
Marquette University
e-Publications@Marquette

Master's Theses (2009 -) Dissertations, Theses, and Professional Projects

Synthesis and Characterization of Iron(II)
Complexes Modeling the Active Site Structure of
Nonheme Iron Dioxygenases
Jacob Baus
Marquette University, jacob.baus@marquette.edu

Recommended Citation
Baus, Jacob, "Synthesis and Characterization of Iron(II) Complexes Modeling the Active Site Structure of Nonheme Iron
Dioxygenases" (2012). Master's Theses (2009 -). Paper 134.
http://epublications.marquette.edu/theses_open/134

http://epublications.marquette.edu
http://epublications.marquette.edu/theses_open
http://epublications.marquette.edu/diss_theses


SYNTHESIS AND CHARACTERIZATION OF IRON(II) COMPLEXES MODELING 

THE ACTIVE SITE STRUCTURE OF NONHEME IRON DIOXYGENASES 

 

 

 

 

 

 

 

 

 

by 

 

Jacob S. Baus 

 

 

 

 

 

 

 

 

 

A Thesis submitted to the Faculty of the Graduate School, 

Marquette University, 

in Partial Fulfillment of the Requirements for 

the Degree of Master of Science 

 

 

 

 

 

 

 

 

 

Milwaukee, Wisconsin 

 

May 2012 

  



 

 

ABSTRACT 

SYNTHESIS AND CHARACTERIZATION OF IRON(II) COMPLEXES MODELING 

THE ACTIVE SITE STRUCTURE OF NONHEME IRON DIOXYGENASES 

 

 

Jacob S. Baus 

 

Marquette University, 2012 

 

 

The aerobic degradation of polycyclic aromatic compounds, which are widespread 

contaminants in soils and groundwaters, is carried-out in large part by various Fe-

containing dioxygenases that perform the cis-dihydroxylation and oxidative cleavage of 

aromatic rings.  Recently, a new Fe dioxygenase family emerged that catalyzes a 

remarkable set of transformations; the distinguishing feature of these enzymes is that 

their monoiron(II) centers are coordinated by three histidines residues (i.e., imidazole 

ligands) in a facial geometry – a departure from the “canonical” 2-histidine-1-carboxylate 

facial triad that is dominant among nonheme monoiron enzymes.  Members of the “3His 

family” are capable of oxidatively cleaving C-C bonds in substrates that are generally 

resistant to degradation, including -diketones and monohydroxylated aromatics (e.g., 

salicylic acid).  This thesis describes the design, synthesis, and characterization of novel 

transition-metal complexes with polyimidazole ligands that serve as faithful structural 

and functional models of these important metalloenzymes.  Specifically, high-spin 

iron(II) β-diketonato complexes were synthesized with the 
Ph

TIP (tris(2-phenylimidazol-

4-yl)phosphine), and 
tBu

TIP ((tris-2-tert-butylimidazol-4-yl)phosphine) ligands.  The 

complexes were analyzed with a combination of experimental and computational 

methods including X-ray crystallography, cyclic voltammetry, UV-vis absorption, 
1
H 

nuclear magnetic resonance, and density functional theory (DFT). The resulting 

geometric- and electronic-structure descriptions were compared with those obtained for 

analagous models with the anionic 
Me2

Tp (hydrotris(3,5-dimethylpyrazol-1-yl)borate) and 

Ph2
Tp (hydrotris(3,5-diphenylpyrazol-1-yl)borate) ligands. A similar biomimetic approach 

was employed in the synthesis and characterization of models of the enzyme salicylate 

1,2-dioxygenase.  
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Chapter 1 

 
Structural and Catalytic Properties of Nonheme Fe Dioxygenases 

Involved in Bioremediation Processes 

 

 

 

 

 

Abstract: The selective oxidation of hydrocarbons and their derivatives is important in 

numerous industrial and petrochemical processes.  The demanding nature of these 

transformations often requires the use of toxic and expensive oxidants; however, 

biological systems have evolved various metalloenzymes that catalyze similar reactions 

using dioxygen (O2) as the sole oxidant.  For instance, mononuclear nonheme Fe 

dioxygenases are capable of performing challenging oxidation reactions such as the 

dihydroxylation of hydrocarbons and oxidative cleavage of C-C bonds.  Recently, a new 

Fe dioxygenase family has emerged that catalyzes a remarkable set of transformations 

involving organic pollutants; the distinguishing feature of these enzymes is that their 

Fe(II) centers are coordinated by three histidines (3-His) residues in a facial geometry – a 

departure from the “canonical” 2-histidine-1-carboxylate triad that is dominant among 

nonheme monoiron enzymes. While a number of these 3-His dioxygenases have been 

structurally characterized with X-ray crystallography, uncertainty exists about the 

mechanism of these enzymes at the molecular level. Our research efforts seek to employ 

the methods of synthetic inorganic chemistry to address fundamental questions regarding 

the catalytic activity of nonheme iron dioxygenases with the 3His motif.   
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1.A.  The Role of Nonheme Fe Dioxygenases in Biodegradation 

  

 The selective oxidation of hydrocarbon feedstocks to more valuable compounds is 

a vitally important process in the chemical industry.  As such transformations often 

require expensive and harsh oxidants, there has been considerable interest in generating 

catalytic systems that employ cheap and environmentally-benign oxidants like dioxygen 

(O2).  Remarkably, Nature has already achieved this goal with numerous metalloenzymes 

that utilize O2 to carry out demanding and selective oxidations of biomolecules at 

ambient temperatures and pressures.
1-5

 Detailed biochemical studies of these enzymatic 

systems, coupled with attempts by synthetic chemists to mimic their structures and 

functions, offer the possibility of developing efficient “green” catalysts for industrial use. 

 An important class of enzymes involved in O2-activation are mononuclear 

nonheme Fe dioxygenases that breakdown and assimilate aromatic hydrocarbons in 

microbes.
6-7

  For example, naphthalene dioxygenase (NDO) catalyzes the first step in the 

degradation of naphthalene via oxidation to the corresponding cis-1,2-diol (Scheme 1.1).
8
 

Following dehydrogenation, the aromatic ring is oxidatively opened by either an 

intradiol- or extradiol-cleaving catechol dioxygenase (CatD).
9
  The resulting products are 

further degraded to yield small molecules that feed into the Krebs cycle, thereby allowing 

the organisms to utilize hydrocarbons as sources of energy.
9
  Similarly, aminophenol 

dioxygenases (APDs) perform the oxidative ring-cleavage of substrates derived from the 

microbial catabolism of nitroaromatics (Scheme 1.1).
10 
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Scheme 1.1.  

  

 NDO, extradiol CatDs, and APDs all feature active sites with an Fe
2+

 center 

coordinated to one aspartate (or glutamate) and two histidine residues in a facial array; 

two or three bound H2O molecules are also found in the resting states.
8-9,11-15

 This 2-His-

1-carboxylate (2H1C) facial triad is the predominant coordination motif among nonheme 

monoiron enzymes involved in O2 activation – other examples include the a-

ketoglutarate- and pterin-dependent oxygenases and isopenicillin N-synthase (IPNS).
16

  A 

key advantage of the 2H1C structural motif is that it permits the Fe center to bind both 

substrate and O2 at adjacent coordination sites in an ordered mechanism.  

 The proposed catalytic cycle for the extradiol CatDs (Scheme 1.2) begins with the 

coordination of substrate to the Fe center as a bidentate, monoanionic ligand with 

simultaneous loss of H2O ligands.
9,17

 The resulting five-coordinate Fe
2+

 center is then 

activated for O2 binding, perhaps yielding a short-lived ferric-superoxo intermediate.
17 

 

Formation of the Fe/O2 adduct then triggers one-electron oxidation of the bound substrate 

and its deprotonation by a nearby His residue, resulting in a putative superoxo-Fe
2+

-
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semiquinonate intermediate. The two Fe-bound radicals then combine to give an Fe(II)-

alkylperoxo species that eventually converts to the ring-cleaved product.  An intriguing 

aspect of the proposed mechanism is the tight coupling between dioxygen binding, inner-

sphere electron transfer (from Fe to O2 and substrate to Fe), and proton transfer during 

formation of the key semiquinonate intermediate.
17

 However, it is not clear whether these 

events occur in a stepwise or concerted manner. Questions also remain concerning the 

amount of radical character on the substrate ligand in the O2-bound form of the enzyme.  

 

 

Scheme 1.2.  
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1.B.  A New Class of Nonheme Fe Dioxygenases 

  

 Interestingly, a new class of mononuclear nonheme Fe dioxygenases has recently 

emerged that employ the 3-histidine (3His) facial triad instead of the “canonical” 2H1C 

facial triad.
18,19

  These “3His” enzymes are largely found in bacteria where they act to 

degrade xenobiotic compounds (an exception is cysteine dioxygenase (CDO), which 

initiates the catabolism of L-cysteine in mammals;
20,21

 (Scheme 1.3).  Members of the 

“3His family” catalyze novel transformations that have expanded the known boundaries 

of Fe dioxygenase chemistry.  For example, the enzyme β-diketone dioxygenase (Dke1) 

converts acetylacetone to acetic acid and 2-oxopropanal (Scheme 1.3) – one of the few 

Fe-dependent dioxygenases capable of oxidatively cleaving aliphatic C-C bonds.
 22,23

  X-

ray diffraction (XRD) studies confirmed that the metal center in Dke1 is facially 

coordinated by three His residues and presumably 2-3 H2O molecules, although these 

were not resolved in the structure.
24,25

 Spectroscopic studies indicate that substrate 

coordinates to Fe as the deprotonated b-keto-enolate in a bidentate manner.
26

  Other 

newly-discovered Fe dioxygenases with the 3His triad include gentisate 1,2-dioxygenase 

(GDO)
27

 and salicylate 1,2-dioxygenase (SDO).
28-30

  Sequence analysis also suggests that 

1-hydroxy-2-naphthoate dioxygenase (HNDO) belongs to the 3His family,
30,31

 although 

crystallographic data are currently lacking.  Like the CatDs, each of these microbial 

enzymes participates in hydrocarbon assimilation via the oxidative cleavage of aromatic 

C-C bonds (Scheme 1.3).  Yet SDO and HNDO are unique in performing the oxidation of 

aromatic rings with only one electron-donating group. 
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Scheme 1.3.  

Dke1 was first isolated from the bacteria Acinetobacter johnsonii. Taken from 

raw sewage, the bacteria was grown in a minimal medium with acetylacetone as its only 

source of carbon.
22

 Acetylacetone is a widely used, toxic industrial chemical, and this 

bacteria is capable of converting it to acetate and 2-oxopropanal, which is futher 

degraded into small metabolites that eventually enter the Kreb cycle.
22

 Further 

experiments revealed that acetylacetone is not the only viable substrate,
22,32

 since the 

enzyme is capable of oxidizing a wide range of b-diketones.   

X-ray diffraction (XRD) studies confirmed that the metal center in Dke1 is 

facially coordinated by three His residues and presumably 2-3 H2O molecules, although 

these were not resolved in the structure (Figure 1.1).
24,25

 While the active site can bind 

several first-row transition metal ions, only Fe(II) results in catalytic activity.
22

 

Spectroscopic studies suggest that substrate coordinates to Fe as the deprotonated β-keto-

enolate in a bidentate manner.
33
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Figure 1.1. Crystal structure of the Dke1 active site.
25

 

Given the prevalence and effectiveness of monoiron enzymes with the 

“canonical” 2H1C triad, the emergence of the 3His family of Fe dioxygenases raises an 

interesting question: what is the significance of this change in Fe coordination 

environment for catalysis?  Interestingly, a mutant of Dke1 in which the His104 ligand 

was replaced with Glu was able to partially bind Fe
2+

 (~30% of wild type) yet exhibited 

no catalytic activity.
25

  Similarly, a mutant of IPNS in which the Asp ligand was replaced 

with His was inactive although it contained approximately the same amount of Fe as the 

wild type enzyme.
16

 Thus, the 2H1C and 3His motifs are not functionally 

interchangeable, yet it remains unclear exactly how these ligand-sets tune the catalytic 

properties of their respective enzymes.   

Another open question concerns the mechanism of oxidative C-C bond cleavage 

in the 3His dioxygenases.  Based on kinetic data for Dke1, Straganz has proposed that the 

reaction proceeds via direct addition of O2 to the bound substrate to give an 

alkylperoxidate intermediate.
33

  The nucleophilic peroxidate then attacks the carbonyl 

group to yield a dioxetane species, which subsequently collapses to the products via 

concerted C-C and O-O bond cleavage (Scheme 1.4-A).  This mechanism resembles the 
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one proposed for the intradiol CatDs in which the role of the Fe center is to activate 

substrate, not O2.
34,35

 A more conventional O2-activation mechanism has also been 

proposed for Dke1 that involves initial formation of an Fe-superoxo intermediate, 

followed by reaction with bound substrate (Scheme 1.4-B).
32 

 

 

 

Scheme 1.4.  

  

The mechanisms of SDO and HNDO are also unsettled.  The lack of a second electron-

donating group on the substrates, noted above, makes it unlikely that these enzymes 

follow the same catalytic cycle as the extradiol CatDs, which involves a Criegee 

rearrangement to form a lactone intermediate.
9,36

 This step requires ketonization of the 

second –OH group to transfer electron-density onto the ring – an impossibility for the 

SDO and HNDO substrates.  Thus, these 3His Fe dioxygenases require an alternative 

strategy for oxidative ring scission that has yet to be determined. 
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1.C.  Value of the Biomimetic Approach 

 

The efficiency and selectivity of metalloenzymes has inspired inorganic chemists 

to generate synthetic complexes that replicate important structural, spectroscopic, and/or 

functional properties of the enzyme active sites.
37

 Indeed, fruitful interactions between 

biochemists and synthetic inorganic chemists have greatly advanced our understanding of 

metalloenzyme function.  The unique reactions performed by the 3His family of Fe 

dioxygenases, as well as their relevance to bioremediation processes, make them worthy 

targets for biomimetic studies.  Thus, the central theme of this research proposal is the 

design of metal complexes that serve as structural and functional models of dioxygenases 

with the 3His facial triad (specifically, Dke1 and SDO).  A key advantage of this 

approach is that the properties of our dioxygenase models can be modified in a 

straightforward and systematic manner, allowing us to isolate those factors that play 

crucial roles in modulating electronic structure and catalytic activity.  While similar 

changes can be made to protein active sites via mutagenesis, such modifications often 

cause widespread and ill-defined changes in structure that result in loss of activity.  For 

instance, in the 2H1C and 3His families, many variants arising from point mutations of 

coordinating residues fail to bind Fe(II), and most are catalytically inactive, limiting the 

information that can be derived from mutagenesis studies.
19,38

 In contrast, the flexible 

synthetic approach described here will provide a series of imidazole-based metal 

complexes with a broad range of geometric and electronic properties, ligand types, and 

metal centers.  By exploring the reactivities of these various complexes with O2, we will 
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be able to formulate structure-reactivity correlations that are transferrable to the 

biological systems. 

  

1.D.  Outline of Major Findings 

 

The biomimetic approach described above has been used to address fundamental 

questions regarding the catalytic activity of dioxygenases with the 3His facial triad.  This 

thesis describes the following major findings: 

1. A series of monoiron complexes supported by tris(imidazolyl)phosphine ligands 

and various bound substrates, including β-diketonates (to mimic Dke1) and 

salicylate derivatives (to mimic SDO) have been prepared and characterized with 

X-ray crystallography.   

