/(z(nz)-z(1))**2-1/(z(nz)-z(2))**2 

do iz=1,nz 

write(30,*) fdz(iz) 

end do 

 

do iz=1,nz 

minz(iz)=z(iz)-fdz(iz)/sdz(iz) 

write(40,*) minz(iz) 

end do 

 

V1=0.5*dk1**2*minz(1)**2+0.5*dk1**2*minz(2)**2 

$  +0.5*dk1**2*minz(nz)**2+1/abs(minz(2)-minz(1)) 

$  +1/abs(minz(nz)-minz(1))+1/abs(minz(nz)-minz(2)) 

 

write(60,20) iter,V1,V1*automhz,minz(1),minz(2),minz(nz) 

 

V=0.5*dk1**2*z(1)**2+0.5*dk1**2*z(2)**2 

$ +0.5*dk1**2*z(nz)**2 

$ +1/abs(z(2)-z(1))+1/abs(z(nz)-z(1))+1/abs(z(nz)-z(2)) 
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Zd=abs(minz(2)-z(2)) 

z(1)=minz(1) 

z(2)=minz(2) 

z(nz)=minz(nz) 

 

if(Zd.gt.std) goto 10 

close(60) 

 

write(50,20) iter,V,minz(1),minz(2),minz(nz) 

 

open(70,file='equilibrium.dat',status='unknown') 

do iz=1,nz 

write(70,30) z(iz) 

end do 

close(70) 

 

write(80,30) x1,x2,x3 

20 format(i6,10(x,e25.16)) 

30 format(10(x,e25.16)) 

end
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Appendix I 

This code is written to dianonalize the Hessian matrix for three-ion system. 

Lines 1-10 of this code contain the definition of variables; Lines 12-26 are the input 

data; Lines 28-80 describe the construction of Hessian matrix; Lines 82-98 are used to 

diaganalize the Hessian matrix and output final data. 
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Program 3DHESSIAN 

parameter(nz=3) 

real*8 mass1,mu,w,w01,dk1 

double precision 

z(nz),m(nz,nz),V(nz,nz),F(nz,nz),sqrtm(nz,nz) 

character*1 UPLO, JOBZ 

parameter(JOBZ ='V',UPLO ='U') 

double precision Eigenv(nz),WORK(3*nz-1) 

integer INFO 

pi=acos(-1.d0) 

 

c harmonic parameters for Cd ion(in a.u.): 

mass1=111.d0 

mass1=mass1*1822.8885d0 

mu=1.d0 

w=2770.0*2*pi 

w=w*3.33564d-8/219474.63d0 

w01=w 

dk1=dsqrt(mass1)*w01         !dk=dsqrt(k) 

 

c potential 

open(100,file='equilibrium.dat',status='old') 

do iz=1,nz 

read(100,20) z(iz) 

end do 

close(100) 

 

do iz=1,nz 

do ix=1,nz 

if(ix.eq.iz) then 

m(iz,ix)=mass1 

else 

m(iz,ix)=0 

end if 

end do 

end do 

 

do iz=1,nz 

do ix=1,nz 

if(ix.eq.iz) then 

sqrtm(iz,ix)=m(iz,ix)**(-0.5) 

else 

sqrtm(iz,ix)=0 

end if 

end do 

end do 

 

open(40,file='mass.dat',status='unknown') 

do iz=1,nz 

write(40,20) (sqrtm(iz,ix),ix=1,nz) 

end do 

close(40) 

 

do iz=1,nz-1 

do ix=iz+1,nz 

V(iz,ix)=-2/(z(ix)-z(iz))**3 

end do 

end do 

 

do iz=nz,2,-1 

do ix=nz-1,1,-1 

V(iz,ix)=-2/(z(iz)-z(ix))**3 

end do 

end do 

 

V(1,1)=dk1**2+2/(z(2)-z(1))**3+2/(z(nz)-z(1))**3 

V(2,2)=dk1**2+2/(z(2)-z(1))**3+2/(z(nz)-z(2))**3 

V(nz,nz)=dk1**2+2/(z(nz)-z(1))**3+2/(z(nz)-z(2))**3 
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do iz=1,nz 

do ix=1,nz 

F(iz,ix)=V(iz,ix)/mass1 

end do 

end do 

 

open(50,file='function.dat',status='unknown') 

do iz=1,nz 

write(50,20) (F(iz,ix),ix=1,nz) 

end do 

close(50) 

 

call DSYEV( JOBZ, UPLO, nz, F, nz, Eigenv, WORK, 3*nz-1, 

INFO ) 

 

open(10,file='Eigenvalue.dat',status='unknown') 

do iz=1,nz 

write(10,20) Eigenv(iz) 

end do 

close(10) 

 

open(20,file='Eigenvector.dat',status='unknown') 

do iz=1,nz 

write(20,20) (F(iz,ix),ix=1,nz) 

end do 

close(20) 

 

20 format(10(x,e25.16)) 

end 
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Appendix J 

This code is written to diagonalize the Hamiltonian matrix of three 
111

Cd
+ 

ions
 

in the harmonic potential trap to obtain its eigenvalues (energies) and the eigenvectors 

(parameter matrix C in Sec. 2.2). Lines 1-35 of this code contain the definition of 

variables; Lines 37-98 are the input data and step size definition; Lines 100-322 

describe the basis set expansion based on three normal vibration modes; Lines 324-

447 are used to construct kinetic energy matrix, potential energy matrix and 

Hamiltonian matrix; DSYEV subroutine from ACML library is used in lines 449-473 

for matrix diagonalization [101]; Lines 475-486 are the subroutine NVJ which is used 

to calculate    of Eq. (2.2.5) and the subroutine OTHPL in lines 488-544 describe 

calculation of Hermite polynomials and their first derivatives [82]. In this program, 

during the numerical calculations for the spectrum of vibrational states, I used atomic 

units. It was transformed into the units of MHz at the end. 
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Program 3DIONTRAP 

implicit real*8 (a-h,o-z) 

integer mv,nz,mz,dz1,dz2,dz3 

real*8 towpi,autonm 

parameter(mv=15,max=60) 

parameter(nz=121,mz=3,dz1=10,dz2=10,dz3=10) 

parameter(twopi=6.28318530717959d0) 

parameter(autonm=0.05291772d0) 

Parameter(automhz=6579682606.6812d0) 

character*1 UPLO, JOBZ 

parameter(JOBZ ='V',UPLO ='U') 

integer INFO 

double precision EV(mv**3),EZ(mv**3,mv**3),WORK(3*(mv**3)-

1) 

 

real*8 mass1,mu,dk1,b,n,n1,n2,n3,y1,y2,y3 

real*8 commt1,commt2,commte1,commte2,commter2 

real*8 dd,comm1,comm2,comm3 

real*8 alpha1,alpha2,alpha3,sum1,sum2,sum3,sum4,sum5,sum 

real*8 

w,w1,w2,w3,deter,deter1,deter2,deter3,G,G1,G2,za1,za2,za3 

double precision ek(mz),cz(mz),z1(nz),z2(nz),z3(nz) 

double precision psi1(mv,nz),psi2(mv,nz),psi3(mv,nz) 

double precision h(max),dh(max) 

double precision psi1r(mv,nz),psi2r(mv,nz),psi3r(mv,nz) 

double precision psi11(mv,nz),psi22(mv,nz),psi33(mv,nz) 

double precision 

KE(mv*mv*mv,mv*mv*mv),PE(mv*mv*mv,mv*mv*mv) 

double precision Hamil(mv**3,mv**3) 

double precision AEV(mv,mv,mv),V(nz,nz,nz) 

double precision am(mz,mz) 

 

pi=acos(-1.d0) 

 

c harmonic parameters for Cd ion(in a.u.): 

call mysecond(ts) 

 

mass1=111.d0 

mass1=mass1*1822.8885d0 

mu=1.d0 

w=2770.0*2*pi 

w=w*3.33564d-8/219474.63d0 

 

dk1=dsqrt(mass1)*w         !dk=dsqrt(k) 

open(5,file='Eigenvalue.dat',status='old') 

do iz=1,mz 

read(5,*) ek(iz) 

end do 

close(5) 

 

open(4,file='Eigenvector.dat',status='old') 

do iz1=1,mz 

read(4,*) (am(iz1,iz2),iz2=1,mz) 

end do 

close(4) 

 

open(3,file='position.dat',status='old') 

do iz=1,mz 

read(3,*) cz(iz) 

end do 

close(3) 

 

do i=1,mv 

do j=1,mv 

do k=1,mv 

AEV(i,j,k)=(i-0.5d0)*dsqrt(ek(1)) 

$  +(j-0.5d0)*dsqrt(ek(2)) 

$  +(k-0.5d0)*dsqrt(ek(mz)) 
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AEV(i,j,k)=AEV(i,j,k)*automhz 

end do 

end do 

end do 

 

open(2,file='ApproEigen.dat',status='unknown') 

do i=1,mv 

do j=1,mv 

write(2,50) (AEV(i,j,k),k=1,mv) 

end do 

end do 

close(2) 

 

Zmax=dz1*(nz-1) 

zi=-Zmax/2 

zf=Zmax/2 

 

do iz1=1,nz 

z1(iz1)=zi+(iz1-1)*dz1 

end do 

 

do iz2=1,nz 

z2(iz2)=zi+(iz2-1)*dz2 

end do 

 

do iz3=1,nz 

z3(iz3)=zi+(iz3-1)*dz3 

end do 

 

c Basis functions for mode 1 (in a.u.) 

 

w1=dsqrt(ek(1)) 

alpha1=dsqrt(mass1*w1) 

c Hamonic wavefunctions for ion 1 

do iz1=1,nz 

y1=alpha1*z1(iz1) 

iv1=0 

psi1(iv1+1,iz1)=dsqrt(alpha1)/(pi**0.25d0) 

$   *dexp(-y1**2/2.d0) 

!!!!!!!! call the subroutine which will give the value 

of Hermite. 

call othpl(4,mv,y1,h,dh) 

do iv1=1,mv-1,1 

n=iv1 

call nvj(n,b) 

n1=dsqrt(alpha1/dsqrt(pi)/(2**n)/b) 

psi1(iv1+1,iz1)=n1*h(iv1+1)*dexp(-y1**2/2.d0) 

end do 

end do 

 

cc Normalization of wavefunctions for mode 1. 

do iv1=1,mv 

sum1=0.d0 

do iz1=1,nz 

sum1=sum1+psi1(iv1,iz1)**2 

end do 

sum1=sum1*dz1 

do iz1=1,nz 

psi1(iv1,iz1)=psi1(iv1,iz1)/dsqrt(sum1) 

end do 

end do 

 

c Test of wavefunction 

 

open(10,file='basisset1.dat',status='unknown') 

do iz1=1,nz 

write(10,10) z1(iz1),(psi1(iv1,iz1),iv1=1,mv) 

end do 
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close(10) 

 

c Basis functions for mode 2 (in a.u.) 

