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ABSTRACT 
SYNTHESIS AND REDUCTION OF IRON(III) PORPHINONE COMPLEXES 

AND THEIR SPECTROSCOPY STUDIES 

 
Yanyan Huang, B.S. 

 
Marquette University, 2010 

 

    The vibrational spectra of iron(I) porphinone, and related species were studied in 
this work. The iron(I) complexes were synthesized by the sodium anthracenide 
reduction method. The extent of reduction was monitored by UV-visible spectroscopy. 
The products were precipitated with heptane. Efforts to obtain single crystals of the 
iron(I) complex were unsuccessful, but procedures for further work were developed.  
The deuteration of the methylene protons was studied. These macrocycles of these 
complexes can be used for further studies by vibrational spectroscopy. The infrared 
and resonance Raman spectra of iron(I) porphinone in KBr were obtained and 
interpreted. Further studies using deuterated macrocycles and DFT calculations can be 
used to better understand the electronic structures of the formal iron(I) state. 
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CHAPTER ONE 

INTRODUCTION 

 

 

 

 

 



2 
 

1-1. Porphyrins and their deuteration 

 

      Porphyrins are heterocyclic macrocycles which consist of four pyrrole subunits 

interconnected at their α-carbon atoms via methine bridges (=CH-). Porphyrins are 

aromatic, and obey Hückel's rule for aromaticity in that they possess 4n+2 π (26π 

electrons in total) electrons that are delocalized over the macrocycle1. The saturation of 

one pyrrole double bond results in a chlorin. The reduction of the double bonds forms 

bacteriochlorins and isobacteriochlorins. The structures of the porphyrins and their 

derivatives are shown in Figure 1-1.  

 

       Deuterium exchange reactions of porphyrins provide a method of studying the 

electronic structure of the porphyrin macrocycle. Deuterium substituted compounds have 

found wide spread application in physical chemical studies including vibration, NMR and 

EPR spectroscopy. The low-yield multistep syntheses of the free base porphyrins often 

make a simple exchange process on preformed porphyrins the best route to these 

materials. Label incorporation can be accomplished either by total synthesis or by an 

exchange of one or more sites on the assembled porphyrins. Deuterium labeling of 

porphyrins has been largely studied in two positions: exchange at the meso positions and 

exchange at the β pyrrole position. The acid catalyzed deuteration exchange reaction 

occurs at the meso positions2-6.  
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Figure 1-1. Structure formulas of metalopophryin (I), Chlorin (II), bacteriochlorin (III) 
and isobacteriochlorin (IV)7 
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1-2. Iron porphyrins and their derivatives 

 

      Iron porphyrins and chlorins are formed by substituting an iron atom for the two 

central protons of the macrocycle. Iron porphyrins or chlorins may be four, five or six 

coordinate with formal oxidation states for iron ranging from 0 to +4.  

 

      Generally speaking, coordination of strong field ligands results in six-coordinate, 

low-spin ferric and ferrous porphyrin or chlorin complexes. The typical structure of a 

five-coordinate ferric porphyrin complex, given in Figure 1-2, shows that the iron atom is 

out of the macrocyclic plane by the distance of d. For the six-coordinate iron porphyrins, 

the iron atoms are in, or nearly in, the plane of the macrocycle.  

 

      The energy levels and electron occupancy of the 3d orbitals of FeIII (d5), FeII (d6) and 

FeI (d7) are shown in Figure 1-38. The spin state is determined by both the nature of the 

porphyrins and the ligands (including the axial and the substituent ligands). In general, 

coordination of the strong field ligands results in six-coordinate, low-spin Fe(I), Fe(II), 

Fe(III) complexes. Weak field ligands, such as -Br- and -I-, will cause both five- and six- 

coordinate high-spin complexes. In certain cases, some very weak ligands, e.g. ClO4
- and 

SO3CF3
- 9, 10, give rise to five-coordinate intermediate-spin and spin-admixed 

intermediate ferric porphyrins. The uncomplexed ferrous porphyrins, such as FeIITPP, 

exist as an intermediate-spin complex.7,11-12 
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Figure 1-2. The structure of five-coordinate iron porphyrin complex 
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Fe3+, 3d5 

 

Fe2+, 3d6 

 

Fe+, 3d7 

Increasing Axial Ligand Field 

Figure 1-3. Energy levels and electron occupancy of 3d Fe(I), Fe(II) and Fe(III) 
porphyrin systems8 
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      In the past forty years, iron porphyrins and their derivatives have been extensively 

studied. Generally, iron porphyrins may be reduced in three discrete sites: at the 

porphyrin ring, the iron or the axial ligands. For iron porphyrins, the reduction can occur 

at the porphyrin ring or the iron: 

 

FeIII(P)Cl + e-  � FeII(P) +Cl-    (1) 

FeII(P) + e-  � [Fe(P)]-             (2) 

[Fe(P)]- + e-  � [Fe(P)]2-        (3) 

 

      Iron porphyrin complexes have been studied extensively in their common oxidation 

states, iron(II) and iron(III). Most properties of the iron(II) and iron(III) porphyrin 

complexes are understood or can be predicted with good accuracy and confidence from 

x-ray crystal structures, Mo� ssbauer, proton NMR and resonance Raman spectra. The 

reduction of the Fe(III) to Fe(II) porphyrin complexes is quite clear now.  

 

      Two electron reduced iron porphyrins tend to be more nucleophilic as compared to 

the ferric and ferrous states. The ferric and ferrous states are electrophilic. The increased 

nucleophilicity of low valent metalloporphyrins may be important for their use as 

catalysts. 
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1-2-1. Reduction of iron tetraphenylporphyrin complexes 

 

      The structure of FeIIITPPCl is shown in Figure 1-4 and is one of the most studied iron 

porphyrin systems. The two-electron reduction product of FeIIITPPCl, designated as 

[Fe(TPP)]-, is the so called iron(I) porphyrin complex.  

 

      The UV-visible spectra of FeIITPP and its reduction products are shown in Figure 1-5 

by Reed13. The UV-visible spectrum of [Fe(TPP)]- in THF (wavelength/nm) are 392 

(Soret), 424 (Soret), 512, 576, 605 and 674. The Q bands (wavelength/nm) of FeIITPP are 

546 and 610 and the Q bands (wavelength/nm) of [Fe(TPP)]2- are 572 and 612.    

 

      From Reed13, [Fe(TPP)]- was best described as a resonance hybrid between the low 

spin S=1/2 iron(I) porphyrin anion ([FeITPP]-) and the spin-coupled S=1 iron(II) 

porphyrin radical anion ([FeII-TPP·]-). The resonance hybrid had sufficient metal/radical 

orbital overlap to give an overall S=1/2 state.  

 

FeIII(TPP)Cl 
���
���   [FeITPP]-  	 [FeII-TPP·]- 

 

      However, the resonance model was questioned by Bocian14 based on the resonance 

Raman spectrum. The high frequency portion of the B-state-excitation (λex=457.1 nm) 

resonance Raman (RR) spectrum of [Fe(TPP)]- is shown in Figure 1-614 (bottom).  

 

 



 

 

 

 

 

 

 

 

 
Figure 1-4. The structure of 

 

 

 

 

 

 

4. The structure of iron(III) tetraphenylporphyrin chloride

9 

 

tetraphenylporphyrin chloride 
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Figure 1-5. UV-Visible spectra of FeII(TPP), [Fe(TPP)]- and [Fe(TPP)]2- in THF 
solution13. Key: ---, FeII(TPP); 
, [Fe(TPP)]-; and� · �, [Fe(TPP)]2-. 
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      For comparison, the RR spectra of high-spin (top) and low-spin (middle) 

iron(II) tetraphenylporphyrin complexes are also displayed in Figure 1-6. Bocian used the 

nomenclature of υ4 and υ2 that came from octaalkylporphyrins by Spiro15. The Raman 

frequencies (cm-1) of υ4 and υ2 for [Fe(TPP)]-, low-spin FeII(TPP) and high-spin FeII(TPP) 

are summarized in Table 1-1. 

 

Table 1-1. The Raman frequencies of υ4 and υ2 modes for metal tetraphenylporphyrin 
complexes in DMF 
 

 FeIITPP  

(high-spin) 

FeIITPP 

(low-spin) 

(FeTPP)- ZnIITPP [ZnTPP]- 

υ4 (cm-1) 1344 1354 1356 1351 1346 

υ2 (cm-1) 1540 1559 1555 1548 1531 

 
 

      From Table 1-1, both the υ4 and υ2 modes of FeIITPP undergo large upshifts upon 

conversion of the FeII ion from high to low spin. However, the υ4 and υ2 bands of 

(FeTPP)- and FeIITPP (low-spin) are quite close, which are 1356 versus 1354 cm-1 and 

1559 versus 1554 cm-1. The frequencies of υ4 and υ2 observed for [FeTPP]- indicate a 

low-spin formulation for the metal center at room temperature, which is consistent with 

the magnetic measurements from Reed13 and Hickman33. Meanwhile, the subsequent 

NMR measurement showed that the unpaired electron resides in the metal  d�� orbital 

rather than the π molecular orbitals33.  
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Figure 1-6. Raman Spectra of high-spin FeIITPP [λex=413.1nm (top)], low-spin FeIITPP 
[λex=413.1nm (middle)] and (FeTPP)- [λex=457.9nm (bottom)] in DMF solution (N, N-
dimethylformamide), 0.1M TBAP (tetrabutylammonium perchlorate). Peak a is due to 
TBAP. Peak b is due to FeIITPP. Solvent modes are denoted by #. 
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      The resonance Raman (RR) spectra of ZnIITPP and [ZnTPP]- by Bocian is also 

included in Table 1-1. ZnTPP is known as the porphyrin macrocyclic centered reduction 

model: ZnIITPP 
��
�� [ZnII (TPP·�]-. The results are consistent with those of the former 

study and show that the ν4 band is relatively insensitive to macrocycle centered reduction 

whereas the ν2 band is observed to be quite sensitive to the changes in the electron 

density of macrocycle. The ν2 band downshifts 17 cm-1 from ZnIITPP to [ZnII (TPP·�]-. 