2. The geometric and electronic structures of these complexes have been 

characterized with a combination of experimental and computational methods; 

namely, cyclic voltammetry, spectroscopic techniques (UV-vis absorption and 

electron paramagnetic resonance), and density functional theory (DFT) 

calculations.   
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Chapter 2 

 
Synthesis and Characterization of Fe(II) β-Diketonato Complexes 

with Relevance to Acetylacetone Dioxygenase 

 
 

Abstract:  A series of high-spin iron(II) -diketonato complexes have been prepared and 

characterized with the intent of modeling the substrate-bound form of the enzyme 

acetylacetone dioxygenase (Dke1).  The Dke1 active site features an Fe(II) center 

coordinated by three histidine residues in a facial geometry – a departure from the 

standard 2-histidine-1-carboxylate (2H1C) facial triad dominant among nonheme 

monoiron enzymes.  To better understand the implications of subtle changes in 

coordination environment for the electronic structures of nonheme Fe active sites, 

synthetic models were prepared with four different supporting ligands (LN3): the anionic 

Me2
Tp and 

Ph2
Tp ligands (

R2
Tp = hydrotris(pyrazol-1-yl)borate substituted with R-groups 

at the 3- and 5-pyrazole positions) and the neutral 
Ph

TIP and 
tBu

TIPligands (
R
TIP = 

tris(imidazol-4-yl)phosphine substituted with R-groups at the 2-imidazole position).  The 

resulting [(LN3)Fe(acac
X
)]

0/+
 complexes (acac

X
 = substituted -diketonates) were 

analyzed with a combination of experimental and computational methods, namely, X-ray 

crystallography, cyclic voltammetry, spectroscopic techniques (UV-vis absorption and 
1
H 

NMR), and density functional theory (DFT).   
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2.A.  Introduction 

 

The aerobic degradation of pollutants relies heavily on mononuclear nonheme 

iron dioxygenases found in the catabolic pathways of bacteria.
5,6,17

  Examples include the 

Rieske dioxygenases,
8
 extradiol catechol dioxygenases,

9,12,39
 and (chloro)hydroquinone 

dioxygenases.
40-42

  These enzymes share a common active-site structure in which the 

Fe(II) center is coordinated to one aspartate (or glutamate) and two histidine residues in a 

facial array; two or three bound H2O molecules are also found in the resting states.
13,43

  

Despite the predominance of the 2H1C motif, a new class of mononuclear nonheme Fe 

dioxygenases has recently emerged that employ the three histidine (3His) facial triad 

instead.
18,19

  The first member of this class to be structurally characterized was cysteine 

dioxygenase (CDO), an enzyme that catalyzes the first step in the catabolism of L-

cysteine.
20,21

  Other 3His enzymes have since been discovered in bacteria, where they act 

to degrade xenobiotic compounds.
27,28

  The enzyme acetylacetone dioxygenase (Dke1), 

for instance, is one of the few Fe-dependent dioxygenases capable of oxidatively cleaving 

aliphatic C-C bonds.
22-23,33

  Dke1 allows Acinetobacter johnsonii to convert the toxic and 

prevalent pollutant acetylacetone to acetic acid and 2-oxopropanal.  X-ray diffraction 

(XRD) studies confirmed that the metal center in Dke1 is facially coordinated by three 

His residues and presumably 2-3 H2O molecules, although these were not resolved in the 

structure.
24,25

 While the active site can bind several first-row transition metal ions, only 

Fe(II) results in catalytic activity.
22

  Spectroscopic and computational studies indicate that 

substrate coordinates to Fe as the deprotonated -diketone (acac) in a bidentate manner.
33
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The emergence of the 3His family of Fe dioxygenases raises a pertinent question: 

what is the significance of variations in Fe coordination environment for the electronic 

structure and catalytic activity of dioxygneases?  Interestingly, a mutant of Dke1 in which 

the His104 ligand was replaced with Glu was able to partially bind Fe (~30% of wild 

type) yet exhibited no catalytic activity.
25

 Thus, the 2H1C and 3His motifs are not 

functionally interchangeable, yet it remains unclear exactly how these ligand-sets tune the 

catalytic properties of their respective enzymes.  Another important question concerns the 

mechanism of oxidative C-C bond cleavage in Dke1.  Based on kinetic data, Straganz and 

coworkers have proposed that the mechanism proceeds via direct addition of O2 to the 

bound substrate to give an alkylperoxidate intermediate.
33

  Such a mechanism would 

resemble the one proposed for the intradiol catechol dioxygenases in which the role of the 

Fe center is to activate the substrate, not O2.
34,35

  Yet others have suggested a more 

conventional O2-activation mechanism that involves initial formation of an Fe-superoxo 

intermediate, followed by reaction with bound substrate.
32

 

These fundamental questions concerning the structure and function of Dke1 can 

be addressed, in part, thorough the development of synthetic model complexes.  Two Fe-

acac
X
 complexes related the Dke1 active site have been previously reported.  Several 

years prior to the discovery of Dke1, Kitajima et al. published the synthesis and X-ray 

structure of [(
iPr2

Tp)Fe(acac)(MeCN)], where 
iPr2

Tp = hydrotris(3,5-diisopropylpyrazol-1-

yl)borate(-1).
44

  In 2008, Siewert and Limberg prepared [(
Me2

Tp)Fe(Phmal)] (Phmal = 

anion of diethyl phenylmalonate) and demonstrated that reaction with O2 at room 

temperature in MeCN resulted in dioxygenolytic ring cleavage of the bound ligand.
32 

 

Thus, both Dke1 models reported to date utilize 
R2

Tp ligands (Scheme 2.1), which have 
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been widely employed to replicate the 2H1C facial triad.
43-48

  However, these pyrazole-

based ligands have limitations as mimics of the 3His facial triad;  pyrazole rings have 

different electronic properties than histidines (i.e., imidazoles) and the overall negative 

charge of the Tp ligand contrasts with the neutral 3His set of the enzyme.  For such 

reasons, we have also pursued the tris(imidazol-4-yl)phosphine ligands (
R
TIP, R = Ph or 

tBu; see Scheme 2.1) to more faithfully replicate the charge and donor strength of the 

3His coordination environment. 

Scheme 2.1.  

 

In an effort to better understand the significance of the 3His triad for Dke1, we 

have synthesized a series of Fe(II)-acac
X
 complexes featuring the four supporting ligands 

(LN3) shown in Scheme 2.1:  
Me2

Tp, 
Ph2

Tp, 
Ph

TIP, and 
tBu

TIP.  As noted above, the 
R2

Tp 

and 
R
TIP ligands each reproduce the facial N3 coordination environment of the Dke1 
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active site, yet they have important differences with respect to charge and electronic 

properties that resemble those differences between the 2H1C and 3His triads.  Since a 

previous study by Solomon and coworkers suggested that the acac-bound Dke1 site 

partially retains a bound H2O ligand,
49

 we employed both 
Me2

Tp and 
Ph2

Tp ligands in 

order to generate six-coordinate (6C) and five-coordinate (5C) complexes, respectively.  

In addition to the natural Dke1 substrate (acac), our models were prepared with acac
X
 

ligands featuring bulky and/or electron-withdrawing substituents (Scheme 2.1) to 

evaluate the effect such variations on the structural and spectroscopic features of the 

resulting complexes. Each complex was characterized with X-ray crystallography, cyclic 

voltammetry, and electronic absorption and 
1
H NMR spectroscopies.  Density functional 

theory (DFT) calculations were also performed to examine the effects of ligand charge 

and coordination number on Fe/ligand bonding interactions.  This combined experimental 

and computational approach has provided detailed insights into the electronic structures 

of the synthetic Fe(II)-acac
X
 complexes and, by extension, the Dke1 active site.  

 

NOTE:  The work involving the Tp-based complexes (1-acac
X
 and 2-acac

X
) was carried 

out by Dr. Heaweon Park, a postdoctoral researcher in Dr. Fiedler’s laboratory.  The 

studies involving the 
R
TIP-based complexes ([3-acac

X
]OTf and [4-acac

X
]OTf) were 

performed by Jacob Baus.   
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2.B. Synthesis and Solid State Structures.   

 

Mononuclear Fe(II) -diketonato complexes with the 
Ph

TIP and 
tBu

TIP ligands 

([3-acac
X
]OTf and [4-acac

X
]OTf, respectively; Scheme 2.1) were generated via addition 

of the ligand to MeOH solutions of Na(acac
X
) and Fe(OTf)2.  All syntheses were 

performed under anaerobic conditions. Each complex was characterized with single-

crystal X-ray crystallography, with the exception of [4-acac
PhF3

]OTf and [4-acac
F6

]OTf.  

Details concerning the XRD data collection and analysis are summarized in the 

Experimental Section (Table 2.10-11). 

Metric data for complexes with the 
Ph

TIP ligand ([3-acac
X
]OTf; acac

X
 = acac, 

acac
F3

, acac
F6

, and acac
PhF3

) are provided in Table 2.1, and the crystallographic structures 

from this series are shown in Figure 2.1.  Crystals of these triflate salts were obtained 

either by the slow cooling of MeCN solutions or diffusion of pentane into CH2Cl2 

solutions.  Analysis of the crystal packing reveals that each triflate counteranion forms 

hydrogen bonds with three imidazole N-H groups in the solid state.   In general, the [3-

acac
X
]OTf complexes exhibit 5C Fe(II) geometries that are intermediate between square 

pyramidal and trigonal bipyramidal (-values between 0.38 to 0.56).  The lone exception 

is [3-acac
F6

(MeCN)]OTf, which features a 6C Fe(II) center with a bound solvent ligand 

(Figure 2.1-D).  In the 5C structures, the iron-pyrazole bond lengths (average Fe-NTp = 

2.15 Å) are similar to those observed for other five-coordinate high-spin Fe(II) 

complexes with Tp ligands,
43,50-53

 and the average Fe-Oacac bond distances are near 2.02 

Å.   

The 6C PhTIP-based complex [3-acac
F6

(MeCN)]OTf adopts a distorted 

octahedral geometry with an MeCN ligand occupying the position trans to N5.  The Fe-
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N/O bonds in this complex (average Fe-Nimid =  2.22 Å; average Fe-Oacac =  2.09 Å) are 

significantly longer than those measured for the 5C 3-acac
X
 complexes due to the 

increase in coordination number.  In the [3-acac
F6

(MeCN)]OTf structure, the presence of 

the coordinated MeCN ligand forces two Ph rings of the 
Ph

TIP ligand to adopt 

orientations perpendicular to the acac
F6

 ligand (Figure 2.1-D). By contrast, in the 5C 

structures, the Ph rings lie roughly parallel to the plane of the acac
X
 ligand, shielding the 

vacant coordination site. 

 

Figure 2.1. Thermal ellipsoid plot (50% probability) derived from A) [3-acac]OTf, B) 

[3-acac
F3

]OTf, C) [3-acac
PhF3

]OTf, and D) [3-acac
F6

]OTf. The counteranions, 

noncoordinating solvent molecules, and hydrogen atoms have been omitted for clarity. 
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Table 2.1. Selected bond distances (Å) and angles (deg) for [3-acac]OTf•MeCN, [3-acacF3]OTf•CH2Cl2, 

[3-acac
PhF3

]OTf•4CH2Cl2, and [3-acac
F6

]OTf•3MeCN.   

Bond Distance  [3-acac]OTf•MeCN [3-acac
F3

]OTf• 

CH2Cl2 

[3-acac
PhF3

]OTF• 

4CH2Cl2 
[3-acac

F6
(MeCN)] 

OTf•2MeCN 

Fe-O1 1.9619(12) 1.930(11) 1.974(2) 2.0792(10) 

Fe-O2 2.0586(11) 2.120(11) 2.070(2) 2.0918(11) 

Fe-N1 2.2122(13) 2.2225(12) 2.193(3) 2.2639(13) 

Fe-N2 2.1212(13) 2.0985(13) 2.109(2) 2.1705(11) 

Fe-N3 2.1376(13) 2.1289(12) 2.120(2) 2.2123(13) 

Fe-N4    2.1854(14) 

Fe-Oacac(ave) 2.010 2.025 2.022 2.086 

Fe-NTIP(ave) 2.157 2.151 2.141 2.216 

     

Bond Angle     

O1-Fe-O2 87.47(5) 86.5(3) 85.96(9) 83.89(4) 

O1-Fe-N1 94.46(5) 96.9(4) 95.77(9) 93.67(4) 

O1-Fe-N2 142.76(5) 138.0(8) 150.09(10) 178.87(4) 

O1-Fe-N3 123.96(5) 126.7(7) 114.71(9) 89.97(4) 

O2-Fe-N1 176.36(5) 176.2(3) 172.64(9) 175.81(5) 

O2-Fe-N2 92.12(5) 91.0(3) 89.86(9) 96.03(5) 

O2-Fe-N3 90.73(5) 88.5(4) 95.87(9) 92.45(5) 

N1-Fe-N2 84.47(5) 85.35(5) 85.08(10) 86.48(5) 

N1-Fe-N3 90.75(5) 90.62(5) 89.92(9) 90.95(5) 

N2-Fe-N3 93.28(5) 95.04(5) 95.17(9) 88.90(5) 

τ-value
 a 0.560 0.637 0.376  

a 
The geometric parameter η is defined as η = |(α - β)|/60, where α and β are the two basal angles in pseudo-

square pyramidal geometry. The η-value in 0.0 in idealized square-planar geometries and 1.0 in idealized 

trigonal bipyramidal geometries.
54 

 

X-ray quality crystals of the complex [Fe(
tBu

TIP)(acac)]OTf ([4-acac]OTf) were 

prepared by slow-cooling of a concentrated DCM solution. The 
tBu

TIP ligand, like 
Ph

TIP, 

coordinates in a tridentate, facial manner with an average Fe-Nimid distance of 2.19 Å 

(Table 2.2)  indicative of a high-spin Fe(II) center (S = 2). The acac ligand coordinates 

in a bidentate fashion with an average Fe-Oacac distance of 2.03 Å.  A similar 

coordination geometry was revealed in the X-ray structure of [4-acac
F3

]OTf.  In this 

case, the asymmetric unit included two symmetrically-independent molecules with nearly 

identical structures (Table 2.2).  The 
tBu

TIP ligand again coordinates in a facial manner 
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with an average Fe-Nimid bond length of 2.16 Å. The acac ligand coordinates in a 

bidentate fashion with an average Fe-Oacac distance of 2.05 Å. For both complexes, the 

bulky tert-butyl substituents of the supporting ligand enforce a trigonal bipyramidal 

geometry (η ~ 0.74)
 
with an N2O equatorial plane.   