 

w2=dsqrt(ek(2)) 

alpha2=dsqrt(mass1*w2*ek(1)/ek(2)) 

do iz2=1,nz 

y2=alpha2*z2(iz2) 

iv2=0 

psi2(iv2+1,iz2)=dsqrt(alpha2)/(pi**0.25d0) 

$   *dexp(-y2**2/2.d0) 

!!!!!!!! call the subroutine which will give the value 

of Hermite. 

call othpl(4,mv,y2,h,dh) 

do iv2=1,mv-1,1 

n=iv2 

call nvj(n,b) 

n2=dsqrt(alpha2/dsqrt(pi)/(2**n)/b) 

psi2(iv2+1,iz2)=n2*h(iv2+1)*dexp(-y2**2/2.d0) 

end do 

end do 

 

cc Normalization of wavefunctions for mode 2. 

do iv2=1,mv 

sum2=0.d0 

do iz2=1,nz 

sum2=sum2+psi2(iv2,iz2)**2 

end do 

sum2=sum2*dz2 

do iz2=1,nz 

psi2(iv2,iz2)=psi2(iv2,iz2)/dsqrt(sum2) 

end do 

end do 

 

c Test of wavefunction 

 

open(30,file='basisset2.dat',status='unknown') 

do iz2=1,nz 

write(30,10) z2(iz2),(psi2(iv2,iz2),iv2=1,mv) 

end do 

close(30) 

 

c Basis functions for mode 3 (in a.u.) 

 

w3=dsqrt(ek(mz)) 

alpha3=dsqrt(mass1*w3*ek(1)/ek(mz)) 

c Hamonic wavefunctions for ion 3 

do iz3=1,nz 

y3=alpha3*z3(iz3) 

iv3=0 

psi3(iv3+1,iz3)=dsqrt(alpha3)/(pi**0.25d0) 

$   *dexp(-y3**2/2.d0) 

!!!!!!!! call the subroutine which will give the value 

of Hermite. 

call othpl(4,mv,y3,h,dh) 

do iv3=1,mv-1,1 

n=iv3 

call nvj(n,b) 

n3=dsqrt(alpha3/dsqrt(pi)/(2**n)/b) 

psi3(iv3+1,iz3)=n3*h(iv3+1)*dexp(-y3**2/2.d0) 

end do 

end do 

 

cc Normalization of wavefunctions for mode 3. 

do iv3=1,mv 

sum3=0.d0 

do iz3=1,nz 

sum3=sum3+psi3(iv3,iz3)**2 
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end do 

sum3=sum3*dz3 

do iz3=1,nz 

psi3(iv3,iz3)=psi3(iv3,iz3)/dsqrt(sum3) 

end do 

end do 

 

c Test of wavefunction 

 

open(50,file='basisset3.dat',status='unknown') 

do iz3=1,nz 

write(50,10) z3(iz3),(psi3(iv3,iz3),iv3=1,mv) 

end do 

close(50) 

 

c calculation of Hamitonian 

c Second direvative of kinetic energy part for mode 1 

 

do iz1=1,nz 

y1=alpha1*z1(iz1) 

call othpl(4,mv,y1,h,dh) 

G=exp(-1*y1**2/2.d0) 

G1=-1*alpha1**2*z1(iz1)*exp(-1*y1**2/2.d0) 

G2=alpha1**2*exp(-1*y1**2/2.d0)*(y1**2-1) 

iv1=0 

psi11(iv1+1,iz1)=dsqrt(alpha1/dsqrt(pi))*G2 

do iv1=1,mv-1 

n=iv1 

call nvj(n,b) 

n1=dsqrt(alpha1/dsqrt(pi)/(2**n)/b) 

H1=alpha1*dh(iv1+1) 

H2=2*iv1*dh(iv1)*alpha1**2 

psi11(iv1+1,iz1)=n1*(G2*h(iv1+1)+2*G1*H1+G*H2) 

end do 

end do 

 

do iv1=1,mv 

do iz1=1,nz 

psi1r(iv1,iz1)=-psi11(iv1,iz1)/2.d0/mass1 

end do 

end do 

 

c second derivative of first mode 

open(70,file='secwavr1.dat',status='unknown') 

do iz1=1,nz 

write(70,30) z1(iz1),(psi1r(iv1,iz1),iv1=1,mv) 

end do 

close(70) 

 

c Second direvative of kinetic energy part for mode 2 

 

do iz2=1,nz 

y2=alpha2*z2(iz2) 

call othpl(4,mv,y2,h,dh) 

G=exp(-1*y2**2/2.d0) 

G1=-1*alpha2**2*z2(iz2)*exp(-1*y2**2/2.d0) 

G2=alpha2**2*exp(-1*y2**2/2.d0)*(y2**2-1) 

iv2=0 

psi22(iv2+1,iz2)=dsqrt(alpha2/dsqrt(pi))*G2 

do iv2=1,mv-1 

n=iv2 

call nvj(n,b) 

n2=dsqrt(alpha2/dsqrt(pi)/(2**n)/b) 

H1=alpha2*dh(iv2+1) 

H2=2*iv2*dh(iv2)*alpha2**2 

psi22(iv2+1,iz2)=n2*(G2*h(iv2+1)+2*G1*H1+G*H2) 

end do 

end do 
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do iv2=1,mv 

do iz2=1,nz 

psi2r(iv2,iz2)=-psi22(iv2,iz2)*ek(2)/ek(1)/2.d0/mass1 

end do 

end do 

 

c second derivative of second mode 

open(80,file='secwavr2.dat',status='unknown') 

do iz2=1,nz 

write(80,30) z2(iz2),(psi2r(iv2,iz2),iv2=1,mv) 

end do 

close(80) 

 

c Second direvative of kinetic energy part for mode 3 

 

do iz3=1,nz 

y3=alpha3*z3(iz3) 

call othpl(4,mv,y3,h,dh) 

G=exp(-1*y3**2/2.d0) 

G1=-1*alpha3**2*z3(iz3)*exp(-1*y3**2/2.d0) 

G2=alpha3**2*exp(-1*y3**2/2.d0)*(y3**2-1) 

iv3=0 

psi33(iv3+1,iz3)=dsqrt(alpha3/dsqrt(pi))*G2 

do iv3=1,mv-1 

n=iv3 

call nvj(n,b) 

n3=dsqrt(alpha3/dsqrt(pi)/(2**n)/b) 

H1=alpha3*dh(iv3+1) 

H2=2*iv3*dh(iv3)*alpha3**2 

psi33(iv3+1,iz3)=n3*(G2*h(iv3+1)+2*G1*H1+G*H2) 

end do 

end do 

 

do iv3=1,mv 

do iz3=1,nz 

psi3r(iv3,iz3)=-psi33(iv3,iz3)*ek(mz)/ek(1)/2.d0/mass1 

end do 

end do 

 

c second derivative of third mode 

open(90,file='secwavr3.dat',status='unknown') 

do iz3=1,nz 

write(90,30) z3(iz3),(psi3r(iv3,iz3),iv3=1,mv) 

end do 

close(90) 

 

c Calculation for elements of Hamiltonian matrix 

 

do iz1=1,nz 

do iz2=1,nz 

do iz3=1,nz 

za1=am(1,1)*z1(iz1)+am(1,2)*z2(iz2)*dsqrt(ek(1)/ek(2)) 

$ +am(1,3)*z3(iz3)*dsqrt(ek(1)/ek(mz)) 

za2=am(2,1)*z1(iz1)+am(2,2)*z2(iz2)*dsqrt(ek(1)/ek(2)) 

$ +am(2,3)*z3(iz3)*dsqrt(ek(1)/ek(mz)) 

za3=am(3,1)*z1(iz1)+am(3,2)*z2(iz2)*dsqrt(ek(1)/ek(2)) 

$ +am(3,3)*z3(iz3)*dsqrt(ek(1)/ek(mz)) 

V(iz1,iz2,iz3)= 

$         0.5d0*dk1**2*(za1+cz(1))**2 

$        +0.5d0*dk1**2*(za2+cz(2))**2 

$        +0.5d0*dk1**2*(za3+cz(mz))**2 

$        +1/abs((za2-za1)+(cz(2)-cz(1))) 

$        +1/abs((za3-za1)+(cz(mz)-cz(1))) 

$        +1/abs((za3-za2)+(cz(mz)-cz(2))) 

$        -0.5d0*dk1**2*cz(1)**2 

$   -0.5d0*dk1**2*cz(2)**2 

$       -0.5d0*dk1**2*cz(mz)**2-1/abs(cz(2)-cz(1)) 
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$        -1/abs(cz(mz)-cz(1))-1/abs(cz(mz)-cz(2)) 

end do 

end do 

end do 

 

dd=dz1*dz2*dz3 

 

do iv=1,mv 

call mysecond(tf) 

open(6,file='cputime.dat',status='unknown') 

write(6,807) 'CPU Time= ',(tF-tS)/3600.0d0,' (hour)' 

do jv=1,mv 

do kv=1,mv 

write(200,70) iv,jv,kv 

call flush(200) 

do iv1=1,mv 

do jv1=1,mv 

do kv1=1,mv 

sum4=0.d0 

sum5=0.d0 

do iz1=1,nz 

comm1=psi1(iv,iz1) 

commt1=psi1(iv1,iz1) 

commte1=psi1r(iv1,iz1) 

do iz2=1,nz 

comm2=comm1*psi2(jv,iz2) 

commt2=commt1*psi2(jv1,iz2) 

commte2=commte1*psi2(jv1,iz2) 

commter2=commt1*psi2r(jv1,iz2) 

do iz3=1,nz 

comm3=comm2*psi3(kv,iz3) 

sum4=sum4+comm3*(commte2*psi3(kv1,iz3) 

$ +commter2*psi3(kv1,iz3) 

$ +commt2*psi3r(kv1,iz3)) 

sum5=sum5+comm3*V(iz1,iz2,iz3) 

$ *commt2*psi3(kv1,iz3) 

end do 

end do 

end do 

KE((kv-1)*mv**2+(jv-1)*mv+iv,(kv1-1)*mv**2+(jv1-

1)*mv+iv1)=sum4*dd 

 

PE((kv-1)*mv**2+(jv-1)*mv+iv,(kv1-1)*mv**2+(jv1-

1)*mv+iv1)=sum5*dd 

end do 

end do 

end do 

end do 

end do 

end do 

close(6) 

 

c kinetic part for Hamitonian 

 

open(100,file='kinetic.dat',status='unknown',recl=74250) 

do i=1,mv**3 

write(100,50) (KE(i,j),j=1,mv**3) 

end do 

close(100) 

 

open(101,file='kinetic1.dat',status='unknown',recl=74250) 

do i=1,mv**3 

write(101,50) (KE(i,j)*automhz,j=1,mv**3) 

end do 

close(101) 

 

c potential part for Hamitonian 

open(110,file='potential.dat',status='unknown',recl=74250) 
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do i=1,mv**3 

write(110,50) (PE(i,j),j=1,mv**3) 

end do 

close(110) 

