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ABSTRACT OF THESIS 
 
 
 
 

PROCESS FOR FORMATION OF CATIONIC POLY (LACTIC-CO-GLYCOLIC 
ACID) NANOPARTICLES USING STATIC MIXERS 

 
Nanoparticles have received special attention over past few years as potential drug 
carriers for proteins/peptides and genes. Biodegradable polymeric poly (lactic-co-glycolic 
acid) (PLGA) nanoparticles are being employed as non-viral gene delivery systems for 
DNA. This work demonstrates a scalable technology for synthesis of nanoparticles 
capable of gene delivery. Cationic PLGA nanoparticles are produced by emulsion-
diffusion-evaporation technique employing polyvinyl alcohol (PVA) as stabilizer and 
chitosan chloride for surface modification. A sonicator is used for the emulsion step and a 
static mixer is used for dilution in the diffusion step of the synthesis. A static mixer is 
considered ideal for the synthesis of PLGA nanoparticles as it is easily scalable to 
industrial production. The resulting nanoparticles are spherical in shape with size in the 
range of 100–250 nm and posses a zeta potential above +30 mV, indicating good stability 
of the colloid with a positive charge to bind to anionic DNA. The mechanism of 
nanoparticle formation was analyzed using multimodal size distributions (MSD), zeta 
potential data, and transmission electron microscopy (TEM) images. Several emulsion 
techniques and dilution effect were analyzed in this work. PVA acts as a compatibilizer 
for chitosan chloride and dilution of primary emulsion has little effect over the particle 
size of the PLGA nanoparticles. 
 
Key Words: Emulsion solvent diffusion technique, Nanoparticles, PLGA, Static mixer, 
Chitosan. 
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1. Introduction 

Drug delivery is the process of supplying therapeutic agent in desired dosage to the 
targeted site of action in the body. Drug delivery improves the therapeutic effect of the 
drug over the traditional routes of drug administration by concentrating the dosage near 
the location at which it is needed. Gene delivery is the process in which external 
deoxyribonucleic acid (DNA) is introduced into the cell to restore its normal functioning. 
Gene therapy has become an important option considered for treating several genetic and 
acquired diseases. DNA fragments carry a negative charge, and are rod-like, and 
relatively stiff, creating suspensions with high viscosities at low loadings.   
Complexation of DNA fragments with oppositely charged polymers tends to neutralize 
the DNA and promote the formation of globular structures with much smaller effective 
volumes and lower solution viscosities. Synthesis of polymeric nanoparticles with desired 
surface characteristics plays a vital role in achieving targeted gene delivery. 
Biodegradable polymeric nanoparticles like poly (lactic-co-glycolic acid) PLGA are 
being widely examined for their performance as gene carriers. There have been recent 
reports of sub-micron complexes of polymer/DNA that could provide safe and efficient 
delivery methods. In this work, PLGA nanoparticles are generated using polyvinyl 
alcohol (PVA) as stabilizer; chitosan chloride modifies the surface, conferring a positive 
charge on PLGA nanoparticles.  

Various methods are available for the synthesis of polymeric nanoparticles. The emulsion 
– diffusion – evaporation method is chosen for the synthesis because of its ability to 
generate PLGA nanoparticles using less toxic and easily removable solvents, such as 
ethyl acetate. Development of scalable methods facilitates the production of polymeric 
nanoparticles on an industrial scale. It is presumed in this work that static mixers can 
generate good secondary emulsions, resulting in the formation of nanoparticles with 
uniform size. The formation of the nanoparticles should be rapid and it is likely that the 
diameters of the particles will be related to the flow rates in the static mixer. Initially a 
homogenizer followed by a static mixer is employed for synthesis and then the process is 
improved by using a sonicator instead of homogenizer for the primary emulsion 
generation to get more uniform particle size.  

The objective of this work is to develop proof of concept data using a static mixer to 
generate uniform PLGA nanoparticles in aqueous media for gene therapy and other 
applications. Liquid-liquid interfacial generation can be done using baffled stirred tank 
agitation, rotor stator mixers, ultrasonic mixers, and static mixers (Quadros and Baptista 
2003; Thakur, Vial et al. 2003; El-Jaby, McKenna et al. 2007). Static mixers seem 
particularly suited to solving the scale-up challenges from the bench to full scale 
production because they are low shear devices requiring small volumes, can readily be 
adapted for a variety of flow rates, and can be cleaned and sterilized easily. These 
characteristics will speed adaptation of processes to industrial scale production of PLGA 
nanoparticles for gene delivery. The key research will be to produce homogenously sized 
nanoparticles highly efficient for gene delivery. The Particle size distribution based on 
volume and number of nanoparticles, zeta potential and TEM images of the product are 
analyzed.    



2 

 

2. Literature Review  

Drug delivery and drug delivery systems 

Discovery of highly potent and specific drugs poses complex problems for drug delivery. 
Many novel drugs have inherent drawbacks such as poor stability, high molecular weight, 
very short half-life in vivo, or highly toxicity (Wheatley and Langer 1987). 
Unconventional drugs, such as peptides, proteins, genes and oligonucleotides, increased 
the need for sophisticated and effective drug carriers. Drug delivery systems minimize 
the side effects of toxic drugs by supplying active compounds to the intended site in the 
body. Controlled release methods are usually required for these novel drugs to be 
maintained at relatively steady concentrations in the body. Depending on the 
requirement, the system may release the drug at uniform or programmed rates over time 
periods ranging from hours to months (Solaro 2002). Advantages of drug delivery 
systems over other conventional modes of drug dosage include improved efficiency, low 
toxicity, and decreased drug dosage frequency, resulting in better patient compliance. 
Therefore, some of the most desired characteristics of drug delivery systems are high 
drug entrapment efficiency, high in vivo stability, and ability to achieve controlled and 
targeted delivery (Solaro 2002).  

Drug delivery systems. A drug delivery system is a formulation or a device that facilitates 
the introduction of the therapeutic agent to the desired site of action in the body (Jain and 
Editor 2008). Drug delivery systems can be classified into three generations based on 
their functional properties (Barratt 2003). First generation materials deliver the drug to 
the deserved site only if they are implanted close enough to desired site. Because of this, 
they are not considered as true drug carriers. Microcapsules and microspheres used for 
chemoembolization, protein and peptide delivery and drug delivery into the brain belong 
to this generation.  

Second generation systems transport the drugs through the body, delivering them at the 
desired site. These systems are generally less than 1 µm in dimension so that they can 
move across membranes, such as the stomach lining, capillaries, etc. These are 
considered as true carriers of drugs. Colloidal drug carriers such as liposomes, 
nanospheres, nanocapsules comprise this group. For intravenous delivery, nanoparticles 
are used as the smallest capillaries in the body range from 5-6 µm in diameter (Hans and 
Lowman 2002). Polymeric nanoparticles are considered as good substitute for liposomes 
because of the technological limitations of liposomes. These include poor solubility, 
instability, poor drug encapsulation efficiency, rapid leakage of hydrophilic drugs, 
difficult surface functionalization and lack of control over their release profile (Barratt 
2000; Hans and Lowman 2002; Solaro 2002; Barratt 2003; Goldberg, Langer et al. 2007).  

Third generation systems are considered improved second generation systems. In 
addition to sustained drug delivery, they have the ability to recognize their targets. This is 
achieved by functionalizing the nanoparticles with biomolecules that can attach to 
specific sites in the body. These nanoparticles are guided to the intended site by the 
attached antibodies, peptides or sugar moieties (Barratt 2003; Yang, Wang et al. 2006). 
These sophisticated drug delivery carriers enable delivery of entirely new classes of 
drugs.  
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Depending on the physical form, drug delivery systems are classified as molecular and 
particulate carriers (Barratt 2003). A few examples of molecular carriers include- soluble 
polymer molecules with covalently attached drugs, targeting moieties along with drugs in 
some cases, drug-antibody complexes, antibody-natural macromolecule complexes, 
antibody-lipophilic prodrug conjugates, and cyclodextrins with a drug molecule in its 
central cavity. Molecular carriers can deliver a wide variety of associated drugs. The 
drawback with molecular carriers is the low payload per particle conveyed to the 
deserved site. Patient cells like erythrocytes or lymphocytes loaded ex vivo with drug, 
and synthetic drug delivery carriers like liposomes and nanoparticles are examples of 
particulate drug carriers. The size and shape of synthetic particulate carriers play a 
prominent role in deciding its efficacy as drug delivery system. These carriers can convey 
large number of drug molecules per particle. However the disadvantage is the complexity 
and regulatory aspect involved in the synthesis of these carriers.  

Gene delivery 

Gene therapy is an evolving technique for treating genetic disorders by inserting an 
extraneous gene or a portion of it into a targeted site. Altering with genetic materials like 
DNA or Ribonucleic acid (RNA) helps in restoring a missing function of cell or fixing a 
malfunctioning cell. Gene therapy is not yet approved by FDA for clinical application it 
is still in experimental stage. Gene delivery to the intended site can be done by means of 
viral or non-viral vectors.  Initially viral vectors were considered efficient because of 
their capacity to penetrate and transfer the genetic material into the cells. However, the 
disadvantages associated with viral vectors like insertional mutagenesis, possibility of 
viral infection, induction of immune response, high cost of production and difficulty in 
scaling up to industrial level inhibit their usage (Yang, Wang et al. 2006; Kang, Lim et al. 
2008).  

Alternative non-viral vectors are more preferable over viral vectors as they are easy to 
produce, transport, store, reproduce in large quantities, have greater capacity to carry 
nucleic acids, can transfer larger transgenes and are less susceptible to immune response 
(Goldberg, Langer et al. 2007; Gwak and Kim 2008; Kang, Lim et al. 2008). Some of the 
commonly used non-viral vectors include cationic liposomes, cationic polymer 
nanoparticles, and inorganic particles produced either from natural or synthetic materials. 
Because of their inherent advantages like flexibility in synthesis methods to produce a 
desired product, cationic polymeric nanoparticles have received great attention. 
Condensed DNA is obtained by mixing both DNA and cationic polymer solutions 
together, forming a DNA-polymer complex in the nanometer size range (Yang, Wang et 
al. 2006; Goldberg, Langer et al. 2007). The three main components of nanoparticles 
required for targeted delivery of protein are: 1) a biocompatible polymer matrix that is 
compatible both with drug and stabilizer, 2) a stabilizing agent, and 3) a structurally 
defined component for guiding the nanoparticles to the intended site (Solaro 2002). One 
of the most commonly used cationic polymers for gene delivery is poly (ethylene imine) 
(PEI) (Yang, Wang et al. 2006; Goldberg, Langer et al. 2007). Using branched PEI, DNA 
can be condensed to generate 100 nm spherical polymeric molecules and these 
nanoparticles also offer high gene transfection efficiency. The main limitation of PEI 
usage is its high cytotoxicity (Goldberg, Langer et al. 2007; Gwak and Kim 2008; Kang, 
Lim et al. 2008).  
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Nanoparticles and physicochemical properties 

Extensive research in the field of drug delivery led to application of nanoparticles as 
potential drug carriers. Solid colloidal particles in the range of 10 to 1000 nm are referred 
to as nanoparticles (Lee 2001). Colloidal particles have high surface areas, and flexible 
synthesis methods to obtain different internal structures and surface properties making 
them highly suitable for a wide range of drug delivery applications. Nanoparticles with 
different structures can be synthesized (spheres, rods or disks), but nanospheres are 
simplest to produce and are widely used. Other structures like nanocapsules, nanotubes, 
nanogels, and dendrimers are preferred for some specific applications (Goldberg, Langer 
et al. 2007).  

Nanocapsules have lower polymeric content and large lipophilic drug payload capacity 
compared to that of nanospheres (Limayem Blouza, Charcosset et al. 2006). Nanotubes 
have large inner volumes facilitating the binding of particles with wide size range from 
small chemical molecules to large proteins (Martin and Kohli 2003; Gao and Xu 2009). 
Advantages of nanogels are that they can be synthesized in the absence of active 
compound and they also prevent payload aggregation (Goldberg, Langer et al. 2007). 
Dendrimers have low polydispersity and high functionality (Yang and Kao 2006). 

Nanoparticles can be of two types depending upon the process followed in their synthesis 
(Lee 2001). Nanospheres have a matrix type structure with drug dispersed in it. 
Nanocapsules have a membrane-wall structure with the drug entrapped in its oily core 
(Lee 2001; Barratt 2003). Because of their high surface area, drugs can also be adsorbed 
on the nanoparticles.  

Numerous methods are available for the synthesis of nanoparticles with controlled 
composition, shape, size and morphology. These methods also give an excellent 
opportunity to modulate the structure, composition and physicochemical properties of 
nanoparticles so that better solubility, immunocompatibility and cellular uptake can be 
achieved. Drug formulation needs precise definition of requirements and objectives so 
that appropriate method for synthesis can be chosen. The raw materials for synthesis of 
nanoparticles can either be synthetic or natural materials. The manufacturing process for 
particular nanoparticles will depend upon the physical and chemical properties of raw 
materials to be used in their synthesis and the solubility characteristics of active 
component involved (Lee 2001). Properties such as biocompatibility, degradation 
behavior, administration route, desired drug release profile, and biomedical application 
type need to be considered when selecting nanoparticles materials (Lee 2001).  

Desired biodistribution of the therapeutics in the body can be obtained by controlled and 
targeted drug delivery using nanoparticles. Nanoparticles possess high surface area to 
volume ratios which results in higher dissolution rates and thereby result in better 
bioavailability (Goldberg, Langer et al. 2007). Nanoparticle-drug complexes protect 
orally administered drugs with lower half-life from harsh environments in the body, 
reduce chemical and enzymatic degradation in the body, and lengthen the circulation time 
of the drug/carrier pair (Mittal, Sahana et al. 2007). Controlled release kinetics of the 
drug and targeted delivery of active compound to the specific site via nanoparticles 
carriers reduces the toxic side effects and improves the efficacy and therapeutic index of 
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the drugs. Nanoparticles can also be successfully used to deliver lipophilic drugs with 
poor solubility as well as bioactive compounds.  

Size and surface properties like surface charge, hydrophilic-hydrophobic balance, and 
site-specific components play an important role in selecting nanoparticles for specific 
drug delivery applications. The purpose of drug delivery is served only if the 
nanoparticles deliver the drug to the targeted site, but this requires overcoming of many 
hurdles in the path depending upon the route of administration.  