Since there is only 5 cm-1 difference of the ν2 band from FeIITPP (low-spin) to (FeTPP)-, 

Bocian concluded that the reduction of FeIITPP is a metal centered reduction. Thus, the 

reduced product (FeTPP)- can be described safely as an anion with a low spin iron(I) 

center. The reduction from the starting material FeIIITPPCl can be written: 

 

FeIII (TPP)Cl 
���
���   [FeITPP]- + Cl- 

 

      Although the unpaired electron density resides in the d�� orbital, the 5 cm-1 difference 

of ν2 band between low-spin FeIITPP and low-spin [FeITPP]- does allow the assessment 

that some of the electron density has been transferred from the metal dπ orbital to the 

porphyrin π orbital via back-bonding. This delocalization of additional charge onto the 

ring is appealing because the process provides a means of stabilizing the low valent iron 

ion. 

 

      If a 17 cm-1 shift that occurred upon reduction from ZnIITPP to [ZnII(TPP·�]- 

represents the effect of one addition electron to the macrocycle, a 5 cm-1 shift of ν2 band 

between low-spin FeIITPP and [FeITPP]- suggests that of only about ¼ of an electron of 
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the electron density was transferred to the macrocycle of porphyrin via back-bonding. 

Thus, most of the unpaired electron in [FeTPP]- resides in the metal-centered orbital 

(d���, paired-electron density in the porphyrin eg
* orbitals has been substantially 

increased relative to that present in the FeIITPP complex.  

 

      Meanwhile, the β-substituted TPP complexes16-17, [FeTPP(CN)4]
-, [FeTPP(CN)3]

-, 

[FeTPPBr4]
- have been reported to be π-anion radicals ([FeII-P·]-) by EPR spectroscopy14. 

And it showed that the electron-withdrawing groups like -CN, -Br at the β-pyrrole 

positions primarily stabilized the porphyrin eg* orbitals18, which would serve as the redox 

orbitals for macrocycle-centered reductions.  

 

      However, axial ligands like -Cl, -Br in FeIII(TPP)X primarily destabilize the metal d�� 

orbital which could serve as the redox orbitals for a metal-centered reduction. This 

suggests that the substituent groups can dramatically influence the electron distribution in 

the FeII-P reduction process. The fact is the one-electron reduction products of the series 

of FeII(TPP) are influenced mostly by the presence of electron-withdrawing groups on the 

macrocycle. The explanation for the effect of the β-substituents and the axial ligands will 

be discussed later in this section. 
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1-2-2. Reduction of iron octaethylporphyrin complexes 

 

      The reduction of FeIIIOEPCl is one of the most studied porphyrin systems besides 

FeIIITPPCl. The structure of FeIIIOEPCl shown in Figure 1-722 shows us that the iron is 

out of the plane by 0.50 Å. The reduction stage can be described as:  

 

FeIII (OEP)Cl 
��
�� FeII(OEP) 

��
�� [Fe(OEP)]- 

 

      A number of spectroscopic techniques and physical measurements13, 14, 20, 21, such as 

electron paramagnetic resonance (EPR), ultraviolet/visible spectroscopy (UV-vis), 

Mössbauer, nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy 

(FT-IR), electrochemistry, X-ray crystallography, and resonance Raman spectroscopy 

have been used in an effort to characterize the system. Resonance Raman (RR) 

spectroscopy has been a useful tool in the studies of heme proteins19 and 

metalloporphyrins20-21. RR has been primarily used to measure the properties of the 

porphyrin macrocycle. Some of the RR lines serve as a sensitive indicator of the 

electronic state, the coordination number, or the core size of iron porphyrins.  
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Figure 1-7. Labeling scheme for the porphinato (MOEP) moiety22 (when M=FeIIICl, the 
distance of metal from porphyrin plane is 0.50 Å) 
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      The changes of the UV-visible spectra of FeIII(OEP)Cl to FeII(OEP) and the changes 

of B bands of FeII(OEP) to [Fe(OEP)]- are shown in Figure 1-814. We can see the 

absorption peaks (wavelength/nm) are 372, 400, 502, 529, 630 for FeIII(OEP)Cl; the 

absorption peaks (wavelength/nm) of B bands are 407, 458 for FeII(OEP); the absorption 

peaks (wavelength/nm) of B bands are 373, 419 and 455 for [FeI(OEP)]-. 

 

      The resonance Raman of the FeIIIOEPCl, FeIIOEP and [FeOEP]- with λex at 441.6 nm 

by Kitagawa14 are shown in Figure1-9. The ν4, ν3 and ν10 modes (cm-1) are summarized in 

Table 1-2 for FeIIOEP and [FeOEP]- in THF solution at room temperature.  

 

Table 1-2. The resonance Raman frequencies of iron octaethylporphyrin complexes ( λex 
=441.6 nm)  
 

Frequency Modes FeIIOEP  [FeOEP]- (300K) 

ν10 (cm-1) 1637, 1607 1568 

ν4 (cm-1) 1363 1364 

ν3 (cm-1) 1475 1492 

 

      For FeIIOEP, on the basis of the ν10 frequencies23-28, 1637 and 1607 cm-1, the 

complexes are categorized as four coordinate intermediate-spin ferrous porphyrins and 

five-coordinate high-spin states ferrous porphyrins respectively. However, the pure 

ferrous intermediate-spin complex provides much more intense peaks at ν10 line. 

Therefore, the low intensity of the peak at ν10  line in Figure1-9 (B) suggests that the five-

coordinate high spin state ferrous porphyrin is the major product. Meanwhile, the ν3 band 
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at 1475 cm-1 is also within the category of the five-coordinate high spin states ferrous 

porphyrins from Kitagawa26
. Thus, the main component of the first reduction product 

FeIIOEP in the THF solution should adopt the high spin five-coordinate structure 

designated as FeII(OEP)(THF). 

 

      From Spiro23 and Kitagawa24-25, we know that the ν4 line, which appears in the 1350-

1375 cm-1 region, reflects the number of metal dπ electrons. An increase of metal dπ 

electron density will result in the decrease of ν4 frequencies. The effect of dπ electrons on 

the ν4 frequency can be understood because, if the number of metal dπ orbital increases, it 

will result an increase of delocalization to the porphyrin π* orbitals (eg), which are 

antibonding with respect to Ca-N bond29 (Figure 1-7). Thus, the Ca-N stretching force 

which determines the ν4 frequency30 will decrease.  

 

      In Figure 1-9 (C) and (D), the resonance Raman of the [FeOEP]- was obtained at 

room temperature and at 77 K in THF solution with 441.6 nm excitation. In the frozen 

state, Raman lines at 1568, 1387 and 1492 cm-1 become weaker, but new lines appear at 

1602, 1590 and 1497 cm-1. Since the large spectral change upon freezing seems 

compatible with the spin transition from high to low states upon freezing, as reported by 

Cohen et al31, Kitagawa concludes that at the room temperature, the reduced product 

[FeOEP]- is high spin.  
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Figure 1-832. The UV-visible spectra of iron octaethylporphyrin complexes 
(A) Changes of the visible absorption spectra of first reduction of FeIII(OEP)Cl to 
FeIIOEP in THF; (B) Changes of absorption spectrum in the Soret region upon reduction 
from FeII(OEP) to [Fe(OEP)]- in THF. 
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Figure 1-914. The Raman and EPR spectra of iron octaethylporphyrin complexes in 
THF solution (λex = 441.6nm)34: (A) FeIII(OEP)Cl; (B) FeII(OEP); (C) [Fe(OEP)]- at 
room temperature, 300K; (D) [Fe(OEP)]- at 77K. (E) EPR spectrum of [Fe(OEP)]- at 
77K in THF solution 
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      In Figure 1-9 (E), the EPR spectrum of (FeOEP)- gives peaks at g�=2.26 and g�=1.93 

indicating the formation of the FeI porphyrin, which is expected to yield the 

EPR signals of g�=2.30 and g�=1.93 from Cohen31. Thus, Kitagawa concluded that the 

reduction occurred at the d orbital of iron instead of the π orbital of porphyrin, leading to 

the iron(I) formulation as the reduced product.  Based on the Raman and EPR spectra, 

Kitagawa concluded that the reduction product of FeII(OEP)(THF) is [FeIOEP]- with high 

spin state.  

