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ABSTRACT                                                                                                          
COORDINATION CHEMISTRY OF TETRA(PYRAZOLYL)-LUTIDINE                     

LIGANDS AND DERIVATIVES 

 

 

 

Tyler J. Morin 

 

Marquette University, 2010 

 

 

 There is current interest in the coordination chemistry of simple AE4 pentadentate 

ligands that occupy one axial (A) and four equatorial (E) positions about a given 

transition metal center considering that systems capable of mediating spectacular organic 

transformations such as alkane oxidation have been identified.  The discovery of new 

systems will improve understanding of C-H bond activation processes which is critical to 

help make more efficient use of the currently diminishing fossil fuel supplies.  As such, a 

new pentadentate ligand α,α,α’,α’-tetra(pyrazolyl)lutidine (pz4lut) and its derivatives 

pz
4,

4lut, (pz4, = 4-methylpyrazole); pz
*

4lut, (pz* = 3,5-dimethylpyrazole); pz
DIP

4lut, 

(pzDIP = 3,5-diisopropylpyrazole) have been synthesized and their coordination chemistry 

towards a host of main group and transition metals has been investigated.   

 Divalent first row transition metals were used to establish the binding mode(s) 

(both κ5 and κ2-µ are observed) of the newly synthesized, unsubstituted pz4lut ligand.  

Substitution along the pyrzolyl periphery with various alklyl groups (4-methyl, 3,5-

dimethyl, 3,5-diisopropyl) provided a way to examine the effects of substitution on 



 

 

binding behavior with transition metals. Cobalt(II) complexes tend to be thermo and 

solvatochromic giving both pink κ5 octahedral complexes as well as blue κ2 tetrahedral 

complexes for all ligands except pz
DIP

4lut owing to the steric demands of the isopropyl 

group.  Substitution along the pyrazolyl periphery also allowed for investigation into 

supramolecular studies of self assembly using silver(I) salts of the newly synthesized 

ligands.  It was found that the silver(I) complexes display unique solution behavior in 

which the solid state structure is not retained.   

 Finally, given the importance of oxyferryl species in mediating C-H bond 

oxidation reactions; the chemistry of iron(II) complexes of the newly synthesized ligands 

was explored.  The reaction between 2 equivalents of m-chloroperoxybenzoic acid and 

the iron(II) complex [Fe(Cl)(pz4lut)](BAR4
f) at -30 oC gives a solution with the 

characteristic green color of iron(IV) oxo species.  Due to the highly reactive nature and 

short lifetime of these species it has not been further characterized.  Further efforts have 

been directed at the synthesis of ligands capable of stabilizing such reactive species, such 

as the pzEt
4lut ligand; which is substituted at the methyne carbon blocking a potential 

decomposition pathway. 
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Chapter 1: Breaking the Cycle:  Impact of Sterically-

Tailored Tetra(pyrazolyl)lutidines on the Self-Assembly 

of Silver(I) Complexes 

 

 

 

 Introduction.  There is current interest in the coordination chemistry of simple 

AE4 pentadentate ligands capable of occupying one axial (A) and four equatorial (E) 

positions about a given transition metal center1 considering that systems capable of 

mediating spectacular organic transformations such as alkane oxidation have been 

identified.2  For some of these studies, silver(I) complexes of pentadentate ligands could 

serve as useful reagents for metathesis reactions and possibly for oxidation chemistry.3   

For the former purpose, the chemistry of two silver(I) PY5-R derivatives (Figure 1.1) 

was recently reported by Huang and co-workers.4  Two complexes of the type 

 

 

  

 

 

[Ag(PY5 or PY5-OMe)](p-CH3C6H4SO3) were found by a combination of NMR studies, 

ESI(+) mass spectral data, to be involved in a solution equilibrium (right of Figure 1.1) 

where the limiting structures, the cyclic bimetallic dication or the κ3- monocation 

(depending on whether or not PPh3 was added prior to crystallization), were verified by 

 

Figure 1.1.  PY5-R Pentadentate Ligand Scaffolds and Representative Silver(I) 
complexes. 
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single crystal X-ray diffraction.  We recently communicated 5 an initial survey of first-

row transition metal coordination chemistry of the pentadentate ligand, α,α,α’,α’-

tetra(pyrazolyl)lutidine (pz4lut, Figure 1.2).  During the course of our continuing 

investigations, we found that some silver(I) complexes of pz4lut (with non-coordinating  

 

 

 

 

 

tetrafluoroborate or triflate counterions) exhibited surprisingly low solubility in polar 

solvents such as CH3OH and CH3CN, solvents in which most silver(I) complexes 

(including the PY5-R derivatives) are soluble.  This observation and the interesting 

results reported for PY5 derivatives prompted us to more carefully examine the 

properties of this silver(I) pz4lut complex and some alkyl-substituted derivatives.  Herein 

we report on an improved preparation of pz4lut, the syntheses of three new 

alkylpyrazolyl-substituted derivatives pz
4’

4lut (pz4’ = 4-methylpyrazolyl), pz*4lut (pz* = 

3,5-dimeththylpyrazolyl), and pz
DIP

4lut (pzDIP = 3,5-diisopropylpyrazolyl), as well as the 

properties of their silver(I) complexes.  Future reports will document the use of these 

ligands and silver complexes in transition metal chemistry. 

 Syntheses.  The pzR
4lut ligands were prepared using a variation of the CoCl2-

catalyzed Peterson rearrangement reactions6a-c between the appropriate 

di(pyrazolylR)sulfone and 2,6-pyridinedicarboxyaldehyde as in Scheme 1.1A.  We found 

that the use of an excess of di(pyrazolyl)sulfone (ca 3:1 mol ratio versus the di-aldehyde) 

 

Figure 1.2.  The pz4lut pentadentate ligand. 
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lead to a dramatic improvement in the yield of pz4lut (69%) compared to the previously 

reported stoichiometric (2:1) conditions (26%).5  Three other new ligands pz
4’

4lut, 

pz*4lut, and pz
DIP

4lut were prepared in good yields by adopting a similar strategy.  

However, it is noted that the sterically demanding pz
DIP

4lut derivative required an  

 

 

 

 

 

 

 

 

 

 

 

 

additional step for purification, as the product is typically contaminated with variable 

amounts of 2-(pzDIP
2CH)-6-[CH(O)]-C6H3N (mono-carboxaldehyde) that cannot be 

separated by crystallization or chromatographic separation.  Instead, the mono-

carboxaldehyde impurity is removed by condensation with 8-aminoquinoline to afford 

the much less soluble imine derivative which is then easily separated from the desired 

pz
DIP

4lut by column chromatography.  The reaction between AgBF4 and each of the 

pzR
4lut ligands (Scheme 1.1B) in THF proceeds to give high yields of the complexes, 

[Ag(pzR
4lut)](BF4) (1 for R= H; 2 for R= 4-Me, 3 for R = 3,5-Me2), as hygroscopic solids 

 

Scheme 1.1a,b.  Preparation of pzR
4lut ligands and AgBF4 coordination complexes. 
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indicated by elemental analyses.  Once dried under vacuum, 1-3 are insoluble in 

hydrocarbons, ethereal, and halogenated solvents.  The complexes, especially 1, exhibit 

surprisingly low solubilities in polar solvents such as acetone, CH3CN, and MeOH,  For 

instance, their molar solubilities in acetonitrile increase in the order 1 (ca. 7 mM) < 3 (ca. 

20 mM) < 2 (ca. 30 mM).  The complexes are soluble in highly polar solvents such as 

DMF or DMSO in which they are expected to be fully dissociated.  In contrast, 

[Ag(pz
DIP

4lut)](X) (X = BF4 (4), OTf (5)) are soluble in chlorinated solvents, acetone, 

CH3CN, and MeOH.  As with 1-3, complexes 4 and 5 are insoluble in hydrocarbons and 

ethereal solvents. 

 Solid State Structures.  Single crystals suitable for X-ray diffraction of the 

ligands pz4lut and pz*4lut were grown by layering acetone solutions with hexanes and 

allowing solvents to diffuse.  The structural details (included here for completeness and 

for future reference) are provided in Table 1.1a,b but will not be further discussed.  The 

silver complexes of the pz
4’

4lut and pz*4lut ligands (2·CH3CN and 3·CH3CN, 

respectively) were obtained by vapor diffusion of THF into dilute (ca. 10 mM) CH3CN 

solutions.  The silver complex of pz4lut is too insoluble to afford X-ray quality crystals 

by this methodology, rapid precipitation affords only microcrystalline powder even from 

dilute solutions (vide infra).  However, layering a methanol solution of AgBF4 onto a 

CH2Cl2 solution of pz4lut and allowing diffusion over 3d was sufficient to obtain high 

quality crystals of unsolvated [Ag(pz4lut)](BF4) (1).  Finally, we were not able to obtain 

high quality crystals of [Ag(pz
DIP

4lut)](BF4) (4) despite exhaustive attempts as either 

microcrystalline needles or, in one case with THF:CH3CN, tiny blocks were obtained 

where all crystals exhibited bifringence under polarized light and did not hold their 
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Compound pz4lut pz*4lut 1 

Formula  C19H17N9 C27H33N9 C38H34Ag2B2F8N18 

Formula weight  371.42 483.62 1132.19 

Crystal system  Orthorhombic Triclinic Monoclinic 

Space group  P 212121 P -1 P 21/c 

Temp. [K]  100(2) 100(2) 100(2) 

a [Å]  7.30230(10) 9.5143(2) 10.17430(10) 

b [Å]  16.4433(2) 9.6633(2) 13.7155(2) 

c [Å]  45.2477(6) 14.0229(2) 15.9977(2) 

α  [°] 90 88.9340(10) 90 

β  [°]  90 83.6710(10) 102.5170(10) 

γ  [°] 90 89.6990(10) 90 

V [Å3]  5433.07(12) 1281.17(4) 2179.35(5) 

Z  12 2 2 

Dcalcd. [gcm-3]  1.362 1.254 1.725 

λ [Å] (Cu Kα) 1.54178 1.54178 1.54178 

µ.[mm-1]  0.724 0.625 7.986 

Abs. Correction multi-scan multi-scan numerical 

F(000)  2328 516 1128 

θ range [°]  2.86 to 68.13 3.17 to 67.27 5.50 to 68.20 

Reflections 
collected  

46051 10663 18195 

Independent 
reflections  

5569 (Rint 
0.0260) 

4227 (Rint 
0.0230) 

3877 (Rint 0.0117) 

T_min/max 0.8808/0.9511 0.7410/0.9176 0.1203/0.3438 

Data/restraints/ 
parameters 

5569/0/757 4227/0/471 3877/0/307 

Goodness-of-fit 
on F2  

1.022 1.045 1.041 

R1/wR2[I>2σ(I)]a 0.0343/0.0809 0.0357/0.0867 0.0205/0.0520 

R1/wR2 (all 
data)a  

0.0400/0.0833 0.0425/0.0902 0.0206/0.0521 

a R1 = Σ||Fo| – |Fc||/Σ|Fo|  wR2 = [Σw(|Fo| – |Fc|)2/Σw|Fo|2]1/2.  

 

 

Table 1.1a.  Crystallographic data collection and structure 
refinement for pz4lut, pz*4lut, [Ag2(µ-pz4lut)2](BF4)2 (1). 
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Compound 2·2CH3CN 3·2CH3CN 5·CH3CN·0.5Et2O 

Formula  C50H56Ag2B2F8N20 C58H72Ag2B2F8N20 C48H68AgF3N10O3.5S 

Formula weight  1326.51 1438.72 1038.05 

Crystal system  Monoclinic Triclinic Monoclinic 

Space group  P 21/n P -1 Cc 

Temp. [K]  100(2) 100(2) 100(2) 

a [Å]  10.6907(2) 11.0965(4) 16.1224(6) 

b [Å]  20.7716(4) 12.8261(2) 29.4322(10) 

c [Å]  13.5676(3) 13.1776(2) 23.6489(8) 

α  [°] 90 118.0520(10) 90 

β  [°]  103.5190(10) 103.8740(10) 108.111(2) 

γ  [°] 90 92.6180(10) 90 

V [Å3]  2929.38(10) 1579.16(7) 10665.8(6) 

Z  2 1 8 

Dcalcd. [gcm-3]  1.504 1.513 1.293 

λ [Å] (Cu Kα) 1.54178 1.54178 1.54178 

µ.[mm-1]  6.039 5.648 3.887 

Abs. Correction numerical numerical multi-scan 

F(000)  1344 736 4352 

θ range [°]  3.97 to 67.99 3.97 to 67.06 3.00 to 68.11 

Reflections 
collected  

24254 13173 53558 

Independent 
reflections  

5164 (Rint 0.0122) 5190 (Rint 0.0181) 40241 (Rint 0.0546) 

T_min/max 0.1962/0.2826 0.2734/0.5755 0.4864/0.7462 

Data/restraints/ 
parameters 

5164/0/472 5190/0/550 40241/21/1270 

Goodness-of-fit 
on F2  

0.999 1.025 1.032 

R1/wR2[I>2σ(I)]a 0.0218/0.0598 0.0227/0.0577 0.0606/0.1545 

R1/wR2 (all 
data)a  

0.0219/0.0599 0.0234/0.0581 0.0658/0.1596 

a R1 = Σ||Fo| – |Fc||/Σ|Fo|  wR2 = [Σw(|Fo| – |Fc|)2/Σw|Fo|2]1/2.  

Table 1.1b.  Crystallographic data collection and structure refinement for 
(2·2CH3CN), and [Ag2(-pz*4lut)2](BF4)2·2CH3CN (3·2CH3CN) and 
[Ag(pzDIP

4lut)](OTf)·CH3CN·0.5Et2O (5·CH3CN·0.5Et2O). 
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integrity when removed from solution.  On the other hand, small twinned colorless 

prisms of [[Ag(pz
DIP

4lut)](OTf)·CH3CN·0.5Et2O (5·CH3CN·0.5Et2O) were obtained by 

vapor diffusion of Et2O into a CH3CN solution.  The small, twinned nature of the crystals 

and the disorder of solvents and anions contribute to the rather low quality of the 

structure, but the results are sufficient to establish the connectivity.  The structures of the 

cations in 1, 2·CH3CN and 3·CH3CN are provided in Figures 1.3 and 1.4 while that of 

5·CH3CN·0.5Et2O is found in Figure 1.5.  Selected intra- cation bond distances and 

angles are collected in Table 1.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3.  Views of the cyclic dications in [Ag(pz4lut)](BF4) (1), top; 
[Ag(pz

4’
4lut)](BF4) CH3CN, 2·CH3CN, middle; and [Ag(pz*4lut)](BF4) CH3CN, 

3·CH3CN, bottom;  Left, perspective view; Right, view normal to pyridyl plane. Each 
with thermal ellipsoids shown at 50% probability and with hydrogens removed for 
clarity. 
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Distances (Å) 1 2·CH3CN 3·CH3CN 5·CH3CN·0.5Et2O 

Ag1-N11 2.4284(15) 2.4121(15) 2.3855(17) 2.373 

Ag1-N21 2.2154(15) 2.2617(14) 2.3030(16) 2.238 

Ag1-N31 2.2139(16) 2.2485(15) 2.3002(16) 2.249 

Ag1-N41 2.4329(16) 2.4106(16) 2.3894(16) 2.356 

Ag· · ·Ag 4.767(2) 4.956(2) 5.391(2) 8.628, 8.610 

Angles (o)     

N11-Ag1-N21 85.76(5) 84.91(5) 79.92(6) 86.98 

N31-Ag1-N41 83.10(5) 85.09(5) 81.09(6) 86.14 

N11-Ag1-N41 103.32(5) 106.23(5) 114.27(5) 91.93 

N21-Ag1-N31 155.99(6) 151.77(5) 157.89(6) 155.23 

N11-Ag1-N31 107.45(5) 116.07(5) 113.39(6) 110.49 

N21-Ag1-N41 113.94(5) 107.98(5) 110.38(6) 111.49 

Torsions (o)     

Ag1N11-N12C1 18.3(2) 9.8(2) 0.2(2) 21.77 

Ag1N21-N22C1 -23.8(2) -28.8(2) -15.8(2) -49.83 

Ag1N31-N32C7 -16.6(2) -24.9 (2) -28.6(2) -44.39 

Ag1N41-N42C7 9.3(2) 12.2(2) 0.8(2) 20.99 

H1C1-C2N1 71.9(2) -64.8 -75.6(2) 67.95 

H7C7-C6N1 -70.8(2) 71.5 72.3 70.37 

 

 

 

 

As can be seen in Figure 1.3, complexes 1-3 each contain a cyclic bimetallic dication (of 

nearly ideal C2h symmetry) that is located on an inversion center.  In each dication, the 

two silver centers are well-separated (4.77 - 5.39 Å) by the bridging, chelating ligand.  

Each silver center possesses a slightly distorted see-saw geometry imposed by disparate 

Table 1.2.  Selected interatomic bond distances (Å), bond angles (o), and bond 
torsions (o) for [Ag(pz4lut)](BF4) (1), [Ag(pz

4’
4lut)](BF4) CH3CN, 2·CH3CN, 

[Ag(pz*4lut)](BF4) CH3CN, 3·CH3CN, and [Ag(pz
DIP

4lut)](OTf)·CH3CN·0.5Et2O 

(5·CH3CN·0.5Et2O). 
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bonding to pyrazolyl nitrogens that occupy either pseudo-axial or pseudo-equatorial 

positions (the central pyridyl remains unbound) about the metal.  Thus, there are two 

shorter, nearly collinear (pseudo-axial) Ag-N bonds, Ag1-N21 and Ag1-N31, that 

average 2.215 Å for 1, 2.244 Å for 2·CH3CN, and 2.256 Å for 3·CH3CN with N21-Ag1-

N31 of 156o for 1, 152o for 2·CH3CN, and 158o for 3·CH3CN.  The other two (pseudo-

equatorial) Ag-N bonds Ag-N11 and Ag1-N41 are longer (averaging 2.412 Å for 1, 2.374 

Å for 2·CH3CN, and 2.431 Å for 3·CH3CN) than the pseudo-axial bonds and the 

corresponding N11-Ag-N41 bond angles are more acute (103o for 1, 106o for 2·CH3CN, 

and 114o for 3·CH3CN) than the pseudoaxial N21-Ag1-N31 angle.  The average of the 

four Ag-N distances (2.334 Å for 1, 2.309 Å for 2·CH3CN, and 2.323 Å for 3·CH3CN) 

and ligand bite angles (corresponding to N11-Ag1-N21 and N31-Ag1-N41 which are 84o 

for 1, 85o for 2·CH3CN, and 80o for 3·CH3CN) are all in line with those found in the 

closely related dications of [Ag2(µ-m-[CH(pz)2]2C6H4)2](X)2 (X = BF4, PF6)
7 or [Ag2(µ-

[CH(pz)2]2(CH2)n)2]
2+ (n = 1-3)8 and indicate that the influence of anions, central linker, 

or, surprisingly, even the addition of methyl groups at the 3- and 5- positions of the 

pyrazolyls have little influence on the metal’s primary coordination geometry.  On the 

other hand, the added steric bulk of 3-methyl groups in 3·CH3CN relative to 1 causes van 

der Waals contacts with the central pyridyl rings (Figure 1.4) that distort the cyclic 

dication by bending the lutidyl methines C1 and C7 in 3·CH3CN on average 0.25 Å 

above the mean plane of the pyridyl rings (Figure 1.4, right).  For comparison, the C1 

and C7 atoms of 1 reside, on average, only 0.07 Å above the mean plane of the pyridyl.  

Similarly, the corresponding methine atoms in [Ag2(µ-m-[CH(pz)2]2C6H4)2]]
2+ are also 

displaced by 0.07 Å.7 
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Figure 1.4.  Space-filling representations of the crystal structures of cyclic 
dications of [Ag(pz4lut)](BF4), 1 (left), [Ag(pz*4lut)](BF4) CH3CN, 3·CH3CN 
(center), emphasizing the steric interactions involving the methyl and pyridyl 
groups of the latter.  An overlay (right) shows greater bending of lutidine methines 
(C1 and C7) above the mean pyridyl plane containing N1 in 3 (pink) versus 1 

(black). 

 

Figure 1.5.  Views of the cation in [Ag(pz
DIP

4lut)](OTf)·CH3CN·0.5Et2O 
(5·CH3CN·0.5Et2O).  Top:  ORTEP drawing (thermal ellipsoids shown at 50% 
probability and with hydrogens removed for clarity) of a fragment of one polymeric 
chain that propagates along a-axis.  Middle:  Space-filling representation of same 
fragment.  Bottom:  A view approximately down the a-axis emphasizing the 
coordination environment about silver. 
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 In light of the steric interactions in 3, it was anticipated that bulkier groups on the 

pyrazolyls would break the cyclic motif.  Indeed, in complex 5 the cation is no longer 

cyclic but is organized into polymeric chains that propagate along the crystallographic a- 

axis (Figure 1.5).  The ligand contains an unbound pyridyl as in 1-3 but, in contrast to the 

three latter complexes, the silver-bound dipyrazolylmethane units are located on opposite 

sides of the central pyridyl ring; the H1C1-C2N1 and H7C7-C6N1 torsion angles (Table 

1.2) have the same sign in 5 but have opposite signs in 1-3.  On first inspection, the 

distorted see-saw coordination environment about silver in 5 appears similar to those in 

1-3 in that the shorter pseudo-axial Ag-N bonds (avg. 2.244 Å), longer pseudo-equatorial 

Ag-N bonds (avg. 2.365 Å), and average Ag-N bond length of 2.304 Å (indicative of 

tetracoordinate silver9) are similar to those distances found in 1-3.  However, while the 

pseudo-axial N21-Ag-N31 angle of 155o is in line with those in 1-3, the pseudo-

equatorial N11a-Ag-N41 angle of 92o is more acute than those in 1-3.  Closer inspection 

of the silver coordination sphere shows that opposite to the N11a-Ag-N41 fragment, there 

are two rather short Ag· · ·H contacts Ag· · ·H26dC26 (2.603 Å, 138.94o) and 

Ag· · ·H36aC36 (2.788 Å, 134.26o) that arise from methyls of the 3-isopropylpyrazolyl 

groups.  An additional consequence of the moderate steric profiles of the isopropyl-

pyrazolyl substituents is that there is substantial twisting of pyrazolyl rings defined by the 

absolute value of the AgN-NCmethine torsion angle (Table 1.5).  Pyrazolyl ring twisting is 

a common distortion in metal poly(pyrazolyl)methane complexes10 and provides one 

measure of the ‘fit’ of these ligands to the metal (and vice versa); ideally this value 

should be zero.  For 5, the average pyrazolyl ring twist of 34o is much greater than 17o, 

19o, and 11o found in 1-3, respectively, where it is noted that in all cases the pseudo-axial 
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rings are more twisted than the pseudo-equatorial rings.  The greater pyrazolyl ring 

twisting in 5 likely arises from the several intra-chain van der Waals contacts involving 

the isopropyl substituents and neighboring pyridyl and pyrazolyl rings. 

 The highly organized supramolecular structures of 1-3 likely contribute to the low 

solubilities of the compounds.  That is the crystal packing of 1-3 is dominated by 

numerous non-covalent interactions including CH· · ·F weak hydrogen bonding involving 

the tetrafluoroborate and acidic hydrogens of pyridyl and pyrazolyl rings as well as 

various CH-π and π-π stacking interactions involving heterocyclic aromatic groups.  In 5, 

the isopropyl substituents protect aromatic groups from entering into extensive 

‘intermolecular’ non-covalent interactions (being limited only to CH···O weak hydrogen 

bonding).  The relative number of non-covalent interactions identified in each crystal 

parallels the observed trend in solubility (1 < 3 < 2 << 5).  It is important to note, 

however, that aside from 1, the structures obtained from single crystal X-ray structural 

determination may not be representative of the bulk crystalline solid.  For illustration, the 

X-ray powder diffraction patterns obtained from various samples of 1 and 3 are given in 

 

 

 

 

 

 

 

 

Figure 1.6.  X-Ray Powder diffraction patterns of 1 (left) and 3 (right) obtained for 
initially obtained precipitate of preparative reactions in THF (top, black) and for bulk 
crystalline samples (middle, red) after drying and grinding.  The calculated diffraction 
patterns based on single crystal diffraction experiments are also given (bottom, blue).  
For 3, reflections demarcated with asterices (*) are not found in the calculated pattern 
of the solvate 3·CH3CN. 
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Figure 1.6.  The structure of 1 obtained by single crystal diffraction did not contain any 

solvent in the lattice.  Accordingly, both the powder initially isolated from the reaction 

mixture (Fig 1.6, top left) in THF and the samples of ground vacuum-dried crystals 

grown by layering MeOH and CH2Cl2 solutions (Fig 1.6, middle  left) showed identical 

diffraction patterns that were consistent with the calculated pattern obtained from the 

single crystal structure determination.  On the other hand, the structure of 3 from single 

crystal X-ray diffraction showed it to be a CH3CN solvate, but elemental analysis of 

vacuum dried samples indicated that solvent is absent.  The diffraction patterns for as-

isolated (dried and ground) powder from the preparative reaction and that of a bulk 

sample after recrystallization (after vacuum-drying and grinding) were identical.  

Fittingly, neither pattern was consistent with that calculated for 3·CH3CN from the single 

crystal X-ray diffraction experiment.  Thus, desolvation does not result (in this case) in 

loss of crystallinity but does significantly alter the structure; similar observations hold for 

2 and 5, but desolvation causes loss of crystallinity in the latter case. 

 Solution Properties.  For complexes 1-5, the combined data from electrospray 

ionization mass spectrometric (ESI-MS) as well as variable temperature and diffusion 1H 

NMR spectroscopic measurements suggest that the solid state structures are not 

maintained in CH3CN solution.   Instead, monometallic cations are most likely the 

predominant species in the liquid temperature range of CH3CN.  ESI-MS data are thought 

to accurately reflect the solution structures of coordination complexes and coordination 

polymers of inert metals.11  For labile silver(I) complexes such as with polytopic 

di(pyrazolyl)methane ligands linked via various organic spacers7,8,10 and of related 

ligands9, ESI-MS data appear to provide reliable measure for distinguishing which 
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complexes will form metallacycles versus coordination polymers in the solid state.  For 

instance, it has been reported that those complexes that give cyclic dications in the solid 

state such as either [Ag2(µ-m-[CH(pz)2]2C6H4)2](X)2 (X = BF4, PF6)
7 or [Ag2(µ-

[CH(pz)2]2(CH2)n)2]
2+ (n = 1-3)8 give a weak peak in their ESI(+) mass spectrum with m/z 

corresponding to [Ag2L2(X)]+ (X = anion) whereas such a peak is absent in cases where 

the solid state structure is of a coordination polymer.  In the latter cases, very weak 

intensity peaks for higher order species such as [Ag3L2(X)2]
+ are sometimes observed.  In 

all previously reported cases, the ESI(+) spectrum contains peaks for [AgL2]+ and 

[AgL]+ (usually the base peak, the pattern is never for [Ag2L2]
2+ which is easily 

distinguishable from a monocation).  In many cases, peaks for [HL]+, [HL-pz]+, 

[AgL(CH3CN)]+, and [Ag(CH3CN)n]
+ (n = 1-4) are observed.  All of the above 

observations demonstrate that ambiguity still exists concerning whether the ESI-MS data 

of silver(I) complexes accurately reflects their solution structures and the current study 

further probes this issue.  The ESI(+)-MS data for 1-5 are in general agreement with 

findings for the related aryl- or alkylidene linked di(pyrazolyl)methane ligands but some 

important differences are also observed.  First, as in related cases, weak intensity peaks 

for [Ag2L2(X)]+ (X = BF4
-, and Cl- from spectrometer) were observed for 1 and 2 (for 

example, m/z = 1105 and 1157 in Figure 1.7) which showed cyclic dications in the solid 

state but were absent in the spectrum of 4 or 5.  Interestingly, the [Ag2L2(X)]+ peak in the 

spectrum of 3 was only observed at relatively high concentration even though the solid 

state structure was also of a cyclic dication.  Secondly, very weak intensity peaks for 

higher-order [Ag2L3(X)]+ and [Ag2L2(X)2]
+ ions were observed for 1 and 2 but not for 3-

5 which   
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would seem to indicate that 1 and 2 form coordination polymers to some small extent in 

either in solution or during the desolvation phase of the mass spectrometry experiment.  

The lack of higher order peaks for 5 (and 4) is thus rather surprising given the solid state 

coordination polymer structure.  It is also of interest that higher-order ions were not 

reported for the related [Ag2(µ-m-[CH(pz)2]2C6H4)2](X)2 (X = BF4, PF6)
7.  The spectrum 

for each 1-5 contains peaks for [AgL2]
+, [Ag2L(Cl)]+, [AgL]+, [HL]+, and [L-Hpz]+ 

where [AgL]+ is the base peak for 1 and 2 while [HL]+ is the base peak for 3-5.  The 

spectrum for each 1-3 contains a peak for [AgL2]
+, a species absent in the spectrum of 

either 4 or 5.  It is noteworthy that in none of the cases here does a peak corresponding to 

[AgL(CH3CN)]+ appear in the spectrum of 1-5, such a species was conjectured for PY5- 

 

Figure 1.7.  ESI(+) mass spectrum of [Ag(pz4,
4lut)][BF4], 2 in CH3CN.  
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R derivatives.  Regardless, the presence of peaks for multiple silver ions with different 

numbers of pz
R

4lut ligands in the corresponding spectrum of each 1-5 would seem to 

indicate significant dissociation occurs in solution, a conjecture that is supported by 

NMR spectral data. 

 Both pulsed field-gradient spin-echo12 (PFGSE) and variable temperature 1H 

NMR spectral data for CD3CN solutions of 1-5 indicate that these complexes are 

monomeric in CD3CN but they do not have static structures.  The PFGSE experiment 

permits the indirect evaluation of molecular size based on applying incrementally larger 

field gradients during the course of spectra acquisition where differing rates of diffusion 

cause a corresponding loss of signal intensity which can be used in conjunction with the 

Stokes-Einstein relation to obtain hydrodynamic radii.  Typically, this technique affords 

hydrodynamic radii that are within approximately 10-15 % of those radii found from X-

ray diffraction studies.  The results of PFGSE experiments of room temperature CD3CN 

solutions of ligands with Ga(acac)3 added as an internal reference and of individual silver 

complexes, 1-5, with [Ru(bpy)2(CH3CN)2](BF4)2 added as an internal reference are found 

in Table 1.3 and in Figure 1.8.  For the ligands described here, Table 1.3 shows the 

hydrodynamic radii to be slightly smaller but comparable to those radii found 

crystallographically or those found by using energy-minimized structures from 

equilibrium geometry calculations (HF 3-21G).  For complexes 1-3, the hydrodynamic 

radii more closely match calculated values for monomeric cations obtained from semi-

empirical (PM3) geometry optimization calculations rather than those values for dimeric 

dications obtained either from single-crystal X-ray diffraction experiments or by using 



17 

 

molecular modeling.  Similarly, the hydrodynamic radii for 4 and 5 are consistent with 

monomeric [AgL]+ species rather than with radii for [AgL2]
+, dimers such as [Ag2L2]

2+ or 

Compound D 
(x10-10 m2/s) 

rH 
(Å, PFGSE) 

radiusa 
(Å, X-ray) 

Radiusb 
(Å, HF 3-21G or 

PM3) 
solvent   ---  
Ga(acac)3 18.2 4.84 4.8413 --- 
pz4lut 15.7 5.57 6.20 6.23/5.34 
pz4’

4lut 14.9 5.77 --- 7.44/6.10 
pz*4lut 13.6 6.35 6.73 7.50/6.24 
pzDIP

4lut 12.9 8.21 --- 8.81/7.30 
[Ru(bpy)2(CH3CN)2]

2+ 22.5 5.72 5.7214 5.95 
1 17.8 5.76  

7.46  
6.10 monomer max.,  
7.40 dimer 

2 16.8 5.92 7.77  
3 15.4 6.29  

7.89 
7.32 monomer max., 
7.94 dimer 

4 12.4 8.08 --- 8.90 AgL, 9.2 AgL2 
5 12.3 8.88 7.61, 9.70, 10.14 

AgL, AgL2, Ag2L3 
8.90 AgL, 9.2 AgL2 

a. from largest measured distance, see text. 

 

 

 

 

 

 

 

 

 

even higher-order oligomers such as [Ag2L3]
2+ or [Ag3L4]

3+ (values that can be extracted from the 

crystal structure of 5 or from molecular modeling).   

 The appearance of the 1H NMR spectrum of each 1-5 in CD3CN under various 

conditions is also indicative of monomeric [AgL]+ ions in solution.  For instance, if the 

solid state structures of 1-3, and 5 were retained (and if 1-3 had ideal C2h symmetry) in 

Table 1.3.  Summary of from PFGSE 1H NMR experiments. 

 

Figure 1.8.  Resultrs from PFGSE 1H NMR Experiments. 
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solution, two sets of resonances for symmetrically distinct (pseudo-axial and pseudo-

equatorial) pyrazolyl group hydrogens would be expected but only one set is observed for 

each complex 1-5 at about ambient temperature or above.  For ‘intact’ cyclic dications of 

1-3, a minimum of two Ag-N(pz) bonds would need to be broken concomitant with C-C 

and C-N bond rotations for pseudo-axial and pseudo-equatorial pyrazolyl groups to give 

exchange-averaged signals, a highly improbable scenario relative to the processes 

available to monomeric cations (vide infra).  Moreover, addition of excess free ligand to 

the solutions of 1-5 gives only exchange-averaged signals rather than discrete resonances 

for each the free ligand and the corresponding silver complex.  In solutions of pure 1-5, 

the resonances for the metal-bound ligands are distinct from the respective “free” ligand 

resonances both by their downfield chemical shifts and by their temperature dependence.  

