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ABSTRACT OF THESIS 

 

 
CHARACTERIZATION OF AND CONTROLLING MORPHOLOGY OF ULTRA-

THIN NANOCOMPOSITES 

Ultrathin film nanocomposites are becoming increasingly important for specialized 
performance of commercial coatings.  Critical challenges for ultrathin film 
nanocomposites include their synthesis and characterization as well as their performance 
properties, including surface roughness, optical properties (haze, refractive index as 
examples), and mechanical properties.  The objective of this work is to control the 
surface roughness of ultrathin film nanocomposites by changing the average particle size 
and the particle volume fraction (loading) of monomodal particle size distributions.  This 
work evaluated one-layer and two-layer films for their surface properties.  
Monodispersed colloidal silica nanoparticles were incorporated into an acrylate-based 
monomer system as the model system.  Ultrathin nanocomposites were prepared with 
three different size colloidal silica (13, 45, and 120 nm nominal diameters) at three 
different particle loadings (20, 40, and 50 vol. % inorganic solids).  Silica particles were 
characterized using DLS and TEM.  AFM was used to measure the root mean square 
roughness (Rq), ΔZ, and location-to-location uniformity of one-layer and two-layer 
nanocomposite coatings.  Developing an understanding about the properties affected by 
the type and amount of particles used in a nanocomposite can be used as a tool with 
nanocharacterization techniques to quickly modify and synthesize desired ultrathin film 
coatings. 

KEYWORDS: Ultrathin film nanocomposite, Surface Morphology, Spin Coating, 

Particle Loading, Particle Size 
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Chapter 1 Introduction 

Nanoparticles are defined as any particle having a dimension between 1 nm and 

100 nm [2].  There is wide interest for uses of inorganic/organic nanoparticles in 

biomedical, pharmaceutical, optical, and electrical applications.  The addition of 

nanoparticles to a continuous polymer matrix is defined as a nanocomposite.  

Nanoparticles previously incorporated into polymer matrices include metals, metal 

oxides, metal nitrides, and metal carbides [3, 4].  Combining inorganic nanoparticles and 

polymer matrices allows for the development of a wide variety of nanocomposite 

materials that combine the physical properties of the respective constituents.  Systems 

can have single or multiple phases of nanoparticles/polymer components.  Systems that 

incorporate more than one type of polymer, in which chain segments of the two polymers 

are dispersed through one another, are called interpenetrating polymer networks.  

Selecting appropriate combinations of physical properties for each species in a 

nanocomposite allow researchers to produce nanocomposites with wide ranges of 

performance properties. 

Nanocomposite coatings are used in a wide variety of optical and electrical 

applications from eyeglass lenses to optical filters for the visible, infrared, and ultraviolet 

regions of light.  Ultra-thin film nanocomposites are coatings that have a thickness less 

than 500 nm and are typically less than 200 nm [5].  Ultra-thin nanocomposite coatings 

have a wide range of applications ranging from optical, magnetic, electrical, and photonic 

systems [6-8].  Ultra-thin film nanocomposite coatings are primarily used as filters for 

various ranges of light whether visible, infrared, or ultraviolet light.  Polymer-

nanoparticle nanocomposite coatings are extremely important in a wide variety of 

applications including glasses to jet canopies.  Table 1.1 shows examples of attributes of 

interpenetrating polymer networks (IPN) and nanoparticle composite (NC) technologies.  

Interpenetrating polymer networks can be included in a nanocomposite system. 
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Table 1.1 Performance properties of interpenetrating polymer networks (IPN) and 
nanoparticle composite (NC) technologies. 
 

Property/performance Example system Technology References 
Mechanical    
Creep resistance 
improvement 

Silica nanoparticles 
functionalized with silanes, 
in polypropylene 

Semi-IPN; 
NC 

[9], [10] 
 
 

Increasing tensile strength 
and notched impact strength 
at low NP loadings 

Silicapolypropylene 
nanocomposites (in-situ 
crosslinking) 

Semi-IPN; 
NC 

[11] 
 

Increase in elastic modulus 
and hardness while retaining 
transparency 

Nanosilica in urethane 
dimethacrylate + bisphenol-
A diglycidyl ether epoxy 

IPN, NC [12] 
 

Chemical resistance, anti-
adhesion 

Metal oxide nanoparticles in 
poly(disiloxane) 

NC [13] 
 

Improved mechanical 
damping; potential for 
improved impact 

BaTiO3 in 
polyurethane/unsaturated 
polyester resin 

IPN [14] 
 

Reduced crazing, increased 
toughness 

Polycarbonate and 
poly(methyl methacrylate) 

IPN [15] 
 

Increased modulus and 
hardness 

Zinc oxide nanoparticles in 
polycarbonate 

NC [16] 
 

Electrical/optical    
Conduction mechanism 
w/semiconducting 
nanoparticles and 
conducting IPNs  

Varied (review article) NC, IPNs [17] 
 

Charge transfer in 
photovoltaics 

Conjugated conducting 
polymers, titania 
nanoparticles 

NC, IPNs [18] 
 

High energy density 
capacitors 

Barium titanate nanoparticles 
in polycarbonate 

NC [19] 
 

Nanocomposite foils for 
solar glazing, attenuation of 
heat gain and UV 

Polycarbonate, poly(vinyl 
butyral), metal oxide 
nanoparticles 

NC [20] 
 

Semi-interpenetrating 
polymer network for 
conducting applications 

Poly(ethylene oxide) with 
poly(3,4-
ethylenedioxythiophene) 
(PEDOT) 

IPN [21] 
 

Nonlinear optical properties Polycarbonate-polyurethane-
polymethacrylate 

IPN [8, 22] 
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1.1 Nanoparticles for Ultrathin Nanocomposites 

Polymer-nanocomposites have a wide range of properties, which can be 

controlled to tailor ultra-thin films to specific specifications.  Some of the critical 

properties of these coatings include: 

 Mechanical properties, including modulus, scratch, and hardness. 

 Adhesion properties - interlaminar adhesion from layer to layer, and adhesion of   

nanocomposites to substrate versus temperature, and solvent exposure. 

 Optical properties, including clarity, haze, and refractive index. 

 Flex - particularly on soft polymer substrates. 

 Rapid polymerization rates - 90% conversion or tacky, minutes to full cure. 

Control of these properties requires control of the polymer chemistry, orientation 

of the nanoparticles, nanoparticle packing and size, particularly in reference to the layer 

thickness.  Optical and mechanical properties of polymer coatings can be affected by a 

number of factors including but not limited to: inter-laminar adhesion of nanocomposite 

layers, viscosity of the fluids, particle loading, rate of coating speed, and surface tension.  

Figure 1.1 shows the process flow diagram for producing ultrathin nanocomposites with a 

monomer-solvent-nanoparticle solution.  Nanoparticles become trapped in the polymer 

matrix after they are spin coated onto a substrate, forming a nanocomposite. 

 Few studies have been performed that analyze the surface morphology of ultra-

thin nanocomposites based on concentration and particle size of the nanoparticles 

incorporated into the nanocomposite.  Previous studies report using bimodal mixtures of 

silica nanoparticles (10 nm and 100 nm nominal diameters) in an acrylate-based 

monomer system for study [1].  Kanniah reported no change in the surface roughness as 

the weight fraction of 100 nm size particles increased from 0.1 to 0.35 for bimodal 

nanocomposites.  However, no data was present regarding the effect of the concentration 

of unimodal particle size mixtures on the surface roughness of ultrathin films.  To better 

understand the behavior of bimodal nanocomposites it is necessary to first understand the 

behavior of unimodal nanocomposites.  
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Figure 1.1  Process flow diagram for producing ultra-thin nanocomposites with a 

monomer-solvent-nanoparticle solution. Nanoparticles become trapped in the polymer 

matrix. 
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The main objective of this work was to determine the effect of particle size and 

particle loading on the surface morphology of ultrathin film optical coatings.  The 

technology used to fabricate these films was a nanoparticle-acrylate monomer 

nanocomposite system, with spin coating deposition methods, to achieve ultrathin 

nanocomposite films.  The effect of nanoparticle loading and nanoparticle size on surface 

morphology of ultrathin film acrylate-based nanocomposites will be investigated. 

Researchers do not fully understand the affect these properties have on the surface 

roughness.  Dynamic light scattering and transmission electron microscopy will be used 

to characterize and understand the particles used in the nanocomposite.  Atomic force 

microscopy will be used to determine the surface roughness of the nanocomposite films.  

Through these methods a better understanding of the particle loading and particle size on 

the surface roughness of ultrathin film nanocomposites will be obtained. 

1.2 Nanoparticle Characterization 

Nanoparticles come in a wide variety of sizes and shapes, and therefore, careful 

characterization is needed to truly understand the properties of the nanoparticles and their 

behavior in different systems.  Moreover, surface properties such as area, energy, 

porosity, and functionalization can affect how nanoparticles behave in solution or in a 

solid phase [4, 23].  Nanoparticles can be characterized using a wide array of techniques 

including, but not limited to, transmission electron microscopy (TEM), scanning electron 

microscopy (SEM), atomic force microscopy (AFM), dynamic light scattering (DLS), 

size exclusion chromatography (SEC), small angle neutron scattering (SANS), matrix-

assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF), and 

electrospray differential mobility analysis (ES-DMA) [24]. 

For purposes of this document we will focus on TEM, DLS, and AFM.  TEM and 

DLS will be used to obtain the particle size distribution, providing information about the 

agglomeration/aggregation of the nanoparticles.  Agglomeration is the grouping of 

particles based upon affinity for one another, and typically occurs in liquid solutions with 

charge instability.  Aggregation takes place when the particles are ‘fused’ together and 

result in larger solids in solution or more commonly in the form of powder.  Uniform, 

stable, and monodispersed nanoparticles of less than 150 nm in liquid dispersion are 
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critical for synthesizing ultra-thin nanocomposite coatings.  Dispersing particles into 

solution can be very difficult as shown by Mandzy, et. al.[25].  Therefore, it is important 

to have particles which were formulated in dispersion.  Figure 1.2 shows the difference 

between monodispersed, agglomerated, and aggregated particles.  AFM will be used to 

analyze the surface morphology of the nanocomposites.   

The main objectives are: to better understand the characterization techniques 

needed to appropriately classify nanoparticle size distributions, and control the surface 

morphology of ultrathin nanocomposites by varying the nanoparticle filler mixtures used 

to produce the material.  Particle size distributions are typically performed using 

TEM/SEM for solids and DLS for liquid dispersions.  Information gained from these 

measurements provides valuable information about the nanoparticles used in a system.  

Measuring nanoparticles using more than one method provides a reliable way to validate 

results. 
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Figure 1.2 Sketch of monodispersed, agglomerated particles in solution, and aggregated 
particles are fused as a solid (either in powder form or in dispersion). 
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1.3 Nanocomposite Coating Morphology 

Nanosized fillers can enhance the physical properties of polymers but often do not 

have adverse effects on polymer processing [26, 27].  Having precise control of 

nanoparticle dispersion in precursor solutions and polymeric matrices is essential to 

developing high-performance nanocomposites [28].  This is due to interactions between 

nanoparticles.  The systems used in this study are based on acrylate monomers providing 

the necessary flexible continuous phase, which also helps promote homogeneous 

nanoparticle dispersion when nanofillers are added [29].  One of the most important 

aspects of nanocomposites is the interfacial interactions between polymer and nanoscale 

filler [29].  The overall size and surface properties will ultimately govern the properties 

of the interactions between polymer and nanoparticle.   