Comparison of structures with the same coordination number and acac
X
 ligand 

indicates that Fe-N bond distances involving the neutral 
R
TIP ligands are consistently 

longer than those involving the anionic 
R2

Tp ligands.  For example, the Fe-NTIP bond 

distances in 6C [3-acac
F6

(MeCN)]OTf are lengthened by ~0.08 Å (on average) relative 

to the Fe-NTp distances in 1-acac
F6

.  Yet this difference is less pronounced when one 

compares 5C complexes with the same acac
X
 ligand. In these cases, the Fe-NTIP bond 

distances are only ~0.02 Å longer (on average) than the corresponding Fe-NTp bond 

distances.   
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Figure 2.2. Thermal ellipsoid plot (50% probability) derived from A) [4-acac]OTf, and 

B) [4-acac
F3

]OTf. The counteranions, noncoordinating solvent molecules, hydrogen 

atoms, and the dimer of [4-acac
F3

]OTf have been omitted for clarity. 

 
Table 2.2. Selected bond distances (Å) and angles (deg) for [4-acac]OTf•MeCN and  

[4-acac
F3

]OTf•CH2Cl2.  

Bond Distance  [3-acac]OTf•MeCN [3-acac
F3

]OTf• CH2Cl2 

Fe-O1 2.1038(14)  1.988(2) 

Fe-O2 1.9642(14) 2.112(2) 

Fe-N1 2.1386(15) 2.144(2) 

Fe-N2 2.1607(15) 2.137(2) 

Fe-N3 2.2564(16) 2.213(2) 

Fe-Oacac(ave) 2.0340 2.050 

Fe-NTIP(ave) 2.1852 2.164 

   

Bond Angle   

O1-Fe-O2 85.45(6) 84.58(9) 

O1-Fe-N1 90.51(6) 127.96(10) 

O1-Fe-N2 90.97(6) 128.56(10) 

O1-Fe-N3 175.41(6) 100.71(9) 

O2-Fe-N1 131.44(6) 89.48(9) 

O2-Fe-N2 126.78(6) 90.93(9) 

O2-Fe-N3 99.11(6) 174.42(9) 

N1-Fe-N2 101.62(6) 103.03(9) 

N1-Fe-N3 86.08(6) 87.16(9) 

N2-Fe-N3 86.71(6) 86.37(9) 

τ-value
 b

 0.733 0.764 

a 
Average values for the two chemically equivalent [3-acac

F3
]

+
 cations                                                           

b 
The geometric parameter η is defined as η = |(α - β)|/60, where α and β are the two basal angles in pseudo-

square pyramidal geometry. The η-value in 0.0 in idealized square-planar geometries and 1.0 in idealized 

trigonal bipyramidal geometries.
54 
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2.C.  Spectroscopic and Electrochemical Properties 

 

UV-vis absorption spectra of the Fe-acac
X
 complexes, measured in MeCN are 

shown in Figure 2.3-4. Along with intense near-UV peaks (not shown), two broad 

absorption manifolds with ε-values between 0.2 and 1.2 mM
-1

cm
-1

 are observed in the 

visible region, giving the complexes their distinctive colors. These two features are 

separated by ~6000-8000 cm
-1

, although the higher-energy band is often obscured in the 

2-acac
X
 and [3-acac

X
]OTf spectra due to the onset of Ph-based transitions in the near-

UV. It is apparent in most spectra that the lower-energy band is comprised of two (or 

more) overlapping peaks. Within each series, this feature red-shifts as the acac
X
 ligand 

becomes more electron-poor, suggesting that it primarily arises from an Fe(II)→acac
X
 

MLCT transition, an assignment confirmed by literature precedents
49

 and time-dependent 

DFT (TD-DFT) studies. The TD-DFT calculations further indicate that the higher energy 

feature corresponds to an acac
X
-based transition with some Fe(II)→acac

X
 MLCT 

character. The MLCT intensities are strongly dependent on the identity of the acac
X
 

ligand, following the order acac
PhF3

 > acac
F6

 > acac
F3

 > acac in each series. A complete 

summary of absorption energies and intensities are provided in Table 2.3. 
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Figure 2.3.  Electronic absorption spectra of complexes in the A) 1-acac
X
 and B) 2-acac

X
 

series measured at room temperature in MeCN.  
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Figure 2.4. Electronic absorption spectra of complexes in the A) [3-acac
X
]OTf and B) 

[4-acac
X
]OTf series measured at room temperature in MeCN.  
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It is instructive to compare absorption data for complexes with the same acac
X
 

ligand but different supporting ligand. For instance, the MLCT bands of the 
Ph2

Tp based 

complexes are blue-shifted by 900 ± 100 cm
-1

 relative to their counterparts in spectra of 

the 
Me2

Tp based complexes. Given that these species share virtually identical ligand 

environments, such significant disparities in absorption energies suggest that the 

difference in coordination number observed in the solid-state structures persists in 

solution. The MLCT absorption features of the 
Ph

TIP complexes are higher in energy than 

those of the corresponding 
Me2

Tp and 
Ph2

Tp complexes by an average of 1400 and 250  

cm
-1

, respectively, where as 
tBu

TIP complexes are higher by an average of 1650 and 600 

cm
-1

, respectively. This result indicates that the Fe(II) d-orbitals are stabilized in the TIP 

models relative to the Tp complexes, likely due to the difference in the charge of the 

supporting ligands. In addition, MLCT absorption features in the TIP series are much 

weaker than analogous bands in the Tp series (Table 2.3), suggesting that the supporting 

ligands also modulate the Fe-acac
X
 covalency. 
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Table 2.3. Physical properties of Fe(II)-acac
X
 complexes and comparison to enzymatic systems.   

  UV-vis Electochemistry 

Complex Color  Energy, cm
-1

  (ε, M
-1

cm
-1

)
a
 E1/2, mV vs. Fc

+/0
 (ΔE, mV)

b
 

1-acac yellow 22830 (620) 28730 (630) -303 (72) 

1-acac
F3

 orange 20880 (580) 26520 (400) -34 (107) 

1-acac
PhF3

 reddish purple 17640 (1190) 24810 (570) -2 (98) 

1-acac
F6

 purple 17510 (820) 25130 (560) +225 (127) 

2-acac yellow 23810 (410) 28090 (sh) -58 (127) 

2-acac
tBu

 yellow 23590 (420) 27700 (sh) +47 (116) 

2-acac
F3

 orange 21650 (440) 27550 (sh) +158 (91) 

2-acac
PhF3

 purple 18520 (980) 24100 (460) +195 (94) 

[3-acac]OTf faint yellow 24090 (160) 28490 (sh) Ep,a = +120
c
 

[3-acac
F3

]OTf orange 21690 (220) 24510 (320) Ep,a = +360
c
 

[3-acac
PhF3

]OTf reddish purple 18940 (630) 24510 (320) Ep,a = +410
c
 

[3-acac
F6

]OTf purple 19650 (450) 26180 (390) N/A 

[4-acac]OTf faint yellow 23870 (290) 28010 (320)  

[4-acac
F3

]OTf orange 19460 (650) 25640 (sh)  

[4-acac
PhF3

]OTf reddish purple 19460 (650) 35640 (sh)  

[4-acac
F6

]OTf purple 19610 (480) 26250 (410)  

Dke1-acac
d
  24000 (1000) 28000 (sh)  

HPPD-acac
d
  23000 (760) 27500 (sh)  

Dke1-acac
F3 e

  22200 (270) 26200 (280)  

Dke1-acac
PhF3 e

  18500 (350)   

a 
sh = shoulder; no intensity is reported.                                                                                                             

b 
ΔE = Ep,a - Ep,c.                                                                                                                                                      

c 
Only Ep,a value is provided due to irreversibility, N/A = no electrochemical event observed.                            

d 
Data obtained from reference 9, HPPD = hydroxyphenylpyruvate dioxygenase.                                               

e 
Data obtained from reference 20. 
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1
H and 

19
F NMR spectra of complexes 3-acac

X
 were measured in MeCN-d3 at ambient 

temperature. The wide range of observed chemical shifts confirms that these Fe(II) 

complexes possess high-spin (S = 2) electronic configurations. Assignments were made 

on the basis of chemical shifts and peak integrations, T1-relaxation values, and literature 

precedents. In all cases, the three imidazole ligands are spectroscopically equivalent in 

solution. 
1
H NMR data for complexes 3-acac

X
 are summarized in Table 2.4.  Each 

complex exhibits a downfield resonance near 65 ppm with a T1-value of 6 ± 1 ms. This 

peak gradually disappears upon mixing with MeOH-d4, indicating that it arises from the 

exchangeable proton of the imidazole moieties. The other intense downfield signal (found 

between 35 and 50 ppm) also integrates to three protons, and it is assigned to the 5-

imidazole protons. Based on similarities to the NMR spectra of the Fe(
Ph2

Tp) complexes, 

the fast-relaxing peak (T1 ~ 1 ms) in the negative δ-region are attributed to the ortho 

protons of the 2-phenyl substituents. The corresponding meta and para protons appear 

near 6.5 and 7.8 ppm, respectively. 
19

F NMR spectra of the three complexes containing 

fluorinated β-diketones each display two resonances: a sharp peak at -79.2 ppm from the 

triflate counteranion, and a fast-relaxing feature (T1 = 6 ± 3 ms) between -45 and -65 ppm 

derived from the acac
X
 ligands. The chemical shift measured for the triflate counteranions 

is identical to that observed for [NBu4]OTf in MeCN-d3. Interestingly, 3-acac
F6

 exhibits 

only only one acac
F6

 derived resonance, indicating that the two -CF3 groups are 

equivalent in solution because of dynamic averaging. 

Regardless of the supporting ligand, peaks arising from methyl substituents of the 

acac and acac
F3

 ligands exhibit upfield chemical shifts ranging from -12 to -21 ppm, 

where as the range for the Tp complexes is from -7 to -34 ppm. Interestingly, the T1-
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values of the acac-Me resonances fall into two classes: those measured for 1-acac and 1-

acac
F3

 are near 10 ms, while those measured for [3-acac]OTf and [3-acac
F3

]OTf are 

considerably shorter (~3 ms) and closer to the value found for 2-acac in benzene-d6 (3.3 

ms). This result suggests that the acac
X
 ligands adopt different orientations with respect 

to the Fe(II) center in the two sets of complexes, and provides further evidence that 

complexes with bulky Ph-substituents remain pentacoordinate even in MeCN solution. In 

addition, the T1-values of 3-acac
F6

  the only six coordinate 
Ph

TIP complex in the solid 

state   are significantly larger than those measured for the other three 
Ph

TIP/acac
X
 

species, indicating differences in solution structures. 
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Figure 2.5.  
1
H NMR of complexes 3-acac

X
 in MeCN-d3. Note that peak intensities in 

the middle portions of the spectra were reduced for the sake of clarity. 

 
Table 2.4. Summary of 

1
H NMR parameters.   

 4-imid o-2-Ph m-2-Ph p-2-Ph N-H acac
X
 

Complex δ, ppm δ, ppm δ, ppm δ, ppm δ, ppm δ, ppm 

[3-acac]OTf 50 (4.0) -19 (0.45) 6.5 (8.1) 7.8 (23) 65 (5.2) -12 (-CH3, 2.9) 

44 (-H, 1.0) 

[3-acac
F3

]OTf 47 (4.3) -14 (0.56) 6.4 (8.9) 7.9 (24) 66 (6.1) -21 (-CH3, 3.4) 

27.2 (-H, 3.3) 

[3-acac
PhF3

]OTf 45 (4.5) -13 (0.62) 6.4 (9.3) 7.8 (25) 66 (6.5) 8.0 (m-Ph, 35) 

16 (p-Ph, 77) 

19 (o-Ph, 2.9) 

[3-acac
F6

]OTf 35 (8.0) -4.5 (1.2) 7.2 (15) 7.8 (33) 67 (7.0) 5.1 (-H, 3.3) 

Spectra for 3-acac
X
 were taken in MeCN-d3. The numbers in parenthesis are the relaxation times (T1) in 

milliseconds 
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The redox properties of the Fe-acac
X
 complexes were examined with cyclic voltammetry 

in MeCN solutions with (NBu4)PF6 as the supporting electrolyte. The electrochemical 

data are summarized in Table 2.3 (potentials are reported vs. Fc
+/0

), while Figure 2.6 

displays representative cyclic voltammograms for complexes with the acac
PhF3

 ligand. As 

expected, within each series the redox potentials shift to more positive values as the acac
X
 

ligand becomes more electron-poor (Eacac < EacacF3 < EacacPhF3 < EacacF6). Potentials 

measured for the 2-acac
X
 complexes are 210 ± 25 mV more positive than those in the 1-

acac
X
 series. As shown in Figure 2.6, the 

Ph
TIP complex 3-acac

PhF3
 displays an anodic 

wave at +410 mV along with a much weaker cathodic wave at +190 mV. Such 

irreversible redox behavior is typical of the 3-acac
X
 complexes, and thus only the Ep,a 

values are provided in Table 2.3 (3-acac
F6

 failed to show any electrochemical events in 

the range examined). Regardless, the data clearly indicate that the 3-acac
X
 complexes are 

harder to oxidize than the corresponding 
R2

Tp based complexes, with Ep,a values shifted 

positively by 100-200 mV relative to the 
Ph2

Tp series. Thus, the electrochemical results 

are consistent with the trend observed for Fe
II
→acac

X
 MLCT energies from DFT 

calculations; both sets of data indicate the Fe(II)
 
oxidation state is stabilized in the order 

Ph
TIP > 

Ph2
Tp > 

Me2
Tp. 
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Figure 2.6.  Cyclic voltammograms of 1-acac
PhF3

, 2-acac
PhF3

, and [3-acac
PhF3

]OTf in 

MeCN (or 1:1 MeCN:CH2Cl2 for 2-acac
PhF3

) with 60 mM (NBu4)PF6 as the supporting 

electrolyte and a scan rate of 100 mV/s.   
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2.D.  O2 and NO Reactivity 

 

These Fe(II) complexes in the [3-acac
X
]
+
 and [4-acac

X
]

+
 series are generally 

unreactive towards O2 in both coordinating and non-coordinating solvents, exhibiting 

only slow decay at room temperature.  It is tempting to ascribe this lack of reactivity to 

the increased steric bulk of the phenyl substituents, which appear to limit access to the 

vacant coordination site in the X-ray crystal structures (Figure 2.1-2).  However, this 

hypothesis is contradicted by our experiments with NO.   

Each Dke1 model with the 
Ph

TIP ligand rapidly reacts with NO to yield the 

corresponding {FeNO}
7
 species (according to the Enemark-Feltham notation).  As shown 

in Figure 2.7, formation of the greenish-brown Fe-NO adduct, [3-acac(NO)]
+
, is evident 

in the appearance of two absorption bands near 440 and 620 nm that are characteristic of 

6C {FeNO}
7
 species.  While the iron nitrosyl complexes with 

R2
Tp supporting ligands 

have long lifetimes at RT, the 3-acac(NO) species is only moderately stable at -40 
o
C in 

MeCN.  The nitrosyl complexes are uniformly high-spin (S = 3/2), displaying nearly axial 

EPR spectra with gx ≈ gy ≈ 4.0  and gz = 2.0 (Figure 2.7, inset). 
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Figure 2.7.  Absorption spectra of 3-acac in MeCN at -40 
o
C before and after addition of 

NO. [Fe] = 2.1 mM.  Inset: X-band EPR spectrum of the Fe-NO adduct of 3-acac in 

frozen MeCN.   Instrumental parameters: frequency = 9.629 GHz; power = 2.0 mW; 

modulation =  12 G; temperature = 10 K. 