Size-related effects. The size of the nanoparticle has direct impact on the stability, 
cellular uptake, biodistribution, and drug release (Mittal, Sahana et al. 2007). Drug 
delivery systems with sizes in nanometer range can easily cross cell membranes 
(Goldberg, Langer et al. 2007). In intravenous administration, nanoparticles with length 
scales of approximately 100 nm can escape through the discontinuous capillary 
endothelium. Nanoparticles of this length scale or smaller can enter solid tumors, infected 
sites, or inflamed sites through the defective endothelium capillary at these sites (Barratt 
2000; Yang, Wang et al. 2006). These small particles can also escape through the gaps 
between endothelial cells of the organs like liver, spleen, and bone marrow (Barratt 
2000). Nanoparticles with size below 10 nm are prevented to reach targeted site as they 
are eliminated through renal clearance (Goldberg, Langer et al. 2007). Good circulation 
times are observed in particles with sizes ranging in between 70 nm and 200 nm 
(Goldberg, Langer et al. 2007). The spleen and phagocytes both eliminate particles 
greater than 200 nm from circulation in body (Goldberg, Langer et al. 2007). In oral 
administration route, only particles having sizes below 200 nm can diffuse across 
enterocytes (Barratt 2003). Summarizing above information it can be concluded that 
particles in range 100 nm to 200 nm are better for drug delivery.  

Table 2.1. Size-related retention or elimination mechanisms 

Size, nm Response Reference 

< 200 Elimination by spleen and phagocytes (Goldberg, 
Langer et 
al. 2007) 

< 200 Oral administration, diffusion across enterocytes (Barratt 
2003) 

70 < D < 200 Good circulation times (Goldberg, 
Langer et 
al. 2007) 

<100 Permeation through the gaps of endothelial cells 
in organs (liver, spleen, bone marrow) 

(Barratt 
2000) 

<10 Renal clearance (Goldberg, 
Langer et 
al. 2007) 
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 Surface-property related effects.  Nanoparticle surface properties have large effects on 
their performance for drug delivery. Prolonged circulation times of drugs in the body as 
well as targeted delivery of drug to specific site can be achieved by altering the surface 
characteristics of the nanoparticles (Rolland and Sullivan 2003). Nanoparticles, 
especially those with hydrophilic surfaces, are very promising drug carriers as they can 
escape the undesired elimination from the body through mononuclear phagocytes, 
macrophages, and reticuloendothelial systems (RES) of blood and other organs (Yang, 
Wang et al. 2006). Coating an antigen with specific antibody to promote phagocytosis of 
the antigen is called opsonization (Clancy 1998). High surface concentrations of hydrated 
polymer chains on hydrophilic particles reduce protein adsorption and, consequently, 
opsonization (Ottenbrite and Editor 1999; Barratt 2000; Solaro 2002; Yang, Wang et al. 
2006). One of the most commonly used polymers for surface modification of 
nanoparticles to prevent opsonization is PEG.   The nanoparticles with hydrophilic 
surfaces thereby can experience longer circulation times in vivo. Nanoparticles with 
hydrophobic surface are more susceptible to elimination by spleen, liver and lungs as 
they are considered foreign by the body. Thus, if the liver is the desired site of action, 
then a hydrophobic drug delivery system is a good choice (Hans and Lowman 2002).  

The surface charge of nanoparticles is another crucial parameter to be considered.  Zeta 
potential quantifies the surface charge on the particle. Zeta potential is an indicator of the 
colloidal stability. The higher the absolute value of zeta potential the greater is the charge 
on the surface. The stability of the particles improves with high repulsive interactions, 
resulting in more uniform distribution of stable particles in colloids (Hans and Lowman 
2002). Using cationic nanoparticles for gene delivery result in good gene binding 
capacity, high gene transfection efficiency, and relatively low toxicity (Yang, Wang et al. 
2006). This is because most of the cells have negatively charged membranes and cationic 
nanoparticles are preferred as they have good cell binding capacity. 

Polymeric nanoparticles and polymer selection for synthesis 

Nanoparticles can be made from polymers, nonpolar lipids, inorganic compounds and 
also from natural macromolecules like proteins and polysaccharides (Barratt 2003; Yang, 
Wang et al. 2006). Polymeric nanoparticles are considered to be promising drug delivery 
carriers as they can be chemically modified to be biodegradable and biocompatible (Lee 
2001; Solaro 2002; Yang, Wang et al. 2006; Mittal, Sahana et al. 2007). Polymeric 
nanoparticles are capable of delivering wide range of active compounds to different body 
parts over specific time period (Hans and Lowman 2002). Natural polymers are not much 
of interest as they may vary in purity and most often need to be cross linked to prevent 
dissolution during use. Cross linking methods often cause denaturation of the entrapped 
drug (Lee 2001; Hans and Lowman 2002). Synthetic polymers offer choice among wide 
variety of chemistry, structures, and dimensions so that appropriate polymer for particular 
application can be selected. Different structures available for polymer molecules include 
linear, branched, cross-linked, block, graft, multivalent, dendrimers, and star shaped 
polymers (Goldberg, Langer et al. 2007). Surface properties of the polymeric 
nanoparticles like functionality and charge can also be altered during their fabrication.  
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Table 2.2.  Summary of polymers with different topology that are used in drug delivery.  

S.No. Shape Subtype Polymers Drug delivered Reference 

1. Linear   PHPMA Doxorubicin (Qiu and Bae 2006) 

   PSMA Neocarcinostatin (Qiu and Bae 2006) 

   PVP Para-nitroaniline,  

Interleukin - 6 

(Qiu and Bae 2006) 

   Dextran Protein (Qiu and Bae 2006; Jin, Zhu et al. 2008) 

   Alginate Gatifloxacin (Qiu and Bae 2006; Motwani, Chopra et 
al. 2008) 

   Chitosan Doxycycline (Qiu and Bae 2006; Shanmuganathan, 
Shanumugasundaram et al. 2008) 

   PEG DNA (Kainthan, Gnanamani et al. 2006; Qiu 
and Bae 2006) 

2. Branched  Hyperbranched 

polymer 

Hyperbranched 

 poly (aspartamide)s 

Beclomethasone 
dipropionate 

(Mather, Viswanathan et al. 2006; 
Pitarresi, Casadei et al. 2007) 

  Graft 
copolymer 

PEI-graft-PCL 
(PEC) 

Doxorubicin, 
DNA 

(Qiu and Bae 2007) 

  Star-shaped  

polymer 

PDMAPAAm–
PNIPAM 

DNA (Zhou, Ishikawa et al. 2007) 
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Table 2.2(continued). Summary of polymers with different topology that are used in drug delivery. 

   Chlorin-cored PCL 
-b- mPEG 

Paclitaxel (Peng, Shieh et al.) 

3. Cross 

linked  

Polymer 
networks 

(PVA) hydrogels proxyphylline (Wu and Brazel 2008) 

   PEG–PLLA–PEG 
hydrogels 

Dextran (He, Kim et al. 2008) 

  Interpenetrating 
polymer 
networks 

poly (acrylic acid-
co-acrylamide)/ O-
carboxymethyl 
chitosan 

hydrogel 

Insulin  (Yin, Ding et al. 2008) 

  Semi-
interpenetrating 
polymer 
networks 

PEGDMA/PLA 
semi-IPN 

Protein (Lee and Yuk 2007) 



 

9 

 

Polymeric nanoparticles can be produced cheaply and easily in large scale by following 
any one of the numerous methods available for synthesis. Polymeric nanoparticles can be 
produced either starting directly from polymers or starting from monomers (Barratt 2000; 
Lee 2001; Barratt 2003).  Polymeric nanoparticles are not only used for targeted and 
sustained delivery of drugs but also for better control over the drug release profile. 
Polymeric nanoparticles can deliver drugs to maintain steady plasma concentration over a 
period of time thereby decreasing frequency of doses and side effects (Mittal, Sahana et 
al. 2007). Enhanced bioavailability is achieved because of comparatively more stable and 
soluble polymer-drug complexes and also because of the small size of the particles. 
Defined particle size, three-dimensional structure, and composition can easily be obtained 
as formulation of the polymeric systems is more governable (Goldberg, Langer et al. 
2007).  

Chemical properties and structure of polymers play a vital role as they help control the 
interactions between the drug and its external environment, thus affecting their efficiency 
as drug carriers (Goldberg, Langer et al. 2007). Along with the physicochemical 
properties, drug loading efficiency, drug release rate and also biodistribution of drug in 
the body are highly affected by the structure of the polymer (Goldberg, Langer et al. 
2007). Molecular weight and polydispersity of a polymer also play significant roles in 
characterizing its biological properties (Goldberg, Langer et al. 2007; Mittal, Sahana et 
al. 2007). The molecular weight of the polymer affects the nanoparticles size and 
encapsulation capacity (Lee 2001; Hans and Lowman 2002; Mittal, Sahana et al. 2007). 
Lower molecular weight polymer results in small sized nanoparticles with low 
encapsulation efficiency. Use of high molecular weight polymer or high concentration of 
polymer during synthesis method results in particles with larger size and higher drug 
loading efficiency.  

Complexation mechanisms. Drugs can be attached to the polymer during the 
polymerization. Drugs can also be added to preformed polymeric nanoparticles, which 
adsorb them on the nanoparticle surface or by incorporating the drug into polymeric 
matrix (Lee 2001). In some cases, drugs are covalently bonded to the polymer forming a 
drug-polymer complex in which the drug is uniformly dispersed. It can also be physically 
entrapped in the polymer vesicles (Goldberg, Langer et al. 2007). Drug loading efficiency 
into the nanoparticles is highly affected by the pharmaceutical’s properties, synthesis 
parameters and structural compatibility between the drug and the polymer (Yang, Wang 
et al. 2006). Based on the solubility of the drug, a process for loading of active 
components into polymeric nanoparticles is selected. Hydrophobic drugs are loaded using 
oil-in-water emulsion procedure whereas the water-in-oil-in-water double emulsion 
method is used for hydrophilic materials. Ionic complexation has also been used to load 
some specific drugs into nanoparticles.   

Synthesis of polymeric nanoparticles  

A very good reference for synthesis of polymeric nanoparticles is encyclopedia by Lee 
2001.In situ polymerization of monomer for synthesis of nanoparticles encounters some 
major disadvantages. One of it is the multi-component nature of the polymerization 
medium, which results in unpredictable molecular weights of the polymerized 
nanoparticles (Lee 2001). The molecular weight of the polymer greatly influences the 
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degradation rate, drug release behavior of the nanoparticles and biodistribution of drug in 
the body. With in-situ polymerization of monomers, prediction of molecular weight is 
difficult and is considered a major disadvantage. Most of the polymers produced in this 
manner are not biodegradable. Drug activity may be hindered if its chemical groups 
interact either with reactive monomers and/or with H+ ions in anionic polymerizations 
(Lee 2001). Elimination of toxic residues such as initiator, unreacted monomer, and 
surfactant molecules are time consuming and inefficient procedures (Lee 2001). In order 
to overcome all these drawbacks, methods involving preformed polymers are developed 
so that biodegradable, well-characterized and non-toxic polymeric nanoparticles are 
generated.  

Both natural and synthetic polymer molecules can be used to produce nanoparticles. 
Natural polymers that are widely used include proteins like albumin, gelatin, legumin, 
vicilin and polysaccharides like alginate, agarose, and Chitosan (Lee 2001). Because of 
their inherent properties like biodegradability and bioavailability, they are widely used as 
biomaterials.  Nanoparticles with natural macromolecules are mainly produced by two 
main methods. One of them is emulsification-based method involving in the formation of 
a water-in-oil emulsion followed by chemical cross-linking or heat denaturation of the 
macromolecules (Lee 2001). In cases where heat sensitive drugs are used, heat 
denaturation for hardening of nanoparticles may be a disadvantage. If heat sensitive drugs 
are employed, a better alternative is to use chemical hardening agents.  A second 
technique is a phase separation-based process in which phase separation in an aqueous 
medium is followed by chemical cross-linking. For the synthesis of nanoparticles using 
this method, it is necessary to use hardening agents like glutaraldehyde to crosslink the 
polymer in the three-dimensional nanoparticle. The use of a hardening agent is highly 
undesirable as it may interact with drug, or residual agent may leach from the 
nanoparticles during use, causing toxicity issues.  

Most of the synthetic polymers are composed of big molecules with typical solution 
characteristics and easily form colloidal dispersion with well defined particle size. 
Numerous methods are reported in literature for the manufacture of the nanoparticles 
using synthetic materials. The common process in all the methods is coacervation (Solaro 
2002). The generated colloidal dispersion is then eventually converted into nanoparticles 
by a process which involves externally induced separation of at least two phases for the 
production of nanoparticles. Aggregation of the colloidal particles in the dispersion can 
be prevented by the use of stabilizers. Stabilizers coat the outer surface of the particles 
with a metastable microphase which prevents coalescence of these particles. The 
manufacturing method is selected based upon the raw materials and their solubility 
characteristics. Some of the commonly used techniques include emulsification-solvent 
evaporation method, solvent displacement method, salting-out technique, emulsification-
diffusion method. These emulsion based methods differ in solubility of organic phase in 
aqueous phase. The emulsification-evaporation method uses water and volatile, 
immiscible solvents which can be easily separated after nanoparticles are produced. The 
solvent displacement, salting-out, and emulsification-diffusion methods use partially or 
completely miscible organic solvents.  



 

11 

 

In emulsification-solvent evaporation method, a preformed polymer is dissolved in a 
volatile water-immiscible organic solvent to form a solution (Lee 2001; Hans and 
Lowman 2002). This solution is emulsified in an aqueous phase containing a surfactant or 
stabilizer resulting in oil-in-water emulsion. The coalescence of the organic droplets can 
be avoided by continuous stirring. Emulsification can also be enhanced by using 
sonication or microfluidization with a homogenizer. Nanoparticles are formed when 
organic solvent is removed from the droplets by evaporation under stirring at room 
temperature or by rotary evaporation under reduced pressure. Generally lipophilic 
compounds that are soluble in the polymer solution can be effectively entrapped using 
emulsification-solvent evaporation method. The main disadvantage with this method is 
that it generally uses toxic chlorinated solvents and surfactants. Slight modifications to 
this method are suggested in literature to allow for efficient entrapment of amphiphilic 
and hydrophilic into the nanoparticles. 

