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ABSTRACT OF DISSERTATION 
 
 
 
 

FUNCTIONALIZED SILICA MATERIALS 
AND MIXED MATRIX MEMBRANES 

FOR ENVIRONMENTAL APPLICATIONS 
 

Functionalized silica materials are synthesized for various environmental 
applications.  The overall objective is functionalization with sulfur-containing moieties 
for mercury sorption and as a platform for nanoparticle synthesis. The first objective is 
quantifying this functionalization for various silica platforms. The second objective is 
development of effective mercury sorbents, for both aqueous mercury and elemental 
mercury vapor.  Third, those sorbents are incorporated into mixed matrix membranes 
(MMM) for aqueous mercury sorption.  Fourth, functionalized silica materials are 
developed as platforms for the synthesis of reactive metal nanoparticles (NP) for the 
degradation of trichloroethylene. 

Thiol -functionalized silica is used as a sorbent for aqueous mercury, and a novel 
functionalized material (thiol-functionalized silica shell surrounding a carbon core) has 
been developed for this application.  Total capacity and kinetics of aqueous mercury 
sorption were determined.  The silica-coated carbon was functionalized with thiol and 
sulfonate moieties for regeneration under mild conditions.  Finally, the sorbent particles 
were incorporated into polysulfone to form a mixed matrix membrane (MMM) for toxic 
metal capture under convective-flow conditions. High loadings (up to 50% particles, base 
particles of ~80 nm) were achieved in the MMM.  The particles are well-dispersed which 
can lower mass transfer resistance to the sorption sites.  The MMM also imparts several 
practical advantages such as ease of sorbent handling.  

Silica functionalized with tetrasulfide silane is used for mercury vapor sorption. 
Sorption kinetics and dynamic capacity depend upon pore structures of the functionalized 
material.  The particles are thermally stable and exhibit a glass transition in the 
tetrasulfide silane coating, with high total sorption capacity achieved by addition of 
copper sulfate.  Temperature effects on mercury sorption indicate a chemisorptive 
mechanism. 

Silica particles functionalized with sulfonate moieties were used as a platform for 
the synthesis of dispersed iron nanoparticles.  These NP are applied for degradation of 
trichloroethylene (TCE), a persistent, toxic, and widespread pollutant.  The particles were 
stabilized against agglomeration.  Natural product reducing agents, such as ascorbic acid, 



adsorb to the particle surface and can protect against oxidation.  These particles were 
demonstrated for the reductive as well as oxidative degradation of TCE.   
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1. Objectives 

The development of new functionalized materials for various chemical 

engineering applications, especially environmental applications, is an important research 

area.  As both public concerns are heightened and regulatory standards are tightened, new 

materials are needed which incorporate chemical functionalities toward increased 

performance.  This dissertation describes the synthesis, characterization, and application 

of various functionalized silica platforms, with specific objectives listed below.  Many of 

these objectives are driven by inadequacies of current technology.   

The layout of this dissertation is given as follows.  There are five results and 

discussion chapters (Ch 4-8) which describe experimental results, put them in the context 

of previous work and scientific advancement, and include specific conclusions.  Prior to 

that, there are background and experimental chapters.  Chapter 2 (“Background”) is 

divided into five sections, each of which gives background information corresponding to 

the results and discussion chapters of the same names as each section.  Chapter 3 contains 

the experimental details, which is similarly divided into five corresponding sections.  At 

the end of the document, there is a final Chapter 9 which briefly summarizes the key 

conclusions and scientific advancements.   

The five results and discussion chapters are briefly described here with the 

objectives following.  Chapter 4 discusses the silica functionalization fundamentals 

including the reactions and determining the extent of functionalization.  Chapter 5 

discusses aqueous mercury sorption using a functionalized silica-carbon black platform.  

Chapter 6 discusses the use of these functionalized silica platforms in mixed matrix 

membranes for aqueous mercury sorption.  Chapter 7 describes elemental mercury vapor 
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sorption using functionalized silica and functionalized copper-doped silica.  Chapter 8 

describes the use of functionalized silica as a platform for reactive metal nanoparticle 

synthesis, for application towards the dechlorination of trichloroethylene, a persistent and 

prevalent groundwater contaminant, and also describes some alternative synthetic 

methods for environmentally important reactive and catalytic nanoparticles.  

The specific objectives are as follows: 

Chapter 4: Functionalization Fundamentals 

• to quantify the extent of silica functionalization for an environmental application 

with various silica types 

• to quantify the extent of silica functionalization with silanes for two different 

environmental applications 

• to describe the nature of the functionalized silane layers on silica particles 

• to demonstrate the role that silica functionalization plays in mercury vapor 

sorption 

Chapter 5: Aqueous Mercury Sorption 

• to characterize functionalized silica-carbon particles for potential mercury 

sorption applications 

• to quantify equilibrium sorption of mercury using functionalized particles 

• to demonstrate the role of solution pH and sorbent agglomerate size play in 

sorption capacity and kinetics 

• to demonstrate regenerable functionalization schemes and propose future 

strategies for their optimization 
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Chapter 6: Mixed matrix membranes (MMM) for mercury sorption 

• to synthesize silica-polymer MMM using the phase-inversion method 

•  to analyze MMM behavior including flux and sorption capacity at various 

sorbent loadings 

Chapter 7: Elemental Mercury Vapor Sorption 

• to describe the synthesis of functionalized silica for the sorption of elemental 

mercury vapor, for potential power plant applications 

• to quantify the total and “dynamic” sorbent capacity 

• to describe the effect of temperature on sorbent 

• to determine the sorption products and test for disposal compatibility 

Chapter 8: Silica as a Platform for Nanoparticle Synthesis 

• quantify sulfonate functionalization of silica 

• synthesize iron nanoparticles (Fe NP) on a sulfonate-functionalized silica particle 

platform  

• to describe alternative strategies for Fe NP synthesis using “green” reducing 

agents  

• to show reactivity toward environmentally-important compounds such as TCE, 

using both oxidative and reductive approaches 
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2. Chapter Two: Introduction 

This chapter introduces the specific environmental applications for which 

functionalized silica materials have been used and gives some background information 

for the various sections of this dissertation.  The five sections of this chapter correspond 

to the five sections of Chapter 3 (experimental), and then to each respective discussion 

chapter (4-8). 

The various silica materials used are described in Table 2.1.  Some of these 

materials are unfunctionalized silica, which were functionalized in the lab as described in 

Chapter 3 and discussed in the respective chapters. Others were functionalized by the 

manufacturer and the sulfur content is given in the table, with further discussion in the 

respective chapters.  Sulfur-containing silanes used for functionalization are described in 

Table 2.2. 

2.1 Fundamentals of Silylation 

2.1.1 Silica Particle Synthesis 

Synthetic silica particles, which is the only type considered in this study, are 

prepared through one of three basic methods, reviewed by Vansant1: sol-gel, 

precipitation, or thermal method. Sol-gel method synthesis involves the acid- or base-

catalyzed hydrolysis of the silica precursor (such as Si(OH)4 or Si(OR)4) followed by 

condensation into primary particles. These then gradually aggregate to produce a viscous 

solution and eventually a disordered polymeric hydrogel (when water is the condensation 

byproduct) or alcogel (when an alcohol is a byproduct).  The formation of various sol-gel 

structures is impacted by factors such as silica precursor structure, pH, reactor 

composition, water content, etc.2  This gel is often highly porous as it has arisen by the  
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Table 2.1 Silica morphology and composition. 

*for sorbents functionalized by the manufacturer 
**Ludox colloidal particles are non-porous, but capillary condensation occurs due to 
interparticle spacing in dried agglomerates of colloidal particles. 
***SCC-3 sorbent used in a variety of agglomerate size ranges (Figure 5.1) 

Silica 
designation Description 

BET surface 
area (m2/g) 

BJH average 
pore diameter 

(nm) 

Agglomerate 
diameter 

(µm) 
Weight
% S* Chapter 

Silica A silica gel 206 9.6 3.7 NA 4 
Silica B silica gel 484 2.9 3.3 NA 4 
Si-1 silica gel 344 2.9 20 6  7 
Silica D silica gel 585 NA 3.7 NA 8 
Ludox dried colloidal 

silica 
76 7.1** NA NA 4, 5, 8 

SCC-0 silica-coated C 209 NA 45-850 <0.38 5, 6 
SCC-1 thiol-coated C 126 NA 45-850 4.1 5, 6 
SCC-2 thiol-silica-

coated C 
132 NA 45-850 3.0 5, 6 

SCC-3** thiol-silica-
coated C 

83 NA 45-850 3.7 5, 6 
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Table 2.2 Silanes used for silica functionalization. 
 

acronym structural formula CAS # 
molar 
mass 

MPTMS Si(OCH3)3CH2CH2CH2SH 4420-74-0 196.34 
S4 (CH3CH2O)3SiCH2CH2CH2SSSSCH2CH2CH2Si(OCH2CH3)3 40372-72-3 538.95 

THSPS Si(OH)3CH2CH2CH2SO3H 70942-24-4 202.26 
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random aggregation of colloidal primary particles.  In contrast to sol-gel silica, 

precipitated silica is prepared by the addition of salts or an increase in pH to the colloidal 

solution, so that particles precipitate at various stages of aggregation.  Thermal or 

pyrogenic silica is prepared by oxidation of highly pure SiCl4 in the presence of H2.  If 

the primary particles link into chains, this produces fumed silica.  Oxidation in an arc 

furnace produces non-porous secondary particles called arc silica, and oxidation in 

plasma gives solid colloid-sized particles. 

2.1.2 Silica Morphology Characterization 

Synthetic silica is often characterized by the presence of a number of pores, which 

are described as macropores (> 50 nm diameter), mesopores (2 – 50 nm), or micropores 

(< 2 nm), according to IUPAC designation.3  Nitrogen at its saturation temperature and 

pressure (77 K at 1 atm) can be used to determine the pore and surface characteristics of 

an unknown silica (and many other materials) based on adsorption isotherms; N2 adsorbs 

as a liquid at less than its saturation pressure inside of pores, and the isotherm of this 

adsorption gives key insights into the nature of the pore morphology.  Inside macropores, 

multilayer adsorption occurs, and capillary condensation only occurs at relative pressure 

near unity (as the effective pore diameter has narrowed due to the multilayer adsorption 

of nitrogen).  Micropores gradually fill with liquid by capillary condensation, but they are 

completely filled at relative pressures much less than unity.  Mesopores also experience 

multilayer adsorption as do macropores, but capillary condensation occurs at much lower 

relative pressures because the pores are narrower.  Mesopores also demonstrate a 

hysteresis as desorption of N2 occurs at lower relative pressures than adsorption, due to 

the geometry of the pore mouth (“ink bottle effect”).   
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 Smaller pore diameter allows for condensation within the pores at lower relative 

pressures, which can be described by the Kelvin model of pore condensation, given as4 

,2ln
_

rRT
V

P
P

s

γ
−=

 (2.1) 

where P/Ps is relative pressure, γ is surface tension of adsorbed liquid, r is pore radius, R 

is gas constant, T is temperature, and 
_

V is the molar volume of adsorbed liquid.  Kelvin’s 

model was modified by Barrett, Joyner, and Halenda5 to render the classic BJH model of 

pore size distribution, assuming all cylindrical pores.  They considered that in larger 

pores multilayer adsorption first takes place to shrink the effective pore diameter; 

capillary condensation then occurs after the radius has shrunken by the thickness t of the 

adsorbed multilayer.  The BJH model is given4 as 

,
))((

cos2ln
trRTP

P
p

gl
s −−

−=
ρρ

θγ

 (2.2) 

where θ is contact angle of adsorbate against the pore wall (a measure of fluid-wall vs. 

fluid-fluid interactions), ρl is liquid density of the bulk adsorbate, ρg is the vapor density 

of the adsorbate (both at the adsorption temperature), and rp is the actual pore radius.   

 High surface area, which arises from the porous structure, is an important 

parameter in the use of synthetic silica.  The most common method of calculating surface 

area is the Bruanuer, Emmett, and Teller (BET) model,6 which assumes that multilayer 

adsorption takes place by one layer adsorbing to a previously adsorbed layer. BET 

method assumes a homogeneous surface, no interaction among adsorbate molecules in 

the same layer, a heat of adsorption is equal to the heat of condensation except in the first 
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layer, that the conditions of condensation do not change after the first layer, and that there 

are infinite layers at the saturation pressure.  In general, these assumptions are not 

regarded to be completely accurate for synthetic silica particles, but the model has been 

commonly used so that the BET model is regarded as a standard method of characterizing 

surface area.  The BET equation is given as1 

,11

1

1

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where W is mass of adsorbate at a certain relative pressure, Wm is the mass of absorbate 

required to impart monolayer surface coverage, and C is a constant.  A plot of 





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
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1− , making the 

determination of both Wm and C straightforward.  The BET surface area (SBET) can then 

be determined using  

,
M

ANWS cAm
BET =

 (2.4) 

where NA is Avogadro’s number, M is the adsorbate molecular mass, and Ac is the 

adsorbate cross sectional area.  For N2, Ac has conventionally been taken (based on 

packing arrangements) to be 0.0162 nm2.  (Although a recent study7 contrasting surface 

areas calculated from SEM images and those from N2 led to the proposal that for 

adsorption on silica, a more accurate value is Ac = 0.0135 nm2.) 

The extent to which silica can be functionalized and used as an adsorbent is 

related to its specific surface area and pore structure.  However, functionalization of 
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higher surface area silica does not necessarily lead to more functional groups because 

microporous surface area may not be accessible to larger silanes, and functional groups 

near pore openings may block further diffusion of silane into the pores.8  Similarly, 

functionalized silica with a higher total specific surface area do not necessarily have the 

highest chemisorptive capacity, as silanes may block pore openings for the adsorbate or 

microporous surface area will have no chemisorptive sites because it was not 

functionalized.  The type of surface area, whether microporous, macroporous, or 

mesoporous, plays an important role in determining the specific number of functional 

groups and the adsorption capacity than the total surface area.   

2.1.2 Quantification of Surface Hydroxyl Groups 

The silica surface is covered with surface hydroxyl groups, known as silanol 

(SiOH) groups, which undergo silylation reactions with a number of compounds to yield 

functionalized silica particles.  The quantification of silanol groups, often reported as 

silanol number αSiOH (number SiOH/nm2 surface area), is an important part of studying 

silylation reactions.  Silanol number is dependent upon temperature and atmosphere, as 

silica is first dehydrated (removal of physisorbed water) and then dehydroxylated 

(condensation of surface silanol groups to form siloxane (Si-O-Si) bridges) upon heating.   

Methods of experimentally determining αSiOH are either based on direct measurement of 

the groups, or reaction of silanol with some other compound and measurement of that 

probe compound.  Direct measurement methods include infrared spectroscopy, with 

various O-H stretching vibrations assigned to 3750-3400 cm-1; and Si-O-H bending 

assigned9 to 970 cm-1. However adsorbed water also is assigned to many of the bands 

(except at 970 cm-1) making measurement impossible without complete drying, which 
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would alter the morphology of the silica (pore collapse) and possibly dehydroxylate some 

silanol.  It is therefore difficult to directly compute αSiOH, but comparisons of the same 

silica material after having undergone the same thermal and solvent treatment can be 

used to quantify percentage of the silanol groups that have reacted.  Methods of indirect 

silanol measurement include silanol adsorption of chlorodimethylsilane10 or pyridine11, 

and quantifying this adsorption using a variety of techniques.  Many different values have 

been reported for the silanol number of various silica samples treated at different 

conditions.  However Zhuravlev12 reviewed many types of silicas with a wide range of 

morphologies, and found that for fully hydroxylated silicas, the silanol number was near 

constant at 4.6 SiOH/nm2.   

2.1.3 Silylation (Functionalization) Reactions 

 Silica materials (gels, colloids, glasses, etc) are easily functionalized with nearly 

any desirable surface functionality for a variety of applications.  The heart of silica 

surface functionalization involves the formation of covalent bonds between silica surface 

hydroxyl groups (silanol groups) and the Si center of a chloro- or alkoxysilane molecule 

(Figure 2.1).  The resulting surface Si-O-Si-R linkages provide good thermal and 

chemical stability13 (also due to the coatings which potentially increase hydrophobicity 

14,15).  These silylation reactions have been used to form functionalized silica particles for 

chromatography columns,16, 17 catalysts,18,19 advanced drug delivery,20 as well as 

functionalized sorbents.  Silica functionalization of ordered mesoporous materials has 

been recently reviewed.21 
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Figure 2.1 General functionalization schemes. 
(a) Schematic reaction of silica surface functionalization. X represents halide, hydroxide, 
or alkoxide leaving group. (b) Silanes used in this study for silica functionalization, and 
the associated environmental applications for sorption or as a platform for nanoparticle 
synthesis. 
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Two different routes to achieve the functionalized particles are available (Figure 

2.2).  Silylation can be done at the monomer level, and then the functional monomers are  

co-condensed with silica precursors to form functional particles22, 23 or the silanol groups 

of already-formed silica particles can be functionalized.  The latter strategy (sometimes  

called grafting) is used in this study.  Two silylation mechanisms have been proposed.24,25  

The first is the widely accepted sol-gel mechanism, in which moisture (either added or 

adsorbed to silica particles stored under atmospheric conditions) hydrolyzes the chloro- 

or alkoxy- leaving groups of the silane, followed by condensation with surface silanol 

groups.26, 27 One recent study28 has shown that it is even possible to exploit this 

mechanism in a solventless silylation process.  The second mechanism that has been 

proposed is a direct one-step nucleophilic substitution mechanism believed to operate 

during vapor phase silylation in a dry atmosphere.29 

2.2 Aqueous Mercury Sorption 

2.2.1 Adsorption of Aqueous Mercury 

The efficient removal of aqueous mercury from contaminated water is a well-

known challenge, due to toxicity of mercury30 throughout the ecosystem.  Various 

approaches have addressed this challenge, including precipitation, adsorption/ ion 

exchange, photocatalytic remediation,31 phytoremediation,32 and bioremediation33 by 

genetically modified organisms (GMO).34  Phytoremediation is used for contaminated 

soils and for large contaminated groundwater plumes, and often results in volatilization 

of elemental mercury into the atmosphere. Bioremediation and photocatalytic 

remediation are useful only to reduce organic mercury compounds to the elemental state, 

but the metal must still be recovered from the ecosystem, and in situ application of GMO  
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Figure 2.2 Two approaches for silica functionalization. 
(a) condensation of silane monomers (b) surface functionalization or grafting after silica 
particle has been synthesized.   
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raises ecological concerns.  Precipitation35 has been shown effective for mercury 

removal, including the precipitation of mercury at very low concentrations.36  In many 

situations, the solid precipitate must be removed in a secondary step such as 

ultrafiltration.  Reviews of mercury removal from water have been recently published.37  

Adsorption and/or ion exchange have become the preferred techniques, in cases 

where ex situ treatment is feasible, because the mercury is sequestered onto a sorbent 

particle.  Activated carbon has been used but the capacity is low due to the physisorptive 

mechanism, prompting the development of materials with specific functionalized surfaces 

for mercury chemisorption.38  Amines, amides, imines, and sulfur-containing functional 

groups on a variety of surfaces (metal oxides, fly ash, carbon, polymers, and gold) have 

been proposed.   