The main objective of this work is to control the surface morphology of ultrathin 

nanocomposites by varying the nanoparticle filler mixtures used to produce the material.   

Understanding the morphology of such nanocomposites provides researchers with an 

understanding of how to make highly specific types of nanocomposites.  For example, 

optical coating materials often have multiple layers of nanocomposites with the same 

polymer base.  Within each layer are nanoparticles with varying refractive indices.  The 

change in refractive indices between the layers can be optimized for a desired reflection 

or transmittance of light for a given range of wavelengths [30].  Generally, tolerances 

must be less than +/- 5nm for proper control of optical properties.  Therefore, it is 

imperative to have exact control of the surface roughness of each nanocomposite layer. 
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1.4 Thesis Overview  

The objective of this thesis is to provide an understanding of how the particle size 

and concentration govern the surface morphology of ultra-thin film nanocomposites.  

Low particle concentrations of precursor solutions can still provide a relatively high 

loading of particles in a nanocomposite.  Details on experimental methods are found 

within each chapter as needed. 

This chapter summarizes and outlines the relevance and objectives contained in 

this dissertation.  Chapter 2 addresses nanoparticle characterization and morphology.  

Chapter 3 explains the experimental methods used to synthesize ultra-thin film 

nanocomposites.  Chapter 4 explains the effect particle size and particle concentration 

have on the surface morphology of ultra-thin nanocomposite films.  Chapter 5 

summarizes the results found in Chapters 2-4.   

George H. Heilmeir is a well-known engineer and businessman who developed a 

set of questions for new research projects or new product development, known as the 

Heilmeier’s catechism [31]: 

 What are you trying to do? 

 How is it done today? 

 What is new in your approach? 

 Who cares? 

 What difference will a successful project make? 

 What are the risks / payoffs? 

Providing answers to Heilmeier’ catechism helps create a basis for the research project, 

improves project planning, and possible milestones.  Table 1.2 answers Heilmeier’s 

questionnaire for developing low haze ultrathin film nanocomposites for optical 

applications.  Furthermore, advancing technologies that could lead to new markets are, 

but not limited to: 

 Gradients of refractive index through the layer or near the layer interface 

 Improved impact resistance and interfacial adhesion 
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Table 1.2  Heilmeier’s questionnaire: Developing low haze ultrathin film 

nanocomposites. 

What are you trying 
to do? 

Control surface roughness/morphology for low haze ultrathin 
nanocomposite films for optical product applications. 
Applications include but not limited to hydrophobic and 
antireflective coatings.  

How is it done 
today? 

It is done today by nanoparticle-acrylate monomer 
nanocomposite system with various monodispersed 
nanoparticles of different refractive indices. 

What’s new in your 
approach? 

 Vary the concentration of nanofillers to control surface 
roughness for improved control of surface roughness.  
May lead to: 

 Simple tool/method to control the surface morphology  
 Changing the particle size of the nanofiller to control the 

surface roughness. 
Who cares?  Optical coating suppliers who develop optical products 

with desired specifications. Other specialty coatings 
manufacturers (Circuit /Photoresist manufactures). 

 Researchers with areas of interest such as optical 
coatings, reactive surface coatings (self-cleaning), 
protective-fuel cell membranes; interlayer adhesion aids, 
laminated nanocomposites. 

What difference will 
a successful project 
make? 

 Understanding surface morphology can allow 
manufactures or researchers develop very specialized 
coatings with better control. Optical property 
interdependence would help develop different specialty 
coating product applications.   

 Reducing multiple layers for antireflective coatings 
would reduce the manufacturing cost and eventually 
product price. 

 Low-cost option for control of surface morphology 
What are the 
risks/payoffs? 

 Increasing surface roughness for hydrophobicity without 
compromising transparency (low haze) in an ultrathin 
film. 

 Characterizing nanoparticle segregation for ultrathin film 
coatings is always required. 

 Time loss to obtain information about a single coating 
recipe. 

What are the 
milestones to check 
for success? 

 Check surface roughness variances between 
concentration and particle size. 

 Study the consistency of the surface properties of 
polymer nanocomposites with a silica-acrylate model 
system. 
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 Adhesion to other polymers, oleophilic surfaces and metals 

 Transfer to new matrix polymers: polyethylene terephthalate (PET) for flexible, 

printable decals; polycarbonate (PC) for high impact and ballistic applications 

(clear optical coatings on PC for military applications) 

 Improved scratch and impact resistance 

The importance of ultra-thin film nanocomposites is growing as technology is becoming 

smaller and smaller.  Being able to control not only the surface roughness but other 

properties, type of particle, the polymer base, thickness, etc. of ultra-thin coatings can 

lead to diverse applications. 
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Chapter 2 Nanoparticle Characterization 

2.1 Introduction 

 Nanoparticles, nanoparticle additives, and engineered nanomaterials (ENMs) have 

become an ever-increasing field of study in the last decade.  Many companies have been 

producing various types of engineered nanoparticles for applications ranging from 

biomedical and food applications to painting and optically transparent coatings.  

However, many companies have a hard time maintaining precise control over the particle 

size distributions of product in a single batch and from batch to batch.  Hence, it is 

imperative for researchers to characterize nanoparticles obtained from suppliers and 

synthesized in-house.  This becomes vital when trying to incorporate nanoparticles into 

ultra-thin film nanocomposites with thicknesses of a few nanometers or less. 

Three different commercial silica nanoparticle sizes were measured: IPA-ST (10-

15), IPA-ST-L (40-50), and IPA-ST-ZL (70-100).Note: for IPA-ST-ZL Elongated 

particles have a diameter of 9-15 nm with a length of 40-100 nm.  Silica particles were 

chosen due to their wide use in coating applications.  Furthermore, it was important to 

have particles which would be smaller than the ultrathin polymer film thickness to ensure 

encapsulation of the particles in the ultrathin nanocomposites.  Particle size was 

determined using a 90 Plus dynamic light scattering (DLS) analyzer from Brookhaven 

Instrument, USA; and electron microscopy using a JEOL 2010F Transmission Electron 

Microscopy, Japan.  The DLS provides researchers with the hydrodynamic radius of a 

particle while TEM will provide the primary particle size. 

2.2 Experimental 

ORGANOSILICASOL™ is colloidal silica (not aggregated); monomodel 

dispersions in isopropanol (IPA) produced by Nissan Chemical.  

ORGANOSILICASOL™ is used for a wide range of coating materials to help improve 

the scratch, chip, and mar resistance for: hard-coating agents for plastics, 

nanocomposites, UV/EB curable coatings, paint modification, micro-filler for film, 

nanofiller, heat resistance, weather resistance, and other applications [32].  The colloidal 

solution can come in a variety of particle sizes with a variety of organic solvents.  For the 

system of interest, isopropanol alcohol is the organic solvent of choice.  Nissan Chemical 
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also promotes the dispersability, stability, and narrow particle size distributions of 

ORGANOSILICASOL™.  Table 2.1 shows the manufacturer’s properties of three 

different types of ORGANOSILICASOL™ colloidal solutions that were measured and 

used to make ultra-thin film nanocomposites.  DLS and TEM will be used to verify the 

particle size of dilute colloidal silica solutions of the three samples. 
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Table 2.1 ORGANOSILICASOL™ colloidal silica manufacturer properties reported 
from Nissan Chemical America Corporation. *Elongated particles have a diameter of 9-
15 nm with a length of 40-100 nm [32]. 
 

ORGANOSILICASOL ™ colloidal silica 
Type Size [nm] SiO2 [wt %] µ [mPa.s.] S.G. Solvent 

IPA-ST  10 - 15 30-31 < 15 0.96-1.02 Isopropanol 

IPA-ST-L  40 - 50 30-31 < 15 0.96-1.02 Isopropanol 

IPA-ST-ZL  70-100* 30-31 < 15 0.96-1.02 Isopropanol 
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The three different samples of colloidal silica were used to incorporate into 

nanocomposite precursor solutions.  Precursor solutions for spin coating contained less 

than 10 wt% silica.  Concentrated samples provided by the manufacturer are difficult to 

measure due to the high concentration of silica and turbidity.  All samples used to 

measure the particle size were diluted to less than 1 wt% dispersions in IPA. 

2.3 Dynamic Light Scattering (DLS) 

One of the most widely used methods to measure the particle size of sub-micron 

particles (less than 1 um) and nanoparticles is dynamic light scattering (DLS).  This is 

also known as photon correlation spectroscopy or quasi-elastic light scattering [33].  DLS 

utilizes the diffusivity of small particles experiencing Brownian motion in solution to 

determine the particle size (hydrodynamic diameter) [34].  Light scattered by particles in 

solution causes fluctuations in the measured intensity of light by a detector.  Particles 

which undergo Brownian motion in solution can be described by the autocorrelation 

function which decays exponentially with time.  Equation 2.1 is the autocorrelation 

function which determines how long a given measured signal stays the same.  Equation 

2.2 is obtained by using the Siegert relationship (assuming scattering is homodyne and a 

random Gaussian process), as well as, approximating Equation 2.1 since infinite time 

limits cannot be achieved [35].  Equation 2.2 relates intensity to the electric field 

autocorrelation function.  The electric field autocorrelation function, g(t), represented in 

Equation 2.2 is generally normalized and represented by an exponential decay as shown 

by Equation 2.3. 

 

           
 

  
             
 

  
               Equation 2.1 

 

                    Equation 2.2 

 

          Equation 2.3 

 

       Equation 2.4 
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For translational diffusion, Γ, the decay rate is represented is shown in Equation 2.4.  

Furthermore, the scattering vector, q, and translational diffusion coefficient, D, are 

represented by Equation 2.5 and Equation 2.6, respectively.  Equation 2.6 is the Stokes-

Eienstein equation which is used to calculate the size of the particles in solution.  The 

interactions between particles and fluid are then measured relating to intensity. 

 

  
   

 
    

 

 
   Equation 2.5 

  
   

     
  Equation 2.6 

 

The translational diffusion coefficient describes motion, size, shape, and surface of the 

particles in motion [36].  Factors that influence the diffusion of particles through a fluid 

media include but are not limited to: ionic strength, surface chemistry, irregular shaped 

particles, and temperature.  Figure 2.1 shows by example the hydrodynamic radius of a 

particle in solution.  The hydrodynamic radius includes the core of the particle, additional 

layers/ligands or particles adsorbed on the surface of the particles, and the solvation layer 

made up of counter-ions.  Possible small chain groups, such as a carboxyl group, could be 

present on the surface. 

When measuring particles using dynamic light scattering it is important to have 

dilute solutions or suspensions.  Because we measure the scattering of light due to the 

movement of particles in their surrounding media, concentrated solutions can cause 

discrepancies in the measurements.  Turbid dispersions or dispersions consisting of high 

concentrations of particles typically result in either no transmission of light through the 

sample cell or cause multiple scattering of light waves.  This directly affects the 

determination of the particle size by either providing no measurement or an incorrect 

estimate of the particle size [36].  Final diluted dispersions of particles measured using 

DLS were approximately 0.1 wt% of silica in IPA. 
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Figure 2.1 An example of the spatial region included in the hydrodynamic radius of a 
particle calculated using dynamic light scattering techniques.  The radius consists of any 
physical or electrical layers surrounding the particle. 
  

