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Abstract 

 

Designed model transmembrane peptides and oriented 2H and 15N solid-state nuclear magnetic 

resonance (NMR) spectroscopy were used to analyze how simple sequence modifications can 

influence peptide structure, behavior and dynamics as well as for determining the pKa of 

glutamic acid at the membrane interface.  The GW5,19ALP23 (acetyl-GGALW(LA)6LWLAGA-

amide) peptide framework adopts a well-defined tilted orientation in lipid bilayers (DLPC, 

DMPC and DOPC) and undergoes low amounts of dynamic motion.  The sequence was initially 

modified by moving the Trp residues outwards to positions 4 and 20.  This new sequence 

GW4,20ALP23 (acetyl-GGAW(AL)7AWAGA-amide) displays high amounts of signal averaging 

of NMR observables caused by extensive dynamic motion about its average azimuthal rotation.  

The high dynamics are due to side chain competition induced by the opposing radial locations of 

the interfacial Trp(W) residues.  The GW4,20ALP23 sequence was subsequently modified by 

introducing Arg(R) residues at either position 14 or 12.  The R14 peptide adopts a well-defined 

tilt in lipid bilayers while completely arresting the high dynamics of the parent framework.  In 

response, the C-terminal Trp causes partial unwinding of the core helix, while the N-terminal 

residues tighten into the core helix to compensate.  R12 pulls the peptide to the membrane 

surface.  A helix discontinuity is observed beginning at residue 11 as well as the formation of a 

partial N-terminal 310-helix.  Modifying the core sequence of GW4,20ALP23 with Leu residues at 

positions 5 and 19 does not significantly affect the high dynamics, yet causes the peptide to 

adopt the same tilt as the original GW5,19ALP23 sequence.  Removing W4 and replacing it with 

two Phe residues at positions 4 and 5 not only reduces the dynamics but also causes C-terminal 

helix distortion.  Moving away from helix dynamics, 2H NMR was used to determine the side 

chain pKa of an interfacial Glu residue in the GW5,19ALP23 framework will oriented in the three 



 
 

lipid bilayers.  The pKa increases with lipid bilayer thickness ranging from 4.3 to 11.0.  

Together, these experiments with model membrane peptides and solid-state NMR can be used to 

help our understanding of the basic principles that govern protein-lipid interactions.            
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CHAPTER 1  

Introduction 

Biological membranes are intricate environments enriched with various mixtures of lipids and 

membrane proteins alike.  The interactions between proteins and lipids are important to 

understand as such relationships help govern membrane protein structure which ultimately 

determines their function in essential biological roles such as signal transduction and transport.  

Membrane spanning proteins must follow strict rules to meet the demands of the membrane 

while still being able to fold properly and carry out their biological functions.(1)  For example, 

unfolded polypeptide chains cannot favorably integrate into the hydrophobic lipid bilayer interior 

due to the energy cost of partitioning exposed amide bonds.(2)  Bilayer integration can be 

favored through hydrogen bond formation which is the driving force of α-helix secondary 

structure formation found in the most common types of transmembrane domains.  To help the 

folding process along, these protein domains consist primarily of hydrophobic amino acids; 

unfortunately, this often leads to experimental difficulties such as aggregation.  Lipid 

contributions to folding are also not the only factor to consider.  The system gets further 

complicated as transmembrane domains often contain numerous α-helices bundled together, each 

helix orientation influenced by its relationship with its neighbor.  Protein-lipid interactions are 

therefore only part of a complicated network of interactions that give membrane proteins their 

folded conformations and are not entirely well understood.  Simple model systems can be 

employed to gain an understanding of the basic principles that undergird protein-lipid 

interactions while also circumventing many experimental difficulties associated with membrane 

proteins.  A common approach is to characterize the behavior of single spanning transmembrane 

peptides incorporated within bilayers consisting of a set lipid species and thickness.  Results 



2 
  

acquired from such studies typically mirror natural protein folding behavior and therefor these 

systems can be utilized to understand various secondary structure interactions in the context of 

both folding and unfolding often at single residue resolution.(3)  Some of the earliest model 

peptides used to study peptide-lipid interactions, such as hydrophobic matching, were the WALP 

peptides which consisted of a hydrophobic core sequence of repeating Leu-Ala residues and 

multiple flanking Trp residues at either terminus.(4-6)  The second generation WALP peptide 

framework, GW5,19ALP23 (acetyl-GGALW(LA)6LWLAGA-amide),(7) has been extensively 

used to study protein-lipid interactions including: interfacial anchoring properties of aromatic 

residues(8), transmembrane orientation stabilization provided by terminal α-helix fraying(9, 10) 

and even elucidating amino acid pKa’s at various depths of the bilayer.(11, 12)  It contains only 

two flanking Trp residues in the sequence which allows it to adopt a well-defined tilted 

orientation in lipid bilayers and maintain a fairly static rotation with only a moderate degree of 

dynamic motion.  It can be effectively used to show how simple changes in amino-acid sequence 

impact the peptide orientation, dynamics and structure, providing insight into how protein-lipid 

interactions influence the folding of much larger membrane protein species. 

Oriented solid-state NMR can be effectively used to study the orientation, secondary structure 

and dynamics of model transmembrane peptides and simple membrane proteins in lipid bilayers.  

Samples typically consist of peptides incorporated into either oriented lipid bilayers on stacked 

glass plates which are mechanically aligned with the bilayer normal parallel or perpendicular to 

the magnetic field(6) or bicelles(13) which are lipid discs that self-orient perpendicular to the 

magnetic field.  2H NMR is a particularly sensitive tool for determining the orientation and 

dynamics adopted by a transmembrane α-helix.  The core sequence of the GWALP23 family 

peptides contain multiple repeating alanine residues whose 2H-labeled methyl side chain 
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orientations can be used to calculate the overall tilt and azimuthal rotation of the helix.(6)  The 

helix backbone N-H bond geometry directly correlates to the overall peptide orientation and can 

be monitored using oriented 15N based separated local field NMR experiments.(14, 15)  Both 

NMR methods are sensitive to the dynamic motion of the peptide, particularly the slippage about 

its average azimuthal rotation.  The motionally averaged NMR observables (2H quadrupolar 

splittings, 1H/15N dipolar couplings, 15N chemical shifts) can be used to estimate the extent of 

oscillations the peptide undergoes about both its the average tilt and rotation.(16, 17) 

The GW5,19ALP23 peptide contains two interfacial Trp residues on the same face of the α-helix.  

Previous experiments have moved these Trp residues outwards to positions 3 and 21 or inwards 

to positions 7 and 17.(8)  In Chapter 2, the Trp residues are moved outward to opposite faces of 

the helix at positions 4 and 20.  The new peptide GW4,20ALP23 (acetyl-

GGAW4(AL)7AW20AGA-amide) was characterized using both 2H and 15N static solid-state 

NMR experiments.  Unlike the original well-behaved GW5,19ALP23 peptide, the new 

GW4,20ALP23 sequence undergoes extensive amounts of dynamic motion in particular about its 

azimuthal rotation caused by side chain competition between the flanking Trp residues at 

opposing radial locations of the helix. 

This new GW4,20ALP23 framework was then used to study how simple sequence mutations can 

affect the overall peptide dynamics and orientation.  Positively charged residues are essential for 

voltage sensing domains found in various channel proteins.(18)  Arg residues were previously 

introduced into the GW5,19ALP23 sequence and caused the peptide to either remain 

transmembrane and exhibit low dynamics at position 14 or adopt multiple states, including a 

surface bound state, when placed at the center of the sequence at position 12.(19)  In Chapter 3, 

Arg residues were separately introduced again at positions 14 and 12.  The R14GW4,20ALP23 
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peptide similarly remains transmembrane and exhibits very low dynamics (lower than the 

original GW5,19ALP23 sequence) as the peptide is essentially locked into place by the Arg side 

chain.  The dominance of R14 also induces a partial C-terminal unwinding of the helix, while the 

N-terminal residues integrate into the core helix to compensate.  The new W4,20 sequence with 

R12, R12GW4,20ALP23, adopts only a single state.  The central Arg brings the peptide out of the 

membrane to the surface and breaks the helix in half forming a partial 310-helix at the N-terminus 

confirmed by both 2H and 15N NMR experiments. 

The GW4,20ALP23 sequence is not a complete isomer of GW5,19ALP23 as it lacks Leu residues 

that would neighbor each interfacial Trp residue.  It was unknown what to what extent these Leu 

residues had on the dynamics, and if the Trp radial locations were the primary factor behind 

them.  Therefore, in Chapter 4, Leu is introduced into the sequence of GW4,20ALP23 at positions 

5 and 19.  This new L5,19GW4,20ALP23 sequence exhibits the same dynamic profile as the parent 

sequence, with only slightly lower degrees of rotational slippage.  However, the introduction of 

the two Leu residues does cause the peptide to adopt the same tilt in the various lipid bilayers as 

its isomer, GW5,19ALP23.  In order to prove the Trp residues are responsible for the dynamics, 

W4 and A5 were each replaced with a Phe(F) residue which is incapable of forming hydrogen 

bonds and would remove side chain competition.  F4,5GW20ALP23 indeed lowers the dynamics 

to moderate values, however distortion is evident for the C-terminal portion of the helix as well 

as possible oligomerization.  Together L5,19GW4,20ALP23 and F4,5GW20ALP23 prove the side 

chain competition caused by the radial Trp locations is the primary factor responsible for the 

extensive dynamic motion of the parent framework. 