Solvent displacement method uses semi-polar and completely water miscible liquids like 
ethanol, methanol or acetone (Solaro 2002). Lipophilic stabilizer if used, polymer, and 
drug are dissolved in the solvent. Under stirring, this organic solution is then added to 
aqueous phase containing stabilizer resulting in rapid solvent diffusion. This in turn 
results in instantaneous nanoparticle formation. The organic phase is separated under 
reduced pressure. This method is not preferred for hydrophilic drugs as they rapidly 
diffuse into the water phase resulting in extensive loss of drug. A major drawback to this 
technique is that it is not easy to select suitable solvent/nonsolvent systems for the 
polymer and drug employed such that high entrapment and production yield is obtained.  

Salting-out techniques often employ water miscible acetone as solvent unlike 
emulsification-solvent evaporation method that employs toxic chlorinated solvents (Lee 
2001; Hans and Lowman 2002; Solaro 2002). An aqueous solution of colloidal stabilizer 
and electrolyte that act as salting-out agent is used in this method. Saturation of the 
aqueous phase with the salting-out agent avoids the miscibility of both phases. An 
aqueous phase is added to an organic phase containing dissolved polymer and drug under 
continuous stirring to form an emulsion. Addition of aqueous phase is continued until 
phase inversion is observed and an oil-in-water emulsion is formed. This emulsion is 
further diluted by addition of pure water to break the equilibrium between the two phases. 
As a result, acetone completely diffuses into the water resulting in precipitation of 
polymeric spherical nanoparticles. Solvent and electrolytes are removed by cross-flow 
filtration technique. The scale-up of the salting-out technique is fairly easy (Solaro 2002). 
This method is relatively versatile as variety of polymers can be used with this technique 
and it can also use solvents other than acetone and also non-electrolyte salting-out agents 
(Allemann, Gurny et al. 1992). This method does not require use of surfactants. This 
technique allows for good loadings of lipophilic drugs. The recycle of salts and solvent 
used in the process is a major concern. The compatibility of salt with the drug should also 
be taken into consideration for this method.  

The emulsion-diffusion process employs a partially miscible organic solvent such as 
benzyl alcohol for nanoparticles preparation (Hans and Lowman 2002; Solaro 2002). In 
this method, polymer dissolved in an organic phase is slowly added to an aqueous phase 
containing dissolved stabilizer under rigorous stirring. As the organic phase is just 
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slightly miscible in water, after the addition of aqueous phase is completed initially an 
oil-in-water emulsion is observed. This emulsion is diluted by adding sufficient quantity 
of pure water under stirring leading to the diffusion of organic phase into the water. This 
results in precipitation of the polymer and the consequent formation of nanoparticles. The 
mechanism of formation of nanoparticles in emulsion-diffusion technique is explained 
based on interfacial phenomenon.  

This work is mainly based on a new method called emulsion-diffusion-evaporation 
developed by Ravi Kumar et al. This method is basically a combination of emulsion-
evaporation and emulsion-diffusion techniques for nanoparticle preparation (Kumar, 
Bakowsky et al. 2004; Mittal, Sahana et al. 2007). In this method, a preformed polymer 
dissolved in a volatile and slightly miscible organic solvent like ethyl acetate (Kumar, 
Bakowsky et al. 2004). Then an emulsion of organic phase in aqueous phase containing is 
generated. Immediately after this, the emulsion is slowly diluted by sufficient pure water 
under continuous stirring resulting in nanoparticle formation. Organic solvent is removed 
by evaporation. This method involves usage of less toxic ethyl acetate solvent and the 
removal of organic solvent is fairly easy.  

PLGA, PVA and chitosan chloride  

Selection of polymer is done based upon the type of drug delivery application and the 
properties of the drug to be delivered. Some of the commonly used synthetic polymers 
include PLGA, PCL, PLA, PGA, PHB, etc (Lee 2001; Hans and Lowman 2002; Barratt 
2003; Yang, Wang et al. 2006). Among these PLGA is one of the most popular polymers 
used because of its good biodegradability, biocompatibility and non-toxic nature (Lee 
2001; Hans and Lowman 2002; Mittal, Sahana et al. 2007). FDA approval is an added 
advantage to this commercial polymer. PLGA has a high molecular weight and free 
carboxylate end-groups, which give it good drug loading capacity (Goldberg, Langer et 
al. 2007). Increased PLA content makes the copolymer more hydrophobic and increases 
PGA results in hydrophilic copolymer (Hans and Lowman 2002). Using low molecular 
weight PLGA in organic solution yields nanoparticles with smaller size (Lee 2001; Hans 
and Lowman 2002). Varying the molecular weight and the ratio of lactic and glycolic 
acid of the polymer, the rate of degradation and the consequent drug delivery rate of the 
PLGA nanoparticles can be controlled (Lee 2001; Hans and Lowman 2002; Mi, Shyu et 
al. 2003; Mittal, Sahana et al. 2007; Tahara, Sakai et al. 2008). As a result, controlled 
release of active compound over a desired period of time is possible using PLGA.  

Biodegradation is defined as the biological cleavage of the polymer structure (Merkli, 
Tabatabay et al. 1998). Heller proposed three different mechanisms for polymer 
degradation based on the solubility of the polymer (Merkli, Tabatabay et al. 1998; Lee 
2001). In case of hydrophobic polymers like PLGA, backbone cleavage of the polymer 
results in small non-toxic soluble molecules (Anderson and Shive 1997). Homogeneous 
erosion of polymer in the particle core is observed during degradation of PLGA 
(Anderson and Shive 1997). Hydrolytic cleavage followed by enzymatic cleavage of the 
polymer chains produce degradation products. Under physiological conditions, hydrolysis 
of PLGA results in glycolic acid and lactic acid that are easily removed from the body by 
Krebs cycle (Lee 2001). Various body cells can well sustain these PLGA degradation 
products.  
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In gene delivery applications, PLGA can be employed as a better substitute for PEI 
because it is biodegradable, it possesses high gene transfection efficiency and PLGA also 
has lower toxicity compared to that of PEI (Gwak and Kim 2008; Kang, Lim et al. 2008). 
Sustained gene expression can be obtained using PLGA nanoparticles, making it an 
efficient gene delivery vector (Gwak and Kim 2008; Kang, Lim et al. 2008). Coating of 
cationic polymer chitosan on PLGA nanoparticles has improved the nucleic acid loading 
into the polymer (Tahara, Sakai et al. 2008). Chitosan also reduces the initial burst of 
nuclei acid thereby more sustained release over a prolonged period is obtained (Tahara, 
Sakai et al. 2008). Thus PLGA nanoparticles modified by chitosan are considered very 
promising non-viral gene delivery vectors.  

The ability of a chemical to cause an injury on reaching a susceptible site in or on the 
body is termed as toxicity (Lewis 1999). Most chemicals can adversely affect the human 
tissue if they come in direct contact with the tissue. Toxicity depends on depends on 
number of factors like nature of the chemical, dose of chemical, time period of exposure, 
state of dispersion, affinity for human tissue and sensitivity of tissue (Lewis 1999; 
Bennett 2005).  Toxicity is measured in terms of threshold limits or lethal dose 50 (LD50). 
Threshold limit is defined as the conditions under which all workers may be repeatedly 
exposed to the chemical without any harm. The values are expressed in terms of time-
weighted average concentrations for a normal day. Lethal dose 50 is the amount of 
chemical which will kill one-half of the experimental animals tested. It is expressed per 
kilogram of body weight. Ethyl acetate is the solvent for PLGA in this work. The 
threshold limit value of ethyl acetate is 400ppm in air.   

Stabilizer plays an important role in formation of nanoparticles. Appropriate stabilizer 
suitable for the drug delivery application has to be chosen from the wide variety of 
synthetic and natural polymeric stabilizers available. The concentration of stabilizer has a 
high impact on nanoparticle formation (Lee 2001; Hans and Lowman 2002). In general, 
increasing stabilizer concentration decreases the nanoparticle size formed. Low 
concentrations of stabilizer lead to the coalescence of the polymer droplets in the 
emulsion decreasing the nanoparticle productivity. Interaction between drug and 
stabilizer is of major concern to use high concentrations of stabilizer which leads to low 
drug entrapment into the polymer (Italia, Bhatt et al. 2007). So within certain limits, 
variation in particle size can be achieved by varying stabilizer amount used. 
Biodegradable PVA is considered one of the good polymers to stabilize PLGA 
nanoparticles (Vandervoort and Ludwig 2002). 

Drug targeting can be primarily divided into two types namely active and passive 
targeting (Wheatley and Langer 1987). In passive targeting, the inherent dispositions of 
the drug delivery system are taken advantage to reach the desired site of action. In active 
targeting, the natural characteristics of the particles are modified to achieve the desired 
targeted delivery. For active targeting, either surface modification of the particles or 
adding biomolecules that guide or bind to the targeted site is required (Rolland and 
Sullivan 2003). For a particular drug delivery application, required properties of the 
nanoparticles like hydrophilicity, and zeta potential can be attained by surface 
modification of nanoparticles. One of the most commonly used polymers for surface 
modification is PEG (Clancy 1998; Hans and Lowman 2002; Solaro 2002; Rolland and 
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Sullivan 2003). PEG is a biocompatible, non-ionic, and hydrophilic polymer. Chitosan is 
a cationic and hydrophilic polymer that is often used for surface modification (Lee 2001; 
Kumar, Bakowsky et al. 2004; Duan, Wu et al. 2007). Apart from being mucoadhesive 
and biodegradable, chitosan confers positive zeta potential to PLGA nanoparticles (Hans 
and Lowman 2002; Kumar, Bakowsky et al. 2004; Tahara, Sakai et al. 2008). This results 
in an increased DNA binding capacity of PLGA nanoparticles. Chitosan enhances the 
penetration of the nanoparticles across the mucosal surface. Mucoadhesive polymers like 
chitosan have prolonged residence time increasing the bioavailability (Dhawan, Singla 
Anil et al. 2004; Kumar, Bakowsky et al. 2004).  

Static Mixers 

Static mixer consists of a series of identical mixing elements placed in a pipe, column or 
reactor (Maa and Hsu 1996; Thakur, Vial et al. 2003; Ouzineb, Lord et al. 2006; Kumar, 
Shirke et al. 2008). Static mixers are being extensively used in chemicals, 
petrochemicals, pharmaceuticals, food engineering, paper, and pulp industries. 
Depending on the requirement we can choose from more than 30 different types of 
commercial static mixers available. These models offer different variety of basic 
geometries and variable parameters. Number of mixing elements can be varied to achieve 
the desired mixing. Aspect ratio, ratio of length to diameter of each mixing element, is 
another important parameter considered for static mixers. Generally commercial models 
are designed using standard values of parameters that enable good mixing over wide 
range of applications.  

Static mixers are used for continuous mixing operations in process industries. Based upon 
the design and geometry of the mixing elements, static mixers can be divided into five 
categories viz., open designs with helices, open designs with blades, corrugated plates, 
multi-layers designs, and closed designs with channels and holes (Thakur, Vial et al. 
2003). The principle involved in mixing of flowing streams in a static mixer is the 
redistribution of fluid in the radial and tangential direction to the flow (Thakur, Vial et al. 
2003). Three main mechanisms that occur in a static mixer that result in production of 
uniform product are - division of the flowing stream leading to twice the number of 
previous ones, cross current mixing by recombining the divided streams, and back mixing 
(Maa and Hsu 1996).The predominant of the three steps depends upon the design of the 
mixing element. Pressure difference is the driving force for the fluid to flow through the 
static mixer and is often provided by a pump (Kumar, Shirke et al. 2008). As the fluids 
flow through the mixer, pressure drop across the mixer is observed (Ouzineb, Lord et al. 
2006).  

Static mixers are used for four different types of applications namely mixing of miscible 
fluids, interface generation of immiscible phases, heat transfer, and axial mixing. 
Emulsifying an immiscible phase in a continuous phase to enhance the mass transfer 
between immiscible phases is one of the common processes observed in a process 
industry. Static mixers are used to reduce the droplet size of the dispersed phase and 
thereby increase the surface area for mass transfer. Emulsion formation depends upon the 
generation of the droplets by a device that can rupture the oil phase. Static mixers can be 
considered for nanoparticle preparation because it can produce liquid-liquid emulsions 
(Maa and Hsu 1996; Lemenand, Della Valle et al. 2003). Static mixers can produce local 
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shear rates high enough for interfacial generation. Static mixers are generally used for 
generating emulsions of phases involving stabilizer that is used to overcome the surface 
tension. Colloidal forces also play an important role in systems involving droplets with 
nanometer size range. Processing multiple phases with stabilizer through static mixers 
results in drop break-up followed by stable emulsion formation because of electrostatic 
forces of stabilizers. Static mixers require very low energy to generate stable and 
polymerizable emulsions that result in particles in nanometer size range (Ouzineb, Lord 
et al. 2006). Static mixers can produce emulsions with smaller size droplets with uniform 
size distribution compared to that of agitated vessels (Thakur, Vial et al. 2003).  

The main advantages of static mixers over other conventional mixers are their compact 
size, comparatively low cost, close approach to plug flow, continuous processing, short 
residence time, low shear rates, absence of moving parts, easy cleaning, and no power 
requirement except for the process pump (Maa and Hsu 1996; Thakur, Vial et al. 2003; 
Ouzineb, Lord et al. 2006). The degree of mixing in a static mixer depends upon 
physicochemical properties and flow rates of the streams and on the type of the static 
mixer selected: static mixer performance may vary for different systems (Maa and Hsu 
1996; Thakur, Vial et al. 2003).  

Scale-up methods. Scale-up correlations for static mixers vary depending on the 
transport or physical mechanisms being modeled.  Two mechanisms are relevant for the 
production of nanoparticles for drug delivery: fluid mixing, in the case that two miscible 
streams with different components are being mixed, and droplet formation, in the case 
that two immiscible streams with components are being mixed. Sauter mean diameter d32 
or mass transfer coefficient KLA are appropriate metrics for evaluating static mixer 
performance for these mechanisms. Sauter mean diameter is the diameter of a sphere that 
has the same volume to surface area ratio as that of the droplet being examined. 
Correlations predict either the droplet diameter or the mass transfer coefficient based 
upon dimensionless numbers like Weber number (We), and Reynolds number (Re).  