Over the liquid range of CD3CN, the number of resonances of 1 and 2 remains constant 

but the resonances for the meta- hydrogens of the pyridyl group experience the greatest 

change in both chemical shift and in line-broadening with temperature.  The resonances 

for the methine and the 5- hydrogens of the pyrazolyl groups change to a lesser degree 

than those for the meta- pyridyl hydrogens while the remaining resonances are only little 

affected by changes in temperature.  Although coalescence was not reached, line shape 

analyses based on line broadening of 5-pyrazolyl hydrogen resonances gave energy 

barriers for exchange of 10.8 ± 0.1 kcal/mol for 1 and 11.3 ± 0.1 kcal/mol for 2.  As 

exemplified by the spectra for 3 shown in Figure 1.8, similar observations hold for 

complexes 3-5 but the slow exchange limit is attained (calculated to possess identical 

activation barriers of 14.3 ± 0.1 kcal/mol for 3 and 14.4 ± 0.1 kcal/mol for 4 and 5) and 
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evidence for the formation of multiple species is found in each case.  That is at high 

temperature only one set of resonances are observed for ligand hydrogens.  In the case of  

 

 

 

 

 

 

 

 

 

cooling the solution of 3, the three single resonances for each type of pyrazolyl group 

hydrogens (4-H, 3-methyl and 5-methyl) broaden and decoalesce near room temperature 

to give six total resonances (two for each type) that sharpen as exchange is slowed by 

further lowering temperature.  Concomitantly, the pyridyl hydrogen resonances shift 

upfield, lose and regain coupling features, but do not split into multiple resonances on 

cooling.  However, new sets of ligand resonances appear from the baseline at about 263 

K and grow in intensity when the temperature is lowered to 233 K (right of Figure 1.8), 

behavior indicative of the equilibrium formation of multiple species at low temperature.  

Similar behavior is observed for samples of 4 and 5 but the low temperature spectra are 

much more complicated owing to the presence of a large number of multiplet resonances. 

 Disregarding the stereochemistry at the methine carbon atoms, there are thirteen 

possible coordination modes for the ligand in monomeric [AgL]+ complexes giving 

species that span only four different point groups (C2v, C2, Cs, and C1) as illustrated in 

 

Figure 1.9.  Left:  The downfield region of the 1H NMR spectrum of 3 in CD3CN 
acquired at different temperatures emphasizing both a dynamic process and the 
equilibrium formation of a new species at low temperature (blue circles).  Right:  
Magnified view of the 233 K spectrum. 
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Figure 1.10.  Thus, even before considering any dynamic behavior, there is intrinsic 

ambiguity regarding possible solution structures based solely on the number and types of 

resonances appearing in the NMR spectrum.  After contemplating the solution NMR 

behavior and mass spectral data of 1-5 and of related silver complexes, we favor a 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.10.  Cartoon depictions of coordination modes of ligands in monomeric 
[AgL]+ complexes. 

 

Figure 1.11.  Proposed equilibria controlling self-assembly and ligand exchange. 
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scenario where at high temperature, rapid interchange between κ1- and κ2- bound ligands 

(right half of Figure 1.10) affords exchange-averaged pyrazolyl group resonances in the 

dynamic solution process.  In this situation, the alkyl-substitution on the pyrazolyls 

contribute to increasing the activation barrier of such a process by both inductive 

electronic effects (by strengthening the Ag-N bond) and by restricting C-C and C-N bond 

rotations involving pyrazolyls and the pyridyl groups around methine carbons via steric 

interactions (we are neglecting any added effects from silver-bound solvent molecules).  

At modestly low temperature, the Cs symmetric κ2- structure (second from the bottom of 

Figure 1.10) would necessarily predominate giving two sets of pyrazolyl signals.  

Alternative possibilities such as rapid interchange between κ5- and κ4- bound ligands (left 

half of Figure 1.10) cannot be excluded but are disfavored considering the preference of 

silver(I) for low coordination numbers (typically ≤ 4), the relatively high activation 

energy anticipated for Ag-N(pyridyl) bond dissociation and rotation (while maintaining 

Ag-N(pz) bonds) compared to the low energy of the observed activation barriers (10-14 

kcal/mol), and because these alternatives also fail to account for either the facile ligand 

exchange process or the disparity in self-assembly with pyrazolyl substitution (Figure 

1.11).  At very low temperature the newly observed peaks in 3-5 could be accounted for 

by the formation of either cyclic or linear oligomers (as in the top of Figure 1.11) or, less 

satisfactorily from a self-assembly point of view, by the preferential formation of any of 

the C1-symmetric (κ3, κ2, or κ1) monomeric cations. 

 Summary and Conclusions.  Three new alkyl pyrazole-substituted derivatives of 

the ligand α,α,α’,α’-tetra(pyrazolyl)lutidine, (pz4lut) been synthesized: pz
4,

4lut, pz
*

4lut 

and pz
DIP

4lut along with their silver(I) complexes in order to study the effects of alkyl 
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substitution along the pyrazole backbone on the coordination chemistry of silver(I) salts.  

In the solid state silver(I) complexes of pz4lut, pz4,
4lut, pz*

4lut all give cyclic dications 

where each ligand binds the silver through the pyrazolyl nitrogens similar to 

tetra(pyridyl)lutidine PY5-R and tetra(pyrazolyl)-m-xylene ligands.  While silver(I) 

complexes of the ligand pzDIP
4lut give structures consisting of infinite polymer chains, 

which can most likely be attributed to the unfavorable steric interactions between the 3-

isopropyl groups and the central pyridyl ring in the cyclic structure. 

 However, solution studies of the silver complexes show that this cyclic structure 

is not mainted and the silver complexes become monomeric upon dissolution; concluded 

on the basis of ESI(+) mass spec, variable tempearture 1H NMR and diffusion (PFGSE) 

NMR experiments.  While some uncertainty remains in assigning the absolute 

coordination mode of the silver complexes in solution, owing to the fact that there are a 

limited number and type of resonances appearing the NMR spectra, we are able to rule 

out certain possibilities based on energy constraints as well as the favored coordination 

number for silver(I) complexes (≤ 4).  As such, we favor a process in which there is rapid 

interchange between the κ1 and κ2 modes at high temperature giving rise to the exchange 

averaged pyrazolyl resonances that are observed, while the κ2 mode is the dominant form 

at lower temperatures and the formation of cyclic or linear oligomers gives rise to the 

new peaks observed. 
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Experimental 

 General Considerations.  The compound 2,6-pyridinedicarboxaldehyde was 

prepared according to the literature procedure.ref  While the preparation of pz4lut has 

been described previously,ref an improved preparation is described below along with 

additional characterization including the single-crystal X-ray structural determination.  

All other chemicals were commercially available and were used as received.  Solvents 

were dried by conventional methods and distilled prior to use.  The syntheses of the silver 

complexes were carried out under a nitrogen atmosphere using standard Schlenk 

techniques and in foil-covered apparatus to protect AgBF4 or AgOTf from light.  After 

complex formation, no special precautions to avoid light or air were taken. 

 Midwest MicroLab, LLC, Indianapolis, Indiana 45250, performed all elemental 

analyses. IR spectra were recorded for samples as KBr pellets in the 4000-500 cm-1 

region on a Nicolet Magna-IR 560 spectrometer.  1H and 13C NMR spectra were recorded 

on a Varian 400 MHz spectrometer.  Chemical shifts were referenced to solvent 

resonances at δH 7.26 and δC 77.23 for CDCl3, δH 1.96 and δC 118.9 for CD3CN.  Details 

regarding diffusion NMR experiments are found in the Supporting Information.  

Absorption measurements were recorded on an Agilent 8453 spectrometer.  Melting point 

determinations were made on samples contained in glass capillaries using an 

Electrothermal 9100 apparatus and are uncorrected. Mass spectrometric measurements 

recorded in ESI(+) mode were obtained on a Micromass Q-TOF spectrometer whereas 

those performed by using direct-probe analyses were made on a VG 70S instrument.  For 

the ESI(+) experiments formic acid (approximately 0.1 % v/v) was added to the mobile 
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phase (CH3CN).  X-ray powder diffraction measurements were performed with a Rigaku 

MiniFlex II instrument using Cu Kα (1.54178 Å) radiation. 

 General procedure for the syntheses of pz
R

4lut ligands.  A solution of a given 

pyrazole, HpzR (6.1 equiv.) in THF (ca. 0.3-0.7 M) was slowly added to a suspension of 

NaH (6 equiv.) in THF at a rate to control hydrogen evolution.  The resulting solution 

was stirred magnetically at room temperature for 30 min, then neat thionyl chloride (3 

equiv.) was slowly added by syringe (dropwise, to control the slightly exothermic 

reaction) immediately causing the formation of copius colorless precipitate.  After the 

mixture had been stirred at room temperature for 1 h, CoCl2 (60 mol % of 2,6-

pyridinedicarboxaldehyde) and 2,6-pyridinedicarboxaldehyde (1 equiv.) were 

sequentially added as solids under a nitrogen blanket.  The reaction flask was fitted with a 

condenser and the mixture was heated at reflux 40 h under nitrogen.  After cooling to 

room temperature, 50 mL CH2Cl2 and 100 mL of 4 wt% NaHCO3 and 1 wt% EDTA in 

water were added to the mixture.  The layers were separated and the aqueous phase was 

washed with three 50 mL portions of CH2Cl2. The combined organic layers were washed 

with two 100 mL portions of water, dried over MgSO4, and filtered to give viscous pale 

orange or brown oils after removing solvent by rotary evaporation.  The desired product 

was separated from the oil residue by column chromatography either on neutral alumina 

or on silica gel, as indicated below. 

 pz4lut.  The reaction between 3.00 g (22.2 mmol) 2,6-pyridinedicarboxyaldehyde, 

1.73 g (13.3 mmol) CoCl2, and 66.6 mmol O=S(pz)2 in 400 mL THF (formed in-situ 

from 9.23 g (135 mmol) pyrazole in 300 mL THF, 3.20 g (133 mmol) NaH in 100 mL 

THF, and 4.84 mL (7.92 g, 66.6 mmol) thionyl chloride) afforded 5.67 g (69 %) of pz4lut 
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as a colorless solid after aqueous work-up and column chromatography of the oily 

product mixture on neutral alumina using Et2O as the eluent and collecting the second 

band (Rf = 0.68 on a Al2O3 plate).  Crystals suitable for X-ray diffraction were obtained 

by layering an acetone solution with hexanes and allowing solvents to diffuse 2d.  Both 

the powder and crystals had characterization data consistent with those previously 

reported.ref  Mp, 119-120°C.  1H NMR (CD3CN, 293 K): δ 7.87 (t, J = 8 Hz, 1H, H4-py), 

7.83 (s, 2H, CH(pz)2), 7.68 (d, J = 2Hz, 4H, H3-pz), 7.58 (d, J = 1 Hz, 4H, H5-pz), 7.21 

(d, J = 8 Hz, 2H, H3,5-py), 6.35 (dd, J = 1; 2Hz, 4H, H4-pz).  UV-Vis (CH3CN) λmax, nm 

(ε, M-1, cm-1):  228 (33,000), 265 (8,500). 

 pz
4’

4lut.  The crude product mixture obtained from a reaction between 0.459 g 

(3.40 mmol) 2,6-pyridinedicarboxyaldehyde, 0.256 g (2.04 mmol) CoCl2, and 6.80 mmol 

O=S(pz4’)2 (formed in-situ from 1.11 g (13.5 mmol) 4-methylpyrazole in 50 mL THF, 

0.325 g (13.5 mmol) NaH in 50 mL THF, and 0.49 mL (0.81 g, 6.8 mmol) thionyl 

chloride) was subject to column chromatography on neutral alumina.  First, elution with 

Et2O removed an unidentified impurity, then elution with ethyl acetate (Rf = 0.89, Al2O3 

plate) afforded 1.05 g (72 %) of pz
4’

4lut as a colorless solid after removing solvent, 

triturating the oily fraction with Et2O, and drying under vacuum.  Mp, 145-148 oC.  Anal. 

Calcd. (obsd.) for C23H25N9: C, 64.62 (64.28); H, 5.89 (6.01); N, 29.49 (29.15).  1H NMR 

(CDCl3) δH 7.56 (t, J = 8 Hz, 1H, H4-py), 7.36 (s, 2H, CH(pz4’)2), 7.21 (s, 4H, H3-pz4’), 

7.11 (s, 4H, H5-pz4’), 6.95 (d, J = 8 Hz, 2H, H3,5-py), 1.86 (s, 12H, CH3).  1H NMR 

(CD3CN, 293 K) δH 7.82 (t, J = 8 Hz, 1H, H4-py), 7.61 (s, 2H, CH(pz4’)2), 7.42 (s, 4H, 

H3-pz4’), 7.35 (s, 4H, H5-pz4’), 7.18 (d, J = 8 Hz, 2H, H3,5-py), 2.03 (s, 12H, CH3). 
13C 
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NMR (CDCl3) δC 154.8, 141.4, 138.6, 128.4, 122.8, 117.2, 78.1, 9.1.  UV-Vis (CH3CN) 

λmax, nm (ε, M-1, cm-1):  228 (33,000), 265 (8,500). 

 pz*4lut.  The crude product mixture obtained from a reaction between 3.40 g 

(25.1 mmol) 2,6-pyridinedicarboxyaldehyde, 0.530 g (4.10 mmol) CoCl2 and 75.4 mmol 

O=S(pz*)2 (formed in-situ from 14.22 g (147.9 mmol) 3,5-dimethylpyrazole in 200 mL 

THF, 3.55 g (147.9 mmol) NaH in 200 mL THF, and 5.48 mL (8.97 g, 75.4 mmol) 

thionyl chloride) was subject to column chromatography on neutral alumina.  First, 

elution with Et2O removed an unidentified impurity, then elution with ethyl acetate (Rf = 

0.62, Al2O3 plate) afforded 5.44 g (45 %) of pz
*

4lut as a colorless solid after removing 

solvent, triturating the oily fraction with Et2O, and drying under vacuum.  Mp, 156-

157oC.  Anal. Calcd. (obsd.) for C27H33N9: C, 67.06 (67.27); H, 6.88 (7.02); N, 26.07 

(25.88). 1H NMR (CDCl3) δH 7.65 (t, J = 8 Hz, 1H, H4-py), 7.41 (s, 2H, CH(pz*)2), 7.00 

(d, J = 8 Hz, 2H, H3,5-py), 5.78 (s, 4H, H4-pz*), 2.15 (s, 12H, CH3), 2.05 (s, 12H, CH3).  

1H NMR (CD3CN, 293 K) δH 7.75 (t, J = 8 Hz, 1H, H4-py), 7.46 (s, 2H, CH(pz*)2), 7.02 

(d, J = 8 Hz, 2H, H3,5-py), 5.87 (s, 4H, H4-pz*), 2.10 (s, 12H, CH3), 2.07 (s, 12H, CH3).  

13C NMR (CDCl3) δC 155.1, 148.3, 141.0, 137.7, 122.2, 106.7, 74.5, 13.8, 11.4.  UV-Vis 

(CH3CN) λmax, nm (ε, M-1 cm-1): 228 (34,000), 267 (10,400). 

 pz
DIP

4lut.  After aqueous work-up of the reaction between 1.08 g (25.1 mmol) 

2,6-pyridinedicarboxyaldehyde, 1.037 g (7.99 mmol) CoCl2 and O=S(pzDIP)2 (formed in-

situ from 4.98 g (32.7 mmol) 3,5-diisopropylpyrazole in 200 mL THF, 0.790 g (32.7 

mmol) NaH in 200 mL THF, and 1.13 mL (1.90 g, 15.9 mmol) thionyl chloride), 5.79 g 

of brown oil was obtained.  The 1H NMR spectrum of the brown oil was consistent with a 

mixture of two main species, pz
DIP

4lut (90 %) and 2-(pzDIP
2CH)-6-[CH(O)]-C6H3N (10 
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%) (see Supporting Information) whose composition is determined using the relative 

integrations of resonances in the H4-pz region of the spectrum at δH 5.86 (desired 

product) and δH 5.95 (mono-carboxaldehyde).  The comparable high solubilities of 

components prevented successful separation by column chromatography on either silica 

gel or alumina, therefore separation was achieved as follows:  A 5.76 g (0.85 mmol) 

sample of the product mixture and 0.123 g (0.85 mmol) 1,8-aminoquinoline in 15 mL 

methanol was heated at reflux 1 h.  This second product mixture was adsorbed onto a 

short pad of silica gel where elution with 4:1 hexanes:ethyl acetate (Rf = 0.64 SiO2) gave 

3.85 g (68 % overall yield based on 2,6-pyridinedicarboxyaldehyde) of pz
DIP

4lut as a tan 

solid after removing solvent, trituration with Et2O, and drying under vacuum.  Mp, 79-81 

oC.  Anal. Calcd. (obsd.) for C43H65N9: C, 72.94 (72.86); H, 9.25 (9.11); N, 17.80 (17.89). 

1H NMR (CDCl3) δH 7.66 (t, J = 8 Hz, 1H, H4-py), 7.63 (s, 2H, CH(pzDIP)2), 7.02 (d, J = 

8 Hz, 2H, H3,5-py), 5.86 (s, 4H, H4- pzDIP), 3.11 (sept, J = 7 Hz, 1H,  iPrCH), 2.87 (sept, J 

= 7 Hz, 1H, iPrCH), 1.16 (d, J = 7 Hz, 24H, iPrCH3), 0.91 (d, J = 7 Hz, 24 H, iPrCH3).  
1H 

NMR (CD3CN, 293 K) δH 7.76 (t, J = 8 Hz, 1H, H4-py), 7.57 (s, 2H, CH(pzDIP)2), 7.06 (d, 

J = 8 Hz, 2H, H3,5-py), 6.02 (s, 4H, H4- pzDIP), 3.10 (sept, J = 7 Hz, 1H, iPrCH), 2.81 

(sept, J = 7 Hz, 1H, iPrCH), 1.17 (d, J = 7 Hz, 24H, iPrCH3), 1.03 (d, J = 7 Hz, 12 H, 

iPrCH3), 0.97 (d, J = 7 Hz, 12 H, iPrCH3).  
13C NMR (CDCl3) δC 159.2, 156.5, 152.9, 

138.6, 123.4, 100.8, 75.5, 30.8, 28.7, 26.3, 23.7  UV-Vis (CH3CN) λmax, nm (ε, M-1 cm-1), 

205 (31,040), 221 (23,618sh), 265 (4941). 

 [Ag(pz4lut)](BF4), 1.  A solution of 0.500 g (1.35 mmol) pz4lut in 20 mL THF 

was added to a solution of 0.262 g (1.35 mmol) AgBF4 in 15 mL THF causing immediate 

precipitation.  After the cloudy suspension had been stirred 4h, the precipitate was 



28 

 

isolated by cannula filtration, was washed with three successive 10 mL portions of Et2O, 

and was dried under vacuum 12 h to give 0.663 g (87 %) 1 as a colorless powder.  Mp, 

210–214 oC (dec.)  Anal. Calcd. (obsd.) for C19H17N9AgBF4: C, 40.31 (40.50); H, 3.03 

(3.16); N, 22.27 (22.38).  IR (KBr, cm-1), ν(BF4
-) regions:  1084, 1063, 775, 753.  1H 

NMR (CD3CN, 293 K) δH  7.94 (t, J = 8 Hz, 1H, H4-py), 7.85 (s, 2H, CH(pz)2), 7.84 (d, J 

= 2 Hz, 4H, H5-pz), 7.61 (d, J = 1 Hz, 4 H, H3-pz), 7.41 (d, J = 8 Hz, 2H, H3,5-py), 6.36 

(dd, J = 2, 1 Hz, 4H, H4-pz), 2.16 (s, 26H, CH3CN).  1H NMR (CD3CN, 233 K) δH 7.934 

(t, J = 8 Hz, 1H, H4-py), 7.927 (d, J = 2 Hz, 4H, H5-pz), 7.85 (br s, 2H, CH(pz)2), 7.57, 

(d, J = 1 Hz, 4H, H3-pz), 7.29 (br s, 2H, H3,5-py), 6.36 (dd, J = 2,1 Hz, 4H, H4-pz), 2.39 

(s, 26H, CH3CN).  UV-Vis (CH3CN) λmax, nm (ε, M-1 cm-1): 218 (35,500), 263 (7,200).  

HRMS [ESI(+), m/z]  Calcd. (Obs) for C38H34N18Ag2BF4, [Ag2(pz4lut = L)2(BF4)]
+, 

1045.1351 (1045.1318).  LRMS [ESI(+), m/z] (Int.) [assign.]:  1282 (0.1) 

[Ag3L2(BF4)2(CH3CN)]+, 1137 (1) [Ag3L2(Cl)2]
+, 1045 (0.1) [Ag2L2(BF4)]

+, 993 (3) 

[Ag2L2(Cl)]+, 849 (17) [AgL2]
+, 622 (24) [Ag2L(Cl)]+, 480 (100) [AgL]+, 394 (31) 

[NaL]+, 372 (35) [HL]+, 304 (26) [L-Hpz]+.  Colorless crystals of unsolvated 

[Ag(pz4lut)](BF4) suitable for X-ray were grown by layering a methanol solution of 

AgBF4 onto a CH2Cl2 solution of the ligand and allowing solvents to diffuse 3 d. 

 [Ag(pz
4’

4lut)](BF4), 2.  A solution of 0.531 g (1.24 mmol) pz
4’

4lut in 10 mL THF 

was added to a solution of 0.241 g (1.24mmol) AgBF4 in 10 mL THF causing immediate 

precipitation.  After the mixture had been stirred 4h, the precipitate was isolated by 

cannula filtration, was washed with three successive 10 mL portions of Et2O, and was 

dried under vacuum 12 h to give 0.648 g (84%) 2 as a colorless powder.  Mp, 189–195 oC 

(dec. to a black solid).  Anal. Calcd. (obsd.) for C23H25N9AgBF4: C, 44.40 (44.07); H, 
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4.05 (4.04); N, 20.26 (19.94).  IR (KBr, cm-1) ν(BF4
-) regions: 1084, 778.  1H NMR 

(CD3CN, 293 K, see text) δH 7.94 (t, J = 8 Hz, 2H, H4-py), 7.68 (br s, 12H, CH(pz4’)2 and 

H3-pz4’), 7.40 (d, J = 8 Hz, 4H, H3,5-py), 7.39, (s, 8H, H5-pz), 2.16 (s, 8H, CH3CN), 2.04 

(s, 24H, pzCH3).  
1H NMR (CD3CN, 233 K) δH 7.97 (t, J = 8 Hz, 2H, H4-py), 7.75 (br s, 

8H, H3-pz4’), 7.62(br s, 4H, CH(pz4’)2), 7.26, (s, 8H, H5-pz), 7.09 (br s, 4H, H3,5-py), 2.38 

(s, 8H, CH3CN), 2.03 (s, 24H, pzCH3).  UV-Vis (CH3CN) λmax, nm (ε, M-1 cm-1): 227 

(36,300), 264 (9,300).  HRMS [ESI(+), m/z]  Calcd. (Obs) for C46H50N18Ag2BF4, 

[Ag2(pz4’
4lut = L)2(BF4)]

+, 1155.2605 (1155.2616).  LRMS [ESI(+), m/z] (Int.) [assign.]:  

1390 (0.5) [Ag3L2(BF4)2(CH3CN)]+, 1245 (1) [Ag3L2(Cl)2]
+, 1157 (6) [Ag2L2(BF4)]

+, 

1105 (4) [Ag2L2(Cl)]+, 961 (33) [AgL2]
+, 678 (22) [Ag2L(Cl)]+, 536 (100) [AgL]+, 428 

(22) [HL]+, 346 (13) [L-Hpz4’]+.  Colorless crystals were obtained by vapor diffusion of 

THF into a concentrated CH3CN solution. 

 [Ag(pz*4lut)](BF4), 3.  A solution of 0.506 g (1.05 mmol) pz*4lut in 10 mL THF 

was added to a solution of 0.208 g (1.07 mmol) AgBF4 in 10 mL THF causing immediate 

precipitation.  After the mixture had been stirred 4h, the precipitate was isolated by 

cannula filtration, was washed with three successive 10 mL portions of Et2O, and was 

dried under vacuum 12 h to give 0.536 g (85 %) 3 as a colorless powder.  Mp, 242 – 245 

oC (decomp.).  Anal. Calcd. (obsd.) for C27H33N9AgBF4: C, 47.81 (47.66); H, 4.90 (4.81); 

N, 18.58 (18.53).  IR (KBr, cm-1) ν(BF4
-) regions: 1084, 783.  1H NMR (CD3CN, 233 K, 

see text) δH 7.75 (t, J = 8 Hz, 2H, H4-py), 7.27 (s, 4H, CH(pz*)2), 6.79 (d, J = 8 Hz, 4H, 

H3,5-py), 6.04 (s, 4H, H4-pz*), 5.81 (s, 4H, H4-pz*), 2.41 (s, 36 H, CH3CN), 2.37 (s, 12H, 

pz*CH3), 2.30 (s, 12H, pz*CH3), 1.81 (s, 12H, pz*CH3), 1.62 (s, 12H, pz*CH3).  
1H NMR 

(CD3CN, 293 K) δH 7.77 (br t, J = 8 Hz, 2H, H4-py), 7.28 (s, 4H, CH(pz*)2), 6.82 (br s, 
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4H, H3,5-py), 6.02 (br, 4H, H4-pz*), 5.84 (br, 4H, H4-pz*), 2.34 (br, 24H, pz*CH3), 2.18 (s, 

36H, CH3CN), 1.84 (br, 24H, pz*CH3)  
1H NMR (CD3CN, 353 K) δH  7.83 (t, J = 8 Hz, 

H4-py), 7.34 (s, 4H, CH(pz*)2), 7.02 (d, J = 8 Hz, 4H, H3,5-py), 5.97 (s, 8H, H4-pz*), 2.34 

(s, 24H, pz*CH3), 1.97 (s, 36H, CH3CN), 1.92 (s, 24H, pz*CH3).  UV-Vis (CH3CN) λmax, 

nm (ε, M-1, cm-1): 216 (39,400), 266 (6,600).  HRMS [ESI(+), m/z] Calcd. (Obs) for 

C54H66N18Ag2BF4, [Ag2(pz*4lut = L)2(BF4)]
+, 1267.3859 (1267.3835).  LRMS [ESI(+), 

m/z] (Int.) [assign.]:  1267 (0.1) [Ag2L2(BF4)]
+, 1215 (0.4) [Ag2L2(Cl)]+, 1076 (6) 

[AgL2]
+, 734 (8) [Ag2L(Cl)]+, 592 (38) [AgL]+, 546 (7) [Na(CH3CN)L]+, 506 (40) 

[NaL]+, 484 (100) [HL]+, 388 (7) [L-Hpz*]+.  Colorless crystals were obtained by vapor 

diffusion of THF into a concentrated CH3CN solution. 

 [Ag(pz
DIP

4lut)](BF4), 4.  A solution of 0.518 g (0.73 mmol) pz
DIP

4lut in 10 mL 

THF was added to a solution of 0.142 g (0.73 mmol) AgBF4 in 10 mL THF giving a 

cloudy solution.  The flask was covered in foil and allowed to stir overnight forming a 

small amount of precipitate.  The solution was filtered and was concentrated to give an 

oily solid residue which was triturated with Et2O and dried under vacuum to give 0.475 g 

(72 %) of 4 as a colorless powder.  Mp, 165 – 170 oC (decomp.).  Anal. Calcd. (obsd.) for 

C43H65N9AgBF4: C, 57.21 (56.91); H, 7.25 (7.45); N, 13.96 (13.78).  IR (KBr, cm-1) 

ν(BF4
-) regions: 1083, 708.  1H NMR (CD3CN, 233 K, see text) δH 7.76 (br s 2H, H4-py), 

7.59 (s, 8H, CH(pzDIP)2), 6.99 (br s 4H, H3,5-py), 6.17 (m, 8H), 2.99 (br d, 16H, iPrCH), 

2.51 (t, J = 1 Hz, 48H, ipr), 0.68  (br m, 48H, iPrCH3). 
1H NMR (CD3CN, 293 K) δH 7.78 

(br t, J = 8 Hz, 2H, H4-py), 7.14 (s, 4H, CH(pzDIP)2), 6.33 (br s, 4H, H3,5-py), 6.11 (br s, 

8H, H4- pzDIP), 2.98 (br s, 8H, iPrCH), 2.21 (s, 48H, iPrCH3), 0.81 (br m, 48H, iPrCH3).  

1H NMR (CD3CN, 353 K) δH  7.83 (t, J = 8 Hz, 2H, H4-py), 7.42 (s, 4H, CH(pzDIP)2), 
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6.91 (br s, 4H, H3,5-py), 6.13 (s, 8H, H4-pz), 3.08 (sept, J = 7 Hz, 8H iPrCH), 2.66 (br s, 

8H, iPrCH), 2.00 (s, 24H, iPrCH3), 1.18 (d, J = 7 Hz, 12H, iPrCH3), 1.11 (d, J = 7 Hz, 

12H, iPrCH3).  UV-Vis (CH3CN) λmax, nm (ε, M-1, cm-1): 215 (25,706), 267 (4,948).  

[ESI(+), m/z] Calcd. (Obs) for C43H65N9AgBF4, [Ag(pzDIP
4lut = L)(BF4)]

+,  LRMS 

[ESI(+), m/z] (Int.) [assign.]:  958 (0.7) [Ag2L(Cl)]+, 814 (21) [AgL]+, 730 (10) [NaL]+, 

708 (100) [L]+, 556 (10) [L-Hpz3,5-diiso]+, 355 (17) [Na(CH3CN)L]+, 279 (21) [NaL]+, 

189 (0.4) [HpzDIP(Cl)]+, 153 (7) [HpzDIP]+. 

 [Ag(pz
DIP

4lut)](SO3CF3), 5.  A solution of 0.200 g (0.28 mmol) pz
DIP

4lut in 10 

mL THF was added to a solution of 0.72 g (0.28 mmol) AgSO3CF3 in 10 mL THF giving 

a cloudy solution.  The flask was covered in foil and allowed to stir overnight forming a 

large amount of white precipitate.  The precipitate was collected by filtration, was 

washed with Et2O (3 x 10 mL), and was dried under vacuum to give 0.195 g (72 %) of 5 

as a colorless powder.  Mp, 204 – 208 oC (decomp.).  Anal. Calcd. (obsd.) for 

C44H65N9AgF3SO3: C, 53.75 (54.04); H, 6.82 (6.82); N, 13.12 (12.89).  IR (KBr, cm-1) 

ν(SO3CF3
-) regions: ν[SO3(E)]: 1267 cm-1; ν[SO3(A1)]: 1032 cm-1; ν[CF3(A1)]: 1259 cm-

1; [CF3(E)]: 1153 cm-1.  1H NMR (CD3CN, 233 K, see text) δH 7.77 (br s, 2H), 6.99 (br s, 

4H), 6.17 (br m, 10H), 2.94 (br d, 8H), 2.44 (s, 48H, iPrCH3), 0.75 (br m, 48H, iPrCH3).  

1H NMR (CD3CN, 293 K) δH 7.80 (t, J = 7 Hz, 2H, H4-py), 7.11 (s, 4H, CH(pzDIP)2), 

6.34 (br s, 4H, H3,5-py), 6.13 (br, 8H, H4-pzDIP), 2.96 (br, 4H, H4-pzDIP), 2.20 (br, 24H, 

iPrCH3), 0.80 (br m, 2H iPrCH3).  
1H NMR (CD3CN, 353 K) δH  7.83 (t, J = 8 Hz, 2H, 

H4-py), 7.37 (s, 4H, CH(pzDIP)2), 6.80 (d, J = 8 Hz, 4H, H3,5-py), 6.13 (s, 8H, H4- pzDIP), 

3.06 (sept, J = 7 Hz, 8H, iPrCH), 2.56 (br s, 8H), 2.12 (s, 48H, iPrCH3), 1.19 (d, J = 7 

Hz, 24H, iPrCH3), 1.10 (d, J = 7 Hz, 24 H, iPrCH3).  UV-Vis (CH3CN) λmax, nm (ε, M-1, 
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cm-1), 214 (33 476), 265 (5 719).  HRMS [ESI(+), m/z] Calcd. (Obs) for C43H65N9Ag, 

[Ag(pzDIP
4lut = L)]+, 814.4414 (814.4430).  LRMS [ESI(+), m/z] (Int.) [assign.]:  816 

(0.8) [AgL]+, 731 (0.3) [AgHL]+, 708 (100) [L]+, 556 (0.8) [L-HpzDIP]+, 519 (0.4) 

[AgL]+, 355 (23) [Na(CH3CN)L]+, 279 (29) [NaL]+, 153 (0.9) [HpzDIP]+. Colorless 

crystals were obtained by vapor diffusion of THF into a concentrated CH3CN solution. 
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Chapter 2:  First Row Transition Metal 

Complexes of α, α, α′, αʹ -Tetra(pyrazolyl)lutidine. 