Transmembrane domains of proteins sometimes contain charged residues which are often 

conserved and essential for protein function.  Solid-state 2H NMR can also be used to determine 
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the titration points of ionizable residues within the sequences of model transmembrane peptides 

at various lipid bilayer depths.  The transmembrane pKa’s of residues such as His, Lys, and Arg 

have all been previously examined using the GW5,19ALP23 sequence.(11, 12, 20)  Experiments 

attempting to determine the pKa of Glu predicted the titration point would occur at high pH 

levels or that the helix is indifferent to the charged state of the side chain.(21)  In Chapter 5, the 

GW5,19ALP23 sequence was used to analyze the titration behavior of glutamic acid at position 4 

residing at the membrane interface.  Titration curves were successfully obtained in three different 

lipid bilayers (DLPC, DMPC and DOPC).  The calculated pKa’s show that the charged state of 

the interfacial Glu4 side chain has a lipid dependence and the pKa’s increase with bilayer 

thickness, up to 11.0 in the thickest bilayer.  This provides support for the high pKa values 

previously predicted(21) and agrees with the wide range of pKa’s observed in nature (ranging 

from 3.5 to 14) that are dependent on the side chain’s local environment.(22, 23)    
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CHAPTER 2 

Control of Transmembrane Helix Dynamics by Interfacial Tryptophan Residues 

Published originally in M. J. McKay, A. A. De Angelis, S. E. Opella, D.V. Greathouse and R.E. 

Koeppe 2nd. Control of transmembrane helix dynamics by interfacial tryptophan residues. 

Biophys J. 2018; 114:2617-2629. © 2018 Biophysical Society 

2.1 Abstract    

Transmembrane protein domains often contain interfacial aromatic residues, which may play 

roles for the insertion and stability of membrane helices.  Residues such as Trp or Tyr, therefore, 

are often found situated at the lipid-water interface.  We have examined the extent to which the 

precise radial locations of interfacial Trp residues may influence peptide helix orientation and 

dynamics.  To address these questions, we have modified the GW5,19ALP23 (acetyl-

GGALW5(LA)6LW19LAGA-[ethanol]amide) model peptide framework to relocate the Trp 

residues.  Peptide orientation and dynamics were analyzed by means of solid-state NMR 

spectroscopy to monitor specific 2H and 15N labeled residues.  GW5,19ALP23 adopts a defined 

tilted orientation within lipid bilayer membranes with minimal evidence of motional averaging of 

NMR observables such as 2H quadrupolar or 15N-1H dipolar splittings.  Here we examine how 

peptide dynamics are impacted by relocating the interfacial Trp (W) residues on both ends and 

opposing faces of the helix, for example by a 100° rotation on the helical wheel for positions 4 

and 20. In contrast to GW5,19ALP23, the modified GW4,20ALP23 helix experiences more 

extensive motional averaging of the NMR observables in several lipid bilayers of different 

thickness.  Individual and combined Gaussian analyses of the 2H and 15N NMR signals confirm 

that the extent of dynamic averaging, particularly rotational “slippage” about the helix axis, is 

strongly coupled to the radial distribution of the interfacial Trp residues as well as the bilayer 



9 
  

thickness.  Additional 2H labels on alanines A3 and A21 reveal partial fraying of the helix ends.  

Even within the context of partial unwinding, the locations of particular Trp residues around the 

helix axis are prominent factors for determining transmembrane helix orientation and dynamics 

within the lipid membrane environment. 

2.2 Introduction 

The lipid bilayers of cell membranes host a variety of membrane proteins for which essential 

protein-lipid interactions influence the management of biological function. Indeed, a better 

understanding of protein-lipid interactions will be crucial for more complete elucidation of the 

molecular control mechanisms that underlie cell signaling and other actions mediated by 

membrane proteins. Transmembrane domains of proteins are often anchored within their lipid 

environment by flanking aromatic or charged residues.(1)  For example, four Trp (W) residues at 

positions 9, 11, 13, and 15 govern the folding and anchor the subunits of gramicidin A ion 

channels produced by Bacillus brevis, wherein the channel protein consists of two monomeric 

peptides that dimerize at the N-terminal in the lipid bilayer.(2)  The subunit anchoring is a result 

of the Trp indole ring’s affinity for the membrane interface and is also what prevents each 

subunit from crossing the bilayer.(3)  Therefore, the peptide must be added to each opposing 

bilayer leaflet in order to form channels.  Whereas tryptophans 9 and 11 in gA are essential for 

efficient channel formation, interestingly, replacing residues 13 and 15 in gA with Phe allows the 

peptides to cross the membrane in a putative double-stranded conformation and then form 

channels.(4, 5)  The different outcomes for modified gA sequence isomers (having Phe 9, 11 as 

opposed to Phe 13, 15) is particularly intriguing in that the differing properties are caused by 

different relative locations of interfacial aromatic Trp and Phe residues.    
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Indeed, interfacial Trp residues are important for the function of a number of membrane proteins.  

For example, conserved Trp residues provide membrane anchoring and govern helix dynamics 

and association to form functional integrin aIIbb3 heterodimers (6), wherein it is noted that 

particular Trp residues at different helix locations interact with heterogeneous lipids and cannot 

necessarily be functionally replaced by Tyr or Phe.  Additionally, the switching between the 

kinase and phosphatase activities of a bacterial thermo-sensor is linked to not only temperature, 

membrane thickness and the hydrophobic length of a helix, but also whether Trp or Phe occupies 

a particular location on the transmembrane helix (7).  For larger and more complex membrane 

proteins, for example NADH:ubiquinone oxidoreductase which has multiple transmembrane 

helices with interfacial Trp and Tyr residues,(8) it becomes more difficult to characterize, 

individually or collectively, the local or global impact exerted by the aromatic residues. 

However, fundamental and broadly applicable insights may be obtained at the single-residue 

level from investigations of model peptide-lipid systems that incorporate defined molecular 

features.  In particular, examinations of how individual interfacial residues affect the orientation 

and dynamic behavior of a transmembrane helix are feasible using model peptide systems.  

Within such model systems, direct sequence modifications can be made and compared, such that 

resulting changes in the peptide-lipid interaction can be investigated in detail.  Varying the 

membrane composition, lipid acyl chain length or peptide helix length may offer additional 

insights into these types of interactions.(9, 10) To match the hydrophobic lengths of different 

lipids, variable numbers of repeating pairs of core helix-forming residues, such as leucine-

alanine (LA)n repeats, may be used within a peptide’s central helical sequence,(11) with aromatic 

or charged residues flanking each end of the principal helix.  
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The original WALP family peptides were based on a sequence that included four interfacial Trp 

residues, acetyl-GWW-(LA)n-LWWA-[ethanol]amide (Figure 1, Table 1).(11)  These peptides 

proved useful for examining the fundamentals associated with membrane partitioning by 

interfacial tryptophan residues and the modulation of lipid phase behavior when the hydrophobic 

length of the peptide helix was shorter than the thickness of the lipid bilayer.(11)  Although the 

original concept envisioned a transmembrane helix normal to the bilayer, the WALP peptides 

subsequently were discovered to adopt a defined tilted orientation within lipid bilayers, with 

“apparently” only a “minor” dependence on lipid acyl chain length.(12, 13) Indeed a non-zero tilt 

angle between the helix axis and the bilayer normal has by now been universally observed with 

many peptides and has been rationalized in terms of the favorable precession entropy that 

accompanies a finite tilt angle.(14)  The minor apparent response to bilayer thickness 

subsequently was attributed to motional averaging of the solid-state NMR observables(15, 16), 

primarily in the form of rotational “slippage” about the helix axis.(16, 17)  The motion 

furthermore has been correlated with the presence of four interfacial tryptophan residues, two at 

each end of the core sequence, potentially competing among themselves for preferential 

orientations at the lipid-water interface.(17-20)  The pairs of tryptophan residues were mutated to 

other aromatic or charged residues(21, 22) in order to observe how different pairs of identical 

residues could impact the transmembrane peptide helix behavior. 

It was eventually determined that a single tryptophan residue at each end of the core helix is 

sufficient to minimize aggregation, regulate a hydrophobic peptide helix within a lipid 

membrane, and define its orientation, as seen with GW5,19ALP23 (acetylGGALW-(LA)6-

LWLAGA-amide).(23, 24)  Furthermore, it was discovered that fraying of helix ends may be 

crucially important for stabilizing the defined transmembrane orientation.(25)  The presence of 
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fewer tryptophans tends to diminish the motional averaging and increase the sensitivity of the 

peptide helix to changes in lipid bilayer thickness. Indeed GW5,19ALP23 is observed to adopt a 

well-defined tilt angle that scales with lipid bilayer thickness. (26)  The limited averaging 

exhibited by transmembrane GW5,19ALP23 stands in stark contrast to the behavior of 

transmembrane WALP peptides.(27, 28)   

The effects of repositioning individual Trp residues have been tested by following placements 

that were shifted by ±200° from positions 5,19 to positions 3, 21 (outward) or positions 7, 17 

(inward), thereby increasing or decreasing the length of the hydrophobic core and the Trp-Trp 

distance along the helix axis, while maintaining an analogous radial separation of the flanking 

tryptophans on one face of the helix.(27)  GW3,21ALP23 adopts a similar tilt distribution to that 

of GW5,19ALP23 within various lipid bilayer membranes, with low to moderate levels of 

motional averaging, whereas GW7,17ALP23 orients with smaller average tilt angles due to its 

shorter hydrophobic core helix.   

