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ABSTRACT OF DISSERTATION 
 
 
 

EFFECT OF FLUORINATION ON PARTITIONING BEHAVIOR AND BILAYER 
SELF ASSEMBLY 

 
Fluorinated systems are defined by unique properties that offer advantages in drug 

delivery, material synthesis and industrial applications.  In comparison to their 
hydrocarbon counterparts, the design of fluorinated solutes for tailored applications is 
limited by the inability to predict the effect of fluorination on phase behavior. This work 
examines and interprets the influence of fluorination on the phase behavior of fluorinated 
solutes and surfactants, with emphasis on their impact on vesicle bilayers. 

Thermodynamic partitioning of functionalized series of fluorinated and 
hydrocarbon nicotinate prodrugs fashioned to promote solubility in a fluorocarbon 
solvent (perfluorooctyl bromide; PFOB) is measured.  Predictive approaches are also 
employed to describe partitioning of these nicotinates between immiscible phases 
relevant to drug delivery.  The findings reveal no strong correlation of the partitioning 
trends with biological markers of cytotoxicity and prodrug uptake for PFOB mediated 
delivery.    However, partitioning in model membranes (liposomes), which, increases 
with the hydrophobicity of the perhydrocarbon nicotinates, suggests incorporation in a 
cellular matrix is chain length dependent. 

The impact of incorporating fluorinated surfactants in catanionic vesicles, which 
form spontaneously in dilute aqueous solutions and serve as potential substitutes to 
conventional meta-stable liposome-based vesicles, is studied.  Much larger isotropic 
vesicle regions are observed in the phase map of the partially fluorinated catanionic 
surfactant pair, cetylpyridinium bromide/ sodium perfluorooctanoate (CPB/SPFO) than in 
fully fluorinated HFDPC (1,1,2,2,-tetrahydroperfluorododecyl pyridinium chloride 
)/SPFO.  Fluorescence probing of the vesicle bilayers suggest more fluid bilayers in 
CPB/SPFO than in HFDPC/SPFO due to better chain packing in the fully fluorinated 
bilayer.  However, the vesicle region is expanded in more asymmetric fluorinated 
bilayers of HFDPC/SPFH (sodium perfluorohexanoate).  The increased chain asymmetry 
in HFDPC/SPFH results in reduced packing density and more fluid bilayers than in 
HFDPC/SPFO. 



 
 

 
The robustness of CPB/SPFO and HFDPC/SPFO vesicles is demonstrated in the 

synthesis of silica hollow spheres by templating and the retention of encapsulated solutes.   
Higher colloidal stability of the silica spheres is achieved in HFDPC/SPFO relative to 
CPB/SPFO due to the barrier effect of the fluorinated bilayer.  Similarly, higher solute 
retention in  HFDPC/SPFO is observed.  The modulation of phase behavior with 
fluorination offers opportunities in tunable applications of fluorinated bilayers.   

 
KEYWORDS:  fluorinated surfactants, catanionic vesicles, nicotinate prodrugs, partition 
coefficients, silica 
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CHAPTER 1 
 
 

INTRODUCTION 
 
 
 
  Fluorocarbons and fluorinated surfactants represent a class of compounds whose 

special properties have generated enormous interest for their potential in biomedical and 

industrial applications.   Fluorinated compounds are prevalent in cosmetic products, 

cookware, film materials and constitute important components of electronics, adhesives, 

wetting agents, lubricants, and plastics.1   The versatility of these applications can be 

attributed to the strength of the carbon-fluorine covalent bond, which imparts both strong 

intramolecular forces and weak intermolecular interactions in fluorinated alkane chains, 

resulting in physicochemical properties that are distinct from traditional hydrocarbon-

based systems.1-5   

The  prevalence of fluorinated materials in industrial chemical applications and 

the uniqueness of their properties as solutes, solvents, and reactants has earned a separate 

classification; “fluorous chemistry”, a term coined by I. T. Horvath.6 Perfluorinated 

compounds adhere strongly to the ‘like dissolves like’ principle; their immiscibility with 

hydrocarbons, for example, is exploited in biphasic catalysis. Compounds functionalized 

with fluorinated chains constitute an important part of tailored organic synthesis 

reactions, separations and recovery technologies.6-9  In addition, the ability of 

perfluorocarbon compounds to dissolve high quantities of oxygen initiated the interest in 

fluorine engineered catalysis, for applications including the conversion of methane to 

methanol.10   

Since the ground-breaking work of Clark and Gollan,11 perfluorinated fluids and 

colloidal systems have gained prominence in biomedical applications as suitable 

alternatives to hemoglobin derivatives for the transport of oxygen and carbon dioxide, 

that is effectively acting as potential “blood substitutes”12-16 for patients in critical care.17  

The combination of biological and chemical inertness, superior gas absorption and 

transport capabilities, high surface activity, fluidity and density affords fluorocarbons, 

such as perfluorooctyl bromide (PFOB), an advantage in ventilation therapy 18-21 and in 

treatment of respiratory diseases. Acceptable  in vivo circulatory residence times (t half-life 



2 
 

≈ 5.5 days) and reduced effect on red blood cell function are achieved in fluorinated 

solvents relative to standard hydrocarbon solutions.22,23 Several formulations of 

fluorinated colloidal systems (gels, emulsions, microemulsions, micelles, vesicles and 

tubules) are currently being explored as contrast agents in imaging of diseased tissues and 

organs,24-27 in the delivery and storage of drugs, proteins and genetic material,28-33 in 

organ preservation and for eye reconstruction procedures.34    

Due to the limited solubility of therapeutic agents in fluorocarbons fluids, 

incorporation of fluorinated surfactants or partially fluorinated surfactants are often 

prerequisites for effective solubilization.  Novel methods are continually being sought to 

circumvent the solubility issue with fluorinated surfactants playing an integral role.35   

The ability to tailor the phase behavior of self-assembled systems comprising 

fluorinated surfactants also has applications in supramolecular chemistry (organized 

molecular assembly).  Self-aggregation in amphiphilic systems is amplified in fluorinated 

surfactants, which are both hydrophobic and lipophobic.  The rigidity and bulkiness of 

the fluorocarbon chains promotes self-assembled aggregate structures of  lower 

curvature, such as rod-like micelles, lamellae and vesicles.  The morphology of the 

aggregates is also dependent on concentration, the nature of the headgroups (nonionic, 

anionic, cationic and zwitterionic), pH, temperature, pressure and surfactant geometry 

(straight chain, branching).  The fluorophilic character of the surfactant can be adjusted 

by modifying the proportion of hydrocarbon to fluorocarbon chains in partially 

fluorinated compounds and tailored to specific applications.36   

Applications of liposomes as drug delivery vehicles and templating agents, are 

constrained by their inherent meta-stability and their long, intensive processes required 

for  preparation.  Insertion of perfluoroalkyl chains into the bilayer of hydrocarbon 

phospholipid aggregates (liposomes) has been shown to greatly improve the stability and 

reduce the permeability of these model cell membranes, which often function as drug 

transport vehicles and encapsulation devices.31,32,37-40 The phase separation of the 

perfluoroalkyl chains in hydrocarbon bilayer environments,38 similar to demixing of 

fluorocarbon–hydrocarbon surfactant mixtures, produces a highly ordered, impervious 

bilayer core with increased liposome stability.41-43  
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In contrast to meta-stable liposomes, stable vesicles can be formed in dilute 

aqueous mixtures of oppositely charged single tailed surfactants.  These cationic-anionic 

or catanionic vesicles form spontaneously and are stabilized by excess charge of the 

solutions.44-46   The catanionic vesicles provide effective routes for the encapsulation and 

retention of model compounds,47,48 synthesis in nano-reactors,49  and transcriptive 

templating (e.g., the synthesis of stable silica hollow spheres).50  The morphology of 

aggregates in catanionic surfactant mixtures  include micelles, lamellar structures and  is 

affected by the tail and headgroup structure of the ionic surfactants44, pH, counter ions 

and ionic strength.51,52   The exchange of a hydrogenated surfactant with an analogous 

fluorinated surfactant can dramatically alter the stabilization mechanism in catanionic 

surfactant systems,53,54 thereby altering the phase behavior, vesicle size, and vesicle size 

distribution.  However, limited literature examines the effect of fully fluorinated 

surfactant systems on phase behavior.44  The corresponding solubilization and 

permeability in these fluorous bilayers, critical to applications of catanionic vesicles, is 

also unexplored.  

 

1.1 Research Goals and Dissertation Organization 

Fluorinated surfactants possess unique properties, such as enhanced 

hydrophobicity (relative to hydrocarbons), lipophobicity, and stiff, bulky chains with a 

tendency to self assemble into structures with low curvature (rod-like micelles and 

bilayers).  The impact of these unusual characteristics will be manifested in applications 

where fluorinated surfactants are solubilized in bulk systems or incorporated into 

organized colloidal assemblies.  This work investigates the impact of fluorination on the 

phase behavior of solutes and surfactants in bulk solvents and in self-assembled bilayers.   

The modulation of phase behavior with the incorporation of fluorinated moieties will be 

interpreted from the lipophobic/hydrophobic effects of fluorination on solubilization and 

changes in the geometric driving forces for bilayer self assembly. 

The effect of fluorination on the solubilization of a model prodrug (nicotinic acid 

esters) for delivery in a fluorocarbon solvent is explored in Chapter 3.  The extent of the 

incorporation of hydrocarbon nicotinates in model membrane systems and their 

interactions with these bilayers is examined in Chapter 4.  The hypothesis for the sections 
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on the prodrug study is that the experimentally determined thermodynamic properties 

will provide a basis for the interpretation of the uptake of nicotinates in fluorocarbon-

based drug delivery. 

Regions of spontaneous vesicle formation in partially and fully fluorinated 

surfactant systems are identified and subsequently applied in synthesis of silica hollow 

spheres in Chapters 5 and 6.  Finally, the robustness of these partially and fully 

fluorinated vesicle bilayers is examined from their ability to encapsulate and retain model 

solutes (Chapt 7).    The research hypothesis for the catanionic vesicle studies in this 

dissertation is that the incorporation of fluorinated surfactants in catanionic bilayers will 

modulate phase behavior which allows for tunable vesicle applications.  The specific 

research goals for each chapter are presented below:   

• Determine the physicochemical properties of nicotinic acid prodrugs or nicotinic 

acid esters derivatized with fluorocarbon and hydrocarbon functional groups to 

facilitate pulmonary targeted drug delivery in a fluorocarbon medium, 

(perfluorooctyl bromide/PFOB).  In Chapter 3, the thermodynamic parameters of 

partitioning as they relate to the nicotinic acid ester drug transport by passive 

diffusion through the pulmonary route are determined experimentally from the 

relevant, fluorocarbon, hydrocarbon and aqueous biphasic systems.  The ability to 

predict the partitioning behavior as a function of fluorinated and hydrocarbon 

chain length is further explored using group contribution methods and molecular 

modeling approach.  

• Measure the partitioning of the nicotinic acid prodrugs into on liposomes 

constituted of the lung-based phospholipid, dipalmitoylphosphocholine/DPPC, 

which relates to the efficacy as drug delivery agents through the pulmonary route.  

The mechanisms of incorporation in the liposome bilayers are interpreted as a 

function of hydrocarbon chain length of the functionalized nicotinate using 

fluorescence spectroscopic and calorimetric techniques.  

• Identify regions of stable vesicle formation and demonstrate the robustness of 

fully fluorinated catanionic vesicle bilayers through the transcriptive templating 

of silica hollow spheres.  In Chapter 5, the relative ability to template hollow 

spheres from the fully fluorinated catanionic surfactant system, sodium 
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perfluorooctanoate, SPFO/HFDPC (SPFO), 1,1,2,2,-tetrahydroperfluorododecyl 

pyridinium chloride (HFDPC) and mixed fluorinated/hydrocarbon surfactants, 

SPFO/CPB (cetylpyridinium bromide) is compared, using complementary 

methods; transmission electron microscopy (TEM), dynamic light scattering 

(DLS) and zeta potential measurements . 

• Analyze the self-aggregation behavior and characteristics of heterogeneous and 

homogenous fluorinated, cationic-anionic surfactant aggregates in aqueous 

solution.  In Chapter 6, TEM and DLS are used to establish phase regions of 

vesicle formation in permutations of the catanionic pairs of fluorinated and 

hydrocarbon surfactants: sodium perfluorooctanoate (SPFO), 1,1,2,2,-

tetrahydroperfluorododecyl pyridinium chloride (HFDPC), sodium 

pefluorohexanoate (SPFH) and cetylpyridinium bromide (CPB).  The nature of 

intra-vesicle bilayers is studied in the homogenous fluorinated catanionic pair, 

HFDPC/SPFO and compared with the mixed fluorinated/hydrocarbon pair, 

CPB/SPFO using pyrene and pyrene carboxylic acids as fluorescent probes.  

• Measure the encapsulation efficiency and solute retention of fully fluorinated 

catanionic systems relative to mixed fluorinated catanionic surfactant vesicles.  In 

Chapter 7, the relative encapsulation and retention of model compound, the ionic 

dye, rhodamine 6G, and the neutral dye  riboflavin in SPFO/HFDPC and 

SPFO/CPB based vesicles is investigated by combination of size exclusion 

chromatography (SEC), DLS, UV and fluorescence spectroscopic measurements. 

• Conclusions and suggestions for future work based on observations made in the 

preceding chapters are provided in Chapter 8. 
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CHAPTER 2 

 

BACKGROUND 

 

This section provides an overview of fluorinated system properties, solution 

behavior and applications that lays the foundation and motivation for this research study.  

The physicochemical characteristics of fluorinated surfactants are discussed and 

examined within the context of phase behavior in colloidal systems, with an emphasis on 

vesicle bilayers. Thermodynamic properties of fluorinated compounds in bulk systems 

are also assessed within the framework of drug delivery applications. 

 

2.1 Properties of Fluorinated Surfactants, Applications and Phase Behavior 

2.1.1 Physicochemical Properties of Fluorinated Compounds 

The position of fluorine as the smallest, electronegative element on the chemical 

table imparts unique characteristics to fluorinated molecules that have been exploited in 

diverse applications.  With 20% greater bond strength in carbon-fluorine (460 kJ/mol) 

than the carbon-hydrogen bond and the relatively larger size of the highly electronegative 

fluorine atom (0.72Å) compared with hydrogen (0.3Å),1 the carbon-carbon bonds are 

protected.  Thus, perfluorinated compounds are distinguished by high thermal stability 

and chemical inactivity.  Although strong intramolecular forces are ensured by the C-F 

bond, the weak polarizability of the fluorinated chains results in low intermolecular or 

van der Waals interactions.55  Minimal intermolecular interactions, coupled with the 

bulkiness and rigidity of the C-F chains, leads to higher density, higher melting points, 

lower surface tension, low refractive indices, lower boiling points, higher fluidity and 

surface spreading of fluorocarbon compounds in comparison to hydrocarbons.   

These physiochemical properties are also manifested as unfavorable mixing with 

both aqueous and organic phases.  In industrial reactions, the lipophobicity and enhanced 

hydrophobicity are used to separate and recover organic materials in biphasic catalysis 

processes.6,56  In such processes, heating is used to create a single phase reaction solution 

of fluorocarbon and hydrocarbons, which is subsequently cooled to the binary phase 

system, in which fluorophilic and hydrocarbon products are distributed accordingly.  Of 
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specific relevance to clinical applications is the high physisorption of typical gas 

molecules (O2, CO2, Ar, CH4) in perfluorinated solvents, with superior dissolution 

abilities, that is 20 times more oxygen and 3 times carbon dioxide than in water.13 The 

high capacity for dissolved gases is attributed to the low cohesive energy density,3 which 

provides cavities to dissolve the gases without providing for chemical interaction.  This, 

combined with their chemical inertness, affords fluorocarbon liquids such as 

perfluorooctyl bromide (PFOB) advantages in ventilation therapy and as blood 

substitutes.57,58    

 

2.1.2 Effect of fluorinated chains on surfactant self-assembly and thermodynamics of 

phase behavior 

Fluorinated surfactants are essential to the application of  fluorocarbons in drug 

delivery, controlled release devices, material synthesis, imaging of damaged tissue 

(contrast agents), cosmetic agents and fire extinguisher foams.1   

Surfactants or amphiphiles are surface active molecules consisting of two parts, as 

illustrated in Figure 2.1; the headgroup region, which displays affinity for the aqueous 

phase (hydrophilic), and tail group, which demonstrates affinity for the organic phase 

(lyophilic).59  The conflicting preferences drive self assembly at surfaces and interfaces, 

with corresponding reduction of interfacial tensions. 

  In solution, the unfavorable energetics imposed by dispersed surfactant 

monomers promotes organized self-assembled aggregates at a specific concentration 

(critical micelle concentration/CMC), which is typically determined from surface tension 

measurements.   The structural conformation of the micelles (i.e. a closed aggregate 

form) is dependent on factors that include headgroup type (anionic, cationic, zwitterionic, 

nonionic), chain length, solution temperature, pH and electrolyte strength.  Aggregate 

shape can be predicted using an equation developed by Israelachvili,60 which accounts for 

the physical structure of the surfactant. The surfactant packing parameter, P, is defined 

as: 

  P =  v
ao*l

                                                             Equation (2.1) 

where v and l are the volume and length of the hydrophobic chain and ao represents the 

headgroup area.  As depicted in Figure 2.1, spherical micelles, cylindrical micelles, 
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closed bilayers (vesicles), planar bilayers, inverse micelles are found in the respective 

fraction ranges: P ≤ 1/3, 1/3 ≤ P ≤ 1/2, P = 1 and P >  1.  However, above a limiting 

concentration, packing effects induce different micellar aggregates in solution and 

multiple aggregates are observed.  In effect, the morphology of the micelle is a combined 

result of headgroup interactions, such as electrostatic forces in ionic surfactants or polar 

in nonionic surfactants, the attractive van der Waals interactions of the hydrocarbon 

chains.61  
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Figure 2.1: Packing parameter and micelle structure (adapted from Israechavilli60) 
 

In the case of fluorinated surfactants, the hydrophobic effect is increased and a 

lipophobic effect is introduced, which is absent in hydrocarbon surfactants.3-5,62-64 As a 

result, fluorinated surfactants are more surface active and their CMCs are lower than that 

of their hydrocarbon counterparts.65,66 For a fixed concentration (1g/L), sodium 

perfluorooctanesulfate (PFOS/C8F17SO2Na) reduces the surface tension of water by 56%, 

compared with 11% reduction by sodium octanesulfonate (C8H17SO2Na).1   Due to their  

lipophobicity, semi-fluorinated alkanes may assume amphiphilic characteristics in 

fluorocarbon and hydrocarbon media, forming interfacial aggregates.67  Although the 

synthesis routes for typical fluorinated surfactants are more difficult and expensive than 

for hydrocarbon surfactants,1,68 this may be offset by the much smaller amounts required 

for applications.   Akin to other fluorocarbon moieties, fluorosurfactants are chemically 

and thermally inert with high melting points.1   The presence of fluorine chains increases 
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the strength of the corresponding acids, a direct result of the electron-withdrawing 

strength of fluorine, rendering strong dissociation in solution.  Increased surface activity 

and preference for fluorinated solvent phases has been exploited in the stabilization of 

fluorocarbon-in water or fluorocarbon-hydrocarbon emulsions and microemulsions.  

Sadtler and coworkers33 utilized partially fluorinated surfactants, F-alkyl/alkyl 

dimorpholinophosphate, in reverse water-in-PFOB emulsions incorporated with 

anticancer agents and antibiotics.  The emulsions were stable for a year with less in vitro 

release (4%) of encapsulated dye, 5, 6 carboxyfluorescein (CF), relative to the 

hydrocarbon surfactants (37%).    

In adherence to Eq. (2.1), the steric hindrance of the rigid, bulky fluorinated 

chains promotes self-aggregates of lower curvature such as cylindrical micelles, vesicles 

and lamellar structures.  Small angle neutron scattering (SANS) of typical ionic 

perfluorinated surfactants in aqueous solutions reveals globular micelles, (for lithium 

perfluorooctanoate (LiPFO;C7F15COOLi)) and vesicles (for diethylammonium 

perfluorononoate (DEAFN;C8F17COONH2(C2H5)2),69 whereas their hydrocarbon 

counterparts form more highly curved spherical micelles.   SANS analysis demonstrates 

that the fluorocarbon and hydrocarbon-based micelles are of comparable size, even 

though the hydrocarbon surfactants possess longer chains.  This observation confirms that 

the fluorinated surfactant tails are in the full extended form (trans-conformation) due to 

the steric factors inherent in C-F chains, while C-H chains adopt a more flexible gauche 

conformation.  Globular micelles, threadlike micelles and lamellar sheets have also been 

observed by cryo-TEM in aqueous solutions of homologous series of 

perfluoroalkylpyridnium cationic surfactants.70  X-ray diffraction and polarization 

microscopy studies reveal the formation of lamellar liquid crystalline structures in 

families of anionic perfluorinated carboxylic acid surfactants and salts.71  

The interfacial adsorption of fluorinated surfactants cannot always be extrapolated 

to phase behavior.   For example, the surface tension and interfacial properties of sodium 

perfluorooctanaote (SPFO;C7H15CO2Na)  and sodium decyl sulfate (SDeS; 

C10H25SO4Na) are different, even though the hydrocarbon and fluorocarbon surfactants 

have comparable CMCs (31 mM and 32 mM respectively).66  The hexane-water 

adsorption energies reflected greater affinity of SDeS than SPFO for the hydrocarbon 
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phase, which was expected.  However, the air-water adsorption energy for SPFO was 

24% higher than that for SDeS.  Mukerjee and Handa’s66 interfacial and surface tension 

measurements also showed that alkane chains (CH2) had stronger attraction for the 

hexane than for either water and perfluorohexane, while perfluoroalkane chains (CF2) had 

only slightly higher affinity for perfluorohexane  relative to the other solvents.  This 

effect was attributed to the weak intermolecular forces in fluorinated chains and 

highlights the anomalous phase behavior of fluorinated systems. The enhanced 

micellization effect or hydrophobicity of fluorinated surfactants is driven by the higher 

energetic penalty in creating water cavities to accommodate the fluorinated chains; that 

is, the water restructuring effects.   Differences in the  partial molar heat capacities of CF4 

(98 cal/mol. K) andC2F6(173 cal/mol K)72 compared to CH4 (50 cal/mol K) and C2H6 (72 

cal/mol K)73 provide evidence for greater water restructuring.   Tomasic et al74 

determined the dissolution enthalpies for fluorinated acids and their sodium salts in 

comparison with hydrocarbon surfactants.  Using low concentrations (< CMC), the heat 

capacity changes for the respective surfactants were as follows: ∆Cp ≈ 0.51 kJ/K mol 

(perfluorooctanoic acid/HPFO) and 0.55 kJ/K mol (SPFO), which was 25% higher than 

in the hydrocarbons surfactants.  The calorimetric evidence is consistent with the creation 

of a larger cavity in the presence of a fluorine atom relative to a hydrogen atom.  Fluorine 

creates a bigger water cavity than hydrogen, partially due to the longer bond length: C-F 

bond = 1.38 Å and C-H = 1.09 Å.75  However, the fluorophilic character can be reduced 

or modulated by having partially fluorinated (insertion of hydrocarbon chains), branched 

chains4 or atomic substituents such as bromide, chlorine, oxygen and hydrogen.76   The 

same study showed much lower ∆Cp for perflu oropolyether carboxylic acid (0.18 

kJ/K.mol) and perfluoropolyether carboxylic salt (0.23 kJ/K.mol) due to the presence of 

branched chains and oxygen atom.   Another investigation by Bernett and coworkers76 

into the surface activity of fluorinated esters in different hydrocarbon solvents 

(hexadecane, nitromethane, dioxane, ethyl benzene and propylene) revealed that the 

organic solvent solubility was improved by the  presence of  branched chains, the 

presence of a terminal H group, or by decreasing the fluorinated chain length.  Eastoe et 

al77  demonstrated with neutron reflectivity data and surface tension measurements that 

the presence of a terminal H-atom in perfluoroalkyl triethyleneoxide methyl ethers 
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caused a 75% increase in CMC. Thus, subtle alterations in fluorinated surfactant 

architecture can elicit strong changes in properties and careful design is critical in 

achieving the balance of surfactant characteristics for use in drug delivery and other 

applications.   

Fluorinated surfactant micelles have shown promise as drug delivery agents 29 and 

dissolve gases in higher quantities than hydrocarbon surfactant micelles.  Micelles of 

sodium perfluorooctanoate (SPFO), an anionic surfactant,  exhibit gas dissolution 

capabilities greater than sodium-1-heptanesulfonate under similar conditions by the 

following factors:  4.5 (for O2), 4.25 (for Ar), 1.9 (for CH4),  1.36(C2H6) and 1.45 

(C3H8).78 The higher propensity of fluorinated surfactants to aggregate is reflected in 

lower free energies of micellization than with hydrocarbon surfactants65 and the 

hydrophobicity of a fluoroalkyl group, CF2 is proposed to be equivalent to 1.5 times that 

of a CH2 group.4 However, this factor is increased when the hydrocarbon chains are 

components of partially fluorinated surfactants.79  In mixtures of fluorocarbon and 

hydrocarbon surfactants, phase separation is driven by the mutual phobicity of the chains 

and has been detected by pyrene fluorescence quenching,42,43 differential conductance 

measurements80 and small angle neutron scattering.81  The concentration dependence of 

demixing has been studied for sodium perfluorononoate (SPFN) mixed with a 

hydrocarbon surfactant, sodium n-tetradecyl sulfate (STDS) using pyrene interaction with 

the quencher, 1-laurylpyridnium chloride (LPC) and conductimetry measurements.62 As 

the concentration of STDS is increased, the micellar system transitioned through 

segregated micelles to mixed micelles to segregated micelles, with pyrene preferentially 

solubilized in the hydrocarbon STDS micelles. The CMC of the mixed fluorocarbon and 

hydrocarbon surfactants is higher than the individual surfactant solutions reflecting their 

strong deviation from ideal mixing.82   Hence, mixtures of fluorocarbons and 

hydrocarbons are typically classified by this non-ideal phase behavior with positive 

deviation from ideal mixing. The mutually repulsive interactions means that applications 

of fluorocarbon solvents require non-traditional surfactants and solutes designed to 

enhance solubility.   
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2.2 Delivery of Nicotinic Acid Ester Prodrugs in Fluorocarbon

 Thermodynamics and transport topics relevant to the design and interpretation of 

a novel fluorocarbon mediated prodrug delivery through the pulmonary route are 

presented in this section.  This discussion provides the background for Chapter 3 

(fluorinated and hydrocarbon prodrug phase behavior) and Chapter 4 (partitioning of 

nicotinate prodrugs in model cell bilayers).   These thermodynamic measurements and 

interpretation complement the research collaboration with Dr. H.-J. Lehmler at the 

University of Iowa, who has investigated the effect of molecular design of nicotinate 

prodrugs on the uptake and cytotoxicity of the prodrugs delivered in a fluorocarbon 

solvent.35 

Perfluorocarbons (PFCs) have demonstrated biocompatible characteristics (high 

density, low surface tension, high gas dissolution, biological, chemical and thermal 

inertness), prompting numerous investigations into their therapeutic applications as drug 

delivery agents and blood substitutes.   Clark and Gollan11 first suggested that PFCs were 

a viable therapeutic alternative to traditional blood transfusion methods, which suffer 

from demand/supply imbalance,  and possible blood infection challenges.  Several PFCs, 

such as perfluorooctyl bromide (PFOB/C8H17Br), have gained prominence for potential 

treatment of acute lung injury or distress in liquid ventilation therapy due particularly to 

their higher gas dissolution capacities (O2, CO2, NO2) relative to water and blood.15   

Liquid ventilation, a treatment of acute lung impairment, is a short term technique that 

supplies sufficient levels of required oxygen and opens collapsed airways for gas 

exchange to effectively oxygenate lungs.  Perfluorocarbon fluids (PFCs) provide a 

balance of properties, such as high density to displace the accumulated fluid or 

edematous fluid on the diseased lungs, low surface tension and low viscosity to facilitate 

easy passage through airways and vessels, and appropriate vapor pressures to ensure 

elimination through exhalation.  Partial ventilation therapy allows effective blood flow 

distribution for target delivery.21  FluosolTM (registered trademark of the Green Cross 

Corporation, Osaka Japan), an emulsion of perfluorodecalin and perfluorotripropylamine 

in albumin developed in Japan, which was approved by the food and drug administration 

(FDA) was used in the USA for a few years but stopped due to storage and stability 
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problems.    This illustrates the limitations posed by most PFC formulations in 

therapeutic applications. 

The potential to extend fluorinated solvent application to drug delivery is also 

limited by the solubility of typical hydrocarbon-based polar and nonpolar 

pharmaceuticals.    This motivated the study of prodrug delivery system where 

homologous series of nicotinic acid prodrugs were synthesized with functional groups 

(hydroalkyl and fluoroalkyl chains) to facilitate solubility in PFOB for administration 

through the pulmonary route.35   This novel site- targeted drug delivery pathway ensures 

less body exposure to the drug and even distribution at the intended lung site.   The 

solution of prodrug in fluorocarbon solvent circumvents inherent problems of dispersion 

formulations (emulsions, micelles etc), which include stability, uniformity and controlled 

release.  

Nicotinic acid (C6H5NO2, (NA)), also known as niacin and vitamin B3, is a 

notable polar pharmaceutical agent characterized by a pyridine structure with carboxyl 

group at third position (refer to Fig. 3.1 in Chapter 3).  Nicotinic acid is recognized for its 

benefit in the treatment of cardiovascular disease by modifying the lipid lipoprotein 

constituents of human blood.  Addition of nicotinic acid to statin therapy has been shown 

to reduce levels of low density lipoproteins/LDLs and other bad fats (cholesterol, 

triglycerides, fatty acids).83,84  Conversely, nicotinic acid increases levels of desirable or 

good fats i.e. high density lipoproteins, HDLs by 21-30%.84     It increases the levels of 

nicotinamide adenine dinucleotide (NAD), which influences cellular response to genomic 

damage and hence crucial in treatment of carcinogenesis,85 with the potential in the 

treatment of injured lungs.86   

To facilitate solubility of the polar nicotinic acid drug in the hydrophobic solvent, 

perfluorooctyl bromide (PFOB), homologous series of the nicotinic acid ester prodrugs 

were synthesized with perhydrocarbon and perfluorinated functional groups, forming 

prodrugs. The clinically inactive prodrugs or nicotinic acid esters (nicotinates) are 

enzymatically converted to the parent nicotinic acid drug at the intended lung site, after 

passive diffusion through several solvent layers.    Efficacy of the PFOB-prodrug delivery 

is based on design of nicotinic acid esters or nicotinates.  Knowledge of physicochemical 

properties (pKa, solubility) along with transport and cytotoxicity studies as a function of 
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the homologous series of prodrugs are critical and support the development of a rationale 

for prodrug design.35    

As illustrated in Figure 2.2, the initial hypothesis of prodrug transport in the 

delivery system, involves the transfer of the prodrug from the PFOB solvent and transport 

by passive diffusion through the PFOB boundary layer and adjacent aqueous film layer to 

the intended target cells.  Prodrug uptake is described by both paracellular (between cells) 

and transcellular (across cells) routes. The clinically inactive prodrug is readily converted 

in vivo to the parent nicotinic acid by enzymatic hydrolysis action.  The transport model 

presented in Figure 2.2 is based on cell monolayer culture studies, which can be utilized 

for in vitro assessment of the bioavailability and biocompatibility of the prodrugs.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2. Proposed transport of prodrug through cellular matrix (diagram, which has 
been modified for  PFOB transport, adapted from conventional hydrocarbon based 
delivery.87 
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Applying transport kinetics to the passive diffusion depicted in Figure (2.2), the 

rate of drug transport can be described using a permeability in series model.    The 

effective permeability coefficient (Pe) is related to the observed experiment mass flux 

through cell monolayer (J) as follows:  

     J=-𝑉𝑉𝐷𝐷 �
𝑑𝑑𝐶𝐶𝐷𝐷
𝑑𝑑𝑑𝑑

�  =    A*Pe*(CD-CR)                                         Equation (2.2) 

where A denotes the cross-sectional area, CD and CR, the concentration of donor and 

receiver compartments, VD, the volume of the donor compartment. 

 

Ignoring convective contributions, intracellular metabolism and protein binding, solute 

mass transfer resistance will depend on the relative permeability of the solute through 

individual fluid phases in series. Thus, the effective permeability can also be expressed in 

terms of the mass transfer resistances (inverse permeability) to prodrug transport: 

PFMRDe PPPPPP
111111

++++=      Equation (2.3) 

where each term in Eq. (2.3) represents a mass transfer resistance or barrier.  PD and PR 

are the permeability coefficients of the aqueous diffusion layer on the apical (donor) and 

basolateral (receiver) chambers and PP is the PFOB diffusion layer.  PM and PF are the 

permeability coefficients of the cell monolayer and filter support used in the drug 

transport studies.   

In the framework of the prodrug transport model, partition coefficients are 

important thermodynamic tools, as they describe the relative affinity of the prodrugs for 

the individual phases, hence providing information on the expected mass transfer 

barriers.  They bear a direct relationship to permeability (Eq. 2.4) and are equilibrium-

based parameter often applied in quantitative assessment of passive diffusion to cell 

membranes:88  

P   =     KP *D
∆x

        Equation (2.4) 

where Kp is the partition coefficient, D the diffusivity and ∆x the solvent barrier 

thickness. 
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Based on the fluid barriers in Figure 2.2, the relevant partition measurements 

would be classified as follows: PFOB/water, PFOB/organic and organic/water as they are 

representative of the different permutations of solvent pairs likely to be encountered by 

the nicotinates in their passage to the target lung cells.   The equilibrium partitioning 

between the fluorocarbon-organic phase and PFOB-water is a measure of the relative 

affinity of the prodrug nicotinates for each phase and the ability to cross the phase 

barriers described in Figure (2.2).  The perfluoro(methylcyclohexane)/(PFMCH)-toluene 

is used as a standard measure of partitioning between a fluorocarbon and hydrocarbon 

phase.56  The octanol-water partition coefficient (Ko/w) is used to determine the ability of 

the nicotinates to partition from the aqueous boundary layer to the lipophilic cell 

membrane, and is a traditional tool for measuring lipophilicity.  These thermodynamic 

parameters elucidate the transport barriers experienced by the prodrug system in the 

passage to the lung cells and further our aim in designing a model which accurately 

describes the prodrug transport pathway.   In addition to the solvent partitioning, the 

partition measurements between model membranes (liposomes) and the aqueous phase 

inform on the solute uptake mechanism or incorporation in a cellular matrix. The design 

of functionalized prodrugs to minimize the cell cytotoxicity and maximize prodrug 

uptake requires understanding of drug transport, as interpreted by the partition 

measurements.  

 

2.2.1 Thermodynamics and modeling of solute partitioning between immiscible liquid 

phases 

 A partition coefficient is the equilibrium ratio of a solute in a binary fluid phase 

system, describing the distribution of a solute between two immiscible phases at a given 

temperature and pressure.89  Partitioning of a solute is described from the free energies of 

mixing the solute in each phase, which is dependent on the molecular properties of the 

solute (structure, polarity, size, surface area, molar volume, presence of H-bonds) and its 

interaction with the solvent.  Transfer of solute to a solvent requires two processes; the 

free energy of cavity formation in the solvent for the solute and favorable interaction 

energy between the solutes and solvent. 
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 Various techniques exist to quantify solute concentration in each phase at 

equilibrium with the methods selection based on the molecular properties, binary system, 

accuracy, costs and expediency.  Methods of equilibration have been reviewed by 

Danielsson and Zhang90 and include shake-flask and stir flask methods, which involve 

mechanical agitation of one or both phases.   Subsequent analysis of solute concentration 

in respective phases is determined by techniques including gas chromatography (GC), 

high performance liquid chromatography (HPLC), liquid chromatography mass 

spectrometry (LC-MS) and UV-spectroscopy.89   Solute partition coefficients are 

generally reported for dilute systems (where solute-solute interactions are negligible), and 

therefore the concentration dependence of the partition coefficient is minimized. For 

surfactant systems, partition measurements are conducted at concentrations below the 

CMC to avoid errors as a result of self-assembly.   

Liquid-liquid partitioning can also be predicted using classical thermodynamics 

for non-ideal systems, as applied in Eqs. (2.5) – (2.7).  The mass transfer of the solute is 

driven by the difference in chemical potential, μ, between the two phases and at 

equilibrium, the chemical potential (Eq. 2.5) is the same in both phases.  The preference 

that the solute demonstrates for a particular phase minimizes the free energy of the whole 

system.   

 

µi  =  µi*(T, P)   +  RTlnxiγi      Equation (2.5)  

 

where the excess Gibb’s free energy change in non-ideal mixtures is qualified by the 

activity coefficient, γ, (x is the solute mole fraction) in Eq. 2.5.   

 

xi
βγi

β   =   xi
αγi

α  and Kp =  Xi
β

Xi
α  =  γ i

α

γ i
β      Equation (2.6) 

 

γi
β = exp �Vi�δi− δβ �

2

RT
�   &  γi

α = exp �Vi (δi− δα )2

RT
�   Equation (2.7) 

 

α and β denote the respective liquid phases, Vi, the solute’s molar volume, Kp is the 

partition coefficient and δ, the solubility parameter.   
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The liquid-liquid equilibrium (LLE) partitioning of the solute is quantified by Eq. (2.6).  

Numerous models exist to describe the non-ideality of liquid mixtures and regular 

solution theory, RST (Eq. 2.7), allows for description of a wide variety of systems.  The 

theoretical derivation of RST ignores the excess volume of mixing and assumes that 

excess entropy of mixing is zero at constant temperature and pressure.  At equilibrium, 

the solute partitioning is then described by Eq. (2.7), with molecular interactions 

expressed by the solubility parameter.  The Hildebrand solubility parameter, which is the 

square root of the cohesive energy density (ratio of energy of vaporization to molar 

volume at constant temperature) is a measure of the van der Waals forces (London 

dispersion forces) in a molecule.91  δ is an important thermodynamic property which is 

used to index solution properties and is widely used in drug design.92  In ideal systems, 

the enthalpy of mixing is zero as A-B interactions are similar to A-A and B-B, however 

this is rarely the case and solubility parameter is used to gauge the strength of interaction 

between solutes and solvents. The closer the solubility parameter values of the solute and 

the solvent, the more favorable the interactions of the system. Water (δ = 48), is ranked  

the highest on most scales while perfluoromethylcyclohexane (PFMCH, δ = 12.5) ranks 

among the lowest, as seen for most fluorous compounds.93  Solubility parameters increase 

with polarity, as organic solvents such as toluene (δ= 18.2) and benzene (δ = 18.8) are 

ranked intermediate between the extremes of water and fluorous solvents.  

 The partition coefficient can also be predicted using correlations of molecular 

properties.  The physicochemical properties tested in these correlations include molar 

volume, the excess molar refraction, H-bond basicity, H-bond acidity, 

dipolarity/polarizability, molecular surface area 94-97 with solubility parameter a recurrent 

descriptor 98-100 in these linear free energy relationships (LFER).  Hildebrand solubility 

parameters are often estimated with additivity methods such as Fedors’s93 group 

contribution methods, which divides the molecule into subunits with summation of the 

vaporization enthalpies and molar volumes.   This method has been adapted for various 

polymer mixtures 101 in particular, but is also used for surfactants.98  Modification or 

variations of the Hildebrand solubility parameter (Hansen solubility parameters) which 



19 
 

also account for polar effects and hydrogen bonding are also determined by similar group 

contribution methods.102 

 

Effect of Fluorinated Chain on Partitioning 

 A standard measure of fluorophilicity of a solute is defined by its partitioning 

between perfluoro-(methylcyclohexane)/CF3C6F11 and toluene.7,56  A positive log 

K(PFMC/Toluene) indicates a preference for the fluorocarbon phase while negative values 

indicate an affinity of the solute for the organic phase.  Several groups have adopted a 

predictive approach in determining the fluorophilicity of fluorinated compounds.  Huque 

et al 103 examined a range of solute descriptors for the development of a linear free energy 

relationship (LFER) for fluorophilicity.  Based on a large selection of 99 fluorinated 

compounds with wide range of structural features, their parameterization revealed the 

relative influence on the partitioning was in the order: fluorine content > H-bond acidity 

> excess molar refraction (index of n and Π-electrons) > solute polarity/polarisability > 

McGowan’s characteristic molar volume. Kiss et al 98 established the fluorine threshold 

content for fluorophilicity (a positive K(PFMC/Toluene) ) to be 60%.  Using a neural network 

of descriptors selected from over 50 molecular descriptors, this investigation showed that 

the Hildebrand solubility parameter was the second most important descriptor (after the 

solvent extended surface) for a selection of 59 fluorous compounds.  Daniels et al 97  

developed a LFER using modified molecular surface areas descriptors to predict 

fluorophilicity of both hydrocarbons and fluorinated compounds.  They subdivided the 

molecular surface area into (a) total molecular surface area (b) acidic and (c) basic 

component surface areas (d) halogen surface area and (e) the exposed surface area of all 

aromatic carbons; such detail accounted for variations in molecular features with their 

model yielding reasonable comparison with experimental values (linear  regression, R2 = 

0.94). 

Although significant strides have been made in identifying relevant molecular 

predictors of the fluorophilicity of solutes, the prediction of the phase behavior of 

fluorinated molecules is considered to lag that of hydrocarbons.103  For example, Arp et al 
104 examined the performance of commonly available software packages (SPARC, ClogP, 

COSMOtherm and EPI Suite) in predicting the partitioning and absorption behavior of 
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environmental pollutants, fluorotelomer alcohols and fluorotelomer olefins,  and found 

significant deviations from experimental observations.   Some intrinsic properties of 

fluorinated molecules are not readily captured in standard molecular predictors.  For 

example, fluorinated compound properties are susceptible to peculiarities such as the 

presence of a hydrogen atom at the tip of the molecule.77,105  The placement of a terminal 

H atom significantly alters the chemical properties of surfactants such as sodium 

perfluorononanoate (C8F17COO-Na+/NaPFN) by introducing a strong permanent dipole 

moment at the chain tip.  Downer et al’s 105 studies showed that H-terminated NaPFN (or 

H-NaPFN) was much more hydrophilic than the fully fluorinated analogue; the CMC 

increased 4-fold for H-NaPFN.  Similar results were observed with sodium salts of bis 

(1H, 1H perfluoropentyl)2-sulfosuccinates (DCF4) relative to the  H-terminated double 

chained bis-(1H, 1H, 5H-octafluoropentyl)2-sulfosuccinate (DHCF4), where the CMC of 

the DHCF4 was 10 times that of the DCF4.  In both cases, the interfacial areas per 

molecule at the CMC increased by 8 – 9 Å and the surface tension increased by 6 – 9 

mN/m with the placement of a terminal H-atom.   

               

2.2.2 Liposome membrane partitioning  

Liposomes are simplified models of the biological cellular matrix, often used in 

the study of physiological responses of biomembranes to drugs and solutes. Liposomes 

are formed from aqueous dispersions of  phospholipid (abbreviated to lipid) surfactants, 

which  are hydrophobic fatty acyl chains conjoined to a hydrophilic headgroup, which is 

usually zwitterionic (neutral) or negatively charged (Figure 2.3).106  Since Bangham and 

Horne107 captured self-assembled bilayer structures in aqueous dispersions of 

phospholipids by negatively stained TEM 45 years ago, there have been extensive 

investigations into liposome properties and applications.108-112   Liposomes have been 

studied extensively for use as model membrane systems,113,114 encapsulation agents, drug 

transport devices115 and synthesis of nano-materials.116   
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Figure 2.3: Phospholipid (dipalmitoyl phosphatidylcholine; DPPC) self assembly into 
planar bilayers with spherical vesicles generated by mechanical forces. 
 

As interpreted by the surfactant parameter (Eq. 2.1), planar lamellar structures 

(Figure 2.3) are the thermodynamically stable aggregates in dilute solution for 

cylindrically shaped phospholipids (containing bulky fatty acid chains). The spherical 

vesicle morphology in Figure (2.3) has to be generated by external mechanical forces, 

making liposomes inherently unstable. Vesicle formation is a result of the compromise 

between the line energy of a flat bilayer and the bending energy of curvature117 with the 

latter higher for phospholipid assemblies.  Therefore kinetic methods are applied to 

minimize the bending energy, which determine the final vesicle characteristics.  

Liposomes are often classed according to size and lamellarity:  small unilamellar 

vesicles/SUVs (≤ 100 nm), large unilamellar vesicles/LUVs, (> 100 nm) and 

multilamellar vesicles, MLVs, which consist of more than one bilayer in the vesicles.106  

The characteristics of the liposomal colloidal systems are predetermined by the chemical 

and physical properties of the phospholipid used, solution conditions and the preparation 

method.  As reviewed by Szoka and Papahadjopoulos,106 the most popular preparative 

methods include (1) controlled drying and deposition of a uniform dried lipid film from 

an organic solvent with subsequent rehydration and (2) reverse phase evaporation, where 
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the organic phase of lipid emulsions is removed by reduced pressure.  These methods 

often produce MLVs that can be reduced to unilamellar vesicles (SUVs) by successive 

extrusion118 through polycarbonate membranes,  sonication, ultra-centrifugation119 and 

separation by size exclusion chromatography.120   

A characteristic feature of liposomes is the  gel-liquid crystalline (or fluid) phase 

transition, which occurs at a temperature, Tm (melting temperature) dependent on  bilayer 

properties and solution conditions.121  In the gel phase (< Tm), the lipid chains are tightly 

packed with strong van der Waals interactions.  The chains exist in restricted lateral and 

rotational motion, with perpendicular alignment to the headgroup plane (trans-

conformation) and parallel to each other.108  Above Tm, in the liquid crystalline phase, the 

bilayer is marked by less organized arrangement with trans-gauche conformation of the 

hydrocarbon chains, increased lateral expansion and rotational motion.  The phase 

transition involves the melting of hydrocarbon tails and is similar to an anisotropic -

isotropic chain event and the value is dependent on the cohesion of the hydrocarbon 

chains.  The gel phase is rigid with high microviscosity, which decreases with increasing 

temperature to the more fluid, liquid-crystalline state.  Typically, for a well ordered 

bilayer, the change from gel to fluid phase is a quick transition, occurring over a very 

narrow temperature range.  This is due to conformational restrictions of the ordered 

chains and excluded volume interactions between the terminal methyl chains in the 

bilayer.108 As a result of these packing constraints, the chains in the bilayer have to 

disorder harmoniously or as a cooperative event.   

