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ABSTRACT OF DISSERTATION 

 

SURFACTANT AND METAL SORPTION STUDIES BY FUNCTIONALIZED 

MEMBRANES AND QUARTZ CRYSTAL MICROBALANCE 

 

Functionalized membranes provide an elegant platform for selective separations 

and sorptions. In this dissertation, application of functionalized membranes for surfactant 

and metal sorption studies are discussed. Sorption behavior of surfactants is also studied 

using quartz crystal microbalance (QCM) and other techniques. 

 

Adsorption of the ethoxylated surfactants on polymeric materials (cotton and 

polyester) and model gold surface was quantified from a non-aqueous siloxane based 

solvent (D5) and water. The role of ethylene oxide group and the effect of nature of 

polymeric materials on adsorption behavior was quantified and established. In the case of 

gold-water interface, the adsorption data was fitted to calculate adsorption/desorption rate 

constants. The study is important towards applications involving use of the surfactants in 

cleaning operations. PAA functionalized membranes were prepared and used for 

separation of the surfactants from the siloxane solvent. Finally the pH sensitivity of the 

PAA-surfactant complex was verified by successful regeneration of the membrane on 

permeation of slightly alkaline water. 

   

 The preparation and application of thiol and sulfonic acid functionalized silica 

mixed matrix membranes for aqueous phase metal ion sorption is also studied. The 

functionalized particles were used as the dispersed phase in the polysulfone or cellulose 

acetate polymer matrix. The effects of the silica properties such as particle size, specific 

surface area, and porous/nonporous morphology on the metal ion sorption capacity were 

studied. Silver and ferrous ions were studied for metal sorption capacities. The ferrous 

ions were further reduced to prepare membrane immobilized iron nanoparticles which are 

attractive for catalytic applications.  

 

One dimensional unsteady state model with overall volumetric mass transfer 

coefficient was developed to model the metal ion sorption using mixed matrix membrane. 

The study demonstrates successful application of the functionalized mixed matrix 

membranes for aqueous phase metal capture with high capacity at low transmembrane 

pressures. The technique can be easily extended to other applications by altering the 

functionalized groups on the silica particles. The study is important towards water 

treatment applications and preparation of membrane immobilized metal nanoparticles for 

catalytic applications. 

 

KEYWORDS: Ethoxylated nonionic surfactants, quartz crystal microbalance, 

mixed-matrix membrane, surfactant adsorption, metal ion capture 
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 1 

Chapter 1    Introduction 

 

The development of new membrane materials to extend the industrial applications 

of membrane processes demand novel support layer and surface properties with desired 

functional groups. This has lead to the development of functionalized membranes for 

applications ranging from water treatment to reactors to advanced bio-separations. In 

addition to the size and diffusion rate based separations by conventional membrane 

processes, the functionalized membranes allow separations based on other driving forces 

like charge and physical/chemical interactions. In this dissertation, the area of 

functionalized materials and membranes was studied with focus on preparation and 

characterization of the functionalized materials with applications for surfactant and metal 

sorption studies. This section describes the contents of the dissertation and the research 

objectives are also broadly summarized.  

Chapter 2 provides background information about membranes and membrane 

processes with focus on functionalized membranes. A detailed summary of literature 

studies on surfactant adsorption behavior at various solid-liquid interfaces from both 

aqueous and non-aqueous environment is also provided. All the analytical techniques and 

experimental procedures are summarized in Chapter 3. Chapter 4 gives details for 

characterization of the functionalized materials used in this study. Chapter 5 includes 

results, discussions and important findings for the surfactant partitioning, their adsorption 

at polymeric and model gold surfaces, and surfactant sorption using functionalized 

membranes. Development of functionalized mixed-matrix membranes and subsequent 

applications for metal ion sorption are discussed in Chapter 6. In Chapter 7, the mixed-

matrix membranes are modeled and the metal ion sorption data was used to test the 

validity of the model. Finally, all the important findings of this research work are 

summarized in Chapter 8.  

 

1.1 Surfactant sorption studies: research objectives 

  

Surfactants are widely used in a variety of applications like cleaning, 

pharmaceuticals, paper processing, cosmetics, emulsifiers in food industry, etc. In most 
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of these applications, the surfactants adsorb at various available interfaces. Understanding 

the adsorption behavior of the surfactants at various solid-liquid interfaces is the key for 

technological advancement of these processes. In addition, the surfactants need to be 

separated from their solutions to be able to recycle and reuse the solvents. The overall 

objectives of this research include application of polyacrylic acid functionalized 

membranes for separation of the surfactants and to understand the adsorption behavior of 

the surfactants on polymeric and model gold surfaces from aqueous and non-aqueous 

environment.  

 

The specific research objectives are: 

 To study the partitioning of ethoxylated nonionic surfactants between siloxane 

solvent and water. 

 To study sorption behavior of the surfactants at polymeric surfaces like cotton 

and polyester. 

 To establish surfactant adsorption/desorption behavior at gold-water and gold-

siloxane solvent interfaces. 

 To determine the adsorption-desorption rate constants for the surfactant 

sorption processes. 

 To prepare and characterize the polyacrylic acid functionalized membranes. 

 To study the functionalized membranes for surfactant separation from 

hydrophobic siloxane solvent. 

 To study the role of ethylene oxide content of the surfactants on their sorption 

behavior.  

 

1.2 Mixed-matrix membranes: research objectives 

  

 Incorporation of functionalized particles in the membrane matrix lead to the 

development of functionalized mixed-matrix membranes. Mixed-matrix membranes open 

new domain for novel materials with desired functional groups. Functionalized 

membranes with appropriate functional groups can provide applications ranging from 

tunable flux and separations, toxic metal capture, toxic organic dechlorination, 
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biocatalysis, etc. In this study, functionalized silica mixed-matrix membranes were 

developed for aqueous phase metal ion sorption applications.  

The specific objectives of the study are 

 To prepare and characterize functionalized silica materials 

 To prepare and characterize functionalized silica-polymer mixed-matrix 

membrane 

 To demonstrate the applicability of the functionalized mixed-matrix 

membranes for metal ion capture and study the effect of various parameters 

like particle loading and residence time (by membrane pressure variation) on 

the capture efficiency 

 To model the mixed-matrix membranes and check the validity of the model 

using experimental metal sorption data 
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Chapter 2    Background 

 

This chapter includes a detailed literature summary about the research areas 

related to this dissertation. The literature studies on polyacrylic acid-nonionic surfactant 

interactions and nonionic surfactant adsorption behavior at various interfaces are 

summarized. The quartz crystal microbalance technique is discussed along with its 

working principal and related studies for surfactant adsorption. A comprehensive 

introduction to membrane processes and functionalized membranes is provided.  The 

history of mixed-matrix membranes (MMMs) and their applications for liquid phase 

separations are summarized. The literature studies related to application of functionalized 

materials for metal ion capture are also discussed.  

 

2.1 PAA-surfactant interactions 

 

Interaction between polyacrylic acid (PAA) and ethoxylated nonionic surfactants 

has been studied for the last few decades and is receiving increasing attention in recent 

studies due to its scientific and industrial importance (Anghel et al. 1999; Anghel et al. 

1998; Berglund et al. 2003; Nagarajan 1989; Robb 2000; Saito 1994; Saito 1993). 

Ethoxylated nonionic surfactants contribute approximately 55% of world production of 

nonionic surfactants and are used in a variety of technological applications such as 

detergency, cosmetics, pharmacy (Giger et al. 1984; Marcomini and Zanette 1996). 

Commercially available ethoxylated nonionic surfactants are often a mixture of 

surfactants with varying alkyl chain length and varying degree of ethoxylation 

(Asmussen and Stan 1998; Crook et al. 1965) and hence most of the previous studies 

involve use of ethoxylated surfactants with normal distribution of the ethylene oxide 

chain length. Alkyl chain of the nonionic surfactants contributes for the hydrophobic 

nature of the surfactant molecule and ethylene oxide chain length determines 

hydrophilicity. General structure of these surfactants may be represented as follows: 

 
R O CH2 CH2 OH 

m  
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Where R= CnH2n+1 

Typical value of m ranges from 3 to 12 and n varies between 9-18 (Asmussen and 

Stan 1998). An ethoxylated surfactant with n carbon alkyl chain and m number of 

ethylene oxide (EO) groups will be denoted as CnEm in the further discussions.  

  In the literature, the ethoxylated nonionic surfactants have been studied primarily 

in terms of their interaction with polyacrylic acid in aqueous phase and their adsorption 

behavior on various surfaces (mostly hydrophilic silica) in aqueous environment. Studies 

involving partitioning of the surfactants between aqueous and organic phases and 

adsorption of the nonionic surfactants from aqueous/nonaqueous solutions at different 

hydrophobic surfaces have also been conducted. Some of the main findings of these 

studies are discussed below. 

 

2.1.1 Interaction between ethoxylated nonionic surfactants and polyacrylic acid in 

aqueous solutions 

 

It is established in the literature that certain polyelectrolytes like polyacrylic acid 

and ethoxylated nonionic surfactant forms complex in aqueous solution due to hydrogen 

bonding (Figure 2.1) between carboxyl group of PAA and ethylene oxide group of the 

surfactant (Anghel et al. 1999; Anghel et al. 1998; Berglund et al. 2003; Nagarajan 1989; 

Robb 2000; Saito 1993; Saito and Taniguchi 1973). The hydrogen bonding phenomenon 

explains increase in pH of PAA solution on addition of ethoxylated nonionic surfactants. 

In addition to hydrogen bonding, the interaction is enhanced due to hydrophobic 

attraction between alkyl chain of the surfactants and PAA. The energy change in 

transferring one methylene unit from micellar to water environment is nearly the same for 

free micelles (-2.85 KJ/mol) and for PAA-bound micelles (-2.92 KJ/mol), indicating 

similar driving forces for the formation of the two types of micelles (Anghel et al. 1998).  
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Figure 2.1 Schematics of hydrogen bonding interaction between carboxyl group of 

polyacrylic acid (PAA) and ethylene oxide groups (CH2CH2O i.e. EO) of the 

nonionic surfactants 
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The PAA-surfactant complex formation begins when the surfactant exceeds a 

particular concentration called the critical aggregation concentration (denoted by CAC). 

CAC depends on alkyl chain length of the surfactant and is independent of temperature 

and number of ethylene oxide groups in the surfactant molecule (Anghel et al. 1998). The 

micelles interacting with the polyelectrolyte are wrapped around by polyelectrolyte chain 

through hydrogen bonding with the ethylene oxide moieties and have about 15% lower 

aggregation numbers as compared to free micelles in bulk. The presence of 

polyelectrolyte segment at the micelle surface gives rise to two competing effects 

(Nagarajan 1989):  

1. The wrapping of polyelectrolyte partially shields the hydrophobic core of micelle from 

being exposed to water. This reduces the core-water interfacial energy. This effect favors 

the formation of polyelectrolyte-bound micelle as compared to the free micelle. 

2. The presence of polyelectrolyte chain at the surface of micelle increases steric 

interactions between hydrophilic groups of the surfactant and polyelectrolyte segment. 

This effect opposes formation of polymer-bound micelle.  

Relative extent of the two effects dictates the preference between the formation of 

polyelectrolyte-bound micelles (CAC) and free micelles (Critical micelle concentration, 

i.e., CMC). In the case of PAA-C12E8 complex, shielding effect is more dominant than 

the effect of increase in steric interactions. Hence formation of polymer-bound micelle is 

favored which means CAC (0.7 mM) is less than CMC (1 mM). Polymethacrylic acid 

(PMA) is more hydrophobic in nature than PAA. The effect of steric repulsion at micelle 

surface becomes more important than the shielding effect in the case of PMA-C12E15 

complex leading to higher CAC (0.4 mM) than CMC (0.11 mM).  

The PAA-surfactant complex is pH sensitive and the complex formation is 

observed only in narrow pH range. Above pH 5 there is no complex formation and below 

pH 3 PAA forms a precipitate with the ethoxylated surfactants which redissolves in 

excess surfactant (Anghel et al. 1999). The composition of PAA-C12E8 complex (1.8 

moles of EO per mole of carboxyl group) as determined by Anghel et al. (1998) suggests 

that not all the ethylene oxide units participate in the complex formation. The ethylene 

oxide units remain free or form loops or cross each other in the complex.  
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2.2 Adsorption of ethoxylated nonionic surfactants at solid-liquid interfaces in 

aqueous environment 

 

In various applications like detergency, cosmetics, etc., ethoxylated surfactants 

adsorb at available solid-liquid interfaces. Studies have been conducted to understand the 

adsorption behavior of the surfactants at such interfaces in aqueous environment (Blom et 

al. 2005; Brinck et al. 1999; Cai et al. 2003; Caruso et al. 1995; Desbene et al. 1997; 

Geffroy et al. 2000; Gilchrist et al. 2000; Grant et al. 2000; Kharitonova et al. 2005; 

Kjellin et al. 2002; Kumar and Tilton 2004; Lindheimer et al. 1990; Portet et al. 1996; 

Somasundaran et al. 1991; Tahani et al. 1996; Thirtle et al. 1997; Torn et al. 2005). 

Parameters governing the adsorption behavior include morphology and chemistry of solid 

surface, functional groups involved in solute-solvent interactions, intermolecular forces 

between adsorbed molecules, pH, and temperature. Characteristics of the adsorption 

process were studied using variety of techniques like fluorescence decay (Levitz and Van 

Damme 1986), calorimetry (Denoyel and Rouquerol 1991; Lindheimer et al. 1990), 

neutron reflection (Lee et al. 1989; Thirtle et al. 1997), ellipsometry (Gilchrist et al. 2000; 

Kjellin et al. 2002; Stalgren et al. 2002; Tiberg et al. 1994), surface plasmon resonance 

(Caruso et al. 1995), quartz crystal microbalance (Caruso et al. 1995; Stalgren et al. 

2002), HPLC (Desbene et al. 1997; Portet et al. 1996), and gravimetry (Rinia et al. 1996). 

Silica-water interface is the most studied surface for ethoxylated surfactant adsorption. 

The surfactant adsorption behaviors at various solid-liquid interfaces are summarized in 

this section. 

 

2.2.1 Adsorption of ethoxylated nonionic surfactants on hydrophilic surfaces 

 

Adsorption behavior of ethoxylated nonionic surfactants on hydrophilic surfaces 

is well established. Hydrophilic silica-water interface is the most studied surface for 

ethoxylated surfactant adsorption (Blom et al. 2005; Brinck et al. 1999; Desbene et al. 

1997; Kharitonova et al. 2005; Kjellin et al. 2002; Portet et al. 1996; Thirtle et al. 1997; 

Stalgren et al. 2002). It is well established in the literature that the aqueous phase 
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surfactant adsorption on hydrophilic surface increases with increasing surfactant 

concentration and a plateau is observed just above the CMC. In most of the cases the 

adsorption isotherms follow the Langmuir model. The average area per ethylene oxide 

group calculated from the plateau value remains constant and is independent of the 

number of the ethylene oxide groups in the surfactant molecule. Increasing alkyl chain 

length of the surfactant molecule shifts the onset of the plateau towards lower 

concentration of the surfactant solution but has a negligible effect on the maximum 

adsorption.  

There are two types of interactions involved in the surfactant adsorption process. 

Initially, the ethylene oxide groups of the surfactants interact with surface functionalities 

such as hydroxyl groups in the case of silica through hydrogen bonding. The surfactant 

molecules lay flat on the surface with both the ethylene oxide and alkyl chain parts of the 

molecule in contact with the surface. As the adsorption proceeds, the incoming ethylene 

oxide chains displace the flat lying alkyl chains from the surface and the alkyl chains get 

suspended in the solution away from the surface. This induces the lateral hydrophobic 

chain-chain interactions contributing for further adsorption of the surfactant molecules. 

The hydrogen bonding polar interactions are exothermic and hence the adsorption 

process is exothermic at low coverage. On the other hand, the chain-chain interactions 

being endothermic, the adsorption process becomes endothermic at higher coverage. In 

terms of enthalpy of adsorption, there is an endothermic minimum near surface coverage 

of 0.5 and as the coverage ratio approaches unity, the enthalpy of adsorption approaches 

zero (Lindheimer et al. 1990). Any more surfactant molecules added to the solution goes 

to form bulk micelles instead of adsorbing at the interface. 

 

2.2.2 Adsorption of ethoxylated nonionic surfactants on hydrophobic surfaces 

 

Systematic studies to understand the adsorption phenomenon of the ethoxylated 

surfactants at solid hydrophobic surfaces from their aqueous solutions have been reported 

in literature and some of the outcomes are discussed in this section (Geffroy et al. 2000; 

Grant et al. 2000; Kumar et al. 2004; Kumar and Tilton 2004; Lin et al. 1996; La Rosa et 

al. 2004).  
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 The driving force for adsorption of ethoxylated nonionic surfactants on 

hydrophobic surfaces is the hydrophobic attraction between alkyl chain of the surfactants 

and the surface.  The organization of C12E8 at the surface was observed to be strongly 

influenced by hydrophobicity of the surface (Grant et al. 2000)
 
and the authors concluded 

that as the ratio of methyl to hydroxyl groups on the surface was increased from 0 to 1, 

the structure of adsorbed layer of C12E8 changed from micellar aggregates to bilayer to 

monolayer. The force required for expelling the surfactant between the surface and 

atomic force microscope (AFM) tip increased 4-5 times when the methyl to hydroxyl 

group ratio was increased from 0.5 to 1. This indicates increased adsorption energy of 

ethoxylated surfactants with increasing hydrophobicity of the surface and importance of 

the hydrophobic interaction between the surfactants and the surface. 

 Since the aggregation behavior of the ethoxylated surfactants at hydrophobic 

surfaces and in the bulk solution involves the same intermolecular interactions, a study 

was carried out (Kumar et al. 2004; Kumar and Tilton 2004) to relate the two 

phenomena. The adsorption isotherms of all the ethoxylated surfactants collapsed onto 

the same curve when the bulk and surface excess concentrations were rescaled by bulk 

critical aggregation concentration (CAC) and maximum surface excess concentration, 

respectively. This indicates strong relationship between self assembly of the surfactants 

in bulk and on hydrophobic surfaces. Surface excess concentration at air-water interface 

was observed to be higher than that at solid-water interface for the ethoxylated 

surfactants with more than three ethylene oxide groups in the molecule. The maximum 

surface excess concentration on solid hydrophobic surface was found to decrease with 

square root of number of ethylene oxide units in the surfactant molecules.  

Most of the studies involving ethoxylated nonionic surfactants dealt with aqueous 

solutions of the surfactants as discussed earlier. Limited literature is available regarding 

the study of ethoxylated nonionic surfactants dissolved in hydrophobic solvents. Such 

studies primarily dealt with the effect of various parameters on reverse micelles, 

adsorption characteristics of the surfactants in non-aqueous environment, and their 

partitioning between aqueous and organic solvents. The key findings of the studies are 

discussed in the following part of the chapter.  
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2.3 Adsorption of the ethoxylated nonionic surfactants in non-aqueous environment 

  

Many applications like lubricant coating, paint emulsions, and dry cleaning 

detergency, involve adsorption of the surfactants from hydrophobic solvents on solid-

liquid interfaces. The knowledge of surfactant adsorption at liquid-solid interface is very 

limited in nonaqueous environment (Armisted et al. 1971; Rinia et al. 1996; Gregg and 

Sing 1967; Kipling and Wright 1964; Krishnakumar and Somasundaran 1994; Papke et 

al. 1995; Seguin et al. 2006; Soboleva et al. 2007). Initial studies dealt with adsorbed 

surfactant orientation on oxide adsorbents and estimation of their specific surface area 

from benzene and hexane (Armisted et al. 1971; Gregg and Sing 1967; Kipling and 

Wright 1964). In the case of benzene, adsorption isotherms of n-fatty acids were found to 

be independent of surfactant chain length as opposed to hexane where the adsorption 

varied with chain length (Armisted et al. 1971). In the case of ionic surfactant adsorption 

on silica from high polarity solvents, hydrocarbon chain interaction with solid surface 

plays an important role (Krishnakumar and Somasundaran 1994). Papke et al. (1995) 

developed a semi-quantitative technique to measure adsorption of surfactants onto 

colloidal dispersions in hydrocarbon solutions. Rinia et al. (1996) demonstrated for the 

first time the use of QCM technique to study adsorption of surfactants from nonaqueous 

solvents. They established the influence of bulk solution properties (Csurf > 2mM) on the 

QCM frequency shifts. They also proved that strong interaction between surfactant and 

solvent leads to increased sensitivity of the QCM shifts.  

Seguin et al., (2006) studied adsorption and aggregation properties of CnE8 

surfactant (n = 12, 14, 16) in ethylene and propylene glycol and concluded that the 

surfactant behavior (surface tension depression, etc.) is strongly dependent on the type of 

glycol. Soboleva et al. (2007) studied adsorption of Triton X-100 (a commercially 

available ethoxylated nonionic surfactant) from aqueous and non-aqueous (toluene) 

solvents at hydrophilic and hydrophobic quartz surface. Substantial differences in the 

extent of adsorption between water and toluene were explained in terms of aggregation 

behavior at the surface. In the case of adsorption from toluene, it was inferred that the 

TX-100 molecules orient themselves with the polar groups towards the surface regardless 

of its nature. Limited experimental data is available for CMC of the surfactants in 
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hydrophobic solvents. Studies have been carried out to predict the same (Flores et al. 

2001; Voutsas et al. 2001) Flores et al. (2001) used phase separation model to predict the 

CMCs. The model assumes that the surfactant solution at a concentration above CMC is 

composed of two phases: 

1. Solvent rich phase (whose surfactant concentration is CMC) 

2. Surfactant rich phase approximating the reverse micelle. 

 Since these two phases remain in equilibrium, the activity of surfactant in phase 1 is 

equal to that in phase 2. Also activity of solvent in phase 1 is equal to its activity in phase 

2. The concentrations satisfying this isoactivity criterion were determined for C12E5-

Hexadecane system by Flores et al. 2001 using a program. These concentrations can also 

be determined graphically as shown in Figure 2.2 The activities of the surfactant and the 

solvent were predicted using UNIFAC. The agreement between predicted (0.0216 mole 

fraction of C12E5) and experimental (0.0191 mole fraction of C12E5) values of the CMC 

indicates feasibility of the approach towards predicting CMCs of ethoxylated surfactants 

in hydrophobic solvents. The details of the calculation are given in appendix A.  
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Figure 2.2 Prediction of Critical Micelle Concentration (CMC) of C12E5 in 

hexadecane by phase separation model (Graphical Method) (O Indicates points 

satisfying isoactivity criterion). Activities calculated using UNIFAC method. 

Calculated CMC = 0.0216 mole fraction of C12E5. Experimentally observed CMC = 

0.0191 mole fraction of C12E5 
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2.4 Partitioning of ethoxylated nonionic surfactants 

 

Ghoulam et al. (2002) studied partition coefficient of the ethoxylated surfactants 

between water and isooctane as a function of ethylene oxide chain length and 

temperature. The ethoxylated nonionic surfactants preferentially partition into the 

isooctane phase owing to their hydrophobic nature. The partition coefficient increases 

exponentially with increasing number of ethylene oxide groups per surfactant molecule 

and decreases by more than one-half an order of magnitude over a 20
0
 C increase in 

temperature. It was also established that contribution of hydroxyl group of the surfactant 

to free energy of transfer from water to isooctane is more than that of ethylene oxide 

group and is more temperature sensitive. For a surfactant partitioning between organic 

and aqueous phase at a submicellar concentration, the partition coefficient can be 

expressed as follows:              
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w

o

p

0

exp


       (2.1) 

Where, pK  is the partition coefficient, 
oV  and 

wV  are the molar volumes of the organic 

phase and water respectively and 
0

i  is the energy corresponding to the transfer of 1 

mole of surfactant from aqueous phase to organic phase. This type of approach was used 

by Ferrari et al. 1998 for determination of temperature dependence of standard chemical 

potential difference (
0

i ) for a surfactant partitioning between the water-hexane system. 

Since 
0

i can be expressed as linear function of number of ethylene oxide groups 

(Ghoulam et al. 2002), equation (2.1) explains the exponential dependence of partition 

coefficient on ethylene oxide content of the surfactants.  

 

2.5 Quartz crystal microbalance with dissipation monitoring (QCM-D) system 

 

A quartz crystal microbalance (QCM) technique is useful for adsorption studies 

(Rinia et al. 1996; Caruso et al. 1995; Knag et al. 2004; Liu et al. 2005; Mokrani et al. 
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2005; Muller et al. 2005; Stalgren et al. 2002) due to its high sensitivity and simple 

relationship between frequency changes measured and adsorbed mass. 