Bearing in mind the extensive differences in motional averaging observed with different numbers 

of interfacial Trp residues, a principal aim of the research described here is to examine the 

influence of individual Trp residue radial locations on the transmembrane helix properties when 

two Trp residues are present, one at each end of the core helix.  To this end, we moved W5 and 

W19 of GW5,19ALP23 each 100° outward to positions 4 and 20.  As a consequence, the radial 

separation of the two aromatic residues changed from -40° to +160°.  Whereas W5 and W19 are 

located on the same helix face, W4 and W20 are located on opposite faces of the helix, raising 

new questions:  How will these Trp residue placements affect the peptide dynamics? What role 

might helix terminal unwinding play now that fewer residues are available for fraying beyond 

each aromatic residue?  Answering such questions will provide a framework to better understand 
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how the interactions between transmembrane domains and their lipid environment are governed 

by specific residues within their sequences. 

2.3 Materials and Methods 

2H Labeled Peptide Synthesis 

The sequence of the host peptide GW5,19ALP23 was altered by changing tryptophans 5 and 19 to 

alanines, while changing leucines 4 and 20 to tryptophans, to yield the sequence for 

GW4,20ALP23 (Table 1).  Peptides were synthesized using solid-phase FastMoc® chemistry on a 

0.1 mmol scale as previously described (18) using a model 433A Applied Biosciences 

synthesizer by Life Technologies (Foster City, CA).  L-alanine-d4 was purchased from 

Cambridge Isotope Laboratories (Andover, MA) and modified to Fmoc-L-alanine-d4 as 

previously described. (29)  Successful synthesis of Fmoc-L-alanine-d4 was verified by 1H NMR.  

Each peptide was labeled with two Ala-d4 residues in different isotope abundances.  Peptides 

were purified using reversed-phase HPLC with an octyl silica column (Zorbax Rx-C8, 9.4 × 250 

mm, 5 μm particle size; Agilent Technologies, Santa Clara, CA) and with a gradient of 92-96% 

methanol (with 0.1% trifluoroacetic acid) over 32 minutes.  Peptide purity of > 95% and molar 

mass were confirmed by means of reversed-phase HPLC and MALDI mass spectrometry, 

respectively, as indicated in the Supporting Information (Figures S1 and S2). 

To confirm peptide alpha helicity, circular dichroism(CD) samples were prepared by combining 

62.5 nM peptide with 3.75 μM lipid (1/60).  Mixtures were initially dissolved in 

methanol/chloroform; the solvents were removed with a stream of N2 gas.  The peptide/lipid 

films were further dried under vacuum for 48 h, hydrated to the final concentrations noted above, 

and then sonicated to form lipid vesicles with incorporated peptide.  Each experiment consisted 

of 15 scans which were recorded with a Jasco (Easton, MD) J-1500 CD/fluorescence 
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spectropolarimeter at 22 °C, using a 1 mm cell path length, 1.0 nm bandwidth, 0.1 nm slit, and a 

scan speed of 20 nm/min. 

Solid-State 2H NMR Spectroscopy 

For mechanically aligned samples, peptides were incorporated into lipid bilayers as previously 

described,(12) with a peptide/lipid molar ratio of 1:60 using DLPC, DMPC, or DOPC from 

Avanti Polar Lipids (Alabaster, AL) and a final hydration of 45% w/w using deuterium-depleted 

water from Cambridge Isotope Laboratories.  Bilayer alignment in the liquid-crystalline samples 

was confirmed by 31P NMR using a Bruker (Billerica, MA) Avance 300 spectrometer with 

broadband 1H decoupling.  Sample orientations at both β=0° (bilayer normal parallel to the 

magnetic field) and β=90° were tested.  A quadrupole echo pulse sequence was utilized with full 

phase cycling,(30) at 50 °C at both sample orientations.  Quadrupole echo delay was 4.5 µs and 

the recycle delay was 90 ms.  Between 0.7 and 1.5 million scans were acquired for each 2H NMR 

experiment and spectra were processed with 150 Hz line broadening. 

For experiments where magnetically aligned bicelle samples containing 2H-labeled peptides were 

examined, the samples were prepared as described below.   

Solid-State 15N NMR Spectroscopy 

Magnetically aligned bicelle samples (1:105, peptide/total lipid) were prepared by combining 61 

µmol DMPC, 19 µmol ether-DHPC (q = 3.2, long lipid/short lipid) from Avanti Polar Lipids 

(Alabaster, AL) and 0.76 µmol peptide.  Peptide and DMPC were mixed, dried down under 

nitrogen flow, and then placed under vacuum for 48 hours to remove residual organic solvent.  

Separate aliquots of ether linked-DHPC were dried down in the same manner.  The 

peptide/DMPC mixture and the ether linked-DHPC were hydrated separately with 100 µL and 75 

µL of 2H-depleted water for a minimum of 4 hours with intermittent vortexing.  The ether linked-
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DHPC was then added to the peptide/DMPC mixture and the combined sample was subjected to 

multiple freeze-thaw cycles, alternating the temperature between 0 °C and 42 °C with gentle 

intermittent vortexing until the sample remained clear at 0 °C.  While still cold, the sample liquid 

was transferred to a 5 mm NMR tube (New Era Enterprises, Vineland, NJ) and sealed.   

For 15N-detected separated local field experiments, GW4,20ALP23 was synthesized with five 15N 

labeled residues at positions 13-17.  Fmoc-L-Ala-15N and Fmoc-L-Leu-15N were purchased from 

Cambridge Isotope Laboratories. 15N chemical shifts and 15N/1H dipolar coupling signals were 

recorded using a 700 MHz Bruker Avance spectrometer with a Magnex magnet and room 

temperature shims. A home-built “low-E” 15N/1H double resonance probe with a modified 

Alderman–Grant (MAGC) 5 mm coil was used to minimize sample heating.(31)  The 

GW4,20ALP23 sample in DMPC/ether linked-DHPC bicelles was equilibrated in the magnetic field 

at 42 °C (just below the critical temperature for DMPC/DHoPC bicelle structural transformation 

at q = 3.2) for 30 min before initiating the NMR measurements.  Previously, we have found that 

the peptide order parameter in plated samples remains essentially constant from 40 °C  to 60 °C; 

optimalspectral resolution is observed at 50 °C.(17, 32)  To confirm this feature, in Figure S3, 2H 

NMR spectra for a plated DMPC sample at 42 °C versus 50 °C show only ~0.1 kHz difference in 

quadrupolar splittings after 800,000 acquisitions.  Agreeing with previous results, better spectral 

resolution is observed for plate samples at 50 °C as opposed to the lower temperature.  SAMPI-4 

(33) separated local field spectra were recorded with 256 scans, 64 t1 increments, and a recycle 

delay of 6.5 s.  The t1 evolution was preceded by a 1 ms CP-MOIST cross polarization (34), which 

compensates for power mismatch.  The 1H irradiation at all times was 46.3 kHz, and composite 

pulse SPINAL-16 was applied for 1H heteronuclear decoupling during the 10 ms acquisition 
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time.(35, 36)  The 1H carrier frequency of ∼9 ppm is optimal for transmembrane helices in 

perpendicular magnetically oriented bilayers.(37)  

The 15N NMR data sets were processed and displayed using the programs NMRPipe/NMRDraw 

(38) and Sparky (39), using a dipolar coupling scaling factor of 0.61 for SAMPI-4 evolution.(33)  

The chemical shifts were externally referenced to 15N-labeled solid ammonium sulfate, set to 26.8 

ppm, corresponding to the signal from liquid ammonia at 0 ppm.(40)  The 15N data for 

W2,22W5,19ALP23 and GW5,19ALP23 (Table 1) previously had been previously processed with line 

broadening and with zero filling applied to both dimensions, and with apodization via a 36° shifted 

sine-squared bell function applied to the indirect dimension with a first point scaling factor of 

0.5.(17, 18) To account for truncation of data in both data sets (primarily in t1) the 

W2,22W5,19ALP23 and GW5,19ALP23 15N data presented in this study were reprocessed by omitting 

line broadening and instead applying linear prediction, zero filling and a 36° shifted sine-squared 

bell function without first point adjustment to both dimensions. 

Data Analysis 

Preferred peptide helical orientations were assessed by several independent or combined 

analytical methods.  The patterns for the recorded 2H quadrupolar splittings were evaluated by a 

geometric analysis of labeled alanines (“GALA”) as previously described.(12)  The semistatic 

GALA method is based on three adjustable parameters: the apparent azimuthal rotation (or tilt 

direction) ρ0 with respect to the alpha carbon of Gly1, the apparent average tilt τ0 of the helix 

axis relative to the bilayer normal, and a principal order parameter Szz.  The whole body 

dynamics of the peptide can be described by analyzing the oscillations about the helix 0 or ρ0; 

Gaussian treatments of 2H quadrupolar splittings, 15N chemical shifts, and 15N/1H dipolar 

couplings were employed to further analyze the dynamics, following the method of 
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Vostrikov.(17)  The Gaussian analysis of helix dynamics relies on four adjustable parameters: ρ0, 

τ0, a distribution ρ (rotational “slippage”), and a distribution τ (helix “wobble”).  For this 

particular study, the Gaussian calculations were performed as previously described,(17) over the 

ranges of 0-30° for τ, 0-200° for ρ, 0-90° for τ0, and 0-359° for ρ0 in 1° increments.  For 

comparative purposes, the 2H quadrupolar splittings, and the 15N chemical shifts with 15N/1H 

dipolar couplings, were subjected to individual Gaussian analyses (2H “only” or 15N “only”), as 

well as to combined analysis of the full data sets.   