For a fixed phospholipid headgroup, Tm increases with the length of the fatty acid 

chains,122,123 while branching and unsaturated chains  introduce packing irregularities that 

decrease Tm.106   The nature of the headgroup interactions, size, nature and position of 

any charged groups also influence bilayer chain order or bilayer packing and the Tm 

value.124 As semi-permeable membranes encapsulating an aqueous core, the rate of solute 

diffusion across the liposome bilayer is directly affected by the chain order or bilayer 

fluidity.   

The bilayer or membrane permeability is another key liposome property that 

affects applicability as model membranes and has consequences for drug delivery 

applications.  A major challenge to liposomal therapy is recognition and interaction with 
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high density lipoproteins in the plasma125 and premature disintegration by the 

reticuloendothelial system (i.e., the phagocytes or clearance cells of the immune system 

(liver, spleen, bone marrow and lymph nodes).  Reducing the membrane permeability 

improves the circulation of liposomes and decreases attack by phagocytic cells.88 

Therefore, permeability of the membrane bilayer is a benchmark of the effectiveness of 

drug encapsulation and targeted drug delivery by liposomes.   

As expressed in Eq. (2.4), permeability or passive diffusion across the membrane 

can be interpreted in terms of equilibrium partition coefficients, which is a measure of the 

preferential interaction or solute uptake in the membrane matrix. Hence, measurements of 

equilibrium partitioning of solutes between the liposome and the bulk aqueous phase 

constitute a major part liposome research, due to its relevance in drug delivery and solute 

toxicity.126-133  Liposome partitioning measurements help elucidate the mechanism of 

drug interaction with biological membranes and is affected by bilayer chain order or 

phase state, solute size, shape, charge, hydrophobicity, temperature, pH, electrostatic 

potential and ionic strength.129,130,134   

As model membranes, the choice of constituent phospholipid is important in 

describing the partitioning in a real biological system.  A prominent phospholipid  in  

liposome studies  is 1,2 dipalmitoyl-sn-glycerol-3-phosphatidylcholine (DPPC) (Figure 

2.3) whose phase transition is reported at 41oC.134  DPPC is one of the constituents of the 

pulmonary surfactant found in lung alveoli, so has much relevance for the drug delivery 

method described in section 2.2.1.  As such, DPPC has been utilized in study of solutes 

which are known to impair respiratory function.135 
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Figure 2.4.  Representative changes in DPH anisotropy with solute partitioning in bilayer 

 

The conventional method of quantifying liposome-membrane partitioning (Log 

Km/w) is by correlating changes in the bilayer organization or membrane order with solute 

uptake or concentration in the bilayer matrix.  Several methods used to probe bilayer 

chain organization  and quantify partitioning include, electron spin resonance 

spectroscopy (ESR),127 equilibrium dialysis, isothermal titration calorimetry (ITC),109 

differential scanning calorimetry (DSC),136 F NMR,137 molecular dynamics simulations138 

with fluorescence anisotropy136 being one of the most fundamental techniques.   

Fluorescence polarization (anisotropy), which utilizes fluorescent probe such as 1,6-

diphenyl-1,3,5-hexatriene (DPH) intercalated in the bilayer, is used to probe changes in  

membrane fluidity or microviscosity as a function of temperature.  DPH is a cylindrical 

hydrophobic fluorescent probe whose fluorescent intensity is dependent on its rotational 

diffusion which is dependent on the conformation of the acyl chains or the fluidity of the 

bilayer.  In the gel phase, due to the well packed chains and high microviscosity, the 

rotational motion is restricted giving high anisotropy when exposed to polarized light 

(Figure 2.4).  In the more fluid, liquid crystalline phase, the reduced chain interaction 

allows for greater rotational motion of DPH, resulting in low anisotropy (Figure 2.4).  

Changes in bilayer property such as the melting temperature (∆T m), width of the phase 

transition (temperature range of gel to fluid transition) and onset of transition can then be 

monitored as a function of solute incorporation.   
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In lieu of experimental liposome partition measurements (Log Km/w), 1-

octanol/water partitioning (Ko/w) is sometimes used to interpret partitioning of solutes 

into biological membranes.139 The rationale for applying Ko/w is based on the transport of 

drugs through biological systems occurring via transcellular and paracellular routes, with 

hydrophobic drugs having a propensity for the transcellular route (by way of the 

membrane bilayer) and hydrophilic drugs for the paracellular route (through the bulk 

aqueous phase).   However, Ko/w substitution oversimplifies the bilayer environment and 

ignores other solute structural effects, steric and binding effects in the headgroup region 

and temperature induced alterations.  Experimental and theoretical studies have shown by 

experimental and theoretical assessment that this extrapolation is insufficient and 

sometimes deviates significantly from determined liposome/water 

partitioning.130,131,140,141  

In contrast to the isotropic bulk phases employed in octanol-water measurements, 

the liposome bilayers are interfacial systems which possess gradations in the environment 

(polarity and hydrophobicity) from the headgroup region to the centre of the bilayer, 

where the two monolayers meet.134  Molecular dynamic simulations of DPPC bilayers 

reveal densely packed acyl region with chain order decreasing at the centre of the 

bilayer142 (Figure 2.3).  Other factors affecting solute incorporation in bilayer include the 

solute charge and structure129 and temperature induced variations in bilayer 

organization.128  The headgroup region possesses charged groups that could act as 

preferential binding site for charged solutes. Overall, the location or incorporation of 

solute depends on the bilayer region which presents the best solvent/chemical 

environment. The permeation is determined by the barrier regions the solute experiences 

in its diffusion path inter-related to bilayer organization dependent on bilayer 

organization.   

Generally, for a homologous series of compounds, the liposome-water 

partitioning increases as a function of chain length133,143 indicating there is a hydrophobic 

driving force to partitioning in the bilayer. Ionized compounds often demonstrate higher 

partitioning than their neutral analogues due to favorable interactions with the ionic 

groups of the phospholipid.129 Typically, solute partitioning into the bilayer disrupts the 

chain packing and organization, but there are cases where the opposite effect is observed.  
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An interesting partition phenomenon is the “biphasic effect,” which is a change in 

partition trend with chain length and concentration for a homologous series of 

molecules.144,145 The partition study of the effects of 1-alkanol with three different 

liposomal systems, DPMC, distearoylphosphatidylcholine (DSPC) and DPPC,146 revealed 

a pivotal concentration or “cut off” point, below which Tm decreased with solute 

concentration and above which, Tm increased with concentration.   The effect was more 

pronounced with alkanols of chain length > C12.  Above this chain length, there was 

greater increase in Tm as a function of the concentration i.e. concentration required for 

cutoff point decreased with chain length.  Matching chain length of the lipid and alkanol 

increased rigidity of the bilayer through favorable van der Waals interactions and 

increased packing density, stabilizing the gel phase and increasing Tm.  

The ability of partitioning surfactants and solutes to induce drastic phase changes 

in liposome structure by perturbing the membrane has been widely reported as a function 

of concentration and chain length 109,127,132,147 and has physiological relevance for drug 

interactions with biomembranes.148  Examples include the gradual disintegration of 

mixed liposomes (phosphatidic acid/phosphatidylcholine (PA-PC)) by sodium dodecyl 

sulfate (SDS);149 the solubilization  and transformation of egg-PC LUVs to mixed 

micelles by zwitterionic surfactant, 3-[(3-Cholamidopropyl)dimethylammonio]-1-

propanesulfonate (CHAPS)127 and the destabilization action of cetylpyridinium chloride 

on egg lecithin liposomes.109 While the exact mechanism varies with the nature of the 

surfactant and conditions of the liposomal system (pH, ionic strength)  liposome 

disintegration is believed to occur by energetically favorable pore formation in the bilayer 

due to localized surfactant regions.150  At low concentrations, surfactant is evenly 

distributed in the bilayer.  As the concentration is increased, the bilayer becomes 

saturated with surfactant rich regions which lead to  solubilization and disintegration of 

the liposome.151   

As permeability is a function of solute partitioning and molecular diffusion, it is 

sensitive to changes in bilayer organization or barriers in the diffusion path.138    Solute 

permeation through the bilayer is faster at higher temperature, due to increased bilayer 

irregularities, free volume (void space) creation in the fluid phase, and faster solute 

diffusion.134  Permeability of neutral glucose and alanise was higher for SUVs derived 
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from dioreoylphosphatidylcholine (DOPC) and soybean phosphatidylcholine (soy-PC) 

than from dimyristoylphosphatidylcholine (DMPC).152 This was attributed  to the looser 

membrane packing in the DOPC and soy-PC due to the presence of unsaturated bonds.152  

Similar observations were reported for the thermotropic study of lipid mixtures of DMPC 

and DPPC.153 As the ratio of DMPC:DPPC molar ratio increased from 0.5 to 10:1, the Tm 

decreased from 40 oC to 25 oC due to the presence of the shorter chain fatty acid of the 

DMPC lipid.  Also, the more fluid bilayers of DMPC had higher encapsulation of 

thymostimulin (70%) than the DPPC (encapsulation of 55%).  However, release of drug 

was much higher in DMPC (60%) than DPPC (10%) over an hour period. For charged 

solutes, the permeability is also determined by the headgroup electrostatic potential, 

system pH 133 and ionic strength,132 while polar solutes are also influenced by their 

hydrogen bonding capacity.  

The incorporation of cholesterol in bilayers has been demonstrated as an effective 

means of stabilizing liposomal systems 109,151,154 and is used extensively in drug delivery.  

Cholesterol is a steroid-based natural component of mammalian cells, which maintains 

biomembrane integrity.  In liposomes, cholesterol is positioned close to the interface, 

anchored by its hydroxyl group and with the cyclic rings intercalated between the acyl 

chains.  Cholesterol reorients the lipid acyl chains, reducing trans-gauche conformations.  

The incorporation of cholesterol reduces the free volume of void space between lipid 

chains by increasing the chain packing density of the bilayer.154  De Young and Dill’s H 

NMR studies showed reduced partitioning of hexane 155 and benzene 128 into 

dilauroylphosphatidylcholine (DLPC), DMPC and DPPC liposomes with incorporation 

of 0 - 40 mol% cholesterol.  The partitioning of benzene decreased with increasing 

surface density (headgroup spacing), which is affected by increase in temperature and 

cholesterol content.  The reduction of solute partitioning with addition of cholesterol in 

bilayers is less effective below the phase transition, suggesting that the ordered gel phase 

packing effectively reduces permeation.  In the fluid phase, the reduction in solute 

partitioning with addition of cholesterol for DPPC is more significant; this trend 

corresponds to a significant increase in  microviscosity of the bilayer.156   This is 

interpreted from the entropic penalty for solute insertion in the bilayer, which increases 

with the incorporation of cholesterol due to the reduction of free volume.  Another 
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method of improving liposome integrity is via steric stabilization by covalently bonded 

polymers such as poly(ethylene) glycol derivatives (PEGs)  to the bilayer surface.  

Addition of a 5000 weight PEG to distearoyphosphatidylethanolamine (DSPE) liposomes 

increased in vivo circulation 10-fold and reduced premature immune disintegration by a 

factor of 3.157  However, careful consideration of polymer bulk and hydrophobicity is 

necessary to obviate adverse effects such as steric perturbation and possible disruption of 

the membranes.158 

   

2.2.3. Fluorinated Surfactants in Liposomes and Vesicles 

 The incorporation of fluorinated surfactants in lipid bilayers greatly influences the 

chain order and permeability of liposomes.  Studies have demonstrated significant 

improvement in liposome stability with the incorporation of fluorinated chains.  Vesicles 

formed from partially fluorinated DPPC lipids (FC8) displayed 50-fold higher stability 

than the pure DPPC liposomes, with additional resistance to heat sterilization.30  

Improved liposome stability has also been observed for other partially fluorinated lipid 

systems, is consistent with, as measured using multiple techniques (DSC, optical density, 

encapsulation measurements)31,37,39 and is ascribed to the intrinsic properties of the 

fluorinated chains.    

The impact of the enhanced hydrophobic and lipophobic of fluorinated chains is 

reflected in permeability and encapsulation studies, in which consistently higher retention 

of molecules is observed relative to the hydrocarbon vesicles. Retention of encapsulated 

carboxyfluorescein (CF) was significantly improved (500 %) with insertion of fluorinated 

chains in di-O-alkyl-glycerophosphocholine-based vesicles32 with similar effects 

determined in phosphatidylserine(PS) vesicles.39   The lower permeability of fluorinated 

liposomes also reduces the lysis action of bile salts observed with hydrocarbon vesicles32 

and limits ion induced vesicle fusion.39  Incorporation of fluorinated chains in lipid 

bilayers also has implications for biomedical applications.  For instance, in vitro studies 

have shown less disruption of red blood cells (hemolytic effect), reduced adsorption of 

proteins and reduced premature destruction by the immune system, a process that has 

often limited applications of traditional hydrocarbon based-liposomes.13 37   
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Modulation of vesicle characteristics is often  a  direct function of the amount of 

fluorinated chains in the bilayer although other factors such as headgroup interactions, 

position of fluorinated chains also influence these systems.159,160  Retention of 

encapsulated CF increased with the fluorinated chain length in  Guillod et al’s31 study of 

sugar-based glycophospholipid vesicles, whereas the fully hydrocarbon vesicles 

demonstrated no retention.  The same study captured a temperature dependent 

morphological transition of the liposomes from tubules (coiled bilayers) to spherical 

vesicles, that correlated with the length of the partially fluorinated chains.  The transition 

increased from 15oC in the hydrocarbon bilayers C10H21/C9H19 to 45 oC in systems with 

the longest fluorinated chained lipid ((CH2)2C8F17))/((CH2)4C8F17)).   

 Another interesting effect of the incorporation of fluorinated chains is their impact 

on liposome gel to fluid phase transition temperatures, Tm. Although incorporation of 

fluorinated chains in liposome bilayers can increase the characteristic gel to fluid phase 

transition (Tm), this effect is highly dependent on other structural features which include 

length, relative proportion and asymmetry of the fluorinated segments in the bilayer.31,161  

Raviley et al’s161 DSC study of partially fluorinated di-O-alkylglycerophospholipids 

liposomes revealed that the impact of  fluorinated chains on packing order was affected 

by interactions with hydrocarbon chains. The transition temperature of the lipid bilayers 

increased with the degree of fluorination when both lipid chains were uniformly 

fluorinated.  However, chain asymmetry and partially fluorinated lipids where one of the 

double acyl chains was fully hydrocarbon (similar to jointed F/H chain) resulted in fluid 

bilayers.  Essentially, any structural effects that reduced fluorinated chain interactions 

resulted in less cohesive packing in the bilayers.   

 Alternatively, in mixtures of hydrocarbon lipids and fluorinated surfactants, the 

orientation in the bilayer is different as the chains are not constrained by headgroup 

attachments.   Schmutz et al’s 38 detailed study of mixtures of 

dioleoylphosphatidylcholine (DOPC)  lipids and semi fluorinated alkanes, C6H13C10H21 

reveal a phase separation of the fluorinated chains in the hydrocarbon bilayers of DOPC 

liposomes. The exclusion and self aggregation of the fluorinated alkanes towards the 

center of the bilayer provided a uniform impervious fluorous nano-compartment.  This 
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conformation, a result of the lipophobicity of the fluorinated chains, also introduced a 

chain reordering effect in the hydrocarbon sections of the lipid bilayers.  

Interestingly, single chain fluorinated surfactants can also form vesicles where the 

hydrocarbon equivalents form micelles.40 Dispersions of single chain phosphocholine 

surfactants terminated with C8F17 and C10F21 chains gave various aggregate forms 

dependent on temperature, concentration and mixing energy (i.e. sonication).  At high 

surfactant concentration (3% w/v), turbid stable gels or stacked bilayers were observed 

by TEM while dilution to 0.5% w/v resulted in multilamellar vesicles (MLVs).  Further 

sonication with heat treatment at 40oC led to small unilamellar vesicles, SUVs, (30 – 50 

nm), while shaking produced both SUVs (30 nm) and MLVs (300 nm).  Sonication at 

higher temperatures of 70 oC gave globular structures (100 nm) and fibers (1000 nm).  

The study by Krafft et al 40 also showed long term stability of these single chained 

surfactants and the reduced cytotoxicity with red blood cells of fluorinated surfactants in 

comparison with hydrocarbon surfactants.   

The unique ability of single chain perfluoroalkyl surfactants to form stable 

vesicles was interpreted using geometric arguments based on  the packing parameter.162  

The energy of micellization was determined from interfacial tension measurements.  

Based on energy minimization modeling of C-F bond length and angles in the surfactant, 

vesicle formation was theoretically possible for single chain fluorinated surfactants 

(whereas the hydrocarbons form micelles), as observed experimentally, due to greater 

volume of the C-F chains.   

Other interesting phase behaviors have been observed in mixtures of fluorinated 

surfactants derived from phosphocholine headgroups C8F17C2H4PC, with perfluorinated 

alcohols, C8F17C2H4-OH.163  With an increase in the fluorinated alcohol concentration in 

aqueous solution, a transition from vesicles to flexible bilayers to tubules, which are 

rolled up elongated sheets to rigid sheets/platelets was captured by freeze fracture 

electron micrography (FFTEM).  The fluorinated alcohol effectively fluidized the 

bilayers to form the flexible tubules.  The rigid platelets suggested bilayer crystallization 

induced by presence of the alcohol, which was rationalized in terms of the increased 

packing parameter (due to increase in hydrophobic volume).  This crystallization 
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effectively restricted the spherical vesicle morphology due to reorientation of F-chains 

that prevented the required spherical curvature.   

The potential to effectively tune the properties of vesicle bilayers with 

fluorination is exemplified in the intrabilayer polymerization work of Krafft et al. 159Due 

to the presence of the impervious fluorinated core in the bilayer, the polymerization of 

lipophilic isodecylacrylate (ISODAC) was restricted to hydrocarbon regions of the 

bilayer.  This confinement resulted in higher localized concentrations of polymer and 

acceleration of the reaction.  In effect, the polymerization reaction was better controlled, 

which produced more uniform polymers. 

These investigations highlight the ability to tune bilayers and aggregate structures 

by incorporating fluorinated chains. The balance between fluorophilic and lipophilic 

properties of these bilayers leads to interesting permeability and solubilization in bilayers.  

 

2.3 Catanionic Surfactant Systems 

As described in Section 2.2.2, lipid-based vesicles or liposomes have long been 

established for a variety of applications as drug delivery agents, transport vectors and 

cosmetic agents.  However, they are intrinsically thermodynamic unstable, naturally 

tending towards a planar lamellar state and thereby releasing any contents captured in 

their aqueous compartments.  This meta-stability or kinetically trapped stability limits 

their use in various applications.  

In contrast, dilute aqueous mixtures of cationic and anionic surfactants 

spontaneously self assemble into defined structures such as spherical and rod-like 

micelles, crystalline precipitates, and lamellar bilayers, with vesicles being of chief 

interest.   The inherent stability of these typically small unilamellar ‘equilibrium’ vesicles 

(SUVs) formed by cationic/anionic surfactant mixtures have established them as viable 

alternatives to liposomes in controlled particle synthesis,50 encapsulation devices47,164 and 

as nano-chambers for chemical reactions.165,166  Cationic/anionic surfactant mixtures are 

classed into two groups: ‘catanionics' are systems in which the presence of counter ions 

leads to salt formation;  ‘ion pair amphiphiles’ (IPAs) are systems in which the 

counterions are replaced with hydroxide and hydronium ions.44  Hence association of 



32 
 

IPA’s results in water as a by-product while the catanionic mixtures produce a salt. 

Catanionic systems are more prevalent in studies of vesicle formation.   

Electrostatically-driven coupling in cationic and anionic surfactant mixtures, with 

formation of a pseudo-double tailed cooperative unit that closely resembles phospholipids 

(Figure 2.3), is the primary driving force for aggregation in catanionic systems.     Hence, 

long range electrostatic forces dominate inter-particle interactions in these systems at low 

concentrations.  Catanionic surfactants mixtures exhibit a synergistic effect, in which the 

area of the combined headgroup (represented as ao)  is lower than the sum of the 

individual headgroups due to the strong electrostatic interactions.  However, the tail 

groups experience an additive effect which increases the hydrophobic chain volume, v.   

This effectively increases the surfactant parameter (Eq. 2.1) to a range of P = ½ - 1, 

promoting vesicle formation.  The synergism results in non-ideal phase behavior with 

large negative deviations from ideal mixing.  Surface tension measurements reveal large 

deviations from ideal mixing behavior for catanionics, with the aggregates showing much 

lower critical aggregation concentrations relative to the  individual surfactant’s CMC.44   

Hence, mixtures of catanionic surfactants self-assemble at much lower concentrations 

than in the individual surfactant solutions. 

In a pioneering study, Kaler et al167demonstrated spontaneous vesicle formation 

for mixtures  of cetyl trimethylammonium tosylate and sodium dodecylbenzene 

sulfonate, (CTAT/SDBS) in 1989.   Investigations of the phase behavior of additional 

catanionic aggregates focus mainly  on hydrocarbon surfactant systems:  

cetyltrimethylammonium bromide and sodium octyl sulfate (CTAB/SOS);168  

didodecyldimethylammonium bromide and sodium dodecyl sulfate (DDAB/SDS);169 and 

dodecyltrimethylammonium bromide and sodium dodecyl sulfate (DTAB/SDS).170  The 

only catanionic systems with constituent fluorinated surfactants whose aggregation 

characteristics have been investigated in detail are CTAB/SPFO (sodium 

perfluorooctanoate)54,171,172 and CTAB/SPFH (sodium perfluorohexanoate).46 The 

aggregates or coexistence of structures in these systems (Figure 2.5) are dependent on 

variables which include:  molecular features of the surfactants,173 paired surfactant 

asymmetry,46,174 total and relative cationic/anionic surfactant concentrations,167,175 
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counterions,176 ionic strength,177 pH,51,178 temperature179 and the presence of 

additives.53,180,181   

The characterization of structural aggregates and the delineation of phase 

boundaries of catanionic aggregates are typically achieved using a combination of visual 

inspection, DLS (dynamic light scattering) and TEM(transmission electron 

microscopy).46,169,176,179,182,183  However other techniques applied in the study of phase 

behavior and vesicle bilayer characteristics include optical microscopy 184 fluorescence 

spectroscopy 185, DSC 186, ITC 187-189, turbidity186, rheology, NMR 169 and molecular 

modeling.174   

 

 
Figure 2.5.  Model cationic-anionic – water pseudo-ternary phase diagram. V; vesicle 
lobe; M; micelle region; V+L; biphasic vesicle and multilamellar region. Adapted from 
Kaler et al.44 
 

 

Representations of the comprehensive phase diagrams for catanionic mixtures are 

rather complex as the five species (quaternary system) require 4D diagram at fixed 

temperature and pressure.  The five component species arise from dissolution of  (i) 

Ca+S- (cationic surfactant) with (ii) An-S+ (anionic surfactant) which leads to the 

catanionic pair (iii) Ca+An-, corresponding salt, (iv) S+S-,  and (v) water.  In accordance 
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with Gibb’s phase rule that C + 2 = F + P where number C is the number of components 

= 5, F is the number of degrees of freedom = 2 (temperature and pressure) and P, the 

number of phases results in 5.  Phase diagrams of catanionic systems are usually 

simplified to 2D ternary diagrams with water, the cationic and the anionic surfactants at 

the different apexes (Figure 2.5).   

As illustrated in Figure 2.5, in the anionic surfactant/catanionic surfactant/water 

phase diagram, large isotropic vesicle lobes exist on either side of the line representing 

catanionic surfactant equimolarity.  Typically, this vesicle region is initially identified 

macroscopically by the clear blue Rayleigh light scattering tint.  Although the 

equilibrium nature of these  vesicles are disputed by a few,190,191 the prevailing rationale 

of vesicle stabilization in these systems is that the  presence of excess surfactant, usually 

the shorter chained or more soluble surfactant (lower Krafft temperatures) provides 

stabilization.  As such, precipitate is almost always observed in these systems at 

equimolar concentrations of cationic and anionic surfactants, with stable vesicle regions 

identified on either side of equimolarity in the phase diagrams.   

 

2.3.1 Thermodynamics of Aggregation, Phase Behavior, Stability 

The interplay of long range electrostatic forces, short range van der Waals forces, 

and mixed bilayer properties lend complexity to the study of aggregate formation in 

catanionic mixtures and preclude the same generalizations that apply to phospholipid 

surfactants.  However, the thermodynamics of the spontaneous formation of vesicles in 

catanionic systems dictate that the total free energy be minimized for a given set of 

conditions and that the vesicle morphology represents the lowest energy state of the 

aggregates.   Thermodynamic interpretations of the contribution of chain asymmetry of 

the catanionic surfactant mixture to vesicle formation and the stabilization mechanism of 

vesicle formation (enthalpic or entropic) are described below.  

Spontaneous Curvature – Bilayer Chain Asymmetry. Spontaneous curvature is a 

function of system conditions and is determined by headgroup interactions and chain van 

der Waals interactions, where it describes the preference for the oil or aqueous phase 

(Figure 2.6).  Conditions that result in deviation from the spontaneous curvature result in 

energetic penalty for vesicle formation.  Thermodynamic descriptions of  spontaneous 
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catanionic vesicle formation employ the membrane elasticity model developed by 

Helfrich,192 which is based on the properties of the bilayer film as given in the equation 

below:   
Eb
A

=0.5*𝑘𝑘𝑒𝑒  (𝑐𝑐1 + 𝑐𝑐2 − 2𝑐𝑐𝑜𝑜)2+𝑘𝑘sc1c2     Equation (2.8) 

where Eb is the bilayer elastic free energy, A the surface  area, ke, the bending modulus or 

bilayer constant, (given in thermal units kBT (kB = Boltzmann constant)), ks the Gaussian 

modulus, c1 and c2 are the local curvatures and co the spontaneous bilayer curvature.  ke is 

a mechanical description of the stress of  stretching of the surfactant chains in the 

monolayers into spherical conformation, while ks describes deformations in vesicle shape 

and topology; both are functions of molecular properties of the surfactant film.193  For 

symmetrical bilayers composed of single surfactants, co is zero, leading to planar bilayers 

as the thermodynamically stable aggregates while asymmetric bilayers generate 

spontaneous curvature that promote vesicle morphology.    The chain asymmetry and 

mixed bilayer composition concept is the underlying physical principle of facile vesicle 

formation in catanionics.    

Safran et al 193,194  investigated the framework of surfactant chain packing in 

catanionic bilayers using mean field theory.  The bending constant, ke was assessed as a 

function of surfactant chain length, the composition of mixed surfactant film, and cross-

sectional area of the hydrophobic group. Bending energy, which is a function of chain 

stiffness, increases with surfactant chain length and decreases with cross-sectional area of 

the surfactant.  More importantly, chain asymmetry of mixed surfactant films 

considerably reduced the bending energy in specific stoichiometric ranges.   In catanionic 

bilayer films, surfactants can partition between the individual monolayers by ‘flip-flop’ 

or lateral diffusion and this uneven distribution reduces the tensional stress associated 

with bending the monolayers.  
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Figure  2.6.  Bilayer model for (a) single surfactant film (b) Catanionic surfactant mixed 
film.(adapted from surfactant films in Szleifer et al’s. 193 
 

As illustrated in the two dimensional bilayer representation193,194 in Figure 2.6, if 

headgroup interactions produce cross-sectional areas that are larger than chain 

interactions the monolayer film will curve towards the hydrophobic region (positive 

curvature, C > 0).  Conversely, if the headgroup interactions are stronger than chain 

interactions, the mismatch will result in a monolayer film that curves towards the aqueous 

phase (negative curvature, C < 0).    These opposing effects produce monolayers of 

opposite curvature and generate spontaneous curvature.  The mixed surfactant bilayers in 

catanionics can generate spontaneous curvature by having more of the complexed, 

smaller headgroup area in the inner monolayer and more of the uncomplexed or excess 

surfactant in the outer monolayer.  This results in monolayers of opposite curvature, the 

outer convex monolayer possessing more molecules or bigger headgroup areas than the 

inner concave monolayer.  The effect is also enhanced by the asymmetry of the bilayer 

chains, where faster diffusion or molecular exchange between the monolayer leaflets 

generates the curved film.  

 

Enthalpic and Entropic Vesicle Stabilization 

 In catanionic systems, where conditions and structural features facilitate the 

spontaneous curvature phenomena described in the previous section, vesicle formation is 

enthalpically stabilized. This mechanics ensures that the vesicle morphology is the lowest 

energy state of the system as there is an energetic cost for deviating from this specific 

curvature.  For enthalpically stabilized vesicles, the large membrane rigidity means that 
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once composition-dependent spontaneous curvature is generated, other aggregates are 

energetically precluded.194  In the absence of the prerequisite spontaneous curvature for 

energy minimization, the system can be stabilized by the entropy gain of having small 

vesicle structures as opposed to large planar lamellar sheets.  In this case, the vesicle 

formation is also promoted by mixing of the oppositely charged surfactants in the bilayer, 

which reduces the bilayer rigidity (bending modulus or constant in Eq. 2.8) to a much 

lower value than that observed in single surfactant systems.  Thus, the vesicular structure 

is of higher free energy in relation to the lamellar state in entropically-stabilized systems 

but the favorable non-ideal surfactant mixing promotes vesicle formation.  Conversely, 

the enthalpically-stabilized vesicles are of lowest energy state in the whole system. 

Hence, the vesicle size and size distribution are determined by the mechanism of vesicle 

stabilization (balance of entropy and energetic forces).194  Enthalpically stabilized 

vesicles are characterized by a small size and narrow size distribution, while entropically 

stabilized vesicles are larger and polydisperse.   

The mechanism of vesicle stabilization for a catanionic system is dictated by the 

interplay of headgroup and chain interactions effects on bending energy and the entropy 

of surfactant mixing.174,194,195 The effect of chain packing is evident in several studies 

which report larger vesicle lobes in the phase map (Figure 2.5) with increasing 

asymmetry of the catanionic surfactants.44  Catanionic bilayers which possess close to 

symmetric chains resemble single surfactant systems, hence are subject to entropic 

stabilization in the absence of spontaneous curvature.  However, the vesicle curvature has 

to be minimized to compensate for the bending penalty so large vesicles (close to planar 

aggregates) are associated with these systems. Marques et al 196 utilized polarized light 

microscopy (PLM), NMR and cryo-TEM to study the phase behavior of amino-derived 

catanionic surfactant pairs: symmetric (C12/C12) and asymmetric (C16/C8).  They 

revealed a larger vesicle phase region in the latter, where the presence of the shorter 

chained surfactant increased bilayer flexibility to facilitate bending.   

Theoretical models suggest that increasing chain asymmetry can shift the 

mechanism of stabilization of catanionic vesicles from entropic to enthalpic.   Utilizing a 

comprehensive thermodynamic model, Yuet et al174 characterized the changes in free 

energy contributions (entropy and enthalpic) for vesicle stabilization, as a function of 
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chain asymmetry for the following catanionic pairs: CTAB/SPDS (C16/C15), 

CTAB/SOS (C16/C8) and CTAB/SPS (C16/C5).174,195 Accordingly, the free energy 

terms that favored vesiculation were the hydrophobic effect (transfer from monomer to 

aggregate) and favorable entropy of the mixed surfactant bilayer.  Conversely, the 

opposing terms were the creation of an interface (interfacial energy) and the electrostatic 

interface.  Their study showed that the minimization of free energy of vesicle formation 

is a competition between the penalty costs of having an electrostatic interface and the 

favorable chain packing free energies.  The predicted vesicle composition of the least 

asymmetrical catanionic pair, CTAB/SPDS, closely resembled that of the bulk solution 

(consistent with entropic stabilization). In contrast, the composition of vesicles for the 

highly asymmetric system of CTAB/SPS reflected incorporation of more of the shorter 

chained SPS to facilitate spontaneous curvature (consistent with enthalpically stabilized).   

The strain of  reduced conformational freedom of similar chain lengths (i.e., 

CTAB/SPDS system)  (effectively mimicking the phospholipid surfactants) in the 

individual monolayers led to  the free energy of a planar bilayer being lower than that of 

curved vesicle structure but  the favorable chain mixing promotes vesicle formation.  

Hence, the vesicles are larger with lower curvature to relieve the pressure on chain 

conformation.  In the more asymmetric catanionic pair, the much shorter chained 

surfactant considerably reduces this pressure by incorporation into the outer monolayer, 

ensuring that vesicle formation is the minimized energy state.  

 

Phase Behavior and Vesicle Characteristics 

An example of an entropically stabilized system is CTAB/SOS, whose phase 

behavior has been studied extensively by Kaler’s group.168,177  The vesicle lobe (refer to  

model in Figure 2.5) of this system is significantly larger in the SOS-rich phase than in 

the CTAB-rich phase, largely due to the high solubility and short chain nature of SOS.  

This is a common feature of most catanionic systems, where the vesicle lobe is larger in 

compositions with excess of the shorter chained or more soluble surfactant.170,197  The 

phases in CTAB/SOS were distinguished first by visual inspection; the vesicular structure 

was then detected by DLS and clearly confirmed by cryo-TEM.  The size of the large, 

polydisperse vesicles were established after 90 days to ensure stable vesicle formation.  
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This study, along with several others, emphasizes the time frame needed to delineate 

vesicle regions; several samples initially suggested to be vesicles gradually stabilized to 

lamellar phases.  Micellar structures were observed close to the boundaries of the vesicle 

lobe, with rod-like micelles observed in the CTAB-rich region and spherical micelles in 

the SOS-rich region of the phase diagram.    Often the aggregates within the micellar 

phase regions assume the structure of the individual surfactants.198 At equimolar and very 

low concentrations in the CTAB/SOS, < 0.2 wt%, a crystal precipitate was observed, as 

observed in other  mixed surfactant systems.184,198   

Several studies are in agreement that within the stable vesicle region and for fixed 

cationic/anionic surfactant mixing ratio, the vesicle size is independent of total surfactant 

concentration.182  In effect, the number of vesicles increases with surfactant 

concentration.  In the dilute region (close to water apex in Figure 2.5), the vesicles are 

stabilized by long range electrostatic forces.  At high concentrations, the close packing 

constraints of the vesicles leads to aggregation and the formation of multi-lamellar 

bilayers.183  Coldren et al 182 employed cryo-TEM and FFTEM (freeze fracture – TEM) 

in the study of vesicle characteristics in the cationic and anionic-rich phase of 

CTAT/SDBS.   Using the experimental analysis of vesicle sizes and size distributions, the 

membrane elasticity parameters in Eq. (2.8) were determined and found to be different 

for the cationic and anionic-rich phases.  The effective bilayer constant, kb of the CTAT-

rich vesicles was ≈ 3.5 times lower than that of the SDBS -rich vesicles, which was 

ascribed to the hydrophobic tosylate counter-ion of CTAT.  The entropic penalty 

associated with large, hydrophobic counter-ions in water (i.e. water restructuring) results 

in its stronger binding to the bilayer-aqueous interface, which in turn affects the strength 

of the catanionic headgroup interactions.   The closely bound counter-ion inserted into the 

bilayer membrane increases the effective headgroup area but reduces bilayer rigidity. The 

CTAT/SDBS vesicles are entropically stabilized, therefore characterized by low bending 

constants, resulting in large vesicles with wider size distributions.172  Consistent with the 

bending energies, SDBS-rich vesicles were smaller with narrower size distributions than 

CTAT-rich vesicles.  However, for CTAB/SOS systems, the bending constant of the 

CTAB-rich vesicles was also determined to be 3.5-fold lower than that of the SOS-rich 

vesicles. However, there was no molecular property to account for this bending constant, 
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as the bromide ion is not hydrophobic.   In essence, no single set of rules applies to all 

catanionic surfactant mixtures; the thermodynamic driving force for vesicle formation has 

to be assessed on a case by case basis.   

One of the requisites of thermodynamically stable vesicle formation is that the 

vesicle characteristics be independent of the mixing method.  It has been suggested that 

kinetic factors associated with shear of mixing influences the energy state, vesicle 

characteristics and the rate at which it attains the low energy vesicle conformation.  For 

example, the mixing method strongly affects vesicle equilibration in CTAT/SDBS 

mixtures.197  With five different methods of surfactant mixture homogenization, the 

equilibration time (one month) was monitored using DLS to establish the most efficient 

mixing path.  The method which applied hydration of the dry powder mixtures with 

simultaneous heating and stirring produced the lowest initial diameter at a low 

polydispersity, as measured by DLS. The least efficient mixing path; combining the 

micelle solutions with delay in stirring, initially results in aggregates of twice the size and 

a corresponding larger PDI.  All mixing methods converged to similar size and PDI after 

the equilibration for a month.   In a similar study, the formation path affected size, 

structure and polydispersity of DDAB/SDS aggregates.199 Optical microscopy captured 

very large aggregates (vesicle tubules and clusters) for samples that had been diluted 

from multiphase regions while cryo-TEM images proved that well stirred micellar 

mixtures and mixed powder hydration produced stable, monodisperse SUVs (20 – 100 

nm) that varied little with dilution.   

The mixing pathway also affects the vesicle size equilibration structural transition 

of the aggregates.  Fragmented vesicles and bilayer disks have been detected in 

equilibrating samples of CTAB/SOS183 and have been hypothesized to form via bilayer-

bilayer fusion.200  The disks and open bilayers represent non-equilibrium, transitory 

structures in the pathway to stable vesicles 201 and account for the long equilibration 

times required for defining a stable vesicle sizes.202  It was proposed that the more soluble 

monomeric SOS is incorporated into CTAB micelles to form mixed micelles.  These 

mixed micelles may merge to form wavelike undulated bilayers with unfavorable edge 

energies due to exposure of end chains to aqueous environment. The growth of the planar 

bilayers proceeds until a length is reached where the edge energy overcomes curvature 
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bending energy. This leads to formation of the non-equilibrium vesicles.  Growth of 

vesicles occurs by fusion of smaller vesicles which is a slow process to the final stable 

vesicle size.     

 

Catanionic Bilayers with Fluorinated Surfactants 

In contrast to hydrocarbon/hydrocarbon surfactant systems, there are limited 

studies of catanionic systems with fluorinated surfactants.  Kaler et al provide the very 

few examples with their detailed study of mixed hydrocarbon/fluorocarbon mixtures, 

CTAB/SPFO and CTAB/SPFH.  CTAB/SPFO vesicles have been shown to adhere to 

enthalpic stabilization mechanisms.  Van Zanten and Zasadzinski’s 172 cryo-TEM study 

were used to determine a bilayer constant (Eq. 2.8) that was more than 10-fold greater 

than that established for  hydrocarbon, CTAT/SDBS.  The high bending rigidity was 

attributed to the enhanced rigidity and bulkiness of the fluorinated chains in the 

monolayer films.   In hydrocarbon surfactants, the low membrane rigidity is a feature of 

the packing of the more flexible hydrocarbon chains present in gauche conformations; 

favorable chain mixing in asymmetric catanionic bilayers promotes this phenomenon.   

As discussed in section 2.1, mixtures of hydrocarbon and fluorocarbon surfactants often 

segregate into aggregate domains due to mutual phobicity of the F-H chains and exhibit 

positive deviations from ideal mixing.203  However, in CTAB/SPFO monolayers, the 

surfactants are anchored to the bilayer surface by the electrostatic attraction.  This 

overcomes the unfavorable hydrocarbon/fluorocarbon chain interaction.   The different 

flexibilities of the C-H and C-F chains along with the lipophobicity and hydrophobicity 

of the fluorinated chains suggests much more complex chain interaction in the bilayer.  

The very large bending constant in CTAB/SPFO dictates that vesicle formation is 

energetically stabilized.  Due to the very high membrane rigidity, the natural adoption of 

a spontaneous curvature of the CTAB/SPFO bilayer film within certain surfactant 

compositions facilitates the spherical morphology.  This ensures that the vesicles are the 

lowest energy state.   This spontaneous curvature ensures small vesicle sizes with 

Gaussian size distribution due to the energetic penalty associated with other sizes.   As 

such,  small monodisperse vesicles  (≈ 45 nm, diameter) have been captured b y cryo-

TEM in mixtures of CTAB/SPFO.54 
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Interesting morphologies such as bilayer disks, cylindrical vesicles were also 

observed in equilibrium with the spherical bilayers in the CTAB/SPFO system and their 

relative proportion was dependent on the CTAB/SPFO ratios.171 Jung et al’s 171 cryo-

TEM analysis revealed increasing numbers of cylindrical vesicles and less disks as the 

amount of SPFO increased for a given concentration.  Similarly, the presence of disks 

decreased with increasing concentration of the fluorocarbon surfactant for mixtures of  n-

dodecyl betaine (zwitterionic surfactant) and the ammonium salt of perfluoropolyether 

(PFPE).204  Coexisting vesicle populations (25 nm and 90 nm) were also detected and 

attributed to inter-vesicle surfactant segregation: the hydrocarbon and fluorinated 

surfactants mutually separated to vesicles of very different curvature with the flexible 

hydroalkyl chains in the smaller, highly curved vesicles.   

Others have observed polyhedral vesicles in ion-pair amphiphile (IPA) mixtures 

of octyltrimethylammonium perfluorooctanoate C7F15COO-C8H17N+-(CH3)3.  The 

facetted structure of the vesicles (300 nm) was ascribed to fluorocarbon and hydrocarbon 

chain segregation in the bilayer.   The facetted vesicle structure is associated with low 

miscibility of stiff chains in the bilayer.205,206     At high temperatures, favorable chain 

mixing is promoted by increased chain motion, while cooling results in bilayer 

crystallization due to accumulation of the excess surfactant (typically the shorter chain) at 

vertices to compensate for the bending energy.  These structures are often associated with 

very highly rigid membranes and represent energetically minimized structure between 

planar bilayers and curved spherical bilayers.206   

 The effect of fluorinated chain length is evident in comparing vesicles of 

CTAB/SPFH (sodium perfluorohexanoate; C5F11COO-Na+) to CTAB/SPFO.  The  

bending constant or membrane elasticity of CTAB/SPFH has been estimated to be several 

orders of magnitude lower than that of CTAB/SPFO, and is similar to those determined 

for entropically-stabilized hydrocarbon surfactant mixtures.172   Iampietro and Kaler 

established the phase regions in this system by visual, DLS and SANS analysis 46 with 

vesicle formation in a narrow concentration range (2 – 4 wt%, CTAB/SPFO ≥ 20:80).  

The resulting vesicles were larger with wider size distributions compared with 

CTAB/SPFO, consistent with entropically-driven vesicle formation.  This change in 

mechanism was ascribed to the shorter chained fluorinated surfactant SPFH (FC5) 
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compared with SPFO (FC7).  SPFH, with its higher solubility, promotes favorable chain 

mixing, similar to that observed for most hydrocarbon surfactants.   The short chain 

surfactant is most probably distributed in the inner and outer bilayer leaflets, effectively 

reducing membrane rigidity (entropic stabilization).  Also, the greater chain asymmetry 

(C16/C5 versus C16/C7) provides flexibility in chain conformation in the mixed bilayers.  

The CTAB/SPFH system had a larger isotropic vesicle phase region than CTAB/SPFO.44   

 Others have reported large polydisperse vesicles (> 100 nm) in systems of double-

tailed cationic fluorosurfactants205,207 and catanionic mixtures of fluorinated surfactants 

with  trimethylammoniun carboxylate headgroups.208  These studies also highlight the 

limitations of light scattering in determination of fluorinated aggregate size distributions 

due to the low refractive index of fluorinated chains.209   Often, the study of aggregate 

formation in fluorinated systems require more complex scattering techniques such as 

static or multi-angle scattering (SLS) 210,211 and small-angle X-ray scattering (SAXS).212  

The particular advantage of SAXS is due to the high electron density of fluorine atoms 

compared with hydrogen atoms, which means more efficient scattering.  However, direct 

imaging by electron microscopy (TEM) remains one of the most used methods for 

accurate size determination.44,54,182   

 

Vesicle Aggregation and Destabilization 

  Fundamental to any colloidal system, are the forces which maintain inter-vesicle 

equilibrium.  Due to ionic nature of catanionics, the electrostatic forces play a dominant 

role in maintaining aggregate stability.  The electrostatic repulsion generated by the 

charged forces stabilizes the vesicles against the attractive van der Waals forces.   The 

balance of these two opposing forces is described by the DLVO theory (Derjaguin, 

Landau, Verwey and Overbeek),213 which describes particle interaction as a function of 

separation in solution.  The electrostatic repulsion arises from the arrangement of ions 

and counter-ions (electric double layer).  The electric double layer consists of an adjacent 

layer of tightly bound counter ions (Stern layer) at the particle interface, with a more 

diffuse distribution of counter-ions (diffuse layer).  The charge density is concentrated in 

the Stern layer due to strong electrostatic attraction while in the diffuse layer, the less 

loosely bound counter-ions are subject to a balance of the weaker electrostatic pull and 
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the Brownian motion.  The nature of these forces, determine their motion under an 

applied electric field and are the basis for zeta potential measurements.  Often the 

Poisson-Boltzmann (P-B) equation is used to calculate the electrostatic potential of the 

particle surface in this diffuse layer, which is directly related to the surface charge 

density.  The prominent parameter used is the Debye screening length, which describes 

the length from the vesicle surface over which the electric field is effective.  In effect, the 

shorter the Debye length, the more effectively the vesicle surface is screened by other 

colloids with subsequent coalescence/aggregation.   