 

 

  

 Introduction.  There has been recent interest in tetrapodal pentadentate ligands 

that bind metals in an MAE4 (M = Metal; A = Axial; E = Equitorial) fashion for studies 

in fundamental coordination chemistry especially those involving modeling of the 

reactivity of biologically important species such as hemes and cobalamins.1  The 

continued development of pentadentate ligands has led to the discovery of interesting 

new nonheme metal complexes capable of facilitating many spectacular organic 

transformations, highlighted by the oxidation of alkanes.15  Pentadentate ligands of 

particular relevance to the current study are those derived from tetrakis(2-pyridyl)-m-

lutidine (Figure 2.1 below).  Numerous coordination modes have been observed for 

each,16 with the pentadentate mode being more extensively structurally authenticated for 

PY5
17 than for other PY5-R derivatives.18   Transition-metal complexes of pentadentate 

PY5 have an unusual structural feature in that the dihedral angle between the axial 

pyridyl and the equatorial N4 plane significantly deviates from ideal orthogonality.  Such 

a deformation likely reduces the efficiency of both σ- and π-orbital interactions between 

the axial heterocycle and the metal d orbitals, a possible factor for influencing the 

reactivity of the complexes.  Molecular models suggest that this unusual arrangement is 
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enforced by sterics interactions about the quaternary carbons specifically between the 

methoxy and pyridyl groups.  While this deformation may not be as pronounced in  

 

 

 

 

 

 

solution,19 we conjectured the modification of the pentadentate ligand backbone might 

provide a key to tuning the properties and chemical reactivity of the resulting metal 

complexes because, in metal complexes, the cone angle for sterics accessibility is larger 

for ligands with five membered pyrazolyl rings compared to those with similarly 

substituted six-membered pyrdyl rings.  To this end, we have developed a new class of 

pentadentate ligand based on α, α, α′, αʹ -tetra(pyrazolyl)lutidine, pz4lut scaffold (Figure 

2.1) and have initiated an investigation into their coordination chemistry.  The new 

ligands offer some advantageous design features that can be exploited for further 

systematic studies, including (i) the ease of synthesis of pyrazoles with nearly limitless 

substitution patterns that allow for facile means to control steric and electronic properties 

of the resulting metal complexes and, by appropriate pyrazolyl substitution, allow for the 

deliberate construction of supramolecular assemlblies20 and (ii) the flexible ligand 

synthesis permitting ready substitution of the fourth group (R’ in Figure 2.1 above, right) 

of the sp3 carbon atoms, which will allow further evaluation of the impact of this 

substituent on the properties of the resulting metal complex.  Herein we report the 

 

Figure 2.1.  Related pentadentate ligand scaffolds. 
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synthesis of the new ligand and its coordination complexes with a series of divalent first- 

row transition-metal halides to probe the coordination mode (the expected κ5-) and what 

structural trends can be observed if any as well as a discussion on the survey of electronic 

properties. 

 Synthesis.  The synthesis of the new pentadentate ligand, pz4lut (Scheme 2.1) 

takes advantage of the CoCl2-catalyazed rearrangement reaction6 between 2,6-

pyridinecarboxaldehyde21 (prepared by SeO2 oxidation of 2,6-pyridinediemethanol) and 

the appropriate di(pyrazolyl)-sulfone (prepared in situ by the reaction between NaH, Hpz, 

and SOCl2)
22 in THF.  Typically, the CoCl2-catalyzed rearrangement reaction with 

dialdehydes affords high yields (>70%) of product. In the current case, the yield is 

typically only 40%. Presumably, the relatively higher stability and lower solubility of the 

cobalt complex of this ligand sequesters the catalyst, lowering its performance.  

However, more recently we have found that using three equivalents of SOCl2 instead of 

two typically leads to higher yields (>60 %).  Full experimental details can be found at  

  

 

 

 

 

the end of this chapter.   

 X-ray-quality crystals of divalent metal chloride complexes [MCl(κ5N-pz4lut)]+ 

were obtained by layering of methanol solutions of the transition-metal salts (except for 

 

Scheme 2.1.  Synthesis of new pz4lut ligand. 
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Ni, for which ethanol gave better quality crystals) onto CH2Cl2 or CHCl3 solutions of the 

ligands and allowing the solvents to slowly diffuse over several days. 

 Solid State Structures.  The complexes with M = Mn, Fe, Co, and Cu contain a 

chloride anion and methylene chloride solvent molecule.  The nickel derivative 

crystallizes with a chloride anion but as an ethanol solvate, while the zinc derivative 

contains the [ZnCl3(MeOH)]- anion.  The six metal cations prepared in this study share a 

number of common features.  All have MN5Cl kernels as a result of κ5-ligand 

coordination with pyridyl and chloride axial groups and four pyrazolyl N atoms 

occupying the equatorial plane of the pseudooctahedral metal center.  The average metal-

nitrogen(pz) bond distances MnII-N 2.26 Å (d5), FeII-N 2.20 Å (d6), and CoII-N 2.15 Å 

(d7) are indicative of high-spin systems.23  The structure and metrical parameters are 

shown below (Table 2.1) while the structures of the six cations are shown on the 

following page (Figure 2.2).  In the [MCl(pz4lut)](Cl) complexes (M = Mn, Fe, Co, Ni, 

Cu, Zn) the metal sits above the mean plane of pyrazolyl nitrogens toward the axial 

chloride group.  A closer examination of the geometries of the various [MCl(pz4lut)]+ 

cations (Table 2.2, Figures 2.3 & 2.4) indicates that nickel(II) provides the best “fit” for 

the new ligands.  Relative to other metal centers, nickel is situated closest to (0.165 Å 

above) the mean plane of equatorial pyrazolyl nitrogens.  The metal-bound pyrazolyls 

experience the least amount of ring-twisting (ideally, this torsion angle should be 0o)13 in 

the NiII case, defined by the average MN-NC(sp3) torsion angle of 1.76o (compared to 

MnN-NC of 3.28o in the manganese case, for example).  In all cases, there is more ring 

twisting in the PY5 (9.8o average) complexes than in the pz4lut cases (1.8o average 

Figure 2.5), with the greatest contribution in the former cases from the axial pyridyl.   
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Also, the nickel complex exhibits the smallest octahedral volume [Volume of 

MN4(pz)N(Npy)Cl = 12.930 Å3] and quadratic elongation (1.010)24 compared to all other 

metals in the series.  There is a regular variation in bond distances versus the number of 

d-electrons on traversing the series from manganese (d5) to nickel (d8) (Figure 2.3).  

Copper (d9) represents the break in the trend (Figure 2.3 top) of smaller divalent metal 

cations giving shorter mean bond distances, due to distortion of equatorial Cu-N bonds.  

The [CuCl(pz4lut)]+ cation contains two very short Cu-N(pz) (Cu-N5 and Cu-N7, avg. 

1.999 Å) bonds and two long Cu-N(pz) bonds (Cu-N3 and Cu-N9, avg. 2.392 Å) giving a 

coordination sphere that approaches square planar (with two long Cu-N(pz) contacts).  If 

these longer axial contacts are ignored, then the Cu-N(pyrazolyl) bonds  and the weighted 

average of all metal-ligand bonds (2.096 Å) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3.  Plots of bond distances as a function of d-electron count of metal in 
[MCl(pz4lut)]+.  Average of all groups of MN5Cl considered (top).  Long Cu-
N(pyrazolyl) bond distances ignored (bottom). 
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Figure 2.4.  Plots of MN5Cl octahedral volume (top) and deviation of M from 
equatorial N4 plane (bottom) versus d-electron count of metal in 
[MCl(pz4lut)]+ complexes. 

 

Figure 2.5.  Comparison of the structures of related [NiCl(L)]+ cations (L = PY5 , 
left; L = pz4lut, right).  H atoms are omitted.  Top: views orthogonal to the axial 
pyridyl.  Bottom: Views down C – O (PY5) or C – H (pz4lut) bonds. 
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fall in line with other metals in the series (Figure 2.3b).  The preference for lower 

coordination geometries for Cu2+ is well-documented and is also observed in the related 

square-pyramidal [CuCl(κ4-PY5)]+ cation.25  Usually this coordination preference is 

attributed to Jahn-Teller distortion due to single occupancy of degenerate eg
* orbitals.  

The low symmetry of the complexes in this series was expected to remove such 

degeneracy and this distortion was unexpected.    

 Electronic Absorption Spectra.  The electronic spectra of the ligand and metal 

complexes are shown below (Figure 2.5, 2.6).  For each, there are two rather intense 

bands near 200 nm (ε ~ 25 000 M-1 cm-1) and 260 nm (ε ~ 5000 M-1 cm-1), assigned to π - 

π* intraligand transitions on the basis of intensity.  For all of the metal complexes, an 

additional shoulder near 300 nm (ε ~ 50 – 2700 M-1 cm-1) is observed that is absent in the 

free ligand and is tentatively assigned as metal-to-ligand charge transfer in nature.  For 

FeII, CoII, NiII, and CuII, lower-energy low-intentisy (ε < 50 M-1 cm-1) spin allowed d – d 

bands are also observed; the spin-forbidden bands in MnII are no observed.  The single d 

– d band in the spectra of each FeII and CuII shows a pronounced shoulder from the 

expected Jahn – Teller distortions.  The crystal field splitting parameters (Table 2.3) 

calculated from the observed d – d bands gave the metal-dependent spectrochemical 

series CoII > NiII > FeII > CuII for the pz4lut complexes.26  In the cases of CoII and NiII, 

where full data are readily available for comparison, the crystal-field splitting parameters 

for [MCl(L)]+ (L = pz4lut, PY5) indicate that the pz4lut ligand exerts a slightly stronger 

field (CoII, 10 Dq = 11 582 cm-1; NiII, 10 Dq = 11 442 cm-1) than the related PY5 ligand 

(CoII, 10 Dq = 10 915 cm-1; NiII, 10 Dq = 10 707 cm-1).4  Because pyridyls are generally 
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stronger field donors than pyrazolyls, this rather surprising observation may be a result of 

the greater ligand distortions in the PY5 framework compared to the pz4lut cases.  A 

greater degree of ring twisting in the former may potentially reduce the full σ-donor (and 

π-accepting) capabilities of the PY5 ligand. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5.  UV-Vis absorption spectra of pz4lut in MeOH (left).  Representative metal 
complex in MeOH ([MnCl(L)](Cl), right). 

 

Figure 2.6.  Near IR region of metal complexes in MeOH. 
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Compound 

 
1•CH2Cl2 

 

 
2•CH2Cl2 

 
3•CH2Cl2 4•EtOH 5•0.82 CH2Cl2 6•0.63 CH2Cl2•0.34 MeOH 

Formula C20H19Cl4MnN9 C20H19Cl4FeN9 C20H19Cl4CoN9 C21H23Cl2N9NiO C19.82H18.65Cl3.64CuN9 C21.37H25.21C15.26N9O1.74Zn2 
 
Formula Weight 

 
582.18 

 
583.09 

 
586.17 

 
547.09 

 
575.71 

 
753.22 

 
Crystal System 

 
Monoclinic 

 
Monoclinic 

 
Monoclinic 

 
Monoclinic 

 
Monoclinic 

 
Monoclinic 

 
Space Group 

 
P21/n 

 
P21/c 

 
P21/n 

 
C2/c 

 
P21/c 

 
P21/n 

 
a. Å 

 
10.5304(6) 

 
10.4115(5) 

 
10.2900(2) 

 
21.7305(7) 

 
10.8339(2) 

 
11.52640(10) 

 
b. Å 

 
19.2722(10) 

 
19.2410(9) 

 
19.1675(3) 

 
22.0929(8) 

 
22.2728(3) 

 
13.94720(10) 

 
c. Å 

 
11.9444(6) 

 
12.0005(6) 

 
12.0572(2) 

 
9.7949(4) 

 
9.80290(10) 

 
18.9316(2) 

 
Β deg 

 
90.000(2) 

 
90.000(2) 

 
90.0330(10) 

 
90.0000(10) 

 
92.9950(10) 

 
102.3930(10) 

 
V, A3 

 
2424.0(2) 

 
1488.9(3) 

 
2378.08(7) 

 
3156.57(6) 

 
2326.22(6) 

 
2972.55(5) 

 
Z 

 
4 

 
4 

 
4 

 
8 

 
4 

 
4 

 
T, K 

 
100(2) 

 
100(2) 

 
100(2) 

 
100(2) 

 
100(2) 

 
100(2) 

 
ρ, calcd, Mg m3 

 
1.595 

 
1.611 

 
1.637 

 
1.546 

 
1.619 

 
1.683 

 
λ, Å 

 
1.54178 

 
1.54178 

 
1.54178 

 
1.54178 

 
1.54178 

 
1.54178 

 
µ (Cu, Kα) mm-1 

 
8.734 

 
9.372 

 
10.046 

 
3.573 

 
5.345 

 
6.653 

 
R[I>2σ(I)]a (all data) 

 
0.0473(0.0483) 

 
0.0353(0.0387) 

 
0.0411(0.0418) 

 
0.0366(0.0381) 

 
0.0311(0.0410) 

 
0.0237(0.0240) 

 

wRb (all data) 
 

 
0.1102(0.1108) 

 
0.0874(0.0874) 

 
0.1126(0.1131) 0.0930(0.0940) 0.0745(0.0792) 0.0623 (0.0624) 

aR = ΣǁFo| - ǁFoǁ/Σ|Fo|. bwR = [Σw(|Fo
2| - |Fo

2|)2/Σw|Fo
2|2]1/2    

Table 2.1.  Crystallographic Data and Refinement Parameters for (a) [MnCl(pz4lut)](Cl)•CH2Cl2 (1•CH2Cl2); (b) [FeCl(pz4lut)](Cl)•CH2Cl2 
(2•CH2Cl2); (c) [CoCl(pz4lut)](Cl)•CH2Cl2 (3•CH2Cl2); (d) [NiCl(pz4lut)](Cl)•EtOH (4•EtOH); (e) [CuCl(pz4lut)](Cl)•0.82CH2Cl2 (5•CH2Cl2); (f) 
[ZnCl(pz4lut)][ZnCl3(MeOH)]•0.63CH2Cl2•0.34 MeOH (6•0.63 CH2Cl2•0.34 MeOH). 
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Figure 2.2. Views of the cation structures with atom labeling for (A) 
[MnCl(pz4lut)](Cl)•CH2Cl2 (1), (B) [FeCl(pz4lut)](Cl)•CH2Cl2 (2), (C) 
[CoCl(pz4lut)](Cl)•CH2Cl2 (3), (D) [NiCl(pz4lut)](Cl)•4EtOH (4), (E) 
[CuCl(pz4lut)](Cl)•0.82 CH2Cl2 (5), and (F) [ZnCl(pz4lut)][ZnCl3(MeOH)]•0.063 
CH2Cl2•0.34 MeOH (6). 
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M =  Mn Fe Co Ni Cu Zn 

M-Cl (Å) 2.365 2.307 2.323 2.360 2.279 2.334 

M-N1py (Å) 2.364 2.300 2.221 2.099 2.109 2.256 

M-N3pz (Å) 2.237 2.179 2.140 2.088 1.999 2.163 

M-N5pz (Å) 2.257 2.187 2.138 2.098 2.376 2.159 

M-N7pz (Å) 2.255 2.198 2.144 2.098 2.408 2.121 

M-N9pz (Å) 2.293 2.222 2.176 2.104 1.998 2.169 

Avg. axial (Å) 2.365 2.304 2.272 2.230 2.194 2.295 

Avg. Eq. (Å) 2.261 2.197 2.150 2.097 2.195 2.153 

Avg. total (Å) 2.295 2.233 2.190 2.141 2.195 2.200 

M-N4pl (Å) 0.451 0.392 0.283 0.165 0.242 0.322 

MN3-N2C6 (o) 1.50 1.93 1.22 0.58 3.55 3.27 

MN5-N4C6 (o) 3.97 5.08 2.07 4.60 3.65 3.75 

MN7-N6C7 (o) 0.85 1.21 4.78 0.90 6.19 1.08 

MN9-N8C7 (o) 6.80 7.50 4.70 0.96 2.64 7.14 

Avg MN-NC (o) 3.28 3.93 3.19 1.76 4.01 3.81 

N1-M-Cl (o) 179.52 179.60 179.97 177.82 177.85 173.76 

Oct. Vol (Å)3 15.421 14.279 13.688 12.930 13.723 13.786 

Quad. Elong. 1.034 1.026 1.016 1.010 1.024 1.021 

⁄  variance (o)2 114.41 88.46 627.84 25.34 44.24 66.54 

 

Table 2.2. Intercationic geomeric parameters for [MCl(pz4lut)]+ (M = Mn, Fe, Co, Ni, Cu, Zn). 
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 Electron Paramagnetic Resonance.   The various paramagnetic 

[MIICl(pz4lut)]+ derivatives as frozen (10 K) glasses in 1 EtOH : 9 MeOH were 

also subject to X-band (9.6 GHz) electron paramagnetic resonance (EPR) 

spectroscopic studies to verify spin multiplicities.  The data are collected in Table 

2.3 while the EPR spectra are shown below in Figure 2.7 and 2.8.  The 

complexes generally displayed axial signals, expected from the solid state 

geometries.  The MnII and CoII EPR spectra indicated the S = 5/2 

 

 

 

 

 

 

 

 

 

 

 

and S = 3/2 high-spin configurations, respectively.  The zero-field splitting, ∆, 

was much larger than the Zeeman interaction in both cases.  In the case of MnII, it 

appears that the excited-state doublets were populated at 10 K (i.e., 7 cm-1 ≤ ∆ >> 

0.3 cm-1), whereas for CoII, ∆ >> 7 cm-1.  No EPR signal was detected for the 

Ni(II) complex, typical of a non Kramers (S = 1) system with significant zero-

field splitting.  Interestingly, an EPR signal for the [FeIICl(pz4lut)](Cl) was 

 

Figure 2.7.  Frozen glass EPR of [MnCl(pz4lut)](Cl) (left) and [FeCl(pz4lut)](Cl) 
(right).  For [MnCl(pz4lut)](Cl): transitions at geff ~ 10, 6, and 2 would be expected for 
a perfectly axial (E/D = 0) system with 7 cm-1 (10 K) > ∆ >> 0.3 cm-1.  The 
complexity of the spectrum suggests that either the zero-field splitting is not 
sufficiently large that the Zeeman interaction can be treated as a perturbation (i.e. ∆ ≈ 
0.3 cm-1), and/or that there is a significant rhombic zero field splitting term (E/D > 0).  
For [FeCl(pz4lut)](Cl): the parallel mode signal at geff ~ 9 is due to Fe(II) the 
dominant species; while the perpendicular mode reveals traces of Fe(III). 
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observed at geff ~ 9 at low temperatures despite a non Kramers (S = 2) spin 

multiplicity owing to some proportion of the zero-field splitting envelop 

satisfying the condition ∆ < 0.3 cm-1.27   

 

 

 

 

 

 

 

 

 

 

 

 

 Summary & Conclusions.  In summary, a new pentadentate ligand, α, α, 

α ′, α -tetra(pyrazolyl)lutidine, pz4lut and several coordination complexes with 

[MCl(pz4lut)]+ (M = Mn, Fe, Co, Ni, Cu, Zn) cations have been prepared.  A 

survey of the structural features of the complexes shows that the ligand binds in 

the expected κ5N mode with the axial pyridyl group nearly orthogonal to the 

equatorial N4 plane.  Analysis of ligand distortions in related [MCl(L)]+ (L = 

pz4lut, PY5) complexes indicated a lower degree of ring twisting in the current 

system relative to the PY5 complexes.  This feature might be responsible for the 

rather surprising electronic properties because pz4lut is a slightly stronger field 

 

Figure 2.8.  Frozen glass EPR of [CoCl(pz4lut)](Cl) (left) and [CuCl(pz4lut)](Cl) (right).  
For [CoCl(pz4lut)](Cl): the major resonances at geff ~ 4.3 and 2.3 indicates S = 3/2 with ∆ 
>> gβBS and Ms = |±½›.  The small feature at geff = 11.5 is likely due to spin-spin 
interaction between Co(II) ions (S = 0, 1, 2, 3).  For [CuCl(pz4lut)](Cl): gǁ and Aǁ are 
indicative of nitrogen ligation to Cu(II).  The shoulder to the high field side of of the 
main g┴ peak, and its partner to the low field side, are due to dipolar interactions between 
adjacent Cu(II) ions.   
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ligand to CoII and NiII compared to the all-pyridyl-based PY5 ligand, contrary to 

initial expectations.  The simple synthesis of the new ligand architecture 

combined with ready modifications using numerous available substituted 

pyrazolyls permits easy access to derivatives with variable sterics and electronic 

properties, chemical reactivity and ligand denticity. 
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complex 

 
µeff, µβ λmax, nm (ε, M-1 cm-1), MeOH 

 
 
 

 10 Dq, cm-1 EPR X-band (9.6 GHz), geff 

[MnCl(pz4lut)]+ 5.9 215 (29 404), 264 (5614), 342 sh (5) 
263 (8762), 300 sh (2677), 428 (282), 888 (19), 1050 sh (5) 
264 (4936), 300 sh (608), 472 (20), 934 (4) 
268 (3455), 300 sh (188), 536 (25), 764 sh (7), 874 (13) 
270 (3611), 424 (278), 700 (43), 1150 SH (12) 

 g┴ 4.05, gǁ 0.99 
[FeCl(pz4lut)]+ 5.2 10 393 geff ~ 9 
[CoCl(pz4lut)]+ 3.6 11 582 g┴ 4.32, gǁ 2.30 (greal ~ 2.2) 
[NiCl(pz4lut)]+ 2.3 11 442  
[CuCl(pz4lut)]+ 1.8 ~9 820 g┴ 2.07, gǁ 2.28 (Aǁ = 17 mT) 

 

Table 2.3.  Summary of the Electronic Properties of Transition-Metal Complexes of pz4lut. 
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 Experimental Details. Pyrazole, thionyl chloride, NaH, and all transition metal 

halides were obtained commercially and were used as received.  The compound 2,6-

pyridinecarboxaldehyde was prepared according to a literature method and the synthesis 

of pz4lut is described in Chapter 1. Solvents were dried by conventional procedures and 

distilled prior to use, except where noted.  Midwest MicroLab, LLZC, Indianapolis, 

Indiana 45250, performed all elemental analyses.  melting point determinations were 

made on samples contained in glass capillaries using an Electrothermal 9100 apparatus 

and are uncorrected.  1H and 13C NMR spectra were recorded on a Varian 300 MHz 

spectrometer.  Chemical shifts were referenced to solvent resonances at δH 7.27 and δC 

77.23 for CDCl3, δH 3.31 and δC 49.15 for methanol-d4.  UV-visible and NIR spectra 

were recorded using Shimadzu UV-1600/1700 or Jasco V-570 instruments.  Solid-state 

magnetic measurements were made at room temperature using an MK1 magnetic 

susceptibility balance.  EPR spectral measurements were obtained using a Bruker 

ELEXSYS E600 equipped with an ER4116DM cavity resonating at 9.63 GHz, an Oxford 

Instruments ITC503 temperatures controller and ESR-900 helium flow cryostate.  The 

ESR spectra were recorded with 100 kHz field modulation. 

[MnCl(pz4lut)](Cl)•CH2Cl2, 1•CH2Cl2.  A Sloution of 0.191 g (0.514 mmol) of pz4lut in 

8.5 mL dichloromethane was layered with a methanol solution (8.5 mL) of 0.108 g (0.546 

mmol) MnCl2•4H2O.  After 3 days, 0.176 g (59 %) of X-ray quality colorless blocks of 

1•CH2Cl2 were collected after filtration, washing with Et2O and drying under vacuum.  

Mp, 190-195 oC, dec.  Anal.  Calcd.  (obsd.)  for C20H19Cl4MnN9: C, 41.26 (41.22); H, 

3.29 (3.46); N, 21.65 (21.96).  µeff (Evans) (CD3OD, 298 K) 5.9 µβ.  UV-Vis (MeOH) 

λmax, nm (ε, M-1, cm-1), 215 (29 404), 264 (5614), 342 (53). 
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[FeCl(pz4lut)](Cl)•CH2Cl2, 2•CH2Cl2.  A solution of 0.100 g (0.789 mmol) of FeCl2 in 

8.5 mL of MeOH was layered onto a solution of 0.293 g (0.789 mmol) pz4lut in 8.5 mL 

of CH2Cl2.  After 3 days, 0.450 g (98 %) of orange X-ray quality crystals of 2•CH2Cl2 

were collected as above.  Mp, 247-257 oC dec.  Anal.  Calcd.  (obsd.)  for C20H19Cl4FeN9: 

C, 41.20 (41.59); 3.28 (3.50); 21.62 (21.68). µeff (Evans) (CD3OD, 298 K) 5.2 µβ.  UV-

Vis (MeOH) λmax, nm (ε, M-1, cm-1), 263 (8462), 300 (2677), 428 (282), 888 (19), 1050sh 

(10). 

[CoCl(pz4lut)](Cl)•CH2Cl2, 3•CH2Cl2.  A Solution of 0.286 g (0.770 mmol) pz4lut in 

8.5 mL of CH2Cl2 was layered with a solution of 0.105 g (0.809 mmol) CoCl2 in 8.5 mL 

MeOH and solvents were allowed to slowly diffuse over 3 days.  A 0.405 g (90 %) 

sample of 3•CH2Cl2 as pink X-ray quality crystals was collected and dried under 

vacuum.  Mp, 282-285 oC dec.  Anal. (obsd) for C20H19Cl4CoN9; C, 40.98 (40.95); H, 

3.27 (3.29); N, 21.51 (21.49).  µeff (Evans) (CD3OD, 298 K) 3.6 µβ.  UV-Vis (MeOH) 

λmax, nm (ε, M-1, cm-1), 264 (4936), 300sh (608), 472 (20), 934 (4). 

[NiCl(pz4lut)](Cl), 4.  A chloroform (8.5 mL) solution 0.161 g (0.433 mmol) pz4lut was 

layered with a ethanol (8.5 mL) solution of 0.106 g (0.446 mmol) of NiCl2•6H2O.   After 

the solvents were allowed to diffuse for 3 d, 0.243 g (98 %) of violet microcrystalline 4, 

was isolated after filtration and drying under vacuum.  Mp, 200-203 oC, dec.  anal.  

Calcd.  (obsd.) for C19H17Cl2N9Ni:  C, 45.55 (45.31); H, 3.42 (3.24); N, 25.16 (25.04).  

µeff (Evans) (CD3OD, 298 K) 3.6 µβ.  UV-Vis (MeOH) λmax, nm (ε, M-1, cm-1), 268 

(3455), 300sh (188), 563 (25), 764sh (7), 874 (13).  X-ray quality crystals of a solvate 

(4•EtOH) are obtained before drying.  The solvent is readily removed by vacuum. 
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[CuCl(pz4lut)](Cl), 5.  A solution containing 0.169 g (0.45 mmol) pz4lut in 8.5 mL 

CH2Cl2 was layered with a methanol (8.5 mL) solution of 0.063 g (0.47 mmol) CuCl2 and 

solvents were allowed to diffuse over 3 days.  A 0.216 g (95 %) sample of 5 as a green 

microcrystalline powder was collected by filtration and dried under vacuum.  Mp, 267-

270 oC, dec.  Anal.  Calcd.  (obsd.) for C19H17Cl2CuN9:  C, 45.11 (45.85); H, 3.39 (3.00); 

N, 24.92 (24.56).  µeff (Evans) (CD3OD, 298 K) 3.6 µβ.  UV-Vis (MeOH) λmax, nm (ε, M-

1, cm-1), 270 (3611), 424 (278), 700 (43), 1150sh (12).  X-ray quality crystals of a solvate 

(5•0.82 CH2Cl2) are obtained before drying.  The solvent is readily removed by vacuum. 

[ZnCl(pz4lut)][ZnCl3(MeOH)] 6.  A dichloromethane (8.5 mL) solution containing 

0.276 g (0.743 mmol) pz4lut was layered with a methanol (8.5 mL) solution containing 

0.109 g (0.800 mmol) of ZnCl2.  After allowing the solvents to diffuse over 4 days, 0.253 

g (89 % based on ZnCl2) of 6 were collected by filtration and dried under vacuum.  Mp, 

284-290 oC, dec.  Anal.  Calcd.  (obsd.) for C20H21Cl4N9OZn2:  C, 35.53 (35.15); H, 3.13 

(3.43); N, 18.65 (18.28).  This compound is surprisingly less soluble in CD3OD, than in 

CH3OH in which the complex has sparing solubility (it is also insoluble in all other 

typical organi solvents), so 1H NMR were recorded as a saturated solution in 10 vol-% 

D2O in CD3OD while 13C NMR spectral data could not be recorded in a reasonable 

amount of acquisistion time.  1H NMR (CD3OD/10 vol-% D2O) δH 8.32 (br s, 4H), 8.27-

8.23 (br m, 6H), 8.09 (br m, 3H), 6.57 (s, 4H, H4-pz).  X-ray quality crystals of a solvate 

(6•0.63 CH2Cl2•0.34 MeOH) are obtained before drying.  The solvent is readily removed 

by vacuum.  UV-Vis (MeOH) λmax, nm (ε, M-1, cm-1), 216 (25 271), 264 (5 736), 300sh 

(1008).   
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Chapter 3: Coordination Chemistry of Cobalt(II) 

Complexes of α, α, α’, α’-Tetra(pyrazolyl)lutidine and 

its Derivatives 

 

 

 Introduction.  Cobalt plays an integral role in bio-inorganic chemistry in form of 

cobalamin complexes.28  In cobalamin complexes the cobalt is five-coordinate with a 

sixth coordination spot that can be occupied by any number of ligands (CN, Me, H2O, 

adenosyl) with cyano being the most commonly isolated derivative.29  Cobalt has also 

been substituted for iron in complexes as models for other biologically active oxygen 

carriers such as hemoglobin, hemerythrin and hemocyanin due to the fact that cobalt 

gives rise to more easily interpreted electronic spectra (EPR, absorption spectroscopy) 

than that of iron or copper.30 As such, it has become relevant to design pentadentate 

ligands which bind in the MAE4 (M = metal; A = Axial; E = equatorial) fashion; giving a 

sixth axial position capable of binding different ligands as to “mimic” these biologically 

relevant systems.   

 One of the first MAE4 synthetic systems was designed by Tagaki & co-workers in 

1979 shown in Scheme 3.1.  When reacted with cobalt(II) at -30 oC in a oxygen saturated 

solution they obtained a bridged cobalt peroxo species that was deep red in color.31  Since 

then, several other pentdenate ligands have been synthesized and reacted with a variety of 

transition metals as reviewed by Grohman in 2004.1  We recently reported the α, α, α’, 

α’-Tetra(pyrazolyl)lutidine ligand and its complexes with divalent first row transition 
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metals  which established κ5 binding mode of the pz4lut ligand.5 By using pyrazoles as the 

nitrogen donor it allows for seemingly limitless substitution patterns along the pyrazolyl 

periphery.  In doing so, we were able to synthesize several new alkyl substituted 

pentadentate ligands using 4-methylpyrazole, 3,5-dimethylpyrazole, or 3,5-

diisopropylpyrazole (Figure 3.1).  This enabled the study of steric effects as well as 

electronic effects of substitution along the pyrazole backbone. Cobalt(II) complexes 

displayed both κ5 (pink) and κ2-µ (blue) coordination modes.  However, in the case of the 

pzDIP
4lut only the κ2-µ coordination mode was observed.  Intrigued by this observation we 

set out to further explore the chemistry of the cobalt(II) complexes and the results are 

reported herein. 

 

 

 

 

 

 

 

Scheme 3.1.  Cobalt bridged peroxo complex proposed by Tagaki and co-wokers, 1979. 

 

Figure 3.1.  Ligands used  for Cobalt(II) complexes. 
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 Synthesis.  The synthesis of the new pentadentate ligands and their coordination 

chemistry with cobalt(II) chloride is summarized below in Scheme 3.2. The ligands were 

prepared as described previously.  Briefly, the CoCl2-catalyzed rearrangement reaction6 

between 2,6-pyridine dicarboxaldehyde (prepared by SeO2 oxidation of 2,6-pyridine 

dimethanol9) and the appropriate di(pyrazolyl)sulfone (prepared in situ by the reaction 

between NaH, Hpz, and SOCl2)
6 in THF affords the desired ligands in good yield.  As 

seen in Scheme 3.2, by controlling stoichiometry and solvents (vide infra) it is possible to 

isolate blue bimetallic complexes of all ligands or pink monometallic complexes with 

pseudo octahedral cobalt(II0 for all ligands except for pzDIP
4lut.  cobalt complexes based 

on the parent unsubstituted pyrazolyl are far less soluble than their methyl substituted 

counterparts, which hinders solution characterization, especially of the [CoCl(pz4lut)]+. 

 

 

 

 

 

 

 

 

 

 

All compounds exhibit solution magnetic moments in accord with high spin cobalt(II) 

centers with magnetic moments corresponding to about 4.2-4.8 µB per tetrahedral cobalt 

and 3.5-3.7 µB for the pseudo-octahedral complexes. These values differ from the the  

 

Scheme 3.2.  Synthesis of cobalt(II) complexes. 
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spin-only moment (3.87 µB) due to substantial orbital contribution, expected for high-spin 

cobalt(II) derivatives. 