2.4 Results   

Model transmembrane peptides such as GW5,19ALP23 and its analogues exhibit -helical 

secondary structure in lipid-bilayer membranes.  The high stability of the repeating Leu-Ala core 

helix is manifested in the increased strength of backbone hydrogen bonds within a hydrophobic 

lipid environment.(41, 42)  Relocating the Trp residues in GW5,19ALP23 to positions 4 and 20, as 

in GW4,20ALP23, increases the length of the hydrophobic core sequence from (LA)6L (13 

residues) to A(LA)7 (15 residues).  To characterize the secondary structure, CD spectra were 

recorded at 22 °C for GW4,20ALP23 incorporated within DLPC, DMPC and DOPC vesicles 

with a P/L ratio of 1:60 (Figure 2).  Indeed, an -helical folding motif is confirmed in each lipid 

bilayer sample by the spectral minima observed at 208 nm and 222 nm.  The relative ellipticity 

ratio (ϵ222/ϵ208) is greater than 0.91 in each lipid.  (When DOPC is the host lipid, the spectral 

noise observed below 200 nm is due to absorbance of UV radiation by the double bonds present 

in the acyl chains of DOPC.) 

Solid-state NMR techniques can be utilized to determine the extent of a helix and the average 

peptide and lipid orientations and dynamics within lipid bilayers.  The 31P NMR spectra 

confirmed the presence of oriented lipids within the mechanically aligned bilayers and 
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magnetically aligned bicelle samples.  The peptide-lipid bilayer samples (1:60, peptide:lipid) 

were set so that the membrane normal was either perpendicular ( = 90°) or parallel ( = 0°) to 

the applied magnetic field (Figure 3A).  For the  = 90° spectra, a single peak was typically 

observed near -16 ppm; for the  = 0° spectra, a major peak was observed near +30 ppm, with a 

minor peak at -16 ppm indicating small amounts of unoriented lipid.  Peptide-bicelle samples 

(1:80, peptide:DMPC; or 1:105, peptide:(DMPC+DHoPC), q=3.2) were observed to align 

properly giving  = 90° with respect to the applied magnetic field (Figure 3B).  In Figure 3B, the 

major 31P peak results from the DMPC head groups in the bicelles, and the minor peak is from 

the ether linked-DHPC head groups of the shorter lipids.   

Insights into the orientation and dynamics of the GW4,20ALP23 transmembrane helix were 

gained from 15N and 2H solid-state NMR experiments.  The 15N NMR spectrum of GW4,20ALP23 

in DMPC/DHoPC bicelles reveals five 15N amide resonances, two of which overlap (Figure 4B).  

The 15N chemical shift frequencies span the narrow range between 82 and 90 ppm (Table 2), 

providing evidence of substantial motional averaging.  Additional assignments (shown in Figure 

4A) indicate that the 15N resonances from leucines 14 and 16 overlap in Figure 4B.  The two-

dimensional 15N-detected SAMPI4 spectra reveal a “PISA” wheel composed of the five signals 

corresponding to the five 15N-labeled core residues 13-17 (Figure 4A).  In similar fashion to the 

15N chemical shifts, the 15N/1H splittings also lie within a narrow range (3.1-3.6 kHz) (Table 2 

and Figure 4A).  The signals in Figure 4A were assigned by comparisons with 2H NMR data and 

a subsequent combined analysis (see below).  Position L16 produced an “aberrant” dipolar 

coupling value that moved the peak somewhat “inside” the PISA wheel, probably also reflecting 

dynamic averaging; because of the peak location in figure 4A, the L16 data points were not used 

in the analysis described below.  The averaging observed for the 15N signals suggests that the 
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GW4,20ALP23 helix may experience extensive motion about its apparent average orientation in a 

bicelle environment.   

Additional solid-state NMR experiments, including 2H NMR measurements, can be used to 

analyze further the nature of helical peptides in oriented lipid bilayer membranes.  To this end, 

2H-labeled alanine residues were incorporated into the core helix of GW4,20ALP23 and solid-

state NMR was used to monitor the peptide’s behavior in aligned lipid bilayers of increasing 

thickness (DLPC < DMPC < DOPC).  For these spectra, mechanically aligned bilayer samples 

produce solid-state NMR observables that are similar to those from magnetically aligned bicelle 

samples.(17)  GW5,19ALP23 was previously observed to adopt well-defined orientations relative 

to bilayer thickness(23, 26), and similar responses were seen when the interfacial tryptophan 

residues were relocated by ± two sequence positions to effectively increase or decrease the 

length of the Leu-Ala core sequence.(27)  The helix of GW4,20ALP23 (Figure 5) behaves 

differently. 

Each 2H-labeled core alanine residue in GW4,20ALP23 yields a unique deuterium quadrupolar 

splitting when the lipid-peptide samples are aligned with  = 90° (Figure 5) or  = 0° (Figure 

S4).  The variations among the core Ala-CD3 q magnitudes (Figure 5, Table 3) indicate that 

GW4,20ALP23 is tilted away from the bilayer normal, since each value would be the same if the 

peptide helix were parallel to the membrane normal.(12)  The q magnitudes for the core labels 

are observed, nevertheless, to span a frequency range from about 0.5 kHz to 16.0 kHz in all three 

lipids.  The range is indeed narrow when compared to that of the parent transmembrane 

GW5,19ALP23 helix, for which the core alanines display 2H |q| values ranging from 1.0 kHz to 

27 kHz.(26)  The large extent of motional averaging of the 2H q values for GW4,20ALP23 

correlates with the narrow ranges of resonance frequencies and dipolar splittings observed in the 
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15N-based experiments (Figure 4), again suggesting the presence of additional motions in the 

GW4,20ALP23 helix; these may involve “wobble” about the helix tilt angle or “slippage” around 

the helix axis.(17, 19, 28, 43)  

Overlaying the 15N PISA wheel of GW5,19ALP23 (Figure 6A) onto the spectrum of 

GW4,20ALP23 (Figure 6B) puts the extent of motional averaging into a visual context.  The 15N 

backbone signals (black contours) for GW4,20ALP23 are cluster to one side of the wheel 

produced by GW5,19ALP23 (red contours, black ring).  The 15N resonances of GW4,20ALP23 

converge around essentially the same location as the extensively averaged signals from the 

corresponding labels in residues 13-17 in W2,22W5,19ALP23 (blue contours). Neither set of 

peptide 15N resonances converges towards the value calculated for 0 = 0° (4.1 kHz, 79.3 ppm) 

and instead remain within the larger GW5,19ALP23 PISA wheel, which implies that the PISA 

signal convergence and 2H signal averaging are likely due to dynamics.(17)  (We note that the 

data set presented here for W2,22W5,19ALP23 has been reprocessed to isolate previously 

unresolved peaks; see Methods.)  The PISA wheel signal convergence suggests that the 

GW4,20ALP23 helix undergoes extensive motional averaging in DMPC bicelles.    

Several methods were employed to deduce the average helix orientation and quantify the 

dynamics of GW4,20ALP23.  Notably, the availability of eight core alanine data points enabled a 

full Gaussian analysis (see (17) and (28)) for GW4,20ALP23 using the 2H quadrupolar splitting 

magnitudes |q| observed for the core helix alanine residues spanning sequence positions 5-19 

in bilayers of DLPC, DMPC and DOPC (Table 4).  The Gaussian analysis generates estimates 

for peptide dynamics by considering the widths of distributions ( and ) about the helix’s 

average tilt () and azimuthal rotation ().  A full Gaussian treatment requires four adjustable 

parameters (   ) while holding a principal order parameter Szz to a fixed value, 
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typically 0.88 as an estimate for the overall isotropic motion of the peptide with respect to its 

average orientation.(16)  A modified Gaussian analysis (13, 19) can provide a suitable alternative 

approach when there are insufficient data points available to treat the four variables 

independently.  While also setting Szz to 0.88, this modified calculation requires only three 

adjustable parameters (  ), as  has been found to be a less important descriptor (28) that 

can be assigned a small finite value. (19)   

For comparison with GW4,20ALP23, a modified Gaussian analysis was performed for 

GW5,19ALP23 to represent low dynamic averaging and Y4,5GW19ALP23 to represent high 

dynamic averaging.(18)  Each of the latter helices contains only six core alanine data points.  The 

fitted  values that emerge from the full Gaussian treatment of the eight core alanines for 

GW4,20ALP23 exceed 80° in both DLPC and DOPC bilayers (Table 4).  These results are 

comparable to those calculated for Y4,5GW19ALP23 (> 70°).  The large  values are consistent 

with rotational “slippage” about the helix axis of the peptide’s average orientation, leading to the 

motional averaging observed in the 15N NMR as well as the 2H NMR data.  The behavior of the 

GW4,20ALP23 helix in DOPC and DLPC bilayers differs substantially from the reduced 

dynamics calculated for GW5,19ALP23 in the same lipids.  Indeed, the  values for the parent 

GW5,19ALP23 helix are less than 50° in all three lipids.  Surprisingly, the estimated  value for 

GW4,20ALP23 in DMPC is much lower (51°) than its corresponding  values in DLPC and 

DOPC (Table 4).  This lower  for GW4,20ALP23 in DMPC bilayers is similar to that observed 

for GW5,19ALP23 in DMPC and DOPC.  The reason for this unusual lipid dependence of  for 

GW4,20ALP23 remains to be determined.  However, we note that the gel-fluid phase transition 

temperature of 23°C for DMPC is higher than those of the other lipids used in the experiments., 
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and this result in DMPC contrasts with that for Y4,5GW19ALP23, which is highly dynamic in all 

three lipids. 

The results of the Gaussian analysis were compared to those from a semi-static GALA analysis, 

which uses a grid search to find the lowest RMSD for fitting the 2H alanine |q| values based on 

three adjustable parameters: , , and Szz.  The GALA curves previously calculated for 

GW5,19ALP23 are shown for comparison in figure 7A (26).  For this peptide helix, similar results 

emerge from the GALA and Gaussian analyses, even though the values of  are slightly lower 

for the GALA method, regardless of the lipid environment (Table 4).  Importantly, the 

dependence of  upon the bilayer thickness is maintained in both methods of analysis.  The 

trends for the GALA (or Gaussian) derived values of  for GW5,19ALP23 are that  decreases 

from about 20.7° (or 23°) in DLPC to 11.7° (or 13°) in DMPC and to 6.0° (or 9°) in DOPC 

(Table 4).  Thus, it is evident that the helix tilt decreases as the lipid bilayer thickness increases.  