 Apart from electrostatic repulsion, the vesicles are also stabilized by repulsive 

forces, hydration and undulation.  The hydration, a short range force, is related to the 

energy required to remove bound water from the vesicle surface.  The undulation forces, 

which are described within the context of Helfrich’s model214are oscillatory forces due to 

forcefield of the undulating bilayers as given below:  

 𝐹𝐹 ≈ (kB*T)2

k*d3                    Equation (2.9) 

where kB is the Boltzmann constant, k the bending modulus and d, the inter-bilayer 

distance or water separation.192   The undulating repulsive force is of entropic origin due 

to steric and excluded volume effects of interacting bilayers. 

Electrostatic double layer forces dominate at low surfactant concentrations and 

minimal vesicle aggregation occurs, but the addition of salt lowers the interaction energy 

barrier of the colloidal system and induces aggregation by screening the charge of the 

vesicles.  Brasher et al 177 utilized a thermodynamic cell model to examine the change in 

free energy of CTAB/SOS aggregates with addition of salt (Na+Br-).   The model 

incorporated Poisson-Boltzmann equations to determine the electrostatic free energy 

contributions to the system’s free energy minimization as a function of salt.  With added 

salt, the SOS-rich vesicle phase was destabilized to a micellar phase, while the CTAB-

rich vesicle phase tended towards the lamellar phase.   Similar effects were detected for 

CTAT/SDBS vesicles, where the addition of 0.5 M NaCl was estimated to reduce the 

Debye length by 80% and accelerate aggregation of the vesicles.215 In a study by Jiang et 

al,189 the addition of a hydrophobic, bulky bile salt, sodium cholate, promoted the 

destabilization of DEAB (dodecyltriethylammonium)/SDS vesicles to micelles.  This was 
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attributed to an increase in effective headgroup area, thus reducing the surfactant 

parameter.189 In general, vesicle breakdown is readily achieved by addition of excess 

surfactant or third surfactant to promote destabilization to micellar of multiphase region 

of the phase diagram.216 

 Charged polyeletrolytes also affect inter-vesicle interactions in a manner 

dependent on their charge, molecular structure and hydrophobicity.  For example, 

Antunes and coworkers 217 captured complex phase behavior with the addition of two  

cationic hydroxyethyl cellulose derivatives (one hydrophilic and one hydrophobic) to 

negatively charged SDS/DDAB vesicles.   Increasing amounts of the polyelectrolytes 

produced changes in the aggregate structures.  A biphasic solution of precipitate was 

observed, which transformed into a macroscopic gel network with increased 

concentration.  Polygonal faceted vesicles and disks-like bilayer fragments preceded 

complete system destabilization in the presence of the hydrophilic and more highly 

charged polyelectrolyte.  In contrast, vesicle clusters were observed with the hydrophobic 

polyelectrolyte, suggesting the  hydrophilic polymer had a more perturbative effect on 

membrane packing.  The surface adsorption of the more highly charged polyion 

effectively reduces the surface charge density of the vesicles by charge neutralization, 

and reduces the bilayer flexibility. The more hydrophobic polyelectrolyte anchors in the 

bilayer and generates increased vesicle-vesicle interaction by changing vesicle charge and 

molecular packing in the bilayer.  

 Nonionic organic additives, such as toluene, have also been shown to induce 

changes in catanionic vesicle morphology53,181 by reducing interfacial tension of the 

surfactant film.  FFTEM revealed transformation of positively charged DTAB/SDBS 

SUVs as the ratio of toluene/surfactant concentration, γ,  increased.  The small 

unilamellar vesicles increased drastically in size, evolving to MLVs and planar lamellar 

structure with increase in γ from 0.4 to ≈ 4.  However, the addition of similar amounts of 

octane generated no changes in vesicle structure.  This was attributed to the preferential 

solubilization site. Due to its lower surface activity, toluene is located at the interface 

where interactions of its aromatic ring reduce headgroup interactions and surface charge 

density.   This reduces the surface curvature of the vesicle morphology.  However, the 
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less surface active octane was located deeper in the bilayer, where it had less effect on 

headgroup interactions. 

Temperature also affects phase stability179 and vesicle aggregation.218  In 

CTAB/SOS system, the isotropic vesicle phase domain expanded for a temperature 

increase from 20 – 40 oC, but contracted at 50 oC.179 Interestingly, the equimolar 

precipitate formation region was sharply reduced.  With the temperature increase, it was 

(transformed to a mixture of micelle and lamellar phase)  most likely due to melting of 

the chains in the fluid phase.   As often observed with catanionic vesicles218, DSC 

analysis of the CTAB/SOS revealed no phase transition, Tm, that is typically detected in 

lipid surfactant organizations. This phenomenon is ascribed to chain asymmetry (reduced 

packing density) and the looser membrane packing requisites of spontaneous curvature.  

 

2.3.2 Applications of Catanionic Vesicles 

 Vesicles are compartmentalized into domains which can be utilized for reaction 

processes; the inner and outer bilayer leaflets, the bilayer 219 and the aqueous core.166   

The success of intended applications is dependent on vesicle stability and solution 

conditions.  Catanionic vesicles have been explored for use as encapsulation agents 47, 

carriers of biological compounds,220 controlled nano-compartment reactors 49,165,166 and 

templates for material synthesis.50   The ability to tune the properties of catanionic 

surfactant systems to the desired application provides extra degree of freedom that is 

advantageous in this respect.   Danoff et al demonstrated by SEC, DLS, UV and SANS 

analysis much higher effective encapsulation in catanionic vesicles (CTAT/SDBS) 

relative to those comprised of egg-PC lipid vesicles.47,164  The superior entrapment 

efficiency was due to the ionic adsorption of the oppositely charged solutes and bilayer 

surface.  Similar observations have been reported for sodium 

undecanoate/decyltrimethylammonium bromide vesicles, where the trapping efficiency of 

the anionic bromophenol blue increased with the ratio of cationic surfactant. 

 Mckelvey et al 221 showed that hydrocarbon based catanionic vesicles, 

CTAT/SDBS and CTAB/SOS were viable templates for polymer synthesis from styrene 

and divinyl benzene.  The vesicle bilayer integrity was retained even with the polymeric 

shell network with thickness < 10 nm and the polymer hollow spheres were of similar 
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dimensions to the vesicles.  The same group also demonstrated catanionic vesicles as 

templates for the synthesis of silica spheres,50 discussed in further detail in the subsequent 

section. 

 

2.4 Templating of Silica Hollow Spheres 

 The extensive body of research in nano-sized materials stems from the broad 

possibilities of application in biomedical, cosmetic, catalytic and separation technologies.  

Silica or silicon dioxide (SiO2) exists naturally in both crystalline and amorphous forms 

and is one of the most abundant natural materials.  Available as sand, quartz, cristobalite, 

faujasite and coesite, the most distinguishing property is its hardness which makes it a 

fundamental component of glass and ceramics.  It is also prevalent in household items, 

microelectronics, biomedical and industrial applications.  The synthesis of nano-scaled 

silica materials is motivated by these and other potential uses.  In particular, colloidal 

systems of silica materials (sol-gel chemistry) provide immense possibilities as drug 

delivery agents, controlled release devices 222 and controlled reaction environments.223,224  

The characteristics of the resulting silica material depend on variables which 

include choice of silica precursor, temperature, pH, organic solvents, additives (polymers, 

surfactants), stirring time and solution ionic strength.225  Silicon alkoxides such as the 

series:  tetramethoxysilane (TMOS), tetraethoxysilane (TEOS) and tetra(n-propoxy) 

silane (TPOS) are often used as precursors in synthesis of silica.  The 

alkoxides/alkoxysilanes (≡Si-OR) where R is the alkyl chain, CmH2m+1, are insoluble in 

water.  Good mixing, and the presence of surfactants or solvents are required to achieve 

the necessary solubilization for the onset of hydrolysis (Eq. 2.10).   The synthesis 

proceeds through hydrolysis, condensation and polymerization with the rate of each 

reaction determined primarily by the pH.   
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Hydrolysis 

≡Si-OR   +  H2O  ↔  ≡Si-OH +ROH               Equation (2.10) 

 

Water Condensation 

≡ Si-OH  +  ≡Si-OH  ↔  ≡Si-O-Si≡  +  H2O                                      Equation. (2.11) 

 

Alochol Condensation 

≡ Si-OR  +  ≡Si-OH  ↔  ≡Si-O-Si≡  +  HOR                                       Equation  (2.12) 

 

Hydrolysis of the silicon alkoxides (Eq. 2.10) produces silanol (-Si-OH), which 

condenses to form the siloxane bonds (Si-O-Si) with release of water (Eq. 2.11) and 

alcohol (Eq. 2.12).  A silica network is then produced by polymerization of the siloxane 

groups. The reactions are also influenced by steric effects of the alkoxide groups, 

water/precursor ratio, temperature, solvent polarity and the nature of the catalysts used.   

In both base and acid catalyzed reactions, the hydrolysis is faster with less bulky 

alkoxides (steric effect).  For example, the rate of hydrolysis for TMOS (Si(OCH3)4) is 

greater than for TEOS (Si(OC2H5)4).   The rate of hydrolysis proceeds faster than 

condensation in acid catalyzed medium, while the rate of condensation is faster in basic 

medium.  The stability of the polymerized silica particles is subject to DLVO forces; van 

der Waals and electric double layer forces, which are present in colloidal systems.  Under 

highly acidic pH < 1, the silica network is positively charged and interacts preferably 

with negatively charged species, while silica is negatively charged in neutral and basic 

medium.  At the isoelectric point ( pH 2),  the silica particles are unstable with the 

tendency to coagulate into a gel network.225   

There are several approaches to the synthesis of hollow silica materials described 

in literature.226-230  In transcriptive templating, the synthesis of silica hollow spheres is 

fabricated by a mechanism where surface of the template serves as the reaction site. In 

this process, the organized silica matrix takes the form of the template morphology and 

assumes a nano-cast of the entrapped supramolecular aggregate.  However, the success of 

this technique is dictated by the thermodynamic stability of the template.  
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Templates used include water in oil emulsions,231 CO2/water emulsions with ionic 

block polymers,232 liposomes116 cationic vesicles,226ion-pair amphiphiles233 and 

catanionic vesicles.50  Song et al231 utilized surfactant stabilized water/oil (kerosene) 

emulsion interfaces for the amine catalyzed silica synthesis with tetraethoxysilane 

(TEOS) as the precursor and positively charged CTAB acting as binder of negatively 

charged silicate species at the interface.  Hollow spheres (≈ 50 - 150 nm) whose thickness 

increased with the length or hydrophobicity of the amine (triethylamine – dodecylamine) 

were produced in a controlled basic medium (pH 8-9).  Within this pH range, the rate of 

condensation was higher than hydrolysis and depolymerization while at higher pH, the 

reverse case resulted in irregular shaped and solid silica particles.  

The very few examples of vesicle templating are limited to mostly hydrocarbon-

based vesicles.  Meta-stable liposomes, such as those comprising DPPC, have been 

applied in fabrication of silica hollow spheres (≈ 100 nm). 116,234   Begu et al’s 234 FTIR 

analysis suggested the zwitterionic DPPC headgroup interaction with the polymerized 

silica network, with the transcriptive synthesis (TEOS/acidic  pH) promoted by 

quarternary ammonium surface of DPPC. The thin non-porous silica network (6-9 nm) 

was assessed with nitrogen adsorption and desorption.  TEM analysis of the size and size 

distribution of the silica spheres was consistent with the original liposome template.  The 

effect of the silica network on the trapped liposome template was tested by monitoring 

bilayer anisotropy with embedded DPH.   DPH anisotropy measurements in the DPPC 

bilayer revealed wider phase transitions (reduced cooperativity) due to interaction of the 

outer bilayer leaflet with the transcripted silica network.116   Studies of kinetically 

stabilized vesicles, such as dioctadecyldimethylammonium bromide (DODAB) and 

didodecyldimethylammonium bromide (DDAB),226 suggest the importance of bilayer 

matrix organization in successful transcriptive template synthesis.  Synthesis in basic 

medium (pH 8) with TEOS or TMOS resulted in silica hollow spheres in DODAB, while 

DDAB liposomes produced small solid particles. This effect was ascribed to the higher 

stability of DODAB vesicles (Tm = 43 oC) compared with DDAB (Tm = 16 oC).  Cryo-

TEM images revealed irregular shaped hollow spheres with DODAB, most probably 

caused by alcohol production during synthesis or pressure of the polymerized silica 
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network on vesicle morphology.   Also, excess precursor resulted in the formation of 

small solid silica particles.   

Yeh et al 235 produced meso-structured hollow silica (100-500 nm/TEM) from 

negatively charged SDS/CTAB vesicles from sodium silicate at neutral pH with neutral 

polyethylene, Pluronic P123 (EO20PO70EO20).  The P123 anchored on the 

bilayer/aqueous interface and served as a steric stabilizer of the vesicles. The P123 which 

was hydrogen bonded to the silica network, influenced the size of the silica pores.   

Kepczynski’s and coworkers236 demonstrated that the bilayer of catanionic vesicles 

(DTAB/SDBS) presents a contained environment for base catalyzed polymerization of 

silicone from 1,3,5,7-tetramethylcyclotetrasiloxane precursor (TMCS).  Interfacial 

measurements suggested that TCMS monomers, situated close to the interface and 

solubilized in the bilayer, lowered the aggregate curvature.   This was due to reduced 

surfactant headgroup interactions, which lowered the surface charge density.  However, 

molar ratios of TCMS to surfactant greater than 0.5 resulted in destabilization of vesicles 

to planar lamellar structures or mixed micelles.   Facetted hollow silica particles, which 

were replica of the ion-pair amphiphile template were prepared in mixtures of 

cetyltrimethylammonium hydroxide and myristic acid mixtures, (CTAOH/C13COOH).233  

Above a critical concentration of TEOS, the vesicular structure was disrupted due to 

production of ethanol.   

 Although fluorinated surfactant templating has been demonstrated by Rankin’s 

group with formation of mesoporous silica with ordered pore structure,237,238 these do not 

represent vesicle templating as the silica was prepared by from micellar solutions of 

HFDePC.  Hentze et al 50 provide the sole example of catanionic vesicle templating from 

a system containing a fluorinated surfactant (CTAB/SPFO).  Synthesis in acidic medium 

(pH 3) to facilitate quick hydrolysis of TMOS produced silica of similar size to the 

CTAB/SPFO vesicles (60 – 100 nm), a hallmark of true transcriptive templating. SANS 

analysis verified the integrity of the vesicle morphology under the polymerized silica 

network.  In the same study, synthesis with hydrocarbon-based catanionic vesicles, 

CTAT/SDBS, resulted in bilayer destabilization, which was ascribed to the presence of 

methanol produced during TMOS hydrolysis.  This suggests reduced stability of the fully 

hydrocarbon-based vesicles compared with the mixed hydrocarbon/fluorocarbon system 
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CTAB/SPFO.   In essence, modulation of the catanionic vesicle bilayers with fluorinated 

chains influenced their stability as stable templates and suggests the tunable properties of 

these systems. 
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CHAPTER 3 

 

 

PARTITIONING OF HYDROCARBON AND FLUORINATED NICOTINIC 

ACID ESTERS (NICOTINATES) 

This Chapter is based on work submitted to Journal of Fluorine Chemistry for 

Publication 

 

3.1 Summary 

   The fluorophilicity of a series of hydrocarbon and fluorocarbon-functionalized 

nicotinic acid esters (nicotinates) is measured from their partitioning behavior (log KP) in 

the biphasic solvent system of perfluoro(methylcyclohexane) (PFMCH)/toluene.  Also 

measured are the partitioning between a fluorocarbon/aqueous system; perfluorooctyl 

bromide (PFOB)/water.  The chain length of the hydrocarbon or fluorocarbon alkyl group 

of the ester ranges from one to twelve carbon atoms.     Knowledge of the fluorophilicity 

of these solutes is relevant to the design of these prodrugs for fluorocarbon-based drug 

delivery.  The experimental PFMCH/toluene log Kp values range from -1.72 to -3.40 for 

the perhydrocarbon nicotinates and -1.64 to 0.13 for the fluorinated nicotinates, where 

only the prodrug with the longest fluorinated chain (2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-

pentadecafluorooctyl nicotinic acid ester) partitions preferentially into the fluorinated 

phase (log Kp  = 0.13).  Predictions of the PFMCH/Toluene partition coefficients using 

solubility parameters calculated from group contribution techniques or molecular 

dynamics simulation are in reasonable agreement for the perhydrocarbon nicotinates and 

short chained perfluorinated nicotinates (≈ 0.3% -38% deviation). Significant deviations 

from experimental PFMCH/Toluene partition coefficients (greater than 100%) are 

observed for the longest chain perfluoroalkyl nicotinates.   

  Only the short chained perhydrocarbon nicotinates, C1F0 (Log Kp = -0.78) and 

C2F0 (Log Kp = -0.16)  display affinity for the aqueous phase in the PFOB/water 

partition measurements. All perfluorinated nicotinates exhibit preference for the PFOB 

phase relative to water (Log Kp = 0.48 – 0.75).  The surface activity of the longer chained 
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nicotinates, which demonstrate poor affinity for the aqueous phase, limits analysis of the 

PFOB/water partition coefficients.   

 

3.2 Introduction 

Fluorocarbons have demonstrated potential for a variety of novel pharmaceutical 

applications, including liquid ventilation therapy, diagnostic ultrasound imaging and as 

blood contrast agents.57,160,239-242  The potential to extend fluorinated solvent applications 

to drug delivery is limited by the poor solubility of typical hydrocarbon-based polar and 

non-polar pharmaceuticals in these solvents.243,244  The use of a prodrug, in which 

cleavable functional groups facilitate solubility of the drug in the fluorocarbon solvent 

(perfluorooctyl bromide; PFOB), is a viable approach for the delivery of 

pharmaceuticals.35,241   The putative prodrug or functionalized drug molecule is clinically 

inactive and conversion to the parent drug compound, typically through enzymatic 

cleavage, is necessary to induce the desired pharmacological effects.241  Also, the 

nicotinic acid esters or prodrugs possess surface activity.  The fluorocarbon solvent 

system must provide sufficient solubility of the prodrug, while promoting its subsequent 

extraction from solution and delivery to the tissues.  In addition, the prodrug/fluorocarbon 

solvent systems are selected to minimize the biological toxicity and maximize the 

prodrug efficacy.  Knowledge of partition coefficients provides a thermodynamic 

interpretation of drug delivery and cytotoxicity.  Limited studies address the partitioning 

behavior of homologous series of fluorinated solutes and provide direct comparisons to 

their hydrocarbon analogues.  The ability to predict partitioning behavior has the 

potential to improve drug design for delivery by fluorinated solvents.   

This work examines the partitioning behavior in perfluoro(methylcyclohexane 

(PFMCH)/toluene and the PFOB/water of a series of hydrocarbon and fluorocarbon-

functionalized nicotinic acid esters (Figure 3.1).  These nicotinates are classified 

according to the alkyl chain of the ester as perhydrocarbon (C1F0 – C12F0); 

perfluorinated, each linked by one methylene chain to the carboxyl group (C2F3 – 

C8F15); and partially fluorinated, with either a terminal ω-hydrogen atom (C3F4 and 

C5F8) or two methylene group (C8F13) linkages in the fluorinated chain of the ester.  

Nicotinic acid, the parent drug compound of the nicotinic acid esters (nicotinates), has 
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clinical benefit in the treatment of cancer.  Futhermore, it is a precursor of cofactors, 

nicotinamide adenine dinucleotide (NAD) and NADP, that could alleviate injury to lungs 

caused by poisons and natural toxic compounds.85,241  The PFMCH-toluene partition 

coefficient (log KP) is an established measure of fluorophilicity56,97-99,245 and is calculated 

from the concentration ratio of prodrug in fluorocarbon phase (PFMC) to hydrocarbon 

phase (toluene).  The PFOB-water partition coefficients are relevant to the description of 

PFOB-mediated prodrug delivery.  Similar to the octanol/water partition coefficient for 

the measurement of lipophilicity and the interpretation of drug pharmacokinetics,90,246 

fluorocarbon/hydrocarbon and fluorocarbon/water partition coefficients have the 

potential to be a predictive tool to describe the ability to deliver drugs from a fluorinated 

solvent to target cell tissues.  This study compares the experimental partition values of 

prodrugs in PFMCH-toluene with liquid-liquid partitioning predicted from regular 

solution theory (RST).  Two methods of solubility parameter estimations are compared:  

Fedors Group Contribution93,101 and molecular dynamic simulations using (Materials 

Studio (Accelrys Inc. (California), Version 4.0).  Predictive methods provide a screening 

tool to assess the effect of functional group chain length and structure on partitioning 

behavior, allowing the design of prodrug candidates for fluorocarbon drug delivery.   

  

3.3 Experimental Section 

3.3.1 Materials  

Perfluorooctyl bromide (PFOB;C8F17Br ≥ 98%) and 

perfluoro(methylcyclohexane) (PFMCH;C7F14 ≥ 95%) was purchased from Sigma 

Aldrich.  Toluene (of ≈100% purity) was purchased from Mallinckrodt Baker Inc. (Paris, 

Kentucky).  Synthesis of the nicotinate acid ester prodrugs (nicotinates) was described 

previously241,247 and involves the addition of anhydrous dicyclohexylcarbodiimide (DCC) 

and dimethylaminopyridine (DMAP) to a mixture of nicotinic acid and the corresponding 

alcohol in anhydrous dichloromethane.  The nicotinic acid esters or nicotinate prodrugs 

were synthesized with greater than 98% purity as determined by gas 

chromatography/mass spectrometry (GC/MS) analysis.   
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       Figure 3.1. Chemical Structures of Nicotinic Acid Esters (Nicotinates) 
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Perfluorooctyl bromide (PFOB) 

 
 

Perfluoro(methylcyclohexane) (PFMCH)                                

Figure 3.2.  Chemical structures of PFOB and PFMCH 

 

3.3.2 Apparatus and Procedure 

The partition coefficients for the nicotinate prodrugs in 

perfluoro(methylcyclohexane)-toluene system were determined from the depletion of the 

prodrug in the fluorocarbon phase into a known volume of toluene (as measured by FID 

gas chromatography (Varian CP-3800 FID)).  The nicotinic acid esters were initially 

dissolved in 3 ml or 5.5 ml volumes of fluorinated solvent (PFMCH), resulting in a 

known prodrug concentration in the range of 1 mM to 4 mM.  Volume ratios of 1:1 and 

5:1 in PFMC-toluene systems were used to achieve measurable equilibrium concentration 

differences in the fluorocarbon phase after contacting with the hydrocarbon phase. For 

the PFOB/water system, the prodrugs were initially dissolved in PFOB in volume ratios 

that ranged from 1:1 to 1:30.  The stir flask method 90 was employed, where only the 

denser fluorocarbon phase was gently stirred to facilitate equilibration, with a goal of 

avoiding emulsion formation.  All experiments were performed at 25 oC.  More than one 
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hour was allowed for equilibration before the fluorocarbon phase samples were drawn 

with a Hamilton syringe into vials lined with PTFE septums.   

Duplicate initial and equilibrium samples (0.5 ml) of the fluorocarbon phase were 

injected onto a 15 m capillary column of 95% dimethylpolysiloxane stationary phase 

(Varian fused silica column/CP-SIL8 CB) with internal diameter of 0.25 mm.  A high 

purity helium flow of 2 ml/min and FID temperature of 300oC were employed in the 

analysis.  All the samples were spiked with 5 µl of custom internal standard 

(naphthalene-d8) in methylene chloride.  The equilibrium nicotinate concentration in the 

fluorocarbon phase was determined from a calibration curve while the organic phase 

concentration was quantified by material balance.  The partition coefficients, log Kp were 

then calculated as given in Eqs. (3.1) and (3.2).56,97-99,245 

 









=

(mM) in tolueneion Concentrat
(mM) PFMCin ion Concentrat  pK log    Equation (3.1) 

 









=

(mM)in water ion Concentrat
(mM) PFOBin ion Concentrat  pK log

   
Equation (3.2) 

 

3.3.3 Prediction of Prodrug Partitioning in Liquid-Liquid Systems 

 The following expression describes the activity coefficient of the prodrug solute in 

solution using regular solution theory (RST):98,248 

2
δδVRTlnγ 





 −= jii

j
i                  Equation (3.3) 

 

where γi is  the activity coefficient of the solute i in solvent j (PFMC-rich phase (a) or  

toluene-rich phase (b)), δ is the Hildebrand solubility parameter, Vi is the molar volume 

of the solute, and T is the PFMCH-toluene biphasic system temperature, maintained at 

298 K.  Equating the activity of the solute in each phase and applying the RST expression 

for the activity coefficient of the solute results in the following expression:   



58 
 

( )

( ) ( )( ) (3.4) Eq.
Va

bV
logi2δbδaδbδaδ

RT
iV

explog

RT

2
aδiδiV

exp

RT

2
bδiδiV

exp

a
iγ

b
iγ

logpK log 









+



























−+−










−=















 −















 −

=















=

 

m

vap

m

vap

V
RTΔH

V
ΔU

  δ
−

==                           Equation (3.5) 

where ∆Uvap  and ∆Hvap are the energy and enthalpy of vaporization of the solvent to a 

gas of zero pressure, Vm is the molar volume, R the molar gas constant and T, the 

temperature.  

The solubility parameter (δ) or cohesive energy density (c, where δ = c1/2) defines 

the cohesive forces between solute and solvent molecules in solution (e.g., fluorous 

solute molecules in either PFMCH or toluene).93  In the partitioning of solutes between 

two immiscible liquid phases, preference will be given to the phase with comparable 

cohesive forces to the solute.  For systems of regular solutions, maximum solubility is 

achieved when the solute and solvent solubility parameters are similar. 

Regular solution theory strictly applies to molecules that interact via only 

dispersion forces.93,248  However, the application of RST has been extended to numerous 

systems, such as partially fluorinated organic compounds.98  In the case of the solvents in 

this investigation (PFMCH (β) and toluene (α)), the molecules are nonpolar with no 

hydrogen bonding capacity, fulfilling some of the criteria of regular solution theory. 

 

3.4   Computational 

3.4.1 Group Contribution Methods for the Estimation of the Nicotinate Solubility 

Parameters 

 Group contribution methods have been successfully applied to the partitioning of 

a broad range of fluorinated organic compounds including those which bear structural 

similarities with the nicotinic acid esters.98,99  The Hildebrand solubility parameter and 

molar volume of the solutes were estimated by Fedors group incremental method.93  The 

Hildebrand solubility parameters  were calculated by summing the contributions of 

distinct molecular units to the molar vaporization energies and molar volumes (Eq. 3.5).93     
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3.4.2 Molecular Dynamics Simulations for the Estimation of the Nicotinate 

Solubility Parameters 

The solubility parameters of the nicotinic acid esters were predicted using 

molecular dynamics simulations (Materials Studio (Accelrys Inc. (California), Version 

4.0).  Representative 3D models of the solutes were constructed in the Amorphous Cell 

module using the software’s standard protocol.  Cubic unit cells (21 – 30 Å) of the pure 

nicotinates were built in the amorphous state, under periodic boundary conditions.249  The 

densities of the nicotinates were calculated by dividing the molecular weight by the molar 

volume, with the latter estimated from the Group Contribution method discussed in the 

previous section.  Before performing the molecular dynamics simulations to calculate the 

Hildebrand solubility parameters or cohesive energy density, δ, the cells were subjected 

to energy minimizations or geometry optimization steps to reduce the structural 

conformation from the initial high energy state to a state more representative of 

experimental conditions.  The Smart Minimizer, which combines the three iterative 

procedures, Steepest descent, Conjugate gradient and Newton methods, with a medium 

convergence level (0.1 kcal/mol/ Å) was applied.  The Steepest descent method is most 

applicable to systems high above thermodynamic equilibrium, that is structures far from 

their optimum potential energy surface and the conjugate gradient procedure for those 

close to equilibrium.250,251  The Smart Minimizer selects the appropriate energy 

minimization method depending on the initial configuration of the structure drawn in the 

amorphous cell.  

Molecular dynamics simulations were performed on the Discover program using 

the COMPASS force field.  COMPASS (condensed-phase optimized molecular potentials 

for atomistic simulation studies) is an ab initio forcefield.252,253  COMPASS is a class II 

forcefield, which has been demonstrated to make accurate predictions of thermodynamic 

properties such as cohesive energy density.254 The force fields for the potential energy 

calculations are automatically assigned by the COMPASS program to the atoms prior to 

the energy calculations.  In COMPASS, the total energy of the system is described as the 

sum of bonding/valence interactions and non-bonding terms (VdW and coulombic).  

 

Etotal =   Evalence     +       Enon-bond      Equation (3.6) 
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The valence or bonding terms accounted for bond bending, bond angle bending, dihedral 

angle torsion, inversion out of plane interactions and a Urey-Bradley (UB) term used to 

account for interactions between atom pairs involved in 1-3 configurations.  In 

COMPASS, the van der Waals interactions or dispersive forces are modeled by a Lenard-

Jones potential using an atom based cutoff (8-10 Å), which reflects the short-range nature 

of these interactions. The Ewald summation method was used to evaluate the long-range 

electrostatic interactions.249,251  The van der Waals off-diagonal parameters were 

calculated using geometric mean rule in the Ewald method.   

Equations of motion for this NVT (number of molecules, volume and 

temperature) ensemble were calculated using the Velocity Verlet numerical algorithm to 

determine the interaction energy of the pure nicotinate molecules in the amorphous cell.  

The simulations were allowed sufficient number of integration steps with a 1.0 

femtosecond timestep to reach equilibrium or the minimum potential energy surface.  

Direct velocity scaling was used to control the temperature and bring the system to 

equilibrium at 298 K.  Full trajectory files from the molecular dynamics simulations, with 

information on energy, pressure, velocities and coordinates, were stored in dynamic 

frames and used by the Dynamics program to compute the cohesive energy density.  The 

cohesive energy densities and solubility parameters were calculated from an ensemble 

average of the trajectory frames and standard deviation values deduced from the frames.  

Standard deviation values reported for the molecular dynamics values in Table 3.1 

correspond to the solubility parameters estimated in the final frames (50 – 100) of the 

simulation.  Studies have demonstrated the ability of class II forcefields such as 

COMPASS to predict cohesive energy densities that compare favorably with 

experimental values.254 The COMPASS program assigns the appropriate force field 

parameters based on the structure and type of atoms present.  Of particular concern was 

the parameterization of the force fields for fluorinated groups.  Our procedure was 

validated by using this simulation procedure to estimate the solubility parameter of our 

fluorinated solvent, perfluoromethylcyclohexane, which has a reported solubility 

parameter value of δ = 12.5 (J/cm3)1/2.93  The solubility parameter estimate from this 

dynamics simulation approach is 12.51 ± 0.13.  
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3.5   Results and discussion 

3.5.1 Partitioning behavior of nicotinate prodrugs (PFMCH/Toluene) 

 The perhydrocarbon nicotinates demonstrated two orders of magnitude increase in 

fluorophilicity with increasing chain length of the functional group (from 1 carbon atom 

(C1F0) to 10 carbon atoms (C10F0)) (Figure 3.3).  The increasingly negative log Kp 

values (from -1.72 for the C1F0 to -3.40 for C10F0) reflect the increasing preference for 

the hydrocarbon phase.   

 The partitioning behavior of the fluorinated nicotinates, categorized as fully 

fluorinated and partially fluorinated (Figure 3.1), also spans three orders of magnitude 

(Figures 3.4 and 3.5), although the carbon chain length of the fluorinated nicotinates (two 

to eight carbon atoms) varies less than the perhydrocarbon nicotinates (one to twelve 

carbon atoms) investigated.   This demonstrates the significant effect of substituting 

fluorine for hydrogen atoms on a compound’s chemical properties.  For the fully 

fluorinated nicotinates, increasing the carbon chain length by four atoms (C4F7 to 

C8F15) results in a pronounced increase in fluorophilicity.  The nicotinate with the 

longest fluorinated tail length is slightly fluorophilic, as indicated by its positive log Kp 

value (log Kp = 0.13 for C8F15).  These trends follow the empirical rules suggested by 

Kiss et al,98 where greater than 60 wt% fluorine content is needed to impart 

“fluorophilic” behavior to a molecule.  In our investigation, C8F15 is the only molecule 

which approaches this criterion (57 wt% fluorine). 

Similarly, the partitioning of the partially fluorinated molecules (C3F4 to C8F13) 

into the fluorinated phase increases with length of the fluorinated chain.  However, all the 

partially fluorinated nicotinates have negative partition coefficients.  The one order 

magnitude difference in partition coefficients between the fully fluorinated C8F15 and the 

partially fluorinated C8F13 (which differ by a single CH2 linkage replacing a CF2 group) 

highlights the drastic effect of fluorine substitution on the physicochemical properties of 

the nicotinates.  The distribution and position of fluorine atoms in the molecule, as well 

as the amount of fluorination, are known to affect the fluorophilic behavior of 

perfluorinated compounds.98  The demonstrated effect of a terminal H-atom in the 

fluorinated chain on the physicochemical properties of fluorinated compounds77,105 is 

apparent in the different partition values for the fully fluorinated nicotinate, C3F5, and its 
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partially fluorinated analogue, C3F4, which have log Kp values of -1.50 and -1.62, 

respectively.  The presence of the terminal H-atom in perfluorinated compounds 

introduces a large permanent dipole in the carbon chain, significantly increasing the 

hydrophilicity of the solute.  In surfactant systems, this effect is observed as an increased 

critical micelle concentration (CMC).  The CMC of both ionic105 and non-ionic77 

perfluorinated surfactants with terminal hydrogen atoms have been reported to be 300% 

greater than the fully fluorinated analogues.   

 

 

 
 

Figure 3.3.  Partition coefficients for perhydrocarbon nicotinates in PFMCH-Toluene as 
determined experimentally  () or from the application of regular solution theory based 
on solubility parameters estimated by group contribution (□) or molecular dynamics 
simulation (●).  The experimental values are an average of two runs. 
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Figure 3.4.  Partition coefficients for fully fluorinated functional chain length nicotinates 
in PFMCH-Toluene as determined experimentally  () or from the application of regular 
solution theory based on solubility parameters estimated by group contribution (□) or 
molecular dynamics simulation (●).  The experimental values are an average of two runs. 
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Figure 3.5.  Partition coefficients for partial fluorinated functional chain length 
nicotinates in PFMCH-Toluene as determined experimentally () or from the 
application of regular solution theory based on solubility parameters estimated by group 
contribution (□) or molecular dynamics simulation (●).  The experimental values are an 
average of two runs. 
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Predictive models of relative solubilities in biphasic solvents utilize solubility 

parameters, molar volumes, molecular surface area, van der Waals volume, molar 

refraction, solvent extended surface and solvatochromic parameters (β, α, 

π*).97,99,100,246,255  Although recent studies have demonstrated successful correlation of 

molecular surface area with partitioning behavior of fluorinated molecules,97,245 the 

solubility parameter remains one of the most widely accepted parameters for  predicting 

or interpreting physiochemical properties such as partitioning.98,99  We calculated  the 

solubility parameter of the functionalized nicotinates from their molecular structure using 

Fedors structural group contribution method93 and Accelrys computational molecular 

dynamics (Table 3.1).  The estimated solubility parameters decrease with chain length in 

each group of nicotinates (perhydrocarbon, fluorinated, and partially fluorinated).  

Solubility parameter estimates by group contribution methods and molecular dynamics 

simulations (Table 3.1) differ by less than 10%.  The solubility parameters calculated by 
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simulation are consistently lower than those estimated by the group contribution method.  

For equal carbon chain length, the solubility parameter of the perhydrocarbon compounds 

is greater than the corresponding fluorinated compounds, an expected trend.  Substituting 

a hydrogen atom on the terminal carbon of a fluorinated chain results in an increase in the 

solubility parameter (C3F5 vs. C3F4).   

The partition values (log Kp) predicted using the estimated solubility parameters 

(Eqs. 3.4 and 3.5) are compared with the experimental values in Figures (3.3)-(3.5).  

Published values of solubility parameter were used for the organic solvents:  toluene (δ = 

18.2 (J/cm3)1/2 ) and perfluoromethylcyclohexane (δ = 12.5 (J/cm3)1/2).93    

The group contribution estimates of partition coefficients for the perhydrocarbon 

nicotinates are closer to experimental values than the predictive estimates from 

simulation (Figure 3.3).  Both predictive methods for the solubility parameter of the 

longer chain perhydrocarbon nicotinates (C6 and greater) result in partition coefficient 

estimates which overestimate the preference of the nicotinate for the fluorocarbon phase 

(i.e., higher log Kp).  Excluding the simulated estimate for C10F0 (38% difference), all 

the predicted values in this group of nicotinates are in reasonable agreement with 

experimentally determined log Kp (i.e.< 20%).   

Conversely, the predicted values for the fully fluorinated nicotinate prodrugs are 

lower than the experimental values (Figure 3.4), suggesting that the predictive tools 

underestimated the fluorophilicity of the compounds.  The molecular dynamics estimates 

of partitioning behavior for the fluorinated nicotinates are closer to the experimental 

values than the estimates determined by group contribution methods.  The predictive 

tools capture the experimental partition coefficients less accurately for fully fluorinated 

nicotinates than for perhydrocarbon nicotinates.  For the fully fluorinated nicotinates, 

only the shortest chain functional groups (C2F3 and C3F5), have predicted values that are 

in reasonable agreement with experiment (< 30% difference).   

Partially fluorinated nicotinates demonstrate similar partitioning trend to the fully 

fluorinated nicotinates.  The predicted partition coefficients of partially fluorinated 

nicotinates (Figure 3.4) deviate considerably from experiment (> 20%), although the 

partition values predicted by the simulation method are slightly more accurate than the 

group contribution method.  Also, the predictive methods do not accurately capture the 
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effect of a terminal hydrogen atom (C3F4 and C5F8), underestimating the fluorophilicity 

of the molecules.  Partitioning is primarily governed by the balance between the energy 

required to create a cavity for the solute in the solvent and the intermolecular 

interactions.255  However other factors such as the change in shape, symmetry and 

moment of the molecule due to the exact position of the hydrogen in the molecule and the 

effects on partitioning98 are excluded from partition estimates based on the group 

contribution estimation method. 

The greatest differences between experimental and predicted partition coefficients 

are observed with the longest chained nicotinates (C8F15 and C8F13), where the 

fluorophilicity is underestimated.  Both predictive methods show several orders 

magnitude deviation (group contribution and model simulation values are log Kp’s = -

1.67, -1.38 for C8F15 and -1.79 and -1.69 for C8F13)  from the experimental values for 

C8F15 (log Kp = 0.13) and C8F13 (log Kp = -0.7).  Applying regular solution theory to 

large chain nicotinates requires a significant extrapolation of RST assumptions, namely 

the dispersion of solute molecules in similarly sized solvents with ideal entropy as a 

result of random mixing.248  While the predictive techniques provide a reasonable 

estimate of partitioning behavior for the long chain perhydrocarbon nicotinates, they fail 

to capture the fluorophilic contribution of long fluorinated carbon chains.  This is 

attributable to several factors associated with the application of Regular Solution Theory 

in this work.  The additive nature of the group contribution method results in propagation 

of error in the final estimate of the solubility parameter, which influences the predicted 

partition values.   The Fedors93,101 group incremental values utilized in this work, which 

provides an estimate of molar vaporization energies and molar volumes (Equation 3.5) 

for structurally diverse molecular sub-units utilized allows for calculation of solubility 

parameter values of a wide variety of molecular compounds.  However, the errors 

associated with this approximation results in cumulative error in the partition coefficient 

predictions.   

Fluorophilicity was predicted to within 30% of the experimental log Kp for 

structurally similar compounds (i.e. eight fluorinated chains attached to pyridine 

headgroups) within Huque et al.’s103 correlation of 90 organic compounds (both 

fluorinated and non-fluorinated) based on linear free energy relationships.  Similarly, 
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Kiss et al.’s98 demonstrated the applicability of a  neural network model to correlate and 

predict fluorophilicities using 59 fluorinated compounds.  However, these techniques also 

employed the physicochemical properties of the compounds of interest in the statistical 

parameterization of their models. Similar to our results,  De Wolf and coworkers99 report 

experimental and predicted differences in partitioning that range from 0% to >50% for 

over 50 fluorinated organic molecules based on Mobile Order and Disorder theory, which 

utilizes modified solubility parameters calculated by group contribution methods. 

 

3.5.3 PFOB/Water partition coefficients of nicotinates 

The partition coefficients reported in Table 3.2, increase (two orders of 

magnitude) in the partition value with carbon chain length of the perfluorocarbon 

nicotinates (C1 – C6). Only the short chained perhydrocarbon nicotinates (CF0; Log Kp = 

-0.78) and (C2F0; Log Kp = -0.16) demonstrated preference for the aqueous phase.  

Partition measurements for the longer chained perhydrocarbon and perfluorinated 

nicotinates proved challenging and the limit in Table 3.2 (> 2.2) represents the limit of 

detection of the GC-FID analysis due to their surface activity  and poor solubility in the 

aqueous phase.  The values reported suggest the overall fluorine content and the length of 

the carbon chain has a strong effect on the partitioning behavior from PFOB to the 

aqueous phase.  Partitioning of higher chained perfluorinated nicotinates (> C3F5) into 

the aqueous phase is limited by their poor solubilization in water.  Another factor to 

consider would be the self-association of the perhydrocarbon nicotinates (methyl 

nicotinate)  in aqueous systems.256  The dimerization and higher order aggregates of 

nicotinic acid and esters in water is a general feature of pyridine groups whose aromatic 

nature provides for the vertical stacking in solution.256 However, the hydrophobicity of 

the higher chained nicotinates might counteract the solubility facilitated by the self-

association of the aromatic groups. 

Application of RST produced significant deviations from experimental values for 

all the nicotinates, indicating the limitations of RST in predicting partitioning in aqueous 

systems.   The accuracy of our predictive models is limited by the estimation of the 

solubility parameter as well as the application of the regular solution theory (Eq. 3.4).  

The derivation of regular solution theory assumes small solute molecules dispersed 
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among like size solvents.  Regular solution theory does not take into account the 

amphiphilic nature of the molecules involved or their tendency to accumulate at the 

surface or their self aggregation properties. Regular solution theory describes the 

dispersive van der Waals interactions in solute solvent systems and does not take into 

account the strong hydrogen bonding effects of water molecules.   Water, with its high 

polarity, presents an extreme with solubility parameter (δ = 48 (J/cm3)1/2).93  With the 

strong cohesive forces, the addition of nonpolar solutes such as the nicotinates, causes a 

decrease in entropy of the self associated molecules.  This results in the hydrophobic 

effect or rejection of the solute molecule.  For this reason, the PFOB-water partition 

coefficients were poorly predicted from the solubility parameter of the solutes (results not 

shown).   