 The structures of the ligand pz*
4lut, three pink monometallic solvates [CoCl(κ5-

pz4lut)][Cl]•CH2Cl2 (1•CH2Cl2), [CoCl(κ5-pz4,
4lut)][Cl]•MeOH (2•MeOH), [CoCl(κ5-

pz*
4lut)][Cl]•2MeOH (3•2MeOH) and two blue bimetallic complexes (CoCl2)2(µ-κ2,κ2-

pz*
4lut) (4), (CoCl2)2(µ-κ2,κ2-pzDIP

4lut) (5•MeOH) have been determined by single 

crystal X-ray diffraction (Table 3.1) , as shown in Figure 3.2.  By comparison with 

related cobalt(II) derivatives, the bond lengths in the current cobalt complexes are 

indicative of high-spin cobalt(II).25 The [CoCl(κ5-pzx
4lut)][Cl] solvates along with 

[(PY5)CoCl][Cl]25 (PY5 = α, α, α’, α’,-tetrakis(2-pyridyl)-α,α’-dimethoxy-m-lutidine) are 

some of the few structurally characterized examples of pseudooctahedral cobalt(II) 

complexes with a tetapodal pentadentate (N5) ligand; to our knowledge all structurally 

characterized derivatves with an N5Co(halide) core contain trivalent cobalt.25  Thus, the 

bond distances and angles of the N5CoCl kernel in [CoCl(κ5-pzx
4lut)][Cl] (X = H, 4-Me, 

3,5-Me2) are more compatible with those in [(PY5)CoCl][Cl] than in related cobalt(III) 

complexes of pentadentate N5 donors such as [(DAMPP)CoCl][Cl][ClO4]•H2O (DAMPP 

= 2,6-bis(1’,3’-diamino-2’-methylprop-2’-yl)pyridine)32 or the purely aliphatic 

[(ditame)CoCl][ZnCl4] (ditame = 2,2,6,6-tetrakis(aminomethyl)-4-azaheptane).33   

 Specifically, the average Co-N and Co-Cl bond distances (Table 3.2) for the 

common N(pyridyl)-Co-Cl axis in the three derivatives 1•CH2Cl2 (Co-N(axial), 2.221 Å; 

Co-Cl, 2.323 Å), 2•MeOH (Co-N(axial), 2.185 Å, 2.337 Å), 3•2MeOH (Co-N(axial) 
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2.154 Å, 2.325 Å) are similar to those in [(PY5)CoCl]+ (Co-N(axial), 2.127 Å, Co-

Cl2.265 Å) but are significantly longer than those in [(DAMPP)CoCl]2+ (Co-N(axial), 

1.951 Å; Co-Cl, 2.265 Å) as might be expected.  The average equatorial Co-N(pz) bond 

 

 

distance in [CoCl(κ5-pz*
4lut)][Cl] (2.249 Å) is longer than in 2•MeOH (2.131 Å) and 

1•CH2Cl2 (2.149 Å), presumably due to the steric interactions between the 3-

methylpyrazolyl substituents and the chloride in the former (Figure 3.3).  As such, the 

axial Npy-Co-Cl angle in 3•2MeOH (177 o) experiences a greater deviation from linearity 

(180 o) than in both 2•MeOH and 1•CH2Cl2.  In addition, the pyrazolyl rings 3•2MeOH 

are more twisted (CoN-NC(H)=5.8 o) than those in 2•MeOH (CoN-NC(H)=2.87 o)          

Compound 1•CH2Cl2 2•MeOH 3•2MeOH 6 7•MeOH 
Formula C20H19Cl4CoN9 C24.85H32.10Cl2.30C

oN9O1.70 
C29H41Cl2CoN9O

2 
C27H33Cl4N9Co2N

9 
C45H69Cl4Co2N9O2..4

4 
 
Formula Weight 

 
586.17 

 
624.56 

 
677.54 

 
743.28 

 
1034.79 

 
Crystal System 

 
Monoclinic 

 
Monoclinic 

 
Orthorhombic 

 
Monoclinic 

 
Monoclinic 

 
Space Group 

 
P21/n 

 
P21/n 

 
Pnma 

 
P21/c 

 
C2/c 

 
a. Å 

 
10.2900(2) 

 
13.0101(2) 

 
14.2736(2) 

 
8.5289(2) 

 
39.1841(1) 

 
b. Å 

 
19.1675(3) 

 
16.0538(4) 

 
12.8759(1) 

 
12.3132(4) 

 
13.9057(4) 

 
c. Å 

 
12.0572(2) 

 
14.1792(4) 

 
17.1753(2) 

 
30.6427(9) 

 
22.1028(5) 

 
Β deg 

 
90.0330(10) 

 
90.000(2) 

 
90.000(2) 

 
91.8810 (1) 

 
116.2930(1) 

 
V, A3 

 
2378.08(7) 

 
2844.00(1) 

 
3156.57(6) 

 
3216.30(2) 

 
10797.40(5) 

 
Z 

 
4 

 
4 

 
4 

 
4 

 
8 

 
T, K 

 
100(2) 

 
100(2) 

 
100(2) 

 
100(2) 

 
100(2) 

 
ρ, calcd, Mg m3 

 
1.637 

 
1.459 

 
1.426 

 
1.535 

 
1.273 

 
λ, Å 

 
1.54178 

 
1.54178 

 
1.5417 

 
1.54178 

 
1.54178 

 
µ (Cu, Kα) mm-1 

 
10.046 

 
7.044 

 
6.169 

 
11.413 

 
6.976 

 
R[I>2σ(I)]a (all data) 

 
0.0411(0.0418) 

 
0.0408(0.0494) 

 
0.0318(0.0324) 

 
0.0484(0.0706) 

 
0.0453(0.0573) 

 

wRb (all data) 
 

0.1126(0.1131) 
 

0.0921(0.0948) 
 

0.0767(0.0770) 0.1042(0.1117) 0.1063(0.1143) 
aR = ΣǁFo| - ǁFoǁ/Σ|Fo|. bwR = [Σw(|Fo

2| - |Fo
2|)2/Σw|Fo

2|2]1/2   

Table 3.1.  Crystallographic data collection and structure refinement for 
1•CH2Cl2, 2•MeOH, 3•2MeOH, 4, 5•MeOH. 



 

 

 

 

 

 

 

 

 

pz4

Co-N(pz) 

 

Co-N(pz) Avg 

2.138(3), 2.140(3), 

2.144(3), 2.175(3)

Co-N(py) 

Co-Cl 

Co-N4 

N(py)-Co-Cl 

Co-N-N-C(H) 2.07, 1.27, 4.78, 

4.70 avg. 3.20

 

Figure 3.2.  X-ray Crystal Structures of 
3•2MeOH  (right) cations; ellipsoids drawn at 50 % probability level.

Table 3.2.  Selected Bond Dis

[CoCl(κ5-

4lut)][Cl]•CH2Cl2 

[CoCl(κ5-

pz4,
4lut)][Cl]•MeOH•Et2O pz*4

2.138(3), 2.140(3), 

2.144(3), 2.175(3) 

2.149(3) 

2.118(2), 2.132(2), 

2.133(3), 2.143(2) 

2.131(2) 

2.222(7), 2.276(1), 

2.222(7), 2.276(1)

2.221(3) 2.185(2) 

2.322(8) 2.337(5) 

0.283  0.257  

179.97 178.53 

2.07, 1.27, 4.78, 

4.70 avg. 3.20o 

0.29, 3.09, 3.70, 4.43, 

avg. 2.87 o 

0.09, 11.44, 0.09 

11.44 avg. 5.77

ray Crystal Structures of 1•CH2Cl2 (left), 2•MeOH (middle) and
cations; ellipsoids drawn at 50 % probability level. 

Selected Bond Distances and Angles for 1•CH2Cl2, 2•MeOH

57 

[CoCl(κ5-

4lut)][Cl]•2MeOH 

2.222(7), 2.276(1), 

2.222(7), 2.276(1) 

2.249(4) 

2.154(1) 

2.325(3) 

0.218 

177.04 

0.09, 11.44, 0.09 

11.44 avg. 5.77o 

 

(middle) and 

2•MeOH & 3•2MeOH 



58 

 

and in 1•CH2Cl2  (CoN-NC(H)=3.20 o), but are much less distorted than those in the 

pseudotetrahedral derivatives (4, 5•MeOH) discussed below.   

 

 

 

 

 

 

 The structures for bimetallic, (CoCl2)2(µ-κ2,κ2-pz*
4lut) and (CoCl2)2(µ-κ2,κ2-

pzDIP
4lut) (Figure 3.4).  The average Co-N (pyrazolyl) and Co-Cl bond lengths (Table 

3.3) of 2.024 Å and 2.230 Å in (4) and 2.028 Å and 2.237 Å for (5•MeOH) compare 

favorably with other pseudo-tetrahedral CoCl2 complexes such as; the complex [κ2N-o-

(HO)C6H4CH(pz3iPR)2]CoCl2; (Co-N, 2.027 Å; Co-Cl, 2.222 Å, synthesized by Carrano 

& Co-workers).34 Other examples of complexes containing pseudotetrahedral include 

(pzx)2CoIICl2 cores such as [PhN(CH2pz*)2]CoCl2 (Co-Clavg, 2.250 Å),35 [2,2’-

pz2(biphenyl)]CoCl2 (Co-Navg, 2.028 Å; Co-Clavg, 2.250 Å),36 [(CoCl2)(µ-pz*
2CH2)]2 

(Co-Navg, 2.014 Å; Co-Clavg, 2.239 Å),14[CoCl2(µ-α,α’-pz2-m-xylyl)]n (Co-Navg, 2.02 Å, 

Co-Clavg, 2.240 Å).37 [CoCl2(µ-α,α’-pz2-m-xylyl)]n (Co-Navg, 2.02 Å, Co-Clavg, 2.240 

Å).37 

 

 

Figure 3.3.  Space filling model of 3•2MeOH showing steric interactions between 
methyl groups and chloride. 
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 6 7•MeOH 

Co-N(pz) 

 

Co-N(pz) Avg 

2.017(3), 2.031(3) 

2.019(3), 2.029(3) 

2.024(3) 

2.023(2), 2.027(2), 

2.027(2), 2.041(2) 

2.028(2) 

Co-N(py) --- --- 

Co-Cl 2.230(1) avg. 2.237(8) avg. 

Co-N4 --- --- 

N(py)-Co-Cl --- --- 

CoN-NC(H)o 17.32, 18.47, 14.32, 

25.21 avg. 18.83 o 

12.48, 18.91, 23.30, 

31.08 avg. 21.44 o 

 

Figure 3.4.  X-ray Crystal Structures of 4 (left) and 5•MeOH (right) ellipsoids 
drawn at 50 % probability level. 

Table 3.3.  Selected bond distances and angles for 4 and 5•MeOH. 
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 EPR.  The X-band (9.6 GHz) EPR spectral data for the complexes as frozen (10 

K) glasses are consistent with high spin cobalt(II) in all cases.  The spectra for newly 

reported complexes are found in Figure 3.5 & 3.6a&b while full spectral parameters for 

all of the complexes are given in Table 3.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5.  X-band EPR spectra of 2•MeOH (left) and 3•2MeOH (right); inset: 275 
to 375 mT region showing coupling to the 59Co nucleus obtained as frozen (10 K) 
glasses in 9:1 MeOH:EtOH. 

 

Figure 3.6a.  EPR Spectra of of (CoCl2)2(µ-pzX
4lut); (X = H, top, 4); (X = 4-Me, 

2nd, 5). 
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Compound geff┴ greal┴
a g║ A┴ (cm-1) A║ (cm-1) 

[CoCl(pz4lut)][Cl] 

[CoCl(pz4,
4lut)][Cl] 

[CoCl(pz*
4lut)][Cl] 

4.32 

4.55 

4.06 

2.20 

2.27 

2.30 

2.30 

2.10 

2.12 

nr 

nr 

nr 

nr 

0.0060 

0.0055 

(CoCl2)2(µ-pz4lut) 4.53 2.17 2.20 nr nr 

(CoCl2)2(µ-pz4,
4lut) 

(CoCl2)2(µ-pz*
4lut) 

4.43 

4.16 

2.21 

2.08 

2.19 

2.05 

nr 

nr 

nr 

nr 

(CoCl2)2(µ-pzDIP
4lut) 4.35 2.17 2.03 nr nr 

 a = geff┴ /2 (for gx,gy), nr = not resolved. 

 

 

 

Figure 3.6b.  EPR Spectra of of (CoCl2)2(µ-pzX
4lut); (X = 3,5-dimethyl, top, 6); 

(X = 3,5-DIP, Bottom, 7) as Frozen Glass Solutions in Acetonitrile:Toluene. 

Table 3.4.  EPR Spectral Parameters for Cobalt Complexes Prepared in this Work. 
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 As the local symmetry around cobalt is at best either C4V (CoN4
eqNaxCl) or C2V 

(CoN2Cl2), the EPR signals are axial with highly anisotropic g-values with g┴ > 4.1 (greal 

≈ 2.2) and g║ > 2.1, values typical of other axially distorted high-spin cobalt(II) 

complexes and are consistent with a smaller orbital reduction factor (increased covalency 

of the Co2+
 3d orbitals) in the case of pz4,

4lut for the octahedral symmetry.38  The fine 

structure due to coupling with the 59Co (I = 7/2) nucleus is observed in both 2•MeOH 

and 3•2MeOH; however, hyperfine coupling to the nitrogens of the ligands is not 

observed in any case.  The g║ values decrease with increasing field strength of the ligand 

as expected and agree well with the increased covalency factor.38  The deviation from the 

trend in g-values of the [CoCl(pz4lut)][Cl] complex (compared to 2•MeOH, 3•2MeOH) 

can be attributed to the different medium used (silicone oil versus a frozen glass of 

MeOH:EtOH).  This in turn can have an effect on the resonance position of g║ and 

therefore will be re-acquired in a frozen glass of MeOH:EtOH to confirm the trend.   

 The EPR spectra of the pseudotetrahedral derivatives also display highly axial 

signals.  Only the complex (CoCl2)2(µ-pzDIP
4lut) displays distinct signals for gx, gy, and gz 

due to the reduced symmetry about the cobalt(II) center caused by the isopropyl groups.  

All of the other pseudotetrahedral derivatives display signals for g┴ and g║ owing to the 

higher degree of symmetry about the cobalt(II) center.  However, no fine structure or 

hyperfine structure for coupling  of the electron with the 59Co nucleus or 14N of the 

ligands is observed in any of the spectra.  The values of g║ decrease in the expected order 

with the increased field strength of the ligands owing to the fact that all of the complexes 

have a similar local symmetry about the cobalt(II) center.   
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 Electronic Absorption Spectra.  The electronic absorption spectral data for the 

various ligands and cobalt complexes are collected in Table 3.5 while representative 

spectra for the complexes are showin in Figures 3.7 and 3.8.  The spectra of each pink 

monometallic complexes (1•CH2Cl2, 2•MeOH, 3•2MeOH) in methanol and the blue 

bimetallic complexes (4, 5•MeOH) in acetonitrile are clearly different than for the 

solvated CoCl2 (in MeOH, CH3CN), indicating that ligand dissociation is not extensive in 

these solvents (vida infra).  The pink monometallic spectra consist of high-intensity (ε > 

20,000 M-1cm-1), high energy bands (> 18,000 cm-1) that can be attributed to ligand-based 

transitions.  The low intensity, lower energy bands are typical for d-d transitions of high 

spin cobalt(II) and their assignments can be in accordance with standard methodology.39   

 In the ligand field region, the higher energy band near 515 nm (ca. 19,500 cm-1) is 

characteristic for the 4T1(P)←4T1(F) transition but contains some fine structure due to the 

perturbation caused by the axial symmetry of the complexes (which is more pronounced 

in the 2•MeOH than 1•CH2Cl2).
 

 

 

 

 

 

 

 

 

Figure 3.7.  UV-visible and Near-IR Absorption Spectra for d-d Transitions in 
MeOH solutions of 1•CH2Cl2 (gray), 2•MeOH (black), 3•2MeOH (pink) and 
CoCl2 (brick red). 
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 The band for the spin-forbidden 2T1,2(G)←4T1(F) transition.  The low energy band 

(between 8,000-10,000) can be unequivocably assigned to the 4T2(F)←4T1(F) transition.  

The calculated ligand field parameters further support the notion that the pz*
4lut is a 

weaker-field ligand (∆o ~ 9,000 cm-1) than the unsubstituted pz4lut (11,764 cm-1) or the 

pz4,
4lut (12,000 cm-1) derivative.  Although counter-intuitive, this finding is in accord 

with other poly(pyrazolyl)methyl or poly(pyrazolyl)borate systems which will be 

discussed in further detail below.  {Fe[HC(pz)3]2
2+}40or Fe[HB(pz)3]2

40 which contain 

low-spin octahedral iron(II) versus {Fe[HC(pz*)3]2
2+}40 or Fe[HB(pz*)3]2

40 which contain 

high spin iron(II).  In these latter cases steric interactions involving the 3-methyl groups 

(proximal to the metal) favor the longer Fe-N bonds of the high spin state, effectively 

making these ligands weaker field than their methylated analogues.  A similar argument 

could be invoked for the current cobalt(II) systems where the steric interactions between 

3-methyl groups on the pyrazolyls and the chlorides may presumably induce longer (and 

weaker) Co-N bonds.  Indeed, comparison of structures establish that the methyl 

derivative indeed has longer Co-N distances and more distorted pyrazolyl rings compared 

to the unsubstituted derivative, consisten with expectations for a weaker field ligand.  

This observation is also in accord with the observed nephelauxetic paramter β (β = 

Bcomplex / Bfreeion).  The parameter β provides an indication of covalency where ionic 

bonding would give values close to unity while more covalent giving less.  In this case 

the strongest field ligand pz4,
4lut gives 0.590, while pz4lut gives 0.617 and pz*

4lut gives 

0.858 which relects a lower effective charge experienced by the metal’s d-electrons in the 

former. It is noted that  4-methyl substituted pz4,
4lut  and unsubstituted pz4lut appear to be 

stronger field ligands than PY5 to cobalt as ∆o was found to be 10,900 cm-1.   



65 

 

 The spectra of the pseudo-tetrahedral derivatives (Figure 3.8a,b) contain 

structured high energy bands near 620 nm (ca. 16,000 cm-1, ε ≈ 350 M-1cm-1) for the 

4T1(P)←4A2 d←d transition and a low-intensity (ε < 100 M-1cm-1), low-energy 

4T1(F)←4A2 d←d transition (which occurs as a triplet, owing to spin-orbit coupling for 

the pz*
4lut case) centered near 1250 nm (8,000 cm-1).  The ligand field parameters ∆t and 

B’ (effective Racah parameter) calculated by standard methods39 (Table 2.4) indicate that 

the pz*
4lut (∆t ~ 4,993 cm-1) is a stronger field ligand than pz4lut (∆t ~ 4,124 cm-1) and 

pz4,
4lut (∆t ~ 4,720 cm-1) but weaker than pzDIP

4lut (∆t ~ 5,058 cm-1) as expected due to 

the eight electron donating methyl groups versus the eight electron donating isopropyl 

groups.  It should be noted that ∆t in (CoCl2)2(µ-pz*
4lut) is larger but similar to those 

values calculated for the monometallic derivatives CoCl2[pz**
2CH2] (∆t ~ 2,127 cm-1) and 

CoCl2[pz3Me
2CH2] (∆t ~ 2,392 cm-1).41   

 

 

 

 

 

 

 

 

 

Figure 3.8a.  Absorption Spectrum of CoCl2 in Acetonitrile. 
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Figure 3.8b.  Absorption Spectra of (CoCl2)2(µ-pz4lut) (4, top left), (CoCl2)2(µ-
pz4,

4lut) (5, top right), (CoCl2)2(µ-pz*
4lut) (6, bottom left),(CoCl2)2(µ-pzDIP

4lut) (7, 
bottom right) in Acetonitrile. 
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Compound Solvent λmax, cm-1 (ε, M-1cm-1) 10Dq(cm-1)a,b B(cm-1)a,b B’  Ref. 

CoCl2 CH3CN 17,483(230), 16,949(202), 16,340(236), 15,974(210), 14,663(360), 7,692(34) 4,500d,e,f 691 ---  f 

CoCl2[pz2CMe2] acetone 16,181(262), 15,290(379), 15,151(365) NIR nr  --- --- ---  41c 

CoCl2[pz4Me
2CMe2] CH3CN 16,892(130) , 15,337(150), 14,749(180), 9,580 (nr) --- --- ---  41b 

CoCl2[pz**
2CMe2]

c CH3CN 17,668(340), 16,340(360), 14,970(410), 9350(nr), 7500(nr), 5970(nr) 4,700d,e 686 ---  41b 

CoCl2[pz3Me
2CH2] acetone 16,700(nr), 15,400(nr), 9,600(nr), 7,600(nr), 6200(nr) 4,400d,e 734 ---  41a 

(CoCl2)2(µ-pz4lut) 

(CoCl2)2(µ-pz4,
4lut) 

CH3CN 

CH3CN 

17,007(352), 14,620(430), 13,175sh(73), 7102(62) 

17,007(323), 14,620(430), 8,169(31), 7,564(42), 6,793(38) 

4,100d,e 

4,700d,e 

703 

669 

0.627 

0.597 

 f 

f 

(CoCl2)2(µ-pz*4lut) 

(CoCl2)2(µ-pzDIP
4lut) 

CH3CN 

CH3CN 

17,921(298), 16,502(316), 15,106(471), 9,747(53), 7,849(101), 6,720(67) 

17,924(328), 16,447(290), 15,198(356), 10,000(51), 7,911(93), 6,562(55) 

5,000d,e 

5,100d,e 

666 

660 

0.594 

0.589 

 f 

f 

CoCl2 MeOH 18,939 (12), 14,925 (2), 7,716 (3) 8,620f 862 ---  f 

[CoCl(pz4lut)](Cl) 

[CoCl(pz4,
4lut)][Cl] 

MeOH 

MeOH 

21,186(20), 19,608sh(14), 18,727sh(12), 15,974sh(3), 10,706(4) 

21,277(27), 19,231(14), 10,822(5), 9,025(2) 

11,764d 

12,075d 

695 

667 

0.617 

0.590 

 f 

f 

[CoCl(pz*4lut)][Cl] MeOH 20,576(19), 19,608(17), 18,382(18), 15,532(8), 7,899(4) 9,000d 849 0.858  f 

[CoCl(PY5)][Cl] MeOH 21,598 (25), 19,157 (20), 18,349 (15), 10,320 (7) 10,915d 658 0.665  9 

 Table 3.5.  Uv-Vis & Near IR absorption data and parameters for various high spin cobalt(II) complexes in various solvents at or near 295 
K.  a tetrahedral derivatives calculated as in reference 39A, boctahedral calculated as in ref 39b. c pz** = 3,4,5-trimethylpyrazole.dmean value for high energy bands 
used; espin-orbit weighted. f =  this work  



 

 Solution Studies.

solvatochromic behavior that provoked further inve

(CoCl2)2(µ-pz*
4lut) or [CoCl(pz

tempearture, blue at high temperature) because pyridine displaces the heteroscorpionate 

ligand (Eqs. 3.1 & 3. 2) to form thermochromic CoCl

studies (Figure 3.9) and by comparison of the properties of the resulting of the

 

 

solutions with independently prepared pyridine solutions of CoCl

stronger donors than pyrazoles and have higher increased lewis base character.  It has 

previously been shown that CoCl

CoCl2(py)2 (blue) and two equivalents of free pyridine with the pink form favored at low 

temperature and the blue form favored at high temperature.

 

 

 

 

 

 

 

Figure 3.9.  Titration of pyridine into solutions of 
and of [CoCl(pz*

4lut)][Cl] in MeOH (right

Solution Studies.  The cobalt(II) complexes of pz*
4lut exhibit a range of 

solvatochromic behavior that provoked further investigation.  Pyridine solutions of either 

lut) or [CoCl(pz*
4lut)][Cl]•2CH3OH were thermochromic (pink at low 

tempearture, blue at high temperature) because pyridine displaces the heteroscorpionate 

) to form thermochromic CoCl2(py)4
42 as confirmed by titration 

) and by comparison of the properties of the resulting of the

solutions with independently prepared pyridine solutions of CoCl2 as pyridyls are 

stronger donors than pyrazoles and have higher increased lewis base character.  It has 

een shown that CoCl2(py)4 (pink) exists in solution in equilibrium with 

(blue) and two equivalents of free pyridine with the pink form favored at low 

temperature and the blue form favored at high temperature.42  

f pyridine into solutions of (CoCl2)2(µ-pz*
4lut) in CH

lut)][Cl] in MeOH (right). 
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stigation.  Pyridine solutions of either 

OH were thermochromic (pink at low 

tempearture, blue at high temperature) because pyridine displaces the heteroscorpionate 

as confirmed by titration 

) and by comparison of the properties of the resulting of the 

as pyridyls are 

stronger donors than pyrazoles and have higher increased lewis base character.  It has 

(pink) exists in solution in equilibrium with 

(blue) and two equivalents of free pyridine with the pink form favored at low 

 

 

lut) in CH3CN (left) 



 

 

 

 

 

 

 

 In sovlents less donating than pyridine, such as methanol the [Co(Cl)(pz

cation is well behaved as shown by both the titration data of pz

CoCl2 in methanol as well as the Job’s plot in methanol (

stoichiometry to be that of 1:1.  Of interest is the fact that the reaction between pz

and CoCl2 in methanol on the bulk scale gives a blue, presumably tetrahedral cobalt(II) 

complex; most likely due to the steric demands of the isopropyl groups on pyraozle.  

 

 

 

 

 

 

 

Figure 3.10.  Variable temperature absorption spectra in pyridine of (CoCl
pz*

4lut) (left) and CoCl2

Figure 3.11. Titration of pz
Job’s plot in MeOH of pz

donating than pyridine, such as methanol the [Co(Cl)(pz

cation is well behaved as shown by both the titration data of pz*
4lut in methanol added to 

in methanol as well as the Job’s plot in methanol (Figure 3.11) which confirm the 

to be that of 1:1.  Of interest is the fact that the reaction between pz

in methanol on the bulk scale gives a blue, presumably tetrahedral cobalt(II) 

complex; most likely due to the steric demands of the isopropyl groups on pyraozle.  

Variable temperature absorption spectra in pyridine of (CoCl

2 (right). 

of pz*
4lut (in MeOH) into a methanol solution of CoCl

Job’s plot in MeOH of pz4lut. 
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donating than pyridine, such as methanol the [Co(Cl)(pz*
4lut)]+ 

lut in methanol added to 

) which confirm the 

to be that of 1:1.  Of interest is the fact that the reaction between pzDIP
4lut 

in methanol on the bulk scale gives a blue, presumably tetrahedral cobalt(II) 

complex; most likely due to the steric demands of the isopropyl groups on pyraozle.   

 

Variable temperature absorption spectra in pyridine of (CoCl2)2(µ-

 

olution of CoCl2 (left) and 



 

 However,  when blue (CoCl

with electronic spectra containing bands characteristic of the [CoCl(pz

(Figure 3.12) are observed.  Furthermore, when MeOH was added into a blue acetonitri

solution of (CoCl2)2(µ-pz

formation of octahedral cobalt either in the form of [CoCl(pz

presumably, CoCl2(MeOH)

methanol can best be summarized by equations 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11.  Blue (CoCl
MeOH to a (CoCl2)2(µ-

However,  when blue (CoCl2)2(µ-pz*
4lut) is dissolved in MeOH a pink solution 

with electronic spectra containing bands characteristic of the [CoCl(pz*
4lut)]

) are observed.  Furthermore, when MeOH was added into a blue acetonitri

pz*
4lut) (Figure 3.12), the color changed to pink as a result of the 

formation of octahedral cobalt either in the form of [CoCl(pz*
4lut)]+ cation and, 

(MeOH)4 likely via [CoCl2(HOMe)2]2(µ-pz*
4lut).  This behavior 

methanol can best be summarized by equations 3.3-3.5 shown below. 

(CoCl2)2(µ-pz*
4lut) dissolved in MeOH (left) and addition of 

-pz*
4lut) in CH3CN (right). 
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lut) is dissolved in MeOH a pink solution 

lut)]+ cation 

) are observed.  Furthermore, when MeOH was added into a blue acetonitrile 

), the color changed to pink as a result of the 

cation and, 

lut).  This behavior in 

 

lut) dissolved in MeOH (left) and addition of 

 



 

 The titration pz*
4lut in acetonitrile into cobalt(II) chloride in acetonitrile indicate 

that both bimetallic (CoCl

(CoCl2)(κ2-pz*
4lut), are formed (

(Equations 3.6 & 3.7).  Unfortunately, attempts to isolate the monometallic (CoCl

pz*
4lut) have been unsuccessful, as the pink [CoCl(pz

insolubule solid on removing solvent from the preparative reaction.  When pink 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12.  Titration of pz
nm (right). 

lut in acetonitrile into cobalt(II) chloride in acetonitrile indicate 

that both bimetallic (CoCl2)2(µ-pz*
4lut) and a monometallic species, presumably, 

lut), are formed (Figure 3.12) depending on the stoichiometry of reagents 

).  Unfortunately, attempts to isolate the monometallic (CoCl

lut) have been unsuccessful, as the pink [CoCl(pz*
4lut)][Cl] is formed as an 

solubule solid on removing solvent from the preparative reaction.  When pink 

Titration of pz*
4lut in CH3CN into CoCl2 in CH3CN at 528 nm (left) and 486 
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lut in acetonitrile into cobalt(II) chloride in acetonitrile indicate 

lut) and a monometallic species, presumably, 

) depending on the stoichiometry of reagents 

).  Unfortunately, attempts to isolate the monometallic (CoCl2)(κ2-

lut)][Cl] is formed as an 

solubule solid on removing solvent from the preparative reaction.  When pink  

 

CN at 528 nm (left) and 486 
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[CoCl(pz*
4lut)][Cl] is treated with CH3CN, a blue solution is formed initially in which the 

absorption spectra (Figure 3.11, left) appears to be comprised of bands for each 

[CoCl(pz*
4lut)]+ and (CoCl2)2(µ-pz*

4lut).  Stoichiometric considerations would favor the 

latter, as in equation 3.8.  Especially since, after a period of several minutes of dissolving 

[CoCl(pz*
4lut)][Cl] in CH3CN to give a blue solution, insoluble [CoCl(pz*

4lut)][Cl] re-

precipitates.  Solutions of pink [CoCl(pz*
4lut)][Cl] in either CH2Cl2, DMF, or DMSO are 

also blue and the spectra exhibit bands for both tetrahedral and octahedral cobalt(II), 

however it has not been possible to structurally verify the blue species, presumably 

(CoCl2)(κ2-pz*
4lut), for the reason described in the acetonitrile case. 

 pz
DIP

4lut Ligand Solution Behavior.  The stoichiometry of the (CoCl2)-(µ-

pzDIP
4lut) complex in dichloromethane/acetonitrile is confirmed both by titration of a 

dichloromethane solution of pzDIP
4lut into an acetonitrile solution of cobalt(II) chloride as 

well as by Job’s method in dichloromethane/acetonitrile (both, Figure 3.13).  By     

 

 

 

 

 

 

monitoring the absorbance at 558 nm; the addition of pzDIP
4lut to cobalt(II) chloride 

shows a sharp break at 0.5 equivalents and then subsequent leveling of the absorbance all 

 

Figure 3.13.  Titration of pzDIP
4lut solution (CH2Cl2) into a CoCl2 solution (CH3CN, 

left).  Job’s plot of pzDIP
4lut and CoCl2 in acetonitrile and dichloromethane showing 1:2 

stoichiometry. 



 

way up to two equivalents of pz

when the stoichiometry is one ligand to two cobalt(II) chloride.

 Despite obtaining a blue sol

dilute solution behavior of pz

Solutions of (CoCl2)2-(µ-

a solution that is purple in color as can be seen from (

methanol solutions are thermochromic in nature giving increasingly blue solutions upon 

warming while giving pink solutions upon cooling.  The pink color is indicative of the 

six-coordinate monometallic species; however, due to the steric demands of the isopropyl 

groups it is not possible for the pz

fashion.  Therefore, this observation required further investigation in order to fully 

understand the solution behavior in methanol.

 

 

 

 

 

 

 

 

Figure 3.14.  Picture of 
(right). 

way up to two equivalents of pzDIP
4lut while the Job’s plot displays maximum absorbance 

when the stoichiometry is one ligand to two cobalt(II) chloride. 

Despite obtaining a blue solid upon reaction in methanol on the bulk scale, the 

dilute solution behavior of pzDIP
4lut and cobalt(II) chloride is significantly different.  

-pzDIP
4lut) in methanol at low concentrations (< 1 mmolar) gives 

e in color as can be seen from (Figure 3.14.).  Furthermore, 

methanol solutions are thermochromic in nature giving increasingly blue solutions upon 

warming while giving pink solutions upon cooling.  The pink color is indicative of the 

tallic species; however, due to the steric demands of the isopropyl 

groups it is not possible for the pzDIP
4lut to be coordinated to the cobalt(II) in a 

fashion.  Therefore, this observation required further investigation in order to fully 

understand the solution behavior in methanol. 

 

cture of (CoCl2)2-(µ-pzDIP
4lut) in MeOH (left) and CH
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lut while the Job’s plot displays maximum absorbance 

id upon reaction in methanol on the bulk scale, the 

lut and cobalt(II) chloride is significantly different.  

lut) in methanol at low concentrations (< 1 mmolar) gives 

.).  Furthermore, 

methanol solutions are thermochromic in nature giving increasingly blue solutions upon 

warming while giving pink solutions upon cooling.  The pink color is indicative of the 

tallic species; however, due to the steric demands of the isopropyl 

lut to be coordinated to the cobalt(II) in a κ5 

fashion.  Therefore, this observation required further investigation in order to fully 

lut) in MeOH (left) and CH3CN 



 

Furthermore, methanol solutions are thermochromic in nature giving

solutions upon warming while giving pink solutions upon cooling.  While the pink color 

is indicative of the six-coordinate monometallic species; however, due to the steric 

demands of the isopropyl groups it is not possible for the pz

the cobalt(II) in a κ5 fashion.  

 Shown below in Figure 3

methanol and in acetonitrile.  Upon inspection, the absorption spectra appears to contain 

peaks for two species as the peak at 487 nm is indicative of a six

species (based on previous cobalt(II) complexes discussed above); while the absorbances 

at 558 nm, 601 nm and 654 nm as well as the shoulder at 526 nm are indicative a 

tetrahedral species.  

 

 

 

 

 

 

 

The Job’s plot in methanol does not provide any further clarity as monitoring of two 

different wavelengths gives the same resuls as shown below in 

Figure 3.15.  Absorption spectra of (CoCl
(purple) and 4.54 x 10-3

Furthermore, methanol solutions are thermochromic in nature giving increasingly blue 

solutions upon warming while giving pink solutions upon cooling.  While the pink color 

coordinate monometallic species; however, due to the steric 

demands of the isopropyl groups it is not possible for the pzDIP
4lut to be coordinated to 

fashion.   

Figure 3.15 is the absorption spectra of (CoCl2)2

methanol and in acetonitrile.  Upon inspection, the absorption spectra appears to contain 

the peak at 487 nm is indicative of a six-coordinate cobalt(II) 

species (based on previous cobalt(II) complexes discussed above); while the absorbances 

at 558 nm, 601 nm and 654 nm as well as the shoulder at 526 nm are indicative a 

The Job’s plot in methanol does not provide any further clarity as monitoring of two 

different wavelengths gives the same resuls as shown below in Figure 3.16

Absorption spectra of (CoCl2)2-(µ-pzDIP
4lut) 8.33 x 10-3 M

3 M-1 in acetonitrile (blue). 
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increasingly blue 

solutions upon warming while giving pink solutions upon cooling.  While the pink color 

coordinate monometallic species; however, due to the steric 

lut to be coordinated to 

2-(µ-pzDIP
4lut) in 

methanol and in acetonitrile.  Upon inspection, the absorption spectra appears to contain 

coordinate cobalt(II) 

species (based on previous cobalt(II) complexes discussed above); while the absorbances 

at 558 nm, 601 nm and 654 nm as well as the shoulder at 526 nm are indicative a 

The Job’s plot in methanol does not provide any further clarity as monitoring of two 

3.16. 