In contrast, when the tryptophans are relocated to positions 4 and 20, increased motional 

averaging obscures the trend, such that the peptide helix no longer exhibits a clear relationship 

between an apparent  and the bilayer thickness (Figure 7B).  Instead, according to the GALA 

analysis, the GW4,20ALP23 helix “appears” to adopt a relatively small  value in all three lipids 

(≤ 6.0°).  The low  angles in DLPC and DOPC do not match the tilts obtained in the full 

Gaussian analysis (which would be expected in the case of a peptide undergoing dynamic 

averaging as the GALA does not consider the oscillating motions about  and ), yet in DMPC 

the  values from both methods of analysis are remarkably similar. 

Dynamic averaging is manifest in several ways (see Figure 8).  For example, large values of  

in the Gaussian analysis indicate extensive rotational averaging about the helix axis, as is evident 

for the Y4,5GW19ALP23 helix in all three lipids, and for the GW4,20ALP23 helix in DLPC and 
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DOPC (Table 4).  The fitted “apparent” values of  also reflect the dynamic properties.  When 

 is less than about 50°, the  values tend to be rigorously consistent in all three lipid 

membranes, as is seen for GW5,19ALP23 in Figure 7A.  By contrast, when  is very large, then 

the apparent  values vary widely, as is seen for GW4,20ALP23 in Figure 7B and has been 

similarly observed for Y4,5GW19ALP23.(18)  Interestingly, when  is large, the extensive 

dynamics about the peptide’s helix axis has been indicated by consensus from a number of 

different analytical treatments of not only experimental data but also populations from molecular 

simulations (13, 15, 26, 42).   Indeed, the accompanying  predictions from the GALA and 

Gaussian methods tend to agree (Table 4), even though the  predictions from the GALA 

method are systematically smaller by 5°-10°.  Extensive motional averaging in the form of 

rotational slippage can essentially mask the realistic  values, as has been observed 

previously.(15, 44)   

Besides the 2H NMR data, the 15N chemical shifts and 15N/1H dipolar couplings can be used to 

characterize peptide dynamics with the Gaussian treatment.  Indeed, we have compared Gaussian 

analyses of GW4,20ALP23 in bicelles of DMPC/DHoPC (based on 15N NMR data) with results 

from mechanically aligned DMPC bilayer samples.  Notably, the 15N NMR data sets for the 

bicelles suggest a value of  that differs by about 25° from the consistent predictions from both 

the GALA and Gaussian analyses of the 2H NMR data for the same helix in mechanically 

aligned DMPC bilayers (Table 5).  The different analytical outcomes for  may indicate that the 

properties of the GW4,20ALP23 helix are somewhat different between the lipid environments 

provided by the bicelle and bilayer samples.  We note also that somewhat larger values of  and 

 are calculated from the analysis of the helix properties in bicelles (Table 5).  To investigate 

further, we prepared 2H-labeled samples of the GW4,20ALP23 helix in DMPC/DHoPC bicelles.  
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The measured 2H |q| values are quite similar for the alanine methyl groups of the core helix, 

but somewhat different for the terminal alanines 3 and 21 (Figures 9 and S5, Table 3).  The semi-

static analysis furthermore generates similar GALA curves for the core helix in DMPC bilayers 

and DMPC/DHoPC bicelles (Figure 9), with a similar value of  (3.7°), and a value of  (339°) 

that differs by about 10° (Figure 9) from that found for the helix in DMPC bilayers.  A Gaussian 

treatment applied to the bicelle 2H NMR data also predicts a similar 10° difference in , while 

fitting  to 9.0° and  to 64° (Table 5).  The observed  of 64° and the 5° difference in  

between the semi-static and full Gaussian analyses would suggest somewhat more extensive 

dynamics for the GW4,20ALP23 helix in bicelles.  These variations contrast with the dynamic 

analysis of the mechanically oriented DMPC samples, for which similar results emerge from the 

GALA and Gaussian methods.   

To further clarify the helix properties in bilayer and bicelle samples, we performed a combined 

Gaussian analysis (17) using the 15N chemical shifts and 15N/1H dipolar couplings for bicelle 

samples, along with the 2H |q| data recorded for either bicelles or oriented samples.  The 

combined analysis (using 17 data points) for GW4,20ALP23 in DMPC bilayers (with 15N bicelle 

data) predicts a similar tilt and rotation to that of the bilayer 2H Gaussian data set alone, and a 

lower  of about 42° (Table 5).  An additional combined analysis using the 2H and 15N bicelle 

data for GW4,20ALP23 (also 17 data points) reveals a similar tilt  value (6°) as the analysis of 

the smaller 2H data set alone (8 data points; Table 4).   When comparing the bicelle and bilayer 

results, using either the 2H data alone or all available data points in the combined analysis (Table 

5), the prediction for  seems to differ by about 10° between bicelle and oriented samples, and 

 is calculated to be about 20° higher for the helix in bicelles (62° versus 42° for bilayers).  It is 
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possible that the minor variations with respect to helix azimuthal rotation result from differences 

between bicelle and lipid bilayer curvature and lipid composition (see Discussion).   

To illustrate the key links between helix dynamics and Trp radial locations, the RMSD fits for 

the Gaussian and GALA analyses as a function of  vs  for GW4,20ALP23 and GW5,19ALP23 

in DMPC/DHoPC bicelles are shown and compared in Figure S6.  Both the GALA and Gaussian 

methods generate an acceptable solution area for GW5,19ALP23 and agree on both  and .  

The GALA analysis of GW4,20ALP23 reveals a larger range of solutions with comparable 

probabilities for the peptide helix adopting orientations over a range of  values at low values of 

.  The Gaussian refines this distribution about  somewhat, yet the similarly low average 

values for  are predicted.  Furthermore, examination of the fits for  and  (see Figure S6, 

top) reveals that GW4,20ALP23 generates the lowest rmsd values at relatively high values of  

(~17°) and moderate values of , indicating much more extensive motional averaging when the 

Trp radial locations are moved +/- 100°, from sequence positions (5, 19) to (4, 20).   

2.5 Discussion 

The interfacial tryptophan residues present in many membrane proteins merit detailed 

investigations because of their profound effects on the structure and dynamics of trans-

membrane helices, the dominant structural element of the helical class of membrane proteins.  

GWALP-like peptides serve as effective models for the roles of interfacial tryptophan residues 

that are tractable experimental systems whose sequences can be readily altered, enabling them to 

provide insights into how membrane proteins are situated and moving within lipid membrane 

environments.   

The positioning of each particular tryptophan residue at the lipid-water interface may adjust the 

alignment of the parent helix in order to minimize hydrophobic mismatch between peptide length 



26 
  

and lipid thickness (45) and may also maximize favorable interactions with the lipid head 

groups.  This type of “anchoring” behavior, along with possible “fraying” of the helix 

termini,(25) is responsible for the relatively modest dynamic averaging and the well-defined 

helix tilt of GW5,19ALP23, a tilt that indeed increases systematically while lipid thickness 

decreases.(26)  When multiple tryptophan residues are present, as seen in the WALP 

peptides,(11-13) nevertheless, competition may occur between nearby aromatic residues as each 

one seeks an optimal position at the interface.  Such a molecular “tug of war” could contribute to 

the extensive motional averaging of the transmembrane helix that is observed.(15, 44)  The helix 

motion is particularly evident as rotational averaging of the axis of the tilted helix.(15, 17, 43)  It 

should be noted that this phenomenon is not restricted to tryptophan residues.  While the 

replacement of W5 by Y5 in Y5GW19ALP23 resulted in peptide dynamics similar to the original 

GW5,19ALP23, an additional Tyr residue in Y4,5GW19ALP23,(18) nevertheless, led to additional 

motional averaging, reminiscent of the properties of the WALP and other peptides that have 

more than two interfacial Trp residues.  The extent of averaging was much more modest when 

Y4 and Y5 were replaced with F4 and F5, likely due to an absence of hydrogen bonding ability 

of the phenyl rings of F4 and F5 and consequently a lower tendency to “seek” interactions with 

the lipid head groups.(19)  Replacing these two aromatic side chains by methyl groups in 

A4,5GW19ALP23 surprisingly also resulted in a stabilized transmembrane helix experiencing low 

dynamic averaging.(25)  The complete lack of any side chain with hydrogen bonding potential 

near the N-terminal, in both F4,5GW19ALP23 and A4,5GW19ALP23, raised questions concerning 

how a well-defined tilted transmembrane helix orientation could be stabilized and maintained.  

The unfolding of helix termini may suggest an answer; exposure of backbone groups caused by 

the unwinding of 3-4 residues at the N- and/or C-termini could serve to stabilize each peptide 



27 
  

helix in a preferred transmembrane orientation and minimize the local motions.(25)  The 

potential link between helix fraying and orientational stability of a helix in a phospholipid bilayer 

environment may provide a bridge between the studies of model systems, such as the WALP and 

GWALP peptides, and membrane proteins with multiple transmembrane helices. 