2.2.2 Regeneration of Aqueous Mercury Sorbents 

Another challenge for mercury removal is the regeneration of sorbent particles.  

Previous studies used a regenerating solution that dissolves mercury even from a very 

strong coordination, such as concentrated nitric acid39, perchloric acid, or hydrochloric 

acid40, or a more dilute acid mixed with thiourea39, 41. In another study where a urea 

moiety was the active sorption site, hot acetic acid was shown effective towards 

regeneration. A previous study in our lab indicated that functional groups such as 

cysteine and cystine can be regenerated at very mild conditions (pH = 3).42  In this study, 

a different approach is used than previous work.  Rather than modifying the regenerating 

solution for better removal of mercury, the sorbent itself is modified to allow for 

desorption of mercury under mild conditions.  In this approach, both thiol and sulfonate 
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moieties are used.  The mercury is less strongly adsorbed by the thiol moieties due to 

steric effects from the neighboring sulfonate moieties. 

2. 3 Membrane Applications for Sorption 

One limitation of using engineered sorbent particles is the mass transfer of 

sorbate.  This challenge is not unique to mercury removal and affects many separation 

processes. Convective flow through engineered membranes often demonstrates more 

efficient mass transfer than packed beds.  However, functionalizing a membrane with an 

appropriate chemisorptive moiety remains a challenge, so we demonstrate a mixed matrix 

membrane (MMM) approach.  MMMs incorporate the adsorbent particle within an inert 

polymer matrix, so that the effectiveness of chemisorptions on the sorbent particle is 

combined with the efficiency of membrane operations. Recent work has shown MMM, 

including polysulfone/silica MMM43, effective for various gas separations44, and our lab 

has demonstrated the application of polysulfone/silica MMM for high-value aqueous 

silver recovery applications.45  

The use of MMM with this sorbent bring a number of advantages for mercury 

sorption.  First, the membrane serves as a platform for the efficient dispersion of the 

sorbent particles, which allows more active sorption sites to be occupied by sorbate 

mercury ion.  Second, by having the membrane in a polymeric matrix, there is no 

additional filtration unit operation required after sorption.  The contaminated feed is 

passed into the MMM, and the mercury is retained within the MMM, while the mercury-

lean permeate exits the membrane unit.  Third, the contaminated particles are retained 

within the polymer matrix for facile disposal.  The sorption capacity and effectiveness of 

the MMM are seen in the various breakthrough curves which are dependent upon 
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membrane parameters (thickness t, pressure P, porosity ε, tortuosity τ) as well parameters 

important for conventional sorption (pH, temperature T, sorbent loading).  Another 

advantage is the ability to use milled sorbent particles (shown to have a higher initial 

sorption rate).  These must be incorporated into MMM as the pressure drop would be too 

large to use these fine particles in a packed column.  

2.4 Elemental Mercury Vapor Sorption 

 The growing needs of electrical energy for developing nations, coupled with 

efforts to move away from a petroleum-based energy supply, has led to the global 

construction of many new coal-fired power plants.  This has exacerbated environmental 

concerns about the release of elemental mercury into the atmosphere, which is harmful 

not only through direct inhalation by humans, but which re-enters the ecosystem through 

various routes.   Many mercury species present are removed in existing pollution-control 

devices.  Oxidized mercury is often removed in the electrostatic precipitator (ESP), and 

particle-bound mercury can be removed in baghouse filter devices.  However, about 60% 

of the mercury is elemental vapor (Hg0), for which additional control technology is 

needed.46 

2.4.1 Sorption Using Sulfur-functionalized Silica 

 The conventional method of mercury control is activated carbon sorption due to 

the high specific surface area.  This is a well-known sorbent which is used for the 

removal of many contaminants and distasteful compounds from water, as well as the 

primary sorbent for removal of contaminants from gases. However, activated carbon for 

mercury vapor sorption has some drawbacks.  First, the physisorptive mechanism 

inherently decreases the capacity at higher temperatures, which would typically be 
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present in power plant applications.  Second, other species present such as SO3 interfere 

with the sorption onto activated carbon.47  Some of the problems have been addressed 

with the use of brominated activated carbons, which oxidize the mercury at higher 

temperatures and alter the sorption mechanism.  Finally, there are disposal issues with 

activated carbon which could eliminate an important cost-recovery route for the power 

plant operators.  Typically, fly ash is removed in the baghouse filter and sold as a cement 

additive, but the addition of carbon renders its mechanical properties obsolete.  

Therefore, the development of a non-carbon sorbent (such as silica) is an important 

objective for the power industry to remove mercury and preserve a key cost-recovery 

stream. 

2.4.2 Effect of Temperature on Sorption 

The role of temperature in the efficacy of mercury capture by sorbents is a very 

important research area.  In 1995, it was published48 that Hg vapor capture on the surface 

of activated carbon in the presence of fly ash was heavily dependent upon temperature, 

with the maximum adsorption at about 200 °C.  While the mechanisms of mercury 

capture on activated carbon and functionalized silica may be different, temperature is 

expected to play a role in both capture processes. 

2.5 Reactive and Catalytic Nanoparticle Synthesis 

2.5.1 Nanoparticle Synthesis Methods 

The use of catalytic and reactive nanoparticles in various environmental applications is an 

emerging field; however, their use has been limited because of several practical 

difficulties.  Among these, the major ones are NP aggregation and surface deactivation 

(through oxidation or passivation).  This is especially true for magnetic and 
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electropositive zero-valent metal NP, such as iron.49  Various methods for Fe NP 

synthesis have been described in literature,50,51 one of the most common being the 

reduction of inorganic iron salts using sodium borohydride52 (2.5).  

Fe(H2O)6
3+  + 3BH4

- + 3H2O  Fe0 + 3B(OH)3 + 10.5H2   (2.5) 

Naturally occurring reducing agents can be used in the place of borohydride, especially in 

the synthesis of iron nanoparticles with the co-reduction of a secondary metal.  Recently, 

the use of ascorbic acid (vitamin C) has been proposed53 for the co-synthesis of iron and 

palladium, eliminating the need for post-coating step for the formation of bimetallic NP. 

Our lab has also recently published the use of polyphenol reduced and stabilized iron 

particles supported on a functionalized membrane.54 

Because surface chemistry of nanoparticles plays a prominent role in their 

application, attempts have been made to stabilize the nanoparticles through chelating 

ligands, which impede particle agglomeration.55  The decreased agglomerate size and the 

presence of the adsorbed polyligands may enhance nanoparticle transport, in some 

important applications such as groundwater remediation.56  Various ligands such as 

polysugars (interacts through hydroxyl groups), carboxymethyl cellulose (CMC)57 

(interacts through both hydroxyl and carboxylate groups), polystyrene sulfonate (PSS),58 

and PSS-containing block co-polymers,59 have been successfully implemented in the 

stabilization of Fe NP.  A variety of strategies for iron oxide NP stabilization have also 

been recently reviewed.60  One study61 demonstrated the use of metal-carbon bonds for 

stabilization in non-aqueous solvents, where decylbenzene attached to the surface acts as 

both a phase transfer agent from the aqueous phase (in which particle is synthesized) to 

the organic phase in which it is used.  Another study62 showed that non-metal 
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homogeneous nanoparticles may be stabilized by a lack of shear forces during particle 

formation.   

2.5.2 Nanoparticles Synthesized on Platforms 

 While the chelating ligands do impede particle aggregation, Fe NP have also been 

successfully synthesized on various platforms for ease of application.  Support 

membranes such as PVDF have been coated with poly(acrylic acid), and this 

functionalized membrane has been used to immobilize iron ions which are reduced to 

iron nanoparticles.63  Activated carbon has been used to support Fe/Pd NP for the 

destruction of chloroorganics in aqueous64 as well as DNAPL phases.65  

A silica platform offers potential advantages over polymers or activated carbon, 

and it is a well-known support for catalysts. Recently, an ordered mesoporous silica 

(SBA-15) was optimized for the synthesis of Bi66 and Co67 NP by incorporation of 

precursor salt within the pores.  Also Pt NP were formed by the reduction of a precursor 

salt onto colloidal silica,68 and both Au69 and Ti70 NP have been co-precipitated into sol-

gel silica.   For Fe NP, some very elegant work71 has recently been published 

demonstrating the synthesis of hydrophobized silica particles loaded with Fe NP.  In this 

case, the hydrophobized silica particles are synthesized by direct co-condensation of 

silane precursors (and simultaneous evaporation of iron salts) in an aerosol-assisted 

heating process, with the iron salts subsequently reduced to Fe NP using borohydride.  A 

subsequent study indicated the enhanced transport of these materials through simulated 

aquifers due to decreased aggregation.72   

In addition to co-condensation of silanes, the silica surface is covered in silanol 

(SiOH) moieties (typically ~ 3 SiOH/nm2) which can be easily functionalized by 
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silanization (also called grafting).  This is another advantage of silica over other 

platforms. In this case, the silica is functionalized with sulfonate groups which provide a 

strong ion exchange platform for ferric/ferrous ions.  Alternatively a weak ion exchanger 

such as carboxylate could be used with the ferrous ions only.  Although not addressed in 

this study, multiple functional groups could also be used for the synthesis of 

hydrophobic/hydrophilic nanodomains.  The ability to incorporate multiple functional 

groups onto a single platform is a further advantage of silica. 

2.5.3 TCE Dechlorination 

 An important application of zero-valent iron is for the detoxification of 

trichloroethylene (TCE), a very prevalent groundwater pollutant which is both persistent 

and toxic.  Physical as well as chemical oxidation and reduction have been demonstrated 

for remediation of TCE.  A common physical strategy is air stripping,73 which may or 

may not be followed by TCE sorption onto activated carbon.  Oxidative strategies include 

biological oxidation or in situ chemical oxidation (ISCO) techniques, such as Fenton’s 

reaction to generate hydroxyl radicals (OH•).74  Our lab recently demonstrated the use of 

modified Fenton’s reaction for ISCO; using citrate as a chelating agent for the 

ferrous/ferric ions to overcome difficulties of conventional Fenton’s reaction.75   

 Reduction of TCE can occur by either direct electron transfer or by 

hydrogenation,76 and both reactions have been carried out using various catalytic 

schemes.  Although direct electrical current has been shown77 effective towards TCE 

reduction, iron is commonly used as an electron-transfer catalyst.  Hydrogenation has 

been carried out by traditional hydrogenation catalysts such as Pd, Ni, Pt, etc., where the 

hydrogen is supplied.  Because the supply of hydrogen to contaminated underground 
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field sites is generally considered impractical, bimetallic catalysts have recently been 

developed, where a primary metal such as Fe reduces water to hydrogen through 

corrosion, thus supplying the needed reactant for a nearby hydrogenation catalyst located 

on the particle surface.  Fe/Pd and Fe/Ni78 bimetallic particles have been shown to be 

most efficient among various bimetallic combinations.79  The high surface area to volume 

ratio of nanoparticles, and the high prevalence of edge defects on nanoscale particles, has 

been demonstrated to be more effective catalysts than microparticle catalysts.80   
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3. Chapter Three: Experimental Methods 

 This chapter details the experimental methods for all the subsequent chapters of 

the dissertation.  Each section of this chapter corresponds to subsequent chapters in which 

results, discussion, and experimental conclusions are given for these experiments.  The 

final chapter of this dissertation (Chapter 9) describes the overall conclusions and 

scientific advancements of the dissertation.  

3.1 Functionalization Fundamentals 

3.1.1 Materials Used 

Silica particles having various structure parameters given in Table 4.1 were 

obtained from J. M. Huber Corporation (Havre de Grace, MD) for Silicas A and B; 

Ludox colloidal silica (TM-50) was obtained from Grace Davison (Columbia, MD).  

Sulfur-containing silane reagents used were 95% 3-mercaptopropyltrimethoxysilane 

(MPTMS) or 95% bis[3-(triethoxysilyl) propyl]tetrasulfide (S4); which were obtained 

from Sigma-Aldrich, Inc., (St. Louis, MO) and Gelest, Inc. (Morristown, PA), 

respectively.  Basic information on these silicas are also given in Table 2.1 and on the 

silanes in Table 2.2 and Figure 2.1. 

3.1.2 Silylation Procedure 

Silica particles were functionalized by adding 2.5 g of particles and 0.9 mL of 

silane into a flask containing enough anhydrous ethanol to disperse the particles (ca. 50 

mL).  The mixture was heated to 80 °C to evaporate the ethanol, and the remaining moist 

silica was heated at 110 °C for at least 4 h in order to accomplish silylation.  The particles 

were then washed with ethanol under vacuum filtration using a 0.45 µm filter membrane, 

and dried at 80 °C overnight. 



24 

 

3.1.3 Determination of Extent of Functionalization 

Three methods are used to determine the extent of functionlization of the various 

silica particles using sulfur-containing silanes.  First, Fourier transform infrared 

spectrometry (FTIR) was used:  a small amount (ca. 5-10 mg) of the functionalized silica 

was ground with KBr and pressed into a pellet.  A KBr pellet containing a similar amount 

of unfunctionalized silica was also prepared, and the spectra of both were acquired using 

a Thermo-Nicolet Nexus 470 spectrometer running Omnic software.   

The second method of determining the extent of silylation is to use 

thermogravimetric analysis (TGA) to determine the silane weight percent of the 

functionalized particles.  The TGA plots of the unfunctionalized particles are compared 

to those of the functionalized particles in order to properly account for the weight loss 

due to moisture evaporation in all the silica samples.  The TGA experiments were carried 

out by loading ca. 20 mg sample into the TA Instruments Hi Res TGA 2950 equipped 

with an EGA furnace and heating to 1000 °C at a rate of 10 °C/min in a Pt pan under an 

air flowrate of 120 mL/min.  The third method for determining the extent of 

functionalization is total sulfur analysis, which also operates by heating the sample.  

Instead of measuring the mass loss as in TGA, a small sample was heated in an Eltra 

Total Sulfur Analyzer which determines the mass percent of sulfur based on infrared 

analysis of the combustion products (sulfur oxides).    

3.1.4 Characterization of Functionalized Particles 

Nitrogen sorption isotherms were collected at 77 K for all functionalized and 

unfunctionalized samples using a Micromeritics Tristar 3000, and pore volume 

distributions were calculated by Tristar 3000 V 4.02 software using the BJH method.    
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Differential scanning calorimetry (DSC) analyses were conducted on MPTMS- and S4-

functionalized Silica A particles to demonstrate that there is a cross-linked network on 

the S4-functionalized particles, but not on the MPTMS-functionalized particles.  

Approximately 5-10 mg of particles were heated to 130 °C then cooled to 30 °C in order 

to remove excess moisture.  The same samples were re-heated to 300 °C at a rate of 5 

°C/min in a Pt-Rh alloy pan under an N2 atmosphere, and the heat flow was measured.  

The baseline DSC plot for an empty pan was subtracted.   

3.1.5 Determination of Mercury Capture Efficiency 

Mercury capture efficacy was determined using a packed bed experiment, which 

has been described in detail elsewhere.32  A Vici-metrics mercury emitter cell (1454 ng 

Hg/min at 100 °C) was used as a mercury source, and it was diluted into a stream of 

nitrogen flowing 60 mL/min.  The dilute mercury gas flowed through the packed bed 

which was held at 140 °C by immersion in a silicone oil bath.  The outlet concentration 

of mercury was determined using a Model 400 Cold Vapor Mercury Analyzer from Buck 

Scientific.  To confirm the results of the online-mercury analyzer, the packed bed was 

digested in 25 mL of a 4:1 mixture of 16 M nitric acid and 8 M hydrochloric acid.  After 

overnight digestion, the mixture was diluted with deionized ultrafiltered (DIUF) water.  