 

open(111,file='potential1.dat',status='unknown',recl=74250

) 

do i=1,mv**3 

write(111,50) (PE(i,j)*automhz,j=1,mv**3) 

end do 

close(111) 

 

c Hamitonian matrix 

do i=1,mv**3 

do j=1,mv**3 

Hamil(i,j)=KE(i,j)+PE(i,j) 

end do 

end do 

 

open(120,file='Hamitonian.dat',status='unknown',recl=74250

) 

do i=1,mv**3 

write(120,50) (Hamil(i,j),j=1,mv**3) 

end do 

close(120) 

 

open(121,file='Hamitonian1.dat',status='unknown',recl=7425

0) 

do i=1,mv**3 

write(121,50) (Hamil(i,j)*automhz,j=1,mv**3) 

end do 

close(121) 

 

call DSYEV( JOBZ, UPLO, mv**3, Hamil, mv**3, EV, WORK, 

$           3*(mv**3)-1, INFO ) 

 

open(130,file='Eigen.dat',status='unknown') 

do i=1,mv**3 

write(130,60) EV(i)*automhz 

end do 

close(130) 

 

open(140,file='EigenvectorOfHami.dat',status='unknown',rec

l=74250) 

do i=1,mv**3 

write(140,50) (Hamil(i,j),j=1,mv**3) 

end do 

close(140) 

 

10 format(e24.16,150(x,f24.16)) 

20 format(150(x,e24.16)) 

30  format(e24.16,150(x,f24.16)) 

40 format(150(x,e24.16)) 

50 format(3375(x,e21.13)) 

60 format(400(x,e24.16)) 

70 format(200(x,i4)) 

807 format(a20,f7.2,2x,a8) 

End 

c------------------------------------------------------ 

SUBROUTINE NVJ(M,A) 

REAL*8 I,M,A 

 

IF(M.EQ.0) THEN 

A=1.0 

ELSE 

A=1.0 

DO I=1,M 

A=A*I 
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END DO 

END IF 

END 

C------------------------------------------------------ 

SUBROUTINE OTHPL(KF,N,X,PL,DPL) 

C ================================================= 

C PURPOSE: COMPUTE ORTHOGONAL POLYNOMIALS: TN(X) OR 

UN(X), 

C   OR LN(X) OR HN(X), AND THEIR DERIVATIVES 

C INPUT :  KF --- FUNCTION CODE 

C    KF=1 FOR CHEBYSHEV POLYNOMIAL TN(X) 

C   KF=2 FOR CHEBYSHEV POLYNOMIAL UN(X) 

C   KF=3 FOR LAGUERRE POLYNOMIAL LN(X) 

C   KF=4 FOR HERMITE POLYNOMIAL HN(X) 

C   N ---  ORDER OF ORTHOGONAL POLYNOMIALS 

C   X ---  ARGUMENT OF ORTHOGONAL POLYNOMIALS 

C OUTPUT:PL(N) --- TN(X) OR UN(X) OR LN(X) OR HN(X) 

C    DPL(N)--- TN'(X) OR UN'(X) OR LN'(X) OR HN'(X) 

C ================================================= 

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 

DIMENSION PL(0:N),DPL(0:N) 

A=2.0D0 

B=0.0D0 

C=1.0D0 

Y0=1.0D0 

Y1=2.0D0*X 

DY0=0.0D0 

DY1=2.0D0 

PL(0)=1.0D0 

PL(1)=2.D0*X 

DPL(0)=0.0D0 

DPL(1)=2.0D0 

IF (KF.EQ.1) THEN 

Y1=X 

DY1=1.0D0 

PL(1)=X 

DPL(1)=1.0D0 

ELSE IF (KF.EQ.3) THEN 

Y1=1.D0-X 

DY1=-1.0D0 

PL(1)=1.0D0-X 

DPL(1)=-1.0D0 

END IF 

DO 10 K=2,N 

IF (KF.EQ.3) THEN 

A=-1.0D0/K 

B=2.0D0+A 

C=1.0D0+A 

ELSE IF (KF.EQ.4) THEN 

C=2.0D0*(K-1.0D0) 

END IF 

YN=(A*X+B)*Y1-C*Y0 

DYN=A*Y1+(A*X+B)*DY1-C*DY0 

PL(K)=YN 

DPL(K)=DYN 

Y0=Y1 

Y1=YN 

DY0=DY1 

10    DY1=DYN 

RETURN 

END 

C====================================================== 

SUBROUTINE MYSECOND(TIME) 

REAL*8 TIME 

TIME=MPI_WTIME() 

RETURN 

END 
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Appendix K 

During our work, the main difficulty that we faced was the increase in the 

computer time for the calculation of the eigenvalues and eigenvectors of the system. 

For example, when we do calculation in one ion system with 15 basis functions, we 

need to diagonalize a       matrix and it takes only about 1 minute for calculation. 

If we come to the three ion system with     , we have to deal with a very large 

matrix with the size        . Now it takes more than 48 hours to finish the 

calculation, which exceeds the limit of computational time for one processor in 

Jacquard from NERSC. So it is necessary for us to find out a way to optimize our 

program and save the computer time. 

Here, we try to parallelize our code (in Appendix I) with Message Passing 

Interface (MPI) method [94, 95]. In the MPI programming, we split our original serial 

code into several parallel parts which are arranged to different processors from the 

computer system for calculation. Different processors will run their own calculation 

separately and finally all the results from different processors are collected and 

transferred to the processor 0 (the first processor, we can transfer the final data to any 

processor we like) for the finial data output. If       in our work, we need to 

request for 16 processors from Jacquard Linux System. One processor is for the 

calculation of kinetic energy matrix and the other 15 processors are used to calculate 
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potential energy matrix. During the calculation of potential energy matrix, because the 

matrix is symmetric, we only need to calculate the upper triangular matrix. To make 

sure the time consuming of every processor are almost the same, we arrange these 15 

processors to do the calculation like this: processor 1 calculate matrix elements of 

columns          , processor 2 for columns          , data from all these 15 

processors are added up with the internal command of MPI program in NERSC to 

finalize the potential energy matrix. After the MPI programming is applied, it reduces 

about 90% extra computational time. 

This code is written to diagonalize the Hamiltonian matrix of three 
111

Cd
+ 

ions
 

in the harmonic potential trap to obtain its eigenvalues (energies) and the eigenvectors 

(parameter matrix C in Sec. 2.2), where MPI programming is applied. Lines 1-39 of 

this code contain the definition of variables; Lines 41-58 are used to initialize 

Message Passing Interface (MPI) calculation; Lines 60-120 are the input data and step 

size definition; Lines 122-348 describe the basis set expansion based on three normal 

vibration modes; Lines 350-467 are used to construct kinetic energy matrix, potential 

energy matrix and Hamiltonian matrix; DSYEV subroutine from ACML library is 

used in lines 469-493 for matrix diagonalization and MPI finalization [101]; Lines 

495-504 are the subroutine NVJ which is used to calculate    of Eq. (2.2.5) and the 

subroutine OTHPL in lines 506-579 describe calculation of Hermite polynomials and 
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their first derivatives [82]. In this program, during the numerical calculations for the 

spectrum of vibrational states, I used atomic units. It was transformed into the units of 

MHz at the end. 
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Program MPI3DIONTRAP 

implicit real*8 (a-h,o-z) 

integer mv,nz,mz,dz1,dz2,dz3 

real*8 towpi,autonm,pi 

parameter(mv=15,max=60) 

parameter(nz=121,mz=3,dz1=10,dz2=10,dz3=10) 

parameter(pi=3.1415926535897932384d0,twopi=6.283185307179

59d0) 

parameter(autonm=0.05291772d0) 

Parameter(automhz=6579682606.6812d0) 

character*1 UPLO, JOBZ 

character*10 filetime 

parameter(JOBZ ='V',UPLO ='U') 

integer INFO 

double precision 

EV(mv**3),EZ(mv**3,mv**3),WORK(3*(mv**3)-1) 

 

real*8 mass1,mu,dk1,b,n,n1,n2,n3,y1,y2,y3 

real*8 commt1,commt2,commte1,commte2,commter2 

real*8 dd,comm1,comm2,comm3 

real*8 

alpha1,alpha2,alpha3,sum1,sum2,sum3,sum4,sum5,sum6,sum 

real*8 

w,w1,w2,w3,deter,deter1,deter2,deter3,G,G1,G2,za1,za2,za3 

double precision ek(mz),cz(mz),z1(nz),z2(nz),z3(nz) 

double precision psi1(mv,nz),psi2(mv,nz),psi3(mv,nz) 

double precision h(max),dh(max) 

double precision psi1r(mv,nz),psi2r(mv,nz),psi3r(mv,nz) 

double precision psi11(mv,nz),psi22(mv,nz),psi33(mv,nz) 

double precision 

KE(mv*mv*mv,mv*mv*mv),PE(mv*mv*mv,mv*mv*mv) 

double precision 

KE1(mv*mv*mv,mv*mv*mv),PE1(mv*mv*mv,mv*mv*mv) 

double precision Hamil(mv**3,mv**3) 

double precision AEV(mv,mv,mv),V(nz,nz,nz) 

double precision am(mz,mz) 

 

!------------------- MPI STAFF ----------------! 

include 'mpif.h' 

integer ierror,comm,rc 

common/pedat/mype,npe,comm 

!----------------------------------------------! 

c MPI start: 

call MPI_INIT(ierror) 

comm=MPI_COMM_WORLD 

call MPI_COMM_RANK(comm,mype,ierror) 

call MPI_COMM_SIZE(comm,npe,ierror) 

 

print *, 'mype=',mype,' npe=',npe 

 

if (npe.ne.mv+1) then 

print *, 'processor # is wrong' 

print *,  npe,mv 

stop 

end if 

 

c harmonic parameters for Cd ion(in a.u.): 

call mysecond(ts) 

mass1=111.d0 

mass1=mass1*1822.8885d0 

mu=1.d0 

w=2770.0*2*pi 

w=w*3.33564d-8/219474.63d0 

dk1=dsqrt(mass1)*w         !dk=dsqrt(k) 

 

open(5,file='Eigenvalue.dat',status='old') 

do iz=1,mz 

read(5,*) ek(iz) 
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end do 

close(5) 

 

open(4,file='Eigenvector.dat',status='old') 

do iz1=1,mz 

read(4,*) (am(iz1,iz2),iz2=1,mz) 

end do 

close(4) 

 

open(3,file='position.dat',status='old') 

do iz=1,mz 

read(3,*) cz(iz) 

end do 

close(3) 

 

do i=1,mv 

do j=1,mv 

do k=1,mv 

AEV(i,j,k)=(i-0.5d0)*dsqrt(ek(1)) 

$  +(j-0.5d0)*dsqrt(ek(2)) 

$           +(k-0.5d0)*dsqrt(ek(mz)) 

AEV(i,j,k)=AEV(i,j,k)*automhz 

end do 

end do 

end do 

 

open(2,file='ApproEigen.dat',status='unknown') 

do i=1,mv 

do j=1,mv 

write(2,50) (AEV(i,j,k),k=1,mv) 

end do 

end do 

close(2) 

 

Zmax=dz1*(nz-1) 

zi=-Zmax/2 

zf=Zmax/2 

 

do iz1=1,nz 

z1(iz1)=zi+(iz1-1)*dz1 

end do 

 

do iz2=1,nz 

z2(iz2)=zi+(iz2-1)*dz2 

end do 

 

do iz3=1,nz 

z3(iz3)=zi+(iz3-1)*dz3 

end do 

 

c Hamonic parameters for ion 1 (in a.u.) 