 

M-1 in methanol 



 

 

 

 

 

 

 

Both the plot at 487 nm (characteristic of pink monometallic species) as well as t

at 558 nm (characteristic of blue tetrahedral species) display maximum absorbance when 

at a stoichiometry of 2:3 (two ligands:three cobalt).  One possible explanation for these 

results; is that the system is involved in an equilibrium (vide infra).

gained by performing titrations where pz

chloride in methanol were performed as discussed below.

 The addition of pz

chloride monitored at 487 nm  and 558 nm is shown below in 

 

 

 

 

 

Figure 3.16.  Job’s plot of pz
(right). 

Figure X.18.  Titration of pz
methanol at 487 nm and 558 nm.

Both the plot at 487 nm (characteristic of pink monometallic species) as well as t

at 558 nm (characteristic of blue tetrahedral species) display maximum absorbance when 

at a stoichiometry of 2:3 (two ligands:three cobalt).  One possible explanation for these 

results; is that the system is involved in an equilibrium (vide infra).  Further insight was 

gained by performing titrations where pzDIP
4lut in methanol was added to cobalt(II) 

chloride in methanol were performed as discussed below. 

The addition of pzDIP
4lut ligand in methanol to a methanol solution of cobalt(II) 

onitored at 487 nm  and 558 nm is shown below in Figure 3.17.

Job’s plot of pzDIP
4lut and CoCl2 in methanol; 487 nm (left) and 558 nm 

Titration of pzDIP
4lut in methanol added to cobalt(II) chloride in 

methanol at 487 nm and 558 nm. 
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Both the plot at 487 nm (characteristic of pink monometallic species) as well as the plot 

at 558 nm (characteristic of blue tetrahedral species) display maximum absorbance when 

at a stoichiometry of 2:3 (two ligands:three cobalt).  One possible explanation for these 

Further insight was 

lut in methanol was added to cobalt(II) 

lut ligand in methanol to a methanol solution of cobalt(II) 

Figure 3.17.  The plot for 

 

487 nm (left) and 558 nm 

 

cobalt(II) chloride in 
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487 nm clearly shows an increase in absorbance until 1.0 equivalents at which point the 

absorbance begins to level off up until two equivalents have been added.  However, the 

plot for 558 nm is not as clearly defined.  There appears to be a sharper slope to 0.5 

equivalents indicating the formation of a tetrahedral complex with 1:2 stoichiometry (1 

ligand to 2 cobalts) however the absorption does not really begin to level off until after 1 

equivalent of pzDIP
4lut has been added.plots are obtained in both cases which show 

increases in absorbance until 1.0 equivalents of ligand have been added at which point 

the absorbance values begin to level off.  Both plots indicate the formation of complexes 

that have stoichiometry of 1:1.  As stated previously the steric demands of the isorpropyl 

groups prevent it from being coordinated in a κ5 fashion and therefore must be a lower 

coordination mode.   

 Finally, the thermochromic behavior of the solutions was explored by using Job’s 

method at both a high temperature (50 oC) and a low temperature (0 oC) in methanol to 

determine the stoichiometry. Shown below in Figure 3.18 is the variable temperature 

absorption spectra in methanol at 0 oC, 23 oC and 50 oC.  Methanol solutions at low  

 

 

 

 

 

 

 

Figure 3.18.  Absorption spectra of (CoCl2)2-(µ-pzDIP
4lut) in methanol, 0 oC (pink), 23 

oC (purple), 50 oC (blue). 
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temperature were increasingly pink in color while at high temperature solutions were 

increasingly blue in color.  Plots for 487 nm at 0 oC and 558 nm at 50 oC are shown 

below in Figure 3.19.  The plot for 487 nm at 0 oC shows maximum absorbance when 

the stoichiometry is 1:1 while the plot for 558 nm at 50 oC shows maximum absorbance 

when the stoichiometry is one ligand for every two cobalts. 

  

 

 

 

 

 An equilibrium between a complex that has 1:1 stoichiometry and that of 1:2 

stoichiometry (one ligand:two cobalt) appears to be the most likely cause of the purple 

solution obtained in methanol.  X-ray quality crystals were obtained from by vapor 

diffusion of Et2O into a concentrated methanol solution (that started out purple) over the 

course of approximately one week; giving both blue blocks of the complex as well as a 

colorless precipitate presumed to be free ligand.  Both Job’s plots at 487 nm and 558 nm 

show maximum absorbance at 0.4 eq of pzDIP
4lut ligand.  This ratio happens to be 

between the exact ratios of 1:1 and 1:2 at room temperature and indicates both complexes 

are likely to exist in solution.  The titration data at room temperature in methanol shows 

the formation of both a 1:1 complex by monitoring of the band growing in at 487 nm as 

well as the formation of a 1:2 complex as shown by the growth of the band at 558 nm.   

 

Figure 3.19.  Job’s plots for 487 nm, 0 oC (left) and 558 nm, 50 oC (right). 
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Further evidence supporting this equilibrium is the fact that a color change is observed 

upon heating (blue) and cooling (pink) of the solutions.  While the 1:2 complex is known 

to be that of the tetrahedral species shown earlier the nature of the 1:1 complex remains 

unknown for reasons discussed in more detail below. 

 The pzx
4lut ligand scaffold has shown the ability to display multiple coordination 

modes as shown above and earlier with silver(I) complexes; as such there remains 

ambiguity in assigning the exact nature of the 1:1 complex.  In addition to the multiple 

coordination modes, there is no way to distinguish between one six coordinate complex 

or another, as they are all pink in color and display characteristic absorptions in the 480 

nm range.  Shown below in Figures 3.20 & 3.21 are two potential equilibrium processes 

taking place at room temperature. However, upon changing the temperature the 

equilibrium is shifted to left favoring the six-coordinate complexes at low temperatures 

and blue four-coordinate complex at high temperatures while room temperature contains 

a mixture of the two species. 

 

 

 

 

 

 

 

 

Figure 3.20.  Potential equilibrium process of (CoCl2)2-(µ-pzDIP
4lut) in methanol at 

room temperature. 
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 Summary and Conclusions.  Six new high spin cobalt(II) complexes have been 

sythesisezed: two pink monometallic species with a κ5 coordination mode and four blue 

bimetallic species with a κ2-µ coordination mode.  The pz4,
4lut and pz*

4lut ligands exhibit 

both coordination modes depending on solvent choice while the pzDIP
4lut ligand exhibits 

the κ2-µ mode exclusively (confirmed by Job’s method) regardless of solvent; owing to 

the steric bulk of the isopropyl groups.  The complexes exhibit solvato- and 

thermocrhomic behavior in strongly lewis basic solvents such as acetonitrile and pyridine 

they are stronger donors than the newly synthesized pzR
4lut ligand.  The (CoCl2)2(µ-κ2,κ2-

pzDIP
4lut) complex provides an unique opportunity to explore the reactivity of these 

complexes; as it displays significantly increased solubility over the other derivatives in 

 

Figure 3.21.  Alternative equilibrium process occurring in methanol. 
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organic solvents such as THF and CH2Cl2 and only displays a single coordination mode 

due to the isopropyl groups except in methanol or pyridine in which case the solvent can 

displace the ligand. 

 The substitution of alkyl groups along the pyrazole periphery has both steric as 

well as electronic consequences.  In the case of the pink complexes, pz4,
4lut exhibits the 

strongest ligand followed by pz4lut and pz*
4lut.  While this is counter intuitive since 

pz*
4lut has eight sigma donating methyl groups, this results agrees well with the 

previously reported high spin iron(II) complexes as well as other iron(II) pyrazole borate 

complexes owing to the steric interactions of the 3-methyl groups.  In the case of the blue 

κ2-µ complexes the trend follows as expected in terms of ligand field strength: pzDIP
4lut > 

pz*
4lut > pz4,

4lut > pz4lut as there steric interactions between the alkyl groups are 

removed since each cobalt is only four coordinate. 

 The reaction between on the bulk scale between pzDIP
4lut and cobalt(II) chloride 

gives a blue complex characterized in the solid state as well as acetonitrile or 

dichloromethane as (CoCl2)2-(µ-pzDIP
4lut).   Titration data shows that both a complex that 

is thought to be six coordinate cobalt(II) and has 1:1 stoichiometry is formed as well as 

that of a blue tetrahredal species with 1:2 stoichiometry.  In  methanol an equillibrium 

process that that shifts at low and high temperatures giving both the monometallic pink 

species and blue bimetallic species is favored.  The low solubility of octahedral pz4lut 

and pz4,
4lut preclude further reactivity study unless new anios are explored.   
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Experimental Section 

 General Information.  All transition metals were obtained commercially and 

used as received.  The synthesis of ligands pz4lut, pz4,
4lut, pz*

4lut and pzDIP
4lut can be 

found in Chapter 2.  Solvents were dried by conventional procedures and distilled prior 

to use, except where noted.  Job’s method was performed using solutions with a total 

concentration of 1.0 x 10-4 M-1.  Titrations were performed by transferring 2 mL of a 1.0 

x 10-2 M-1 solution to a cuvette and titrating in a 0.5 x 10-1 M-1 solution of ligand in 25 µL 

incriments, until 2 equivalents of ligand have been added.  Midwest Microlab, LLC, 

Indianapolis, Indiana 45250, performed all elemental analyses.  Melting point 

determinations were made on samples contained in glass capillaries using an 

Electrothermal 9100 apparatus and are uncorrected.  1H and 13C NMR spectra were 

recorded on a Varian 300 MHz spectrometer.  Chemical shifts were referenced to solvent 

resonances at δH 3.31 and δC 49.15 for methanol-d4.  UV-visible and NIR spectra were 

recorded using Shimadzu UV-1600/1700 or Jasco V-570 instruments. Solid-state 

magnetic measurements were made at room temperature using an MK1 susceptibility 

balance. EPR spectral measurements were obtained using a Bruker ELEXSYS E600 

equipped with ER4116DM cavity resonating at 9.63 GHz, an Oxford instruments ITC503 

temperature controller and ESR-900 helium flow cryostat.  The EPR spectra were 

recorded with 100 kHz field modulation.   
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 [CoCl(pz
4,

4lut)][Cl]•MeOH, 2•MeOH.  A solution of 0.100 g (0.38 mmol) 

pz4,
4lut in 8.5 mL of CH2Cl2 was layered with a solution of 0.050 g (0.38 mmol) of 

CoCl2 in 8.5 mL of MeOH and the solvents were allowed to slowly diffuse over 3 days.  

A 0.218 g (90 %) sample of 2•MeOH as pink X-ray quality crystals was collected and 

dried under vacuum.  Mp, 250-255 oC decomp.  UV-Vis (MeOH) λmax, nm (ε, M-1cm-1), 

558(27), 520(14), 924(5), 1108(2) 

 [CoCl(pz
*

4lut)][Cl]•MeOH, 3•2MeOH.  A solution of 0.404 g (0.77 mmol) 

pz*
4lut in 8.5 mL of MeOH was layered with a solution of 0.100 g (0.78 mmol) of CoCl2 

in 8.5 mL of MeOH and the solvents were allowed to slowly diffuse over 3 days and then 

the mixture was allowed to slowly evaporate to give magenta X-ray quality crystals. A 

0.503 g (100 %) sample of 3•2MeOH collected and dried under vacuum.  Mp, 278 – 282 

oC decomp.  Anal.  Calcd.  (obsd.)  for C27H34Cl2CoN92: C, 52.10 (52.12); H, 5.78 (5.75); 

19.57 (16.61).  µeff (Solid) 3.52 µB.  UV-Vis (MeOH) λmax, nm (ε, M-1cm-1), 486(19), 

509(17), 544(18), 643(8), 1265(4). 

 (CoCl2)2(µ-pz4lut), 4.  A Solution of 0.206 g (0.55 mmol) pz4lut in 25 mL of 

CH3CN was added to a stirred solution of 0.143 g (1.10 mmol) CoCl2 in 25 mL of 

CH3CN.  A green/blue precipitate immediately formed and was collected by filtration, 

washed with CH3CN (1 x 10 mL) and dried under vacuum to give 0.297 g (84 %) of 

(CoCl2)2(µ-pz4lut).  X-ray quality crystals could not be grown despite multiple attempts 

giving at best microcrystalline needles from diffusion of Et2O into a concentrated 

CH3CN solution.  Mp, > 350 oC.  Anal.  Calcd.  (Obsd.) for C19H18Cl4Co2N9: C, 36.10 

(35.99); H, 2.87 (2.79); N, 19.94 (20.05).  µeff (Solid) 6.65 µβ (3.33 µβ per Co).  UV-Vis 

(CH3CN) λmax, nm (ε, M-1cm-1), 588(284), 684(376), 1058(15), 1240(32), 1506(32).  



83 

 

 (CoCl2)2(µ-pz
4,

4lut), 5.  A solution of 0.100 g (0.23 mmol) pz4,
4lut in 15 mL of 

CH3CN was added to a stirred solution of 0.060 g (0.46 mmol) CoCl2 in 15 mL of 

CH3CN to immediately produce a green/blue precipitate.  The precipitate was collected 

by filtration, washed with additional CH3CN (1 x 10 mL) and dried under vacuum to give 

0.143 g (91 %) of (CoCl2)2(µ-pz4,
4lut)  as a green/blue solid.  Mp, 280-286 oC decomp.  

Anal.  Calcd.  (Obsd.) for C23H25Cl4Co2N9:  C, 40.20 (37.20); H, 3.67 (4.30); 18.34 

(16.48).  UV-Vis (CH3CN) λmax, nm (ε, M-1cm-1), 587(323), 683(430), 1224(31), 

1322(42), 1484(38). 

 (CoCl2)2(µ-pz
*
4lut), 6.  A solution of 0.504 g (1.04 mmol) of pz*

4lut in 25 mL of 

CH3CN was added to a stirred solution of 0.270 g (2.08 mmol) CoCl2 in 25 mL of 

CH3CN to immediately produce a green/blue precipitate.  The precipitate was collected 

by filtration, washed with additional CH3CN (1 x 10 mL) and dried under vacuum to give 

0.680 g (95 %) of 4.  Fine blue crystalline needles suitable for X-ray diffraction were 

grown by vapor diffusion of Et2O into a concentrated solution of 1:1 CH3CN:THF.  Mp, 

298-300 oC decomp.  Anal.  Calcd.  (obsd) for C27H33Cl4Co2N9: C, 43.63 (44.04); H, 4.47 

(4.47); N, 16.96 (17.03).  µeff (Solid) 8.44 µβ (4.22 µβ per Co).  UV-Vis (CH3CN) λmax, 

nm (ε, M-1cm-1), 558(298), 665(316), 661(471), 1026(53), 1267(93), 1524(55).  

(CoCl2)2(µ-pz
DIP

4lut)•MeOH, 7•MeOH.  A solution of 0.200 g (0.28 mmol) of pzDIP
4lut 

in 10 mL of CH3CN was added to a stirred solution of 0.073 g of CoCl2 in 30 mL of 

CH3CN.  Upon addition of the pzDIP
4lut solution the reaction mixture turned deep 

blue/purple in color.  The reaction was allowed to stir for one hour and the solvent was 

removed by vacuum to leave a blue/purple solid.  The solid was washed with Et2O (3 x 

10 mL) and collected by filtration and allowed to dry under vacuum to give 0.248 g (91 
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%) of 5 as a purple solid.  Crystals suitable for X-ray diffraction were grown by vapor 

diffusion of Et2O into a concentrated MeOH solution.  Mp, 280-290 oC. decomp.  Anal.  

Calcd.  (Obsd.) for C43H65Cl4Co2N9: C, 53.27 (52.15); H, 6.77 (6.55); N, 13.03 (12.13).  

µeff (Evan’s, CD3CN, 295 K)  9.62 µβ (4.86 µβ per Co).  UV-Vis (CH3CN) λmax, nm (ε, M-

1cm-1), 558(328), 608(290), 658(356), 1000(51), 1264(93), 1524(55).    
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Chapter 4:  Synthesis and Characterization of Iron(II) 

complexes of pz4lut, pz4,
4lut & pz*

4lut. 

 

 

 

Introduction.  Investigations into the coordination chemistry of simple abiotic 

AE4 pentadentate ligands1 capable of occupying one axial (A) and four equatorial (E) 

positions about pseudo-octahedral transition metal complexes has given rise to important 

advances in understanding of bonding, electronic structure, and chemical reactivity in 

complex biological systems.  Moreover, the lessons learned from model MAE4 

complexes have also served as the foundation for contemporary discoveries of systems 

capable of mediating spectacular organic transformations such as alkane oxidation.43 We 

recently communicated our initial foray into the field with a survey of some first-row 

divalent transition metal coordination chemistry of α,α,αʹ,αʹ-tetra(pyrazolyl)lutidine 

(pz4lut, left of Figure 4.1).5  The pz4lut ligand, a relative of the more intensively studied 

tetra(pyridyl)lutidine PY5-R derivatives (right of Figure 4.1) exhibited many similar 

characteristics to the latter in terms of metal binding behavior but  

 

 

 

 

 

Figure 4.1.  Pentadentate Ligand Scaffolds. 
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the change in equatorial groups from six-member pyridyl rings to the five-member pyrazolyl 

rings lead to intriguing changes in the properties of the resulting complexes.  For instance, the 

copper(II) complexes [CuCl(κ4-PY5)]+ and [CuCl(κ5-pz4lut)]+ exhibit different coordination 

modes.  Also, based on absorption spectra of Ni2+ and Co2+ complexes, the pz4lut ligand was 

found to be stronger field donor than PY5, a surprising feature that was attributed to greater 

ligand distortions in PY5 complexes that potentially reduce the full σ-donor (and π-acceptor) 

capabilities of the ligand.  In the work reported below; we detail our investigation into the 

structural and electronic effects (Figure 4.2) substituting pyrazol hydrogens with methyl groups.  

Included in this work are reports on solid state (X-Ray structural analysis, Mӧssbauer and, 

Electron Paramagnetic Resonance Spectroscopy) and solution and electronic behavior 

(Absorption Spectroscopy) behavior. 

 

 

 

 Solid State.  The metal complexes of pzR
4lut ligands are prepared in nearly by 

mixing equimolar amounds of FeCl2 and ligand. X-ray quality crystals of all three 

complexes of [FeCl(pz4lut)][Cl] (1), [FeCl(pz4,
4lut)][Cl] (2), and [FeCl(pz*

4lut)][Cl] (3) 

were obtained either by layering a dichloromethane solution of anhydrous iron(II) 

chloride and allowing the layers to diffuse for two days or by slow evaporation of the 

diffused solution.  The complexes crystallized as a solvates: 1•CH2Cl2, 2•MeOH•Et2O, 

3a•2MeOH and 3b•MeOH.  The structural and metrical parameters are shown below 

(Tables 4.1& 4.2) while a comparison of structural cations is shown in Figure 4.3.  The  

 

Figure 4.2.  pz4,
4lut and pz*

4lut ligands used in this study. 
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Compound 

 
1•CH2Cl2 

 

 
2•MeOH•Et2O 

 
3a•MeOH 

 
3b•2MeOH 

Formula C20H19Cl4FeN9 C25.4H32.5Cl2FeN9O0.4 C28H37Br0.11Cl1.89FeN9O C29H41Cl2FeN9O2 
 
Formula Weight 

 
583.09 

 
597.04 

 
647.31 

 
674.46 

 
Crystal System 

 
Monoclinic 

 
Monoclinic 

 
Triclinic 

 
Orthorhombic 

 
Space Group 

 
P21/c 

 
P21/n 

 
P1 

 
Pnma 

 
a. Å 

 
10.4115(5) 

 
12.9870(2) 

 
8.7842(2) 

 
14.3222(2) 

 
b. Å 

 
19.2410(9) 

 
16.2105(2) 

 
12.5916(4) 

 
12.9169(2) 

 
c. Å 

 
12.0005(6) 

 
14.3844(2) 

 
13.7985(4) 

 
17.1494(2) 

 
Β deg 

 
90.000(2) 

 
106.2600(1) 

 
84.392(2) 

 
90.000(2) 

 
V, A3 

 
2404.0(2) 

 
2907.2(7) 

 
1488.9(3) 

 
3172.6(1) 

 
Z 

 
4 

 
4 

 
2 

 
4 

 
T, K 

 
100(2) 

 
100(2) 

 
100(2) 

 
100(2) 

 
ρ, calcd, Mg m3 

 
1.611 

 
1.399 

 
1.444 

 
1.412 

 
λ, Å 

 
1.54178 

 
1.54178 

 
1.54178 

 
1.54178 

 
µ (Cu, Kα) mm-1 

 
9.372 

 
6.157 

 
6.111 

 
5.709 

 
R[I>2σ(I)]a (all data) 

 
0.0353(0.0387) 

 
0.0349(0.0406) 

 
0.041090.0562) 

 
0.0352(0.0393) 

 

wRb (all data) 
 

0.0862(0.0874) 
 

0.0869(0.0349) 
 

0.0886(0.0930) 
 

0.0775(0.0790) 
aR = ΣǁFo| - ǁFoǁ/Σ|Fo|. bwR = [Σw(|Fo

2| - |Fo
2|)2/Σw|Fo

2|2]1/2 

Table 4.1.  Summary of single crystal x-ray diffraction data collection and 
refinement parameters. 
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Complex  1•CH2Cl2 2•MeOH•Et2O 3a•MeOH 3b•2MeOH 

M-Cl (Å) 2.307(3) 2.323(6) 2.345(2) 2.328(2) 

M-N1py (Å) 2.300(3) 2.268(2) 2.210(2) 2.218(3) 

M-N3pz (Å) 2.179(3) 2.184(2) 2.290(2) 2.245(3) 

M-N5pz (Å) 2.187(3) 2.169(2) 2.273(2) 2.245(3) 

M-N7pz (Å) 2.198(3) 2.174(2) 2.252(2) 2.317(7) 

M-N9pz (Å) 2.222(3) 2.182(2) 2.259(2) 2.317(7) 

Avg. axial (Å) 2.304(3) 2.295(2) 2.302(2) 2.273(2) 

Avg. Eq. (Å) 2.197(3) 2.177(2) 2.268(7) 2.281(4) 

Avg. total (Å) 2.233(3) 2.216(2) 2.271(7) 2.330(1) 

M-N4pl (Å) 0.392 0.365 0.250 0.293 

MN3-N2C6 (o) 1.93 6.21 6.68 10.65 

MN5-N4C6 (o) 5.08 3.37 1.73 10.65 

MN7-N6C7 (o) 1.21 4.67 2.53 2.55 

MN9-N8C7 (o) 7.50 4.14 14.80 2.55 

Avg MN-NC(o) 3.93 4.59 6.44 6.60 

N1-M-Cl (o) 179.60 177.98 179.70 176.81 

Oct. Vol (Å)3 14.279 14.054 15.134 15.236 

Quad. Elong. 1.026 1.023 1.022 1.024 

⁄  variance (o)2 88.46 76.99 76.17 81.48 

 

 

Table 4.2.  Structural parameters for compounds 1, 2, 3a & 3b. 
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state structures for all three reveal a six coordinate iron(II) center deviating from ideal 

local C4V symmetry.  For each complex the Fe-N(pz) bond lengths are characteristic of 

high spin iron(II) species44 with an average Fe-N(pz) bond length of 2.196 Å for 

1•CH2Cl2, 2.177 Å for 2•MeOH•Et2O, 2.268 Å for 3a•2MeOH, and 2.259 Å for 

3b•MeOH; for reference low spin on average < 2.000 Å.45    High spin iron(II) is also 

accounted from examining the average axial (Fe-N(py) and Fe-Cl) bond lengths of each 

complex: 2.303 Å for 1•CH2Cl2, 2.295 Å for 2•MeOH•Et2O, 2.277 Å for  3a•2MeOH, 

and 2.273 Å for 3b•MeOH again for low spin iron(II) complexes typically are less than 

2.000 Å.  Despite having eight electron donating methyl groups and what is anticipated to 

be the stronger field ligand the complexes 3a•2MeOH and 3b•MeOH contain not only 

the longest average bond distances but also the highest amount of ligand distortions 

which can be quantified by the FeN-NC(H) torsion angles (vide infra). 

 Shown in Figure 4.3 is an overlay of structures showing the differences in FeN-

NC(H) torsion angles of the four complexes.  As can be seen 1•CH2Cl2  experiences the 

least amount of twisting with an average FeN-NC(H) angle of 3.93 o, while 3a•2MeOH 

and 3b•MeOH experience the most twisting at 6.44 o and 6.60 o.  As expected the 

complex 2•MeOH•Et2O represents a case with intermediate distortion with 4.6 o of ring 

twisting.  Ideally, this torsion angle would approach zero and the pyrazoles would 

experience no distortions.46  Presumably, the eight methyl groups adjust to have a 

maximum distance from the chloride group and steric interaction from the 3-methyl, 3-

methyl groups, giving rise to the longer average bond lengths and higher torsions angles 

seen in both 3a•2MeOH and 3b•MeOH (highlighted in Figure 4.4 below).  
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Figure 4.3.  Structural overlay of 1•CH2Cl2 (gold) & 3a•2MeOH (blue) (top left), 
1•CH2Cl2 & 3b•MeOH (green) (top left), 2•MeOH•Et2O (red) & 3a•2MeOH 
(bottom left), and 2•MeOH•Et2O & 3b•MeOH (bottom right).  

 

Figure 4.4.  Space-filling model of 3a•2MeOH highlighting the steric interactions 
between methyls (left) and between methyls and chloride groups (right). 
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 Mӧssbauer Spectroscopy.    The Mössbauer spectra of [FeCl(pz4lut)]Cl•CH2Cl2, 

1•CH2Cl2, obtained at 85 and 295 K are shown in Figure 4.5; the 155 and 225 K spectra 

are virtually identical to those shown in this figure. These spectra have been fit with a 

symmetric quadrupole doublet and the resulting parameters are given in Table 4.3.  The 

85 to 295 K spectra of 1•CH2Cl2, are fully consistent47 with the presence of high-spin 

iron(II) in a distorted octahedral coordination environment; there is no indication of the 

presence of any iron(III) or iron(II) in a different coordination environment. The 

observed isomer shift is typical of iron(II) in an FeN4Cl2 coordination environment.  The 

temperature dependence of the isomer shift, δ, of 1•CH2Cl2, (Figure 4.6) is well fit with 

the Debye model48 for the second-order Doppler shift with a characteristic Mössbauer 

 

 

 

 

 

 

 

complexes indicate that ΘM
δ is often at least twice as large as ΘM

δ, i.e., the isomer shift is 

more sensitive to higher energy phonons. The isomer shift of 1•CH2Cl2, see Figure 4.5, 
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Figure 4.5  Mӧssbauer spectrum of 1•CH2Cl2 at 295 K and 85 K. 
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decreases by only 0.110 mm/s between 85 and 295 K, a decrease which is typical for this 

type of complex.49   

 The 3.04 mm/s quadrupole splitting observed at 295 K for 1 is typical7 of that 

expected for iron(II) in a pseudooctahedral FeN4Cl2 coordination environment. In 

contrast and unexpectedly, there is little change in this rather large quadrupole splitting 

with temperature; between 85 and 295 K the splitting decreases by only 0.24 mm/s, albeit 

in an almost linear fashion, (See Figure 4.6). As is also shown in this figure, an attempt  

 

 

 

 

 

 

to fit the temperature dependence of the quadrupole splitting of 1 with the Ingalls model50 

in terms of the low-symmetry crystal field splitting, ∆, of the t2g orbitals fails; the “best 

fit” yields a splitting of 725 cm–1 a not unreasonable value for the splitting. Apparently 

there is a small temperature dependence to ∆ which invalidates the Ingalls model.   

 

 

[FeCl(pz4lut)](Cl) T, 

K 

   δ, 

mm/sa 

∆EQ, 

mm/s 

  Γ, 

mm/s 

Area, 

(%ε)(mm/s) 

 295 1.047 3.04 0.26 2.198 

 85 1.157 3.28 0.26 6.944 

[FeCl(pz*4lut)](Cl) 295 1.093 1.32 0.28 41.2 

 85 1.226 1.99 0.31 36.3 

Table 4.3.  Mӧssbauer parameters obtained for 1•CH2Cl2 and 3a•2MeOH. 
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 Solution.  All of the [Fe(Cl)pzR
4lut)] complexes are sparingly soluble in methanol 

to give orange (1) or yellow (2) solutions but are completely insoluble in other organic 

solvents.  Paramagnetic 1H NMR spectra indicate high spin iron(II) paramagnetic with 

magnetic moments (Evans, CD3OD, 298 K): 5.45 µβ for 1•CH2Cl2, 4.41 µβ for 

2•MeOH•Et2O and 6.40 µβ for 3a•MeOH.  The electronic absorption spectrum for each 

1•CH2Cl2, 2•MeOH•Et2O and 3a•2MeOH is shown below in Figure 4.7.  Each 

spectrum consist of two main bands:  one low energy, low intensity band (~800-1000 nm, 

ε < 10) and one higher energy, higher intensity band (~400 nm, ε > 100 ).  The low 

energy bands can be assigned to the expected 5E ← 5T2 d←d transition for high spin d6 

compounds while the higher energy bands can be assigned to either a π*←n or charge 

transfer; with the low intensity suggestive of the former.  Since there is only one expected 

 

Figure 4.6.  The temperature dependence of the isomer shifts, upper, the quadrupole 
splittings, center, and the logarithm of the spectral absorption areas, lower, of 1•CH2Cl2. 
The isomer shifts and the logarithm of the spectral absorption areas have been fit with the 
Debye model for a solid and the quadrupole splittings have been fit with a linear 
dependence on temperature; an attempted fit with the Ingalls model, the curved line, is 
also shown. 
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d-d transition for high spin d6 complexes the energy of this transition directly corresponds 

to the crystal field parameter ∆o for each complex.  The ∆o values are 10,400 cm-1 for 

1•CH2Cl2, 10,612 cm-1 for 2•MeOH•Et2O and 8,950 cm-1 for 3a•2MeOH.  While these 

results are initially surprising, they fall in line with other high spin iron(II) 

poly(pyrazole)methane complexes and will be discussed in further detail later on (vida 

infra). 

 Stoichiometry.  The stoichiometry of the complexes was confirmed by using 

Job’s plot analysis.51  By monitoring the absorbance at 424 nm (1), 438 nm (2) and 403 

nm (3) in methanol the expected complexation ratio of 1:1 was confirmed.  The plot’s 

below (Figure 4.8) all show that the absorbances for the respective wavlengths are at a 

maximum when the ratio of ligand to metal is at 1:1.  Information about the strength of 

the formation constant can also be obtained from the appearance of the plots.  Only 

complexes that have large formation constants give plots that are triangular in shape.52  

 

 

 

 

 

 

 
 

Figure X.8.  Job’s plots of 1, 2 and 3 in methanol. 
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 Electrochemistry.  The cyclic voltammograms of complexes 1•CH2Cl2, 

2•MeOH•Et2O and 3a•2MeOH was recorded in methanol at a scan rate of 100 mVs with 

n-butyl ammonium hydrogen sulfate as the supporting electrolyte (Figure 4.9).  Both 

1•CH2Cl2 and 2•MeOH•Et2O displayed quasi reversible oxidation waves: E½ = 0.76 V 

for 1•CH2Cl2 and 0.65 V for 2•MeOH•Et2O versus Ag/AgCl.  However, the complex 

3a•2MeOH only displayed an irreversible oxidation centered at 0.96 V.  As the ligand is 

redox innocent under these conditions. In all complexes, this oxidation wave corresponds 

to the one electron oxidation of FeII to FeIII.  The closest related species [FeCl(PY5)][Cl]  

 

 

 

 

 

 

 

 

 

has a reversible oxidation wave at 0.40 V13a while [Fe(bztpen)Cl][Cl] has a reversible 

oxidation potential of 0.22 V.53b   

 

Figure 4.9.  Cyclic voltammograms of 1•CH2Cl2 (bottom), 2•MeOH•Et2O (middle) 
and 3a•2MeOH (top) in methanol (1 mM) with 0.1 mM [NBu4][HSO4].  Scan rate = 
100 mvs.  
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 Electron Paramagnetic Resonance.  The X-band (9.6 GHz) electron 

paramagnetic resonance spectra for 1,2 and 3 was recorded at 10 K in 9:1 MeOH:EtOH 

as shown in (Figure 4.10).  All three species are rare examples of non-Kramer’s systems 

(S = 2) that give detectable EPR signals owing to some proportion of the zero-field 

splitting envelope satisfying the condition ∆ < 0.3 cm-1; however, no hyperfine coupling 

to any of the nitrogens is observed.54 

 

 

 

 

 

 

 

 

 

The signals for the main iron(II) species are observed at geff ≈8.0 for 1•CH2Cl2, geff ≈9.5 

for 2•MeOH•Et2O and geff≈4.0 for 3a•2MeOH.  The signals at geff ≈ 4.0 in 1•CH2Cl2 

and 2•MeOH•Et2O are attributed to the minor species (iron(III) impurity).  Parallel mode 

confirms the presence of the high spin iron(II) signals. 