 

2.E. Density Functional Theory (DFT) Calculations.   

 

Energy-minimized structures of the Fe-acac
X
 complexes were generated via DFT 

geometry optimizations.  Based on the crystallographic results, computational models of 

the 1-acac
X
 complexes included a bound MeCN ligand, while those of the 2-acac

X
 series 

were exclusively 5C.  For the sake of comparison, structures of the [3-acac
X
]
+ 

complexes 

were computed both with and without coordinated MeCN.  The DFT-derived structures 

agree quite well with the crystallographic results, generally providing bond distances 

within 0.05 Å of the experimental values.  Consistent with the XRD data, DFT predicts 

Fe-NTIP bond distances to be 0.103 ± 0.002 Å longer (on average) than Fe-NTp distances 

for 6C complexes and 0.023 ± 0.002 Å longer for 5C complexes, assuming the same 
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acac
X 

ligand.  However, DFT uniformly overestimates all Fe-NTp/TIP bond lengths by 

approximately 0.03 Å, regardless of LN3 ligand, while underestimating the Fe-Oacac by the 

same amount. In addition, the computed 5C models tend to exhibit larger -values (i.e., 

geometries closer to the trigonal-bipyramidal limit) than the experimental structures.  

Spin-unrestricted single-point DFT calculations utilizing the B3LYP hybrid 

functional were performed with the optimized models.  Representative molecular orbital 

(MO) energy-level diagrams are shown in Figure 2.8 for 1-acac
F6

 and [3-

acac
F6

(MeCN)]
+
.  The lone spin-down Fe electron lies in the 3dxz-based MO that bisects 

the Neq-Fe-O angles, while the highest-occupied acac-based MO exhibits a large lobe of 

electron density on the central carbon atom that reflects the anionic nature of the ligand 

(Figure 2.9). The spin-down LUMO has mainly acac
F6

 C=O* character, albeit with non-

negligible Fe character (~7%).  The Fe 3dxy- and 3dyz-based MOs lie at slightly-higher 

energies.  Thus, the acac LUMO orbital is approximately isoenergetic with the Fe(II) “t2g-

set” of orbitals, resulting in significant -backbonding interactions.  Similar bonding 

patterns were found for all 6C complexes in the 1-acac
X
 and [3-acac

X
(MeCN)]

+
 series, 

although the strength of the -backbonding interactions varied according to the electronic 

properties of the acac
X
 substituents.  
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Figure 2.8. MO energy diagrams for geometry-optimized models of 1-acac
F6

 and [3-

acac
F6

(MeCN)]
+
 obtained from DFT calculations.  To account for differences in overall 

charge, the computed MO energies for [3-acac
F6

(MeCN)]
+
 were uniformly increased by 

2.11 eV, such that the acac HOMOs are isoenergetic for the two models (see text for 

more details). 
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Figure 2.9.  Isosurface plots of spin-down MOs computed for [3-acac
F6

 (MeCN)]
+
 by 

DFT.    

 

The DFT results permitted further comparison of the electronic properties of the 

R2
Tp and 

Ph
TIP supporting ligands.  Due to the difference in charge between the two sets 

of complexes, it was first necessary to normalize the orbital energies.  This was 

accomplished by assuming that the acac HOMO, which is essentially nonbonding with 

respect to the Fe(II) center and LN3 ligand, has identical energies in complexes with the 

same acac
X
 ligand (that is, the acac

X
 HOMO served as an “internal energy standard”).  

Following this procedure, it is evident in Figure 2.8 that the Fe d-orbital manifold of [3-

acac
F6

(MeCN)]
+
 is uniformly stabilized relative to the corresponding set of 1-acac

F6
 

orbitals, reflecting the reduced donor strength of the neutral 
Ph

TIP ligand compared to the 

anionic 
Me2

Tp ligand.  Indeed, an analysis of DFT results for the four pairs of 6C Fe-

acac
X
 species reveals that Fe d-based MOs in 

Ph
TIP complexes are stabilized by an 
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average of 0.9 ± 0.3 eV relative to their counterparts in 
Me2

Tp models.  The contrast 

between the Tp and TIP ligands is less dramatic for the 5C complexes, where the 

difference in Fe d-orbital energies is only ~0.3 eV (Figure 2.10 provides MO energy-

level diagrams for 5C models of 2-acac
F3

 and [3-acac
F3

]
+
).    

 

Figure 2.10.  MO energy diagrams for geometry-optimized models of 2-acac
F3

 and [3-

acac
F3

]
+
 obtained from DFT calculations.  To account for differences in overall charge, 

the computed MO energies for [3-acac
F3

]
+
 were uniformly increased by 2.41 eV, such 

that the acac HOMOs are isoenergetic for the two models (see main text for more 

details).  
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To aid in assignment of the observed UV-vis absorption features, time-dependent 

DFT (TD-DFT) calculations were performed for both 5C and 6C models of the [3-

acac
X
]
+
 complexes.  Regardless of coordination number, TD-DFT predicts two intense 

features in the visible region: a Fe(xz) → acac
X
 MLCT transition and a higher-energy 

acac
X
-based transition with some MLCT character. As shown in Table 2.5, the computed 

energies for both types of transitions agree reasonably well with the experimental data.  

While TD-DFT consistently overestimates the MLCT intensities, it nicely reproduces the 

trend (observed experimentally) that these transitions weaken as the acac
X 

ligand 

becomes more electron rich.  The MLCT transitions are most intense for the 6C 

complexes, since overlap between the donor Fe(xz) orbital and the acceptor acac
X
 LUMO 

is maximized when the acac
X
 ligand lies in the equatorial plane.  As the geometry shifts 

towards trigonal bipyramidal in the 5C complexes, this orbital overlap is reduced.  In 

addition, intermediate -values facilitate mixing between the MLCT and acac
X
-based 

transitions, thereby increasing the intensity of the latter at the expense of the former in 5C 

complexes.  

Table 2.5. Comparison of Experimental and TD-DFT Computed Transition Energies. 

  MLCT acac
X
-based 

  E, cm
-1 ε, M

-1
cm

-1 E, cm
-1 ε, M

-1
cm

-1 

[3-acac]
+ 6C DFT 25363 900 25464 70 

 5C DFT 26130 600 26130 140 

 exp 24090 160 28490 N/A 

[3-acac
F3

]
+ 6C DFT 22597 1500 23683 24 

 5C DFT 23542 390 25842 105 

 exp 21690 220 26810 N/A 

[3-acac
PhF3

]
+ 6C DFT 20036 2660 22139 270 

 5C DFT 20244 1020 22873 830 

 exp 18940 630 24510 320 

[3-acac
F6

]
+ 6C DFT 19834 2020 22093 10 

 5C DFT   23045  

 exp 19650 450 26180 390 
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Table 2.6. Comparison of Experimental (XRD) and DFT-Computed 1-acac
X
 Structures. Bond distances in Å, bond angles in degrees. 

 1-acac 1-acac
F3

 1-acac
PhF3

 1acac
F6

 

 XRD DFT Δ XRD DFT Δ XRD DFT Δ XRD DFT Δ 

Bond Length             

Fe-N1 2.154 2.208 0.054 2.180 2.191 0.011 2.144 2.187 0.044 2.150 2.171 0.021 

Fe-N2 2.185 2.211 0.026 2.135 2.182 0.047 2.163 2.191 0.028 2.115 2.170 0.054 

Fe-N3 2.175 2.212 0.037 2.214 2.196 -0.018 2.169 2.191 0.022 2.146 2.185 0.039 

Fe-O1 2.088 2.046 -0.042 2.056 2.058 0.002 2.074 2.034 -0.040 2.112 2.057 -0.055 

Fe-O2 2.051 2.051 0.000 2.084 2.048 -0.037 2.065 2.041 -0.024 2.098 2.054 -0.044 

Fe-NMeCN 2.236 2.223 -0.013 2.221 2.248 0.027 2.255 2.252 -0.003 2.246 2.253 0.007 

             
Fe-NTp(ave) 2.171 2.210 0.039 2.176 2.190 0.013 2.158 2.190 0.031 2.137 2.175 0.038 

Fe-Oacac(ave) 2.070 2.049 -0.021 2.071 2.053 -0.018 2.070 2.038 -0.032 2.105 2.056 -0.050 

             
Bond Angle             
N1-Fe-N2 85.0 86.1 1.1 87.9 86.4 -1.5 88.5 86.0 -2.5 89.0 86.7 -2.3 

N1-Fe-N3 85.4 84.5 -0.9 85.9 85.1 -0.8 86.1 86.5 0.4 88.2 86.5 -1.7 

N2-Fe-N3 86.2 85.0 -1.2 84.0 86.5 2.5 85.3 85.3 0.0 85.6 86.6 1.0 

O1-Fe-N1 96.7 94.3 -2.4 90.6 94.3 3.7 92.8 93.2 0.4 91.6 93.7 2.1 

O1-Fe-N2 178.0 178.0 0.0 177.9 176.3 -1.6 177.8 177.7 -0.1 179.2 176.5 -2.7 

O1-Fe-N3 95.0 97.1 2.1 94.4 97.2 2.8 93.0 96.9 3.9 93.9 96.9 3.0 

O2-Fe-N1 177.3 177.0 -0.3 174.7 177.8 3.1 175.5 176.0 0.5 173.8 177.0 3.2 

O2-Fe-N2 92.4 93.3 0.9 96.7 93.2 -3.5 93.6 94.3 0.7 96.0 93.6 -2.4 

O2-Fe-N3 95.1 98.4 3.3 97.6 97.1 -0.5 98.1 97.5 -0.6 95.9 96.5 0.6 

O1-Fe-O2 85.9 86.2 0.3 84.8 86.0 1.2 85.2 86.3 1.1 83.5 85.9 2.4 

Fe-N-C(CH3) 159.3 171.0 11.7 161.2 161.1 0.0 171.5 161.0 10.5 169.2 162.5 6.7 
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Table 2.7. Comparison of Experimental (XRD) and DFT-Computed 2-acac
X
 Structures. Bond distances in Å, bond angles in degrees. 

 2-acac 2-acac
tBu

 1-acac
F3

 1acac
PhF3

 

 XRD DFT Δ XRD DFT Δ XRD DFT Δ XRD DFT Δ 

Bond Length             

Fe-N1 2.163 2.286 0.123 2.095 2.116 0.021 2.096 2.106 0.010 2.092 2.103 0.011 

Fe-N2 2.146 2.116 -0.030 2.260 2.286 0.026 2.178 2.272 0.095 2.231 2.288 0.056 

Fe-N3 2.098 2.109 0.010 2.107 2.111 0.004 2.117 2.105 -0.013 2.095 2.107 0.013 

Fe-O1 1.995 1.956 -0.039 2.049 2.029 -0.020 2.050 2.029 -0.021 2.054 2.012 -0.042 

Fe-O2 2.024 2.022 -0.001 1.944 1.951 0.007 1.986 1.959 -0.027 1.967 1.962 -0.004 

             
Fe-NTp(ave) 2.136 2.170 0.034 2.154 2.171 0.017 2.130 2.161 0.031 2.139 2.166 0.027 

Fe-Oacac(ave) 2.009 1.989 -0.020 1.997 1.990 -0.006 2.018 1.994 -0.024 2.010 1.987 -0.023 

             
Bond Angle             
N1-Fe-N2 81.7 81.4 -0.3 82.9 81.3 -1.6 83.1 81.6 -1.5 84.7 81.6 -3.1 

N1-Fe-N3 91.3 86.1 -5.2 92.7 95.6 2.9 91.2 95.2 4.0 92.2 95.6 3.4 

N2-Fe-N3 89.9 94.6 4.7 86.2 85.4 -0.8 89.8 86.0 -3.8 86.9 85.0 -1.9 

O1-Fe-N1 91.2 91.0 -0.2 94.6 97.7 3.1 94.8 97.7 2.9 95.9 96.2 0.3 

O1-Fe-N2 158.7 138.7 -20.0 177.4 179.0 1.6 172.6 178.6 6.0 177.7 177.2 -0.5 

O1-Fe-N3 110.4 125.4 15.0 94.6 95.1 0.5 97.3 95.3 -2.0 95.3 93.5 -1.8 

O2-Fe-N1 164.3 178.3 14.0 140.9 137.3 -3.6 152.9 139.0 -14.0 144.5 137.4 -7.0 

O2-Fe-N2 92.6 97.7 5.0 93.4 92.1 -1.3 92.3 91.3 -1.0 91.0 94.3 3.3 

O2-Fe-N3 103.4 95.5 -7.9 126.0 126.1 0.1 115.5 124.7 9.2 122.8 126.4 3.5 

O1-Fe-O2 88.8 88.7 -0.1 88.1 88.4 0.3 86.4 88.4 2.0 87.2 88.5 1.3 

η-value 0.09 0.66 0.57 0.61 0.70 0.09 0.33 0.66 0.33 0.56 0.66 0.11 
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Table 2.8. Comparison of Experimental (XRD) and DFT-Computed 3-acac
X
 Structures. Bond distances in Å, bond angles in degrees. 