 

w1=dsqrt(ek(1)) 

alpha1=dsqrt(mass1*w1) 

c Hamonic wavefunctions for ion 1 

do iz1=1,nz 

y1=alpha1*z1(iz1) 

iv1=0 

psi1(iv1+1,iz1)=dsqrt(alpha1)/(pi**0.25d0)*dexp(-

y1**2/2.d0) 

!!!!!!!! call the subroutine which will give the value 

of Hermite. 

call othpl(4,mv,y1,h,dh) 

do iv1=1,mv-1,1 

n=iv1 

call nvj(n,b) 

n1=dsqrt(alpha1/dsqrt(pi)/(2**n)/b) 

psi1(iv1+1,iz1)=n1*h(iv1+1)*dexp(-y1**2/2.d0) 
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end do 

end do 

 

cc Normalization of wavefunctions for ion 1. 

do iv1=1,mv 

sum1=0.d0 

do iz1=1,nz 

sum1=sum1+psi1(iv1,iz1)**2 

end do 

sum1=sum1*dz1 

do iz1=1,nz 

psi1(iv1,iz1)=psi1(iv1,iz1)/dsqrt(sum1) 

end do 

end do 

 

c Hamonic parameters for ion 2 (in a.u.) 

 

w2=dsqrt(ek(2)) 

alpha2=dsqrt(mass1*w2*ek(1)/ek(2)) 

c Hamonic wavefunctions for ion 2 

do iz2=1,nz 

y2=alpha2*z2(iz2) 

iv2=0 

psi2(iv2+1,iz2)=dsqrt(alpha2)/(pi**0.25d0)*dexp(-

y2**2/2.d0) 

!!!!!!!! call the subroutine which will give the value 

of Hermite. 

call othpl(4,mv,y2,h,dh) 

do iv2=1,mv-1,1 

n=iv2 

call nvj(n,b) 

n2=dsqrt(alpha2/dsqrt(pi)/(2**n)/b) 

psi2(iv2+1,iz2)=n2*h(iv2+1)*dexp(-y2**2/2.d0) 

end do 

end do 

 

cc Normalization of wavefunctions for ion 2. 

do iv2=1,mv 

sum2=0.d0 

do iz2=1,nz 

sum2=sum2+psi2(iv2,iz2)**2 

end do 

sum2=sum2*dz2 

do iz2=1,nz 

psi2(iv2,iz2)=psi2(iv2,iz2)/dsqrt(sum2) 

end do 

end do 

c Hamonic parameters for ion 3 (in a.u.) 

 

w3=dsqrt(ek(mz)) 

alpha3=dsqrt(mass1*w3*ek(1)/ek(mz)) 

c Hamonic wavefunctions for ion 3 

do iz3=1,nz 

y3=alpha3*z3(iz3) 

iv3=0 

psi3(iv3+1,iz3)=dsqrt(alpha3)/(pi**0.25d0)*dexp(-

y3**2/2.d0) 

!!!!!!!! call the subroutine which will give the value 

of Hermite. 

call othpl(4,mv,y3,h,dh) 

do iv3=1,mv-1,1 

n=iv3 

call nvj(n,b) 

n3=dsqrt(alpha3/dsqrt(pi)/(2**n)/b) 

psi3(iv3+1,iz3)=n3*h(iv3+1)*dexp(-y3**2/2.d0) 

end do 

end do 
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cc Normalization of wavefunctions for ion 3. 

do iv3=1,mv 

sum3=0.d0 

do iz3=1,nz 

sum3=sum3+psi3(iv3,iz3)**2 

end do 

sum3=sum3*dz3 

do iz3=1,nz 

psi3(iv3,iz3)=psi3(iv3,iz3)/dsqrt(sum3) 

end do 

end do 

 

c Test of wavefunction 

if(mype.eq.0) then 

 

open(10,file='basisset1.dat',status='unknown') 

do iz1=1,nz 

write(10,10) z1(iz1),(psi1(iv1,iz1),iv1=1,mv) 

end do 

close(10) 

 

open(30,file='basisset2.dat',status='unknown') 

do iz2=1,nz 

write(30,10) z2(iz2),(psi2(iv2,iz2),iv2=1,mv) 

end do 

close(30) 

 

open(50,file='basisset3.dat',status='unknown') 

do iz3=1,nz 

write(50,10) z3(iz3),(psi3(iv3,iz3),iv3=1,mv) 

end do 

close(50) 

 

end if 

call MPI_BARRIER(comm,ierror) 

 

c calculate Hamitonian 

c kinetic energy for ion 1 

 

do iz1=1,nz 

y1=alpha1*z1(iz1) 

call othpl(4,mv,y1,h,dh) 

G=exp(-1*y1**2/2.d0) 

G1=-1*alpha1**2*z1(iz1)*exp(-1*y1**2/2.d0) 

G2=alpha1**2*exp(-1*y1**2/2.d0)*(y1**2-1) 

iv1=0 

psi11(iv1+1,iz1)=dsqrt(alpha1/dsqrt(pi))*G2 

do iv1=1,mv-1 

n=iv1 

call nvj(n,b) 

n1=dsqrt(alpha1/dsqrt(pi)/(2**n)/b) 

H1=alpha1*dh(iv1+1) 

H2=2*iv1*dh(iv1)*alpha1**2 

psi11(iv1+1,iz1)=n1*(G2*h(iv1+1)+2*G1*H1+G*H2) 

end do 

end do 

 

do iv1=1,mv 

do iz1=1,nz 

psi1r(iv1,iz1)=-psi11(iv1,iz1)/2.d0/mass1 

end do 

end do 

 

c kinetic energy for ion 2 

 

do iz2=1,nz 

y2=alpha2*z2(iz2) 

call othpl(4,mv,y2,h,dh) 
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G=exp(-1*y2**2/2.d0) 

G1=-1*alpha2**2*z2(iz2)*exp(-1*y2**2/2.d0) 

G2=alpha2**2*exp(-1*y2**2/2.d0)*(y2**2-1) 

iv2=0 

psi22(iv2+1,iz2)=dsqrt(alpha2/dsqrt(pi))*G2 

do iv2=1,mv-1 

n=iv2 

call nvj(n,b) 

n2=dsqrt(alpha2/dsqrt(pi)/(2**n)/b) 

H1=alpha2*dh(iv2+1) 

H2=2*iv2*dh(iv2)*alpha2**2 

psi22(iv2+1,iz2)=n2*(G2*h(iv2+1)+2*G1*H1+G*H2) 

end do 

end do 

 

do iv2=1,mv 

do iz2=1,nz 

psi2r(iv2,iz2)=-psi22(iv2,iz2)*ek(2)/ek(1)/2.d0/mass1 

end do 

end do 

 

c kinetic energy for ion 3 

 

do iz3=1,nz 

y3=alpha3*z3(iz3) 

call othpl(4,mv,y3,h,dh) 

G=exp(-1*y3**2/2.d0) 

G1=-1*alpha3**2*z3(iz3)*exp(-1*y3**2/2.d0) 

G2=alpha3**2*exp(-1*y3**2/2.d0)*(y3**2-1) 

iv3=0 

psi33(iv3+1,iz3)=dsqrt(alpha3/dsqrt(pi))*G2 

do iv3=1,mv-1 

n=iv3 

call nvj(n,b) 

n3=dsqrt(alpha3/dsqrt(pi)/(2**n)/b) 

H1=alpha3*dh(iv3+1) 

H2=2*iv3*dh(iv3)*alpha3**2 

psi33(iv3+1,iz3)=n3*(G2*h(iv3+1)+2*G1*H1+G*H2) 

end do 

end do 

 

do iv3=1,mv 

do iz3=1,nz 

psi3r(iv3,iz3)=-psi33(iv3,iz3)*ek(mz)/ek(1)/2.d0/mass1 

end do 

end do 

 

c second derivative of first ion wavefunction 

if(mype.eq.0) then 

 

open(20,file='secwavr1.dat',status='unknown') 

do iz1=1,nz 

write(20,30) z1(iz1),(psi1r(iv1,iz1),iv1=1,mv) 

end do 

close(20) 

 

open(40,file='secwavr2.dat',status='unknown') 

do iz2=1,nz 

write(40,30) z2(iz2),(psi2r(iv2,iz2),iv2=1,mv) 

end do 

close(40) 

 

open(60,file='secwavr3.dat',status='unknown') 

do iz3=1,nz 

write(60,30) z3(iz3),(psi3r(iv3,iz3),iv3=1,mv) 

end do 

close(60) 

 



280 
 

 

 

end if 

 

call MPI_BARRIER(comm,ierror) 

 

c basis set 

do iz1=1,nz 

do iz2=1,nz 

do iz3=1,nz 

za1=am(1,1)*z1(iz1)+am(1,2)*z2(iz2)*dsqrt(ek(1)/ek(2)) 

$ +am(1,3)*z3(iz3)*dsqrt(ek(1)/ek(mz)) 

za2=am(2,1)*z1(iz1)+am(2,2)*z2(iz2)*dsqrt(ek(1)/ek(2)) 

$ +am(2,3)*z3(iz3)*dsqrt(ek(1)/ek(mz)) 

za3=am(3,1)*z1(iz1)+am(3,2)*z2(iz2)*dsqrt(ek(1)/ek(2)) 

$ +am(3,3)*z3(iz3)*dsqrt(ek(1)/ek(mz)) 

V(iz1,iz2,iz3)= 

$         0.5d0*dk1**2*(za1+cz(1))**2 

$        +0.5d0*dk1**2*(za2+cz(2))**2 

$        +0.5d0*dk1**2*(za3+cz(mz))**2 

$        +1/abs((za2-za1)+(cz(2)-cz(1))) 

$        +1/abs((za3-za1)+(cz(mz)-cz(1))) 

$        +1/abs((za3-za2)+(cz(mz)-cz(2))) 

$        -0.5d0*dk1**2*cz(1)**2 

$  -0.5d0*dk1**2*cz(2)**2 

$       -0.5d0*dk1**2*cz(mz)**2-1/abs(cz(2)-cz(1)) 