 

      However, the conclusion of the high spin state is incompatible with both the room 

temperature 2H paramagnetic shifts and magnetic moment determined for [FeIOEP]- by 

Hickman33. Bocian also confirmed that the [FeIOEP]- exhibit a low-spin configuration at 

room temperature by 1H NMR. Thus Kitagawa’s conclusion about the high-spin 

formulation is incorrect. The reduction stages of the iron(III) octaethylporphyrin can be 

described as:  

 

FeIII (OEP)Cl  
��
��  

��������������

�����  !�"�
 
��
��   

#��������$%

�&'(  !�"�
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Conclusion of the two electron reduced iron tetraphenylporphyrin (TPP) and 

octaethylporphyrin (OEP)  systems: 

 

      As discussed above, two electron reduced iron porphyrins can assume several 

electronic structures upon the introduction of electron- withdrawing substituents on the 

porphyrins. The electron-withdrawing substituent on the porphyrin ring can cause two 

effects. One is to decrease the energy level of the porphyrin eg orbital shown in Figure 1-

1014. It shows that the Fe(II) porphyrin eg level decreases due to the electron withdrawing 

groups. The other effect is a weakening of the interaction between the iron and the 

porphyrin due to a decrease in the electron density at the pyrrole nitrogen of the 

porphyrin ring. According to these effects, the electron structures of the two electron 

reduced iron porphyrin complexes can be roughly classified into four types as shown in 

Figure 1-1134. 

 

      In the case of iron porphyrins with weak electron withdrawing substituents (-Cl, -

CHO, -Br etc.) on either OEP or TPP ligands, the energy level of the eg orbitals are much 

higher than that of the d)� orbitals and there is strong ligation of the porphyrin ligands 

(Type I). Consequently, complexes of type I are Fe(I) porphyrin anion bearing no axial 

ligand.  

 

      If there is a stronger group, like one “-CN” on the OEP or TPP ring, it will result in a 

weaker ligation of the porphyrin to the central iron, forming five-coordinated Fe(I) 
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Figure 1-10. The effects of electron-withdrawing group on the orbital of low-spin FeII 

porphyrin system14 
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Figure 1-11. Four types of electronic structures of two electron reduced Iron(III) 
porphyrin complexes34: 
Type I: four coordinated iron(I) low spin porphyrin; 
type II: five coordinate iron(I) low spin porphyrin; 
type III: four coordinate iron(II) low spin porphyrin anion radical; 
type IV: five coordinated iron(II) high spin porphyrin anion radical. 
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species (Type II). When four strong electron withdrawing groups (-CN etc.) are added to 

the porphyrin ring, there will be a big decrease of the eg level, which will become even 

lower than that of the iron d)� orbital. Thus, the unpaired electron occupies the eg orbital 

instead of the d)� orbital (Type III). If the electron withdrawing groups (-NO2 etc.) are 

much stronger, the eg orbital level will become even lower, the five-coordinate Fe(II) 

porphyrin anion radicals will be produced (Type IV). 

 

      For Type III and Type IV, the unpaired electron isn’t restricted to the eg orbital but 

has different degrees of delocalization. Since the eg orbitals have the same symmetry with 

dxz and dyz, the unpaired electron will delocalize to the dxz and dyz orbitals, depending on 

the energy gap. For a complex of type III, the structure will be a resonance hybrid 

between the iron(I) porphyrin anion with the iron(II) π radical anion, which is:  

 

FeIP- 	 �Fe,,P ·�. 

 

      For a complex of type IV, since the energy gap between eg orbital of porphyrin and 

the dxz and dyz orbitals of metal is much bigger, the delocalization will be very weak and 

can even be ignored. The structure of the reduced product of type IV will mostly be the 

iron(II) π radical anion �Fe,,P ·�.. 
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1-3. Iron porphinone complexes 

 

      The structure35 of iron(III) porphinone chloride FeIII(OEPone)Cl is shown in Figure 

1-12, 1-13 and 1-14. Two types of Fe-N distances are observed in FeIII(OEPone)Cl: 

“short” Fe-N distances to the three pyrroles [Fe-N (1), Fe-N (2), Fe-N (3) in Figure 1-13 

(a)] range from 2.058(4) to 2.066(4) Å and a “longer” Fe-N distance [Fe-N (4) in Figure 

1-13 (a)] at 2.125(5) Å to the pyrrolinone ring. The macrocycles of FeIII(OEPone)Cl have 

a saddled conformation. The iron atom is displaced 0.46 Å out of the plane of the 

macrocycle and the axial Fe-Cl distances is 2.217 Å. These bond distances are 

comparable to those high-spin penta-coordinate iron(III) porphyrin, such as 

FeIIITPPCl12,36 which is 0.47 Å out of the plane and the axial Fe-Cl distance is 2.211(1) Å. 

The pyrrolinone ring of FeIII(OEPone)Cl has a lengthened Cβ-Cβ bond at 1.507 Å because 

of the saturation of the ring. The Cα-Cβ bond containing the oxo-substituent is shorter 

than the Cα-Cβ bond containing the gem-diethyl group [Cα-Cβ(oxo) at 1.479(8) Å versus Cα-

Cβ(gem-diethyl) at 1.514(8) Å], which suggests that the keto group is conjugated with the π 

system of the macrocycle.  

 

      In Figure 1-14 (a), a striking feature of the structure of FeIII(OEPone)Cl is that all 

ethyl groups, except one gem-diethyl group, are on one side of the molecule with the 

single axial ligand. This type of structural feature is indicative36 of minimal inter-ring π–π 

interactions. Figure 1- 14 (b) shows a top-down view of an inversion-related pair of rings. 

For the two iron centers, they are separated by 7.77 Å with a mean plane  
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Figure 1-12. The structure of iron(III) β-oxooctaethylporphinone chloride 
[FeIII(OEPone)Cl] 
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Figure 1-13. Structure of FeIII(OEPone)Cl35 (continued). (a) Labeled ORTEP diagram (b) 
Formal diagram giving the perpendicular displacements of each atom from the 24-atom 
mean plane of macrocycle (in Å ×102) 
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Figure 1-14. Structure of FeIII(OEPone)Cl35 (continued). (a) Edge-on view and (b) top-
down views of the closest inversion related dimeric unit of FeIII(OEPone)Cl 
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separation of 3.39 Å. Thus, the dimeric FeIII(OEPone)Cl unit has no direct overlap and 

has an “edge-to-edge” orientation. 

 
      Figure 1-15 shows the visible spectra obtained during the first and second reductions 

of FeIII(OEPone)Cl in THF by OTTLE (Optically Transparent Thin-Layer Electrode) 

spectroelectrochemisty37. Spectral information referred to Figure 1-15 are summarized in 

Table 1-3. The addition of the first electron led to a red-shift (13 nm) and an increase in 

absorbance of the Soret bands. The addition of the second electron into FeII(OEPone) led 

to a dramatic change in both Soret and visible regions with decreased and broadening of 

Soret bands, and a red-shift of the visible bands (wavelength/nm) from 594 to 645. 

 

Table 1-3. UV-visible spectra of iron porphinone complexes37 
Compounds solvent λmax (nm) 

FeIII(OEPone)Cl THF 386, 400, 482, 546, 596, 658, 730 

FeII(OEPone) THF 399, 413, 486, 545, 595, 661 

[Fe(OEPone)]- THF 364, 407, 446, 522, 585, 645 
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Figure 1-15. Visible spectra obtained during the first (top) and second (bottom) 
reductions of FeIII(OEPone)Cl in THF by OTTLE spectroelectrochemisty37 
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      The infrared spectra shown in Figure 1-16 were obtained in the matrix of THF-d8 by 

Wei38 and the data are summarized in Table 1-4 below. 

 

Table 1-4. Infrared spectroelectrochemistry of iron porphinones38 

Compounds νCO (cm-1) other infrared bands (cm-1) 

FeIII(OEPone)Cl 1719 1563, 1536, 1383, 1268, 1228, 1221, 

1209, 754, 732 

FeII(OEPone) 1703 1550, 1530, 1361, 1221, 754, 742 

[Fe(OEPone)]- 1671, 1578 1609, 1548, 1526, 1361, 1219, 728 

 

      For the first reduction FeIII(OEPone)Cl
��
�� FeII(OEPone) +Cl-, the most noticeable 

change is that νCO shifted from 1719 cm-1 to 1703 cm-1, which indicates a weakening of 

the macrocycle carbonyl band. This is probably due to the increased electron density on 

the porphyrin ring. Since the back-bonding from Fe(II) is stronger than that of Fe(III) to 

the porphyrin, the electron density increased in the first reduction product FeII(OEPone). 

 

      Upon further reduction FeII(OEPone) 
��
�� [Fe(OEPone)]-, the νCO shifted largely from 

1703 cm-1 to 1671cm-1, indicating a further weakening of the porphinone carbonyl group. 