 

3.6    Conclusion 

Regular solution theory using the Hildebrand solubility parameter, determined by 

Fedors group contribution method and molecular dynamics simulations was applied to 

estimate the fluorous/organic partition coefficient of a series of functionalized nicotinic 

acid esters/nicotinates.  This approach worked reasonably well with the series of 

perhydrocarbon nicotinates and the shorter chained perfluorinated nicotinates (C2F3 and 

C3F5).  Significant deviation from experimental values with the higher chained 

perfluorinated nicotinates, for which the fluorophilicity is underestimated.  Knowledge of 

PFMCH/Toluene partition values, estimated by these predictive tools, would help in 

design of optimal experimental conditions for measurements and can act as the criterion 

for selecting drugs for synthesis and further study 

 The experimental PFOB-water partition coefficients increased with chain length 

in each group of nicotinates measured.  Only the shortest chained perhydrocarbon 

nicotinates (CH3 and C2H5) demonstrated slight affinity for the aqueous phase.   Due to 

their surface activity, measurements of the PFOB-water partition values proved 

challenging for the higher chained nicotinates.  The predictive ability of the methods 

failed in the case of PFOB-water partitioning because regular solution theory does not 

incorporate the effects of hydrogen bonding in water.  
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Table 3.1. Hildebrand solubility parameters of nicotinate acid ester prodrugs 

 

Nicotinate Molar Volume 

(by Group 

Contribution) 

(cm3/mol) 

δ (by Group 

Contribution) 93  

(J/cm3)1/2 

δ (by 

Simulation)  

(J/cm3)1/2 

Perhydrocarbon nicotinates    

C1F0 114.4 23.28 22.47 ± 0.33 

C2F0 130.5 22.65 21.82 ± 0.10 

C4F0 162.7 21.73 20.70 ± 0.10 

C6F0 194.9 21.09 20.28 ± 0.06 

C8F0 227.1 20.62 19.93 ± 0.05 

C10F0 259.3 20.26 18.88 ± 0.10 

C12F0 291.5 19.98 19.40 ± 0.08 

Perfluoroalkyl nicotinates    

C2F3 154.5 20.75 19.97 ± 0.08 

C3F5 177.5 19.97 19.51 ± 0.10 

C4F7 200.5 19.35 18.82 ± 0.08 

C8F15 292.5 17.75 17.26 ± 0.09 

Perfluoroalkyl nicotinates    

C3F4 142 22.84 22.43 ± 0.13 

C5F8 188 20.96 19.82 ± 0.18 

C8F13 285.6 18.03 17.85 ± 0.09 
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Table 3.2. PFOB/Water Partition Coefficients of nicotinate acid ester prodrugs 

Nicotinate PFOB/Water Volume Ratio Log Kp 

Perhydrocarbon Nicotinates 

C1F0 1:1 -0.78 ± 0.04 

C2F0 1:1 -0.16 ± 0.03 
C4F0 1:10 0.96 
C6F0 1:5 1.24 ± 0.18 

1H, 1H-Perfluoroalkyl Nicotinates 

C2F3 1:10 0.48 ± 0.02 

C3F5 1:10 0.78 ± 0.1 

C4F7 1:10 > 2.2 

C8F15 - > 2.2 

1H, 1H-nH-Perfluoroalkyl Nicotinates (n = 3 or 5) 

C3F4 1:10 0.55 ± 0.01 

C5F8 - > 2.2 

1H, 1H,2H, 2H-Perfluoroalkyl Nicotinates 

C8F13 - > 2.2 
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CHAPTER 4 

 

 

PARTITIONING OF HOMOLOGOUS NICOTINIC ACID ESTER PRODRUGS 

(NICOTINATES) INTO DIPALMITOYLPHOSPHATIDYLCHOLINE (DPPC) 

MEMBRANE BILAYERS 

 

 

4.1 Summary  

The partitioning behavior of a series of perhydrocarbon nicotinic acid esters 

(nicotinates) between aqueous solution and DPPC membrane bilayers has been 

investigated as a function of increasing alkyl chain length.  The hydrocarbon nicotinates 

represent putative prodrugs, derivatives of the polar drug nicotinic acid, whose 

functionalization provides the hydrophobic character necessary for pulmonary delivery in 

a hydrophobic, fluorocarbon solvent, such as perfluooctyl bromide (PFOB).  Independent 

techniques of differential scanning calorimetry (DSC) and 1,6-diphenyl-1,3,5 hexatriene 

(DPH) fluorescence anisotropy measurements were used to analyze the thermotropic 

phase behavior and lipid bilayer fluidity as a function of nicotinate concentration.  At 

increasing concentrations of nicotinates over the DPPC mole fraction range examined 

(XDPPC = 0.6 – 1.0), all the nicotinates (ethyl (C2H5); butyl (C4H9); hexyl (C6H13); and 

octyl (C8H17)) partition into the lipid bilayer at sufficient levels to eliminate the 

pretransition, decrease the gel to fluid phase transition in the bilayer and broaden the 

main phase transition.   The concentrations at which these effects occur appear to be 

chain length-dependent; the shortest chain nicotinate, C2H5, elicited the least dramatic 

effects.  Similarly, the DPH anisotropy results suggest an alteration of the bilayer 

organization in the liposomes as a consequence of the chain length-dependent 

partitioning of the nicotinates into DPPC bilayers.  From the depressed melting 

temperature of the bilayers, the calculated membrane partition coefficients (logarithm 

values) increase from 2.18 for C2H5 to 5.25 for C8H17, spanning several orders of 

magnitude. 
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4.2 Introduction  

Nicotinic acid is a polar drug molecule widely recognized for its many 

pharmaceutical benefits.  Used as a food supplement, it is a precursor to nicotinamide 

adenine dinucleotide (NAD) and NADP;257 coenzymes  which are important in metabolic 

cellular function.  As a result it has potential in the treatment of lung injury associated 

with anticancer agent therapies,258 and reduction of the inhibitory respiratory effects 

caused by bacterial toxins.86  Extensive clinical studies have established nicotinic acid as 

a critical agent in preventing or lowering the risk of cardiovascular or coronary heart 

disease.83,84,259,260  Nicotinic acid raises the level of high density lipoproteins (“good 

fats”) while reducing low density lipoproteins levels and triglycerides, which are critical 

factors in the fight against coronary heart disease.84 Other studies suggest the therapeutic 

potential of nicotinic acid in the treatment of HIV261 and the treatment of skin 

carcinogenesis.85  The numerous clinical benefits provide incentive to develop a range of 

administration techniques for this pharmaceutical agent.  The need for alternative 

delivery methods is highlighted by potential dose related side effects; negative 

pharmaceutical effects of nicotinic acid such as hepatic toxicity have been attributed to 

the administration formulations such as those with slow release mechanisms.262  

To this end, the delivery of nicotinic acid directly to the lung in the form of 

prodrugs using a fluorocarbon fluid is of interest as an alternative administration 

technique.35 Fluorocarbons, characterized by biological inertness and chemical stability, 

low surface tension, high fluidity with high gas dissolution capacity (CO2 and O2) have 

found potential use in a variety of biomedical applications.160,239   Previously, our group, 

established the viability of pulmonary drug transport of nicotinic acid in cell culture 

studies using the prominent fluorocarbon fluid, perfluorooctyl bromide (PFOB)35 as the 

drug delivery vehicle. To achieve this novel drug delivery method,15,244 the polar 

nicotinic acid was functionalized with hydrocarbon and fluorinated side chains to 

facilitate solubility in the non-polar, lipophobic and hydrophobic PFOB.15,35,241 

Application of this liquid ventilation technique for drug delivery has several advantages 

over conventional drug delivery therapies, which include higher doses to the targeted site 

and less systemic distribution.15  The chemically modified compounds/prodrugs or 

nicotinic acid esters (nicotinates) which are surface active, lack clinical activity and are 
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enzymatically converted to the parent nicotinic acid drug at the intended lung site, after 

passive diffusion through several solvent layers.    Homologous series of the prodrugs or 

nicotinates were synthesized with functional carbon chain lengths from C1 – C8 for both 

hydrocarbon and fluorinated nicotinates to establish the relationship between chain length 

and effective delivery.35   Delivery of the prodrugs to human lung cells in culture was 

demonstrated through the elevated levels of NAD and NADP that were achieved 

following exposure to the nicotinates.  The nicotinates, especially the hydrocarbon 

analogues (perhydrocarbon nicotinates) could be delivered at sufficient levels to register 

the desired pharmaceutical response without significant inhibitory effects on cell 

viability, as measured by corresponding cytotoxicity studies.  A chain length-related 

trend in cytotoxicity was evident for the perhydrocarbon nicotinates when delivered from 

an aqueous buffer to the cells, with the shortest chain being the least toxic. 

The systemic uptake of the prodrugs through a cellular matrix can also be 

described by models which utilize parameters of thermodynamic partitioning.  

Partitioning trends through isotropic solvent layers that represent the barrier domains in 

the passive diffusion of the nicotinates to the targeted site serve as useful indicators of the 

transport limitations of this system.  To this end, the partitioning of the solute prodrugs 

between immiscible liquid phases was measured experimentally: PFOB/water and 

perfluoromethylcyclohexane (PFMCH)/toluene  (an accepted measure of the 

fluorophilicity of the solute, or its  preference for the fluorocarbon phase).56   The 

octanol/water partition coefficients, a traditional index of the nicotinates’ lipophilicities 

and propensity to distribute into membrane bilayers, were also determined using the 

Advanced Chemistry Development software package (Ontario, Canada).35      As 

expected, the lipophilicity of the nicotinates increased with alkyl chain length of the 

nicotinates.  Also, with increasing chain length of the nicotinates (C1 – C6), the tendency 

to partition to the fluorocarbon phase from the corresponding immiscible aqueous 

(PFOB/water) also increases.35    The converse trend was observed for fluorophilicity, 

which decreased with the chain length of the perhydrocarbon nicotinates.  

This work examines the effect of increasing chain length of the perhydrocarbon 

nicotinates (ethyl nicotinate, (C2H5), butyl nicotinate (C4H9), hexyl nicotinate (C6H13) 

and octyl nicotinate (C8H17), Figure 4.1) on dissolution in DPPC lipid bilayers and lipid 
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bilayer organization using independent calorimetric (DSC) and fluorescence probe 

techniques. As constituents of pulmonary surfactant found in lung alveoli,  1,2-

Dipalmitoyl-sn-glycerol-3-phosphatidylcholine (DPPC) lipid bilayers were the prime 

choice as the model membranes in this study and are frequently investigated in 

membrane partitioning studies of toxins and pharmaceutical agents.129,130   Differential 

scanning calorimetry informs on changes in pretransition and main transition of DPPC 

bilayers as a function of nicotinate concentration.  Alternatively, the membrane fluidity or 

microviscosity, is assessed by DPH fluorescence anisotropy in liposome bilayers, where 

changes in the characteristic gel-fluid phase transition and the corresponding transition 

width are measures of the solute incorporation in the membrane matrix.135,136,145  The 

effects of the incorporation of prodrugs in the membrane bilayers as a function of alkyl 

chain length and concentration are discussed relative to their previously established 

physicochemical properties (partitioning behavior in immiscible solvent systems) and 

observed cytotoxicity trends.35 

 

4.3 Experimental Section 

4.3.1. Materials  

The chemical structures of the nicotinate acid ester prodrugs used in this study are 

provided in Figure 4.1.  C2H5 (Across Chemicals, NJ), C4H9 (Sigma Chemicals Co, 

MO) and C6H13 (Sigma Chemicals Co, MO) were purified by Kugelrohr distillation to 

yield the respective nicotinate as colorless liquid. The purity of the nicotinates (> 98%) 

was confirmed by chromatographic and spectrometric techniques.   C8H17 was 

synthesized by the addition of anhydrous dicyclohexylcarbodiimide and 

dimethylaminopyridine to a mixture of nicotinic acid and 1-octanol in anhydrous 

dichloromethane as described previously.241,247  The product was purified by column 

chromatography on silica gel using hexane as eluent to give C8H17 as a colorless liquid 

in 87% yield (> 98% purity).  1H (300 MHz, CDCl3) : 0.85 (bs, -CH3, 3H), 1.24 (bs, 5 × -

(CH2)2-, 10H),  1.76 (bs, -OCH2CH2-, 2H), 4.31 (t, -OCH2-, 2H, J = 6.6Hz), 7.30 (d, ArH, 

J = 4.8Hz, 1H), 8.27 (bs, ArH, 1H), 8.74 (bs, ArH, 1H), 9.20 (bs, ArH, 1H).  13C (100 

MHz, CDCl3): 14.25, 22.82, 26.17, 28.81, 29.4 (2 × -CH2-), 31.76, 31.95, 65.74, 123.40, 

137.14, 151.08, 153.47, 165.47.  GC-MS, m/z (relative intensity, %): 234 (C14H21NO2
. +, 
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8), 220 (4), 206 (11), 192 (29), 178 (24), 164 (37), 151 (16), 137 (19), 124 (100), 106 

(90), 78 (80), 51 (38).  Dipalmitoylphosphatidylcholine (DPPC) (purity ≥ 99%) was 

purchased from Sigma Aldrich and the fluorescent probe, 1,6-diphenyl-1,3,5-hexatriene 

(DPH), was purchased from Molecular Probes (Eugene, OR).  Fisher Scientific supplied 

ACS grade chloroform, tetrahydrofuran and the deionized, ultra-filtrated water.   

 
Figure. 4.1. Chemical structure of the perhydrocarbon nicotinic acid esters (nicotinates)  

 

4.3.2. Differential Scanning Calorimetry (DSC) 

  Mixtures of DPPC (450 mM DPPC) and nicotinate, prepared in a mole fraction 

range of 0.6 – 1.0 (X DPPC), were initially dissolved in chloroform.  The solvent was 

gently evaporated under a low pressure nitrogen stream to form an even dry film.  The 

film was further dried under vacuum to remove any trace solvents.  The samples were 

subsequently hydrated with deionized ultrafiltrated (DIUF) water (thrice the weight of the 

sample).  Samples were then subjected to eight cycles of heating (≈ 50 – 55 oC) above the 

DPPC phase transition temperature of 41oC,263 for 5 minutes and vortexing for 2 minutes.  

To minimize evaporative effects when preparing mixtures containing the lowest 

molecular weight nicotinate (C2H5), the procedure was altered slightly: aqueous 

solutions of the ethyl nicotinate were added in the appropriate proportion to dried lipid 

films of pure DPPC prior to the heating and vortexing cycles.  The resulting 
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DPPC/nicotinate samples were weighed into aluminum hermetic pans and analyzed on a 

Thermal Analysis 2920 differential scanning calorimeter.  Dry nitrogen was supplied at 

60 mL/min when purging the DSC cell and at 120 mL/min when cooling the DSC cell 

using the refrigerated cooling system.  All experiments were carried out in triplicate.  

Samples were cooled to 10 oC and heated from 10 – 80 oC at 10 oC/min. The maximum, 

onset, offset and peak widths of the main phase transition and pretransition were 

determined using the Universal Analysis software.   

 

4.3.3. Fluorescence Anisotropy Measurements 

 Following the method of Bangham et al,264 evenly dried lipid films of DPPC and 

DPH in 500:1 molar ratios were prepared by initially dissolving 36.7 mg (1 mM) of 

DPPC in chloroform (2 ml) with addition of 1 ml of a 0.1 mM DPH/tetrahydrofuran 

solution in a round bottom flask.  The mixed solution was then evaporated under a gentle 

stream of nitrogen or a rotary evaporator and further dried under vacuum for at least 4 

hours to remove any residual solvents.  The dried lipid films were subsequently hydrated 

with 45 ml DIUF and heated (55-60oC) above the lipid’s phase transition temperature 

(DPPC Tm = 41oC 263) for an hour.  Vigorous shaking was carried out at the same 

temperature range for one hour to form liposomes, followed by repeated extrusion (19 

cycles) through 200 nm polycarbonate membranes (Aventis mini extruder, Ottawa, 

Canada) at a temperature greater than the phase transition temperature to generate small 

unilamellar liposomes.118  The resulting liposomes were diluted 10-fold for fluorescence 

analysis in a custom made stainless steel variable volume view cell (10 - 25 ml) designed 

by Thar Technologies (Pittsburgh, PA).  The cell was temperature controlled with an 

Omega unit (model CN9000A) fitted with heating tape and the liposome suspension was 

stirred continuously with a magnetic stirrer to maintain uniform temperature.  The DPH 

probe was excited at λex = 350 nm and λem = 452 nm and steady state measurements of 

the manually polarized light (both excitation and emission) were recorded using a Varian 

Cary Eclipse fluorescence spectrophotometer (Walnut Creek, CA).265  An excitation slit 

width of 5 nm and emission slit width of 10 nm was used with 1 s average sampling time.  

An average of five anisotropy measurements was recorded at 1 K intervals on the cooling 
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cycle (50 oC to 25 oC) at approximately 0.17K/min.  The fluorescence anisotropy is given 

in equation (4.1):
 
 

 〈r〉 =  IVV  −  IVH
IVV  −  G∗IVH

                                                               Equation (4.1) 

where I represents the fluorescence intensity, and the subscripts, V and H refer to 

polarized light in the vertical and horizontal direction. G (grating factor) is the ratio of the 

vertical to horizontal polarized light and accounts for the sensitivity of the instrument to 

polarized light.266   The temperatures scans were carried out twice to ensure 

reproducibility and verify integrity of the liposomal structure. 

 

4.3.4 Partition Coefficient Calculation 

 The apparent partition coefficient of the nicotinates between the bulk aqueous 

phase and the DPPC membrane bilayer, Km/w was calculated as shown in Equation 

(4.2).267   

 -∆Tm   =  R∗Tm
2

∆HDPPC
   x  Km /w

55.5+ CDPPC ∗Km /w
Cs             Equation (4.2) 

where ΔTm is the change in melting temperature with the addition of nicotinates relative 

to the pure DPPC liposome solution, Tm is the melting temperature of pure DPPC (315 

K), ΔHDPPC is the phase transition enthalpy  (31.4 kJ/mol),268 R is the gas constant, K m/w, 

the membrane-water partitioning, CDPPC is the lipid concentration and Cs is the 

concentration of the nicotinates in the bulk solution.  The equation is based on the 

assumption of the depression in Tm (or ΔTm) being in direct proportion to the amount of 

nicotinate partitioned into the membrane bilayer at equilibrium.   The membrane partition 

coefficient is determined from Eq. (4.2) using a linear regression of ΔTm versus 

nicotinate concentration, Cs. 

 

4.4 Results 

4.4.1 Differential Scanning Calorimetric Measurements 

 Calorimetric scans were performed for the nicotinate/DPPC mixtures over the 

range of XDPPC = 0.6 - 1.0 for the following nicotinates: C2H5, C4H9, C6H13and C8H17.  

Representative calorimetric scans/thermograms, associated partial phase diagrams and 
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changes in DPPC transition peak width are provided in Figures 4.2 – 4.4.  Figure 4.2 

provides the calorimetric scans of the DPPC/nicotinate mixtures; Figure 4.3 reports the 

DPPC pretransition and main transition property changes with increasing nicotinate 

concentration and Figure (4.4) shows expansion of pretransition and main transition 

width with concentration.  The pure DPPC melting temperature or main phase transition 

temperature (Tm) is characterized by an endothermic peak at 42.55±0.15 oC.  The 

corresponding onset (To), offset (Tf) and transition width (∆T m) are recorded at 

41.57±0.07 oC, 50.25±0.1oC and 1.96±0.07 oC, respectively.    The pure DPPC 

pretransition exists in the temperature range of 35.41±0.09 oC (onset temperature (Tp,o)) 

to 40.53±0.10 oC at the offset (Tp,f );  the enthalpic peak or endotherm maximum of the 

pretransition temperature (Tp,)  occurs at 37.77±0.07 oC, with  a corresponding 

pretransition temperature width (ΔTp) of 2.49±0.14 oC.  The measurements are in 

agreement with published values for DPPC bilayers.135,136   

Overall, the presence of the nicotinates decreased or eliminated the pretransition, 

decreased the melting temperature and increased the width of the main phase transition.  

The shortest chained nicotinate, C2H5, has the least disruptive effect on the bilayer lipid 

chain organization, as the pretransition is evident at DPPC mole fractions as low as XDPPC 

= 0.8 (Figure 4.2a), below which it is eliminated.  The decrease in the pretransition 

temperature (Figure 4.3a) and the corresponding increase in the width of the pretransition 

(Figure 4.4a) is not appreciable until the mole fraction of DPPC falls below 0.97 (XDPPC ≤ 

0.97) (Figure 4.3a).  Similarly, the main transition properties remain fairly constant in the 

same concentration range of XDPPC ≥ 0.97, after which a linear decrease in the enthalpy 

peak/DPPC melting temperature, Tm, and onset, To, of the transition is observed with 

increasing mole fractions of the nicotinate (or decreasing XDPPC). The width of the main 

phase transition, ΔTm, in Figure 4.4(b) appears constant for XDPPC ≥ 0.9, at which point it 

increases continually with incremental amounts of nicotinate.   Aside from the 

broadening, there is no deviation or anomaly in peak shape (Figure 4.2a) from that of 

pure DPPC, which implies absence of complex phase behavior with the DPPC-C2H5 

mixture.  

 The pretransition is more sensitive to the presence of C4H9 relative to C2H5, and 

is eliminated at a lower concentration of C4H9 (or a corresponding higher concentration 
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of DPPC (XDPPC < 0.9) in the DPPC-C4H9 mixtures (Figures 4.2a and 4.3b).   There was 

minimal variance in pretransition properties (onset, offset, peak maximum) in the 

concentration range over which a pretransition was observed (XDPPC = 1 - 0.9; Figures 

4.3b and 4.4a).  The main transition onset, To and melting temperature, Tm also appear 

fairly constant in this composition range.   However, a steep decline is evident in To 

values for XDPPC < 0.9, while a less pronounced decrease is observed in Tm for the same 

mole fraction range (Figure 4.3b).  The sigmoidal shape of the width of the main 

transition, ∆Tm, as a function of C4H9 concentration (with a rapid broadening of the peak 

at XDPPC < 0.9) (Figure 4.4b), suggests that the solubilization of the C4H9 drastically 

influences acyl chain order.  At the lowest DPPC mole fraction measured (XDPPC = 0.6), 

the thermogram peak shape (Figure 4.2b) is clearly distorted and two shoulders are 

observed in the main phase transition endotherm (at 24.1 and 32.5 oC), indicating phase 

changes or complex phase behavior.   

C6H13 has the most destabilizing effect on the pretransition of the nicotinates 

studied, completely eliminating this transition at DPPC mole fractions below 0.95 (Figure 

4.2c).  A continual decrease in pretransition temperature (Figure 4.3c) (onset, offset and 

peak maximum) and corresponding increase in its width (Figure 4.4a) is observed with 

increasing C6H13 concentration, until the pretransition is eliminated at XDPPC = 0.95.   

The main phase transition temperature decreases for the entire mole fraction range 

investigated (XDPPC = 1 – 0.6) (Figure 4.3c) and the phase change broadens significantly 

at XDPPC <0.8 (Figure 4.2c).  In addition, a shoulder at 18 oC is observed in the 

thermogram for the mixture at XDPPC = 0.7.  The main transition onset, To, and offset, Tp, 

both decrease with increase in nicotinate concentration (XDPPC = 1 – 0.6) with the 

decrease more pronounced in the former. 

In the case of C8H17, the longest chain nicotinate investigated, the pretransition 

endotherm is distinctly visible from XDPPC = 0.9 – 1.0, after which it disappears with 

increasing nicotinate concentration (Figure 4.2d).  The pretransition onset, offset and 

temperature demonstrate a similar trend to that of C6H13 for the range over which it is 

observed (XDPPC = 0.9 -1.0).  Surprisingly, however, the pretransition width, ΔTp, 

displays a similar trend to C4H9 in Figure 4.4(a), that is, it varies little with concentration 

for the range observed.  The onset of the main phase transition, To, exhibits a steeper 
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decrease than Tm for XDPPC ≤ 0.8 (i.e., with increasing nicotinate concentration) (Figure 

4.3d).  The peak width of the main phase transition increases from 1.96 oC at pure DPPC 

to 10.6 oC at the highest mole fraction of nicotinate, XDPPC = 0.6, the highest increase 

observed for all the nicotinates.  A shoulder in the main transition endotherm was 

recorded at 30 oC for the lowest mole fraction of DPPC.  The offset of the main transition 

endotherm exhibits the least variation for the whole concentration range of all the 

nicotinates in this study.  

 

 
 

Figure 4.2.  Typical calorimetric scans for mixtures of DPPC with (a) Ethyl nicotinate - 
C2H5, (b) Butyl nicotinate – C4H9, (c) Hexyl nicotinate – C6H13 and (d) Octyl 
nicotinate – C8H17 in excess water.  The mole fraction of DPPC is indicated beside each 
scan.  The heating rate was 10oC/min from 10 oC to 80 oC (selected sections of the scan 
with the phase transitions are displayed) 
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Figure 4.3.  Partial phase diagrams of mixtures of DPPC with (a) C2H5, (b) C4H9, (c) 
C6H13 and (d)   C8H17 in excess water.  All data points are average of three 
experiments ± SD. (■) Onset temperature of main transition,  (♦) DPPC melting 
temperature, Tm, (×) offset temperature of main transition, (▲) onset temperature of 
pretransition,(●) DPPC pretransition temperature, Top, and (∆) offset temperature of 
pretransition. 
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Figure 4.4.  Half width of the (a) pretransition and (b) main phase transition of DPPC 
with (▲) C2H5, (■) C4H9, (♦) C6H13 and (×) C8H17.  All data points represent average 
of three experiment ± SD. 
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4.4.2 Fluorescence Anisotropy Measurements (DPH) 

 The anisotropy of the probe molecule in the bilayers of DPPC liposomes (0.1 

mM) was monitored from 50 – 25oC for all the four perhydrocarbon nicotinate/DPPC 

mixtures at various molar concentration ranges.   The melting point or phase transition 

temperatures, Tm, were determined from the inflection point of the anisotropy curves in 

Figures 4.5(a) – (d).  DPH anisotropy is a measure of the membrane fluidity and 

decreases with temperature as the bilayer becomes more disordered.  In pure DPPC 

liposomal systems, the bilayer gel-fluid phase change or chain melting is marked by a 

sharp transition at Tm  = 40.8 oC over a 1.4 oC temperature range (width of the phase 

transition, ΔTr).  Here, ΔTm in Eq. (4.2) is distinguished from ΔTr; the former represents 

the decrease in the melting temperature while the latter is the change in the gel–fluid 

phase transition width, both measured by DPH anisotropy.  The phase transition width, 

∆Tr is a measure of the cooperativity of the melting process.   The anisotropy data are 

graphically presented for all the nicotinates in Figures 4.5(a) – (d) while Figures 4.6(a) - 

(d) provides a trend of the changes in Tm and transition width ΔTm with nicotinate 

concentration.  

  The effect of solubilization of ethyl nicotinate, C2H5, on gel to fluid phase 

transition, Tm of DPPC bilayers was investigated up to concentrations of  200 mM C2H5 

(Figure 4.5a).   A significant reduction of Tm, (to 37.1oC) and increase in the phase 

transition width, ∆T r (to 3.8 oC) is observed at 50 mM (Figure 4.6a).  At the highest 

concentration, 200 mM, there is a significant drop in Tm (to 30.6 oC) but the gel – fluid 

phase width, ΔTr only increases to 4 oC from the pure DPPC width of 1.4 oC.  The 

anisotropy curves also demonstrate significant deviation from that of pure DPPC at 

concentrations ≥100 mM.  Although the curves for the intermediate concentrations, 50 

and 100 mM are similar in shape in Figure 4.5(a), i.e. the gel and fluid anisotropy values 

are similar, there is a distinct shift in the transition temperature which is shown in Figure 

4.6(a).   

 A more dramatic effect on the phase transition properties is observed for C4H9–

DPPC systems, investigated over the concentration range of  0 - 10 mM (Figure 4.5b and 

4.6b), than for the shorter chain nicotinate, C2H5.  At 10 mM C4H9, the phase transition 

temperature/melting temperature, Tm of the DPPC bilayers decreases to 33.3 oC, ≈ 8K 
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depression in Tm, relative to the 100 mM (33.3 oC, 7K) required with C2H5.  The width 

of the gel to fluid phase transition, ΔTr increases to 5 oC with C4H9 concentration of 10 

mM.  To produce a 2.5 oC increase in gel-fluid phase transition width, ΔTr, 0.5 mM of 

C4H9 was needed compared with 10 mM for C2H5.  

 Lower nicotinate concentrations were sufficient to elicit perturbative effects on 

the gel to fluid phase transition as the chain length of the nicotinates was increased.  The 

effect of C6H13 on the properties of the DPPC liposomes was examined over a range of 

(0 - 1mM; Figure 4.5c).  There was a 9.2 oC reduction in the melting temperature of the 

pure DPPC liposomes in the presence of 1 mM C6H13 (Figure 4.6c).  Conversely, the 

phase transition width, ΔTr, increased five-fold to 7 oC over the nicotinate concentration 

range of 0 to 1 mM C6H13.  The shape of the anisotropy curve at 1 mM C6H13 was 

significantly altered relative to the pure DPPC curve as there is a much broader gel-fluid 

phase transition; the onset of the phase transition experienced a dramatic shift at this 

concentration.   

  The C8H17/DPPC system was investigated at 0 – 0.1 mM  (Figure 4.5d) and at  

highest concentration of C8H17, 0.1 mM, ΔTr increased by 7.6 oC and the Tm decreased 

to 34.8 oC (Figure 4.6d).  The anisotropy curves start to deviate from the pure DPPC 

curves in the presence of 50 μM C8H17, where the steepness of the gel-fluid phase 

transition is lost with increasing nicotinate concentration.  A concentration of 1 μM of the 

longest chain nicotinate was enough to decrease Tm to 39.8 oC and increase the width by 

2 oC. 
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Figure 4.5.  Anisotropy of DPH fluorescent probe in DPPC bilayers as a function of 
temperature and varying nicotinate concentrations.  (a) C2H5 (b) C4H9 (c) C6H13 and 
(d) C8H17.   
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Figure 4.6.  Changes in melting temperature, Tm (♦) and phase transition width, ΔTr (●) of 
the DPPC phase transition as function of concentrations of (a) C2H5, (b) C4H9, (c) 
C6H13 and (d) C8H17 measured by DPH fluorescence anisotropy. 
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Km/w = 5.25).  Figure 4.7 provides a plot of the experimental membrane/aqueous partition 

values relative to their octanol/water partition values, as available in literature35,269 and 

previously determined cytotoxicity levels.35 Cytotoxicity levels are expressed as EC20 

values in figure 4.7, which represent the nicotinate concentration that generated 20% 

inhibitory effect on cellular activity. As with the Km/w, the octanol/water partition 

values(Log Ko/w)   for C2H5 to C8H17 span several orders of magnitude as determined 

by predictive modeling (log Kp = 1.4 – 4.6) and experimentally (log Ko/w = 1.34 – 4.71).  

Also, the trend in Fig. 4.7 shows an increase in cytotoxicity with increase in membrane 

partitioning.   The shortest nicotinate, C2H5 expresses the least cytotoxic effect in vitro 

studies while C6H13, displayed the highest cytotoxicity (C8H17 cytotoxicity not 

provided).   

 

 
Fig. 4.7.  Correlation of experimental DPPC bilayer-aqueous partition coefficients with 
predicted Ko/w partitioning values35 (Δ) and published octanol-water values269 (). 
(●)Trend with cytotoxic data.35 
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4.5 Discussion 

 Calorimetric and fluorescence spectroscopy techniques provide complementary 

information on the interaction of perhydrocarbon nicotinates with model lipid bilayers.  

Differential scanning calorimetry (DSC) probes subtle changes in chain order, such as the 

pretransition, and affords thermal assessment of changes in lipid chain organization at 

high lipid concentrations without the use of an external agent.  Fluorescence anisotropy 

measurements can also be used to examine the phase transition of the bilayer and 

membrane fluidity as a function of temperature by changes in rotational diffusion of an 

embedded probe, DPH.   In DSC, concentrated lipid bilayers (450 mM) are examined 

using significant concentrations of solute in order to generate sufficient thermal response.  

In contrast, perturbations of the bilayer are assessed by fluorescence anisotropy using 

dilute systems of liposomes (0.1 mM) to prevent light scattering effects.   The four select 

nicotinates, C2H5, C4H9, C6H13 and C8H17 are a subgroup of a homologous series of 

derivatized nicotinic acid esters which possess functional groups to facilitate solubility in 

a fluorocarbon medium for drug delivery through the pulmonary route.  Physicochemical 

properties such as octanol-water, fluorocarbon-toluene, fluorocarbon-water partition 

coefficients and cytotoxicity levels, pertaining to their relevance in the uptake of the 

prodrugs through a cellular matrix have been previously determined.35  This study of the 

interaction of the perhydrocarbon nicotinates with model DPPC membrane bilayers 

provides for a fundamental interpretation of the mechanism and efficacy of the delivery 

of these prodrugs.    

 

4.5.1 Differential Scanning Calorimetry 

DSC is a well established technique utilized in the study of thermotropic phase 

behavior of lipid bilayers and used to interpret the nature of molecular interactions with 

lipid bilayers without the aid of any external agents.  Changes in the main transition and 

pretransition as a function of nicotinate concentration (Figures 4.2 - 4.4) indicate the 

incorporation of the nicotinates into the bilayer and the subsequent effects on acyl chain 

organization or assembly.  The DPPC pretransition is a quasi-phase transition that 

involves the temperature induced realignment of the acyl chains from tilted gel to a 

rippled gel conformation.108,270  Due to the differences in cross-sectional area of the 



89 
 

DPPC head group and lipid chain, there is a tilt at the interfacial regions to accommodate 

van der Waals interactions within the lipid chains and maintain the repulsive interaction 

between the head groups.108  The pretransition in pure DPPC lipid bilayers at 37.8 oC is 

distinguished from the main phase transition at 42.3 oC, which is concomitant with the 

melting of the lipid chains.  All the nicotinates, which are surface active, possess the 

same pyridine head group so differences in perturbative effects of incorporation in the 

bilayer can be attributed to chain length.  Also, the experiments were performed at close 

to neutral pH, which is greater than the pKa of the nicotinates, ensuring they are mostly 

in an unprotonated form.269,271 The same mole fractions of DPPC/nicotinate (X DPPC = 0.6 

– 1.0) were used for all the perhydrocarbon mixtures.  The trends in Figures 4.2 – 4.4, 

clearly demonstrate the ability of all the nicotinates to partition into the DPPC bilayer and 

effect concentration-dependent alterations in membrane structure/organization as a result 

of this insertion.   In addition, all the nicotinates are miscible with the DPPC lipid chains 

as all the partial phase diagrams in figure 4.3 demonstrate a continual decrease in the 

thermal properties (melting temperature, onset, offset and width of transitions) with 

increasing solute concentration.   Substantial changes in pretransition, including its 

elimination at higher nicotinate concentrations, suggest significant perturbation of the 

lipid chain order with nicotinate incorporation. 

The pretransition was eliminated at mole fractions of XDPPC < 0.8, 0.9, 0.95, 0.9, 

for C2H5, C4H9, C6H13 and C8H17, respectively.   With the exception of C6H13 and 

C8H17, changes in the onset, melting temperature and offset of the pretransition are 

minimal at low concentrations (i.e. XDPPC ≥ 0.97) of the nicotinates.  Above this 

concentration, the impact of solute incorporation of the shorter chain nicotinates (C2H5 

and C4H9) on lipid organization is more apparent.  Overall, C2H5 has the least disruptive 

effect on membrane organization; the solution concentrations required to elicit similar 

changes in the pretransition are higher for C2H5 than for the longer chain nicotinates.   

The endothermic peak shape of the main phase transition of C2H5-DPPC 

mixtures is preserved even at the highest concentration of the nicotinate studies (XDPPC = 

0.6), as depicted in Figure 4.2(a).  Although there are no anomalies in peak shape, the 

main transition peak broadening at XDPPC = 0.8 suggests reduced cooperativity of the 

bilayer phase transition in the presence of the solubilized nicotinates.   Bilayer 
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cooperativity describes changes to the uniform lipid arrangement during the bilayer phase 

transition and is affected by incorporation of solutes.  During the phase transition the 

sequenced rotation of the individual acyl chains of DPPC to avoid unfavorable end-chain 

intermolecular interactions registers as a sharp transition profile in DSC and fluorescence 

anisotropy measurements (see below), suggesting a highly cooperative event.108   Hence, 

the substantial increase in transition width at XDPPC ≤ 0.8 for C2H5 (Figure 4.4a) 

indicates that incorporation of the nicotinate into DPPC bilayers significantly reduces the 

structural organization of the lipid chains.  This effect is also evident in changes in 

pretransition width (Figure 4.4b) which are minimal at XDPPC ≥ 0.97 but increases 

considerably above this concentration for C2H5, till elimination at XDPPC < 0.8.  With 

increasing short chain nicotinate concentrations, an abrupt change in the pretransition 

properties and, as discussed above, concomitant changes in the main phase transition are 

observed (Figure 4.3a).  For C2H5, the main transition width, melting temperature and 

onset show appreciable decrease simultaneously with dramatic changes in pretransition at 

XDPPC < 0.97, until it is eliminated at XDPPC < 0.8.   

In C4H9-DPPC mixtures, the pretransition and main transition properties show 

little variance above XDPPC ≥ 0.9.  However, an abrupt change in main transition 

properties is observed at XDPPC < 0.9, at the same concentration as the pretransition is 

eliminated.  Below XDPPC = 0.9, the onset of the main phase transition decreases rapidly 

with increasing C4H9 concentration.  While the effect on onset temperature was more 

pronounced for C4H9 than C2H5, both short chain nicotinates had the same effect on the 

offset of the main phase transition.  This corresponds to a much greater increase in main 

transition width (Figure 4.4a) for XDPPC < 0.9 for C4H9 than C2H5.  The trends with the 

short chain nicotinates can be interpreted from their physicochemical properties.  With 

relatively short chain lengths and hydrophilicities, C2H5 (log Ko/w = 1.4) and C4H9 (log 

Ko/w  = 2.5) are expected to be solubilized in the polar interfacial regions of the DPPC 

bilayers, which is a preferred location for similar short chain molecules.128,138  The 

interfacial molecular area of DPPC is reported to be 49 Å2, which is almost twice the area 

of the unprotonated nicotinate head group (25.2 Å2) in monolayer studies (air-water 

interface).271  Xiang and Anderson’s138 molecular dynamics (MD) simulations of DPPC 

liposomes suggest the bilayer can be stratified into regions with the headgroup area being 
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the least dense with the highest hydration.   Hence, the free volume created by the 

mismatch of DPPC headgroup and lipid chains should facilitate solubilization of 

relatively hydrophilic short chain nicotinates (C2H5 and C4H9) with even distribution at 

low concentrations.    Due to their small volumes, the solubilization of the short chain 

nicotinates in dilute systems should cause minimal perturbation to the head-group/chain 

tilt alignment.   However with increasing concentration, the insertion of nicotinates in this 

region results in reorientation of the lipid chains, affects the headgroup/chain tilt and 

increases trans-gauche conformation of the lipid chains. These changes are consistent 

with distribution of the nicotinates to the acyl chain regions of the bilayer following 

saturation of the interfacial region with increasing nicotinate concentration.    The 

resulting entropically unfavorable changes to the inner bilayer region or creation of the 

free volume would require adaptation of the bilayer matrix to accommodate solute 

incorporation and reduced free volume.   

The perturbative effects on the bilayer are further enhanced with the more 

hydrophobic, longer chain nicotinates, C6H13 (Log Ko/w = 3.5) and C8H17 (Log Ko/w = 

4.71), where possibly their longer chain lengths are able to penetrate the acyl region of 

the bilayers, with the nicotinate headgroup located close to the DPPC headgroup region.  

The reduction of pretransition properties is slightly more pronounced for C6H13 and 

C8H17 at lower concentrations (XDPPC ≥ 0.95) than for the shorter chained nicotinates in 

this series. The disappearance of the pretransition peaks below these concentrations is 

marked by more exaggerated decrease in main transition onset and melting temperature 

(Figures 4.3c and d).   The sigmoidal shape of the phase transition width for C6H13 

suggests saturation of the bilayer at XDPPC = 0.7 while C8H17 continues to reduce the 

cooperativity till the highest concentration of nicotinate measured, XDPPC = 0.6 (Figure 

4.4a).  Favorable van der Waals interactions between the nicotinate alkyl chains and lipid 

chains are expected to promote partitioning of the longer chain nicotinates (C6H13 and 

C8H17) into the bilayer, with the pyridine head group positioned close to the interfacial 

region. As both DPPC and nicotinates possess larger  cross-sectional headgroup areas 

than tail group areas (i.e., increased mismatch), the orientation or position of the latter has 

been suggested to adopt a similar tilt to that of DPPC for longer chained nicotinates 
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(C15H31 – C18H37).271  Similarly, the alkyl chains in C6H13 and C8H17 are expected to 

be aligned with the acyl chains of DPPC.  

Complex phase behavior, characterized by asymmetrical broad peaks of the main 

phase transition, is observed for all nicotinates at high concentrations, with the exception 

of C2H5.  The shoulders observed in the main transition isotherms at XDPPC = 0.6 (C4H9: 

24.1 and 32.5 oC; for, C6H13: 18 oC for and C8H17: 30 oC) for are indicative of 

heterogeneous lipid assemblies.  As XDPPC decreases and the bilayer is increasingly 

enriched with nicotinate, the peaks might represent localized nicotinate-rich domains of a 

heterogeneous bilayer.  The peaks appear at lower temperatures than the DPPC melting 

temperature and may represent melting phenomena in the pure nicotinates.  In a previous 

study of long chain nicotinates (C15 – C18), secondary peaks at temperatures close to the 

melting temperatures of the pure nicotinates were distinctly visible.271  These long chain 

nicotinates possessed melting temperatures that varied from ≈ 42 – 56 oC, with values 

similar or greater than that of DPPC (42 oC).  Future knowledge of the melting 

temperatures of our series of nicotinates in this study would help elucidate the nature of 

the secondary peaks observed. 

 

4.5.2 Fluorescence Anisotropy and Partition Coefficients 

 The fluorescence anisotropy of the DPH fluorophore is a measure of the local 

microviscosity of the central regions of the bilayer, where the probe is aligned in parallel 

with the acyl chains when the bilayer is in a gel state.272  In the gel phase, the lipid chains 

are tightly packed and the DPH probe intercalated between the chains experiences little 

rotational motion.  As temperature increases or chain organization is compromised due to 

solute incorporation, the bilayer fluidizes and the rotational motion increases. The 

anisotropy value experiences a decrease in going from a gel to a fluid phase bilayer, and 

can be used to determine the phase transition temperature and phase width.   

 The ability of the nicotinate to lower the melting temperature and increase the 

width of the phase transition is a strong function of the nicotinate chain length (Figures 

4.5).  In agreement with the DSC results, the ethyl nicotinate has the least perturbing 

effect on the phase transition properties and the phase transition has distinguishable 

features even in the presence of 200 mM C2H5, the highest concentration of nicotinate 
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investigated.   The narrow width of gel-fluid phase transition of DPPC is preserved for 

C2H5 concentrations, 0 – 10 mM (Figure 4.6a).   At concentrations ≥ 50 mM, there is 

considerable increase in the phase transition width, with a concomitant reduction in the 

melting temperature.  The shape of the anisotropy curve at 200 mM C2H5 (Fig. 4.5a) 

suggests extensive fluidization of the bilayer due to solubilization of C2H5; the melting 

temperature is considerably depressed to a value of 32 oC.   The phase transition width as 

a function of C2H5 (Figure 4.6a) concentration is consistent with saturation of the DPPC 

bilayer at approximately 100 mM C2H5. Above this concentration, the phase transition 

width remains constant, although there is a further reduction in melting temperature.   

Analogous to DSC analysis, broadening of the phase transition width or increase in ΔTr is 

a measure of the cooperativity of the lipid chains in the bilayers.  At low concentrations 

(0 – 10 mM), the solubilization of C2H5 has minimal effect on bilayer cooperativity.   As 

the concentration is increased, solute incorporation into the bilayer results in reduction of 

lipid chain order and cooperativity with increased fluidization of the bilayer.   

Significant changes in the melting temperatures and width of the transition occur 

at 1 mM, 0.1 mM and 10 μM for C4H9, C6H13 and C8H17, respectively (Figures 4.6b - 

d).  The concentrations required to elicit the same decrease in the DPPC melting 

temperature span three orders of magnitude from the shortest to the longest alkyl chain 

for the nicotinates.   For example, the nicotinate concentrations required to achieve a 

decrease in the melting temperature of 3.5oC (or reduction of DPPC Tm to 37.8 oC), is 

estimated as 36 mM (C2H5), 3.6 mM (C4H9), 0.25 mM (C6H13) and 32.5µM (C8H17).  

These values were extrapolated from the near linear functions of melting temperature, 

Tm, with nicotinate concentration (Figures 4.6).  In contrast, ΔTr as a function of 

nicotinate concentration displays strong deviations from linearity.  In a study of a series 

of alcohols, from butanol to octanol, comparable effects on phase transition temperature 

and phase transition width were reported.126 

The partitioning of the nicotinate solutes in the bilayer relative to the aqueous 

phase varies by orders of magnitude, with an increasing affinity for the bilayer with 

increasing chain length. The partition coefficients, as determined from the fluorescence 

anisotropy experiments, vary from log Kp of 2.18 (C2H5) to 5.25 (C8H17).  The order of 

membrane partitioning is in direct proportion to octanol/water partitioning (Figure 4.7), 
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which suggests that the partitioning into the bilayer correlates with 

hydrophobicity/lipophilicity of the nicotinates, which increases from C2H5 to C8H17.   

Similar trends have been reported for series of halogenated aromatic hydrocarbons,273 

where the Log Ko/w was in linear proportion to Log Km/w in the range of 1 – 5.5. 

Partition coefficients for the nicotinates, as previously determined in our 

laboratory 35 showed increased propensity for the organic phase (toluene) in immiscible 

perfluoromethylcyclohexane/toluene system, with nicotinate hydrocarbon chain length.  

The partition coefficients, which range from log KPMCH/Toluene = -2.22 (C2H5)  to -2.92 

(C8H17), indicate reduced fluorophilicity with chain length.  In contrast, fluorocarbon 

(PFOB)/water partition coefficients increased from log Kp = -0.16 (C2H5) to 1.24 

(C6H13), indicating reduced preference for the aqueous phase with nicotinate chain 

length.  However, these changes in partition coefficient are minimal relative to the 

membrane/water, log Km/w= 2.18 (C2H5) – 5.25 (C8H17); with the orders of magnitude 

variance mirrored by octanol/water partitioning (log Ko/w = 1.4 – 4.7).   

The  trend in partitioning and the consequent perturbing effects on the liposome 

bilayer arrangement with nicotinate chain length is also reflected in their cytotoxic effect 

on human lung cells 35 when delivered from medium (Figure 4.7).   The concentrations of 

nicotinate required to generate a marked cytotoxic effect when delivered from  buffered 

medium to the cells was in inverse relation to the chain lengths of the nicotinates (C2H5 

– C6H13) and are in proportion to the bilayer partition coefficients, as determined in this 

study.  With the cytotoxicity (medium) mirroring the partition trends in this study, this 

confirms the ability of this subgroup of perhydrocarbon nicotinates to act as effective 

prodrug delivery agents.  