$       -1/abs(cz(mz)-cz(1))-1/abs(cz(mz)-cz(2)) 

end do 

end do 

end do 

 

dd=dz1*dz2*dz3 

 

if(mype.eq.mv) then 

do iv=1,mv 

do jv=1,mv 

do kv=1,mv 

do iv1=1,mv 

do jv1=1,mv 

do kv1=1,mv 

sum4=0.d0 

sum5=0.d0 

sum6=0.d0 

call delta(iv,iv1,delta1) 

call delta(jv,jv1,delta2) 

call delta(kv,kv1,delta3) 

do iz1=1,nz 

sum4=sum4+psi1(iv,iz1)*psi1r(iv1,iz1)*delta2*delta3 

end do 

do iz2=1,nz 

sum5=sum5+psi2(jv,iz2)*psi2r(jv1,iz2)*delta1*delta3 

end do 

do iz3=1,nz 

sum6=sum6+psi3(kv,iz3)*psi3r(kv1,iz3)*delta1*delta2 

end do 

KE((kv-1)*mv**2+(jv-1)*mv+iv,(kv1-1)*mv**2+(jv1-

1)*mv+iv1)=sum4*dz1+sum5*dz2+sum6*dz3 

end do 

end do 

end do 

end do 

end do 

end do 

 

else 

do iv=mype+1,mype+1 

do jv=1,mv 

call mysecond(tf) 

filetime='cputime_  ' 

write(filetime(9:10),'(i2.2)') mype+1 
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open(6,file=filetime,status='unknown') 

write(6,807) 'CPU Time= ',(tF-tS)/3600.0d0,' (hour)' 

do kv=1,mv 

do iv1=1,mv 

do jv1=1,mv 

do kv1=kv,mv 

sum=0.d0 

do iz1=1,nz 

comm1=psi1(iv,iz1) 

commt1=psi1(iv1,iz1) 

do iz2=1,nz 

comm2=comm1*psi2(jv,iz2) 

commt2=commt1*psi2(jv1,iz2) 

do iz3=1,nz 

comm3=comm2*psi3(kv,iz3) 

sum=sum+comm3*V(iz1,iz2,iz3)*commt2*psi3(kv1,iz3) 

end do 

end do 

end do 

PE1((kv-1)*mv**2+(jv-1)*mv+iv,(kv1-1)*mv**2+(jv1-

1)*mv+iv1)=sum*dd 

end do 

end do 

end do 

end do 

end do 

end do 

close(6) 

end if 

 

call MPI_BARRIER(comm,ierror) 

 

do i=1,mv**3 

do j=1,mv**3 

call MPI_ALLREDUCE(PE1(i,j),PE(i,j), 

$      1,MPI_DOUBLE_PRECISION,MPI_SUM,comm,ierror) 

end do 

end do 

 

if(mype.eq.mv) then 

 

do i=1,mv**3 

do j=i,mv**3 

PE(j,i)=PE(i,j) 

end do 

end do 

 

c Hamitonian 

do i=1,mv**3 

do j=1,mv**3 

Hamil(i,j)=KE(i,j)+PE(i,j) 

end do 

end do 

 

call DSYEV( JOBZ, UPLO, mv**3, Hamil, mv**3, EV, WORK, 

$           3*(mv**3)-1, INFO ) 

 

open(130,file='Eigen.dat',status='unknown') 

do i=1,mv**3 

write(130,60) EV(i)*automhz 

end do 

close(130) 

 

end if 

call MPI_BARRIER(comm,ierror) 

 

10 format(e24.16,150(x,f24.16)) 

20 format(150(x,e24.16)) 
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30 format(e24.16,150(x,f24.16)) 

40 format(150(x,e24.16)) 

50 format(3375(x,e24.16)) 

60 format(400(x,e24.16)) 

70  format(200(x,i4)) 

807 format(a20,f7.2,2x,a8) 

 

call MPI_BARRIER(comm,ierror) 

call MPI_FINALIZE(ierror) 

 

End 

c----------------------------------------------------- 

subroutine delta(ii,ji,deltav) 

integer ii,ji 

real*8 deltav 

 

deltav=0.d0 

if(ii.eq.ji) then 

deltav=1.d0 

end if 

 

end 

c----------------------------------------------------- 

subroutine nvj(m,A) 

real*8 i,m,A 

 

if(m.eq.0) then 

A=1.0 

else 

A=1.0 

do i=1,m 

A=A*i 

end do 

end if 

end 

c----------------------------------------------------- 

SUBROUTINE OTHPL(KF,N,X,PL,DPL) 

C 

C ================================================ 

C Purpose: Compute orthogonal polynomials: Tn(x) or 

Un(x), 

C   or Ln(x) or Hn(x), and their derivatives 

C Input :  KF --- Function code 

C    KF=1 for Chebyshev polynomial Tn(x) 

C   KF=2 for Chebyshev polynomial Un(x) 

C   KF=3 for Laguerre polynomial Ln(x) 

C   KF=4 for Hermite polynomial Hn(x) 

C   n ---  Order of orthogonal polynomials 

C   x ---  Argument of orthogonal polynomials 

C Output:  PL(n) --- Tn(x) or Un(x) or Ln(x) or Hn(x) 

C   DPL(n)--- Tn'(x) or Un'(x) or Ln'(x) or 

Hn'(x) 

C ================================================ 

C 

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 

DIMENSION PL(0:N),DPL(0:N) 

A=2.0D0 

B=0.0D0 

C=1.0D0 

Y0=1.0D0 

Y1=2.0D0*X 

DY0=0.0D0 

DY1=2.0D0 

PL(0)=1.0D0 

PL(1)=2.D0*X 

DPL(0)=0.0D0 

DPL(1)=2.0D0 

IF (KF.EQ.1) THEN 
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Y1=X 

DY1=1.0D0 

PL(1)=X 

DPL(1)=1.0D0 

ELSE IF (KF.EQ.3) THEN 

Y1=1.D0-X 

DY1=-1.0D0 

PL(1)=1.0D0-X 

DPL(1)=-1.0D0 

END IF 

DO 10 K=2,N 

IF (KF.EQ.3) THEN 

A=-1.0D0/K 

B=2.0D0+A 

C=1.0D0+A 

ELSE IF (KF.EQ.4) THEN 

C=2.0D0*(K-1.0D0) 

END IF 

YN=(A*X+B)*Y1-C*Y0 

DYN=A*Y1+(A*X+B)*DY1-C*DY0 

PL(K)=YN 

DPL(K)=DYN 

Y0=Y1 

Y1=YN 

DY0=DY1 

10    DY1=DYN 

RETURN 

END 

C===================================================== 

subroutine mysecond(time) 

 

real*8 time 

 

time=MPI_WTIME() 

return 

end
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Appendix L 

To optimize our code (in Appendix K) further and save more computer time, 

we use Gaussian Quadrature Method instead of the Equally-Spaced Abscissas method 

for the calculation of 3D integrals in our code. In Gaussian Quadrature Method [100], 

we could choose not only the weighting coefficients, but also the location of the 

abscissas at which the function is to be evaluated. Then we can calculate the integral 

exactly for a class of integrands: polynomials times some known function     . In 

other words, if the integration number ( ) is known, we can find a set of weighs    

and abscissas    to make the approximation: 

           

 

 

          

   

   

                                                                        

which is exact if      is a polynomial. 

In our work, we are dealing with the integral of Gauss-Hermite type with the 

following weight functions, intervals and recurrence relations: 

         
                                                                                    

                                                                                                        

In the code, the orthonormal set of polynomials     is used to avoid computations 

overflow for lagre   instead of functions from Eqs. (2) and (3) and they are generated 

as follows: 
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The formula for the weights: 

   
 

          
                                                                                                    

The formula for the derivative with this normalization is: 

                                                                                                                   

Then the integration formula can be written as follows: 

     
      

  

  

          

   

   

                                                                      

For our problem, because of the introduce of  , we need to make a correction to Eq. 

(7).  

       
       

  

  

              

 
                                                

  

  

 

Setting:  

                                                                                                   

Then we come to the final formula: 

         

 
  

  

  

    

     

 
 

   

   

                                                                

        All the calculation to produce abscissas and weights is carried out using the 

subroutine GAUHER [100]. After implementation of the Gaussian Quadrature 

method, it saves about 90% of computer time as compared to the code. 
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This code is written to diagonalize the Hamiltonian matrix of three 
111

Cd
+ 

ions
 

in the anharmonic potential trap to obtain its eigenvalues (energies) and the 

eigenvectors (parameter matrix C in Sec. 2.2), where MPI programming and Gaussian 

Quadrature Method are both applied. Lines 1-62 of this code contain the definition of 

variables; Lines 64-80 are used to initialize Message Passing Interface (MPI) 

calculation; Lines 82-130 are the input data, the abscissas and weights of integration 

points using Gaussian Quadrature Method; Lines 132-384 describe the basis set 

expansion based on three normal vibration modes; Lines 386-517 are used to 

construct kinetic energy matrix, potential energy matrix and Hamiltonian matrix; 

DSYEV subroutine from ACML library is used in lines 519-535 for matrix 

diagonalization [101]; Lines 537-722 are the construction of wavefunctions of the 

system; Transition matrix calculation and MPI finalization are carried out in lines 

724-788; Subroutine in lines 790-799 is used to calculate the delta function; Lines 

801-813 are the subroutine NVJ which is used to calculate    of Eq. (2.2.5) and the 

subroutine OTHPL in lines 815-875 describe calculation of Hermite polynomials and 

their first derivatives [82]. Subroutine GAUHER in lines 886-930 are used to produce 

abscissas and weights using Gaussian Quadrature Method. In this program, during the 

numerical calculations for the spectrum of vibrational states, I used atomic units. It 

was transformed into the units of MHz at the end. 
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Program MPIGAUSS3DIONTRAP 

implicit real*8 (a-h,o-z) 

integer mv,nz,mz,dz1,dz2,dz3,lm,lp 

real*8 towpi,autonm,pi 

parameter(mv=15,max=45) 

parameter(nz=21,mz=3) 

parameter(ns=53,lp=70,lm=30) 

parameter(pi=3.1415926535897932384d0,twopi=6.283185307179

59d0) 

parameter(autonm=0.05291772d0,alpha=-100.d0,beta=4.2d-6) 

Parameter(automhz=6579682606.6812d0) 

character*1 UPLO, JOBZ 

character*10 filetime 

character*10 filewavefp2 

character*10 filewavefp1 

character*8 filewavef 

character*11 fileabswavef 

character*13 filebsf 

parameter(JOBZ ='V',UPLO ='U') 

integer INFO 

double precision 

EV(mv**3),EZ(mv**3,mv**3),WORK(3*(mv**3)-1) 