 2-acac 2-acac
tBu

 1-acac
F3

 1acac
PhF3

 

Coord. Number 5 5 5 6 5 5 5 6 5 5 5 6 6 6 6 

 XRD DFT Δ DFT XRD DFT Δ DFT XRD DFT Δ DFT XRD DFT Δ 

Bond Length                

Fe-N1 2.212 2.317 0.105 2.363 2.223 2.314 0.091 2.331 2.193 2.300 0.107 2.288 2.263 2.292 0.029 

Fe-N2 2.121 2.130 0.009 2.305 2.098 2.119 0.021 2.279 2.109 2.132 0.023 2.311 2.170 2.262 0.092 

Fe-N3 2.138 2.132 -0.006 2.279 2.129 2.124 -0.005 2.275 2.120 2.129 0.009 2.273 2.212 2.275 0.063 

Fe-O1 1.962 1.948 -0.013 2.032 1.930 1.957 0.027 2.047 1.974 1.949 -0.025 2.029 2.080 2.052 -0.028 

Fe-O2 2.059 2.019 -0.039 2.022 2.120 2.030 -0.090 2.027 2.070 2.020 -0.050 2.030 2.093 2.039 -0.054 

Fe-NMeCN    2.163    2.167    2.178 2.184 2.171 -0.013 

                
Fe-NTIP(ave) 2.158 2.193 0.035 2.316 2.150 2.186 0.036 2.295 2.141 2.187 0.046 2.291 2.215 2.276 0.061 

Fe-Oacac(ave) 2.010 1.984 -0.026 2.027 2.026 1.993 -0.032 2.037 2.022 1.985 -0.037 2.030 2.087 2.046 -0.041 

                
Bond Angle                
N1-Fe-N2 84.5 87.3 2.9 84.5 85.4 84.5 -0.9 84.9 85.1 83.2 -1.9 85.1 86.5 85.3 -1.2 

N1-Fe-N3 93.3 83.7 -7.0 90.0 90.6 85.8 -4.8 90.3 89.9 87.6 -2.3 86.0 91.0 91.9 0.9 

N2-Fe-N3 90.7 98.7 5.4 86.3 95.0 100.4 5.4 87.3 95.2 99.5 4.3 91.6 88.9 86.6 -2.3 

O1-Fe-N1 94.5 91.5 -3.0 91.0 96.9 95.0 -1.9 91.5 95.8 95.0 -0.8 99.0 93.6 90.0 -3.6 

O1-Fe-N2 142.8 124.5 -18.3 173.4 138.0 132.5 -5.5 175.1 150.1 140.0 -10.1 170.9 178.9 173.5 -5.4 

O1-Fe-N3 124.0 136.3 12.3 88.9 126.7 127.0 0.3 89.4 114.7 120.4 -5.7 96.8 89.9 88.3 -1.6 

O2-Fe-N1 176.4 177.8 1.5 172.6 176.2 176.4 0.2 174.2 172.6 174.4 1.8 172.6 175.8 172.0 -3.8 

O2-Fe-N2 92.1 94.2 2.1 98.5 91.0 93.2 2.2 97.6 89.9 91.5 1.6 90.4 96.0 98.4 2.4 

O2-Fe-N3 90.7 94.6 3.9 96.9 88.5 92.0 3.5 95.1 95.9 93.5 -2.4 88.2 92.4 95.3 2.9 

O1-Fe-O2 87.5 88.9 -8.6 86.6 86.5 88.5 -1.0 86.4 86.0 88.0 2.0 86.3 83.9 86.0 2.1 

Fe-N-C(CH3)    171.1    170.5    167.2 174.9 169.4 -5.5 

η-value 0.56 0.89 0.33  0.64 0.73 0.09  0.38 0.57 0.19     
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2.F.  Summary and Implications for Dke1 

 

This paper has described the synthesis of three series of Fe(II) -diketonato 

complexes designed to model the acac-bound form of Dke1 and replicate variations in the 

facial triad (2H1C vs. 3His) found in nonheme Fe dioxygenases.  Adjustment of the steric 

properties of the Tp ligands resulted in the formation of both 5C and 6C complexes, and 

-diketonato ligands with a range of steric and electronic properties were employed to aid 

in the interpretation of results.  Each complex was extensively characterized with 

experimental and computational methods, including X-ray crystallography, UV-vis and 

NMR spectroscopies, CV, and DFT calculations.  Thus, the sixteen reported complexes 

have permitted a systematic examination of the roles of the LN3 and acac
X
 ligands in 

determining the structural, spectroscopic, electrochemical, and electronic properties of 

the Fe(II) models.  Comparison of complexes featuring anionic (
R2

Tp) and neutral (
R
TIP) 

supporting ligands – but identical acac
X
 ligands – reveals the following key differences: 

(i) regardless of coordination number, Fe-NTIP bond distances are consistently longer than 

Fe-NTp distances (Tables 2.2-3, 2.11-12), (ii) the Fe(II)→acac
X
 MLCT features appear at 

higher energies for the 
R
TIP complexes (Figure 2.3-4; Table 2.3), and (iii) redox 

potentials of the 
R2

Tp complexes are more negative than those of the corresponding 
Ph

TIP 

complexes (Figure 2.6; Table 2.3).  DFT calculations further confirm that the 
Ph

TIP 

ligand is a significantly weaker donor, as seen in the relative stabilization of the Fe d-

orbitals (Figure 2.8).  We will now discuss the relevance of these findings for the 

electronic structure of the Dke1 active site.   
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Diebold et al. recently published a study in which the spectroscopic features of 

acac-bound Dke1 were compared with those of acac-bound hydroxyphenylpyruvate 

dioxygenase (HPPD) – an enzyme that possesses the conventional 2H1C facial triad.
27

  

Prior to that, Straganz and Nidetzky reported the absorption spectra of Dke1 coordinated 

to various -diketonates.
33

  Like our models, substrate-bound Dke1 exhibits an intense 

near-UV band and two broad features in the visible region with -values between 0.2 and 

1.0 mM
-1

cm
-1

 (Table 2.3).  Diebold et al. also used CD and MCD spectroscopies to 

observe much weaker ligand-field transitions at lower energies.  Analysis of these ligand-

field bands revealed only minor differences between enzymes with the 3His and 2H1C 

triads; however, the MLCT feature is shifted to lower energy by ~1000 cm
-1

 in the 2H1C 

system.   Similarly, for our synthetic [(LN3)Fe
2+

(acac
X
)]

0/+ 
complexes, the absorption 

features of the 1-acac
X
 series are red-shifted by an average of 1400 cm

-1
 relative to the 

[3-acac
X
]OTf series.  In general, the 5C 2-acac

X
, [3-acac

X
]OTf, and [4-acac

X
]OTf 

spectra exhibit excellent agreement with the Dke1-acac
X
 absorption data, while the 6C 1-

acac spectrum is nearly identical to the one reported for HPPD-acac.
49  Thus, while our 

results indicate that the 
R
TIP ligands accurately reproduces the enzymatic 3His 

coordination environment, they would also seem to corroborate the conclusion of 

Diebold et al. that variations in the facial triad give rise to only modest spectral 

perturbations.    

Yet analysis of the electronic transitions may not provide a complete picture.  Our 

electrochemical results indicate that the [3-acac
X
]OTf complexes are harder to oxidize 

than the corresponding 2-acac
X
 complexes by an average of 145 mV, even though the 

two sets exhibit similar absorption energies.  Thus, the charge of the supporting ligand 
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has a significant impact on the redox potential of the Fe center – a crucial parameter in 

tuning the O2 reactivity of the Fe-acac
X
 unit.  These experimental results are consistent 

with DFT calculations that indicate a sizable stabilization of the Fe d-orbital manifold in 

the 
Ph

TIP complexes relative to the 
Ph2

Tp complexes (vide supra).  Of course, the Fe 

redox potential is somewhat irrelevant if the catalytic cycle proceeds via direct reaction 

of O2 with the bound acac ligand, as suggested by Straganz;
33

 our results, however, cast 

some doubts on this possibility. Firstly, the proposed mechanism would require 

significant spin delocalization from the Fe center to the acac
X
 ligand to overcome the 

spin-forbidden nature of concerted reaction with O2.  While such a scenario has been 

shown to occur in Fe
3+

-containing intradiol catechol dioxygenases,
34,35

 our DFT 

calculations indicate that only a small amount of unpaired spin-density resides on the 

acac
X
 ligands in our models.  Secondly, the highest-occupied MO of the coordinated acac 

ligand, which would play a central role in the electrophilic attack of O2, is at least 1.0 eV 

lower in energy than the Fe-based MOs in all DFT models.  Even for complexes with 

electron-rich acac ligands, the frontier MOs are exclusively Fe-based, suggesting that 

reaction with O2 is more likely at Fe than the ligand.  Regardless, further biochemical and 

synthetic studies are required in order to fully understand the significance of the 3His 

triad for enzymatic function.   

 

2.G. Experimental Section 
 

 

Materials. All reagents and solvents were purchased from commercial sources 

and used as received unless otherwise noted. acetonitrile (MeCN), dichloromethane 

(DCM), and tetrahydrofuran (THF) were purified and dried using a Vacuum 

Atmospheres solvent purification system. The supporting ligands were prepared 
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according to literature procedures.
55

 The synthesis and handling of air-sensitive 

complexes were carried out under inert atmospheres using custom built Schlenk lines and 

a Vacuum Atmospheres Omni-Lab glove-box equipped with a freezer set to -30ºC.  

Physical Methods. Compounds were characterized and studied using elemental 

analysis, IR, NMR, UV-Vis, X-ray diffraction, and CV. Elemental analyses were 

performed at Midwest Microlab, LLC in Indianapolis, Indiana. Infrared spectra were 

measured as a powder on a Thermo Fisher Scientific Nicolet iS5 FT-IR spectrometer 

with an iD3 ATR accessory, or as KBr pellets using a Nicolet Magna-IR 560 

spectrometer. NMR spectra were collected at room temperature with a Varian 400 MHz 

spectrometer. UV-Vis spectra were collected with an Agilent 8453 diode array 

spectrometer. Electrochemical measurements were performed with an Epsilon EC 

potentiostat (iBAS) under nitrogen atmosphere at a scan rate of 100 mV/s with mM 

(NBu4)PF6. A three-electrode cell containing a Ag/AgCl reference electrode, a platinum 

auxiliary electrode, and a glassy carbon working electrode was employed for cyclic 

voltammetric measurements. 

[Fe(
Ph

TIP)(acac)]OTf, [1]OTf: Sodium methoxide (0.0513 g, 0.9496 mmol) was 

added to acac (0.0980 g, 0.9788 mmol) in 2 mL of THF and allowed to stir for 30 

minutes, after which the solvent was removed under vacuum to yield the Na
+
acac

-
 salt. 

All reagents were placed into a nitrogen atmosphere glove-box. 
Ph

TIP (0.4296 g, 0.9330 

mmol), anhydrous iron triflate (0.3316 g, 0.9368 mmol), and the Na
+
acac

-
 salt were each 

dissolved in 3 mL of methanol. The 
Ph

TIP solution was added dropwise to the iron triflate 

solution, then the Na
+
acac

-
 salt dropwise to the mixture, resulting in a yellow solution. 

The mixture was allowed to stir overnight. The solvent was then removed by vacuum and 

the solid dissolved in 5 mL of MeCN. After filtration to remove insoluble particles, the 
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solution was cooled to -30°C and yellow crystals formed after several days. Yield: 

0.2569g, 36.02%. Anal. Calcd. for C33H28N6F3FeO5PS: C, 51.84; H, 3.69; N, 10.99. 

Found: C, 51.52; H, 3.65; N, 10.68. UV-Vis [λmax, nm (ε, M
-1

cm
-1

) in MeCN]: 415 (160), 

351 (sh). IR (KBr, cm
-1

): 3207, 1587 [ν(CO)], 1559, 1516, 1478, 1458, 1389.  

[Fe(
Ph

TIP)(acac
F3

)]OTf, [2]OTf: Sodium methoxide (0.0334 g, 0.6183 mmol) 

was added to acac
F3

 (0.0941 g, 0.6107 mmol) in 2 mL of THF and allowed to stir for 30 

minutes, after which the solvent was removed under vacuum to yield the Na
+
acac

F3-
 salt. 

All reagents were placed into a nitrogen atmosphere glove-box. 
Ph

TIP (0.2694 g, 0.5850 

mmol), anhydrous iron triflate (0.2087 g, 0.5896 mmol), and the Na
+
acac

F3-
 salt were 

each dissolved in 3 mL of methanol. The 
Ph

TIP solution was added dropwise to the iron 

triflate solution, then the Na
+
acac

F3-
 salt dropwise to the mixture, resulting in an orange 

solution. The mixture was allowed to stir overnight. The solvent was then removed under 

vacuum and the solid dissolved in 5 mL of DCM. After filtration to remove insoluble 

particles, the solution was layered with pentane, providing orange crystals. Anal. Calcd 

for C33H25N6F6FeO5PS: C, 48.43; H, 3.08; N, 10.27. Found: C, 48.05; H, 3.24; N, 10.04. 

UV-Vis [λmax, nm (ε, M
-1

cm
-1

) in MeCN]: 461 (220), 373 (sh). IR (KBr, cm
-1

): 3221, 

1630 [ν(CO)], 1559, 1478, 1458. 

[Fe(
Ph

TIP)(acac
PhF3

)]OTf, [3]OTf: Sodium methoxide (0.0358 g, 0.6627 mmol) 

was added to acac
PhF3

 (0.1447 g, 0.6694 mmol) in 2 mL of THF and allowed to stir for 30 

minutes, after which the solvent was removed under vacuum to yield the Na
+
acac

PhF3-
 

salt. All reagents were placed into a nitrogen atmosphere glove-box. 
Ph

TIP (0.2986 g, 

0.6484 mmol), anhydrous iron triflate (0.2303 g, 0.6506 mmol), and the Na
+
acac

PhF3-
 salt 

were each dissolved in 3 mL of methanol. The 
Ph

TIP solution was added dropwise to the 

iron triflate solution, then the Na
+
acac

PhF3-
 salt dropwise to the mixture, resulting in a 
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reddish-purple solution. The mixture was allowed to stir overnight. The solvent was then 

removed under vacuum and the solid dissolved in 5 mL of DCM. After filtration to 

remove insoluble particles, the solution was layered with pentane, providing reddish 

crystals. Anal. Calcd for C38H27N6F6FeO5PS: C, 51.83; H, 3.09; N, 9.54. Found: C, 

50.30; H, 3.18; N, 9.13 (the slight discrepancy in the carbon value indicates that small 

amounts of impurities are present). UV-Vis [λmax, nm (ε, M
-1

cm
-1

) in MeCN]: 528 (630), 

408 (320). IR (KBr, cm
-1

): 3223, 1609 [ν(CO)], 1574, 1478, 1457.  

[Fe(
Ph

TIP)(acac
F6

)]OTf, [4]OTf: Sodium methoxide (0.0365 g, 0.6757 mmol) 

was added to acac
F6

 (0.1381 g, 0.6638 mmol) in 2 mL of THF and allowed to stir for 30 

minutes, after which the solvent was removed under vacuum to yield the Na
+
acac

F6-
 salt. 

All reagents were placed into a nitrogen atmosphere glove-box. 
Ph

TIP (0.3021 g, 0.6560 

mmol), anhydrous iron triflate (0.2353 g, 0.6647 mmol), and the Na
+
acac

F6-
 salt were 

each dissolved in 3 mL of methanol. The 
Ph

TIP solution was added dropwise to the iron 

triflate solution, then the Na
+
acac

F6-
 salt dropwise to the mixture, resulting in a purple 

solution. The mixture was allowed to stir overnight. The solvent was then removed under 

vacuum and the solid dissolved in 5 mL of DCM. After filtration to remove insoluble 

particles, the solution was layered with pentane, providing purple crystals. Yield: 

0.1462g, 25.54%. Anal. Calcd for C33H22N6F9O5PSFe: C, 45.43; H, 2.54; N, 9.63. Found: 

C, 43.19; H, 2.80; N, 9.32 (the minor discrepancy in the carbon value indicates that small 

amounts of impurities are present). UV-Vis [λmax, nm (ε, M
-1

cm
-1

) in MeCN]: 509(450), 

381(390). IR (KBr, cm
-1

): 3206, 1632 [ν(CO)], 1560, 1480. 

[Fe(
tBu

TIP)(acac)]OTf, [5]OTf: Sodium methoxide (0.0287 g, 0.5313 mmol) 

was added to acac (0.0511 g, 0.5104 mmol) in 2 mL of THF and allowed to stir for 30 

minutes, after which the solvent was removed under vacuum to yield the Na
+
acac

-
 salt. 
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All reagents were placed into a nitrogen atmosphere glove-box. 
tBu

TIP (0.1965 g, 0.4906 

mmol), anhydrous iron triflate (0.1746 g, 0.04932 mmol), and the Na
+
acac

-
 salt were each 

dissolved in 3 mL of methanol. The 
tBu

TIP solution was added dropwise to the iron 

triflate solution, then the Na
+
acac

-
 salt dropwise to the mixture, resulting in a yellow 

solution. The mixture was allowed to stir overnight. The solvent was then removed under 

vacuum and the solid dissolved in 5 mL of DCM. After filtration to remove insoluble 

particles, the solution was cooled to -30°C and yellow crystals formed after several days. 

UV-Vis [λmax, nm (ε, M
-1

cm
-1

) in MeCN]: 357 (320), 419 (290).  