 

Figure 4.10.  Perpendicular mode (left) and parallel mode (right) X-band EPR 
of 1•CH2Cl2 (bottom), 2•MeOH•Et2O (middle) and 3a•2MeOH (top) at 3 mW 
and 10 K.   
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 Discussion.  Three new iron(II) complexes of pzR
4lut have been synthesized in 

high yield.  All three complexes show a iron(II) center, slightly deviated from ideal local 

C4V symmetry because of various differences in the equatorial M-N bond distances and 

associated angles inposed in party by pyrazole methyl substitution.  The complex 

3a•2MeOH was expected to have the shorter bond distances due to eight electron 

donating methyl groups.  From examination of bond distances and angles it was found 

that 3,5-dimethyl substitution causes significant Fe-N(pz) bond lengthening and pyrazolyl 

ring twisting relative to the complexes without these pyrazolyl substitutions.  The steric 

interactions between methyls and methyls and axial chloride serve to lengthen and 

presumably weaken the bonds.  This observation falls in line with other high spin iron(II) 

complexes bound to methyl substituted pyrazoles.  For example, the complexes 

{Fe[HC(pz3)2]
2+} and Fe[HB(pz)3]2 are low-spin while {Fe[HC(pz*)3]2

2+} and 

Fe[HB(pz*)3]2 are high spin.40  In the latter cases, it is believed that the steric interactions 

involving the 3-methyl groups (proximal to the metal) favor the longer Fe-N bonds of the 

high spin state, effectively making the 3,5-dimethyl pyrazole derivative weaker field 

ligands than the unsubstituted analogues.  While, in the present case, all complexes are 

high spin but differences between 3c and complexes without 3-methyl substitution are 

significant. 

 Furthermore the structural trends that are observed can also be observed through 

other solid state measurements such as Mӧssbauer spectroscopy.  The isomer shifts for 

1•CH2Cl2 and 3a•2MeOH obtained at both 295 K and 85 K are consistent with high spin 

iron(II) in a distorted tetrahedral environment. The values for the isomer shift also are 

consistent with the above observation of the pz*
4lut being the weaker field ligand.   
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These can be accounted for by the nephelauxetic series.54  As the degree of covalency 

between the iron center and the ligand increases an expansion of the 3d-orbitals occurs.  

As the d-orbitals expand they in turn become further away from the nucleus and are thus 

less able to screen the s-orbitals from nucluear charge.  Therefore, a higher s-electron 

density at the nucleus provides for a less positive isomer shift in the spectra which is what 

is observed (at both temperatures, Table 4.3) in the above complexes: δ = 1.047 mm/s for 

1•CH2Cl2 and 1.093 mm/s at 295 K for 3a•MeOH•Et2O.   

 The solution properties of the three newly prepared high spin iron(II) complexes 

matches well with the solid state data.  The stoichiometry was found to be  1:1 for each 

iron complex as determined by Job’s method. By looking at the shape of the Job’s plots it 

can be inferred that the strength and formation constant are both very large, as they will 

give triangular shaped plots.12  As such, these constants cannont be determined via 

standard methods and were not able to be determined.  The high binding constant is also 

 

Figure 4.11.  Spacefilling model of the cation of 2•MeOH•Et2O showing the lack of 
steric interactions. 
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inferred by electrochemical and spectroscopic data which give distinct features from each 

other or FeCl2. 

 By calculating the ligand field parameters from the average energy of the main 

band and shoulder,55 the values for ∆o were found to be 10, 612 cm-1 for pz4,
4lut, 10,400 

cm-1 for pz4lut and 8,950 cm-1 for pz*
4lut.  These values are fully consistent with the bond 

length data as well as the mӧssbauer data obtained above; with pz*
4lut being the weaker 

field ligand despite having eight electron donating methyl groups.  Furthermore, these 

trends can also be observed in the EPR as well as electrochemical data.  As ligand field 

strength increases so does the g-value, as seen by the g-values obtained from the EPR 

experiments ~9.5 for 2•MeOH•Et2O, ~8.0 for 1•CH2Cl2 and ~4.0 for 3a•2MeOH. 

 Conclusion.  Due to the favoring of the longer and weaker bond lengths by the 

pz*
4lut ligand, it has been shown to be a weaker field ligand despite possesing the eight 

electron donating methyl groups.  From the data shown the trend in ligand field strength 

is as follows pz4,
4lut > pz4lut > pz*

4lut which agrees well with previously studied iron(II) 

pyrazole complexes.  We will shortly disseminate our findingds with regard to 

investigation of methods to increase solubility of the complexes and the capacity of these 

or related derivatives to undergo chemical transformations. 
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Experimental Section 

General Information. All transition metals were obtained commercially and used as 

received.  For ligand syntheses, please see Chapter 1 and 1•CH2Cl2 see Chapter 2.  

Solvents were dried by conventional procedures and distilled prior to use, except where 

noted.  Midwest Microlab, LLC, Indianapolis, Indiana 45250, performed all elemental 

analyses.  Melting point determinations were made on samples contained in glass 

capillaries using an Electrothermal 9100 apparatus and are uncorrected.  1H and 13C NMR 

spectra were recorded on a Varian 300 MHz spectrometer.  Chemical shifts were 

referenced to solvent resonances at δH 7.27 and δC 77.23 for CDCl3 and δH 3.31 and δC 

49.15 for methanol-d4.  UV-visible and NIR spectra were recorded using Shimadzu UV-

1600/1700 or Jasco V-570 instruments.  The stoichiometry for pz4lut, pz4,
4lut and pz*

4lut 

complexation was established by Job’s plot analysis using electronic absorption, with a 

total solution concentration of 10.0 x 10-4 M.   Solid-state magnetic measurements were 

made at room temperature using an MK1 susceptibility balance.  Electrochemical 

measurements were obtained using a BASi CV-50V instrument for ca. 2.0 mM MeOH 

solutions of the complexes with 0.05 M NBu4PF6 as the supporting electrolyte.  EPR 

spectral measurements were obtained using a Bruker ELEXSYS E600 equipped with 

ER4116DM cavity resonating at 9.63 GHz, an Oxford instruments ITC503 temperature 

controller and ESR-900 helium flow cryostat.  The EPR spectra were recorded with 100 

kHz field modulation.   
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 [FeCl(pz
4,

4lut)](Cl)•MeOH•Et2O, 2•MeOH•Et2O.  A solution of 0.074 g (0.58 mmol) 

of FeCl2 in 8.5 mL of MeOH was layered onto a solution of 0.250 g (0.58 mmol) of 

pz4,
4lut ligand in 8.5 mL of CH2Cl2.  After allowing the solution to diffuse over several 

days, the solvent was allowed to slowly evaporate and after several days 2•MeOH•Et2O 

orange x-ray quality crystals were collected after filtration, washing with Et2O and drying 

under vacuum.  Mp, 275-280   oC decomp.  1H NMR (CD3OD) δH   µeff  (evans) (CD3OD, 

298 K) 4.41 µB.    UV-Vis (MeOH) λmax, nm (ε, M-1, cm-1), 268 (5874), 314 (1136), 438 

(97), 868 (7). 

  [FeCl(pz
*

4lut)](Cl)•2MeOH, 3a•2MeOH.  A solution of 0.126 g (0.99 mmol) of FeCl2 

in 8.5 mL of MeOH was layered onto a solution of 0.503 g (0.99 mmol) of pz*
4lut ligand 

in 8.5 mL CH2Cl2.  After allowing the solution to diffuse, the solvent was allowed to 

slowly evaporate and after several days 0.653 g (100 %) of 3a•2MeOH yellow x-ray 

quality crystals were collected after filtration, washing with Et2O and drying under 

vacuum. Mp, 230-242 oC decomp.  Anal.  Calcd.  (Obsd.) for  C29H41Cl2FeN9O2: C, 

51.64 (50.94), H, 6.13 (6.17), N, 18.69 (18.29).   µeff  (evans) (CD3OD, 298 K) 6.40 µB ± 

0.3 µB.  UV-Vis (MeOH) λmax, nm (ε, M-1, cm-1), 264( 7290), 321 (1354), 970 (2). 

 

 

 

 

 



102 

 

 

Chapter 5:  Reactivity of Iron(II) Complexes of pz4lut 

and its Derivatives. 

 

 

 

 Introduction.  Given the importance of oxoferryl species in bio-inorganic 

chemistry and their ability to mediate difficult organic transformations such as C-H bond 

activation it is of interest to synthetically generate these highly reactive species to deepen 

the understanding of such processes57  which can help to make more efficient use of the 

world’s diminishing fossil fuel supplies. Given the several recent reports of MAE4 type 

pentadentate ligands that stabilize highly reactive intermediates such as oxos, superoxos, 

alkyl peroxos and hydroxyls (Figure 5.1)58 we sought to investigate the reaction 

chemistry of the newly reported pz4lut ligand system as well as its ability to stabilize 

highly reactive intermediate species such as iron(IV) oxos. 

 

 

 

 

  

Figure 5.1.  Some highly reactive intermediates of some pentadentate ligands. 
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 The previously synthesized complexes of [Fe(Cl)pzR
4lut)][Cl] (R = H, 4-methyl, 

3,5-dimethyl) exhibit very low solubility in most organic solvents.  Therefore various 

means to increase the solubility of the iron(II) complexes were explored such as the use 

of non-coordinating anions via the use of [Fe(H2O)6][BF4]2 as a precursor or anion 

exchange reactions between [Na][BAr4
f] and [FeCl(pzR

4lut)][Cl].  The reactivity of these 

complexes toward simple axial substitution reactions including reactions with strong 

nucleophilic to potentially generate rare alkyl or alkoxy derivatives were explored.  

Finally, in attempt to generate highly reactive intermediate species, several different 

iron(II) complexes were exposed to various chemical oxidants as well as oxygen atom 

transfer reagents in an effort to indentify key reactive intermediate species.  The results of 

these investigations are disseminated herein.    

 Synthesis.  When pz4lut is reacted with [Fe(H2O)6][BF4]2 (Scheme 5.1) in THF at 

room temperature [Fe(THF)pz4lut)][BF4]2 (1) as a yellow precipitate (characterized by 

elemental analysis) is immediately formed.  Complex 1 displays low solubility as it is 

only soluble in solvents with which it reacts.  For example, when acetonitrile is added to 

the yellow THF solvate a deep red orange solution is immediately obtained. Upon 

removal of the solvent [Fe(CH3CN)(pz4lut)][BF4]2 (2) as a red/orange solid is obtained in 

high yield (85 %) (Scheme 5.1).  This complex red has been characterized both 

crystallographically and spectroscopically (UV-Vis, 1H NMR) as a diamagnetic low spin 

iron(II) species (Figure 5.2). 
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Scheme 5.1.  Synthesis of [Fe(THF)(pz4lut)][BF4]2 (1) and [Fe(CH3CN)(pz4lut)][BF4]2 (2). 

 

 

 

Figure 5.2.  X-ray crystal structure of 2, ellipsoids drawn at 50 % probability level 
(top); absorption spectra of 2 in acetonitrile (bottom). 
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Crystallographically the iron(II) complex (2) displays an average Fe-N(pz) bond distance 

of 1.978(3) Å while giving the Fe-N(py) bond distance is 1.947(3) Å, typical of low spin 

iron(II) complexes; high spin iron(II) complexes typically have Fe-N bond distances 

closer to 2.10 Å.5   The absorption spectrum of 2 in acetonitrile displays charge transfer 

bands at 380 nm and 420 nm in the visible region which offers a useful means for the 

monitoring of reactions by absorption spectroscopy.  However, d←d transitions are likely 

obscured by ligand transitions.  It is worth noting, that in contrast to 1 the reaction 

between pz*
4lut and [Fe(H2O)6][BF4]2 immediately  produces [Fe(H2O)(pz*

4lut)][BF4]2 

(3) as a yellow precipitate with water rather than THF in the axial position (elemental 

analysis).  Furthermore, no color change is observed when yellow 3 is dissolved in 

acetonitrile; most likely owing to the steric interactions of the 3-methyl groups that 

prevent axial substitution reactions with this ligand. 

 It was found that (2) was susceptible to anation with [NEt3Bz][Cl] by monitoring 

the reaction by electronic absorption spectroscopy at 420 nm.  The reaction stoichiometry 

was confirmed to be 1:1 as shown by Figure 5.3 below.  Several attempts to grow 

crystals of [Fe(Cl)(pz4lut)][BF4] (4) were not successful; but, the complex has been 

characterized using elemental analysis and spectroscopy. 

 

 

 

 
 

Figure 5.3.  Addition of [NEt3Bz][Cl] to 2 in acetonitrile: absorption spectra (left) 
and plot of absorbance versus equivalents of [NEt3Bz][Cl] (right). 
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 Attempts were made to prepare more unusual alkyl, amido or alkoxy complexes 

via strongly nucleophilic bases such as those shown in Scheme 5.2.  Due to the fact that 

the tetrafluoroborate salt is only soluble in solvents with which it reacts and the low 

solubility of the [FeCl(pz4lut)][Cl] complex (only soluble in MeOH) we performed an 

anion exchange reaction between [Na][BArF
4] and [FeCl(pz4lut)][Cl] in 

dichloromethane/methanol to give the complex [FeCl(pz4lut)][BArF
4] (5).  The [BArF

4] 

complex displays increased solubility in a wide variety of organic solvents therefore 

allowing a wide variety of potential reactions.  Shown below in Scheme 5.2 is a reaction 

summary between several strong bases and the [FeCl(pz4lut)][BArF
4] complex.   

 

 

 

 

 

 

 

Unfortunately brown decomposition products that were insoluble in any organic solvent 

were obtained as the result of these reactions and left them uncharacterizable.  A potential 

explanation for these undesirable products may be domposition via methyne 

deprontonation.  Previous work on related poly pyrazolylalkanes,59 indicatd that the 

 

Scheme 5.2.  Reaction summary of several strong bases with [FeCl(pz4lut)][BArF
4]. 
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acidic methyne and or protons along the heterocycle periphery are susceptible to 

nucleophilic attack and subsequent derivitization with electrophiles. 

 As proof of principle, and as a means to remove this potential decomposition 

pathway, the synthesis of a methyne-protected derivative pz4Et2lut, is show in Scheme 

5.3.  The reaction of pz4lut with 2 equivalents of nBuLi at -78 oC in THF afforded a deep 

brown solution which after reaction with excess ethyl iodide, gave good yields of 

pz4Et2lut. 

 

 

 

 Both the iron(II) chloride and iron(II) tetrafluoroborate complexes of pz4Et2 have 

been synthesized as shown  in Scheme 5.4.  Both complexes are obtained in high yield 

 

 

 

 

 

 

 

 

Scheme 5.3.  Synthesis of pz4Et2lut ligand. 

 

Scheme 5.4.  Syntheses of [Fe(Cl)(pz4Et2lut)][Cl] (6) and [Fe(H2O)(pz4Et2lut)][BF4]2 
(7) complexes. 
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While crystals suitable for x-ray diffraction for either compound have not been obtained, 

both complexes have been characterized by elemental analyses (experimental details), 

diamagnetic NMR and absorption spectroscopy (vida infra) and display characteristics 

consistent with low spin iron(II). 

 Solution Studies.  Both complexes 6 & 7 display a significant increase in 

solubility over the parent complexes [FeCl(pz4lut)][Cl] (slightly soluble only in 

methanol) and [Fe(THF)(pz4lut)][BF4]2 (1) (soluble only in solvents with which it reacts) 

in organic solvents such as methanol, acetonitrile and acetone.  The absorption spectra for 

both complexes is shown below in Figure 5.4 and display characteristic bands in the 

 

 

 

 

 

 

 

 

visible region that again can be used for monitoring reaction chemistry by absorption 

spectroscopy. 

 

Figure 5.4.  Absorption spectra of [FeCl(pz4Et2lut)][Cl] in CH2Cl2 (brick red) and 
[Fe(Sol)(pz4Et2lut)][BF4]2 in MeOH (orange). 
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Attempts at Oxoferryl Generation.  The generation of other iron(IV) oxo species has 

been achieved both chemically as well as electrochemically as summarized in Scheme 

5.5.  With other ligands iron(IV) oxo species have been reported as green complexes with 

a characteristic absorption band of λmax ~ 700 nm.58  

 

 

 

 

 

Four iron(II) complexes (1, 3, 6, & 7) were each subjected to numerous chemical 

oxidants in an effort to obtain iron(IV) oxo species.  When two equivalents of m-CPBA 

are reacted with [FeCl(pz4lut)][BAR4
f] at -30 oC in acetonitrile a green color (λmax ~ 700 

nm) similar to other iron(IV) oxo species is observed by absorption spectroscopy (Figure 

5.5).3   The lifetime of this reactive green species is very short (t1/2 < 5 minutes) at -30 oC 

and, upon warming, of the solution the green color disappears.  Re-cooling of the solution 

or the addition of further quantities of m-CPBA does not restore the green color and the 

final reaction solution appears orange/yellow.  Interestingly, the reactive green 

intermediate was capable of converting tri(phenyl)methane to tri(phenyl)methanol (~15 

% based on GC-MS).  Furthermore, this conversion does not happen without the metal 

complex present.  Further supporting an intermediate is the fact that upon addition of 

triphenyl methane ~ 15 % is converted to triphenyl methanol (based on GC- MS).  

 

Scheme 5.5.  Methods for the generation iron(IV) oxo species. 
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Numerous attempts to grow crystals of the reactive intermediate species failed; including 

the layering of oxidant on top of solutions of iron(II) complex even at low temperature.  

Similarly, no crystals were obtained of the decomposition product from the 

yellow/orange solution despite numerous attempts.  It should be noted that attempts to 

generate the iron(IV) oxo species with other oxidants (Solid PhIO, excess 30 % H2O2, 

Me3NO) were unsuccessful. 

 

 

 

 

 

 

 

 

 

 When 1 equivalent m-CPBA is reacted with complex 6 nothing of happens.  

Interestingly when 2 equivalents of m-CPBA are reacted with [FeCl(pzEt
4lut)][Cl] in 

CH2Cl2 at 0 oC a distinct color change is observed as the reaction solution changes from 

red to pale yellow in color.  When monitored by absorption spectroscopy (Figure 5.6), 

the decay of the band at 358 nm is observed upon warming of the solution to room 

 

Figure 5.5.  Decay spectra of the green reactive intermediate generated from the 
reaction 6 and  m-CPBA.  Inset: expanded view of 500 – 900 nm showing decay of 
band at 686 nm. 
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temperature.  While the spectra of the oxidized species is certainly different than that of 

the starting material (Figure 5.6) there are no bands in the characteristic region (600-900 

nm) of iron(IV) oxo species despite the change in color to pale yellow upon oxidation.  

When ≈ 3 equivalents of 9,10-dihydroanthracene are added to the reaction mixture the 

hydrogen abstraction product anthracene is observed in the GC-MS showing that some 

conversion does occur (≈ 17 %).   

 

 

 

 

 

 

 

 

 When excess m-CPBA is added to a methanol solution of the complex 

[Fe(Sol)(pz4Et2lut)][BF4]2 a color change occurs.  However, this change is much slower 

than either of the other two reactions and the solution does not change to yellow but 

instead the color disappears.  The reaction between 7 and m-CPBA occurs much slower 

even at room temperature compared to the reactions between m-CPBA and 1, 3 and 6.  

While the other reaction solutions ([FeCl(pz4lut)][BARF
4] and [FeCl([pz4Et2lut)][Cl]) 

 

Figure 5.6.  Absorption spectrum of the reaction between [FeCl(pz4Et2lut)][Cl] and 2 
equivalents m-CPBA.  Starting material in CH2Cl2 is shown on the same plot in brick 
red. 
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change color instantly as soon as the oxidant is added even at low temperatures; this 

reaction occurs  slowly within 5 minutes of the addition of oxidant as shown in Figure 

5.7 below.  While the solubility has been increased it is difficult to say whether the 

lifetime of the intermediate species has been increased and further work needs to be done. 

 

 

 

 

 

 

 

 

 Summary and Conclusions.  The reactivity of four new iron(II) complexes has 

been investigated using absorption spectroscopy to monitor the reactions.  Simple axial 

substitution of tetrafluorborate salts occurs for only derivatives without 3-methyl 

pyrazoles possible using [NEt3Bz][Cl].  Reactions between the [FeCl(pz4lut)][BArF
4] 

complex and strong nucleophilic bases leads to brown insoluble decomposition products 

which might be due to possible deprotonation of the ligand.  In fact reactions between 

pz4lut and nBuLi followed by quenching with ethyl iodide gives the methyne substituted 

derivative that when complexed to iron(II) display increased solubility.  All newly 

 

Figure 5.7.  Reaction between [Fe(Sol)(pz4Et2lut)][BF4]2 and excess m-CPBA in 
methanol. 
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synthesized iron(II) complexes display characteristic absorption spectra which allow for 

easy monitoring by absorption spectroscopy.   

 After surveying several different oxidants and iron(II) complexes of pz4lut 

ligands to probe whether any reactive intermediates could be formed, it was found that 

the combination of m-CPBA and [FeCl(pz4lut)][BAR4
f] proves the most promising 

system.  In this case a short-lived highly reactive green species is obtained at -30 oC that 

is capable of converting tri(phenyl)methane to tri(phenyl)methanol.  The pz4Et2lut 

scaffold enjoys increased solubility over the unsubstituted derivative, more over reactions 

with m-CPBA  affrds a mixture that is found to convert 9,10-dihydroanthracene to 

antrhacene.  Finally, the iron(II) complexes with the pz*
4lut ligand appear unreactive 

towards chemical oxidants or oxygen atom transfer agents.  Clearly further investigations 

intor reactivity of these complexes are warranted. 
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Experimental Details 

General Considerations. m-CPBA, 30 % H2O2, THF, Acetonitrile and all transition 

metal salts were obtained commercially and used as received.  Iodosobenzene and 

[Na][BAR4
F] were synthesized according to a literature procedure.  The synthesis of 

ligands pz4lut and pz*
4lut were previously reported in Chapter 2.  The attempts at 

oxoferryl generation were performed cooling acetonitrile solutions to -30 oC in a cooling 

bath and adding an acetonitrile solution containing 2 equivalents of m-CPBA.  Solvents 

were dried by conventional procedures and distilled prior to use.  Midwest MicroLab, 

LLC, Indianapolis, Indiana 45250, performed all elemental analyses.  Melting point 

determinations were made on samples contained in glass capillaries using an 

Electrothermal 9100 apparatus and are uncorrected.  1H and 13C NMR spectra were 

recorded on a Varian 300 MHz or 400 MHz spectrometer.  Chemical shifts were 

referenced to solvent resonances at δH 1.94 and δC 1.39 for CD3CN, δH 3.31 and δC 49.15 

for CD3OD and δH 7.26 and δC 77.23 for CDCl3.  UV-visible and NIR spectra were 

recorded using Shimadzu UV-1600/17pp or Jasco V-570 instruments.   

[Fe(THF)(pz4lut)][BF4]2.  0.300 g (0.81 mmol) of pz4lut in a schlenk flask was dissolved 

in THF (1 x 10 mL) while 0.276 g (0.82 mmol) of [Fe(H2O)6][BF4]2 in a separate schlenk 

flask was dissolved in THF (1 x 10 mL).  The pz4lut solution was the transferred via 

cannula and the flask rinsed with an additional amount of THF (1 x 10 mL) and 

transferred.  A yellow precipitate immediately formed.  The THF was filtered off via 

cannula and the solid was allowed to dry under vacuum 0.281 g (52 %) of a yellow 

powder.  Mp, 300-305 oC decomp.  Anal.  Calcd.  (obsd.)  for C23H25B2F8FeN9O: C, 

41.05 (40.71); H, 3.74 (3.68); N, 18.73 (18.93). 
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[Fe(H2O)(pz
*

4lut)][BF4]2•THF.  0.250 g (0.52 mmol) of pz*
4lut ligand was added to a 

100 mL schlenk flask along with THF (1 x 10 mL) via syringe.  To a separate 100 mL 

schlenk flask was added 0.174 g (0.52 mmol) of [Fe(H2O)6][BF4]2 along with THF (1 x 

10 mL) via syringe.  The pz*
4lut solution was transferred via cannula to produce a yellow 

precipitate immediately.  The THF was then filtered off via cannula and the yellow solid 

washed with Et2O (3 x 10 mL) and dried under vacuum overnight to give 0.281 g (74 %) 

of the desired product as a yellow powder.  Mp, 315-320  oC decomp.  Anal.  Calcd.  

(obsd.)  for C31H43B2F8FeN9O2: C, 46.36 (46.77); H, 5.40 (5.76); N, 15.70 (14.27).  µeff 

(Evans, CD3OD, 298 K); 3.05 µβ.  1H NMR (CD3CN) δH 62.79, 45.75, 20.74, 4.97, 3.33, 

3.12, -0.85, -3.69.  UV-Vis (CH3CN) λmax, nm (ε, M-1, cm-1), 360 (269), 844 (7).      

 [Fe(CH3CN)(pz4lut)][BF4]2.  0.103 g (15.0 mmol) of [FeTHF(pz4lut)][BF4]2 was 

dissolved in acetonitrile (1 x 15 mL).  The solution immediately turned deep red/orange 

in color.  Solvents were removed by vacuum distillation to give 0.087 g (89 %) of a deep 

red/orange solid.  X-ray quality crystals were grown by vapor diffusion of THF into a 

concentrated acetonitrile solution.  Mp, 288-290 oC decomp.  Anal.  Calcd.  (obsd.) for 

C21H20B2F8FeN10: C, 39.29 (38.53); H, 3.14 (3.16); 21.82 (19.47).  1H NMR (CD3CN) δH 

8.43 (m, 8H), 8.24 (s, 2H), 8.22 (br s, 3H), 6.68 (t, J = 2, 4H), 1.96 (s, 3H).  UV-Vis 

(CH3CN) λmax, nm (ε, M-1, cm-1), 294 (10 750), 292 (7 550), 378 (1 682), 422 (3 200).  

 [FeCl(pz4lut)][BAr
F

4].  A solution of 0.350 g (0.60 mmol) of [FeCl(pz4lut)][Cl] 

dissolved in 25 mL methanol was combined with a solution of 0.803 g (0.60 mmol) 

[Na][BArF
4] in 15 mL of dichloromethane.  Upon mixing an orange/red solution and a 

white precipitate (NaCl) formed.  After stirring for 30 min the colorless insoluble fraction 
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was removed by filtration.  The solvent was then removed by vacuum distillation to give 

0.907 g (85 %) of [Fe(Cl)(pz4lut)][BArF
4] as a red/orange solid.  

pz4Et2lut.  To a 250 mL Schlenk flask was added 4.86 g (13.1 mmol) of pz4lut along 

with THF (1 x 25 mL).  A cold bath was added, and the reaction solution was allowed to 

equilibrate for approximately 15 minutes.  16.5 mL (26.2 mmol) of nBuLi in hexanes  

was added to a 25 mL THF solution containing 4.83 g (13.1 mmol) of pz4lut via syringe 

and the solution immediately turned dark brown in color.  The reaction was allowed to 

stir at -78 oC for 1 hr, then 3.2 mL (39.3 mmol) of ethyl iodide was added via syringe.  

After the addition of ethyl iodide, the mixture was slowly warmed to room temperature 

and was stirred overnight.  250 mL of water was then added and the reaction was 

extracted with CH2Cl2 (3 x 50mL), and the organic fraction was dried over MgSO4 and 

concentrated to give a brown oil.  The product was eluted on SiO2 with 1:2 

acetone:hexanes (Rf = 0.48)  to give 4.36 g (78 %) of pz4Et2lut as a white powder after 

removing solvent and after recrystallization from boiling Et2O.  Mp, 109-111 oC.  1H 

NMR (CDCl3) δH 7.67 (t, J = 8 Hz, 1H, 4-py), 7.58 (dd, J = 0.5, 2 Hz, 4H, 3-pz), 7.36 

(dd, J = 0.5, 2 Hz, 4H, 5-pz), 6.81 (d, J = 8, 2H, 3,5-py), 6.24 (dd, J = 0.5, 2 Hz, 4H, 4-

pz), 3.09 (q, J = 7 Hz, 4H, -CH2), 0.90 (t, J = 7 Hz, 6H, -CH3).  
13C NMR (CDCl3) δC 

157.9, 140.2, 137.8, 130.4, 122.1, 105.8, 84.9, 32.8, 9.0.    UV-Vis (CH3CN) λmax, nm (ε, 

M-1, cm-1), 294 (10 750), 292 (7 550), 378 (1 682), 422 (3 200). 

[FeCl(pz
Et

4lut)][Cl]•CH2Cl2•H2O.  A stirred solution of 0.400 g (0.93 mmol) of 

pz4Et2lut along in CH2Cl2 (10 mL) was transferred via cannula to a stirred solution of 

0.118 g (0.93 mmol) of FeCl2 in MeOH (10 mL).  The flask containing pz4Et2lut was 

rinsed with additional CH2Cl2 (5 mL) and transferred.  Upon mixing, the reaction 
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solution became deep red in color.  After the solution had been stirred for 15 h, the 

solvent was removed in vacuo to give a deep red solid.  Washing with Et2O (3 x 10 ML), 

drying under vacuum for 4 h to give 0.437 g (85 %) of [FeCl(pzEt
4lut)][Cl] as a deep red 

metallic solid.  Mp, 160-165 oC decomp.  Anal. Calcd.  (obsd.) for C24H31Cl4FeN9O: C, 

43.86 (43.31); H, 4.45 (4.31); N, 19.18 (18.85).  1H NMR (CD3OD) δ 7.73 (t, J = 9 Hz, 

1H), 7.51 (s, 4H), 7.43 (s, 4H), 6.82 (d, J = 9 Hz, 2H), 6.24 (s, 4H), 3.01 (q, J = 7 Hz, 

4H), 0.78 (t, J = 7 Hz, 6H).  UV-Vis (MeOH) λmax, nm (ε, M-1, cm-1), 294 (10 750), 292 

(7 550), 378 (1 682), 422 (3 200). 

[Fe(H2O)(pz4Et2lut)][BF4]2.  A solution of 0.200 g (0.47 mmol) of pz4Et2lut in 10 mL 

THF was added to a stirred solution of 0.158 g (0.47 mmol) [Fe(H2O)6][BF4]2 in 10 mL 

of THF and a brown precipitate formed within 30 seconds of stirring.  After the mixture 

had stirred 30 min and the insoluble solid was collected by filtration, and was washed 

with Et2O (3 x 10 mL), and was dried under vacuum.The reaction was allowed to stir for 

30 minutes, and the solid collected by filtration.  The solid was then washed with Et2O (3 

x 10 mL), collected by filtration and allowed to dry under vacuum to give the desired 

complex 0.192 g (70 %) as a brown/yellow solid.  Mp, 170-176 oC. decomp.  Anal. 

Calcd.  (Obsd.) for C27H39B2F8FeN9O:  C, 49.20 (38.38); H, 5.96 (4.35); N, 19.13 

(16.58).   

 

 

 

 



118 

 

Chapter 6:  Boron Complexes of 2,6-dipyrazolyl-4-X-

Anilines. 

 

 

 

 Introduction.  There is a longstanding interest in developing new brightly-emitting 

fluorophores for fundamental interest and for a variety of useful applications, from 

sensors and display technology to biomedical imaging.  We recently reported on the 

synthesis and properties of a series of fluorescent dyes based on the diphenylboron 

complexes of pyrazolylanilines, or BORAZANs (Figure 6.1) of the type Ph2B(pzAnX) 

where pz is a pyrazolyl, An is aniline and superscript X is the  substituent at the para- 

 

 

 

 

 

aniline ring.  The emission color, intensity, and reactivity of the fluorescent dyes can be 

tuned in a regular way by varying the para- aniline substituent. For instance, the cyano 

derivative gave the most intense blue emission (emλmax (toluene) = 452 nm, ΦF(toluene) = 

0.81) and was the most stable toward solvolysis with protonated solvents such as water or 

 

Figure 6.1.  The BORAZAN dye framework and representative solid state structure of 
Ph2B(pzAnCF3). 
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alcohols.  The methoxy derivative gave much less intense yellow green emission (emλmax 

(toluene) = 522nm, ΦF(toluene) = 0.07) and readily decomposed in such protic media.   

 The quantum yields of emission were greatly reduced in Lewis Basic solvents 

compared to hydrocarbon solvents (and the dyes were also found to undergo rapid 

dynamic processes giving more symmetric conformations in solution (nominally Cs 

symmetric) than found in the solid state (C1-symmetric).  We conjectured that the 

dynamic solution processes may be related to the low quantum yield of emission and the 

high reactivity.  That is, if boron-pyrazolyl ring dissociation occurred, the integrity of the 

dye would be compromised resulting in lower quantum yields and the resulting three-

coordinate boron may provide a pathway for degradation.  In order to test this hypothesis, 

we have modified the dye structure by putting an additional pyrazolyl ring at the 6-

position of the aniline (Figure 6.2).  Such a substitution was designed with the intent of 

kinetically stabilizing the dye by effectively doubling the rate of boron-pyrazolyl bond 

formation should boron-pyrazolyl dissociation occur in solution.  Moreover, with such a    

 

 

 

 

substitution pattern any dynamic processes would be easily detected by NMR, as the 

pyrazolyl rings would be magnetically inequivalent in a static structure, such as in Figure 

6.2, but would be equivalent if exchange occurred.  We report here on the successful 

 

Figure 6.2.  General structure of BORAZANs described in this work. 



120 

 

implementation of this structural modification for enhancing the performance of 

BORAZAN dyes. 

 Results & Discussion.  The BORAZAN dyes were prepared according to the 

methods illustrated in Scheme 6.1.  The compound, Ph2B(pzAntBu) (Scheme 6.1a) was 

prepared (for comparison purposes) as described previously for the original BORAZANs: 

by monobromination of the tert-butylaniline followed by copper- catalyzed N-arylation 

reaction between pyrazole and 2-bromoaniline via Buchwald60a and Taillefer’s60b-e 

methodology and subsequent reaction of the 2-pyrazolylaniline with triphenylboron.  