 

real*8 mass1,mu,dk1,b,n,n1,n2,n3,y1,y2,y3 

real*8 commt1,commt2,commt3 

real*8 dd,comm1,comm2,comm3,sa1,sa2,sa3 

real*8 

alpha1,alpha2,alpha3,sum1,sum2,sum3,sum4,sum5,sum6,sum 

real*8 

w,w1,w2,w3,deter,deter1,deter2,deter3,G,G1,G2,za1,za2,za3 

double precision ek(mz),cz(mz),zf1(ns),zf2(ns),zf3(ns) 

double precision 

wt1(ns),wt2(ns),wt3(ns),zfx1(ns),zfx2(ns),zfx3(ns) 

double precision 

z1(nz),z2(nz),z3(nz),zp1(nz),zp2(nz),zp3(nz) 

double precision weight1(nz),weight2(nz),weight3(nz) 

double precision psi1(mv,nz),psi2(mv,nz),psi3(mv,nz) 

double precision ps1(mv,nz),ps2(mv,nz),ps3(mv,nz) 

double precision bsi1(mv,ns),bsi2(mv,ns),bsi3(mv,ns) 

double precision bs1(mv,ns),bs2(mv,ns),bs3(mv,ns) 

double precision h(max),dh(max) 

double precision psi1r(mv,nz),psi2r(mv,nz),psi3r(mv,nz) 

double precision psi11(mv,nz),psi22(mv,nz),psi33(mv,nz) 

double precision psi1p(mv,nz),psi2p(mv,nz),psi3p(mv,nz) 

double precision psi1s(mv,nz),psi2s(mv,nz),psi3s(mv,nz) 

double precision 

KE(mv*mv*mv,mv*mv*mv),PE(mv*mv*mv,mv*mv*mv) 

double precision 

KE1(mv*mv*mv,mv*mv*mv),PE1(mv*mv*mv,mv*mv*mv) 

double precision Hamil(mv**3,mv**3),dipole(lp,lp) 

double precision 

AEV(mv,mv,mv),V(nz,nz,nz),wavefp(lp,ns,ns,ns) 

double precision am(mz,mz),norm(lp,lp),tdm(ns,ns,ns) 

real*8, allocatable, dimension(:,:,:) :: wavef_j,wavefp_j 

real*8, allocatable, dimension(:) :: bs_j,bsi_j 

 

!------------------- MPI STAFF ----------------! 

include 'mpif.h' 

integer ierror,comm,rc 

common/pedat/mype,npe,comm 

!----------------------------------------------! 

c MPI start: 

call MPI_INIT(ierror) 

comm=MPI_COMM_WORLD 

call MPI_COMM_RANK(comm,mype,ierror) 

call MPI_COMM_SIZE(comm,npe,ierror) 

print *, 'mype=',mype,' npe=',npe 
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if (npe.ne.mv+1) then 

print *, 'processor # is wrong' 

print *,  npe,mv 

stop 

end if 

 

c harmonic parameters for Cd ion(in a.u.): 

call mysecond(ts) 

mass1=111.d0 

mass1=mass1*1822.8885d0 

mu=1.d0 

w=2770.0*2*pi 

w=w*3.33564d-8/219474.63d0 

dk1=dsqrt(mass1)*w         !dk=dsqrt(k) 

 

open(5,file='Eigenvalue.dat',status='old') 

do iz=1,mz 

read(5,*) ek(iz) 

end do 

close(5) 

 

open(4,file='Eigenvector.dat',status='old') 

do iz1=1,mz 

read(4,*) (am(iz1,iz2),iz2=1,mz) 

end do 

close(4) 

 

open(3,file='position.dat',status='old') 

do iz=1,mz 

read(3,*) cz(iz) 

end do 

close(3) 

 

do i=1,mv 

do j=1,mv 

do k=1,mv 

AEV(i,j,k)=(i-0.5d0)*dsqrt(ek(1))+(j-

0.5d0)*dsqrt(ek(2)) 

$           +(k-0.5d0)*dsqrt(ek(mz)) 

AEV(i,j,k)=AEV(i,j,k)*automhz 

end do 

end do 

end do 

 

open(2,file='ApproEigen.dat',status='unknown') 

do i=1,mv 

do j=1,mv 

write(2,50) (AEV(i,j,k),k=1,mv) 

end do 

end do 

close(2) 

 

call gauher(z1,weight1,nz) 

call gauher(z2,weight2,nz) 

call gauher(z3,weight3,nz) 

 

c Hamonic parameters for ion 1 (in a.u.) 

 

w1=dsqrt(ek(1)) 

alpha1=dsqrt(mass1*w1) 

do iz1=1,nz 

zp1(iz1)=z1(iz1)/alpha1 

end do 

c Hamonic wavefunctions for ion 1 

do iz1=1,nz 

y1=z1(iz1) 

iv1=0 
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psi1(iv1+1,iz1)=dsqrt(alpha1)/(pi**0.25d0)*dexp(-

y1**2/2.d0) 

ps1(iv1+1,iz1)=dsqrt(alpha1)/(pi**0.25d0) 

!!!!!!!! call the subroutine which will give the value 

of Hermite. 

call othpl(4,mv,y1,h,dh) 

do iv1=1,mv-1,1 

n=iv1 

call nvj(n,b) 

n1=dsqrt(alpha1/dsqrt(pi)/(2**n)/b) 

psi1(iv1+1,iz1)=n1*h(iv1+1)*dexp(-y1**2/2.d0) 

ps1(iv1+1,iz1)=n1*h(iv1+1) 

end do 

end do 

 

cc Normalization of wavefunctions for ion 1. 

do iv1=1,mv 

sum1=0.d0 

do iz1=1,nz 

sum1=sum1+ps1(iv1,iz1)**2*weight1(iz1)/alpha1 

end do 

do iz1=1,nz 

psi1(iv1,iz1)=psi1(iv1,iz1)/dsqrt(sum1) 

end do 

end do 

 

c Hamonic parameters for ion 2 (in a.u.) 

 

w2=dsqrt(ek(2)) 

alpha2=dsqrt(mass1*w2*ek(1)/ek(2)) 

do iz2=1,nz 

zp2(iz2)=z2(iz2)/alpha2 

end do 

c Hamonic wavefunctions for ion 2 

do iz2=1,nz 

y2=z2(iz2) 

iv2=0 

psi2(iv2+1,iz2)=dsqrt(alpha2)/(pi**0.25d0)*dexp(-

y2**2/2.d0) 

ps2(iv2+1,iz2)=dsqrt(alpha2)/(pi**0.25d0) 

!!!!!!!! call the subroutine which will give the value 

of Hermite. 

call othpl(4,mv,y2,h,dh) 

do iv2=1,mv-1,1 

n=iv2 

call nvj(n,b) 

n2=dsqrt(alpha2/dsqrt(pi)/(2**n)/b) 

psi2(iv2+1,iz2)=n2*h(iv2+1)*dexp(-y2**2/2.d0) 

ps2(iv2+1,iz2)=n2*h(iv2+1) 

end do 

end do 

 

cc Normalization of wavefunctions for ion 2. 

do iv2=1,mv 

sum2=0.d0 

do iz2=1,nz 

sum2=sum2+ps2(iv2,iz2)**2*weight2(iz2)/alpha2 

end do 

do iz2=1,nz 

psi2(iv2,iz2)=psi2(iv2,iz2)/dsqrt(sum2) 

end do 

end do 

 

c Hamonic parameters for ion 3 (in a.u.) 

 

w3=dsqrt(ek(mz)) 

alpha3=dsqrt(mass1*w3*ek(1)/ek(mz)) 

do iz3=1,nz 
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zp3(iz3)=z3(iz3)/alpha3 

end do 

c Hamonic wavefunctions for ion 3 

do iz3=1,nz 

y3=z3(iz3) 

iv3=0 

psi3(iv3+1,iz3)=dsqrt(alpha3)/(pi**0.25d0)*dexp(-

y3**2/2.d0) 

ps3(iv3+1,iz3)=dsqrt(alpha3)/(pi**0.25d0) 

!!!!!!!! call the subroutine which will give the value 

of Hermite. 

call othpl(4,mv,y3,h,dh) 

do iv3=1,mv-1,1 

n=iv3 

call nvj(n,b) 

n3=dsqrt(alpha3/dsqrt(pi)/(2**n)/b) 

psi3(iv3+1,iz3)=n3*h(iv3+1)*dexp(-y3**2/2.d0) 

ps3(iv3+1,iz3)=n3*h(iv3+1) 

end do 

end do 

 

cc Normalization of wavefunctions for ion 3. 

do iv3=1,mv 

sum3=0.d0 

do iz3=1,nz 

sum3=sum3+ps3(iv3,iz3)**2*weight3(iz3)/alpha3 

end do 

do iz3=1,nz 

psi3(iv3,iz3)=psi3(iv3,iz3)/dsqrt(sum3) 

end do 

end do 

 

c Test of wavefunction 

if(mype.eq.0) then 

 

open(10,file='basisset1.dat',status='unknown') 

do iz1=1,nz 

write(10,10) zp1(iz1),(psi1(iv1,iz1),iv1=1,mv) 

end do 

close(10) 

 

open(30,file='basisset2.dat',status='unknown') 

do iz2=1,nz 

write(30,10) zp2(iz2),(psi2(iv2,iz2),iv2=1,mv) 

end do 

close(30) 

 

open(50,file='basisset3.dat',status='unknown') 

do iz3=1,nz 

write(50,10) zp3(iz3),(psi3(iv3,iz3),iv3=1,mv) 

end do 

close(50) 

 

end if 

 

call MPI_BARRIER(comm,ierror) 

c calculate Hamitonian 

 

c kinetic energy for ion 1 

 

do iz1=1,nz 

y1=z1(iz1) 

call othpl(4,mv,y1,h,dh) 

G=exp(-1*y1**2/2.d0) 

G1=-1*alpha1*y1*exp(-1*y1**2/2.d0) 

G2=alpha1**2*exp(-1*y1**2/2.d0)*(y1**2-1) 

iv1=0 

psi11(iv1+1,iz1)=dsqrt(alpha1/dsqrt(pi))*G2 
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do iv1=1,mv-1 

n=iv1 

call nvj(n,b) 

n1=dsqrt(alpha1/dsqrt(pi)/(2**n)/b) 

H1=alpha1*dh(iv1+1) 

H2=2*iv1*dh(iv1)*alpha1**2 

psi11(iv1+1,iz1)=n1*(G2*h(iv1+1)+2*G1*H1+G*H2) 

end do 

do iv1=0,mv-1 

psi1p(iv1+1,iz1)=psi11(iv1+1,iz1)/G 

end do 

end do 

 

do iv1=1,mv 

do iz1=1,nz 

psi1r(iv1,iz1)=-psi11(iv1,iz1)/2.d0/mass1 

psi1s(iv1,iz1)=-psi1p(iv1,iz1)/2.d0/mass1 

end do 

end do 

 

c kinetic energy for ion 2 

 

do iz2=1,nz 

y2=z2(iz2) 

call othpl(4,mv,y2,h,dh) 

G=exp(-1*y2**2/2.d0) 

G1=-1*alpha2*y2*exp(-1*y2**2/2.d0) 

G2=alpha2**2*exp(-1*y2**2/2.d0)*(y2**2-1) 

iv2=0 

psi22(iv2+1,iz2)=dsqrt(alpha2/dsqrt(pi))*G2 

do iv2=1,mv-1 

n=iv2 

call nvj(n,b) 

n2=dsqrt(alpha2/dsqrt(pi)/(2**n)/b) 

H1=alpha2*dh(iv2+1) 