 

4.6 Conclusion 

 The perhydrocarbon nicotinates investigated in this study (C2H5, C4H9, C6H13 

and C8H17) all partition into DPPC bilayers, although their affinity for the bilayer and 

the effect of their incorporation in the bilayer is a function of the length of their alkyl 

chain length.  The combination of DSC and fluorescence anisotropy techniques allows 

for a better interpretation of the interaction of the nicotinates with DPPC bilayers, which 

has significance for pulmonary targeted drug delivery.  The quantitative results of DSC 
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and DPH fluorescence anisotropy are largely in agreement, in that bilayer disruption 

increases with the chain length of the nicotinates. The apparent partition coefficients of 

the solutes in the bilayer span four orders of magnitude, from Log Km/w = 2.18 – 5.25.  

The direct correlation of membrane partition coefficients with Log Ko/w, is consistent 

with previous findings that hydrophobicity is the primary driving force in lipid bilayer 

partitioning.  The shortest chain nicotinate, C2H5 has the lowest Log Km/w and the least 

disruptive effect on the bilayer in the series. This supports in vitro cytotoxicity studies 

which show that C2H5 has the least inhibitory effect on cellular function.35  Furthermore, 

DSC suggests that all nicotinates are solubilized in close proximity to the DPPC 

headgroup region at low concentrations, which affects the pretransition.  At higher 

concentrations, more disruptive effects of the nicotinates on the lipid acyl packing are 

evident from the reduced cooperativity of the main phase transition.   Complex phase 

behavior with C6H13 and C8H17 suggests considerable structural disorganization with 

incorporation of these longer chained nicotinates at high concentrations. Effective 

prodrug delivery through the pulmonary route requires the balance of bioavailability and 

minimized cytotoxicity.  Insight into the interactions and uptake of solutes in a cellular 

matrix, as provided by the partitioning behavior in model membranes, aids the systematic 

design of prodrugs.   

 

 

 

 

 

 

 

 

 

 

 

 

  



96 
 

CHAPTER 5 

 

 

CATIONIC-ANIONIC VESICLE TEMPLATING FROM 

FLUOROCARBON/FLUOROCARBON AND 

HYDROCARBON/FLUOROCARBON SURFACTANTS 

 

 

This Chapter is based on work published as: 

Ojogun, V.A.; Lehmler, H.-J.; Knutson, B.L.; JCIS 338 (2009) 82 
 

 

5.1 Summary 

Spontaneous catanionic vesicle formation is studied in systems comprising 

fluorinated surfactants, the cationic/anionic fluorinated surfactant system of 1,1,2,2-

tetrahydroperfluorododecylpyridinium chloride (HFDPC)/sodium perfluorooctanoate 

(SPFO) and the analogous mixed hydrocarbon/fluorocarbon surfactant system of 

cetylpyridinium bromide (CPB)/SPFO.  Aggregate formation is explored in the anionic-

rich surfactant system (weight fraction of anionic surfactant, γ = 0.66 – 0.85) and a total 

surfactant concentration range of 0.1 – 2% wt/wt for the fluorinated system and 0.4 – 

2.2% wt/wt for the mixed hydrocarbon/fluorocarbon system.  Vesicle sizes range from 

approximately 40 - 200 nm for CPB/SPFO, as determined by negative staining 

transmission electron microscopy (TEM) and confirmed by dynamic light scattering. The 

primary vesicle diameter observed by TEM in the catanionic fluorinated/fluorinated 

surfactant system is smaller (20 – 50 nm).  However, the relatively few larger vesicles (≥ 

100 nm) in the HFDPC/SPFO system dominate the dynamic light scattering 

measurements. Successful templating of silica hollow spheres is demonstrated in both 

HFDPC/SPFO and CPB/SPFO vesicle systems, using tetramethoxysilane (TMOS) as the 

silica precursor for the acid catalyzed synthesis.  The size of the resulting hollow silica 

particles is consistent with the templating of vesicles of the size range observed by TEM.  

Changes in zeta potential are used to monitor colloidal stability.  At the conditions 
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investigated (TMOS/surfactant weight ratios of 0.25 – 1.0, pH 3), the colloidal silica 

particles templated from fluorinated HFDPC/SPFO vesicles are more stable than the 

particles templated from the corresponding mixed fluorinated CPB/SPFO system.  

Further improvement of the stability of the colloidal particles is achieved in the 

CPB/SPFO systems by titrating the acid synthesis solution with base over the course of 

the particle synthesis.  

 

5.2 Introduction 

In dilute aqueous solutions, mixtures of cationic and anionic surfactants self-

assemble into a variety of aggregates, ranging from spherical micelles to vesicles and 

lamellar structures.44,177,274-276  Factors influencing the type of aggregates in these 

solutions include ionic strength,46,51 pH,51 temperature,218,277 counter ions52 and structure 

of the surfactant.  In mixtures of cationic and anionic surfactants (catanionic systems), an 

aggregate structure of considerable interest is spontaneously formed vesicles.  

Spontaneous vesicle formation, driven primarily by the electrostatic interactions of the 

oppositely charged head groups, is dependent on the molecular geometry of the 

surfactants and hydrocarbon chain asymmetry of the surfactant pair used in the catanionic 

mixture.44  Thermodynamically stable, unilamellar vesicles are typically observed in 

solutions where one of the surfactants, usually the shorter chain surfactant, is in excess.177  

The vesicles are stabilized by the excess charge while chain asymmetry favors 

spontaneous curvature through favorable packing distribution of the individual 

surfactants in the monolayers.194,278-280  

 These equilibrium vesicles have emerged as attractive candidates for a broad 

range of applications such as encapsulation and as potential vectors for biological 

compounds 47,281,282 and material synthesis.50,227,233  One motivation for exploring silica 

hollow sphere formation is their potential as reservoirs for storing and transporting 

solutes.116,222,283,284   In addition, the encapsulated aqueous core of silica hollow spheres 

could serve as a micro reactor or separator.223  The outer monolayer, bilayer and aqueous 

core of vesicles represent distinct environments for nano-scale applications.  In the 

synthesis of silica hollow spheres, the surface/outer monolayer of the vesicle can serve as 

a viable templating site.  This transcriptive templating mechanism227 is dependent on the 
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stability of the colloidal system.50,226,227,233,235  and proceeds via the hydrolysis, 

condensation and polymerization of silicon alkoxides.225  With the vesicle surface acting 

as a “nucleation site”227  for the synthesis reactions, the polymerized silica network 

assumes the morphology and dimensions of the vesicles while encapsulating the aqueous 

core.  The site of the sol-gel chemistry is directed by the electrostatic interactions 

between the charged head groups of the vesicles and the charged silica network.   

In vesicle templating, the size of the silica spheres is determined by the size of the 

vesicles; hence the surfactant properties and system conditions (pH, type and relative 

ratio of precursor to surfactant) can be tuned to control the properties of silica particles.  

Catanionic vesicles have been employed as templates for synthesis of silica hollow 

spheres.50  However, the focus is often on vesicles with hydrocarbon bilayers (e.g., 

dioctadecyldimtheylammonium bromide (DODAB) vesicles226 and 

cetyltrimethylammonium  hydroxide/myristic acid vesicle solutions233).  With the 

exception of mixed fluorinated/hydrocarbon system investigated by Hentze et al,50 

templating from aggregates of  hydrocarbon/fluorinated and, more specifically, 

fluorinated/fluorinated catanionic surfactants has not been reported.    

The properties of surfactants with a fluorinated carbon chain which distinguish 

them from traditional hydrocarbon surfactants include a greater driving force to self-

aggregate.70,204,205,208,285-288  Fluorinated surfactants have lower critical micelle 

concentrations and are both hydrophobic and lipophobic in nature, with a tendency to 

form structures with lower curvature (i.e., rod like micelles, vesicles and lamellar phases) 

than analogous hydrocarbon surfactants.1,70,204,211  The properties of fluorinated 

surfactants are ascribed to the weaker intermolecular interactions versus intramolecular 

forces in fluorinated molecules, resulting in thermal  and chemical stability.288  In 

addition, the bulkiness and stiffness of the fluorinated carbon chains restricts random 

motion of the chains resulting in trans-conformation as opposed to gauche chain type 

packing in the bilayer.70,205  The tightly packed chains of fluorinated bilayers reduce 

permeability and provide greater membrane rigidity,289 factors that may impact their 

performance in potential storage, transport and material synthesis applications. 

Demixing of fluorocarbon and hydrocarbon chains in mixed micelles is well 

documented.43  In catanionic surfactant systems, this potential effect is offset by 
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favorable electrostatic interactions of the head groups in catanionic surfactant 

systems.44,46  The reduced permeability and increased stability of vesicle bilayers with the 

incorporation of fluorinated chains highlights the hydrophobic and lipophobic nature of 

the fluorinated chain.290  For example, dimyristoylphosphatidylcholine (DMPC) liposome 

bilayers with incorporated perfluoroalkyl chains exhibited significantly less permeability 

to a hydrophilic fluorescent marker, carboxyfluorescein, encapsulated in the aqueous core 

of the liposomes.289  Similarly, an increased ratio of fluorinated to hydrocarbon segments 

in a liposome bilayer reduces the partitioning of 2, 2, 6, 6 tetramethyl -1-piperidyloxy 

(TEMPO), a probe molecule which is both hydrophilic and lipophilic, from the aqueous 

core of phosphatidylcholine liposomes through the lipidic bilayer to the external aqueous 

phase.291  The observation was attributed to both rigid packing conformation of the 

hydrocarbon/fluorocarbon bilayer and immiscibility of the probe in the hydrophobic and 

lipophobic fluorinated chains.  

Fluorination of bilayers in catanionic vesicles should influence their colloidal 

stability and potential applications, including vesicle templating.  A comparison of the 

templating of vesicles formed by cationic surfactants (dioctadecyldimtheylammonium 

bromide (DODAB) and didodecyldimethylammonium bromide (DDAB)) suggests that 

the ability of vesicles to act as templates is directly influenced by the fluidity of the 

bilayer; the DDAB vesicles, with more fluid like bilayers (i.e., a lower phase transition 

temperature), proved unstable under their synthesis conditions.226  Alcohol production 

during the hydrolysis and condensation of the silica precursor could destabilize the 

vesicles by incorporating into the bilayer.50  The vesicle is also susceptible to disruption 

under the strain of the polymerized silica network.226  Hentze et al50 have previously 

established a vesicle region (approx. 1 wt% – 4 wt% total surfactant concentration) for a 

mixed hydrocarbon/fluorinated catanionic surfactant system, cetyltrimethylammonium 

bromide (CTAB) and SPFO,44,50and demonstrated successful templating of silica hollow 

spheres within this region.50  The higher rigidity and reduced permeability of a fully 

fluorinated vesicle bilayer are anticipated to provide better stability to these adverse 

templating effects.      

In the present work, aggregate formation by fluorinated/fluorinated cationic-

anionic surfactants (1,1,2,2, tetrahydroperfluorododecylpyridinium chloride 
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HFDPC(+)/sodium perfluorooctanoate SPFO(-)) is compared with the hydrocarbon-

fluorocarbon surfactant pair, cetylpyridinium bromide CPB(+)/SPFO(-), where CPB 

represents the hydrocarbon analogue of HFDPC (Figure 5.1).  In self assembled systems, 

the hydrophobic effect of a CF2 unit is equivalent to 1.5 times that of a CH2 group.70  

Therefore, the choice of cationic surfactants HFDPC (comprising 10 CF2 groups 

connected by two methylene groups (CH2) to the pyridinium head group) and CPB 

(comprising 16 CH2 groups) allows for an appropriate comparison between a mixed 

hydrocarbon/fluorocarbon bilayer with that of a fully fluorinated bilayer.  Vesicle 

formation in the domain of excess anionic surfactant is explored for both the 

fluorocarbon/fluorocarbon and hydrocarbon/fluorocarbon surfactant systems over total 

surfactant concentrations of 0.4% wt/wt - 2.2% wt/wt and weight fractions of γ = 0.75 - 

0.85 for CPB/SPFO and concentrations of 0.1% wt/wt - 2% wt/wt (γ = 0.66 – 0.85) for 

HFDPC/SPFO, where γ is defined as the weight fraction of the anionic surfactant relative 

to the total mass of surfactant.  Conditions for successful silica templating of the vesicles 

using the silica precursor, tetramethoxysilane (TMOS), are established as a function of 

precursor to surfactant ratio and pH.   

 

5.3.  Experimental Section 

5.3.1.  Materials 

The fluorinated anionic surfactant, sodium perfluorooctanoate (SPFO; C7F15COO-

Na+; 97% purity) and the hydrocarbon cationic surfactant, cetyl pyridinium bromide 

(CPB; C21H38N+Br-; ≥97%) were purchased from Sigma Aldrich and Alfa Aesar, 

respectively and used without further purification.  The fluorinated cationic surfactant, 

1,1,2,2-tetrahydroperfluorododecylpyridinium chloride (HFDPC; 

C10F21CH2CH2NC5H5
+Cl-·H2O), was synthesized with greater than 98% purity, as 

previously described.41  In short, alkylation of pyridine with 1H,1H,2H,2H-

perfluorododecyl iodide, followed by anion exchange produces the desired HFDPC. The 

purity of HFDPC was assessed by spectrometric and melting point measurements and 

was in agreement with published values.41  Tetramethoxysilane (TMOS; 

CH3OSi(OCH3)3; 99% purity) was purchased from Fisher Scientific. The hydrochloric 

acid solution (0.1 N) was obtained from Alfa Aesar. 
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Figure 5.1. Chemical Structures of anionic surfactant (a) sodium perfluorooctanoate 
(SPFO; C7F15COO-Na+) and cationic surfactants (b) cetylpyridinium bromide (CPB; 
C21H38N+Br-) and (c) 1,1,2,2-tetrahydroperfluorododecylpyridinium chloride (HFDPC; 
C10F21CH2CH2NC5H5

+Cl-·H2O). 
 

5.3.2  Cationic/Anionic Surfactant Solution Preparation 

Stock solutions of the individual surfactants were prepared using deionized ultra 

filtered water from Fisher Scientific. The solutions were prepared in acidic medium using 

hydrochloric acid solutions of pH 3.  Vesicle formation in the phase region of excess 

anionic surfactant was explored for both systems.  For CPB/SPFO, surfactant solutions in 

the total concentration range of 0.4% wt/wt - 2.2% wt/wt were prepared.  The weight 

percentage of anionic surfactant in this solution was varied from γ = 0.75 – 0.85, which 

approximates a mole fraction range of 0.73 – 0.83.  HFDPC/SPFO solutions were 

prepared with a total concentration of 0.1% wt/wt - 2% wt/wt, where γ was varied from 

0.66 – 0.85 (corresponding mole fraction of anionic surfactant of 0.75 – 0.93).  The pure 

CPB and HFDPC solutions were heated to 50 oC to ensure complete dissolution before 
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mixing with the anionic surfactant solutions.  Prior to mixing, the stock solutions were 

filtered using 200 nm syringe filters (Microliter Analysis).  The catanionic surfactant 

mixtures were stirred for several hours, then stored in clear glass vials with PTFE caps 

and monitored visually for signs of turbidity and the bluish tint attributed to Rayleigh 

light scattering of vesicles.   
 

5.3.3   Dynamic Light Scattering  (DLS) 

The hydrodynamic size and polydispersity of the catanionic surfactant aggregates 

at 25oC were monitored periodically using a Malvern Zetasizer Nanoseries (Malvern 

Instruments, United Kingdom).  The instrument was equipped with a He-Ne laser lamp (4 

mW) source at 633 nm and measurements were taken at 90o scattering angle.  The data 

were analyzed with the Cumulants Method,292 which employs a single exponential fit of 

the intensity of the autocorrelation function to derive an average translational diffusion 

coefficient.  An intensity weighted size average (Z-average) was then calculated using the 

Stokes-Einstein equation.  The Z-average and polydisperisty index (PDI) were taken as 

representative of the hydrodynamic diameter and size distribution in the samples.  The 

PDI is given on a scale of 0 – 1.0, where 0 represents the highest level of monodispersity.  

The zeta potential of the vesicle solutions and the solutions during vesicle templating 

were measured with the same equipment at 25 oC using cuvettes with gold-plated 

electrodes.  Zeta potential provides a quantitative measure of the interparticle electrostatic 

interactions and is used to assess the relative colloidal stability of the vesicle templates 

and the subsequent silica particles. 

 

5.3.4   Transmission Electron Microscopy (TEM) 

A Philips Tecnai BioTwin unit (Edax detector) with a Gatan Digital Micrograph 

1000 operating at 100kV was used to image the surfactant aggregates.  A negative 

staining procedure with uranyl acetate solution (2 w/v%) was used to image vesicle 

solutions without silica. 5 μL drops of vesicle solutions were gently placed on copper 

coated formvar grids and blotted after 1.5 minutes.  Identical volumes of stain solution 

were immediately added and one minute was allowed before blotting the grids with filter 



103 
 

paper and air drying.  No stain was required when examining the particles formed by 

silica synthesis.   

 

5.3.5   Hollow Silica Particles Synthesis 

  The vesicle solutions were allowed to equilibrate for several weeks before the 

addition of the silica precursor, TMOS, in the desired proportion.  TMOS to total 

surfactant mass ratios in the range 0.25 -1.0 were investigated, following the method of 

Hentze et al.50  After the addition of the precursor, the solutions were initially stirred 

vigorously to ensure proper mixing of the hydrophobic TMOS in the aqueous systems.  

Analysis by DLS was conducted after 24 hours and monitored for a minimum of two 

days before TEM analysis.  Maintaining similar dimensions to pre-synthesis vesicle 

system is an indication of successful transcriptive templating.  Zeta potential 

measurements were used pre- and post-synthesis to monitor colloidal stability. 

 

5.4.   Results and Discussion 

5.4.1  Vesicle Formation  

Investigations of the self-assembly of catanionic surfactants involving fluorinated 

surfactants are often limited to mixed fluorinated/hydrocarbon surfactants 

systems.44,46,207,278  These mixed surfactant aggregates have been characterized by a 

variety of techniques, including freeze-fracture electron microscopy,205,207 SANS,46 cryo-

TEM44,278 and DLS.46,207  Utilizing negatively stained TEM imaging, NMR and DLS 

characterization techniques,  Szonyi et al208 investigated the formation of vesicles with 

fully fluorinated bilayers comprising mixtures of short chain fluorinated cationic 

surfactants with trimethyl headgroups and fluorinated anionic surfactants with carboxylic 

headgroups (i.e., ammonium perfluorooctanoate).  The resulting perfluorinated 

aggregates were polydisperse with monomodal-sized unilamellar vesicles detected in the 

shorter chained anionic–rich compositions and bimodal sizes in the longer chained 

cationic-rich mixtures. In this study, DLS, TEM and visual observations of phase 

behavior are used to characterize catanionic vesicle systems with fully fluorinated 

bilayers, HFDPC/SPFO and compared with an analogous, mixed 

hydrocarbon/fluorocarbon bilayer system, CPB/SPFO.   
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5.4.2   CPB/SPFO Vesicles  

The CPB/SPFO aggregate solutions (0.4% wt/wt - 2.2% wt/wt γ = 0.75 - 0.80) 

were monitored by visual observation and dynamic light scattering to establish a stable 

vesicle phase in the anionic rich region.  The aggregate diameter increases for the 

CPB/SPFO systems after preparation (by approximately 60%) followed by very little 

variance in size after two months.  Conversely, the PDI of the CPB/SPFO vesicles (2.2% 

wt/wt, γ = 0.85) decrease with time (PDI = 0.337 (initial) to PDI = 0.226 (month 5)) 

suggesting the transition to a more homogeneous aggregate system.  An average 

aggregate diameter of 103 nm is determined by DLS for the CPB/SPFO vesicles (2.2 % 

wt/wt, γ = 0.85).  Similar sizes and PDIs are found for other CPB/SPFO samples within 

that concentration range (1.8% wt/wt, γ =0.75 and 2% wt/wt, γ = 0.8), as listed in Table 

5.1.  Hydrodynamic diameters are reported in Table 1 only for stable vesicle solutions.  

Lower concentrations of the CPB/SPFO surfactant mixtures (0.4% wt/wt and 1.0% wt/wt, 

γ =0.8) at pH 3 were also prepared.  Initially, these solutions appeared homogeneously 

blue (a Rayleigh scattering effect indicative of particles within the typical vesicle size 

range).  The hydrodynamic diameters were also in the typical vesicle range, (114 nm and 

135 nm, respectively).  However, a visible phase separation with particle sedimentation is 

observed with time, indicating a multiphase region at lower surfactant compositions.     

TEM images of negatively stained CPB/SPFO vesicles (2.2% wt/wt, γ = 0.85, pH 

3) are presented in Figures 5.2(a) and (b).  The micrographs reveal a densely packed 

dispersion of aggregates, consisting primarily of small, spherical, unilamellar vesicles, 

with diameters ranging from below 40 nm to over 200 nm.  The bilayer is discerned from 

the darker rim of the hollow vesicle structures.  Slight deviations from the expected 

spherical shape of the vesicles and the visible aggregation observed on the TEM grids 

might be attributed to the combined effect of staining and drying.  Also visible on the 

grids are a few vesicles with rod-like bilayer structures in the 125 – 200 nm size range, 

similar to those observed by Jung et al in their CTAB/SPFO cryo-TEM study.171  The 

hydrodynamic sizes of vesicles determined by DLS (Table 5.1) are consistent with TEM 

images for the CPB/SPFO system. 

The average hydrodynamic size of CPB/SPFO vesicles (103 nm) is larger than 

those reported for a similar hydrocarbon/fluorocarbon surfactant pair (CTAB/SPFO; 60 
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nm).44 However, some vesicles within the same size range are observed in the TEM 

images (Figure 5.2b).  While CTAB/SPFO systems are known to form monodisperse 

vesicles due to enthalpic stabilization,171,293 the TEM images of the stained CPB/SPFO 

system clearly suggest some polydispersity, indicative of an entropic stabilization 

mechanism.44    
 

Table 5.1.  Characterization of catanionic system aggregates (at pH 3) by dynamic light 
scattering.   
 

Surfactant 
Mixture CPB/SPFO HFDPC/SPFO 

Concentration 
( total % wt/wt) 1.8 2 2.2 0.73 0.75 1.18 2 

Weight fraction 
of anionic 

surfactant (SPFO) 
in mixture (γ) 

0.75 0.8 0.85 0.72 0.66 0.78 0.8 

Hydrodynamic 
Diameter (nm) 108.4 106.6 102.6 209.9 207.2 204.2 241 

Polydispersity 
Index 0.20 0.21 0.23 0.138 0.155 0.1 0.308 
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 Figure 5.2. Images of negatively stained CPB/SPFO (2.2% wt/wt, γ = 0.85, pH=3) 
vesicles (a) TEM image at 18.5 K magnification, (b) TEM image at 49 K magnification 
 

 

In entropically stabilized systems, a primary driving force for transforming 

infinitely long planar bilayers to curved vesicle conformation is the favorable entropy of 

mixing and the energy compensation for having finite-sized structures.174,194  In contrast, 

enthalpic stabilization of vesicles is possible for mixed composition bilayers, in which 

non-ideal mixing leads to spontaneous curvature of the bilayer and dictates the resulting 

vesicle structure and size.  The stabilization mechanism of vesicle formation can be 

interpreted from the vesicle size distribution.  Enthalpically driven vesicle formation, 

associated with asymmetric surfactant chains, is characterized by smaller and more 

monodisperse vesicles relative to entropic stabilization.44  The chain lengths and counter 

ions in cationic surfactants, CTAB and CPB, are identical.  Thus, the increase of the 

polydispersity of the CPB-containing vesicles is attributed to differences in the steric and 

electronic properties of the surfactant head groups. The structural differences between the 

planar pyridinium headgroup in CPB and the bulky tetrahedral trimethylammonium 

group in CTAB results in lower charge density and reduced steric hindrance in the 



107 
 

former.294,295  Another consideration is the difference in pH of the systems; the size of the 

CTAB/SPFO vesicles were reported at neutral pH 44 while the CPB/SPFO were prepared 

in acidic medium (pH 3).  However, Hentze et al 50 determined that the pH had minimal 

effect on the size of CTAB/SPFO vesicle systems. This observation is confirmed for the 

CPB/SPFO system. The average CPB/SPFO vesicle diameter and polydispersity are 131 

nm and 0.23, respectively, for the same composition (2.2% wt/wt, γ = 0.85) at neutral pH. 

 

5.4.3    HFDPC/SPFO Vesicles 

Vesicle formation in the domain of excess anionic surfactant was explored for the 

fluorocarbon/fluorocarbon surfactant system (HFDPC/SPFO) using overall surfactant 

concentrations of 0.1% wt/wt - 2% wt/wt (γ = 0.66 – 0.85).  The Z-average diameter and 

PDI of the stable HFDPC/SPFO aggregates (Table 1) approach relatively constant values 

(± 10.6 nm) within a few days of preparation.  Samples of HFDPC/SPFO above 0.5% 

wt/wt (γ = 0.66 – 0.85) are clear solutions while those at or below 0.5% wt/wt total 

surfactant contained visible precipitates, suggesting deviation from a stable vesicle 

region, and are excluded from Table 5.1.  The weaker light scattering intensity of the 

clear HFDPC/SPFO solutions relative to CPB/SPFO systems suggests a smaller 

concentration of aggregates.  Spontaneous vesicle formation is demonstrated at lower 

concentrations for fluorinated surfactants (HFDPC/SPFO) than the CPB/SPFO systems.  

This observation is consistent with the greater aggregation tendency and lower CMCs of 

fluorinated surfactants relative to analogous hydrocarbon surfactants.  In the case of the 

cationic surfactants employed in this investigation, HFDPC has a  CMC of 0.33 mM (or 

0.022 wt%),70  which is slightly lower than that of CPB (0.64 mM or 0.025 wt%).296  The 

CMC of the anionic surfactant, SPFO, is 31 mM (1.33 wt%)287.   

In contrast to the CPB/SPFO system, TEM micrographs of HFDPC/SPFO 

solutions (0.75% wt/wt, γ = 0.72, pH=3) reveal vesicles with a less heterogeneous vesicle 

population (Figure 5.3a).  The aggregate diameters, 20 – 100 nm, are comparable to those 

reported for vesicles with fully fluorinated bilayers (50 – 180 nm).205,208  Larger vesicles 

(≈ 100 nm) are interspersed with smaller, uniform vesicles (≈ 20 nm).  More uniform 

distributions of stained vesicles are also observed (images not shown), where the majority 

of fluorinated bilayer vesicles are in the 20 - 50 nm range.  HFDPC/SPFO vesicles are 
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unilamellar and most appear spherical.  Interestingly, rod-like bilayer structures (20 nm in 

length) similar to those observed by cryo-TEM for CTAB/SPFO171 are also detected 

(images not shown).  Vesicles of two distinct size ranges, previously observed in 

catanionic hydrocarbon surfactant systems,169 have been attributed to the entropic 

stabilization commonly associated with hydrocarbon chains which have low bending 

energy44.  Bimodal aggregate distributions have been observed in a mixture of a 

zwitterionic hydrocarbon and an anionic fluorocarbon surfactant (n-dodecylbetaine and 

perfluoropolyether, respectively).204  The bimodal distribution was attributed to the 

demixing that occurs in the hydrocarbon/fluorocarbon surfactant systems.  In our case, 

both surfactant tails are fluorinated chains of comparable length and surfactant demixing 

is not expected.  However, geometric factors, such as stiffness of the fluorinated chains 

and asymmetry of HFDPC (10 x (CF2) in the surfactant tail) and SPFO (7 x (CF2) in the 

surfactant tail) may contribute to the same phenomenon in the HFDPC/SPFO systems.  

Polydisperse vesicles have been reported for other fully fluorinated surfactant bilayer 

systems.205  
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Figure 5.3. Stained images of HFDPC/SPFO vesicles (a) 0.73% wt/wt, γ=0.72, pH 3, (b) 
2% wt/wt, γ = 0.8, pH 3. 
 
 
 

Structural changes in the HFDPC/SPFO system at higher concentration (2% 

wt/wt, γ = 0.8) are revealed as multi-lamellar polygonal vesicles (≈ 500 nm) (Figure 

5.3b), matching the higher polydispersity observed in DLS (PDI = 0.308). A deviation 

from spherical structure has been observed in both mixed perfluoroalkyl/ hydrocarbon278 

and fully fluorinated bilayers205.   This phenomenon has been attributed to intra-vesicle 

segregation of the immiscible chains in the former case, and gel-state packing in the latter 

system.  The increase in vesicle sizes and multi-lamellarity of the HFDPC/SPFO system 

at higher concentrations suggests a transition from a planar lamellar structure.  The 

faceted structure represents a balance between thermodynamically unfavorable aqueous 

exposure of the end chains in planar aggregates and the high bending energy required for 

the stiff fluorinated chains to form a closed structure.278  These structures are absent from 

the CPB/SPFO systems at a similar surfactant composition (2.2% wt/wt, γ = 0.85), 

suggesting a change in the driving force for aggregation between the mixed 

fluorinated/hydrocarbon vesicles and fluorinated/fluorinated vesicles.    
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 The narrower size distribution observed for HFDPC/SPFO vesicles (Figure 5.3a) 

compared to CPB/SPFO aggregates is reflected by their lower PDI values (0.1 – 0.155 

relative to 0.2 – 0.23, as reported in Table 5.1).  However, the Z-average diameter (≈ 200 

nm) does not capture the population distribution of vesicles observed by TEM (primarily 

20 nm); the latter aggregate population was undetected even as a peak by DLS analysis.  

The disparity between DLS and TEM analysis might be a result of the resolution 

limitations of dynamic light scattering.  DLS provides a scattered intensity-based size of a 

colloidal particle, thus the Z-average is biased towards larger sized vesicles even though 

they may occupy a much smaller fraction of the vesicle population.182   This problem is 

accentuated by the low refractive index of fluorinated molecules.209,212,297  These 

combined factors may result in the 20 nm vesicles being largely masked by the much. 

larger vesicles, which have higher scattering intensity.   More sensitive techniques such 

as SAXS or cryo-TEM could be employed in the future to address this ambiguity. 

In summary, stable unilamellar spherical vesicle formation is demonstrated at 

lower concentrations for the HFDPC/SPFO than in the CPB/SPFO systems.  This is 

probably a reflection of the greater propensity of fluorinated aggregates to adopt 

morphologies such as closed vesicle bilayers, which limits surfactant-water chain contact.  

For similar surfactant compositions (2% wt/wt, γ = 0.85), the CPB/SPFO system consists 

primarily of spherical vesicles, while HFDPC/SPFO vesicles (2% wt/wt, γ = 0.8) are 

multilamellar polygonal shaped.  This suggests a concentration-dependent structural 

transition of the fully fluorinated bilayer aggregates (i.e., the vesicle conformation 

deviates from the spherical shape as the surfactant concentration increases to a more 

facetted structure).   
 

5.4.4    Synthesis of Silica Hollow Spheres 

A prerequisite for the transcriptive synthesis of silica hollow spheres in catanionic 

surfactants systems is templating in a predominantly vesicle phase region.  Presence of 

multiphase, micellar or other structural variations of these aggregates is not conducive to 

synthesis of silica hollow particles of controlled size.50  Success of the transcriptive 

synthesis mechanism is also dependent on the stability of the vesicle templates, as 

determined by the surfactant type and the synthesis conditions.  In template synthesis, the 
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denser silica material provides for the direct imaging of the hollow particles in TEM, 

precluding the need for staining techniques.  As bare vesicles are not visible without 

external agents in  conventional TEM, template synthesis serves as a complementary 

method to negative staining and labor intensive cryo-TEM techniques in the study of self-

aggregating structures.50    

The stability of catanionic vesicles is sensitive to changes in ionic strength177, 

pH, temperature179 and additives such as the TMOS precursor.50  The optimal 

TMOS/surfactant ratio provides sufficient precursor for the formation of a complete 

hollow cast without disruption of the vesicle structure, while minimizing the side 

reactions due to excess precursor that lead to phase separation.   Vesicle solutions of 

CPB/SPFO and HFDPC/SPFO of pH 3 were equilibrated over several weeks before 

initiating the synthesis of silica hollow particles by the addition of the silica precursor, 

TMOS.  TMOS is hydrophobic and its addition to the predominantly aqueous system 

leads to emulsion formation.  Hence, vigorous mixing of the vesicle solution is 

required upon the addition of the precursor.  The hydrophobic precursor may 

potentially partition into the vesicle bilayers and disrupt the vesicle structure50.  

Therefore, templating in acidic pH, which promotes rapid hydrolysis of the precursor 

to the soluble silicic acid monomer, is favored.225  The reaction then proceeds through 

the condensation and polymerization of the silicic acid to form a silica network on the 

vesicle surface.  

  Vesicle templating is examined as a function of the weight ratio of silica 

precursor to surfactant, α.  Results of silica synthesis are summarized in Tables 5.2 and 

5.3 (CPB/SPFO and HFDPC/SPFO, respectively) for precursor to surfactant ratios of α = 

0.25 – 1 (corresponding to molar ratios of 0.70 – 2.79 for CPB/SPFO and 0.78 – 3.10 for 

HFDPC/SPFO).  Particle size, dispersity, and zeta potential were monitored pre and post 

synthesis.  The templating processing is marked by an increase in zeta potential.  The 

stable vesicle templates are negatively charged and have low zeta potentials while the 

relatively unstable silica particle systems have close to zero surface charge (at pH 3).  

Thus, increases in zeta can be used to monitor the synthesis reaction and serve as an 

index of the colloidal stability of the resulting silica particles.   
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Table 5.2:  Synthesis of silica particles from CPB/SPFO vesicle solutions (2% wt/wt, γ = 
0.8, pH = 3) as a function of TMOS:surfactant ratio (α) 
 
 Hydrodynamic Diameter (nm) 

(PDI) 
Zeta Potential 

(mV) 

Pre-Synthesis 105.5 
(0.19) -101 ± 15.4 

 Day 1 Day 14 Day 1 Day 14 

α = 0.25 109.6 
(0.23) 

157.4 
(0.21) - -68 ± 13.5 

α = 0.35 114.2 
(0.23) 

151.5 
(0.24) -61.9 ± 8.4 -55.7 ± 11.0 

α = 0.5 123.1 
(0.24) 

140.6 
(0.23) -42.8 ± 11.4 - 

α = 0.7 122.7 
(0.24) 

323.3 
(0.284) -32.3 ± 13.9 - 

α = 0.85 127.1 
(0.26) 

309.4 
(0.475) - - 

 

 

5.4.5    CPB/SPFO Vesicle Templated Silica Hollow Particles 

For CPB/SPFO system (2% wt/wt, γ = 0.8, pH 3), with original average vesicle 

hydrodynamic diameter of 105.5 nm, the particle size increases range from 109.6 nm (4% 

increase) to 127.6 nm (20% increase) with increasing TMOS to surfactant ratio (α = 0.25 

to 0.85), as measured 24 hours after the addition of the precursor (Table 5.2).  An 

increase in turbidity, and a corresponding increase in light scattering intensity, is 

observed with the addition of the precursor to the vesicle solution.  Flocculation is 

evident after several days of synthesis at the intermediate TMOS/surfactant ratios 

investigated (α = 0.7 and 0.85).  Systems with lower silica precursor/surfactant ratios 

(e.g., α = 0.25 - 0.5) flocculate after several weeks, resulting in an appreciable increase in 

particle dimensions from the initial vesicle template size (14% - 44%).  Within several 

days of templating, particle aggregation precedes gel formation at high TMOS/surfactant 

ratios, (α = 1), indicating that the threshold for ideal templating conditions had been 

exceeded.     The sample at this composition (α = 1) was sufficiently turbid prior to 

gelation that size analysis by DLS was not possible. 

Visible flocculation and aggregation during synthesis is marked by an increase in 

the zeta potential (Table 5.2).  The highly negative zeta potential of the vesicle solution 
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prior to TMOS addition (-101 mV) increases to -42.8 mV (α = 0.5) and -32.3 mV (α = 

0.7).  The unstable region of sols or aqueous colloidal systems is in the range of  30 ± 5 

mV.213  Thus, the zeta potential values imply increasing aggregation of the silica particles 

with increasing ratio of precursor to surfactant.  Aggregation of the silica particles is also 

a function of the pH chosen for synthesis.227  While pH 3 facilitates rapid hydrolysis of 

the TMOS, the polymerized silica network experiences close to zero surface charge in 

this pH range.225 The resulting sol-gel systems are meta-stable with a greater tendency to 

aggregate.  

Evidence of successful transcriptive templating in CPB/SPFO mixtures is 

provided by the retention of the dimensions and spherical structure of the vesicle 

templates (40 – 100 nm) by the hollow silica particles (Fig. 5.4a).  Uniform deposition of 

a silica coating is achieved at α = 0.5.  At a higher precursor to surfactant ratio (α = 0.7; 

Fig. 5.4b), the resulting ellipsoidal structures observed by TEM have dimensions almost 

identical to the original vesicles (40 – 100 nm), suggesting morphological changes due to 

the strain of templating.226  The vesicular structure might also be altered by the increasing 

amount of methanol produced by the excess precursor.226  The solid or darkened regions 

in the templated vesicles (Figure 5.4b and 5.4c) may be due to localized regions of silica 

precursor in the vesicle bilayer, which result in higher concentration of the polymerized 

silica along certain axes of the vesicle.  However, it is difficult to determine from the 

images if these concentrated regions of polymerized silica are on the vesicle surface or 

projecting from the bilayer.  The latter case would suggest that the hydrophobic 

precursor, TMOS, partitioned into the bilayers at sufficient levels to generate discrete 

regions of silica via the normal synthesis route.  Interestingly, these images were 

observed at higher TMOS to surfactant ratios (α > 0.5). Similar parachute-like and folded 

structures have been captured by cryo-TEM298 for synthesized polymers and conventional 

TEM226 for TEOS (tetraethoxysilane) synthesized silica hollow particles in vesicle 

systems of the cationic surfactant, dioctadecyldimtheylamonium bromide DODAB.  Jung 

and coworkers,298 who studied styrene polymerization in DODAB vesicle bilayers, 

attributed these structures to localization of the monomer or aggregation of the 

synthesized polymer in the bilayer.  They provide two possible routes for the localized 

regions of the styrene polymer in DODAB vesicle bilayer: monomer diffusion to a region 
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within the bilayer with subsequent polymerization or the aggregation of synthesized 

polymer due to steric restrictions in the bilayer following an initial even distribution of 

monomer.  The additional solid particles (10 nm) visible on the grid are most likely 

products of condensation reactions in aqueous solution, independent of the vesicle 

templates suggesting phase separation of excess precursor from the vesicles.  At high 

relative amounts of precursor (α = 1), fused silica hollow particles with dimensions 

consistent with vesicle templating are observed (image not provided), suggesting 

aggregation of vesicle templated silica particles.  
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Figure 5.4. TEM images of silica particles templated in CPB/SPFO vesicle solutions (2% 
wt/wt,  γ = 0.8, pH 3), and a TMOS/surfactant ratio of (a) α = 0.5 and (b)  α = 0.7.  (c) 
Silica particles templated at 2% wt/wt, γ = 0.85, α = 1 (titration from an initial pH 6 to 
final pH 8 with NaOH). 
 

 

5.4.6    Stable Silica Hollow Spheres in CPB/SPFO 

 The production of a stable solution of aqueous hollow silica spheres suggests 

applications of these materials in catalysis223,224, coating technology, transport and 

controlled release of drug compounds.222  Techniques to improve the stability of the silica 

hollow spheres were investigated for the system of CPB/SPFO templated silica spheres, 

which are less stable than the HFDPC/SPFO system using the acid-catalyzed synthesis 

procedure described in sections 3.5 and 3.6.    In silica particle synthesis, stable sols are 
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known to exist in basic solution, while metastable particle formation and gelation is 

associated with acidic pH.225  Following the technique of Hah et al,229  in which changing 

the pH of the synthesis was used to modify the driving force of the condensation 

reactions and produce silica hollow spheres in the absence of templates, strongly basic 

solution was added several minutes after the addition of the silica precursor.  Starting 

with a CPB/SPFO vesicle solution (2% wt/wt, γ=0.85) at pH 6, a precursor amount 

equivalent to α = 1 was added to the solution and stirred for 15 minutes.  A drop in pH to 

4.5, recorded at the onset of the titration, is interpreted as conversion of the precursor to 

the silicic acid in the synthesis hydrolysis reaction.  Drops of a 0.5 M NaOH solution 

were added over a two hour period in a microtitrator to a final pH of 8.   

Stable sols in CPB/SPFO systems were produced by changing the pH using this 

synthesis procedure. The resulting hydrodynamic size and polydispersity index of the 

particles remain within the same range as the original vesicle solution.  Two weeks after 

synthesis, the average hydrodynamic size (Z-average) has changed 112.9 nm (pre-

synthesis) to 119 nm and the PDI increases slightly from 0.188 to 0.224.  The increase in 

pH from 3 to 6 before addition of precursor had negligible effect on the hydrodynamic 

vesicle size and polydispersity.  The vesicle size in pH 3 medium is 110.2 nm and 

increases to 112.9 nm at pH 6.  The zeta potential measured after two weeks was -62.2 ± 

9.59 mV and the solution was transparent without any visible aggregation or gelation.  

Figure 5.4c provides evidence of successful CPB/SPFO vesicle templating, with the 

resulting particle sizes in good agreement with DLS analysis. The pH adjustment during 

the synthesis reactions permitted templating at a higher TMOS/[S] ratio without gelation.  

As a result, a thicker coating, consistent in several micrographs is observed for the silica 

hollow particles, although with the spherical shape of the particles slightly deformed.  

The appearance of flocculated silica spheres in the pH adjusted systems may be an 

artifact of TEM sample preparation. The unadjusted pH samples in Figure 5.4(b) were 

more diluted (20 fold dilution) than in the pH adjusted samples of Figure 5.4(c) (10 fold 

dilution) prior to drying and TEM imaging.  The lower zeta potential and visual 

appearance, even after a two-week period, provides strong evidence of improved 

colloidal stability in the latter system.  
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5.4.7   HFDPC/SPFO Vesicle Templated Silica Hollow Particles 

In contrast to the CPB/SPFO systems (pH = 3), the initial diameter of the particles 

increases only slightly with the TMOS/surfactant ratio (from 204.1 nm pre-synthesis to 

209.1 nm at the highest TMOS concentration, α= 1) one day after the addition of silica 

precursor (Table 5.3).  Overall, the zeta potential of each solution increases with the 

precursor to surfactant ratio over the range of α = 0.25-1.    

 

Table 5.3:  Synthesis of silica particles from HFDPC/SPFO vesicle solutions (1.18% 
wt/wt, γ = 0.78, pH = 3) as a function of TMOS:surfactant ratio (α) 
 

 Hydrodynamic Diameter (nm) 
(PDI) 

Zeta Potential 
(mV) 

Pre-Synthesis 204.1 
(0.15) -93.6 ± 12.3 

 Day 1 Day 14 Day 1 Day 14 

α = 0.25 208.7 
(0.12) 

216 
(0.15) -84.3 ± 12.0 -69.9 ± 17.0 

α = 0.35 207.2 
(0.12) 

214.8 
(0.14) -77 ± 8.3 -48.2 ± 9.4 

α = 0.5 207.2 
(0.18) 

204.4 
(0.1) -53 ± 9.2 -31.8 ± 10.7 

α = 0.7 205.7 
(0.12) 

218.8 
(0.14) -35.1 ± 8.7 -22.7 ± 9.2 

α = 0.85 205.2 
(0.1) 

251.5 
(0.15) -31.7 ± 10.0 -15.8 ± 4.8 

α = 1 209.1 
(0.1) 

277.3 
(0.22) -32.3 ± 6.0 -13.2 ± 4.5 

 

The hydrodynamic diameter increases significantly after the 14 days (to 251.5 nm at α = 

0.85 and 277.1 nm at α = 1.0), although flocculation is not observed visually.  This 

increase in hydrodynamic diameter at 14 days is interpreted as particle aggregation; the 

corresponding increase in the zeta potentials at 14 days relative to day one is consistent 

with less stable colloidal systems.  However, CPB/SPFO templated silica spheres 

synthesized at the same TMOS/surfactant ratios flocculated to an extent that DLS 

analysis was not possible 14 days after synthesis (Table 5.2).  Increasing the overall 

surfactant concentration of HFDPC/SPFO (2% wt/wt, γ = 0.8) results in the formation of 

gels at α = 1.0, similar to CPB/SPFO.  The ability to form fluorinated vesicles at lower 

overall surfactant concentrations may be beneficial to vesicle templating. The presence of 
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salts may accelerate gelation in acidic medium;225 lowering the concentration of ionic 

surfactants (and corresponding counter ions) may reduce the formation of non-templated 

particles.    
 

 
Figure 5.5. TEM images of silica particles templated from HFDPC/SPFO solutions at pH 
3 (a) 1.18% wt/wt and γ = 0.78 vesicle solution with TMOS:surfactant α = 1, and (b) 
0.73% wt/wt and γ = 0.72  vesicle solution with TMOS:surfactant α = 2. 
 