BORAZAN dyes based of the type Ph2B(pz2AnX) (X = CF3, Cl, tBu) were prepared by an 

analogous route but by first dibromination of the appropriate aniline.  The copper-

catalyzed coupling reaction required longer reaction times to afford the desired 

H(pz2AnX) in reasonable yield.  The ensuing reaction with triphenylboron provided the 

desired monoboryl- derivatives with the elimination of benzene.61  The BORAZANs  

 

 

 

 

 

 

 
 

Scheme 6.1.  Preparation of BORAZAN dyes. 
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are insoluble in hexanes, those based on pz2AnX are modestly soluble in benzene, and all 

are soluble in toluene, halocarbons, and polar Lewis basic solvents (THF, CH3CN, 

DMF).  The compound Ph2B(pzAntBu) rapidly decomposes (over the period of minutes) 

in alcohols, as found previously for Ph2B(pzAnX) (X = Me, MeO), but Ph2B(pz2AnX) (X 

= CF3, Cl, tBu) persist over days in this type of solvent.  In addition, the dipyrazolyl 

BORAZANs appear indefinitely air stable in the solid or in solution, in stark contrast to 

their mono-pyrazolyl counterparts which decompose by hydrolysis over time even in the 

solid state.  As further testament to the improved stability of the dyes, the dipyrazolyl 

derivatives can survive flash chromatography on silica gel, a procedure that immediately 

annihilates the monopyrazolyl BORAZANs. 

 Solid State.  The molecular structures of four derivatives Ph2B(pzAntBu), 

and Ph2B(pz2AnX) (X = CF3, Cl, tBu) have been determined by single crystal X-ray 

diffraction.  A representative structure of Ph2B(pz2AnCF3) is given in Figure 6.3.    

 

  

 

 

 

 

 
 

Figure 7.3.  Molecular Structure of Ph2B(pz2AnCF3) with atom labeling (left) with 
alternate views (right).  Ellipsoids are shown at the 50% probability level. 
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Selected intramolecular geometric features of the structurally characterized compounds 

are summarized in Table 6.1.  Each of the structurally characterized derivatives possesses 

C1 (rather than Cs) symmetry due to puckering of the six-member chelate ring (in a 

pseudo half-chair conformation), distorted tetrahedral boron, and pyrazolyl ring twisting 

(best measured by the C(3)C(2)-N(11)N(12) torsion angle of Figure 6.3, for instance).  

As with previously reported members of the BORAZANs, the average B-N distance 

(1.57 Å) is 0.05 Å shorter than the average B-C distance (1.62 Å) regardless of the 

substitution pattern along the dye framework.  Given the half chair conformation of the 

chelate ring, the B-C bond of the axial phenyl is detectably longer (1.62-1.64 Å) than that 

of the equatorial phenyl (1.61-1.62 Å), as found in Table 6.1.  The longer B-C (axial) 

bond may presumably arise from its closer proximity to and its participation in an 

antibonding interaction with the aniline moiety (observed in the HOMO, see Calculations 

section).  Also in each derivative, the B-N(pz) bond is longer (1.61-1.62 Å) than the 

corresponding B-N (aniline) bond (1.52-1.53 Å), as observed previously and as expected 

for a dative interaction.  The previously reported BORAZANs, exhibited a correlation 

between intramolecular geometric features and electronic properties of para- aniline 

substituents (delineated by the Hammett parameter, σR, for instance).  That is, the more 

electron-withdrawing para- aniline substituents gave rise to a greater degree of planarity 

between the pyrazolyl, aniline, and chelate rings, a result of resonance stabilization that 

imparts greater “quinoidal” character to the aniline moiety (thereby reducing the 

stereochemical influence of the aniline nitrogen lone pair).  The structural parameters of 

Ph2B(pz2AnCF3) and Ph2B(pz2AnCl) are in compliance with previous findings, although 

the correlation is weaker in the current cases.  Thus, the aniline nitrogen approaches 
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Compound Ph2B(pzAntBu) Ph2B(pz2AnCF3) Ph2B(pz2AnCl) Ph2B(pzAntBu) 

B-N(1), An (Å) 1.523 1.531 1.522 1.527 

B-N(12), pz (Å) 1.612 1.620 1.616 1.605 

B-C (ax) (Å) 1.624 1.629 1.635 1.620 

B-C (eq) (Å) 1.612 1.619 1.610 1.618 

HN-C(1) (Å) 1.368 1.353 1.365 1.371 

Σ ∠’s about N(1) 351.57 356.53 356.66 352.69 

C(1)-C(2) (Å) 1.410 1.415 1.407 1.402 

C(2)-C(3) (Å) 1.395 1.380 1.387 1.400 

C(3)-C(4) (Å) 1.386 1.388 1.382 1.389 

C(4)-C(5) (Å) 1.405 1.389 1.383 1.399 

C(5)-C(6) (Å) 1.377 1.380 1.379 1.386 

C(6)-C(1) (Å) 1.401 1.419 1.411 1.414 

C(4)-C(7) (Å) 1.530 1.487 --- 1.531 

C(2)-N(11) (Å) 1.431 1.431 1.430 1.432 

C(6)-N(21) (Å) --- 1.423 1.421 1.424 

N(1)•••N(11) (Å) 2.423 2.439 2.438 2.441 

⊥B•••(An)a (Å) 0.713 0.666 0.702 0.420 

(N1BN12)
b-(An) (o) 44.71 40.62 40.46 30.51 

C(3)C(2)-N(11)N(12) (o) 167.79 169.60 169.21 178.72 

C(1)C(2)-N(11)N(12) (o) 16.46 13.81 13.60 7.66 

N(11)C(2)-C(1)N(1) (o) 5.70 6.98 4.02 1.88 

mpl(B-pz)c-(An) (o) 20.60 17.89 16.22 14.06 

mpl(pz)-(An) (o) --- 47.73 48.74 49.30 

See Figure 1 for atom labeling.  Also: pz = pyrazolyl; An = Aniline; (An) = mean plane of C6N 
aniline ring; mpl(pz) = mean plane of pyrazolyl ring.   a Distance of normal vector between mean 
aniline plane and boron.   b Angle between plane defined by N(1), B(1), N(12) and (An).   cB-pz = 
boron-bound pz  

 

 

Table 6.1.  Selected Bond Distances and Angles for Ph2B(pzAn
tBu

), Ph2B(pz2An
CF3

), 

Ph2B(pz2An
Cl

), and Ph2B(pzAn
tBu

). 
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planarity (Σ∠’s about nitrogen  = 357o) in both Ph2B(pz2AnCF3) and Ph2B(pz2AnCl).  In 

Ph2B(pzAnCF3) the nitrogen is more pyramidal ((Σ∠’s about nitrogen  = 351o),61 which 

provides one indication that replacing an ortho-hydrogen with a pyrazolyl has a 

resonance stabilizing effect.  Moreover, the amino-carbon bond N(1)-C(1) distance in 

Ph2B(pz2AnCF3) (1.353 Å) is shorter than both Ph2B(pz2AnCl) (1.365 Å) and 

Ph2B(pzAnCF3) (1.365 Å) indicative of greater double bond character in the former.  The 

degree of coplanarity between boron-bound pyrazolyl and the aniline rings is best 

measured by the C(3)C(2)-N(11)N(12) torsion angle of Figure 6.3 (pyrazolyl ring 

twisting) since there are a number of ligand distortions that contribute to the dihedral 

between the mean planes of the two heterocycles, as discussed previously.  As such, the 

degree of coplanarity increases in the order: Ph2B(pzAnCF3) (167.9o) < Ph2B(pz2AnCl) 

(169.2o) < Ph2B(pz2AnCF3) (169.6o).  The torsion angles of the latter two are considerably 

greater (more coplanar) than the corresponding torsion angles involving the free 

pyrazolyl C(5)C(6)-N(21)N(22) (Figure 6.3); Ph2B(pz2AnCl) (131.6o) < Ph2B(pz2AnCF3) 

(130.1o).  Concomitant with the trend of increasing (boron-bound) pyrazolyl-aniline 

coplanarity, the chelate ring puckering becomes less pronounced.  The perpendicular 

distance between boron and the mean plane of the aniline rings decreases in the order 

Ph2B(pzAnCF3) (0.762 Å) > Ph2B(pz2AnCl) (0.702 Å) > Ph2B(pz2AnCF3) (0.666 Å).  

Again, the substitution of the ortho- hydrogen on aniline for a pyrazolyl ring would 

appear to diminish the stereochemical influence of the lone pair on the aniline nitrogen, 

perhaps through resonance stabilization (vide infra).  The structural effect of ortho-

pyrazolyl substitution causing greater coplanarity between (boron-bound)pyrazolyl and 

aniline rings and a lesser chelate ring puckering compared to ortho-hydrogen substitution 
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persists for Ph2B(pz2AntBu) and Ph2B(pzAntBu), but these compounds exhibit pronounced 

flattening of the three fused rings (chelate, pyrazolyl, anilile), an anomalous structural 

feature compared to all other structurally characterized derivatives.  Specifically, the 

planarity of the aniline nitrogen (sum of angles about N1) increases from 352o for 

Ph2B(pzAntBu) to 353o for Ph2B(pz2AntBu), values that are greater than 344o for 

Ph2B(pzAnMe) and even 351o for Ph2B(pzAnCF3) but are less than 352o and 353o found for 

Ph2B(pz2AnCl) and Ph2B(pz2AnCF3), respectively.  Similarly, the chelate ring puckering 

(measured as the perpendicular distance between boron and the mean aniline plane) and 

pyrazolyl ring twisting (C(3)C(2)-N(11)N(12) torsion, ideally 180o for coplanarity) 

decreases on traversing from Ph2B(pzAntBu) (0.713 Å, 167.8o) to Ph2B(pz2AntBu) (0.420 

Å, 178.7o); both values are lower (the latter, substantially) than all other structurally 

characterized derivatives.  Given that the electronic properties of a tert-butyl substituent 

are not expected to (and in fact do not, vide infra) deviate significantly from that of a 

methyl substituent (for instance, compare primitive Hammett parameters, σp,  = -0.09 for 

tBu, σp = -0.06 for Me),62 it is likely that molecular packing influences the intramolecular 

geometry.  For Ph2B(pz2AntBu), the boron-bound pyrazolyl participates in more 

noncovalent intermolecular interactions than in all other derivatives.  As can be seen in 

Figure 6.4, the tert-butyl and both the free and boron-bound pyrazolyl groups extensively 

 

 

 

 

 

Figure 6.4.  Polymeric chain of Ph2B(pz2AntBu) molecules organized along the a-axis as a 
result of π−π (blue dashed lines), CH-π (red dashed lines) and CH-N (green lines). 
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participate in organizing the supramolecular structure into polymeric chains along the 

crystallographic a-axis.  Concerted CH-π (pyrazolyl donor, phenyl acceptor) and π− π 

(pyrazolyl-pyrazolyl) interactions associate molecules into dimers, in a manner 

reminiscent of a quadruple phenyl embrace63 or quadruple pyrazolyl embrace.63  The 

“dipyrazolyl-diphenyl embrace” in the current example is constructed such that there is a 

π− π interaction between pyrazolyls (blue dashed lines Figure 6.4).  The centroid–

centroid distance of 4.264 Å, the dihedral angle between the mean planes, α, of 0.0o, and 

the displacement angle, β, (measuring the angle that the centroids of rings are offset from 

normality) of 28.1o are in the accepted ranges.63  In addition, the CH-π component of the 

embrace occurs between the acidic hydrogen donor at the 5-position of the pyrazolyl ring 

and the axial boron-phenyl acceptor.  The geometry of the interaction involving 

C(13)H(13)-centroid[C(3X-3X)] (3.005 Å, 138.0o) is expanded but is still within the 

accepted range.  The dimers are further associated into polymeric chains by weak CH-N 

interactions that occur between the acidic hydrogen on the 5-position of the pyrazolyl and 

the aniline nitrogen lone pair of neighboring dimers where the C(23)H(23)-N(1) distance 

and angle (2.618 Å, 151.8o) are typical for such an interaction.  A set of archetypal CH-π 

interactions64 involving the tert-butyl hydrogen donors and the equatorial boron-bound 

phenyl acceptor (C(1X)H(1X)---centroid[C(3X-3X)] = 2.774 Å, 133.9o; red dashed lines 

above and below the green in Figure 6.4) also support the polymeric chain.  The 

supramolecular structure of Ph2B(pzAntBu)  is that of corrugated sheets (in the bc-plane) 

composed of three types of noncovalent interactions: a quadruple phenyl embrace 

involving boron-phenyl groups, CH-π interactions involving tert-butyl hydrogen donors 

and aniline ring acceptors, as well as weak CH-π interactions involving acidic pyrazolyl 
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hydrogen donors and ‘axial’ boron-bound phenyl acceptors.  Since the boron-bound 

pyrazolyls of other complexes are not involved in as many non-covalent interactions as 

Ph2B(pz2AntBu) or Ph2B(pzAntBu), their metrical parameters may more reliably reflect the 

intramolecular electronic effects of para- aniline substitution than these latter two 

derivatives.   

 NMR.  The solution NMR spectra of all BORAZANs [either Ph2B(pzAnX) or 

Ph2B(pz2AnX)] clearly show dynamic processes occur such that solution structures appear 

to have higher than C1 symmetry, the symmetry obtained from either solid state structural 

studies or from computational studies (vide infra).  For instance, only one set of 

resonances for phenyl ring hydrogens is observed for all the BORAZANs even though, 

based on the solid state structures, two sets are expected (one set each for ‘axial’ and 

‘equatorial’ phenyls).  We previously attributed this observation to a low energy ring-

flipping process, that was fast on the NMR time-scale even at -80 in toluene-d8, a process 

we still favor after considering the results of variable temperature NMR studies on the 

Ph2B(pz2AnX) series of compounds which showed only one set of phenyl hydrogen 

resonances at -80oC.  With the Ph2B(pz2AnX) series (X = CF3, Cl, tBu), variable 

temperature studies also indicate that exchange occurs between otherwise inequivalent 

boron-bound and ‘free’ pyrazolyl rings.  A portion of the 1H NMR spectra of 

Ph2B(pz2AntBu) in the region showing the resonance(s) for the hydrogen(s) at the 4-

position of the pyrazolyl at various temperatures is shown as a representative example in 

Figure 6.5.  At -80oC there are two resonances for 4-pyrazolyl hydrogens at 5.94 and at 

5.36 ppm.  Comparisons of chemical shifts of the 4-pyrazolyl hydrogen resonances in 

Ph2B(pz2AntBu) with those of the free ligands H(pzAntBu) (δH = 6.11) H(pz2AntBu) (δH = 
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6.12) and the monopyrazolyl derivative Ph2B(pzAntBu) (δH = 5.53) establish that the 

lower field resonance is due to the free pyrazolyl while the higher field resonance is for 

the boron-bound resonance.  On warming to 0oC there is a constant upfield shift in both  

 

 

 

 

 

 

 

 

 

 

 

 

resonances.  Above 0 oC the resonances broaden and coalesce at 30oC, and above the 

coalescence temperature the single exchange-averaged resonance sharpens.  The 

activation barriers for (and, hence, the rate of) exchange varies in a regular way with the 

electron-donating character of the para-aniline substituent, as summarized in Table 6.2.  

The more electron-donating substituent gives rise to lower activation barriers and faster 

rates of exchange.  As the activation barrier for exchange falls in line with the expected 

bond strength of a B-N dative interaction,65 the mechanism for pyrazolyl exchange, 

presumably, involves pyrazolyl bond dissociation, as in Figure 6.6.  In this context   

 

Figure 7.5.  The 4-pyrazolyl region of the 1H NMR spectra for a toluene-d8 solution of 
Ph2B(pz2AntBu) acquired at various temperatures.  The (*) indicates the resonance for 
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electron-withdrawing para-aniline substituents render the aniline nitrogen electron-

deficient and the nitrogen lone pair is less able to stabilize three-coordinate boron by 

conjugation with the empty p-orbital on boron.  The effect is to induce more Lewis acidic 

boron and more stable boron-pyrazolyl bonds.  

 Computational Studies.  To facilitate the ensuing discussion of the electronic 

properties of the BORAZANs, density functional calculations (B3LYP/6-31G*, 

SPARTAN06)66 were performed the free ligands H(pzAntBu), H(pz2AnX), and the boron 

derivatives, Ph2B(pznAnX) (n = 1,2; X = CF3, Cl, tBu), using Ab Initio (HF/321-G) 

energy-minimized structures.  The HOMO and LUMO for representative ligands, 

H(pznAnCF3) (n = 1, 2) and their corresponding BORAZANs Ph2B(pznAnCF3) (n = 1, 2) 

are given in Figure 6.7.  A comparison of energy levels for a more extensive set of 

frontier orbitals [LUMO(+4) to HOMO(-4)] for the remaining compounds are provided 

in Figure 6.7.  For all, the HOMO is mainly the non-bonding representation of the 

aniline-centered pi-system, encompassing the aniline’s nitrogen-centered lone pair.  

There is also a significant (pi-antibonding) contribution from the para-aniline 

substituent’s orbitals to the HOMO.  Following the convention established from the  

Compound Tc (K)  (Hz)a kc(s
-1)b G‡ (kcal/mol)c 

Ph2B(pz2AnCF3) 343 132 586.46 15.8 

Ph2B(pz2AnCl) 318 152 675.32 14.5 

Ph2B(pz2AntBu) 303 232 1030.75 13.6 

aChemical shift difference in the absence of exchange.  brate constant at 
coalescence temperature kc = π∆ν(2)-1/2.  c∆G‡ = 4.57(Tc)[10.32 + 
log(Tc/kc)] as in reference 68. 
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Figure 6.7.  HOMO (bottom) and LUMO (top) for (from left to right):  Ph2B(pzAnCF3) 
H(pzAnCF3), H(pz2AnCF3), Ph2B(pz2AnCF3) from density functional calculations 
(B3LYP/6-31G*).  Vertical scale represents relative energy.  Gas phase HOMO-
LUMO gap energy (∆E) from calculations is given for ligands (blue) and BORAZANs 
(grey). 

 

Figure 6.8.  Comparison of the energy levels of frontier orbitals [LUMO(+4) to 
HOMO(-4) for H(pznAnX) (n = 1, 2) and corresponding BORAZANs Ph2B(pznAnX) 
(n = 1, 2) where X = CF3, Cl, and tBu for each compound type. 
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seminal work of Kasha and Rawls on the photophysics of aniline derivatives,67 it is 

convenient to refer to the HOMO (and other frontier orbitals containing significant 

contributions from the conjugated aniline lone pair) as a πL (pi-lone-pair) to provide a 

distinction from a pure π orbital.  Deviations from aniline non-planarity such as twisting 

of the H2N-aryl moiety about C-N bond (or other distortions) change the photophysics of 

the molecule by affording more non-bonding character to the nitrogen lone pair.  The 

LUMO of each compound is π* in character and spans the pi-systems of both the aniline 

and the pyrazolyl rings with only a small contribution from the aniline nitrogen’s 

conjugated p-orbital.  For the H(pznAnX) (n = 1,2) ligands, the HOMO(-4) to HOMO(-1) 

orbitals are π-bonding, the virtual orbitals LUMO (+1) to LUMO(+3) are π* anti-

bonding, while the LUMO(+4) and higher are σ* anti-bonding.  In the Ph2B(pznAnX) (n = 

1,2), orbital contributions from the diphenylboron moiety distinguish the BORAZANs 

from the ligands.  The HOMO(-1) to HOMO(-4), are essentially four linear combinations 

of boron-phenyl π-orbitals; the next-lowest pzAn-based πL-orbital is HOMO(-5).  The 

corresponding four π* orbitals include contributions from both the pzAn and 

diphenylboryl moieties and constitute the virtual orbitals LUMO(+1) to LUMO(+5).  

 Examination of the relative energies of the frontier orbitals for the twelve 

compounds in Figure 6.8 reveals a number of trends.  When comparing the relative 

energy of the HOMO of a given H(pzAnX) ligand with that for its corresponding 

BORAZAN (Figures 6.7 and 6.8), the latter is destabilized owing to an antibonding pi-

interaction between the boron-bound carbons and the aniline nitrogen’s p-orbital that is 

not present in the former.  There is a stabilization of the HOMO with an increase in 

electron-withdrawing character of the aniline’s para- substituent.  On replacing the ortho- 
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hydrogen with a pyrazolyl, there is also a small stabilization of the HOMO that arises in 

an expected fashion owing to the increase in conjugation with the pi-system of the new 

pyrazolyl group.  This increase in conjugation for the dipyrazolyl system causes a 

significant stabilization of the LUMO, which results in an overall smaller HOMO/LUMO 

energy gap compared to the monopyrazolyl systems.  As with the mono-pyrazolyl 

systems the destabilization of the HOMO is greater than the stabilization of the LUMO 

on changing para-aniline substituents, which provides an additional basis for tuning the 

electronic properties of the BORAZAN dyes.  It is important to note that the tert-butyl 

substituent affords molecular orbitals in the expected energy range, thus, as was 

addressed in the structural discussion, hence, the anomalous structural behavior of 

derivatives with this substituent is not predicted to be electronic in origin, based on 

calculations. 

 Electrochemistry.  As aniline derivatives are well known electron donors  

BORAZAN derviates were previously found to be electroactive, the electrochemistry of 

CH3CN solutions of the new ligands and BORAZANs were examined by cyclic 

voltammetry.  The electrochemical data are collected in Table 6.3 while representative 

voltammograms for H(pz2AnCF3) and Ph2B(pz2AnCF3) are found in Figure 6.9.  All 

compounds exhibited irreversible oxidation, where the reported potentials are those for 

the anodic wave observed at a scan rate of 0.100 V/s; the cathodic wave is either absent 

or noticeably less intense than expected.  For each series of ligands and BORAZANs, the 

oxidation becomes more favorable with increasing electron donating character of the 

para- aniline substituent, in accord with the calculations that show a destabilization of the 

HOMO for this substitution and with previous findings.  Thus, for the BPh2(pz2AnX) 
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Compound Oxid. (V) Red. (V) Ref 

H(pzAnCF3) 1.23 --- 2 

H(pzAnCl) 1.01 --- 2 

H(pzAntBu) 0.88 --- 2 

H(pz2AnCF3) 1.41 -2.60 b 

H(pz2AnCl) 1.24 -2.50 b 

H(pz2AntBu) 1.01 --- b 

Ph2B(pzAnCF3) 1.04 -2.39 2 

Ph2B(pzAnCl) 0.84 -2.41 2 

Ph2B(pzAntBu) 0.74 -2.64 b 

Ph2B(pz2AnCF3) 1.13 -2.43 b 

Ph2B(pz2AnCl) 1.10 -2.58 b 

Ph2B(pz2AntBu) 0.86 -2.65 b 

aVersus Ag/AgCl scan rate of 100 mV/s in CH3CN with 
NBu4(PF)6 as supporting electrolyte.  bThis work 

 

 

 

 

 

 

 

Table 6.3.  Summary of Electrochemical Data for H(pzAnX), H(pz2AnX) ligands (X 
= CF3, Cl, tBu) and their diphenylboron derivatives.  

 

Figure 6.9.  Cyclic Voltammograms (100 mV/s) of CH3CN solutions of H(pz2AnCF3) 
(blue, bottom) and Ph2B(pz2AnCF3) (black, top) with NBu4PF6 as supporting 
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series, the oxidation potentials decrease X = tBu (Epa = 0.86 V) < X = Cl (Epa = 1.10 V) < 

X = CF3 (Epa  = 1.13 V).  Also in agreement with calculations and earlier results, the 

oxidations of the BORAZAN complexes are more favorable than those for the free 

ligands because there is a destabilization of the HOMO brought about by antibonding 

interactions with the σ- orbitals of the boron-bound carbons.  The dipyrazolyl derivatives 

(both free ligands and BORAZAN complexes) are more difficult to oxidize than the 

mono pyrazolyl analogues.  Thus, the oxidation potentials for the series Ph2B(pz2AnX) [X 

= CF3 (1.13 V), Cl (1.10 V), tBu (0.86 V)] are higher than the corresponding potentials 

for the Ph2B(pzAnX) series [X = CF3, (1.04 V), Cl (0.84 V), tBu (0.74 V)].  While this 

result is surprising on first inspection, considering the expected inductive effects of 

replacing hydrogen with a more electron-donating pyrazolyl, this trend was correctly 

predicted by the calculations, which showed that the origin is due to stabilization of the 

HOMO via conjugation with the pi-orbitals of the second pyrazolyl.   

 Electronic Spectra.  The electronic (absorption/emission) spectra of the newly 

prepared H(pznAnX) ligands and Ph2B(pznAnX) (n = 1,2; X = CF3, Cl, tBu) compounds 

parallel those of the previously reported mono-pyrazolyl (n = 1; X = CF3, Cl) derivatives.  

A summary of the electronic properties are collected in Table 6.4.  An overlay of the 

absorption spectra for H(pznAnCF3) ligands and Ph2B(pznAnCF3) (n = 1,2) is provided in 

Figure 6.10 for reference.  The electronic absorption spectrum of each H(pznAnX) (n = 

1,2) ligand consists of three bands for π-π* transitions66;  one high- intensity, high-energy 

band at ca. 230 nm (ε ≈ 20,000), a second less intense band at ca. 250 (ε  ≈ 7000) nm (in 

some cases this band occurs as a shoulder to the high-energy band), and a low-energy, 

low-intensity band for the πL-π* (HOMO-LUMO) transition above about 300 nm 



135 

 

 Electronic Absorption  Emission  

Compound λmax
abs (nm), ε (M-1cm-1) λmax

em (nm) ΦF(toluene), 

ΦF(CH3CN) 

H(pzAnCF3) 234 (21000), 259 (8600), 305 (3700) --- --- 

H(pzAnCl) 233 (24,000), 255 (9,600), 317 (4,700) --- --- 

H(pzAntBu) 234 (35649), 305 (7510) --- --- 

H(pz2AnCF3) 241 (7900), 265 (1900), 317 (1600) --- --- 

H(pz2AnCl) 240 (37219), 265 (6923), 329 (6553) --- --- 

H(pz2AntBu) 246 (17824), 316 (6995) --- --- 

Ph2B(pzAnCF3) 248 (31000), 288 (13000), 358 (4700) 468 0.63, 0.49 

Ph2B(pzAnCl) 249 (32000), 289 (7800), 375 (6600) 481 0.44, 

Ph2B(pzAntBu) 245 (21607), 371 (3251) 495 0.33, 0.03 

Ph2B(pz2AnCF3) 252 (30000), 292 (6500), 323 (6400) 474 0.75, 0.55 

Ph2B(pz2AnCl) 251 (26767); 297 (2629); 388 (5460) 493 0.53,  

Ph2B(pz2AntBu) 247 (28505), 380 (5706) 502 0.46, 0.16 

 

 

 

(ε  ≈ 3000).  As indicated from the calculations, the energies of all the absorption bands 

of the dipyrazolyl derivatives are red-shifted with respect to the monopyrazolyl 

derivatives.  With the BORAZANs, each band undergoes both hyper- and bathochromic  

 

 

Table 6.4.  Electronic properties of H(pznAnX) and Ph2B(pznAnX) (n = 1,2; X = CF3, Cl, 
tBu) compounds from spectroscopic measurements. 
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shifts a new high energy band (presumably for the π-π* transitions involving the boron-

phenyl groups) appears as a shoulder near 200 nm.   

 

 

 

 

 

 

 

 

The ligands are not emissive under irradiation with UV-light but the BORAZANs exhibit 

intense emission (either in the solid state or in hydrocarbon or halocarbon solution) that 

varies from blue for derivatives with electron-withdrawing trifluoromethyl para- aniline 

substituents to green for the tert-butyl derivatives (Figure 6.11).  Previous excited-state 

lifetime measurements established the fluorescent nature (ns lifetimes) of emission.  As 

with the previously reported mono-pyrazolyl derivatives Ph2B(pzAnX) (X = CN, CF3, 

CO2Et, Cl, Me, OMe), the emission of the di-pyrazolyl derivatives Ph2B(pz2AnX) (X = 

CF3, Cl, tBu) exhibit a regular red-shift of emission with increasing electron-donating 

character of the para- aniline substituent.  Thus, the emission maximum of Ph2B(pz2AnX) 

occurs at 474, 493, and 505 nm for X = CF3, Cl, tBu, respectively.  The quantum yields of 

emission diminish regularly along the series X = CF3, Cl, tBu (0.75, 0.53, 0.46 

 

Figure 6.10.  Overlay of electronic absorption spectrum of H(pzAnCF3) (dotted blue line), 
H(pz2AnCF3) (solid blue line), Ph2B(pzAnCF3) (dotted black line), and Ph2B(pz2AnCF3) 
(solid black line) in CH2Cl2. 
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respectively) in accord with the energy gap law which indicates that quantum yields for 

emission will decrease with lower energy emission.67  After considering the implications 

of the energy gap law, there is a remarkable improvement in the quantum yields of 

emission of Ph2B(pz2AnX) (X = CF3, Cl, tBu) versus the corresponding mono-pyrazolyl 

derivatives Ph2B(pzAnX).  Despite the fact that di-pyrazolyl derivatives Ph2B(pz2AnX) (X 

= CF3, Cl, tBu) exhibit red-shifted emission compared to the corresponding mono-

pyrazolyl derivatives Ph2B(pzAnX), the former enjoy a 10-20% increase in fluorescence 

quantum yield (Table 6.4) with respect to the latter.  Since the Stokes shift (6000 ± 500 

cm-1) is slightly smaller for the dipyrazolyl derivatives compared to that observed for the 

mono- pyrazolyl derivatives  (Stokes shift 6400 ± 500 cm-1), we tentatively attribute the 

improvement in quantum yield to the kinetic stabilization of the dye framework brought 

about by the additional pyrazolyl (increasing the amount of chelated boron). 

 

 

 

 

 

 

 

 

 

Figure 6.11.  Overlay of normalized emission spectra of Ph2B(pz2AnX) (solid lines) 
and Ph2B(pzAnX) (dashed lines, arbitrarily set to half-intensity of dipyrazolyl 
derivatives) where (X = CF3, blue; Cl, cyan; tBu, green).  
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Conclusions.  Three examples of 2,6-dipyrazolylanilnes H(pz2AnX) (X = CF3, Cl, tBu) 

have been prepared by exploiting copper-catalyzed amination reactions between pyrazole 

and 2,6-dibromoaniline.  The reaction chemistry of these derivatives with triphenylboron 

afforded Ph2B(pz2AnX) with chelated diphenylboryl moieties, as indicated from X-ray 

structural studies.  The tert-butyl derivative exhibits a highly-organized supramolecular 

structure that is very different than other structurally related compounds of this class.  In 

Ph2B(pz2AntBu), the boron-bound pyrazolyl is involved in a concerted set of non-covalent 

CH-π and π-π interactions termed the “dipyrazolyl diphenyl embrace”, that is structurally 

similar to the known quadruple phenyl or quadruple pyrazolyl embrace.  These new 

highly emissive compounds exhibit a number of adventitious properties compared to the 

first generation of BORAZAN fluorescent dyes, Ph2B(pzAnX), that have only one 

pyrazolyl group on the heterocyclic ligand scaffold.  The emission is color tunable from 

blue for the derivative with an electron-withdrawing -CF3 para-aniline substituent to the 

green for the related tert-butyl substituent.  Even though the emission of the di-pyrazolyl 

derivatives is lower energy than those of the mono-pyrazolyl analogues, the former 

displays higher luminescence quantum yields than the latter.  Moreover, the di-pyrazolyl 

derivatives enjoy a significant increase in stability towards solvolylsis than the mono-

pyrazolyl derivatives.  Both of the above properties are thought to arise from a kinetic 

stabilization of the dye framework since the additional pyrazolyl leads to in increase rate 

of boron-pyrazolyl bond formation should dissociation occur.  In fact, such dissociation 

was easily detected by variable temperature NMR spectroscopic studies of toluene 

solutions of C1-symmetric Ph2B(pz2AnX) since the resonances for ‘free’ and boron-bound 

pyrazolyls undergo exchange.  The rates of boron-pyrazolyl dissociation decrease (hence, 
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the stability of the chelate ring increases) in the order tBu > Cl > CF3, an order that may 

be indicative of the anticipated (in)ability of the aniline to stabilize a three-coordinate 

boron by conjugation between the aniline lone pair and the empty p-orbital on boron.   
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General Procedure for Ligand Syntheses.  A mixture of the desired dibromoaniline (1 

equiv), pyrazole (2.4 equiv), K2CO3 (4.2 equiv), 40 mol % N,N’-

dimethylethylenediamine, and 10-20 mL of p-xylenes were degassed by three 

freeze/pump/thaw cycles.  Under a nitrogen blanket, 10 mol % CuI was added, and the 

resulting mixture was subject to two more freeze/pump/thaw cycles.  The mixture was 

heated under nitrogen at reflux for 5 days (until starting materials were no longer detected 

by TLC).  After cooling to room temperature, 100 mL of H2O and a few crystals of 

EDTA-H4 were added to facilitate workup.  The mixture was then extracted with three 

100 mL portions of CH2Cl2 which were combined and dried over MgSO4 and filtered.  

The solvent was removed by rotary evaporation to leave oily residues.  The residues were 

purified by column chromatography by using 4:1 hexanes:ethyl acetate as the eluent for 

all cases (Rf ca. 0.4, SiO2 plate), except for the trifluoromethyl derivative, for which  

which 1:1 hexanes:dichloromethane was the eluent (Rf ca. 0.4, SiO2 plate).  After column 

chromatography, all products were initially isolated as oils but could be crystallized by 

layering dichloromethane solutions with hexanes. 

 

H(pz2An
CF

3).  With 5.17 g (16.2 mmol) 2,6-dibromo-4-trifluoromethyl-aniline and 2.65 

(39 mmol) pyrazole, 1.70 g (36 %) of H(pz2AnCF
3) was obtained as a white crystalline 

solid.  Mp, 89-91 oC.  Anal. Calcd. (found) for C13H10F3N5: C, 53.24 (53.48); H, 3.44 

(3.23); N, 23.88 (24.05).  1H NMR (C6D6) δH 7.50 (d, J = 1.7 Hz, 2H), 7.09 (s, 2H), 6.88 

(dd, J=2.5 Hz, 2H), 6.64 (s, 2H), 5.98 (t, J=2.2 Hz, 2H).  13C NMR (C6D6) δC 140.93, 

139.77, 130.00, 127.09, 126.45, 119.49, 117.48, 117.04, 106.79.  UV-vis (CH2Cl2) λmax, 

nm (ε, M-1 cm-1) 241 (7893), 267 (1794), 317 (1602).   
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H(pz2An
Cl

).  With 5.90 (20.6 mmol) 2,6-dibromo-4-chloro-aniline and 3.38 g (49.6 

mmol) pyrazole, 0.661 g (12 %) of H(pz2AnCl)  was obtained as white crystalline blocks.  