As the carbonyl vibration is shifted to lower energy, the coupling between the ring and 

the carbonyl may happened thus result the split of the carbonyl vibration. DFT 

calculation by Wei38 shows that the carbonyl mode becomes more coupled with the ring 

vibrations when shifted to a lower energy. 
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      Thus, the reduction of iron in iron porphinones can be observed in changes in the 

carbonyl infrared band. The carbonyl vibrations are quite sensitive to the interaction 

between the central metal and the porphinone ring. When ferric porphinones were 

reduced to ferrous complexes, the νCO band decreased by 16 cm-1. This downshift is 

because of the increased back-bonding from the iron(II) orbital to the porphinone orbital 

compared to iron(III).  Further reduction of Fe(II) porphinone cause a dramatic downshift 

by 32 cm-1 also a split of the νCO bands due to the carbonyl vibration’s coupling with the 

porphyrin ring vibrations when at lower energy. Thus, the use of FTIR 

spectroelectrochemistry combination with DFT calculation is shown to be valuable in 

Wei’s studies of the reduction of iron porphinone.  
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Figure 1-1638. FT-IR spectra of iron porphinone complexes in THF-d8 matrix 
(A) FTIR spectrum of FeIII(OEPone)Cl; (B) FTIR difference for FeII(OEPone) and 
FeIII(OEPone)Cl; (C) FTIR spectrum of the one electron reduction product, FeII(OEPone); 
(D) FTIR difference of [Fe(OEPone)]- and FeII(OEPone); (E) FTIR spectrum of the two 
electron reduction product, [Fe(OEPone)]-. Spectra A, C, and E are solvent subtracted. 
Solvent: THF-d8; electrolyte: TBAP. 
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1-4. Aim of this work: Synthesis and reduction of the iron(III) porphinone complexes and 

their spectroscopy studies 

 

      To date, only [FeTPP]- (TPP = tetraphenylporphyrin) and [FeOEP]- (OEP = 

octaethylporphyrin) and their derivatives have been examined in comparable detail33,39-40. 

However, much less work has been done on the free base porphinone and metal 

porphinone complexes.  

 

      Porphinones, a third class of tetrapyrrole, have been viewed as the analogues of 

hydroporphyrins. The proposed analogy between porphinones and hydroporphyrins was 

based upon the similarity of the UV-visible spectra of the two classes of macrocycle41. 

However, recent investigations have established that the redox potentials of porphinones 

are distinctly different from those of either porphyrins or hydroporphyrins42-43. These 

observations imply that porphinones may have unique electronic structures. 

 

      The differences can be also found during the reduction of the iron(III) porphyrin and 

porphinone complexes. For comparing the reduction of FeIII(OEPone)Cl with that of 

FeIIITPPCl and FeIIIOEPCl, the half wave potentials48, 49 are summarized in Table 1-5. In 

Table 1-5, we can see E1/2,1 value of FeIII(OEPone)Cl (-0.35V) are 100mV, 227 mV 

positive of Fe(OEP)Cl (-0.45V) and FeIII(TPP)Cl (-0.577V). The E1/2,2 value of 

Fe(OEPone)Cl (-1.23V) are 30mV and 212mV positive of FeIII(OEP)Cl (-1.26V) and 

Fe(TPP)Cl (-1.442V) respectively. As expected, the E1/2,1 and E1/2,2 values shift in the 

negative direction as the porphyrin ring becomes more saturated, which also prove that 
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the presence of the keto group on the ring make it harder for the reduction.  

 

FeIII(P)Cl + e-  � FeII(P) +Cl-    (1)   E1/2,1 

FeII(P) + e-  � [Fe(P) ]-             (2)   E1/2,2 

 

Table 1-5. Half-wave potential for the reduction of iron porphyrin and porphinone 
complexes 
 

Complex Solvent E1/2,1 (V) (FeIIIP/FeIIP) E1/2,2 (V) (FeIIP/[FeIP]-) Ref. 

Fe(OEP)Cl THF -0.45a -1.26a 48 

Fe(TPP)Cl THF -0.577a -1.442a 49 

Fe(OEPone)Clb THF -0.35a -1.23a 48 

 
a. Data were obtained versus Ag/AgNO3 reference electrode. 
b. For comparison to the literature values48, 0.456 V was subtracted from the data of 

FeIIITPPCl to obtain values versus SCE. 
 

      In most of the porphyrin studies, highly reduced metalloporphyrins have been 

prepared by electrolytic reduction31, 45-46, some have been generated in clean conditions 

by the sodium mirror contact technique39 or sodium anthracenide reduction13 method. It 

has been proven that the sodium anthracenide reduction method is more efficient than 

electrolytic reduction since the electrolysis often produced undesirable byproducts. In this 

work, the sodium anthracenide reduction method will be used to reduce the iron(III) 

porphinone chloride.  
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      Previously, the reduction of FeIII(OEPone)Cl have been studied by OTTLE 

spectroelectrochemistry 44 and infrared spectroelectrochemistry47 in our lab. Infrared 

spectroscopy is ideally suited to investigate the structure of free base and metal 

porphinone complexes because they have ketone groups on the porphyrin rings. The υco 

band in the ring of porphinone in the infrared spectra is significantly stronger than most 

of the porphyrin ring vibrations, making it easy to observe. The infrared spectra of 

metalloporphyrins 48-51 and porphinediones52 have both been studied in considerable detail. 

 

      However, resonance Raman spectroscopy, which is a powerful tool to study the 

porphyrin structures and the electron densities hasn’t been done yet. The reduction 

product of iron(III) porphinone chloride will be characterized by UV-visible, infrared and 

Raman spectra in this work.  
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2-1. Instrument 

 

      The UV-visible spectra were recorded on a Hewlett-Packard 8452A diode array 

spectrophotometer. It is a single-beam, microprocessor-controlled spectrophotometer, 

with a range from 190 nm to 820 nm with 2 nm resolution. The spectrophotometer is 

controlled from a computer equipped with the software of OlisGlobalWorks running on 

Windows XP. 

 

      The Proton-NMR data were obtained on a Varian Mercury-300 MHz spectrometer. 

Spectra were taken with the sample mixed in the CD2Cl2 or CDCl3 (Aldrich) matrix in 

the NMR tubes. 

 

      The infrared spectroscopy data were obtained on the Thermo Nicolet Nexus 670 

Fourier-transform infrared spectrophotometer. Spectra were taken from 4000 to 400 cm-1 

with the sample mixed in the matrix of potassium bromide (KBr, Aldrich). 

 

      Resonance Raman spectroscopy was obtained by mixing the sample in the KBr 

matrix in tightly covered NMR tubes. The test conditions will be described separately 

when giving the resonance Raman spectrum of the specific porphyrin complexes in the 

Result and Discussion part. 
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2-2. Chemicals 

 

      The following reagents were purchased from Aldrich Chemical Company: free base 

tetraphenylporphyrin[H2TPP], iron(III) tetraphenylporphyrin chloride [FeIII(TPP)Cl], free 

base octaethylporphyrin (H2OEP), octaethylporphyrin iron (III) chloride [FeIII(OEP)Cl], 

and Tetrahydrofuran (THF).  

 

      Tetrahydrofuran was distilled by heating at reflux over sodium in a nitrogen 

atmosphere until the dark blue benzophenone anion color was persistent, and then stored 

in the glove box. 
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2-2-1. Synthesis of the free base porphinone (H2OEPone) complex 

 

      Porphinone (H2OEPone)32, 59-61 was prepared by oxidation of H2OEP via metal 

inserted purification. 2.8 g of H2OEP was dissolved into 600 mL of CH2Cl2 containing 1% 

anhydrous pyridine. The solution was degassed for half an hour. To the solution was 

added 2 g of OsO4 in 10 mL of anhydrous ether. The solution was stirred in dark at room 

temperature under nitrogen atmosphere for 24 hours, and then the reaction was stopped 

by adding 150 mL methanol and gassed 15 minutes of hydrogen sulfide (H2S).    

 

      The solution was filtered and evaporated to obtain a residue. The residue was 

redissolved in 700 mL of methylene chloride, and then mixed with 20 mL of 70 % HClO4. 

After the solution was stirred for 30 min, the mixture was washed with 600 mL distilled 

water for three times. A crude product (2.6 g) was obtained after evaporating the solvent 

and was a mixture of H2OEPone, unreacted H2OEP and a small amount of di- or tri-

oxoporphinones.  

 

      Purification of the crude product was achieved by chromatography via their 

respective zinc complexes on an alumina column. To produce the zinc complexes54, the 

crude products were put into a round bottom flask with zinc acetate dehydrate in 

CHCl3/methanol (200 mL/100 mL) and heated to reflux for one hour. The reaction was 

stopped when the solution’s color turned blue. The solution was rinsed with 300 mL 

distilled water three times when it cooled down. The solvent was removed and the 

purification was done on an alumina column. Elution was initiated with chloroform. A 
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small violet band containing H2(2, 6-dioxo-OEBC), which did not react with zinc acetate 

eluted first ( yield= 5 %). The UV-visible spectra in THF solution give the peaks56 λmax 

(wavelength/nm) at 346, 374, 464, 492, 568, 688, 728. The second band containing 

Zn(OEP) (pink, yield / 40 %) was eluted with CHCl3 containing 0.5% methanol. The 

UV-visible spectra in THF solution gave peaks56 at λmax (wavelength/nm) at 330, 406, 

536 and 572. The third band was eluted with CHCl3 containing 5% methanol, which 

contained Zn(OEPone) complex (blue, yield about 40%). UV-vis (THF) maxλ , nm (ε，

mM-1cm-1): 402 (158), 486 (9.4), 506 (13), 542 (15), 586 (8.8), 614 (5.8), 642 (43); 1H 

NMR (CDCl3), δ: -2.90 (2H, NH), 0.34, 0.36, 0.39 (6H total, gem-CH3); 1.80-1.89 (18H 

total, CH3); 2.75 (4H total, gem-CH2); 3.94 (×2), 4.04, 4.07, 4.09 (×2) (quartet, 2H, 

CH2); 9.12, 9.83, 9.85, 9.94 (1H each, meso-H). H2OEPone was obtained by washing 

with 10% HCl quantitatively. The UV-visible spectra (THF) maxλ , nm (ε，mM-1cm-1)42: 

402 (158), 486 (9.4), 506 (13), 542 (15), 586 (8.8), 614 (5.8), 642 (43); Proton-HMR42 

(CDCl3), δ: -2.90 ( 2H, NH), 0.34, 0.36, 0.39 (6H total, gem-CH3), 1.80-1.89 (18 H total, 

CH3); 2.75 (4H total, gem-CH2), 3.94 (×2), 4.04, 4.07, 4.09 (×2) (quartet, 2H, CH2); 

9.12, 9.83, 9.85, 9.93 (1H each, meso-H). 
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2-2-2. Synthesis of iron (III) porphinone chloride 

 

      Synthesis of FeIII(OEPone)Cl57: 25 mg of free base porphinone (H2OEPone) was 

placed in 15 mL of acetic acid containing 40 mg sodium acetate and 25 mg sodium 

chloride in a 50 mL flask. After the solution was degassed with nitrogen for 30 min, 50 

mg iron (II) acetate was added. The mixture was then heated to a gentle boil for one hour. 