 

TEM images of the HFDPC/SPFO (1.18% wt/wt, γ = 0.78, α = 1) templated 

systems from TEM reveal particles with a diameter range from 100 – 300 nm (Figure 

5.5a), in agreement with the hydrodynamic sizes (≈ 200 nm) of the vesicle templates 

(Table 5.3).  Also, fewer ellipsoidal particles are observed in the fully fluorinated system 

than in the CPB/SPFO templated systems (Figures 5.5).  The resulting hollow silica 

particles are spherical, suggesting that the fully fluorinated vesicles are less affected by 

the strain of the silica network or the incorporation of alcohol and precursor during the 

templating process in acidic pH.  The structural differences between silica-templated in 

CPB/SPFO and HFDPC/SPFO vesicles may be the result of the uniform fluorinated 
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bilayer in the latter.   Lipophobicity coupled with increased hydrophobicity and rigidity in 

HFDPC/SPFO bilayers would confer enhanced barrier effects to organic compounds, 

such as the TMOS precursor or side products of synthesis, and restrict silica synthesis to 

the surface of the vesicles.  This rationale is supported by the ability to template at much 

higher TMOS/surfactant ratios (α = 2) from the HFDPC/SPFO vesicle solution (0.73% 

wt/wt, γ = 0.72, pH 3).   The size of the resulting silica hollow spheres templated from the 

HFDPC/SPFO vesicles at α = 2 are bimodal, primarily 20 – 50 nm, with 100 nm particles 

present (Figure 5.5b).  These particles sizes are consistent with the negatively stained 

vesicle images for the same composition in Figure (5.3).   The same aggregate population 

that was undetected via DLS analysis was captured in both TEM and in vesicle 

templating.  Thus, templating is a viable method of capturing the structural morphologies 

in these fully fluorinated aggregates.   

Overall, the results of both CPB/SPFO and HFDPC/SPFO vesicle templating 

complement the negatively stained vesicle images.  The improved colloidal stability 

exhibited by HFDPC/SPFO over CPB/SPFO systems demonstrates the tuning of 

surfactant properties to achieve the desired particle characteristics in template synthesis.  

 

5.5       Conclusion 

Regions of spontaneous vesicle formation have been established in fluorinated 

and mixed hydrocarbon /fluorinated catanionic surfactant systems of HFDPC/SPFO and 

CPB/SPFO using DLS and negative staining imaging (TEM) techniques.  The average 

hydrodynamic size is 200 nm for HFDPC/SPFO systems and 100 nm for the CPB/SPFO 

vesicles.  Stable unilamellar vesicle formation was observed at lower surfactant 

concentrations for the fully fluorinated catanionic vesicle bilayers, HFDPC/SPFO (0.72% 

wt/wt) than in the mixed hydrocarbon/fluorinated bilayers, CPB/SPFO (1.8 % wt/wt).  

The mixed hydrocarbon/fluorinated surfactant CPB/SPFO aggregates are more 

polydisperse than the fluorinated bilayer vesicles based on the PDI measured from DLS.  

However, apart from the vesicles in the range of 100 nm , negatively stained TEM 

images also reveal a separate population of  ≈20 nm vesicles, undetected in DLS, for the 

fully fluorinated bilayer system of HFDPC/SPFO.  The low refractive index of 

fluorinated chains may obscure smaller aggregates (i.e., 20 nm vesicles) in the presence 
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of much larger, 100 nm aggregates.   A change in morphology is also observed for the 

fluorinated/fluorinated, HFDPC/SPFO vesicles with increasing surfactant concentration, 

from mostly spherical (0.73% wt/wt, γ =0.72) to facetted multi-lamellar structures (2% 

wt/wt, γ =0.8).   

Successful transcriptive templating was demonstrated in the 

fluorinated/hydrocarbon and fluorocarbon/fluorocarbon vesicle systems.  Optimal 

templating conditions were found to exist at lower TMOS to surfactant ratios for 

CPB/SPFO than for HFDPC/SPFO.  Zeta potential measurements suggested that the 

HFDPC/SPFO vesicle templated silica spheres demonstrated better colloidal stability 

than the CPB/SPFO.  The titration of the acidic synthesis solution with base during the 

synthesis reactions produced stable sols of CPB/SPFO templated particles.   

The advantage of lower surfactant concentration requirements for stable 

spontaneous vesicle formation was clearly demonstrated in silica synthesis applications.  

The presence of more counter ions due to higher concentration in CPB/SPFO may have 

promoted aggregation in the silica systems.  Most HFDPC/SPFO-templated silica 

particles maintain the original vesicle morphology (spherical shape) even at elevated 

precursor concentrations, in contrast with CPB/SPFO-templated particles, whose TEM 

images reveal strong deviation from the initial vesicle sphericity.   The structures in the 

latter suggest partitioning of precursor into localized regions of the bilayer.  An enhanced 

barrier effect of the homogeneous fluorinated bilayer matrix in HFDPC/SPFO compared 

with the more heterogeneous hydrocarbon/fluorocarbon bilayer of CPB/SPFO would 

facilitate less permeation of any organic or synthesis-related compounds, a potential 

effect which is being examined in future work.  Additionally, the smaller 20 nm 

HFDPC/SPFO vesicles undetected by DLS are also captured by template synthesis of 

silica hollow spheres of similar size when imaged via TEM, which confirms the 

limitation of light scattering in capturing the true size dispersions in fluorinated 

aggregates.  The robustness of fluorinated/fluorinated bilayers for transcriptive 

templating is suggested by the ability to template at higher precursor to surfactant ratios 

than in catanionic fluorinated/hydrocarbon vesicles with retention of the original 

aggregate shape.  
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CHAPTER 6 

 

PHASE INVESTIGATION OF CATIONIC-ANIONIC VESICLE FORMATION 

IN MIXTURES OF HYDROCARBON/FLUOROCARBON AND 

FLUOROCARBON/FLUOROCARBON SURFACTANTS 

 

 

6.1 Summary 

The phase behavior of combinations of cationic and anionic surfactant mixtures of 

cetylpyridinium bromide (CPB), 1,1,2,2-tetrahydroperfluorododecylpyridinium chloride 

(HFDPC), sodium perfluorooctanoate (SPFO) and sodium perfluorohexanoate (SPFH) 

are investigated in aqueous solution using a combination of dynamic light scattering 

(DLS), visual inspection and transmission electron imaging (TEM).  The selection of 

mixed hydrocarbon/fluorocarbon catanionic pairs; CPB/SPFO, CPB/SPFH and fully 

fluorinated bilayers, HFDPC/SPFO and HFDPC/SPFH provides a framework in which 

the impact of homogeneous and heterogeneous bilayer matrices of varying asymmetry on 

phase behavior can be assessed.  Larger stable vesicle regions were identified in the more 

asymmetric CPB/SPFH and HFDPC/SPFH systems, while the narrowest vesicle region 

was established in the fully fluorinated least asymmetrical (HFDPC/SPFO).  TEM 

revealed the most polydisperse vesicles in the mixed hydrocarbon/fluorocarbon system of 

CPB/SPFO (40 – 200 nm), while HFDPC/SPFO vesicles possessed narrower size 

distribution (20 – 50nm).  The size and phase behavior of HFDPC/SPFO vesicles suggest 

enthalpic stabilization, which is attributed to the stiffness of the combined fluorinated 

chains, generating high membrane rigidity in the curved vesicles.   In the more 

asymmetrical systems, TEM revealed vesicle sizes in the range 30 – 70 nm for the mixed 

CPB/SPFH and average vesicle size of 20 nm for HFDPC/SPFH.  However, populations 

of large polydisperse vesicles (≥ 100 nm) were also captured in these systems, suggesting 

an entropic stabilization mechanism.  Further characterization of the bilayer matrix of 

CPB/SPFO and HFDPC/SPFO with pyrene and pyrene derivatized fluorescent probes 

provides insight into the chain organization of the bilayers.  The solvatochromic behavior 

of pyrene was used to determine aggregation events, such as vesicle formation.  The local 
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intra-aggregate position of pyrene in the bilayer was inferred from fluorescence 

quenching and excimer formation.  Pyrene derivatized probes, 1-pyrene hexadecanoic 

acid/ pyrene (CH2)15COOH (Py-C16), 1-pyrene decanoic acid/ pyrene (CH2)9COOH (Py-

C10) and 1-pyrene butanoic acid/ pyrene (CH2)3COOH (Py-C4), allowed probing of 

various depths of the bilayer.  Fluorescent results suggest higher chain order or better 

packing in the homogeneous HFDPC/SPFO than in mixed CPB/SPFO.   

 

6.2 Introduction 

The non-ideal mixing of cationic and anionic surfactants in aqueous solution 

yields interesting phase behavior, with formation of structures that range from mixed 

micelles to planar bilayers.  Of particular interest are spontaneously formed vesicles, 

which are characterized by thermodynamic stability.  This is in contrast to meta-stable 

phospholipid based vesicles (liposomes), which relapse to their equilibrium planar 

lamellar form after short periods of time.  The strong electrostatic attraction of the 

oppositely charged headgroups results in a synergistic effect, where the effective 

headgroup area is less than the sum of the individual cationic-anionic headgroup areas.   

This, combined with the additive volume of the hydrocarbon chains of the two 

surfactants, effectively increases Israechavili’s60 packing parameter favoring formation of 

lamellar bilayers, which close to form vesicles.    Factors critical to catanionic vesicle 

formation include surfactant molecular structure,173 catanionic tail asymmetry,174 

temperature,179 ionic strength177 and the presence of organic additives.180  Knowledge of 

homogeneous vesicle phase regions is essential for tailored applications of self-assembled 

aggregates.   With stable vesicle domains established in pseudo-ternary phase maps, the 

system properties can be effectively tuned to facilitate favorable conditions for materials 

synthesis of nano-spheres50 or encapsulation of model compounds.47 

Various aspects of phase behavior, mechanism of vesicle formation,176,200  

destabilization,177,215 size and size distribution169,182,183and  bilayer characteristics have 

been well explored for hydrocarbon catanionic surfactant 

mixtures.168,169,173,174,176,177,182,184,191,197,199,200,299  The comprehensive analysis of phase 

behavior in these systems frequently involves a combination of several techniques 

including visual observations, dynamic light scattering (DLS),182,278 transmission electron 
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microscopy imaging (TEM),172,300 small angle neutron scattering (SANS),46 polarized 

light microscopy (POM)184 and fluorescence characterization.185  The composition-

dependent aggregate morphology can be interpreted in terms of physicochemical 

properties of the individual surfactants (CMC, solubility) and is dictated by the interplay 

of electrostatics and geometric packing effects.44  Key features of catanionic surfactant 

mixtures include precipitate formation in equimolar mixtures, with isotropic vesicle 

regions observed in either the anionic and cationic-rich compositions.   At low 

concentrations, inter-vesicle interactions are governed primarily by repulsive electrostatic 

forces; with increased surfactant concentration, the higher number density of vesicles 

leads to packing constraints that induce aggregation and phase separation into 

multilamellar systems.197  In compositions with large excess of either surfactant, the 

aggregate morphology and phase behavior is similar to that in the single surfactant 

solution.44   The size of the vesicle region is strongly influenced by bilayer composition 

and can be expanded by increasing asymmetry of the catanionic pair, as observed with 

CTAB/SOS(C16/C8) and DTAB/SDS (C12/C12).44,174  Conversely, the addition of 

sodium bromide (NaBr) salt to CTAB/SOS vesicles produces a strong contraction of the 

stable vesicle region in favor of the adjacent micellar phase, through electrostatic 

screening of the vesicle surface.    

There are limited studies exploring aggregate formation where one or both tails of 

the catanionic surfactants are fluorinated.  Kaler and coworkers44  provide the exception 

with their detailed investigations into the phase behavior of hydrocarbon/fluorocarbon 

surfactant mixtures of cetyltrimethylammonium bromide/sodium perfluorooctanoate 

(CTAB/SPFO)44 and CTAB/sodium perfluorohexanoate (SPFH)46 with subsequent 

demonstration of the former  as suitable templates in synthesis of silica hollow spheres.50   

Fluorinated surfactants, which are both lipophobic and hydrophobic, possess bulkier 

chains than hydrocarbon surfactants. With chains in trans-gauche conformation, 

fluorinated surfactants tend to adopt lower curvature aggregate structures such as rod-like 

micelles and lamellar bilayers.70   Surfactant mixtures of hydrocarbons and fluorocarbons 

are typically characterized by demixing into separate phase regions or aggregates.43 

However, the ionic attraction of oppositely charged headgroups in catanionic surfactant 

mixtures overrides the mutual dislike of the hydrocarbon/fluorocarbon surfactant chains.   
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Phase delineations using visual inspection, DLS, small angle neutron scattering (SANS) 

and cryo-TEM revealed isotropic vesicle domains in the anionic-rich side (SPFO and 

SPFH) of the phase diagrams.  Interestingly, small difference in fluorinated chain length 

(SPFO(FC7)) and (SPFH(FC5)) alters the mechanism of vesicle formation in the two 

systems.  CTAB/SPFO is characterized by small monodisperse vesicles, which are 

enthalpically stabilized54 while CTAB/SPFH is subject to entropic-stabilization with 

larger, polydisperse vesicles.46    The difference in system properties as a result of 

changes in surfactant chain length merits further study into the impact of fluorinated 

surfactants in catanionic vesicle bilayers. 

 In previous work,301 regions of stable vesicle formation in anionic-rich mixtures 

of mixed hydrocarbon/fluorocarbon and fluorocarbon/fluorocarbon catanionic surfactant: 

cetylpyridinium bromide/sodium perfluorooctanoate (CPB/SPFO) and 1,1,2,2-

tetrahydroperfluorododecylpyridinium chloride (HFDPC/SPFO) were established in 

acidic medium (pH 3), with the goal of using the aggregates as templates for materials 

synthesis.  Stable vesicle dispersions were identified at lower overall surfactant 

concentrations for the homogeneous fluorinated bilayer, HFDPC/SPFO, than for the 

heterogeneous, CPB/SPFO system, which had implications in synthesis of silica hollow 

spheres.  Hollow silica spheres synthesized from the fully fluorinated bilayer system, 

HFDPC/SPFO, demonstrated improved colloidal stability relative to the mixed 

hydrocarbon/fluorinated system, CPB/SPFO.  The lower concentrations of surfactants in 

HFDPC/SPFO catanionic vesicle systems resulted in lower concentration of counter-ions 

for electrostatic screening of the silica particles, which may contribute to more stable 

colloidal systems.  An additional effect of the increased hydrophobicity and lipophobicity 

of fully fluorinated bilayers may be the exclusion of the reactants and by-products of the 

silica synthesis reactions, resulting in a more robust synthesis process.   

Here, the phase investigation in acidic medium (pH 3) is expanded to include the 

more asymmetric catanionic pairs with the shorter chained anionic surfactant, SPFH 

(FC5); CPB/SPFH and HFDPC/SPFH.  Phase behavior is examined in acidic medium in 

the anionic-rich phase for CPB/SPFO, HFDPC/SPFO, CPB/SPFH and HFDPC/SPFH 

(chemical structures provided in Figure. 6.1).   This combination of fluorinated and 

hydrocarbon surfactant pairs provides for the investigation of both mixed 
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hydrocarbon/fluorinated surfactants and chain asymmetry on aggregate phase behavior.  

Isotropic vesicle regions are identified by visual inspection, dynamic light scattering and 

transmission electron microscopy.  Further characterization of vesicle bilayers matrix is 

provided by fluorescence spectroscopic measurements of pyrene and pyrene-derivatized 

carboxylic acid probes.  Fluorescence is a useful tool in the study of inter and intra-

aggregate structural transitions and is widely applied in study of self assembled systems 

such as micelles,42 vesicles185 and monolayer films.302 Here, the solvatochromic character 

of pyrene is used to traverse micelle to vesicle transition with the photophysical processes 

of excimer formation and quenching providing information on intra-aggregate 

organization.  Pyrene derivatives with increasing alkane chains length: (1-pyrenebutanoic 

acid (PBA/Py-C4)), 1-pyrenedecanoic acid (PDA/Py-C10) and 1-pyrenehexadecanoic 

acid (PHA/Py-C16)) whose chemical structures are provided in figure 6.2, are used to 

probe the chain packing at various depths of the vesicle bilayer.     

 

6.3 Experimental Section 

6.3.1 Materials 

The fluorinated anionic surfactant, sodium perfluorooctanoate (SPFO; C7F15COO-

Na+; 97% purity) and the hydrocarbon cationic surfactant, cetylpyridinium bromide 

(CPB; C21H38N+Br-; ≥97%) were purchased from Sigma Aldrich and Alfa Aesar, 

respectively and used without further purification.   The short chained fluorinated anionic 

surfactant, sodium perfluorohexanoate (SPFO; C4F9COO-Na+) was synthesized by 

neutralization of perfluorohexanoic acid with NaOH and the purity tested by 19F NMR 

spectroscopy (98% purity).  The fluorinated cationic surfactant, 1,1,2,2-

tetrahydroperfluorododecylpyridinium chloride (HFDPC; C10F21CH2CH2NC5H5
+Cl-·H2), 

was synthesized with greater than 98% purity, as previously described.41  In short, 

alkylation of pyridine with 1H,1H,2H,2H-perfluorododecyl iodide, followed by anion 

exchange produces the desired HFDPC.  The purity of HFDPC was assessed by 

spectrometric and melting point measurements and was in agreement with published 

values.41 Reagent grade hydrochloric acid solution (0.1 N) was obtained from Alfa Aesar.  

The fluorescent probes, pyrene and pyrene derivatives: 1-pyrene hexadecanoic acid/ 

pyrene (CH2)15COOH (PHA/Py-C16), 1-pyrene decanoic acid/ pyrene (CH2)9COOH 
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(PDA/Py-C10) and 1-pyrene butanoic acid/ pyrene (CH2)3COOH(PBA/Py-C4) were all 

purchased from Molecular Probes with greater than 99% purity and used without further 

purification. 
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Figure 6.1.  Chemical structures of anionic and cationic surfactants 
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Figure 6.2.  Chemical structures of pyrene and pyrene derivatized probes.  

 

 

 

 

 

 



128 
 

6.3.2 Sample Preparation 

Catanionic samples for the phase studies were prepared by mixing aqueous stock 

solutions of hydrochloric acid (pH 3) of the anionic and cationic surfactants in the 

required proportions to the desired concentrations (% wt/wt).  The sample was then 

stirred vigorously before serial dilutions to lower concentrations.  This procedure was 

repeated for several mixing fractions i.e. fraction of anionic surfactant, SPFO in overall 

surfactant mixture (γ).  For mixtures containing cationic surfactants, CPB and HFDPC, 

the individual surfactant solutions were heated to 50oC for a few minutes prior to mixing 

with the anionic surfactant solutions.   

 

6.3.3 Phase Assignment 

The different aggregate phases typically observed in catanionic surfactant 

mixtures were designated using visual observation and dynamic light scattering (DLS). 

Vesicle characteristics were subsequently characterized by negatively stained 

transmission electron microscopy imaging (TEM).   

 

Dynamic Light Scattering (DLS) and TEM Analysis 

The hydrodynamic size and polydispersity of the catanionic surfactant aggregates 

at 25oC were monitored periodically using a Malvern Zetasizer Nanoseries (Malvern 

Instruments, United Kingdom).  The instrument was equipped with a He-Ne laser lamp (4 

mW) source at 633 nm and measurements were taken at 90o scattering angle.  The data 

were analyzed with the Cumulants Method,292 which employs a single exponential fit of 

the intensity of the autocorrelation function to derive an average translational diffusion 

coefficient.  An intensity weighted size average (Z-average) was then calculated using the 

Stokes-Einstein equation.  The Z-average (intensity weighted average) and polydispersity 

index (PDI) were taken as representative of the size and size distribution in the samples.  

The PDI is given on a scale of 0 – 1.0, where 0 represents the highest level of 

monodispersity.   

A Philips Tecnai BioTwin unit (Edax detector) with a Gatan Digital Micrograph 

1000 operating at 100kV was used to image the surfactant aggregates.  A negative 

staining procedure with uranyl acetate solution (2 w/v%) was used to image vesicle 
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solutions without silica. 5 μL drops of vesicle solutions were gently placed on copper 

coated formvar grids and blotted after 1.5 minutes.  Identical volumes of stain solution 

were immediately added and one minute was allowed before blotting the grids with filter 

paper and air drying.   

 

6.3.4 Probing Surfactant Aggregates using Fluorescence Spectroscopy 

For measurements in vesicle systems, ethanol solutions of the probes and cationic 

surfactants (CPB, CTAB, HFDPC) in the required proportions were dried under an inert 

low pressure nitrogen stream for 4-6 hrs to form a dry film.  The film was further dried 

under vacuum to remove any residual solvents.  Aqueous solutions of the anionic 

surfactant, SPFO, was then added to the film and heated at 50 oC for 40 minutes.  The 

vesicle solutions were mixed further at 25oC for another five hours.  The surfactant 

mixtures were filtered using 0.45 micron filters.  The hydrodynamic sizes of the vesicles 

were determined by DLS.  One vesicle composition in the anionic-rich region was 

investigated for each surfactant pair: CPB/SPFO (2 wt/wt%;γ = 0.85), CTAB/SPFO (2 

wt/wt%; γ = 0.85) and HFDPC/SPFO (1.18 wt/wt%;γ = 0.78).   All samples were 

prepared in neutral pH solutions. To induce micellization of the catanionic vesicles, NaCl 

salt in dry crystal form was added to the systems, heated and mixed thoroughly.  For 

studies with individual surfactant solutions (i.e. SPFO micelles, CPB micelles, HFDPC 

micelles), ethanol solutions of the probes (without surfactant) were dried as described 

above and aqueous solutions of the surfactant added. The same fixed concentration 

(5μM) of pyrene and its derivatives was used in all the experiments.  For the steady state 

fluorescence analysis, the excitation wavelength was set at 334 nm with respective 

excitation and emission widths of 5 nm and 1.5 nm.   

 

6.4 Results and Discussion – Phase Behavior 

The partial phase diagrams for catanionic surfactant pairs: CPB/SPFO, 

HFDPC/SPFO, CPB/SPFH and HFDPC/SPFO are presented in Figures 6.3(a) – (d), 

respectively at 25 oC.  Phase behavior study was limited to the anionic phase region and 

assessed in acidic medium (pH 3) with implications for template synthesis applications.  

The phase boundaries were estimated from visual inspections and DLS analysis after 
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several months (≥ 2 months) and the morphology of the catanionic vesicles were 

confirmed with TEM imaging.   Preliminary assessment of the CPB/SPFO and 

HFDPC/SPFO systems is provided in an earlier work, where compositions of stable 

vesicle formation were identified.301  Here, the systems in the anionic-rich vesicle phase 

boundaries are clearly defined.  Also, determination of the phase behavior is presented 

for the more asymmetric mixed and fully fluorinated counterparts, CPB/SPFH and 

HFDPC/SPFH, chain asymmetry on phase behavior in vesicles.    
 

 
Figure 6.3: Partial Phase Diagrams of (a) CPB/SPFO, (b) HFDPC/SPFO, (c) CPB/SPFH 
and (d) HFDPC/SPFH in acidic solution (pH 3).  Ve denotes the vesicle region, Ve + La, 
the vesicle and lamellar phase region, M, micelles, M-P, multiphase regions, B-G, bluish 
gel phase and U, the experimentally undetermined phase.  The total surfactant 
concentrations are in wt/wt% units while the bottom axes of the phase diagrams represent 
the mass fraction of the anionic surfactants, γ.  
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Figure 6.3 Continued 
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Figure 6.3 Continued 
 
 

6.4.1 CPB/SPFO Aggregates 

 The phase behavior CPB/SPFO is assessed in an overall surfactant range of 0 – 

5% wt/wt with γ = 0.5 – 1, where equimolar composition was at γ = 0.53.   Phase 

boundaries were assigned based on over 100 samples monitored for a minimum of 2.5 
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five month observation period.  For the pure SPFO solutions (0.1 - 4% wt/wt; γ = 1), a 

clear liquid was observed, where the CMC of SPFO is (1.35% wt/wt/31 mM).287 As 

depicted in the phase diagram, the micellar solution is still present for compositions up to 
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the structurally similar CTAB/SPFO (> 2wt%) system and are the expected structural 

transition for fluorinated surfactants such as SPFO.44  At low total surfactant 
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CTAB/SOS, where crystalline precipitates were detected in all mixing ratios for low 

surfactant concentrations (< 0.1wt%).168   Dilution to the region below the CMC of SPFO 

would expectedly generate surfactant monomers. However the presence of minute 

amounts of the cationic CPB (0.025% wt/wt/0.64 mM)296 would result in complexation 

with SPFO and small amounts of crystalline precipitate, explaining the crystals observed 

in this region.   The non-ideal mixing behavior of catanionic surfactant mixtures means 

their critical aggregate concentrations are significantly lower than that of the individual 

surfactant CMCS.44 Hence, even in this very dilute composition region, aggregates of 

CPB/SPFO are expected. Future characterization of these samples with polarized optical 

microscopy would clarify the nature of the structures that constitute the precipitates.   

Adjacent to the SPFO-rich micellar region, with increasing amounts of CPB 

(decrease in γ) in the surfactant mixtures, is the isotropic vesicle lobe.  In the vesicle 

region (approx. 1 – 4% wt/wt; γ = 0.7 – 0.9), the samples possess the bluish tint ascribed 

to Rayleigh light scattering and DLS sizes consistent with vesicle morphology.  Within 

the vesicle lobe, the hydrodynamic sizes (diameters) ranged from 98.91 nm (PDI = 0.1) 

to 149.8 nm (PDI = 0.3).  No consistent trend of vesicle size with overall surfactant 

concentration was determined from DLS measurements.  Several studies have shown that 

within the isotropic vesicle region, dilution along a fixed surfactant composition γ 

(vertical slice across phase diagram), does not affect the size of vesicles but that the  

number density or volume fraction of vesicles increases with surfactant 

concentration.169,197   However, for a fixed surfactant concentration (horizontal slice 

across the phase diagram), vesicle size increased slightly as ratio of CPB increased (γ 

decreased).  In effect, as the surfactant composition approached equimolarity, DLS 

reported slightly larger vesicle sizes.  This effect might be ascribed to the alteration of 

bilayer interfacial curvature with increasing incorporation of CPB (γ decrease) in the 

aggregate systems.169  

Bordering the isotropic vesicle domain is a two-phase region speculated to consist 

mainly of vesicles and condensed lamellar structures in equilibrium.44,168  In this region, 

for surfactant concentrations ≥ 0.5% wt/wt, the samples display a bluish tint which gets 

deeper as the concentration increases.  At higher total surfactant concentrations (> 

3%wt/wt), the bluish phase becomes much more turbid with an almost milky-blue color, 
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which is indicative of multi-bilayer aggregates.  However, all samples within this region 

also possess a cloudy phase settled at the bottom of the vessels, which has been reported 

to be a condensed lamellar phase.169 The thickness of the cloudy layer increased with 

increase in total concentration and at concentrations below 1.5% wt/wt, only cloud-like 

wisps were observed.  Gentle shaking produced a homogenous turbid dispersion with 

reversion to the separated phase after a few days. This suggests that these systems consist 

of vesicle aggregates in equilibrium with a condensed lamellar phase.44  DLS analysis of 

the upper bluish phase of the biphasic solutions revealed aggregate diameters that ranged 

from 118.6 – 250 nm with PDIs that varied from 0.1 - 0.55.    In effect, this observation 

supports the view that dense packing of vesicles leads to aggregation and destabilization 

to multi-lamellar bilayers.  Overall, the phase diagram is strikingly similar to that of 

CTAB/SPFO (neutral pH) described by Kaler and coworkers44 which has a stable vesicle 

region in approx. 0.5 – 4 wt%; γ = 0.75 – 0.9.  Indeed a full phase map (0 – 8wt%; γ = 0 – 

1) was established for CTAB/SPFO and revealed a predominantly biphasic region of 

vesicles and lamellar structures, which spanned a wide surfactant composition range; γ = 

0.2 – 0.75.   With the CPB/SPFO system, in this study, TEM analysis of samples 

bordering the biphasic region (1% wt/wt; γ = 0.85) revealed large vesicles of size range 

300 – 500 nm (Figure 6.4a).  Also captured in Figure 6.4(b) are regions of dense packing 

with vesicle aggregation.  For samples within the vesicle lobe, our previous TEM 

analysis301 captured a polydisperse distribution, (≈ 40  -  200 nm) of spherical unilamellar 

vesicles with a small population of cylindrical bilayer vesicles (125 – 200 nm), similar to 

those detected by cryo-TEM in CTAB/SPFO system by Jung et al.171   However, where 

the CTAB/SPFO systems were shown to be enthalpically stabilized monodisperse 

vesicles (30 – 60 nm), our CPB/SPFO vesicles are polydisperse, indicative of entropic 

stabilization.  With similar chain lengths (C16/FC7), the difference in stabilization 

mechanism must be influenced by the headgroups.  Compared with the tetrahedral 

trimethylammonium in CTAB, the planar pyridinium headgroup in CPB would result in 

different headgroup attraction with SPFO, which affects the bilayer rigidity (or 

flexibility).  Enthalpically stabilized vesicles are formed from bilayers with high bending 

rigidity compared with the low bending rigidity in entropic systems and the exchange of 

CPB for CTAB might have caused the change in mechanism. 
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6.4.2 HFDPC/SPFO Aggregates 

 The phase behavior of HFDPC/SPFO is assessed in an overall composition range 

of  0 – 5% wt/wt; γ = 0.5 – 1, which was beyond the equimolar composition (γ = 0.39), as 

depicted in Figure 6.3 (b).  The samples were monitored for a minimum of 2.5 months 

before assignment of phase boundaries. Similar to CPB/SPFO, the phase boundary of 

predominantly SPFO surfactant mixtures (γ ≥ 0.9), is characterized by clear liquid 

solutions.  Also, as seen with CPB/SPFO, for weight ratios of SPFO/CPB greater than ≥ 

0.8 and in dilute surfactant systems (≤ 0.5% wt/wt), settled precipitate was observed.    

The catanionic surfactant mixture of two fluorocarbon surfactants possesses a 

much smaller isotropic vesicle region than with the mixed hydrocarbon/fluorocarbon, 

CPB/SPFO.    In the vesicle region (0.6 – 1.5% wt/wt; γ = 0.7 – 0.9), the diameter from 

DLS analysis is 120 – 272 nm, with corresponding PDIs of 0.09 – 0.24.    No size 

dependence was found with concentration or stoichiometry within the vesicle lobe for 

HFDPC/SPFO.   Previous TEM results suggested that the HFDPC/SPFO system in this 

region was mainly populated by small unilamellar vesicles, much smaller (20 – 50 nm) 

than determined by DLS, although there was a small population of larger vesicles (≈ 100 

nm).301  The discrepancy between DLS and TEM diameters is a common feature of 

colloidal size assessment, as DLS is an intensity based size measurement weighted 

toward the detection of larger colloids.  The measurement of fluorinated vesicle size is 

further hindered by the low refractive index of the fluorinated chains in HFDPC/SPFO,303 

which further limits the detection of small sized vesicles in presence of larger ones.  Even 

with mixtures of hydrocarbon surfactants such as CTAT/SDBS, whose chains have 

higher refractive indices, Coldren  et al182 report size discrepancies as high as 33% 

between DLS and their cryo-TEM measurements of vesicle size.   

Previously, we assessed HFDPC/SPFO vesicle to possess narrower size 

distribution than CPB/SPFO301 and this is clearly evident in Figure 6.4(c).  The  TEM 

image shows HFDPC/SPFO vesicles, which range from 20 – 40 nm, coexisting with 

cylindrical bilayer aggregates (≤ 50 nm), (not previously characterized) that are also 

observed in CPB/SPFO system.  Interestingly, the sizes of the HFDPC/SPFO vesicles 

appear to be more narrowly distributed than the CPB/SPFO.   
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The HFDPC/SPFO phase map possesses a sizeable unresolved multi-phase region 

adjacent to the micellar region and at concentrations above the vesicle region.  In this 

region, (>1.5%wt/wt; γ = 0.7 – 0.9), samples were clear fluid.  The increased viscosity of 

these solutions relative to the micellar region suggests the presence of rod-like micelles, 

but other aggregates might be present.  DLS measurements in this region indicate very 

large aggregates (400 to > 600 nm) with very high polydispersities (PDI > 0.54).    

Adjacent to the multi-phase region is a phase state denoted as the blue-gel (B-G) 

phase region; at these compositions, the system is turbid and assumes gel-like qualities 

with high viscosity (macroscopic flow retardation).  The viscosity of the samples 

increases as the compositions become increasingly enriched in HFDPC.  For pure 

HFDPC surfactant solutions (pH 3) within this composition range, the viscosity also 

increased with increasing surfactant concentration.   DLS sizes in this region of the blue-

gel region of the phase diagram were exceedingly large (> 500 nm) with PDIs greater 

than 0.6.   

Previously, large facetted multilayered vesicles (300 – 500 nm) were captured by 

negatively stained TEM in HFDPC/SPFO system in the multiphase region (2% wt/wt; γ = 

0.8, pH 3), which suggests transition to a planar bilayer morphology.301 This facetted 

vesicle morphology has been observed in mixed hydrocarbon/fluorocarbon bilayer,278 and 

ascribed to molecular segregation in the bilayer with crystallization of chains.206  TEM 

images revealed V- shaped rolled-up bilayer structures (Figure 6.4(d)) with sizes ≥ 100 

nm mixed with unilamellar spherical vesicles for HFDPC/SPFO compositions close to 

the boundary of the turbid-gel boundary phase (0.7% wt/wt;γ = 0.68).  These rolled up 

bilayer aggregates bear similarities to tubules or rolled up bilayers detected by freeze 

fracture TEM and phase contrast optical microscopy in aqueous dispersions of single 

chained fluorinated (FC8 – FC10) dimorpholinophosphate surfactant.304  Similar rolled 

up membranes have also been captured by negative stained TEM images in equimolar 

mixtures of catanionic hydrocarbon/fluorocarbon sugar-based surfactants (perfluorodecyl 

derivatives).274   The proposed mechanism of formation of these aggregates is the 

aggregation and fusion of vesicles to flat or loosely coiled membrane sheets, which roll 

from opposite edges to form U or V-shaped tubules.304  Giulieri and Krafft163 suggest that 
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fluorinated chains crystallize in sections of the bilayer due to rigidity, reduced mobility 

and conformation of FC chains, effectively  inducing this morphological transition.  

A narrower concentration region for vesicle formation is observed for 

HFDPC/SPFO (Figure 6.3(b)) relative to CPB/SPFO (Figure 6.3(a)).  This can be 

attributed to the homogeneous fluorinated bilayer in the former compared with the 

heterogeneous bilayer in the latter, although the chain asymmetry might play a role, 

(C12/C7) versus (C16/C7).  The combined fluorinated chains in HFDPC/SPFO would 

result in more efficient packing than in the mixed CPB/SPFO bilayer, which is expected 

to impact the bilayer rigidity.  Fluorinated chains are stiff and bulky and the curvature 

energy required to form vesicles would likely be higher with HFPDC/SPFO than 

CPB/SPFO.   Spontaneous vesicle formation in catanionic surfactant mixtures is a 

compromise between the entropy of mixing and membrane curvature elasticity.182   

Studies54,172 have shown that the CTAB/SPFO bilayers possess high membrane rigidity, ≈ 

12 times higher than that determined for hydrocarbon pair, CTAT/SDBS,182 due to the 

bulkiness and stiffness of fluorinated chains.  The high membrane rigidity resulted in 

enthalpically stabilized vesicles in CTAB/SPFO with narrow size distribution.  The 

narrow size distribution is a criterion for the enthalpic stabilization mechanism due to the 

penalty associated with deviation from the spontaneous curvature.54  Factors that reduce 

membrane rigidity, such as branched chains,182 chain asymmetry46 and counter-ion 

association172 typically produce entropically stabilized vesicles and expand the vesicle 

phase region.  Indeed, the addition of small amounts of polymer induced dramatic 

changes in the stabilization mechanism of CTAB/SPFO by strong reduction in bilayer 

rigidity.53  The smaller vesicle region in HFDPC/SPFO suggests that higher bending 

rigidity (anticipated to be higher than the mixed CPB/SPFO) and smaller chain 

asymmetry, imposes restrictions on vesicle formation outside a small composition range 

due to the high energy required to bend the chains for vesicle curvature.   

 

6.4.3 CPB/SPFH Aggregates 

The phase behavior of CPB/SPFH is assessed in an overall surfactant range of 0 - 

5% wt/wt with γ = 0.5 – 0.9, with equimolarity beyond the scope of this work at γ = 0.47   

Phase boundaries were assigned based on over 70 samples, which were observed for over 
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six months.  The region adjacent to the binary axis, SPFH-water (γ = 0.95 – 1), was not 

experimentally determined and marked U in Figure 6.3(c).   SPFH aqueous solutions 

have been reported to consist of rod-like micelles above the CMC (172 m M/5.7% 

wt/wt), which is approximately 6-fold higher than that of SPFO.  In the dilute surfactant 

region (< 0.5% wt/wt) for almost all mixing ratios, clear solutions were identified with 

white precipitates, which is similar to observations made for CPB/SPFO and 

HFDPC/SPFO.  As with the CTAB/SPFH46 the CPB/SPFH phase map is dominated by 

the biphasic vesicle/lamellar region.   DLS analysis of the homogeneous upper phase 

suggested sizes in the biphasic region which were consistent with the presence of vesicles 

(115 – 181 nm) with moderate polydispersity < 0.4.   

The isotropic vesicle lobe for CPB/SPFH exists in the approximate range of 0.5 – 

3% wt/wt, γ = 0.6 – 0.85, as delineated in the phase map in Figure 6.3 (c). DLS provides 

vesicle sizes which range from 121 nm - 157 with low polydispersities (PDI = 0.05  - 

0.18).   TEM revealed spherical vesicles mostly in the range of 30 – 70 nm for this 

system (Figure 6.4e), although some larger more polydisperse vesicle populations (≥ 100 

nm) were also observed. The anionic-rich vesicle region exists for a slightly wider 

composition range in CPB/SPFH than in CPB/SPFO (1 – 4% wt/wt; γ = 0.7 – 0.9), with 

stable vesicle formation observed at lower surfactant concentrations for the less 

asymmetric pair (C16/FC7).    This parallels the CTAB/SPFH and CTAB/SPFO system, 

where slightly larger vesicle phase regions were determined for the more asymmetric 

pair.  The structurally similar system of CTAB/SPFH46 revealed a vesicle phase region in 

a composition range of 1.8 – 4.2 wt% (γ = 0.8 – 0.99).  The CTAB/SPFH vesicles were 

reported to be polydisperse, suggesting entropic stabilization, in contrast to the less 

asymmetric CTAB/SPFO system, which is enthalpically stabilized.46   The expansion of 

the vesicle region was ascribed to the increased chain asymmetric effect and the higher 

solubility of the SPFH surfactant which contributed to the different stabilization 

mechanisms reported.   

 

6.4.4 HFDPC/SPFH Aggregates 

The phase behavior of HFDPC/SPFH is assessed in a wide concentration range of 

approximately 0 - 8% wt/wt with γ = 0.5 – 1 (equimolarity at γ = 0.33).  Samples were 
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examined for at least 2 months before phase boundaries were designated.   At high 

concentrations (≥ 5 % wt /wt) in the multi-phase region (M-P) in Figure 6.3(d), the 

samples were biphasic, with bluish upper phase and sedimented cloudy lower phase, 

suspected to be condensed lamellar phase observed in previous systems.   Some of the 

samples in this region closer to equimolarity, (≥ 4% wt/wt/γ < 0.55), exhibited slight 

macroscopic viscosity, suggesting the coexistence of rod-like micelles with vesicles and 

lamellar aggregates.  Aggregates in these multiphase region range from 121 – 370 nm in 

diameter (PDIs = 0.13 – 0.55).    

As illustrated in Figure 6.3(d),  the anionic-rich vesicle lobe of HFDPC/SPFH  

mixtures exists close to the binary phase axis and spans a large composition range (from 

approx. 2 – 5% wt/wt; γ = 0.65 – 0.95.)    Vesicle sizes in the range of 94.9 - 160.8 nm 

with PDIs = 0.02 – 0.39, as measured by DLS.    TEM images revealed relatively 

monodisperse populations of small unilamellar spherical vesicles ≈ 20 nm in the vesi cle 

lobe (3.7% wt/wt; γ=0.9) in Figure 6.4(f). This is similar to the size distribution of 

HFDPC/SPFO vesicles.  However, in other sections of the TEM grid much larger 

polydisperse vesicles (30 – 150 nm) are detected.  Compared with the similar 

homogeneous fluorinated but less asymmetric HFDPC/SPFO bilayer, (FC10/FC7 vs 

FC10/FC5) the vesicle region is established at higher surfactant concentrations over a 

much larger composition range. This effect might be a combined function of the CMC of 

SPFH, which is four-fold greater than that of SPFO and the increased asymmetry.    

 

  6.4.5 Summary of Phase Behavior 

The structural transition of aggregate morphology through the different phase 

states is a combined effect of surfactant geometry and electrostatic interactions.  A clear 

demonstration has been made of the ability to modulate complex phase behavior in 

catanionic surfactants by changes in fluorinated surfactant geometry.  The largest 

isotropic phase region was established in the fully fluorinated bilayer, HFDPC/SPFH (2 – 

5% wt/wt; γ = 0.65 – 0.95), which also possesses the largest asymmetry. The smallest 

vesicle region was observed in the least asymmetric fluorinated pair, HFDPC/SPFO (0.6 

– 1.5% wt/wt;γ = 0.7 - 0.9).  This was ascribed to the stiffness of the combined 

fluorinated chains generating very rigid bilayer membranes.  TEM analysis reveals 
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smaller size vesicles with narrower size distributions in HFDPC/SPFO (20 – 50 nm), 

HFDPC/SPFH (≥20 nm) and CPB/SPFH (30 – 70nm) than in CPB/SPFO (40 – 200 nm) 

systems.  However, a small population of large vesicles were also captured in the fully 

fluorinated system, HFDPC/SPFO (100 nm), which skewed the DLS measurements 

towards large average sizes.   The size distributions suggest that all the systems with the 

exception of HFDPC/SPFO are dictated by entropic stabilization mechanism.  Taking 

into account, the expected high membrane rigidity of combined fluorinated chains, 

enthalpically stabilized vesicles are expected for the HFDPC/SPFO system and the 

smaller size distribution does support this rationale.  However, the presence of a few 

large vesicles (≈ 100 nm) does not currently allow for effective resolution of the 

stabilization mechanism.    Further detailed characterization of this system with cryo-

TEM analysis of the various compositions within the vesicle region, would help clarify 

the stabilization mechanism. HFDPC/SPFO vesicle region with cryo-TEM analysis 

would improve understanding of the mechanism of this system.   

 

 
Figure 6.4: Images of negatively stained aggregates in (a) CPB/SPFO in 1 % wt/wt;γ = 
0.85 and (b) 3% wt/wt; 0.65 (c) HFDPC/SPFO in 0.92 % wt/wt;γ = 0.85 and (d) 0.7 % 
wt/wt/ γ = 0.7. (e) CPB/SPFH 1% wt/wt;γ = 0.65.  (f) HFDPC/SPFH 3.7% wt/wt;γ = 0.9.   
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  Figure 6.4 Continued 
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6.5 Results and Discussion – Fluorescence Study 

Vesicle formation and bilayer organization in the catanionic surfactant systems, 

CPB/SPFO, HFDPC/SPFO, is characterized with fluorescence spectroscopic probes, 

pyrene and 1-pyrene carboxylic acid derivatives, in neutral pH conditions. Interpretation 

of the fluorescence results was first verified for the well characterized CTAB/SPFO 

vesicle system.44 The surfactant compositions chosen are within the vesicle phase lobes 

for the three systems used in the investigation.  The fluorescent probes were also utilized 

in study of micellar systems of the single surfactant solutions prior to study of vesicle 

formation.  Disintegration of the vesicles to mixed micelles with the addition of NaCl is 

detected by visual observation and DLS measurements.   Probing these mixed micelle 

systems, provides information on the nature of the surfactant aggregates.  

The solvatochromic behavior of pyrene, excimer formation and fluorescent 

quenching in different solvents or aggregate systems serve as useful indicators of 

pertubations to the local environments for the mixed and single surfactant systems.  The 

pyrene solvatochromic parameter, which is a ratio of the first to third vibronic peak (I1/I3) 

of the fluorescence spectra is an index of solvent polarity,305 that is widely applied in the 

analysis of aggregate structures in surfactant solutions306-308 and has been used to identify 

regions of micelle formation.  I1/I3 values decrease from polar aqueous environments 

(1.8) to apolar hydrocarbon solvents such as hexane (0.6), with solvents of intermediate 

polarity (methanol = 1.38, ethanol = 1.15, isopropanol = 1.05)309 between these end 

points.306  The formation of excimers, which are transient dimer complexes of an excited 

pyrene moiety and unexcited pyrene (ground state pyrene) moiety, is often interpreted as 

a diffusion controlled process.310  The frequency of excimer formation (as measured by 

the intensity of the excimer fluorescence peak) is directly related to the proximity of the 

pyrene molecules and is a measure of microfluidity of their environment.  Pyrene excimer 

formation is often employed in the study of membrane viscosity of liposomes,311 and 

biological membranes,312 the structural organization of monolayer films313 and the 

microfluidity of surfactant aggregates.   Quenching of the monomer fluorescence 

intensity results from several processes, which include dynamic interactions (dynamic 

collisions) with the quenching moiety, ground state complex of pyrene with the quencher 

(static quenching), excited state reactions, molecular rearrangements and energy transfer 
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mechanisms.266   Pyrene quenching is used to determine the location of the fluorophore in 

the aggregate systems, hence used to qualify the probe localization in the aggregates. 

Interactions between the quencher and fluorophore are typically defined by the distance 

of closest approach which is the combined radii of the fluorophore and quencher.   This is 

based on the Smoluchowski model314 further defined by Collins and Kimball’s315 

radiation boundary condition (RBC), where direct contact is required for quenching and 

is interpreted as a diffusion controlled process.  Complete quenching is taken as a short 

ranged molecular interaction between the fluorophore and quencher (over a small space 

of < 2Å266) taking into consideration the van der Waals interactions.  However, distance 

dependent quenching model has been defined for certain fluorophore-quencher 

interactions.316  Typically these involve molecules where long range energy transfer 

contributes to quenching but the spatial interactions are still defined by short distances in  

angstroms.317 Additionally this complex quenching effect is assessed using time resolved 

fluorescence techniques316,317 beyond the scope of steady state fluorescence applied here.  