Many correlations have been proposed for co-current liquid-liquid systems. The First 
correlation to estimate Sauter diameter was proposed by Middleman for Kenics static 
mixer and is d32/D = A *Wea1 *Rea2 , where D is the column diameter (Thakur, Vial et al. 
2003). Many other correlations are published following the first one, one of them is d32/D 
= 1.12 * We-0.65 * Re0.2 * Rµ

0.5 by Haas, where Rµ represents the ratio of dispersed to 
continuous phase viscosity (Thakur, Vial et al. 2003). One more correlation for kenics 
static mixer is d32/D = 0.49 * We-0.6 * {1+1.38Vi(d32/D)1/3}0.6 by Berkman and Calabrese, 
where Vi is viscosity group on capillary number Vi = (µdV/σ)(ρc/ρd)

1/2 (Berkman and 
Calabrese 1988; Thakur, Vial et al. 2003). The negative exponent on weber number 
signifies that droplet size decreases on increasing flow rate or decreasing surface tension. 
The positive exponent on the reynolds number implies that increase in the viscosity of the 
continuous phase results in decreased droplet size.  
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3. Materials and methods 

Materials  

PLGA 65:35 (CAS Registry No. 25013 – 16 – 5, MW 40,000 – 75,000) and PVA (CAS 
Registry No. 9002 – 89 – 5, MW 13,000 – 23,000, 98% hydrolyzed) are purchased from 
Sigma Aldrich, USA. Chitosan (CAS Registry No. 9012 – 76 – 4, deacetylation 75 – 
92%) is obtained from Spectrum Chemicals, USA. Ethyl acetate (EA) (CAS Registry No. 
141 – 78 – 6, FW 88.11, 99.5+%) is purchased from Acros Organics, USA. Hydrochloric 
acid (HCl) (CAS Registry No. 7647 – 01 – 0, FW 36.46, 32 – 38%) and deionized ultra 
filtered water (DIUF H2O) (CAS Registry No. 7732 – 18 – 5, FW 18.02) are purchased 
from Fisher Scientific, USA. All the chemicals are used as obtained without further 
purification. 

Chitosan chloride was synthesized using chitosan, HCl, and DIUF H2O. First 0.005 wt% 
of 38% HCl was added to DIUF H2O in a beaker. To this solution 0.0015 wt% of 
chitosan was added under stirring. This beaker was placed in a water bath at 800C and the 
contents of the beaker were stirred at 1000 rpm using a magnetic stirrer for 2 hr. After 2 
hr, the solution was filtered using a 25 µm filter paper. This solution was dried overnight 
in an oven at 800 C to remove water present in it resulting in the formation of chitosan 
chloride powder. This chitosan chloride powder was stored for future use in some batches 
during the synthesis of PLGA nanoparticles.  

Organic phase is prepared by dissolving 1 wt% of PLGA in required amount of EA in a 
closed vial bottle at 900 rpm using a magnetic stirrer for 2 hr at room temperature. 
Aqueous phase consists of PVA, and chitosan chloride dissolved in DIUF H2O. Initially 1 
wt% of PVA is added to the amount of DIUF H2O five times as that of EA. This was 
stirred at 900 rpm in a water bath at 800C for 2 hr until all the PVA was dissolved. After 
this solution was cooled down to room temperature, (0.3 wt %) of chitosan chloride 
prepared previously was added to the solution. The stirring of the solution is continued 
until all the chitosan chloride is completely dissolved. Thus the ratio of the organic phase 
to the aqueous phase is maintained at 1:5. The amount of EA and DIUF H2O is selected 
based upon the minimum requirement of the equipments used for each batch but the ratio 
of the materials is maintained constant.  

Sonication 

A Torbeo ultrasonic cell disruptor (36810 – series) is used to generate primary oil – in – 
water emulsion. The vial bottle containing 5 ml of aqueous phase and 1ml of organic 
phase is placed in a water bath at room temperature. The tip of the sonicator was 
positioned in the middle of the liquid contents of the vial bottle. The sonicator is operated 
at 30 Watts for 2 min resulting in the formation of primary oil – in – water emulsion. 

Colloid Mixer  

In some batches, a SILVERSON L4RT – A lab mixer is used. A beaker containing 
organic and aqueous phase is placed under the rotor such that the mixing rotor head is 
completely immersed in the liquid. The mixer is switched on and the rotor speed is 
gradually increased to 9600rpm. The stirring is continued for 10 min resulting in the 
formation of the emulsion.  
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Static mixer 

A Chemineer Kenics KM Static mixer is used in this work to generate secondary oil – in 
– water emulsions. Static mixers are used for diffusion step of the synthesis of the PLGA 
nanoparticles. Static mixer with size 3/16, housing ID 0.13in, 27 elements, material 
316s/s, plain ends, edge sealed, and overall length 7.50in was selected for this 
application.  

 

Figure 3.1. Series of helical mixing elements in a KM static mixer.  

© Chemineer products and services 

Two pumps are connected to the inlet provision of the Static mixer so that DIUF H2O and 
primary oil – in – water emulsion can be simultaneously fed through the static mixer. A 
Fisher scientific mini – pump is used to pump primary oil – in – water emulsion through 
one input and DIUF H2O is pumped using a COLE – PARMER Master flex console drive 
through another input provision of the static mixer. The speeds of both the pumps are 
adjusted so that the volumetric ratio of the emulsion to the DIUF H2O pumped through 
the static mixer is maintained at 1:10. To send the secondary emulsion multiple times 
through the static mixer only Cole – Parmer Master flex console drive pump is used and 
the Fisher scientific mini – pump is switched off. After the secondary emulsion is sent 2 
more times through the static mixer a good PLGA nanoparticles suspension is observed. 
The equipment arrangement for generating secondary emulsion using static mixer is 
shown in Figure2. 
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Figure 3.2. Process flow diagram of Static mixer. 

Characterization of nanoparticles 

Light scattering particle size analysis 

The polymeric nanoparticles size measurement was made on a 90Plus/ BI-MAS particle 
size analyzer, Brookhaven Instruments Corporation. Each of the secondary oil – in – 
water samples were analyzed at a scattering angle of 900 at 230 C. The samples obtained 
to determine mechanism of formation of particles, and effect of static mixer on primary 
emulsion droplets have a run time of 15 min. The samples generated for TEM analysis 
have a run time of 30 min and all the remaining samples have a run time of 4 min.  As 
average count rate is an indicator of signal quality, all the samples must have an average 
count rate of at least 100 Kcps. Care is also to be taken to verify that all the samples have 
a baseline index of at least 7.5 or above and a good correlation function graph before the 
data is collected. Baseline index is a measure of how good the scattering data are. If the 
data is corrupted by scattering from dust in the sample then turn the dust filter on. If the 
dust filter value is too low then we obtain low effective diameter. The mean particle size 
is obtained from multimodal size distribution (MSD) curves based on volume and 
number of the nanoparticles of each sample. The number based (NB) and volume based 
(VB) particle size for each sample is summarized in tables. 

The mean diameter in MSD is calculated from diameter d and weighting factor G(d) and 
the formula is 

Mean Diameter for MSD = Σ (d*G(d))/ Σ G(d). 
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Zeta potential Measurements 

The surface charge of the polymeric nanoparticles was measured by the Zetasizer2000, 
Malvern Instruments Limited. The zeta potential measurements of the secondary oil – in 
– water emulsion samples are carried out in an aqueous dip cell at 250C. The solvent used 
is water for all the samples.  

Transmission electron microscope (TEM) analysis 

TEM measurement was carried out to get the information of the actual surface and 
morphology characteristics of PLGA nanoparticles. This can be used to verify and 
compare the particle size from MSD data of the sample. Transmission electron 
microscopy (TEM) analysis was performed on a JEOL 2010F instrument operated at 200 
KeV. The TEM sample was prepared by dipping lacey carbon-coated copper grid into 
secondary emulsion of PLGA nanoparticles. After copper grid was taken out, it was dried 
at room temperature over night before measurement. 
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4. Results and discussion 

All the results of the subsections are presented in the respective tables of the subsections 
and are followed by the volume based MSD figures. The corresponding number based 
MSD figures are included in the appendix. 

Mechanisms for formation of nanoparticles 

A key element of this study is to determine how nanoparticles form when solutions of 
PLGA and PVA are mixed. 

Dissolution of polymers in their solvents  

The individual polymers are tested for their solubility in respective solvents to make sure 
that the polymers are completely miscible in their solvents and the polymer solutions do 
not have any particles prior to the nanoparticle synthesis process. PLGA is dissolved in 
ethyl acetate, and PVA is dissolved in DIUF H2O as a part of the encapsulation process. 
Both solutions were evaluated to determine whether the polymers were completely 
dissolved, or whether they were merely swollen by their solvents. A 2wt% solution of 
PLGA in ethyl acetate was prepared and the MSD of solution was analyzed by light 
scattering. The resulting solution was optically clear, and no particles were observed by 
light scattering. The lower limit of detection by Brookhaven instrument is 1nm. A 1wt% 
of PVA in DIUF H2O was prepared as described in materials and methods. The solution 
is optically clear. After the solution is cooled down to room temperature, its particle size 
is measured. It was found that there were no particles in the solution, implying complete 
dissolution of PVA in DIUF H2O at 800 C. The results of the tests are summarized in 
rows 2 and 3 of Table 4.1 for PLGA in EA and PVA in DIUF H2O respectively. 

 To confirm the solubility of Chitosan chloride, a solution of 0.3 wt% chitosan chloride in 
DIUF H2O is prepared by dissolving chitosan chloride in DIUF H2O for 15min until the 
solution was optically clear. This solution had 91% of the particles based on volume and 
100% of particles based on number with size range 134 nm<Davg<521 nm, as shown in 
Figure 4.1 and row 4 of Table 4.1. They had a polydispersity of 0.168. Based on volume, 
9% of the particles with Davg=1179 nm are found in the solution but they are very few in 
number as same range could not be found in number based MSD. This dispersion is 
stable as its zeta potential is 33.4±2.2 mV. It is possible that the chitosan suspension has 
agglomerates, which can be tested by diluting the sample and remeasuring the particle 
size distribution. When the solution was diluted by a factor of 10, its transparency 
improved, and 100% of the particles are found in the size range 132 nm<Davg<295 nm 
based on number and volume as shown in Figure 4.2. It has a polydispersity of 0.072, as 
mentioned in row 5 of Table 4.1. It was observed that particles with smaller size and 
narrow size range are present in the 10 folds diluted chitosan chloride solution. The zeta 
potential of this solution was 57.4±1.3 mV, and it was deemed to be stable. These results 
demonstrate that PLGA and PVA are completely miscible in their respective solvents, 
while chitosan chloride is swollen, but forms a stable dispersion in its solvent.  

The formation of nanoparticles if any by using only chitosan chloride for primary 
emulsion generation was checked in one batch. This batch was prepared by sonicating 
1ml of EA with 5 ml of 0.3 wt% chitosan chloride in DIUF H2O. The emulsion was 
diluted 100 folds and MSD of the emulsion was obtained by light scattering and results 
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are displayed in row 6 of Table 4.1 and Figure 4.3. There are no good signs of 
nanoparticle formation as the count rate is very low. All the results are summarized in 
Table 4.1 and the volume based MSD of the batches are presented following the Table 
4.1. 
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Table 4.1. Summary of particles found in individual polymer solutions used.  

System- 
Single 
component 

Emulsion 
method 
and 
parameters 

Appearance Dv  (nm) 

(% of particles in the range) 

Dn  (nm) 

(% of particles in the range) 

Poly 
dispersity 

Zeta 
Potential 
(mV) 

2wt% 
PLGA in 
EA 

N/A  transparent Not detected Not detected N/A N/A 

1wt% 
PVA in  
DIUF H2O 

N/A transparent Not detected Not detected N/A 1.3 ±2.2 

0.3wt% 
chitosan 
chloride in 
DIUF H2O  

N/A Stone 
yellow clear 

Peak 1 (91%)  

Dmin=134, Davg=390, Dmax=521 

Peak 1 (100%) 

Dmin=134, Davg=190, Dmax=521 

0.168 33.4±2.2 

Peak 2 (9%) 

Davg=1179 

 0.03wt% 
chitosan 
chloride in 
DIUF H2O 

N/A transparent Peak 1 (100%) 

Dmin=132, Davg=182, Dmax=295 

Peak 1 (100%) 

Dmin=132, Davg=162, Dmax=295 

0.072 57.4±1.3 
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Table 4.1(continued). Summary of particles found in individual polymer solutions used. 

1ml EA 
and 5ml 
0.3wt% 
chitosan 
chloride in 
DIUF H2O 

Sonication 
30watt, 
2min, room 
temperature. 

Turbid 
yellow 

Peak 1 (40%) 

Dmin=79, Davg=119, Dmax=177 

abnormal low countrate 

Peak 1 (100%) 

Dmin=79, Davg=104, Dmax=177 

abnormal low countrate 

0.410 48.6±2.6 

Peak 2 (55%) 

Dmin=644, Davg=762, Dmax=889 

Peak 3 (5%) 

Dmin=7242, Davg=8460, Dmax=104 

 



 

24 

 

 

Figure 4.1. Volume based MSD of 0.3wt% chitosan chloride in DIUF H2O [Table 
4.1, row 3] 

 

Figure 4.2. Volume based MSD of 0.03wt% chitosan chloride in DIUF H2O. [Table 
4.1, row 5] 
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Figure 4.3. Volume based MSD of particles formed by emulsifying 1 ml EA in 5 ml 
solution of 0.3wt% chitosan chloride in DIUF H2O. [Table 4.1, row 6] 

Different possible binary polymer emulsions  

Interaction between chitosan chloride and PVA in aqueous phase is tested in this batch. 
This is done to confirm the absence of nanoparticles in the aqueous phase before it is 
used for generating primary emulsion. A 5 ml aqueous solution of 1wt% PVA and 
0.3wt% chitosan chloride in DIUF H2O was prepared by following the procedure for 
aqueous phase as mentioned in materials and methods. The aqueous phase is analyzed for 
particle size and zeta potential. The particle size is found to be Davg = 15 nm based on 
both volume and number. 62% of the nanoparticles based on volume and 100% of the 
particles based on number are found with Davg = 15 nm. Based on volume, 38% of the 
particles with size in the range 192 nm<Davg<614 nm based on volume are observed but 
there are very few in number as no such range particles are observed in the number based 
multimodal size distribution. The comparison of the particle size distribution of this batch 
with that of the batch with no PVA in aqueous phase mentioned in previous section 
shows that smaller chitosan chloride particles are found in aqueous solution with PVA. 
The particle size distributions of aqueous solution of chitosan chloride without and with 
PVA are stated with S.No.1 and 2 respectively in Table 4.2 and are shown in Figure 4.4 
and 4.5 respectively. The zeta potential of this batch is found to be 27.1±1.9 mV. The 
decrease in the positive zeta potential compared to that of the batch with only chitosan 
chloride in DIUF H2O can be explained by the presence of PVA in this batch. It is clear 
that broad ranged multimodal distribution of the particles is observed in the chitosan 
chloride solution where as much narrower distribution of particles is observed with the 
presence of the PVA in the solution. It can be concluded that the PVA acts as a 
compatibilizer of chitosan chloride.  
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This is confirmed by preparing 2 more batches. For this, two batches of 10ml 0.3wt% 
chitosan chloride in DIUF H2O were prepared and particle size was analyzed. Two 
batches of 10ml 1wt% PVA in DIUF H2O are prepared at 800C and after cooled down to 
room temperature, each of them is added to the 10ml 0.3wt% chitosan chloride and 
stirred together with aid of magnetic stirrer for 15min at room temperature. The MSD of 
both the batches were analyzed to confirm the effect of PVA on chitosan chloride. In the 
absence of PVA, 0.3wt% of chitosan chloride in DIUF H2O has with sizes in range 180 
nm< Davg<222 nm and 417 nm< Davg<515 nm in first batch and 127 nm< Davg<639 nm in 
second batch. For both batches with PVA, much narrower distribution of particles with 
Davg=24 nm and 89 nm< Davg<483 nm in the first and Davg=11 nm in the second batch 
were observed. The effect of PVA on chitosan chloride in all the three batches is listed in 
Table 4.2.  