[Fe(
tBu

TIP)(acac
F3

)]OTf, [6]OTf: Sodium methoxide (0.0205 g, 0.3795 mmol) 

was added to acac
F3 

(0.0602 g, 0.3907 mmol) in 2 mL of THF and allowed to stir for 30 

minutes, after which the solvent was removed under vacuum to yield the Na
+
acac

F3-
 salt. 

All reagents were placed into a nitrogen atmosphere glove-box. 
tBu

TIP (0.1513 g, 0.3778 

mmol), anhydrous iron triflate (0.1377g, 0.3890 mmol), and the Na
+
acac

-
 salt were each 

dissolved in 3 mL of methanol. The 
tBu

TIP solution was added dropwise to the iron 

triflate solution, then the Na
+
acac

F3-
 salt dropwise to the mixture, resulting in an orange 

solution. The mixture was allowed to stir overnight. The solvent was then removed under 

vacuum and the solid dissolved in 5 mL of DCM. After filtration to remove insoluble 

particles, the solution was layered with pentane, providing orange crystals. Anal. Calcd 

for C27H37N6F6FeO3PS: C, 42.76; H, 4.92; N, 11.08. Found: C, 44.85; H, 5.14; N, 12.00 

(the minor discrepancy in the carbon value indicates that small amounts of impurities are 

present). UV-Vis [λmax, nm (ε, M
-1

cm
-1

) in MeCN]: 360 (sh), 444 (320). 

[Fe(
tBu

TIP)(acac
PhF3

)]OTf, [7]OTf: Sodium methoxide (0.0308 g, 0.5702 mmol) 

was added to acac
PhF3

 (0.1182 g, 0.5468 mmol) in 2 mL of THF and allowed to stir for 30 

minutes, after which the solvent was removed under vacuum to yield the Na
+
acac

PhF3- 
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salt. All reagents were placed into a nitrogen atmosphere glove-box. 
tBu

TIP (0.2158 g, 

0.5388 mmol), anhydrous iron triflate (0.1954 g, 0.5520 mmol), and the Na
+
acac

PhF3-
 salt 

were each dissolved in 3 mL of methanol. The 
tBu

TIP solution was added dropwise to the 

iron triflate solution, then the Na
+
acac

PhF3-
 salt dropwise to the mixture, resulting in a 

reddish solution. The mixture was allowed to stir overnight. The solvent was then 

removed under vacuum and the solid dissolved in 5 mL of DCM. After filtration to 

remove insoluble particles, the solution was cooled to -30°C and reddish crystals formed 

after several days. UV-Vis [λmax, nm (ε, M
-1

cm
-1

) in MeCN]: 390 (sh), 514 (650).  

[Fe(
tBu

TIP)(acac
F6

)]OTf, [8]OTf: Sodium methoxide (0.0304 g, 0.5628 mmol) 

was added to acac
F6

 (0.0.1206 g, 0.5796 mmol) in 2 mL of THF and allowed to stir for 30 

minutes, after which the solvent was removed under vacuum to yield the Na
+
acac

F6-
 salt. 

All reagents were placed into a nitrogen atmosphere glove-box. 
tBu

TIP (0.2185 g, 0.5456 

mmol), anhydrous iron triflate (0.1963 g, 0.5546 mmol), and the Na
+
acac

F6-
 salt were 

each dissolved in 3 mL of methanol. The 
tBu

TIP solution was added dropwise to the iron 

triflate solution, then the Na
+
acac

F6-
 salt dropwise to the mixture, resulting in a purple 

solution. The mixture was allowed to stir overnight. The solvent was then removed under 

vacuum and the solid dissolved in 5 mL of DCM. After filtration to remove insoluble 

particles, the solution was cooled to -30°C and purple crystals formed after several days. 

UV-Vis [λmax, nm (ε, M
-1

cm
-1

) in MeCN]: 381 (410), 510 (480). 

Crystallographic Studies. Complexes were characterized using X-Ray 

crystallography. The X-ray diffraction data were collected at 100 K with an Oxford 

Diffraction SuperNova kappa-diffractometer equipped with dual microfocus Cu/Mo X-

ray sources, X-ray mirror optics, Atlas CCD detector and low temperature Cryojet 

device. Crystallographic data for the compounds are provided in Table 2.9-10. The data 
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were processed with the CrysAlisPro program package (Oxford Diffraction Ltd., 2010) 

typically using a numerical Gaussian absorption correction (based on the real shape of the 

crystal) followed by an empirical multi-scan correction using the SCALE3 ABSPACK 

routine. The structures were solved using the SHELXS program and refined with the 

SHELXL program
56

 within the Olex2 crystallographic package.
57

 All computations were 

performed on an Intel PC computer with Windows 7 OS. The majority of the structures 

contain a certain degree of disorder that was detected in difference Fourier syntheses of 

electron density and accounted for using capabilities of the SHELX package. In most 

cases, hydrogen atoms were localized in difference syntheses of electron density but were 

refined using appropriate geometric restrictions on the corresponding bond lengths and 

bond angles within a riding/rotating model (torsion angles of methyl hydrogens were 

optimized to better fit the residual electron density). 

Density Functional Theory (DFT) Calculations. DFT calculations were 

performed using the ORCA 2.7 software package developed by Dr. F. Neese.
58

 In each 

case, the corresponding X-Ray structure provided the starting point for geometry 

optimizations and the computational model included the entire complex (excluding 

counteranions and uncoordinated solvent molecules). Geometry optimizations employed 

the Becke-Perdew (BP86) functional
59,60

 and Ahlrichs' valence triple-δ basis set (TZV) 

for all atoms, in conjunction with the TZV/J auxiliary basis set.
61,62

 Extra polarization 

functions were used on non-hydrogen atoms. Single-point (SP) calculations involving the 

optimized models were carried out with Becke's three-parameter hybrid functional for 

exchange along with the Lee-Yang-Parr correlation functional (B3LYP).
63-65

 These SP 

calculations also utilized the TZV basis set noted above, but additional polarization 

functions were included for all atoms, including hydrogens. The same enlarged basis set 
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was used for TD-DFT calculations,
66-68

 which computed absorption energies and 

intensities within the Tamm-Dancoff approximation.
69,70

 In each case, at least 20 excited 

states were calculated. Finally, the gOpenMol program
71

 developed by Laaksonen was 

used to generate isosurface plots of molecular orbitals. 
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Table 2.9. Summary of X-ray crystallographic data collection and structure refinement of 3-acac

X
 

 [3-acac]OTf 

●MeCN 
[3-acac

F3
]OTf 

●DCM 
[3-acac

PhF3
]OTf 

●4DCM 
[3-acac

F6
]OTf 

●2MeCN 
empirical formula C35H31F3 

FeN7O5PS 
C34H27Cl2F6 

FeN6O5PS 
C42H35Cl8F6 

FeN6O5PS 
C39H31F9FeN9O5PS 

formula weight 805.55 903.40 1220.24 995.61 
crystal system triclinic triclinic triclinic orthorhombic 
space group P-1 P-1 P-1 Pna21 
a, Å 10.8489(3) 10.9737(3) 11.4327(3) 20.3397(3) 
b, Å 12.6264(3) 12.6383(3) 12.8330(2) 11.83101(16) 
c, Å 14.4290(4) 14.6113(3) 17.9561(3) 17.8160(2) 
α, ° 87.443(2) 85.8015(19) 85.0393(15) 90 
β, ° 71.223(2) 71.277(2) 78.0672(17) 90 
γ, ° 89.004(2) 87.183(2) 83.3042(17) 90 
V, Å

3 1869.46(8) 1913.32(8) 2554.66(9) 4287.23(10) 
Z 2 2 2 4 
Dcalc, g/cm

3 1.431 1.568 1.586 1.542 
λ, Å 0.7107 0.7107 1.5418 0.7107 
μ, mm

-1 0.568 0.709 7.525 0.532 
θ-range, ° 2 to 29 2 to 29 2 to 74 3 to 29 
reflections collected 42236 86437 23048 41132 
independent 

reflections 
9554 

[Rint = 0.0335] 
10144 

[Rint = 0.0498] 
10023 

[Rint = 0.0542] 
10734 

[Rint = 0.0251] 
data/restraints/ 

parameters 
9554 / 0 / 481 10144 / 26 / 584 10023 / 0 / 631 10734 / 1 / 590 

GOF (on F
2
) 1.041 1.081 1.033 1.06 

R1/wR2 (I>2ζ(I))
a 0.0356 / 0.0797 0.0351 / 0.0998 0.0630 / 0.1744 0.0247 / 0.0581 

R1/wR2 (all data) 0.0486 / 0.0868 0.0477 / 0.1036 0.0671 / 0.1810 0.0292 / 00589 
a 
R1 = Σ||Fo| - |Fc|| / Σ|Fo|; wR2 = [Σw(Fo

2
-Fc

2
)

2
 / Σw(Fo

2
)

2
]

1/2   
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Table 2.10. Summary of X-ray crystallographic data collection and structure refinement 4-acac
X
 

 [4-acac]OTf●2DCM [4-acac
F3

]OTf●1.5DCM 
empirical formula C29H44Cl4F3FeN6O5PS C28.5H40Cl3F6FeN6O5PS 
formula weight 874.38 885.89 
crystal system monoclinic  orthorhombic  
space group P21/n Pbca  
a, Å 15.9204(3)  16.6708(2)  
b, Å 15.2548(2)  18.6542(2)  
c, Å 16.8867(3)  51.2129(7)  
α, ° 90 90 
β, ° 104.1835(18) 90 
γ, ° 90 90 
V, Å

3 3976.13(12) 15926.2(4)  
Z 4 16  
Dcalc, g/cm

3 1.461 1.478 
λ, Å 0.7107 1.54 
μ, mm

-1 0.799 6.400 
θ-range, ° 3 to 60 3 to 71 
reflections collected 57294  61315  

independent reflections 
10301 

[Rint = 0.0298]  
15070 

[Rint = 0.0612]  
data/restraints/ 

parameters 
10301 / 15 / 490  15070 / 0 / 948  

GOF (on F
2
) 1.031 0.937 

R1/wR2 (I>2ζ(I))
a 0.0407 / 0.0966  0.0467, 0.1168 

R1/wR2 (all data) 0.0532 / 0.1067  0.0622, 0.1216 
a 
R1 = Σ||Fo| - |Fc|| / Σ|Fo|; wR2 = [Σw(Fo

2
-Fc

2
)

2
 / Σw(Fo

2
)

2
]

1/2 
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Table 2.11. Selected bond distances (Å) and angles (deg) for 1-acac
X
 complexes.  

Bond 

Distance  

[Fe(
Me2

Tp)(acac)] 

●2MeCN 
[Fe(

Me2
Tp)(acac

F3
)] 

●MeCN 
[Fe(

Me2
Tp)(acac

PhF3
] 

●MeCN 
[Fe(

Me2
Tp)(acac

F6
)] 

Fe-O1 2.0882(8) 2.0563(10) 2.0644(11) 2.1116(6) 

Fe-O2 2.0510(8) 2.0843(10) 2.0730(11) 2.0976(6) 

Fe-N1 2.1535(9) 2.1798(12) 2.1436(13) 2.1502(7) 

Fe-N2 2.1851(9) 2.1353(11) 2.1635(13) 2.1154(7) 

Fe-N3 2.1748(9) 2.2141(11) 2.1695(13) 2.1461(7) 

Fe-N4 2.2363(10) 2.2212(12) 2.2550(14) 2.2461(7) 

Fe-Oacac(ave) 2.070 2.070 2.069 2.105 

Fe-NTIP(ave) 2.171 2.176 2.158 2.137 

Bond Angle     

Fe-N7-C 
a 159.30(9) 161.20(12) 171.49(14) 169.23(7) 

acac
X
 tilt 

b 20.0 10.7 18.4 24.4 
a 
The atoms consisting the N7-C moiety are in the bound MeCN. 

b 
acac

X
 tilt = average angle between the plane of the acac ligand and a plane defined be the O1-Fe-O2 

atoms. 

 

 
Table 2.12. Selected bond distances (Å) and angles (deg) for 2-acac

X
 complexes.  

Bond 

Distance(Å) 
[Fe(

Ph2
Tp)(acac)] [Fe(

Ph2
Tp)(acac

tBu
)]

●0.5MeCN 

●0.5THF 

[Fe(
Ph2

Tp)(acac
F3

)] 

●DCM 
[Fe(

Ph2
Tp)(acac

PhF3
)]

●DCM 

Fe-O1 1.9945(10) 2.0492(13) 2.050(3) 2.054(3) 

Fe-O2 2.0239(9) 1.9443(14) 1.956(3) 1.967(3) 

Fe-N1 2.1625(10) 2.0945(14) 2.096(3) 2.092(3) 

Fe-N3 2.1462(11) 2.2603(15) 2.178(3) 2.231(3) 

Fe-N5 2.0984(9) 2.1074(14) 2.117(3) 2.095(3) 

Fe-Oacac(ave) 2.009 1.997 2.018 2.011 

Fe-NTp(ave) 2.136 2.154 2.130 2.139 

Bond 

Distance(Å) 
    

Fe-O1 1.9945(10) 2.0492(13) 2.050(3) 2.054(3) 

Fe-O2 2.0239(9) 1.9443(14) 1.956(3) 1.967(3) 

Fe-N1 2.1625(10) 2.0945(14) 2.096(3) 2.092(3) 

Fe-N3 2.1462(11) 2.2603(15) 2.178(3) 2.231(3) 

Fe-N5 2.0984(9) 2.1074(14) 2.117(3) 2.095(3) 

O2-Fe-N3 92.64(4) 93.35(6) 92.26(12) 91.01(11) 

O2-Fe-N5 103.37(4) 125.96(6) 115.49(13) 122.84(12) 

N1-Fe-N3 81.71(4) 82.95(6) 83.07(12) 84.65(11) 

N1-Fe-N5 91.31(4) 92.70(5) 91.21(12) 92.19(12) 

N3-Fe-N5 89.94(4) 86.23(5) 89.83(11) 86.86(11) 

τ-value 
a 0.094 0.607 0.327 0.554 

a 
The geometric parameter η is defined as η = |(α - β)|/60, where α and β are the two basal angles in pseudo-

square pyramidal geometry. The η-value in 0.0 in idealized square-planar geometries and 1.0 in idealized 

trigonal bipyramidal geometries.
54 
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Chapter 3 

 
Synthesis and Structural Characterization of Iron(II) Complexes 

with Tris(imidazolyl)phosphane Ligands:  A Platform for 

Modeling the 3-Histidine Facial Triad of Salicylate Dioxygenase 

 

 

 

 

 

 

 

 

 

Abstract: Two monoiron(II) complexes containing the tris(2-phenylimidazol-4-

yl)phosphane (
Ph

TIP) ligand have been prepared and structurally characterized with X-ray 

crystallography and NMR spectroscopy.  The 
Ph

TIP framework resembles the 3-histidine 

(3His) facial triad found recently in the active sites of certain nonheme iron 

dioxygenases. The complex [Fe
2+

(
Ph

TIP)(OAc)(MeOH)]BPh4, [1]BPh4, was designed to 

serve as a convenient precursor to species that model the enzyme-substrate intermediates 

of 3His dioxygenases. The viability of this approach was demonstrated through the 

synthesis of [Fe
2+

(
Ph

TIP)(sal)] (2; sal = dianion of salicylic acid) that represents the first 

synthetic model of the enzyme salicylate 1,2-dioxygenase (SDO). 
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3.A. Introduction 

 

 

 Mononuclear nonheme iron dioxygenases play a central role in the oxidative 

catabolism of a wide range of biomolecules and pollutants.
5,17,72

  Members of this enzyme 

family include the extradiol catechol dioxygenases,
14,73,74

 Rieske dioxygenases,
8 

homogentisate dioxygenase,
9
 and (chloro)hydroquinone dioxygenases.