Rh
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2.3.1 Dynamic Light Scattering - Results 

Solutions of the three different particle sizes (IPA-ST, IPA-ST-L, IPA-ST-ZL) 

were measured on the 90Plus Particle Size Analyzer.  Using the BIC Particle Solutions 

software version 1.1, the intensity-weighted, number-weighted, and volume-weighted 

distributions can be obtained when measuring the particle size.  These distributions are 

derived via CONTIN (CONstrained regularization method for INverting data), a non-

linear regularization method developed by S. Provencher, which looks for the “simplest 

solution consistent with prior knowledge and experimental data” [37, 38].  The 

correlation function is then transformed using the CONTIN algorithm to obtain the 

intensity-weighted distribution function.  From the intensity-weighted distribution 

function, number-weighted and volume-weighted distributions are obtained.  For 

purposes of this section, the volume distributions will be used to compare the particle size 

to TEM in the next section.  The intensity-weighted and number-weighted distributions 

for each corresponding volume-weighted distribution can be found in Appendix A. 

The volume-weighted size distribution is related to the intensity-weighted 

distribution by Equation 2.7.  Moreover, the number based size distribution is related to 

the intensity weighted and volume weighted distributions by Equation 2.8.  Where, M, is 

the Mie light scattering coefficient (M = 1 for particles whose diameter is less than 25 

nm).  The volume-weighted particle size distribution best represents the volume or mass 

of particles which are in dispersion.  The number-weighted distributions represent how 

many particles of each size are present in dispersion. 

 

          
     

   
     

    
    Equation 2.7 

          
     

   
     

     
   Equation 2.8 

All samples were measured at 25°C for 300 seconds with an equilibrium time of 

30 seconds between each run.  The dust cutoff was set at 30.00.  The dust cutoff is an 

algorithm built within the program used to help reject data corrupted by light scattering 

caused by dust.  For smaller particles (less than 30 nm), the dust cutoff should be 
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lowered.  All data sets observed a 98% or greater data retention rate, which proved an 

appropriate dust cutoff level was used. 

Figures 2.2 and 2.3 show the volume and intensity weighted differential and 

cumulative frequency distribution functions for IPA-ST colloidal suspension of silica 

nanoparticles.  Similarly, Figures 2.4, 2.5, and 2.6 show the volume, intensity, and 

number-weighted differential and cumulative frequency distribution functions for IPA-

ST-L.  Figure 2.7 shows the volume-weighted differential and cumulative particle sized 

distribution for and IPA-ST-ZL colloidal silica dispersion suspension of silica 

nanoparticles.  All concentrations in the dispersions were less than 0.1 wt% silica.   

Figure 2.2 shows the averaged volume-based particle size distribution of an IPA-

ST dispersion in isopropanol.  The volume-based distribution is slightly log normally 

distributed with an average particle size of 5 nm.  The averaged intensity-based particle 

size distribution of IPA-ST is found in Figure 2.3.  The particle size distribution of the 

intensity-based distribution is bimodal largely due to agglomeration of smaller particles 

in solution.  The bimodal distributions also appear to be more normally distributed.  The 

larger distribution average has an average approximately eight times larger than the 

smaller particle size distribution.  The number-based distribution can be found in 

Appendix A and shows good agreement with the volume-weighted distribution. 

Figure 2.4 shows the averaged volume-based particle size distribution of an IPA-

ST-L dispersion.  The distribution is slightly log normally distributed with a slight skew 

towards larger particles.  Some agglomeration is present in the sample as shown by the 

smaller larger distributions at 113 nm and 162 nm.  Further comparison with the 

intensity-weighted particle size distribution found in Figure 2.5 shows that the IPA-ST 

colloidal solution is bimodal and not normally or log normally distributed.  The intensity 

of the larger particle size distribution suggests a large amount of agglomeration in the 

sample.  The average particle size of IPA-ST-L particles was approximately 35 nm.  

Particle sizes ranged between 25 nm and 55 nm.  The number-based particle size 

distribution most clearly represents the size of the particles and is log normally 

distributed in Figure 2.6 with an average particle size of 36 nm.  Further analysis of the 

particles via TEM was needed to determine the correct particle size distribution for IPA-

ST-L samples. 
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Figure 2.2 Volume-weighted differential and cumulative frequency distributions for IPA-
ST colloidal silica dispersion suspension of silica nanoparticles.  Concentration of silica 
nanoparticles was less than 0.1 wt% in dispersion. 
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Figure 2.3 Intensity-weighted differential and cumulative frequency distributions for 
IPA-ST colloidal silica dispersion suspension of silica nanoparticles.  Concentration of 
silica nanoparticles was less than 0.1 wt% in dispersion. 
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Figure 2.4 Volume-weighted differential and cumulative frequency distributions for IPA-
ST-L colloidal silica dispersion suspension of silica nanoparticles.  Concentration of 
silica nanoparticles was less than 0.1 wt% in dispersion. 
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Figure 2.5 Intensity-weighted differential and cumulative frequency distributions for 
IPA-ST-L colloidal silica dispersion suspension of silica nanoparticles.  Concentration of 
silica nanoparticles was less than 0.1 wt% in dispersion. 
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Figure 2.6 Number-weighted differential and cumulative frequency distributions for IPA-
ST-L colloidal silica dispersion suspension of silica nanoparticles.  Concentration of 
silica nanoparticles was less than 0.1 wt% in dispersion. 
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Figure 2.7 Volume-weighted differential and cumulative frequency distributions for IPA-
ST-ZL colloidal silica dispersion suspension of silica nanoparticles.  Concentration of 
silica nanoparticles was less than 0.1 wt% in dispersion. 

 

 

  

0.00 
10.00 
20.00 
30.00 
40.00 
50.00 
60.00 
70.00 
80.00 
90.00 

100.00 

0 50 100 150 200 

Fr
eq

ue
nc

y 
[%

] 

Particle Size [nm] 

Volume-weighted distributions for IPA-ST-ZL  

G [d] 
C [d] 



26 
 

Figure 2.7 shows the volume-weighted particle size distribution for IPA-ST-ZL 

colloidal silica.  The particle size distribution is almost normally distributed.  The average 

particle size was 148 nm with a range between 140 and 160 nm.  The intensity and 

number-weighted particle size distributions were almost identical to the volume-weighted 

distribution.  The particle size distribution of the SiO2 nanoparticles for all type particle 

sizes showed monomodal distributions with averaged particle sizes inconsistent with 

manufacturer specifications. 

Table 2.2 shows the average particle size for the three different size silica 

nanoparticles as reported by the manufacturer and obtained via dynamic light scattering.  

The standard deviation (σDLS), standard error (SEDLS), and range are also shown in Table 

2.2.  DLS results provide the measured hydrodynamic particle size as described by Figure 

2.1.  Measurements for IPA-ST and IPA-ST-L particle sizes were much smaller when 

compared to manufacturer specifications.  This is largely due to the fact that small 

particles scatter less light than larger particles.  Heating caused by the laser used during 

the light scattering measurements could have affected the movement of the molecules.  

Evaporation of the isopropanol during measurement was also noticed.  Possible carboxyl 

groups or small chain molecules could have present on the particles. 

IPA-ST and IPA-ST-L samples were smaller than manufacturer reports.  

However, IPA-ST-ZL samples were much larger compared to manufacturer 

specifications.  The manufacturer specifications are reported as ‘typical’.  Due to the 

range of particle sizes given by the manufacturer further investigation was necessary to 

know the materials which were used.  Hence, it is imperative when obtaining any type of 

nano-material that the materials be characterized with multiple techniques to determine 

the particle size.  Furthermore, since DLS does not provide primary particle size.  TEM 

was also used to compare with manufacturer and DLS results.  The intensity-weighted 

and number-weighted distributions are related to the volume-based distributions by 

Equations 2.7 and 2.8.  Comparing these results to TEM results showed that the primary 

particle size distributions for all samples, ST, ST-L, and ST-ZL were log normally 

distributed and within manufacturer specifications. 
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Table 2.2 Shows the average particle size for the three different size silica nanoparticles 

as reported by the manufacturer and obtained via dynamic light scattering.  

Organosilicasol™ Sizeavg [nm] 

Type Manufacturer DLS σDLS SEDLS Range 

IPA-ST 10 - 15 5.36 0.034 0.015  4 -7 

IPA-ST-L 40 - 50 31.6 2.79 1.25 22 - 45 

IPA-ST-ZL 70-100 148.87 1.89 0.847 140 - 160 
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2.4 Transmission Electron Microscopy (TEM) 

In correlation with using dynamic light scattering as a method to measure the 

particle size transmission electron microscopy can also be used to determine particle size, 

shape, and chemical makeup.  TEM provides the primary particle size (exact particle 

diameter) in comparison to the hydrodynamic diameter, which tends to be larger, 

obtained using DLS.  Images were taken using a JEOL 2010F TEM from JEOL 

Transmission Electron Microscopy, Japan.  All samples of silica nanoparticles were 

diluted to a concentration less than 3 wt % then deposited onto a lacey carbon film with 

200 mesh copper grids.  The grids were from Electron Microscopy Sciences and dipped 

into dispersions, then allowed to dry in a vacuum to remove any solvent.  Optimum 

magnification for all samples varied from 150K to 250K.  Images were taken at 1024   

1024 resolution for all samples.  The cumulative distributions of the colloidal silica were 

determined using the TEM images and GIMP 2.8, a GNU image manipulation program.  

A random sample set of particles were numbered and measured according to pixel width 

then converted to a particle size using pixel to particle ratio. 

2.4.1 Transmission Electron Microscopy - Results 

Colloidal dispersions of diluted concentrations of silica nanoparticles in 

isopropanol were deposited onto a carbon lacey grid using a dip coating method, vacuum 

dried to remove all solvent residue, and then images of the particles were taken.  Figure 

2.8: A) Shows two TEM images of IPA-ST colloidal silica nanoparticles on a lacey 

carbon grid. B) Shows the raw data and lognormal particle size distribution obtained from 

multiple TEM images for IPA-ST.  The particles were not aggregated or agglomerated. 

The lognormal cumulative PSD was calculated using standard statistics after 

particles were measured using GIMP and a pixel to particle ratio was determined.  

Images were taken randomly throughout the lacey carbon grid to find the optimal images 

for measurement.  The pixel-to-particle ratio was 0.333 nm per pixel for all images. 

IPA-ST samples do contain a small amount of larger particles (greater than 15nm) 

which is the maximum reported by Nissan Chemical.  The larger particles cause the 

distribution to be slightly wider than expected.  The average particle size was 13.66 nm in 

diameter with a standard deviation of 2.96 nm and a standard error of 0.296 nm.  The 

average particle size was within the range specified by the manufacturer.  
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A) 

 
B) 

 

Figure 2.8 A) Shows two TEM images of IPA-ST colloidal silica nanoparticles on a lacey 
carbon grid. B) Shows the raw data and lognormal particle size distribution obtained from 
multiple TEM images for IPA-ST. 
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Table 2.3 shows three different distribution models (normal, lognormal, and Weibull 

distributions) which were tested to fit the raw data obtained via TEM.  The arithmetic 

mean, standard error of the mean (SEx), standard deviation (σ ), standard error of the 

standard deviation (SEσ), the r-squared value, and the inverserelative standard error of the 

mean or standard deviation (RSEx= SEx / Mean or RSEσ= SEσ / σ)are shown for each 

model fitted to the raw data.  The lognormal distribution for IPA-ST in Figure 2.8 B has 

an average of 0.496 with a standard deviation of 0.299 and a standard error of 0.030.  

Distribution models tested showed the lognormal fit models the data the best out of all 

models tested and returned the highest RSE. The average primary particle size was within 

manufacturer specifications.  These results will be later discussed in conjunction with the 

results from DLS. 

Figure 2.9: A) Shows two images of IPA-ST-L colloidal silica on a lacey carbon 

grid B) Shows the raw data and lognormal particle size distribution obtained from 

multiple TEM images for IPA-ST-L. Like the particles in Figure 2.8, particles were not 

aggregated nor agglomerated in the TEM measurements. 

