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STABILITY OF AFFINITY BASED LAYER-BY-LAYER POLYMERIC SELF-ASSEMBLIES FOR ORAL 
WOUND APPLICATIONS 

 
Oral mucositis is a painful and debilitating chronic inflammatory condition that can 
result from chemo and/or radiotherapy. While current treatment strategies which 
provide temporary relief exist, there is still an unmet clinical need for a robust long 
active barrier strategy which can simultaneously provide protection and release drug to 
enhance the wound healing response. It is proposed that an affinity based layer-by-layer 
self-assembled barrier administered as a series of mouth rinses can allow for wound 
specific drug delivery, providing an effective regenerative therapy. 
In this work, biotinylated poly(acrylic acid) is used to develop LBL assemblies based upon 
biotin-streptavidin affinity interactions. To explore the ability of developed LBL 
assemblies to resist the harsh intraoral environment, in vitro chemical and ex vivo 
mechanical tests are performed. The stability results demonstrate significant LBL barrier 
stability with wear resistance. From principal component regression analysis, factors 
such as polymer MW and number of layers in assemblies contributed significantly to 
chemical barrier stability. Also it is observed that the extent of biotin conjugation plays a 
significant role in LBL development and in mechanical stability. Thus, the proposed 
affinity based multilayered assemblies with their excellent barrier properties offer a 
modular treatment approach in oral mucosal injuries. 
 
KEYWORDS:  Oral mucositis, Biotin-Streptavidin, Layer-by-Layer, Poly (acrylic acid), Oral 
drug delivery 
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CHAPTER 1. INTRODUCTION 

 

Oral mucositis (OM), an inflammatory ulcerous oral wound condition, is a 

commonly occurring side-effect of anti-cancer therapies, including chemotherapy 

and/or radiotherapy [1]. This debilitating acute pathology causes severe pain leading to 

dysphasia and impacts patients overall quality of life [2-4]. Every year in the United 

States, approximately 132,000 patients undergoing anti-cancer therapies develop OM 

(as per 2003 data) [5, 6]. More than 90% of patients subjected to head and neck cancer 

therapies (HNC) develop OM, with the estimated cost per patient exceeding $17,000 

(USD) [4, 7-9].  

Current strategies employed in OM treatment are similar to methods used for 

dermatological cases such as oral gels or lubrication mouth rinses that can provide only 

a temporary palliative relief with poor patient compliance [6, 10]. In order to overcome 

the inadequacies in current treatment methods, a modular treatment strategy is 

proposed utilizing biotin-streptavidin affinity linkages for developing multilayered 

polymeric self-assemblies. It is hypothesized that a targeted layer-by-layer (LBL) 

polymeric self-assembly developed over the oral wound surface will offer a desired 

regenerative treatment strategy through its stable barrier effects. Hence, evaluating the 

barrier stability of LBLs against the harsh intraoral environment is a key requirement to 

validate its application in oral wounds.  

In this work, in vitro chemical stability tests are performed by studying the 

proteolytic effects of unstimulated whole saliva (UWS) and protease (pronase) on LBL 
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assemblies. Through chemical stability tests, destabilization of self-assembled layers is 

evaluated. Statistical analyses (multivariate analysis and ANOVA models) are performed 

to identify key factors (polymer molecular weight / biotin conjugation / number of 

assembly layers), contributing to LBL chemical stability. Developing an understanding of 

the key factors that control LBL chemical stability is instrumental in formulating a 

tunable LBL system with desired barrier properties. In order to study LBL barrier 

durability and wear resistance, ex vivo mechanical tests (adhesion tests) are performed. 

Porcine patches are used as a model tissue substrate for developing LBL assemblies in 

adhesion tests.  A repeat contact barrier fatigue test is performed on LBL developed on 

tissue substrate to determine the extent of LBL barrier loss (wear resistance) from 

repeated loading cycles (load-pull offs).   
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CHAPTER 2. BACKGROUND 

 

2.1. Problem Statement 

Oral mucositis, a painful and debilitating oral wound condition, is a frequently 

occurring post-operative complication in anti-cancer therapies such as radiotherapy, 

chemotherapy, chemoradiotherapy and hematopoietic stem cell transplants (HSCT) [11-

14]. OM is manifested by erythema and inflammatory lesions, which rupture through 

the oral epithelial mucosal walls [1, 15]. This mucosal barrier injury causes severe pain 

with loss of oral functionality, thereby resulting in reduced nutritional uptake and 

dysphasia [4, 16, 17].  

OM compromises the patient’s overall quality of life by not only affecting routine 

functions, such as eating, swallowing or speaking but also through its high cost for 

treatment and care [18]. Invariably, affected patients experience an increased duration 

of hospital care, adding to the economic burden of their treatment. This was 

exemplified in literature studies[19, 20], which showed that patients with OM induced 

by autologous transplants required an additional hospitalization time of at least 5 days, 

which contributed to an expenditure of $22,500/ patient. A study conducted by Sonis et 

al. [21] about economic outcomes of OM in HSCT patients report a total hospital charge 

of $42,479 higher than patients who do not develop OM. Also, in patients suffering from 

OM, there is an increased risk of infection through colonization of bacterial flora, which 

aggravates the existing oral wound condition. Finally, OM can interrupt cancer 

treatment, a result of apoptotic response and cellular death from radiation or 
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chemotherapeutic doses. This affects patient’s treatment regime and possess a 

potential risk of death from treatment delays [22].  

Despite such serious effects of OM and its impact in patients life, the use of  

potent anti-cancer therapies and administrating aggressive treatment regimes has 

become an inescapable part of cancer treatment and control [23]. Hence, it is 

unsurprising to observe high incidence rates of OM, where nearly 30%-75% patients 

subjected to chemotherapy and 70% - 90% of bone marrow recipients are affected [1, 

13, 17]. The incidence rate of OM was found to be even more for head and neck 

radiotherapy, greater than 90 % [4, 7].  

2.2. Risk factors 

The incidence of OM and its severity can be described by two broad categories, 

treatment related and patient related factors. Subcategories under treatment related 

factors include type of cancer treated, treatment method employed, dosage, and 

treatment regimes. In patient related factors, variables such as oral hygiene, age and 

gender can affect OM incidence, severity and the disease duration [1, 20, 24].  

2.2.1. Treatment related factors 

Among treatment factors, the risk among cancer types is highly dependent on 

the zone of treatment, where cancer treatment involving head and neck regions have 

been found to be more susceptible to development of ulcerous lesions. In contrast, a  

relatively low risk is found among treatments in other regions [25]. Also, the incidence 

of severe OM is frequent among patients subjected to conditioning therapy after bone 

marrow transplants (>60%) [20, 26-28].  
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 Interestingly, from a study of 150 patients, there is a reported high frequency  (1 

in 3 incidence) of mucositis (mild to severe) due to the chemotherapeutic effect on solid 

tumors, emphasizing the potential treatment impact [25]. Among patients subjected to 

high dose chemo/radiotherapy regimes, the incidence rate of OM and its extent of 

severity increases. Repeated low chemotherapeutic dosages also possess a high risk as 

when compared to bolus infusion. Hence, apart from dosage factors the number of 

cycles that was previously administered also affect the risk of OM incidence[28]. 

In radiotherapy induced OM, various factors such as irradiated mucosal volume, 

dose intensity, applied cumulative dosage and other dietary factors such as smoking or 

drinking  prior to treatment can have an impact on disease severity and its duration [28-

30]. For the standard dose of 200 centi-Gray/day onset of erythema can be seen within 

a week of treatment, which on accumulating cumulative total dose of 1600-2000 cGy 

will result in atrophy of oral epithelial walls [28, 31-33]. Such irradiations can also 

damage salivary glands, resulting in xerostomia (hyposalivation), where the resulting 

oral dryness worsens the existing condition due to lack of essential salivary functions 

such as oral lubrication, regulation of acidity and mucosa protection [33, 34].  

2.2.2. Patient related factors 

In patient related factors, the existing wound condition can be exacerbated by 

maintaining poor oral hygiene, which causes excessive oral flora and increased infection 

rate [17, 33, 35]. Age also impacts the rate of OM. The frequency of OM incidence is 

higher among younger people (<20 years), a result of greater number of rapidly dividing 

mitotic cells (basal cell proliferation) [15, 33]. In older people (age >50), the developed 
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mucositis is more severe, necessitating greater healing time[15]. OM incidence during 

chemotherapy is also increased among patients with poor nutritional status or reduced 

food uptake during the treatment regime. Interestingly, patients with low body mass 

index (BMI<20) were found to be more susceptible to developing OM [25, 36].  

2.3. Pathobiology of oral mucositis 

The development of OM can be broken down into 5 key stages, as described by 

Sonis et. al., [37].  

1) Initiation 

2) Primary damage response (Upregulation and message generation) 

3) Signal amplification 

4) Ulceration and 

5) Healing  

It should be noted that while these stages are conceptually separated for ease of 

understanding, the pathological process in OM is dynamic, where the phases can be 

overlapping depending upon the adopted treatment procedure[38]. For instance, during 

radiotherapy when patients receive small doses for an extended duration, they 

invariably develop chronic damage which results in staged overlaps. In contrast, patients 

subjected to chemotherapy receive short and intensive bolus injections resulting in an 

acute damage with relatively better distinguished stages [37]. 

1) Initiation 

 Initiation is the inflammatory phase, also commonly referred to as “initial 

tissue injury phase”, whose onset occurs rapidly after administering chemotherapy 
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and/or radiotherapy [13, 37]. This stage is predominately marked by the generation of 

reactive oxygen species (ROS), resulting in oxidative stress. Here, it is not the initial 

direct tissue damage (DNA and non-DNA damage) but  the generation of ROS that 

results in extensive tissue damage [39]. This oxidative stress upregulates inflammatory 

signaling molecules (e.g. nuclear factor- κB) and biological pathways, and leads to 

primary damage response which contributes to mucosal damage [4, 37].   

2) Primary damage response 

 In a series of cascading events, ROS activates various transcription factor and 

multiple pathways, such as nuclear factor-κB (NF- κB), STAT3 (signal transducer and 

activator of transcription 3), p53 (tumor protein 53), and the ceramide pathway [13, 37, 

38, 40].  Ceramides (sphingolipids in the form N-acylated sphingosine) were found to be 

abundant in cell membranes which in response to cellular stress activates several 

enzymes (e.g. cathepsin D, serine protein phosphatases). Such activation regulates 

different pathways eventually leading to growth inhibition or cellular death [40].  

NF-κB is considered a central player with its ability to upregulate ~200 genes, 

whose expression can modulate cytokines production, cell adhesion molecules, stress 

response genes and cyclooxygenease-2 pathway [38, 41]. NF-κB, effects both pro-

apoptotic and anti-apoptotic response, greatly influencing the fate of normal tissues and 

effectiveness of cancer treatment [37].  

Such upregulation of genes due to transcription factor activation induces 

production of pro-inflammatory cytokines, including tumor-necrosis factors (TNF-), 

interleukin-1 (IL-1), interleukin-6 (IL-6), interleukin-1β (IL-1β) [37, 39]. The effect of pro-
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inflammatory cytokines along with apoptotic response from ceramide pathway 

activation (a result of cellular stress from ROS generation) brings forth epithelial damage 

and injury [37, 40]. Also, studies reported by Bamba et al [42], showed an upregulated 

effect of cytokines on activator protein-1 (AP-1), which activates matrix 

metalloproteinases (MMPs) and contributes to tissue injury and inflammation [37, 43]. 

This effect was pronounced within submucosa, where MMPs disrupt the sub-epithelium 

(due to MMP1, an interstitial/fibroblast collagenase) and epithelium basement (due to 

MMP3, also called as Stromelysin-1) resulting in injury [37, 39].  

3) Signal amplification 

 While cytokine production and pathway activation result in primary tissue 

damage, such effects are further increased due to a signal amplification mechanism. In 

signal amplification, the pro-inflammatory cytokines or protein from biological pathways 

stimulate a positive feedback loop response, which increases the impact of primary 

tissue injury [8, 39]. Such feedback mechanisms [44] follow a complex series of 

interlinked networks. One such pro-inflammatory cytokine (TNF-) amplifies NF-κB 

production, which in turn can upregulate various genes to produce more cytokines or 

activate pathways to result in injury [38, 39]. As an illustration of the pathway of 

activation, activated NF-κB results in more cytokines production, which affects ceramide 

pathways and results in production of more MMPs, causing an eventual apoptotic 

response [4, 39].  

4) Ulceration  
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 As a result of loss of cells due to the apoptotic effects of preceding events, 

the oral mucosal epithelium thins out, resulting in an ulcerative stage [4, 45]. For 

example, during administration of chemotherapeutic doses, the onset of such ulcerous 

lesion can usually be found within 14 days [45]. This mucosal barrier injury aided by lack 

of epithelial proliferation becomes a zone of increased bacterial growth[39]. In response 

to this increased bacterial growth and inflammation, there is an accompanying increase 

in macrophages and neutrophils infiltration which further augments inflammation and 

risk of septicemia (sepsis, bacteremia) [4, 8, 39]. Ruescher et al.,[46] illustrated the 

increased incidence of bacteremia among OM patients undergoing autologous HSCT, 

where there was an increase in streptococci infections. In addition, the cell wall products 

released from such bacterial floras stimulates the production of pro-inflammatory 

cytokines through immune pathways [4, 8]. Such release of cytokines, contributes to 

existing signal amplification process which further debilitates the existing wound 

condition by aggravating pain and injury.  