The role of each component in generating the desired product, uniform sized cationic 
PLGA nanoparticles, is tested. For this, PLGA nanoparticles formation with different 
possible combinations of the polymers was tested. All resulting primary emulsions after 
sonication were diluted 100 times for testing their MSD by light scattering. This was 
done by diluting 0.1 ml of emulsion with 10ml of DIUF H2O.  

 The importance of PVA in generation of PLGA nanoparticles was tested. First a batch of 
1ml of 1wt% PLGA in EA and 5ml of 1wt% PVA in DIUF H2O were prepared as 
described in materials and methods. Sonication of organic phase and aqueous phase at 30 
Watt for 2 min resulted in a primary emulsion. The MSD of the diluted emulsion was 
analyzed. Based on volume 1%, and based on number 66% of the nanoparticles are of 
size Davg=74 nm. In addition to that, based on volume12% and based on number 33% of 
the particles in the range 134 nm< Davg<308 nm are also found in the diluted primary 
emulsion. This concludes that based on volume 13% and number 99% of the particles 
below 300 nm in size are generated using PVA as stabilizer. The size range of the 
particles is summarized in row 3, Table 4.3 and shown in Figure 4.11. This emulsion also 
has 87% of the particles in the range 894 nm< Davg<1615 nm based on volume. This 
indicates that the PVA generates PLGA nanoparticles with narrow size range and the 
performance of PVA as stabilizer for PLGA nanoparticles is proved in this batch. The 
zeta potential of the emulsion is obtained as -17.3±0.3 mV indicating formation of 
unstable anionic nanoparticles, which is not desired. The PLGA nanoparticles are 
required to possess a positive charge on its surface.  

 To test if chitosan chloride alone can produce the required stable cationic PLGA 
nanoparticles in the required size range, a batch of primary emulsion is prepared using 
only chitosan chloride in DIUF H2O as the aqueous phase. A batch of primary emulsion 
is prepared same as mentioned above except for 5 ml of 0.3wt% chitosan chloride in 
DIUF H2O is used instead of 5 ml of 1wt% PVA in DIUF H2O. The aqueous phase for 
this batch is prepared by adding 15 mg of chitosan chloride to 5 ml of DIUF H2O and 
dissolving at room temperature using a magnetic stirrer for 15 min till the chitosan 
chloride solution is optically clear. The MSD of 100 folds diluted primary emulsion and 
zeta potential of the sample are analyzed. The range of nanoparticle sizes present in the 
emulsion is summarized in row 4, Table 4.3 and Figure 4.12. Based on volume 9% and 
based on number 70% of the nanoparticles with size range 134 nm< Davg<237 nm are 
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observed in emulsion. Presence of 67% of the particles based on volume and 30% of the 
particles based on number with large size in the range of 364 nm< Davg<645 nm is 
observed in this batch. There are also 24% of the particles in size range 2335 nm< 
Davg<3586 nm based on volume in this batch.  It can be observed that fewer particles with 
size below 300 nm are present in this batch compared to that of the previous batch, 
confirming the necessity of stabilizer PVA in obtaining PLGA nanoparticles of required 
size range. Zeta potential of 56.9±3.0 mV represents formation of a highly stable 
emulsion and cationic particles due to presence of chitosan chloride. Summary of MSD 
of nanoparticles in all emulsions formed by different possible binary polymer pairs in 
system is presented in Table 4.3.  
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Table 4.2. Effect of PVA on MSD of chitosan chloride particles in DIUF H2O.  

S. 
No. 

System Appearance Dv  (nm) (% of particles in the 
range) 

Dn  (nm) (% of particles in the 
range) 

Poly 
dispersity 

1 0.3wt%chitosan 
chloride in DIUF 
H2O-batch-1 

Stone 
yellow clear 

Peak 1 (91%) 

Dmin=134, Davg=390, Dmax=521 

Peak 1 (100%) 

Dmin=134, Davg=190, Dmax=521 

0.168 

Peak 2 (9%) 

Davg=1179 

2 1wt% PVA and 
0.3wt% chitosan 
chloride in DIUF 
H2O-batch-1 

Stone 
yellow clear 

Peak 1 (62%) 

Dmin=15, Davg=15, Dmax=15 

Peak 1 (100%) 

Dmin=15, Davg=15, Dmax=15 

0.200 

Peak 2 (38%) 

Dmin=192, Davg=448, Dmax=614 

3 0.3wt%chitosan 
chloride in DIUF 
H2O-batch-2 

Stone 
yellow clear 

Peak 1 (4%) 

Dmin=180, Davg=196, Dmax=213 

Peak 1 (33%) 

Dmin=180, Davg=198, Dmax=222 

0.147 

Peak 2 (96%) 

Dmin=417, Davg=462, Dmax=515 

Peak 2 (67%) 

Dmin=417, Davg=460, Dmax=515 
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Table 4.2(continued). Effect of PVA on MSD of chitosan chloride particles in DIUF H2O. 

4 1wt% PVA in 
DIUF H2O and 
0.3wt% chitosan 
chloride in DIUF 
H2O-batch-2 

Light stone 
yellow clear 

Peak 1 (39%)  

Dmin=24, Davg=24, Dmax=24 

Peak 1 (100%)  

Dmin=24, Davg=24, Dmax=24 

0.206 

Peak 2 (59%) 

Dmin=89, Davg=395, Dmax=483 

Peak 3 (2%) 

Dmin=1672, Davg=2255, Dmax=2678 

5 0.3wt%chitosan 
chloride in DIUF 
H2O-batch-3 

Stone 
yellow clear 

Peak 1 (97%)  

Dmin=127, Davg=458, Dmax=639 

Peak 1 (100%)  

Dmin=127,Davg=247,Dmax=639 

0.142 

Peak 2 (3%)  

Dmin=1433, Davg=1433, Dmax=1433 

6 1wt% PVA in 
DIUF H2O and 
0.3wt% chitosan 
chloride in DIUF 
H2O-batch-3 

Light stone 
yellow clear 

Peak 1 (72%)  

Dmin=11, Davg=11, Dmax=11 

Peak 1 (100%)  

Dmin=11, Davg=11, Dmax=11 

0.208 

Peak 2 (28%) 

Dmin=328, Davg=446, Dmax=593 
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Figure 4.4. Volume based MSD of 0.3wt% chitosan chloride in DIUF H2O – batch-
1. [Table 4.2, S.No.1] 

 

Figure 4.5. Volume based MSD of 1wt% PVA and 0.3wt% chitosan chloride in 
DIUF H2O – batch-1. [Table 4.2, S.No.2] 
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Figure 4.6. Volume based MSD of 0.3wt% chitosan chloride in DIUF H2O – batch-
2. [Table 4.2, S.No.3] 

 

Figure 4.7. Volume based MSD of 1wt% PVA and 0.3wt% chitosan chloride in 
DIUF H2O – batch -2. [Table 4.2, S.No.4] 
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Figure 4.8. Volume based MSD of 0.3wt% chitosan chloride in DIUF H2O – batch-
3. [Table 4.2, S.No.5] 

 

Figure 4.9. Volume based MSD of 1wt% PVA and 0.3wt% chitosan chloride in 
DIUF H2O – batch -3. [Table 4.2, S.No.6] 
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Table 4.3. Summary of particle formation with different possible binary combinations of polymers used.  

Binary 
polymer 
pairs 

Emulsion 
method and 
parameters 

Appear-
ance 

Dv  (nm) (% of particles in the 
range) 

Dn  (nm) (% of particles in the 
range) 

Poly 
dispersity 

Zeta 
Potential 
(mV) 

1wt% PVA 
and 
0.3wt% 
chitosan 
chloride in 
DIUF H2O 

N/A Clear 
yellow 
stone 

Peak 1 (62%) 

Dmin=15, Davg=15, Dmax=15 

Peak 1 (100%) 

Dmin=15, Davg=15, Dmax=15 

0.200 

 

27.1±1.9 

 

Peak 2 (38%) 

Dmin=192, Davg=448, Dmax=614 

1ml 1wt% 
PLGA in 
EA and 
5ml 1wt% 
PVA in  
DIUF H2O 

Sonication 
30watt, 
2min, room 
temperature. 

Turbid 
white 

Peak 1 (1%) 

Dmin=74, Davg=74, Dmax=74 

Peak 1 (66%)  

Dmin=74, Davg=74, Dmax=74 

0.313 -17±0.3 

Peak 2 (12%) 

Dmin=134, Davg=210, Dmax=308 

Peak 2 (33%) 

Dmin=134, Davg=189, Dmax=308 

Peak 3 (87%) 

Dmin=894, Davg=1199, Dmax=1615 

Peak 3 (1%) 

Davg,=1133 
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Table 4.3 (continued). Summary of particle formation with different possible binary combinations of polymers used. 

1ml 1wt% 
PLGA in 
EA and 
5ml 0.3wt 
% chitosan 
chloride in 
DIUF H2O 

Sonication 
30watt, 
2min, room 
temperature. 

Turbid 
light 
yellow 

Peak 1 (9%) 

Dmin=134, Davg=184, Dmax=237 

Peak 1 (70%) 

Dmin=134, Davg=171, Dmax=237 

0.306 56.9±3.0

Peak 2 (67%) 

Dmin=364, Davg=474, Dmax=645 

Peak 3 (24%) 

Dmin=2335, Davg=2696, Dmax=3586 

Peak 2 (30%)  

Dmin=364, Davg=461, Dmax=559 
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Figure 4.10. Volume based MSD of 1wt% PVA and 0.3wt% chitosan chloride in 
DIUF H2O. [Table 4.3, row 2]  

 

Figure 4.11. Volume based MSD of nanoparticles formed by 1 ml 1wt% PLGA in 
EA emulsified in 5 ml aqueous solution of 1wt% PVA. [Table 4.3, row 3] 
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Figure 4.12. Volume based MSD of nanoparticles formed by 1 ml solution of 1wt% 
PLGA in EA emulsified in 5 ml aqueous solution of 0.3wt% chitosan chloride. 
[Table 4.3, row 4] 

Emulsion formed by the ternary polymer system 

From the above two batches it is observed that the combined effect of both PVA and 
chitosan chloride is required for generating the desired product. A batch of materials was 
prepared by using all the three polymers to test the combined effect of PVA and chitosan 
on PLGA nanoparticle formation. First 1 ml of organic phase and 5 ml of aqueous phase 
were prepared as mentioned in materials and methods section. Organic phase was added 
to aqueous phase and sonicated for 2 min at 30watt. The diluted emulsion was analyzed 
for MSD and it was found that 6% of the particles based on volume and 92% of the 
particles based on number are with size range 74 nm< Davg<108 nm. Based on volume 
8% of the particles and based on number 6% of the particles in size range 177 nm< 
Davg<291 nm are present in the emulsion indicating that majority of them are less than 
300 nm based on number and the results are shown in row 2, Table 4.4. Based on 
volume, 58% of the particles and 28% of the particles are found with larger size in the 
range of 477 nm< Davg<784 nm and 1137 nm< Davg<1867 nm as shown in Figure 4.13. 
The zeta potential of the resulting primary emulsion was found to be 30.1±2.2 mV 
representing cationic particles with good stability in emulsion. One more batch with all 
the three polymers is prepared to check the reproducibility of the results obtained. Based 
on volume 10%, and based on number 90% of the nanoparticles in this batch are of size 
in the range of 154 nm< Davg<223 nm with a zeta potential of 42.1±1.0 mV and are 
presented in row3, Table 4.4. 90% of the particles based on volume and 10% of the 
particles in this batch based on number are in the size range nearly 700 nm – 1000 nm. 
The two batches confirm the generation of the cationic PLGA nanoparticles in the 
required range starting from the individual polymeric solutions. 
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Table 4.4. Summary of particle formation in the ternary polymer system used.  

Ternary 
polymer 
system 

Emulsion 
method and 
parameters 

Appear-
ance 

Dv  (nm) (% of particles in the 
range) 

Dn  (nm) (% of particles in the 
range) 

Poly 
dispersity 

Zeta 
Potential 
(mV) 

1ml 1wt% 
PLGA in 
EA and 
5ml 1wt% 
PVA, 
0.3wt% 
chitosan 
chloride in 
DIUF 
H2O-
batch-1 

Sonication 
30watt, 
2min, room 
tempera-
ture. 

Turbid 
yellow 

Peak 1 (6%) 

Dmin=74, Davg=87, Dmax=108 

Peak 1 (92%) 

Dmin=74, Davg=83, Dmax=108 

0.275 

 

30.1±2.2 

 

Peak 2 (8%) 

Dmin=177, Davg=236, Dmax=291 

Peak 2 (6%) 

Dmin=177, Davg=220, Dmax=291 

Peak 3 (58%) 

Dmin=477, Davg=705, Dmax=784 

Peak 3 (1%) 

Davg=477 

Peak 4 (28%) 

Dmin=1137, Davg=1450, Dmax=1867 

Peak 3 (1%) 

Davg=784 
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Table 4.4(continued). Summary of particle formation in the ternary polymer system used. 