Quartz being piezoelectric by nature deforms under application of an electric 

field. The direction of deformation depends upon the direction of the applied electric 

field. On application of alternating electric field, the crystal starts oscillating at its 

fundamental frequency. Any addition or removal of mass to the gold surfaces by virtue of 

adsorption/desorption process will result in change in oscillation frequency of the crystal. 

The removal of applied electric field causes the exponentially damped sinusoidal decay 

of the crystal oscillations. The applied electric field is periodically disconnected in a 

controlled manner, and the decay time (τD) is measured each time. The dissipation factor 

(D) is defined as shown in following equation:  

D=1/f τD     (2.2)

Where f is the frequency of crystal oscillation. 

The instrument allows simultaneous measurement of the changes in frequency of 

oscillation (Δf/n) of the crystal and also the dissipation factor (ΔD). Information 

pertaining to the mass, thickness and certain viscoelastic properties of the adsorbed layer 

can be derived from this data. If the adsorbed layer is sufficiently rigid and evenly 

distributed, the mass of adsorbed layer can be calculated using Saurbrey relation 

(Saurbrey 1959):  

Δm = - Cm Δf / n     (2.3) 

Where Cm is Mass Sensitivity Constant (ng cm
-2

 Hz
-1

) and n is the number of overtone. 

The fundamental frequency of oscillation for the crystals used in this study is 4.95 MHz 

and only one side of the crystal is in contact with the solution. The negative sign in 

equation (2.3) indicates that the oscillation frequency decreases with increasing adsorbed 

mass on the crystal. The adsorbed layer thickness is calculated by dividing the adsorbed 

mass by the density of the adsorbed layer. 

 Many studies report that the liquid phase QCM results deviate from the expected 

theoretical predictions and also differ from the findings of the studies using 

complimentary techniques (Rinia et al. 1996; Caruso et al. 1995; Stalgren et al. 2002). 

Overestimation of adsorbed mass has been reported for liquid phase QCM experiments. 
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The reason was attributed to the trapped or associated solvent with the adsorbed layer on 

the surface of QCM crystal. 

 QCM technique was used by Rinia et al. (1996) to study adsorption of surfactants 

from benzene. It is also widely used to study adsorption behavior of proteins on various 

surfaces (Jordan and Fernandez 2008; Moseke et al. 2008; Reimhult et al. 2008). The 

QCM gold surface can also be functionalized with self assembly of thiolated molecules to 

tailor the surface properties as desired.  

 The literature studies related to surfactant partitioning, adsorption-desorption 

behavior at various interfaces and the working principal and applicability of Quartz 

Crystal Microbalance for surfactant adsorption has been summarized in this chapter till 

now. The following part of this chapter will cover the background related to the 

functionalized membranes and related areas.  

 

2.6 Functionalized membranes 

  

Membrane applications in the separation area are being widely used in various 

industries for last few decades (Ho and Sirkar 1992). The current research in membrane 

science (Atwater and Akse 2007; Carter et al. 2008; Cuscito et al. 2007; Geismann et al. 

2007; Kaur et al. 2006; Sing et al. 2008; Villalonga et al. 2008) is focusing more on 

development of new membrane materials with desired functional groups leading to 

development of functionalized membranes. Some of commonly studied functional groups 

are –OH, −NH2, –SO3H, −COOH, −SH, −CONH2, etc. Functionalized membranes with 

appropriate functional groups can provide applications ranging from tunable water 

permeation and separations (Hollman and Bhattacharyya 2003; Majumder et al. 2007; 

Rao et al. 2002), toxic metal capture (Smuleac et al. 2005), environmental applications 

(Mauter and Elimelech 2008; Tee et al. 2005), biocatalysis (Hilal et al. 2006; Kasem et 

al. 1998; Kochkodan et al. 2007), etc. The functionalized membranes also provide 

opportunities for process integration by achieving separation and reaction in a single step 

(Gan et al. 2005; Onda et al. 1996). Membranes functionalized with polyelectrolytes are 

capable of charge based ion separations or toxic metal capture. These microporous 

membranes allow nanofiltration (NF) type separations at permeances much higher than 
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conventional membranes (Hollman and Bhattacharyya 2004; Malaisamy and Bruening 

2005).  

In the case of sorption, ion exchange or capture applications, the porous 

functionalized membranes can provide two significant advantages. Since membranes 

exhibit very high pore surface area which can be functionalized with desired groups, 

significantly higher capacity can be achieved as compared to conventional column 

applications. In addition to higher capacity, membranes offer minimum mass transfer 

resistance as the target molecules are transported to the active sites under convective flow 

conditions. The desired functional groups can be introduced in the membranes by either 

incorporating them during membrane preparation or by modifying the base membrane 

through surface chemistry.  

The most common approach for preparation of functionalized membranes is by 

surface modification of the existing membranes. The desired functional groups can be 

introduced through either covalent or non-covalent attachment mechanism. Some of the 

commonly applied techniques for membrane functionalization include surface chemistry 

(Dai et al. 2005; Higuchi et al. 2002; Klein 1991; Kurakova et al. 2001; Yao et al. 2008), 

polymer deposition (Yoshimatsu et al. 1999), alternate adsorption of oppositely charged 

polyelectrolytes (Ariga et al. 2007; Decher 1997; Iler 1966; Sumleac et al. 2006) plasma 

or radiation induced grafting (Hautojarvi et al. 1996; Yamaguchi et al. 1991), gold-thiol 

chemistry (Chun and Stroeve 2001; Lee and Martin 2001; Smuleac et al. 2004), etc. The 

polymer deposition inside membrane pores can be achieved by cross-linking the desired 

macromolecules (Huang et al. 1998; Geismann et al. 2007) or by in-situ polymerization 

of corresponding monomers with simultaneous cross-linking (Gabriel and Gillberg, 1993; 

Li et al. 2006).  Surface chemistry allows covalent attachment of the desired molecules 

on the membrane surface. Gold-thiol chemistry is studied for well defined, gold-coated, 

polycarbonate track etched (PCTE) membranes for fundamental studies and precise 

quantification of membrane performance (Wernette et al. 2006). 

Based on the role of membranes, the applications of the functionalized 

membranes can be broadly classified into three categories: separation, sorption and 

catalytic applications.  
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2.6.1 Functionalized membranes for separations 

 

 Membranes containing immobilized functional polyelectrolytes have been 

developed for high capacity ion-exchange applications (Bhattacharyya et al. 1998; 

Ritchie et al. 1999 Bruening et al. 2008; Sata 1991) and tunable membrane separations 

(Ito et al. 2000; Nishizawa et al. 1995; Zhang and Nilsson 1993). Some of the commonly 

used polyelectrolytes (polypeptides) for such applications are poly(L-glutamic acid), 

polyacrylic acid, polycysteine, etc. The macromolecules can be incorporated within the 

membrane pore structure by single point covalent attachment through the reactive groups 

on the membrane surface. Once functionalized, the presence of these charged 

macromolecules inside the pores leads to the establishment of an electric potential field 

far removed from the pore wall. This allows ion exclusions in the highly open geometries 

at high membrane permeabilities as opposed to the low permeabilities encountered in the 

conventional nanofiltration (NF) applications. Thus one can obtain NF type separations at 

very low pressures. External stimulants like pH, ionic strength, and surfactants can cause 

change in the degree of ionization of the polyelectrolytes leading to the well-known 

helix-coil transitions (Zhang and Nilsson 1993), thus facilitating tunable separation 

applications. The concept of single layer polyelectrolyte immobilization can be easily 

extended to nonstoichiometric multilayer immobilization (layer-by-layer assembly), 

enhancing the density of the ionizable groups in the membrane phase. 

 Layer-by-layer (LbL) assembly offers easy and inexpensive way to create 

functionalized membranes with multilayers (using non-stoichiometric amounts) of 

charged polyelectrolytes. It was first suggested by Iler (1966) and established by Decher 

and coworkers (Decher 1997; Decher and Schmitt 1992). An excellent review from Ariga 

et al. (2007) summarizes various physicochemical fundamentals and possibilities for 

practical applications of the LbL assembly. Functionalization of the membranes using 

LbL technique allows flexibility in terms of number of layers and the layering sequence. 

Depending on the desired applications of the LbL modified membranes, the multilayers 

can be deposited either on the membrane surface (Hong et al. 2006; Krasemann and 

Tieke 1998; Liu and Bruening 2004) or inside the membrane pores by using convective 
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flow. By varying the deposition conditions like pH and supporting electrolyte 

concentration, the adsorbed layer properties can be optimized. 

 Hollman and Bhattacharyya (2004) prepared highly permeable ion selective 

membranes via immobilization of polyelectrolyte multilayer within the pores of 

microporous membranes. The polyelectrolytes used were poly(L-glutamic acid) (PLGA) 

and poly(L-lysine) (PLL). The first layer was covalently attached to the membrane 

support through surface chemistry and the rest of the layers were assembled through 

electrostatic interactions. The membranes showed As(V) rejection greater than 95% at 

membrane permeances (pressure < 2 bar) that exceed commercially available NF 

membranes. Smuleac et al. 2005 demonstrated high sorption capacity and rate for Hg
2+

 

using polythiol-functionalized membranes.  

 

2.6.2 Functionalized membranes for sorption applications 

  

 Membranes can be functionalized so as to have desired functional groups which 

can selectively interact and form a complex with target molecules as they pass through 

the membrane pores. This leads to the sorption of the target molecules by the membranes. 

The schematic of the process is shown in Figure 2.3.  Such membranes have been used 

for applications like protein purification (Kubota and Shimoda 2005; Rao and Zydney 

2006; Shi et al. 2008), metal ion sorptions (Ritchie et al. 2001; Warta et al. 2005), 

surfactant capture, etc. 
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Figure 2.3 Schematic of a pore of functionalized membrane capturing target 

molecules as they permeate through the pore 
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  Membranes functionalized with polyfunctional molecules exhibit very high 

capture capacities. It was demonstrated that membranes functionalized with covalently 

attached poly-glutamic acid (PLGA) (Bhattacharyya et al. 1998) or polycysteine (Ritchie 

et al. 2001) show sorption of heavy metal ions with high capacity. The applications of the 

functionalized materials and membranes for metal sorption are discussed in more detail in 

section 2.8 

Another area for application of functionalized membranes for sorption 

applications is affinity membrane based separation of biomolecules.  The area is 

especially attractive for the downstream processing in the biotechnological and 

pharmaceutical industries. (Brandt et al. 1988; Charcosset 1998; Datta et al. 2007; Datta 

et al. 2006; Hollman et al. 2005; Klein 2000; Roper and Lightfoot 1995; Thoemmes and 

Kula 1995; Zou et al. 2001). The most widely used affinity interaction in such 

applications is avidin-biotin interaction. (Datta et al. 2006). The affinity membranes were 

successfully applied for separation of BSA (Kugel et al. 1992), hormone 17-β-estradiol 

(Urmenyi et al. 2005), etc., from corresponding mixtures of biomolecules.  

  

  

2.6.3 Functionalized membranes for catalytic applications 

 

Functionalized membranes have the potential to contribute significantly towards 

the improvement of catalytic applications by providing alternative support for catalyst 

immobilization (Butterfield et al. 2001; Hilal et al. 2006; Konovalova et al. 2000). 

Membrane supported catalytic applications not only mitigate the need for dispersion of 

the catalyst and its subsequent removal from reaction mixture, but also provide highly 

favorable mass transport conditions.  

Membrane immobilized enzymes act as biocatalysts in many bioreactions 

(Butterfield and Bhattacharyya 2003; Conrado et al. 2008; Giorno and Drioli 2000; 

Viswanath et al. 1998). The enzymes can be immobilized by either covalent or non-

covalent attachment. Glucose oxidase is a commonly studied enzyme to evaluate 

immobilization techniques and effects of support matrices (Ozyilmaz et al. 2005; Rauf et 

al. 2006; Ying et al. 2002). It was observed that membranes can provide the highest 
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enzyme loading among the various supports studied with enhanced mass transfer 

conditions. 

Another important area of catalytic applications involves use of metal 

nanoparticles. In addition to the large surface area to volume ratios, the different 

electronic properties of the nanoparticles (as compared to bulk materials) contribute 

towards the significant enhancements in catalytic activities. Zero valent iron based 

bimetallic nanoparticles are known for the degradation of toxic chlorinated organic 

compounds which is important for groundwater remediation (Feng and Lim 2005; Kim et 

al. 2008; Lowry et al. 2004; Tratnyek et al. 2000; Zhang et al. 1998). However, in the 

absence of polymers or surfactants, the nanoparticles can easily aggregate into large 

particles with wide size distribution. Xu (2007) reported a novel in-situ synthesis method 

of bimetallic nanoparticles embedded in polyacrylic acid (PAA) functionalized 

microfiltration membranes by chemical reduction of metal ions bound to the carboxylic 

acid groups. Along with high mass transfer rate, reduction of particle loss and prevention 

of particle aggregation are the added advantages of membrane based nanoparticle 

synthesis.  

    

 

2.7 Mixed-matrix membranes (MMMs) 

 

Mixed-matrix membranes consist of a continuous polymeric phase and a 

dispersed particulate phase. In such membranes, the dispersed phase can be 

functionalized with desired functional groups (Avramescu et al. 2003; Lin et al. 2007; 

Sambandam and Ramani 2007; Yen et al. 2007). This allows for a novel approach to 

introduce the functionalities in the membranes. Particulate silica is a good candidate for 

dispersed phase, as it can be easily functionalized with desired groups through well 

known silanization pathways. 

MMMs were conceived for improving gas separation performances. Many studies 

have demonstrated higher gas permeability and/or selectivity for the MMMs when 

compared to the conventional homogeneous polymeric membranes with working 

principle based on the solution-diffusion mechanism (Kulprathipanja et al. 1988; 
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Mahajan and Koros 2002a; Mahajan and Koros 2002b). These membranes are shown to 

exceed Robeson’s upper bound limit (Robeson 1991) for the performance of polymeric 

membranes in gas separation. Inorganic materials have shown performances well beyond 

the upper bound, but their applications are hindered due to the difficulty in preparing 

defect free and economical inorganic membranes. MMMs combine the performance 

benefit of the inorganic membranes with the easy applicability benefit of the polymeric 

membrane.  

 Apart from the gas separation applications, the concept of such composite 

membranes is successfully applied in the case of barrier membranes, which are useful for 

food packaging and corrosion resistive coatings (Lape et al. 2002; Liu and Cussler 2006; 

Shimotori et al. 2007). In this case the goal was to reduce the transport through the 

membranes, and it was accomplished either by adding impermeable flakes to the 

membrane polymer or by incorporating reactive groups within the membranes. 

Although, the applications of the MMMs are well established in the area of gas 

separations, the development of their applications for liquid phase separations has been 

limited. Researchers have reported MMM applications for pervaporation to dehydrate 

organic mixtures (Adoor et al. 2006; Okumus et al. 1994; Vane 2008). Also the 

sulfonated silica-MMMs have been studied for fuel cell applications due to their 

improved proton conductivity, higher stability, and better performance (Lin et al. 2007; 

Sambandam and Ramani 2007; Yen et al. 2007) Avramescu et al. (2003) for the first time 

demonstrated the use of ion exchange-polymeric MMMs for adsorptive biomolecule 

separation. Saiful et al. (2006) have studied the MMM adsorbers for lysozyme capture 

and concentration. In order to change the membrane morphology from dense membrane 

(suitable in the case of gas separations) to more open micro-porous structure with high 

degree of pore interconnectivity (suitable for liquid phase applications), the MMMs were 

prepared via the well known phase inversion route with appropriate non-solvent addition. 

In this case it is desired to have a particle phase exhibiting rapid adsorption kinetics (for 

membrane adsorbers), high capacity and high selectivity towards target molecule, and 

easy regeneration.  

The MMMs have significant advantages for separations over conventional 

column chromatography in terms of lower pressure drops, higher mass transfer rates (due 
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to convective flow) resulting in higher throughputs, and easier scale-ups. For 

conventional column adsorbers, throughput is inversely proportional to the bed height. 

An ideal case for maximum throughput will be very small bed height with very high bed 

diameter. Membranes actually have very low height (thickness) to diameter ratio, 

approaching the ideal case of packed beds for maximum throughput. This makes 

membrane applications attractive from industrial point of view. The mixed-matrix 

membranes for liquid phase applications can be easily prepared by Phase Inversion 

method.  

 

 

2.7.1 Phase inversion method for membrane preparation 

 

Phase Inversion method is a widely used method for membrane preparation. 

Polymeric ultrafiltration (UF) and majority of microfiltration (MF) membranes are 

prepared by phase inversion technique (Hwang and Jegal 2007; Kesting 1993; Pu et al. 

2006; Strathmann 1986). A homogeneous polymer solution containing two or more 

components is phase separated into two distinct phases:  

1. Polymer Rich Phase  

2. Polymer Poor Phase. 

The polymer rich phase forms the rigid membrane structure and the polymer poor phase 

forms the membrane pores. The phase separation can be achieved by three techniques: 

1. Thermogelation of the mixture 

2. Evaporation of volatile solvent 

3. Addition of non-solvent 

The required condition for phase inversion process is presence of miscibility gap over a 

certain composition and temperature range. Some of the important parameters governing 

the structure and properties of such membranes are type of polymer, concentration of 

polymer solution, type of solvent, type of non-solvent, temperature of non-solvent, 

evaporation time before addition of non-solvent, etc. Most commonly used polymers for 

preparation of phase inversion membranes are cellulose acetate, polysulfone and 

polyamide. Commonly used solvents include dimethylsulfoxide, dimethylacetamide, 

dimethylformamide, n-methylpyrrolidone, acetone, etc. Water, methanol, glycerol, 
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formic acid represent some of the commonly used non-solvents. In this study, 

polysulfone and cellulose acetate membranes were prepared by phase inversion method. 

Homogeneous solution of polysulfone in dimethylformamide (DMF) can be phase 

separated by addition of water (non-solvent) to form the membranes. Similarly, 

homogeneous solution of cellulose acetate and acetone can be phase separated by 

addition of water. The desired particles can be incorporated in the polymer solution 

during the preparation step to obtain mixed-matrix membranes.  

 

2.8 Functionalized materials and membranes for metal ion sorptions 

 

 Among the various materials studied for metal ion sorptions, thiol-functionalized 

materials have been studied for sorption of heavy metal ions (Feng et al. 1997; Kang et 

al. 2004; Liu et al. 2003; Makkuni et al. 2007; Nakamura et al. 2007; Park et al. 2005; 

Vieira et al. 1999; Vieira et al. 1997; Zhang et al. 2003). Vieira et al. (1997) confirmed 

the preferential interaction of –SH groups with soft acids (Hg
2+

>Ag
+
>Cu

2+
>Ni

2+
>Zn

2+
) in 

agreement with Pearson’s concept (Pearson 1968) of hard and soft acids and bases. Kang 

et al. (2004) demonstrated highly selective adsorption capacity of the thiol-functionalized 

mesoporous silica materials for noble metal ions in the presence of other metal ions. Such 

a binding selectivity towards the target metal ions is important for many applications like 

waste treatment, which often involves metal ion mixtures.  

Silver nitrate is a commonly used salt in many processes in the mirroring, 

photographic and electroplating industries (Atia at al. 2005). Compared to most metals, 

silver recovery from aqueous solutions is more profitable due to its high market value 

(Abasalan and Mehrdjardi 2003; Trochimczuk and Kolarz 2000). Also there is an 

increased interest in recovering silver found in trace amounts in the effluent of copper 

mining industry. Ritchie et al. (2001) studied polycysteine and other polyamino acid 

functionalized microfiltration membranes for Hg(II), Pb(II) and Cd(II) capture. Reactive 

barrier membranes for cesium ion containing silico-titanate as the sacrificial agent were 

studied by Warta et al. 2005. Some of the studies deal with the application of ion 

exchange-polymer composite sorbents for heavy metal separations (Paez et al. 2005; 

Khan and Alam 2004; Pan et al. 2007). The membrane systems are easier to operate and 

scale up as compared to the column adsorption techniques. 
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Functionalized membranes have been studied as adsorbents in the area of metal 

capture. It was demonstrated (Bhattacharyya et al. 1998) that membrane with covalently 

attached polyfunctional molecules exhibit very high metal capture capacities as compared 

to monomeric functional groups. The Pb capture with poly-L-glutamic acid (PLGA) 

functionalized membrane was 23 fold higher than that with equimolar quantity of 

glutamic acid. Ritchie and Bhattacharyya (2001) demonstrated up to 70% removal of 

Chromium (Cr III) from a stream containing multiple metal ions using 2 stage poly-L-

glutamic acid (PLGA) functionalized membranes. 

In this work, PAA-functionalized polyvimylidene fluoride (PVDF) membranes 

and thiol-functionalized silica polysulfone mixed-matrix membranes were studied for 

surfactant and metal ion sorption, respectively. The experimental details are given in next 

chapter.  

 

2.9 Concluding remarks 

  

 Based on the detailed background study of the research areas, the following 

observations are made: 

 

2.9.1 Surfactant sorption 

 

Although surfactant adsorption behavior has been well studied for solid-water 

interface, the knowledge for the same in non-aqueous environment is very limited. 

Similarly, the polyacrylic acid-surfactant interaction has not been studied in hydrophobic 

siloxane solvent environment. In this research work, adsorption and partitioning behavior 

of the ethoxylated surfactants at solid-solvent interface is studied. Also the polyacrylic 

acid functionalized membrane was studied for surfactant sorption from hydrophobic 

siloxane solvent to quantify the PAA-surfactant interaction in hydrophobic domain. 

 

2.9.2 Metal ion sorption 
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Functionalized membranes have been studied for separation applications in 

various fields but application of functionalized mixed-matrix membranes for liquid phase 

separations has not been exploited. This research work demonstrates applicability of 

functionalized mixed-matrix membranes for metal ion sorption applications from 

aqueous solutions.   
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Chapter 3    Experimental and analytical procedures 

 

3.1 Introduction 

 

 This chapter summarizes all the experimental procedures and chemicals, 

membranes, surfactants, polymers used for the research. The preparation of 

functionalized membranes, surfactant capture experiments, and metal ion capture 

experiments will be discussed in detail. This chapter will also summarize various 

analytical techniques used for this study.  

 

3.2 Materials 

 

3.2.1 Materials for surfactant sorption and partitioning studies 

 

Surfactants: Pure surfactants used for fundamental studies are polyoxyethylene 

glycol n-dodecyl ether (C12En) i.e. C12H25(OCH2CH2)nOH, (n = 3, 5 and 8) and were 

obtained from Nikko Chemical Co. (Tokyo, Japan). Analysis by gas chromatography 

revealed single peak indicating high purity of the surfactants. Commercial nonionic 

surfactant 15-S-5 is purchased from the Dow Chemical Company. It is primarily a 

mixture of secondary alcohol ethoxylate with varying chain length and varying number of 

ethylene oxide groups per molecule. 

Chemicals and Solvents: The hydrophobic siloxane based solvent D5, 

decamethylcyclopentasiloxane (C10H30O5Si5) (96+%) was obtained from Alfa Aesar. The 

nontoxic D5 solvent (MW = 371, density = 0.954) has a very low vapor pressure (0.24 

mm Hg at 25 ºC) and high boiling point (211 ºC). The structure of D5 is given below.  
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Polyacrylic acid was obtained from Polysciences Inc. as an aqueous solution with 

a concentration of 25 wt% and molecular weight of 50,000. Ethylene glycol (analytical 

reagent grade) was obtained from Mallinkrodt. HPLC grade isooctane and deionized 

ultrafiltered (DIUF) water was purchased from Fisher Scientific. Hydrogen peroxide 

(30% solution) was obtained from EMD Chemicals Inc. Ammonium hydroxide (50% 

V/V) was obtained from LabChem Inc. 

Membranes: Hydrophilized Durapore Polyvinylidene Fluoride (PVDF) 

microfiltration membranes with an average pore size of 650 nm and membrane thickness 

of 125 μm were obtained from Millipore Corporation. 

Adsorbent Materials: To study adsorption of surfactants at model gold surface, Q-

sense QSX 301 Standard Gold crystals (surface area = 0.785 cm
2
) were used. The 

polymeric surfaces used for the adsorption study were cotton and polyester and were 

obtained from P & G Corporation. The structure of the repeat unit of cotton (cellulose) 

and general structure for polyester is shown below.  