Mp, 104-105 oC.  Anal.  Calcd. (found) for C12H10ClN5: C, 55.50 (55.22); H, 3.88 (3.53); 

N, 26.97 (27.14).  1H NMR (C6D6) δH 7.51 (d, J=1.6 Hz, 2H), 6.94 (dd, J= 0.6, 2.5 Hz, 

2H), 6.83 (s, 2H), 6.19 (s, 2H), 5.99 (t, J=2.1 Hz, 2H).  13C NMR (C6D6) δC 140.89, 

135.68, 129.87, 128.16, 127.93, 122.68, 120.10.  UV-Vis (CH2Cl2) λmax, nm (ε, M-1 cm-1) 

240 (37219), 265 (6923), 329 (6553).   

 

H(pz2An
tBu

).  With 9.50 g (31 mmol) 2,6-dibromo-4-tertbutyl-aniline and 5.08 g (74.6 

mmol) pyrazole, 4.78 g (55 %) of H(pz2AntBu) was obtained as a brown crystalline solid.  

Mp, 112-114 oC.  Anal. Calcd. (found) for C16H19N5: C, 68.30 (68.55); H, 6.81 (7.09); N, 

24.89 (24.62).  1H NMR (C6D6) δH  7.63 (d, J=1.7 Hz, 2H), 7.24 (d, J=2.4 Hz, 2H), 7.08 

(s, 2H), 6.12 (t, J=2.0 Hz), 5.75 (s, 2H), 1.09 (s, 9H).  13C NMR (C6D6) δC 141.19, 

139.89, 135.71, 130.48, 128.50, 121.36, 106.94, 34.26, 31.64.  UV-vis (CH2Cl2) λmax, nm 

(ε,M-1cm-1) 245 (32,251), 371 (4,853).  Emission (nm, CH2Cl2) λmax, 495.   

 

General Procedure for Syntheses of Diphenylboron Derivatives.  Under nitrogen, an 

equimolar mixture of triphenylboron and the desired 2,6-di(pyrazolyl)aniline in 20-30 

mL of toluene were heated at reflux overnight.  After cooling, solvent was removed by 

vacuum distillation to leave a glassy residue.  Next, 25 mL of dried hexanes were added, 

and the mixture was heated under nitrogen with stirring to leave the desired compound as 

a powder.  After cooling to room temperature, the mixture was separated by cannula 
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filtration.  The insoluble component was dried under vacuum.  Additional crops of the 

BORAZAN could be obtained from the hexane-soluble components after concentration 

and cooling to give a precipitate that is collected by filtration and dried, as above. 

 

Ph2B(pz2An
CF

3).  A mixture of 0.501 g (1.7 mmol) H(pz2AnCF3) and 0.428 g (1.7 mmol) 

BPh3 afforded 0.586 g (82 %) of Ph2B(pz2AnCF
3) as a colorless solid.  Mp, 173-174 oC 

decomp.  Anal. Calcd.  (found) for C25H19BF3N5:  C, 65.67 (65.33); H, 4.19 (3.92); N, 

15.32 (15.01).  1H NMR (300 MHz, C6D6, 22oC): δ = 7.50 (m, 5H, o-Ph and H5-pz free), 

7.36 (d, J = 2 Hz, 1H, H5-pzB), 7.27 (m, J = 8 Hz, 4H, m-Ph), 7.16 (m, J = 7, 1 Hz, 2H, 

p-Ph), 7.03 (s, 1H), 6.89 (br d, J = 2 Hz, 2H, H3-pzB + NH), 6.72 (s, 1H), 6.29 (d, J = 3 

Hz, 1H, H3-pz free), 5.92 (pseudo t, J = 2 Hz, 1H, H4-pz free), 5.46 (pseudo t, J = 3 Hz, 

1H, H4-pzB) ppm. 1H NMR (400 MHz, C7D8, 20oC): δ = 7.49 (s, 1H, H5-pz free), 7.42 

(d, J = 8 Hz, 4H, o-Ph), 7.34 (s, 1H, H5-pzB), 7.22 (t, J = 8 Hz, 4H, m-Ph), 7.13 (t, J = 8 

Hz, 2H, p-Ph), 7.04 (s, 1H), 6.91 (d, J = 2 2Hz, 1H) 6.89 (d, J = 2.1 Hz, 1H, H3-pzB), 

6.79 (s, 1H), 6.43 (s, 1H), 6.29 (d, J = 3 Hz, 1H, H3-pz free), 5.95 (pseudo t, J = 2 Hz, 

1H, H4-pz free), 5.48 (pseudo t, J = 3 Hz, 1H, H4-pzB) ppm. 1H NMR (400 MHz, C7D8, 

80oC): δ = 7.35 (br m), 7.24 (br s), 7.17 (br m), 7.09 (br m), 7.00 (br s), 5.84 (br s). 13C 

NMR (75 MHz, C6D6, 22oC): δ = 141.21, 140.60, 135.25, 133.30, 129.49, 127.75, 

127.18, 126.86, 122.49, 119.15, 112.31, 107.01, 106.80 ppm. 11B NMR (128 MHz, C6D6, 

22oC): δ = -0.3 (ω1/2 = 233 Hz) ppm. 19F NMR (376 MHz, C6D6, 22oC): δ = -60.6 S-9 

ppm. UV/Vis (nm, CH2Cl2): λmax, (ε, M-1cm-1) = 252 (30,016), 292 (6,500), 372 (6,359). 

Emission (nm, CH2Cl2) λmax = 474. 
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Ph2B(pz2An
Cl

).  A mixture of 0.253 g (0.96 mmol) H(pz2AnCl) and 0.278 g (1.1 mmol) 

BPh3 afforded 0.256 g (69 %) of Ph2B(pz2AnCl) as a green solid.  Mp, 227-230 oC 

decomp.  Anal.  Calcd.  (found) for C24H19BClN5:  C, 68.03 (68.22); H, 4.52 (4.42); N, 

16.53 (16.81).  1H NMR (300 MHz, C6D6, 22oC): δ = 7.61 (m, 4H), 7.37 (t, J = 7 Hz, 

1H), 7.29 (t, J = 1 Hz, 1H), 7.27 (t, J = 2 Hz, 1H), 7.25 (d, J = 1 Hz, 2H), 6.99 (d, J = 16 

Hz, 2H), 6.83 (s, 1H), 6.49 (d, J = 19 Hz, 2H), 6.03 (br s, 1H), 5.56 (br s, 1H) ppm. 1H 

NMR (400 MHz, C7D8, 50oC): δ = 7.42 (m, 4H), 7.34 (br s, 1H), 7.22 (t, J = 7 Hz, 4H), 

7.16 (t, J = 1 Hz, 1H), 7.12 (t, J = 1 Hz, 1H), 6.90 (d, J = 1.9 Hz, 2H), 6.71 (br s, 1H), 

6.42 (br s, 2H), 5.95 (br s, 1 H), 5.58 (br s, 1H) ppm. 1H NMR (400 MHz, C7D8, 50oC): δ 

= 5.93 (m, 4H), 5.74 (t, J = 7 Hz, 5H), 5.68 (t, J = 3 Hz, 1H), 5.66 (t, J = 3 Hz, 1H), 5.64 

(t, J = 2 Hz, 1H), 5.41 (br s, 2H), 5.16 (br s, 3H), 4.35 (br s, 3H) ppm. 13C NMR (75 

MHz, C6D6, 22oC): 137.61, 134.04, 128.21, 127.25, 117.43, 107.26 ppm. 11B NMR (128 

MHz, C6D6, 22oC): δ = -0.3 (ω1/2 = 292 Hz) ppm. UV/Vis (nm, CH2Cl2): λmax, (ε, M-1cm-

1) = 251 (26,768); 289sh (3,528); 388 (5,460). Emission (nm, CH2Cl2) λmax = 493. 

 

Ph2B(pz2An
tBu

).  A mixture of 0.50 g (1.7 mmol) H(pz2AntBu) and 0.50 g (2.1 mmol) of 

BPh3 afforded 0.58 g (74 %) of Ph2B(pz2AntBu) as a green solid.  Mp, 217-219 oC.  Anal. 

Calcd. (found) for C28H28BN5:  C, 75.51 (75.25); H, 6.34 (6.52); N, 15.72 (15.98).  1H 

NMR (300 MHz, C6D6, 22oC): δ = 7.61 (d, J = 6.8 Hz, 4H), 7.28 (t, J = 7.2 Hz, 4H), 7.19 

(m, 2H), 7.01 (br s, 2H), 6.76 (br s, 2H), 6.55 (s, 1H), 6.04 (br s, 2H), 5.59 (br s, 2H), 

1.06 (s, 9H) ppm 1H NMR (400 MHz, C7D8, 20oC): δ = 7.50 (m, 4H), 7.22 (t, J = 7 Hz, 

5H), 7.14 (t, J = 1 Hz, 1H), 7.12 (t, J = 2 Hz, 1H), 7.09 (br s, 3H), 6.49 (br s, 1H), 5.87 

(d, J = 92 Hz, 4H), 1.07 (s, 9H) ppm. 1H NMR (400 MHz, C7D8, 80oC): δ = 7.39 (m, 4H), 
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7.34 – 7.10 (m, 9H), 6.24 (br s, S-10 2H), 5.91 (br s, 3H), 3.51 (br s, 1H), 1.06 (s, 9H) 

ppm. 13C NMR (75 MHz, C6D6, 22oC): 136.86, 136.17, 134.13, 128.18, 127.08, 107.08, 

34.19, 31.64 ppm. 11B NMR (128 MHz, C6D6, 22oC): δ = -0.1 (ω1/2 = 529 Hz) ppm. 

UV/Vis (nm, CH2Cl2): λmax, (ε, M-1cm-1) = 247 (28,505), 380 (5,706). Emission (nm, 

CH2Cl2) λmax = 502 
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Chapter 7:  Nickel Complexes of a New NN Pincer 

Ligand. 

 

 

 

 Introduction.  Over the course of the past decade there has been a surge in the 

research dealing with “pincer” type ligands (Figure 7.1).  As the surge in research has 

continued; the focus has shifted from mere curiosity and chemically interesting species to 

these complexes having specific applications in catalysis, synthesis as well as materials 

science.70    Only recently has the non-innocent redox behavior of these ligands been 

considered a source of the fascinating chemistry performed by some of these species.71 

Some of the unique electro- and photochemical properties of these “pincer” ligands and 

their transition metal complexes has been highlighted in the work done by the Peters, 

Mindiola and Milstein groups.72a-f  While transition metals are the most heavily studied 

both main group (Al, Ge) and late transition (Rh, Pd, Re, Ir) metals all have been 

reported.1  

 

 

 

 Generally speaking, there are symmetric pincer type ligands as well as 

unsymmetrical pincer type ligands; with the symmetric type being the more commonly 

studied.  Figure 7.1 (above) displays the commonly reported symmetric type pincer 

 

Figure 7.1.  Commonly studied “pincer” type ligands. 
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ligands: YCY and YNY.  Where Y = SR, NR2, PR2, SR; where R = alkyl group and Y can 

be any combination of the two.70  The electronic properties as well as sterics of the ligand 

can be tuned by varying the Y as well as R group on the ligand.  One of the lesser 

reported type of pincer ligands (which will be the focus of this work reported here) is that 

of the symmetric NNN type where all three donors are nitrogen based which is 

introduced below.70    

 Recently our group has reported on the NNN type pincer ligand shown below in 

Figure .2 and its Rhenium(I) analogue that showcases its unique electronic properties.73   

This previously unreported system has numerous advantages owing to its nearly limitless 

and easily-accessible structural variants.  Doing so allows one to take advantage of the 

well known fact that arylamines are electron donors.74  Which allows for the tuning of 

electronic properties through the para-position as well as tuning of sterics without 

affecting electronics through substitution along the pyrazole backbone.75   

 

 

 

 We were interested to see if it was possible to substitute at the para position of the 

phenyl ring using simple reaction chemistry instead of using commercially available 

phenyls and if so what are its properties with nickel complexes.  This chapter reports the 

details on the synthesis of a new ligand prepared by simple reaction chemistry and its 

properties with nickel(II) and nickel(III) complexes characterized by spectroscopic 

methods such as electrochemistry, EPR and absorption spectroscopy.   

 

Figure 7.2.  Recently reported NNN type pincer ligand by our group. 
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 Results.  The synthesis of the new ligand L1 utilizes both Suzuki coupling7 and 

copper(I) catalyzed coupling reaction first reported by Taillifer77 and Buchwald78  

between aryl bromides (prepared from literature procedures)60 and pyrazole as shown 

below in Scheme 7.1.  The first steps include bromination of diphenylamine with n-

bromosuccinimide and then utilizing Sonogashira coupling with 4-tert-butylphenyl 

boronic acid to obtain the desired diarylamine as a colorless solid in moderate yield (~ 53 

%) after chromatographic separation on silica gel with 4 : 1 hexane : dichloromethane.  

The desired ligand can then be synthesized via a direct two step synthesis by first di-

ortho-bromination of the starting material with two equivalents of Br2 in MeOH/CH2Cl2.  

The bromination reaction proceeds quickly (within 1 h) to give NH(o-Br-4-tbu-

biphenyl)2.  Finally, the copper(I) catalyzed reaction, using a large excess of pyrazole 

(3.5 eq) and and K2CO3 (3.5 eq) to obtain the desired product in moderate yields (~ 50 

%) after chromatographic separation on silica gel with 8 : 1 hexanes : ethyl acetate. 

 

 

 

 

 

 

The nickel(II) (charge neutral) complex was synthesized according the Scheme 7.2 

shown below and were characterized in solution.  Starting with nickel(II) chloride 

 

Scheme 7.1.  Synthetic route to new ligand L1.  i.)  2 NBS, 0 oC, DMF, 3 h.  ii.)  5 mol % 
Pd(0), 2 M aq. K2CO3, toluene/MeOH, 80 oC, 20 h.  iii.)  2 Br2, 1:1 MeOH/CH2Cl2, 0 oC, 
1 h.  iv.)  3.5 HPz, 3.5 K2CO3, 10 mol % CuI, 40 mol % DMED, xylenes, 3 d. 
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hexahydrate in methanol and refluxing it with two equivalents of ligand (L1) for 30 

minutes and then adding two equivalents of tetra-ethyl ammonium hydroxide afforded 

the desired nickel(II) complex as a brown air stable solid almost quantitatively (~ 94 %) 

after gravity filtration and rinsing with methanol (3 x 10 mL).  Unfortunately, numerous 

attempts to grow x-ray quality crystals (from layering a concentrated dichloromethane 

solution with hexanes) failed and at best would give frail needles that would decompose 

once removed from the solvent.  Further attempts at crystallization included the synthesis 

of the nickel(III) derivative by oxidation of the nickel(II) complex with ferrocenium 

tetrafluoroborate (~ 70 %) as green air stable solid (Scheme 7.2).  However, numerous 

attempts to crystallize this derivative also failed; only yielding frail needles that diffracted 

poorly. 

 

 

 

 

 Electrochemistry.    Diarylamines are well known to exhibit irreversible 

oxidation waves; as evident in a number of nitroxide•ONAr2 radical species produced by 

chemical oxidation reactions in work by Rajca and others79  More recently, our group has 

prepared a series of non-innocent di(2-pyrazolyl)amine pincer ligands that have varying 

substituents in the para- position of the aryl ring.  We have shown that the oxidation 

potential (while irreversible) can be varied in a regular way by changing the inductive 

 

Figure 7.2.  Synthesis of nickel(II) and nickel(III) complexes. 
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power (i.e. electron withdrawing or electron donating groups) of the para- substituent on 

the aryl ring as shown below in Figure 7.3.  Interestingly, it was found that substitution 

along the pyrazole backbone has little to no effect on the oxidation potential regardless of 

the substituent. 

 

 

 

 

 

 The cyclic voltammegram for both L1 and [Ni(L1)2] (in CH2Cl2) is shown below 

in Figure 7.4.   As can be seen from the figure below; the ligand shows two irreversible 

oxidations and no reductions (not shown) in the negative potential range (Epc = 1.08 V 

and 1.46 V vs Ag/AgCl) which fit in with the expected electron donating capabilities of 

the phenyl rings being less electron donating than the methyl groups but more so than the 

trifuoromethyl groups.80  A second oxidation also becomes visible as expected due to the 

second set of aryl rings attached at the para position of the aryl rings.  

 Upon complexation to nickel(II) the electrochemical behavior of the ligand 

changes as these oxidation waves become quasi reversible in nature and also experience a 

shift to a lower oxidation potential.  A quasi reversible NiII/III oxidation wave also 

becomes evident upon scanning the potential range. The E1/2 for the NiII/III is  0.27 V vs 

Ag/AgCl;  while the values for the next two ligand based oxidations are as follows: 0.52 

 

Figure 7.3.  Electrochemical data of substituted di(2-pyrazolyl)amine pincer 
lingands. a = unpublished reference, b = this work. 
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V and 1.41 V vs Ag/AgCl.  Compared to the previously reported nickel(II) complex by 

our group these oxidations are less favorable than –CH3, -CH3 (1
st oxidation E1/2 = 0.18 

V, 2nd oxidation E1/2 = 0.45 V) but more favorable than –CF3, -CF3 (E1/2 = 0.79 V, 1.06 

V).5  Again, the shift in values is to be expected considering the poorer electron donating 

ability of the phenyl rings compared to the methyl groups but stronger than 

trifluoromethyl groups in the para postion.   

 

 

 

 

 

 

 

 

 

 Solution Properties.  The electronic absorption spectrum for the free ligand (L1 

in CH2Cl2) is shown below in Figure 7.5; while the spectra for both the [Ni(L1)2] and 

[Ni(L1)2][BF4] (in CH2Cl2) are shown below in Figure 7.6 & 7.7.  The spectrum of L1 

contains two transitions most likely and π-π* in nature based on our previous studiesref  

(228 (70 910), 238sh (55 825), 342 (54 089)).   

 

Figure 7.4.  Cyclic voltammegrams of L1 (bottom) and [Ni(L1)2] (top) in CH2Cl2 
with 0.1 mM [NBu4][PF6]; scan rate = 100 mvs. 
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 Upon complexation to Nickel(II) an orange solid is formed to give [Ni(L1)2].  The 

complex is orange in solution and is intensely colored and gives solution magnetic 

moments substantially higher (4.43 µβ) than the spin only value (2.82 µβ).  Two other 

complexes synthesized by our group; the –CH3, -CH3 substituted derivative as well as the 

–CH3, -CN derivative also give solution magnetic moments higher than the spin only 

value (4.52 µβ for –CH3, -CH3 and 4.17 µβ for –CH3, -CN)).  The increased solution 

magnetic moment is most likely due to a significant amount of orbital contribution.  

Therefore using the modified formula to account for orbital contributions µeff = 

�4��� + 1� +  	�	 + 1� the expected value becomes 4.52 µβ which agrees well with the 

experimental values obtained for all complexes.   

 The absorption spectrum of [Ni(L1)2] in dichloromethane shows four bands; two 

of high intensity (ε > 50,000 M-1 cm-1) and two lower intensity bands (ε < 1000 M-1 cm-1) 

250 (105 523), 416 (98 257), 532 (815), 853 (255) similar to other nickel(II) complexes.81  

 

Figure 7.5.  Electronic absorption spectrum of L1 in CH2Cl2. 
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While the metal is high spin d8 and has d←d electronic transitions they are most likely 

obscured by the high intensity bands centered at 853 nm (which is most likely a low 

energy π*←π transition) and 532 nm.  If the intensities of the bands are ignored and the 

transitions are assumed to be obscured by the low energy π*←π transition the ligand field 

parameter ∆o can still be calculated based on the position of the lowest energy band at 

853 nm giving a ∆o ≈ 11,723 cm-1. 

 

 

 

 

 

 

 

 Upon oxidation of [Ni(L1)2] with ferrocenium tetrafluoroborate the color of the 

complex changes from orange to an intense dark green.  The complex gives a solution 

magnetic moment consistent with the oxidized product and three unpaired electrons of 

3.97 µβ which agrees well with the spin only moment of 3.87 µβ. The presence of 

nickel(III) is also confirmed by EPR measurements obtained at 70 K and 10 K as 

discussed below.  The electronic absorption spectra of the oxidized species shows 

presence of three additional bands similar to other nickel(III) complexes13: two of low 

intensity (ε < 6,000 M-1 cm-1) and three high intensity (ε > 10,000 M-1 cm-1); 254 (96 

 

Figure 7.6.  Absorption spectra of [Ni(L1)2] in CH2Cl2. 
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293), 350sh (34 580), 404 (55 203), 602 (5 854), 725sh (5 804), 854 (16 210).  While the 

nickel(III) center is confirmed no transitions for the d←d transitions are directly observed 

and are mostly likely obscured by the high intensity transitions at 602 nm, 725 nm, and 

548nm which are most likely charge transfer in nature (ligand to metal) based on 

intensity. 

 

 

 

 

 

 

 Electron Paramagnetic Resonance.  The frozen glass EPR spectra were 

obtained as additional confirmation of the spin states.  The complex [Ni(L1)2]
2+is EPR 

silent as expected due to the large zero field splitting as is common for high spin d8 non 

kramer’s (S = 1)complexes giving further support to the Ni2+ oxidation state despite the 

large magnetic moment.  The EPR spectra of [Ni(L1)2][BF4] was obtained as a frozen 

glass (70 K, 10 K) in CH2Cl2.    The spectra for [Ni(L1)2][BF4] at 70 K and 10 K are 

shown below in Figure 7.8 each consisting of three components at 70 K and 10 K signals 

belonging to the same component are marked with asterisks (red, black) while the 

impurity is marked with blue.  The high temperature component (black) experiences a 

 

Figure 7.7.  Electronic absorption spectra of [Ni(L1)2][BF4] in CH2Cl2. 
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decrease in signal intensity upon cooling to 10 K while the low temperature component 

(red) experiences an increase upon cooling to 10 K.  Both the high and low temperature 

 

 

 

 

 

 

 

components belong to the same species which is the desired Ni3+.  However, due to the 

symmetry of the ligand the D value becomes negative therefore flipping the ground and 

excited states so that the ms = +3/2 becomes the ground state and ms = +1/2 is the low 

lying excited state which is easily populated at 70 K and therefore explains the decrease 

in signal intensity at 10 K and the signal increase for the ms = +3/2 component at 10 K.  

This is further supported by simulations of each component at 70 K and 10 K shown  

below in Figure 7.9.  Finally, the experimental spectrum at 70 K can be simulated by 

using the average parameters of g║ = 2.093, g┴ = 2.089, E/D = 0.241, D = -10 cm-1 shown 

below in Figure 7.10 further supporting a ms = +1/2 and ms = +3/2 component. 

 

 

 

Figure 7.8.  EPR spectra of Frozen glass solutions 70 K (left) and 10 K (right) of 
[Ni(L1)2][BF4]. 
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Figure 7.9.  Simulations of ms = +1/2 component with g║ = 2.093, g┴ = 2.073, E/D 
= 0.237, -10 cm-1 (left) and ms = +3/2 component with g║ = 2.093, g┴ = 2.105, E/D 
= 0.245, D = -10 cm-1 (right). 

 

Figure 7.10.  Simulated and experimental spectra of [Ni(L1)2][BF4] at 70 K using 
average parameters. 
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 Summary.  Two new nickel complexes have been synthesized using a newly 

prepared ligand by substitution at the para position of the phenyl rings using simple 

reaction chemistry.  Both [Ni(L1)2] and [Ni(L1)2][BF4] have been characterized 

spectroscopically and display characteristics consistent with high spin d8 ([Ni(L1)2]) and 

d7 ([Ni(L1)2][BF4]) as confirmed by solution magnetic moments as well as EPR 

spectroscopy.  EPR measurements show that [Ni(L1)2][BF4] contains a negative D value 

owing to the symmetry about the nickel(III) center and therefore has a ground state of ms 

= + 3/2 and a low lying excited state of ms = +1/2.  However, we were unable to obtain 

crystal structures of either complex due to the high solubility of the complexes giving 

frail needles that poorly diffract at best.  Electrochemical measurements show that the 

new ligand complex is slightly harder to oxidize than the previously synthesized –CH3, -

CH3 substituted product owing to the stronger electron donating ability of the methyl 

groups over the phenyl groups in the para position.  Due to the ease of substitution at the 

para position the potential for several new derivatives to be synthesized remains high. 

 

 

 

 

 

 

 



157 

 

General Considerations.  Diphenyl amine, 4-tBu phenyl boronic acid, bromine, 

pyrazole, and all transition metal halides were obtained commercially and were used as 

received.  The compound p-(dibromodiphenyl amine) was prepared according to a 

literature method.13  Solvents were dried by conventional procedures and distilled prior to 

use, except where noted.  Midwest MicroLab, Indiana 45250, performed all elemental 

analyses.  Melting point determinations were made on samples contained in glass 

capillaries using an Electrothermal 9100 apparatus and are uncorrected.  1H and 13C NMR 

spectra were recorded on a Varian 300 MHz spectrometer.  Chemical shifts were 

referenced to solvent resonances at δH 7.27 and δC 77.23 for CDCl3 and δH 5.32 and δC 

53.1 for CD2Cl2.  Uv-visible and NIR spectra were recorded using Shimadzu UV-

1600/1700 or Jasco V-570 instruments.  EPR spectral measurements were obtained using 

a Bruker ELEXSYS E600 equipped with an ER4116DM cavity resonating at 9.63 GHz, 

an Oxford Instruments ITC503 temperature controller and ESR-900 helium flow cryostat.  

The EPR spectra were recorded with 100 kHz field modulation. 

4-tBu(biphenylamine).  To an oven dried schlenk flask was added 2.00 g ( 6.1 mmol) of 

bis(4-bromophenyl)amine along with 0.367 (5 mol %) of palladium (0).  Toluene (1 x 25 

mL) was then added via syringe and the solution was degassed for 15 minutes.  To a 

sepearte 100 mL schlenk flask was added 2.39 g (13.4 mmol) of 4-tert-butylphenyl 

boronic acid along with methanol (1 x 10 mL) via syringe and transferred slowly via 

cannula to the main reaction flask.  2.0 M aq. K2CO3 (1 x 10 mL) was then added via 

syringe and the reaction was heated at 80 oC for 20 h.  After 20 h. the reaction was 

allowed to cool and the layers were separated and the aqueous layer was extracted with 

toluene (3 x 25 mL).  The organic fractions were combined, dried over MgSO4 and 
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concentrated to give an oily residue.  Chromatographic separation using silica gel with 

4:1 hexanes:dichloromethane  as an eluent afforded crude 4-tBu(biphenylamine) as a 

colorless powder (4.18 g, 53 %) from the third band (Rf = 0.33 SiO2 plate).  Further crops 

were obtained by flushing the column with pure dichloromethane to obtain a yellow solid 

which was triturated with diethyl ether to give colorless powder.  Mp, 229-232 oC.  1H 

NMR (CDCl3) δH 7.51 (dd, J = 8, 13 Hz, 12 H), 7.18 (d, J = 8Hz, 4 H), 5.83 (br s, 1H, N-

H), 1.39 (s, 18 H, -tBu).  13C NMR (CDCl3) δC 149.7, 142.2, 138.1, 133.9, 127.9, 126.3, 

125.8, 118.1, 34.6, 31.5. 

4-tBu(dibromobiphenylamine).  1.69 g (3.91 mmol) of tertbuytlbenzenediphenyl amine 

was added to a 250 mL 3 neck round bottom flask along with dichloromethane (1 x 75 

mL) along with methanol (1 x 15 mL).  The flask was then placed into an ice bath and 

allowed to equilibrate for approximately 15 minutes.  0.45 mL of Br2 (7.83 mmol) in 

dichloromethane (1 x 15 mL) and methanol (1 x 15 mL) was then added slowly via an 

addition funnel.  The reaction was then allowed to stir 1 hour at 0 oC.  After 1 hour 

saturated aqueous sodium thiosulfate (1 x 150 mL) was added and the orange color 

disappeared.  The organic layer was separated and dried over magnesium sulfate and 

concentrated.  A yellow/green oily solid was obtained and adsorbed onto SiO2 and eluted 

with 4:1 hexane : dichloromethane.  1.66 g ( 70 %) of a white crystalline solid was 

obtained.  Mp, 146-150 oC.  1H NMR (CDCl3) δH 7.86 (d, J = 2Hz, 2H), 7.47 (m, 12H), 

6.56 (br s, 1H), 1.39 (s, 18H).  13C NMR (CDCl3) δC  150.5, 138.9, 136.6, 135.7, 131.6, 

126.7, 131.6, 126.7, 126.4, 125.9, 118.1, 114.6, 34.7, 31.5. 

di(2-pyrazolyl-4-tbu-biphenyl)amine.  To an oven dried 250 mL schlenk flask was 

added 2.61 g (4.4 mmol) of dibromo compound along with 1.06 g (15.4 mmol) of 
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pyrazole and 2.16 g (15.4 mmol) of potassium carbonate.  The flask was then backfilled 

and evacuated with N2 (3x).  0.15 mL of 1,3-diaminopropane along with distilled xylenes 

(1 x 5 mL) was added via syringe.  The flask was covered in foil and a reflux condenser 

was attached.   The reaction was allowed to reflux and monitored by TLC.  After 1 day 

no product formation was observed and further amounts of reactants were added.  After 2 

days minimal product formation was observed and again further amounts of reactants 

were added.  Finally, after 3 days no starting material remained.  The reaction was 

allowed to cool and water (1 x 30 mL) was added.  The reaction mixture was then 

extracted with dichloromethane (3 x 25 mL) dried over MgSO4 and concentrated.  The 

brown oily substance was adsorbed onto SiO2 and eluted with 8 : 1 hexanes : ethyl 

acetate to give a 1.22 g (49 %) of a green/yellow powder.  Mp, 137 – 140 oC.  1H NMR 

(CDCl3) δH  8.96 (br s, N-H), 7.78 (t, J =  3 Hz, 4H, H3,5-pz), 7.53 (m, 14H), 6.49 (t, J = 

3Hz, 2H, H4-pz), 1.38 (s, 18H, tBu).  13C NMR (CDCl3) δC  150.3, 140.8, 137.1, 135.9, 

133.9, 130.6, 130.1, 126.7, 126.3, 125.9, 123.7, 118.9, 106.9, 34.6, 31.4 

[Ni(L1)2]•MeOH•H2O.   To an oven dried 100 mL schlenk flask was added 0.500 g (0.88 

mmol) of Pz ligand along with 0.105 g (0.44 mmol) of NiCl2•6H2O.  Methanol (1 x 20 

mL) was then added and a condenser was attached and the the mixture was allowed to 

reflux for 30 minutes.  After 30 minutes 0.527 g (2 eq) of [NEt4][OH] was added.  The 

vial was then rinsed with additional methanol (1 x 5 mL) and transferred.  Upon addition 

of the tetraethyl ammonium hydroxide the reaction mixture turned green and then a 

brown precipitate formed.  The reaction was allowed to stir for an additional 30 minutes.  

After 30 minutes the reaction was allowed to cool to room temperature and the brown 

solid was collected by gravity filtration and rinsed with methanol (2 x 5 mL).  0.494 g (94 
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%) of a brown powder was obtained.  Mp, 330-340oC.  Anal.  Calcd.  (obsd.) for 

C77H82N10NiO:  C, 74.69 (74.69); H, 6.67 (6.11); N, 11.31 (11.42).  µeff (evans) (CD2Cl2, 

295.15 K): 4.43 µβ.  
1H NMR (CD2Cl2) δH 50.22, 33.88, 20.20, 8.50, 7.41, 7.02, 5.95, 

1.30.    Uv-Vis (CH2Cl2) λmax, nm (ε, M-1, cm-1), 250 (105 523), 416 (98257), 532 (815), 

853 (255). 

[Ni(L1)2][BF4]•MeOH.  To an oven dried 100 mL schlenk flask was added 0.200 g (0.17 

mmol) of orange nickel complex.  The flask was then evacuated and backfilled with N2 

(3x).  Dichloromethane (1 x 20 mL) was then added via syringe to produce a deep orange 

solution.  To another oven dried 100 mL schlenk flask was added 0.047 g (0.17 mmol) of 

ferrocenium tetrafluoroborate.  The flask was evacuated and backfilled with N2 (3x).  

Dichloromethane (1 x 20 mL) was then added via syringe to produce a deep blue 

solution.  The ferrocenium solution was then transferred via cannual to the flask 

containing nickel complex.  Upon transfer the nickel solution turned deep green in color.  

Upon completion of the transfer the flask was rinsed with an additional amount of 

dichloromethane (1 x 15 mL).  The reaction was allowed to stir for 1 hour at room 

temperature.  After 1 hour the solution was removed in vacuo.  The residule green solid 

was washed with acetonitrile (1 x 10 mL) to remove any unreacted starting material.  The 

solvent was then removed and the green residue was washed with hexanes (3 x 10 mL) to 

remove ferrocene.  0.150 g (70 %) of a fine green powder was obtained.  Mp, 350-360 

oC. decomp. Anal.  Calcd.  (obsd.) for C77H80N10NiBF4O:  C, 70.76 (69.57); H, 6.17 

(5.87); N, 10.72 (10.10).  µeff (evans) (CD2Cl2, 295.15 K): 3.97 µβ.  Uv-Vis (CH2Cl2) 

λmax, nm (ε, M-1, cm-1), 254 (96293), 350sh (34580), 404 (55203), 602 (5854), 725sh 

(5804), 854 (16210). 
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