H2=2*iv2*dh(iv2)*alpha2**2 

psi22(iv2+1,iz2)=n2*(G2*h(iv2+1)+2*G1*H1+G*H2) 

end do 

do iv2=0,mv-1 

psi2p(iv2+1,iz2)=psi22(iv2+1,iz2)/G 

end do 

end do 

 

do iv2=1,mv 

do iz2=1,nz 

psi2r(iv2,iz2)=-psi22(iv2,iz2)*ek(2)/ek(1)/2.d0/mass1 

psi2s(iv2,iz2)=-psi2p(iv2,iz2)*ek(2)/ek(1)/2.d0/mass1 

end do 

end do 

c kinetic energy for ion 3 

 

do iz3=1,nz 

y3=z3(iz3) 

call othpl(4,mv,y3,h,dh) 

G=exp(-1*y3**2/2.d0) 

G1=-1*alpha3*y3*exp(-1*y3**2/2.d0) 

G2=alpha3**2*exp(-1*y3**2/2.d0)*(y3**2-1) 

iv3=0 

psi33(iv3+1,iz3)=dsqrt(alpha3/dsqrt(pi))*G2 

do iv3=1,mv-1 

n=iv3 

call nvj(n,b) 

n3=dsqrt(alpha3/dsqrt(pi)/(2**n)/b) 

H1=alpha3*dh(iv3+1) 

H2=2*iv3*dh(iv3)*alpha3**2 

psi33(iv3+1,iz3)=n3*(G2*h(iv3+1)+2*G1*H1+G*H2) 

end do 

do iv3=0,mv-1 
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psi3p(iv3+1,iz3)=psi33(iv3+1,iz3)/G 

end do 

end do 

 

do iv3=1,mv 

do iz3=1,nz 

psi3r(iv3,iz3)=-psi33(iv3,iz3)*ek(mz)/ek(1)/2.d0/mass1 

psi3s(iv3,iz3)=-psi3p(iv3,iz3)*ek(mz)/ek(1)/2.d0/mass1 

end do 

end do 

 

c second derivative of first ion wavefunction 

if(mype.eq.0) then 

 

open(20,file='secwavr1.dat',status='unknown') 

do iz1=1,nz 

write(20,30) zp1(iz1),(psi1r(iv1,iz1),iv1=1,mv) 

end do 

close(20) 

 

open(40,file='secwavr2.dat',status='unknown') 

do iz2=1,nz 

write(40,30) zp2(iz2),(psi2r(iv2,iz2),iv2=1,mv) 

end do 

close(40) 

 

open(60,file='secwavr3.dat',status='unknown') 

do iz3=1,nz 

write(60,30) zp3(iz3),(psi3r(iv3,iz3),iv3=1,mv) 

end do 

close(60) 

 

end if 

call MPI_BARRIER(comm,ierror) 

 

c basis set 

 

do iz1=1,nz 

do iz2=1,nz 

do iz3=1,nz 

za1=am(1,1)*zp1(iz1)+am(1,2)*zp2(iz2)*dsqrt(ek(1)/ 

$ ek(2))+am(1,3)*zp3(iz3)*dsqrt(ek(1)/ek(mz)) 

za2=am(2,1)*zp1(iz1)+am(2,2)*zp2(iz2)*dsqrt(ek(1)/ 

$ ek(2))+am(2,3)*zp3(iz3)*dsqrt(ek(1)/ek(mz)) 

za3=am(3,1)*zp1(iz1)+am(3,2)*zp2(iz2)*dsqrt(ek(1)/ 

$ ek(2))+am(3,3)*zp3(iz3)*dsqrt(ek(1)/ek(mz)) 

V(iz1,iz2,iz3)= 

$  alpha*0.5d0*dk1**2*(za1+cz(1))**2 

$  +beta*dk1**2*(za1+cz(1))**4 

$  +alpha*0.5d0*dk1**2*(za2+cz(2))**2 

$  +beta*dk1**2*(za2+cz(2))**4 

$  +alpha*0.5d0*dk1**2*(za3+cz(mz))**2 

$  +beta*dk1**2*(za3+cz(mz))**4 

$  +1/abs((za2-za1)+(cz(2)-cz(1))) 

$  +1/abs((za3-za1)+(cz(mz)-cz(1))) 

$  +1/abs((za3-za2)+(cz(mz)-cz(2))) 

$  -alpha*0.5d0*dk1**2*cz(1)**2 

$  -alpha*0.5d0*dk1**2*cz(2)**2 

$   -alpha*0.5d0*dk1**2*cz(mz)**2 

$  -beta*dk1**2*cz(1)**4 

$   -beta*dk1**2*cz(2)**4-beta*dk1**2*cz(mz)**4 

$  -1/abs(cz(2)-cz(1)) 

$  -1/abs(cz(mz)-cz(1))-1/abs(cz(mz)-cz(2)) 

end do 

end do 

end do 

 

if(mype.eq.mv) then 
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do iv=1,mv 

do jv=1,mv 

do kv=1,mv 

do iv1=1,mv 

do jv1=1,mv 

do kv1=1,mv 

sum4=0.d0 

sum5=0.d0 

sum6=0.d0 

call delta(iv,iv1,delta1) 

call delta(jv,jv1,delta2) 

call delta(kv,kv1,delta3) 

do iz1=1,nz 

sum4=sum4+ps1(iv,iz1)*psi1s(iv1,iz1)*delta2*delta3 

$     *weight1(iz1)/alpha1 

end do 

do iz2=1,nz 

sum5=sum5+ps2(jv,iz2)*psi2s(jv1,iz2)*delta1*delta3 

$     *weight2(iz2)/alpha2 

end do 

do iz3=1,nz 

sum6=sum6+ps3(kv,iz3)*psi3s(kv1,iz3)*delta1*delta2 

$     *weight3(iz3)/alpha3 

end do 

KE((kv-1)*mv**2+(jv-1)*mv+iv,(kv1-1)*mv**2+(jv1-

1)*mv+iv1)=sum4+sum5+sum6 

end do 

end do 

end do 

end do 

end do 

end do 

else 

 

do iv=mype+1,mype+1 

do jv=1,mv 

call mysecond(tf) 

filetime='cputime_  ' 

write(filetime(9:10),'(i2.2)') mype+1 

open(6,file=filetime,status='unknown') 

write(6,807) 'CPU Time= ',(tF-tS)/3600.0d0,' (hour)' 

do kv=1,mv 

do iv1=1,mv 

do jv1=1,mv 

do kv1=kv,mv 

sum1=0.d0 

sum2=0.d0 

sum3=0.d0 

do iz1=1,nz 

comm1=ps1(iv,iz1) 

commt1=ps1(iv1,iz1) 

do iz2=1,nz 

comm2=ps2(jv,iz2) 

commt2=ps2(jv1,iz2) 

do iz3=1,nz 

comm3=ps3(kv,iz3) 

commt3=ps3(kv1,iz3) 

sum3=sum3+comm1*comm2*comm3*V(iz1,iz2,iz3)*commt1*commt2* 

$ commt3*weight3(iz3)/alpha3*weight2(iz2)/alpha2 

$ *weight1(iz1)/alpha1 

end do 

end do 

end do 

PE1((kv-1)*mv**2+(jv-1)*mv+iv,(kv1-1)*mv**2+(jv1-

1)*mv+iv1)=sum3 

end do 

end do 

end do 
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end do 

end do 

end do 

close(6) 

end if 

 

call MPI_BARRIER(comm,ierror) 

 

do i=1,mv**3 

do j=1,mv**3 

call MPI_ALLREDUCE(PE1(i,j),PE(i,j), 

$      1,MPI_DOUBLE_PRECISION,MPI_SUM,comm,ierror) 

end do 

end do 

 

if(mype.eq.mv) then 

 

do i=1,mv**3 

do j=i,mv**3 

PE(j,i)=PE(i,j) 

end do 

end do 

 

c Hamitonian 

do i=1,mv**3 

do j=1,mv**3 

Hamil(i,j)=KE(i,j)+PE(i,j) 

end do 

end do 

 

call DSYEV( JOBZ, UPLO, mv**3, Hamil, mv**3, EV, WORK, 

$           3*(mv**3)-1, INFO ) 

 

open(130,file='Eigenv.dat',status='unknown') 

do i=1,mv**3 

write(130,60) EV(i)*automhz 

end do 

close(130) 

 

open(131,file='eigen.dat',status='unknown') 

write(131,*) lm 

do i=1,lm 

write(131,60) EV(i) 

end do 

close(131) 

 

call MPI_BARRIER(comm,ierror) 

cccccccccccccccccccccccccccccccccccccccccccccccccccccc 

 

call gauher(zf1,wt1,ns) 

call gauher(zf2,wt2,ns) 

call gauher(zf3,wt3,ns) 

c Hamonic parameters for ion 1 (in a.u.) 

 

w1=dsqrt(ek(1)) 

alpha1=dsqrt(mass1*w1) 

do is1=1,ns 

zfx1(is1)=zf1(is1)/alpha1 

end do 

c Hamonic wavefunctions for ion 1 

do is1=1,ns 

y1=zf1(is1) 

iv1=0 

bsi1(iv1+1,is1)=dsqrt(alpha1)/(pi**0.25d0)*dexp(-

y1**2/2.d0) 

bs1(iv1+1,is1)=dsqrt(alpha1)/(pi**0.25d0) 

!!!!!!!! call the subroutine which will give the value 

of Hermite. 



295 
 

 

 

call othpl(4,mv,y1,h,dh) 

do iv1=1,mv-1,1 

n=iv1 

call nvj(n,b) 

n1=dsqrt(alpha1/dsqrt(pi)/(2**n)/b) 

bsi1(iv1+1,is1)=n1*h(iv1+1)*dexp(-y1**2/2.d0) 

bs1(iv1+1,is1)=n1*h(iv1+1) 

end do 

end do 

 

cc Normalization of wavefunctions for ion 1. 

do iv1=1,mv 

sum1=0.d0 

do is1=1,ns 

sum1=sum1+bs1(iv1,is1)**2*wt1(is1)/alpha1 

end do 

do is1=1,ns 

bsi1(iv1,is1)=bsi1(iv1,is1)/dsqrt(sum1) 

end do 

end do 

 

c Hamonic parameters for ion 2 (in a.u.) 

 

w2=dsqrt(ek(2)) 

alpha2=dsqrt(mass1*w2*ek(1)/ek(2)) 

do is2=1,ns 

zfx2(is2)=zf2(is2)/alpha2 

end do 

c Hamonic wavefunctions for ion 2 

do is2=1,ns 

y2=zf2(is2) 

iv2=0 

bsi2(iv2+1,is2)=dsqrt(alpha2)/(pi**0.25d0)*dexp(-

y2**2/2.d0) 

bs2(iv2+1,is2)=dsqrt(alpha2)/(pi**0.25d0) 

!!!!!!!! call the subroutine which will give the value 

of Hermite. 

call othpl(4,mv,y2,h,dh) 

do iv2=1,mv-1,1 

n=iv2 

call nvj(n,b) 

n2=dsqrt(alpha2/dsqrt(pi)/(2**n)/b) 

bsi2(iv2+1,is2)=n2*h(iv2+1)*dexp(-y2**2/2.d0) 

bs2(iv2+1,is2)=n2*h(iv2+1) 

end do 

end do 

 

cc Normalization of wavefunctions for ion 2. 

do iv2=1,mv 

sum2=0.d0 

do is2=1,ns 

sum2=sum2+bs2(iv2,is2)**2*wt2(is2)/alpha2 

end do 

do iz2=1,nz 

bsi2(iv2,is2)=bsi2(iv2,is2)/dsqrt(sum2) 

end do 

end do 

 

c Hamonic parameters for ion 3 (in a.u.) 