The average particle size was 46.85 nm in diameter with a standard deviation of 

7.04 nm and a standard error of 0.704 nm. The lognormal distribution for IPA-ST in 

Figure 2.9 B has an average of 0.495 with a standard deviation of 0.284, and a standard 

error of 0.028.  It should be noted the first apparent image in Figure 2.9 A was 

significantly more concentrated than the image on the right.  Areas throughout the lacey 

carbon grid did not necessarily contain a uniform number of particles.  Because the 

particles were larger than IPA-ST a greater number of TEM images were needed to 

obtain the necessary data for the IPA-ST-L dispersion.  The pixel-to-particle ratio varied 

between 0.333, 0.4, and 0.8333 nm per pixel.  The lognormal distribution in Figure 2.9 B 

has an average of 0.51 with a standard deviation of 0.250, and a standard error of 0.029.  

Table 2.4 shows three different distribution models (normal, lognormal, and Weibull 

distributions) which were tested to fit the raw data obtained.  Similarly to the IPA-ST 

particles, the lognormal model fit the data the best out of all models tested and returned 

the highest RSE. The average primary particle size was within manufacturer 

specifications. 
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Table 2.3 Models tested with fitted parameters for the raw data obtained during TEM. 

Model Mean SEx σ SEσ R
2
 [ RSEx]

-1
 [ RSEσ]

-1
 

Lognormal 2.723 0.003 0.191 0.004 0.985 994 48.22 

Normal 15.35 0.033 2.774 0.052 0.987 408 52.97 

Weibull 16.35 0.042 6.64 0.131 0.988 394 50.59 
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A) 

 

B) 

 

Figure 2.9 A) Shows two images of IPA-ST-L colloidal silica nanoparticles at two 
different concentrations dried on a lacey carbon grid.  B) Shows the actual measured 
particle size fitted with a lognormal particle size distribution for IPA-ST-L measured on 
TEM. 
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Table 2.4 Shows three different models (normal, lognormal, and Weibull distributions) 
which were tested to fit the raw data obtained via TEM. 

Model Mean SEx σ SEσ R
2
 [ RSEx]

-1
 [ RSEσ]

-1
 

Lognormal 3.914 0.001 0.12 0.001 0.997 5,210 102.8 

Normal 50.21 0.051 5.83 0.077 0.996 986 75.43 

Weibull 52.26 0.105 10.38 0.242 0.987 499 42.96 
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Figure 2.10: A) Shows two images of IPA-ST-ZL colloidal silica nanoparticles 

dried on a lacey carbon B) Shows the raw data and lognormal particle size distribution 

obtained from multiple TEM images for IPA-ST-ZL.  The particles were not 

agglomerated or aggregated in any of the images.  The average particle size was 118.30 

nm in diameter with a standard deviation of 7.00 nm and a standard error of 0.813 nm.  

The lognormal distribution for IPA-ST in Figure 2.7 B has an average of 0.51 with a 

standard deviation of 0.250, and a standard error of 0.029.  The lognormal distribution in 

Figure 2.10 B did not fit the raw data (using calculated values not model values), as well 

as, the distributions in Figures 2.8 B and 2.9 B.  This was due to both ‘smaller’ particles 

and ‘larger’ particles which could be possible outliers.  Considering these data outliers, 

would greatly increase the fit of the lognormal distribution.  Furthermore, the average 

particle size was larger than the range claimed by the manufacturer.  Table 2.5 shows 

three different distribution models (normal, lognormal, and Weibull distributions) which 

were tested to fit the raw data obtained.  Similarly to the smaller particles, the lognormal 

model fit the data the best out of all models tested and returned the highest RSE. The 

average primary particle size was larger than manufacturer specifications.  Figure 2.11 

shows the particle size distributions for all three different particle sizes measured via 

TEM with the lognormal model fitted to each respective distribution. 
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A) 

 
B) 

 

Figure 2.10 A) Shows two images of IPA-ST-ZL colloidal silica nanoparticles dried on a 
lacey carbon. B) Shows the actual measured particle size fitted with a lognormal particle 
size distribution for IPA-ST-ZL measured on TEM. 
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Table 2.5 Shows three different models (normal, lognormal, and Weibull distributions) 
which were tested to fit the raw data obtained via TEM. 

Model Mean SEx σ SEσ R
2
 [ RSEx]

-1
 [ RSEσ]

-1
 

Lognormal 4.797 0.001 0.037 0.001 0.992 9,126 45.52 

Normal 121.1 0.068 4.387 0.103 0.991 1,788 42.52 

Weibull 122.65 0.121 34.26 1.25 0.978 1,015 27.34 

 

  



37 
 

 
Figure 2.11 Cumulative master plot of particle size distributions with lognormal 

distribution model for all size particles determined using TEM. 
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2.5 Conclusions 

The particle size distribution of three samples of ORGANOSILICASOL™ 

colloidal silica: IPA-ST (10-15), IPA-ST-L (40-50), and IPA-ST-ZL (70-100) was 

measured using DLS and TEM.  The measured results were then compared with that 

reported by the supplier.  Table 2.6 shows the average particle size reported by the 

supplier and obtained DLS/TEM measurements.  The DLS measurement represents the 

grand mean and the standard deviation of the grand mean, while the TEM measurement 

represents the arithmetic mean and standard deviation of the particle sizes determined 

with each technique used.  Figure 2.11 shows the particle size distributions for the TEM 

fitted with lognormal distribution models.  The distributions are log normally distributed 

for all samples measured using TEM.  The average primary particle size measurements 

obtained using TEM data was more consistent with the data supplied by the manufacturer 

than the data obtained using DLS.  It should be noted that both DLS and TEM reported 

larger average particle sizes than the manufactures range for the IPA-ST-ZL colloidal 

solution. 

 The bimodal behavior found in the intensity-weighted data of IPA-ST and IPA-

ST-L in Figures 2.3 and 2.5 was due to agglomeration of the particles at the conditions of 

the dispersion.  Bimodal behavior was visible for the volume-based distribution of the 

IPA-ST-L sample.  Volume-based distributions for IPA-ST and IPA-ST-ZL were 

unimodal.  Although DLS data was not unimodal for all samples, the respective particle 

size distributions increased in size and breath as the particle size increased.  This result 

was expected.  Solutions were diluted but not sonicated before DLS scans were 

performed.  The larger distributions of the samples suggest the affinity of the particles for 

one another in isopropanol under diluted concentrations.  All particles remained dispersed 

in solution and therefore slight agglomeration is to be expected.  Possible irregularity in 

the IPA-ST and IPA-ST-L samples during DLS measurements were most likely due to 

evaporation of isopropanol and possible carboxyl groups on the surface of the particles. 

Dynamic light scattering techniques are measuring the movement of particles in 

dilute solutions and the particle size is an effective or hydrodynamic diameter 

measurement of the particles. The particle sizes determined using DLS was larger for 

IPA-ST-ZL particles and smaller for all other particles compared to TEM results.   
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Table 2.6 Average particle sizes measured by DLS and TEM compared with 
manufacturer specifications. 

Sizeavg [nm] 

Type Manufacturer DLS σDLS SEDLS TEM σTEM SETEM 95% CI 

IPA-ST  10 – 15 5.36 0.03 0.015 13.66 2.96 0.296 18-Oct 

IPA-ST-
L  40 – 50 19.16 2.79 1.25 46.85 7.04 0.704 41- 60 

IPA-ST-
ZL  70-100* 148.9 1.89 0.847 118.3 7.00 0.813 

105 - 
130 
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Moreover DLS provides the hydrodynamic diameter and TEM provides a primary 

particle diameter.  This trend was also consistent with the TEM data.  TEM results 

showed that all distributions of all different particles were log normally distributed and 

models fit the data very well.  Furthermore, it is important to know the exact size and 

distribution of particles when trying to analyze the surface roughness of ultrathin 

nanocomposites.  The particle sizes obtained from TEM analysis will be the values used 

throughout this document. 
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Chapter 3 Experimental and Analytical Methods 
 

3.1 Introduction 
Spin coating is most widely used in the microelectronics industry for the 

reproducibility and capability of producing a very thin uniform polymer film for 

photoresists [4].  Original studies conducted by Bornside, Macasko, and Scriven 

developed a one-dimensional model to predict the behavior of spin coating materials 

using spin coating [39].  Previous studies conducted by Stange, et. al. examined the effect 

of molecular weight and concentration of polystyrene thin coatings [40].  Furthermore, 

Hall et. al. presented one of the original studies on ultrathin polymer film thickness as a 

function of spin speed and polymer concentration [5].  Modeling of the overall film 

thickness, especially with the presence of nanoparticles, is difficult.  The first stage of 

film thickness is governed highly by spin speed.  The second portion of film thickness is 

governed by the rate of evaporation of solvent species.  For purposes of this study the 

ultrathin coating thickness will assume to follow similar assumptions presented in 

previous studies.   

Ultrathin film coatings are a growing area of research due to the capability to 

produce flexible coatings which are both hydrophilic and hydrophobic.  A hydrophobic 

surface is not easily wetted by water, and similarly, a hydrophilic surface is easily wetted 

by water.  The degree to which a surface is wetted describes the hydrophobicity or 

hydrophilicity of that particular substrate [41].  Superhydrophobic surfaces or coatings 

are defined as a surface whose water contact angle is greater than 150° [42, 43].  

Superhydrophilic surfaces are defined as a surface whose water contact angle is less than 

5° and are often referred to as being self-cleaning surfaces [44].  Superhydrophilicity is 

the property of a surface which is self cleaning, has anti-fog properties, or is 

biocompatible [42, 45, 46]. 

The wetting of a surface is highly dependent upon the relationships between the 

surface energies of the liquid and the surface energy of the substrate.  Adhesion between 

the surface-liquid interface is governed by the forces between atoms.  Atoms which are a 

couple of atoms in length below the surface have minimal contribution to the adhesion 

forces.   
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Researchers are developing more advanced types of coatings for hydrophobic and 

hydrophilic applications [42, 44, 47-49].  One of the most well-known examples of 

naturally occurring hydrophilic/hydrophobic surfaces is the lotus leaf which possesses 

self-cleaning properties obtained by the variances in the surface roughness on the nano- 

and micro-scales [50, 51].  By controlling the roughness of a surface, researchers can 

control the amount of interactions between the surface and it’s interface depending on the 

phase and chemical makeup of the apparent interface.  Changing the surface chemistry is 

one of the few other ways besides modifying the roughness to change the surface 

properties of a coating or surface. 

  



43 
 

3.2 Coating Materials 

Glass substrates were chosen for simplicity, rigidness and hydrophilic surface 

properties.  Precleaned Fisherbrand® microscope slides were obtained from Fisher 

Scientific.  Two different methods were used to clean the microscope slides.  Cleaning 

method 1 utilized distilled water with soap for an initial washing, followed by rinsing the 

slides a minimum of three times with isopropanol and drying between each rinse with 

compressed nitrogen.  Cleaning method 2 utilized Fisherbrand® Sparkleen 1 as the initial 

hand washing agent, de-ionized-ultra-filtered (D.I.U.F.) water as the rinsing agent.  Slides 

were then cleaned with 200 proof un-denatured ethanol obtained from Decon Labs Inc., 

rinsed with an acetone wash, and then washed with isopropanol.  The isopropanol and 

acetone were obtained from Fischer Scientific®.  Between each step the slides were dried 

with compressed nitrogen.   This process thoroughly ensures that the slides are clean 

from organics and debris. Slides were stored in a sealed plastic container until ready to be 

coated.  The best method was the second method previously mentioned.  This provided a 

cleaner, spot-free surface.  The method was compared visually and using AFM to 

examine the surface roughness. 