 

 

 

 

 

 

Cellulose repeat unit   General Structure of Polyester 

 

 

3.2.2 Materials for metal ion capture using MMMs 

 

Polymers and solvents: Cellulose acetate (Mn = 50,000) and polysulfone (Mn = 

16,000; MW = 35,000) were obtained from Aldrich. The solvents used were acetone and 

dimethylformamide (DMF) (extra dry, water < 50 mg/L), obtained from Acros Organics. 

Chemicals: 3-Mercaptopropyltrimethoxysilane (MPTMS) (95%) and 3-

(trihydroxysilyl)-1-propanesulfonic acid (35% in water) was obtained from Aldrich. 

Anhydrous ethanol was obtained from Sigma-Aldrich. Potassium hydrogen phthalate 

used to calibrate total organic carbon (TOC), was obtained from Nacalai Tesque Inc. 
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Dextran (482 kDa and 144 kDa) was obtained from Sigma. AgNO3, NaCl, Na2SO4, and 

FeCl2.4H2O were obtained from Fisher Scientific and Ca(NO3)2.4H2O was obtained from 

Mallinckrodt. Sodium borohydride (NaBH4) in the form of granules was obtained from 

Sigma-Aldrich. Deoxygenated water was used for preparing solutions of FeCl2.4H2O. 

This precaution is necessary to prevent the oxidation of Fe
2+

 to Fe
3+

 and subsequent 

precipitation as the hydroxide. The ultra high purity nitrogen was purchased from Scott-

Gross Co., Inc, Lexington.  

Deoxygenated water: The DIUF water from Fisher Scientific was bubbled with 

ultra high purity nitrogen for at least 2 h and the water was stored in a closed vessel. The 

deoxygenated water was used in less than 1 h after the nitrogen bubbling is stopped.  

Silica materials: The monodispersed Ludox TM-50 particles were obtained from 

Grace Davison and the silica gels (874-86-2 and 874-85-1) were provided by Huber 

Corporation. The average particle size, pore diameter and the BET surface area for the 

three types of silica are given in Table 3.1. Silica coated quartz crystal (QSX 303) 

obtained from Q-sense were functionalized with MPTMS to study silver-thiol interaction 

using QCM.  
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Table 3.1 Characteristics of various types of silica used in this study* 

 Huber 874-86-2 Huber 874-85-1 Ludox TM 50 

Average particle size (m) 3.7 3.3 0.022 

Pore diameter (nm) 11.8 3.54 N/A 

BET surface area (m
2
/g) 444 708 95 

 

* Data provided by Huber Corporation
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3.3 Analyses 

 

 The various types of analyses used in this study are summarized in this section. 

 

3.3.1 Analysis of ethoxylated nonionic surfactants 

  

 The pure surfactant concentrations in the organic phase were measured with a 

Varian CP-3800 temperature programmable gas chromatograph equipped with a 

Chrompack capillary column of 15m length, 0.25mm internal diameter, and with Sil 8 

CB as coating phase with a temperature program ranging from 70 ºC to 300 ºC at 10 

ºC/min. The detector was an FID. Chrysene-d12 was used as an internal standard during 

the analysis. The relative standard deviation of the response factor for C12E3, C12E5 and 

C12E8 was 3.7%, 14.5% and 8.6%, respectively. The lowest limit used for calibration 

curves was 10 mg/L. The concentration difference between the feed and the permeate 

solution was used to determine the amount of surfactant captured by the functionalized 

membrane.  

  The analysis of aqueous solutions of the nonionic surfactants for concentration 

was not straightforward. The aqueous phase to be analyzed was partitioned with the pure 

organic phase (isooctane) and the partitioned organic phase was analyzed for surfactant 

concentration using GC-FID. Partition coefficients determined previously were used to 

back calculate aqueous phase concentrations in equilibrium with the determined organic 

phase concentrations. The original aqueous phase concentration was then calculated 

through mass balance. To be consistent, the pH of the aqueous solutions of the surfactants 

was adjusted to 3 before carrying out partitioning with the organic phase.  

 The solution of 15-S-5 in D5 was analyzed using super critical fluid-mass 

spectroscopy (SCF-MS) and its aqueous solution was analyzed by thin layer 

chromatography (TLC). These analyses were done by P&G Corporation, Cincinnati. 
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3.3.2 Analysis of polyacrylic acid (PAA) loading in membrane 

 

 The dry PVDF membrane was weighed before and after PAA functionalization 

and the weight difference was used as the PAA loading in the membrane. In order to 

calculate free carboxyl group, it was assumed that the ethylene glycol (cross-linker added 

in limited quantity) was completely reacted. Depending on the amount of PAA loading in 

the membrane and amount of ethylene glycol added, the number of free carboxyl groups 

available in the membrane was calculated.  

 

3.3.3 Metal ion analysis 

 

Varian SpectrAA-220 Atomic Absorption Spectrometer (AA) was used to 

measure concentration differences between the feed and permeate of aqueous metal ion 

solutions (Ag
+
, Fe

2+
, and Ca

2+
). The wavelengths used for the analysis were 338.3 nm for 

Ag, 248.3 nm for Fe, and 239.9 nm for Ca. The analytical error for AA was less than 5% 

for Ag and Fe and was 15% for Ca analysis. The lowest calibration sample used was 1 

mg/L of metal ion in the case of Ag and Fe. The lowest calibration point used for Ca was 

5 mg/L. All the samples were diluted appropriately in order to use this concentration 

range. The upper limit for calibration was 15 mg/L to 30 mg/L. 

 

3.3.4 Analysis of dextran solutions 

 

Total organic Carbon (TOC-5000A) from Shimadzu was used to determine 

concentrations of the dextran solutions. The concentration difference between the feed 

and permeate was used to calculate dextran rejection. Based on known sample analysis, 

the analytical error was less than 5%.  

 

3.3.5 Membrane imaging 

 

 Hitachi S-900 Scanning Electron Microscope (SEM) was used to obtain surface 

and cross-section images of the membranes. Hitachi S-3200 SEM equipped with energy 



 35 

dispersive spectrometer (EDS) was used to detect presence of metal nanoparticles in the 

mixed-matrix membranes. 

 

3.3.6 ATR-FTIR analysis of MPTMS functionalized silica 

 

The MPTMS functionalized silica was characterized using Attenuated Total 

Reflectance – Fourier Transform Infrared (ATR-FTIR) spectroscopy using a Varian 

7000e FT-IR spectrometer. The MPTMS functionalization causes a decrease in the 

silanol (Si−OH) peak intensity (Wavenumber 959 cm
-1

). The peak intensity ratio 

Si−OH:Si−O−Si for functionalized and non-functionalized silica were compared to 

roughly quantify surface coverage  

 

3.3.7 Analysis of surfactant adsorption at gold surface 

 

Quartz Crystal Microbalance (QCM) E4 system from Q-sense was used to study 

adsorption of ethoxylated nonionic surfactants at gold-water and gold-D5 interfaces. 

Thiol- Ag
+
 interaction on MPTMS functionalized silica quartz crystal was also studied 

using the QCM system. The change in frequency was converted to adsorbed mass using 

Saurbrey relation. In this system, only one side of the crystal is in contact with the liquid 

solution.  

 

3.4 Partitioning of 15-S-5 

 

Partitioning study of 15-S-5 (a commercially available surfactant) between D5 

and aqueous PAA solution was carried out to study the effect of partitioning on 

distribution of the surfactant. The solution of 15-S-5 in D5 (2 wt%) was mixed with equal 

volume (20 mL each) of aqueous solution of polyacrylic acid (15 wt%) using a wrist 

action mechanical shaker for 12 hours. After the mixture was allowed to settle for 24 

hours, a three phase system was observed consisting of a top organic phase above the 

middle emulsion phase and bottom aqueous phase. The volume of emulsion phase varied 

from 2-8% of the total mixture volume. All samples were treated identically to maintain 
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consistency for agitation speed, temperature, pH of aqueous solutions and agitation time. 

The top organic phase was analyzed by SCF-Mass Spectra (analysis done by P & G 

Corporation) to study effect of partitioning on the distribution of surfactants between the 

two phases.    

 

3.5 Adsorption of ethoxylated nonionic surfactants on cotton and polyester 

 

The polymeric sample to be studied for ethoxylated nonionic surfactant 

adsorption was cut into pieces and heated in oven at 75 C for 4 h. to remove any 

adsorbed moisture. The surfactant solutions of known concentrations were prepared in 

D5. 1 g of the dry polymer sample was added to 15 mL surfactant solution. The mixture 

was allowed to equilibrate for 12 h. in a mechanical shaker. The mixture was then 

allowed to settle and the clear D5 phase from top was sampled for analysis. This D5 

phase was directly analyzed by GC-FID to measure the surfactant concentration. The 

difference between initial concentration and the concentration after equilibration with the 

polymeric samples was used to calculate amount of surfactant adsorbed. Because of the 

difficulty in analyzing water-based samples in GC-FID, the experiments with cotton and 

polyester were limited to D5 only. 

 

3.6 Adsorption of ethoxylated surfactants at gold-water and gold-D5 interface 

 

The gold-coated quartz crystal was chemically cleaned by heating it in a 1:1:5 

mixture by volume of hydrogen peroxide (30% weight), ammonium hydroxide (50% 

V/V) and DIUF, respectively, for 20 minutes. Then the crystal was rinsed with DIUF 

water and dried using nitrogen. The crystal was then placed in the cell through which a 

solution of the surfactant was passed using a peristaltic pump. The solution was 

continuously passed over the gold surface for a certain amount of time. Most of the 

previous studies (Caruso et al. 1995; Stalgren et al. 2002; Rinia et al. 1996) used batch 

mode for adsorption experiments as opposed to the continuous peristaltic flow mode 

adopted in this study. This ensures constant surfactant concentration throughout the 

experiment. The flow rate was kept constant at 0.1 mL/min. The frequency (Δf/n) and 
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dissipation (D) data were measured and processed further to get the desired information 

about the adsorption process.  In the case of gold-water interface, the experiments were 

carried out for surfactant concentrations of 250 mg/L. This concentration is higher than 

critical micelle concentration (CMC) of the surfactants (15 mg/L for C12E3, 26 mg/L for 

C12E5, and 56 mg/L for C12E8) in aqueous solutions. CMCs of the surfactants in D5 phase 

are not known.  

 

3.7 Polyacrylic acid (PAA) functionalized membrane preparation 

 

  Partially cross-linked PAA-PVDF composite membranes were prepared to study 

polyelectrolyte-nonionic surfactant interactions. PAA-PVDF composite membranes were 

prepared previously by a dip coating method and were used for separation of aqueous 

organic solutions by reverse osmosis (Huang et al., 1998). Polyacrylic acid immobilized 

on such membranes was primarily on the surface and was highly crosslinked to achieve 

the dense layer required for reverse osmosis. In the present study, the goal was to 

immobilize the PAA inside membrane pores. The aqueous solution of polyacrylic acid 

(25 wt%, MW=50,000) containing ethylene glycol (4.3 wt%) as cross linking agent was 

passed through the membranes under application of vacuum. This approach allowed a 

thin coating of PAA layer on the surface of the membranes and membrane pores. 

Commercial low-pressure microfiltration PVDF membranes were used with nominal pore 

size rating of 650 nm.  The membranes were then heated in oven at 110~120 ºC for 3 

hours to allow partial cross-linking reaction to occur. The ether linkage formed between 

the carboxyl and hydroxyl groups generates the cross linked PAA network (Figure 3.1).  
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Figure 3.1 Schematics of membrane functionalization with polyacrylic acid (PAA) 
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  The molar ratio of carboxyl to hydroxyl groups plays significant role in the cross-

linking and surfactant capture studies. A specific amount of ethylene glycol was added to 

the aqueous PAA solutions such that the molar ratio of carboxyl to hydroxyl groups was 

5:2, so that maximum of 40% of available carboxyl groups would be utilized for 

crosslinking. A higher degree of cross-linking allows better immobilization of the PAA 

but it is also important to have free carboxyl groups available for surfactant capture by 

interaction with ethylene oxide groups.  

  The process was repeated two more times to improve loading of PAA per unit 

area of the membranes. In the case of later two layers of the coating, the molar ratio of 

carboxyl to hydroxyl groups was maintained at 5:1, allowing 20% of available carboxyl 

groups to crosslink. The lower degree of cross-linking was maintained for the outer layers 

to allow more carboxyl groups to interact with the ethylene oxide groups. Dry membrane 

weights were measured before and after processing to determine quantity of PAA 

immobilized. The typical weight change of the membranes with addition of each layer of 

PAA was about 0.02 to 0.03 g. A typical weight gain data is given in Table 3.2. In 

general the PAA loading for a 15 cm
2
 triple PAA-coated membrane was varied between 

0.07 g to 0.1 g. 
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Table 3.2 Typical Weight gain data during PAA functionalization of PVDF 

membrane 

 

Stage of PAA 

Coating 

Weight of 

Membrane (g) 

Weight Gain 

Per coating (g) 

Total Weight Gain 

(g) 

Bare Membrane 0.1240 - 0.079 

Single Coated 

Membrane 

0.1535 0.0295 

Double Coated 

Membrane 

0.1836 0.0301 

Triple Coated 

Membrane 

0.2030 0.0194 
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3.8 Surfactant capture experiments with PAA-functionalized membranes 

 

  A Sepa ST membrane cell from Osmonics was used to carry out the permeation 

and surfactant capture studies. The solutions of desired concentrations (200 mg/L for 

C12E8 and 50 mg/L for C12E5 and C12E3) of the pure ethoxylated surfactants in water and 

D5 were prepared. To determine the PAA-surfactant interaction, a solution of the 

surfactant was permeated through the PAA-functionalized membrane at 2.04 bar 

transmembrane pressure. The permeate solution was again added to the feed side and re-

permeated through the membrane. The process was repeated so as to permeate the 

surfactant solution through the membrane for four times. This was done to assure that the 

entire membrane capacity has been used for surfactant capture. In the case of surfactant 

capture from D5 solution, 0.1% water was added to the D5 solution. It was believed that 

the small amount of water is required to achieve better PAA-surfactant interaction. The 

membrane was wetted with water before the surfactant capture experiment was 

performed. The feed and the final permeate samples were analyzed by GC-FID for the 

surfactant concentrations. All of the experiments were conducted at 25 ºC. 

 

 

3.9 Silica functionalization 

 

The silica materials were functionalized to introduce free surface –SH or –SO3
-
 

groups. The details for silica functionalization procedures are as follows:  

 

3.9.1 Preparation of thiol (−SH) functionalized silica 

 

The silica was first acid treated to activate the surface silanol (Si−OH) groups. 10 

g of silica was added to 100 mL deionized ultra-filtered (DIUF) water and the solution 

pH was adjusted to 4.00 using 0.1 N nitric acid. The mixture was heated (50-60 ºC) with 

continuous stirring for 3 h. Silica was separated by filtering the mixture using a 0.22 μm 

PVDF filter. The silica cake was washed with 25 mL DIUF twice and then heated in an 

oven at 120 ºC for 8-12 h. The dried silica was used for further silanization. In the case of 
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Ludox TM 50, the silica was present in the form of aqueous emulsion. The silica solution 

was heated and water was evaporated to get the dry solid silica and the same procedure is 

used thereafter for functionalization.  

A dry phase deposition method was used to functionalize the silica particles. The 

particles were dispersed in anhydrous ethanol (15 mL of ethanol per gram of silica) and 

MPTMS was added such that the ratio of the amount of silica (in g) to the amount of 

MPTMS (in mL) was 7:3. Ultra high purity grade nitrogen was bubbled through the 

mixture to evaporate the ethanol under fume hood, thus depositing MPTMS on the 

surface of the silica.  For the silanization reaction, the silica was then placed in oven at 

120 
o
C for 8-10 hrs. The material was allowed to cool and washed twice with 50 mL of 

anhydrous ethanol to remove any physically adsorbed MPTMS and dried again in an 

oven. The silica was analyzed using FTIR to verify the MPTMS deposition on the silica 

surface.  

For regeneration studies, a batch of silica was functionalized using the above 

procedure with solution containing equimolar concentrations of MPTMS and 3-

(trihydroxysilyl)-1-propane-sulfonic acid. The goal was to introduce both thiol and 

sulfonic acid groups on the silica surface, simultaneously and study the silica material for 

silver sorption and regeneration.  

 

 

3.9.2 Preparation of sulfonic acid (SO3
-
) functionalized silica 

 

 The terminal thiol (−SH) groups of MPTMS were oxidized to sulfonic acid 

(−SO3
-
) groups by treating the thiol-functionalized silica with hydrogen peroxide (30 wt 

%) for 12 h under nitrogen atmosphere. The solution was filtered and the silica was 

washed with water. The silica was then dried and used for preparation of silica-

polysulfone mixed-matrix membranes. The sulfonic acid functionalized silica was used to 

demonstrate preparation of membrane immobilized iron nanoparticles.  
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3.10 Silica-polymer mixed-matrix membrane preparation 

 

Two types of membranes were prepared with the polymer backbone of either 

cellulose acetate or polysulfone. The silica particles were dispersed in the desired solvent 

(DMF for polysulfone membrane and acetone for cellulose acetate membrane). Polymer 

was added to this solution and allowed to dissolve. In the case of polysulfone membrane, 

the typical mixture consisted 2.5 g polysulfone in 14 mL DMF and 1.6 g silica. The 

mixture was continuously stirred for 8 h to ensure uniform distribution of the particles. 

The mixture was then briefly settled (30 minutes) to get rid of any trapped air bubbles 

which can cause membrane defects. The gel was then casted in the form of membrane on 

the glass plate using casting knife. The relative humidity of the room was approximately 

45%. Deionized ultra-filtered (DIUF) water bath at 23 
o
C was used for phase inversion. 

The membrane casted on the glass plate was immediately immersed into this water bath 

to allow phase inversion process (no evaporation time).  In the case of cellulose acetate 

membrane, the solvent was acetone-water mixture in a 7.2:1 ratio by volume. Figure 3.2 

shows the schematics for the thiol-functionalized silica-polysulfone mixed-matrix 

membrane preparation procedure. 
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Figure 3.2 Schematics for synthesis of thiol-functionalized silica-polysulfone mixed-

matrix membrane 
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The weight of the polymer and the silica was adjusted so as to get the silica 

loadings of 0, 10, 20 and 30 wt % in the final membranes. Except for 10 wt % silica 

loading, all other membranes were prepared with the silica type 874-85-1 only. 

Parameters like relative humidity, gelation bath temperature, and evaporation time 

strongly affect the membrane properties and even if these parameters were controlled, 

little fluctuations cause variations in membrane properties from batch to batch. 

 The water permeability of the silica-polymer composite membranes prepared as 

described above was determined by flux measurements. A Sepa ST membrane cell from 

Osmonics was used to carry out the permeance studies. The permeate coming out of the 

cell was collected at intermittent times to measure the membrane flux ( WJ ). The 

membrane flux was measured at various transmembrane pressures and the permeance 

was obtained as a slope of P  vs WJ  graph. 100 mg/L solution of dextran (482kDa) was 

used to study dextran rejection of the polysulfone membranes. Dextran rejection data was 

used for the estimation of hydrodynamic pore size of the membranes.  

 

3.11 Metal ion capture experiments  

 

Desired concentrations of metal salts in deionized ultra filtered water were 

prepared. The solutions were permeated through the silica mixed-matrix membranes 

using the Osmonics Sepa ST stirred batch membrane cell. After placing the membrane 

inside the cell, metal ion solution was poured into it (feed solution). The cell was closed 

and connected to pressurized nitrogen tank and desired transmembrane pressure ( P ) 

was applied by adjusting the regulator to pass the solution through the membrane. The 

solution was continuously stirred to maintain uniform concentration throughout the cell. 

The permeate coming out of the cell was collected at intermittent times to measure the 

metal ion concentration and the membrane flux ( WJ ). The feed and the permeate were 

analyzed by atomic absorption spectroscopy. Using the concentrations of the permeate 

samples and the membrane flux data, the total amount of metal salt permeated (mmoles) 

through the membrane was calculated. Total amount of metal ion captured (mmole per g 

of silica) was calculated by numerical integration over the filtration run. 
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The effect of the type of metal ion, type of functionalized silica, residence time, 

membrane flux, and adsorbent capacity was studied on the metal ion capture capacity of 

the membrane and the rate of capture. Ag
+
 ions are photosensitive and need to be 

protected from direct light. Hence in all the experiments, the AgNO3 solutions were 

prepared in amber bottles, and the bottles are covered with aluminum foil. Fe
2+

 ions can 

precipitate at higher pH and in presence of oxygen. To prevent this, all the Fe
2+

 solutions 

were prepared with deoxygenated water and the pH was adjusted to 5. 

 

3.12 Preparation of membrane immobilized iron nanoparticles in mixed-matrix 

membranes 

 

 It was hypothesized that the sulfonic acid groups present on the silica surface in 

the membrane can capture the ferrous ions from ferrous chloride solution. In order to 

reduce pH changes during this process, the sulfonic acid groups were first converted to 

sodium form (SO3
-
Na

+
) by passing 0.1 M sodium chloride solution through the 

membrane. The membrane was then washed with DIUF. In order to verify the presence 

of sulfonic acid groups, sodium sulfate rejection was studied for the membrane.  

 150 mg/L of FeCl2.4H2O solution (48 mg/L Fe
2+

) was passed through the sulfonic 

acid functionalized silica-polysulfone mixed-matrix membrane and permeate samples 

were collected for various time intervals. The permeate samples were analyzed by atomic 

absorption spectroscopy to determine the Fe
2+

 concentration and the data was used to 

construct the breakthrough curve for Fe
2+

. Also based on volume of the samples and 

concentration difference between feed and permeate, the amount of Fe
2+

 captured by the 

membrane was calculated. 

 Sodium borohydride solution (0.1M) was passed through the membrane to reduce 

the Fe
2+

 ions to Fe
0
 and in the process iron nanoparticles were formed inside membrane 

matrix. In order to confirm the existence of iron nanoparticles inside membrane matrix, 

SEM-EDS images of the membrane cross-section were obtained. 
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3.13 Quartz crystal microbalance (QCM) for metal ion-surface –SH interaction 

 

Interaction of Ag
+
 with surface −SH groups was studied using quartz crystal 

microbalance. The silica coated quartz crystal (Surface area = 0.785 cm
2
) was 

functionalized with 3-mercaptopropyltrimethoxysilane by deposition from its alcohol 

based solution. A solution of 95% ethanol and 5% water was prepared and the pH was 

adjusted to 5 using acetic acid. The pH 5 environment is useful for hydrolysis of methoxy 

groups of MPTMS and to prevent the disulfide formation. MPTMS is added with 

continuous stirring to yield a 2% final concentration. After 10 minutes, allowing the time 

for hydrolysis and silanol formation, the silica coated quartz crystal was immersed into 

the solution for 2 minutes. After removing the crystal from solution, it was rinsed free of 

the excess MPTMS with pure ethanol. The MPTMS layer was cured for 15 min at 110 
o
C 

in oven. This introduced free –SH groups on the crystal surface.  

The MPTMS functionalized silica crystal was mounted in the QCM cell and pH 5 

water was circulated to obtain a steady baseline. It should be noted that only one side of 

the crystal is in contact with solution throughout the experiment. 100 mg/L Ag
+
 solution 

(pH adjusted to 5 using acetic acid) was passed over the crystal and the interaction of Ag
+
 

ions with surface –SH was observed in terms of the mass adsorbed at the crystal surface. 
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Chapter 4    Material characterization 

 

Polymeric materials (cotton and polyester), thiol-functionalized silica, PAA-

functionalized membranes, and silica-polymer MMMs were characterized by various 

techniques like SEM, FTIR and by water flux studies. The summary of the 

characterization results is given in this chapter.  