 

w3=dsqrt(ek(mz)) 

alpha3=dsqrt(mass1*w3*ek(1)/ek(mz)) 

do is3=1,ns 

zfx3(is3)=zf3(is3)/alpha3 

end do 

c Hamonic wavefunctions for ion 3 

do is3=1,ns 

y3=zf3(is3) 
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iv3=0 

bsi3(iv3+1,is3)=dsqrt(alpha3)/(pi**0.25d0)*dexp(-

y3**2/2.d0) 

bs3(iv3+1,is3)=dsqrt(alpha3)/(pi**0.25d0) 

!!!!!!!! call the subroutine which will give the value 

of Hermite. 

call othpl(4,mv,y3,h,dh) 

do iv3=1,mv-1,1 

n=iv3 

call nvj(n,b) 

n3=dsqrt(alpha3/dsqrt(pi)/(2**n)/b) 

bsi3(iv3+1,is3)=n3*h(iv3+1)*dexp(-y3**2/2.d0) 

bs3(iv3+1,is3)=n3*h(iv3+1) 

end do 

end do 

 

cc Normalization of wavefunctions for ion 3. 

do iv3=1,mv 

sum3=0.d0 

do is3=1,ns 

sum3=sum3+bs3(iv3,is3)**2*wt3(is3)/alpha3 

end do 

do is3=1,ns 

bsi3(iv3,is3)=bsi3(iv3,is3)/dsqrt(sum3) 

end do 

end do 

 

c Test of wavefunction 

 

open(10,file='bset1.dat',status='unknown') 

do is1=1,ns 

write(10,10) zfx1(is1),(bsi1(iv1,is1),iv1=1,mv) 

end do 

close(10) 

 

open(30,file='bset2.dat',status='unknown') 

do is2=1,ns 

write(30,10) zfx2(is2),(bsi2(iv2,is2),iv2=1,mv) 

end do 

close(30) 

 

open(50,file='bset3.dat',status='unknown') 

do is3=1,ns 

write(50,10) zfx3(is3),(bsi3(iv3,is3),iv3=1,mv) 

end do 

close(50) 

 

call MPI_BARRIER(comm,ierror) 

 

allocate(bsi_j(mv**3)) 

allocate(bs_j(mv**3)) 

allocate(wavef_j(ns,ns,ns)) 

allocate(wavefp_j(ns,ns,ns)) 

 

do j=1,lp 

 

do is3=1,ns 

do is2=1,ns 

do is1=1,ns 

 

c calculate bs(1:mv**3,iz1,iz2,iz3) for a fixed iz1, iz2, 

iz3 

do iv=1,mv 

do jv=1,mv 

do kv=1,mv 

bsi_j((kv-1)*mv**2+(jv-1)*mv+iv)=bsi1(iv,is1) 

$  *bsi2(jv,is2)*bsi3(kv,is3) 

bs_j((kv-1)*mv**2+(jv-1)*mv+iv)=bs1(iv,is1) 
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$  *bs2(jv,is2)*bs3(kv,is3) 

end do 

end do 

end do 

sum5=0.d0 

sum6=0.d0 

do i=1,mv**3 

sum5=sum5+Hamil(i,j)*bsi_j(i) 

sum6=sum6+Hamil(i,j)*bs_j(i) 

end do 

wavef_j(is1,is2,is3)=sum5 

wavefp_j(is1,is2,is3)=sum6 

wavefp(j,is1,is2,is3)=sum6 

end do 

end do 

end do 

 

end do 

 

do i=1,lp 

if(wavefp(i,13,13,13).lt.0) then 

do is1=1,ns 

do is2=1,ns 

do is3=1,ns 

wavefp(i,is1,is2,is3)=-1.d0*wavefp(i,is1,is2,is3) 

end do 

end do 

end do 

end if 

end do 

 

c Transition dipol moments: 

do is1=1,ns 

do is2=1,ns 

do is3=1,ns 

sa1=am(1,1)*zfx1(is1)+am(1,2)*zfx2(is2)*dsqrt(ek(1)/ 

$ ek(2))+am(1,3)*zfx3(is3)*dsqrt(ek(1)/ek(mz)) 

sa2=am(2,1)*zfx1(is1)+am(2,2)*zfx2(is2)*dsqrt(ek(1)/ 

$ ek(2))+am(2,3)*zfx3(is3)*dsqrt(ek(1)/ek(mz)) 

sa3=am(3,1)*zfx1(is1)+am(3,2)*zfx2(is2)*dsqrt(ek(1)/ 

$ ek(2))+am(3,3)*zfx3(is3)*dsqrt(ek(1)/ek(mz)) 

tdm(is1,is2,is3)=sa1+sa2+sa3+cz(1)+cz(2)+cz(mz) 

end do 

end do 

end do 

 

do i=1,lp 

do j=1,lp 

sum=0.d0 

do is1=1,ns 

do is2=1,ns 

do is3=1,ns 

sum=sum+wavefp(i,is1,is2,is3)*mu*tdm(is1,is2,is3) 

$ *wavefp(j,is1,is2,is3) 

$     *wt3(is3)/alpha3*wt2(is2)/alpha2*wt1(is1)/alpha1 

end do 

end do 

end do 

dipole(i,j)=sum 

end do 

end do 

 

open(160,file='transitiondipole.dat',status='unknown') 

do i=1,lp 

write(160,60) (dipole(i,j),j=1,lp) 

end do 

close(160) 
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open(161,file='dipol.dat',status='unknown') 

write(161,*) lm 

do i=1,lm 

write(161,60) (dipole(i,j),j=1,lm) 

end do 

close(161) 

 

deallocate(bsi_j) 

deallocate(bs_j) 

deallocate(wavef_j) 

deallocate(wavefp_j) 

 

end if 

call MPI_BARRIER(comm,ierror) 

 

10 format(e24.16,150(x,f24.16)) 

20 format(150(x,f24.16)) 

30 format(e24.16,150(x,f24.16)) 

40 format(150(x,e24.16)) 

50 format(1000(x,e21.13)) 

60 format(400(x,e24.16)) 

70 format(200(x,i4)) 

807 format(a20,f7.2,2x,a8) 

 

call MPI_BARRIER(comm,ierror) 

call MPI_FINALIZE(ierror) 

 

End 

c----------------------------------------------------- 

subroutine delta(ii,ji,deltav) 

integer ii,ji 

real*8 deltav 

 

deltav=0.d0 

if(ii.eq.ji) then 

deltav=1.d0 

end if 

 

end 

c----------------------------------------------------- 

subroutine nvj(m,A) 

real*8 i,m,A 

 

if(m.eq.0) then 

A=1.0 

else 

A=1.0 

do i=1,m 

A=A*i 

end do 

end if 

 

end 

c----------------------------------------------------- 

SUBROUTINE OTHPL(KF,N,X,PL,DPL) 

C 

C ================================================ 

C Purpose: Compute orthogonal polynomials: Tn(x) or 

Un(x), 

C   or Ln(x) or Hn(x), and their derivatives 

C Input :  KF --- Function code 

C    KF=1 for Chebyshev polynomial Tn(x) 

C   KF=2 for Chebyshev polynomial Un(x) 

C   KF=3 for Laguerre polynomial Ln(x) 

C   KF=4 for Hermite polynomial Hn(x) 

C   n ---  Order of orthogonal polynomials 

C   x ---  Argument of orthogonal polynomials 

C Output:  PL(n) --- Tn(x) or Un(x) or Ln(x) or Hn(x) 
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C   DPL(n)--- Tn'(x) or Un'(x) or Ln'(x) or 

Hn'(x) 

C ================================================ 

C 

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 

DIMENSION PL(0:N),DPL(0:N) 

A=2.0D0 

B=0.0D0 

C=1.0D0 

Y0=1.0D0 

Y1=2.0D0*X 

DY0=0.0D0 

DY1=2.0D0 

PL(0)=1.0D0 

PL(1)=2.D0*X 

DPL(0)=0.0D0 

DPL(1)=2.0D0 

IF (KF.EQ.1) THEN 

Y1=X 

DY1=1.0D0 

PL(1)=X 

DPL(1)=1.0D0 

ELSE IF (KF.EQ.3) THEN 

Y1=1.D0-X 

DY1=-1.0D0 

PL(1)=1.0D0-X 

DPL(1)=-1.0D0 

END IF 

DO 10 K=2,N 

IF (KF.EQ.3) THEN 

A=-1.0D0/K 

B=2.0D0+A 

C=1.0D0+A 

ELSE IF (KF.EQ.4) THEN 

C=2.0D0*(K-1.0D0) 

END IF 

YN=(A*X+B)*Y1-C*Y0 

DYN=A*Y1+(A*X+B)*DY1-C*DY0 

PL(K)=YN 

DPL(K)=DYN 

Y0=Y1 

Y1=YN 

DY0=DY1 

10    DY1=DYN 

RETURN 

END 

C===================================================== 

subroutine mysecond(time) 

 

real*8 time 

 

time=MPI_WTIME() 

return 

end 

C===================================================== 

 

Subroutine gauher(x,w,n) 

Integer n,MAXIT 

Real*8 x(n),w(n) 

Double precision EPS,PIM4 

Parameter (EPS=3.d-14,PIM4=.7511255444649425d0,MAXIT=10) 

Integer i,its,j,m 

Double precision p1,p2,p3,pp,z,z1 

 

m=(n+1)/2 

 

do i=1,m 

if(i.eq.1)then 
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z=sqrt(float(2*n+1))-1.85575d0*(2*n+1)**(-.16667d0) 

else if(i.eq.2)then 

z=z-1.14d0*n**.426d0/z 

else if(i.eq.3)then 

z=1.86d0*z-.86d0*x(1) 

else if(i.eq.4)then 

z=1.91d0*z-.91d0*x(2) 

else 

z=2.d0*z-x(i-2) 

end if 

 

do its=1,MAXIT 

p1=PIM4 

p2=0.d0 

do j=1,n 

p3=p2 

p2=p1 

p1=z*dsqrt(2.d0/j)*p2-dsqrt(dble(j-1)/dble(j))*p3 

end do 

pp=dsqrt(2.d0*n)*p2 

z1=z 

z=z1-p1/pp 

if(abs(z-z1).le.EPS) goto 1 

end do 

1      x(i)=z 

x(n+1-i)=-z 

w(i)=2.d0/(pp*pp) 

w(n+1-i)=w(i) 

end do 

return 

 

end 