The remaining solid particles were removed by syringe filtering through a 0.45 μm PVDF 

membrane.  The concentration of mercury in the supernatant was determined by 

preparing standard solutions and analyzing using a Varian Vista Pro ICP-OES.  The 

lowest detectable concentration for Hg2+ ion for this method is 0.5 ppm.   
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3.2  Aqueous Mercury Sorption 

3.2.1 Sorbent Characterization 

 The thiol-modified sorbent is a proprietary composite particle from NEI 

Corporation. The composite has a carbon core with a thin heterogeneous shell of silica, 

functionalized through silane chemistry with 3-mercaptopropyltrimethoxy silane 

(MPTMS).  Unless noted specifically (as in the case of the regenerable sorbents), the 

functionalization of these sorbents was done by the manufacturer.  The sulfur content (as 

reported by NEI) is given in Table 2.2 for the various sorbents designated SCC-0, SCC-2, 

and SCC-3. The SCC-3 particles were also provided in three agglomerate sizes 

(designated aggregated, non-aggregated, and milled) with size ranges shown in Figure 

5.1.  These size ranges were determined by sieving the particles (with shaking) and 

measuring the mass fractions that pass through each sieve.  All three agglomerate sizes 

are made up of the same base particles, as determined by dynamic light scattering (DLS) 

after sonication in ethanol. Thermogravimetric (TGA) data, as well as differential 

scanning calorimetry data collected simultaneously with the TGA data, were acquired.  A 

few mg (10-20) of sorbents were loaded into a Pt-Rh pan, and the temperature was 

increased at 20 ºC/min to 1000 ºC (under air flow of 60 mL/min) as the relative sample 

mass was determined.  Nitrogen sorption isotherms were acquired at 77 K after degassing 

under nitrogen at 120 °C for at least 8 h, and pore size distributions were also calculated.  

TEM images were obtained on a Jeol 2010F TEM with an accelerating voltage of 200kV.  

 The hydrolytic stability of the thiol moiety was determined by leaching tests and 

sulfur analysis using ICP.  Specifically, 150 mg of sorbent was placed in a 40 mL EPA-

certified sample vial, and DIUF water was added, and the pH was adjusted with 1% nitric 
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acid to pH of 5.5 – 6.  Samples were shaken for 8 h, and then filtered through a 0.45 μm 

PVDF syringe filter.  The concentration of the filtrate was determined using ICP (λ = 182 

nm for S).  Standard solutions up to 200 mg/L were prepared and for all calibrations, R2 ≥ 

0.99.  Duplicate runs of the same sample leachate were precise within 4%.  Duplicate 

trials of each material were also done to confirm results.   

3.2.2 Mercury Sorption using Thiol-functionalized material 

 The total capacity (Q) of these sorbents were determined by a material balance 

from the initial Hg concentration (CHg,0) and the supernatant concentration (CHg).  The 

initial Hg solution was freshly prepared by dissolving solid Hg(NO3)2 in a few drops of 

concentrated nitric acid, diluting to the desired volume, and adjusting the pH using 

sodium hydroxide.  The concentration of the final solution was determined using 

inductively coupled plasma (ICP).  Sorbent particles were removed prior to ICP using 

Whatman polypropylene syringeless filter devices with PVDF membrane (450 nm pores).  

Duplicate and spiked ICP samples were used to insure quality control.   

 The number of accessible surface thiol sites was quanitified using Ag(I) sorption, 

as it is found in the +1 oxidation state and interacts with the thiol in a 1:1 ratio. Silver 

nitrate solution was prepared by dissolving AgNO3 in a few drops of concentrated nitric 

acid, and diluting with DIUF water.  Afterwards, samples were removed and filtered 

using a 0.45 µm PVDF filter.  The concentration of the supernatant was analyzed using 

ICP (λ=328 nm), and the silver sorption capacity was calculated by a material balance 

(CAg,0 – CAg).    

 Kinetics of sorption was also determined.  In these experiments, a single batch of 

Hg solution was prepared (300-600 mL) and sorbent was added.  Samples (less than 5 
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mL) were removed periodically and concentration was determined by ICP.  The total 

sample volume removed was always <10% of the total volume to minimize error.  

 Real water testing of these sorbents was conducted using mercury-contaminated 

water from Oak Ridge National Laboratory (Sump I in basement of Building 4501).  

Both SCC-3 aggregated and SCC-3 non-aggregated columns were tested, with 

experimental parameters given in Table 3.1. Effluent mercury concentration was tested 

thrice weekly.  Samples (10 mL effluent and 0.1 mL influent samples) were preserved by 

addition of nitric acid, prepared by addition of stannous chloride to reduce the Hg(II) to 

Hg(0), and analyzed by RA-915A Mercury Analyzer (Ohio Lumex, Inc., Twinsburg, 

OH).  The instrument was calibrated up to 100 ng Hg with a detection limit of 0.1 ng (or 

10 ng/L for the effluent sample).  An air purge was used to transport the reduced mercury 

vapor into the measurement cell and analysis was conducted at λ=245 nm. 

3.2.3 Regeneration of Sorbent Materials 

 Regenerable sorbent materials were prepared in our lab by functionalizing the 

proprietary core-shell particle with both sulfonate and thiol moieties.  The goal was to 

achieve approximately equimolar thiol and sulfonate groups.  Five grams of 

unfunctionalized sorbent was dispersed into 25 mL methanol with stirring, and 125 µL 3-

mercaptopropyl-trimethoxy silane (MPTMS; from Gelest) was injected.  This is 

sufficient to react with 25% of the available silanol groups, assuming that the surface area 

is ~100 m2/g and ~3 silanol/nm2. while the mixture was heated to 80 ºC over an oil bath.  

When the methanol had evaporated leaving a slurry, the particles were cured at 110 ºC 

for 8 h.  They were washed in methanol to remove unreacted silane, centrifuged, and 

dried at ambient temperature under vacuum.  A portion of these particles were retained  
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Table 3.1 Experimental parameters for real water sorbent tests. 
*BV = bed volumes 

 SCC-3 aggregated SCC-3 non-aggregated 
Dry weight sorbent (g) 7.9 10.2 
Flow rate (mL/min) 1.82 2.16 
Flow rate (BV*/min) 0.078 0.079 
Total volume treated (L) 302 362 
Total volume treated (BV*) 12,950 13,210 
Inlet Hg concentration (µg/L) 6.34 6.34 
Inlet Na concentration (mg/L) 9.11 9.11 
Inlet Ca concentration (mg/L) 41.2 41.2 
Inlet Mg concentration (mg/L) 12.1 12.1 
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for sorption experiments.  The remainder of dried particles were then mixed with 40 mL 

of 8 vol% aqueous solution of 3-trihydroxysilyl-propane sulfonic acid (THSPS; received 

as 30-35% wt% in water; from Gelest), which was adjusted to pH=4.9 with NaOH. The 

same process was repeated: evaporation of water to leave particle slurry, curing, washing, 

centrifugation, and drying under vacuum. The molar ratio of sulfonate:thiol added was 

10:1, but this does not mean all reacted.  

 The extent of available thiol and sulfonate was determined by sorption with Ag+ 

and Ca2+ for particles with only thiol and with both thiol and sulfonate.  A silver solution 

was prepared: 88 mg/L (0.81 mmol/L) and initial pH of 6.1.  Calcium solution was also 

prepared: 22 mg/L (0.54 mmol/L) and initial pH of 5.8.  Two 50-mg sorbent samples 

were used with each solution in 40 mL volume for 90 h.  Also, to determine if the 

material is useful for Hg sorption, a 140 mg/L solution (0.70 mmol/L) was prepared and 

50-mg sorbent samples were shaken in 40 mL solution for 90 h.  Concentrations of all 

solutions were analyzed with ICP. 

 Once the lab-synthesized material was shown to have high capacities, the 

regeneration ability was tested.  A 150 mg/L Hg solution was prepared and pH adjusted 

to 6.4.  Part of this solution was also mixed with Ca(NO3)2 in order to test the sorption in 

the presence of competing ions.  The first sorption experiment was conducted as 

previously described and the capacity determined by ICP.  The supernatant was removed 

and the particles were then immersed in dilute HCl (at pH = 4) and shaken overnight.  

The concentration of Hg removed from the particles into the regenerating solution was 

again determined by ICP, and the % regeneration calculated. Characterization (nitrogen 
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sorption, TGA, DSC, TEM) of the lab-synthesized material was carried out as previously 

described.  

3.3  Mixed Matrix Membranes (MMM) Applications 

 MMM was synthesized from polysulfone and sorbent using the well-known phase 

inversion technique.  To synthesize the MMM with high sorbent loading, 3 g polysulfone 

(PSf; from Aldrich; Mw = 16,000) was dissolved in 15 g anhydrous dimethylformamide 

(DMF), and SCC-3 particles were added to this solution to achieve desired sorbent wt% 

(on solvent-free basis).  After stirring for 24 h to disperse the particles, the membrane 

was cast under ambient conditions into DIUF water.  The evaporation time was less than 

10 s.  Final membrane thickness and mass was determined after drying.   

 MMM were used for Hg sorption in convective flow mode under nitrogen (< 6 

bar). The water flux (JW) was determined by measuring amount of water passed per unit 

time at different pressures.  The Hg sorption capacity with kinetics was determined by 

passing a feed solution of mercury at known concentration (CHg, feed) and determining the 

permeate Hg concentration, also using ICP.   

3.4 Elemental Mercury Vapor Sorption 

Silica samples were provided by the J. M. Huber Corporation.  For most 

materials, mesoporous silica gel particles were doped with copper (as copper sulfate, 

CuSO4) and silanized with bis-(triethoxy silyl propyl)-tetra sulfide (S4) using dry 

silanization techniques.  Si-1 material listed in Table 2.1 gives information on the 

typically used sorbent materials; other compositions were also briefly tested as described 

in Chapter 7.  The materials were conditioned prior to Hg exposure using ultra-high 
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purity nitrogen at 140oC for 30-60 min.  A variety of silica-based samples were provided 

to examine the impact of composition on Hg capture.       

3.4.1 Surface Area Measurements by N2 Sorption  

A 100-mg sample was prepared by degassing for 6 h at 140 oC under N2 

refluxing.  The N2 adsorption isotherm at 77 K was then measured using a Micromeritics 

Tristar 3000 pore volume analyzer.  The total surface area was then calculated using the 

BET method. 

3.4.2 SEM with Energy Dispersive X-Ray (EDS) Analysis   

Scanning electron microscope images of select sample were acquired on a Hitachi 

Model S-3200-N scope using a working distance of 15 mm and source voltage of 20 kV.  

A sample of Si-1 after mercury saturation was pressed onto carbon tape affixed to an Al 

stage (15 mm diameter).  Elemental probing was performed using EDS.   

3.4.3 Fixed-Bed Mercury Vapor Adsorption   

The total adsorption capacity of all functionalized silicas was determined using a 

fixed-bed system reported previously by our group.16 The experimental set-up is shown 

in Figure 3.1.  The packed-bed consisted of a 500-mg sorbent bed suspended in one arm 

of a 0.9 cm I.D. glass U-tube using approximately 0.15 g of glass wool to prevent particle 

loss under gas flow.  The U-tube was maintained at 140 °C using a silicon oil bath and 

temperature controller.  Mercury vapor was generated using a mercury permeation tube 

(VICI Metronics) that is capable of producing 1596 ng/min of Hg0 at 100 °C.  The 

permeation tube was supported on glass beads packed in a glass U-tube and maintained at 

100 °C using a silicon oil bath.  Ultra-high purity nitrogen, N2 (99.999%, Scott Gross), 

was used as the carrier gas and was fed into the system at 60 mL/min using a Brooks  
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Figure 3.1 Experimental apparatus for fixed-bed mercury sorption.  
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Model 5850E mass flow control valve and Model 0152 controller.  At these conditions, 

the concentration of Hg0 in the inlet to the packed bed should be 2.97 ppm.  The empty-  

bed residence time based on a bed height of approximately 1 cm was 0.65 s.  The 

concentration of Hg used was three orders of magnitude larger than the concentration of 

Hg in most flue gases (2 ppb).   

The system was equipped with four 3-way valves that allow for bypass of the Hg 

source, the packed bed, or both.  Online monitoring of Hg was achieved using a Buck 

Scientific Cold Vapor Mercury Analyzer 400.  The detector supplied an output signal in 

terms of the mV response to the change in % transmittance at a 253.6-nm wavelength to a 

coupled computer with a sampling interval of 0.5 s.  Typical tests began by first 

bypassing the Hg source and feeding nitrogen through the packed bed to establish a zero 

baseline for the detector.  The nitrogen flow was then routed to the Hg permeation tube 

and fed to the packed bed until a minimum of 90% exhaustion was achieved.  A 20-mg 

sample of the contents of the bed was digested overnight using 40 mL of an aqua regia 

medium (4 M HCl and 1 M HNO3).  The amount of total Hg was then quantified using 

inductively-coupled plasma (ICP) elemental analysis. 

3.4.4 Mercury Analysis Using Inductively-Coupled Plasma (ICP) Analysis 

Digested samples were analyzed for Hg using a Varian Vista-Pro CCD 

Simultaneous ICP-OES (optical emission spectrometer).  Analysis of Hg was performed 

at wavelengths of 194.1 and 253.7 nm.  These wavelengths were selected because of their 

lack of susceptibility to Cu interference.  The instrument was programmed to obtain 

readings in triplicate for each sample.  An acidic rinse cycle was used between samples to 

avoid carry-over.  The detector was calibrated to a lower limit of 0.5 ppm Hg, with a 
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linear trend existing over the entire calibration range.  The lower detectable limit was 0.2 

ppm Hg.  The upper calibration limit was selected based on the anticipated amount of Hg 

captured for a given sorbent and ranged from 6-10 ppm Hg.  Standards were prepared by 

digesting fresh sorbent (no Hg exposure) in the same aqua regia medium and spiking with 

appropriate quantities of a known Hg standard (Fisher) to produce the desired 

concentrations.  Prior to analysis of digested samples, known samples were first prepared 

and analyzed to verify the accuracy of the machine.  Both a 1.5-ppm and 0.5-ppm known 

sample routinely gave errors of less than 1%.  Digested samples of exhausted beds were 

split in half, with a 0.5 ppm Hg spike added to one sample to verify the analysis by 

method of additions.  This method was checked using a 0.5-ppm known sample, which 

yielded a recovery error of 9%. 

3.4.5 Leaching Studies 

The loss of Cu and Hg from a selected sorbent was examined both before and 

after impregnation in Concrete.  Concrete samples were prepared using a Quikrete Fast-

Setting cement mix that had been degraveled.  A typical concrete blend consisted of 65-

wt% cement, 34.5-wt% fly ash obtained from a Reliant Energy coal-fired power plant, 

and 0.5-wt% of Hg-saturated sorbent.  This composition was based on typical standards 

for fly ash in concrete.22 The dry materials were thoroughly mixed and then prepared for 

casting through the addition of de-ionized, ultra-filtered water to obtain a suitable 

working viscosity.  The composition is shown schematically in Figure 3.2.  After 

pouring, the concrete slug was allowed to dry and set overnight.   

Leaching of sorbents after Hg exposure were performed by placing 50 mg of 

sorbent in 20 mL of deionized ultrafiltered water with an adjusted pH of 4.0 through the  
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Figure 3.2 Cement slug composition for metal leaching experiments. 
Exact experimental compositions are given in Chapter 7.   
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addition of nitric acid.  The leaching was carried out under mixing for 12 h.  Concrete 

leaching studies were conducted using EPA Method 1312 Synthetic Precipitation 

Leaching Procedure.23 Concrete slugs were placed in deionized ultrafiltered water with an 

adjusted pH of 4.2 through the addition of a solution of sulfuric and nitric acid (60 vol. % 

sulfuric and 40 vol % nitric).  The liquid-to-solid ratio was 20:1.  Leaching was allowed 

to occur under mixing for 24 h.  In both cases, samples were prepared for Hg and Cu 

analysis by ICP.  The analysis of Cu by ICP followed the same procedures used for Hg 

analysis given above with the exception of the selected wavelength for analysis (213.6, 

219.2, and 224.7 nm for Cu analysis).      

3.4.6  Moving-Bed (Injected) Vapor-Phase Hg Capture in Simulated Flue-Gas 

In-flight mercury capture experiments were conducted in the U.S. EPA’s 

Entrained Flow Reactor (EFR, Research Triangle Park, NC).  A detailed description of 

the EFR set-up has been provided previously.16 A schematic of the basic system is shown 

in Figure 3.3.  Briefly, the system consisted of a 332 cm by 4 cm ID Pyrex contactor that 

was heated by three electric tube furnaces (Lindberg, USA) to maintain a constant 

controlled temperature.  A water-cooled methane gas burner provided combustion flue 

gases (CO, CO2, H2O, and O2) while other flue gas components (N2, SO2, NO, HCl) were 

introduced into the reactor at constant concentrations using compressed gases and mass 

flow controllers.  Elemental mercury vapor (Hg0) was generated using a permeation 

device (Dynacalibrator, VICI Metronics) with a N2 carrier and subsequently mixed with 

the simulated flue gas before entering the EFR.  The sorbent was entrained into the 

reactor using a nitrogen purge stream.  The sorbent feeding assembly consisted of a gas 

supply manifold, a feed tube, and a syringe pump mounted to a vibrating plate.  For all  
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Figure 3.3 Experimental apparatus for injected vapor-phase mercury sorption. 
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tests, the sorbent was diluted with an inert material (diatomaceous earth (DE) flour) at 

varying mixtures depending upon the desired sorbent injection rate.  This dilution 

allowed the syringe pump to perform in the middle of its operating range and helped to 

maintain a steady sorbent addition rate.  Although the EFR is capable of simulating a 

variety of conditions, the gases were mixed to simulate the flue gas that would be 

expected from the combustion of a low-sulfur Western sub-bituminous coal (e.g., such as 

that from Wyoming’s Powder River Basin).  The experimental conditions are given in 

Table 3.2.   