5) Healing 

 The healing process commonly occurs within 2-3 weeks following the post-

treatment (chemotherapy) process [47]. During the healing phase, down-regulation of 

the inflammatory response is accompanied by extracellular matrix (ECM) signaling to 

epithelial cells. ECM contains a complex structural network (fibrous protein, 

proteoglycans and glycoproteins) which contributes to structural support of tissues [48]. 

Mesenchyme and ECM signal epithelial migration, proliferation and differentiation 

which allows for epithelial wound healing [39]. Although such migrations help in 
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remodeling superficial epithelial injuries, a complete recovery in zones of severe 

necrosis or deep wounds require a combined effect with angiogenesis [45, 49]. Thus, the 

duration of the healing phase can be highly dependent upon severity of oral mucositis 

which in turn is a function of treatment and patient related factors (risk factors).  

2.4. Oral mucositis Assessment Scales 

Currently, the severity of OM is assessed using several scales including the World 

Health Organization (WHO), National Cancer Institute (NCI), NCI Common Toxicity 

Criteria (NCI CTC), Oral Mucositis Assessment Scale (OMAS) and Western Consortium for 

Cancer Nursing Research (WCCNR) [1, 50]. Such scoring methods have been developed 

which consider 1.) extent of functionality loss (e.g. dysphasia) 2.) patient’s subjective 

factors (e.g. pain) and/or 3.) objective clinical indicators (e.g. infection) [51]. Detailed 

biological evaluation employed for each of these scoring methods is listed in Table 2-1. 

Despite the availability of such a variety of scoring methods, there is still a need for 

commonly followed standard procedures with a capability to meet all desired criteria 

[17]. 

To exemplify the debilitating condition of oral mucositis and thereby provide a 

visual representation of grades involved in one such scoring method, an illustration 

using NCI assessment scales is shown in Figure 2-1 (Cawley et.al). The current proposed 

strategy suggested in this work is expected to offer a potential treatment solution for 

OM with Grades 2, 3, and 4 (based on the NCI scale). Patients with grade-2 OM exhibit 

the onset of patchy ulcerations whereas at grade-5 the ulcerations coalesce thereby 

denude the mucosa. Despite such varied OM grades (2, 3, and 4), the common aspect 
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between them is the degree of fibrin exposure resulting from epithelial disruption and 

ulceration lesions. Such fibrin elements, a key component from exposed oral injury [52, 

53] can be targeted by a complimentary fibrin binding peptide “CREKA” functionalized in 

biotinylated polymer. CREKA (Cys-Arg-Glu-Lys-Ala) is a pentapeptide widely reported in 

the literature for its effective fibrin targeting ability [54-58]. The targeted CREKA 

functionalized polymeric layer forms an adhesive base layer over oral pathology. By 

providing a series of alternating protein streptavidin and biotinylated polymer mouth 

rinses, multilayered polymeric barrier systems (layer-by-layer (LBL)) can be developed 

over the targeting layer, as shown in Figure 2-3. 

2.5. Barriers in prevention or treatment of oral mucositis 

One major hindrance in treating OM is due to the conventional belief among 

health care providers that mucositis is solely a result of damage to the rapidly dividing 

oral epithelial walls. However, with recent greater understanding of the pathobiological 

mechanism of OM, there is a huge future potential for developing better 

pharmacological products utilizing a mechanistic based treatment approach [17, 37, 39, 

59]. Such mechanistic based treatment approaches under clinical investigation 

predominantly function by modifying the biological responses (e.g. keratinocyte growth 

factor or epidermal growth factor).   

With current treatments being similar to those adapted for dermatological cases, 

there is a need for better redesigned approaches specifically tailored for oral mucosal 

applications. Oral mucosa exists in a complex environment where they are subjected to 

continual salivary flushing activity. Although salivary action helps to provide a hydrating 
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medium for drug distribution, such effects could also result in rapid drug clearance by 

swallowing [60, 61]. In overcoming such drawbacks, a drug delivery device should be 

capable of minimizing salivary dilution effects thereby potentially obviating the need for 

repeated drug dosing [60]. Another major block in developing oral mucosal delivery 

systems is the harsh intra-oral environment, which characteristically possesses exuding 

fluids, mastication and proteolytic degradation effects, which present unique challenges 

in developing an effective drug carrier for periodontal drug delivery [60] (Figure 2-2).  

2.6. Preventive Strategies 

To address OM, a prophylactic strategy would be an ideal treatment method, but 

in reality such prevention is hardly possible [17, 62]. Prophylactic methods using non-

therapeutic methods such as oral cryotherapy (minimizing effect of OM due to 

chemotherapy), low-intensity lasers, midline radiation blocks, and three-dimensional 

radiation treatment (to reduce OM from radiation therapy) are often recommended in 

preventing OM[1, 7]. A more detailed description of various preventive strategies (non-

therapeutic methods) is provided in Table 2-2.  

Recently, the use of topical analgesics is often suggested as an alternative 

method. The majority of such analgesics function by inhibiting pro-inflammatory 

cytokine production. Such down-regulation results in pain reduction and brings forth an 

anti-inflammatory effect. A more detailed review on various topical analgesics is listed in 

Table 2-3.  

With recent greater understanding about pathophysiology of OM as described 

earlier, the use of biological response modifiers in prophylaxis has been widely 
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investigated. Such prevention was a result of modification in key factors controlling 

disease severity such as downregulation of cytokine production or upregulating 

epithelial proliferation and/or positively influencing angiogenesis process. A review of 

various biological response modifiers is listed in Table 2-4. While the use of these 

prophylactic methods reduced the impact of mucosal injuries, consensus has not been 

reached on protocols and easily adopted and tolerated delivery strategies are needed 

before they gain wide acceptance. 

2.7. Current treatment Strategies 

The majority of the current treatment methods focus on symptom management 

rather than providing regenerative therapy. Various topical treatment methods, [63] 

being adopted or under investigation involve formulation such as,  

1) Oral mouth rinses - e.g. MuGuardTM and Caphosol® [64]  

2) Bioadherent gels - e.g. Gelclair® [65]  

3) Oral sprays   

e.g.  recombinant human intestinal trefoil factor (rhITF) oral spray [66] and 

  recombinant human epidermal growth factor (rhEGF) sprays [67] 

4) Patches - e.g. flurbiprofen tooth patch[68] 

5) Tablets - e.g. Xylocaine buccal tablets  

Oral mouth rinses are quite common as a treatment strategy and are 

predominantly non-targeted in their mode of treatment. They function by providing a 

moistening effect, which enables rapid pain relief and prevents oral dryness 

(Xerostomia). Caphosol© (a supersaturated calcium phosphate solution) is an example 
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of one such oral mouth rinse, which prevents oral dryness through its lubricative effect 

and thereby offers a temporary palliative effect. Another commonly used oral mouth 

rinse is “magic mouth wash”, a combination of multifunctional ingredients such as 

antibiotic, antihistamine, antifungal, steroid, local anesthetic or antacid [69]. This 

multifunctional formulation was found to be ineffective in treating OM, likely a result of 

the lack of any targeting and drug localization capacity, and therefore had therapeutic 

value equivalent to a non-therapeutic saline mouth wash [17, 70, 71]. In treating OM, a 

few commonly desired therapeutic effects involve: anti-inflammatory, analgesic (e.g. 

benzydamine), topical anesthetic (e.g. lidocaine) and antimicrobial properties (e.g. 

chlorhexidine) [3, 59]. Studies evaluating efficacy of various oral mouth rinses with such 

ingredients either independently or in combination are quite prevalent. A more detailed 

list on various oral mouth rinses is provided in Table 2-5.  

Much of the exciting recent work on OM has focused on developing oral 

bioadhesive films and gels for localized drug delivery [72-74]. Bioadhesive topical films 

(e.g. hydroxypropyl-cellulose (HPC) based film (Zilactin)) function primarily through their 

protective barrier effects over oral ulcerations and thereby provide temporary pain 

relief [3]. Gelclair, a commonly used mucoadherent gel (polyvinylpyrrolidone, sodium 

hyaluronate formulation), functions by providing a lubricative moistening effect [17]. 

Although most of the mucoadhesive gels help in providing rapid pain relief, such effects 

are temporary. A detailed list of different mucoadhesive gels is provided on Table 2-6. 

Unfortunately, patients suffering from OM invariably develop a highly irregular mucosal 

surface from extensive ulcerous sores (occupying >50% of the oral cavity [3]) making 
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application of such bulky films and gels difficult, especially along the gumline. Hence, 

with such current ineffective treatment methods, there is still a clinical need for an 

improved treatment strategy for oral mucosal disease. 

2.8. Proposed Modular Treatment Strategy 

 To achieve an effective OM therapy, it is desired to develop a strategy which can  

1.) specifically target oral wound surfaces, 2.) prevent oral dryness by maintaining a 

lubricative surface, 3.) effectively provide long term controlled release of anti-

inflammatory and wound healing agents, 4.) resist bacterial invasion, 5.) minimize pain 

and inflammation, 6.) be durable to the chemical, mechanical environment and 7) 

promote regenerative therapy to enable shorter healing times. (see Figure 2-2) 

 In this work, it is hypothesized that a modular layer-by-layer (LBL) polymer film 

formed in situ can be designed to meet these goals. Through a series of oral mouth 

rinses utilizing biotin-streptavidin affinity linkages, a multilayered polymeric system can 

be developed as illustrated in Figure 2-3. The current proposed treatment strategy is 

expected to provide significantly better barrier function to overcome shortcomings seen 

from bulky bioadherent film/gel systems. The formulated multilayered barriers are 

expected to be unaffected under intra-oral environments and remain wear resistant by 

utilizing strong affinity-based linkages. Such multilayered polymeric systems (LBL), by 

offering a protective stable barrier effect, enhance the regenerative wound healing 

response among affected patients. Also, the potential ability of LBL systems to function 

as a drug carrier vehicle can be used for oral delivery applications.  
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The objective of this work is to evaluate the hypothesis that multilayered 

systems can provide a desired long lasting barrier effect with a potential ability to 

deliver drugs localized to oral mucosal wounds. Yet, in order to realize this, a LBL system 

must both be chemically and mechanically stable. In this work, LBL barriers are formed 

and evaluated for their in vitro stability in protease and salivary fluids. Further, to 

demonstrate their ability to decrease surface interaction, ex vivo adhesions studies are 

performed.  
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Table 2-1:  Evaluating severity of oral mucositis - various scoring methods with their employed method of assessment. 

 

Oral Mucositis 
scoring method 

 
Grades/ Scores/ Stages 

 
References 

 
 
 
 

WHO 
 
 

 
Grade 0 

 
Grade 1 

 
Grade 2 

 
Grade 3 

 
Grade 4 

 
 
 

[28, 75] 
 

None 
 

Soreness, 
erythema 

 
Erythema, 

ulcer 
can uptake 
solid foods 

 
Ulcer, can uptake only 

liquid diet 

 
Impaired/ inability to 

provide any oral 
nourishment 

 
 

NCI-CTC 
(for 

chemotherapy) 
 

 
 
 

None 

 
Erythema, 
painless 

ulcers, mild 
soreness, 
without 
lesions 

 
Painful 

erythema, 
ulcers but 

possess ability 
to eat or 
swallow 

 
Painful erythema, 

edema, ulcers, 
inability to eat 

thereby requires 
intravenous hydration 

 
Severe ulceration,  
require nutritional 

support or 
prophylactic 
intubation 

 
 
 

[28, 51] 

 
NCI- CTC 

(for 
radiotherapy) 

 

 
 

None 

 
 

Erythema 

 
Patchy 

pseudo-
membranous 

patches 
(diameter ≤ 

1.5 cm) 

 
Confluent pseudo- 

membranous patches 
(diameter >1.5 cm) 

Necrosis, deep 
ulceration, may 

include bleeding not 
induced by minor 

trauma or abrasion 
 

 
 

[28, 50, 76] 
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Table 2-1 (Continued) 

 
 

NCI- CTC 
(for bone 
marrow 

transplants) 
 

 
 
 

None 

Erythema, 
painless 

mild 
soreness, 
without 
lesions 

 
Painful 

erythema, 
edema, ulcers 
but with ability 

to swallow 

Painful erythema, 
edema,  ulcers 

preventing  
swallowing, and 

requires hydration or 
parenteral nutritional 

support 

Severe ulceration 
requires prophylactic 

intubation or 
resulting in 

documented 
aspiration 

pneumonia 

 
 
 

[28, 50, 76] 
 
 

 
Oral Mucositis 

Assessment 
Scale (OMAS) 

 

Scores= 0 to 3 
Visual analog scale = 0 to 100, where 100 = worse condition 

 
 

[51, 77] 
 

 
Score= 0  

No lesions 

 
Score= 1 
Lesions 
 < 1cm2 

 
Score= 2 

Lesions 1-3 cm2 

 
Score= 3 

Lesions >3 cm2 

 
 

N/A 

 
 
 

World 
Consortium for 
Cancer Nursing 

Research 
(WCCNR) 

 
 

Stages= 0 to 3  

Stage = 0 
Lesions= 0 

Normal 
pink, 

no edema, 
no 

infection 

Stage = 1 
Lesions = 

1 to 4 
Slight 

redness, 
mild edema, 
no infections 

but mild 
discomfort 

Stage = 2 
Lesions > 4 

(not coalescing) 
Moderate redness, 

edema, mild 
xerostomia, 

difficulty in eating 
expect liquid or 

bland foods 

Stage = 3 
Coalescing lesions, 
total denudation of 

oral cavity, 
increased redness, 
severe edema and 

pain, marked 
xerostomia, inability 

to eat or drink 

 
 

N/A 

 
 
 
 

[50, 78] 
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Table 2-2: Use of non-therapeutic method as a prophylactic strategy in OM. 