The pyrene carboxylic acids used in this investigation are derivatives of the 

pyrene fluorophore (structures in Figure 6.2). They differ in the alkane chain lengths 

between the pyrene moiety and terminal carboxylic group (COOH): 1-pyrenebutanoic 

acid/Py-C4 (PBA), 1-pyrenedecanoic acid/Py-C10 (PDA) and 1-pyrenehexadecanoic 

acid/Py-C16 (PHA), which provides flexibility to probe various depths of the bilayer 

matrix and provide insight into the bilayer chain order or organization.  All fluorescence 

experiments were replicated thrice and the values presented represent the average of these 

experiments (the single surfactant micelle systems, represent the average of two 

experiments). 

 

Fluorescence Analysis Assumptions  
 
 The following section constitutes mainly a qualitative analysis of the fluorescence 

results and assumptions made about the  pyrene and derivatized probe behavior are 

briefly discussed here. The recognized quenchers in this study are the pyridinium 

headgroups in cationic surfactants, CPB and HFDPC and the bromide counterion.   

Pyrene quenching with the pyridinium headgroup is known to occur via an excited charge 

transfer complex.318  With the bromide ion, there is an intersystem crossing to an excited 
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triplet state with a long life time which leads to quenching by other processes.266  As a 

result, quenching by the pyridinium headgroups is expected to be much more pronounced 

than by the bromide counterions.  Considering the space requirements of quenching, a 

reasonable assumption has been made that the pyrene is sequestered in the micellar or 

bilayer aggregates and the phenomena of quenching and excimer formation is a direct 

result of this localization which brings the pyrene in close proximity with CPB or 

HFDPC.  The possibility that the sequestered pyrene or pyrene derivatives might be 

affecting intra-aggregate or bilayer dynamics, which in turn influences the fluorescence 

spectra has not been taken into account as the surfactant to probe ratios used here are 

sufficiently high.  Also exciplex formation of the surfactants and pyrene molecules and 

their contribution to the fluorescence spectra might be another effect to take into 

consideration.  Excimer formation is treated as a diffusion controlled process although it 

might also be formed by ground state complexes.  Homogeneous distribution of the 

pyrene has been assumed where pyrene monomers or excimers might be distributed in 

both hydrophilic and hydrophobic microenvironments with the I1/I3 attributed to both.  

Also, the effects might be also attributed to the non-homogeneity of the surfactant 

aggregates and the partitioning and random occupancy of the pyrene molecules between 

these aggregates.   

 

6.5.1 Probing CPB/SPFO Aggregates with pyrene, Py-C4, Py-C10 and Py-C16 

 For study of the CPB/SPFO vesicles, a fixed surfactant composition in the 

anionic-rich region of the vesicle lobe was investigated:  2% wt/wt; γ = 0.85 (SPFO = 

1.7% wt/wt, CPB = 0.3% wt/wt).  This is equivalent to a molar concentration of 47.5 mM 

with the anionic surfactant mole fraction of XSPFO = 0.83.  Prior to study in the vesicle 

system, pyrene fluorescence was examined in micelle solutions of SPFO and CPB.    

 

Pyrene Study of SPFO micelles   

To study SPFO micelle formation, increasing amounts of the dry surfactant 

powder (0 – 1.7% wt/wt) were added to the pyrene probe dissolved in water and mixed 

thoroughly.  The fluorescence spectrum was recorded at each interval of surfactant 

addition.   The surfactant to pyrene ratios varied from 458 to 7800.  As depicted in Figure 
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6.5(a), the pyrene fluorescence peaks were well resolved at even the highest SPFO 

concentration, with the five peaks observed at 373, 379, 384, 389 and 393 nm.  The 

emission intensity (measured from the solvent-sensitive peak at 373 nm) decreased with 

increasing concentrations of SPFO (54% decrease at 1.7% wt/wt), with a simultaneous 

increase in the intensity of the pyrene excimer at 475 nm (20-fold increase).  There was a 

gradual decrease in I1/I3 with increasing amounts of SPFO.  The I1/I3 of pyrene decreased 

from 1.89 in pure water to 1.32 at the CMC of SPFO (1.3% wt/wt).  I1/I3 further 

decreased to 1.25 at 1.5% wt/wt, after which it was constant. 

 Studies suggest that pyrene is often located close to the micelle interface of most 

micellar aggregate systems due to its exclusion from the aggregate packing319,320 with the  

I1/I3 utilized as a measure of the surface density or headgroup compactness.319   However, 

others have shown pyrene penetration into the micellar core of some hydrocarbon 

surfactants.321  Our trends in I1/I3 and excimer formation with increasing SPFO 

concentration suggest that pyrene is located in close proximity to the headgroup region in 

SPFO, with the excimer formation attributed to the antipathy of hydrocarbon and 

fluorinated chains.  SPFO is composed of uniform fluorinated chains with no 

hydrocarbon spacer.  Hence, there is no lipophilic region for the solubilization of the 

hydrocarbon pyrene in its micellar or premicellar aggregates. Previous analysis of both 

SANS322 and F NMR323 indicate minimal penetration of the fluorinated micellar core of 

SPFO by water, but considerable water contact for the CF2 group adjacent to the 

carboxylic headgroup.324  As such, the pyrene fluorophores might be restricted to the 

more solvated micelle interface of SPFO, confined to pseudo-domains, where frequent 

self-collision increases the probability of excimer formation.  The concentration-

dependent quenching is probably due to the self exclusion and localization of the pyrene 

probes in the solvated interfacial region of the fluorinated SPFO micelles and is a 

reflection of the mutual dislike of the hydrocarbon probe and fluorinated chains.  The 

trend is in accord with several studies which assert that the lipophobic nature of 

fluorinated chains limits solubilization of pyrene either in mixtures of hydrocarbons and 

fluorocarbons42,43,325 or in fluorocarbons alone.326-328    
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Pyrene in CPB micelles  

 A concentration range of 0 – 0.3% wt/wt was used in the study CPB micelle 

formation.  The concentration gave surfactant to pyrene ratios of 260 – 1600, which were 

lower than in the SPFO micelles.   In contrast to SPFO system, excimer formation is not 

detected in CPB, as shown in Figure 6.5(b).  However, a much larger reduction in 

monomer intensity (a 97%decrease at the CPB CMC (0.025% wt/wt) relative to pure 

pyrene) is observed with increasing CPB concentration.  The  pyrene fluorescence was 

effectively quenched by the aromatic pyridinium headgroup of CPB, which is a well 

known quencher.329  The I1/I3 displayed no consistent trend above the CMC, varying 

around an average of 1.70 but exhibited a sharp decrease to 1.3 below the CMC.  This 

behavior is very similar to that observed for cetylpyridinium chloride (CPC), whose I1/I3 

values decreased from 1.83 – 1.2. at the CMC.42   In CPB solution, the pyrene quenching 

mechanism changes from predominantly dynamic collision in premicellar aggregates to 

both static and dynamic in fully formed micelles.330  In effect below the CMC of CPB, 

the quenching of pyrene is propagated via diffusional collision with the pyridinium 

headgroup quencher (dynamic quenching) while above the CMC, the quenching occurs 

mainly by molecular binding with headgroup quencher.  The significant quenching effect 

in CPB compared with SPFO reflects the low solubilization of the fluorinated system 

towards lipophilic pyrene.   

 

Pyrene in CPB/SPFO Vesicles  

Figure 6.5 (c) presents changes in fluorescence of pyrene as incremental amounts 

of CPB (up to 0.3% wt/wt) were added to SPFO micelles (1.7% wt/wt) to form vesicles.  

Vesicle formation was visualized by the appearance of the homogeneous bluish tint 

ascribed to vesicles and DLS sizes (107.5 nm/PDI = 0.2) comparable with values 

observed in pH 3 medium (98.9 nm/PDI = 0.1).   

Increasing incorporation of CPB (decreasing mass fraction of SPFO; γ = 1 – 0.85) 

into SPFO micelles caused a dramatic decrease in both monomer intensity (93%) and 

excimer formation (97%).   This suggests a change in the microenvironment from SPFO 

micelles to the mixed bilayer aggregate of CPB/SPFO.  The strong reduction in monomer 

intensity (or increased quenching) is much greater than that observed in the SPFO 
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micelles but similar to that observed in CPB micelles.  These trends in quenching suggest 

that pyrene is situated in close proximity to the aromatic CPB headgroup in the mixed 

bilayer system.  With increasing CPB incorporation, the pyrene fluorophore is better 

solubilized into the lipophilic environment provided by the hydrocarbon chains of the 

CPB micelles, with correspondingly less excimer formation.   Indeed, this phenomenon 

parallels several observations of pyrene in mixed hydrocarbon/fluorocarbon surfactant 

systems and has been used to delineate demixing of the mutually phobic chains.42,43,325   

An alternative interpretation of the trends in emission intensity and excimer formation is 

based on the heterogeneous nature of the vesicle fluid bilayer as a result of the chain 

asymmetry of CPB (C16) and SPFO (FC7).  Asymmetry would result in large free 

volume in the bilayer, promoting frequent collision with the CPB headgroup quencher 

due to increased intra-membrane mobility of the pyrene fluorophore.   

Rapid destabilization of the SPFO/CPB vesicles to mixed micelles with addition 

of NaCl salt (0.34M; 2% wt/wt) leads to only a very slight recovery of the fine vibronic 

structure of pyrene (Figure 6.5(a)).   Demicellization was evident in the appearance of 

clear, colorless solutions and substantiated by large departure in DLS, from vesicle sizes 

(510 nm/PDI = 0.86).   In accordance with the CPB/SPFO phase map  in figure 6.3 (a), 

destabilization of vesicles should yield SPFO-rich micelles due to excess of the anionic 

surfactant (γ = 0.85).  This is consistent with Brasher et al’s177 study where addition of 

sodium bromide salt (NaBr) to anionic-rich CTAB/SOS vesicles promoted transition to 

the adjacent SOS-rich micellar phase.  The equally diminished pyrene intensities in both 

vesicles and mixed micelles Figure 6.6(a) suggests the fluorophore experiences similar 

intra-aggregate environments, in close proximity to the CPB headgroup quencher.   
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Figure 6.5: (a) Pyrene in SPFO solution; 0 – 1.7% wt/wt (b) Pyrene in aqueous solutions 
of CPB; 0 – 0.3% wt/wt (c) Increasing amounts of CPB (0 – 0.3% wt/wt) added to 
aqueous solution of SPFO/pyrene (1.7 % wt/wt).  (broken arrow indicates excimer 
formation) 

0

100

200

300

400

500

600

350 400 450 500

Fl
uo

re
sc

en
ce

 In
te

ns
ity

Emission Wavelength (nm)

Increasing 
SPFO conc. 

(a)



150 
 

 

 
Figure 6.5 Continued 
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Figure 6.6: Fluorescence spectra of (a) pyrene (b) PBA/Py-C4 (C) PDA/Py-C10 (D) 
PHA/Py-C16 fluorescent probes in CPB/SPFO vesicles (…) and mixed micelle systems 
(▬);destabilization of vesicles to micelles as a result of salt addition, NaCl (2% 
wt/wt/0.34M). 
 

Probing CPB/SPFO Aggregates with Py-C4, Py-C10 and Py-C16 

 The fluorescence spectra of the pyrene derivatized probes in CPB/SPFO vesicles 

and micelles systems are presented in Figures 6.6(b) – (d) for Py-C4, Py-C10, and Py-

C16, respectively.  Dried films of CPB/probe were hydrated with SPFO solutions, heated 

and stirred before fluorescence analysis.  Identical compositions to that of pyrene studies 

were employed (2% wt/wt;γ = 0.85).  Although the probes share identical chromophores 

with pyrene, the alkane appendage with carboxylic end group diminishes the sensitive 

vibronic structure due to loss of molecular symmetry.331  However, fluorescence studies 

of the derivatized probes in different solvents reveal that the I1/I3 of the pyrene moiety in 

PBA, still demonstrates some sensitivity to the local solvent environment, with values 

ranging from 1.9 – 3.4 from apolar to polar media.302  The carboxylic end group of the 
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derivatized probes provides for association with the surfactant head groups.  In neutral 

and basic pH, the carboxylic acid group is expected to be largely deprotonated,332 hence 

negatively charged ionic association with the positively charged CPB headgroup occurs.  

This ionic association can be used to anchor the carboxylic terminal group at the 

aggregate surface, with the pyrene moiety intercalated in the intra-bilayer chain 

environment.     

For the shortest probe Py-C4 (Figure 6.6 (b)), the I1/I3 ratio displayed an average 

change from 2.76  in vesicles  to  2.95 in the mixed micelles, suggesting similar local 

environments of the fluorophore in vesicles and micelles.  For the longer chained Py-C10 

and Py-C16, (Figure 6.6(c and d)), the resolution and emission intensity of the 

fluorescence spectrum are diminished in the system, suggesting quenching of the pyrene 

moiety. The Py-C4 is geometrically constrained by its short chain, restricting the bending 

back conformation, so the fluorophore is located at reasonable distance from the 

headgroup region, with quenching effect minimized.  The quenching of the pyrene 

moiety attached to the more flexible, longer alkyl chains of Py-C10 and Py-C16 can be 

attributed to folded conformation (adoption of U shaped geometry), making the pyrene 

fluorophore accessible to the pyridinium headgroup quencher at the interface. This 

implies presence of disordered chain packing or free volume in the CPB/SPFO bilayers 

and mixed micelles. Similar  inference was made from steady state fluorescence studies 

of self-assembled alkanoic acid monolayers using the same probes.302  Decreasing 

asymmetry between the alkanoic acid chains (C22 – C12) and Py-C16 resulted in a 

decrease in I1/I3 ratios, with the pyrene moiety located in a more lipophobic region.  The 

trend was reversed at a critical ratio of the acid and probe chain length (Py-C16/C16).  In 

the longer chained monolayers, PHA was embedded in the alkanoic acid monolayer 

chains but decrease in chain length of the latter resulted in exposure of PHA to aqueous 

environment.   This unfavorable exposure resulted in the probe bending back to 

intercalate in the hydrophobic alkyl chain regions of shorter chained monolayers (C16).    

The same effect is reflected here with free volume cavities333 created by mismatched 

chains (fluid bilayers) in the CPB/SPFO vesicle facilitating folding of the probes with 

insertion of the pyrenyl fluorophore in the headgroup region of the vesicles.   
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The trends in our study suggest that the pyrene fluorophore is readily accessible to the 

pyridinium headgroup in both the CPB/SPFO vesicle bilayers and mixed micelles.   The 

free volume of the mismatched chains in the bilayer (C16/FC7) might provides sufficient 

flexibility of the folded chain conformation in Py-C10 and Py-C16 probes.  The short 

chain of Py-C4 reduces the probability of the folded conformation and results in less 

quenching of the probe.  Overall, this suggests some fluidity of the mixed hydrocarbon 

bilayer in CPB/SPFO.   

 

6.5.2 Probing CTAB/SPFO Aggregates with pyrene, Py-C4, Py-C10 and Py-C16 

CTAB/SPFO is a catanionic system which has been studied in detail (cryo-TEM, 

DLS) by Kaler and coworkers.44,54  With a common anionic surfactant and similar bilayer 

chain environments (C16/FC7) to CPB/SPFO, the fluorescence study of CTAB/SPFO in 

this work serves as a standard by which the headgroup effects can be effectively assessed.   

The microenvironment of pyrene probes in anionic-rich CTAB/SPFO vesicles 

were studied at a total surfactant concentration of 2 wt% and γ = 0.85, the same surfactant 

composition by weight as the CPB/SPFO system.  This is equivalent to a 47 mM 

surfactant solution where XSPFO = 0.83. This vesicle solution was micellized with the 

addition of NaCl (2%wt/wt; 0.34 M). DLS measurements confirmed the transformation 

of phases from vesicles (diameter = 117 nm; PDI = 0.27) to mixed micelles (diameter = 

386.6 nm; PDI = 0.69) in micellar solution.  The micelle solutions were clear, colorless 

and slightly viscous, suggesting the presence of rod-like micelles.334 

The fluorescence spectra of pyrene, Py-C4, Py-C10 and Py-C16 in CTAB/SPFO 

vesicles and micellar systems are presented in Figures 6.7(a) – (d), respectively.  All 

emission spectra display the well resolved five peak vibronic structures of the 

fluorophore.  Interestingly, in contrast to CPB/SPFO aggregates, the spectra are intense 

and excimer formation is not evident in either the vesicle or mixed micelle systems of 

CTAB/SPFO.     This provides strong evidence that the loss of fluorescence intensity 

observed in CPB/SPFO is a direct effect of quenching by the pyridinium headgroup.  

Pyrene in pure CTAB micelles display high intensity (spectrum not shown) with 

I1/I3 values (1.32) similar to literature values (1.30),  consistent with solubilization in the 

palisade region.306   Bromide ions are recognized as quenchers of pyrene321 and used to 
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characterize CTAB aggregates in aqueous solution.335 However, relative to the 

pyridinium headgroup in CPB, the effect of the bromide counterion is insignificant.  The 

intensity of the emission spectra of pyrene in CTAB/SPFO vesicles and mixed micelles is 

similar (Figure 6.7a), but the I1/I3 decreases from 1.15 in vesicles to 0.99 in mixed 

micelle systems.  Pyrene experiences a slightly more hydrophobic region in the vesicles 

and mixed micelles than in the pure CTAB micelles based on the I1/I3 values.   

The fine spectra of Py-C4, Py-C10 and Py-C16 in CTAB/SPFO aggregates 

(Figures. 6.7 (b) – (d)) provide for clear assessment of changes in micropolarity as the 

vesicles were micellized, although, the scale of I1/I3 values is higher scale for derivatized 

pyrene (1.9 – 3.4) relative to pyrene (0.6 – 1.8).  For the shortest probe, Py-C4, I1/I3 

changed from 2.94 (vesicles) to 2.86 (mixed micelles).  The I1/I3 values of Py-C10 were 

unchanged (3.22).  The I1/I3 values of the longest hydrocarbon chain probe, Py-C16, 

decreased slightly in going from vesicles (3.13) to mixed micelles (3.01).    Recalling that 

the derivatized probes are anchored at the interface by the electrostatic interaction of the 

carboxylic endgroup (COO-) and the pyridinium headgroup (CP+), the position of the 

pyrene fluorophore is then attributed to the flexibility of the alkane chains and the fluidity 

it experiences in the aggregate.  The I1/I3 values indicate similar, highly polar 

environments in the vicinity of pyrene in both vesicles and mixed micelles.  As with 

CPB/SPFO, the pyrene moiety of Py-C4 is projected to be intercalated in the mismatched 

bilayer of the C16/FC7 chains while the pyrene fluorophore in the longer chained Py-C10 

and Py-C16 might be in contact with the aqueous regions of the bilayer.   
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Figure 6.7: Fluorescence spectra of (a) pyrene (b) PBA/Py-C4 (c) PDA/Py-C10 (D) 
PHA/Py-C16 fluorescent probes in CTAB/SPFO vesicles (…) and mixed micelle systems 
(▬); (destabilization of vesicles to micelles as a result of salt addition, NaCl, 2% 
wt/wt/0.34M). 
 
 

Overall, the I1/I3 values of the longer chained Py-C10 and Py-C16 in the bilayer 

suggest high micropolarity, which could be interpreted in two ways: the pyrene moiety in 

close proximity to the headgroup region or the result of exposure of the pyrene 

fluorophore to aqueous microenvironment of the bilayer (chain mismatch effect).  Taking 

into account the possibility that the probe is anchored at the interface by the carboxylic 

end group, the lack of quenching in CTAB/SPFO supports our analysis on the position of 

the fluorophore in CPB/SPFO.   The pyrene fluorophore is probably adopting a U shaped 

conformation (Py-C10 and Py-C16) in CPB/SPFO.  This geometric conformation brings 

the fluorophore in direct contact with the pyridinium headgroup quencher.   
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6.5.3. Probing HFDPC/SPFO Aggregates with pyrene, Py-C4 and Py-C16  

For study of the HFDPC/SPFO system, a fixed surfactant composition in the 

anionic-rich region of the vesicle lobe was investigated: 1.18% wt/wt; γ = 0.78 (SPFO = 

0.927% wt/wt; HFDPC = 0.026%wt/wt). This is equivalent to a molar concentration of 

25 mM with the anionic surfactant mole fraction XSPFO = 0.85. Prior to study in the 

vesicle system, pyrene fluorescence (5 µM) was used to characterize solutions of 

HFDPC.    

 

Pyrene in HFDPC micelles 

Figure 6.8(a) shows pyrene fluorescence intensity decreases as a function of 

HFDPC concentration (0 – 0.264% wt/wt) in aqueous solution, corresponding to a 

minimum surfactant/pyrene ratio of 1500.  Similar to CPB (Figure 6.5(c)), the 

concentration dependent quenching coupled with absence of excimers suggests pyrene is 

closely associated with the pyridinium headgroup quencher.  The I1/I3 value showed 

minimal variance around an average of 1.76 for premicellar to micellar concentration.  

Figure 6.8(b) illustrates the slightly, higher quenching effect of HFDPC than CPB, which 

is ascribed to the fluorophilic nature of HFDPC.  Almgren et al303 deduced from 

fluorescence decay curves of pyrene, quenching was propagated by  dynamic collision 

below the CMC (dynamic quenching) for aqueous solutions of 1,1,2,2 

tetrahydroperfluorodecylpyridinium chloride, HFDePC (FC8) while above the CMC, 

static quenching was more dominant.  With cetylpyridinium chloride (CPC) considerable 

static quenching existed even below the CMC due to the affinity of the pyrene 

fluorophore for the lipophilic CPC chains.  The alkane link between the headgroup and 

fluorinated chains in HFDPC, apart from acting as a solubilization site, affords ready 

accessibility to the aromatic headgroup, with the resultant quenching effect.  This is 

supported by findings303 which report vastly different solubilization capacities between 

isotropic solvents and micellar aggregates.   Pyrene solubility is 700 times higher in n-

dodecane than in n-perfluoroheptane while it only differs by a factor of 60 in the 

analogous CTAC and HFDePC micelles.   This disparity is ascribed to the presence of the 

methylene group in HFDePC, similar to HFDPC, acting as a solubilization site for the 

pyrene. 
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Probing HFDPC/SPFO Aggregates with Pyrene, Py-C4 and Py-C16 

 The fluorescence of pyrene in HFDPC/SPFO vesicles was studied by adding 

incremental amounts of HFDPC (0 – 0.264% wt/wt) to solutions of SPFO (0.927% 

wt/wt) which contained dissolved pyrene (5 µM). The DLS vesicle size was 177.8 nm 

with PDI of 0.2.   Addition of NaCl salt (1% wt/wt; 0.17M) resulted in DLS sizes (511 

nm; PDI = 0.63) and a mixed micelle solution that displayed macroscopic viscosity, 

which suggests rod-like micelles.  Analogous to the system of CPB/SPFO, both pyrene 

emission intensity and excimer formation decreased as the fraction of HFDPC was 

increased (Figure 6.8a).  The intensity of the pyrene I1 peak decreased 50%, while the 

corresponding excimer intensity decreased by 70% at the highest HFDPC concentration 

added to SPFO solution.  The pyrene I1/I3 displayed no consistent trend with the 

surfactant addition and fluctuated around an average of 1.59.  This reflects the position of 

pyrene at the aqueous interfacial region of the vesicles or preformed vesicular aggregates.  

HFDPC/SPFO vesicles possess a fully fluorinated bilayer core and would effectively 

exclude lipophilic pyrene, restricting the probe to the aqueous interfacial regions.  The 

I1/I3 value for HFDPC/SPFO vesicles (1.59) is higher than that reported for CTAB/SPFO 

vesicles (1.15), which suggests that pyrene is located at greater depth of the bilayer in the 

mixed hydrocarbon/fluorocarbon bilayers.  This might be attributed to the combined 

effect of microviscosity and solubilization.  With both tails fluorinated, the bilayer in 

HFDPC/SPFO would consist of chains in mostly extended, trans-conformation due to 

stiffness and bulkiness of fluorine chains; the outcome being a well packed bilayer region 

with the pyrene confined to the more hydrated interfacial regions.   Also, the increased 

lipophobicity of the fluorinated chains would result in expulsion of the lipophilic pyrene 

from the inner chain regions of HFDPC/SPFO to the headgroup region.  In CTAB/SPFO 

and CPB/SPFO, the long chains of the hydrocarbon CTAB or CPB (C16) would most 

likely adopt gauche conformation and the presence of the fluorinated SPFO fluoroalkyl 

chains (FC7) might promote such geometry in the bilayer.  Hence, the bilayer is expected 

to be less organized in CTAB/SPFO vesicles, facilitating penetration of pyrene into 

hydrocarbon regions, reporting a lower I1/I3 value.  This difference in pyrene I1/I3 values 

suggests different incorporation mechanisms into CTAB/SPFO and HFDPC/SPFO 

vesicle bilayers. 
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The fluorescence spectrum of Py-C4 inserted in HFDPC/SPFO (FC10/FC7) 

vesicles and mixed micelles was well resolved (Figure 6.8(d)).  The I1/I3 values were 2.98 

and 3.08 in the respective vesicles and mixed micelles, indicating the pyrene moiety in 

Py-C4 detects similar local environments and polarity in the vesicles and micelles.  With 

both tails fluorinated, the possibility of more uniformly mixed micelles of HFDPC/SPFO 

is higher than in CTAB/SPFO or CPB/SPFO.  Therefore, the Py-C4 probe is projected to 

encounter more uniform intra-chain environments in both vesicles and mixed micelles of 

HFDPC/SPFO.  The nature of the interaction the hydrocarbon Py-C4 in the fluorinated 

bilayer of HFDPC/SPFO would be different to both CTAB/SPFO and CPB/SPFO due to 

increased lipophobicity.  

Fluorescence was completely quenched in HFDPC/SPFO vesicles and mixed 

micelles using the longer chained probe, Py-C16.  The intermediate probe, Py-C10, was 

not investigated. An analysis of the Py-C16 probe in HFDPC micelles revealed complete 

quenching and the same effect was observed in SPFO micelles. The lack of fluorescence 

emission in either the pure micelles (HFDPC and SPFO), the mixed vesicle and mixed 

micelles, suggests the Py-C16 probe is not solubilized in the homogeneous fluorinated 

bilayer systems.    This reflects limited solubilization of the homogeneous fluorinated 

bilayer core in HFDPC/SPFO towards the lipophilic long chained Py-C16 probe.  This 

inference can be made based on comparisons with the probe in CPB/SPFO system.  

Considering that fluorescence emission was observed for Py-C16 in mixed CPB/SPFO 

(Fig. 6.6d), albeit significantly smaller than with Py-C4, the complete lack of 

fluorescence emission in HFDPC/SPFO supports our rationale that the Py-C16 is 

effectively excluded from the fluorinated bilayer.  Additionally, the long chained probe 

(C16) would be geometrically constrained in the shorter fluorinated chains of the bilayer 

((C2FC10)) that is the length of two monolayers.  The longer chains in CPB/SPFO 

((C16/FC7)) might facilitate insertion into the mixed hydrocarbon/fluorinated bilayer. 

Overall, the inference can be made that HFDPC/SPFO possesses a bilayer that 

excludes the lipophilic, long chained, Py-C16 while Py-C4 is short enough to attain 

moderate penetration in the fluorinated/fluorinated bilayer.  Considering that all probes 

were inserted in the CPB/SPFO, this effect demonstrates that the HFDPC/SPFO with 

lipophobic and hydrophobic bilayer is less fluid and better organized.   
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Figure 6.8: (a) Emission spectra of pyrene as a function of increasing HFDPC 
concentration (0 – 0.264% wt/wt) in aqueous solution. (b) Decrease in monomer intensity 
or quenching of pyrene with increasing concentration of CPB (●) and HFDPC (♦) in 
aqueous solutions.   (c) Fluorescence spectra of pyrene in SPFO micelles (…) and in 
HFDPC/SPFO vesicles (▬).  (d) Fluorescence of PBA/Py -C4 in HFDPC/SPFO vesicles 
(…) and in HFDPC/SPFO micelles (▬). 
 
 

6.6. Conclusion  

Phase behavior has been examined in mixed hydrocarbon/fluorocarbon bilayers, 

CPB/SPFO, CPB/SPFH and fluorinated/fluorinated bilayers, HFDPC/SPFO and 

HFDPC/SPFH, with the goal of identifying regions of stable catanionic vesicle 

formation.  Larger vesicle phase regions were identified in the more asymmetric bilayers, 

CPB/SPFH (C16/FC5) and HFDPC/SPFH (FC10/FC5) than in CPB/SPFO (C16/FC7) 

and HFDPC/SPFO (FC10/FC7).  HFDPC/SPFO possessed the narrowest vesicle region 

of all systems studied showing that the combination of reduced asymmetry and stiff, 

bulky fluorinated chains results in high membrane rigidity for vesicle curvature. 
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However, the vesicle region is expanded in more asymmetric fluorinated bilayers of 

HFDPC/SPFH.  The increased chain asymmetry in HFDPC/SPFH results in reduced 

packing density and more fluid bilayers than in HFDPC/SPFO. 

Further characterization of the systems with pyrene and pyrene derivatized probes 

suggest greater fluidity of the mixed hydrocarbon/fluorocarbon bilayer in CPB/SPFO 

than in HFDPC/SPFO. The bilayer of the mixed CPB/SPFO possesses sufficient fluidity 

to promote bending of the longer chained probes, Py-C10 and Py-C16, with subsequent 

quenching of the pyrene fluorophore.  The structural conformation is confirmed by 

comparisons with CTAB/SPFO, where no quenching is observed for any of the probes 

and the fluorescence emissions register high intensities.  This supports the solubilization 

of the probe moiety in mixed hydrocarbon/fluorocarbon bilayers.  With HFDPC/SPFO, 

the fully fluorinated bilayer prevents solubilization of the longer chained lipophilic 

pyrene derivatized probe, Py-C16.   Future efforts will be made to assess the differences 

in the more asymmetric counterparts, CPB/SPFH and HFDPC/SPFH.   
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CHAPTER 7 

 

 

ENCAPSULATION OF FLUORESCENT DYES IN 

HYDROCARBON/FLUORINATED AND FULLY FLUORINATED 

CATANIONIC VESICLES 
 

 

 

7.1 Summary 

Encapsulation of a neutral and a cationic solute dye, riboflavin and rhodamine 6G 

(R6G), is investigated in catanionic vesicle systems with mixed hydrocarbon 

/fluorocarbon bilayers (cetylpyridinium bromide (CPB)/sodium perfluorooctanoate 

(SPFO)), and compared with the fully fluorinated analogue (1,1,2,2-

tetrahydroperfluorododecylpyridinium chloride (HFDPC)/ SPFO).  Both vesicle systems 

were prepared with excess molar concentrations of the anionic surfactant, SPFO, 

resulting in negatively charged aggregate systems.  Size exclusion chromatography 

(SEC) was used to determine the efficiency of solute encapsulation and vesicle stability. 

Vesicle aggregate size was monitored with dynamic light scattering.  The neutral solute, 

riboflavin, is not effectively encapsulated in either vesicle system, while significant 

encapsulation is achieved with R6G.  This is consistent with specific ionic association of 

the oppositely charged species (anionic vesicles and cationic R6G) as a principal driving 

force for encapsulation.  Greater encapsulation of RG6 is achieved with CPB/SPFO (85% 

and 65% for 1mM and 0.05mM) relative to HFDPC/SPFO (14% for 0.05mM).  The 

HFDPC/SPFO vesicles demonstrated higher retention of the captured R6G (11%) while 

more than half the captured dye was released in CPB/SPFO vesicles. The destabilization 

effect on the vesicles with increasing R6G concentration was more prominent for the 

HFDPC/SPFO bilayers than for the CPB/SPFO system, suggesting a difference in the 

incorporation mechanism for the two systems.   
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7.2 Introduction 

Vesicles, as model membrane structures, have found use in a range of applications 

including the synthesis of nanoparticles,50,116 as aqueous  reservoirs for chemical 

reactions,165,336and as encapsulation and controlled drug delivery systems.337,338  Vesicles 

are characterized by four distinct compartments for molecular association: (1) the outer 

vesicle surface, (2) the bilayer, (3) inner membrane surface, and (4) the inner aqueous 

pool.  The effective encapsulation of solutes or reactants in vesicles, the stability of these 

encapsulated systems, and permeability of the vesicle bilayers are critical properties in 

designing vesicles for specific applications.  The barrier properties of phospholipid-based 

vesicles (liposomes), which require preparation with mechanical force, have been well 

investigated129,339 even though they are constrained by thermodynamic instability and 

may transform to their equilibrium lamellar state.  By comparison, catanionic vesicles, 

prepared by mixing dilute aqueous solutions of oppositely charged surfactants, form 

spontaneously and are relatively stable for long periods of time.  Vesicles are the form of 

the surfactant aggregate often observed in these catanionic systems. Excess surface 

charge is hypothesized to be a primary stabilization mechanism of these vesicles when 

one surfactant, particularly the shorter chain or more soluble surfactant is in 

excess.167,197,280,340  The thermodynamic stability of catanionic vesicles is also attributed 

to other factors, including the asymmetry of the mixed surfactant chains and the reduction 

of the combined cationic-anionic headgroup area.  The size and polydispersity of 

catanionic vesicles are determined by the surfactant structure, ionic strength of the 

solutions and the composition of the mixture, hence allowing for manipulation of the 

vesicle size for specific encapsulation applications.340   

Catanionic vesicles have been demonstrated as a vehicle for 

encapsulation,47,48,164,282,341-343  and may provide some advantages relative to conventional 

liposomes.47,164    For example,  enhanced encapsulation efficiencies of a fluorescent 

marker, 5(6) carboxyfluorescein (CF), was demonstrated in a catanionic vesicle system, 

cetyltrimethylammonium tosylate/sodium dodecyl benzene sulfonate, (CTAT/SDBS; 

21% encapsulation efficiency) relative to lipid based egg yolk phosphatidylcholine 

(EYPC) liposomes (1.6% efficiency).164    Further, rapid release of the encapsulated 

probe was observed in the EYPC liposomes compared with CTAT/SDBS; the release 
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time for half the encapsulated dye was two days in the liposome systems compared with 

over 80 days in catanionic system. 

Encapsulation efficiency is highly dependent on specific ionic association of the 

oppositely charged vesicles and solute species.47,344,345 In the previous example, the 

encapsulation is driven by the electrostatic attraction of the oppositely charged vesicle 

surface (positively charged CTAT/SDBS vesicles) and the solute species (negatively 

charged CF).  Danoff et al47 observed significantly higher encapsulation (up to 700 fold) 

when their selection of UV active dyes (R6G, CF, doxorubicin hydrochloride) were 

matched with CTAT/SDBS vesicles of overall opposite charge than in systems where 

both species were of the same charge. They conclude that adsorption to the vesicle walls 

or bilayer (i.e. interfacial interactions) accounts for about three-quarters of the 

encapsulation efficiency.  Zhao et al341 support these observations in their encapsulation 

of the anionic bromophenol blue dye in cationic rich vesicles of sodium 10-undecanoate 

(anionic) and decyltrimethylammonium bromide (cationic).   The amount of trapped 

bromophenol blue increased 30-fold from the anionic-rich to the cationic-rich vesicle 

phase region.    

The ionic association of solutes with catanionic vesicles may provide significant 

improvements in entrapment compared with conventional liposomes.  R6G and CF 

encapsulation efficiencies in CTAT/SDBS vesicles were 6-fold 47 and 24-fold 164 higher 

than that reported for egg-phosphatidylcholine (EYPC)346 and lipid mixtures of 

dipalmitoylphosphatidylcholine/ dipalmitoylphosphatidylglycerol (DPPC/DPPG)347, 

respectively.  Similarly, the strong affinity of DNA for positively charged catanionic 

vesicles of cetyltrimethylammonium bromide (CTAB) and sodium octyl sulfate (SOS) 

(excess CTAB)as investigated by Dias et al,48 suggests the tremendous potential of these 

systems in gene delivery and other biopharmaceutical applications.   

However, some investigations suggest that the dynamic nature of the short chain 

components of catanionic vesicles and the ionic character of these systems might limit 

their trapping capabilities.342,343   For example, Caillet et al.342 observed minimal glucose 

or CF encapsulation (0.1 - 0.2% encapsulation efficiency) in negatively charged 

catanionic CTAB/ excess SOS vesicles.  Slightly higher levels of glucose were detected 

in vesicles in which the counter ions had been removed (1% encapsulation efficiency).  
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This study suggested that the negatively charged CF probe destabilized the negatively 

charged vesicles, although the high probe concentrations (50 mM) has been suggested to 

be a contributing factor.47   Others167,282,340 have reported trapping of neutral molecules 

such as glucose and riboflavin (neutral at pH <10) with catanionic vesicle, but the 

efficiencies are much lower than that for ionic solutes.  Fischer et al.282 report 2% 

encapsulation of glucose in CTAT/SDBS vesicles, which is low in comparison to 

entrapment of the anionic CF (21 %) in the same system.164  Also, over 70% of the 

encapsulated glucose was lost from these vesicles in 8 hours.  However, the glucose 

encapsulation efficiencies in the catanionic vesicles still compare favorably with those of 

DPPC liposomes, which ranged from 1.9% at 25oC to 1% at 45oC.343  Although the 

underlying mechanism for solute encapsulation in catanionic vesicles may be dominated 

by charge, the influence of bilayer chain order in catanionic vesicles cannot be 

completely ignored.   The bilayer is accepted as modulator of vesicle activity in 

traditional liposomal systems and regulates transport to and from the aqueous core to the 

continuous phase,154 with permeability of vesicles dependent on the temperature-

dependent phase of the bilayer348 and the hydrocarbon chain organization.130,134  By 

extension to catanionic systems, reduced solute permeability is expected for better 

organized, structured, bilayer environments.  In catanionic vesicles, the chain asymmetry 

and distribution of surfactants in the inner and outer monolayers dictated by spontaneous 

curvature to form the vesicles suggests a less structured membrane chain arrangement or 

packing than in double chained liposome systems.179,278    

Incorporation of hydrophobic and lipophobic fluorinated chains in the bilayer has 

been demonstrated as an effective means of reducing liposome permeability.349,350 

Fluorinated surfactants possess several distinguishing properties from traditional 

hydrocarbon surfactants, including a greater driving force to self-aggregate due to their 

high hydrophobicity as well as lipophobicity.70,204,205,208,285-288  The properties of 

fluorinated surfactants are ascribed to the weaker intermolecular interactions in 

fluorinated molecules.288  The bulky and rigid fluoroalkyl chains also tend to form 

structures with lower curvature (i.e., rod like micelles, vesicles and lamellar phases) than 

the analogous hydrocarbon surfactants.1,70,204,211  In addition, the bulkiness and stiffness 

of the fluorinated carbon chains restrict random motion of the chains, resulting in trans-
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conformation as opposed to gauche chain type packing in the bilayer.70,205  The tightly 

packed chains of fluorinated bilayers reduce permeability and provide greater membrane 

rigidity,351 factors that are expected to impact their performance as encapsulation agents.       

This study investigates the encapsulation of the cationic UV active dye, 

rhodamine 6G (R6G), and nonionic riboflavin (chemical structures in Figure 7.1) by the 

hydrocarbon/fluorinated catanionic surfactant mixture, cetylpyridinium bromide 

(CPB(cationic))/sodium perfluorooctanoate(SPFO(anionic)) and its fully fluorinated 

equivalent, 1,1,2,2-tetrahydroperfluorododecylpyridinium chloride 

(HFDPC(cationic))/SPFO).  Vesicle formation, as well as the ability to form stable silica 

hollow spheres using the vesicles as templates, has been previously demonstrated in the 

anionic-rich phase region of these surfactant mixtures.301  Vesicle stability, encapsulation 

efficiency and subsequent solute retention were determined by combined analysis of 

filtration (size exclusion chromatography), dynamic light scattering, UV and fluorescence 

spectroscopic techniques.  The interaction and encapsulation of R6G with anionic-rich 

partially and fully fluorinated vesicles was examined as a function of R6G concentration.  

 

7.3 Experimental Section 

7.3.1 Materials 

The fluorinated anionic surfactant, sodium perfluorooctanoate (SPFO; C7F15COO-

Na+; 97% purity) and the hydrocarbon cationic surfactant, cetylpyridinium bromide 

(CPB; C21H38N+Br-; ≥97%) were purchased from Sigma Aldrich and Alfa Aesar, 

respectively, and used without further purification.  The fluorinated cationic surfactant, 

1,1,2,2-tetrahydroperfluorododecylpyridinium chloride (HFDPC; 

C10F21CH2CH2NC5H5
+Cl-·H2O), was synthesized with greater than 98% purity, as 

previously described.41  To summarize, alkylation of pyridine with 1H,1H,2H,2H-

perfluorododecyl iodide, followed by anion exchange produces the desired HFDPC. The 

purity of HFDPC was assessed by spectrometric and melting point measurements and 

was in agreement with published values.41  The cationic dye, rhodamine 6G (R6G; 

benzoic acid, 2-[6-(ethylamino)-3-(ethylimino)-2,7-dimethyl-3H-xanthen-9-yl]-ethyl 

ester, monohydrochloride) and the nonionic dye, riboflavin, (3, 10-dihydro-7,8-dimethyl-

10-[(2S,3S,4R)-2,3,4,5-tetrahydroxypentyl]benzo-[g]pteridine-2,4-dione;7,8-dimethyl-
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10-(1’-D-ribityl)isoalloxazine) were purchased from Sigma Aldrich (99% purity) and 

Fisher Scientific (98% purity), respectively.  The pre-packed Sephadex G25 (medium 

mesh) in PD10 desalting columns were used as purchased from GE healthcare 

(Amersham Biosciences).  

 

    
 

Figure 7.1.  Chemical structures of (a) Rhodamine 6G  and (b) Riboflavin 

 

 

7.3.2 Vesicle/Solute Preparation 

  Fixed surfactant compositions of vesicles of CPB/SPFO (7.8 mM CPB, 39.2 mM 

SPFO, 5-fold molar excess SPFO) and HFDPC/SPFO (2.2 mM HFDPC, 19.6 mM SPFO, 

9-fold molar excess of the anionic surfactant) were prepared.   Previously, we determined  

that the lower surfactant concentration utilized here for the HFDPC/SPFO system 

produced stable vesicles, while a higher surfactant concentration was required for 

CPB/SPFO vesicles.301 

The effect of the cationic solute on vesicle size and stability was examined by 

preparing vesicle solutions with different concentrations of the cationic solute, R6G: 0.05 

mM, 0.5 mM, 1 mM and 5 mM.  The vesicle/R6G samples were prepared by adding 

aqueous solutions of R6G to dry mixed surfactant powders.  The solutions were heated to 

50oC for 20 minutes and mixed for another hour, stored in darkness for at least 48 

hours,47 and then filtered with 0.45 micron Millipore syringe filters.   Solutions were 

prepared at neutral pH using deionized ultra-filtrated water.  The encapsulation of one 
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concentration of the nonionic riboflavin (0.1 mM) in the two vesicle systems was 

examined at neutral pH.   Identical preparative procedures were adopted for the vesicle-

riboflavin samples as for the R6G-loaded vesicles.   

 

7.3.3 Dynamic Light Scattering 

   The hydrodynamic size and polydispersity of the catanionic surfactant aggregates 

at 25oC were monitored by dynamic light scattering (DLS) using a Malvern Zetasizer 

Nanoseries (Malvern Instruments, United Kingdom).  The instrument was equipped with 

a He-Ne laser lamp (4 mW) source at 633 nm and measurements were taken at 90o 

scattering angle.  The data were analyzed with the Cumulants Method,292  which employs 

a single exponential fit of the intensity of the autocorrelation function to derive an 

average for the diffusion coefficient.  An intensity weighted size average (Z-average) was 

then calculated using Stokes- Einstein equation.  The Z-average (intensity weighted 

average) and polydisperisty index (PDI) were taken as representative of the size and size 

distribution in the samples.   

 

7.3.4 Dye Encapsulation and Retention in Vesicles  

Size Exclusion Chromatography of Vesicle Solutions. The prepacked columns of 

sephadex G25 (medium mesh) or PD 10 (prepacked disposable) desalting columns with 

bed volumes of 8.5 ml (1.5 x 6.5 cm) were used as purchased.  The columns are designed 

for group separations, or separations involving large molecular weight differences, such 

as the case with vesicles and vesicle aggregates (> 30,000) and free dye solutes (< 500).  

In size exclusion chromatography, the smaller molecular weight compounds permeate the 

pores of the bed while the much larger compounds i.e. vesicles are excluded and elute in 

the void volume of the column.  Due to this very large size difference between the 

vesicles and free solutes, bed volumes and column length can be minimized to achieve 

effective separation. Fractionation of compounds with narrower molecular weight 

differences requires longer columns (at least twice the length used here) for efficient 

resolution.352  Prior to SEC, the column’s void volume was determined by loading 1 ml 

of 2 mg/ml Blue Dextran 2000 kDa,which eluted at approximately 3 ml with DIUF water.   

This represents about 30% of the column volume.  This confirmed that the bed had been 
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properly packed, as the 30% represents the void volume or the excluded volume of the 

column.  

Samples of the vesicle/solute mixtures were loaded on Sephadex G25 column to 

separate the free probe (R6G or riboflavin) from the probe that was effectively 

encapsulated in the vesicle’s aqueous core or attached to the vesicle surface or bilayer.  