Experiments were initiated by heating the reactor to the desired temperature and 

performing the necessary calibration checks for continuous emissions monitoring.  An 

advanced Hg Continuous Emission Monitor (CEM) Nippon DM-6B (NIC, Japan) 

provided the concentration and speciation (elemental vs. oxidized) of Hg in the simulated 

coal combustion flue gas using a 10 s sampling interval.  Baseline measurements were 

collected before beginning injection of the sorbent.  The sorbent-DE mixture was added 

continuously for at least 20 minutes before stopping the injection and diverting the gas 

stream to bypass the on-line Hg analysis.  The system was cooled and the reactor walls  

and tubing were thoroughly cleaned between experiments to prevent “memory effects” 

due to any accumulated sorbent on the reactor or tubing walls. 

3.4.7 Fixed-bed Hg Adsorption Experiments at various Temperatures 

Packed bed Hg capture experiments using this sorbent were conducted at 140 °C, 

100 °C, 70 °C, again at 140 °C; all for 24 h.  The second run at 140 °C was performed to 

ensure that results were not biased as the Hg source was depleted.  The experimental 

apparatus has been described in detail elsewhere.  Briefly, a packed bed was formed from  
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Table 3.2 Experimental parameters for injected vapor-phase mercury sorption. 

 

Target Unit Wet basis Dry basis Remarks 

HCl ppm 10 10.8 from gas cylinders 

SO2 ppm 500 538 from gas cylinders 

NO ppm 200 215 from gas cylinders 

CO2 vol% 3.5 3.8 from methane burner 

CO ppm ~5 ~5 from methane burner 

O2 vol% 6.8 7.3 from methane burner 

H2O vol% 6.8 0 from methane burner 

N2 vol% balance balance from cylinders &burner 

Hg0(g) μg/nm3 ~21.5 ~20 Hg0permeation tube 

Total flow L/min 14 13 std cond, 1 atm, 20 °C 

Temperature °C 140 140 139-144 °C 
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sorbent which had previously been heated at 140 °C under flowing N2 (60 mL/min).  

Mercury was released from Hg emitter tube at 1447 ng min-1 Hg vapor.  During the 24-  

hour run, the total amount of Hg that passed into the bed was 2.08 mg Hg.  The entire 

sorbent bed and glass wool of each trial was digested in a mixture of 20 mL conc. nitric 

acid and 5 mL conc. hydrochloric acid.  After overnight digestion, this mixture was 

diluted with deionized ultrafiltered (DIUF) water to a total volume of 40 mL.  A 100-mg 

sorbent not exposed to Hg was heated for 1 h at 140 °C under 60 mL min-1 of flowing N2, 

and it was digested according to the same procedure. 

 Standard Hg solutions were made: 1 ppm, 2 ppm, 4 ppm, 10 ppm;  these were 

made by mixing 2.5 mL of the digest water, an appropriate amount of 100 ppm HgNO3 

(diluted stock solution from Fisher); and enough water to dilute to 10 mL.  The digested 

solutions were filtered with 0.45 µm PVDF membrane filter syringe, and the 2.5 mL of 

the supernatant solution was diluted to 10 mL with water.  The concentration of Hg in the 

samples was determined using inductively coupled plasma instrument, based on the 

intensity of the samples at λ = 253 nm.  All measurements had a relative standard 

deviation of less than 4 %.   

3.4.8 XRD of Sorbents and Product 

 X-ray diffraction patterns were obtained at room temperature with 2-theta from 

10° to 60° and a step size of 0.2° at a rate of 10/min for the following samples: anhydrous 

copper sulfate, S4 functionalized copper sulfate doped silica gel (both heated and 

unheated), S4 functionalized silica gel, mercury sulfide, and S4 functionalized copper 

sulfate doped silica gel after being exhausted with mercury capture.   
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3.5  Reactive and Catalytic Nanoparticle Synthesis 

Colloidal silica Ludox TM-50 was obtained from Grace Davison (Columbia, MD) 

& silica gel from Huber Corp (Havre de Grace, MD).  Sulfonated silane reagent, 3-

(trihydroxysilyl)-1-propane sulfonic acid (30-35 % in water) (THSPS), was obtained 

from Gelest Inc. (Morrisville, PA).  Potassium tetrachloropalladate was obtained from 

Sigma-Aldrich.  Deionized ultrafiltered (DIUF) water & ethanol were obtained from 

Fischer Scientific. 

3.5.1 Functionalized Silica Synthesis 

Silica D (silica gel) and Ludox were functionalized  with 3-trihydroxylsilyl-1-

propane sulfonic acid (THSPS) using previously reported81 methods without the use of 

organic solvents.  Briefly, a 3 wt% aqueous solution of THSPS was adjusted to pH = 4.9.  

Silica particles (10 g in each batch) were dispersed into 50 mL DIUF water and the silane 

solution (about 75 mL) was injected with vigorous stirring. The mixture was stirred for 

15 min to disperse the silane, followed by heating (with stirring) to 100 °C until all water 

was evaporated.  The functionalized particles were cured for 4 h at 100 °C to complete 

the silylation.  They were washed with water to removed excess silane, centrifuged, and 

dried.     

3.5.2  Extent of functionalization 

 The extent of functionalization was determined by infrared spectroscopy and 

thermogravimetric analysis methods given in detail elsewhere.81  Briefly, a small amount 

of functionalized particles were finely ground with potassium bromide and pressed into a 

die.  The Fourier transform infrared spectrum was recorded based on 128 scans from 

4000 to 400 cm-1.  The same procedure was carried out for unfunctionalized particles, and 
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the heights of the Si-O-H peaks at about 980 cm-1 were compared; assuming that the loss 

of silanol groups due to functionalization is proportional to the decrease in Si-O-H peak 

height.  Determining extent of functionalization by thermogravimetric analysis was done 

by recording the mass loss of a sample as temperature is increased from room 

temperature to 1000 °C (at a rate of 10 °C/min).  The total mass losses of a functionalized 

and unfunctionalized sample were compared.    

3.5.3 Silica-Based Fe Particle Synthesis 

 The first step to forming Fe/Pd particles is to immobilize the ferric ions.  

The sulfonate-functionalized silica particles were shaken in a 0.017 M ferric chloride 

(FeCl3•6H2O; 951 mg Fe/L) solution for 12 h.  The pH of ferric solution was 2.5 and was 

unchanged after shaking with the particles, since they were in the Na+ form (by 

previously adjusting silane solution pH using NaOH).  After centrifugation to remove the 

particles, the amount of sorbed Fe was determined by measuring the Fe concentration in 

the supernatant with inductively coupled plasma (ICP) at multiple wavelengths.  Next, 

the immobilized ferric ion was reduced to zero-valent iron (ZVI) by borohydride.  A 

freshly prepared 0.17 M solution (50 mL) NaBH4 was added dropwise to a beaker 

containing about 20 mg of Fe immobilized on ~3 g silica dispersed in 100 mL 

deoxygenated water. The particles turned gray due to the formation of black iron particles 

on the white silica surface.  The reduction was allowed to continue for 1 h, and the 

silica/Fe particles were centrifuged, washed with ethanol, and dried.  In the case of 

particles silica-based particles used for oxidative dechlorination reactions, the Fe NP 

were oxidized using air bubbled through a dispersion of these particles in water for up to 

24 h.  The iron oxide/iron particles on silica were then centrifuged and dried.  
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3.5.4 Ascorbic acid as a reducing agent 

 Besides immobilization or the use of polyligands, another method to synthesize 

particles while inhibiting oxidation and aggregation is to use natural weak reducing 

agents, such as ascorbic acid.  Excess reducing agent adsorbs to the particle surface to 

prevent oxidation of the particle, and various surface adsorbed species can also inhibit 

aggregation.  Ascorbic acid is a weak reducing agent, and therefore will not sufficiently 

reduce iron without the presence of another reduction reaction.  Therefore, bimetallic 

Fe/Pd particles were prepared by the co-reduction of FeCl3•6H2O and K2PdCl4 with 

ascorbic acid, which is a modification of a recent procedure.53  Briefly, for each batch 

prepared, 10 mL of a 0.1 M ascorbic acid solution was mixed with 20 mL of 0.01 M 

ferric solution (FeCl3•6H2O).  Particles were formed upon the addition of PdCl4
2- solution 

(10:1 Fe:Pd ratio).  Alternatively, Pd can be prepared alone by reduction with ascorbic 

acid: particles were first prepared by reducing PdCl4
2- to Pd0 using ascorbic acid in ten 

times the stoichiometric amount, 23.1 mM ascorbic acid solution was used with four 

times the volume of Pd(II) solution.  Upon reaction, the solution turned immediately 

gray. Then, Pd particles were prepared in various ascorbic:Pd molar ratios for analysis.  

3.5.5 Metal particle characterization 

 Metal or bimetallic particles were characterized using several methods.  Nitrogen 

sorption data at 77K was obtained using a Micromeritics Tristar 3000 instrument.  

Surface adsorbed species were detected by Nicolet Nexus 470 infrared spectrometer 

running Omnic software.  Particle morphology was determined in Jeol 2100 TEM at 

200kV accelerating potential and dynamic light scattering was used to determine 

hydrodynamic radius. 
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3.5.6 TCE degradation experiments 

 TCE degradation experiments were carried out in 20 mL EPA glass vials with a 

gas-tight PTFE-coated PDMS septum. Samples were initially loaded with particles and 

TCE solution (20-30 mg/L).  A control vial was prepared without particles to ensure that 

no TCE was volatilized.  The concentration of TCE in a sample was determined after a 

certain time interval by extraction of the sample with pentane (5 µL ethylene dibromide 

(EDB) as an internal standard, per 100 mL pentane) and analysis using gas 

chromatography (HP Series II model 5890) with a mass spectrometer (HP 5971A) 

detection system (GC-MS).  Each sample was used for only a single data point. Standard 

solutions (1 to 30 mg/L) of TCE in pentane were prepared, also using EDB as an internal 

standard.  The lowest detection limit was 1 mg/L TCE in pentane. 

For oxidative dechlorination experiments (using oxidized particles), each sample 

vial was loaded with reactive particles (average loading = 0.16 g/L Fe; detected by acid 

digestion followed by atomic absorption), hydrogen peroxide (Cinitial = 1409 mg/L), and 

TCE (Cinitial = 22 mg/L) in deoxygenated water.  Each vial (20 mL clear EPA vial with 

Teflon-coated septum) was shaken for a time and opened only once, where 4 mL of the 

solution was removed.  This solution was extracted by shaking with the EDB-containing 

pentane.  After 2 h extraction, the concentration of TCE in the pentane was determined 

by GC-MS. For reductive dechlorination experiments, the same sampling and analysis 

procedure was used.  The initial concentrations were 1 g/L Fe loading, 30 mg/L TCE, and 

no hydrogen peroxide.  
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4. Chapter Four: Functionalization Fundamentals 

The first objective of this study is to determine the effect that silica particle 

structure and silane structure have with regard to the maximum extent of silica particle 

functionalization, using IR, Ag+ sorption, TGA, and TSA.  The second objective is the 

characterization of the functionalized silica particles.  The third objective is to 

demonstrate how pore structures influence breakthrough capacity of these sulfur-

functionalized particles. 

4.1 Effect of silica particle structure on extent of functionalization  

The three types of silica particles used in this study (Table 4.1) were chosen 

because of their different structural characteristics.  The surface areas and average pore 

diameters of the S4 functionalized silicas are also given.  Silica A and silica B are both 

porous silica gels with similar particle diameters; Ludox (TM-50) is colloidal silica with 

monodisperse primary particles 22 nm in diameter (provided by manufacturer but 

confirmed by our lab using dynamic light scattering and SEM).  Nitrogen sorption 

isotherms (Figure 4.1a,c) for these samples are IUPAC Type IV confirming the porous 

nature of the sample.82  Silica A has a much larger hysteresis than Silica B due to the 

larger mesopores.  Although the Ludox base particles (22 nm) are non-porous, the small 

diameter allows for close packed aggregates of particles, which leads to a small “pores” 

between particles.  The nitrogen sorption isotherms and pore distributions for the 

functionalized particles (Figure 4.1b,d) are described below.  The extent of S4  
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Table 4.1 Silica morphology before and after tetrasulfide functionalization. 
Silicas A and B are amorphous silica gel particles and Ludox is a colloidal silica particle 
which has a non-porous base particle (“pores” arise through interparticle spacing in dried 
agglomerates of colloidal particles). 
 
  Unfunctionalized Silica S4-Functionalized Silica 
Silica 
Sample 

Particle Size 
(μm) 

Average Pore 
Diameter (nm) 

Surface 
Area (m2/g) 

Average Pore 
Diameter (nm) 

Surface 
Area (m2/g) 

Silica A 3.7 9.6 206 3.3 264 
Silica B 3.3 2.9 484 4.7 61 
Ludox 0.022 7.1 76 3.2 243 
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Figure 4.1 Nitrogen sorption for tetrasulfide functionalized silica particles. 
(a) nitrogen sorption isotherms at 77 K for unfunctionalized silica 
(b) nitrogen sorption isotherms at 77 K for S4-functionalized silica 
(c) BJH pore volume distributions for unfunctionalized silica 
(d) BJH pore volume distributions for S4-functionalized silica 
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functionalization on these different particles is determined using infrared spectroscopy 

and/or thermogravimetric analysis.   

Representative FTIR spectra of S4-functionalized silica are show in Figure 4.2.   

The IR peak at 980 cm-1, which is attributed to the Si-O-H vibration, can be used to 

determine the extent of functionalization.9 The FTIR spectra are normalized using the Si-

O-Si peak (normalized to the bulk amount of silica), then the difference in peak height 

between the functionalized and unfunctionalized silica at 980 cm-1 is proportional to the 

extent of functionalization.  Since the amount of silica (based upon Si-O-Si peak height) 

has been normalized for both samples, small differences in the mass of sample used to 

prepare the pellets can be neglected, and any difference in peak height between the 

functionalized and unfunctionalized samples is attributed to the disappearance of silanol 

groups during the silylation reaction. 

The extent of functionalization results are summarized in Table 4.2.  Silica B has 

a much larger specific surface area, it may be expected that the larger surface area should 

allow for a greater extent of silylation.  However, Silica A has 54% of its silanols 

functionalized with S4, with a standard deviation of 8.8% of the silanols functionalized 

(for 3 different silylation batches).  For Silica B, the extent of silylation with S4 is 17% 

with a standard deviation of 4.2% of the silanols functionalized.  These results indicate 

that the larger pores of Silica A allow for the silane to reach far more of the reactive 

silanol sites.  For the Ludox samples, the IR spectral noise was too great to quantify the 

extent of silylation, but TGA and total S were used for these materials.   
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Figure 4.2 FTIR spectra of S4-functionalized silica. 
The transmission FTIR peak at 980 cm-1 is attributed to the Si-O-H vibration and its 
relative height can be used to determine extent of silylation reaction.  The decrease in 
peak height after functionalization is seen here for S4-silica A (54% of silanol groups 
functionalized).   
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Table 4.2 Summary of silylation results. 
 

Silica 
Type 

Silane %Silanol Functionalized 
(IR) 

Mass% Silane 
(TGA) 

Mass % Sulfur 
(TSA) 

Silica B MPTMS 38 10.6 3.99 

Silica A S4 54 12.0 4.53 

Silica B S4 17 11.0 3.98 

Ludox S4 NA 4.7 1.56 
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While IR measures extent of functionalization in terms of how many silanol are 

reacted, TGA  (Figure 4.3) measures extent of functionalization in terms of how much 

silane can be deposited on it (12.0 weight % silane with standard deviation of 1.6 weight 

%) than Silica B (11.0 weight % silane with std. dev. of  0.4 %).  These values are of the 

same magnitude as previously reported values using the same method.83  In the small 

pores of silica B, both ends of S4 silane are more likely to react with the surface, which 

would lead to a loss of more SiOH per S4 molecule incorporated.  However, the silanes 

block pore openings leading to fewer silanol functionalized, but the silane has multilayer 

deposition on the particles surface.  The S4-functionalized Ludox has average 4.7 weight 

% silane (standard deviation of 0.2 weight %) because the Ludox surface area (where the 

silane can attach) is much smaller.  Similar to the TGA method, total sulfur analysis gives 

the extent of functionalization in terms of total sulfur mass whether those sulfur-

containing silanes are covalently bound to the surface or deposited into the pores.  Silica 

A has 4.53 mass % sulfur, and silica B has 3.98 mass% sulfur.  Consistent with the TGA 

results, Ludox has 1.56 mass % sulfur.   

Further indication that the higher silane weight % on Silica B (than would be 

expected by the FTIR results) is due to the large pore sizes is given by the pore volume 

distributions calculated with the BJH method (Figure 4.1b,d).  Silylation of Silica B leads 

to a decrease in mesopores of all sizes, and the large decrease in surface area (484 to 61 

m2 g-1) arises from the complete blocking of the pores by the large S4.  The occurrence of 

pores after S4 functionalization is greatly decreased, although the BJH model gives a  
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Figure 4.3 TGA plot for S4-functionalized silica 
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nominal average pore diameter (of the few pores which are remaining) of 4.7.  For Silica 

A, silylation coats the larger mesopores with silane, and the average pore diameter is 

drastically reduced from 9.6 nm to less than 3.3 nm.  However, these narrower pores still 

have larger surface area, and the addition of S4 actually increases the surface area to 264 

m2/g, suggesting that the S4 is able to form a network on the surface with very small 

pores.  This explanation is also consistent with the order of magnitude decrease in 

average pore diameter.  The silylation of Ludox (4.7 wt% silane) fills in the gaps between 

particles and results in an agglomeration of particles and the silane network, and the 

apparent “pore” volume is also reduced for Ludox particles with silylation. However, this 

agglomeration also produces a porous silane network which contains the particles, as the 

surface area is increased to 243 m2/g. The contrast of the IR extent of functionalization 

results and the TGA extent of functionalization results indicate that TGA can only be 

used as a reliable metric of extent of silylation if the silane covers the silica as a 

monolayer or the pores are small enough that multilayer adsorption can be neglected.   