 

Strategy Generic 
name 

 

Trademark/ 
Brand name 

Functional 
properties 

Level of success Mode of action References 

 
O

ra
l c

ry
ot

he
ra

py
 

 
 
 

Cryotherapy 
 

-NA- 
 

Cheap, 
readily 

available 
method 

 

 
 
 
Oral cooling 
results in localized 
vasoconstriction. 

• Contributes to 
a decrease in 
incidence and 
severity of OM. 
 

• Causes 
discomfort in 
patients. 

Cooling effect 
results in a reduced 
blood flow, 
decreasing drug 
distribution in 
mucosal tissues 
thereby greatly 
reducing OM 
incidence. 

 
 

[79-81] 

 
La

se
r 

th
er

ap
y 

 
 

Low-
intensity 

laser therapy 

 
 
 

-NA- 

Laser therapy 
enables 
neovascularization 
and brings forth 
anti-inflammatory 
response. 
 

• Reduces the 
severity of oral 
mucositis. 
 

• Inhibits 
inflammatory 
response. 

• Cyclooxygenase-2 
(COX-2) inhibition. 

• Upregulates 
vascular 
endothelial growth 
factor (VEGF) 
affecting 
angiogenesis. 

 
 
 

[82, 83] 
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Table 2-3: Use of topical analgesics as a prophylactic strategy in OM. 

Strategy Generic name 
 

Trademark/ 
Brand name 

Functional 
properties 

Level of success Mode of action References 
To

pi
ca

l a
na

lg
es

ic
 

 
O

ra
l m

ou
th

 r
in

se
 

 
 
 
Benzydamine 
hydrochloride 

 
 
 

 
Tantum™ 

 

• Benzydamine 
hydrochloride is a 
non-steroidal 
drug. 

• Produces 
anti-
inflammatory and 
topical analgesic 
effects. 

• Shows 
prophylactic 
effect in 
radiotherapy 
(HNC, low doses). 
 

• But not effective 
in chemotherapy 
induced OM. 

• Inhibits 
inflammatory 
cytokines 
production. 
 
 

• Effects in anti-
inflammation. 

 
 
 

[81, 84, 85] 

Bu
cc

al
 ta

bl
et

s 
/ 

O
ra

l s
pr

ay
 

Lidocaine 
spray/tablets 
 
(Lidocaine 
hydrochloride, 
carbopol, 
sodium 
carboxymethyl 
cellulose, 
polyvinyl 
-pyrrolidone, 
mannitol was 
used in 
tablets) 

 
Altaseptic MM 

/ Xylocaine 
 
Administration 
•  oral spray 
• buccal 

tablets 
through 
muco-
adherence 
on inner lip 

• Licodaine acts as 
an analgesic 
similar to 
benzydamine in 
function. 

• Provies local 
anaesthetic 
effect. 

• Anionic polymers 
acts as a 
mucoadherent, 
also sustains drug 
release. 

 

• Licodaine is 
effective in pain-
relief, mostly 
when used in 
HSCT induced 
OM. 
 

• Overdose 
possess a risk  of 
CNS toxicity  (few 
were dizziness, 
delirium, muscle 
twitching etc). 

 
• Provides a 

localized 
delivery 
diffusing from 
the tablet. 
 

• Expected to 
provide pain 
relief with its 
analgesic 
effects. 

 
 
 
 
 
 

[86, 87] 
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Table 2-4: Use of various biology response modifiers as a prophylactic strategy in OM. 

 

 

Strategy Generic name Trademark/ 
Brand name 

Functional properties Level of success Mode of action References 
 

Bi
ol

og
ic

al
 r

es
po

ns
e 

m
od

ifi
er

 
 

   
 

 
 

 
TGF-β3 
 
(Transforming 
growth factor 
β3) 
 

 
Intraepithelial 
delivery 
 
(Drug with 
Chitosan gel 
(Carrier) 

 
• Chitosan functions a 

muco-adherent. 
 

• Gel carrier protects 
the therapeutic drug 
preventing rapid 
release. 

• Early 
administration 
improves wound 
healing. 

• Ineffective when 
administration 
was delayed (after 
3 or 5 days during 
cancer therapies). 

 
• TGF-β3 decreases oral 

epithelial proliferation. 
 

• Prevents tissue damage 
from toxic effect of 
cancer treatments. 

 
 
 
 

[60, 88, 89] 

 
KGF1 
(keratinocyte 
growth factor) 
 
Also known as 
fibroblast 
growth factor 
(FGF-7) 

Palifermin/ 
Kepivance™ 
systemic 
delivery 
Intravenous 
administration 
(first 
approved 
preventive 
agent) 

• KGF helps in wound 
healing by its ability 
to mediate 
reepthelialization. 

• Utilizes 
mesenchymal- 
epithelial 
interactions for 
tissue healing.  

• Reduces the need 
for opioid 
analgesics in HSCT. 

• Such effects were 
inconclusive 
among OM from 
chemo or 
radiation 
therapies. 

• Downregulates pro-
inflammatory cytokines.  

•  Stimulates 
detoxification enzymes.  

• Cytoprotective effect. 
• Possess regenerative 

effects enhances cellular 
migration, proliferation 
and differentiation. 

 
 

 
 

[60, 90-93] 

 
 
EGF 
(Epidermal 
growth factor) 

   -NA- 
EGF spray 
providing 
topical 
delivery to 
injured oral 
mucosa 

• Upregulates growth 
rate of epithelial cell 
and fibroblasts. 
 

•  Aids in cell renewal. 

rhEGF (human 
recombinant EGF) 
showed therapeutic 
effect on OM 
induced from 
chemo/ 
radiotherapy. 

• Possess cytoprotective 
effect. 

• Brings forth 
homeostasis. 

• Positively affects 
angiogenesis. 

 
 
 

[94-96] 
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Table 2-5: Use of various oral mouth rinses as a treatment strategy in OM. 

 

Strategy Generic name Brand 
name 

Functional properties Level of success Mode of action Reference 
 

O
ra

l m
ou

th
 r

in
se

 
Supersaturated 
calcium 
phosphate mouth 
rinse. 
(dibasic/ 
monobasic 
sodium 
phosphate, 
sodium/calcium 
chloride) 

 
 

Caphosol® 
artificial 

saliva 
 

• Inorganic phosphate 
plays a role in 
regenerating damaged 
mucosa. 

• Calcium ions provide 
anti-inflammation, 
vasodilatation and 
coagulating effects 
enabling tissue repair. 

• Significantly 
effective in BMT 
patients. 

• Effective against 
hyposalivation and 
xerostomia 

• Enables reduction in 
pain and disease 
duration) 

• Moistens and 
provides a 
lubricative effect 
on oral cavity. 

• Intended to 
restore pH and 
normal ionic 
balance in oral 
cavity. 

 
 
 

[64, 97-
100] 

(No standard 
formulation) 
Maalox®,  
milk of magnesia, 
kaopectate, 
antifungals, 
 topical steroids, 
topic anesthetics 
such as Benadryl® 
or licodaine 

 
 
 

Magic 
mouth 
wash 

• Combination of 
ingredients such as 
antibiotic, 
antihistamine, 
antifungal, steroid, 
local anesthetic or 
antacid. 

• Mixture of atleast 
above 3 mentioned 
ingredients. 

• Ineffective, effects 
were no different in 
comparison to 
ordinary saline 
washes. 

• Can result in 
drowsiness and 
numbness of oral 
cavity including 
tongue. 

By utilizing the 
individual 
therapeutic effects 
of formulation, it 
was expected to 
meet desired clinical 
need (pain relief and 
reduction in healing 
time). 

 
 
 
 

[4, 69, 93] 

 
 
Chlorhexidine 
gluconate 
mouthrinse 

 
 
 

Oradex® 

 
 
Chlorhexidine is a 
dicationic chlorophenyl 
biguanide, which 
possess excellent anti-
bacterial properties. 

 
 
 
Effective in plaque 
control. 
 

• Chlorhexidine 
functions as a 
bacteriostatic 
agent (inhibits) at 
low concentration. 

• Bactericidal (kills) 
at high 
concentrations. 

 
 
 

[101, 102] 
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Table 2-6: Use of Mucoadhesive gels as a treatment strategy in OM. 

 

Strategies Generic name Trademark/ 
Brand name 

Functional properties Level of success Mode of action References 

 
M

uc
oa

dh
es

iv
e 

ge
ls

 

Polyvinyl 
pyrrolidone 
(PVP), 
hyaluronic 
acid (HA), 
glycrrhetinic 
acid (GA) 

 
 

Gelclair® 

• PVP, HA are muco-
adherents which 
form protective 
films. 

• GA breaks down 
active component 
in flavoring agent. 

 
Short-term pain 
relief, temporary 
improvement in 
ability to eat or 
drink 

• Adheres to oral 
mucosa forming a 
protective barrier 
over ulcerous 
lesions. 
 

 
• Provides temporary 

pain relief through 
tissue hydration 
and from 
lubricative effect 
(Palliative therapy). 

 
 
 

[103-106] 

Acemannan 
hydrogel™ 
(polymeric 
acetylated 
mannans 
derived  from 
aloe vera 
extracts) 

 
 
 

RadiaCare™ 

Hydrogels derived 
from aloe vera 
possess growth 
substance which 
improves anti-
inflammatory and 
wound healing activity 

• Not conclusive 
(conflicting 
results). 

• Equivalent to 
Gelclair® in its 
mode of action. 

 
 

[103, 107-

111] 

 
 
 
Xylitol, 
hyaluronan 

 
 
 
 

Gengigel® 

• Hyaluronan (HA) is a 
key component in 
extracellular matrix. 

• HA helps in 
migration, 
proliferation and 
differentiation of 
keratinocytes. 

• Xylitol functions by 
slowing down 
bacterial growth. 

• Rapid pain relief, 
although effects 
are temporary. 

• Weak 
antibacterial 
effect. 

• Cannot be 
recommended 
for plague 
control. 

 
• Apart from barrier 

effects, hyaluronan 
in Gengigel® was 
expected to provide 
anti-inflammatory 
effect. 

• Enables re-
epithelization and 
tissue regeneration. 

 

 
 
 
 

[102, 112, 
113] 
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Figure 2-1: Different grades of oral mucositis as per NCI assessment scales.  

Adapted taken from feature article by Cawley, M.M. and L.M. Benson, Current trends in 

managing oral mucositis, Clin J Oncol Nurs, 2005. 9(5): p. 584-92. [17]).   

[(Photo courtesy: Mark Schubert, MSD), Reproduced with permission] 
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Figure 2-2: Scheme showing pathogenesis of oral mucositis, potential treatment 

strategies and treatment barriers associated with oral mucosal wounds. Treatment 

strategies (protective barriers, therapeutic drugs) and its effects on treatment barriers 

and OM pathogenesis were also shown. 
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Figure 2-3: Scheme showing overall proposed application of LBL self- assemblies in oral 

drug delivery. 
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CHAPTER 3. RESEARCH GOALS 

 

3.1. Objective/Hypothesis  

Multilayered affinity based polymeric systems can provide a durable protective 

barrier over injured oral mucosa, offering a regenerative treatment strategy through 

their resistive stability against the harsh intraoral environment.  

3.1.1. Specific aim #1: Synthesize and characterize biotin functionalized polymers. 

1. Synthesize biotinylated poly(acrylic acid) of different polymeric molecular 

weights and extents of biotin conjugation. 

2. Characterize product purity and degree of biotinylation using reverse-phase high 

performance liquid chromatography (RP-HPLC) and HABA (4’- 

hydroxyazobenzene-2-carboxylic acid) analysis [114]. 

3.1.2. Specific aim #2: Formulate LBL self-assemblies and evaluate in vitro chemical 

stability. 

1. Develop in vitro LBL assemblies from synthesized biotin functionalized polymers 

and assess extent of self-assembly growth for different polymer molecular 

properties.  