Coating solutions were prepared using colloidal silica from Nissan Chemicals 

using three different size nanoparticles: IPA-ST (10-15), IPA-ST-L (40-50), and IPA-ST-

ZL (70-100).  The acrylate monomer dipentaerythritolpentaacrylate (SR399) purchased 

from Sartomer USA, LLC. was used for its clarity, abrasion resistance, flexibility with 

hardness, fast curing response for ultraviolet light, and low skin irritation. The initiator, 

1-Hydroxy-cyclohexyl-phenyl-ketone (Irgacure 184) from Ciba Specialty Chemicals, was 

used for its efficient non-yellowing properties during photopolymerization of unsaturated 

prepolymers (in particular acrylates).  Isopropyl alcohol 99+% was purchased from 

Fischer Scientific. 
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3.3 Ultrathin Nanocomposite Film Recipes 

In order to obtain an ultra-thin nanocomposite film, high sheer rates and low 

viscosity fluids are needed.  The film recipes were developed by spin coating a low 

viscosity fluid at high speeds to promote quick evaporation of the solvents, leaving 

behind a polymer-particle sol-gel matrix to be cured.  The mixtures were comprised of 

solids and liquids. The solids were dipentaerythritolpentaacrylate (SR399), silica 

nanoparticles, and Irgacure 184; the liquids were isopropanol and 1-methoxy-2-propanol 

alcohol. 

Original concentrations were determined to be: IPA-ST was 32.93 wt% silica 

nanoparticles, IPA-ST-L was 37.34 wt% silica nanoparticles, and IPA-ST-ZL was 35.67 

wt% silica nanoparticles.  Three dilutions for all three different size colloidal silica were 

prepared.  Table 3.1 shows the concentrations of the diluted colloidal dispersions.  A 

stock solution of 5 wt% SR399 in 1-methoxy-2-propanol was also prepared.  The stock 

solution was then used as needed with the addition of 3 wt% initiator (based on monomer 

only) before precursor solutions were prepared.  Each diluted colloidal silica solution was 

then mixed in a 1:1 weight ratio with the monomer solution to produce spin coating 

precursor solutions.  Table 3.2 shows the final concentrations of silica in all of the 

different spin coating solutions for each respective size silica nanoparticles. 

Coatings were then prepared using a novel spin coating system with a spin speed 

of 1255 revolutions per minute (RPM).  Figure 3.1 shows the calibration of the in-house 

spin coater using a Monarch RPM measurement gun.  Monomer solutions were then 

applied using a squeeze bulb pipet with approximately 1-2 mL of monomer precursor 

solutions.  Figure 3.2 A) Shows the in-house spin coating system used to produce the 

ultra-thin film nanocomposite coatings.  Once applied, glass slides remained in revolution 

for 5 seconds.  Figure 3.2 B) Shows the White Lightning 3200X Flash Unit from Paul C. 

Bluff, Inc. used to cure the ultra-thin nanocomposite coatings.  The coatings were flashed 

three times with a 250 Watt bulb waiting 5 seconds between each UV flash.  Flash times 

were 1/300 seconds.  
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Table 3.1 Concentrations of diluted colloidal silica samples in IPA. 

IPA-ST [wt%] IPA-ST-L [wt%] IPA-ST-ZL [wt%] 

Calculated Actual Calculated Actual Calculated Actual 

3 2.81 3 2.82 3 2.84 

9 7.60 9 7.84 9 7.73 

15 11.48 15 11.97 15 11.84 
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Table 3.2 Concentrations of silica in colloidal dispersions for spin coating. 

Silica concentrations for 1:1 wt:wt Mixtures for precursor 

solutions 

IPA-ST [wt%] IPA-ST-L [wt%] IPA-ST-ZL [wt%] 

1.41 1.41 1.42 

3.79 3.91 3.87 

5.74 5.99 5.92 
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Figure 3.1 Shows the calibration plot for the in-house spin coating system found in 

Figure 3.2 A. 
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A)  B) 

 

Figure 3.2 A) Shows the “in house” spin coating system used to make the ultra-thin film 

coatings. B) Shows the White Lightning UV source used to cure the coatings. 
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3.4 Profilometry Measurements 

A Veeco Dektak 6M Stylus Profilometer was used to measure and verify the 

thickness of the ultra-thin film nanocomposites for multiple samples.  Single layer film 

coatings ranged from 120 to 170 nm film thickness depending on the particle size.  

Smaller silica particles resulted in a thinner film coating while larger particles resulted in 

thicker film coatings.  Double layer film coatings ranged from 300 to 450 nm in film 

thickness.  Samples were prepared using a standard razor blade to delaminate a section of 

the film from the glass substrate.  The profilometer measures the variance in height along 

a single axis using a diamond stylus.  Scan rates were maintained 100 μm per second.  

The total scan distance was 5 mm.  Sample positioning had no effect on the outcome of 

the data.  This was established by measuring the surface thickness over multiple positions 

of the sample in the horizontal, vertical, and diagonal axis.  

Figure 3.3 shows two examples of the profilometer scans obtained - a single and 

double layer ultra-thin film coating.  Figure 3.3 A) shows a single layer coating which 

has a coating thickness approximately 150 nm.  All single layer coatings ranged between 

120 and 170 nm. Figure 3.3 B) shows a double layer coating which has a coating 

thickness approximately 350 nm.  Again, all double layer coatings ranged between 300 

and 450 nm.  The profilometer is a very efficient and quick way to obtain the variance in 

height along a single axis.  For a more exact measurement of the coating thickness the 

sample should be cast in a resin and a cross section should be observed using TEM.  This 

method is very timely and cost inefficient.  Limitations include the resolution of the data 

and the inability to efficiently obtain three dimensional topographic data.  Atomic force 

microscopy will be used to determine the topography as opposed to using profilometry. 
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A)  

B)  

Figure 3.3 Profilometry scans of A) single layer ultra-thin film coating.  B) double layer 

ultra-thin film coating.  Calibration bar is equal to 50 nm for A and 100 nm for B. 
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Chapter 4 Atomic Force Microscopy - Experimental 

4.1 Introduction 

All coating samples prepared were analyzed using an Agilent Technology AFM 

model no. 5500 with isolation chamber.  Non-contact mode / tapping mode, was used 

with a large area scanner with a scan range 1μm   1μm to 100μm   100μm.  In 

particular the small area scanner (scan range from 0.1μm  0.1μm to 10μm   10μm) was 

not used due to the limitations of the scanner when approaching the limits of the scan 

range.  Scan sizes for samples between 5μm   5μm, 10μm   10μm, and 25μm   25μm.  

Scans taken at the 10μm   10μm sample size were used for comprehensive analysis with 

a resolution of 512   512 pixels.  Tap 300Al-G cantilevers were purchased from Ted 

Pella, Inc. and manufactured by Budget Sensors with a resonant frequency of 300 kHz, 

force constant of 40 N/m, and aluminum reflex coating.  Figure 4.1 shows the basic 

principle of how the topographic three dimensional surface is constructed using the AFM 

cantilever tip.  The tip ‘drags/taps’ across the surface of a material and a detector 

measures the intensity in the deflection of the laser.  The signal is then converted to a 

three dimensional topographical image using the provided software, Agilent 

Technologies Picoview 1.10.1.  However, Picoview does not have the most appropriate 

data analysis capabilities.  Raw data was saved and processed using Gwyddion.    

Gwyddion v2.31, a scanning probe microscopy (SPM) image analysis program 

was used to process all raw data obtained from AFM.  Data manipulation steps included 

but did not necessarily require the following: Fix zero, level data by mean-plane 

subtraction, remove scars / correct horizontal scars (strokes), line correction / correct 

lines by matching height median, shade data, and statistical quantities.  Various 

combinations of data manipulation steps were used to obtain the most realistic 

representation of the raw data.  The root mean square (RMS) roughness was then 

obtained for each sample. 
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Figure 4.1 Shows an example of the design of the AFM cantilever tip used and the basic 

concept design concept of AFM operation.  The laser reflects off the surface of the 

cantilever and is recorded by the detector while drug across a surface. 
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4.2 Surface Roughness 

The RMS roughness is the average of the measured height deviations taken within 

the evaluation length and measured from the mean line of a sample (Gwyddion manual).  

This follows ASME B46.1-1995, ISO 4287-1997, and ISO4287/1-1997 standards.  The 

root mean square (RMS) roughness, Rq, is calculated as shown by Equation 4.1. 

    
 

 
          

      Equation 4.1 

 

Where Rq, N, zj, and    are the root mean square roughness, sample size, height of each 

data point collected, and average height, respectively.  The surface roughness is solely 

dependent upon the height distribution of the peaks within a sample. 

4.3  AFM for Glass and Neat Polymer Mixture 

Before the surface coating mixtures were applied, the surface analysis was 

performed on pure glass substrate samples and neat polymer.  The initial measurements 

conducted using AFM were performed on the glass substrates to verify the initial surface 

roughness of the material coated. Figure 4.2 shows two 10 10 um scans of two different 

glass samples.  Figure 4.2 A) shows the glass substrate surface topology after using 

cleaning method 1.  Figure 4.2 B) shows the glass substrate surface topology after using 

cleaning method 2.  This experiment was performed to determine which cleaning method 

previously mentioned was the best for the substrates used.  The surface roughness was 

measured for both samples with Rq = 5.1 nm and 2.9 nm respectively for cleaning method 

1 and cleaning method 2.  This verifies that cleaning method 2 was better for removing 

debris and organics from the surface.  Cleaning method 2 was used for all glass substrates 

for all samples.  A series of measurements were made using multiple scans to obtain an 

average substrate surface roughness with Rq = 3.59 nm with a standard deviation, σ = 

0.65 nm.  It is imperative to minimize the time exposing substrates to the atmosphere 

before and after coating since dust and particles can adhere to the surface via static 

energy.  As seen in Figure 4.2 B there are a few dust particles on the surface, the largest 

being in the top corner with a height of 107 nm.    
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A) B)  

Figure 4.2 Shows two 10   10μm scans of two different glass samples. A) was cleaned 

using cleaning method 1. B) was cleaned using cleaning method 2. 
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Figure 4.3 Shows two 5   5μm AFM scans of neat polymer coatings.  Figure 4.3 

A is a single layer coating of neat polymer shown with a few minor imperfections.  The 

image with imperfections was chosen to show a difference in height on the surface.  

These imperfections are largely due to dust contamination of the particular sample.  No 

silicon nanoparticles were present in the mixture used to coat the glass slide.  Figure 4.3 

B is similar to Figure 4.3 A, a double layer coating of neat polymer again shown with a 

minor imperfection.  It should be noted that Figure 4.3 B has only one major imperfection 

and Figure 4.3 A has four major imperfections.  Visualizing the topography of ultra-thin 

polymer coatings without imperfections can be difficult as can be seen in the areas 

without imperfections in both Figure 4.3 and Figure 4.4.  This is due to the surface being 

extremely uniform and indifferent over the substrate.  A large amount of debris/dirt is 

covered and the static of the surface decreases, leaving an extremely uniform coating.  

Figure 4.4 shows the vertical view of both respective images in Figure 4.4.  Single 

coatings were approximately 150 nm and double layer coatings were approximately 300 

nm.  A series of measurements were made using multiple scans for both the single and 

double layer coatings. The average single layer surface roughness was Rq = 1.09 nm with 

a standard deviation, σ = 0.36 nm.  The average double layer surface roughness, Rq = 

0.69 nm with a standard deviation, σ = 0.06 nm.   