4.2  Impact of silane molecule structure on extent of functionalization 

A second objective of this study is to determine the difference in extent of silica 

particle functionalization achieved with different silanes.  The two silanes (Table 2.2 & 

Figure 2.1) which are considered are S4 (with results discussed in the previous section) 

and MPTMS.  These silanes react with the particle surface through a single silicon center 

(“single-point attachment”) in the case of MPTMS, or through one or two silicon centers 

(“double point attachment”) in the case of S4.  Silica B is the silica that is functionalized 

in this comparison.  Based on extent of silylation determined using IR spectroscopy, 
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MPTMS reacted with an average of 38% of silanol groups, with a standard deviation of 

8.6 for the 3 different samples which were prepared.  However, using the same method, 

S4 reacted with an average of 17% of silanol groups, with a standard deviation of 4.2, 

also for 3 different samples.  This difference based on the structure of the silanes is 

expected because the MPTMS functionalizes the silica by one end only.  However, the S4 

can react with the particle surface at two different locations, and hinders further reaction 

with other silanol groups and block pore openings. 

 TGA results indicate that silane reacted with the silica particle surface is 

approximately the same for both MPTMS (10.6 mass %) and S4 (11.0 mass%) silanes, as 

the silica particle characteristics are the same in both cases.  Total sulfur analysis also 

confirms this result.  The extent of functionalization is not dependent on the structure of 

the silane molecule for this silica particle with small pores.  Based on these results taken 

together (and converting the mass to moles from the TGA results), it is concluded that not 

all of the S4 react at both ends.  The mole % of S4 on Silica A is 1.7.  Considering that 

for double-point attachment, 2 SiOH are consumed for every S4 added, 3.4 moles SiOH 

should be reacted in the S4 case.  For the MPTMS case, the mole % of MPTMS on Silica 

A is 4.9 (and also 4.9 moles SiOH consumed). Thus, for MPTMS, 4.9 moles SiOH react, 

and 3.4 moles of SiOH should react with S4.  However, the IR results would indicate that 

approximately twice as many silanol groups are reacted with MPTMS as with S4, 

indicating a portion of the S4 does not have double-point attachment.  

4.3  DSC Characterization 

 The functionalized particles were analyzed using differential scanning calorimetry 

in order to determine if the sulfur-containing silanes exhibited any thermal transitions.  
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This is of interest because the mercury sorption scheme is proposed to operate at about 

140 °C.  Although both the heating and cooling scans were obtained for completeness, 

the cooling scan is more typically used for glass transition identification84 and is shown in 

Figure 4.4.  For the S4-functionalized silica particles, a slight glass transition is observed 

at 85 °C.  This transition is not observed for the MPTMS-functionalized silica particles.  

It is proposed that the S4 chains can interact with each other on the surface and act as a 

polymer network, whereas the reduced thiol groups do not interact on the silica particle 

surface.  Also, it is possible that some of the S4 molecules (with two reactive ends) 

formed oligomers prior to reaction with the silica particle surface.  Further understanding 

of this network will be important to elucidating the mechanism for mercury capture using 

these materials.   

4.4 Application to Mercury Vapor Sorption 

Lab-scale mercury capture experiments were conducted to relate the mercury 

sorption to the pore structure before and after functionalization.  The use of sulfur (in 

various forms) as a sorbent for mercury is well-known, although the structure of the 

active site of sorption for this tetrasulfane and mercury is unclear.  In this study, the S4-

functionalized materials were used for mercury sorption.  High capacities have been 

shown by elsewhere using S4-functionalized silica to which small amounts of copper 

sulfate have been added (and this is discussed in Chapter 7).85   

 For sorption, the breakthrough curves give information about the accessibility of 

active sites to the sorbate.  Figure 4.5 shows the four breakthrough curves (shown only 

for C/C0 > 0).  The steeper the breakthrough, the more accessible and open structured the  
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Figure 4.4 Thermal transitions of sulfur-functionalized silica particles. 
Differential scanning calorimetry demonstrates thermal transitions of (a) S4-Silica A 
particles and (b) SH-functionalized particles.  These cooling scans were obtained by 
heating to 130 °C in order to remove excess moisture then cooled to 30 °C.  Parameters: 
cooling rate of 5 °C/min; Pt-Rh alloy pan; N2 atmosphere.  The baseline DSC plot for an 
empty pan was subtracted.  A slight glass transition (Tg) is observed at about 85 °C for 
the S4 functionalized, as also confirmed by the DSC derivative plot.  
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Figure 4.5 Breakthrough curves for fixed bed mercury vapor sorption. 
Only shown after breakthrough. Steeper and sharper breakthrough curves indicate the 
material is more open structured.   
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sites.  The steeper breakthrough curves indicate less mass transfer resistance, which is 

desirable for applications involving short residence times.     S4-Ludox has the steepest 

breakthrough, but S4-Silica A has the most gradual breakthrough, even though both these 

materials have almost identical pore distributions and surface areas.  However, the 

difference in these two materials is that much more of the surface area in S4-Ludox arises 

directly from the S4 network, so the active sites are much more accessible.  S4-Silica A  

also has a very gradual breakthrough at high C/C0 indicating the high resistance to filling 

the microporous active sites.  Similarly, S4-Silica B has a breakthrough curve which 

follows closely along the S4-Ludox curve (facile mass transfer due to the S4 covering the 

pore mouths), but near maximum capacity (C/C0 > 0.9), the curve becomes much more 

gradual as the few remaining microporous sites slowly become occupied.  These curves 

do not indicate the capacity of the material, only the openness of the functionalized 

material’s pore structure.  Most of the capacity is determined by the time before 

breakthrough.   

4.5 Conclusions 

Unlike many previous studies which focus on ideal particles, this work has determined 

extents of reaction for commercially available silica particles which are currently used in 

various industries, for applications besides mercury sorption. Different methods have 

been used to determine the extent of functionalization, and it has been shown that up to 

50% of the silica surface silanol groups can be functionalized, even with a bridged silane 

that can attach to the particle surface through two silicon centers. The extent of silylation 

reaction has been shown to be primarily dependent upon pore distribution, size of the 

silane, and whether the silane is monofunctional or difunctional. The extent of 
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functionalization (as deposition) depends on pore morphology and is also not affected by 

the structure of the silane. These particles have good thermal stability in the temperature 

range of interest, and the formation of sulfur-containing oligomers on the silica particle 

surface has been indicated. 
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5. Chapter Five: Aqueous Mercury Sorption 

 The objective of this part of the study is to demonstrate thiol-functionalized silica-

coated carbon particles for aqueous mercury sorption applications.  This involves 

characterization of the sorbent, determination of equilibrium sorption, demonstration of 

the role of solution pH and sorbent agglomerate size play in sorption capacity and 

kinetics, and demonstration of functionalization approaches for regenerable particles, and 

proposition of future strategies for their optimization. 

5.1 Mercury Sorption Using Thiol-modified sorbent 

5.1.1 Sorbent Characterization 

 Sulfur content of the functionalized sorbent is shown in Table 5.1.  All samples 

were functionalized by the manufacturer and have various extents of silylation 

(regenerable sorbent described later were functionalized in the lab).  SCC-3 was also 

provided in a variety of agglomerate sizes (Figure 5.1); however, the DLS indicated that 

the base particle size (79-89 nm) is identical for all agglomerates.  The DLS also 

indicated that 98% of the agglomerates are in this range after sonication.  About 2% of 

the particles remain agglomerated after sonication (no filtration), with a mean diameter of 

2.1-2.6 µm. 

 Nitrogen sorption experiments indicate that the particles are primarily 

microporous as well as macroporous, with little mesoporous character.  Representative 

isotherms are shown in Figure 5.2.  The micropores (steep part of the curve at low 

relative pressures) arise through the agglomeration of small base particles so that the 

space between these base particles facilitates the capillary condensation of nitrogen.  

Upon functionalization (comparing SCC-0 and SCC-3 in Figure 5.2), the microporosity is  
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Table 5.1 Surface area and composition of aqueous mercury sorbent particles. 

 

Sorbent 
BET surface area 

(m2/g) mass% sulfur 
SCC-0 

(no thiol functionalization) 
209 0 

SCC-2 132 3.0 
SCC-3 83 3.7 
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Figure 5.1 Agglomerate size ranges for various types of SCC-3 sorbent particles. 
The base particles of all agglomerate size ranges is the same 80-90 nm.  
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Figure 5.2 Nitrogen sorption isotherms for aqueous mercury sorbent particles. 
Data indicate primarly micro- and macroporous nature of the particles. SCC-3 refers to 
non-aggregated SCC-3 particles. SCC-0 are unfunctionalized sorbent particles.   
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greatly reduced due to pore-filling by the silane. The macroporous nature arises from the 

interparticle spacing.  Functionalization with the MPTMS decreases the overall BET 

surface area by about half (Table 5.1), as the silane can fill the pores as well as coat the 

entire surface, reducing nitrogen sorption capacity of those small metal oxide pores. 

 Thermal experiments indicate that the sorbent particles are thermally stable and 

can also be used to determine the composition of the sorbent particles.  Figure 5.3 is the 

TGA of SCC-2 particles compared to unfunctionalized (SCC-0) particles.  The 

unfunctionalized particles show an evaporation of water to just above 100 ºC, and no 

further mass loss until above 400 ºC.  This loss is due to combustion of the carbon core of 

the material, where the weight loss occurs over a very broad temperature range, which 

has also been reported by previous studies.20  The metal oxide coating prevents efficient 

combustion of the carbon core at lower temperatures.  The DSC (Figure 5.4) indicates 

two transitions within the silane layer, when compared with DSC for unfunctionalized 

sorbent material (SCC-0), which has a larger peak for the removal of water than the 

functionalized sorbent material. 

Tranmission electron micrographs (TEM) indicate the heterogeneous nature of the 

sorbent particles (Figure 5.5a), and the overall carbon-silica composition is seen by the 

energy dispersive X-ray (EDX) spectrum (Figure 5.5b).  The non-uniform silica coating 

renders a material which has both hydrophobic and hydrophilic surface properties, with 

the added benefit that the hydrophilic metal oxide coating can be functionalized.  

The sorbent material (SCC-3) was found to be hydrolytically stable towards 

leaching of sulfur in dilute nitric acid at pH 5.5.  This is expected since the siloxane bond 

formed by the silylation reaction is known to be stable between 2 < pH < 9.13  Only 1.5  
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Figure 5.3 TGA of aqueous mercury sorbent particles. 
Data indicate temperature stability of MPTMS functionalization to ~150 ºC followed by 
destruction of the carbon core at > 400 ºC. 
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Figure 5.4 DSC of aqueous mercury sorbent particles. 
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Figure 5.5 TEM of SCC-3 indicates overall agglomerate morphology and composition. 
 (a) TEM of SCC-3 showing overall agglomerate morphology and carbon core. (b) 
Energy dispersive X-ray (EDX) spectrum indicating overall carbon and silica 
composition.  Cu is present from the TEM grid. Accelerating voltage = 200 kV. 
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wt% of the sulfur was leached.  The concentration of S in the leachate was only 2 mg/L, 

but the lowest practical detection limit of S in ICP is 1 mg/L. 

5.1.2 Mercury sorption Capacity 

 The Hg sorption capacity of the sorbent materials for mercury was determined at 

various conditions (Table 5.2).  The SCC-2 material was found to have a higher capacity 

due to the larger surface area, although it had less overall sulfur content.  SCC-3 had a 

higher extent of functionalization and therefore was tested under several different 

conditions (such as at different Hg concentrations, pH values, etc).  The capacities were 

consistent but lower than SCC-2 at the conditions tested.  The results indicated in Table 

5.2 are described in further detail throughout this chapter.  

In addition to mercury sorption, silver sorption tests were done with these 

sorbents.  The objective with these is not to remove silver from aqueous solution (though 

there are high-value applications for this), but in this case it is used as a probe for the 

number of thiol groups.  Like mercury ions, silver is also known to have a very strong 

affinity for thiol moieties.  Unlike Ag(I), Hg(II) is often present as a complex ion and also 

multiple oxidation states are possible with Hg ions.  Also, Hg(II) can coordinate with two 

thiol groups near a pore mouth, blocking access to active sites within the pore. Little 

change in pH was observed with sorption of mercury due to coordination with the thiol 

moiety rather than ion exchange.  For silver sorption, large pH changes were typical.   

 The SCC-3 particles had an average silver capacity of 39.6 mg Ag/g sorbent after 

12 h.  This is in agreement with the capacity found in the silver kinetics experiment (see 

“kinetics of sorption” discussion below) and reveals the total thiol surface accessible to 

be about 0.4 mmole thiol/g sorbent.  From the elemental analysis of 3.7% S, it is  
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Table 5.2 Total aqueous mercury sorption capacity under various experimental 
conditions. 
 

Sorbent 
initial conc. 
(mg Hg/L) pH 

time 
(h) 

Q (mg 
Hg/g) 

Std. Dev. of Q 
(mg Hg/g) 

Q (mol 
Hg/mol S) 

SCC-2 183-200 6-7.5 6-18 70.48 12.41 0.45 
SCC-3 83-150 5-6 6-18 34.47 4.79 0.15 
SCC-3 11 5.8 12 56 NA 0.024 
SCC-3 15 6.8 80 16 NA 0.069 
SCC-3 22 5.8 12 16.8 NA 0.073 
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computed that there are 1.15 mmole thiol/g sorbent, meaning that only 35% of the thiol 

moieties are accessible to Ag(I) because of intraparticle diffusion limitations.  These 

active sites are inaccessible within the agglomerate and so the silver capacity is 

considered the true equilibrium capacity for the agglomerate.  Calcium(II) sorption 

experiments were also done to determine if some thiols had been completely oxidized to 

sulfonate moieties, and this was not found to be the case.  

 Sorption capacity was found to increase for increasing equilibrium concentrations 

of the supernatant (Figure 5.6).  This linear relationship is described by sorption 

adsorption and desorption at the active thiol sites and the overall rate constant K (=ka/kd) 

is computed. 

Hg + site  Hg∙site, 𝑟𝑎 = 𝑘𝑎𝐶𝐻𝑔𝐶𝑠𝑖𝑡𝑒   (5.1) 

Hg∙site  Hg + site, 𝑟𝑑 = 𝑘𝑑𝐶𝐻𝑔−𝑠𝑖𝑡𝑒  (5.2) 

At equilibrium, the rates of sorption and desorption are equal, and the fraction of 

occupied sorption sites is expressed as  

𝜃 = 𝐶𝐻𝑔−𝑠𝑖𝑡𝑒
𝐶𝑠𝑖𝑡𝑒+𝐶𝐻𝑔−𝑠𝑖𝑡𝑒

    (5.3) 

 Combining and arranging the equations gives:  

𝐶𝐻𝑔 = 1
𝐾
� 𝜃
1−𝜃

�   (5.4) 

so that K (adsorption equilibrium constant) is determined by the slope of C vs. θ/(1-θ). In 

this case, θ (fraction of occupied sites) is computed from the determined capacity by 

noting that only 35% of the thiols are accessible (from the silver capacity) at equilibrium, 

using Eq 5.5.   

𝜃 = 𝑞
0.35𝑄𝑡ℎ𝑒𝑜𝑟.

  (5.5) 
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Figure 5.6 Aqueous mercury sorption isotherm. 
(a) Equilibrium mercury sorption for SCC-3 indicates linear isotherm.  (b) Fraction of 
occupied sites (θ) is used in conjunction with the adsorption and desorption rate laws to 
calculate overall sorption constant K (Equation 4-4).  
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Because all S was also found to be in reduced form (thiol), the theoretical capacity 

(Qtheor.) could be either 116 mg Hg/g (if 2 mol thiol binds to 1 mol Hg) or 232 mg Hg/g 

(if 1:1 thiol:Hg is assumed).   

 The capacity of the material increases for increasing pH as shown in Figure 5.7.  

This is presumably due to competition for sites with protons at lower pH values.  It may 

also be due to changes in the mercury(II) speciation at increasing pH, such the presence 

of complex ion species containing more than one mercury atom adsorbed by a single site.  

Previous studies found constant or increasing sorption capacity with increasing pH:  up to 

4,14 up to 6,86 and up to 7.87 

 The total capacity (Table 5.2) of these materials is high, demonstrating that even 

at high concentrations of mercury they are efficient for removal. For these materials, 

capacities of up to ~70 mg/g were found at high Hg concentrations (~200 ppm).   

Previous studies of functionalized silicas have found a wide range of capacities, and these 

cannot always be accurately compared because of the variety of factors (synthetic 

conditions, pore morphology, particle size, silane layer thickness, etc) involved.   

4.1.3 Kinetics of Sorption 

 Sorption kinetics was also determined for SCC-3 for Ag+ and Hg2+ (Figure 5.8).  