In the present studies, we again find that the helix termini are partially unwound as seen with the 

anomalous quadrupolar splittings of residues 3 and 21 in Figures 7C and 9.  Partial helix 

unraveling characterized by such a pattern has also been observed in the absence of a terminal 

Trp residues in A4,5GW19ALP23 (25) and therefore, the quadrupolar splittings of alanines 3 and 

21 are not a result of any interference with an adjacent Trp.  Even with partial unwinding present 

at the helix termini, relocation of the juxta-terminal tryptophan residues from positions W5 and 

W19 in GW5,19ALP23 to W4 and W20 is sufficient to introduce additional motion into the 

system.  Indeed, GW4,20ALP23 experiences comparable dynamic averaging to that of 

Y4,5GW19ALP23,(18) with high values of   observed in both DLPC and DOPC bilayers.  This 

extensive azimuthal averaging about the helix axis is also responsible for the apparent mismatch 

of  values between the semi-static and Gaussian analyses.  One factor that may influence the 

azimuthal averaging is the radial positioning of particular interfacial tryptophan residues, which 

more specifically are located on opposite sides of the GW4,20ALP23 alpha helix.  This 

arrangement is similar to that of W2 and W22 found within the highly dynamic peptides 

W2,22W5,19ALP23 and W2,3,21,22ALP23 (Figure 1).  While competition between tryptophan 

residues oriented on opposite helix faces could play a major role in determining the helix 

dynamics, it is not the only factor to consider.  For example, compared to GW5,19ALP23, 

GW4,20ALP23 lacks leucine residues on either side of the terminal tryptophans, such that W4 and 

W20 have Ala neighbors instead of Leu neighbors, and this may influence the dynamics.  
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GW4,20ALP23 additionally contains a longer hydrophobic core than that of GW5,19ALP23, 

consisting of two additional residues.  The length of the hydrophobic core varies for each face of 

the helix.  After considering both the core length and the competition between W4 and W20, a 

high “slippage” about the helix axis is likely the most facile way in which the peptide can 

compensate and minimize hydrophobic mismatch.  Therefore, the extensive motional averaging 

of GW4,20ALP23 observed in DLPC and DOPC bilayers is not surprising.  However, the lack of 

additional motion when the helix is incorporated into DMPC bilayers is unexpected.   

Notably, GW4,20ALP23 is seemingly well-behaved with only modest dynamics about the helix 

average rotation in DMPC bilayers.  The core helix adopts a small tilt angle  of 3°-5° as 

determined by both the GALA and Gaussian analysis methods, while maintaining a  of about 

50°, a value which is comparable to that observed for GW5,19ALP23 in DMPC, DLPC and 

DOPC bilayers (Table 4).  This behavior of GW4,20ALP23 is different from that of 

Y4,5GW19ALP23, which retains its high level of dynamics about the helical axis in all three 

lipids.  Additionally, in DMPC bilayers, the lowest rmsd values are fitted to higher values of  

which suggests that the helical wobble may have animpact.  DLPC and DOPC bilayers have 

hydrophobic thicknesses (excluding head group region) of 20.8 Å and ~ 26 Å respectively at 50 

°C(46, 47), and may match the hydrophobic length of GW4,20ALP23 less well than does DMPC.  

A DMPC bilayer of 24.8 Å (at 50 °C)(46) is of similar thickness to the inter-tryptophan distance 

of 24 Å for the 16 residues in the -helix between W4 and W20 in GW4,20ALP23.  It is plausible, 

therefore, that DMPC may be an optimal environment for GW4,20ALP23 to adopt a “stabilized” 

orientation with wobbling about the membrane normal over a low tilt angle without the need for 

additional motions about the peptides average rotation to further minimize hydrophobic 

mismatch.  The substantial unwinding of the helix at residues 3 and 21 (Figure 7) confirms a 
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maximum length for the core helix.  The behavior of GW4,20ALP23 in DMPC/DHPC bicelles, 

while arguably somewhat more dynamic, further supports these concepts. 

Data points for peptides in DMPC/DHPC bicelles and DMPC bilayers have been used 

interchangeably in the past due to the almost indistinguishable results when the sample types are 

compared using either the semi-static or Gaussian analyses. (17) While the quadrupolar wave 

plots generated by both analyses are similar (Figure 9), we find that GW4,20ALP23 nevertheless 

is consistently found to adopt a slightly different preferred rotation corresponding to a 10° 

difference in  in bicelles compared to DMPC bilayer samples.  The Gaussian analysis agrees 

with this difference in rotation, and furthermore finds a higher rotational distribution reflected by 

 for the peptide within a bicelle environment.  The topology of the mixed lipids found in 

bicelles is somewhat different from that of DMPC bilayers and may play a role in the different 

rotational minimum and higher level of dynamic averaging that is observed for the helix in 

bicelles.  A bicelle’s discoid shape is composed of a long-chained DMPC lipid bilayer 

surrounded by a curved edge formed by a short-chained DHPC lipid assembly which protects the 

longer lipids from the surrounding solvent.(48)  Hydration is also somewhat higher for bicelle 

samples and thus can increase the membrane fluidity.  The  calculated for GW4,20ALP23 in 

bicelle samples is in between the value calculated in DMPC bilayers and the extensive motion 

calculated for both DLPC and DOPC bilayers.  The size of the 15N PISA wheel (Figure 6) agrees 

with the presence of additional motional averaging for the peptide in bicelles, as the signals 

partially collapse toward a single locus, a behavior also exhibited by the signals from the highly 

dynamic W2,22W5,19ALP23 helix (Figure 6).  One possibility is that the more fluid bicelle 

environment may impact the GW4,20ALP23 helix so as to induce more extensive rotational 

oscillations (larger ) to compensate.  The edges of the bicelle where the DMPC lipids meet the 
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shorter DHPC lipids may also impact the helix properties, which would be seen as a system 

average.  For example, an averaging between central and outer populations of the peptide would 

influence the NMR spectra.  We also note that the  calculated by the combined Gaussian 

analysis of the complete bicelle data set does not deviate from the semi-static analysis, while  

remains relatively high.  The overall results suggest somewhat increased dynamics about the 

peptide’s average rotation for GW4,20ALP23 in bicelles versus bilayer samples.   

Previously, it was reported that transmembrane peptides with low  usually can be fitted with 

multiple solutions (17) and that by increasing the number of observed 2H or 15N restraints, the 

array of possible solutions could be significantly decreased.  The large pool of data points and 

interesting dynamics of the GW4,20ALP23 system provide an opportunity to examine how a full 

Gaussian analysis, using only 2H |q| values, compares to a combined Gaussian analysis which 

incorporates both the 2H and 15N data sets.  For peptides such as GW5,19ALP23, the six data 

points available from the CD3 side chains of the six 2H-labeled core alanine residues are not 

sufficient for reliable solutions for the four variables involved in a full Gaussian analysis.  (If 

quadrupolar splittings can be observed from some of the backbone C deuterons of the labeled 

alanines, the resulting larger data set can sometimes suffice for a full Gaussian analysis.(49))  In 

the absence of additional data points, a three-parameter modified Gaussian analysis proves to be 

useful.  The modified analysis may be implemented by setting  to a small finite value and 

varying , , and .(13, 19)  For well-behaved peptides that adopt a relatively large  in lipid 

bilayers, such as GW5,19ALP23, the limited data set is less of an issue, as the solutions calculated 

by the modified analysis tend to agree with a semi-static GALA treatment and predict similar 

dynamics (see Table 6).  The limitations of the modified Gaussian calculation can be highlighted 

when examining all eight 2H data points from the core alanines of GW4,20ALP23 in DMPC 
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bilayers and comparing these results to those of the full Gaussian calculation over the same data 

set.  The solutions calculated by the modified Gaussian analysis may overestimate the peptide 

dynamics, predicting somewhat higher values for both  and  with similar RMSD values 

(Table 6).  The full Gaussian calculation for GW4,20ALP23 in DMPC narrows the solution range 

to lower values of  and , and provides a value of 20° for , while also giving a better RMSD 

fit.  Therefore, in this case, minor limitations to the modified Gaussian analysis are revealed, and 

the advantage of eight data points allows access to the full calculation and a narrower range of 

solutions for GW4,20ALP23.  Notably, the  and  values obtained from the combined 

Gaussian analyses, utilizing bicelle data alone or bilayer 2H data and bicelle 15N data, agree with 

the dynamic properties predicted by full Gaussian analysis (Table 5) and suggest a lower extent 

of slippage about the helix axis in DMPC bilayer samples compared to bicelles.  While the 

combined analysis does not resolve the minor discrepancies in  and  observed between the 

bilayer and bicelle samples, its overall agreement with the full Gaussian calculation further 

indicates the advantages of a larger experimental data set when dealing with dynamic 

transmembrane peptide systems such as GW4,20ALP23. 