Figure 4.5 shows the difference in average surface roughness between glass, a 

single layer polymer coating, and a double layer polymer coating.  The decrease in 

surface roughness is a direct result of the uniformity which the polymer layer forms 

during the spin coating process.  The ultrathin film polymer coating is extremely smooth 

due to the low viscosity of the monomer mixture allowing monomer to fill any gaps or 

valleys on the surface of the substrate.  Figure 4.5 also shows applying a second ultra-thin 

film coating upon the first slightly decreases the surface roughness.  The error bars 

represent the standard deviation (of the grand mean) for each respective type of coating.  

Furthermore, there is not a large variation in the difference between a single layer and a 

double layer coating of the neat polymer.  This goes to show that the surface roughness 

would not change significantly if additional layers are applied.  If additional layers were 

applied the surface roughness would be very close to that of the double layer coating 

surface roughness. 
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A) B)  

Figure 4.3 Shows two 5   5μm AFM scans of neat polymer coatings A) A single layer 

coating of polymer mixture without nanoparticles (thickness ~ 150 nm). B) A double 

layer coating of polymer mixture without nanoparticles (thickness ~ 300 nm). 
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A) B)  

Figure 4.4 Shows the vertical topography image of the three dimensional images found in 

Figure 4.3.  A) Shows the single layer coating of neat polymer on glass B) shows the 

double layer coating of neat polymer on glass. 
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Figure 4.5 Comparison of average surface roughness for glass, neat (without particles) 

single coating and neat double coating ultra-thin film coatings.  Error bars represent the 

standard deviation of the grand mean. 
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4.4 AFM of Colloidal Silica Nanocomposites 

The surface roughness of colloidal silica nanocomposites was then compared to 

that of the glass, single layer polymer coatings, and double layer polymer coatings.  The 

nanocomposites were coated in the same manner as previously described.  Three different 

concentrations of particles were used for each size nanoparticle.  Single and double layer 

nanocomposites were also examined for each concentration.  The surface roughness for 

different nanocomposite formulations was then compared for each particle size. 

4.4.1 IPA-ST-L Nanocomposites 

Nanocomposite film coatings with IPA-ST-L particles were prepared and 

analyzed.  Single and double layer coatings were prepared with concentrations of 1.41, 

3.91, and 5.99 wt% silica nanoparticles in monomer dispersions.  Three measurement 

scans were performed for each different scan size: 5   5 μm, 10   10 μm, and 25   25 

μm for each sample.  Table 4.1 shows the matrix of surface roughness measurements 

used to determine if variation in surface roughness exists with different scan sizes of the 

same surface. Three measurements were taken for each scan size for each concentration 

silica nanoparticles.  All groups of three scans were performed on random places on the 

same surface for each respective sample.   

Surface roughness values for both single and double layer coatings were 

compared to one another using analysis of variance (ANOVA) statistical analysis.  A 

confidence level of α = 0.05 was used.  Table 4.2 shows the p-value and F-test values 

from ANOVA comparing the differences in surface roughness measurements between 

scan sizes (5 μm vs. 10 μm vs. 25 μm) for each concentration of silica nanoparticles for 

single layer and double layer coatings independent of one another.  Only the double layer 

1.41 wt% silica nanocomposite film returned a p-value less than 0.05 (0.048) with F-

value greater than F-critical value (5.232 > 5.1432).  As ANOVA test results met the null 

hypothesis, (that there was no significant difference between surface roughness and scan 

size), a scan size of 10   10 μm was used for universal analysis for all samples. 
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Table 4.1 Matrix of surface roughness measurements used to determine if variation in 
surface roughness exists with different scan sizes of the same surface.  Weight percent is 
the concentration of silica in dispersion mixtures. 

    
1.41 wt% SiO2 

(20 vol % solids) 

3.91 wt% SiO2 

(40 vol % solids) 

5.99 wt% SiO2 

(50 vol % solids) 

1 Layer 

Scan size [um] Scan Rq [nm] Rq [nm] Rq [nm] 

5 1 11.0 13.6 18.0 

  2 12.8 13.1 14.8 

  3 12.3 15.6 15.3 

10 1 11.3 14.0 18.7 

  2 13.0 14.6 19.7 

  3 12.2 13.3 15.8 

25 1 13.7 12.1 20.5 

  2 10.7 16.9 19.2 

  3 9.80 15.9 20.1 

2 Layers 

5 1 13.6 14.2 14.3 

  2 13.9 12.3 16.0 

  3 14.1 12.3 18.4 

10 1 15.6 13.9 18.0 

  2 15.4 12.5 25.9 

  3 16.6 12.1 22.7 

25 1 14.8 11.7 21.6 

  2 10.4 10.6 54.0 

  3 11.4 11.4 25.8 
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Table 4.2 p-values and F-test statistics from ANOVA analysis of Rq for IPA-ST-L 
nanocomposite films for multiple scan sizes to determine significance of scan size for 
each respective concentration. 

Single Layer (α = 0.05) 

Concentration P-value F F crit 

1.41 0.550 0.662 5.1432 

3.91 0.745 0.309 5.1432 

5.99 0.063 4.559 5.1432 

Double Layer (α = 0.05) 

Concentration P-value F F crit 

1.41 0.048 5.232 5.1432 

3.91 0.104 3.384 5.1432 

5.99 0.195 2.173 5.1432 
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ANOVA test were also performed between two groups of data (5μm vs. 10μm, 

10μm vs. 25μm, 5μm vs 25μm).  When comparing only two groups of data the ANOVA 

test becomes a two-tailed t-test, assuming the variances are equal between groups 

(homoscedastic).  The p-values can be found in Appendix B.  Since the data sets are 

small it is difficult to validate using the ANOVA (t-test) for comparison between only 

two groups with such small sample size. 

The data obtained using AFM in Table 4.1 was then restricted to the 10   10 μm 

samples only.  Figure 4.6 shows the 3-D scans for the respective weight concentration of 

IPA-ST-L silica nanoparticle dispersions.  A, C, E are single layer coatings; B, D, F are 

double layer coatings.  All scans were performed with a 10 μm   10 μm scan size.  The 

concentration of silica is indicated below each image.  Differences in color are typically a 

result from instrument alignment, signal strength, and differences in the delta z-height.  

Shading/lighting can be applied if the same color aspect is desired, however not 

necessary.  Double layer coatings are independent of single layer coating experiments 

(i.e. the double layer coating was not made from the single layer coating). 

Table 4.3 shows the delta z-height difference and surface roughness values for 

each respective image in Figure 4.6.  As delta-z increases the surface roughness will 

typically increase, resulting from greater variation between the maximum and minimum 

peaks within a sample scan.  There is no direct correlation between surface roughness and 

delta-z values for a sample.  The surface topology of single film nanocomposites visually 

appear to be rougher than double layer nanocomposite films which would follow the 

same trend as coatings without particles.  Furthermore, it is apparent that there is a 

difference in the surface topology as a function of the concentration of silica. 

The three surface roughness measurements for each sample were averaged and 

reported for both single and double layer coatings.  Figure 4.7 shows the averaged root 

mean square roughness for single and double layer coatings for the respective weight 

percent silica in dispersion.  Final concentrations of silica in the nanocomposite films 

(based on solids only) were 35 wt% (20 vol%), 60 wt% (41 vol%), and 70 wt% (51 

vol%) for the respective increasing concentrations of colloidal dispersions – 1.41, 3.91, 

and 5.99.  The 20 vol. % sample produced an average Rq = 12.17 nm (σ = 0.85 nm) and   
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A) 20vol % 1 Layer    B) 20 vol % 2 Layers 

  

   

C) 41 vol % 1 Layer    D) 41 vol % 2 Layers 

 

   

E) 51 vol % 1 Layer    F) 51 vol % 2 Layers 

Figure 4.6  Shows the 3-D scans for the respective volume concentrations of IPA-ST-L 
silica nanoparticle nanocomposites.  A, C, E are single layer coatings; B, D, F are double 
layer coatings.  All scans were performed with a 10 μm x 10 μm scan size. 
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Table 4.3 Shows the surface roughness values and the height differential values for each 
respective figure in Figure 4.6. 
 

Figure Δ Z height [μm] Rq [nm] 

A 0.12 11.3 

B 0.20 15.4 

C 0.13 14.0 

D 0.11 12.1 

E 0.17 15.8 

F 0.24 26.0 
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Figure 4.7 Average surface roughness for single and double layer IPA-ST-L 
nanocomposite coatings.  Open symbols are single layer films.  Closed symbols are 
double layer films.  The volume percentage of silica in the solid films is also indicated. 
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Rq = 15.87 nm (σ = 0.64 nm) for single and double layer nanocomposites, respectively.  

The 41 vol. % sample produced an average Rq = 13.96 nm (σ = 0.65 nm) and Rq = 12.83 

nm (σ = 0.95 nm ) for single and double layer nanocomposites, respectively.  The 51 vol. 

% sample produced an average Rq = 18.06 nm (σ = 2.03 nm) and Rq = 22.2 nm (σ = 3.97 

nm ) for single and double layer nanocomposites, respectively.  The surface roughness, 

Rq, is fairly consistent from 20 to 51 volume percent, but variation in Rq does increase as 

the particle loading increases.  The variation is represented by the error bars (± grand 

mean standard deviation).  As the particle loading increases the surface roughness 

follows an increasing trend, but does not vary significantly.   

Both the smallest and largest concentration silica nanoparticle loading (20 vol% 

and 51 vol%) showed a slight increase in surface roughness as the second layer of 

deposition was measured.  The film with 41 vol% loading shows a slight decrease in 

surface roughness compared to the single film coating, which was unexpected.  This 

irregularity in the surface could have been caused by numerous factors including, but not 

limited to: temperature during deposition leading to varying solvent evaporation rates, 

contaminated AFM tip causing incorrect measurement, or less particle loading for the 

given area that was scanned.  For IPA-ST-L film coatings there is no direct correlation 

between the surface roughness and the number of coatings applied to the substrate.  As 

the particle loading increases, there is a slight increase in surface roughness for both 

single and double layer coatings.  Furthermore, greater variation in the surface roughness 

was observed as the particle loading increased. 
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4.4.2 IPA-ST Nanocomposites 

IPA-ST silica nanocomposites were prepared in the same manner as the IPA-ST-

L coatings with similar concentrations.  Colloidal dispersion concentrations shown in 

Table 3.2 yielded nanocomposite coatings with 35.3 wt% (19.7 vol%), 59.5 wt% (39.7 

vol%) and 68.9 wt% (50 vol%) silica nanocomposite films for each respective increasing 

concentration of particles.  All films were transparent and uniform.  During AFM 

measurements the sample position was randomly oriented to eliminate any bias in the 

surface measurements.  Figure 4.8 shows the three dimensional images for the IPA-ST 

nanocomposites for single and double layer films.  A, C, E are single layer coatings; B, 

D, F are double layer coatings.  All scans were performed with a 10μm x 10μm scan size.  

Table 4.4 shows the delta z-height and Rq values for each image in Figure 4.8. 

 Using such small particles posed a very difficult challenge to distinguish the 

surface topology between not only the concentrations of the particles in the films but also 

between single film coatings and double coatings.  Moreover, when obtaining ‘perfect’ 

images, all data appeared and looked to be the same.  Therefore, imperfections were 

found to clearly identify and distinguish between sample sets.  One of the most beneficial 

factors about the Gwyddion software program is the ability of the mask function to be 

applied to either include, exclude, or separately use a given area designated by the user in 

the image for analysis.  Therefore, the effect of any imperfections on the resulting data 

can be seen and determined if the data can be used in a valid manner. 