2. Evaluate LBL chemical stability and barrier properties through in vitro tests in 

physiologically relevant oral salivary and protease medium.  

3. Estimate key factors that contribute to LBL development and LBL chemical 

stability through exploratory statistical models and multivariate analysis. 
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3.1.3. Specific aim #3: Evaluate LBL mechanical stability through ex vivo adhesion 

studies. 

1) Perform adhesion tests to demonstrate LBLs physical barrier effect in preventing 

adhesion from surrounding tissues.  

2) Evaluate LBLs mechanical stability (durability) through repeat contact barrier 

tests to analyze their contact wear resistance. 
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CHAPTER 4. POLY(ACRYLIC ACID) BIOTINYLATION AND CHARACTERIZATION 

 

In biochemistry, the process of conjugating biotin to proteins or macromolecules 

is known as biotinylation. The biotinylated macromolecules in combination with protein 

avidin / streptavidin has potential for a wide variety of applications utilizing the strong 

non-covalent affinity between biotin-(strept)avidin linkages. Biotin-streptavidin 

complexes form due to the combined effect of several hydrogen bonds and van der 

Waals interactions which lead to a high association coefficient (Ka) in the order 1015 M-1 

[115]. Such high affinity in biotin-streptavidin complexes is nearly 103-106 times greater 

than antibody-ligand interactions [116]. The use of such characteristic biotin-

streptavidin interactions in multilayered self-assembly enables a strong affinity and 

specificity which are unaltered by environmental pH variation and ionic concentration.  

Biotin-streptavidin interactions also possess a very high thermal stability [117]. Hence, 

to develop such stable affinity based multilayered polymeric barriers; biotin 

functionalization of polymer (biotinylation) represents an indispensable step. In this 

study, poly(acrylic acid) (PAA), a weak polyanion with known anti-bacterial effects and 

mucoadhesive properties is used in biotinylation synthesis [118, 119]. The adhesive 

components in oral pathology (e.g., fibronectin and laminin) contain many positively 

charged residues (e.g., arginine, lysine) [120, 121]. Hence, the addition of oppositely 

charged polyanion PAA (negative polymeric backbone), is expected to improve polymer 

binding capability due to electrostatic interactions.  
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4.1. Materials and methods 

4.1.1. Materials 

Poly(acrylic acid sodium salt) (MW 10,000 and 50,000 Da) and PAA (MW 90,000 

Da) were purchased from Polysciences, Inc. (Warrington, PA) and were lyophilized prior 

to use. During lyophilization, PAAs in aqueous solution were frozen by mechanical 

refrigeration and freeze dried to sublimate water. Polymer PAA was collected as dry 

powdered mass. All other chemicals were used as purchased without any further 

purification unless stated. Pentylamine-biotin and avidin were purchased from Thermo 

Scientific (Rockford, IL). N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride 

(EDC.HCl), 2-(N-morpholino)ethanesulfonic acid (MES) and 2-(4-hydroxyphenylazo)- 

benzoic acid (HABA) were purchased from Sigma Aldrich (St.Louis, MO). N-

hydroxysuccinimide (NHS) was purchased from Acros Organics (NJ). 

4.1.2. Polymer biotinylation synthesis  

PAA biotinylation was carried out with minor modifications to a previously 

published procedure [122]. In polymeric biotinylation by EDC-NHS coupling chemistry, 

the molar ratio of PAA: EDC: NHS (1:10:20) was fixed. The extent of biotin conjugation 

on PAA was altered based on molar ratio of pentylamine-biotin to carboxylic acid repeat 

unit in PAA. To obtain a low extent of biotin conjugation [Biotin+], a molar ratio of 

pentylamine-biotin to PAA of 1:5 was used, whereas for a high extent of conjugation 

[Biotin++] the molar ratio used was 1:2.5. All of the materials were weighed out to meet 

the desired molar ratios. PAA, EDC and NHS were dissolved in 50 mM MES buffer and 

transferred into a sealed flask at room temperature with a regulated pH of 5.0-6.0. To 
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the reaction mixture, pentylamine-biotin was added immediately and the pH was 

adjusted by either acid (HCl) or base addition (NaOH) to 7.0-8.0, in order to enhance the 

reaction of carboxylic acid with amine to form a stable amide bond. The reaction was 

carried out for a period of 24 hrs.  

4.1.3. Purification and characterization 

The biotinylation reaction mixture was filtered to remove any precipitate 

suspensions (N-acylurea) formed during reaction. Further purification was carried out 

using ultrafiltration (Millipore, USA), allowing for the removal of excess unreacted 

pentylamine-biotin, EDC and NHS from the synthesized biotinylated PAA (Biotin-PAA) 

product. RP-HPLC (Shimadzu Prominence) was carried out on ultrafiltered biotinylation 

reaction samples. An isocratic mode with a mobile phase of acetonitrile (organic phase) 

and water with 1% trifluoroacetic acid (aqueous phase) in (15:85) % volume ratio was 

used in RP-HPLC analysis. All purified reaction samples were subjected to HABA-avidin 

assay. HABA stock solution and HABA-avidin working solution was prepared as outlined 

by Shuvaev et al.[114]. To the HABA-avidin working solution (red/orange colored), 

purified reaction samples from polymer biotinylation synthesis was added. This addition 

resulted in color change (pale orange/ yellow) which was measured from the decrease 

in the absorbance at 500 nm using a UV-Vis spectrophotometer (Cary WinUV). By 

comparing calibration made from known free biotin addition to HABA-avidin working 

solution, the actual estimate of extent of biotinylation in different synthesized 

biotinylated PAA molecules was determined. 
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4.2. Results and discussion 

4.2.1. Polymer biotinylation 

PAA was functionalized with biotin through carbodiimide chemistry [123-126]. 

With an aim of developing LBL polymeric self-assemblies, biotin moieties were 

incorporated into polymeric PAA chain. For biotin functionalization the most commonly 

used reagents are N-hydroxysuccinimide (NHS) esters or N-hydroxysulfosuccinimide 

(Sulfo-NHS) esters for carboxylic acid reaction with primary amines. 1-ethyl-3-[3-

dimethylaminopropyl]carbodiimide hydrochloride (EDC.HCl) is commonly used as a  

zero-length aqueous phase cross linker in combination with NHS / Sulfo-NHS esters to 

form a stable amide bond in biotinylated product. The proposed reaction scheme is 

shown in Figure 4-1. During the biotinylation reaction, an O-acylisourea based 

intermediate is expected to be formed by EDC activation on carboxylic acid (PAA). In the 

absence of amino groups (pentylamine-biotin), this intermediate hydrolyzes to form 

precipitate by-product N-acylurea [127, 128]. These intermediate were filtered off and 

other excess components were removed from biotinylated product by ultrafiltration.  

The presence of free unreacted pentylamine-biotin in reaction sample would 

compete with biotinylated polymer product and thereby limits the use of 2-(4-

hydroxyphenylazo) benzoic acid (HABA) analysis in determining the extent of PAA 

biotinylation. Hence reaction sample purification was carried out for an extended 

duration until free pentylamine-biotin was completely removed (below negligible 

limits). To detect the degree of the free pentylamine-biotin during and after reaction 

sample purification, a reverse phase high performance liquid chromatography (RP-HPLC) 
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analysis was carried out. From RP-HPLC analysis on all purified samples, complete 

removal of free pentylamine-biotin (peak disappearance) was ensured; thereby its 

product purity (> 99%) (see Figure 4-2). All post-purified reaction samples were 

subjected to HABA analysis by addition to HABA-avidin complex. This addition replaces 

the weakly bound HABA molecules (kd= 10-6 M) from HABA-avidin complex by a higher 

affinity biotin molecules from biotinylated PAA (kd= 10-15 M) [129, 130], described in 

scheme Figure 4-3. The release of free HABA results in a color change which was 

quantified for synthesized reaction samples by the decrease in its absorbance at 500 nm 

(see Figure 4-4). The extent of biotin conjugation to PAA chains was determined for 

synthesized biotinylated PAAs of different polymer molecular weight (Figure 4-5). As 

expected, biotinylated PAAs within same polymer MW (10,000/50,000/90,000) which 

were synthesized from higher pentylamine-biotin to PAA molar ratio ([Biotin++]= 1:2.5) 

contained an increased number of biotin molecules incorporated in polymer chain as 

opposed to products prepared with a lower molar ratio ([Biotin+]= 1:5). Among 

conjugated polymers, “[Biotin++]/PAA 90” possess the highest number of biotin 

molecules per PAA chain (7.14 biotin molecules), whereas “[Biotin+]/PAA 50” and 

“[Biotin+]/PAA 10” contained the least number of biotin molecules per PAA chain (1.2 

biotin molecules). 
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Figure 4-1: Synthesis scheme for poly(acrylic acid) biotinylation. Plot shows EDC-NHS 

coupling chemistry by reaction of carboxylic acid from PAA and amine group from 

pentylamine-biotin to form a stable amide bond in product biotinylated PAA (Biotin-

PAA). 
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Figure 4-2: Reverse phase HPLC for detecting removal of unreacted biotin from reaction 

sample. Plot shows free pentylamine-biotin peak (reference peak) and disappearance of 

unreacted pentylamine-biotin on purification of biotinylation reaction samples 

(polymer-biotin concentration ~0.12 mM).  
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Figure 4-3: Scheme showing mechanism of HABA-avidin analysis which was used to 

determine extent of biotinylation on ultrapurified reaction samples.  
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Figure 4-4: UV-visible spectra of HABA-based assays for biotin. Extent of biotinylation is 

determined through free HABA release where color change was detected by a decrease 

in absorbance at 500 nm. 
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Figure 4-5: HABA analysis results showing extent of polymer biotinylation.  
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CHAPTER 5. CHEMICAL STABILITY TESTS ON LAYER-BY-LAYER SELF-ASSEMBLIES 

 

 The oral cavity is a complex environment containing bacteria, surfactants, 

carbohydrate molecules (e.g. sialic acid) and wide variety of proteins or enzymes (e.g. 

salivary peroxidase, lysozyme, α-amylase, carbonic anhydrase, fibronectin, secretory 

Immunoglobulin A (sIgA), matrix metalloproteinases, kallikrein and lactoferrin) [131]. It 

is possible that the effect of such diverse components could destabilize the LBL 

assemblies yielding to proteolytic or salivary surfactant effects. Hence in evaluating such 

possibility of premature barrier failure, an in vitro chemical stability study is performed 

on LBL systems. 

  A bacterial protease enzyme “pronase” isolated from Streptomyces griseus is 

used for studying LBL proteolytic stability. Pronase compositions typically contain 

different exopeptidases and endopeptidases, which explains its non-specific proteolytic 

activity[132]. An example of one such endopeptidase enzyme is serine protease, which 

can hydrolytically break down peptide bonds on the carboxyl part of aspartic or glutamic 

acid yielding non-specific protease behavior[133]. To evaluate the effects of oral saliva 

on LBL assemblies, an unstimulated whole saliva (UWS) is used. Although salivary 

medium possesses various components such as water, sugar, carbohydrates, inorganic 

molecules, proteins and lipids, the effects of its rheological properties are mainly 

derived from its salivary mucins. Mucins are glycoproteins which can influence salivary 

viscosity and its spinnability (spinnbarkeit). UWS contains higher mucin level as opposed 

stimulated whole saliva (generated during chewing) [134]. Hence, LBL barriers were 



 

40 
 

studied under UWS to evaluate their possible de-assembling tendency in surfactant like 

properties of UWS.  

5.1. Materials and methods  

5.1.1. Developing affinity based Layer by Layer (LBL) assemblies 

Radiolabeling protein streptavidin: Protein streptavidin was radiolabeled (125I-

Streptavidin) and was used in studying LBL self-assembly development using a 

radiotracing method. Iodogen® iodination reagent (1,3,4,6-tetrachloro-3α-6α-

diphenylglycouril) (Thermo Scientific, Rockfort, IL) was dissolved in an organic solvent 

chloroform and was added to a glass tube (2 mg/ml, 200 μl). The volatile chloroform 

solvent was evaporated off from iodogen® reagent using dry nitrogen gas to form a thin 

film covering the glass tube. Cold streptavidin (100 μl of 1mg/ml solution) was 

introduced into the iodogen coated test tube, to which radioactive iodine (125I) was 

added (~30 μCi) and incubated for at least 5 minutes to enable iodination of tyrosyl 

groups of streptavidin [135]. The free iodine was removed from radiolabeled 

streptavidin by spinning down in gel filtration columns (Biospin® 6 Tris columns).  

Free iodine determination: The extent of free iodine content in the spin down product 

(radiolabeled streptavidin) was estimated by the trichloroacetic acid (TCA) precipitation 

method. TCA (20% (w/v), 1 ml) was added to protein mixture containing radiolabeled 

streptavidin (2 μl of 1 mg/ml radiolabeled protein stock) and bovine serum albumin 

(BSA) (1ml of 5% (w/v)). The TCA addition readily precipitates the protein mixture 

(incubated for atleast 10 minutes) where the BSA presence aids in forming an 

appreciable protein precipitate mass to separate radiolabeled proteins from free iodine 
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by centrifugation. Pellets collected after centrifugation contained the precipitate from 

radiolabeled streptavidin and cold BSA, whereas the supernatant solution was rich in 

free iodine. By measuring radioactive gamma counts on supernatants and precipitates 

separately, the extent of free iodine present was determined. All batches of 

radiolabeled streptavidin used in the studies had minimal free iodine content (< 10%).  