 

4.1 Characterization of polymeric materials 

 

In order to compare the amount of surfactant adsorbed per unit area, detailed 

characterization of the polymeric materials was required. The specific surface area of the 

samples was too low to perform a successful BET analysis. SEM images of the two types 

of samples were taken in order to get information about structure and accessible surface 

area of the material. The SEM images are shown in Figure 4.1. Figure 4.1a and 4.1b 

show the arrangement of fiber bundles for the two types of surfaces. In the case of 

polyester, the arrangement of the fiber bundles is very orderly as compared to that of 

cotton. In the case of cotton, the continuity of fibers is low. The average bundle diameter 

as seen from the SEM images is approximately 0.4 mm for the cotton sample and 0.6 mm 

for the polyester sample. Figure 4.1c and 4.1d show the detailed structure of cotton and 

polyester fibers, respectively. The polyester fibers are very smooth and have uniform 

diameter of about 25 m. In the case of cotton, the fibers exhibit axial cracks or defects 

and deviate to a large extent from the cylindrical shape. The apparent fiber diameter 

varies from 10 m to 20 m. The smaller fiber diameter and axial defects in the case of 

cotton may result in higher specific surface area than that of polyester.  
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Figure 4.1 SEM images of the polymeric surfaces: a. Arrangement of fiber bundles 

for cotton b. Arrangement of fiber bundles for polyester c. Structure of fibers for 

cotton d. Structure of fibers for polyester 
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   In order to calculate available surface area for surfactant adsorption, the average 

fiber diameter of 15 μm was used for the cotton and 25 μm was used for the polyester 

sample. The spacing between two adjacent fibers is in the order of few microns indicating 

almost all the surface area of the fiber is accessible by the surfactant molecules for 

adsorption. The density of the most of the polyester materials is around 1.4 g/cm
3
 and 

density of cellulose (Pinto and Maaroufi 2005) is 1.36 g/cm
3
. Assuming the density of 

polyester to be 1.4 g/cm
3
 and density of cotton to be 1.36 g/cm

3
, the calculated specific 

surface area were 0.20 m
2
/g and 0.11 m

2
/g for cotton and polyester, respectively. 

 

4.2 Characterization of polyacrylic acid (PAA) functionalized membranes 

 

 In order to verify successful PAA functionalization, SEM images of the PVDF 

membrane were obtained before and after functionalization. The images are shown in 

Figure 4.2. It can be clearly observed that the PAA-functionalized membrane shows 

lesser and smaller pore morphology as compared to bare PVDF membrane, indicating 

PAA functionalization. In order to verify this further, permeance of PAA-functionalized 

membrane was determined by water flux measurement at varying pressures and 

compared with bare membrane permeance. The significant reduction in the water flux is a 

clear indication that PAA has been successfully functionalized inside the pores (Figure 

4.3).  
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Figure 4.2 Comparison of SEM images of surface of PVDF membrane (0.65 μm 

nominal pore size) before and after PAA functionalization a. Bare PVDF membrane 

b. PAA-functionalized PVDF membrane. Substantial PAA loading is observed in 

the case of PAA-functionalized membrane 

a. b. 
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Figure 4.3 Effect of PAA functionalization (single layer coating) on water flux (pH = 

5.8) through hydrophilized PVDF Membrane (0.65 μm). For three layer coating (not 

shown in figure) water permeance = 1 x 10
-4
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Under the assumption of uniform cylindrical pores (with tortuosity =  ), the 

permeability  iA  (i = w for water and i = D5 for D5 solvent) can be represented using 

the Hagen-Poiseuille relation as follows: 

L

r

P

J
A

i

pmi
i





8

2




           (4.1) 

Where 

iJ : Permeate flux,  m : Membrane porosity,  pr : Pore radius,   : Viscosity,   

L : Thickness of membrane,   : Tortuosity of the membrane pore and P : Applied 

transmembrane pressure 

From the definition of m  one can write, 

m

pp

m
A

rN 2

/


             (4.2) 

Here pN  is number of pores in the membrane sheet of area
mA .  

For the bare membrane water permeability experiment, the values of the parameters are: 

Pasmm
P

J w 238 /102 


,  mrp

71025.3  ,  sPa3101  ,  mL 41025.1    

and 
23105.1 mAm

 . The values of rp and L are specified by Millipore. 

Substituting this data in Equation (4.1) yields  /m 0.189 

And subsequent use of equation (4.2) yields 
810543.8 pN  

  

 The PAA-functionalized membrane was further characterized for its flux behavior 

at varying feed solution pH. The effect of PAA functionalization on pure water transport 

at varying pH levels is shown in Figure 4.4. The water permeability of 1.01 x 10
-4

 

cm
3
/cm

2 
s bar measured at pH 6 is an order of magnitude smaller than the permeability 

measured at pH 2. The pH sensitivity of the flux in the case of membranes functionalized 

with macromolecules such as polypeptides is reported in the literature (Hollman and 

Bhattacharyya 2002).
 
It is established in the literature that at lower pH levels (pH < pKa), 

the polyelectrolyte is unionized and remains in the compact form (Zhang and Nilsson 

1993). In the case of PAA-functionalized membranes, higher pH levels result in 
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ionization of carboxyl groups to form negatively charged carboxyl ions. The electrostatic 

repulsion between the adjacent carboxyl ions results in extended conformation of PAA 

chains, which poses increased resistance for water flow through the pores.  The PAA 

chains may not be able to extend to the fullest extent due to cross-linking at various 

points throughout the chains but from Figure 4.4 it is evident that the extension is 

sufficient to cause the flux drop at higher pH levels.  
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Figure 4.4 Permeate water flux as a function of pH for PAA-functionalized PVDF 

membrane (0.65 μm, three-layer PAA coating; transmembrane pressure = 2.04 bar) 
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 The reduction in pore radius due to functionalization can be quantified by 

comparing permeate flux of bare membrane with that of a functionalized membrane. 

Combining equations (4.1) and (4.2) and rearranging we obtain 

25.0
















membranebarew

membraneizedfunctionalw

peff
J

J
rr      (4.3) 

Effective pore radius ( effr ) was calculated for different pH levels and the results are 

shown in Table 4.1 The hydrodynamic pore radius decreased from 325 nm to 120 nm due 

to functionalization and it further decreased to 50 nm due extension of PAA chains at 

higher pH.  
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Table 4.1 Calculation of hydrodynamic pore radius of PAA-functionalized 

membrane 

 

Bare Membrane Flux at 2.04 bar Transmembrane Pressure = 0.408 cm
3
/cm

2
 s  

Bare Membrane Pore Radius = 325 nm  

For PAA-functionalized Membrane  

pH  Flux x 10
4
 

(cm
3
/cm

2
 s) 

Hydrodynamic 

Pore Radius (nm)  

PAA Layer 

Thickness (nm) 

1 62.7 114 211 

2 60.7 113 212 

3 15.3 80 245 

4 2.50 51 274 

5 2.3 50 275 

6 2.1 49 276 
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4.3 Characterization of thiol-functionalized silica 

 

In order to verify the successful functionalization of the silica (874-85-1) particles 

with MPTMS, ART-FTIR spectra for the non-functionalized silica and the MPTMS 

functionalized silica were obtained and compared as shown in Figure 4.5. The silica 

material exhibits associated water even after drying. It starts losing the water only after 

250 
o
C. In addition, the non-functionalized silica exhibits silanol groups (Si−OH) at 

surface. These groups correspond to the absorbance band around 980 cm
-1

 (Boccuzzi et 

al. 1978). The corresponding peak is observed at 959 cm
-1

 in the case of non-

functionalized silica. During MPTMS functionalization of the silica surface through the 

silane chemistry, these free Si−OH groups are consumed. This should cause a decrease in 

the peak intensity for functionalized silica which indeed was observed as represented by 

diminished peak at 952 cm
-1

. The strongest peak represents stretching of Si−O−Si bonds 

of the silica network. In order to roughly quantify the MPTMS surface coverage, the ratio 

Si−OH: Si−O−Si peak intensities in both the cases are compared. The ratio is 0.054 for 

non-functionalized silica and 0.011 for functionalized silica. This represents an 80% 

decrease in Si−OH group concentration indicating 80% surface coverage in the case of 

functionalized silica. This value is in good agreement with the maximum coverage of 

76% observed (Feng et al. 1997) for an MPTMS monolayer on mesoporous silica.  
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Figure 4.5 FTIR-ATR spectra for blank and MPTMS functionalized silica (874-85-

1). The peak representing free Si−OH groups on silica surface (959 cm
-1

) diminishes 

in the case of MPTMS functionalized silica 

 

  

0

0.1

0.2

0.3

0.4

0.5

500 1000 1500 2000 2500 3000 3500 4000

Wavenumber (cm
-1

)

A
b

so
r
b

a
n

c
e

Blank Silica

MPTMS Functionalized Silica

0

0.1

0.2

0.3

0.4

0.5

700 900 1100 1300
Wavenumber (cm

-1
)

A
b

so
r
b

a
n

c
e

0

0.1

0.2

0.3

0.4

0.5

500 1000 1500 2000 2500 3000 3500 4000

Wavenumber (cm
-1

)

A
b

so
r
b

a
n

c
e

Blank Silica

MPTMS Functionalized Silica

0

0.1

0.2

0.3

0.4

0.5

700 900 1100 1300
Wavenumber (cm

-1
)

A
b

so
r
b

a
n

c
e



 60 

In order to characterize the MPTMS functionalized silica for the maximum silver 

capture capacity, aqueous phase batch experiments were carried out. A known mass of 

silica was added to known volume of Ag
+
 solution (pH = 5.8-6.0) of known concentration 

and the mixture was equilibrated overnight with vigorous shaking. A portion of the 

mixture was filtered (using 0.22 μm polyvinylidene fluoride membrane) to remove any 

suspended silica particles and then analyzed for Ag
+
 concentration by Atomic Absorption 

spectroscopy. The difference between the initial concentration and the sample 

concentration was used to calculate the silver capture capacity for that batch of 

functionalized silica. The typical silver capture capacity was in the range of 1.5-2.1 

mmole of Ag/g of silica. In the case of limited availability of silver in the aqueous phase, 

the amount of silver captured increased linearly with the amount of silver present in the 

aqueous solutions. Most of the experiments reported in this study involved silica with a 

capture capacity of 2.1 mmole/g. If we assume 1:1 stoichiometry between thiol group and 

silver ion, the silver capture capacity of 2.1 mmole/g leads to 1.8 thiol groups per nm
2
 of 

silica (Based on BET surface area of 708 m
2
/g for silica type 874-85-1).  

 

4.4 Characterizations of silica-polysulfone mixed-matrix membranes 

 

In order to get an idea about the membrane morphology and the silica particle 

distribution, the MMMs were characterized by SEM imaging. Figure 4.6 shows the SEM 

image of a cross-section of a 40% silica-polysulfone MMM. The cross section clearly 

displays two regions, a dense top layer over a more open structured layer. Silica particles 

in the dense region are not directly visible, but their impressions can be observed in the 

image. Some of the Silica particles in the open structure are indicated by the arrows and it 

can be observed that the silica particles are evenly distributed along the entire membrane 

thickness. According to the particles size analysis of 874-85-1 silica, performed by Huber 

Corporation, less than 10% particles are below 2 micron in size and less than 10% 

particles are greater than 5.1 micron. This is important for high separation capacity as 

particle agglomeration may render some sites inaccessible. Additional SEM images of 

mixed-matrix membranes are provided in Appendix B.  
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Figure 4.6 SEM image of cross-section of 874-85-1 MPTMS functionalized silica-

polysulfone MMM (40% loading). Arrows point to some of the silica particles in 

membrane matrix indicating their uniform distribution along the membrane 

thickness 

 

    
50 μm  

5 μm 



 62 

4.5 Membrane flux behavior for silica-polymer MMMs 

 

The effect of silica loading on water permeance of mixed-matrix membranes was 

studied and the results are shown in Figure 4.7 The error bar corresponds to the standard 

error of triplicate permeance values measured for membranes prepared from same batch. 

As the silica loading increased from 10% to 40%, the water permeance of the membranes 

also increased. Increase in membrane permeance with increasing particle loading was 

also observed by Zhang et al. (2006) in the case of zirconium oxide MMM. Their study 

concluded that increasing particle loading improves pore interconnectivity but does not 

change skin layer pore size resulting in higher permeance with little effect on retention 

properties. In our study, membrane water permeance was studied for both functionalized 

and non-functionalized silica MMMs and there was no significant difference in the two 

cases. For the studied silica loading range (0.1 to 0.4), the permeance data can be 

represented by following linear correlation:  

4104.1 A          (4.4) 

Where A is membrane water permeance in m
3
/(m

2
 s. bar) and   is silica weight fraction 

in membrane (for 10% silica loading   = 0.1). Equation (4.4) can be extended to express 

membrane flux as a function of silica loading as follows: 

PJW   4104.1          (4.5) 

Where JW is membrane flux in m
3
/(m

2
 s) and P  is applied transmembrane pressure in 

bar.  
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Figure 4.7 Effect of silica loading on membrane water permeance for non-

functionalized 874-85-1 silica-polysulfone mixed-matrix membrane. Dotted line 

indicates fitted linear correlation for the data (R
2
 = 0.91) 
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4.6 Free volume fraction ( ) estimation for silica-polysulfone MMMs 

 

Free volume fraction ( ) of the membranes was calculated by the membrane 

water uptake measurements. Silica mixed-matrix membrane was soaked in water 

overnight. The membrane was then removed and lingering water was allowed to drip. 

The membrane was dabbed lightly with tissue paper to remove any remaining water from 

the membrane surfaces. The wet membrane was weighed ( 1W , kg). The wet membrane 

was then dried in oven at 110 
o
C for 8-10 h and the dried membrane was weighed again 

( 2W , kg). The difference between the weights represents weight of water inside 

membrane pores. Free volume fraction was calculated using following expression:  

Wm LA

WW


 21            (4.6) 

Where, Am is membrane area (m
2
), L is membrane thickness (m) and 

W  (kg/m
3
) is 

density of water. 

Typical value of   for a MPTMS functionalized 874-85-1 MMM (  = 0.4) was 

around 0.6. For the two membranes from same batch the values obtained were 0.58 and 

0.63. In order to get an idea about effective pore size of the membrane, dextran rejection 

was studied. For 10% silica-polysulfone MMM, observed dextran rejection was 51% and 

88% using 144kDa and 482 kDa MW dextran, respectively. Hydrodynamic pore radius 

(r1) for the membrane was estimated using Ferry-Faxen equation (Ferry 1936; Lindau 

1998) which is given below. 
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R is the rejection of dextran. rs is the hydraulic radius of the dextran molecule in nm, 

which can be determined from the following correlation (Richie et al. 2001): 

rs = 0.027 M
0.498

                                           

M is the molecular weight of dextran in Da. 

Based on 482 kDa dextran rejection data (R = 0.88), calculated value for hydrodynamic 

pore radius was about 39 nm.   
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4.7 Characterization of sulfonic acid functionalized silica-polysulfone membranes 

 

Membrane flux data was measured for the silica-polysulfone mixed-matrix 

membrane. Figure 4.8 shows the membrane flux behavior and the permeance for the 

membrane is 4.15 x 10
-4

 cm
3
/cm

2
 bar s The permeance is in the same range as that 

observed for typical silver capture experiments with 40% silica loading (6 x 10
-4

 cm
3
/cm

2
 

bar s) 

 In order to verify the presence of sulfonic acid groups, sodium sulfate rejection 

was studied for the membrane. If the thiol groups were not oxidized to sulfonic acid 

groups, the membrane is expected to show negligible salt rejection. 100 mg/L sodium 

sulfate (Na2SO4.10H2O) solution was used as a feed solution and permeate was collected 

for 10 min time intervals. The conductivity of the feed and permeate samples were 

measured using conductivity meter, to get an idea about salt rejection by the membrane. 

The salt rejection data is summarized in Table 4.2 

 It can be observed from the salt rejection data, that initially the salt rejection was 

32 % and then it decreased and stabilized in the range of 11-17 %. The fact that the 

membrane is rejecting salt solution indicates presence of negatively charged sulfonic acid 

groups in the membrane. The presence of the negatively charged groups inside 

membranes is known to reject negatively charged ions by means of Donnan exclusion 

effect.   
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Figure 4.8 Membrane flux behavior for sulfonic acid-functionalized silica-

polysulfone MMMs. (Membrane Permeance = 4.15 x 10
-4

 cm
3
/cm

2
 s bar) 
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Table 4.2 Sodium sulfate salt rejection data for sulfonic acid functionalized silica-

polysulfone membrane (Transmembrane pressure = 3.4 bar) 

 

Time  Permeate 

Concentration 

of Na2SO4 

% 

Rejection 

(min) 

Volume 

(mL) mg/L  

10 5.5 66.2 32.7 

20 5.6 84.6 13.9 

30 5.5 87 11.5 

40 5.4 82.2 16.4 

Concentration of Feed 

Solution 98.3  

Concentration of 

Retentate 101.5  
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4.7.1 Quantification of iron capture by sulfonic acid functionalized silica-polysulfone 

mixed-matrix membranes 

 

 The sulfonic acid-functionalized silica polysulfone mixed-matrix membrane was 

studied for iron ion capture. The concentration of the permeate was measured 

continuously. The breakthrough curve for Fe
2+

 in the case of sulfonic acid functionalized 

silica-polysulfone membrane is shown in Figure 4.9. As shown in the figure, the 

membrane is saturated with respect to iron pick up in about 1 h. The total amount of Fe
2+

 

captured was calculated by numerically integrating the breakthrough curve data. The iron 

capture capacity of the membrane was 0.62 mg (For 15 cm
2
 membrane area, 100 μm 

membrane thickness, 40% silica loading).  

 Based on membrane weight and 40% silica loading, the amount of silica in the 

membrane was approximately 0.022 g. Based on the measured silver capture capacity i.e. 

2 mmole Ag/g of silica, and complete oxidation of –SH groups to sulfonic acid groups, 

maximum amount of sulfonic acid groups in the membrane = 0.044 mmoles. Assuming 

one ferrous ion captured per 2 sulfonic acic groups, maximum iron capture possible = 

0.022 mmole i.e. 1.23 mg. The observed iron capture is 0.62 mg which is 50.4 % of 

theoretical maximum possible. This indicates 50% overall yield for Fe
2+

 capture using the 

sulfonic acid functionalized silica-polysulfone membrane.   
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Figure 4.9 Breakthrough curve for Fe
2+

 capture using sulfonic acid functionalized 

silica – polysulfone mixed-matrix membrane. Solution of FeCl2 in deoxygenated 

DIUF water at pH 5.2 with Fe
2+

 concentration of 48 mg/L was used for the study 
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 The Fe
2+

 ions were reduced by sodium borohydride to form iron nanoparticles 

inside the membrane matrix. The nanoparticles are immobilized and hence do not 

agglomerate which is usually the case in bulk solutions. In order to confirm the existence 

of iron nanoparticles inside membrane matrix, SEM-EDS images of the membrane cross-

section were obtained. Figure 4.10 shows the SEM image of the cross-section of the 

membrane (4.10 a) and the corresponding spectrum with elemental analysis (4.10 b). 

 The presence of Fe peak in the SEM-EDS analysis strongly supports the presence 

of iron nanoparticles in the membrane matrix. It must be noted that, the amount of iron 

present in the membrane is very small so as to obtain an iron peak over a large area. Iron 

peaks are observed only at the silica particle surface.  

 It has been previously demonstrated that the membrane immobilized iron 

nanoparticles can be successfully applied for chloro organic degradation. The procedure 

provides an alternative way for preparation of such membrane materials. 
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 (a.) 

 
(b.) 
 

Figure 4.10  a. SEM image of cross sections of sulfonic acid functionalized 874-85-1 

silica-polysulfone mixed-matrix membrane after  it has been used for Fe
2+

 capture 

treated with 0.1 M sodium borohydride. The + sign indicates the location of the spot 

for which the elemental analysis spectrum was obtained. b. Elemental analysis 

spectrum for the spot indicated in Figure 4.10 a. The presence of Fe peak in the 

elemental analysis indicates presence of iron nanoparticles in the membrane matrix 

 

 

1 μm 
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4.8 Summary of findings 

 

 Polymeric materials (cotton and polyester) were characterized by SEM imaging 

and it was observed that polyester exhibits smoother, uniform fibers than cotton. The 

apparent fiber diameter is 25 μm for polyester and approximately 15 μm for cotton 

material. The calculated specific surface area for cotton is 0.2 m
2
/g, as compared to 0.11 

m
2
/g for polyester. 

 PVDF membranes were successfully functionalized with PAA as indicated by the 

SEM images and the decreased membrane permeance for PAA-functionalized 

membranes. Applying Hagen-Poiseuille equation to the membrane permeance data, the 

calculated porosity (  /m ) was 0.19. It was also demonstrated that even though the PAA 

chains are partially cross-linked inside PVDF matrix, they are capable of undergoing 

charge transition with changing pH of feed solution. The PAA-functionalized membrane 

flux decreased from 65 x 10
-4

 cm
3
/cm

2
 s to less than 5 x 10

-4
 cm

3
/cm

2
 s as the feed 

solution pH increased from 2 to 4. The corresponding decrease in the effective pore 

radius was from 114 nm to 50 nm. 

 The ATR-FTIR analysis of MPTMS functionalized silica indicates that 

approximately 80% surface coverage is achieved during the functionalization. The silver 

ion capture capacity of the silica material was in the range of 2 mmole Ag
+
/g of silica 

material.  

 Silica-polysulfone mixed-matrix membranes were successfully prepared with 

uniform distribution of the silica particles through the entire cross-section of the 

membrane. The SEM image also shows no agglomeration of silica particles during 

membrane preparation.  

In the case of silica-polysulfone MMMs, it was observed that membrane 

permeance increases with increasing silica loading. The porosity of the membranes, 

determined by water uptake measurements was in the range of 0.6, indicating highly 

porous open membrane structure. The estimated value of effective pore radius from 

dextran rejection data was 39 nm. 

The sulfonic acid functionalized silica-polysulfone membrane showed 

approximately 15% rejection of Na2SO4 indicating successful oxidation of thiol groups to 
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sulfonic acid groups. It was demonstrated that the membranes cab be used for ferrous ion 

capture from its aqueous solutions. Ferrous ions captured were converted into iron 

nanoparticles by reduction with sodium borohydride. This provides alternative way for 

preparation of membrane immobilized iron nanoparticles which can be used in many 

applications like catalytic dechlorination of toxic organic compounds.  
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Chapter 5    Partitioning, adsorption and capture of ethoxylated nonionic 

surfactants 

 

Ethoxylated nonionic surfactants were studied for their partitioning from D5 

phase to aqueous PAA solution, for their adsorption at various solid-liquid interfaces and 

for surfactant capture using PAA-functionalized membranes. The results and discussed 

and compared in this section. 

 

5.1 Partitioning of 15-S-5 (mixture of nonionic surfactants) from D5 to aqueous 

solution of polyacrylic acid (PAA) 

 

  Partitioning study of 15-S-5 between D5 and aqueous PAA solution was carried 

out to study the effect of partitioning on distribution of the surfactant. It was 

hypothesized that the ethylene oxide content of the surfactant will affect their partitioning 

behavior. The SCF-Mass Spectra for clear D5 phase before and after partitioning are 

obtained and are shown in Figure 5.1. The spectrum of D5 phase containing 15-S-5 

shows numerous peaks, each peak representing individual surfactant species differing 

from one another either in terms of alkyl chain length or the number of ethylene oxide 

groups per molecules. The peak height corresponding to a particular surfactant in the 

spectrum obtained before partitioning was compared with that obtained after partitioning. 

As the peaks are sharp, the concentration of the surfactants can be approximated by the 

peak heights and approximate values of partition coefficient can be calculated as shown 

in Table 5.1.  
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Figure 5.1 SCF-Mass spectra of solutions of 15-S-5 in D5 (2 wt%) before and after 

partitioning with aqueous PAA solution (3.1 mM). The spectra indicate preferential 

partitioning of the surfactant molecules containing higher number of ethylene oxide 

groups per molecule into aqueous phase. For the partitioning experiment, volume 

ratio of the two phases was 1:1 and pH of aqueous phase was adjusted to 3.0 
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Table 5.1 Partition coefficient estimation for the surfactants with varying number of 

ethylene oxide groups per molecule based on SCF-mass spectra  

 

Number of ethylene 

oxide groups per 

surfactant molecule 

Peak height corresponding to the 

surfactant in the SCF-Mass Spectra 

(Unit) 

Partition 

Coefficient 

 

 Before Partitioning  After Partitioning   

3 4.2 4.0 0.05 

5 7.2 6.2 0.16 

8 4.8 2.1 0.77 

 

 

AP

APBP
p

H

HH
K


 BPH  APH
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  It can be clearly observed that the surfactants having a higher number of ethylene 

oxide groups per molecule partition more favorably into the aqueous phase. This was 

expected because more ethylene oxide groups correspond to increased hydrophilicity, 

which in turn causes favorable partitioning into the aqueous phase. A few samples of the 

partitioned aqueous phase were analyzed by thin layer chromatography (TLC) to 

determine concentration of 15-S-5. It was calculated by mass balance that about 20% of 

the total surfactant of the system was present in the emulsion phase. The partition 

coefficient of 0.77 for C12E8 suggests that loss of surfactant from D5 was primarily due to 

partitioning and not just the preferential loss to emulsion phase. It was observed (Figure 

5.2.) that the partition coefficient increases exponentially with increasing number of 

ethylene oxide groups per surfactant molecule. The slope of the graph is expected to be a 

strong function of solvent-surfactant hydrophobic interactions, amount of emulsion 

formed, temperature of the system, and pH of the aqueous phase.  