1ml 1wt% 
PLGA in 
EA and 
5ml 1wt% 
PVA, 
0.3wt% 
chitosan 
chloride in 
DIUF 
H2O-
batch-2 

Sonication 
30watt, 
2min, room 
tempera-
ture. 

Turbid 
yellow 

Peak 1 (10%) 

Dmin=154, Davg=185, Dmax=223 

Peak 1 (90%) 

Dmin=154, Davg=181, Dmax=223 

0.272 42.1±1.0 

Peak 2 (90%) 

Dmin=717, Davg=805, Dmax=1033 

Peak 2 (10%) 

Dmin=717, Davg=796, Dmax=960 
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Figure 4.13. Volume based MSD of nanoparticles formed by 1 ml 1wt% PLGA in 
EA emulsified in 5 ml of 1wt% PVA and 0.3wt% chitosan chloride in DIUF H2O. 
[Table 4.4, row 2] 

 

Figure 4.14. Volume based MSD of 2nd batch of nanoparticles formed by 1 ml 
1wt% PLGA in EA emulsified in 5 ml aqueous solution of 1wt% PVA and 0.3wt% 
chitosan chloride. [Table 4.4, row 3] 
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Synthesis of cationic PLGA nanoparticles  

Preliminary work  

One batch of PLGA nanoparticles is prepared following a similar procedure as that 
described by Kumar et al (19). Organic phase is prepared by adding 400 mg of PLGA (2 
wt %) to 20 ml EA under stirring at 1000rpm for 2 hr at room temperature. Aqueous 
phase is prepared by adding 200 mg of PVA (1 wt %), in 20 ml DIUF H2O and stirring at 
1000rpm for 2 hrs at 800C. After it is cooled down to room temperature, 60mg of 
chitosan chloride (0.3 wt %) is added to the aqueous phase and stirred till all the chitosan 
chloride is completely dissolved. Both the organic and aqueous phases are filtered using a 
4 – 8 µm filter paper to remove any dust if present in both solutions. Only in this batch, 
ratio of organic phase to aqueous phase is 1:1. Organic phase is slowly added drop wise 
using a glass pipette into aqueous phase under stirring at 1000 rpm. After the completion 
of adding of one phase into another, stirring of this primary oil – in – water emulsion at 
1000rpm is continued for 3 hrs. This emulsion is homogenized at 9600rpm for 10min 
using SILVERSON L4RT. The homogenized primary emulsion is added drop by drop 
using a pipette into 40ml DIUF H2O under stirring at 1000 rpm resulting in the formation 
of a secondary emulsion. Secondary emulsion is stirred over night to evaporate the 
organic solvent leading to the nanoparticles formation.  

Nanoparticles with particle size 2271 nm based on volume and 1436 nm based in number 
are obtained and are much higher than expected. These particles have a polydispersity of 
0.185. A polymer film at the top of the liquid and precipitation at the bottom of the 
beaker is observed indicating lot of wastage of materials. So the concentrations of 
chemicals are lowered in the following synthesis processes. To decrease the PLGA 
nanoparticle size the concentration of the stabilizer PVA is increased by changing ratio of 
organic to aqueous phase to 1:5. 

Effect of static mixer on size of nanoparticles 

Static mixer could be used for different mixing problems associated with the nanoparticle 
formation, such as in further size reduction of the polymer droplets of primary emulsion 
or in diffusion step for generating secondary oil-in-water emulsion. In this section, the 
nanoparticles synthesis process is focused on using static mixer for the reduction of 
droplet size of primary emulsion. One batch of PLGA nanoparticles synthesis is carried 
out with initial homogenization to generate a primary emulsion similar to that stated in 
the literature.  Then subsequent use of static mixer multiple times is done to test the role 
of static mixer in decreasing polymer droplet size.  

First 1wt% PLGA in 10ml ethyl acetate and 1 wt% PVA, 0.3 wt% chitosan chloride in 50 
ml of DIUF H2O is prepared as described in materials and methods. Organic phase is 
added to aqueous phase in a beaker and homogenized at 9600 rpm for 10 min resulting in 
the formation of emulsion. The size of the nanoparticles is measured by taking a small 
sample of the emulsion out and diluting 100 times. In this case 0.1 ml of the emulsion is 
diluted with 10 ml water for particle size measurement and the corresponding results are 
assigned S.No.1 in Table 4.5. The correlation function of the sample is not good and is as 
shown in the Figure 4.15. An example of good correlation function, baseline index and 
average count rate are shown for 0.3 wt% chitosan chloride in DIUF H2O in Figure 4.16. 



 

41 

 

The baseline index is obtained as zero for this sample. So, the MSD with dust filter on is 
considered for this set of results. The percentage of data retained after switching on the 
dust filter is mentioned for each sample in the brackets in Table 4.5.  

 

Figure 4.15. Correlation function of nanoparticles in 100 times dilute primary 
emulsion from homogenization of 10ml organic phase and 50ml of aqueous phase. 
[Table 4.5, S.No.1] 

 

Figure 4.16. Correlation function of 0.3wt% chitosan chloride in DIUF H2O [Table 
4.1, row 3] 
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Based on volume 4% and based on number 76% of the particles in this batch are of size 
in the range 91 nm< Davg<204 nm. The size range of 332 nm<Davg<747 nm is found 
among 91% of nanoparticles based on volume and 24% of the nanoparticles based on 
number. The original emulsion is fed thrice through the static mixer at 135 ml/min speed. 
The size of the nanoparticles is tested again as mentioned earlier by taking a small sample 
out and the results are presented with S.No.2 in Table 4.5. Based on volume 11% and 
based on number 97% of the nanoparticles are in size range of 191 nm< Davg<305 nm. 
The size range of 1200nm – 2000nm is found among nearly 89% of the nanoparticles 
based on volume and 3% of the nanoparticles based on number in this batch. The 
emulsion is again pumped through the static mixer at the same speed three more times 
and the size of the nanoparticles is measured one more time. The results obtained are 
summarized with S.No.3 in Table 4.5. Based on volume 1% and based on number 75% of 
the nanoparticles are with size Davg=83 nm in this batch. The size range of 
168nm<Davg<268nm is found among nearly 6% of the nanoparticles based on volume 
and 23% of the nanoparticles based on number in this batch. Based on volume 93% of the 
nanoparticles are in the size range of 1000nm – 2000nm. There is no decrease in the 
average particle size and no fixed pattern of size reduction of secondary emulsion is 
observed with increase in the number of primary emulsion passes through the static 
mixer. The nanoparticle size is not in the expected range so an alternate method to 
generate a primary emulsion is employed in next batch. In addition, large quantity of 
chemicals involved in primary emulsion generation using homogenization, forced to 
search for an effective alternate method to generate primary emulsion that needs only 
small quantity of chemicals.  
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Table 4.5. Nanoparticle size obtained by using homogenizer for primary emulsion and subsequent use of static mixer for 
particle size reduction.  

S.
No 

Emulsion 
method 

Parameters Appea-
rance 

Dv  (nm) (% of particles in the 
range) 

Dn  (nm) (% of particles in the 
range) 

Poly 
dispersity 

1. Homogeni-
zation 

9600rpm, 

10min 
homogenizer.

Turbid 
yellow  

Peak 1 (4%) 

Dmin=91, Davg=128, Dmax= 174 
(dust filter 43.9%) 

Peak 1 (76%) 

Dmin=91, Davg=111, Dmax= 204 
(dust filter 43.9%) 

0.289 

Peak 2 (91%) 

Dmin=332, Davg=484, Dmax=747 

Peak 2 (24%) 

Dmin=332, Davg=465, Dmax=747 

Peak 3 (5%) 

Dmin=2324, Davg=2626, Dmax=3214 

2. Homogeni-
zation 
followed by 
static mixer 

9600rpm, 

10min 
homogenizer.  
3 times 
through static 
mixer 
at135ml/min. 

Turbid 
yellow  

Peak 1 (11%) 

Dmin=191, Davg=246, Dmax=305 
(52%) 

Peak 1 (97%) 

Dmin=191, Davg=237, Dmax= 305 
(52%) 

0.346 

Peak 2 (89%) 

Dmin=1238, Davg=1493, Dmax=1975 

Peak 2 (3%) 

Dmin=1238, Davg=1453, Dmax=1799 
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Table 4.5 (continued). Nanoparticle size obtained by using homogenizer for primary emulsion and subsequent use of static 

mixer for particle size reduction. 

3. Homogeni-
zation 
followed 
by static 
mixer 

9600rpm, 
10min 
homogenizer. 
6 times 
through static 
mixer at 
135ml/min. 

Turbid 
yellow  

Peak 1 (1%) 

Davg=83 (49.4%) 

Peak 1 (75%) 

Davg=83 (49.4%) 

0.361 

Peak 2 (6%) 

Dmin=168, Davg=216, Dmax=268 

Peak 2 (23%) 

Dmin=168, Davg=207, Dmax=268 

Peak 3 (93%) 

Dmin=1086, Davg=1362, Dmax=1945 

Peak 3 (1%) 

Davg=1086 
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Figure 4.17. Volume based MSD of nanoparticles in 100 times dilute primary 
emulsion from homogenization of 10ml organic phase and 50ml of aqueous phase. 
[Table 4.5, S.No.1] 

 

Figure 4.18. Volume based MSD in 100 times diluted emulsion from homogenization 
of 10ml of organic and 50ml of aqueous phase and subsequently processing 3 times 
through static mixer at 135ml/min. [Table 4.5, S.No.2] 
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Figure 4.19. Volume based MSD in 100 times diluted emulsion from homogenization 
of 10ml of organic and 50ml of aqueous phase and subsequently processing 6 times 
through static mixer at 135ml/min. [Table 4.5, S.No.3] 

Sonication and Homogenization  

As the homogenization requires minimum 60ml of raw material for each batch as rotor 
head is to be completely immersed, in order to save the chemicals an equally efficient 
technique for emulsion generation, sonication which needs only 6ml raw material for 
each batch is considered for generating primary emulsion. Homogenization is used for 
diffusion step as enough quantity is present for 1:10 or 1:100 dilution ratio. Primary 
emulsion is generated by sonicating 1ml of an organic phase and 5 ml of aqueous phase 
in a vial bottle. For secondary emulsion, a beaker containing 100 ml of DIUF H2O is 
placed at centre under rotor of SILVERSON L4RT and switched on. The speed of the 
rotor is gradually increased to 9600 rpm and 1 ml of the primary emulsion is added drop 
by drop by a glass pipette into the beaker containing 100ml DIUF H2O so that the 
dilution ratio is 1:100. The stirring is continued for 10min after the completion of adding 
primary emulsion. The size distribution of the generated PLGA nanoparticles in the 
resulting secondary emulsion is measured and is shown in S.No.1 of Table 4.6. Based on 
volume 6% of the nanoparticles and based on number 93% of the nanoparticles of this 
batch are in the size range of 69 nm<Davg<114 nm.  Based on volume 12% of the 
nanoparticles and based on number 7% of the nanoparticles are in the size range of 189 
nm<Davg<355 nm. Also in this batch, based on volume, 82% of nanoparticles are of size 
range 1100 – 2100nm. Second batch is repeated with the same procedure but the primary 
emulsion is added very slowly to the beaker containing DIUF H2O with the pipette tip 
placed inside nearly at the bottom of the liquid. The particle size obtained by employing 
this procedure is summarized with S.No.2 in Table 4.6. Based on volume 10% of the 
nanoparticles and based on number 95% of the nanoparticles of this batch are in the size 
range of 163 nm<Davg<246 nm. Based on volume 90% of the nanoparticles and based on 
number 5% of the nanoparticles nearly with a size range of 850 nm<Davg<1300 nm are 



 

47 

 

also found in this batch. One more batch is repeated same as the second batch mentioned 
above, but with a dilution ratio of 1:10. The particle size distribution of nanoparticles of 
this batch is summarized in row with S.No.3 of Table 4.6. Based on volume 4% of the 
nanoparticles and based on number 90% of the nanoparticles of this batch are with size 
Davg=65 nm. Based on volume 77% and 19% of the nanoparticles with a broad size range 
of 172 nm<Davg<865 nm and1940 nm<Davg<3703 nm respectively are also found in this 
batch. But based on number nearly all the remaining 9% of the nanoparticles are in the 
size range 202 nm<Davg<385 nm. 

Presence of good number of nanoparticles with size below and around 300nm based on 
volume and number in first two batches prepared by this process was observed. These 
results show that a combination of sonication and homogenization result in PLGA 
nanoparticles with preferred particle size range. The batch with dilution rate 1:10 does 
not contain good number of nanoparticles in desired range as compared to that of the first 
two batches with 1:100 dilution ratio. This is because of chances of comparatively more 
agglomeration with dilution rate 1:10 than with that of 1:100. 
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Table 4.6. Particle sizes obtained by using sonication for primary emulsion and homogenization for secondary emulsion 
generation.  

S.No. Secondary 
emulsion method 

Dilution 
times 

Dv  (nm) (% of particles in the range) Dn  (nm) (% of particles in the 
range) 

Poly 
dispersity 

1 Homogenization     
(9600rpm,10min) 

100 Peak 1 (6%) 

Dmin=69, Davg=84, Dmax=114 

Peak 1 (93%) 

Dmin=69, Davg=79, Dmax=114 

0.288 

Peak 2 (12%) 

Dmin=189, Davg=258, Dmax=355 

Peak 2 (7%) 

Dmin=189, Davg=232, Dmax=313 

Peak 3 (82%) 

Dmin=1106, Davg=1370, Dmax=2079 

2 Homogenization  
(9600rpm,10min) 

100 Peak 1 (10%) 

Dmin=163, Davg=201, Dmax=246 

Peak 1 (95%) 

Dmin=163, Davg=188, Dmax=246 

0.315 

Peak 2 (90%) 

Dmin=853, Davg=1060, Dmax=1291 

Peak 2 (5%) 

Dmin=853, Davg=1042, Dmax=1188 
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Table 4.6 (continued). Particle sizes obtained by using sonication for primary emulsion and homogenization for secondary 

emulsion generation. 