44-47
 These 

enzymes feature a common active-site motif in which the ferrous center is facially ligated 

by one aspartate (or glutamate) and two histidine residues (the so-called 2-His-1-

carboxylate (2H1C) facial triad).
13 

  However, recent structural studies have shown that 

the Asp/Glu ligand in some monoiron dioxygenases is replaced with His, resulting in the 

3His facial triad.
18,19

  Members of this “3His family” catalyze novel transformations that 

have expanded the known boundaries of Fe dioxygenase chemistry.  For example, 

cysteine dioxygenase (CDO)
21

 – the first 3His enzyme to be structurally characterized – 

catalyzes the initial step in L-cysteine catabolism by converting the thiol into a sulfinic 

acid (Scheme 3.1), while β-diketone dioxygenase (Dke1) oxidizes acetylacetone to acetic 

acid and 2-oxopropanal.
26

  Other 3His Fe dioxygenases include gentisate 1,2-dioxygenase 

(GDO)
27

 and salicylate 1,2-dioxygenase (SDO),
28,29

 both of which oxidatively cleave 

aromatic C-C bonds (Scheme 3.1).  Each of these microbial enzymes participates in the 

degradation pathways of polycyclic aromatic hydrocarbons.  While the reaction catalyzed 

by GDO is very similar to those catalyzed by the extradiol catechol dioxygenases and 

likely follows a similar mechanism, SDO is unique in performing the oxidative cleavage 

of an aromatic ring with only one electron-donating group.  
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Scheme 3.1.  

 

Our knowledge of nonheme Fe dioxygenases has greatly benefited from the 

development of small-molecule analogs that replicate important structural, spectroscopic, 

and/or functional properties of the enzyme active sites.
15

  The 2H1C triad has been 

suitably modeled with tridentate supporting ligands such as tris(pyrazol-1-yl)borates 

(Tp),
46,48

 1,4,7-triazacyclononane (tacn),
79,80

 bispyrazolylacetates,
81,82

 and bis(1-

alkylimidazol-2-yl)propionates.
43

  Given the unique and significant reactions catalyzed 

by the 3His family of Fe dioxygenases, it is important to develop supporting ligands with 

specific relevance to the 3His facial triad.  To this end, we have sought to exploit the 

tris(imidazol-4-yl)phosphane (
R
TIP) framework shown in Scheme 3.2, which accurately 

mimics the charge and donor strength of the 3His coordination environment.  Such 

ligands were initially generated to model the 3His ligand sets found in the active sites of 

carbonic anhydrase (Zn
2+

) and cytochrome c oxidase (Cu
2+

).
55,83-88

  To date, the 

application of the TIP framework to Fe systems has been limited to homoleptic 

[Fe(TIP)2]
2+/3+

 complexes
89-91

 and carboxylate-bridged diiron(III) species.
91-93
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Scheme 3.2.  

 

A key advantage of 
R
TIP ligands is that their steric properties can be easily 

modified by altering the R-substituent.  Thus far, we have primarily employed the 
Ph

TIP 

ligand, as the steric bulk of the phenyl rings discourages both dimerization and formation 

of the homoleptic [Fe(TIP)2]
2+

 complexes.  In Chapter 2, we described the synthesis and 

structural characterization of a series of [Fe
2+

(
Ph

TIP)(acac
X
)]OTf complexes that serve as 

models of the Dke1 enzyme-substrate complex (acac
X
 = substituted β-diketonate).   

These models were prepared by directly mixing one equivalent of the sodium salt of the 

appropriate β-diketone, Na(acac
X
), with equimolar amounts of Fe(OTf)2 and 

Ph
TIP in 

MeOH.  This “one-pot” approach, however, is not successful for various combinations of 

supporting and “substrate” ligands.  Thus, as described in this article, we have generated 

an Fe
2+ 

complex ([1]BPh4) with 
Ph

TIP that contains displaceable ligands (solvent and 

acetate) bound to the opposite face of the octahedron.  This complex resembles the 

resting states of 3His Fe dioxygenases, which feature two or three cis-labile H2O 

molecules.
24,25

 In addition, it is shown that [1]BPh4 serves as an excellent precursor for 

the formation of a synthetic mimic of  SDO.  Thus, the chemistry described here 

establishes a valuable platform for future synthetic modeling studies of nonheme Fe 

dioxygenases with the 3His facial triad.   
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3.B.  Synthesis and Solid State Structures 

 

The complex [Fe
2+

(
Ph

TIP)(OAc)(MeOH)]BPh4, [1]BPh4, was generated by 

addition to NaBPh4 to a solution of Fe(OAc)2 and 
Ph

TIP in MeOH, resulting in immediate 

formation of a white precipitate.  The IR spectrum of the isolated solid reveals a peak at 

3259 cm
-1

 from the (N-H) stretch of the 
Ph

TIP ligands, along with acetate-derived 

features at 1562 and 1402 cm
-1

.  The 
Ph

TIP-derived resonances in the 
1
H NMR spectrum 

largely follow the pattern reported previously for [Fe
2+

(
Ph

TIP)(acac
X
)]

+
 complexes.  The 

acetate ligand of [1]BPh4 exhibits a downfield signal at +105 ppm.   

Figure 3.1. Thermal ellipsoid plot (50% probability) derived from [1]BPh4●3MeOH. The 

BPh4 counteranion and most hydrogen atoms have been omitted for clarity. The dotted 

lines signify the hydrogen-bonding interactions between the coordinated acetate and the 

MeOH ligands and three second-sphere solvent molecules. Note: Ellipsoids are not 

shown for the proximal 2-phenyl substituent due to disorder. 

 

X-ray quality crystals of [1]BPh4 were prepared via slow-cooling of a MeOH 

solution; the [1]
+
 cation is shown in Figure 3.1 and the corresponding bond lengths and 
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angles are provided in Table 3.1.  The high-spin Fe(II) center is hexacoordinate with a 

facially-coordinating 
Ph

TIP ligand.  The 
2
-acetate ligand coordinates in a symmetric 

manner with nearly identical Fe-Oacetate distances of 2.251(6) Å.  The remaining site is 

occupied by a solvent molecule trans to N4 with a relatively short Fe-OMeOH distance of 

2.077(4) Å.  The crystal structure of [1]BPh43MeOH also features an extensive H-

bonding network.  As shown in Figure 3.1, the coordinated acetate and MeOH moieties 

participate in H-bonding interactions with three MeOH “chaperones” that comprise a 

second-sphere shell surrounding one face of the [1]
+
 octahedron.  In addition, the MeOH 

molecules that serve as H-bond donors to the acetate ligand also act as H-bond acceptors 

for two H-Nimidazole groups on adjacent [1]
+
 cations.   

Significantly, we found that [1]BPh4 provides access to iron(II)-salicylate (sal) 

species that mimic the enzyme-substrate complex of SDO.   The complex [Fe(
Ph

TIP)(sal)] 

(2) was prepared by mixing [1]BPh4 with one equivalent of sodium salicylate in MeOH, 

followed by layering with MeCN.  As shown in Figure 3.2, the X-ray crystal structure of 

2 reveals a neutral 5C Fe(II)
 
complex with a geometry intermediate between square 

pyramidal and trigonal bipyramidal ( = 0.35).  The dianionic salicylate ligand 

coordinates in a bidentate fashion with FeO bond distances of 1.958(1) and 2.060(1) Å 

for the phenolate and carboxylate donors, respectively.  To the best of our knowledge, 2 

represents the first structurally-characterized iron(II)-salicylate complex in the chemical 

literature.
94-97
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Figure 3.2 Thermal ellipsoid plot (50% probability) derived from 2●MeOH●MeCN. The 

noncoordinating solvent molecules and most hydrogen atoms have been omitted for 

clarity. The dotted line represents the H-bonding interaction between the salicylate ligand 

and MeOH. 

 

As with [1]BPh43MeOH, the lattice of 2 exhibits numerous H-bonding 

interactions (see Scheme 3.3).  The uncoordinated oxygen atom of the carboxylate (O2) 

forms H-bonds with two H-N groups belonging to adjacent 4-TIP
Ph

 ligands.  These 

interactions account for the fact that O2-C28 is unexpectedly longer than O1-C28 

(1.273(2) vs. 1.257(2), respectively), indicating that the negative charge is delocalized 

over the carboxylate moiety.  The crystal also contains noncoordinating MeCN and 

MeOH molecules (one of each); the latter serves as a H-bond donor to the phenolate 

oxygen atom (O3) of the salicylate, while acting as a H-bond acceptor to an imidazole H-

N group.  Thus, in this structure, the MeOH behaves in a manner similar to second-sphere 

residues in dioxygenase active sites, which often play a crucial role in stabilizing metal-

bound substrates via non-covalent interactions.
36,98
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Scheme 3.3.  Hydrogen-bonding network in the solid-state structure of 2. 

 

3.C. Comparisons to the X-ray Structure of SDO.  

 

The X-ray diffraction studies of SDO revealed a homotetrameric structure with 

four active sites, each composed of an iron(II) center bound to the protein by a facial triad 

composed of residues His119, His121, and His160. The Fe(II)-NHis bond lengths in the 

four subunits range from 1.85 to 2.31 Å.
28

  In two subunits, a single water molecule 

completes the coordination sphere with Fe-Owater distances of 1.93 and 2.55 Å.  The third 

subunit features an acetate ion from the crystallization solvent coordinate in a bidentate, 

asymmetric fashion with Fe(II)-Oacetate bond lengths of 2.53 and 2.91 Å. In the fourth 

subunit, both acetate and water molecules are found in the vicinity of the Fe center.
28

  

Thus, complex [1]BPh4 is an excellent model of the SDO resting state.   

Computational docking studies of SDO have shown three potential orientations 

for the bound substrate (Scheme 3.4).  In two orientations, the carboxylate group of the 

salicylate ligand participates in hydrogen-bonding interactions with a nearby Arg127 
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residue.  The extensive hydrogen-bonding network evident in the structure of 2 mimics 

these interactions with second sphere residues.   

 

 
 

Scheme 3.4. 
 

 

3.D. Conclusions 

 

This paper has described the synthesis and X-ray structural characterization of 

iron(II) complexes supported by the tris(imidazolyl)phosphane ligand 
Ph

TIP.  Complex 

[1]BPh4 features easily-displaced solvent and acetate ligands in the coordination sites 

trans to the TIP chelate.  Like the resting states of the enzymatic active sites, this 

“precursor” complex is intended to serve as a scaffold that permits various substrate 

ligands to coordinate to the iron(II) center.  The versatility of this approach was 

demonstrated by the formation of the SDO model 2 via direct reaction of [1]BPh4 with 

sodium salicylate. The facile formation of 2 indicates that the TIP framework is resistant 

to displacement by strong, anionic ligands.  This is significant because half-sandwich 

ferrous complexes with neutral LN3 ligands, such as trispyrazolylmethanes, have been 

shown to suffer from high lability and a tendency to decompose to the more stable bis-

ligand species.
99

  The relatively short Fe-NTIP bond distances found in our series of 
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complexes suggest that the TIP ligands are tightly bind to the iron centers.  Thus, the 

precursor complex described here provides a robust platform for the development of 

synthetic models of dioxygenases with the 3His facial triad.   

 

3.E.  Experimental Section 

 

General Procedures:  All reagents and solvents were purchased from 

commercial sources and used as received unless otherwise noted.  MeCN and CH2Cl2 

were purified and dried using a Vacuum Atmospheres solvent purification system.  
Ph

TIP 

was prepared according to literature procedures
55

.  The synthesis and handling of air-

sensitive materials were carried out under inert atmosphere using a Vacuum Atmospheres 

Omni-Lab glovebox equipped with a freezer set to -30 
o
C.  Elemental analyses were 

performed at Midwest Microlab, LLC in Indianapolis, IN.  Infrared (IR) spectra of solid 

samples were measured with a Thermo Scientific Nicolet iS5 FTIR spectrometer 

equipped with the iD3 attenuated total reflectance accessory.  UV-vis spectra were 

obtained with an Agilent 8453 diode array spectrometer.  Magnetic susceptibility 

measurements were carried out using the Evans NMR method.       

[Fe(4-TIP
Ph

)(OAc)(MeOH)]BPh4  ([1]BPh4):   Fe(OAc)2 (488 mg, 2.81 mmol) 

and 
Ph

TIP (1.28 g, 2.79 mmol) were stirred in 10 mL of MeOH for 10 minutes while the 

solution cleared.  A solution of NaBPh4 (956 mg, 2.79 mmol) in MeOH was then added 

dropwise and the mixture stirred for 5 hours. During this time, a white precipitate 

developed.  The white solid was collected and recrystallized from MeOH at -30°C.  

Yield: 48 %  C54H47BFeN6O3P (925.6): calcd. C 70.07, H 5.12, N 9.08; found C 70.69, H 
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5.08, N 8.95.  IR (neat): 3304, 3259 [(N-H)], 3054, 2999, 2993, 2928, 1562 [as(OCO)], 

1478, 1402 [s(OCO)], 1341 cm
-1

.  

[Fe(4-TIP
Ph

)(sal)]  (2):  A suspension of [1]BPh4 (142 mg, 0.159 mmol) and 

sodium salicylate (28.0 mg, 0.175 mmol) was stirred overnight in 5 mL of MeOH.  The 

resulting yellow solution was layered with MeCN to provide X-ray quality crystals of 2.  

Yield: 32 %. C34H25FeN6O3P (652.4): calcd. C 62.59, H 3.86, N 12.88; found C 62.19, H 

3.98, N 12.52.  IR (neat): 3133, 3052, 2900, 1598, 1563, 1521, 1476, 1458, 1439, 1386, 

1314. 

X-ray Structure Determination.  X-ray diffraction (XRD) data were collected at 

100 K with an Oxford Diffraction SuperNova kappa-diffractometer (Agilent 

Technologies) equipped with dual microfocus Cu/Mo X-ray sources, X-ray mirror optics, 

Atlas CCD detector, and low-temperature Cryojet device. Crystallographic data for 

particular compounds are summarized in Table 3.2. The data were analyzed with the 

CrysAlis Pro program package (Agilent Technologies, 2011) typically using a numerical 

Gaussian absorption correction (based on the real shape of the crystal), followed by an 

empirical multi-scan correction using SCALE3 ABSPACK routine.  The structures were 

solved using SHELXS program and refined with SHELXL program
56

 within the Olex2 

crystallographic package.
57

 H- and C-bonded hydrogen atoms were positioned 

geometrically and refined using appropriate geometric restrictions on the corresponding 

bond lengths and bond angles within a riding/rotating model (torsion angles of methyl 

hydrogens were rotationally optimized to better fit the residual electron density).  The 

positions of the methanolic H-atoms (H3) in [1]BPh4•3MeOH were refined freely.  The 

remaining OH groups were refined using geometrical restrictions and rotationally 
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optimized to better fit the residual electron density.  Crystals of [1]BPh4•3MeOH are 

systematic twins grown together along a common bc plane.   