In the present case, the surfactants entering the aqueous phase can form complex 

with PAA present in the system and this may affect equilibrium. PAA may also dissolve 

in the hydrophobic solvent to some extent and affect the distribution of the surfactants. 

To avoid these situations, PAA was immobilized in the membrane matrix. Interaction of 

the surfactants dissolved in the hydrophobic solvent with the immobilized PAA was 

studied by surfactant capture experiments which will be discussed in section 5.5 
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Figure 5.2 Effect of ethylene oxide group variation on partition coefficient: Solution 

of 15-S-5 in D5 (2 wt%) partitioned with aqueous solution of polyacrylic acid (3.1 

mM) Volume ratio of the two phases = 1:1, pH of aqueous phase = 3.0 Partition 

coefficients calculated based on peak heights of 15-S-5 SCF-Mass Spectra before 

and after partitioning 
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5.2 Adsorption of pure ethoxylated nonionic surfactants on polymeric surfaces 

 

Ethoxylated nonionic surfactants are used in dry cleaning operations and it is 

important to understand the adsorption behavior of these surfactants on different clothing 

materials. Cotton and polyester represent the two most commonly encountered clothing 

materials. Hence, adsorption behavior of the pure ethoxylated nonionic surfactants on 

cotton and polyester surfaces was studied. Cotton is expected to be much more 

hydrophilic than polyester. Cotton is composed of cellulose. Cellulose has high number 

of free hydroxyl groups which can readily form hydrogen bonds with water molecules 

and ethylene oxide groups of the surfactants. In order to get an idea of the relative 

hydrophilicity of the surfactants, the hydrogen bonding component (δH) of the Hansen 

solubility parameter was needed. The value of δH for the three surfactants can be 

estimated using equation (5.1) (Samaha and Naggar 1988) 

                                               δH = (5000 x A/Vm)
1/2

 (cal/cm
3
)
1/2

    (5.1) 

Where A is combined number of ethylene oxide and hydroxyl groups in the 

molecule and Vm is the molar volume of the surfactant. The calculated values of the δH
 

parameters are 15.6, 17.27 and 18.69 MPa
1/2

 for C12E3, C12E5 and C12E8, respectively. 

Higher δH corresponds to better hydrogen bonding ability and stronger hydrophilicity. δH 

for cellulose (cotton) is 22.3 (Matsuura et al. 1976) and for polyester is 7.8 (Deslandes et 

al. 1998). Hence it is expected that, in the hydrophobic D5 environment, C12E8 will 

adsorb more strongly on cotton than polyester due to stronger hydrogen bonding 

interaction between ethylene oxide groups of C12E8 and hydroxyl groups of cotton. This 

indeed was observed as shown in Figure 5.3. Using the values of specific surface area 

obtained in section 4.1, the results for surfactant adsorption using GC-FID analysis are 

reported in Figure 5.3 and 5.4.  
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Figure 5.3 Adsorption of pure ethoxylated nonionic surfactants (C12E3 and C12E8) 

dissolved in D5 on cotton. Dotted curve indicates the trend line for the data. Solid 

line is a linear fit (R
2
 = 0.996) Note: Due to solubility limitations of C12E8 in D5, 

adsorption studies were limited to 1.3 mM concentration of the surfactant 
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Figure 5.4 Adsorption of pure ethoxylated nonionic surfactant C12E3 dissolved in D5 

on cotton and polyester. Solid lines indicate linear fit to the data for cotton surface 

(R
2
 = 0.996) and for polyester surface (R

2
 = 0.937) Data for adsorption of C12E3 in 

D5 on cotton is replotted for comparison 
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The amount of C12E3 adsorbed (Qeq) on cotton for Ceq = 0.17 mM is 0.89 x 10
-6

 

mole/m
2
 of cotton. This lower value as compared to a Qeq = 4.51 x 10

-6
 mole/m

2
 at Ceq = 

0.13 mM for C12E8 proves the hypothesis. In the case of C12E8, due to its limited 

solubility in D5 solvent, adsorption experiments can not be performed for concentrations 

greater than 1.3mM. The data for C12E8 adsorption within this concentration range 

indicates saturation behavior with a plateau value around 7 x 10
-6

 mole/m
2
.  In the case of 

C12E3, adsorption experiments were performed for starting concentrations as high as 8.6 

mM. It is observed that equilibrium adsorption increased with increasing concentration 

and no saturation behavior was observed in the studied concentration range. The data can 

be represented by a linear relationship (R
2
 = 0.996) as shown in Figure 5.3 The relatively 

higher saturation adsorption for C12E3 as compared to C12E8 on the cotton surface in D5 

environment may be attributed to the larger hydrophilic group in the case of C12E8. In the 

case of monomeric adsorption of the surfactant molecules at the cotton-D5 surface, the 

ethylene oxide group steric repulsion (Claesson et al. 1999; Lomax 1996; Somasundaran 

and Krishnakumar 1997) is expected to be higher for C12E8 than that of C12E3, hence   

reaching early saturation. Critical Micelle Concentrations (CMCs) of these surfactants in   

D5 are not known precisely but the CMC of C12E3 in benzene is 4 mM (Rinia et al. 

1996). It is also possible that the higher concentrations (8.6 mM) used for the adsorption 

of C12E3 are above CMC and the surfactant is adsorbing in the form of micelles (reverse 

micelles in this case) on the cotton surface as opposed to possible monomeric adsorption 

in the case of C12E8-cotton resulting in the large difference observed in the nature of the 

two adsorption isotherms. To the best of authors’ knowledge, there is no literature data 

available to compare adsorption of ethoxylated surfactants on polymeric materials in 

hydrophobic environment. Torn et al. (2005) did study adsorption behavior of C12E5 on 

cellulose surface (very similar to cotton) in aqueous environment and the maximum 

adsorption observed was 7 x 10
-6

 mole/m
2
 which is of the same order of magnitude of the 

results obtained for adsorption on cotton from D5 solvent.    

It can also be observed from Figure 5.4, that less hydrophilic C12E3 adsorbs 

strongly on polyester (Q = 20.99 x 10
-6

 mole/m
2
 for Ceq = 3.16 mM) as compared to its 

adsorption on cotton (Q = 12.97 x 10
-6

 mole/m
2
 for Ceq = 3.14 mM). This can be 

attributed to favorable dispersion interaction between polyester and alkyl chain of the 
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surfactant. In the case of C12E3 adsorption on polyester, the data can be represented by a 

linear relationship (R
2
 = 0.937) as shown in Figure 5.4. Geffroy et al. (2000) studied 

adsorption of C12E5 on polyester in aqueous environment and the equilibrium adsorption 

reported is 2.98 x 10
-6

 mole/m
2
 which is comparable to the results obtained in this paper.  

Because of the difficulty in analyzing water-based samples, the experiments with 

cotton and polyester were limited to D5 only. In order to demonstrate the effect of solvent 

on adsorption of the surfactants, adsorption experiments at QCM gold surface were 

carried out from both D5 and aqueous solutions. The precise nano gram level 

quantification of surfactant adsorption is not possible in the case of solution phase 

concentration difference based GC-FID analysis.  

 

5.3 Adsorption of C12E3, C12E5 and C12E8 on model gold surface using QCM 

 

The adsorption behavior for C12E3, C12E5 and C12E8 on gold surface from water is 

shown in Figure 5.5 and from D5 is shown in Figure 5.6. The adsorbed mass of surfactant 

was calculated using equation 2.3. The concentration range used for QCM studies does 

not affect bulk solution properties significantly and frequency correction was not needed. 

The dissipation data is also obtained for each experiment. The amount of surfactant 

adsorbed Qmax, adsorbed layer thickness, area per surfactant molecule and area per EO 

group are listed in Table 5.2.  In order to calculate the adsorbed layer thickness, density 

of the adsorbed layer was assumed to be 950 kg/m
3
. Unless mentioned otherwise, the 11

th
 

overtone was used for all the Saurbrey mass and dissipation factor calculations. The 

experiments were performed under continuous peristaltic flow mode. Initially solvent 

(water or D5) was passed over the QCM crystal to obtain a steady baseline. After 

achieving a steady baseline, frequency and dissipation values are initialized to zero. 

Surfactant solution was introduced 10-15 minutes after zeroing baseline. Instant 

adsorption of the surfactants on the gold surface was observed in most of the cases 

represented by steep rising portions of the Saurbrey mass curves. The adsorption reached 

an equilibrium value represented by plateau behavior. Once the adsorption is plateau is 

reached, water was passed over the crystals to check for desorption behavior. Desorption 
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behavior is represented by steep fall in adsorption amount towards the end of the 

experiment. Desorption behavior was not studied for the gold-D5 interface. 
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Figure 5.5 Adsorption of C12E3, C12E5 and C12E8 on gold surface from water using 

QCM-D. (Concentration of surfactant solutions = 250 mg/L i.e. 0.79 mM C12E3, 0.62 

mM C12E5, and 0.46 mM C12E8; Surfactant solution flow rate = 0.1 mL/min) 
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Figure 5.6 Adsorption of C12E3 and C12E8 on gold surface from D5. Inset shows 

adsorption of C12E5 on the gold surface from D5 (Concentration of surfactant 

solutions = 250 mg/L i.e. 0.79 mM C12E3, 0.62 mM for C12E5, and 0.46 mM C12E8, 

Surfactant solution flow rate = 0.1 mL/min) 
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Table 5.2 Data for adsorption of ethoxylated nonionic surfactants at various 

interfaces 

 

Interface 

 

Surfactant Qmax x 10
6
 

mole/m
2
 

Adsorbed 

Layer 

Thicknes 

(nm) 

Area per 

surfactant 

molecule 

(nm
2
) 

Area per 

EO group 

(nm
2
) 

 

Gold-Water 

C12E3 15.9 5.3 0.10 0.034 

C12E5 8.00 3.4 0.21 0.041 

C12E8 3.70 2.1 0.45 0.056 

 

Gold-D5 

C12E3 Insignificant - - - 

C12E5 2.40 1.0 0.69 0.138 

C12E8 3.45 1.9 0.48 0.060 

       

cotton-D5*               

C12E3 3.17 N/A 0.52 0.173 

C12E8 6.70 N/A 0.25 0.031 

polyester-D5
#
 C12E3 13.9 N/A 0.12 0.040 

 

The listed Qmax values are for 0.79, 0.62, 0.46 mM concentrations of C12E3, C12E5, 

and C12E8, respectively (250 mg/L). To calculate the adsorbed layer thickness, the 

adsorbed mass was divided by the surfactant layer density which was assumed to be 

950 kg/m
3
. 

* Data calculated using Figure 5.3  

#
 Data calculated using Figure 5.4 
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It can be observed from Figure 5.5 that adsorbed amount of the surfactants at 

gold-water interface decreased with increasing ethylene oxide (EO) groups per surfactant 

molecule. The trend is consistent with the literature findings in the case of silica-water 

interface (Desbene et al. 1997). Lower number of EO groups per surfactant molecule 

allows higher packing density at the interface and higher extent of chain-chain interaction 

(secondary mechanism of adsorption) resulting in higher adsorption. More hydrophilic 

C12E8 adsorbs to a lesser extent as compared to less hydrophilic C12E3 in the aqueous 

environment. This is due to stronger C12E8-water hydrogen bonding interaction compared 

to that of C12E3-water. Exactly opposite behavior is observed in the hydrophobic D5 

environment. Insignificant C12E3 adsorption was observed at the gold-D5 interface. The 

discontinuity in the case of C12E3 (t = 85 min) is the disturbance while switching the 

surfactant solution with water to start the desorption experiment.  

 The volume of ethylene oxide group is 0.063 nm
3
 (Kumar and Tilton 2004). 

Assuming the spherical shape, the projected area of the EO group will be 0.14 nm
2
. If we 

assume monolayer coverage by the surfactants at the surface, the area occupied per 

surfactant molecule will be 0.57 nm
2
, 0.95 nm

2
, and 1.53 nm

2
 for C12E3, C12E5, and 

C12E8, respectively. Based of these areas, the calculated adsorbed mass will be 2.9 x 10
-6

 

mole/m
2
, 1.7 x 10

-6
 mole/m

2
, and 1.1 x 10

-6
 mole/m

2
 for C12E3, C12E5, and C12E8, 

respectively. These values of the calculated adsorbed mass for monolayer coverage are in 

the same order of magnitude but lower than the observed values for gold water interface. 

This suggests the possibility of adsorption of surfactant aggregates instead of monolayer 

adsorption at gold-water interface.  

 

5.3.1 Adsorbed layer morphology 

 

In order to get an idea about the adsorbed layer morphology, the dissipation data 

collected during the experiment was analyzed. Figure 5.7 shows a plot of ΔD vs -Δf for 

adsorption of each of the three surfactants at gold-water interface.  
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Figure 5.7 Variation of ΔD as a function of – Δf for adsorption of C12E3, C12E5, and 

C12E8 from water on gold surface. The slope of the graph represents rigidity of the 

adsorbed layer (Concentration of surfactant solutions = 250 mg/L i.e. 0.79 mM 

C12E3, 0.62 mM C12E5 and 0.46 mM C12E8) 
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According to equation 2.2, the dissipation factor is inversely proportional to the 

decay time. As the fraction of the adsorbed mass dangling away from the surface 

increases, the crystal oscillations decay faster resulting is smaller decay time i.e. larger 

dissipation factor value.  In Figure 5.7, it is observed that the slope of the ΔD vs –Δf for 

C12E5 and C12E8 is comparable and it is lower compared to the slope for C12E3. The slope 

of the curve is the rate of increase of ΔD with respect to -Δf. Higher slope indicates that 

significant percentage of the adsorbed mass is dangling away from the surface.  

As established in the literature, when the adsorption approaches saturation, the 

ethylene oxide chains stay in contact with the surface and the alkyl chains move away 

from the surface. In the case of C12En surfactants, for the same amount of adsorbed mass 

on the crystal surface (i.e. equal Δf values), the fraction of mass oriented away from the 

surface decreases with increasing n. This may be the reason for higher slope in the case 

of C12E3 as compared to C12E5 and C12E8. Only indirect information about adsorbed layer 

structure and morphology can be obtained using QCM dissipation data. Adsorbed layer 

structure can be studied using other techniques like AFM to get direct information. AFM 

has been used to study effect of surface hydrphobicity on the adsorbed layer morphology 

for the surfactant adsorption in aqueous environment.   

 

5.3.2 Adsorption isotherm for C12E3 

 

Adsorption of C12E3 at various concentrations was studied to establish adsorption 

isotherm. The results are shown in Figure 5.8. For concentrations below CMC (0.065 

mM in water), very low adsorption was observed and a steep increase in the extent of 

adsorption occurred at concentrations near CMC. This is consistent with the observations 

reported in the literature. For concentrations above the CMC, a very slow increase in the 

adsorbed mass can be observed with increasing concentrations. This is not in agreement 

with the literature data. In the case of most of the reported studies, an adsorption plateau 

is observed for concentration above CMC. This may be attributed to QCM frequency 

drift with time.  

The slope of the linear part of the adsorption isotherm obtained is 2.5 x 10
-4

 

mole/m
2
.mM. This slope is comparable to the slope of the adsorption isotherm (2.03 x 10

-
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4
 mole/m

2
 mM) obtained by Postmus et al., (2007) in the case of C12E5 adsorption at 

silica-water interface.   



 92 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8 Adsorption isotherm for C12E3 at gold-water interface using QCM. The 

curve represents trend line for the data 
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5.4 Modeling the adsorption and desorption kinetics at gold-water interface 

 

QCM data also provides information on adsorption/desorption kinetics. At the 

gold-water interface, C12E5 and C12E8 reached equilibrium within 10 minutes of 

introducing the surfactant solutions. In the case of C12E3, the equilibrium was achieved 

much slower (50 minutes after passing the surfactant solution). Desorption on 

introduction of water (pH 6) was complete in the case of C12E3, but in the case of C12E5 

and C12E8, some residual amount remained adsorbed on the surface. 

 If we assume that the rate of adsorption (or desorption) is proportional to the 

adsorption potential then we can write, 

dQs/dt = Ka(Qmax - Qs)      (5.2) 

Where,  

Qs is amount of surfactant adsorbed (mole/m
2
) at time t;  

Qmax is the saturation adsorption value (mole/m
2
) and  

Ka is adsorption rate constant (sec
-1

). 

Integrating equation (5.2), we get 

Qs = Qmax (1-exp(-Ka t))     (5.3) 

Equation (5.3) can be used to model the adsorption data for the ethoxylated 

surfactants from water and values for the adsorption rate constants can be calculated. 

Since the adsorption of the surfactants start at time t = t0 > 0, we need to include the 

offset into the model equation. Hence the equation (5.3) is modified to 

    Qs = Qmax (1-exp(-Ka(t-t0)))……(t>t0)  (5.4)  

Adsorption data for C12E3, C12E5 and C12E8 at gold-water interface were fitted to 

equation (5.4) using Q-tools software provided by Q-sense and values of the adsorption 

rate constants are obtained as shown in Table 5.3 In order to model the desorption 

behavior of the surfactants, equation (5.4) is modified as follows 

    Qs = Qmax – (Qmax – QRes) (1-exp(-Kd(t-t1)))…... (t>t1) (5.5) 

Where QRes is the residual amount of surfactant remaining on the crystal surface at the 

end of desorption experiment and t1 is the time at which desorption experiment was 

started. The values of desorption rate constants obtained by fitting the desorption data of 
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the surfactant to equation (5.5) are also listed in Table 5.3 and the comparison of 

experimental and fitted data is shown in Figure 5.9 

 The adsorption rate constant value increases with increasing ethylene oxide 

groups per surfactant molecule. C12E8 has the fastest adsorption kinetics which is 

expected due to favorable ethylene oxide interaction of C12E8 with the hydrophilic gold 

surface. An opposite trend is observed in the case of desorption kinetics. The surfactant 

which adsorbs slowly is expected to desorb easily by water and vice a versa. In the case 

of C12E3 the model does not fit the experimental data and it seems that a two step 

adsorption model will be more appropriate. The adsorption model used was not 

applicable for adsorption of C12E8 at gold-D5 interface where adsorption amount initially 

increases with time and then starts decreasing and stabilizes at lower adsorption value.  
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Table 5.3 Adsorption and desorption rate constants for ethoxylated nonionic 

surfactants at gold-water interface (from QCM data) (Ceq= 250 mg/L i.e. 0.79 mM 

C12E3, 0.62 mM C12E5 and 0.46 mM C12E8. Flow rate was maintained at 0.1 mL/min 

during adsorption and desorption experiments)  

 

Interface 

 

Surfactant Ka (sec
-1

) x 10
3
 Kd (sec

-1
) x 10

3
 

 

Gold-Water 

C12E3 1.8 (R
2
 = 0.85)* 17.8 (R

2
 = 0.77) 

C12E5 6.7 (R
2
 = 0.90) 8.0 (R

2
 = 0.90) 

C12E8 22.6 (R
2
 = 0.97) 5.2 (R

2
 = 0.78) 

 

*The regression coefficients R
2
 are calculated for each set containing at least 500 

data points 
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Figure 5.9 Comparison of modeled and experimental data for adsorption of 

C12E3,C12E5 and C12E8 on gold surface from water using QCM-D. (Concentration of 

surfactant solutions = 250 mg/L, i.e., 0.79 mM C12E3, 0.62 mM C12E5, and 0.46 mM 

C12E8). Dotted lines show fitted adsorption and desorption data using equation 5.4 

and equation 5.5 
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5.5 Comparison of adsorption data for polymeric surfaces, QCM gold surface and 

literature data 

 

At gold-water interface, Qmax=3.7 x 10
-6

 mole/m
2
 for C12E8 corresponds to 0.45 

nm
2
 per molecule. This is comparable to 0.56 nm

2
/molecule observed by Caruso et al. 

(1995) for the same system. The average area per ethylene oxide (EO) group is in the 

range of 0.034 nm
2
 for C12E3 to 0.056 nm

2
 for C12E8 (Refer to Table 5.2). In the case of 

silica-water interface, the reported literature value is 0.079 nm
2
 per EO group (Desbene et 

al. 1997). The average area of 0.031 nm
2
 per EO group for the C12E8 at cotton-D5 

interface is of the same order of magnitude as that of gold-water and gold-D5 interface.  

Although direct comparison of the data for surfactant adsorption at cotton-D5 

interface with QCM data at gold-D5 interface is not possible, one should note that both 

cotton and gold surfaces are highly hydrophilic in nature and the ethoxylated surfactants 

should exhibit similar adsorption behavior on both the surfaces. In the lower 

concentration range surfactant adsorption is more in the case of C12E8 than that of C12E3 

for both cotton-D5 and gold-D5 interface. The amount of the surfactant adsorbed for Qeq 

= 0.46 mM is 6 x 10
-6

 mole/m
2
 in the case of cotton-D5 interface which is comparable to 

4.5 x 10
-6

 mole/m
2
 in the case of gold-D5 interface.  

The observed C12E8 adsorbed layer thickness at gold-water interface is 2.1 nm. 

This is comparable to the adsorbed layer thickness of 3.5 nm obtained by Caruso et al 

(1995) in the case of adsorption of C12E8 at hydrophobic gold-water interface.  Similarly, 

the maximum adsorbed amount for C12E8 in our case (3.7 x 10
-6

 mol/m
2
) is comparable to 

the equilibrium adsorption (2.1 x 10
-6

 mole/m
2
)   reported by Kumar et al. (2004) for 

hydrophobic gold-water interface.   

Postmus et al. (2007) studied kinetics of C12E7 adsorption at Silica-water 

interface. The slope of the adsorption curve is in the range of 5 x 10
-7

 mole/m
2
 s for the 

particular case. The slope of the adsorption curve of C12E8 at gold-water interface is in 

the range of 3 x 10
-8

 mole/m
2
 s. Tiberg et al. (1994) studied kinetics for C12E6 desorption 

at silica-water interface. The slope of the desorption curve (2 x 10
-7

 mole/m
2
 s) is very 

much comparable to the slope of desorption curve observed in the case of C12E5 (1.2 x 

10
-7

 mole/m
2
 s) and C12E8 (2.04 x 10

-8
 mole/m

2
 s).    
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5.6 Pure surfactant capture using polyacrylic acid (PAA) functionalized membranes 

 

 The PAA-functionalized membranes were studied for surfactant capture from D5 

solutions. The surfactant concentrations in the feed and permeate obtained by GC-FID 

were used to calculate amount of surfactant captured during the permeation. To eliminate 

the effect of varying PAA loadings, the extent of surfactant capture was reported in terms 

of the moles of surfactant captured per mole of free carboxyl groups. It was assumed that 

ethylene glycol was completely utilized for crosslinking the PAA chains (since it was 

present in stoichiometrically deficient amount) and all the remaining carboxyl groups 

were free for interaction with the surfactants. The surfactant capture studies were carried 

out for the pure ethoxylated nonionic surfactants (C12En) with same alkyl chain length but 

varying number of ethylene oxide groups per molecule.  

 As discussed earlier the ethylene oxide group of the surfactant actively 

contributes for polyelectrolyte-surfactant interaction through hydrogen bonding. Grant et 

al. 2000) established that hydrogen bonding between ethylene oxide groups of the 

surfactants and hydroxyl groups on the surface is an unlikely driving force in aqueous 

media, due to superior hydrogen bonding ability of water. This in turn suggests that the 

hydrogen bonding between the ethylene oxide and the carboxyl groups is likely to be the 

driving force in nonaqueous media such as D5. As all the pure surfactants used for the 

experiments have same alkyl chain length, there should not be much variation in the 

extent of dispersion interaction of these surfactants with D5 or the PAA carbon backbone. 