The relative rate of sorption for Ag(I) is higher than that for Hg(II) at similar 

concentrations, indicating that the Ag(I) is present as a smaller ion.  It is likely that Hg(II) 

is adsorbed as a complex ion. Both Hg(II) sorption experiments reflect the effect of 

sorbent concentration on equilibrium capacity.  Even for time up to 80 h, there is no 

further increase in capacity with additional time, at low concentration.  Data also indicate  
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Figure 5.7 Aqueous mercury sorption increases with pH for SCC-3. 
Sorbent equilibrium capacity increases in the pH range 5 to 7 due to less competition 
from protons and from potential changes in mercury speciation.  SCC-3 sorbent.  The 
scatter at a single pH value (such as 7) is not due to experimental error but to solution 
concentration, as capacity is also a function of concentration.   
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Figure 5.8 Aqueous mercury and silver sorption kinetics. 
Ag (I) reaches equilibrium very fast compared to Hg(II).  Hg(II) also reflects the effect of 
sorbent concentration on equilibrium capacity.  Data also indicate that the total capacity 
at high concentration (in mmol/g) for Hg(II approaches that for Ag(I), demonstrating that 
the 1:1 thiol:Hg sorption is a valid assumption.  
Parameters:  
Sorbent: SCC-3 
Ag: pH0 = 4.5; C0 = 258 mg Ag/L;  1 g sorbent/L  
Hg Low conc: pH0 = 6.8; C0 = 15 mg Hg/L; 1 g sorbent/L  
Hg High conc: pH0 =7.0; C0 = 129 mg Hg/L; 0.5 g sorbent/L  
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that the total capacity at high concentration (in mmol/g) for Hg(II) approaches that for 

Ag(I), demonstrating that the 1:1 thiol:Hg sorption is a valid assumption.  

 Next, sorption kinetics were tested for the various agglomerate sizes of SCC-3 

sorbent material: milled, aggregated, as well as non-aggregated (Figure 5.9).   The larger 

“aggregated” sorbent particles were formed from the agglomeration of the fine particles, 

not agglomeration of the non-aggregated particles. The initial sorption rates of the three 

agglomerate sizes varied according to expected mass transfer limitations: milled SCC-3 > 

SCC-3 > aggregated SCC-3.  Once the surface sites were initially occupied, diffusion to 

other sites continued at the same rate for all sorbent samples. 

5.1.4 Real Water Testing of Sorbent 

 Real water testing in Oak Ridge National Laboratory indicated the usefulness of 

the sorbent for ground and process water treatment. The characteristics of the water and 

experimental column parameters are shown in Table 4.4.  Even for the non-aggregated 

SCC-3 sorbent, the pressure drop was monitored and remained below 2 psig.  The 

effluent from the columns was below the detection limit of 10 ng/L for the duration of the 

4 month test; no breakthrough was observed.  For the SCC-3 (non-aggregated) the 

sorption at this point was 0.225 mg Hg/g sorbent, two orders of magnitude below the 

total capacity of this material.  
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Figure 5.9 Aqueous mercury sorption kinetics for agglomerates of SCC-3 sorbent. 
 (a) Details of agglomerate size range are given in Figure 1.  (b) Dependence of initial Hg 
sorption rates (-d(CHg/CHg,0)/dt) on sorbent particle size. The initial sorption rates depend 
on agglomerate size (milled SCC-3 > SCC-3 > aggregated SCC-3) but subsequent 
sorption rates are similar among all agglomerate sizes.  

(b) 

(a) 
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5.2  Regeneration of Sorbents 

 Rregenerable sorbents were prepared by the functionalization of silica-coated 

carbon with both a thiol moiety and sulfonate moiety. The thiol moiety is the active 

sorption site but the sulfonate moiety introduces some steric effects so that the adsorbate 

is not bound so tightly to the surface.  The functionalized sorbent was prepared by the 

well-known silylation reaction with sulfonated silane (THSPS) and thiol silanes  

(MPTMS).  Previous studies (discussed in Section 2.2.2) regenerated using more harsh 

conditions but in this study we have looked at potential regeneration using dilute HCl (pH 

~4).  The schematic is shown in Figure 5.10. 

 The density of thiol groups is given by Ag+ sorption before the addition of 

sulfonate moieties.  Since there is a 1:1 Ag:thiol interaction, there is 0.18 mmol thiol/g 

sorbent (Table 5.3).  Calcium(II) sorption is used to quantify the number of sulfonate 

groups but there is some non-specific sorption of Ca2+ in the absence of sulfonate 

moieties.  Based on Table 5.3, there is 0.062 mmol Ca2+ sorbed/g due to the sulfonate 

only.  Since there is a 2:1 ratio of Ca:sulfonate, this indicates that there is 0.12 sulfonate/g 

sorbent.  Taken together, these figures indicate that the functional groups are about 60% 

thiol and 40% sulfonate. The Hg2+ sorption does not increase significantly for thiol only 

particles compared to sorbents with both thiol and sulfonate.  After the sorption of 

mercury, both types of particles were washed in pH ~4 dilute HCl.  For the thiol only 

particles, about 5% of the Hg was removed.  About twice as much (10%) was removed 

for the sorbent with both thiol and sulfonate moieties.  These results are promising   
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Figure 5.10 Schematic synthesis of regenerable aqueous mercury sorption particles. 
Regeneration capacity can be controlled by ratio of  thiol to sulfonate.    
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Table 5.3 Sorption capacity of regenerable sorbents. 
 

 

Sorption Capacity (mg/g) Sorption Capacity (mmol/g) 

Functional Group(s) Ca2+ Ag+ Hg2+ Ca2+ Ag+ Hg2+ 

thiol only 0.98 19 23 0.025 0.18 0.11 

thiol + sulfonate 3.5 29 26 0.087 0.26 0.13 
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because there is little sacrifice of mercury sorption capacity in order to synthesize these 

potentially regenerable sorbents.   

5.3 Conclusions 

Novel silica-coated carbon particles have been successfully functionalized and used 

for the development of high-capacity sorbents for dissolved mercury.  The silica coating 

is very thin (< 5 nm) and non-uniform, allowing for exposure of both hydrophilic oxide 

and hydrophobic carbon surfaces.  The particles are thermally and hydrolytically stable in 

the range of applicable temperature and pH values.  The Hg sorption fits a chemisorptive 

model and indicates that the Hg:thiol ratio is 1:1.  Regenerable sorbents were 

functionalized by incorporation of both sulfonate and thiol functional groups on to the 

particle surface.   
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6. Chapter Six: Mixed Matrix Membranes for Aqueous Hg Sorption 

 This chapter describes the facile synthesis and application of mixed matrix 

membranes (MMM) for aqueous mercury sorption.  The first objective is the synthesis of 

MMM using the functionalized silica-coated carbon particles described in the previous 

chapter.  The second is to analyze MMM behavior including flux and sorption capacity at 

various sorbent loadings.  Finally, a model for the breakthrough curve of MMM is 

applied. 

6.1 MMM Synthesis and Characterization 

 The MMM was prepared by phase inversion casting technique (Figure 6.1) using 

polysulfone as the polymer phase and SCC-3 (non-aggregated and milled size ranges) as 

the sorbent phase.  However, particularly in the case of milled particles, the sorbent phase 

is better dispersed in the matrix so that the functional sorptive sites are more fully 

utilized.  In phase inversion, the polymer such as polysulfone (PSf) is dissolved in a 

solvent, such as dimethylformamide (DMF) in this case.  After casting the viscous 

polymer solution to the desired thickness, the polymer/DMF solution is immersed in a 

second solvent which is immiscible with the polymer phase.  

The DMF inverts to the second solvent, leaving behind a solid polymer, which 

also in this case contains sorbent particles.  The key to creating porous polymeric 

membranes by phase inversion is to remove the DMF fast, so factors that affect the DMF 

removal rate will affect the morphology of the membrane.  These include evaporation 

time, temperature, relative humidity, and, in general, the choice of solvent systems. 

 MMM of up to 50 wt% particles have been prepared and successfully used.  This 

is a high loading compared to MMMs with pure silica previously prepared in our lab.45 It  
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Figure 6.1 Mixed matrix membrane synthesis schematic. 
The properties of the membrane are controlled by the kinetics of DMF inversion to the 
water phase. 
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is expected that exposed carbon black on the silica particles provides a more stable 

interface with the polysulfone matrix than pure silica.  The membranes were  

mechanically stable up to pressures greater than 5 bar and water flux (JW) was determined 

for two compositions.   

From water flux data at various pressures, the permeability (A) can be computed 

for each membrane.  The addition of sorbent particles to the membrane increases the flux 

in all cases due to disruptions in the polymer network.  However, the effect of that 

increase with increasing weight fractions depends on the nature of the material.  Figure 

6.2 demonstrates three cases.  The “thiol-silica-PSf” data is obtained from our lab’s 

previous publication45 on MMM, which used thiol-functionalized silica gel particles of 

about 3-20 µm  agglomerate size.  In this case there was a modest but linear increase in 

permeability.  In the case of SCC-3 sorbent (average agglomerate size ~100 µm), there 

was a marked increase in doubling of the weight fraction, indicating that the large sorbent 

particles disrupt the polymer matrix.  In order to increase the capacity of the membranes, 

SCC-3 milled particles (with a base particle size of ~80 nm) were used and there was no 

increase in the flux with increasing particle concentration.  It is believed that this is due to 

both the particles’ small size and the increased mechanical stability achieved when 

exposed carbon on sorbent particle surface is interfaced with the polymer matrix. 

6.2  Mercury Sorption using MMM 

The efficient removal of Hg from the feed solution by MMM of various 

compositions is shown in Figure 6.3, plotted as Hg(II) sorbed vs. Hg(II) passed through 

the membrane.  The diagonal line indicates complete sorption of all Hg(II) passed.  After 

all sorption sites are occupied, passage of additional Hg(II) yields no additional removal.  
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Figure 6.2 Mixed matrix membrane permeability. 
The large agglomerates of SCC-3 create gaps within the polymer matrix, increasing the 
flux but decreasing the mechanical stability.  The milled SCC-3 particles are much 
smaller and better dispersed so that the MMM is mechanically stable even at high 
loadings, with no increase in flux upon higher loadings. The thiol-silica-PSf particles 
show a similar trend has been observed for other thiol-functionalized particles (MPTMS-
functionalized silica gel, agglomerate size 3-20 µm), from reference 15. 
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Figure 6.3 Removal of mercury using MMM platform with convective flow. 
MMM platform is PSf/SCC-3 milled. Cconvective flow demonstrates high capacity of 
the material and improved accessibility of sorption sites (due to dispersion of base 
particles through the membrane matrix) to achieve maximum sorption.  Dotted lines 
represent maximum mercury capacity of thiol groups for each sorbent loading.  
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There is a high sorption capacity achieved because the milled agglomerate particles are 

well-dispersed within the porous polymer matrix, which decreases the mass transfer  

resistance, and more of the sorption sites are accessible.  The total sorption capacity of 

the membrane approaches the theoretical capacity of the sorbent (which contains 3.7% S 

as thiol).  The pure polysulfone control membrane showed only a small amount of non-

specific sorption or Hg rejection.   

6.3 Conclusions 

 The mixed matrix membranes (MMM) have been successfully synthesized with a 

high loading of silica-coated carbon particles which are functionalized for specific 

sorption of mercury.  The presence of agglomerate particles disrupts the polymer matrix 

leading to a higher flux, but dispersed particles allow for the mechanical integrity to be 

maintained.  The sorbent particles show high capacity for mercury sorption under 

convective flow, and using the MMM brings practical advantages to the mercury removal 

application.  
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7. Chapter Seven: Elemental Mercury Vapor Sorption 

7.1 Material Characterization 

Nitrogen adsorption at 77 K was performed on the blank silica precursor, the Cu-

impregnated silica, and S-functionalized Cu-impregnated silica (Si-1) to examine the 

impact of functionalization on pore accessibility.  The results for nitrogen adsorption as a 

function of relative pressure for all three materials are shown in Figure 7.1.  All three 

isotherms exhibit Type IV behavior with condensation occurring in the mesopores at 

elevated pressures.  The unfunctionalized silica, designated Si, and functionalized 

material, Si-Cu-S4, have the same shape.  As expected, the functionalized material has a 

decreased volume in comparison.  Interestingly, the copper-impregnated material (Si-Cu) 

exhibited a large increase in the volume of gas adsorbed.  This is the result of enhanced 

surface roughness and the additional particles present after doping with CuSO4.  The 

Barrett-Joyner-Halenda (BJH) average pore size after functionalization with both Cu and 

S4 is 2.9 nm. 

7.2 Fixed-Bed Hg0 Capture 

A summary of results for fixed-bed testing using pure sorbent beds (and the 

composition of the functionalized sorbents) is shown in Table 7.1.  The total capacity of 

materials ranges from 9.7 to 20.0 mg Hg/g sorbent.  This is a significant increase over the 

use of both activated carbon and Fe nanoaggregates for this application.88 The highest 

capacity was achieved using 2.5 wt% Cu and 6 wt% S.  A better understanding of the role 

of Cu and S can be gained through comparison of the various materials.  The immediate 

impact of S is observed when comparing Si-2 and Si-3.  For a constant level of Cu, the  
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Figure 7.1 Nitrogen sorption isotherms (77 K) for mercury vapor sorbents. 
Isotherms shown for the bare silica precursor (Si), copper-impregnated silica (Si-Cu), and 
fully functionalized Si-1 (Si-Cu-S4) showing a Type 4, multilayer adsorption.  
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Table 7.1 Summary of results for fixed-bed mercury vapor sorption. 
 

Sample % Cu % S Exhaustion time (min) Capacity (mg Hg/g sorbent) 
Si-1 2.5 6 12577 19.8 
Si-2 5 3 10091 16.8 
Si-3 5 1 6749 9.7 
Si-4 3 3 17443 16.8 
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capacity of materials increases 72% from 9.7 to 16.8 mg Hg/g sorbent as the S level is 

increased from 1 to 3 wt%.  Similarly, when comparing Si-1 and Si-4, the capacity  

increases 18% from 16.8 to 19.8 mg Hg/g sorbent as the sulfur content is increased from 

3 to 6 wt%.  These observations suggest that an optimal content exists around 3 wt% S 

because enhancement of capacity is much less pronounced beyond these levels.  

Variation of Cu at the levels tested showed no real impact.  This can be seen when 

comparing Si-2 and Si-4 where the capacity is essentially unchanged while the Cu level is 

increased from 3 to 5 wt%.  Based on previous work with Fe nanoaggregates, the 

minimal required level of Cu was around 1 wt%.  Therefore, the optimal Cu level for the 

silica platform is approximately 3 wt%.  The existence of optimal levels is sensible 

considering that elevated levels of functionalization will result in pore blocking and 

increased resistance to mass transfer.     

The increased capacity of copper-containing functionalized silica support as 

compared to Fe nanoaggregates can be attributed to the increased number of surface 

groups for silanization and a much larger surface area for capture.  However, some 

questions remain regarding the effect of Cu species on Hg capture.  The silica-based 

materials were prepared using CuSO4 as the source of copper while Fe nanoaggregates 

had Cu0 deposited on the surface.  As part of this project, materials were also prepared 

using alternative counter-ions, including hydroxide and nitrate, as well as non-copper 

doped samples to determine the importance of Cu for Hg separation.  The alternative 

copper materials were found to have significantly decreased capacities for Hg of less than 

1mg/g using similar compositions.  The non-Cu materials could only achieve a maximum 
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capacity of approximately 0.4 mg Hg/g sorbent using the same S loading. Therefore, the 

presence of copper as CuSO4 appears to have a beneficial impact on Hg capture.   

7.3 Temperature Effects in Fixed Bed Sorption 

The reason for the enhanced capacity when using copper sulfate might be based 

on a thermal transition that occurs for this material at approximately 140 °C after 30-60 

minutes of heating.  The transition is accompanied by a change in color from greenish 

blue to dark brown.  Interestingly, the materials had low Hg sorption capacities unless 

heated to this transition point. If the Cu and S are forming a copper sulfide complex, the 

material will have an increased affinity for oxidation of Hg.  The role of silanized S4 

during this transition is not well understood. 

To demonstrate the increased capacity with increased temperature for the Si-1 

sorbent, fixed-bed sorption experiments were conducted at 70, 100, and 140 °C (Figure 

7.2).  Each experiment was run for 24 hours, rather than to exhaustion.  However the 

mercury inlet was constant for all samples.  As seen in Figure 7.2, the capacity was 

slightly increased at increasing temperature up to 140 °C. Also, in order to demonstrate 

that the changes were not just the result of changes in mercury flowrate (as if the emitter 

tube were being depleted of mercury over multiple experiments), a final experiment was 

performed again at 140 °C to verify the previous result. Sorption experiments were 

performed on diluted sorbent beds (with inert sand) and increasing termperature to 170 ºC 

slightly lowered the capacity.   
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Figure 7.2 Sorption capacity increases with increasing temperature. 
Increase due to chemisorptive mechanism and thermal effects in material at 140 ºC. 
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7.4 “Dynamic” Sorption of Mercury 

 In power plant applications, not only is total capacity important, but it is also 

important to have a dynamic capacity for fast removal of mercury.  In order the 

demonstrate the sorbent performance in a dynamic environment, entrained-flow  

apparatus was used and compared to two other samples, that of conventional powder 

activated carbon (Darco) and that of silanized Fe/Cu nanoparticles, which were  

previously studied in our lab for mercury sorption. Figure 7.3 shows the outlet relative 

concentration of Hg, and the time required to reach steady-state removal for the sorbents. 

This figure shows that the Si-Cu-S4 functionalized particles perform nearly as well as the 

conventional sorbent in the dynamic sorption environment.  Although the overall surface 

area is much lower than the activated carbon, the more open pore structure (Figure 7.1) 

allows mercury to reach the active sorption sites with less mass transfer resistance.   