 Figure 4.8 A) shows what appears to be a canyon imperfection in the lower right 

corner of the topography scan.  Figure 4.9 shows the same image but with the view from 

the z-axis.  In Figure 4.9 the canyon appears to be a crack within the nanocomposite 

coating.  The curing of the particular sample was cracked likely due to improper coating 

of the colloidal dispersion, drying time, curing time, or all of the previously mentioned.  

A simple mask was implemented within Gwyddion and the data was extracted.  Figure 

4.8 B) also shows the presence of dust or a non-coating type material on the surface of 

the nanocomposite.  Again here a rectangular mask was chosen to block out that portion 

of the image when calculating the surface roughness.  Figure 4.9 also shows the vertical 

topographic image of Figure 4.8 B with the mask applied. 
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A) 20 vol % 1 Layer    B) 20 vol % 2 Layers 

   

C) 40vol % 1 Layer    D) 40vol % 2 Layers 

   

E) 50 vol % 1 Layer    F) 50 vol % 2 Layers 

Figure 4.8 Shows the 3-D scans for the respective volume concentrations of IPA-ST 
silica nanoparticle nanocomposites.  A, C, E are single layer coatings; B, D, F are double 
layer coatings.  All scans were performed with a 10 μm x 10 μm scan size. 
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Table 4.4 Shows the surface roughness values and the height differential values for each 
respective figure in Figure 4.8. 

Figure Δ Z height [μm] Rq [nm] 

A 0.098 3.7 

B 0.250 9.7 

C 0.075 9.7 

D 0.043 6.1 

E 0.083 8.1 

F 0.075 9.5 
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Figure 4.9 Shows the vertical image of Figure 4.8 A (left) and B (right) – the 20 vol % 

IPA-ST colloidal silica nanocomposite coatings, both single and double layers. 
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Figure 4.10 shows the averaged roughness, Rq, for the IPA-ST nanocomposite films.  The 

20 vol. % sample produced an average Rq = 3.71 nm (σ = 0.75 nm) and Rq = 9.52 nm (σ 

= 1.27 nm) for single and double layer nanocomposites, respectively.  The 40 vol. % 

sample produced an average Rq = 9.94 nm (σ = 0.32 nm) and Rq = 6.04 nm (σ = 0.76 nm 

) for single and double layer nanocomposites, respectively.  The 50 vol. % sample 

produced an average Rq = 7.98 nm (σ = 0.16 nm) and Rq = 8.45 nm (σ = 1.45 nm) for 

single and double layer nanocomposites, respectively.  The error bars indicate the grand 

mean standard deviation.  Furthermore, the red error bars represent the double layer film 

coating at 50 vol. % loading.  The single layer coating at 50 vol % showed very little 

variation in the coating measurements. 

 For single layer coatings, the surface roughness increased as the concentration of 

silica nanoparticles increased.  As the concentration of silica increased in the single layer 

coatings the surface roughness increased.  The surface roughness for the 40 vol. % 

loading was higher than the 50 vol. % loading.  The double layer coatings for the smallest 

and largest particle loading exhibited a higher surface roughness than single layer 

coatings.  However, the 40 vol. % had a lower surface roughness than the single layer 

coating.  Table 4.4 shows that the delta-z height decreased for all double layer coatings 

except for the 20 vol. % loading.  The increase in delta-z was a direct result of the large 

‘mountain’ peak which was uncharacteristic of the remainder of the film coating.  The 

surface roughness for these samples appears to be independent of the sample height 

change.  For this system, Rq for single layer coatings increased as the particle loading 

increased.  As the concentration of IPA-ST particles increased the variation in the surface 

roughness also decreased for single layer coatings.   

 The decrease in surface roughness for the 40 vol. % loading for the double layer 

coating was also present in the IPA-ST-L samples.  Both the IPA-ST (~13.65 nm 

particles) and IPA-ST-L (~46.8 nm particles) showed a decrease in surface roughness for 

the double-layer coatings compared to single layer coatings at 40 vol % particle loading.  

According to Table 4.4 and Figure 4.10 there is no correlation between the Rq values and 

the number of coatings applied to a substrate.  The surface roughness values for IPA-ST 

coatings were less than the surface roughness values for IPA-ST-L coatings.  The smaller 

particles produced a smoother surface, regardless of particle loading. The average Rq for  
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Figure 4.10 Average surface roughness for single and double layer IPA-ST 
nanocomposite coatings.  Open symbols are single layer films.  Closed symbols are 
double layer films.  The volume percentage of silica in the solid films is also indicated. 
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the 20 vol % particle loading single coating was very close to Rq for the neat polymer 

coating.  Changes in Rq for IPA-ST particles become noticeably present once higher 

concentration particles are used or multiple layers are applied to the substrate. 

One of the common defects observed in samples is shown in Figure 4.11.  Figure 

4.11 shows the z-axis top down view of Figure 4.8 F.  This particular sample shows 

striations which can arise during the spin coating procedure.  Striations will occur when 

the spin exhaust rate, spin acceleration, or spin speed is too high, and can also occur 

when fluid is deposited off center of the coated substrate.  The sample in Figure 4.11 had 

striations due to the fluid being deposited off center.  Almost all samples, exhibit some 

type of streaking towards the boundary limits.  However, the area of interest remains the 

uniform coatings and boundary limits were not examined. 
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Figure 4.11 Shows the top down view on the z-axis of Figure 4.8 F with striations along 

the top portion of the image. 
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4.4.3 IPA-ST-ZL Nanocomposites 

IPA-ST-ZL silica nanocomposites were prepared using the methods previously 

described.  Colloidal dispersion concentrations shown in Table 3.2 yielded 

nanocomposite coatings with 35.6 wt% (19.9 vol. %), 60.04 wt% (40.32 vol. %) and 69.7 

wt% (50.8 vol. %) silica nanocomposite films for each respective increasing 

concentration of particles.  All films were transparent and uniform.  During AFM 

measurements the sample position was randomly oriented to eliminate any bias in the 

surface measurements.  Figure 4.12 shows the three dimensional images for the IPA-ST 

nanocomposites for single and double layer films.  A, C, E are single layer coatings; B, 

D, F are double layer coatings.  All scans were performed with a 10 μm x 10 μm scan 

size.  Table 4.5 shows the delta z-height and Rq for each image in Figure 4.12. 

 The largest size particles used to analyze the surface roughness of ultra-thin film 

nanocomposites showed the largest surface roughness values out of all samples.  The 

topology images A-F of ST-ZL nanocomposites in Figure 4.13 are visually the easiest to 

distinguish between the particle loading when compared to ST and ST-L samples.  Unlike 

IPA-ST and ST-L coatings the variation in Rq for IPA-ST-ZL coatings did not change as 

drastically.  Figure 4.14 demonstrates this as shown by the error bars which represent ± 

the grand mean standard deviation.  The red error bars represent the double layer film 

coatings at 20 and 50 vol. % nanoparticles.  Table 4.5 also shows that samples with a 

higher delta-z height have a higher surface roughness.  Similarly to ST and ST-L coatings 

it is difficult to establish any correlation between the Rq values and delta-z height. 

Figure 4.14 shows the averaged roughness, Rq, for the IPA-ST nanocomposite 

films.  The 20 vol. % sample produced an average Rq = 27.6 nm (σ = 0.85 nm) and Rq = 

27.2 nm (σ = 2.57 nm) for single and double layer nanocomposites, respectively.  The 40 

vol. % sample produced an average Rq = 24.3 nm (σ = 0.72 nm) and Rq = 35.1 nm (σ = 

2.36 nm) for single and double layer nanocomposites, respectively.  The 50 vol. % 

sample produced an average Rq = 23 nm (σ = 1.21 nm) and Rq = 23.36 nm (σ = 1.76 nm) 

for single and double layer nanocomposites, respectively.   
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A) 20 vol % 1 Layer    B) 20 vol % 2 Layers 

   

C) 40 vol % 1 Layer    D) 40 vol % 2 Layers 

   

E) 50 vol % 1 Layer    F) 50 vol % 2 Layers 

 

Figure 4.12 Shows the 3-D scans for the respective volume concentrations of IPA-ST-ZL 
silica nanoparticle nanocomposites.  A, C, E are single layer coatings; B, D, F are double 
layer coatings.  All scans were performed with a 10 μm x 10 μm scan size. 



77 
 

Table 4.5 Shows the surface roughness values and the height differential values for each 
respective figure in Figure 4.8. 
 

Figure Δ Z height [μm] Rq [nm] 

A 0.24 28.0 

B 0.19 27.6 

C 0.21 23.5 

D 0.28 32.7 

E 0.17 23.8 

F 0.21 27.0 

 

  



78 
 

    
A) 20 vol % 1 Layer    B) 20 vol % 2 Layers 

   

C) 40 vol % 1 Layer    D) 40 vol % 2 Layers 

   

E) 50 vol % 1 Layer    F) 50 vol % 2 Layers 

Figure 4.13 Shows the top down view from the z-axis of Figure 4.12 for each respective 

nanocomposite coating. 
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Figure 4.14 Average surface roughness for single and double layer IPA-ST-ZL 
nanocomposite coatings.  Open symbols are single layer films.  Closed symbols are 
double layer films.  The volume percentage of silica in the solid films is also indicated. 
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The surface roughness values for single layer ZL nanocomposites decreases 

slightly as the concentration of particles increases from 20 to 50 vol. % loading.  Figure 

4.14 shows the surface roughness decrease slightly as the concentration decreases for 

single layer nanocomposite coatings.   The surface roughness values for double layer ZL 

nanocomposites also decreases slightly as the concentration of particles increases from 20 

to 50 vol. % loading. However, the 40 vol. % loading of the double layer nanocomposite 

had the highest average surface roughness value out of any sample.  Similarly to the ST, 

and ST-L particles, the 40 vol. % loading of particles exhibit unexplainable surface 

roughness values when comparing to the smallest and largest particle loadings.   

4.4.4 Peak Height Distributions 

The one-dimensional peak height distributions for all samples were checked to 

determine if deconvolution of ST, ST-L, and ST-ZL nanocomposites was necessary.  

Deconvolution simply reveals data hidden by both signal-to-noise ratios or peaks hidden 

due to the limitations of the scanning procedure used on AFM.  Figure 4.15 shows the 

peak height distributions for neat, ST, ST-L, and ST-ZL particles.  All distributions were 

normally distributed.  As the particle size increased, the peak height distributions for each 

nanocomposite coating broadened and the peak height increased as well.  This supports 

the data representing the effect of particle size on surface roughness. 

Previous studies performed by Kanniah [1] consisted of ultra-thin film 

nanoparticles with varying size particles.    Using varying size nanoparticles (10 nm and 

100 nm) with mixed ratios of the small and large particles in the nanocomposite coating  

required deconvolution in order to correct for the height distributions for mixed size 

nanocomposites.  In this particular study, the same size nanoparticles were used for 

coatings for all samples.  Since the particle size distributions were unimodal, and 

monodispersed, and the peak height distributions were normal - deconvolution of the data 

was not necessary.  Peak height distributions did not vary between the number of 

coatings applied on the nanocomposite. 
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Figure 4.15 Shows the cumulative peak height distributions for thin film nanocomposites 

as a function of particle size. 
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4.5 Particle size and surface roughness 

 The surface roughness was also determined as a function of particle size.  Figure 

4.16 shows the average surface roughness for 20 volume percent loading in the 

nanocomposite films for all three types of nanoparticles.  Both the single and double 

layer surface roughness values increase in a linear fashion as the particle size increases.  