It was therefore expected that the higher ethylene oxide content per molecule should 

result in enhanced interactions with PAA. The amount of surfactant captured per mole of 

PAA indeed increased exponentially with increasing number of ethylene oxide groups 

per molecule (Figure 5.10). The slope of the graph will be affected by hydrophobic 

interaction between the surfactant and the solvent, degree of cross-linking of the PAA 

matrix, the extent of water present in the PAA domain and the alkyl chain length of the 

ethoxylated surfactants. 
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Figure 5.10 Pure surfactant (C12En) capture by PAA-functionalized PVDF 

membrane (650 nm, 3 layer PAA coating, Transmembrane pressure = 2.04 bar) 

from their solution in D5 (Surfactant concentration used are 200 mg/L for C12E8 

and 50 mg/L for C12E5 and C12E3, 0.1% water was added to the surfactant solutions 

before permeating through the functionalized membrane) 
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5.7 Calculation of surface excess concentration (max) for membrane surfactant 

capture studies and its comparison with the literature data  

 

 In order to determine the surface excess concentrations (moles of surfactant 

captured per m
2
 of internal surface area), the effective pore radius ( effr ) is needed. This 

was obtained from the solvent permeability data as a function of pressure. The 

experimentally measured permeability of D5 (
5DA ) was 1.9 x 10

-4
 cm

3
/cm

2 
s bar. Hagen-

Poiseuille equation was used to determine effr  with the assumption that the number of 

pores ( pN ) remains approximately constant for both functionalized and bare membranes. 

Substituting 810543.8 pN and 241015 mAm

 into equation (4.2) yields, 

21210789.1/ effm r          (5.6) 

Now substituting, PasmmAD

2311

5 /109.1  , sPaD

3

5 108.3   and  /m  from 

equation (5.6) into equation (4.1) we get nmreff 80 . 

 The value of Np used for these calculations is obtained from water permeability 

data. The corresponding surface excess concentration calculations are shown in Table 5.4 

The literature data available for adsorption of the pure ethoxylated surfactants (C12En) 

from their aqueous solutions onto various hydrophobic surfaces (Geffroy et al. 2000; 

Kumar and Tilton 2004; Gilchrist et al. 2000; Kjellin et al. 2002) is shown in Figure 

5.11a. The calculated values for the membrane surfactant capture studies from 

hydrophobic D5 solutions are shown in Figure 5.11b. The hydrophobic attraction 

between alkyl chain of surfactants and the surface is the driving force in the case of the 

literature data for adsorption of surfactants. Similar attraction force (dispersion 

interaction) between alkyl chain of the surfactants and D5 solvent is the barrier for the 

surfactant capture experiments using hydrophilic PAA domain. Hence it was 

hypothesized that for the two cases, the trend with respect to number of ethylene oxide 

groups per surfactant molecule should be opposite which indeed is the case as shown in 

Figure 5.11. 
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Table 5.4 Surface excess concentration calculations for membrane surfactant 

capture experiment from D5 

 

Internal surface area per pore = 1149 1028.61025.1108022    Lreff m
2
 

Total surface (external + internal pore surface) area per unit external surface area of membrane 

       = 8.351028.6 11  

m

p

A

N
m

2
/m

2
 of membrane. 

From layer by layer weight gain data and degree of cross-linking for each layer, 

Moles of free carboxyl groups per unit external area of membrane = 0.5 mole of COOH/m
2
  

Moles of free carboxyl groups per unit internal surface area = 0.5/35.8 = 0.014 moles of COOH/m
2 

Number of ethylene oxide 

groups per surfactant 

molecule (C12En) 

Membrane Surfactant 

 Capture per  

mole of free COOH  

Surface Excess Concentration  

(mole of surfactant/m
2
 of total 

surface area)
 

3 1 x 10
-3

 14 x 10
-6 

5 3.25 x 10
-3

 45.5 x 10
-6 

8 20.9 x 10
-3

 292.6 x 10
-6 
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Figure 5.11 (a) Literature data for adsorption of pure ethoxylated nonionic 

surfactants (C12En) on various hydrophobic solid-water interfaces. Best fit 

correlation and 95% confidence interval band for predicted values is shown 

(Literature data from Geffroy et al. 2000; Kumar and Tilton 2004; Gilchrist et al. 

2000; Kjellin et al. 2002) (b) Experimental data for pure surfactant (C12En) capture 

by PAA-functionalized membrane from solution in siloxane solvent (D5) 
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   Ramaswamy et al. (2004) have done extensive membrane characterization of the 

Durapore PVDF membranes from Millipore. The complicated shape and highly inter-

connected nature of pores was reported in the SEM images of the cross section of the 

membranes. The authors’ data from gas-liquid porometry suggests that the calculated 

number average mean pore size for the Durapore membranes is about twice the nominal 

pore size rating provided by the manufacturer (based on model particle retention 

characteristics). The choice of the pore size affects the surface excess concentration 

calculations in the present study. Np will be 16 times lower if the pore size value used for 

calculation is doubled. At the same time, curved surface area per pore (2rpL) will be 2 

times higher. Both facts combined lead to an 8 fold decrease in the available surface area 

which in turn means 8 fold higher max values for the same experimentally measured 

parameters.  

 The maximum surface excess concentration of 6 x 10
-6

 mol/m
2
 (as in the case of 

literature data) corresponds to a surface coverage value of about 0.28 nm
2
/molecule.  

Volume of a CH3 group is about 0.05 nm
3
 and if we assume it to be spherical then the 

projected area will be 0.16 nm
2
. This suggests possible monolayer adsorption in the case 

of the literature data. In the case of surfactant capture by membrane, the maximum 

surface excess concentration of 292.6 x 10
-6

 mol/m
2
 corresponds to 0.005 nm

2
/molecule 

which is very low for monolayer adsorption. This means either that the surfactant capture 

mechanism involves multilayer adsorption or the immobilized PAA matrix provides 

substantially higher extent of internal surface area than that calculated from the effective 

pore radius and membrane porosity.   

  It is also interesting to note that although different hydrophobic surfaces were 

used for the literature adsorption studies, the extent of maximum surface excess 

concentration does not vary significantly for a fixed number of ethylene oxide groups. 

The data can be adequately correlated (R
2
 = 0.87) by the following expression: 

     
n

5

max

1059.1 
       (5.7)  

 Where n is number of ethylene oxide groups per surfactant molecule. The 95% 

confidence interval for the regression coefficient is (1.47 x 10
-5

, 1.71 x 10
-5

) and the 95% 
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confidence interval for the predicted values for surface excess concentration is shown by 

the dotted curves.  

 

5.8 Comparison of membrane surfactant capture in heterogeneous system with 

PAA-ethoxylated surfactant interaction in homogeneous aqueous system 

 

 The amount of C12E8 captured from D5 by the partially cross-linked PAA 

composite membrane is about 0.16 moles of EO per mole of COOH groups of PAA. This 

amount is an order of magnitude smaller when compared to 1.8 moles of EO per mole of 

COOH for C12E8-PAA system in aqueous phase as determined by Anghel et al. (1998).
 

The comparison of extent of surfactant captured by the membrane from solution in D5 

with the literature value for free PAA in aqueous solution helps to get an idea about the 

mechanism of PAA-surfactant interaction. The lower value for the former suggests that, 

there is some kind of barrier which prevents the surfactants dissolved in D5 from 

interacting to the fullest extent with partially cross-linked PAA. The process of surfactant 

capture from its solution in D5 phase using the functionalized PAA membrane requires 

two important steps. 

1. Transport of surfactant from hydrophobic solvent domain to PAA domain 

2. Interaction of ethylene oxide groups of the surfactant with carboxyl groups of PAA 

The partition limitation in terms of transport of surfactant from hydrophobic solvent 

domain to hydrophilic PAA domain will not be present in the case of surfactant capture 

from its aqueous solution. In order to check the significance of this transport limitation, 

surfactant capture studies were carried out from aqueous and organic solutions of the 

surfactant. It was observed that C12E5 surfactant capture from D5 phase (3.25 x 10
-3

 mole 

of C12E5 per mole of free carboxyl group) is an order of magnitude smaller than 

surfactant capture from water phase (3.38 x 10
-2

 mole of C12E5 per mole of free carboxyl 

group). This indicates tremendous transport limitation inhibiting the surfactant in D5 

phase from interacting with carboxyl groups of PAA. Since the surfactant capture 

experiments were performed under constant transmembrane pressure (2.04 bar), the 

residence time of the solutions in the membrane was constant. Considering the significant 

transport limitations, the results will be dependent on residence time.   
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The second step corresponds to the accessibility of carboxyl groups for 

interaction. Considering the multilayer crosslinked structure of PAA coating, it is 

possible that a certain fraction of free carboxyl groups may not be available for carboxyl-

ethylene oxide interaction due to the diffusion limitations. It is interesting to note that 

adsorbed amounts from aqueous solutions were comparable for both free PAA (1.8 moles 

of EO per mole of COOH) and immobilized PAA (1.7 moles of EO per mole of COOH). 

This may indicate that there are no diffusion limitations present in the surfactant capture 

process by the immobilized PAA. The free PAA present in the aqueous solution is always 

present in helical form. In this form not all the carboxyl groups may be accessible by the 

surfactants for interaction. On the other hand in the case of immobilized PAA, the chains 

are expected to be more stretched as compared to their conformation in aqueous solution 

leading to higher accessibility. The diffusion limitations may still be present since there 

are several layers of PAA present in the pore, but the effect of diffusion limitation and 

increased accessibility may be comparable to lead comparable results for free PAA and 

immobilized PAA. To calculate the fraction of unavailable carboxyl groups due to the 

diffusion limitations, the PAA-functionalized membranes were studied for Ca
2+

 ion 

adsorption from aqueous solution, in a manner similar to surfactant adsorption studies. 

The concentration of Ca
2+

 ion in the feed and permeate was analyzed by atomic 

absorption spectroscopy. The upper limit for Ca
2+

 ion pick up was calculated by using the 

fact that one Ca
2+

 ion can interact with two carboxyl groups of PAA. The experimental 

Ca
2+

 ion capacity was found to be 40% of the theoretical maximum indicating that 60% 

of carboxyl groups not available for interaction due to diffusion limitations. This fraction 

may be higher in the case of the surfactant capture experiment as the size of the surfactant 

molecule is much higher as compared to a Ca
2+

 ion.  

 

5.9 Membrane regeneration and reuse 

 

 Since the interaction between the ethylene oxide and carboxyl groups is the result 

of hydrogen bonding between the two groups, it is pH sensitive. The complex formation 

occurs only in low pH (pH 2-5) range. This fact was verified by permeating slightly 

alkaline water (50 mL, pH = 8) through the membrane. The surfactant was collected as its 
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aqueous solution on the permeate side. The aqueous phase analysis by partitioning and 

GC-FID showed that 70% of the captured surfactant in the membrane was collected in its 

aqueous permeate. The regenerated membrane was used again for the surfactant capture 

experiment and it picked up the surfactant to 90% of the regenerated capacity. This 

established the reversibility of the surfactant-PAA complex with very low capacity loss. 

The successful regeneration and reuse of the membranes can be exploited to develop a 

novel process for separation of the nonionic surfactants from organic solvents. The 

preferential separation of the surfactant molecules with higher number of ethylene oxide 

groups may be applied for purification of a surfactant mixture.  

 

5.10 Summary of findings 

  

The comparison of SCF-MS spectra of 15-S-5 in D5 phase before and after 

partitioning with aqueous PAA solution, clearly established the preferential partitioning 

of the higher ethoxylated nonionic surfactants into the aqueous phase from the D5 phase. 

The estimated partition coefficients based on peak heights showed exponential increase 

with increasing number of ethylene oxide groups per surfactant molecules.    

 Surfactant adsorption study on polymeric cotton and polyester materials proved 

that in the lower concentration range, C12E8 adsorbs strongly on the cotton surface than 

C12E3 in the hydrophobic D5 environment. C12E8 exhibits saturation behavior with the 

plateau value around 7 x 10
-6

 mole/m
2
 as opposed to the linear behavior observed in the 

case of C12E3 under the experimental conditions. More hydrophobic C12E3 adsorbs 

strongly on polyester than cotton in the D5 environment. The reason was attributed to the 

favorable dispersion interaction in the case of C12E3-polyester.   

 For adsorption of the surfactants on gold-water interface, the adsorbed surfactant 

amount decreased with increasing ethylene oxide groups per surfactant molecule. In the 

case of gold-D5 interface, the adsorbed amount increased with increasing ethylene oxide 

content of the surfactants. The dissipation data suggested that a larger fraction of 

adsorbed mass is dangling away from the gold-water interface in the case of C12E3. 

Adsorption isotherm for C12E3 at gold-water interface was established and a steep rise in 

the adsorbed amount was observed at concentration in the vicinity of CMC.   
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The surfactant adsorption-desorption behavior at gold-water interface was 

modeled to determine adsorption-desorption rate constants. It was observed that 

adsorption rate constant increases with increasing number of ethylene oxide groups per 

molecule. On the other hand, the values for desorption rate constants decreased with 

increasing ethylene oxide content of the surfactant molecule. A two step adsorption 

model may be better suited for modeling C12E3 adsorption data. 

 It was demonstrated that the PAA-functionalized PVDF membranes can be 

successfully applied for surfactant capture from D5 solutions. The amount of surfactant 

captured, increased exponentially with increasing number of ethylene oxide groups in the 

surfactant molecule. It was also demonstrated that as expected, the trend for extent of 

surfactant adsorption with respect to number of ethylene oxide content is opposite for 

solid-water and PAA-D5 interfaces.  

 Accessibility studies for membrane immobilized PAA suggest that less than 40% 

of the carboxyl groups present in the membranes are accessible to interaction with 

surfactant molecules. The surfactant capture from aqueous phase was an order of 

magnitude more that the surfactant captures from D5 phase which indicates that 

significant transport limitation inhibits surfactant from D5 phase to interact with carboxyl 

groups in the hydrophilic PAA domain. Finally it was demonstrated that the membrane 

can be regenerated by permeating slightly alkaline water (pH 8) through it and the 

membrane can be reused for surfactant capture. 
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Chapter 6    Functionalized mixed-matrix membranes for metal sorption 

 

Functionalized mixed-matrix membranes were studied for metal ion sorption 

applications and the results are discussed in this chapter.  The thiol-functionalized silica-

polymer membranes were studied for Ag
+
 and Ca

2+
 sorption and the sulfonic acid 

functionalized silica-polymer membranes were studied for Fe
2+

 sorption behavior from 

aqueous solutions of the respective metal ions.  

 

6.1 Silver ion capture using thiol-functionalized silica-polymer MMMs 

 

Silver capture experiments were carried out to verify Ag
+
 removal from its 

AgNO3 solution using 30% 874-85-1 thiol-functionalized silica MMM. The results are 

shown in Figure 6.1. The observed maximum capture was 1.5 mmole Ag/g of silica. The 

dotted line indicates maximum silver capture capacity. The error bars indicate analytical 

error of measurement for Ag
+
 concentration. In order to prove the hypothesis, that the 

observed silver capture is specifically due to thiol-Ag
+
 interaction, experiments were 

carried out for silver capture with bare polysulfone membrane and non functionalized 

silica-polysulfone MMM. It is clearly observed from Figure 6.1 that silver capture in both 

the cases is significantly less (0.45 mmole/ g of silica) than what was observed for thiol-

functionalized silica (1.6 mmole/g of silica), hence proving the hypothesis. It should be 

noted that the non-functionalized silica membrane captured more silver (0.45 mmole/g of 

silica) than the pure polymer membrane (0.31 mmole/g of silica). Silica is known to have 

negative charge at the surface and it can attract the positively charged silver ions. This 

may explain the higher silver capture by non-functionalized silica membrane than the 

pure polymer membrane. 

The concentration of silver on the retentate side was also measured to verify that 

the difference in feed and permeate concentration is not due to osmotic rejection or 

Donnan exclusion effect. In all the cases, the retentate concentration was less than feed 

concentration (about 90 – 95% of feed concentration) indicating successful silver capture 

by the membrane due to thiol-Ag
+
 interaction. 
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Figure 6.1 Silver capture using thiol-functionalized 30 % 874-85-1 silica-polysulfone 

MMM (Feed concentration 100 mg/L of Ag). Comparison with silver capture data 

using non-functionalized silica-MMM and bare polysulfone membrane. Horizontal 

dotted line at top indicates maximum silver capture capacity. Error bars indicate 

analytical error of measurement for Ag
+
 concentration. In order to facilitate 

comparison, the values reported for the case of bare polysulfone membrane 

(mmole/g of silica), are based on amount of silica present in polysulfone-non 

functionalized silica case. The solid lines show trends in the data 
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In order to understand thiol site accessibility, silver capture experimental results 

with thiol-functionalized silica-MMM in convective mode were compared with soaking 

mode (no convective flow) results. The membrane was cut into pieces and added to the 

aqueous silver nitrate solution and the mixture was equilibrated for approximately 12 h. 

No significant silver capture was observed in the case of soaking mode as opposed to 

convective mode experiments. Even if the membrane is highly porous, in the soaking 

mode the mass transfer resistance for the silver ions to interact with thiol groups inside 

silica pores is expected to be high. The experimental observation clearly demonstrates the 

inability of the silver ions to access the thiol sites incorporated inside polysulfone matrix 

in absence of convective flow.  

 

6.1.1 pH change during silver capture experiments 

 

During silver capture with thiol-functionalized silica-MMM, it is hypothesized 

that the Ag
+
 ion replaces hydrogen ion from the –SH (thiol) group and gets adsorbed. 

This should lead to higher H
+
 ion concentration on the permeate side as compared to the 

feed solution. pH measurement on permeate side indeed showed drop in pH as compared 

to feed solution. The starting solution pH was 5.8-6.0, and during the initial part of silver 

pick up experiments (where almost complete silver capture was observed), the observed 

pH of permeate solution was in the range of 5.3-5.5. 

 

 

6.2 Effect of silica surface area and thiol accessibility on metal ion capture 

 

As reported in Table 3.1, the three types of silica (874-85-1, 874-86-2 and Ludox 

TM 50) exhibit different particle sizes, pore sizes and correspondingly different specific 

surface areas. 874-85-1 has higher specific surface area than 874-86-2 and Ludox TM 50. 

Ludox silica is nonporous as opposed to 874-85-1 and 874-86-2. Hence the entire surface 

area is expected to be accessible for metal ion capture in the case of Ludox. The average 

pore diameter values (gaps between base particles) are 11.8 nm for 874-86-2 and 3.5 nm 

for 874-85-1. The smaller pore diameter results in higher specific surface area but it is 
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possible that a portion of this surface area is unavailable for silanization and/or metal ion 

interaction due to transport limitations.  

In order to compare the relative performances of the three types of silica, silver 

capture experiments were carried out with each of the functionalized silica-MMMs under 

same conditions. The three types of silica were functionalized with MPTMS and then 

used to make MMMs with cellulose acetate polymer so as to get 10 wt % silica loading in 

the final membrane. The choice of cellulose acetate over polysulfone for polymer phase 

was driven by compatibility of the acetone-water-cellulose acetate mixture with Ludox 

silica which was in the form of aqueous emulsion. The polysulfone-DMF solution did not 

form a homogeneous mixture with Ludox silica. The goal was to select one of the three 

silica materials based on their relative performance, and then to use that type of silica-

polymer MMMs for further experiments.  

It was hypothesized that the extent of metal ion capture per unit surface area 

should be largest for Ludox silica. This indeed was observed as shown in Figure 6.2. It 

was also observed that 874-86-2 has higher capture capacity per unit surface area than 

874-85-1. However, this trend for silver ion capture capacity is reversed when compared 

in terms of silver ion capture per unit mass of silica present in the membrane as shown in 

the Figure 6.3. This clearly indicates that although a fraction of pore surface area of 874-

85-1 was not accessible for silver ion capture, the advantage of higher specific surface 

area outweighs the extent of inaccessibility. 874-85-1 was used as the dispersed phase in 

the MMMs for all further experiments.  
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Figure 6.2 Silver capture with different functionalized silica-cellulose acetate mixed-

matrix membranes (10% silica loading, Feed concentration = 17 mg/L of Ag). Effect 

of total surface area and accessibility of surface –SH groups on silver ion capture 

capacity 
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Figure 6.3 Silver capture with different functionalized silica-cellulose acetate mixed-

matrix membranes (10% silica loading, Feed concentration = 17 mg/L of Ag). Data 

from Figure 6.2 is replotted in the form of silver capture per g of silica 
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This experiment also established generic applicability of MPTMS functionalized 

silica MMMs for silver capture using suitable polymer domains (like polysulfone, 

cellulose acetate, etc.). It was also observed that the silver solution permeance of the 

cellulose acetate membranes is significantly lower than that of the polysulfone based 

membranes prepared under similar conditions. For a 10% thiol-functionalized cellulose 

acetate membrane, the permeability was 0.2 x 10
-4

 cm/s bar as compared to 1.4 x 10
-4

 

cm/s.bar in the case of polysulfone membranes. This may be attributed to better 

compatibility of the cellulose acetate-silica leading to formation of tight membrane 

matrix.   

 

6.3 Effect of residence time (tR) on silver capture 

 

High permeate flux at low pressure drop is one of the advantages of membrane 

applications over conventional packed bed columns. High permeate flux (obtained by 

applying high transmembrane pressure) leads to lower residence time of the liquid inside 

membrane, allowing less time for Ag
+
 –SH interaction to occur. At the same time high 

flow rates may increase the throughput of the membrane system. If the Ag
+
 –SH 

interaction is fast (Mass transfer controlled system), higher flow rates should lead to 

higher rate of silver capture. Experiments were performed at various applied 

transmembrane pressures ( P = 1 to 10 bar) and silver capture was studied. The results 

are shown in Figure 6.4.  

The residence times were calculated by dividing the water uptake of the 

membrane ( 21 WW  ) by experimental flow rates observed during the silver capture. The 

dotted line represents maximum silver capture capacity of the functionalized silica (2.1 

mmole of Ag
+
/g of silica). The solid straight line indicates the ideal case where all the 

silver permeated through the membrane is captured. In the initial part of the experiment 

all the silver was captured in all the cases indicated by the data points lying on top of the 

solid line. As the amount of silver permeated increased further, deviations from the ideal 

case were observed. In the case of lower residence times tR = 6.5 s and tR = 2.8 s), a 

plateau behavior is observed at approximately 80% capture capacity. 
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Figure 6.4 (a) Effect of residence time (tR) on silver capture capacity for 40% 

MPTMS functionalized 874-85-1 silica - polysulfone mixed-matrix membrane (Feed 

concentrations ~ 100 mg/L of Ag). The error bars indicate analytical error of 

measurement for Ag
+
 concentration. Solid line represents ideal case of silver 

capture. (b) Silver capture data reported as a function of time. Dotted line indicates 

maximum silver capture capacity 
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Figure 6.4 (b) represents the same data plotted in the form of amount of silver 

captured with respect to time. It is clearly observed that the rate of silver capture 

increases with increasing permeate flux within the experimental conditions studied. This 

indicates that under the experimental flow conditions, the Ag
+
−SH interaction is mass 

transport limited. 

If the sites are getting exhausted faster, then after a point a higher amount of silver 

ions (in the form of AgNO3) will start coming out on the permeate side. This will lead to 

increased deviations from the ideal case. As expected, the deviations are highest for 

lowest residence time as observed in Figure 6.4. The maximum silver capture observed 

for tR = 20 s even exceeded the maximum silver capture capacity of the silica. It is 

possible that while determining maximum capacity, some of the silica particles 

agglomerate in the process and a fraction of    –SH sites become inaccessible. In the case 

of MMM there may be reduced agglomeration as the particles are trapped inside 

membrane polymer matrix resulting in better accessibility.  

 

6.3.1 Dynamic capacity 

 

In order to compare the relative performance of the membranes towards removal 

of silver ion applications, dynamic capacity was calculated in each case. The dynamic 

capacity was defined as amount of silver captured which was calculated by numerical 

integration over the filtration run until the point where the permeate concentration was 

approximately 10% of feed concentration. The capacity was normalized by dividing with 

maximum silver capture capacity (2.1 mmole/g) and results are shown in Figure 6.5. It 

can be observed that dynamic binding capacity initially decreases with increasing 

membrane flux from 70% to 45%, but remains almost constant thereafter. Figure 6.5 

implies that the dynamic capacity is constant for WJ  higher than 3 x 10
-5

 m/s. The 

constant binding capacity in the high flux regime indicates there is sufficient time for Ag
+
 

–SH interaction and the process is mass transfer controlled.  
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Figure 6.5 Dynamic silver capture capacity at varying AgNO3 permeate flux with 

40% 874-85-1 MPTMS functionalized silica polysulfone MMM (Feed concentrations 

~ 100 mg/L). Solid line shows the trend in the data 
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6.4 Selectivity of Ag
+
/Ca

2+
 capture 

 

In order to verify the selectivity of the MMMs towards Ag
+
 ion, silver capture 

was studied from a feed containing equimolar concentration of Ag
+
 and Ca

2+
 (Metal 

nitrates used to prepare the solution). The results are shown in Figure 6.6. It can be 

clearly observed that the membrane selectively captured Ag
+
 from the metal ion mixture. 