5.1.1.1. Base layer adsorption studies 

To establish an initial base layer by which LBL can be formed, streptavidin 

adsorption to radioimmunoassay (RIA) plates was performed.  100 µl of 125I-streptavidin 

(1- 1000 nM) was added to the plates and was incubated for 1 minute, and then washed 

at least 3 times with phosphate buffered saline (PBS). The amount of protein adsorbed 

was measured using a gamma counter (Perkin Elmer).    

5.1.1.2. In vitro LBL  

In vitro LBL studies were carried out on RIA plates.  Base streptavidin (Layer 1) 

was formed on the RIA microplates on the basis of the base layer adsorption study data. 

The vacant adsorption sites in the base layer were blocked using 5 wt% bovine serum 

albumin (BSA) by providing an incubation time of at least 2 minutes. The unbound BSA 

was removed by a series of PBS washes (at least 3 rinses). To the base streptavidin layer, 

an alternating rinse of biotinylated PAA (2 minute incubation, 100 μl) and streptavidin 

rinse (1 minute incubation, 100 μl) were provided. The molar ratio of biotinylated 

polymer to streptavidin ratio was kept atleast 4 fold in excess to ensure all streptavidin 

binding sites were occupied during LBL formation. The excess biotinylated polymer or 
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streptavidin was removed by intermittent PBS rinses (atleast 3 times, 200 μl). To study 

the LBL development, self-assemblies with different numbers of streptavidin layer in the 

LBL system (NoL = 1, 3, 5, and 7) were characterized for various synthesized biotinylated 

PAA materials. 

5.1.2. Chemical stability tests on in vitro LBL assemblies  

Chemical stability tests were carried out on the developed in vitro LBL systems. 

Either unstimulated whole saliva (UWS) or protease enzyme pronase were used to study 

LBL chemical stability. UWS was collected by the spitting method, with a harvesting lag 

time of at least 2 hours from meal intake. Other variable salivary factors were kept 

minimal by abstinence from smoking or drinking [136]. For proteolytic stability test, 

pronase medium (0.01 % w/v) was used. Developed in vitro LBL systems were incubated 

in oral salivary medium or in pronase medium for different times. Streptavidin mass 

remaining in the LBL system after various incubation times was measured using gamma 

counter.   

5.1.3. Statistical analysis 

Principal component regression (PCR) was performed using statistical software 

(The Unscrambler® V9.7 and V10.1, Camo Software Inc) on the results of in vitro LBL 

development and LBL chemical stability tests. The response variable, fractional increase 

in radiolabeled streptavidin mass from the base layer “ML/M1” derived from in vitro LBL 

tests was used in studying effects of LBL factors (MW, conjugation and NoL).  
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Similarly response variables (t1/2 and mass loss at t1/2) derived from LBL chemical 

stability analysis was used in studying effects of LBL factors (MW, conjugation and NoL). 

Here, t1/2 is the time required for the LBL assemblies to degrade into halve their 

maximum possible degradation (1/2*M∞). In PCR analysis, test of significance was 

performed on regression coefficient ‘B’ (principal component slope), using uncertainty 

tests.  

Also, main effects of the factors affecting LBL chemical stability were studied 

using various 3-way ANOVA models (Generalized Linear model (GLM) and 3-way nested 

ANOVA) [137]. In analyzing in vitro LBL development a GLM model was used. Further 

post-hoc analysis (multiple comparison methods) was performed using Bonferroni, 

Sidak and Dunnett methods in the GLM model [138]. ANOVA plots containing main 

effects and interactions plots were obtained for all response variables obtained from in 

vitro LBL development and for LBL chemical stability studies. All 3-way ANOVA models 

and post-hoc analysis were performed using statistical software (Minitab 16) [139]. For 

all multivariate analysis (PCR), ANOVA tests and hypothesis testing performed, the 

effects were considered significant only if P<0.05.  

5.1.4. LBL degradation mechanism  

To investigate the degradation mechanism, LBL systems with the same number 

of self-assembly layers (NoL=5) were developed, using a modified in vitro LBL procedure. 

For base layer degradation (Layer 1), the initial protein layer was applied using 125I-

streptavidin with all subsequent layers using cold (non-radioactive) streptavidin. A 
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similar procedure was adopted for studying degradation from the middle layer (Layer 3) 

and outermost layer (Layer 5) by radiolabeling the specific individual protein layer. 

Protein mass remaining in individual layers was measured for various salivary (UWS) 

incubation times using a gamma counter.  

5.2. Results and Discussion 

5.2.1. Developing Layer-by-Layer self-assemblies 

5.2.1.1. In vitro LBL assembly formation 

For developing multilayered polymeric barriers, high affinity biotin-streptavidin 

chemistry was used. PAA of different molecular weights (MW 10,000; 50,000; or 90,000 

Da) with varying extent of biotin conjugation (Biotin+, Biotin++) were used for LBL 

formation. A complete set of polymers used is listed in Figure 4-5. 

In developing in vitro LBL assemblies on radioimmunoassay (RIA) plates an initial 

base layer (Layer-1) of streptavidin was formed (see Figure 5-1). With higher 

concentration of streptavidin addition during initial base layer formation studies, there 

is a formation of a “high-density layer”, this is likely from a change in protein 

conformation from side on position to end-on position. Such protein conformational 

change on the surface could likely induce protein uncoiling or unfolding effects causing 

denaturation or change in streptavidin active sites (binding pockets) for biotin 

binding[140]. Hence, for in vitro LBL studies, protein coverage in the base layer was fixed 

below monolayer saturation (189 nM), ensuring developed assemblies were from a 

single base layer adsorbed to hydrophobic interface [141]. During LBL assembly, 
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unoccupied sites in base layer were blocked using bovine serum albumin (BSA), 

minimizing non-specific adsorption effects [142-144]. LBL systems with desired number 

of streptavidin layers were developed over this protein base layer according to the 

scheme shown in Figure 5-2. 

The extent of LBL development was analyzed from the fractional increase in 

radiolabeled streptavidin mass from the base layer, “ML /M1”.  The results show that 

significantly more material was deposited during LBL assembly growth using high MW 

biotinylated polymers (Biotin-5.55/PAA 90, Biotin-7.14/PAA 90) (see Figure 5-3). The 7-

layered assemblies prepared using biotinylated polymers (Biotin-PAA 90) possessed 

nearly 2.6 fold (161-197 %) higher streptavidin mass than the unconjugated polymer 

(Biotin-0/PAA90) assemblies, indicating the successful formation of a multilayered 

assembly as a result of the affinity linkages. Interestingly, the high MW unconjugated 

polymer (Biotin-0/PAA 90) could form an additional protein layer with its weak charge 

based interactions, yet were unable to form multilayer structures. Low MW polymers 

(PAA 10), irrespective of their extent of biotinylation, were unable to form LBL 

assemblies (Figure 5-5). This poor self-assembly formation was  due to the polymer’s 

tendency to destabilize the adsorbed protein base layer, most likely due to PAA’s 

surfactant like effects [145] (Figure 5-5). LBLs developed using mid-range MW (50,000 

Da) biotinylated polymers (Biotin-1.23/PAA 50, Biotin-2.75/PAA 50) possessed moderate 

LBL assembly formation tendency, as expected (Figure 5-4). Self-assembled layers of 

Biotin-PAA 50 materials were not as substantial as those formed with high MW 



 

46 
 

polymers (PAA 90), but were better than low MW polymers (PAA 10). This study of 

molecular weight shows that higher MW enhances the formation of LBL assemblies.  

Traditional LBLs formed from polyelectrolyte multilayers (PEM) exhibit 

exponential (non-linear) layer growth whether the layers are formed using only 

polypeptides or with biological components [146-148].  Hence, it was hypothesized that 

the weak non-linear increase in biotin content found in unconjugated high MW 

polymers (Biotin-0/PAA 90) was likely a result of weak polyanion (PAA) interactions with 

the protein (streptavidin). PEMs of highly charged polymers typically result in linear 

growth[146];  it is likely that the nearly linear assembly trend found in LBLs of high MW 

polyanion PAA (Biotin-5.55/PAA 90 and Biotin-7.14/PAA 90) is due to the significant 

contributions from stable affinity based biotin-streptavidin linkages. 

5.2.1.2. Multivariate analysis on in vitro LBL assemblies 

Principal component regression (PCR) on in vitro LBL was performed to analyze 

its possible multifactorial dependence and thereby ascertain significant LBL factors that 

contribute to self-assembled layer growth. The possible LBL factors that influence 

response variable (ML/M1) were polymer MW, extent of biotin conjugation and number 

of layers (NoL). The results of PCR analysis demonstrated significant main effects from 

all LBL factors with its interactions (see Table 5-1). The significant main effect 

substantiates that all LBL factors contribute to self-assembly growth by affecting 

response variable. From interactions, a significant resultant positive influence caused by 

interdependence of various LBL factors in affecting assembly growth was observed. The 
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contribution of interactions was shown through various significant 2-way interactions 

(MW*Conj, Conj*NoL and MW*NoL) and squared interactions (Conj*Conj and 

MW*MW). This demonstrates the effect of LBL assembly growth was a result of 

contribution from all LBL factors with its combined main effects and a synergistic role of 

factor interactions. The results of PCR analysis was compared with analysis from 

generalized linear model (3-way ANOVA) for its main effects. The main effects were 

found to be consistent in both the analysis thereby verifies the significant main effect 

contributions from various LBL factors, shown in Table 5-2.  

ANOVA plots studying main effect trends in LBL factors showed better assembly 

formation from increasing polymeric MW (Figure 5-6). The main effects showing higher 

protein mass in assemblies with increasing layers (NoL) reinstates the assembly growth 

observed from earlier experimental results. The effect of conjugation in distinguishing 

from unconjugated materials (Biotin-0) was evident at relatively higher biotin 

conjugations (Biotin- 5.55/7.14). LBL factor interactions, which were found significant 

through earlier conducted multivariate analysis (PCR model), were analyzed for their 

trends using two way interactions plot in ANOVA (Figure 5-7). A more substantial 

interaction was evident in systems of LBLs containing higher polymeric MW, better 

conjugation and with increased assembly layers. Thus, greater interdependence 

between various LBL factors contributed to enhanced assembly growth.   
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5.2.2. LBL chemical stability 

LBL systems developed for various synthesized Biotin-PAA materials (of different 

MW/conjugation/NoL) were subjected to in vitro chemical stability tests. With an aim of 

studying intra oral chemical effects, LBL assemblies were subjected to stability under 

bacterial protease and unstimulated whole saliva (UWS). The effect of bacterial 

protease (pronase) is likely to offer more significant impact on LBL destabilization with 

its strong proteolytic effects. Such proteases, however, may exhibit minimal surfactant 

like effects. In contrast, UWS is likely to possess weak proteolytic effect although its 

surfactant like properties could dominate de-assembling of LBL barriers.  

5.2.2.1. LBL protease stability  

In LBL stability under proteolytic pronase, the unconjugated polymers (Biotin-

0/PAA 90, Biotin-0/PAA 10) were readily degraded, resulting in poor chemical stability 

(Figure 5-8 and 5-11). The stability of Biotin-0/PAA 90 material was found to be 

indistinguishable from the streptavidin base layer (Layer 1) further demonstrating the 

weak association offered by unconjugated polymers (see Appendix figure A.4.1.). In 

biotin conjugated polymers (Biotin-5.55/PAA 90 and Biotin-7.14/PAA 90), aided by their 

affinity-based linkages, improved LBL stability was noticed (Figure 5-8).  In studying layer 

effects, LBLs (Biotin-5.55/PAA 90, Biotin-7.14/PAA 90) with increased number of layers 

(NoL) yielded better assembly stability (Figure 5-9). This improved stability from higher 

number of assembled layers was a result of better barrier effects from its multilayered 

polymeric structures. In LBLs of high MW polymer (PAA 90) distinctively better barrier 

stability was observed as when compared to lower MW polymer (PAA 10), thereby 
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emphasizing the important role played by polymer MW in affecting LBL stability (Figure 

5-10). Stability of low MW polymers (Biotin-1.21/PAA 10, Biotin-4.91/PAA 10) was 

comparable to the streptavidin base layer (Layer 1). This weak barrier stability from PAA 

10 materials is likely a result of their shorter polymeric chains which contributed to poor 

LBL formation and enhanced surfactant like effects, resulting in an enhanced 

streptavidin detachment from LBL assemblies (Figure 5-11). Also, protease stability 

studies in LBLs of midrange MW (50,000 Da) were performed, and stability results of LBL 

factor effects are listed in Appendix section A-5 and A-6. 