Small concentrations of IPA-ST particles (~13 nm) in the single coating layer show 

almost no change in the surface roughness when compared to a neat polymer coating.  

However, after application of a second thin film coating, the surface roughness increased 

more than expected.  Increasing the particle size at 20 vol% does show an overall 

increase in the surface roughness.  There was almost no difference when comparing the 

surface roughness of single or double layer coatings for the ST-L and ST-ZL coatings. 

Figure 4.17 shows the average surface roughness for 40 volume percent loading 

in the nanocomposite films for all three types of nanoparticles.  Single and double layer 

nanocomposites increase in surface roughness linearly as the particle size increases.  Both 

ST and ST-L nanocomposites produced single layer coatings which had a greater surface 

roughness than the double layer coating.  The surface roughness of the double-layer 

coating was not expected to be lower than the single layer coating for ST and ST-L 

particles.  The double-layer coating for ST-ZL surface roughness was significantly higher 

than the single layer coating.  The average roughness was the highest out of any recorded 

surface roughness measurement and was expected to be lower.  Similarly, to Figure 4.16, 

the surface roughness increased in a linear fashion with the increase in particle size. 

Figure 4.18 shows the average surface roughness for 50 volume percent loading 

in the nanocomposite films for all three sizes of nanoparticles.  Single and double layer 

nanocomposites increase in surface roughness in a logarithmic trend.  This surface 

roughness for ST-L particles was slightly higher at 50 vol. % loading than the lower 

concentrations.  The surface roughness is highly dictated by the particle size and not the 

particle volume loading. 
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Figure 4.16 Average surface roughness for 20 volume percent loading in the 

nanocomposite films for all three types of nanoparticles. 
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Figure 4.17 Average surface roughness for 40 volume percent loading in the 

nanocomposite films for all three types of nanoparticles 
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Figure 4.18 Average surface roughness for 50 volume percent loading in the 
nanocomposite films for all three types of nanoparticles 
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Figure 4.19 shows the estimation of the surface roughness using the delta-z height 

change obtained from AFM.  The two blue points represent the IPA-ST single (Δ z = 

100) and double (Δ z = 250) layer coating samples at 20 vol. % particle loading.  Using 

linear regression, for the entire data set, R2 = 0.630.  Excluding the two IPA-ST samples 

at 20 vol. % increases the R2 to 0.867 for the regression fitting.  The surface roughness 

for all samples was on average 12% of the delta-z value measured. 
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Figure 4.19 Estimation of the surface roughness based on the delta-z height obtained 
using AFM. 
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Chapter 5 Conclusions 
 

5.1 Summary 

 Developing ultrathin film nanocomposites can be challenging when trying to 

address multiple performance properties.  For optical applications, properties such as the 

haze or refractive index are often examined.  These properties could easily be affected by 

the particle size or loading, especially on the nanoscale.  The surface chemistry of the 

nanoparticle filler and volume fraction in the nanocomposite can affect the performance 

properties of the ultrathin film.  This work compared the effect particle size and loading 

had on the surface roughness of ultrathin film nanocomposites.  An acrylate based 

monomer was used as the continuous phase and monodispersed silica nanoparticles were 

used as the discontinuous phase.   

The particle size distribution of colloidal dispersions can be measured multiple 

ways.  Dynamic light scattering and transmission electron microscopy were used to 

determine the particle size of three different sizes of industrially synthesized silica 

particle dispersions.  TEM provides researchers with a primary particle size while DLS 

shows the hydrodynamic particle size.  If agglomeration of the particles is present, larger 

particle size distributions or multi-model particle size distributions will most likely occur 

using DLS.  TEM is the preferred method for determining the primary particle size of 

dilute colloidal dispersions, but data analysis is more time consuming.   

 Ultra-thin film nanocomposites with three different size silica nanoparticles were 

prepared.  The effect of the concentration of nanoparticles and size of the particles 

incorporated into a polymer matrix was examined.  Samples showed a wide range of 

results depending on the particle size.  IPA-ST (~13 nm particles) coatings showed the 

greatest variance between surface roughness measurements.  IPA-ST-ZL (~120 nm) 

coatings showed the least variance between surface roughness measurements.  Typical 

film thickness of single layer coatings ranged from 120 to 170 nm, and two layer coatings 

ranged from 300 to 450 nm.  No correlation between surface roughness and the number 

of layers applied to the substrate was found.  The surface roughness of silica-acrylate 

nanocomposites varied more based on the particle size rather than particle loading for any 
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size particles used.  The surface roughness of the ultrathin films ranged from Rq = 3-11, 

Rq = 11-26, and Rq = 21-37 for nominal diameters 13, 45, and 120 nm, respectively.  

Changing the particle loading would increase surface roughness a maximum of 167%, 

72%, 29% for ST, ST-L, and ST-ZL nanoparticles, respectively.  Furthermore, changing 

the particle loading would sometimes decrease the surface roughness a maximum of 

36%, 34%, and 27% for ST, ST-L, and ST-ZL nanoparticles, respectively.  The surface 

roughness also would increase on average 10-15% with the addition of a second ultrathin 

nanocomposite coating.  However, increasing the particle size always showed an increase 

in surface roughness for a given particle loading.  The surface roughness increased a 

maximum of 644%, 480%, and 200% as the particle size increased for 20, 40, and 50 

volume percent loading, respectively.    The surface roughness measured approximately 

12% of the delta-z (which is defined as the difference between the maximum peak and 

minimum peak of the AFM scan) peak height measured on AFM.   

The unique behavior of the surface roughness for all samples at 40 vol. % loading 

was independent of particle size and most likely due to improper method of preparing the 

samples.  Aggregation of the particles might occur more at 40 vol. % loading than other 

concentrations as the solvent system evaporates leaving a sol-gel type material before 

curing.  Particle loading had a larger effect on the surface roughness for IPA-ST coatings 

than any other samples. 

   The largest contributing factor to altering the surface roughness is the size of the 

nanoparticles incorporated into the particle matrix.  Larger particles will produce a 

surface with a higher surface roughness.  The surface roughness cannot be determined 

thus far to have any correlation with the number of layers of ultra-thin film 

nanocomposite applied to a given substrate. Controlling the surface roughness provides 

researchers with the ability to produce coating materials with either superhydrophobic or 

superhydrophilic properties, change the layer-by-layer adhesion, or layer-substrate 

adhesion.  By changing the size and concentration of the nanoparticles the adsorption or 

reflectance of light is also altered.  This allows researchers to possibly make ultra-thin 

film nanocomposites which are highly specific optical filters. 
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5.2 Future Work 

Other properties such as the haze and refractive index should be measured for all 

types of samples to determine if any relationship exists.  A more comprehensive study 

with varying concentrations and layers of nanocomposite would be needed to definitively 

determine a correlation, if any exist, with the surface roughness and the number of layers 

applied.  Furthermore, more data would need to be collected to determine a better 

correlation between the delta-z values and surface roughness for concentrations other 

than reported.  Determination if the relationships discovered with unimodal particle size 

distributions can be applied to bimodal particle size distributions would also be pertinent.  

The use of mixed size bimodal nanoparticles can provide researchers with the ability to 

even further tailor the surface roughness to a specific value. 

 Although precise control of the coating method was maintained, difficulty would 

arise if these coating are transferred to other types of surfaces – either curved surfaces or 

surfaces larger in diameter.  Investigation of the surface roughness would also be 

interesting if more than two layers of nanocomposites are applied to a substrate.  The 

surface roughness should be determined by the governing surface coating – but might 

exhibit more bulk phase behavior. 

 

 

 

 

 

 

 

 

Copyright © Guy Christopher Laine 2013  



91 
 

Nomenclature 
Chapter 2 

I(t) random function of time 

Γ time decay constant 

t time 

q  magnitude of the scattering vector 

θ  scattering angle 

n  index of refraction of the solution 

λ  laser wavelength 

D  translational diffusion coefficient of solute 

k  Boltzmann’s constant 

T  the absolute temperature 

η  viscosity 

Rh  hydrodynamic radius 

GI[d] intensity-weighted differential particle size distribution  

GV[d]  volume-weighted differential particle size distribution 

GN[d]  number-weighted differential particle size distribution 

C[d]    cumulative particle size distribution 

M light scattering coefficient, M=1 for d < 25 nm 

Chapter 4 

Rq  root mean square roughness 

N  sample size 

zj  height of each data point collected 

    average height of all data points collected 

d(H)  hydrodynamic diameter 

D  translational diffusion coefficient 



92 
 

k  Boltzmann’s constant 

T  absolute temperature 

η  viscosity  
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Appendix A 
 

 

Intensity-weighted differential and cumulative frequency distribution functions for IPA-
ST colloidal silica dispersion suspension of silica nanoparticles.  Concentration was less 
than 0.1 wt% silica. 

 

Number-weighted differential and cumulative frequency distribution functions for IPA-
ST colloidal silica dispersion suspension of silica nanoparticles.  Concentration was less 
than 0.1 wt% silica. 
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Intensity-weighted differential and cumulative frequency distribution functions for IPA-
ST-L colloidal silica dispersion suspension of silica nanoparticles.  Concentration was 
less than 0.1 wt % silica. 

 

Number-weighted differential and cumulative frequency distribution functions for IPA-
ST-L colloidal silica dispersion suspension of silica nanoparticles.  Concentration was 
less than 0.1 wt% silica. 
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Intensity-weighted differential and cumulative frequency distribution functions for IPA-
ST-ZL colloidal silica dispersion suspension of silica nanoparticles.  Concentration was 
less than 0.1 wt % silica. 

 

Number-weighted differential and cumulative frequency distribution functions for IPA-
ST-ZL colloidal silica dispersion suspension of silica nanoparticles.  Concentration was 
less than 0.1 wt% silica. 
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Appendix B 
 

1.41 wt % SiO2 , Single Layer (α = 0.05) 

μm vs. μm P-value F F crit 

5 vs. 10 0.527 0.479 7.7086 

5 vs. 25 0.396 0.9 7.7086 

10 vs. 25 0.580 0.36 7.7086 

1.41 wt % SiO2 , Double Layer (α = 0.05) 

μm vs. μm P-value F F crit 

5 vs. 10 0.007 25.17 7.7086 

5 vs. 25 0.281 1.547 7.7086 

10 vs. 25 0.057 7.034 7.0786 

    
3.91 wt % SiO2 , Single Layer (α = 0.05) 

μm vs. μm P-value F F crit 

5 vs. 10 0.883 0.024 7.7086 

5 vs. 25 0.627 0.276 7.7086 

10 vs. 25 0.544 0.438 7.7086 

3.91 wt % SiO2 , Double Layer (α = 0.05) 

μm vs. μm P-value F F crit 

5 vs. 10 0.910 0.014 7.7086 

5 vs. 25 0.075 5.67 7.7086 

10 vs. 25 0.065 6.312 7.0786 

    
5.99 wt % SiO2 , Single Layer (α = 0.05) 

μm vs. μm P-value F F crit 

5 vs. 10 0.256 1.755 7.7086 

5 vs. 25 0.022 13.39 7.7086 

10 vs. 25 0.204 2.299 7.7086 

5.99 wt % SiO2 , Double Layer (α = 0.05) 

μm vs. μm P-value F F crit 

5 vs. 10 0.082 5.33 7.7086 

5 vs. 25 0.161 2.941 7.7086 

10 vs. 25 0.328 1.237 7.0786 
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