7.5 Leaching Studies of Sorbent 

The use of sorbents for Hg capture by injection must be evaluated with regard to 

their potential environmental impact because they will be removed with the fly ash from 

coal-fired power plants.  This is most important when considering the use of fly ash in 

concrete as a means of cost recovery for plant operations.  If the use of a particular Hg 

sorbent would prevent the sale of fly ash for cost recovery, the actual cost of Hg removal 

using this material would be greatly increased.89  A benefit of silica-based platforms 

when compared to PACs is that silica is already used in concrete blends to both reduce  

cost and improve mechanical properties.  In order to continue the use of fly ash in 

concrete, a sorbent must demonstrate the ability to maintain chemical stability when 

exposed to a leaching environment and not degrade the quality of concrete when used.90    
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Figure 7.3 Injected-flow breakthrough curves for mercury vapor sorption. 
These curves demonstrate the effect of surface area and pore structure on dynamic 
sorption.  
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The results for Hg leaching from Si-1 after Hg exposure were at the detectable limits of 

the machine, only 0.2 ppm Hg.  This corresponds to a 0.4 % loss of the total Hg captured 

and indicates a possible strong affinity of Hg for the Cu/S site.  The loss of Cu was much 

greater at 15.2% of the maximum possible, with 8.2 ppm leached for the given 

conditions.  The amount of Cu leached merits some concern because it is approximately 

six times greater than the action level (AL) of 1.3 mg/L established for Cu by the U.S. 

EPA.     

The actual compositions of concrete slugs tested are given in Table 7.2.  For 

sample 3, the saturated sorbent was blended with fresh sorbent to better approximate 

power-plant applications where only a fraction of the total capacity is utilized during 

injection.  The results for concrete leaching of both Cu and Hg are given in Table 7.2 as 

well, along with the maximum possible quantity of each. The quantities of both the Cu 

and Hg were below the detectable limit.  For Hg, these results are consistent with 

leaching of the sorbent after Hg exposure and support the use of these materials in 

concrete processing.  The improved Cu results in the presence of the concrete matrix 

suggest that concrete impregnation can be beneficial with regard to material disposal 

because it reduces the amount of leached Cu to well below the AL.   

7.6 Formation of HgS-type product 

 The hydrolytic stability of the mercury in leaching studies is explained by the 

stable mercury-sulfur product which is formed.  This is seen in both SEM-EDX (Figure 

7.4) and X-ray diffraction (Figure 7.5) of exhausted sorbent.  

 The SEM image indicates that the exhausted sorbent is made up of various size 

agglomerates with a non-uniform elemental distribution.  Very small particles (< 5µm)   
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 Table 7.2 Leaching experiments composition and results. 

 

Sample Concrete 
mass (g) 

Cement 
(wt%) 

Fly 
ash 
(wt%) 

Sorbent 
(wt%) 

Max Cu 
(mg) 

Leached 
Cu (mg) 

Max 
Hg 
(mg) 

Leached 
Hg (mg) 

Exhausted 
Si-1 

 0 0 100 1.1 0.2 0.99 0.04 

Sample 1 11.7 71.7 28.3 0 0 0 0 0 
Sample 2 9.6 65 34.5 0.5 1.1 BDL 1.0 BDL 
Sample 3 9.6 65 34.5 0.5b 1.1 BDL 0.1 BDL 
 
 

        

a BDL: below detectable limit.  
b The 50-mg sorbent sample consisted of 5 mg of saturated sorbent blended with 45 mg of 
fresh sorbent.  
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Figure 7.4 SEM image and EDX analysis of exhausted sorbent Si-1. 
Nonuniform distribution of elements based on the EDX analysis for: (A) 3 wt % Si, 4 wt 
% Cu, 32 wt % S, 53 wt % Hg; (B) 41 wt % Si, 1.5 wt % Cu, 20 wt % S, 3 wt % Hg; and 
(C) 54 wt % Si, 1.6 wt % Cu, 16 wt % S, 4 wt% Hg.  
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Figure 7.5 XRD of exhausted mercury vapor sorbent Si-1. 
The exhausted sorbent is partially HgS with other crystalline species present.   
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contain the highest proportion of sulfur and mercury, while the larger particles are bulk 

silica with some surface mercury and sulfur.  Although a mercury sulfide-type product is 

formed, this data does not indicate discrete particles of HgS.  The Hg:S mass ratio in this 

compound would be about 6:1, but the overall mass ratios found for the various sized 

agglomerates are Hg:S values of  1.65 (A particles), 0.15 (B particles), and 0.25 (C 

particles).  However, some of the product formed may be surface adsorbed HgS. 

The XRD patterns verify the SEM-EDX data by comparing the crystal structures 

of unused (but heated) sorbent, exhausted sorbent, and pure HgS.  The unused sorbent 

indicates very little crystallinity, due to the amorphous silica and very fine dispersion of 

copper sulfate, all of which has been silanized.  After exhaustion, some crystal faces 

correspond to the known HgS.  However, HgS is not the only species formed, because 

some known HgS peaks are not seen in the exhausted sorbent, and some sorbent peaks 

are not in HgS.  

7.7 Performance with SO3 present 

Additional tests were performed using Si-1 to determine the impact of both the 

mass injection rate and the presence of SO3 on Hg capture.  The results are shown in 

Figure 7.6.  Two trials were made at a mass injection rate of 1.2x10-4 g/L h, double the 

original test rate.  The resulting steady-state removal of Hg ranged from 82-100%.  The 

lower end of the range is the same as the results for the original mass injection rate, 

which is further support that the adsorption process is mass transfer controlled.  The 

diatomaceous earth/sorbent blend used for trial 2 was then subsequently used for Hg 

capture in the presence of 20 ppm SO3 at a mass injection rate of 1.2x10-4 g/L h.  The 

SO3 was generated by injecting a dilute sulfuric acid solution into a tube furnace.  This 
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level is representative of the typical 1-40 ppm of SO3 that is found in most flue gases.13 It 

is believed that competitive sorption is the reason that activated carbon materials suffer a 

significant decrease in Hg capture when SO3 is present because the concentration of SO3 

is much larger than Hg.  The steady-state removal of Hg for Si-1 at this concentration of 

SO3 was marginally impacted, again indicating the selective chemisorptive nature of the 

active site, and also confirms the usefulness of this sorbent in practical power plant 

applications. 

7.8 Conclusions 

Functionalized silica with tetrasulfur silane and doped with copper has been 

developed as a high-capacity chemisorptive material for elemental mercury vapor 

removal. Capacities as high as 20 mg/g sorbent have been developed with optimal sulfur 

content of 3%.  Higher capacity was observed at 6% organic sulfur but the increase in 

capacity was not proportional, due to pore blocking and increased mass transfer 

limitations.  The rate of adsorption ranged from 0.6 to 1.6 μg Hg/min depending on feed 

concentration.  The steady-state removal was 82%, and the lack of increase in Hg 

removal when the injection rate is doubled suggests that pore accessibility is the rate-

controlling step during dynamic Hg capture. Key benefits of this sorbent over 

conventional activated carbon were: the sorbent maintained performance in the presence 

of SO3, the sorbed mercury and copper were stable during leaching tests, and the 

chemisorptive mechanism increased capacity with increasing temperature.  
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Figure 7.6 Injected-flow mercury vapor sorption in presence of sulfur trioxide. 
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8. Chapter Eight: Reactive and Catalytic Nanoparticle Synthesis 

The two schemes presented in Figure 8.1 were used to synthesize silica-based Fe 

nanoparticles and ascorbic acid-stabilized Fe/Pd bimetallic nanoparticles.  The first 

objective of this research was to quantify the silica functionalization, to characterize the 

Fe NP and the oxidized Fe NP (for dechlorination), and to demonstrate the utility for 

dechlorination.  The second objective was to synthesize, characterize, and demonstrate 

the reductive dechlorination of the ascorbic acid-stabilized Fe/Pd bimetallic particles.  

These are also compared and contrasted with results from similar recent studies to show 

key outcomes.  

8.1 Unfunctionalized Silica Characterization 

Two types of silica (Table 8.1) were functionalized with 3-(trihydroxysilyl)-1-

propanesulfonic acid ("THSPS").  One type of silica used is Ludox TM-50 colloidal silica 

from Grace Corp.  The manufacturer reported these to be monodisperse 22 nm silica 

spheres, and SEM measurements as well as dynamic light scattering measurements 

performed in our lab confirm this.  This type of colloidal silica has no intraparticle pore 

structure, only gaps between particles.  The surface area (AS) of 22 nm solid silica 

spheres (r = 11 nm), assuming no aggregation, is computed geometrically (using density, 

ρ, of 2.65 g/cm3) to be 103 m2/g.   

𝐴𝑆 = 4𝜋𝑟2
4
3𝜋𝑟

3𝜌
= 3

𝑟𝜌
    (8.1) 

However due to aggregation during the required drying to nitrogen sorption 

measurements, the BET surface area was computed to be 87 m2/g. The other type of  
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Table 8.1 Structural characteristics of silica used as a platform for Fe NP synthesis. 
 

  BET surface area (m2/g): 
 Aggregate size 

(µm) 
before 
functionalization 

After functionalization Fe NP-silica 

Ludox  0.022 87 92 110 
Silica gel 3.7 585 264 224 
  



105 

 

 

 

Figure 8.1 Schematic of NP synthesis. 
 (a) Silica-based synthesis for which two types of silica are used. (b) “green” synthesis of 
bimetallic particles where excess reducing agent inhibits oxidation as well as 
agglomeration of particles. In this reaction, ascorbic acid is oxidized to dehydroascorbic 
acid.  
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silica used is porous silica gel, with 3 µm particles, and a wide distribution of 

intraparticle pores (average diameter ~10 nm) has a BET surface area of 585 m2/g. 

8.2 Extent of Silica Functionalization 

The extent of functionalization is determined through two methods, IR 

spectroscopy and TG analysis.  For the Ludox, IR spectra (Figure 8.2a) indicate that 47 % 

of the silanol groups are reacted after sulfonate functionalization.  For the silica gel, IR 

spectra indicate that 68 % surface silanol groups are reacted. These are consistent with 

previous functionalization results for these silica platforms in our lab.81 Extent of silica 

functionalization (g silane / g silica or % silane) is computed from TGA (Figure 8.2b) 

data.  Using the high temperature data of mass loss, the extent of silica functionalization 

is given by  

% 𝑠𝑖𝑙𝑎𝑛𝑒 = 100 × (𝑚𝑎𝑠𝑠 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑜𝑓 𝑠𝑖𝑙𝑖𝑐𝑎−𝑚𝑎𝑠𝑠 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑜𝑓𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑧𝑒𝑑 𝑠𝑖𝑙𝑖𝑐𝑎)
𝑚𝑎𝑠𝑠 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑜𝑓 𝑠𝑖𝑙𝑖𝑐𝑎

  (8.2) 

TGA indicates that the organic silane is 14.2 mass% of the functionalized Ludox 

particles.  For the functionalized silica gel, silane is 18.4 mass%.  Using the nitrogen 

sorption data, the sulfonate (silane) groups per nm2 (αSO3) is approximated, and the 

original silanol number (αSiOH), before the functionalization, can also be theoretically 

calculated. 

𝛼𝑆𝑂3 = 𝑠𝑢𝑙𝑓𝑜𝑛𝑎𝑡𝑒
𝑛𝑚2 = % 𝑠𝑖𝑙𝑎𝑛𝑒×𝑁𝐴

𝐴𝑆×𝑀𝑊𝑠𝑖𝑙𝑎𝑛𝑒×100×1018
  (8.3) 

MWsilane is the molar mass of silane (202.26 for THSPS), NA is Avogadro’s number, and 

AS is surface area of functionalized silica in m2/g. Using these theoretical calculations, for 

functionalized Ludox, αSO3 = 4.6 and for functionalized silica gel, αSO3 = 2.0.  The  
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Figure 8.2 Two methods for determining extent of sulfonated silica functionalization. 
 (a) Representative normalized FT-IR spectra for sulfonate-functionalized Ludox silica 
and unfunctionalized silica.  The peak at 980 cm-1 indicates the surface Si-OH, which 
decreases upon functionalization. (b) Representative TGA for sulfonated silica samples. 
Heating rate: 10 ºC/min.    
 



108 

 

 

computed cross-sectional area of THSPS is 0.2855 nm2 (using Chemicalize beta 

software, http://www.chemicalize.org).  For silica gel, the αSO3 = 2.0 is very reasonable,  

as two THSPS molecules would occupy a cross sectional area of 0.571 nm2.  However, 

for Ludox, the theoretically calculated αSO3 = 4.6 is too large to occupy the silica surface, 

indicating the presence of multilayer silane network around the Ludox silica 

nanoparticles.  Based on the number of number of silanol groups reacted (from IR data), 

and the TG data, it is possible to compute the original silanol number (αSiOH). 

𝛼𝑆𝑖𝑂𝐻 = 𝑠𝑖𝑙𝑎𝑛𝑜𝑙
𝑛𝑚2 = 100×𝛼𝑆𝑂3

%𝑠𝑖𝑙𝑎𝑛𝑜𝑙 𝑟𝑒𝑎𝑐𝑡𝑒𝑑
   (8.4) 

For Ludox, αSiOH = 9.8, and for silica gel, αSiOH = 3.0.  The highest reported theoretical 

silanol number is 8,13 again indicating that for functionalized Ludox, the silane is present 

as a multilayer network around the silica.  For the silica gel, the silanol number is 

consistent with previous reports that have found αSiOH  values of 2.9 up to 3.6.91 

8.3 Morphology of Functionalized Silica 

Functionalization of Ludox doesn’t significantly change the BET surface area (87 

and 92 m2/g), because the particles are non-porous. The nitrogen sorption isotherm 

(Figure 8.3a) indicates the similar morphology before and after functionalization.  The 

silica gel has a wide size range of intraparticle pores, and functionalization narrows the 

pores of all sizes, as well as blocks many of the micropores (Figure 8.3b).  The 

functionalization of silica gel decreases the BET surface area from 558 m2/g to 264 m2/g 

due to shrinkage and blockage of the pores. 
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Figure 8.3 Nitrogen sorption isotherms (77 K) for sulfonate-functionalized silica. 
 (a) Sulfonation of Ludox surfaces does not change the surface area or pore structure.  
Synthesis of nanoparticles (NP) increases microporous and macroporous surface areas, 
corresponding to sorption of nitrogen between non-porous NPs and sorption of nitrogen 
on surface of non-porous NPs. (b) Sulfonation of silica gel narrows pores of all sizes.  
Synthesis of nanoparticles (NP) decreases micropores, corresponding to pore blockage, 
and increases macroporous surface area, corresponding to sorption of nitrogen on surface 
of non-porous NPs.   
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8.4 Iron Immobilization on Functionalized Silica 

 The first step in synthesis of sulfonated-silica based iron nanoparticles is 

immobilization of the ferric ions.  Both silica platforms indicate the same capacity of 

Fe3+, about 7.0 mg Fe/g, or 0.125 mmol Fe/g.  The immobilization of ferric ions is the 

same process as conventional sulfonated ion exchange resins.  Dow’s (Rohm & Haas) 

Amberlite has total capacity of 0.8 mmol ferric ion/g.  However, functionalized silica gel 

has advantages of open mesoporous structure and also the further advantage of facile 

multifunctional silylation.  The functionalized silica gel (2.0 sulfonate/nm2) has 5.28 

mmol sulfonate/g, indicating an experimental Fe:sulfonate ratio of 0.0237.  The 

theoretical Fe:sulfonate ratio is 0.33, indicating that only about 7% of the sulfonate 

groups are ion-exchanged with Fe3+.  For Ludox, the experimental Fe:sulfonate ratio is 

0.0295, or only 9% of sulfonate groups.   

This process exchanges one Fe3+ ion for three Na+ ions (subscript “s” means 

surface-bound). 

Fe3+ + 3 NaS
+ <=> FeS

3+ + 3 Na+     (8.5) 

According to the law of mass action, which describes general exchange equilibria in 

ionized systems (for surface activity coefficients which are unity), the apparent 

equilibrium constant, Kc
Fe, Na, is given by 

𝐾𝐹𝑒,𝑁𝑎
𝑐 = �𝑛𝐹𝑒

𝑐𝐹𝑒
�
𝑧𝑁𝑎

�𝑐𝑁𝑎
𝑛𝑁𝑎

�
𝑧𝐹𝑒

     (8.6) 

where ci is the supernatant concentration [mol m-3] and ni is the exchanger-bound 

concentration [mol kg-1 exchanger].  Based on the observed Fe3+ supernatant and 
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exchanger-bound concentrations, the equilibrium constant for these functionalized silica 

platforms as 3.4 x 10-4 (g silica / L)2.   

8.5 Iron Particles on silica 

 Once ferric ions are immobilized on the sulfonate-functionalized silica, they are 

reduced to zero-valent iron particles using freshly prepared aqueous sodium borohydride.  

As it dissolves, the borohydride anion reduces water to hydrogen as well as reducing Fe3+ 

to Fe0; borohydride itself is oxidized to various borate species.  The formation of Fe0 is 

physically seen as the silica suspension changes from white (silica with ions) to gray 

(silica with black Fe0 particles.  The agglomeration of the Fe NP (due to both electrostatic 

and magnetic forces) is limited by the immobilization of the iron on the silica surface and 

in the pores of the silica gel.  The Fe NP with Ludox forms in the sulfonated silane 

network, resulting in Fe NP physically mixed with the colloidal Ludox silica NP. 