The radial locations of particular Trp residues about the helix principal axis influence 

transmembrane helix dynamics.  We have performed multiple analyses incorporating 2H NMR 

and 15N NMR data from solid-state NMR experiments to determine the effects of relocating 

interfacial tryptophan residues 5 and 19 outward and to opposing faces of the GW5,19ALP23 

framework to positions 4 and 20.  The extent of motion around the peptide helix axis then 

becomes quite high in both DLPC and DOPC bilayers and intermediate in DMPC/DHPC 

bicelles, while remaining moderate in DMPC bilayers.  An added benefit of having eight core 

alanine residues available for 2H labeling in the GW4,20ALP23 framework is the opportunity to 
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perform calculations that reveal the complex behavior of this transmembrane helix.  In summary, 

the numbers and precise locations of tryptophan residues are both important determinants of the 

helix dynamics. 
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2.8 Tables 

TABLE 1  Sequences of GW5,19ALP23 and High Dynamic Averaging GWALP-Like Peptides 

 

Name Sequence Reference 

GW5,19ALP23 acetyl-GGALW5LALALALALALALW19LAGA-amide (15) 

W2,22W5,19ALP23 acetyl-GW2ALW5LALALALALALALW19LAW22A-amide (4) 

W2,3,21,22ALP23 acetyl-GW2W3LALALALALALALALALW21W22A-amide (28) 

Y4,5GW19ALP23 acetyl-GGAY4Y5LALALALALALALW19LAGA-amide (11) 

GW4,20ALP23 acetyl-GGAW4ALALALALALALALAW20AGA-amide This work 
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TABLE 2  15N chemical shifts and 1H-15N dipolar Splittings for GW4,20ALP23 in DMPC/DHPC 

Bicelles 

 

DMPC/DHPC 
Position 

13 14 15 16 17 

15N Chemical Shift (ppm) 88.4 84.1 82.4 84.5 89.7 

1H-15N Coupling (kHz) 3.53 3.15 3.55 3.33* 3.38 

 

*The aberrant 1H-15N coupling for residue 16 was omitted from future data analyses. 
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TABLE 3  Quadrupolar Splitting Magnitudes (|Δνq|, in kHz) for Labeled Alanine CD3 Groups in 

GW4,20ALP23a 

 

Lipid(s) 
Alanine CD3 Position/ Δνq (kHz) 

3 5 7 9 11 13 15 17 19 21 

DLPC 15.7 2.1 14.0 1.4 14.6 0.8 12.2 1.8 8.2 0.1 

DMPC 14.5 6.6 10.3 4.1 9.9 1.8 10.3 1.6 9.0 1.0 

DOPC 13.1 10.2 5.3 10.4 4.2 9.4 6.8 2.9 6.2 3.3 

DMPC/DH(o)PC 12.8 5.4 11.0 3.0 9.2 1.9 11.2 1.9 8.2 6.4 

 

a Quadrupolar splittings are reported for samples oriented with β = 0° and are twice the 

magnitude observed when β = 90°.  The core alanine residues 5, 7, 9, 11, 13, 15, 17 and 19 sit 

between W4 and W20 in the sequence, whereas the juxta-terminal alanines 3 and 21 are near the 

ends.  The DMPC/DH(o)PC lipid mixture indicates bicelle samples with q = 3.2.   
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TABLE 4  Comparison of Orientations and Dynamics Calculated by GALA and Gaussian 

Analyses Using Ala-CD3 |Δνq| magnitudes of GWALP23 Family Peptidesa 

 

Analysis DLPC DMPC DOPC 

CD3 

Gauss. 
τ0 ρ0 σρ 

RMSD 

(kHz) 
τ0 ρ0 σρ 

RMSD 

(kHz) 
τ0 ρ0 σρ 

RMSD 

(kHz) 

W4,20  16° 321° 85° 0.49 5.0° 347° 51° 0.68 9.0° 129° 122° 0.78 c 

Y4,5 b 14° 259° >90° 1.7 15° 321° 124° 0.63 6.0° 344° 72° 0.9 

W5,19 b 23° 304° 33° 0.70 13° 308° 44° 1.1 9.0° 321° 48° 0.7 

 

GALA τ0 ρ0 Szz 
RMSD 

(kHz) 
τ0 ρ0 Szz 

RMSD 

(kHz) 
τ0 ρ0 Szz 

RMSD 

(kHz) 

W4,20 6.0° 322° 0.72 0.70 3.3° 349° 0.71 0.85 1.7° 133° 0.81 0.80 c 

Y4,5 5.0° 260° 0.66 1.6 3.0° 323° 0.77 0.60 3.0° 359° 0.82 1.1 

W5,19 20.7° 305° 0.71 0.66 11.7° 311° 0.86 0.90 6.0° 323° 0.87 0.6 

 

a The abbreviations refer to peptides based on the locations of selected aromatic residues, W4,20 

in GW4,20ALP23, Y4,5 in Y4,5GW19ALP23 and W5,19 in GW5,19ALP23.  See also Table 1.   
 

b For the six core Ala-CD3 data points of GW5,19ALP23 and Y4,5GW19ALP23, a modified three-

variable Gaussian treatment was used as described by (28) while constraining στ to 5°.(19) For 

the eight core Ala-CD3 data points of GW4,20ALP23, a full Gaussian analysis was used, and the 

resulting στ values were 15°, 20° and 5° in DLPC, DMPC and DOPC, respectfully. 
 

c For GW4,20ALP23 in DOPC, the 2H |Δνq| value for position 17 was left out of the analysis, as it 

deviates from the calculated GALA curve (see Figure 7C).  
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TABLE 5  Comparison of GW4,20ALP23 in DMPC Oriented Samples and DMPC/DHPC Bicelle 

Dynamics 

 

Analysis DMPC Bilayers DMPC/DH(o)PC Bicelles 

1H-15N/15N Gaussian* 

    τ0 ρ0 σρ RMSD (kHz) 

    14° 321° 80° 0.59 

CD3 Gaussian** 
τ0 ρ0 σρ RMSD (kHz) τ0 ρ0 σρ RMSD (kHz) 

5.0° 347° 51° 0.68 9.0° 338° 64° 0.82 

Combined Gaussian 
τ0 ρ0 σρ RMSD (kHz) τ0 ρ0 σρ RMSD (kHz) 

4.0° 344° 42° 0.85a 6.0° 337° 62° 1.00b 

 

*Nine data points consisting of five 15N chemical shifts and four 1H-15N dipolar splittings.  
 

**Eight data points from the core alanine side chain CD3 quadrupolar splittings.  
 

a Combined Gaussian Analysis was performed using 1H-15N dipolar splittings and 15N chemical 

shifts obtained from 15N labeled DMPC/DHPC bicelle samples (9 data points), with 2H data 

from bilayers (8 data points). The resulting στ value was 16°. 
 

b Combined Gaussian Analysis was performed using all bicelle data (17 data points).  The 

resulting στ value was 17°.  
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TABLE 6  Comparison of Full vs Modified Gaussian Analyses of GWALP23 Family Peptides in 

DMPC Bilayers Using 2H-Quadrupolar Splittings  

 

Modified a GW4,20ALP23 (8 Data Points) GW5,19ALP23 (6 Data Points) 

(fixed) 

στ 
τ0 ρ0 σρ 

RMSD (kHz) 
τ0 ρ0 σρ 

RMSD (kHz) 

5° 21° 346° 148° 0.98 13° 308° 44° 1.1 

10° 19° 346° 138° 0.98 13° 308° 42° 1.2 

15° 4.0° 344° 42° 0.96 16° 307° 51° 1.6 

20° 5.0° 348° 51° 0.68 18° 306° 51° 2.3 

Full b 
τ0 ρ0 σρ RMSD (kHz)     

5.0° 347° 51° 0.68     

 
a A modified three-variable Gaussian treatment was used as described by (28) while 

constraining στ to finite values. (19)  
 

b For GW4,20ALP23, a full Gaussian analysis was used, and the resulting στ value was 20°. 
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2.9 Figures 

 

FIGURE 1  Molecular models of GWALP-like peptides. From left to right: W2,3,21,22ALP23, 

W2,22W5,19ALP23, GW5,19ALP23, and GW4,20ALP23.  For amino acid sequences, see Table 1. The 

model for GW4,20ALP23 was rotated 90°. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



44 
  

 

 

FIGURE 2  Circular dichroism spectra for GW4,20ALP23 in DLPC(red), DMPC(blue), and 

DOPC(black) vesicles. 
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FIGURE 3  31-Phosphorous NMR spectra for GW4,20ALP23 in (A) oriented DMPC bilayers and 

(B) DMPC/DHPC bicelles. 
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FIGURE 4  Separated local field PISEMA spectra.  A. 15N/1H separated local field spectrum for 

GW4,20ALP23.  The sample is oriented in DMPC/DHPC bicelles and contans 15N-labeled 

residues 13-17 (assigned as depicted).  B. 1D 15N NMR spectrum for GW4,20ALP23.  
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FIGURE 5  Deuterium quadrupolar splittings for GW4,20ALP23 in oriented DLPC, DMPC, and 

DOPC bilayers for samples oriented with =90°.  The 2H labeled alanine identities are, from top 

to bottom, (5, 7); (9, 11); (13, 15); (17, 19); and (3, 21); with the first alanine of each pair 100% 

deuterated, and the second alanine 50% deuterated. 
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FIGURE 6  Helix dynamics illustrated by separated local field PISEMA spectra.  A. Data and 

PISA wheel for GW5,19ALP23.  B. The PISA wheel from A is repeated along with data showing 

full dynamic averaging for W2,22W5,19ALP23 (blue contours) and for GW4,20ALP23 (black 

contours).  Each sample is oriented in DMPC/DHPC bicelles and 15N-labeled in residues 13-17 

(assigned as indicated).  The spectra for GW5,19ALP23 and W2,22W5,19ALP23 were recorded 

previously.(17, 18)  
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FIGURE  7  “Apparent” GALA quadrupolar wave plots for transmembrane peptide helices in 

DLPC (red circles), DMPC (blue triangles) or DOPC (black squares) oriented bilayer 

membranes: (A) GW5,19ALP23, (B) Y4,5GW19ALP23, (C) GW4,20ALP23.  Panel C denotes the 

positions of the deuterium-labeled alanine residues.  Only panel A reflects correctly the variation 

of the helix tilt 0 and the constant helix azimuthal rotation 0 in the different bilayers.  The 

amplitudes and phases of the waves in panels B and C reflect excessive dynamic averaging of the 
2H quadrupoles.  See text for details.  See also Table 4.  
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FIGURE 8   Model to describe transmembrane peptide motions and dynamics with respect to the 

bilayer normal B0. The apparent average helix tilt and rotation are denoted by 0 and 0 

respectively and the oscillations about these orientations are shown as the helical “wobble” () 

and rotational “slippage” (). 
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FIGURE 9  Comparison of the “apparent” GALA quadrupolar wave plots for GW4,20LP23 in 