The completion of the reaction was detected by the quenching of the bright fluorescence 

with a UV lamp. The solvent was removed under vacuum after the mixture was cooled. 

The residue was washed with distilled water several times. The product was then 

dissolved in benzene and lyophilized to give pure crystals.  
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2-2-3. Deuterium exchange of the free base porphinone complex 

 

      Deuteration of H2(OEPone)58: A 250 mL round bottom flask was dried in the oven for 

half an hour and then was purged with nitrogen for 15 min. To the flask was added 

0.1 mmol of H2OEPone, followed by 8.4 mL dimethyl sulfoxide (DMSO-d6). The 

resultant mixture was degassed with nitrogen for thirty minutes after adding 0.47 mL of 

tetrabutylammonium hydroxide (1 M in methanol).  

 

      The mixture was heated at 177 oC for 24 hours under a slow flow of nitrogen. After 

that, the reaction was quenched by adding 10 mL of 1 M HCl and 50 mL of chloroform to 

the round bottom flask. Then the organic layer was separated and washed with an 

aqueous solution of sodium hydrogen carbonate three times until no more effervescence 

was observed. A few grams of sodium sulfate were added to the chloroform solution to 

dry the residual water and then the solution was filtered. The chloroform was evaporated 

under nitrogen and the remaining water was removed in a vacuum desiccator at room 

temperature. The crude product was chromatographed on the alumina column with 

chloroform which was then evaporated under nitrogen gas. The purified sample was dried 

in a vacuum desiccator at room temperature.  
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2-2-4. Reduction of iron (III) porphyrins and porphinone complexes 

 

      Reduction of FeIIITPPCl, FeIIIOEPCl and FeIII (OEPone)Cl40: The reductant, sodium 

anthracenide was prepared by accurate weighing 3 mmol anthracene into a vial with a 

Teflon-lined cap and placed in the dry box 24 hours before it reacted with excess sodium 

metal in the double distilled THF (less than 15 mL). The solution was allowed to react for 

24 hours with occasional stirring before it was decanted from the unreacted sodium and 

diluted to 15 mL making a 0.2 M solution. The solution was dark blue. 

 

      0.25 mmol FeIIIOEPoneCl (FeIIIOEPCl, FeIIITPPCl) was dissolved into a 50 mL 

round bottom flask with 20 mL of distilled THF. 100- or 200-µL Microtrol syringe were 

used to transfer 3 mL of the dark blue sodium anthracenide solution to the stirred 

FeIIIOEPoneCl (FeIIIOEPCl or FeIIITPPCl) solution above.  After 30 min the solution was 

filtered and 80 mL heptane was added. The solution was set aside for precipitation for 24 

hour and then was filtered to get the final products.  
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CHAPTER THREE 

RESULTS AND DISCUSSION 

 

 

 

 



 

3-1. UV-visible, infrared and proton

 

      The oxidation of H2OEP

tetraoxide is used as the oxidant, which rearranges the free base 

porphinone in strong acid solutions. The scheme reaction is shown in Figure 3

 

 

                                                     H2OEP 

Figure 3-1 Scheme of the oxidation of H

 

      The UV-visible spectrum of the oxidiz

material H2OEP (a) in THF solution

Soret band has red-shifted

H2OEPone (λmax, wavelength/nm

literature results42. 

      The IR spectrum of the oxidation product H

nfrared and proton NMR spectrum of the free base 

complexes 

OEP to H2OEPone is provided by Chang et al62. Osmium 

tetraoxide is used as the oxidant, which rearranges the free base porphyrin to the 

porphinone in strong acid solutions. The scheme reaction is shown in Figure 3

 

 

 

OsO4 

 

 

OEP                                                                   H2OEPone

1 Scheme of the oxidation of H2OEP to H2OEPone

spectrum of the oxidization product H2OEPone (b) and the starting 
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of the oxidation product H2OEPone which shown in 

47 

NMR spectrum of the free base porphinone 
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porphinone in strong acid solutions. The scheme reaction is shown in Figure 3-1. 
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. After the oxidation, the 

from 398 to 406. The four peaks of 

) at 406, 510, 548 and 642 are consistent with the 

in Figure 3-3 were 
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obtained in KBr matrix. The peaks (υ, cm-1) are at 3335 (NH), 2963, 2932, 2872 (CH) 

and 1716(C=O). The results are consistent with the spectrum from Stolzenberg et al42. 

The IR spectrum of the starting material H2OEP and the oxidation product H2OEPone are 

shown in Figure 3-4 (b) and Figure 3-4 (a) separately. For starting material H2OEP, the 

strongest bands (υ, cm-1) are at 1012 and1054. After the oxidation, these two bands still 

exist, and a new strong band at 1716 cm-1 due to υCO appears. We can see that the υCO of 

H2OEPone is comparably larger than the other porphyrin vibrations.  

 

      The proton NMR spectrum which shown in Figure 3-5 were obtained in CD2Cl2, the 

chemical shifts (δ, ppm) are summarized in Table 3-1. From Table 3-1, we can see the 

chemical shift positions of the oxidization product are consistent with the literature 

results from Stolzenberg42. From the integrated area, we use gem-CH3 as the basis. 

Because there are 6H for gem-CH3 in the molecule, there are about 4 meso-H, two N-H, 

about 6 H for gem-CH2, about 15 H for -CH2 and about 19 H for -CH3 inside the 

molecule. The result fits the formulation of H2OEPone.   

 

      The UV-visible, IR and proton NMR spectrum we have obtained are all consistent 

with that by Stolzenberg42. Thus, the oxidation product H2OEPone we have produced is 

the desired product.  
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Table 3-1. The proton NMR of H2OEPone in CD2Cl2 
 

Chemical shift δ (ppm) integrate area Proton Represented Chemical shift δ (ppm) from 

Stolzenberg42 

-2.95, -2.91 (singlet) 0.304 (2H) -NH -2.90, -2.85 (broad singlet) 

0.38 (triplet) 0.999 (6H) gem-CH3 0.36 (triplet) 

1.81~ 1.93 (multiple) 3.220 (19H) -CH3 1.81, 1.82, 1.84, 1.85, 1.86, 

1.88 (triplet) 

2.75 (multiple) 0.999 (6H) gem-CH2 2.75 (multiple) 

3.95~4.11 (multiple) 2.464 

(14.78H) 

- CH2 3.940 2, 4.02, 4.06, 4.090 2 

9.22, 9.84, 9.95, 10.02 

(singlet) 

0.619 in total 

(4H) 

meso-H 9.12, 9.83, 9.86, 9.94 
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Figure 3-2. UV-visible spectrum of (a) H2OEP (dash line) and (b) H2OEPone (solid line) 
in THF solution 
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Figure 3-3. Infrared spectrum of H2OEPone in KBr matrix 
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Figure 3-4. Infrared spectrum of (a) H2OEPone (solid line) and (b) H2OEP (dash line) in 
KBr matrix 
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Figure 3-5. Proton NMR spectrum of H2(OEPone) in CD2Cl2 
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3-2. UV-visible, infrared and proton NMR spectrum of the deuterated free base 

porphinone complex 

 

      Figure 3-6 shows the UV-visible spectrum of the starting material H2(OEPone) and 

the deuterated product H2(OEPone)-d12
42. The peaks (λmax, wavelength/nm) of 

H2(OEPone)-d12 at 406, 510, 548 and 642 are consistent with that of H2(OEPone)42. After 

the deuteration, we had an identical spectrum which indicated that we had obtained the 

purified deuterated product without contamination. 

 

      The IR spectra of the starting material H2OEPone and the deuteration product 

H2OEPone-d12 shown in Figure 3-7 were obtained in KBr matrix. The FTIR spectra of 

H2OEPone, H2OEPone-d12 and their difference spectra are shown in Figure 3-8. There 

are three shifts in the difference spectra which are 1457 cm-1 to 1441 cm-1, 1569 cm-1 to 

1547 cm-1 and 1709 cm-1 to 1687 cm-1. The downshifts of the vibration bands indicate a 

weakening of the bands which are due to the deuteration. 1H have been deuterated to 2D 

group, which increased the weight for the “C-proton” group, results a decrease of the 

vibration wavenumber.   