5.2.2.2. Multivariate analysis on LBL protease stability 

Multivariate analysis (PCR) was performed on protease stability response using 

“mass loss at t1/2” as an indicator of extent of LBL degradation. It was observed that all 

LBL factors (MW, conjugation and NoL) showed significant contributing effects on 

degradation rate. Interestingly, with absence of any factor interactions all the effects 

resulted from direct influence of each factor on extent of LBL degradation, emphasizing 

an additive/non-synergistic dependence on stability (see Table 5-3). In studying factors 

controlling rate of LBL degradation (t1/2), an important role played by polymer MW and 

number of assembly layers (NoL) was observed with their significant main effect 

contributions. The role of conjugation and effects of factors interdependence 

(Interactions) were found insignificant to affect LBL degradation rate, thereby 

demonstrates its weak influence.  
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5.2.2.3. LBL salivary stability 

Unstimulated whole saliva (UWS) with little to no protease was not expected to 

significantly degrade streptavidin layers from assemblies. Indeed, detached protein (19-

30%) observed in LBLs of PAA 90 materials were likely from surfactant effects of saliva.   

In LBLs under UWS, biotin conjugation did not seem to be a strong effecter on 

barrier stability (Figure 5-12). However, layer effects were significant where by 

increasing LBL layers the protein loss from assemblies was suppressed (Figure 5-13). 

This layer effect was important as with increased network density from increased 

layered assemblies is expected to form resilient barrier against surfactant qualities of 

saliva. Polymer molecular weight effects in UWS were similar to protease studies where 

higher molecular polymers resulted in better stability substantiating the role of polymer 

MW in LBL stability (Figure 5-14). Interestingly, PAA 10 materials resulted in enhanced 

protein loss from assemblies as observed in protease studies, reasserting earlier 

described inherent surfactant effects of low MW PAA (Figure 5-15).  

5.2.2.4. Multivariate analysis on LBL salivary stability 

Principal component regression (PCR) on salivary stability studying important 

factor effects of LBL responses (mass loss at  t1/2 and  t1/2) demonstrated significant 

contributions from main effects of polymeric MW and number of assembly layers (NoL) 

(Table 5-4). Unsurprisingly, the main effects of conjugation were found to be 

insignificant for all LBL response variables. This substantiates the earlier observed weak 
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conjugation effects. With absence of interactions for all LBL factors, the absence of 

factor interdependence was reinstated as was suggested for LBL protease stability.  

5.2.3. Statistical analysis on LBL chemical stability 

The significance of LBL factors (main effects) with chemical stability response 

variables were determined using 3-way ANOVA models (see Figure 5-16) and compared 

with earlier conducted PCR analysis. With absence of factor interactions as determined 

in PCR analysis, the effects of LBL factors on stability response were captured by the 

factor main effects. The results of PCR analysis were in agreement with the analysis 

carried out using 3-way ANOVA model (3-way nested ANOVA) thereby confirming the 

significant effect of MW and NoL on LBL chemical barrier stability, shown in Table 5-5. 

From post-hoc analysis (Bonferroni, Sidak and Dunnet methods) conducted on LBL 

factors in generalized linear model (GLM), LBL assemblies from biotinylated PAA’s of 

higher MW (90,000 Da) and high NoL (7), consistently resulted in a stable chemical 

barriers (see Table 5-6).  

5.2.4. LBL degradation mechanism  

LBL degradation mechanism under oral chemical effects can occur by either top-

to-down delamination or fissure mode or base layer delamination (see Figure 5-17). In 

top-to-down delamination mechanism, the outer layer of LBLs will be more prone to 

chemical effect, followed by gradual delamination from outer to inner layers. In this 

mode, innermost layers are expected to be least susceptible. Under fissure mode, the 

kinetic rate loss from inner, middle or outer layers in LBLs should be indistinguishable 



 

52 
 

(uniform) resulting in a porous LBL network on chemical degradation. Other possible 

degradation mode involves base layer delamination, which through its susceptible inner 

layer under oral chemical effects can destabilize the LBL assemblies resulting in a 

sudden rapid loss.  

In determining the mechanism through which LBL degradation occurs, 5-Layered 

assemblies was developed using high MW polymers (PAA 90). LBLs with individual 

radiolabeled streptavidin layers (innermost or middle or outermost), scheme shown in 

Figure 5-18, were subjected to salivary degradation. 

Each individual layer in LBLs of biotinylated polymer (Biotin-7.1/PAA 90) 

performed better than its respective layer from unconjugated polymer (Biotin-0/PAA -

90) (Figure 5-19). This notable increase in stability reinforces the role of multi-layered 

structures in providing chemical barrier effects as described earlier. The rapid innermost 

layer loss from unconjugated materials verifies their inability to develop LBL assemblies.  

The assemblies of biotinylated polymers followed a top to bottom progression 

mechanism in chemical degradation suggesting a surface erosion mechanism and an 

operative polymeric barrier effects from multilayered structures. In LBL systems of 

biotinylated PAA material (Biotin- 7.1/PAA 90), the outermost layer (Layer 5) was found 

to be most susceptible to proteolytic degradation. A higher protein loss from outer layer 

was due to the direct salivary effects in absence of any capping polymeric layer to 

provide barrier effect. The innermost layer (Layer 1/Base layer) with its overlaid 

polymeric layers provides an effective barrier effect indicated by its reduced protein loss 
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from assemblies (Figure 5-19).  As expected, the middle layer (Layer 3) possessed better 

stability when compared to outer layer, but resulted in more protein loss in comparison 

to innermost layers.  This barrier tendency exhibited by slow degradation effects of 

middle and innermost layer was absent in unconjugated materials (Biotin– 0/PAA 90).  
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Table 5-1: Table shows summarized results of PCR analysis on in vitro LBL assembly 

development, where interactions (2-way and squared interactions) were found to be 

significant. All LBL factors like MW, conjugation and NoL showed significant main effects 

for response variable (ML/M1). Table contains ‘P’ values obtained from test of 

significance on regression coefficient (B) where“” represents statistically significant 

factors. Specific factors were considered significant only if P < 0.05. (see Appendix 

Figure A-2, for output results obtained during analysis) 

 

p-values 
for Beta 

Coefficient 

 
LBL factor effects 

Response 
variable 

(LBL 
growth) 

Main effects 2-way Interactions Squared Interactions 

 
M
W 

 
Conj 

 
NoL 

 
MW* 
Conj 

 
MW* 
NoL 

 
Conj* 
NoL 

 
MW* 
MW 

 
Conj* 
Conj 

 
NoL* 
NoL 

 
ML/M1 

         

0 0 0 0 0.0001 0.0001 0.026 0.0001 0.0001 
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Table 5-2: Summarized results from 3-way ANOVA model (Generalized Linear Model) on 

main effects of in vitro LBL assembly development. Table contains ‘P’ values obtained 

from test of significance on regression coefficient (B) where“” represents statistically 

significant factors. Specific factors were considered significant only if P < 0.05. 

 

Response variable 
LBL factors – Main effects 

MW Conjugation NoL 

ML/M1 
   

0 0 0.001 
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Table 5-3: Summarized results of principal component regression (PCR) analysis on LBL 

protease stability response variables (mass loss at t1/2 and t1/2) to study effects of 

various LBL factors (MW, conjugation and NoL). Results were obtained by conducting 

test of significance (uncertainty tests) on regression coefficient (Slope “B”) derived from 

principal component analysis. From results, interactions were found to be insignificant 

whereas factors like MW, NoL showed significant main effects for LBL response 

variables. Also role of conjugation in affecting mass loss from assemblies were found 

significant. Table contains ‘P’ values obtained from test of significance on regression 

coefficient (B) where“” represents statistically significant factors. Specific factors were 

considered significant only if P < 0.05. (see Appendix figure A-7, for output results 

obtained during analysis). 

 

 

 

p-values 
for Beta 

Coefficients 

 
LBL factor effects 

Response 
variables 

(LBL 
protease 
stability) 

 
Main effects 

 
2-way Interactions 

Squared 
Interactions 

 
MW 

 
Conj 

 
NoL 

 
MW* 
Conj 

 
MW*
NoL 

 
Conj* 
NoL 

 
Conj* 
Conj 

 
NoL*
NoL 

 
Mass loss 

at t1/2 

        

0 0 0.0174 0.3063 1 1 0.9775 1 
 

t1/2 
        

0 0.5778 0.0546 0.8771 1 1 0.9997 1 
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Table 5-4: Summarized results of principal component regression (PCR) analysis on LBL 

salivary stability response variables (mass loss at t1/2 and t1/2) to study effects of various 

LBL factors (MW, conjugation and NoL). Results were obtained by conducting test of 

significance (uncertainty tests) on regression coefficient (Slope “B”) derived from 

principal component analysis. From results, interactions were found to be insignificant 

whereas factors like MW, NoL showed significant main effects for LBL response 

variables. Table contains ‘P’ values obtained from test of significance on regression 

coefficient (B) where“” represents statistically significant factors. Specific factors were 

considered significant only if P < 0.05. (see Appendix figure A-10, for output results 

obtained during analysis) 

 

 

p-values 
for Beta 

Coefficients 

 
LBL factor effects 

Response 
variables 

(LBL 
salivary 

stability) 
 

 
Main effects 

 
2-way Interactions 

Squared 
Interactions 

 
MW 

 
Conj 

 
NoL 

 
MW* 
Conj 

 
MW*
NoL 

 
Conj* 
NoL 

 
Conj* 
Conj 

 
NoL* 
NoL 

 
Mass loss 

at t1/2 

        

0 0.1392 0.0092 0.7611 1 1 0.9993 1 
 

t1/2 
        

0 0.4303 0.0083 0.8392 1 1 0.9996 1 
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Table 5-5: Summarized results from 3-way nested ANOVA model on LBL chemical 

stability. Specific factors were considered significant for P < 0.05. Design of nested 

ANOVA model was illustrated in Figure 5-16. 

 

Proteolytic medium Response variable 
LBL factors 

MW Conjugation NoL 

Pronase 

Mass loss % for t1/2 
   

0.122 0.001 0 

t1/2 
   

0.001 0.581 0.006 

Saliva 

Mass loss % for t1/2 
   

0.005 0.133 0.001 

t1/2 
   

0 0.949 0.011 
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Table 5-6: Summary of results from 3-way ANOVA models and from post-hoc analysis. Table shows specific significant factors 

contributing to LBL chemical stability. Specific factors were considered significant for P < 0.05. A 3-way ANOVA (Generalized 

linear model (GLM)) was performed and on performing post-hoc tests (using Bonferroni, Sidak and Dunnett), the following 

results were obtained. 
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Figure 5-1: Extent of base layer coverage - streptavidin adsorption on base layer. Plot 

shows protein adsorption for various incubated streptavidin concentration, 

characterizing extent of protein coverage on base layer (Layer 1) available for LBL 

assembly growth. 
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Figure 5-2: Scheme showing LBL assembly development using biotin-streptavidin affinity 

linkages by alternate additions of protein streptavidin and synthesized biotinylated PAA.   
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Figure 5-3: In vitro LBL assembly formation using high MW (90,000 Da) PAA of various 

extent of biotin conjugation.  

 

 



 

63 
 

 

 

 

 

 

 

 

Figure 5-4: In vitro LBL assembly formation using mid-range MW (50,000 Da) PAA of 

various extent of biotin conjugation.   
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Figure 5-5: In vitro LBL assembly formation using low MW (10,000 Da) PAA of various 

extent of biotin conjugation. 
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Figure 5-6: Main effects plot from ANOVA studying LBL factor effects on development of 

in vitro LBL assemblies.  
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Figure 5-7: Interactions plot from ANOVA studying LBL factor effects on development of 

in vitro LBL assemblies.  
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Figure 5-8: Effect of factor “extent of biotin conjugation” in LBL protease stability. Plot 

shows biotin conjugation effect by analyzing self-assemblies developed from polymer 

PAA of same MW (90,000 Da) with equal number of assembly layers (NoL=7) and 

through comparison with different extent of biotin conjugation. Similar analysis can be 

performed for same PAA 90 materials with different NoL in assemblies such as NoL=3 

(see Appendix figure A-3.1), NoL=5 (see Appendix figure A-3.2). Also conjugation 

effects on mid-range MW (50,000 Da) polymeric materials (see Appendix figure A-5.1, 

A-5.2, and A-5.3) and in low MW (10,000 Da) polymeric materials (results not shown) 

was analyzed.  



 

68 
 

 

 

  

 

Figure 5-9: Effect of factor “number of assembly layers (NoL)” in LBL protease stability. 