3 Homogenization    
(9600rpm,10min) 

10 Peak 1 (4%) 

Davg=65 

Peak 1 (90%) 

Davg=65 

0.250 

Peak 2 (77%) 

Dmin=172, Davg=554, Dmax=865 

Peak 2 (9%) 

Dmin=202, Davg=261, Dmax=385 

 Peak 3 (19%) 

Dmin=1940, Davg=2576, Dmax=3703 
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Figure 4.20. Volume based MSD in secondary emulsion generated by 
homogenization at dilution rate 1:100 of primary emulsion formed by sonication of 
1ml 1wt% PLGA in EA and 5ml of 1wt% PVA and 0.3wt% chitosan chloride 
aqueous solution. [Table 4.6, S.No.1] 

 

Figure 4.21. Volume based MSD in secondary emulsion generated by 
homogenization at dilution rate 1:100 of primary emulsion formed by sonication of 
1ml 1wt% PLGA in EA and 5ml of 1wt% PVA and 0.3wt% chitosan chloride 
aqueous solution. [Table 4.6, S.No.2] 
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Figure 4.22. Volume based MSD in secondary emulsion generated by 
homogenization at dilution rate 1:10 of primary emulsion formed by sonication of 
1ml 1wt% PLGA in EA and 5ml of 1wt% PVA and 0.3wt% chitosan chloride 
aqueous solution. [Table 4.6, S.No.3] 

Dilution effect on the size of the particles 

The effect of dilution ratio on the size of PLGA nanoparticles is examined. As the 
sonication followed by homogenization resulted in good PLGA nanoparticles, the effect 
of dilution on the nanoparticle size is tested using this technique. Batches with different 
dilution ratios of primary emulsion are made to test the effect of dilution ratio on the 
particle size of PLGA nanoparticles. First 1ml of organic phase and 5 ml of aqueous 
phase is sonicated for 2 min resulting in formation of primary emulsion. This emulsion is 
diluted at different ratios under stirring at 9600 rpm using SILVERSON L4RT as 
described in the previous two batches. Initially, 0.5 ml of primary emulsion is diluted 100 
times with 50 ml of DIUF H2O as described previously resulting in the formation of 
secondary emulsion. Then 5 ml of the primary emulsion is diluted 10 times with 50 ml of 
DIUF H2O following the same procedure as described previously resulting in the 
formation of secondary emulsion. This secondary emulsion is further used to generate 
emulsions with different dilutions. An emulsion with total dilution ratio of 30 times is 
prepared by adding 30 ml of the secondary emulsion to 52 ml of DIUF H2O as described 
previously. Similarly emulsions with total dilution ratios of 66, 88, and 100 are prepared 
by adding 10 ml, 8.6 ml, and 6 ml of secondary emulsion to 50ml, 54ml, and 48.5ml of 
DIUF H2O respectively. The above procedure is repeated multiple times to get at least 3 
values for average size of PLGA nanoparticles for each dilution rate.  The particle size of 
the PLGA nanoparticles in the resulting emulsions is measured. The results are 
summarized in Table 4.7, Figure 4.1 (a) and (b).  

All the volume and number based MSDs of this subsection are included in the appendix 
of the report. It can be concluded from Figures 4.1  (a) and (b) that there is no much 
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difference in the particle size because of dilution. However, the particle size of the 65 
times dilution studies have very small particle size distributions, suggesting that this 
dilution rate provides a stable production on nanoparticles. 
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Table 4.7. Summary of dilution ratio effect on the PLGA nanoparticle particle size.  

S. No. Dilution 
times 

Repetition 
times 

Particle size 
(mean, nm) 

Poly 

dispersity 

Average particle 
size 

Standard deviation 
of diameters 

Dv  
(nm) 

Dn  
(nm) 

Dv  
(nm) 

Dn  (nm) Dv  
(nm) 

Dn  (nm) 

1. 11 4 296.0 159.3 0.250 274.4 132.8 18.4 17.9 

   279.9 121.7 0.340     

   269.6 122.3 0.322     

   252.1 127.8 0.274     

2. 30 3 277.5 126.8 0.318 265.4 126.6 29.5 16.3 

   287.0 142.8 0.282     

   231.8 110.3 0.301     

3. 66 3 247.9 121.4 0.289 245.0 111.3 2.6 8.8 

   244.5 105.6 0.343     

   242.7 106.9 0.334     
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Table 4.7 (continued). Summary of dilution ratio effect on the PLGA nanoparticle particle size. 

4. 88 4 232.2 107.6 0.312 279.9 140.5 43.9 38.8 

   277.0 127.4 0.315     

   272.0 130.2 0.298     

   338.5 196.6 0.218     

5. 100 3 284.7 136.7 0.297 307.3 166.4 46.7 52.4 

   276.2 135.5 0.288     

   361.0 226.9 0.187     
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Figure 4.23. Effect of dilution ratio on volume based particle size distribution of 
PLGA nanoparticles. 

 

Figure 4.24. Effect of dilution ratio on number based particle size distribution of 
PLGA nanoparticles. 
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Sonication and Static mixer 

The previous particle size distributions obtained by using sonication and homogenization 
are almost in the required range. Thus a batch of PLGA nanoparticles using static mixer 
as an alternative to homogenization is tried. If the static mixer can do the complete job of 
producing the desired MSD, then scale – up should be easier. First 18 ml of primary 
emulsion is prepared by sonication as described in materials and methods section. 18 ml 
of primary emulsion is used so that good enough emulsion to pump through the static 
mixer is present. One more beaker is filled with 180 ml of DIUF H2O. The two beakers, 
one with primary emulsion and other with DIUF H2O, are attached to the two input 
provisions of the static mixer and are fed simultaneously through the static mixer using 
the two pumps. The speeds of both the pumps are maintained at 1:10. Taking the speed 
limits of both the pumps into consideration the 1:10 ratio of pump speed is selected for 
the synthesis. The effect of speed through the static mixer on the size of the nanoparticles 
is tested by generating nanoparticles at three different speeds through the static mixer, 
while maintaining the same speed ratio of both the pumps in all the three batches. For the 
first batch, the speeds of pumps are 18 ml/min and 180 ml/min for emulsion and DIUF 
H2O respectively. The output from the static mixer is pumped through the static mixer 
four more times using a single pump for all the three batches to further decrease the size 
of the nanoparticles. The resulting emulsion is checked for particle size distribution. Two 
more batches are prepared same as described above except that the speed through the 
static mixer is 20 ml/min and 26 ml/min for the primary emulsion and 200 ml/min and 
260 ml/min for DIUF H2O respectively. To test the effect of solvent removal on the 
nanoparticle size distribution, one of the batches is evaporated over night at 300C 
temperature to remove EA and MSD of the particles is tested. The comparison between 
particle size distributions of nanoparticles obtained by employing different speeds 
through the static mixer to generate a secondary emulsion is summarized in Table 4.8.  

 In the batch that was processed at 180ml/min through the static mixer, 14 % of the 
partilces based on volume and 96% of the partilces based on number with desired range 
154 nm< Davg<223 nm were observed along with 86% of particles based on volume and 
4% of the partilces based on size having size around 850 nm<Davg<1350 nm.  Based on 
volume 4% and based on number 61% of particles with desired size range 122 
nm<Davg<157 nm were observed in the batch that was generated at 200 ml/min through 
static mixer. Based on volume 96% and based on number 39% of particles in the size 
range 405 nm<Davg<560 nm were also observed in this batch. Based on volume 23% and 
based on number 97% of particles with desired size range 152 nm< Davg<230 nm were 
observed in the batch that was generated at 260 ml/min through static mixer. Based on 
volume 77% and based on number 3% of particles in the size range 795 nm<Davg<1205 
nm were also observed in this batch. In conclusion, there are good number of 
nanoparticles in required size range of 100-250 nm based on number in all the samples 
generated by using static mixer. In the ethyl acetate evaporated sample, 100% of the 
particles with size in the range of 97 nm< Davg<1886 nm based on volume are observed. 
In this batch, based on number 99% of the nanoparticles are in the size range of 97 nm< 
Davg<491 nm. The increase in the range of particle sizes present in the emulsion is 
because of agglomaration of the nanoparticles over the evaporation process. It can be 
concluded that the static mixer is a good substitute for homogenizer in generating 



 

57 

 

secondary emulsion with particles in the size range of 100-250 nm. The use of static 
mixer instead of homogenizer aids the scale up of the tecnique for industrial application. 
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Table 4.8. Particle sizes obtained by using sonication for primary emulsion and static mixer for secondary emulsion 
generation.  

S. 

No. 

Secondary 
emulsion method 

Dilution 
times 

Dv  (nm) (% of particles in the range) Dn  (nm) (% of particles in the 
range) 

Poly 
dispersity 

1 Static mixer  
(180ml/min, 
5times) 

10 Peak 1 (14%) 

Dmin=165, Davg=206, Dmax=255 

Peak 1 (96%) 

Dmin=165, Davg=199, Dmax=255 

0.307 

Peak 2 (86%) 

Dmin=872, Davg=1085, Dmax=1351 

Peak 2 (4%) 

Dmin=872, Davg=1056, Dmax=1134 

2 Static mixer  
(200ml/min, 
5times) 

10 Peak 1 (4%) 

Dmin=122, Davg=138, Dmax=157 

Peak 1 (61%) 

Dmin=122, Davg=135, Dmax=157 

0.234 

Peak 2 (96%) 

Dmin=405, Davg=463, Dmax=557 

Peak 2 (39%) 

Dmin=405, Davg=460, Dmax=522 

3 Static mixer  
(260ml/min, 
5times) 

10 Peak 1 (23%) 

Dmin=152, Davg=192, Dmax=230 

Peak 1 (97%) 

Dmin=152, Davg=186, Dmax=230 

0.256 

Peak 2 (77%) 

Dmin=796, Davg=759, Dmax=1205 

Peak 2 (3%) 

Dmin=796, Davg=902, Dmax=1109 
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Table 4.8(continued). Particle sizes obtained by using sonication for primary emulsion and static mixer for secondary emulsion 

generation. 

4 Static mixer  
(260ml/min, 5 
times) evaporated 
over night 

10 Peak 1 (100%) 

Dmin=97, Davg=693, Dmax=1886 

Peak 1 (99%) 

Dmin=97, Davg=161, Dmax=491 

0.222 



 

60 

 

 

Figure 4.25. Volume based MSD of nanoparticles generated by sonication of 1ml 
organic solution and 5ml aqueous solution resulting in primary emulsion followed 
by using static mixer at 180ml/min and dilution ratio 1:10 to generate secondary 
emulsion. [Table 4.8, S.No.1] 

 

Figure 4.26. Volume based MSD of nanoparticles generated by sonication of 1ml 
organic solution and 5ml aqueous solution resulting in primary emulsion followed 
by using static mixer at 200ml/min and dilution ratio 1:10 to generate secondary 
emulsion. [Table 4.8, S.No.2] 
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Figure 4.27. Volume based MSD of nanoparticles generated by sonication of 1ml 
organic solution and 5ml aqueous solution resulting in primary emulsion followed 
by using static mixer at 260ml/min and dilution ratio 1:10 to generate secondary 
emulsion. [Table 4.8, S.No.3] 

 

Figure 4.28. Volume based MSD of secondary emulsion, after removing EA, 
generated by sonication of 1ml organic and 5ml aqueous phase resulting in primary 
emulsion followed by use of  static mixer at 260ml/min and dilution ratio 1:10. 
[Table 4.8, S.No.4] 
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Transmission electron microscopy measurement 

To confirm the presence of the nanoparticles in the secondary emulsion synthesized by a 
static mixer, TEM and MSD images of the secondary emulsion are compared for this 
batch. One batch of PLGA nanoparticles is produced as mentioned in previous section 
with speed through the static mixer being 39 ml/min and 390 ml/min of primary emulsion 
and DIUF H2O respectively. The MSD of the secondary emulsion was obtained.  The 
TEM sample was prepared as mentioned in materials and methods section.  

The volume and number based MSD of the nanoparticles sample were determined and 
are shown in Figure 4.27 and Figure 4.28 respectively. The summary of the range of size 
of the nanoparticles sample based on MSD is presented in Table 4.9. It can be observed 
that majority of the particles with size range 75 nm< Davg<95 nm and 197 nm< Davg<360 
nm are present in the emulsion.  There are few particles in the range of 1 µm – 2 µm. 
TEM images of the sample are presented in Figure 4.29 through Figure 4.33. No clear 
images and boundaries of the PLGA nanoparticles are observed as distinguishing the 
carbon based PLGA nanoparticles coated over lacey carbon-coated copper grid is 
difficult. TEM images are analyzed and compared to the MSD of the samples to verify 
the results obtained.  In Figure 4.29, clusters of spherical nanoparticles can be observed 
in the top left hand corner and bottom right hand corner of the picture.  It is evident from 
the TEM image Figure 4.29 of the secondary emulsion that there are nanoparticles in size 
range 50 nm< Davg<100 nm.  A close up image of a PLGA nanoparticle with size around 
100 nm is shown in Figure 4.30. Figures 4.31 and 4.32 represent TEM images of a PLGA 
nanoparticle with diameter around 300 nm. In Figure 4.33, nanoparticles with a wide 
range of particle size are found. Nanoparticles with size around 1000 nm in size can be 
clearly seen all over the image in Figure 4.33. The volume based MSD of the sample also 
indicate the presence of the PLGA nanoparticles with diameter around 1000 nm, but they 
are very small in number as no particles in such range are observed in the number based 
MSD. Small clusters of PLGA nanoparticles in size range around 100nm-500nm are also 
found in the TEM image of Figure 4.33. The range of particles found in all the TEM 
images is also found in MSD data of the sample. It is concluded that MSD data of the 
sample and the TEM images are in well agreement with each other.    
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Figure 4.29. Volume based MSD of PLGA nanoparticles in TEM sample. 

 

Figure 4.30. Number based MSD of PLGA nanoparticles in TEM sample. 
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Table 4.9. MSD summary of secondary emulsion from the static mixer for TEM measurement.  

Batch. 
No. 