The Ca
2+

 capture was negligible. Owing to the nature of the silver-thiol interaction it is 

expected that even in very high concentration of other metal ions like Na
+
 and Ca

2+
, the 

selectivity towards silver will be high. This characteristic is important for selective 

capture of heavy metal ions from a metal ion mixture which usually is the case in many 

practical applications. Ritchie et al. (2001) have studied selectivity of thiol functional 

membrane systems towards target metal in very high excess of other metal ions and 

found that approximately 70% of the target metal is captured in the single pass.  
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Figure 6.6 Selectivity towards metal ion capture between Ag
+
 and Ca

2+
 (Feed 

containing 0.89 mM concentration of each metal ion) with 30% 874-85-1 MPTMS 

functionalized silica-polysulfone membrane. The dotted line indicates maximum Ag
+
 

capture by functionalized silica particles from Ag
+
 solution. Error bars indicate 

analytical error of measurement for Ag
+
 concentration. Solid lines show trends in 

the data 
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6.5 Silver capture at thiolated surface using QCM 

 

In order to understand the Ag
+
 −SH interaction, quartz crystal microbalance was 

used to study silver capture at model thiolated surface. This can also be used to establish 

sorption kinetics as the extent of sorption can be measured precisely. Figure 6.7 shows 

the adsorption data for the QCM experiment. The arrows indicate the time at which the 

feed solution is changed from water to silver solution or vice a versa. The adsorbed mass 

increased until 300 x 10
-4

 mmole/m
2
 and reached equilibrium. The discontinuity in the 

increasing adsorbed mass at 230 x 10
-4

 mmole/m
2
 represents water passage to check if the 

adsorbing mass is non-specifically adsorbed. At 300 x 10
-4

 mmole/m
2
, passing of water 

caused some desorption and the adsorbed mass steadied at 250 x 10
-4

 mmole/m
2
. On 

further passage of Ag
+
 solution, adsorbed mass increased to 320 x 10

-4
 mmole/m

2
 and 

stayed at that value even after repeated passing of water and Ag
+
 solution alternatively. A 

similar experiment with non-functionalized silica crystal showed some adsorption on 

passage of Ag
+
 solution which desorbed significantly on passage of water indicating no 

specific Ag
+
 adsorption. 

In order to convert the adsorbed mass in moles of Ag
+
 adsorbed, it was assumed 

that the hydrogen ion of –SH group was exchanged with the Ag
+
. This means that 1 mole 

of Ag
+
 adsorption causes 106 g increase in the adsorbed mass. The calculated equilibrium 

adsorbed value of 320 x 10
-4

 mmole of silver/m
2
 corresponds to 19 x 10

18
 thiol groups per 

square meter.  For fully dense monolayer coverage of MPTMS on silica, Feng et al. 

(1997) have reported a value of 5 x 10
18

 molecules per square meter. The higher surface 

density of thiol groups may be attributed to adsorbed mass overestimation by QCM 

(Caruso et al. 1995; Rinia et al. 1996; Stalgren  et al. 2002) due to coupled water of 

hydration with Ag
+
.  
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Figure 6.7 Interaction of Ag
+
 with surface –SH groups of MPTMS functionalized 

quartz crystal by Quartz crystal microbalance. The arrows indicate the time at 

which the feed solution is changed from water to silver solution or vice a versa 
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6.6 Membrane regeneration and reuse 

 

Several studies have been reported in the literature dealing with regeneration of 

thiol based sorbents and recovery of silver/mercury metals. The most common technique 

used is sorbent treatment with highly acidic solution like 12 M HCl (Feng et al. 1997; 

Walcarius and Delacote 2005). These harsh conditions can affect the sorbents and 

significant decrease in sorption capacity is observed in some cases.  

In this study, experiments were conducted to test the membranes for silver 

recovery. Even after passing pH 2 aqueous solutions through the membranes, no silver 

recovery was observed. Highly acidic solutions (pH < 2) were thought to be detrimental 

to the MMMs prepared in this study. Another experiment was performed with silica 

functionalized with thiol as well as sulfonic acid groups. For the solution phase 

experiment, 25% of the silver captured was removed from this silica surface by lowering 

the pH of the solution to 1.8. More experiments will be required to check the 

regeneration, reuse, and selectivity of such silica material towards silver capture in order 

to optimize the conditions.  

Hudson et al. (1983) employed acidic potassium cyanide solution (2M HNO3) and 

reported 100% regeneration and reuse of thiol based polymeric resin for silver capture.  

Another approach applied for regeneration and recovery is to use mildly acidic (0.1 N 

HCl) thiourea solution as an eluent (Atia et al. 2005; Walcarius and Delacote 2005).   

Thiourea acts as a complexing legend in the eluent. 80-90% metal recovery with retained 

sorption capacity was obtained.  

In our case, it seems that acidic thiourea treatment may be useful for regeneration. 

Strongly acidic conditions can damage the functionalized silica and result into loss of 

sorption capacity. However, due to the high market value of silver, scarifying the sorbent 

for silver recovery may still be economically viable. 

The silver capture process using thiol-functionalized silica-polysulfone membrane 

was modeled to predict silver breakthrough curve. The model development, values of 

fitted parameters and comparison of experimental and predicted data are presented in the 

next chapter. 
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6.7 Summary of findings 

 

 

 In this chapter it was demonstrated that thiol-functionalized silica-polymer 

MMM can be successfully applied for aqueous phase silver ion capture. Significantly less 

silver capture by bare polysulfone membrane and nonfunctionalized-silica polysulfone 

membrane proved the hypothesis that the silver capture is specifically due to thiol-Ag
+
 

interaction. 

Three different types of silica materials were compared for silver capture and it 

was observed that Ludox TM 50 showed highest silver capture per unit surface area 

among the three materials. However in terms per unit mass of material, 874-85-1 type of 

silica showed highest silver capture capacity.   

The MMMs were studied for silver capture at varying membrane permeance (i.e. 

varying residence times). The highest extent of silver capture was observed for highest 

residence time. It was also established that the rate of silver capture increased with 

increasing membrane permeance which clearly establishes that the silver capture process 

is mass transferred controlled under the experimental conditions studied. The calculated 

dynamic capacity initially decreased with increasing membrane permeance but the trend 

indicated that the capacity may be independent for higher membrane permeances.  

It was established that the MMMs are capable of selective capture of silver ion 

from mixture of metal ions. The thiol-silver ion interaction was studied on thiol-

functionalized gold surface using QCM.  

The membrane can not be regenerated by permeating pH 2 water. Use of mildly 

acidic thiourea solution can be employed for regeneration. The successful regeneration 

will make the process economically more attractive.  
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Chapter 7    Modeling of mixed-matrix membranes 

 

 

  The MMMs were modeled to predict concentration profile of metal ion along the 

membrane thickness at varying time. Due to the spongy morphology of the silica MMM, 

a membrane pore based model was deemed unsuitable in this case. The membrane pore 

based model incorporates core flow. In the case of adsorptive separation process like this, 

core flow leads to immediate appearance of the adsorbate on the permeate side. The 

observation of the experimental break-through curves clearly indicate that the capture 

efficiency is almost 100% for a substantial time in all the cases demonstrating absence of 

core flow. It was thought suitable to model this MMM process as a one-dimensional 

unsteady state problem. The MMM can be described in terms of three different phases 

i.e. active silica adsorbent phase, inert polymer phase and aqueous silver solution phase 

occupying the free volume fraction of the membrane. Figure 7.1 shows schematics of a 

MMM as a combination of the three phases. For the modeling purpose, the silica particles 

are assumed to be impermeable and non-porous. It should be noted that, throughout the 

model calculations, SI units were used for all the quantities but in the figures the 

quantities were converted to suitable units in order to aid comparison and discussion of 

the experimental and predicted results.  
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Figure 7.1 Schematic representation of mixed-matrix membrane (MMM) for 

modeling purpose 
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Following terminology was used for modeling purpose:  

  = Free volume fraction;  

p  = Polymer volume fraction;  

)1( p   = Fractional volume of silica particles;  

'C  = Concentration of Ag
+
 in bulk liquid phase (moles of Ag

+
/m

3
 of Liquid);  

'q  = Concentration of silver in silica phase (moles of Ag
+
/m

3
 of silica Particles);  

eqq = maximum concentration of silver in silica phase for 'C  (moles of Ag
+
/m

3
 of silica 

Particles);  

JW = Membrane Flux (m/s);  

't  = time (s);  

'z  = Distance down the membrane thickness (m).  

 

Taking a mass balance on the liquid phase over an element shown in Figure 7.1 we get, 

0
'

'
)1(

'

'

'

'
















t

q

z

C
J

t

C
pW      (7.1) 

The detailed derivation of this equation is given in Appendix C.  

Similarly, taking a mass balance on the solid silica phase we get, 

 )'(
'

'
qqk

t

q
eq 




          (7.2) 

With initial conditions as follows: 

0)0,'('

0)0,('

)',0(' 0







zC

zq

CtC

 

In this case, the axial diffusion is neglected as compared to axial convection. 

In order to couple equations (7.1) and (7.2), following linear relationship between eqq and 

'C  was assumed. 

'Cqeq             (7.3) 

Where 

  = Silver – thiol affinity constant.  



 127 

In this case  will be a function of surface density of thiol groups. Substituting from 

equation (7.3) into equation (7.2) we get, 

)''(
'

'
qCk

t

q





          (7.4) 

Similar approach has been used earlier for packed bed adsorption and the 

equations were solved by COMSOL (Finlayson 2005). In our case, the model was 

applied for metal ion sorption using mixed-matrix membranes and the breakthrough 

curve data was predicted for a varying membrane flux. 

The equations can be made dimensionless by defining the following variables 
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Where, 

0C  = Inlet feed concentration of silver ion (mole/m
3
);  

q  = maximum silver capture (moles of Ag/m
3
 of silica);  

L  = Membrane thickness (m).   

TS = Time at which saturation of silver capture was observed and experiment was 

terminated (s). The saturation time varied between 60 min to 400 min for various cases 

studied. 

The dimensionless system of PDEs is 
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With corresponding initial conditions 
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Femlab
TM

 (COMSOL, version 3.0a) was used to solve the set of two unsteady state 

partial differential equations (7.5 and 7.6). Multiphysics convection-diffusion transient 

state analysis was applied to the one-dimensional domain. The thickness of the 

membrane was partitioned into 120 elements (241 nodes). In order to get a stable solution 

it was required to add artificial diffusion term in the case of equation (7.5). In the absence 

of artificial diffusion term an unstable oscillating numerical solution is obtained. In the 

later part, it will also be demonstrated that addition of this term does not affect the 

solution of the system. The option of compensated Petrov-Galerkin method was selected 

in this particular case.  The details required for feeding the model equations to COMSOL 

software and the settings used for solving the equations are explained in Appendix C. 

Incorporation of the artificial diffusion term and the effect of selected values of 

diffusivity and number of elements used for calculation on predicted data is also 

discussed in Appendix C. 

The required values of the model parameters are obtained from the experimental 

conditions and are as follows: 

0C  = Feed Ag
+
 concentration = 1.03 mole/m

3
 (112 mg/L)  

L  = 150 x 10
-6

 m (Membrane thickness measured experimentally) 

  = 0.63 (Obtained from membrane water uptake experiment) 

Volume fraction of polymer in MMM can be calculated by following expression 

pSi

Si
p











)1(

)1)(1(
         (7.7) 

Where, Si   is density of silica (2.2 g/cm
3
) and p  is density of polysulfone (1.24 g/cm

3
) 

For a 40% Silica-Polysulfone MMM (  = 0.4), using equation (7.7), p  = 0.27 

From silver capture experiment with functionalized silica particles only, maximum extent 

of silver capture was 2.1 x 10
-3

 mole/g of silica (4.62 x 10
3
 mole of Ag/m

3
 of silica), for a 

feed concentration of 100 mg/L (0.92 mole/m
3
).  

Using this data calculated value for  = 5021    
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By applying varying transmembrane pressure, the residence time (tR) was varied. The 

corresponding membrane flux (
WJ , m/s) in the three cases studied are 9.4 x 10

-6
 (tR = 20 

s), 3 x 10
-5

 (tR = 6.5 s), and 6.93 x 10
-5

 (tR = 2.8 s). 

In order to apply artificial diffusion to get a stable numerical solution, a value for silver 

diffusivity in the aqueous phase was required. Based on the reported data (Cussler 1996), 

a calculated AgNO3 diffusivity value of 1.80 x 10
-9

 m
2
/s was used for all the calculations. 

The only unknown parameter remaining was the volumetric mass transfer coefficient (k). 

In the case of 
WJ  = 6.93 x 10

-5
 m/s, k was used as an adjustable parameter to match the 

predicted data with experimental data. The comparison of the experimental and predicted 

breakthrough curves is shown in Figure 7.2 
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Figure 7.2 Comparison of experimental and predicted data for 874-85-1 MPTMS 

functionalized silica-polysulfone MMM silver breakthrough curve. Error bars 

indicate analytical error of measurement for Ag
+
 concentration. Dotted line 

represents predicted data. The overall volumetric mass transfer coefficient (k) was 

used as a fitting parameter 
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  The predicted data matches very well with the experimental data until C = 0.80. 

Deviations are higher beyond this point. The fitted value of the mass transfer coefficient 

is 0.0045 s
-1

. The value of mass transfer coefficient for packed colums (Gas-Liquid) is 

generally in the range of 0.005-0.02 s
-1

 (Perry and Green 1997). In order to quantify 

model quality, R
2
 value based on Predicted Error Sum of Squares (PRESS statistics) was 

calculated using following expression: 

2_
2

1

2

12
][

1

ii

n

i

ii

n

i

yny

yy
R










          (7.8) 

Where, 
iy  is experimental value, 

iy


 is predicted value, 
iy

_

 is mean of experimental 

values and n is number of data points used for calculation. 

In this case the R
2
 value for the fit is 0.92 indicating a good fit. The sensitivity of the 

model towards diffusivity is determined by varying it from 1 x 10
-10

 to 1 x 10
-8

 m
2
/s and 

it was observed that the predicted outlet concentration changes by less than 1% over this 

range. This also indicates that the artificial diffusion term does not have any significant 

effect on the solution of the system. This also supports the assumption that diffusion is 

negligible as compared to convection in this case. The model sensitivity was also 

determined for 10% error in  value (5021). Using  = 4519 (case I) and  = 5524 

(case II), the corresponding values of mass transfer coefficients were obtained so as to fit 

the predicted data to the experimental data. The adjusted values are k = 0.0055 s
-1

 (R
2
 = 

0.89) and k = 0.0038 s
-1

 (R
2
 = 0.93) for case I and case II, respectively.  

 

7.1 Mass transfer correlation and predicting experimental breakthrough data 

without any adjustable parameter 

  

It is expected that the value of k will vary with the permeation rate. In order to 

predict the breakthrough curve data for varying membrane fluxes without any adjustable 

parameter, a correlation between mass transfer coefficient and membrane flux was 

required. Based on various mass transfer correlations reported in literature, it was thought 

that  
5.0

WJk   is a reasonable assumption. Using the value of k = 0.0045 s
-1

 for 
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corresponding 
WJ  = 6.93 x 10

-5
 m/s, the value of the proportionality constant is estimated 

to be 0.541.  This leads to following mass transfer correlation:  

5.0541.0 WJk           (7.9) 

Equation (7.9) was used to calculate the volumetric mass transfer coefficients for 

varying membrane fluxes. These values of k were used to predict the breakthrough curve 

data and the comparisons of the predicted data with the experimental data are shown in 

Figure 7.3 and 7.4  Figure 7.4 shows the comparison in the case of silver capture with 

30% silica loading-MMM at 
WJ  = 8.5 x 10

-6
 m/s (R

2
 = 0.91). In all the cases the onset of 

breakthrough is predicted accurately but deviations are observed when the capture 

process approaches saturation. The deviations are highest in the case of  
WJ  = 9.4 x 10

-6
 

m/s (R
2
 = 0.75). Considering the fact that no adjustable parameter was used, the model 

predictions are comparable with experimental observations. As discussed earlier, the 

assumption of negligible diffusion compared to convection has been verified for  
WJ  = 

6.93 x 10
-5

 m/s. It is expected that the role of diffusivity will be of greater importance for 

the lowest membrane flux and hence model sensitivity towards diffusivity was also 

determined for 
WJ  = 9.4 x 10

-6
 m/s. It was observed that, by varying diffusivity values 

between 1 x 10
-10

 to 1 x 10
-8

 m
2
/s, the predicted outlet concentration changes by less than 

1%.  
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Figure 7.3 Comparison of experimental and predicted data for silver breakthrough 

curves using thiol-functionalized 874-85-1 silica-polysulfone MMM with 40% silica 

loading. The volumetric mass transfer coefficient (k) was obtained from correlation 

7.9 Error bars indicate analytical error of measurement for Ag
+
 concentration. 

Dotted lines show predicted data 
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Figure 7.4 Data comparison for silver capture with 30% silica loading MMM. The 

volumetric mass transfer coefficient (k) was obtained from equation 7.9 Error bars 

indicate analytical error of measurement for Ag
+
 concentration. Dotted line shows 

predicted data 
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  In order to check the model applicability over a wide range of parameters, the 

model was used to predict results for silver capture experiment using a stack of two 

membranes. Multi stack membranes are often used to increase capacity of existing 

membrane processes. MPTMS functionalized 874-85-1 40% Silica-polysulfone MMM 

membranes were stacked together and silver solution was permeated through the stack. 

The silica used was deliberately functionalized under the conditions where MPTMS was 

the limiting reactant so as to get reduced silver capture capacity per gram of silica, thus 

changing one more operating condition. The corresponding parameters obtained from 

experimental characterization of silica and MMM are as follows: Membrane thickness = 

1.1 x 10
-4

 m for one membrane i.e. L = 2.2 x 10
-4

 m for the stack;   = 0.52; p  = 0.35; 

  = 1880 (as compared to 5021 in previous cases). Concentration of feed solution 
0C  = 

0.874 mole/m
3
. Using these parameters, predicted breakthrough curve was obtained 

(dotted line) and its comparison with experimental results is shown in Figure 7.5. The R
2
 

value based on PRESS statistics for this fit is 0.85. It can be observed that the model 

consistently overestimated exit silver ion concentration throughout this run but follows 

the overall trend in the data. The deviations are partially attributed to the inaccurate value 

of mass transfer coefficient obtained from the correlation based on single stack data.  

The reasonable agreement between experimental and predicted data in above 

demonstrated cases proves that the model is helpful to predict experimental results over a 

wide range of operating conditions and parameters like silica loading, membrane flux, 

silver capture capacity of silica, and membrane thickness.   
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Figure 7.5 Comparison of experimental and predicted data (dotted line) for silver 

breakthrough curve using 40% 874-85-1 MPTMS functionalized silica-polysulfone 

MMMs in the case of double stack membrane experiment. The k value of 0.002 1/s is 

obtained using equation 7.9. The silica was functionalized under conditions where 

MPTMS was limiting reactant so as to deliberately achieve lower silver capture 

capacity (  = 1880 as compared to 5021 in previous single stack cases) Error bars 

indicate analytical error of measurement for Ag
+
 concentration 
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7.2 Effect of variation in model parameter values (k and γ) on model output 

 

In the case of Figure 7.5 it was observed that the model consistently 

overestimated the exit concentration of the silver ions when the predicted breakthrough 

data was compared with the experimental data. Considering the fact that no adjustable 

parameter was used, the agreement is reasonable (R
2
 = 0.85). In order to get an idea of 

effect of model parameters on model output, the predicted data was obtained for varying 

values of k and γ, keeping all other input variables constant. The new values of k and γ 

were selected in such a way that the predicted data should match more closely with the 

experimental data. The comparison of the experimental and predicted data for the two 

cases is shown in Figure 7.6 and 7.7.  
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Figure 7.6 Effect of variation in mass transfer coefficient on predicted breakthrough 

curve for silver capture with thiol-functionalized silica polysulfone mixed-matrix 

membranes (γ = 1880).  
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Figure 7.7 Effect of variation in silver-thiol affinity constant (γ) on predicted 

breakthrough curve for silver capture with thiol-functionalized silica polysulfone 

mixed-matrix membranes (k = 0.002 s
-1

).   
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 It can be observed from Figure 7.6 that increasing the mass transfer coefficient (k) 

value from 0.002 s
-1

 (obtained using equation 7.9) to 0.004 s
-1

, lead to a better prediction 

of the experimental data in the region of onset of breakthrough. On the other hand, 

towards the saturation region, this lead to increased deviations from the experimental 

data. The overall effect was that the R
2 

value based on PRESS statistics decreased from 

0.85 to 0.82. In general, increasing the mass transfer coefficient (k) delays the onset of 

breakthrough and increases the slope of the linear part of the curve leading to early 

saturation.  

 It was also observed (Figure 7.7) that increasing the γ value from 1880 (calculated 

based on experimental data) to 2400 lead to extremely better match between the 

experimental and predicted data. The R
2
 value based on PRESS statistics increased from 

0.85 to 0.98. In general, the increase in γ value shifts the breakthrough curve towards 

right (delayed onset of breakthrough) with slight decrease in the slope of the linear part of 

the curve.   

 



 141 

7.3 Prediction of silver concentration in silica phase 

 

The model also provides information about concentration of silver in silica phase 

throughout the membrane as a function of time. Figure 7.8 displays the predicted silver 

concentration (mmole of Ag captured/g of silica) profile along the membrane thickness at 

varying experimental time for 
WJ  = 6.93 x 10

-5
 m/s. As expected, the silver concentration 

is highest near feed side and gradually decreases along the membrane thickness. It can be 

also observed that the membrane is almost fully saturated with Ag in 60 minutes.  
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Figure 7.8 Predicted concentration of silver in silica phase along the membrane 

thickness at varying times. Feed is 100 mg/L aqueous silver ion solution at 

transmembrane pressure of 8.2 bar (Residence time, tR = 2.8 s) 
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7.4 Silver concentration profile along the membrane thickness 

 

It is also possible to predict concentration profile of silver ion at desired positions 

along the membrane thickness using the model. It is expected that the near the position 

from the membrane feed side, the earlier it will saturate. This indeed was observed as 

shown in Figure 7.9. The results represents silver capture using 40% silica loading silica-

polysulfone membrane (  = 0.63; p  = 0.27 and 
WJ  = 6.93 x 10

-5
 m/s). A predicted 

result for a two stack membrane (z = 1) is also shown for comparison with single stack 

membrane. The model offers an efficient way to study effect of various experimental 

parameters on silver or other metal separation. The model is applicable for a generic case 

involving MMM for liquid phase applications. 
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Figure 7.9 Predicted concentration profile of liquid phase silver concentration at 

varying membrane thickness. Two stack represents concentration profile for silver 

capture experiment using two membranes stacked together 
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7.5 Conclusive remarks 

 

The silver capture process was successfully modeled using one-dimensional 

unsteady state approach. A mass transfer correlation was developed to predict 

dependence of the volumetric mass transfer coefficient on membrane flux. The model 

successfully predicted silver breakthrough curves for varying operating conditions like 

membrane flux, silica loading, membrane thickness, and silver capture capacity of the 

silica material. The applicability of the model for predicting silver concentration in the 

solid silica phase along the membrane thickness and at varying times is also 

demonstrated. The model provides an efficient way to study effect of various parameters 

of the silver capture process.  
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Chapter 8   Conclusions 

 

The research work discussed in this dissertation was directed to study application 

of functionalized membranes for sorption applications. For the first time, polyacrylic acid 

functionalized membranes were studied for ethoxylated surfactant sorptions in 

hydrophobic siloxane environment. Functionalized silica-polymer mixed-matrix 

membranes were developed and their applications for aqueous phase metal ion sorptions 

were demonstrated.  The adsorption-desorption and partitioning behavior of ethoxylated 

non-ionic surfactants at various solid-liquid interfaces was also quantified. This chapter 

summarizes the important findings of this research work. 