Plot shows layer effect in self-assemblies developed from high MW (90,000 Da) 

biotinylated PAA (Biotin-7.1 / PAA 90). Similar analysis was performed for the same PAA 

90 materials with different conjugations such as Biotin=0 (see Appendix figure A-4.1), 

Biotin=5.55 (see Appendix figure A-4.2). Also layer effects on midrange MW (50,000 Da) 

polymeric materials (see Appendix figure A-6.1, A-6.2 and A-6.3) and in low MW 

(10,000 Da) polymeric materials ((results not shown) was analyzed.  
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Figure 5-10: Effect of factor “polymer MW” in LBL protease stability. Plot shows MW 

effect by analyzing self-assemblies developed of equal number of assembly layers 

(NoL=7) and providing comparison with different MW (90,000/10,000 Da) PAA 

materials. Similar analysis can be performed with different number of LBL layers such as 

NoL=3 and NoL=5 (results not shown). 
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Figure 5-11: Streptavidin mass loss (%) at M∞ in LBL protease stability. Plot shows 

streptavidin mass loss (%) at M∞ obtained from protease stability plots of different LBL 

systems (MW / biotin conjugation / NoL). For similar analysis on midrange MW (50,000 

Da) polymeric materials see Appendix figure A-6.4. 
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Figure 5-12: Effect on factor “extent of biotin conjugation” in LBL salivary stability. Plot 

shows biotin conjugation effect by analyzing self-assemblies developed from polymer 

PAA of same MW (90,000 Da) with equal number of assembly layers (NoL=7) and 

providing comparison with different extent of biotin conjugation. Similar analysis can be 

performed for same PAA 90 materials with NoL=3 (see Appendix figure A-8.1), NoL=5 

(see Appendix figure A-8.2). Also conjugation effects on low MW (10,000 Da) polymeric 

materials was analyzed (results not shown). 
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Figure 5-13: Effect on factor “number of assembly layers (NoL)” in LBL salivary stability. 

Plot shows layer effect from LBL stability tests in self-assemblies developed from high 

MW (90,000 Da) biotinylated PAA (Biotin-7.1 / PAA 90).  Similar analysis was performed 

for the same PAA 90 materials with different conjugations such as Biotin=0 (see 

Appendix figure A-9.1), Biotin=5.55 (see Appendix figure A-9.2). Also layer effects on 

low MW (10,000 Da) polymeric materials was analyzed (results not shown). 
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Figure 5-14: Effect on factor “polymer MW” in LBL salivary stability. Plot shows MW 

effect by analyzing self-assemblies developed of equal number of assembly layers 

(NoL=7) and providing comparison with different MW (90,000/10,000 Da) PAA 

materials. Similar analysis can be performed with different number of LBL layers. 
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Figure 5-15: Streptavidin mass loss (%) at M∞ in LBL salivary stability. Plot shows 

streptavidin mass loss (%) at M∞ obtained from salivary stability plots of different LBL 

systems (MW / biotin conjugation / NoL). 
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Figure 5-16: Scheme showing design used in 3-way nested ANOVA analysis which 

contains group (MW= 90,000 and 10,000), with subgroups (Biotin conjugation) and 

(NoL). 
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         TOP-TO-DOWN DELAMINATION 

                                                                     
 
                          FISSURE MODE                  BASE LAYER DELAMINATION 

 

Figure 5-17: Possible LBL degradation mechanism under oral chemical effects.  
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Figure 5-18: Scheme shows developed 5-layered LBL systems, to study degradation mechanism from innermost, middle and 

outermost layers by radiolabeling respective layers in self-assemblies 1, 3 and 5.               
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Unconjugated polymer (Biotin- 0 / PAA 90)                                             Biotinylated polymer (Biotin- 7.1 / PAA 90) 

        

Figure 5-19: Results studying mechanism of in vitro LBL degradation. 5-layered assemblies were developed from high MW 

(90,000 Da) biotinylated PAA (Biotin-7.1 / PAA 90) and compared with unconjugated PAA (Biotin-0 / PAA 90) using mass loss 

(%) from individual radiolabeled layers.  
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CHAPTER 6. MECHANICAL STABILITY TESTS ON LAYER-BY-LAYER SELF-ASSEMBLIES 

 

As a result of mandibular motions and abrasion from food, the oral mucosa is 

continually exposed to wear conditions. In an oral environment, it is expected that shear 

and abrasion forces are the main factors that influence LBL barrier destabilization. 

Hence, in testing LBLs barrier durability and wear resistance against intraoral abrasions, 

repeat contact barrier fatigue test were performed on ex vivo LBLs. Such adhesion 

testing is expected to be representative of in vivo conditions and provide a measure of 

LBLs performance in an intraoral mechanical environment. In evaluating LBLs 

mechanical stability, porcine skin patches were chosen as a model tissue substrate due 

to their structurally similar collagen arrangement to a human dermis [149, 150].  

6.1. Materials and methods 

6.1.1. Ex vivo LBL 

Ex vivo LBL studies were developed on pig skin tissue. Porcine skin patches of 

dimension (5 mm x 5 mm) were used. Assembly development over tissue-protein base 

layer was carried out by alternating polymer/protein rinses, adopting the same 

procedure as described earlier for in vitro LBL studies. For ex vivo LBL studies, 

biotinylated PAA of MW 50,000 Da was used.  

6.1.2. Mechanical stability tests on ex vivo LBL assemblies  

Mechanical stability was studied on ex vivo LBL assemblies using a mechanical 

fatigue tester, Bose Electroforce (ELF 3300 test system) equipped with a 1 kg load cell. 

Porcine skin patches (16 mm diameter) were thawed to room temperature and rinsed 
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with PBS to avoid tissue dryness, emulating oral wounds. Tissues with dermal surfaces 

facing each other were mounted to loading platens using cyanoacrylate and fixed in 

place by applying a constant load.  

In the adhesion tests, a compressive load of 3 N (305.8 g) was applied with a 

ramp rate of 10 g/sec under load control and was stabilized at the load for 1 minute. 

Under displacement control, pull off was conducted at a rate of 0.1 mm/sec until full 

tissue separation occurs. Adhesion tests were performed on tissues before (tissue trend) 

and after LBL development (LBL trend). LBL assembly was developed on tissue fixed to 

the lower platen using the same procedure as described earlier in ex vivo LBL studies, 

using cold streptavidin (non-radioactive) for the studies. In LBL fatigue resistance tests, 

contact loadings of 20-25 cycles (load–pull offs) were provided after LBL growth. During 

wear tests, tissue dryness was avoided by constant wetting with PBS between the cycles 

thereby maintain similar tissue working conditions. By maintaining constant tissue 

wetting conditions, the variation caused by tissue dryness between loading cycles were 

minimized. Tissue trend was obtained prior to assembly development to ensure that 

variations in tissues on loadings were not significant. Contact loadings of a minimum of 

10 cycles were performed to determine this trend.  

6.2. Results and Discussion 

6.2.1. Ex vivo LBL 

In order to determine the ability to develop LBLs on tissue and to validate future 

ex vivo LBL tests, tissue assembly development using PAAs of MW 50,000 Da (PAA50) 
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was studied. Porcine skin patches of equal dimensions were used during studies, 

thereby maintaining a consistent surface area. Here, LBL assemblies were developed 

over tissue-protein base layer; utilizing the non-specific protein interactions with tissue 

surface receptor sites to form tissue-protein complex in base layer [151, 152]. From ex 

vivo LBL studies, biotinylated polymers (Biotin- 2.75 / PAA 50 and Biotin- 1.23 / PAA 90) 

showed a significantly better self-assembly ability with higher assembly layers (NoL= 4 & 

5) as when compared to unconjugated polymer (Biotin-0 / PAA 90) (Figure 6-1). In 5-

layered LBL assemblies (NoL=5) for biotinylated PAA materials (Biotin-1.23/PAA 50, 

Biotin-2.75/PAA 50), the streptavidin mass per tissue surface area was 3.18 mg/m2 and 

3.62 mg/m2, respectively, which was 31-49 % greater adsorbed protein mass compared 

to the unconjugated PAA material (Biotin-0/PAA 50). For unconjugated polymer (Biotin-

0/PAA 50) there was a relatively weak streptavidin mass increase suggesting a non-

specific binding during assembly growth verified through control comparison with 

extent of protein adsorption in tissue without any polymer addition during assembly 

growth. From ex vivo studies, the ability to form and thereby to distinguish tissue-LBL 

assemblies even with relatively low assembly layers (NoL=5) from conjugated polymers 

was deduced.  

6.2.2. LBL mechanical stability 

 In studying LBL durability and its wear resistance, adhesion tests were 

performed on developed ex vivo LBL assemblies, scheme shown in Figure 6-2. For 

developing ex vivo assemblies of better stability during mechanical tests, the key 

parameters as determined from earlier chemical stability studies and multivariate 
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analyses were utilized. The earlier results deduced LBLs of conjugated materials with 

increased NoL and higher MW contributed to better LBL stability. Hence during 

adhesion tests, ex vivo LBLs of relatively high polymeric MW (50,000 / 90,000 Da) and 

increased assembly layers (NoL=14) were developed for different extent of biotin 

conjugation.  

Adhesion tests were studied through rendered physical barrier effects of 

multilayered polymeric assemblies. This barrier effect from ex vivo LBL was measured 

through its extent of adhesive suppression in surrounding tissue (tissue mounted on 

upper platen). In analyzing LBL barrier durability, a repeat contact barrier fatigue model 

was used, where the developed ex vivo assemblies was subjected to repeated 

mechanical loading cycles (load-pull offs).  

During adhesion tests, for each load-pull off cycle, a work of separation (WoS) 

was found through area under the curve in load vs. displacement plots, shown in inset 

Figure 6-3. On providing repeated loading cycles on tissues prior to assembly 

development, a “tissue trend” was obtained which accounts for possible tissue 

variations on repeated loadings. On developing ex vivo LBL over this studied tissue, 

repeated contact loading was provided to give a “tissue LBL trend” which evaluates LBLs 

wear resistance, shown in Figure 6-3.  

From adhesion test results, biotinylated LBLs (Biotin- 7.1 / PAA 90 & Biotin- 2.75/ 

PAA 50) were able to significantly reduce tissue surface adhesion by its barrier property 

reflected from its decreased peak area, as shown in Figure 6-4. In analyses from wear 
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tests, these biotinylated polymers were able to maintain their physical barrier effect by 

remaining non-adhesive to surrounding tissues, even after numerous contact loadings. 

This physical barrier effect from biotinylated materials (Biotin- 7.1 / PAA 90 & Biotin- 

2.75/ PAA 90) is shown in Figure 6-4, by its decreased work of separation (WoS) and 

with its minimal increase of WoS on providing repeated loading cycles (expressed in 

terms of tissue normalized WoS). A control from LBL of unconjugated high MW (90,000 

Da) polymer (Biotin-0/PAA 90) resulted in poor barrier stability with an increased 

polymer adhesion to surrounding tissues. This enhanced adhesion in unconjugated 

polymers was likely a result of protein/polymer charge based interactions on 

surrounding tissue caused by its weakly formed layers. With LBLs of increased biotin 

conjugation better physical barrier was formed (Biotin-7.1 > Biotin-2.71 > Biotin-0) 

thereby demonstrates the effect of biotin conjugation in formulating durable barriers. 

Thus biotinylated polymers of higher MW and NoL yielded better barrier stability.   
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Figure 6-1:  Ex vivo tissue LBL assembly formation. Plot shows LBL assembly formation 

from PAA of MW (50,000 Da) with biotin conjugation ([Biotin++] =2.75 and [Biotin+] 

=1.23). 
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Figure 6-2: Scheme for ex vivo LBL adhesion testing.  Developed tissue-LBL assemblies 

(lower platen) were subjected to adhesion loading through load-pull off cycles. 
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Figure 6-3: Repeated contact barrier fatigue tests. By providing repeated contacts of 

loading cycles (load-pull offs), adhesion trends were studied before and after LBL 

development, thereby studying LBL wear resistance. Plots show significant wear 

resistance from LBL barriers developed from biotinylated PAA (Biotin- 7.1/PAA 90/14 

Layers) with reduced work of separation (WoS) on repeated LBL loading cycles. Inset 

plot shows load vs. displacement curves collected during adhesion tests before and after 

LBL development using biotinylated PAA (Biotin-7.1/PAA 90/14 Layers). Decrease in 

adhesion was shown by reduced WoS (area under the curve). 
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Figure 6-4: Summary of results from mechanical testing. 14 layered LBL assemblies developed from various PAA material 

(unconjugated (Biotin-0/PAA 90), (Biotin 2.75/PAA 50) and (Biotin 7.1/PAA 90)) were subjected to repeated loading cycles. 

The extent of adhesion on repeated contact was shown by tissue normalized work of separation (WoS / % tissue control). A 

hypothesis test using paired t-test was carried out on all LBL loadings trend and was found significant with P < 0.01. 
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CHAPTER 7. CONCLUSION AND FUTURE STUDIES 

 

In this research, the ability to develop affinity based multilayered polymeric self-

assembled multilayers was demonstrated. From chemical stability results and through 

explorative multivariate analysis, relationship between polymer properties and barrier 

function were obtained. LBLs of biotinylated polymers with higher MW and increased 

number of assembly layers demonstrated improved barrier properties. By evaluating 

LBL mechanical stability using a barrier fatigue model it was found LBLs of biotinylated 

polymers resulted in a durable barrier with excellent wear resistance. Thus, the affinity 

based multi-layered polymeric assemblies with their stable barrier property offer a 

potential regenerative treatment strategy for oral wounds.  