Table 3.1. Selected Bond Distances and Angles. 

Bond Distance (Å) [1]BPh4●3MeOH 2●MeOH●MeCN 

Fe-O1 2.246(4) 2.0596(9) 

Fe-O2 2.256(4) 1.9581(9) 

Fe-O3 2.077(4) - 

Fe-N2 2.193(4) 2.1354(11) 

Fe-N4 2.195(4) 2.1501(11) 

Fe-N6 2.186(4) 2.1826(11) 

Fe-Osubstrate(ave) 2.2510 2.0089 

Fe-NTIP(ave) 2.1913 2.1560 

   

Bond Angle(°)   

O1-Fe-O2 58.01(13) 86.29(4) 

O1-Fe-N2 105.92(14) 92.17(4) 

O1-Fe-N4 91.13(15) 96.90(4) 

O1-Fe-N6 163.72(14) 168.66(4) 

O2-Fe-N2 163.88(14) 147.75(4) 

O2-Fe-N4 91.36(14) 117.46(4) 

O2-Fe-N6 105.77(14) 91.71(4) 

N2-Fe-N4 90.16(15) 94.71(4) 

N2-Fe-N6 90.26(16) 83.57(4) 

N4-Fe-N6 90.64(14) 93.92(4) 

τ-value
 a N/A 0.348 

a 
The geometric parameter η is defined as η = |(α - β)|/60, where α and β are the two basal angles in pseudo-

square pyramidal geometry. The η-value in 0.0 in idealized square-planar geometries and 1.0 in idealized 

trigonal bipyramidal geometries.
54 
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Table 3.2. Summary of X-ray Crystallographic Data Collection and Structure Refinement 

 [1]BPh4●3MeOH 2●MeOH●MeCN 

empirical formula C57H60BFeN6O6P C37H32FeN7O4P 
formula weight 1022.74 725.52 
crystal system monoclinic monoclinic 
space group P21 P21/n 
a, Å 13.8829(3) 13.6187(7) 
b, Å 11.6385(4) 14.9164(9)  
c, Å 16.5130(4) 17.5278(8)  
α, ° 90 90 
β, ° 91.591(2) 102.190(5)  
γ, ° 90 90 
V, Å

3 2667.1(2) 3480.4(3)  
Z 2 4 
Dcalc, g/cm

3 1.274 1.385 
λ, Å 1.5418 1.5418 
μ, mm

-1 2.996 4.328 
θ-range, ° 4 to 148 4 to 149 
reflections collected 32914 26690 

independent reflections 
10151 

[Rint = 0.1419] 
6954 

[Rint = 0.0278] 
data/restraints/parameters 10151 / 87 / 643 6954 / 0 / 454 
GOF (on F

2
) 1.025 1.037 

R1/wR2 (I>2σ(I))
a 0.0682 / 0.1778 0.0273 / 0.0710 

R1/wR2 (all data) 0.0872 / 0.1963 0.0306 / 0.0731 
a 
R1 = Σ||Fo| - |Fc|| / Σ|Fo|; wR2 = [Σw(Fo

2
-Fc

2
)

2
 / Σw(Fo

2
)

2
]

1/2 
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Chapter 4 

 
Variations on the Tris(imidazol-4-yl)phosphine Framework 

 

 

 

 

 

 

 

 

Abstract: An iron and a cobalt complex containing the LN3 ligand tris(1-

ethylbenzimidazol-2-yl)phosphine (2-TBIP
Et

) have been prepared and structurally 

characterized with X-ray crystallography. The 2-TBIP
Et 

framework is similar to that of 

Ph
TIP and 

tBu
TIP previously used to model the 3-histidine (3His) facial triad recently 

found in acetylacetone dioxygenase (Dke1). The complex [Fe
2+

(2-TBIP
Et

)(acac
F6

)](OTf) 

([1]OTf) was synthesized to determine whether the lack of O2 reactivity present in 
Ph

TIP 

and 
tBu

TIP complexes is because of steric or electronic conditions. 
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4.A.  Introduction 

 

Iron(II) -diketonate complexes with either 
Ph2

Tp or 
R
TIP (R = Ph or 

t
Bu) 

supporting ligands take several days to oxidize in the presence of dioxygen, whereas the 

corresponding 
Me2

Tp complexes readily react with O2 to yield diiron(III)-peroxo 

intermediates.  To determine whether the lack of reactivity of the TIP-based complexes is 

due to steric or electronic factors, we attempted to generate the TIP ligands shown in 

Scheme 4.1, which contain less sterically bulky substituents. In many cases, the synthesis 

of the ligand was not successful.  Tris(1-methylimidazol-2-yl)phosphine (2-TIP
Me

) could 

be easily synthesized in large enough quantities; however, due to the lack of steric 

hindrance, the major product formed upon reaction with one equivalent each of Fe(OTf)2 

and Na(acac
X
) was the homoleptic complex [Fe(2-TIP

Me
)2](OTf)2.  We therefore turned 

to tris(1-ethylbenzimidazol-2-yl)phosphine (2-TBIP
Et

).  With this ligand, we were able to 

generate mononuclear two β-diketonate complexes; this section describes their synthesis 

and crystallographic characterization.  

Scheme 4.1. TIP ligands with varying steric and electronic properties. 
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4.B.  Synthesis and Solid-State Structures.   

 

The -diketonato complexes [Fe(2-TBIP
Et

)(acac
F6

)](OTf) ([1]OTf) and [Co(2-

TBIP
Et

)(acac
F6

)](OTf) ([2]OTf) were generated via addition of the ligand to MeOH 

solutions of Na(acac
F6

) and the appropriate triflate salt.  Both complexes were 

characterized with X-ray crystallography.  Selected bond lengths and angles are shown in 

Table 4.1, while details concerning the data collection and analysis are provided in the 

Experimental Section (Table 4.2).  

 

Figure 4.1. Thermal ellipsoid plot (50% probability) derived from [1]OTf (left) and 

[2]OTf (right). The noncoordinating solvent molecules and most hydrogen atoms have 

been omitted for clarity. The dotted line represents the H-bonding interaction between the 

[BI
Et

-H]OTf salt. Note: Ellipsoids are not shown for the acac
F6

 and trfilate ligands of 

[2]OTf due to disorder. 

 

X-ray quality crystals of [1]OTf were obtained by layering a concentrated CH2Cl2 

solution with pentane.  Attachment of the benzimidazole to the phosphorus at the 2-

position allows the three nitrogen donors to coordinate to the metal center, while the 
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benzene ring modifies the steric hindrance, creating a more open area for the metal center 

than the 
Ph

TIP and 
tBu

TIP ligands. This more open structure of the facially coordinated 2-

TBIP
Et

 ligand allows a triflate counteranion to bind to the Fe(II) center, resulting in a 

distorted octahedral geometry. The average Fe-Nbenzimid distance of 2.16 Å is similar to 

the values found for complexes with sterically-hindered TIP ligands.  The acacF6 ligand 

bonds symmetrically in a bidentate fashion with an average Fe-Oacac distance of 2.06 Å; 

the Fe-Otriflate bond exhibits a distance of 2.2279(15) Å.  Interestingly, this complex co-

crystallized with one eqiuvalent of [BI
Et

-H]OTf salt, where BI
Et

-H is the conjugate acid 

of 1-ethylbenzimidazole.   This second-sphere salt apparently arises from partial 

degradation of the EtTBIP ligand. In this case it is somewhat advantageous, since the BI
Et

-

H
+
 cation stabilizes the inner sphere triflate ion through hydrogen-bonding interactions.  

The second triflate equivalent in the asymmetric unit also participated in H-bonding 

interactions with the  BI
Et

-H
+
 cation. 

As with [1]OTf, X-ray quality crystals of [2]OTf were generated by layering of a 

DCM solution with pentane.  This complex is quite similar to its iron analogue, with the 

open structure of the 2-TBIP
Et

 ligand permitting coordination of the triflate counterion to 

the Co(II) center,  except with extreme disorder in the positions of the acac
F6

 and the 

triflate ligands.  This problem was compounded by the presence of ~2.5 disordered DCM 

molecules in the asymmetric unit.  

Due to the extreme disorder of [2]OTf it is difficult to compare the bond lengths 

between the two species. The average Co-Nbenzimid distance is 2.13 Å, shorter than the 

[1]OTf. The oxygens of the acac
F6

 ligand however are indistinguishable from the cobalt 
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bonded triflate oxygen. The average Co-O distance is 2.11 Å, almost halfway in between 

the Fe-Oacac and Fe-Otriflate distances in [1]OTf. 

 
Table 4.1. Selected Bond Distances and Angles. 

Bond Distance(Å) [1]OTf [2]OTf 

Fe-O1 2.0566(14) 2.113(3) 

Fe-O2 2.0601(14) 2.113(3) 

Fe-O3 2.2279(15) 2.113(3) 

Fe-N1 2.1734(16) 2.126(4) 

Fe-N2 2.1685(16) 2.126(4) 

Fe-N3 2.1424(16) 2.126(4) 

Fe-Oacac(ave) 2.0584 2.113 

Fe-N(ave) 2.1614 2.126 

   
Bond Angle(°)   

O1-Fe-O2 85.87(5) 86.31(12) 

O1-Fe-N1 96.96(6) 177.15(13) 

O1-Fe-N2 97.48(6) 94.39(13) 

O1-Fe-N3 172.67(6) 90.97(13) 

O2-Fe-N1 94.90(6) 177.15(13) 

O2-Fe-N2 176.12(6) 94.39(13) 

O2-Fe-N3 88.50(6) 90.97(13) 

N1-Fe-N2 86.65(6) 88.37(14) 

N1-Fe-N3 88.19(6) 88.37(14) 

N2-Fe-N3 87.99(6) 88.37(14) 
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4.C. Experimental Section 

 

Materials. All reagents and solvents were purchased from commercial sources 

and used as received unless otherwise noted. Acetonitrile (MeCN), dichloromethane 

(DCM), and tetrahydrofuran (THF) were purified and dried using a Vacuum 

Atmospheres solvent purification system. The supporting ligands were prepared 

according to literature procedures.
55

 The synthesis and handling of air-sensitive 

complexes were carried out under inert atmospheres using custom built Schlenk lines and 

a Vacuum Atmospheres Omni-Lab glove-box equipped with a freezer set to -30ºC.  

 [Fe(2-TBIP
Et

)(acac
F6

)](OTf) [1]OTf: Sodium methoxide (0.0255 g, 0.4720 

mmol) was added to acac
F6

 (0.0654 g, 0.3143 mmol) in 2 mL of THF and allowed to stir 

for 30 minutes, after which the solvent was removed under vacuum to yield the 

Na
+
acac

F6-
 salt. All reagents were placed into a nitrogen atmosphere glove-box. 

Et
TBIP 

(0.1842 g, 0.3948 mmol) was dissolved in 3 mL DCM while anhydrous iron triflate 

(0.1430 g, 0.4040 mmol) and the Na
+
acac

F6-
 salt were each dissolved in 3 mL of 

methanol. The 
Et

TBIP solution was added dropwise to the iron triflate solution, then the 

Na
+
acac

F6-
 salt dropwise to the mixture, resulting in a purple solution. The mixture was 

allowed to stir overnight. The solvent was then removed under vacuum and the solid 

dissolved in 5 mL of DCM. After filtration to remove insoluble particles, he solution was 

layered with pentane, providing purple crystals. 

 [Co(2-TBIP
Et

)(acac
F6

)](OTf) [2]OTf: Sodium methoxide (0.0298 g, 0.5516 

mmol) was added to acac
F6

 (0.0654 g, 0.3614 mmol) in 2 mL of THF and allowed to stir 

for 30 minutes, after which the solvent was removed under vacuum to yield the 
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Na
+
acac

F6-
 salt.  

Et
TBIP (0.2246 g, 0.4814 mmol) and cobalt triflate54 (0.1430 g, 0.4870 

mmol) were suspended in 3 mL and the Na
+
acac

F6-
 salt dissolved in 3 mL of methanol. 

The  
Et

TBIP suspension was added dropwise to the anhydrous cobalt triflate suspension, 

then the Na
+
acac

F6-
 salt dropwise to the mixture, resulting in a red-orange solution. The 

mixture was allowed to stir overnight. The solvent was then removed under vacuum and 

the solid dissolved in 5 mL of DCM. After filtration to remove insoluble particles, the 

solution was layered with pentane, providing orange crystals.  

 Crystallographic Studies. Complexes [1]OTf and [2]OTf  were characterized 

using X-Ray crystallography. The X-ray diffraction data were collected at 100 K with an 

Oxford Diffraction SuperNova kappa-diffractometer equipped with dual microfocus 

Cu/Mo X-ray sources, X-ray mirror optics, Atlas CCD detector and low temperature 

Cryojet device. Crystallographic data for the compounds are provided in Table 4.2. The 

data were processed with CrysAlisPro program package (Oxford Diffraction Ltd., 2010) 

typically using a numerical Gaussian absorption correction (based on the real shape of the 

crystal) followed by an empirical multi-scan correction using the SCALE3 ABSPACK 

routine. The structures were solved using the SHELXS program and refined with the 

SHELXL program
56

 within the Olex2 crystallographic package.
57

 Carbon bonded 

hydrogen atoms were positioned geometrically and refined using appropriate geometric 

restrictions on the corresponding bond lengths and angles within a riding/rotating model 

(torsion angles of methyl hydrogens were rotationally optimized to better fit the residual 

electron density).  
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Table 4.2. Summary of X-ray Crystallographic Data Collection and Structure Refinement. 

 [1]OTf [2]OTf●2DCM 

empirical formula C43H39F12FeN8O8PS2 C33H28Cl4.4CoF9N6O5PS 

formula weight 1174.76 1037.58 

crystal system monoclinic trigonal  

space group P21/n P-3  

a, Å 15.9874(4) 14.8884(8) 

b, Å 14.4275(4) 14.8884(8) 

c, Å 21.1542(6) 11.8936(6) 

α, ° 90 90 

β, ° 95.690(3) 90 

γ, ° 90 120 

V, Å
3 4855.4(2) 2283.2(2) 

Z 4 2 

Dcalc, g/cm
3 1.607 1.509 

λ, Å 1.5418 1.5418 

μ, mm
-1 4.573 6.809 

θ-range, ° 7 to 148 7 to 148 

reflections collected 26712 14326 

independent reflections 
9653 

[Rint = 0.0284] 
3066 

[Rint = 0.0731] 
data/restraints/parameters 9653 / 0 / 684 3066 / 14 / 220 

GOF (on F
2
) 1.019 1.054 

R1/wR2 (I>2ζ(I))
a 0.0353 / 0.0926 0.0885 / 0.2456 

R1/wR2 (all data) 0.0405 / 0.0969 0.0972 / 0.2551 
a 
R1 = Σ||Fo| - |Fc|| / Σ|Fo|; wR2 = [Σw(Fo

2
-Fc

2
)

2
 / Σw(Fo

2
)

2
]

1/2 
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