The vesicle/R6G was subsequently eluted using the continuous phase of the vesicle 

systems (i.e., at the salt concentration/salinity of the surfactant mixture).   For the 

CPB/SPFO/solute systems, 0.75 ml of the vesicle/solute sample was loaded on the 

column and eluted with 1.5 ml of NaCl aliquot solutions (10 mM) (i.e. series of 1.5 ml 

fractions were collected and analyzed by DLS and UV).  For the HFDPC/SPFO/Solute 

systems, 1.5 ml sample was loaded on the columns and eluted with 2 ml of NaCl solution 

(2 mM) (i.e. 2 ml fractions were collected and analyzed).  These elution volumes resulted 

in a 2-fold dilution for the CPB/SPFO vesicles and 1.5-fold dilution for HFDPC/SPFO 

vesicles.  For both systems, the vesicle-entrapped dye was eluted in the second and third 

fractions.  

In preliminary experiments, the stability of the vesicles to the SEC procedure and 

migration through the column was verified.  Bare vesicles of CPB/SPFO and 

HFDPC/SPFO without any dye were prepared following the same procedure described 

above and processed in the SEC columns.  The vesicles were eluted in the void volume of 

the column using the same eluant described above and the fractions analyzed by DLS to 

confirm the vesicle integrity.  Both the CPB/SPFO and HFDPC/SPFO systems were 

relatively unaffected by the separation using the sephadex resin.  For CPB/SPFO, the 

average size changed from 124 nm (PDI = 0.19) to 154 nm (PDI = 0.18) after SEC.  For 

HFDPC/SPFO, there was an average size decrease from 218 nm (PDI = 0.21) to 187 nm 

(PDI = 0.18). 

 

Analysis of Dye Encapsulation.  The amounts of free and encapsulated dye (riboflavin 

and R6G) were quantified from the eluent using UV-vis spectroscopy (Hewlett Packard 

spectrophotometer, model 8453).    The absorbance at the spectral peaks of 525±8 nm 

and 443 nm for R6G and riboflavin, respectively, were used to determine the 

corresponding dye concentration.  The encapsulation efficiency was quantified from the 
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ratio of the dye material in the vesicle-SEC to the original unfiltered vesicle-dye samples 

using Danoff et al’s method47 (Eq. 7.1):  

100%factor x dilution  SECx 
Abs
Abs efficiencyion Encapsulat

initial

fraction=    Equation (7.1) 

 

where Absfrac and Absinitial represent the UV absorbance of the fraction containing the 

vesicle-entrapped dye and the absorbance of the original vesicle-dye solution, 

respectively.   The dilution factor accounts for the difference in volume of sample loaded 

on the column to the volume applied in elution.  The above equation effectively relates 

the concentration of dye (UV absorbance x volume) entrapped by vesicles to the initial 

amount of dye in solution.47   This analysis method assumes that all free or external dye 

(dye not associated with vesicles) was effectively separated from the vesicle-entrapped 

dye during SEC.   

Subsequent dye release from vesicles or retention of the original dye solution was 

determined at regular time intervals, with modifications to the above SEC procedure.   

Separation of any released dye from any vesicle-retained dye was achieved by two 

minute centrifugation (≈ 2000g) on dehydrated sephadex G25 column.  During 

centrifugation, the vesicles with captured dye were eluted and collected at the bottom of 

the column while any released or free dye was retained on the column.47   This procedure 

precluded further dilution effects inherent with buffer elution in the first encapsulation 

measurements.  Time dependent dye retention is reported from the absorbance of the dye-

entrapped vesicle solution relative to the original dye solution using Eq. (7.1).  

 

7.3.5  Fluorescence Spectroscopy of R6G /vesicles systems 

 The mechanism of dye (R6G) incorporation into the vesicle matrix was examined 

using the emission and polarization spectral measurements (Varian Cary Eclipse 

fluorescence spectrophotometer) of the R6G-loaded vesicles.   The R6G probe was 

excited at λex = 470 nm and emission, λem = 478 nm with an excitation slit width of 5 nm 

and emission slit width of 2.5 nm.  Steady state measurements of the manually polarized 

light were recorded 265 with 1s average sampling time. The Varian manual polarizers 

were applied to both emission and excitation and the average of three polarization values 



170 
 

was reported.  Due to saturation of the photodetector and excessive formation of non-

fluorescent dimerization of R6G, the vesicle samples analyzed for fluorescence were 

restricted to low dye concentrations (below 0.05 mM).  The polarization was calculated 

using Eq.(7.2): 

VIHI
VIHI

P
+

−
=      Equation (7.2) 

where IH  and IV represent fluorescence intensity parallel and perpendicular to the 

excitation plane, respectively. 

 

7.4 Results and Discussion 

The CPB/SPFO and HFDPC/SPFO catanionic vesicles in this study have recently 

been characterized by TEM, DLS and material templating techniques.301  This previous 

investigation revealed slightly more uniform size distribution in the HFDPC/SPFO at 

lower surfactant concentration than in the CPB/SPFO system.  Vesicle sizes ranged from 

approximately 40 - 200 nm for CPB/SPFO in the surfactant concentration range of 1–2 

wt/wt %, (27.5 – 47 mM) as determined by negative staining transmission electron 

microscopy (TEM) and in agreement with dynamic light scattering.  Similarly sized 

vesicles were observed for HFDPC/SPFO at lower concentrations (≤ 1wt/wt%,  22 mM).   

The lower concentration required for stable vesicle formation in fully fluorinated bilayers 

is a consequence of the hydrophobicity and rigidity of the fluoroalkyl chains relative to 

hydrocarbon surfactant tails.  Fluorinated surfactant systems tend towards aggregates 

with low curvature conformation, such as vesicle bilayers, in order to minimize 

fluoroalkyl chain bending.40   

  This work explores the potential effects of fully fluorinated bilayers on the 

encapsulation and stability of model solutes in anionic rich mixed surfactant vesicles.   

Although electrostatic effects dominate the encapsulation of molecules in catanionic 

vesicle systems, the hydrophobicity and bilayer packing of the fully fluorinated bilayers 

relative to the mixed hydrocarbon/fluorocarbon analogue may impact its ability to 

encapsulate and retain solutes.   The encapsulation and solute retention in partially 

fluorinated (CPB/SPFO) and fully fluorinated (HFDPC/SPFO) bilayers are compared for 

the capture of both a cationic dye (R6G) and nonionic dye (riboflavin) (structures 
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provided in Figure 7.1) in vesicles formed in the anionic-rich solutions.  R6G is a deeply 

red-hued cationic, slightly hydrophobic353 xanthene laser dye354,355 and has been 

employed in studies of cell structure, membrane fusion, protein orientation356,357, 

biological cells358 and catanionic vesicles.47  In addition to the ease of measurement of 

dye concentration with UV absorbance, the tendency of R6G to form non-fluorescent 

dimers in aqueous solutions has been used to examine  the mechanism of incorporation at 

the silica/water interface.359,360  Riboflavin is a yellow non-ionic (neutral pH) vitamin B-2 

compound and its inclusion in this study is key in examining encapsulation in the absence 

of solute-vesicle electrostatic interactions.   

 

7.4.1 Effect of R6G dye concentration on vesicles 

Prior to dye encapsulation and release experiments, the effect of the cationic dye, 

R6G, on vesicle stability was evaluated by visually observing the solution phase behavior 

and monitoring the constancy of the size of the vesicles by DLS over a period of two 

weeks.  Varying R6G concentrations at fixed surfactant compositions were examined for 

both CPB/SPFO and HFDPC/SPFO systems (Table 7.1).  Both vesicle systems 

investigated here are negatively charged due to excess of the anionic surfactant, SPFO.  

The ratio of cationic surfactant to R6G (presented in Table 7.1) is also relevant to the 

interpretation of the stability, as the cationic solute could compete with the cationic 

surfactants in vesicle formation.  Disproportionate amounts of R6G could prevent vesicle 

formation or result in structural destabilization of formed vesicles.  Changes in 

morphology with disks, fragmented membranes and multilamellar structures have been 

captured by cryo-TEM with increasing addition of polyions to oppositely charged 

didodecyldimethylammonium bromide/sodium dodecyl sulfate vesicles (DDAB/SDS).361   

The electrostatic effect of the cationic R6G is reflected in size deviations from the 

bare vesicle systems.  The addition of R6G could potentially reduce the surface charge 

density which might lead to enlargement of the vesicles, multi-walled vesicles and 

eventually destabilization to lamellar phases.45  The maximum or critical dye 

concentration (Table 7.1) at which the vesicles are stable is greater for the CPB/SPFO 

vesicles (1 mM R6G) than for the HFDPC/SPFO vesicles (0.05 mM R6G).  The 

HFDPC/SPFO systems were meta-stable (≈ 10 days) before sediments and flocs were 
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observed confirming destabilization by R6G.The critical dye concentration of 1 mM for 

the CPB/SPFO system is in agreement with a previous study suggesting that the 

concentration of R6G should be below 5 mM in order to maintain vesicle stability in their 

CTAT/SDBS system.47  At 1 mM concentration of solute (R6G, CF, DX, etc), the 

surfactant/solute ratios employed in Danoff et al’s47 encapsulation studies were 9:1 in the 

anionic SDBS-rich phase regions to 7:1 for cationic, CTAT-rich vesicle phase regions, 

similar to our values for CPB/SPFO vesicles (CPB/R6G = 8).  However, the cationic 

surfactant to R6G ratios which correspond to the maximum dye concentration (0.05 mM) 

are 4-fold lower for HFDPC/SPFO vesicles (HFDPC/R6G = 44) than for the CPB/SPFO 

vesicles.  This suggests that the interaction and destabilization mechanism of R6G in the 

CPB/SPFO to the HFDPC/SPFO system may not be identical.  

  

Table 7.1.  Hydrodynamic sizes for different surfactant to R6G ratios in CPB/SPFO 
vesicles (47 mM total surfactant, X(SPFO) = 0.835) and HFDPC/SPFO vesicles (21.75 
mM, X(SPFO) = 0.9).  Sizes reported 14 days after sample preparation. 
 

R6G 

Concentration 

(mM) 

CPB/SPFO Vesicles HFDPC/SPFO Vesicles 

[CPB]/[R6G] 
Diameter. 

(nm) 
[HFDPC]/[R6G] 

Diameter. 

(nm) 

0 - 119 - 214 

0.05 155 110 ± 2 44 207 ± 1 

0.5 16 135 ± 44 4 - 

1 8 100 ± 4 2 - 

5 2 - - - 

 

 

7.4.2 R6G dye encapsulation and retention in CPB/SPFO vesicles 

R6G encapsulation and release was investigated at a fixed surfactant composition 

resulting in anionic-rich vesicles (total surfactant concentration of 47 mM, XSPFO = 0.835) 

at dye concentrations of 0.05 mM and 1 mM (as described in Section 7.3.4).  These 

concentrations of R6G (+) correspond to cationic surfactant (CPB) to dye molar ratios of 

155 and 8, respectively.  SEC was applied to separate free and vesicle-encapsulated dye, 
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and the concentration of free dye was used to quantify encapsulation efficiency and dye 

release over time.    

 
Figure 7.2. Elution profile of R6G-CPB/SPFO system at neutral pH.  Surfactant 
composition is 47 mM, XSPFO = 0.835 and R6G (1 mM).   
 

 

During SEC, the vesicle-entrapped R6G were consistently eluted in the void 

volume of the column (i.e., in the second and third fractions (of 1.5 ml each), as depicted 

in the elution profile in Figure 7.2).  The first peak corresponds to elution of the vesicle-

associated dye and the second peak corresponds to the free unencapsulated dye.  There 

was distinct separation of the vesicle-dye band from free dye.  However, more than twice 

the column volume (35 ml of 150 mM NaCl solution) was required to completely remove 

the free dye from the sephadex column.  Ideally, the total dye should have been eluted in 

the total column volume (10 ml), as the chromatographic separation is based on 

molecular weight differences.  However, the chromatographic packing (i.e. the sephadex 

resin) possesses some hydroxyl end groups, which interact with the cationic R6G and 
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impedes the elution of the free dye.  The hydrodynamic diameters of vesicles were 

monitored before and after SEC to demonstrate the stability of the vesicles (Table 7.2).   

 
Figure 7.3. Effective encapsulation profile of R6G (1mM) in CPB/SPFO vesicles at 
neutral pH. Results with the data range are average of two experimental runs.  
 

 

The initial encapsulation efficiency of 1 mM R6G in the CPB/SPFO vesicles is 

85% of the initial dye (Figure 7.3).  Subsequent dye release or the amount of R6G 

retained was determined at regular time intervals using the method described in section 

2.4.  After approximately 2 hours, dye retention is reduced by half, with the system 

relatively stable over the next 12 hour time period.  A greater percentage of the dye is 

captured and subsequently retained at the higher R6G concentration of 1mM than at 0.05 

mM.  At 0.05 mM initial concentration of R6G, the encapsulation efficiency in 

CPB/SPFO vesicles was initially 65%.  However, only 11% of the initial dye in solution 

was retained 2 hours later.  Although these levels of R6G encapsulation are comparable 

to those reported for CTAT/SDBS (72 %)47 the disparity in retention at 0.05 mM and 1 
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mM R6G is considerable.  This concentration dependence may be attributed to the 

adsorption of polyions on oppositely charged vesicle surfaces, which would increase the 

permeability of encapsulated solutes via structural disorganization of the bilayer.158  The 

degree of the perturbative effect (formation of pores and defects in bilayer) is 

proportional to the amount of adsorbed compounds,362  but these interpretations have 

been applied primarily to liposomal systems.   An increase in retention with increased 

R6G concentration is observed here, suggesting that bilayer permeability has not been 

increased. 

The concentration-dependence of the interaction of R6G with the vesicles was 

investigated using UV and fluorescence spectroscopy, and polarization measurements.  

The fluorescence and UV spectra of R6G are highly sensitive to local concentration, 

medium polarity, steric restrictions, ionic strength and ionic association.344,359,363  

Changes in these spectral features offer insight into the mechanism of R6G incorporation 

in the vesicle systems.364   Incorporation of R6G produced UV peaks at 529 ± 1 nm (0.05 

mM) and 523 ± 2 nm (1mM), with shoulders observed in both systems(spectra not 

shown).  At concentrations greater than 1 µM, R6G forms multiple aggregates in aqueous 

solution (dimers, trimers  tetramers) with concomitant absorption energy shifts;353 the 

shoulder at 500 nm represents a dimer absorption wavelength.365  In the case of 0.05 mM 

dye, the shoulder at 500 nm is a strong indication of dimer formation while the peak at 

529 nm, red shifted from that of free R6G monomer in solution (525 nm), suggests 

binding to the anionic-charged vesicle surface.345  Similar shifts have been reported for 

mixtures of  R6G and anionic surfactants 366 and are attributed to reduced polarity  and 

restricted motion at the surfactant ionic surface.359,367  At 1 mM R6G concentration, 

dimmers and higher order aggregates (trimers and tetramers) dominate the system and 

they shift the absorbance peak towards lower values.368   

The extent of aggregation of R6G, both in the presence and absence of vesicles, 

can be interpreted from its fluorescence spectra.  At 1 mM R6G, the emission intensity is 

effectively quenched due to the formation of R6G aggregates (spectrum not shown), 

which do not fluoresce.  However, the fluorescence emission peak is clearly observed at 

560 nm in the 0.05 mM R6G solution (Figure 7.4a), suggesting less aggregate formation 

than with 1mM.  The intensity of the emission peak diminishes slightly in the following 
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order: R6G in aqueous solution in absence of the mixed surfactant vesicles, R6G/vesicle 

systems before SEC, and R6G/vesicle systems following SEC, which might be attributed 

to dilution in the SEC procedure.   

The fluorescence polarization of R6G, which is an indicator of the relative 

mobility of the dye, was used to interpret the nature of the vesicle surface interactions 

with the dye. This analysis was limited to 0.05 mM R6G as the fluorescence quenching 

precluded study of the effect at 1 mM.  The polarization value (Eq. 7.2) of the dye 

increases considerably from 0.018 in aqueous solution to 0.144 in the vesicle system with 

0.05 mM R6G, reflecting the change in environment of R6G from free diffusional 

rotation in bulk solution to restricted mobility due to binding or adsorption at the 

oppositely charged vesicle surface.  Similar changes in fluorescence polarization of R6G 

have been observed in silica-water systems.359 Due to specific ion interactions, R6G 

cations would be presumed to be bound to regions in close proximity to the anionic 

surfactant, SPFO (the excess surfactant in the vesicle systems).  The larger, more 

hydrophobic cation, R6G, could readily displace the counterion (Na+) from the vesicles 

surface, affecting the strength of the cetylpyridinium (CP+)/perfluorooctanoate 

headgroup interactions (COO-) and introducing perturbative effect on bilayer 

organization. The strength of these interactions should vary with concentration as the 

vesicle surface becomes saturated with R6G.  Steady state fluorescence lifetime 

measurements have also shown that adsorption mechanism of R6G changes with the dye 

concentration.344  The adsorption of R6G to anionic latex particles is electrostatically 

driven at R6G low concentrations (≈ 10 µM) and hydrophobically driven at higher 

concentrations. 

With increase in R6G concentration from 0.05 mM to 1 mM, surface 

overcrowding and the resulting steric hindrance of the dye might lead to increased 

partitioning of the dye into the bilayer, eventually saturating the bilayer.  This rationale is 

in agreement with the higher initial encapsulation (85%) observed with 1 mM relative to 

0.05 mM (65%).  The different retention values, 45% for the former compared with 11%, 

for the latter suggests a slightly different incorporation mechanism with increased 

concentration.  The hydrophobic xanthene moiety of the dye, which is planar,366 could 

orient in a manner to avoid contact with water and may intercalate in the bilayer, with the 
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charged group located at the vesicle-aqueous interface.  Similarly, the hydrophobic 

aromatic tosylate counterion in CTAT was shown to intercalate into the bilayer of 

CTAT/SDBS vesicles and influence the nature of the vesicle-ionic dye interactions.197  

Surface saturation followed by micelle penetration has also been proposed for the 

xanthene moiety of R6G in anionic micelles while anchored at the surface.366      

The strength of headgroup interactions affects the bilayer matrix order and has 

been known to influence the permeability of liposomes.128  Cholesterol intercalated in 

liposome bilayers with the polar group anchored at the interface increases the surface 

density (reduces liposome headgroup spacing) and reduces the membrane’s permeability 

to solutes.155  The more fluidized bilayers of catanionic vesicles relative to conventional 

liposomes, an effect of chain asymmetry,179  may provide more void space to 

accommodate the hydrophobic xanthene moiety of  R6G in the CPB/SPFO vesicle 

bilayers.     
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Figure 7.4. Fluorescence emission of R6G (0.05 mM) in (a) CPB/SPFO and (b) 
HFDPC/SPFO vesicle systems in neutral pH medium. The inset line markers indicate 
spectrum in water only, pre-SEC and post-SEC as listed.   
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Table 7.2: Vesicle diameters and polydispersities before and immediately after SEC for 

the initial encapsulation 

Dye Conc. 

(mM)/pH 

CPB/SPFO (47mM, X = 

0.835) 

HFDPC/SPFO (21.75 mM, X = 

0.9) 

Vesicle diameters (nm) and PDI 

Pre-SEC Post-SEC Pre-SEC Post-SEC 

0 mM/neutral 
124 

0.19 

154 

0.18 

218 

0.21 

187 

0.18 

R6G 

(1mM)/neutral 

96 ± 1 

0.23 

161 ± 20 

0.53 

239 ± 19 

0.33 

237 ± 3 

0.38 

R6G 

(0.05mM)/neutral 

99 ± 3 

0.16 

108 ± 7 

0.22 

194 ± 8 

0.38 

173 

0.3 

R6G (1 mM)/pH 3 
87 

0.1 

111 ± 22 

0.38 

233 

0.47 

254 ± 6 

0.79 

Rb 

(0.1mM)/neutral 

120 

0.19 

153 

0.19 

185.7 

0.29 

187.2 

0.24 

 

 

7.4.3 R6G dye encapsulation and retention in HFDPC/SPFO vesicles   

Interestingly, the post-SEC vesicle sizes (Table 7.2) increases by only 10% for 

0.05 mM R6G solutions, but increases significantly (67%) for 1 mM R6G, which 

suggests either reduced colloidal stability or enhanced vesicle screening due to 

predominance of R6G cation in the latter.   This could also be factored into the difference 

in retention values observed at the different R6G concentrations.  

The encapsulation efficiency of R6G was investigated at 0.05 mM for the 

HFDPC/SPFO (21.75 mM, X = 0.9) vesicle system.  With the HFDPC/SPFO surfactant 

composition used in vesicle formation, the molar ratio of the cationic surfactant (HFDPC) 

to cationic dye (R6G) is ≈ 44 (Table 7.1), which is lower by a factor of 3.6 than the ratio 

in the CPB/SPFO system at the same R6G concentration (0.05 mM).  Hence, the 

competition of R6G and HFDPC for complexation with the anionic surfactant, SPFO, is 



180 
 

higher in the HFDPC/SPFO systems, with more potential perturbative effects on 

surfactant headgroup interactions.  

The encapsulation efficiency for this system, 14%, is much lower than that 

observed for CPB/SPFO.   However, the incorporated dye system was very stable, with 

the retention of dye in the vesicles remaining at 14% even after a week.   The 

hydrodynamic diameter of the HFDPC/SPFO vesicles increased 11% with the 

encapsulation of the dye (Table 7.2).  The UV analysis of the dye/vesicle mixture shows 

a stronger blue shift in HFDPC/SPFO vesicles (to 513 nm) compared with that in 

CPB/SPFO (Figure 7.5).  The shoulder at 500 nm, which signifies the presence of R6G 

dimers, is present before SEC, but is severely diminished after SEC (in the dye-

encapsulated vesicle solution).  This is consistent with the much lower encapsulation of 

the HFDPC/SPFO vesicles.  In contrast, dimers are still evident following SEC in the 

CPB/SPFO systems, suggesting sufficient vesicle encapsulated dye to promote surface 

dimerization of R6G.  Similarly, the fluorescence spectra of the dye (Figure 7.3(b)) 

entrapped in vesicles (post SEC) decreases in intensity relative to the original vesicle 

suspension to a much greater extent than the dilution factor of 1.5, indicating low 

encapsulation efficiency, and also experiences a blue shift.  The blue shift of the R6G 

spectra in HFDPC/SPFO vesicle systems relative to surfactant-free aqueous solution 

might suggest a different localization of the dye, as there was no significant shift in the 

CPB/SPFO system (Figure 7.4a).  As with the CPB/SPFO system, the fluorescence 

polarization changed from 0.018 in free aqueous solution to 0.198 in HFDPC/SPFO 

vesicle systems, indicating restricted motion of R6G due to fixation on the vesicle 

surface.  

The localization of the probe and the bilayer arrangement is hypothesized to play 

a role in both the reduced efficiency and improved retention of R6G in HFDPC/SPFO 

vesicles relative to CPB/SPFO vesicles. The homogenous fluorous bilayer in 

HFDPC/SPFO may constitute a better barrier to solute permeation and penetration of the 

R6G hydrocarbon moieties than with the heterogeneous hydrocarbon/fluorinated, 

CPB/SPFO.   Studies have reported similar observations where the more fluid bilayers in 

dimyristoylphosphatidylcholine, DMPC (which has shorter alkyl chains) exhibited 15% 

more thymostimulin (polypeptide) encapsulation than in dipalmitoylphosphatdiylcholine 
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(DPPC) but showed 6-times the release in the former.153  Although surface adsorption 

accounts for the encapsulation of the R6G to the vesicles due to electrostatic attractions, 

the bound dye would experience less intercalation into the lipophobic fluorinated bilayer.   

In addition, the potential for surface adsorption may be different in these systems.  

While the electrostatic attraction between oppositely charged headgroups of the 

surfactants provide pseudo-double tailed groups in these mixed surfactant systems, 

unequal distribution of surfactant in the inner and outer leaflet facilitates spontaneous 

curvature in catanionic vesicles.278  In terms of geometric considerations, approximate 

surfactant parameters suggest SPFO (1.24) would be located in the inner leaflet while 

both CPB (0.29) and HFDPC (0.35) would be in the outer leaflet.  Differences in 

distribution of anionic and cationic surfactants in the inner and outer monolayers of 

CPB/SPFO and HFDPC/SPFO would result in different surface charge densities.  These 

differences might not be reflected in the bulk surfactant composition, but could affect the 

adsorption and retention of the dye in the respective systems.    

 
Figure 7.5: Absorbance spectra of R6G in HFDPC/SPFO vesicles pre-SEC (solid line) 
and post-SEC (broken line). 
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7.4.4 Encapsulation of Nonionic Riboflavin  

Both CPB/SPFO and HFDPC/SPFO vesicle systems were prepared at neutral pH 

with 0.1 mM riboflavin solutions, where its aqueous solubility is 0.22 mM.369    The 

respective vesicle-solute sizes were 120.3 and 189.3 nm for CPB/SPFO and 

HFDPC/SPFO systems, showing little variance from the bare vesicle sizes of 124 nm and 

218 nm.  This suggests that the presence of the riboflavin solute had minimal effect on 

vesicle formation, which is expected due to lack of ionic association with the charged 

vesicle systems.    

Encapsulation of this neutral solute was measured by performing SEC, and 

analyzing the fractions using DLS and UV.  Less than 0.1 % encapsulation of the probe 

was observed for both CPB/SPFO and HFDPC/SPFO.  The vesicles were eluted intact in 

the void volume of the column in the second and third fractions, as observed for 

CPB/SPFO and HFDPC/SPFO with R6G but without the riboflavin.  The yellow colored 

riboflavin band was observed migrating through the column much later than the vesicles 

and was finally eluted in the total bed volume.  This suggests that the riboflavin was in 

the continuous phase of the vesicle systems and freely permeated the pores of the 

column, as expected for a molecule of its molecular weight (< 500).  The vesicle 

population was distinguished from the unencapsulated riboflavin by dynamic light 

scattering following visual observation of the separate bands on the SEC column.  The 

hydrodynamic sizes of the vesicles presented in Table 7.2 indicate that the vesicles were 

unaffected by passage through the columns.  

The inability to effectively encapsulate the neutral riboflavin in these catanionic 

vesicle of fluorinated/hydrocarbon and fluorinated/fluorinated systems supports previous 

findings164 that electrostatics dominates the encapsulation process.  Similar observations 

are reported for the encapsulation of riboflavin in CTAB/SOS vesicles, where the 

encapsulation was less than 0.5%.342  However, in contrast to the lack of chromatographic 

resolution of free and encapsulated riboflavin in the aforementioned study, the 

CPB/SPFO and HFDPC/SPFO vesicles are well resolved from the free riboflavin 

molecules.  In the CTAB/SOS vesicle system, the lack of resolution is interpreted as a 

continuous release of the probe from vesicles, while a complete dissociation of the 

nonionic riboflavin from the catanionic vesicles from the probe is observed in this study.  
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Some  have attributed the inability to encapsulate riboflavin in catanionic vesicles to the 

leakiness of the vesicles,348  an effect of greater translational diffusion of the shorter 

chains in the systems facilitates open pores for leakage.343   Without ionic interactions 

with the vesicle surface, the riboflavin would be expected to be stored in the vesicle 

aqueous core and be susceptible to release through open pores.  This is consistent with 

the lack of encapsulation of riboflavin in either CPB/SPFO or HFDPC/SPFO.   

 

7.5 Conclusions 

 Effective encapsulation of the cationic dye, rhodamine 6G has been achieved in 

both CPB/SPFO and HFDPC/SPFO catanionic vesicles.  Strong evidence is provided that 

this encapsulation is driven by the affinity of the cationic dye for the negatively charged 

vesicle surface, as encapsulation of the nonionic riboflavin was unsuccessful in these 

systems.  Much higher encapsulation (65 - 85%) was detected for the mixed 

hydrocarbon/fluorinated bilayer vesicles (CPB/SPFO) than in the fully fluorinated bilayer 

vesicles (HFDPC/SPFO) (14%) at neutral pH.  However, the HFDPC/SPFO vesicles 

exhibited better dye retention than the CPB/SPFO in the same time period of 12 hours.   

This investigation further support electrostatic adsorption to the vesicle bilayer as 

a means for effective solute encapsulation in the catanionic vesicle systems, but also 

probes the role of the bilayer in solute retention.  The difference in subsequent dye 

retention for the CPB/SPFO and HFDPC/SPFO vesicles, where the latter displayed much 

higher retention of the cationic R6G dye, was rationalized in terms of the homogenous 

fluorous bilayer environment.  The fully fluorinated bilayer matrix in HFDPC/SPFO is 

uniformly lipophobic and hydrophobic, precluding solubilization of the hydrophobic 

moiety of R6G, while the heterogeneous bilayer of CPB/SPFO would more likely 

accommodate R6G in its non-uniform hydrocarbon-fluorocarbon matrix.   In comparison, 

no encapsulation of the neutral molecule, riboflavin was detected confirming that vesicle 

bilayer surface electrostatic adsorption is the primary mechanism of capturing ionic 

solutes 
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CHAPTER 8 

 

 

CONCLUSIONS AND FUTURE WORK 

 

 
8.1 Conclusions 

 The unique properties of fluorinated compounds have established their promise as 

viable candidates in applications ranging from biomedical to environmental. With 

biocompatible characteristics such as biological and chemical inertness, coupled with low 

surface tension, hydrophobicity, lipophobicity, favorable spreading and high density, 

fluorocarbon fluids such as the prominent PFOB have demonstrated potential in drug 

delivery and ventilation therapy.  Essential to these applications are fluorinated 

surfactants, which play a key role in effective design of fluorocarbon-based formulations 

and colloidal aggregates.  Fluorinated surfactants self-assemble more readily than their 

hydrocarbon analogues, forming organized structures with lower curvature such as planar 

bilayers and vesicles.  Their enhanced hydrophobicity, coupled with immiscibility with 

hydrocarbon surfactants, produces interesting complex phase behavior in solution.   

 This work expands the knowledge of the influence of fluorination on the 

thermophysical properties and phase behavior of fluorinated surfactants and solutes, with 

particular attention paid to the impact in organized bilayer assemblies.  Also, the 

properties of fluorinated bilayers were explored in material synthesis and encapsulation 

applications. The fundamental aspects of phase behavior in both isotropic and self-

aggregated systems are covered, which highlight the unusual characteristics of these 

systems and reflect the need for understanding the parameters that allow for effective 

modulation of phase behavior. 

 

Partition Behavior of Solutes  

The investigation of the partitioning behavior of a functionalized series of 

fluorinated and hydrocarbon nicotinic acid esters or nicotinates (prodrugs) in immiscible 

solvents and model membrane bilayers aids in the analysis of the viability of 
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fluorocarbon mediated prodrug delivery for administration through the pulmonary route.    

Thermodynamic parameters pertinent to this novel prodrug transport through solvent 

interfaces were assessed and provided an interpretation of the mechanism of targeted 

prodrug delivery.  In Chapter 3, the equilibrium partitioning between a 

fluorocarbon/organic (PFMC/toluene) biphasic system was evaluated as a function of 

chain length for the perhydrocarbon and the perfluorinated nicotinates.  The 

PFMCH/toluene partition coefficients, a standard index of fluorophilicity, decrease by 

two orders of magnitude (Log Kp = -1.72 to -3.4) for the perhydrocarbon nicotinates 

(CH3 – C12H25), suggesting increasing preference for the organic phase.  Conversely, 

both the fully and partially perfluorinated nicotinates (C2F3 – C8F15) and (C3F4 – 

C8F13) demonstrate increasing propensity for the fluorocarbon phase (Log Kp = -1.64 – 

0.13) spanning three orders of magnitude.  With the only positive partition coefficient 

value (Log Kp = 0.13), only C8F15 qualified as truly fluorophilic.   This was attributed to 

the relatively higher fluorine content of the nicotinate (57%) and in accord with 

established empirical rules98 that 60% molecular fluorination is required for 

fluorophilicity.  The partially fluorinated series possess lower affinity for the 

fluorocarbon phase than the fully fluorinated nicotinates.  Specifically, the difference 

between C8H17 (Log Kp = 0.13) and C8H15 (Log Kp = -0.7) highlights the modification 

of fluorophilic character with subtle alterations of molecular structure.  

 In the PFOB/aqueous system, both series of perhydrocarbon and perfluorinated 

nicotinates demonstrated increasing preference for the PFOB phase with chain length.  

Negative partition values for CH3 (Log Kp = -0.78) and C2H5 (Log Kp = -0.16) indicate 

better solubilization in the aqueous phase.  PFOB/water partition coefficients of the 

longer chained perfluorinated nicotinates (> C3F5) were not determined due to the 

challenges associated with the surface activity of the molecules and their low aqueous 

solubility.   

  The partition behavior (fluorophilicity) was also predicted by Regular Solution 

Theory (RST) approach, utilizing the solubility parameters from group contribution 

methods and molecular dynamics simulation.  Both predictive approaches provide 

partition coefficients that are in reasonable agreement with experimental values for the 

hydrocarbon and short chain fluorinated nicotinates (≤ 38%) but deviate significantly 
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with the longer chained fluorinated nicotinates (> 50%). This pattern highlights the 

challenges associated with thermodynamic descriptions of fluorinated surfactant systems.   

The findings reveal no strong correlation of the biphasic partitioning trends with 

biological markers/endpoints of cytotoxicity and metabolic cellular function for the 

PFOB mediated delivery.  In effect, delivery from PFOB is not expected to be a barrier to 

drug transport for the nicotinates.  Only the longer chained fluorinated nicotinates 

(C8F15 and C8F13) exhibit cytotoxicity that paralleled partitioning behavior, suggesting 

their strong affinity for PFOB limits delivery to the target pulmonary cells.  This rationale 

was derived from cytotoxic measurements in an organic-aqueous media system that 

showed strong correlation with the nicotinate chain length. 

Further description  of the prodrug uptake through a cellular matrix was provided 

by model membrane partitioning measurements for the select series of perhydrocarbon 

nicotinates, C2H5, C4H9, C6H13 and C8H17 (Chapter 4).  Complementary calorimetric 

and fluorescence anisotropy techniques identified a chain length dependent pattern in the 

interaction of the perhydrocarbon nicotinates with the DPPC model membrane matrix 

(liposome).  The incorporation of the nicotinates was measured from the membrane water 

partition coefficients, which increased by several orders of magnitude from Log Km/w = 

2.13 (C2H5) to 5.17 (C8H17).   

 

Catanionic Vesicles with Fluorinated Surfactant Bilayers 

 Cationic-anionic (catanionic) vesicle bilayers which show potential as candidates 

for material synthesis and encapsulation applications were studied.  The non ideal 

mixtures of cationic and anionic surfactants produce a wide range of composition 

dependent aggregate structures, which include mixed micelles and lamellar structure.  

Catanionic vesicles form spontaneously in dilute aqueous solutions and serve as potential 

substitutes to conventional meta-stable liposome-based vesicles.  Although electrostatics 

govern intra- and inter-aggregate interactions, the fluorinated bilayer matrix in catanionic 

surfactant mixtures also exerts strong influence on phase behavior. 

 Regions of spontaneous vesicle formation were identified for mixed 

hydrocarbon/fluorocarbon bilayers, CPB/SPFO (cetylpyridinium bromide/sodium 

perfluorooctanoate) and fluorocarbon/fluorocarbon bilayers, HFDPC(1,1,2,2-
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tetrahydroperfluorododecylpyridinium chloride)/SPFO, in the anionic–rich compositions.  

Smaller, less polydisperse vesicles are captured by TEM, at lower surfactant 

concentrations for the homogeneous fluorinated bilayer, HFDPC/SPFO (20 – 50 nm) than 

in the heterogeneous bilayer, CPB/SPFO (40 – 200 nm).   However, due to the low 

refractive index of fluorinated chains, the DLS measurements are biased towards a few 

large vesicles in the HFDPC/SPFO system, reporting much larger sizes (200 nm) than 

observed with TEM (Chapter 5).  The study of catanionic phase behavior (in anionic-rich 

compositions) was expanded with inclusion of the more asymmetric counterparts, 

CPB/SPFH (sodium perfluorohexanoate) and HFDPC/SPFH (Chapter 6).  Delineation of 

aggregate phase boundaries in the pseudo-ternary phase maps, reveal HFDPC/SPFO to 

have the narrowest composition-dependent isotropic vesicle region, while the more 

asymmetric counterpart, HFDPC/SPFH possessed a larger vesicle domain; comparable 

with that observed for the mixed bilayers, CPB/SPFO and CPB/SPFH.  Vesicle formation 

in catanionic surfactant systems is dictated by both electrostatics and chain packing 

effects.   The smaller vesicle region in HFDPC/SPFO is ascribed to combined effects of 

chain asymmetry and the large energy associated with bending stiff and bulky fluorinated 

chains into spherical curvature.   The expanded vesicle region in the HFDPC/SPFH 

system was a result of increased chain asymmetry and the higher solubility of SPFH than 

SPFO. With uniform fluorinated bilayer, better chain packing was hypothesized in 

HFDPC/SPFO than in CPB/SPFO.  This rationale was supported by fluorescence 

spectroscopic measurements of pyrene and pyrene derivatives; 1-pyrenebutanoic acid 

(PBA/Py-C4), 1-pyrenedecanoic acid (PDA/Py-C10) and 1-pyrenehexadecanoic acid 

(PHA/Py-C16). 

Silica hollow spheres were successfully fabricated using the CPB/SPFO and 

HFDPC/SPFO vesicles as templates.  The advantage of lower surfactant concentration 

requirements for stable vesicle formation was clearly demonstrated in the acid catalyzed 

synthesis, using the silica precursor, tetramethoxysilane (TMOS).  Higher colloidal 

stability was achieved in HFDPC/SPFO templated silica system than CPB/SPFO as a 

consequence of the lower ionic strength of its surfactant composition.  Stable silica 

spheres were detected at higher precursor to surfactant ratios in the HFDPC/SPFO than in 

CPB/SPFO.  The enhanced barrier properties of the homogeneous lipophobic, 
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hydrophobic fluorinated bilayer environment of HFDPC/SPFO, limited incorporation of 

the hydrophobic precursor, with preservation of spherical morphology.  Distorted vesicle 

structures observed in the mixed CPB/SPFO suggested the heterogeneous bilayer was 

more permeable to the TMOS precursor.   

Relative encapsulation and retention of a model cationic dye (R6G) was 

determined for CPB/SPFO and HFDPC/SPFO vesicles using a combination of size 

exclusion chromatography, DLS and UV techniques (Chapter 7).   In accord with several 

reports, the encapsulation was driven by surface electrostatic interactions between the dye 

and oppositely charged vesicles.47,164    Much higher encapsulation was achieved with 

CPB/SPFO than HFDPC/SPFO due to the higher surfactant concentration of the former.  

However, superior dye retention was determined for the HFDPC/SPFO.  Similar to the 

silica synthesis conditions, due to increased hydrophobicity and lipophobicity, the fully 

fluorinated bilayer in HFDPC/SPFO, may provide a greater barrier effect to permeation 

than in the mixed CPB/SPFO vesicles.  Overall, the robustness of the 

fluorinated//fluorinated bilayers was demonstrated in applications. The modulation of 

phase behavior with fluorinated chain length offers opportunities in tunable applications 

of fluorinated bilayers.   

 

8.2 Future Work 

 Partition measurements of the nicotinic acid prodrugs show that equilibrium 

partitioning between the relevant binary solvents do not necessarily translate to transport 

barriers in the PFOB system.  However, partitioning trends in model membranes for the 

perhydrocarbon nicotinates can be used to interpret the mechanism of incorporation in a 

cellular matrix.  Similar knowledge of the liposome membrane partitioning of the 

fluorinated nicotinates would complete assessment of the incorporation mechanism as 

function of fluorination in the prodrug series. These measurements will advance the goal 

of designing fluorinated prodrugs, which balance the need for prodrug solubility in a 

fluorinated phase and transfer into a cellular matrix, with minimized cellular toxicity. It is 

anticipated that the perfluorinated nicotinates will exhibit higher membrane/water 

partitioning than their hydrocarbon analogues due to their higher hydrophobicity.  Studies 

have reported membrane partition coefficient values for fluorinated salts that are twice 
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those of their hydrocarbon analogues.135  The partition coefficient trends are also 

expected to mirror those of the perhydrocarbon nicotinates, in that they increase with 

chain length (C2F3 – C8F15) of the nicotinates.  Additionally, the lipophobicity of the 

fluorinated nicotinates is expected to generate more pronounced pertubative effects on 

the hydrocarbon liposome bilayer packing and fluorocarbon-rich domains might exist in 

the bilayer at higher nicotinate concentrations.370  

 Predictive tools used in assessment of fluorophilicity can be extended to other 

prodrug compounds.  Such preliminary evaluations will help assess the partitioning 

behavior and serve as a guide in the synthesis of prodrugs for drug delivery.  Several 

other approaches exist to estimate solubility parameters an alternative method to Fedors 

group contribution method would be the application of Hansen solubility parameters 

which accounts for dispersion, polar and hydrogen bonding parameters.91    

 The incorporation of fluorinated surfactants in self-assembled catanionic bilayers 

has been shown to have practical implications for material synthesis and encapsulation 

applications.  Further characterization using several techniques will help elucidate the 

mechanism of vesicle formation and determine the energetic constants associated with 

bending the fluorinated bilayers.  Molecular dynamics simulation is a useful tool to 

determine the structural conformations of the chains in the fluorinated and mixed 

hydrocarbon/fluorinated bilayers.  This would elucidate the minimized energy 

conformations of the chains in the different catanionic pairs and the relative ease of 

vesicle formation.  Schuy et al371 applied a variety of techniques (atomic force 

microscopy, ellipsometry, attenuated total reflection FTIR) to study the chain dynamics 

and structural conformation of perfluioriunated lipid bilayers.  The partially fluorinated  

chains were determined to adopt a conformation that minimized unfavorable 

hydrocarbon-fluorocarbon chain interactions.  Similar methods can be applied to our 

catanionic surfactant pairs to determine the effect of chain interaction on bilayer 

properties and the influence of headgroup attractions on these.   

Catanionic surfactant mixtures are defined by their non-ideal phase behavior and 

surface tension measurements can be used to quantify the deviation from ideal mixing.276    

Nuclear magnetic resonance (NMR) used to study the structural transition of aggregates 

in hydrocarbon catanionic systems169 can be extended to these systems.  With F NMR, 
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fluorinated surfactant exchange between aggregates can be traced to determine the 

formation path to equilibrium vesicles.   F NMR might also help determine the 

orientation of surface bound compounds in the catanionic vesicle systems.  Cryo-TEM is 

another useful tool in the study of morphology of self-assembled catanionic surfactant 

systems, as it eliminates the artifacts intrinsic to dried TEM imaging process.44,169  

Smaller microstructures such as the rod like micelles, globular micelles and any irregular 

structures can be directly viewed with this method.54,170,182   This combined with 

polarized optical microscopy (POM) images will provide a complete characterization of 

the multi-aggregate regions of the phase diagrams.  Cryo-TEM analysis of the size and 

size distribution is particularly useful in discerning the method of vesicle stabilization 

(entropic or enthalpic).  This can be accomplished by an intensive size analysis of large 

vesicle populations for various surfactant compositions within the vesicle lobe.182  The 

size distribution from the histograms can subsequently be applied to thermodynamic 

models to determine the effective bending constant.54,182  

The highly sensitive isothermal titration microcalorimetry (ITC) technique can be 

used to determine the enthalpies of aggregate formation as applied to sodium dodecyl 

sulfate and dodcyltrimethylammoniumbromide (SDS/DTAB).187 Series of ITC experiments 

to determine the enthalpies of micellization of the single and mixed surfactant systems would 

provide quantitative measure of the non-ideal interactions. The enthalpies of aggregate formation 

at various compositions in the vesicle lobe for both CPB/SPFO and HFDPC/SPFO might inform 

on the mechanism of stabilization.   

Other important aspects that deserve consideration are phase behavior in the 

cation-rich surfactant regions of the surfactant mixtures, changes in the counter-ions and 

pH.  Systematic study of these effects will complement current observations and help 

explain the interplay of fluorinated chain packing and ionic interactions.  Another means 

of modulating phase behavior is with supercritical carbon dioxide,  sc CO2, which has 

been established as a fluorophilic fluid.372 Solvation of the fluorinated/fluorinated bilayer 

in HFDPC/SPFO with sc CO2 can be anticipated to fluidize the stiff bilayers and expand 

the catanionic vesicle phase region of these systems. The bilayer fluidization as a 

function of CO2 solvation can be monitored by fluorescence probing.   However, the 
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formation carbonic acid (HCO3
-) as result of CO2   dissolution should also be taken into 

account, as this might influence catanionic headgroup attractions.   

  With respect to applications, several avenues can be explored with these 

fluorinated vesicle bilayers.  Encapsulation of solutes in the catanionic vesicles can be 

examined as a function of surfactant composition to determine the optimal trapping 

efficiency conditions.   The material synthesis silica spheres can also be investigated in 

varied templating conditions of basic pH, stirring time, organic additives and precursors 

which promote steric stabilization of the polymerized silica through the action of their 

functional groups.  Applications should be explored for the asymmetric catanionic pairs, 

HFDPC/SPFH and CPB/SPFH to assess the impact on reduced rigidity on bilayer 

function.   

 Overall, modulation of phase behavior with practical applications of fluorinated 

bilayer systems has been demonstrated in this work.  The observations and results 

emerging from this study present numerous potential areas of research into fluorinated 

surfactant systems.  
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