With promising LBL stability results, the future study will be directed towards 

integrating therapeutic function to these stable multilayered assemblies. Potential 

future work involve drug loading studies analyzing the capping effects of overlaying 

polymer network and optimizing the zone of drug loading within assemblies studying 

their drug release kinetics. With current better understanding in pathogenesis of OM, it 

was well documented in the literature [39], the active role played by reactive oxygen 

species (ROS) in disease initation. Hence, it was hypothesized LBL assemblies with their 

incorporated antioxidant nanoparticles (drug loadings) can formulate into an effective 

drug delivery system. Thus with this proposed treatment strategy a better tunable 

barriers which contribute to drug protection and thereby modulate drug release kinetics 

can be achieved. 
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APPENDIX 

A.1. Base layer protein adsorption kinetics 

Method: Radiolabeled streptavidin (541 nM) under un-agitated conditions was held for 

different incubation time in RIA plates and protein bound to the plates were measured 

after removing the unbound streptavidin using repeated PBS rinses (atleast 3). 

Discussion: Under static conditions, monolayer coverage was obtained by providing an 

incubation time of 1 hour. Protein mass that resulted in monolayer coverage and its 

kinetics was obtained through this study. As expected, the mass of streptavidin required 

to form monolayer was consistent with the earlier conducted base layer protein 

adsorption studies, a result due to same surface area availability for protein adsorption. 

 
 

Figure A-1:  Base layer adsorption kinetics - Plot shows kinetics of base layer 

streptavidin adsorption for various incubation times in RIA plates 
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A.2. Multivariate analysis on in vitro LBL assembly development (uncertainty plots) 

 

 

 

Figure A-2: Principal component regression analysis on in vitro LBL response variable 

(ML/M1) to study effects of various LBL factors (MW, conjugation and NoL). Bar plot 

shows principal component regression (PCR) analysis on regression coefficient (B) for 

various LBL factor effects, while considering response variable (ML/M1) during analysis. 

Results of test of significance on regression coefficient (B) (obtained from PCR analysis) 

was performed by uncertainty tests and factor effects were considered insignificant if 

uncertainty limits crosses the zero axes. 
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A.3. Protease stability on LBLs of high MW polymers studying conjugation effect 

A.3.1. PAA (MW 90,000 Da) materials - conjugation effect in 3-layered assemblies 

 

  

 

 

 

Figure A-3.1: LBL protease stability. Effect of factor “extent of biotin conjugation” from 

3-layered assemblies (NoL=3) developed of high MW (90,000 Da) polymer with varying 

extent of biotinylation (Biotin- 0/5.55/7.1). 
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A.3.2. PAA (MW 90,000 Da) materials - conjugation effect in 5-layered assemblies 

 

 

 

 

 

 

Figure A-3.2: LBL protease stability. Effect of factor “extent of biotin conjugation” from 

5-layered assemblies (NoL=5) developed of high MW (90,000 Da) polymer with varying 

extent of biotinylation (Biotin-0/5.55/7.1).  
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A.4. Protease stability on LBLs of high MW polymers studying layer effect 

A.4.1. PAA (MW 90,000 Da) materials - layer effects in LBLs of unconjugated polymer 

  

 

 

 

 

Figure A-4.1: LBL protease stability. Effect of factor “number of LBL layers (NoL)” from 

high MW (90,000 Da) unconjugated polymer (Biotin-0 / PAA 90), where an 

indistinguishable effect of number of assembly layers was noticed with increased 

assembly layers. 
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A.4.2. PAA (MW 90,000 Da) materials - layer effects in LBLs of Biotin-5.5/PAA 90 

 

 

 

 

 

Figure A-4.2: LBL protease stability. Effect of factor “number of LBL layers (NoL)” from 

high MW (90,000 Da) biotinylated polymer (Biotin-5.55 / PAA 90) demonstrated 

significant distinguishable barrier properties, where increased assembly layers resulted 

in better chemical stability.  
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A.5. Protease stability on LBLs of midrange MW polymers studying conjugation effect 

A.5.1. PAA (MW 50,000 Da) materials - conjugation effects in 3-layered assemblies 

 
     
 

 
 

 

Figure A-5.1: Protease stability on LBLs developed of mid-range MW (50,000 Da) 

polymeric materials (PAA 50) studying effect of factor “extent of biotin conjugation” 

from 3-layered assemblies (NoL=3) of varying extent of biotinylation (Biotin- 

0/1.23/2.75). From plots it was observed, biotinylated polymers (Biotin-1.23/2.75) were 

distinguishable from unconjugated polymers and showed improved chemical stability. 
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A.5.2. PAA (MW 50,000 Da) materials - conjugation effects in 5-layered assemblies 

 

 

 
 
 
 

 

Figure A-5.2: Protease stability on LBLs developed of mid-range MW (50,000 Da) 

polymeric materials (PAA 50) studying effect of factor “extent of biotin conjugation” 

from 5-layered assemblies (NoL=5) of varying extent of biotinylation (Biotin- 

0/1.23/2.75). From plots it was observed, biotinylated polymers (Biotin-1.23/2.75) were 

distinguishable from unconjugated polymers and showed improved chemical stability. 
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A.5.3. PAA (MW 50,000 Da) materials - conjugation effects in 7-layered assemblies 

 

 

 

 

 

Figure A-5.3: Protease stability on LBLs developed of mid-range MW (50,000 Da) 

polymeric materials (PAA 50) studying effect of factor “extent of biotin conjugation” 

from 7-layered assemblies (NoL=7) of varying extent of biotinylation (Biotin- 

0/1.23/2.75). From plots it was observed, biotinylated polymers (Biotin-1.23/2.75) were 

distinguishable from unconjugated polymers and showed improved chemical stability. 
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A.6. Protease stability on LBLs of midrange MW polymers studying layer effect 

A.6.1. PAA (MW 50,000 Da) materials - layer effects in LBLs of unconjugated polymer 

 

 

 

 

 

Figure A-6.1: Protease stability on LBLs developed of mid-range MW (50,000 Da) 

polymeric materials (PAA 50 studying effect of factor “number of LBL layers (NoL)”. 

From LBLs of unconjugated polymer (Biotin-0 / PAA 50), it was observed the effects 

were indistinguishable with increased number of assembly layers. 
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A.6.2. PAA (MW 50,000 Da) materials - layer effects in LBLs of Biotin- 1.23 / PAA 50 

 

 

 

 

Figure A-6.2: Protease stability on LBLs developed of mid-range MW (50,000 Da) 

polymeric materials (PAA 50 studying effect of factor “number of LBL layers (NoL)”. 

From LBLs of biotinylated polymer (Biotin-1.23 / PAA 50) a distinguishable effect with 

increased number of assembly layers was observed. 
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A.6.3. PAA (MW 50,000 Da) materials - layer effects in LBLs of Biotin- 2.75 / PAA 50 

 

 

 

 

Figure A-6.3: Protease stability on LBLs developed of mid-range MW (50,000 Da) 

polymeric materials (PAA 50) studying effect of factor “number of LBL layers (NoL)”.  

From LBLs of biotinylated polymer (Biotin-2.75 / PAA 50) a distinguishable effect with 

increased number of assembly layers was observed. 
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A.6.4. Loss % from protease stability on LBLs of midrange MW (50,000 Da) polymers 

 

 

 

 

Figure A-6.4: Protease stability on LBLs developed of mid-range MW (50,000 Da) 

polymeric materials (PAA 50) studying loss % at M∞ for LBL assemblies developed of 

various materials. From plots it was observed, biotinylated polymers (Biotin-1.23/2.75) 

resulted in improved chemical stability with increased assembly layers. 
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A.7. Multivariate analysis on LBL protease stability (uncertainty plots) 

 
 

Figure A-7: PCR analysis on LBL protease stability studying LBL factor effects. Plot shows 

principal component regression (PCR) analysis on regression coefficient (B) for various 

LBL factors while considering variable (mass loss for t1/2 and t1/2) during analysis. Test of 

significance on regression coefficient (B) was performed using uncertainty tests. LBL 

factor effects with its uncertainty limit crossing over the zero axes were considered 

insignificant.  
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A.8. Salivary stability on LBLs of high MW polymers studying conjugation effect 

A.8.1. PAA (MW 90,000 Da) materials - conjugation effect in 3-layered assemblies 

 

 

 

 
 
 
 
 
 
 
Figure A-8.1: LBL salivary stability. Effect of factor “extent of biotin conjugation” from 3-

layered assemblies (NoL=3) developed of high MW (90,000 Da) polymer with varying 

extent of biotinylation (Biotin- 0/5.55/7.1). 
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A.8.2. PAA (MW 90,000 Da) materials - conjugation effect in 5-layered assemblies 

 
 
 
 

 
 

 

 

Figure A-8.2: LBL salivary stability. Effect of factor “extent of biotin conjugation” from 5-

layered assemblies (NoL=5) developed of high MW (90,000 Da) polymer with varying 

extent of biotinylation (Biotin- 0/5.55/7.1). 
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A.9. Salivary stability on LBLs of high MW polymers studying layer effect 

A.9.1. PAA (MW 90,000 Da) materials - layer effects in LBLs of unconjugated polymer 

 

 

 

 

 

Figure A-9.1: LBL salivary stability. Effect of factor “number of LBL layers (NoL)” from 

high MW (90,000 Da) unconjugated polymer (Biotin-0 / PAA 90). 
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A.9.2. PAA (MW 90,000 Da) materials - layer effects in LBLs of Biotin- 5.55 / PAA 90 

 

 

 

 

 

Figure A-9.2: LBL salivary stability. Effect of factor “number of LBL layers (NoL)” from 

high MW (90,000 Da) biotinylated polymer (Biotin-5.55 / PAA 90) demonstrated 

significant distinguishable barrier properties, where increased assembly layers resulted 

in better chemical stability.  
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A.10. Multivariate analysis on LBL salivary stability 

    

Figure A-10: PCR analysis on LBL factors (molecular weight, conjugation and number of 

layers). Plot shows principal component regression (PCR) analysis on regression 

coefficient (B) for various LBL factors while considering variable (mass loss for t1/2 and 

t1/2) during analysis. Test of significance on regression coefficient (B) was performed 

using uncertainty tests. LBL factor effects with its uncertainty limit crossing over the 

zero axes were considered insignificant.  
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A.11. Main effects plot for LBL chemical stability for response “Mass loss% for t1/2” 
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Figure A-11: LBL chemical stability. Plot shows main effect trends in LBL factors for 

response “Mass loss% for t1/2“obtained from ANOVA plots demonstrates the trend 

involved.  
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LIST OF ABBREVIATIONS 

 

ACN      Acetonitrile 
ANOVA  Analysis of Variance 
AP   Activator protein 
BMI   Body Mass Index 
BSA   Bovine Serum Albumin 
Conj   Conjugation (extent of biotinylation) 
CREKA   Cys-Arg-Glu-Lys-Ala 
CTC   Common Toxicity Criteria 
COX   Cyclooxygenase 
DNA   Deoxyribonucleic acid  
ECM   Extracellular matrix 
EDC   1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride 
EGF   Epidermal growth factor 
FGF    Fibroblast growth factor 
GA   glycrrhetinic acid  
GLM   Generalized Linear Model 
HA   Hyaluronic acid  
HABA   4'-hydroxyazobenzene-2-carboxylic acid 
HNC   Head and Neck Cancer 
HPC   hydroxypropyl-cellulose 
HSCT   Hematopoietic Stem Cell Transplants 
IL   Interleukin 
ITF   Intestinal trefoil factor 
Laser   Light amplification by stimulated emission of radiation 
LBL   Layer-by-Layer 
KGF   Keratinocyte growth factor  
MES   2-(N-morpholino)ethanesulfonic acid 
MMP   Matrix metalloproteinases 
MW   Molecular weight 
NCI   National Cancer Institute 
NF- κB   Nuclear factor- κB 
NHS   N-hydroxysuccinimide 
NoL   Number of layers 
MW   Molecular weight 
OM   Oral mucositis 
OMAS   Oral mucositis Assessment Scale 
PAA   Poly(acrylic acid) 
p53   tumor protein 53 
PBS   Phosphate-buffered saline 
PC   Principal Component 
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PCA   Principal Component Analysis 
PCR   Principal Component Regression 
PEM   Polyelectrolyte Multilayers 
PVP   polyvinyl pyrrolidone  
rh   recombinant human 
RIA   Radioimmunoassay 
ROS   Reactive Oxygen Species 
RP-HPLC  Reverse Phase- High Performance Liquid Chromatography 
Sulfo-NHS  N-hydroxysulfosuccinimide 
STAT3   Signal transducer and activator of transcription 3 
TFA   Trifluoroacetic acid 
TGF   Transforming growth factor 
TNF   Tumor-necrosis factor 
UF   Ultrafiltration 
UWS   Unstimulated Whole Saliva 
VEGF   Vascular endothelial growth factor 
WCCNR  Western Consortium for Cancer Nursing Research 
WHO   World Health Organization 
WoS   Work of Separation 
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