 

      The proton NMR spectra of the deuteration product H2OEPone-d12 were obtained by 

the 300 MHz NMR spectrometer. Figure 3-9 shows the proton NMR of H2OEPone-d12 in 

CD2Cl2. The chemical shifts δ (ppm) of H2OEPone-d12 together with that of H2OEPone 

are summarized in Table 3-2. From Table 3-2, we can see that the δ positions are almost 

unchanged during the deuteration, except the peak positions of “–CH2”, “gem-CH2”, “-
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CH3”, “gem-CH3” all shift slightly to the higher field. During the deuteration, the protons 

of “–NH” are gone. Thus, the deuteration rate of the proton of  “–NH”  is 100%. Another 

thing is that the protons of “–CH2” left after the deuteration are only 
2.425

�.676
0 100% ;

28.4%, making the deuteration rate 71.6% 

 

      Stolzenberg reported that the methylene positions were 90% deuteriated42. The result 

indicates that we have not achieved the literature results. We didn’t pursue this further in 

our work, but, longer deuteration time may be needed to reach the 90% deuteration yield.  
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Table 3-2. The proton NMR of H2OEPone-d12 and H2OEPone in CD2Cl2 

 
Chemical shift δ(ppm) Integrate Area Proton 

Represented H2OEPone H2OEPone-d12 H2OEPone H2OEPone-d12 

-2.95, -2.91 (singlet) none 0.304 (2H) None -NH 

0.38 (triplet) 0.31(triplet) 0.999 (6H) 1.01 (6H) gem-CH3 

1.81~ 1.93 (multiple) 1.72, 1.74, 1.77, 

1.78, 1.80, 1.82 

3.220 (19H) 3.375 (20 H) -CH3 

2.75 (multiple) 2.68 (multiple) 0.999 (6H) 0.728 (4.36H) gem-CH2 

3.95~4.11 (multiple) 3.90, 3.93, 3.99, 

4.02 

2.464 

(14.78H) 

0.701(4.21) - CH2 

9.22, 9.84, 9.95, 10.02  9.22, 9.83, 9.96, 

10.04 

0.619 in total 

(4H) 

0.675 in total (4H) meso-H 
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Figure 3-6. UV-visible spectrum of (a) H2OEPone (solid line) and its deuteration product 
(b) H2OEPone-d12 (dash line) in THF solution 
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Figure 3-7. IR spectrum of (a) H2OEPone (solid line) and the deuteration product 
(b) H2OEPone-d12 (dash line) in KBr matrix 
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(a) 

 

(b) 

Figure 3-8. IR spectrum of (a) H2OEPone, its deuteration product and the difference: 
Dash line( H2OEPone); Dot line (H2OEPone-d12); Solid line (H2OEPone-d12�H2OEPone) 
(b) the difference between H2OEPone and H2OEPone-d12 (H2OEPone-d12 - H2OEPone) 
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Figure 3-9. Proton NMR spectrum of the deuterated product H2(OEPone)-d12 in CD2Cl2 
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3-3. UV-visible, infrared and Raman spectrum of the two electron reduced iron(III) 

tetraphenylporphyrin complex 

 

      The UV-visible absorption spectrum of the reduction product [FeTPP]- are shown in 

Figure 3-10. It is consistent with the work done by Reed et al32, which showed that the   

λmax (wavelengh/nm) are 426, 506, 572 and 612. Due to the high concentration, the Soret 

band of [FeTPP]- is off scale. The bands (wavelengh/nm) at 358 and 378 are due to 

anthracene. 

 

      The UV-visible spectrum of the reduction product [FeTPP]- and the starting material 

FeIIITPPCl are shown in Figure 3-11. There is a successive red shift of the Soret band 

(wavelengh/nm) from 414 to 426 during the reduction from FeIIITPPCl. It reflects the 

extent of stabilization of the porphyrin π system after the reduction.  

 

      The UV-visible spectra of FeII(TPP), [Fe(TPP)]- and [Fe(TPP)]2- in the THF solution 

were previously obtained by Reed13 et al. The FeIITPP (high spin, HS) has λmax 

(wavelengh/nm) values of 426 (Soret), 539, 610 and [Fe(TPP)]2- has λmax (wavelength/nm) 

at 572 and 618, while the λmax (wavelength/nm) of [Fe(TPP)]- are 426, 510, 572 and 608. 

Thus, the reduction product we have obtained is most close to the low spin [FeTPP]- 

based on the absorption spectrum.  

 

      In Figure 3-12, the infrared spectra of FeIIITPPCl and the reduction product 
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[Fe(TPP)]- were obtained in KBr matrix. The infrared spectra data are summarized in 

Table 3-3 below. 

 

Table 3-3. The infrared spectrum of iron tetraphenylporphyrin complexes 

infrared spectrum (cm-1) 

FeIIITPPCl [FeTPP]- 

1030 

1069 

1159 

1174 

1201 

 

1277 

1298 

1335  

1364 

1388 

1440 

1485 

1505 

1527 

1547 

1570 

1596 

 

1069 

1156 

1177 

1201 

1227 

1261 

1297 

1337 

1366 

 

1441 

1487 

 

1526 

1551 

1575 

1597 
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      From Table 3-3, we find several bands (υ, cm-1) move to lower frequencies after the 

reduction, which are 1159 to 1156, 1298 to 1297, 1527 to 1526 and 1277 to 1261 cm-1. 

The band at 1277 cm-1 moved to 1261 cm-1 which is a dramatic downshift by 14 cm-1. 

Some bands (υ, cm-1) move to higher frequencies after the reduction, which are 1174 to 

1177, 1335 to 1337, 1364 to 1366, 1440 to 1441, 1485 to 1487, 1547 to 1551, 1570 to 

1575 and 1596 to 1597 cm-1. The strong vibrational band at 1174 cm-1 for FeIII(TPP)Cl 

not only upshifted by 3 cm-1, but also became much weaker after the reduction which is a 

big change. The new band at 1227 is produced, while bands (υ, cm-1) at 1030, 1388 and 

1505 disappear after the reduction.  

 

      The resonance Raman spectrum shown in Figure 3-13 was measured with 1.0-0.9 

mW in KBr powder to avoid the decomposition of the products. It was also measured 

with higher power (5.0 mW) and the increased power did not cause any changes. For 

convenience, we retain the nomenclature traditionally used for octaalkylporphyrins and 

refer to these modes as ν4 and ν2
15. The Raman spectrum data are summarized in Table 3-

4 below.  

 

      From Table 3-4, we can see that the ν4 mode of [FeTPP]- is at 1361 cm-1, which is 

5 cm-1 higher than that of low spin [FeTPP]- reported by Bocian. The ν2 mode is 3 cm-1 

lower, which is 1552 cm-1 versus 1555 cm-1. The ν4 mode (cm-1) of [FeTPP]- in this work 

differ 17 cm-1, 7 cm-1 and 9 cm-1 respectively from high spin15, low spin15 and 

intermediate spin62 of FeIITPP. The ν2 mode (cm-1) of [FeTPP]- in this work differ 12 cm-1, 

7 cm-1 and 13 cm-1 respectively from high spin15, low spin15 and intermediate spin62 of 
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FeIITPP. However, we found there are 1076 cm-1 and 1236 cm-1 which are due to Fe(II) 

species.  

 

      While the UV-visible spectra of [FeTTP]- is consistent with what was obtained by 

Reed32. Because of the low Raman scattering of [FeTTP]-, small amount of FeTPP will 

dominate the spectrum. Unfortunately, the 457.9 nm excitation which was used by 

Bocian for [FeTTP]- was not available at this time. As a result, it was difficult to separate 

the weak iron(I) bands from the strong iron(II) bands.  

 

Table 3-4. The resonance Raman spectrum of the iron tetraphenylporphyrin complexes 
 
 ν4 (cm-1) ν2 (cm-1) Other (cm-1) Reference 

FeTPP (high spin, in DMF, 

λex = 413.1 nm ) 

1344 1540 1074, 1232 14 

FeTPP (low spin in DMF, 

λex = 413.1 nm) 

1354 1559 1073, 1228 14 

FeTPP(intermediate spin, 

in CH2Cl2, λex = 457.9 nm) 

1370 1565 1082, 1240 62 

[FeTPP]- (low spin, in 

DMF, λex = 457.9 nm) 

1356 1555 1060, 1224 14 

[FeTPP]- (in KBr solid 

matrix, λex = 413.1 nm) 

1361 1552 1076, 1236 this work 

 

      Based on the absorption spectrum we have obtained, we found that the results 

matched that from Reed13. Meanwhile, from infrared spectra, we have a downshift of 

several bands, indicating an increase of the electron density on the macrocyclic ring. 
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There has been little analysis of the infrared spectra of FeTPP and its reduced product. It 

is difficult to compare our results with the predicted shifts at this time. 
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Figure 3-10. UV-visible of the reduction product [FeTPP]- in THF solution 
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Figure 3-11. UV-visible of (a) [FeTPP]- (solid line) and (b) FeIIITPPCl (dash line) in THF 
solution 
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Figure 3-12. IR spectrum of the starting material (a) (FeTPP)- (solid line) and 
(b) FeIIITPPCl (dash line) in KBr matrix 
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Figure 3-13. The resonance Raman spectrum of iron tetraphenylporphyrin complexes 
measured with 1.0-0.9 mW in KBr powder (λex = 413.1 nm) 
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3-4. UV-visible, infrared and Raman spectrum of the two electron reduced iron(III) 

octaethylporphyrin complex 

 