 Although the electrostatic interaction between Fe NP and sulfonate is less than 

that between Fe3+ and sulfonate, there is still some coordination between the surface 

atoms of the Fe NP and the sulfonate, which can also stabilize the Fe NP.  As the 

sulfonate anion has various resonance structures, interaction with the Fe surface could 

occur by mono- or tri-dentate coordination, or through bi- or tri-dentate bridging (Figure 

8.4).  Little shift in the IR spectrum from sulfonate silane (THSPS; in water) to 

sulfonated Ludox silica indicates that the interaction occurs primarily through a tri-

dentate coordination, whereby the asymmetric and symmetric vibrations are not impacted 

by the presence of the Fe atoms.56  This lack of shift occurs is understood as the tridentate  
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Figure 8.4 Possible modes of Fe interaction with sulfonate. 
(a) monodentate chelating (b) tridentate chelating, (c) tridentate bridging.  (d) ATR-IR 
spectra indicates that SO3 symmetric vibration does not significantly change upon Fe 
particle formation, indicating likely tridentate chelating due to small shift in symmetric 
vibration. 
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chelation retaining the same point group as the sulfonate.92  Fe-phosphate interactions 

have also been found to occur similarly,93 and this is further confirmed by the lack of an 

Fe-O-Fe peak at 845 cm-1.94 

 Transmission electron microscopy (Figure 8.5) indicates that the iron 

nanoparticles are located both on the surface and pore mouths of the silica gel, as well as 

aggregated (apart from the silica surface) in chains that are typical of Fe0 nanoparticles. 

Due to the sonication and drying during sample preparation, it is impossible to obtain a 

true image of the iron nanoparticles during the reactions.  However, the particle size of 

~50 nm can be determined and elemental analysis (energy dispersive x-ray spectroscopy, 

EDS) is used to show that they are indeed Fe0 nanoparticles with a thin oxidized shell due 

to drying. EDS information alone does not indicate valence state, but the line-scan is used 

to show that the oxygen increases near the particle edges, when a thin layer of iron oxide 

would be the only material present.  As the line scan proceeds across the particle, the 

oxygen content remains constant (from this oxide shell surrounding the particle of 

constant thickness) even as the iron signal increases due to the increasing depth of the 

iron core.  The particles on the Ludox silica (Figure 8.6) also were found to be somewhat 

smaller (~30 nm).  The silica nanoparticles are also on the order of that size (22 nm), they 

form a mixture of silica and agglomerated Fe nanoparticles. EDS line scan indicates that 

the particle composition is Fe (with Si also indicated because of the proximity to silica 

particles).  
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Figure 8.5 TEM of Fe NP on sulfonated silica gel. 
(a) Fe particles (~50 nm) formed on surface and in the pores of silica gel.  Brighter spots 
indicate Fe (higher atomic number).  Scale bar is 200 nm. (b) Higher resolution image of 
spherical Fe nanoparticles with path indicating line scan for EDS.  (c) EDS confirms 
elemental Fe composition of particle with silica background.   
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Figure 8.6 TEM of Fe NP on Ludox silica. 
(a) Fe particles (30-50 nm) formed on surface of silica nanoparticles (22 nm).  Brighter 
spots indicate Fe (higher atomic number).  Scale bar is 50 nm. (b) Higher resolution 
image of spherical Fe nanoparticles with path indicating line scan for EDS.  (c) EDS 
confirms elemental Fe composition of particle with silica background.  
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The iron nanoparticle alters the pore structure and surface characteristics of the 

functionalized material. Fe NP on Ludox (Figure 8.3b), both microporous and 

macroporous surface areas increase, corresponding to sorption of nitrogen in the 

interparticle spacing as well as on the surface of the NP.  Overall, the surface area 

increase for Fe particles on Ludox is from 87 to 110 m2/g. Using Equation (8.1), the 

expected increase in surface area for 30 nm Fe NP would be 25 m2/g Fe, which is 

consistent with the experimentally determined increase (23 m2/g ). For the Fe NP on 

silica gel (Figure 8.3a), microporous surface area decreases, corresponding to pore 

blockage. The macroporous surface area increases, corresponding to sorption of nitrogen 

on surface of the NP. Overall, the BET surface area decreases from 264 to 224 m2/g.   

Silica-based Fe NP have been used as catalysts for well known Fischer-Tropsch 

hydrocarbon synthesis (particularly when using coal-derived syn gas95) and more recently 

as catalysts for carbon nanotube synthesis.96 Catalytic advantages of silica-supported Fe 

NP are improved thermal stability, decreased deactivation, and improved selectivity.93  

The silica is thought to play a role in the reduction and drying process which preserves a 

high surface area.  However, Fe NP on silica have been found to have lower activity than 

those on other supports or unsupported catalysts, due to the stronger interactions between 

silica and Fe NP including the formation of iron silicate interfacial species.97 This effect 

increases with increasing silica:Fe ratio.98  Fe NP on silica in these studies have been 

reported to be 5 to 20 nm. 

8.6 Synthesis of Pd and Fe/Pd NP by ascorbic acid 

 The use of natural products as reducing agents (antioxidants) for the synthesis of 

metal NP has emerged as an important area of research. Not only are the natural products 
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completely “green” but they also can stabilize the particles against agglomeration and 

oxidation.  Various natural products have been suggested, including the use of 

polyphenols,99 commonly found in tea, coffee, wine, and fruit juices.  Typically, the E0 

value of these compounds is sufficient to reduce ferrous or even ferric iron to zero-valent 

iron.  Another natural product which has been used is ascorbic acid; however, the 

reduction potential of ascorbic acid to dehydroascorbic acid is not sufficient to reduce 

iron alone.100  The use of ascorbic acid requires a secondary metal, such as Pd, which is 

reduced along with Fe to form Fe/Pd particles.  Although other secondary metals have 

been described, Pd was chosen because Fe/Pd bimetallic nanoparticles have been shown 

effective in dechlorination of TCE. The reactions for the formation of Fe/Pd particles are 

shown in Table 8.2. 

The use of natural reducing agents such as ascorbic acid can stabilize the 

nanoparticles against oxidation as well as inhibit particle growth.  After synthesizing Pd 

nanoparticles, an IR spectrum of the particles was compared to spectra from the pure 

dehydroascorbic acid and ascorbic acid.  The spectra (Figure 8.7) indicate that both the 

oxidation product (dehydroascorbic acid) and excess ascorbic acid (ascorbate at pH > 

4.17) were adsorbed to the surface (structures are given in Figure 8.1b).  The difference 

between the two compounds is seen by the peaks at 1753 cm-1 (C=O) and 1660 cm-1 

(C=C).  The shift of the C=C peak in the dehydroascorbic acid is caused by additional 

ring strain of three carbonyl moieties on a 5-membered ring.  For the Fe/Pd particles, 

both peaks are seen indicating the presence of these adsorbed species.   
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Table 8.2 Reactions and standard reduction potentials for "green" synthesis of Fe/Pd 
bimetallic NP by ascorbic acid. 
See Figure 1 for chemical structures 

Reaction E0 value (V) 
2 Ascorbic acid  2 dehydroascorbic acid + 4 e- + 4H+ -0.116  

2/3  Fe3+ + 2e-  2/3 Fe0 -0.0247 
Pd2+ + 2e-  Pd0 +0.951 

 
Overall:  
2 Ascorbic acid + 2/3 Fe3+ + Pd2+    2 dehydroascorbic acid + 2/3 Fe0 + 4H+         +0.810V 
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Figure 8.7 IR spectra of Fe/Pd NP with adsorbed surface species. 
The nanoparticle spectrum indicates both ascorbate ion (C=C bond) and dehydroascorbic 
acid (C=O bond) adsorb to the nanoparticle surface. (Ascorbate ion is present above pH 
4.7)  
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 The particle size can be limited by use of excess ascorbic acid as indicated by 

Figure 8.8.  The ascorbate can adsorb to the surface and impart a surface charge which 

inhibits agglomeration.  As a higher ascorbic acid:Pd mole ratio was used, the measured 

hydrodynamic particle radius was significantly lowered, though ascorbic acid:Pd molar 

ratio >7 rendered no more decrease in size.  For this reaction, the stoichiometric ratio is 2.  

Smaller Pd particles have been synthesized by other methods, such as the use of 

polyligand stabilizers and ascorbic acid reduction,100 as well as the in vivo synthesis of 

bio-Pd.101  However, this simple method yields stable, small Pd or Fe/Pd NP.  

Transmission electron micrograph of the ascorbic acid-synthesized particles at lower pH 

indicate the unusual growth of crystals with agglomerate diameter ~100 nm (Figure 8.9). 

Although the exact role of dehydroascorbic acid and ascorbate in directing the crystal 

growth is not known, other studies have indicated the synthesis of crystallites of various 

shapes using natural product reducing agents.102 
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Figure 8.8 Pd NP stabilized by excess ascorbic acid in synthesis. 
Decrease in particle size (hydrodynamic radius measured by DLS) for Pd particles 
synthesized by reduction with ascorbic acid, due to presence of surface adsorption of 
excess ascorbate and dehydroascorbic acid. The synthesis reaction is same as presented in 
Figure 1, without the presence of Fe. 
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Figure 8.9 TEM of Fe/Pd NP synthesized by ascorbic acid at pH<4.2. 
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8.7 Oxidative Dechlorination 

 Recent results have shown success using silica-supported Fe NP for reductive 

dechlorination of TCE; however, heterogeneous oxidative dechlorination by Fe/Fe2O3 

particles is an emerging area of research and holds great promise because of the naturally 

occurring oxidized iron in contaminated aquifers. Oxidative detoxification of TCE is 

accomplished using Fe/Fe2O3 particles as catalysts for the heterogeneous decomposition 

of H2O2, resulting in the formation of OH· (a strong oxidant with E0 = 2.73 V).  Iron 

oxide particles based on various platforms (membranes, polymers, and silica) have been 

also used for this reaction. To show the usefulness of this approach with our silica-based 

particles, we deliberately oxidized the Fe particles supported on Ludox and tested their 

efficiency.  The primary species present is Fe2O3 which may surround a zero-valent Fe 

core.   

The modified Haber-Weiss mechanism is commonly used to describe the 

decomposition of H2O2 on iron oxide surfaces.103  Although many reactions are involved, 

the formation of OH· is driven by oxidation (8.7) of surface ferrous species (≡Fe(II)) and 

direct decomposition (8.8) of H2O2 by hydroperoxyl radicals (HO2·).  Overall, the 

decomposition of H2O2 is modeled as a heterogeneous pseudo-first order reaction (8.9). 

≡Fe(II) + H2O2  ≡Fe(III) + OH- + OH·     (8.7) 

H2O2 + HO2·  H2O + O2 + OH·    (8.8) 

−dCH2O2
dt

= kSAAsρmCH2O2 (8.9) 

 



124 

 

In the case of our reactions, the Fe loading (0.16 Fe/L) was lower compared to other 

studies, which slowed the reaction, with initial H2O2 concentration of 41.4 mM (1409 

mg/L).   

The TCE is then oxidized by the generated OH·, which is given as a second order 

reaction. 

−dCTCE
dt

= kCTCECOH∙  (8.10) 

Previous studies have found COH· is small and constant,104 so that in many cases the 

oxidation of TCE can be given as pseudo-first order.  Pseudo-first-order kinetics have 

been seen for the Fe-catalyzed oxidation of quinoline105 (using Fe-containing aquifer 

material) and trichlorobenzene106 (using hematite, Fe2O3) under reaction conditions 

similar to this study. However, others have found this Fe-catalyzed oxidation to be 

pseudo-zeroth order.  In this case the decomposition of H2O2 was not measured, only the 

oxidation of TCE.  Figure 10 shows the 50% dechlorination in 50 hours of using these 

particles.  However, the further  result depends on Fe loading and H2O2 concentration, as 

well as Fe:H2O2 ratio.  The TCE oxidation kinetics fit a first-order reaction with R2= 0.95 

up to 20 h, as shown in Figure 8.10. The usefulness of Fe/Fe2O3-catalyzed production of 

OH· for oxidative dechlorination is demonstrated. Chloride measurements indicated that 

after the reaction had ceased (50 hrs), the recovery of Cl- was 91% of the theoretical Cl- 

production, based on 3 mol chloride:1 mole TCE degraded. 

 The role of silica in the oxidative dechlorination of TCE is not well understood.  

Recent reports have speculated that the silica alters the rate of H2O2 decomposition 

because the lower point of zero charge renders the silica-Fe/Fe2O3 negatively charged at  
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Figure 8.10 Oxidative degradation of TCE by supported iron-iron oxide particles. 
Particles are air-oxidized Fe/Fe2O3 on Ludox, and degradation occurs by hydroxyl radical 
reaction (use of H2O2). CTCE,0 = 21.5 mg/L. 
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near neutral pH.107  Altered rates of decomposition were found to be dependent upon 

sand species present when using real sand-based Fe oxide catalysts,105 though efforts to 

model the complete process were incomplete. It may also be that the surface of the 

sulfonated silica (Lewis base) impedes the conversion of Fe2+ to Fe3+, which is 

postulated75 to be the rate-limiting step of the catalytic cycle for H2O2 decomposition. 

However, more study in this area is needed, as recent reports suggest faster and complete 

decomposition using silica-based iron oxide catalysts, and also incomplete oxidation 

using soil-based Fe catalysts. 

The silica-based iron particles may also be used for reductive degradation of TCE. 

Recent work71 shows that unfunctionalized silica containing iron nanoparticles 

dechlorinated TCE.  In the case of partially hydrophobized silica, there was an immediate 

decrease in the bulk concentration of TCE due to absorption (partitioning of TCE to the 

hydrophobized surface) followed by quantitative conversion to product after 96 hours 

reaction.  This study also reports the same immediate decrease in bulk TCE 

concentration, but without destruction, when hydrophobized silica is used without iron. 

8.8  Reductive Dechlorination   

The overall reductive dechlorination is modeled as a pseudo-first order 

heterogeneous reaction, and the reaction constant determined by (8.11) and results are 

shown in Figure 7.11. 

−𝑑𝐶𝑇𝐶𝐸
𝑑𝑡

= 𝑘𝑜𝑏𝑠𝐶𝑇𝐶𝐸 = 𝑘𝑆𝐴𝐴𝑠𝜌𝑚𝐶𝑇𝐶𝐸  (8.11) 

where As is specific surface area and ρm is the loading of particles. In the case of very 

small particles (such as those ascorbic acid synthesized particles at near-neutral pH), the 

specific surface area (As) is calculated as surface-to-volume ratio (8.1) divided  
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Figure 8.11 Reductive degradation of trichloroethylene by Fe/Pd NP. 
Particles synthesized by reduction with ascorbic acid.   CTCE,0 = 27 mg/L 
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by the intrinsic density of the material (ρFe = 7.9 g/cm3 and ρPd = 12.0 g/cm3).  Based on 

weighted average of Fe/Pd composition (3.8 wt% Pd), the density (ρ) of the Fe/Pd NP is 

8.1 g/cm3. As for the ascorbic acid-synthesized Fe/Pd NP (r = 5 nm) are 74.1 m2/g.  

Under the reaction conditions described in Figure 11, the kSA is calculated to be 8.1 x10-4 

L/m2h.  A recent study using Fe/Pd bimetallic particles (stabilized with 

carboxymethylcellulose) indicated kSA of 64 x10-4 L/m2h for particles with diameter of 

4.3 nm.79 Although the reaction rate is lower than some reported values, these small 

stable particles may be more useful for reductive dechlorination in dilute TCE-

contaminated groundwater plumes, where stability and dispersion of particles is an 

important consideration. 

8.9 Conclusions 

The stabilization of Fe and Fe/Pd bimetallic NP through use of covalently 

functionalized sulfonated silica platforms was demonstrated, as well as the use of non-

toxic, natural product ascorbic acid as a reducing agent.  The silica has a number of 

advantages including the dispersion of particles to prevent agglomeration and the 

versatility of surface functionalization. NP were effectively synthesized either in the pore 

mouths or on the surface of silica with different morphologies (colloidal and porous silica 

gel).  The synthesis of stable Fe/Pd NP was also achieved through the use of ascorbic 

acid as a reducing agent, where the ascorbate and dehydroascorbic acid inhibit 

agglomeration and the excess ascorbic acid protects the surface from oxidation.  Both 

strategies yielded nanoparticles which were reactive toward the detoxificiation of 

trichloroethylene (TCE), a widespread persistent and toxic water pollutant. TCE 

detoxification can occur through reduction with Fe NP.  However, it was also 
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demonstrated that the Fe NP is intentionally oxidized to form iron/iron oxide particles, 

which are used for the oxidative detoxification of TCE through the heterogeneous 

decomposition of hydrogen peroxide.   
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9. Chapter Nine: Conclusions and Scientific Advancements 

 The research work has led to the development of advanced functionalized 

materials for toxic metal and organic remediation. The successful synthesis of 

functionalized silica and mixed matrix membranes for environmental applications has 

been achieved.  These applications include the sorption of mercury (both elemental and 

aqueous) and the use of silica as a support for metal nanoparticles with significant 

environmental applications.   

The key scientific advancements of these studies: 

• quantification of silica functionalization with sulfur-containing silanes 

• functionalization of a silica-coated carbon material for aqueous mercury sorption 

and development of mixed matrix membranes for this application 

• development of regenerable sorbents for aqueous mercury removal 

• synthesis of high-capacity chemisorptive materials for elemental mercury vapor 

sorption with key advantages over conventional materials 

• development of functionalized silica platforms for nanoparticle synthesis, and the 

demonstration of stabilized nanoparticles towards TCE degradation 
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