System Secondary 
emulsion 
method 

Dilution 
times 

Dv  (nm) Dn  (nm) Poly 
dispersity 

1. 1ml 1wt% 
PLGA in 
EA and 5ml 
1wt% PVA, 
0.3wt% 
Chitosan 
chloride in 
DIUF H2O 

Static mixer  
(390ml/min, 
5 times)  

10 Peak 1 

Dmin=75,Davg=83, Dmax=95 

Peak 1  

Dmin=75,Davg=81,Dmax=95 

0.265 

Peak 2 

Dmin=197,Davg=283,Dmax=360 

Peak 2 

Dmin=197,Davg=260,Dmax=360 

Peak 3 

Dmin=1070,Davg=1421,Dmax=1959 
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Figure 4.31. TEM images of the PLGA nanoparticles with size around 100nm in the 
secondary emulsion processed through the static mixer at 390ml/min. 

 

Figure 4.32. TEM images of the PLGA nanoparticles with size around 100nm in the 
secondary emulsion processed through the static mixer at 390ml/min. 
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Figure 4.33. TEM images of the nanoparticles with diameter around 300nm in the 
secondary emulsion processed through the static mixer at 390ml/min. 

 

Figure 4.34. TEM images of the nanoparticles with diameter around 300nm in the 
secondary emulsion processed through the static mixer at 390ml/min. 
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Figure 4.35. TEM images of spherical nanoparticles with sizes in the range of 100-
1000nm in the secondary emulsion processed through the static mixer at 390ml/min. 
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5. Conclusions 

The present study reports the formation of cationic PLGA nanoparticles with a portion of 
their distribution below 250nm using PVA as stabilizer and chitosan chloride for surface 
modification. The nanoparticles are generated by emulsion – diffusion – evaporation 
method and sonication is used for generating primary emulsion followed by static mixer 
for diffusion step. In the process of analyzing nanoparticle formation it is observed that 
the PVA acts as a compatibilizer for chitosan chloride in DIUF H2O. It is also confirmed 
in this report that chitosan chloride alone cannot generate nanoparticles in required size 
range and PVA alone cannot confer positive charge to the nanoparticles and generate a 
good stable emulsion.  

The static mixer was used to modify the formed colloidal droplet size after homogenizer. 
Data in Table 4.5 demonstrate that the particle size of primary emulsion were not further 
reduced, rather they seem to have agglomerated. The dilution ratio of secondary emulsion 
in diffusion step has little effect on the final PLGA nanoparticles size. However a dilution 
ratio of 65 times generated stable nanoparticles size. The use of sonication for emulsion 
generation followed by static mixer for diffusion step successfully generated a fraction of 
PLGA nanoparticles below 250nm. The use of static mixer enables easy scale – up for 
industrial use of this method. TEM images of the nanoparticles and the multi – modal 
distribution of particle sizes of nanoparticles are in correspondence with one another.  
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6. Appendices  

Abbreviations 

Polymers 

Chlorin-cored PCL -b- mPEG – chlorin-core poly ( -caprolactone)–poly (ethylene 
glycol) diblock copolymer 

PDMAPAAm-PNIPAM – poly (N,N-dimethylaminopropyl acrylamide)- poly (N-
isopropylacrylamide) 

PEG – poly (ethylene glycol) 

PEGDMA/PLA semi-IPN – poly (ethylene glycol) dimethacrylate/ poly (lactic acid) 
semi-interpenetrating network 

PEI-graft-PCL (PEC) – polyethylenimine-graft-poly(ε-caprolactone) 

PEG-PLLA-PEG - polyethylene glycol and poly (L-lactide) diblock copolymers 

PHPMA – poly [N-(2-hydroxypropyl)methacrylamide] 

PLGA – poly (lactic-co-glycolic acid) 

PSMA – poly (styrene-co-maleic anhydride) 

PVA – polyvinyl alcohol 

PVP – polyvinylpyrrolidone 

Nomenclature 

G (d): relative percentage contribution of the size range.  

C (d): cumulated percentage contribution. 

d: diameter of dispersed phase  

Dv: volume-based size.  

Dn:  number-based size. 

µd: viscosity of dispersed phase  

σ: surface tension 

ρc: density of continuous phase 

ρd: density of dispersed phase 
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Number based multimodal size distributions of all secondary emulsions in this work 

Dissolution of polymers in their solvents (Table 4.1) 

 

Figure 6.1. Number based MSD of 0.3wt% chitosan chloride in DIUF H2O [Table 
4.1, row 3] 

 

Figure 6.2. Number based MSD of 0.03wt% chitosan chloride in DIUF H2O. [Table 
4.1, row 5] 
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Figure 6.3. Number based MSD of particles formed by emulsifying 1 ml EA in 5 ml 
solution of 0.3wt% chitosan chloride in DIUF H2O. [Table 4.1, row 6] 

Effect of PVA on Chitosan chloride aqueous solution (Table 4.2) 

 

Figure 6.4. Number based MSD of 0.3wt% chitosan chloride in DIUF H2O – batch-
1. [Table 4.2, S.No.1] 
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Figure 6.5. Number based MSD of 1wt% PVA and 0.3wt% chitosan chloride in 
DIUF H2O – batch -1. [Table 4.2, S.No.2] 

 

Figure 6.6. Number based MSD of 0.3wt% chitosan chloride in DIUF H2O – batch-
2. [Table 4.2, S.No.3] 
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Figure 6.7. Number based MSD of 1wt% PVA and 0.3wt% chitosan chloride in 
DIUF H2O – batch -2. [Table 4.2, S.No.4] 

 

 

Figure 6.8. Number based MSD of 0.3wt% chitosan chloride in DIUF H2O – batch-
3. [Table 4.2, S.No.5] 
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Figure 6.9. Number based MSD of 1wt% PVA and 0.3wt% chitosan chloride in 
DIUF H2O – batch -3. [Table 4.2, S.No.6] 

Different possible binary polymer emulsions (Table 4.3) 

 

Figure 6.10. Number based MSD of 1wt% PVA and 0.3wt% chitosan chloride in 
DIUF H2O. [Table 4.3, row 2] 
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Figure 6.11. Number based MSD of nanoparticles formed by 1 ml 1wt% PLGA in 
EA emulsified in 5 ml aqueous solution of 1wt% PVA. [Table 4.3, row 3] 

 

Figure 6.12. Number based MSD of nanoparticles formed by 1 ml solution of 1wt% 
PLGA in EA emulsified in 5 ml aqueous solution of 0.3wt% chitosan chloride. 
[Table 4.3, row 4] 
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Emulsion formed by the ternary polymer system (Table 4.4) 

 

Figure 6.13. Number based MSD of nanoparticles formed by 1 ml 1wt% PLGA in 
EA emulsified in 5 ml of 1wt% PVA and 0.3wt% chitosan chloride in DIUF H2O. 
[Table 4.4, row 2] 

 

Figure 6.14. Number based MSD of 2nd batch of nanoparticles formed by 1 ml 
1wt% PLGA in EA emulsified in 5 ml aqueous solution of 1wt% PVA and 0.3wt% 
chitosan chloride. [Table 4.4, row 3] 
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Effect of Static mixer (Table 4.5) 

 

Figure 6.15. Number based MSD of nanoparticles in 100 times dilute primary 
emulsion from homogenization of 10ml organic phase and 50ml of aqueous phase. 
[Table 4.5, S.No.1] 

 

Figure 6.16. Number based MSD in 100 times diluted emulsion from 
homogenization of 10ml of organic and 50ml of aqueous phase and subsequently 
processing 3 times through static mixer at 135ml/min. [Table 4.5, S.No.2] 
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Figure 6.17. Number based MSD in 100 times diluted emulsion from 
homogenization of 10ml of organic and 50ml of aqueous phase and subsequently 
processing 6 times through static mixer at 135ml/min. [Table 4.5, S.No.3] 

Sonication - homogenization (Table 4.6) 

 

Figure 6.18. Number based MSD in secondary emulsion generated by 
homogenization at dilution rate 1:100 of primary emulsion formed by sonication of 
1ml 1wt% PLGA in EA and 5ml of 1wt% PVA and 0.3wt% chitosan chloride 
aqueous solution. [Table 4.6, S.No.1] 



 

79 

 

 

Figure 6.19. Number based MSD in secondary emulsion generated by 
homogenization at dilution rate 1:100 of primary emulsion formed by sonication of 
1ml 1wt% PLGA in EA and 5ml of 1wt% PVA and 0.3wt% chitosan chloride 
aqueous solution. [Table 4.6, S.No.2] 

 

Figure 6.20. Number based MSD in secondary emulsion generated by 
homogenization at dilution rate 1:10 of primary emulsion formed by sonication of 
1ml 1wt% PLGA in EA and 5ml of 1wt% PVA and 0.3wt% chitosan chloride 
aqueous solution. [Table 4.6, S.No.3] 
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Effect of dilution ratio on the PLGA nanoparticle size (Table 4.7) 

 

Figure 6.21. Volume based MSD of first batch of secondary emulsion with dilution 
ratio 1:10. [Table 4.7, row 2] 

 

Figure 6.22. Number based MSD of first batch of secondary emulsion with dilution 
ratio 1:10. [Table 4.7, row 2] 
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Figure 6.23. Volume based MSD of second batch of secondary emulsion with 
dilution ratio 1:10. [Table 4.7, row 3] 

 

Figure 6.24. Number based MSD of second batch of secondary emulsion with 
dilution ratio 1:10. [Table 4.7, row 3] 
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Figure 6.25. Volume based MSD of third batch of secondary emulsion with dilution 
ratio 1:10. [Table 4.7, row 4] 

 

Figure 6.26. Number based MSD of third batch of secondary emulsion with dilution 
ratio 1:10. [Table 4.7, row 4] 
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Figure 6.27. Volume based MSD of fourth batch of secondary emulsion with 
dilution ratio 1:10. [Table 4.7, row 5] 

 

Figure 6.28. Number based MSD of fourth batch of secondary emulsion with 
dilution ratio 1:10. [Table 4.7, row 5] 
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Figure 6.29. Volume based MSD of first batch of secondary emulsion with dilution 
ratio 1:30. [Table 4.7, row 6] 

 

Figure 6.30. Number based MSD of first batch of secondary emulsion with dilution 
ratio 1:30. [Table 4.7, row 6] 
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Figure 6.31. Volume based MSD of second batch of secondary emulsion with 
dilution ratio 1:30. [Table 4.7, row 7] 

 

Figure 6.32. Number based MSD of second batch of secondary emulsion with 
dilution ratio 1:30. [Table 4.7, row 7] 
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Figure 6.33. Volume based MSD of third batch of secondary emulsion with dilution 
ratio 1:30. [Table 4.7, row 8] 

 

Figure 6.34. Number based MSD of third batch of secondary emulsion with dilution 
ratio 1:30. [Table 4.7, row 8] 
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Figure 6.35. Volume based MSD of first batch of secondary emulsion with dilution 
ratio 1:60. [Table 4.7, row 9] 

 

Figure 6.36. Number based MSD of first batch of secondary emulsion with dilution 
ratio 1:60. [Table 4.7, row 9] 



 

88 

 

 

Figure 6.37. Volume based MSD of second batch of secondary emulsion with 
dilution ratio 1:60. [Table 4.7, row 10] 

 

Figure 6.38. Number based MSD of second batch of secondary emulsion with 
dilution ratio 1:60. [Table 4.7, row 10] 
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Figure 6.39. Volume based MSD of third batch of secondary emulsion with dilution 
ratio 1:60. [Table 4.7, row 11] 

 

Figure 6.40. Number based MSD of third batch of secondary emulsion with dilution 
ratio 1:60. [Table 4.7, row 11] 
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Figure 6.41. Volume based MSD of first batch of secondary emulsion with dilution 
ratio 1:80. [Table 4.7, row 12] 

 

Figure 6.42. Number based MSD of first batch of secondary emulsion with dilution 
ratio 1:80. [Table 4.7, row 12] 
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Figure 6.43. Volume based MSD of second batch of secondary emulsion with 
dilution ratio 1:80. [Table 4.7, row 13] 

 

Figure 6.44. Number based MSD of second batch of secondary emulsion with 
dilution ratio 1:80. [Table 4.7, row 13] 
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Figure 6.45. Volume based MSD of third batch of secondary emulsion with dilution 
ratio 1:80. [Table 4.7, row 14] 

 

Figure 6.46. Number based MSD of third batch of secondary emulsion with dilution 
ratio 1:80. [Table 4.7, row 14] 
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Figure 6.47. Volume based MSD of fourth batch of secondary emulsion with 
dilution ratio 1:80. [Table 4.7, row 15] 

 

Figure 6.48. Number based MSD of fourth batch of secondary emulsion with 
dilution ratio 1:80. [Table 4.7, row 15] 
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Figure 6.49. Volume based MSD of first batch of secondary emulsion with dilution 
ratio 1:100. [Table 4.7, row 16] 

 

Figure 6.50. Number based MSD of first batch of secondary emulsion with dilution 
ratio 1:100. [Table 4.7, row 16] 



 

95 

 

 

Figure 6.51. Volume based MSD of second batch of secondary emulsion with 
dilution ratio 1:100. [Table 4.7, row 17] 

 

Figure 6.52. Number based MSD of second batch of secondary emulsion with 
dilution ratio 1:100. [Table 4.7, row 17] 
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Figure 6.53. Volume based MSD of third batch of secondary emulsion with dilution 
ratio 1:100. [Table 4.7, row 18] 

 

Figure 6.54. Number based MSD of third batch of secondary emulsion with dilution 
ratio 1:100. [Table 4.7, row 18] 
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Sonication - static mixer (Table 4.8)  

 

Figure 6.55. Number based MSD of nanoparticles generated by sonication of 1ml 
organic solution and 5ml aqueous solution resulting in primary emulsion followed 
by using static mixer at 180ml/min and dilution ratio 1:10 to generate secondary 
emulsion. [Table 4.8, S.No.1] 

 

Figure 6.56. Number based MSD of nanoparticles generated by sonication of 1ml 
organic solution and 5ml aqueous solution resulting in primary emulsion followed 
by using static mixer at 200ml/min and dilution ratio 1:10 to generate secondary 
emulsion. [Table 4.8, S.No.2] 
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Figure 6.57. Number based MSD of nanoparticles generated by sonication of 1ml 
organic solution and 5ml aqueous solution resulting in primary emulsion followed 
by using static mixer at 260ml/min and dilution ratio 1:10 to generate secondary 
emulsion. [Table 4.8, S.No.3] 

 

Figure 6.58. Number based MSD of secondary emulsion, after removing EA, 
generated by sonication of 1ml organic and 5ml aqueous phase resulting in primary 
emulsion followed by use of  static mixer at 260ml/min and dilution ratio 1:10. 
[Table 4.8, S.No.4] 
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