      The UV-visible of the starting material FeIIIOEPCl and the reduction product 

[FeOEP]- are shown in Figure 3-14. To better analyze the product that we obtained, we 

compared our absorption peaks with what have been done by Teraoka39 in Table 3-5. The 

reduction process can be written as: 

FeIIIOEPCl  +  Sodium anthracenide >  

                            [Fe(OEP)]-  +  Cl-  + anthracene  +  Na+ 

 

Table 3-5. The UV-visible spectrum of iron octaethylporphyrin complexes 

Compounds B bands (nm) Q bands (nm) References 

FeII(OEP)(THF) 407 558 39 

(FeOEP)2- 356, 440 N/A 39 

FeIIIOEPCl 372, 400 508, 532,630 this work 

(FeIOEP)- 373, 419, 455 N/A 39 

[FeOEP]- 373, 407, 414, 454 516, 558, 664 this work 

 

      From Table 3-5, the Soret region of the reduction product [Fe(OEP)]- is affected by 

another product of the reduction reaction, anthracene, and also the possible byproduct 

FeII(OEP)(THF)39.  The bands of anthracene overlap the iron(I) complex making the 
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Soret bands different from that obtained byTeraoka39 . But it is clear that the Soret bands 

(wavelength/nm) become broader and have a red shift after the reduction. Our reduced 

product has the absorption peaks (wavelength/nm) at 419 and 454 which are close to that 

of (FeIOEP)- by Teraoka39. However, the absorption peaks (wavelength/nm) at 407 and 

558 are close to FeII(OEP)(THF) by Teraoka39. Thus, our reduced product is close to 

(FeITPP)- with some impurity FeII(OEP)(THF) inside based on the UV-visible spectrum. 

 

      The IR spectra of the starting material FeIIIOEPCl and the reduction product [FeOEP]- 

are given in Figure 3-15. The bands are summarized in Table 3-6 below. 

 

      From Table 3-6, we find that new bands (υ, cm-1) at 1196, 1248 and 1587 appear but 

bands (υ, cm-1) at 1122 and 1358 disappear after reduction from FeIIIOEPCl. For the 

bands at the same wavenumbers, the strength of the absorption is quite different. For 

example, the absorption bands (υ, cm-1) at 1146, 1268 and 1313 become much weaker 

after reduction. The difference during the reduction of infrared spectrum indicates the 

possibilities of reduction. There has been little analysis of the infrared bands of the 

reduced product [FeOEP]- in KBr matrix. It is difficult to compare our result with the 

predicted shifts at this time. 
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                  Table 3-6. The infrared spectra of iron octaethylporphyrin complexes 
 

Vibration bands (υ, cm-1) 

FeIIIOEPCl [FeOEP]- 

1109 

1122 

1146 

 

1213 

1252 

1268 

1313 

1358 

1371 

1468 

1494 

 

1109 

 

1146 

1196 

1213 

1248 

1268 

1313 

 

1371 

 

 

1587 
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Figure 3-14. UV-visible spectrum of (a) (FeOEP)- (solid line) and (b) FeIII OEPCl (dash 
line) in THF solution.  
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Figure 3-15. IR spectrum of (a) (FeOEP)- (solid line) and (b) FeIIIOEPCl (dot line) in KBr 
matrix. 
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3-5. UV-visible and infrared spectrum of iron(III) porphinone chloride 

 

      The UV-visible spectrum of H2OEPone and FeIII(OEPone)Cl are shown in Figure 3-

16. The absorption spectrum of FeIII(OEPone)Cl are consistent with the result by Wei38, 

which shows that the insertion of ‘-FeIIICl’ is successful. For better comparing the 

starting material H2OEPone and the product FeIII(OEPone)Cl,  the absorption data are 

summarized in Table 3-7 below. 

 

Table 3-7. The absorption spectra of iron porphinone and free base porphinone 
complexes 
 
Compounds (Solution) B bands (nm) Q Bands (nm) Reference 

H2OEPone (THF) 406 506, 548, 582, 642 this work 

FeIII(OEPone)Cl (THF) 386, 486 514, 556, 600, 658 this work 

FeIII(OEPone)Cl 

(CH2Cl2) 

384 (11.50 mM-1cm-1), 

486 (1.581) 

517(1.40), 551(1.205), 

599(2.19), 661(0.436) 

53 

FeIII(OEPone)Cl (THF) 386 (66 mM-1cm-1), 

482 (8.3) 

546(6.6), 596(14), 

658(3.5), 730(3.6) 

37 

 

      From Table 3-7, we can see the spectrum of the product FeIII(OEPone)Cl are 

consistent with that obtained by Cai53 and Liu37.  Comparing the UV-visible spectrum of 

the starting material H2OEPone with the product FeIII(OEPone)Cl we obtained, the Soret 

band blue shifts from 406 nm to 386 nm and becomes broadened which showed that the π 
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system of the porphinone has been destabilized after the insertion of ‘-FeIIICl’ .  

 

      The FT-IR spectrum of H2OEPone and FeIIIOEPoneCl are shown in Figure 3-17 and 

Figure 3-18. The vibrations are summarized in the Table 3-8 below: 

 

Table 3-8: The infrared spectroscopy of free-base and iron porphinone complexes in KBr  

compound υCO (cm-1) Other bands (cm-1) References 

H2OEPone 1716 1585, 1544, 1520, 1454, 1402, 1371, 

1318, 1262, 1218, 1184, 1096, 1054, 

1011 

this work 

FeIII(OEPone)Cl 1713 1666, 1562, 1535, 1490, 1454, 1389, 

1318, 1271, 1225, 1208, 1144, 1119, 

1056, 1011 

this work 

FeIII(OEPone)Cl 1719 1563, 1536, 1383, 1268, 1228, 1221, 

1209, 754, 732 

38 

 

      From Table 3-8, we can see the FeIIIOEPoneCl we obtained have many bands with the 

same or similar wavenumbers as that by Wei38. The υCO band is 1713 cm-1, which is  

6 cm-1 lower than that by Wei. For other bands, the similar peaks are highlighted in Table 

3-8 which shows that our product is quite close to the FeIII(OEPone)Cl by Wei.  

From Table 3-8, we find that when the iron inserted into the free base H2OEPone, the υCO 

position doesn’t change significantly (1716 cm-1 to 1713cm-1). For the typical infrared 

absorption frequencies, the stretching vibration of C-N is between 1000 and 1250cm-1 
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and the bending vibration of NH2 scissoring is between 1550 cm-1 to 1650 cm-1.  We 

emphasized the IR spectra between 1000 cm-1 and 1250 cm-1 in Figure 3-19 (a) and 1550 

cm-1 to 1650 cm-1 in Figure 3-19 (b). From Figure 3-19, we can see the vibrations at 1184 

cm-1 and 1093 cm-1 disappeared; the band at 1585 cm-1 downshifted to 1562 cm-1 and the 

number of the vibration bands became less after the metal insertion.  

 

      These vibrational changes probably were due to the electron density had been 

changed dramatically. And the symmetry of the molecule increased which simplified the 

vibration species after the iron(III)Cl exchanging two protons in NH positions.  

 

      In a word, the insertion of ‘-FeIIICl’ to free base porphinone is successful. The 

structure of FeIII(OEPone)Cl from Scheidt is shown in Figure 3-2035. The success of the 

reduction can be approved by both UV-visible spectrum and infrared spectrum. The 

product is the desired FeIIIOEPoneCl by comparing the infrared spectrum with what was 

observed by Wei38.  

 

Figure 3-20. The structure of FeIIIOEPoneCl35 
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Figure 3-16. UV-visible spectrum of (a) FeIIIOEPoneCl (solid line) and (b) H2OEPone 
(dash line) 
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Figure 3-17. IR spectrum of FeIII(OEPone)Cl in KBr matrix 
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Figure 3-18. Infrared spectrum of the free base porphinone and iron porphinone 
complexes in KBr powder: (a) FeOEPoneCl (solid line); (b) H2OEPoneCl (dash line)  
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(a) 

 
(b) 

 
Figure 3-19. Infrared spectrum of free base porphinone and iron porphinone complexes in 
KBr powder: (a) 1000 cm-1 – 1250 cm-1; (b) 1550 cm-1 -1650 cm-1. 
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3-6.UV-visible, infrared and Raman spectrum of the two electron reduced iron(III) 

porphinone complex 

 

      The UV-visible spectrum of FeIIIOEPoneCl and its reduced product, [Fe(OEPone)]-, 

are shown in Figure 3-21. The absorption spectrum was compared to that obtained by 

Liu37 who did the reduction in OTTLE spectroelectrochemistry. The UV-visible spectra 

were summarized in Table 3-9. The reaction for the reduction process is:  

FeIIIOEPoneCl  +  Sodium anthracenide >  

                            [Fe(OEPone)]-  +  Cl-  + anthracene  +  Na+ 

 

Table 3-9. UV-visible spectrum of iron porphinone complexes in THF solution 

 B bands (nm) Q bands  (nm) Reference 

FeIII(OEPone)Cl 386 , 482 546 , 596, 658 , 730 37 

FeIII(OEPone)Cl 386 , 486 514 , 556 , 600 , 658 this  work 

[Fe(OEPone)]- 364, 407, 446 522 , 585 , 645 37 

[Fe(OEPone)]- 358, 378, 394 526 , 538, 572 , 584, 650 this  work 

FeII(OEPone) 399, 413, 486 545, 594 , 661 37 

 

      From Table 3-9, the Soret region of the reduction product [Fe(OEPone)]- is affected 

by another product of the reduction reaction, anthracene.  The bands of anthracene 

overlap the rion(I) complex making the Soret bands different from that obtained by Liu37 . 