 

8.1 Overall scientific and technological advancements 

 

 The overall scientific and technological advancements achieved in this study are: 

 For the first time, a functionalized membrane-based process was developed for 

reversible surfactant capture from hydrophobic siloxane-based solvent 

 The role of ethylene oxide content in the sorption characteristics of the 

ethoxylated nonionic surfactants on various polymeric and model surfaces was 

quantified 

 Development and successful application of functionalized silica-polymer mixed-

matrix membranes for aqueous phase metal ion capture applications was 

demonstrated 

 A generic model applicable for metal ion sorption applications of mixed-matrix 

membranes was developed and solved  

 

8.2 Specific accomplishments 

 

 The specific accomplishments of this dissertation work are as follows: 
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8.2.1 Partitioning, adsorption and capture of ethoxylated nonionic surfactants 

 

 The surfactants with higher ethylene oxide content favorably partition from 

hydrophobic siloxane phase into aqueous phase 

 Surfactants with higher ethylene oxide content adsorb strongly on the hydrophilic 

cotton surface as compared to polyester surface in the hydrophobic siloxane 

solvent environment consistent with literature studies.  

 The adsorbed surfactant amount at gold-water interface decreased with increasing 

ethylene oxide groups per surfactant molecule. In the case of gold-siloxane 

solvent interface, the adsorbed amount increased with increasing ethylene oxide 

content of the surfactants. 

 Adsorption rate constants increased with increasing number of ethylene oxide 

groups per molecule. Desorption rate constants decreased with increasing 

ethylene oxide content of the surfactant molecule.  

 Although the polyacrylic acid chains are partially cross-linked inside membrane 

matrix, they are capable of undergoing charge transition with changing pH of feed 

solution. 

 In the case of surfactant capture from siloxane solvent using polyacrylic acid 

functionalized membranes, the amount of surfactant captured increased 

exponentially with increasing number of ethylene oxide groups in the surfactant 

molecule. 

 Accessibility studies for polyacrylic acid functionalized membranes proved that 

more than 60% of the available carboxyl groups present in the membranes are 

inaccessible towards surfactant sorption 

 Significant transport limitation inhibits surfactant from siloxane phase to interact 

with carboxyl groups in the hydrophilic polyacrylic acid domain 

 The membrane can be regenerated by permeating slightly alkaline water (pH 8) 

through it and the membrane can be reused for surfactant capture. 
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8.2.2 Functionalized membranes for silver capture 

 

 Functionalized silica materials for metal ion sorptions were successfully prepared   

 Silica-polysulfone mixed-matrix membranes (MMMs) were successfully prepared 

with uniform distribution of the silica particles through the entire cross-section of 

the membrane 

 Functionalized silica-polymer MMMs were successfully applied for aqueous 

phase metal ion capture 

 The role of silica properties and membrane permeance on metal sorption behavior 

using mixed-matrix membranes was quantitatively established. It was observed 

that the silver capture process is mass transfer controlled under the experimental 

conditions studied 

 The MMMs were successfully applied for selective capture of silver ion from 

solution containing mixture of silver and calcium metal ions 

 The mixed-matrix membranes were successfully modeled using one-dimensional 

unsteady state approach. The model was verified using experimental metal ion 

sorption data 
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Nomenclature 

 

iA   Permeance of species i, cm
3
/cm

2
 s bar 

mA  Area of membrane sheet, m
2 

C Dimensionless concentration of silver 

'C   Concentration of Ag
+
 in bulk liquid phase, moles of Ag

+
/m

3
 of liquid 

0C  Inlet feed concentration of silver ion, mole/m
3
  

Cm  Mass sensitivity constant, ng cm
-2

 Hz
-1

 

D  Dissipation factor  

f  Frequency of QCM crystal oscillation, Hz 

HAP Height of surfactant peak after partitioning, mm 

HBP Height of surfactant peak before partitioning, mm 

iJ  Permeate flux of species i, m
3
/m

2
 s 

Ka  Adsorption rate constant, s
-1

 

Kd  Desorption rate constant, s
-1

 

pK   Partition coefficient 

L  Thickness of membrane, m 

M  Molecular weight of dextran, Da 

pN   Number of pores in membrane sheet 

q Dimensionless concentration of silver in silica phase 

'q   Concentration of silver in silica phase, moles of Ag
+
/m

3
 of silica particles  

eqq  Maximum concentration of silver in silica phase for 'C , moles of Ag
+
/m

3
 of silica 

particles   

q   Maximum silver capture, moles of Ag/m
3
 of silica 

Qmax  Saturation adsorption value, mole/m
2
 

Qs  Amount of surfactant adsorbed, mole/m
2
 

effr   Effective pore radius, m 

pr  Pore radius, m 

rs  Hydraulic radius of the dextran molecule, nm 
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R   Dextran rejection, % 

R
2
        Regression coefficient based on PRESS statistics 

t Dimensionless time 

't   Time, s 

t0 Clock time at which adsorption of surfactant starts, s 

t1 Clock time at which desorption of surfactant starts, s 

tR  Residence time, s 

T Temperature, K 

TS  Time at which saturation of silver capture was observed and experiment was 

terminated, s 

oV  Molar volumes of the organic phase, mole/m
3
 

wV  Molar volumes of water, mole/m
3
 

iy   Experimental value 

iy


  Predicted value 

iy
_

  Mean of experimental values 

z Dimensionless distance down the membrane thickness 

'z   Distance down the membrane thickness, m 

 

Greek Letters 

  Silver – thiol affinity constant 

max Surface excess concentration, mole/m
2
 

δH Hydrogen bonding component of Hansen solubility parameter, (cal/cm
3
)
1/2

 

m  Membrane porosity 

  Viscosity, Pa s 

0

i  Standard chemical potential difference, J/mol 

p  Density of polysulfone, (kg/m
3
) 

Si    Density of silica, (kg/m
3
) 

W   Density of water, (kg/m
3
) 
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ΔD  Change in dissipation factor 

Δm  Mass of adsorbed layer, ng/cm
2
  

P  Applied transmembrane pressure, bar 

  Tortuosity of the membrane pore 

τD Decay time for QCM oscillations, s 

   Free volume fraction 

p   Polymer volume fraction 

   Silica weight fraction in membrane 

 

 

Material Abbreviations 

15-S-5 A commercially available nonionic surfactant which is primarily a mixture 

of ethoxylated nonionic surfactant with variable alkyl chain length and 

variable number of ethylene oxide groups per molecule 

CnEm Ethoxylated nonionic surfactant with n carbon alkyl chain and m number 

of ethylene oxide groups 

DIUF  Deionized ultra filtered water 

DMF  Dimethylformamide  

EO  Ethylene oxide   

MMM  Mixed-matrix membrane 

MPTMS 3-Mercaptoproptyltrimethoxysilane 

PAA  Polyacrylic acid 

PCTE  Polycarbonate track etched membrane 

PLGA  Poly-L-glutamic acid  

PMA  Polymethacrylic acid 

PVDF  Polyvinylidene fluoride 

 

Method and Technique Abbreviations 

AA  Atomic absorption spectrometer 

AFM  Atomic force microscope 

ATR-FTIR Attenuated total reflectance – Fourier transform infrared spectroscopy 
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BET  Brunauer Emmett Teller  

CAC  Critical aggregation concentration 

CMC  Critical micelle concentration 

GC-FID Gas chromatograpgy flame ionization detector 

HPLC  High performance liquid chromatography 

MF  Microfiltration 

NF  Nanofiltration 

QCM  Quartz crystal microbalance 

QCM-D Quartz crystal microbalance with dissipation monitoring 

SCF-MS Super critical fluid mass spectrometry  

SEM  Scanning electron microscopy 

SEM-EDS Scanning electron microscopy-energy dispersive spectroscopy 

TLC  Thin layer chromatography 

TOC   Total organic carbon 

UF  Ultrafiltration 

UNIFAC Universal functional activity coefficient 
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Appendix A   UNIFAC Calculation details for predicting activities of the surfactant 

and solvent 

 

For C12E5 (1) and Hexadecane (2) System, the group contribution and related parameters 

are tabulated in Table A.1 

The equations used for calculation of activity of the surfactant and the solvent are as 

follows: 
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Where ix  is the mole fraction of species i. 

The values of interaction parameters ( mka ) are given in Table A.2 
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Table A.1 Group Contribution parameters for C12E5 (1) and Hexadecane (2). (Smith 

et al. 1996) 

Group k      kR  kQ  
)1(

k  
)2(

k  

CH3 1 0.9011 0.848 1 2 

CH2 2 0.6744 0.54 16 14 

OH 15 1 1.2 1 0 

CH2O 26 0.9183 0.78 5 0 
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Table A.2 Interaction parameter values (Smith et al. 1996) 

a(m,k) 1 2 15 26 

1 0 0 986.5 251.5 

2 0 0 986.5 251.5 

15 156.4 156.4 0 28.06 

26 83.36 83.36 237.7 0 
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Above equations and the group contribution data were used to estimate the 

activities of the surfactant (C12E5) and Solvent (Hexadecane) for varying mole fraction of 

the system. For all the calculations T = 293.16 K.  

The calculated values of various parameters are shown in Table 3 for the case of 

1.01 x . The value of 1x  is varied from 0 to 1 and the calculated activity data is 

tabulated in Table 4. The plot of the activity coefficient is shown in Figure 2.2 The points 

satisfying the isoactivity criterion were determined graphically as shown in the Figure 2.2  
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Table A.3 Calculated values of various parameters for 1.01 x  

r1 17.283    

r2 11.2438    

q1 14.588    

q2 9.256    

     

e1,1 0.05813  e1,2 0.183232 

e2,1 0.592268  e2,2 0.816768 

e15,1 0.082259  e15,2 0 

e26,1 0.267343  e26,2 0 

     

τ (I,j) 1 2 15 26 

1 1 1 0.03456 0.424054 

2 1 1 0.03456 0.424054 

15 0.58655 0.58655 1 0.908722 

26 0.752503 0.752503 0.444493 1 

     

β 1, 1 0.899823  β 2, 1 1 

β 1, 2 0.899823  β 2, 2 1 

β 1, 15 0.223569  β 2, 15 0.03456 

β 1, 26 0.617898  β 2, 26 0.424054 

     

θ 1 0.16459  s 1 0.985072 

θ 2 0.783312  s 2 0.985072 

θ 15 0.012258  s 15 0.062726 

θ 26 0.03984  s 26 0.452941 

     

J 1 1.458762    

J 2 0.949026    

L 1 1.490214    

L 2 0.945532    

     

ln r 1 2.339274  a1 1.03737 

ln r 2 0.079693  a2 0.974659 
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Table A.4 Calculated activity data for the system C12E5 (1) and Hexadecane (2) 

X1 X2 A1 A2 

0.001 0.999 0.058 0.999 

0.002 0.998 0.112 0.998 

0.003 0.997 0.164 0.997 

0.004 0.996 0.213 0.996 

0.005 0.995 0.26 0.995 

0.006 0.994 0.304 0.994 

0.007 0.993 0.346 0.994 

0.008 0.992 0.385 0.993 

0.009 0.991 0.423 0.992 

0.01 0.99 0.459 0.991 

0.011 0.989 0.492 0.991 

0.012 0.988 0.524 0.99 

0.013 0.987 0.555 0.989 

0.014 0.986 0.584 0.988 

0.015 0.985 0.611 0.988 

0.016 0.984 0.637 0.987 

0.017 0.983 0.662 0.986 

0.018 0.982 0.685 0.986 

0.019 0.981 0.707 0.985 

0.02 0.98 0.728 0.985 

0.021 0.979 0.748 0.984 

0.022 0.978 0.767 0.984 

0.023 0.977 0.785 0.983 

0.024 0.976 0.802 0.983 

0.025 0.975 0.818 0.982 

0.026 0.974 0.834 0.982 

0.027 0.973 0.848 0.981 

0.028 0.972 0.862 0.981 

0.029 0.971 0.875 0.98 

0.03 0.97 0.888 0.98 

0.031 0.969 0.899 0.979 

0.032 0.968 0.91 0.979 

0.033 0.967 0.921 0.979 

0.034 0.966 0.931 0.978 

0.035 0.965 0.94 0.978 

0.036 0.964 0.949 0.978 

0.037 0.963 0.958 0.977 

0.038 0.962 0.966 0.977 

0.039 0.961 0.973 0.977 

0.04 0.96 0.98 0.976 

0.041 0.959 0.987 0.976 

0.042 0.958 0.993 0.976 
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Table A.4 Continued 

0.043 0.957 0.999 0.976 

0.044 0.956 1.005 0.975 

0.045 0.955 1.01 0.975 

0.046 0.954 1.015 0.975 

0.047 0.953 1.019 0.975 

0.048 0.952 1.023 0.974 

0.049 0.951 1.027 0.974 

0.05 0.95 1.031 0.974 

0.06 0.94 1.056 0.973 

0.07 0.93 1.064 0.972 

0.08 0.92 1.061 0.972 

0.09 0.91 1.051 0.973 

0.1 0.9 1.037 0.975 

0.11 0.89 1.021 0.976 

0.12 0.88 1.003 0.979 

0.13 0.87 0.984 0.981 

0.14 0.86 0.966 0.984 

0.15 0.85 0.948 0.987 

0.16 0.84 0.93 0.991 

0.17 0.83 0.913 0.995 

0.18 0.82 0.896 0.998 

0.19 0.81 0.881 1.002 

0.2 0.8 0.866 1.006 

0.25 0.75 0.805 1.028 

0.3 0.7 0.762 1.05 

0.35 0.65 0.733 1.069 

0.4 0.6 0.717 1.083 

0.45 0.55 0.71 1.091 

0.5 0.5 0.711 1.09 

0.55 0.45 0.718 1.077 

0.6 0.4 0.731 1.051 

0.65 0.35 0.75 1.008 

0.7 0.3 0.773 0.946 

0.75 0.25 0.8 0.862 

0.8 0.2 0.832 0.753 

0.85 0.15 0.868 0.616 

0.9 0.1 0.908 0.447 

0.95 0.05 0.952 0.243 

0.999 0.001 0.999 0.005 

 

 

Copyright © Abhay R Ladhe 2008 
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Appendix B   SEM images of silica-polysulfone mixed-matrix membranes 

 

In order to provide more information about the morphology of the silica-

polysulfone mixed-matrix membranes, additional SEM image is provided in this section. 

Figure B.1 shows the SEM image for cross section of 40% 874-85-1 silica-

polysulfone mixed matrix membrane. The image is obtained at higher magnification and 

it shows open structured porous morphology of the membrane. The porous morphology 

with interconnected pores is desirable for liquid phase applications.  
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Figure B.1 SEM image of cross-section of 40% 874-85-1 silica-polysulfone mixed-

matrix membrane 
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Appendix C   Details for the model and COMSOL solution for mixed-matrix 

membranes 

  

This appendix contains the details for derivation of equation 7.1 and the 

COMSOL solution of equations 7.5 and 7.6. The effect selected diffusivity value and 

selected number of elements on model predictions is also discussed.  

 

C.1 Derivation of equation 7.1 (Mass balance on the liquid phase in mixed-matrix 

membrane) 

 As shown in Figure 7.1, an element of thickness 'z  was defined and mass 

balance was taken across this element for the liquid phase. Let us denote the cross 

sectional area of the membrane by A 

 In   -     Out        -        Captured  =    Accumulation 
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Dividing both the sides by 'zA  we get, 

'

'

'

'
)1(

'

''
'''

t

C

t

q

z

CC
J p

zzz
W




























        (C.2) 

i.e., 

'

'

'

'
)1(

'

'

t

C

t

q

z

C
J pW














          (C.3)   

Rearranging the terms in B.3, we get 
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Equation C.4 is equivalent to equation 7.1. 

 

COMSOL software was used to solve the system of partial differential equations 

in order to model the mixed-matrix membranes for sorption applications (Equation 

details provided in Chapter 7). A copy of the model report generated by the software is 

provided in this appendix to provide all the necessary details required to feed the model 

equations to the software and subsequent solution settings used. The specific report is 
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applicable for predicting the data for double stack membrane breakthrough curve as 

shown in Figure 7.6 For the purpose of convenience, following changes in terminologies 

are adopted while solving the model using COMSOL:  

1. The term (
WJ / ) is expressed as V. 

2. The term 
0C

q
q     is expressed as qs.  

The report generated by the software is provided below. 
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C.2 COMSOL report for the case of double stack membrane sorption data 

prediction 

 

 

Mixed-matrix membranes for Sorptions 

 

1. Model Properties 

 

Property Value 

Model name Mixed Matrix Membranes for Sorptions 

Author Abhay Ladhe 

Company University of Kentucky 

Department Chemical and Materials Engineering 

Reference   

URL   

Saved date Feb 8, 2008 3:30:20 PM 

Creation date Jan 30, 2008 2:49:05 PM 

COMSOL version COMSOL 3.4.0.248 

 

1.1 Application modes and modules used in this model: 

Geom1 (1D)  

Convection and Diffusion  

Convection and Diffusion 

 

2. Constants 

 

Name Expression Value Description 

gamma 1880.2 1880.2   

C0 0.874 0.874   

V 0.2692e-4 2.692e-5   

L 2.2e-4 2.2e-4   

T 180*60 10800   

Phi 0.52 0.52   

phip 0.35 0.35   

K 0.002 0.002   

D 1.8e-9 1.8e-9   
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3. Geometry 

Number of geometries: 1 (Geom1) 

 

 
 

 

3.1 Boundary mode 
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4. Geom1 

Space dimensions: 1D 

Independent variables: x, y, z 

 

4.1 Expressions 

 

4.1.1 Subdomain Expressions 

 

Subdomain   1 

Rate mol/m^3 k*(gamma*c-qs) 

 

4.2 Mesh 

 

4.2.1 Mesh Statistics 

 

Number of degrees of freedom 242 

Number of mesh points 61 

Number of elements 60 

Number of boundary elements 2 

Element length ratio 1 
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4.3 Application Mode: Convection and Diffusion (cd) 

Application mode type: Convection and Diffusion 

Application mode name: cd 

 

4.3.1 Application Mode Properties 

 

Property Value 

Default element type Lagrange - Quadratic 

Analysis type Transient 

Equation form Non-conservative 

Frame Frame (ref) 

Weak constraints Off 

Constraint type Ideal 

 

 

4.3.2 Variables 

Dependent variables: c 

Shape functions: shlag(2,'c') 

Interior boundaries not active 

 

 

4.3.3 Boundary Settings 

 

Point   2 1 

Concentration (c0) mol/m3 0 1 

 

 

4.3.4 Subdomain Settings 

 

Subdomain   1 

Diffusion coefficient (D) m2/s D 

Reaction rate (R) mol/(m3⋅ s) -((1-phi-phip)/phi)*L*rate 

Time-scaling coefficient (Dts) 1 L/T 

x-velocity (u) m/s V 

Streamline diffusion switch (sdon)   1 

Streamline diffusion type (sdtype)   Pg 

 

 

4.4 Application Mode: Convection and Diffusion (cd2) 

Application mode type: Convection and Diffusion 

Application mode name: cd2 
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4.4.1 Application Mode Properties 

 

Property Value 

Default element type Lagrange - Quadratic 

Analysis type Transient 

Equation form Non-conservative 

Frame Frame (ref) 

Weak constraints Off 

Constraint type Ideal 

 

 

4.4.2 Variables 

Dependent variables: qs 

Shape functions: shlag(2,'qs') 

Interior boundaries not active 

 

4.4.3 Subdomain Settings 

 

Subdomain   1 

Diffusion coefficient (D) m2/s 0 

Reaction rate (R) mol/(m3⋅ s) T*rate 

 

 

5. Solver Settings 

 

Solve using a script: off 

 

Analysis type Transient 

Auto select solver On 

Solver Time dependent 

Solution form Automatic 

Symmetric Auto 

Adaption Off 

 

5.1 Direct (UMFPACK) 

 

Solver type: Linear system solver 

 

Parameter Value 

Pivot threshold 0.1 

Memory allocation factor 0.7 
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5.2 Time Stepping 

 

Parameter Value 

Times 0:0.1:1 

Relative tolerance 0.01 

Absolute tolerance 0.0010 

Times to store in output Specified times 

Time steps taken by solver Free 

Manual tuning of step size Off 

Initial time step 0.0010 

Maximum time step 1.0 

Maximum BDF order 5 

Singular mass matrix Maybe 

Consistent initialization of DAE systems Backward Euler 

Error estimation strategy Include algebraic 

Allow complex numbers Off 

 

5.3 Advanced 

 

Parameter Value 

Constraint handling method Elimination 

Null-space function Automatic 

Assembly block size 5000 

Use Hermitian transpose of constraint matrix and in symmetry detection Off 

Use complex functions with real input Off 

Stop if error due to undefined operation On 

Store solution on file Off 

Type of scaling Automatic 

Manual scaling   

Row equilibration On 

Manual control of reassembly Off 

Load constant On 

Constraint constant On 

Mass constant On 

Damping (mass) constant On 

Jacobian constant On 

Constraint Jacobian constant On 
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C.3 Output for breakthrough curve generated by postprocessing of the solution data 

 

 

 
 

 

Figure C.1 Predicted breakthrough curve for silver ion in the case of silver capture 

with double stack thiol-functionalized silica-polysulfone membrane. (The data is 

also plotted in Figure 7.6 after converting the non-dimensional time to minutes)  
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C.4 Artificial diffusion term and effect of selected value of diffusivity on model 

predictions  

 In order to obtain a stable solution, an artificial diffusion term was added to 

equation 7.5 as explained in Chapter 7. The modified equation containing the artificial 

diffusion term is given below.  
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    (C.5) 

 

The diffusivity value required for the calculation was calculated based on the 

reported data (Cussler 1996). The calculated diffusivity value was 1.8 x 10
-9

 m
2
/s and this 

value was used for all the predictions. The idea of using the artificial diffusion term is to 

introduce enough diffusion to obtain a stable solution. In order to prove that the selected 

diffusivity value does not affect the model solution, the predicted data was obtained for a 

significantly lower diffusivity value (D = 1.8 x 10
-15

 m
2
/s) and it was compared with the 

originally predicted data (D = 1.8 x 10
-9

 m
2
/s) as shown in Figure C.2. The figure clearly 

shows that in both the cases, the predicted data is identical and hence the selected 

diffusivity value does not affect the predicted data.  

It is expected that the importance of diffusion term will be pronounced at lower 

membrane flux values. Although, lower membrane flux may not be desirable from 

practical viewpoint, the data was predicted and compared for varying diffusivity values 

for a hypothetical case of JW = 1.4 x 10
-6

 m/s (10 times lower flux value). The predicted 

data was observed to be identical (not shown in figure) indicating applicability of the 

model and the artificial diffusion term for this lower membrane flux region.    

Figure C.2 also shows the predicted data for D = 1.8 x 10
-5

 m
2
/s and JW = 1.4 x 

10
-5

 m/s. In this case, for diffusivity value higher than 1 x 10
-6

 m
2
/s, the contribution of 

the artificial diffusion term becomes comparable to the axial convection term. As 

expected, this lead to a faster breakthrough as observed from Figure C.2. However, such 

high values of diffusivity (D > 1 x 10
-6

 m
2
/s) are not realistic for metal ions in aqueous 

solutions (typical diffusivity value in the range of 10
-9

 m
2
/s) and the model is applicable 

under practical conditions.   
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Figure C.2 Effect of selected diffusivity value on model prediction in the case of 

silver capture using double stack membrane. The model parameters used are: k = 

0.002 s
-1

, γ = 1880, L = 2.2 x 10
-4

 m,    = 0.52, p  = 0.35, C0 = 0.874 mole/m
3
, JW = 

1.4 x 10
-5

 m/s 
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C.5 Effect of number of elements used for calculation on model prediction 

 During the solution of equations 7.5 and 7.6 using COMSOL, the membrane 

thickness was divided into 120 elements (N = 120) for calculation purpose. In order to 

prove that the number of elements selected is sufficient for accurate calculations, the 

model prediction was also obtained for N = 1920 in the case of silver capture using 

double stack membranes. The comparison of the two predicted data is shown in figure 

C.3 and it is clear that in both the cases the predicted data is identical and N = 120 is 

sufficient for calculation purpose.  
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Figure C.3 Effect of selected value of number of elements used for calculation on 

model prediction in the case of silver capture using double stack membrane. The 

model parameters used are: k = 0.002 s
-1

, γ = 1880, L = 2.2 x 10
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