But it is clear that the Q band at 596 nm for both FeIIIOEPoneCl and FeIIOEP have 
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completely disappeared, and the new band at 650 nm appears, indicating the complete 

reduction to the iron(I) complex. 

 

      The infrared spectrum of the reduced product [Fe(OEPone)]- are shown in Figure 3-

22. Figure 3-23 gives the infrared spectrum of both the starting material FeIIIOEPoneCl 

and the reduced product [Fe(OEPone)]-. Wei examined the infrared 

spectroelectrochemical reduction of iron porphinone complexes using 

spectroelectrochemistry. To comparing the infrared spectrum with that obtained by Wei, 

the infrared spectrum data are summarized in   3-10 below. 

 

Table 3-10. The infrared spectrum of iron porphinone complexes 

compound υCO (cm-1) Other bands (cm-1) Reference 

FeIII(OEPone)Cl 1713 1666, 1562, 1535, 1454, 1389, 1318, 

1271, 1225, 1208, 1144, 1119, 1056, 

1011, 960, 916, 860 

this work 

FeIII(OEPone)Cl 1719 1563, 1536, 1383, 1268, 1228, 1221, 

1209, 754, 732 

38 

FeII(OEPone) 1703 1550, 1530, 1361, 1221, 754, 742 38 

[FeIOEPone]- 1663, 1580 1603, 1548, 1526, 1430, 1372, 1248, 

982, 909 

this work 

[FeIOEPone]- 1671, 1578 1609, 1548, 1526, 1361, 1219, 728 38 
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      From Table 3-10, we can see our reduction product has the υCO at 1663 and 1580 cm-1, 

which are close to 1671 and 1578 cm-1 of [FeIOEPone]- by Wei38. The υCO downshifts 

over 50 cm-1 from 1713 cm-1 of FeIII(OEPone)Cl and splits to two peaks of 1663 and 

1580 cm-1 which shows that the reduction are successful. The υCO downshifts from high 

energy to lower energy with over 50 cm-1 indicates a considerably weakening of the 

carbonyl group. 

 

      For other bands, there are many similarities. For example, the vibrations bands at 

1548 cm-1 and 1526 cm-1 in the IR of our reduction products are also found in Wei’s. And 

the 1603 cm-1 and 1372 cm-1 in the infrared spectrum of our reduced product is close to 

1609 cm-1 and 1361 cm-1 by Wei. Thus, our reduced product is quite close to the desired 

[FeOEPone]- based on the infrared spectrum. Some differences may be due to the KBr 

matrix we use as opposed to the THF solution in Wei’s work. 

 

      For the porphinone complex, the reduction is known to be metal centered. Although 

the reduction is primarily on the iron, some of the election density of the iron(I) d�� will 

delocalize to the porphinone macrocycle by back-bonding. Although iron(III) and iron(I) 

both have back-bonding to the porphinone, iron(I) has two more electrons than iron(III). 

There are more electrons to be used for back-bonding in iron(I) porphinone complex. 

Thus, the electron density on the macrocycle of [FeIOEPone]- is higher than that of 

FeIIIOEPoneCl, making the carbonyl group frequency decrease after the reduction.  

The resonance Raman spectrum of [FeIOEPone]- samples shown in Figure 3-24 were 

measured at room temperature in KBr matrix. The excitation line was 406 nm and the 
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power on the sample was 1.0 – 0.9 mW, total collection time was three hours. The sample 

had very large background which led to considerable noise in the spectrum.  

 

      From Figure 3-24, the RR spectrum exhibits the frequencies at 1137, 1259, 1314, 

1378, 1493, 1570, 1609 cm-1. Since isotopically substituted [FeIOEPone]- haven’t been 

done, it is difficult for us to assign the specific modes.  

 

      We know that if the vibration in the molecule changes the dipole moment, this 

molecular vibration is IR active; if the vibration changes the polarizability, the vibration 

is Raman active. And for some vibrations, they may be both IR and Raman active, thus 

can be seen both in IR and Raman spectrum. In Table 3-11 below, the IR and Raman 

spectrum of iron porphinone complexes will be compared in detail. 

 

      From Table 3-11, Raman spectra of the [FeIOEPone]- exhibited a vibration at 

1671 cm-1 which is the same as the υCO of the IR by Wei38. There is a 1609 cm-1 band in 

our RR spectrum of [FeIOEPone]- which also can be found in the IR spectrum by Wei. 

Meanwhile, there are 1570, 1529, 1378 and 1363 cm-1 bands in the RR spectrum of 

[FeIOEPone]- which are close to 1578 (υCO), 1526, 1372 and 1361 cm-1 in the IR 

spectrum. What also should be noted is that the 1713 cm-1 (FeIIIOEPCl, υCO ) and 1703 

cm-1 (FeIIOEP, υCO ) could not be found in the Raman spectrum of [FeIOEPone]- 

indicating the high purity of our reduction product. Thus, from the comparison between 

the RR spectrum and IR spectrum, we may also conclude that the reduced product is the 

desired [FeIOEPone]- with few impurities of iron(II) or iron(III) porphinones. 
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Table 3-11. IR and Raman Comparison for iron porphinone complexes in KBr matrix 

compound Souce Other bands (cm-1) Ref. 

FeIII(OEPone)Cl IR 1713 (υCO ), 1666, 1562, 1535, 1454, 

1389, 1318, 1271, 1225, 1208, 1144, 

1119, 1056, 1011, 960, 916, 860 

this work 

FeII(OEPone) IR 1703 (υCO ), 1550, 1530, 1361, 1221, 

754, 742 

38 

[Fe IOEPone]- IR 1671 (υCO ), 1578 (υCO ), 1609, 1548, 

1526, 1361, 1219, 728 

38 

[FeIOEPone]- IR 1663 (υCO ), 1580 (υCO ), 1603, 1548, 

1526, 1430, 1372, 1248, 982, 909 

this work 

[FeIOEPone]- Raman 1671, 1609, 1570, 1529, 1493, 1378, 

1363, 1314, 1259, 1137 

this work 

 

      Based on the UV-visible spectrum, infrared spectrum and Raman spectrum we have 

obtained, we found that the reduction is successful and the reduced product is the desired 

[FeIOEPone]-. During the comparison of the resonance Raman and infrared spectrum of 

[FeIOEPone]-, we found many similarities in the bands, which shows that some peaks are 

both Raman and IR active. Since many IR vibrations of [FeIOEPone]- can be found in the 

Raman of [FeIOEPone]-, but the C=O vibration of FeII or FeIII  porphinone complexes 

which are considerably strong peaks, the conclusion is that the  reduction of 

FeIIIOEPoneCl is successful, the product is the desired [FeIOEPone]- with few impurities. 
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Figure 3-21. UV-visible spectrum of (a) [FeIOEPone]- (solid line) and (b) FeIIIOEPoneCl 
(dash line) in THF solutions.  
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Figure 3-22. IR spectrum of [FeIOEPone]- in KBr matrix 

 



89 
 

 
 

 
 
 
 
 
 
 
 
 
 

 
 

Figure 3-23. Infrared spectrum of (a) [FeOEPone]- (solid line) and (b) FeIII(OEPone)Cl 
(dash line) which have been obtaineded in KBr matrix. 
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Figure 3-24. The low frequency resonance Raman spectrum of [FeOEPone]- with 406 nm 
excitation line at room temperature in KBr matrix with background correction. The power 
was 1.0 – 0.9 mW and the correction time is three hours.   
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3-7. CONCLUSIONS: 

 

      The ultimate goal of the work was to obtain the x-ray structure of [FeIOEPone]-. The 

crystallization was carried out with the method by Reed40. The crude product of 

[FeIOEPone]- was dissolved in dibenzo-18-crown-6 in pyridine and THF solution to 

obtained the crystal [NaDB-18-crown-6(THF)2][Fe(OEPone)] for X-ray analysis. 

However, crystallization with dibenzo-18-crown-6 was unsuccessful, and the temporary 

loss of the department x-ray diffractometer prevented further attempts at crystallization. 

Future studies should incorporate the crown ether into the sodium anthracenide solution 

to minimize the synthetic steps and prevent oxidation of the iron(I) product. 

 

      The deuteration of porphinone complexes are quite important for the porphinone 

studies because: 1) the deuteration can reduce the complexity of the infrared spectrum by 

eliminating the vibration bands between 1400 cm-1 to 1500 cm-1; 2) the deuteration at 

other positions would help with the assignment of the infrared bands. 

 

      The reduction of iron(III) tetraphenylporphyrin and octaethylporphyrin complexes 

were moderately finished with the method by Reed13 and some impurities due to iron(II) 

were observed. The infrared spectra are examined to obtain the reduction’s influence on 

the vibration modes between 1000 cm-1 to 1700 cm-1. However, much better success was 

achieved for the iron porphinone, which was the goal of this work. 

  

      The Raman spectra of reduction product [FeIOEPone]- were obtained in KBr matrix. 
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The infrared and Raman spectrum for [FeIOEPone]- will allow us to compare the 

spectrum data to the DFT calculation results that have done by Ryan38, which will help us 

better understand the structure and the electron properties of [FeIOEPone]-. 
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