DMPC oriented bilayers (black circles) and DMPC/DHPC bicelles (red triangles). Positions 3 

and 21 were left out of both analyses.  
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2.10 Supporting Information 

 

FIGURE S1  Reversed phase HPLC elution profile to confirm purification of GW4,20ALP23. 
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FIGURE S2  MALDI-TOF mass spectrum confirming the synthesis and purification of 

GW4,20ALP23. The expected monisotropic mass is 2176.6 daltons.  The expected mass of 

the undeuterated peptide with Na+ is 1198 daltons. The observed mass is 2202.3 with Na+ 

and 4 deuterons, and 2206.3 with Na+ and 8 deuterons. 
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FIGURE S3.  Deuterium (2H) NMR spectra for labeled GW4,20ALP23 in oriented DMPC 

bilayers at β=90° measured at (A) 50 °C and (B) 42 °C.  2H labeled alanine positions are 3 and 

21 and were labeled with 100% and 50% abundances respectively. 
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FIGURE S4 Deuterium (2H) NMR spectra for labeled GW4,20ALP23 in oriented DLPC, 

DMPC, and DOPC bilayers at β=0° measured at 50 °C.  2H labeled alanine positions 

are depicted on the right. 
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FIGURE S5  Illustration of PISA wheels (for sample orientation β = 0°) that fit and do not fit the 

data for GW4,20ALP23, labeled with 15N in residues 13-17, in oriented bicelles of DMPC/DHoPC 

(ether).  The red PISA wheels are approximate fits to the red data points, with helix tilt values of 

15°, 16° and 17°; and moderate motion represented by στ of 5° and σρ of 70°. Larger or smaller 

values of the tilt angle (blue and gray wheels) do not fit the data. An ellipse with a correct tilt 

angle but no motional averaging ( - - - - ) also does not fit. For a helix with zero tilt, the data 

points would collapse to the black square. Note that the red wheel sizes are much smaller and 

the motional averaging much more extensive than observed with GW5,19ALP23 (see figure 6 of 

the main article). 
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FIGURE S6 Deuterium (2H) NMR spectra for labeled GW4,20ALP23 in oriented DMPC/DHPC 

bicelles measured at 42 °C. 2H labeled alanine positions are depicted on the right. 
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FIGURE S7.  Rmsd contour plots for of GW5,19ALP23 and GW4,20ALP23 in DMPC/DHPC 

bicelles using 15N + 2H data combined (Gaussian analysis) or 2H data alone (GALA analysis).  

Contour levels are drawn using 10 contours starting at 0 kHz (blue) to the highest value (red).  

(Top) Gaussian distributions of tilt τ0 and rotation ρ0 (rmsd max left: 4.0 kHz; right: 3.9 kHz).  

(Middle) Average tilt and rotation from the GALA analysis (rmsd max left: 27.8.0 kHz; right: 

25.6 kHz). (Bottom) Average tilt and rotation from the Gaussian analysis (rmsd max left: 9.0 

kHz; right: 13.9 kHz).   
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CHAPTER 3 

Breaking the Backbone: Central Arginine Residues Induce Membrane Exit and Helix 

Distortions Within a Dynamic Membrane Peptide 

3.1 Abstract 

Transmembrane domains of membrane proteins sometimes contain conserved charged or 

ionizable residues which may be essential for protein function and regulation.  This work 

examines the molecular interactions of single Arg residues within a highly dynamic 

transmembrane peptide helix.  To this end, we have modified the GW4,20ALP23 (acetyl-

GGAW4(AL)7AW20AGA-amide) model peptide framework to incorporate Arg residues near the 

center of the peptide.  Peptide helix formation, orientation and dynamics were analyzed by 

means of solid-state NMR spectroscopy to monitor specific 2H- or 15N-labeled residues.  

GW4,20ALP23 itself adopts a tilted orientation within lipid bilayer membranes.  Nevertheless, the 

GW4,20ALP23 helix exhibits moderate to high dynamic averaging of NMR observables, such as 

2H quadrupolar splittings or 15N-1H dipolar couplings, due to competition between the interfacial 

Trp residues on opposing helix faces.  Here we examine how the helix dynamics are impacted by 

the introduction of a single Arg residue at position 12 or 14.  Residue R14 restricts the helix to 

low dynamic averaging and a well-defined tilt that varies inversely with the lipid bilayer 

thickness.  To compensate for the dominance or R14, the competing Trp residues cause partial 

unwinding of the helix at the C-terminal.  By contrast, R12GW4,20ALP23 exits the DOPC bilayer 

to an interfacial surface-bound location.  Interestingly, multiple orientations are exhibited by a 

single residue, Ala-9.  Quadrupolar splittings generated by 2H-labeled residues A3, A5, A7 and 

A9 do not fit to the -helical quadrupolar wave plot defined by residues A11, A13, A15, A17, 

A19 and A21.  The discontinuity at residue A9 implicates a helical swivel distortion and an 
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apparent 310-helix involving the N-terminal residues preceding A11.  These molecular features 

suggest that while arginine residues are prominent factors controlling transmembrane helix 

dynamics, the influence of interfacial tryptophan residues cannot be ignored. 

3.2 Introduction 

Lipid-bilayer membranes define regions of high dielectric gradient.  Indeed, by contrast with a 

lipid membrane surface, the nonpolar interior environment created by the acyl chains of a lipid 

bilayer is not readily hospitable for ionizable amino acid residues in membrane proteins.  

Nevertheless, the transmembrane domains of proteins sometimes contain noteworthy polar or 

charged residues which may be conserved and essential for protein function and regulation of 

cellular activity.  For example, arginine residues play major roles in membrane voltage sensing 

domains of voltage-gated ion channels.(1,2)  The characteristic “snorkeling” effect that allows 

positively charged side chains of arginine or lysine residues to “reach” and interact with the 

lipid/membrane interface helps to keep the remaining nonpolar transmembrane domain within 

the hydrophobic membrane.(3,4)  In this regard, mutations that introduce polar and charged 

residues within transmembrane domains may have disastrous consequences affecting protein 

structure, function, and stability. 

Due to numerous experimental challenges with large membrane proteins, simplified model 

systems can be useful for understanding the physical chemistry of the lipid interactions of 

ionizable protein side chains.  The membrane-spanning peptide GW5,19ALP23 (acetyl-

GGALW5(LA)6LW19LAGA-amide)(5), for example, has been useful for defining the titration 

properties of membrane-imbedded ionizable Arg, Lys, His and Glu residues.(6-8)  GW5,19ALP23 

is advantageous because its robust helix adopts a well-defined orientation within lipid bilayers, 

wherein the helix tilt is dependent on membrane acyl chain length.  Within this framework, 
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specific arginine substitutions introduce new and interesting interactions between the peptide 

helix and its lipid environment.(9)  Arg at position 14, for example, changes the tilt, forces a 

large helix rotation and prefers to “snorkel,” moving its side chain guanidium group into the 

bilayer lipid head-group region.  Molecular dynamics simulations additionally predict that the 

helix movement is accompanied by local membrane thinning.(9)  By contrast, Arg placed at the 

dead-center of the GW5,19ALP23 helix, at position 12, causes the helix to adopt multiple states.  

In DOPC membranes, both coarse-grained molecular simulations and solid-state NMR 

experiments predict the presence of three major states.(9)  Two states retain a transmembrane 

helix with the arginine side chain “snorkeling” either “up” or “down” toward the polar lipid head 

groups.  The third state is entirely different, with the complete helix exiting the lipid bilayer to 

adopt an interfacial orientation, perpendicular to the membrane normal.  Modest amounts of 

cholesterol, about 10 mol %, in the DOPC membrane force essentially the entire 

R12GW5,19ALP23 population into this interfacial state.(10)  The multi-state features and 

membrane-exit property of R12GW5,19ALP23 are likely dictated by a Trp “cage” surrounding the 

R12 guanidium group, which effectively is trapped between the two aromatic side chains and 

restricted from favorable interactions with the bilayer head groups.  Moving the Trp residues 

outward, to positions 3 and 21, increases the size of this cage and effectively frees the Arg side 

chain (at both positions 12 and 14) to permit a stable transmembrane orientation.(11)  

Recently, we developed a highly dynamic peptide framework by relocating the Trp residues of 

GW5,19ALP23 outward by only one sequence position on each side.  With the Trp residues in 

positions 4 and 20, the large indole side chains then reside on opposite faces (Figure 1) of the α-

helix of acetyl-GGAW4(AL)7AW20AGA-amide.(12)  The GW4,20ALP23 helix experiences 

moderate to high motional averaging of solid-state NMR observables such as 2H quadrupolar 
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splittings, 1H-15N dipolar couplings and 15N chemical shifts.  The excess dynamic averaging, 

much more than observed for GW5,19ALP23, is caused primarily by additional rotation about the 

helix axis.  The observed azimuthal slippage attributed tentatively to a competition between the 

two Trp indole rings for preferential locations at the bilayer interface.  An added benefit of the 

GW4,20ALP23 sequence (Table 1) is the availability of two additional Ala residues for deuterium 

labeling, such that more 2H are available for analysis of the α-helical structural perturbations.  

We take advantage of these features to examine the influence of single arginine substitutions in 

GW4,20ALP23 (Table 1). 

Here, we present the unique outcomes that results from introducing a central Arg residue into the 

dynamic GW4,20ALP23 framework at either position 12 or 14.  Arginine at either position is 

situated on a different helix face from those of either Trp residue (Figures 1-2).  Thus, neither 

R12 nor R14 in GW4,20ALP23 is likely to fall within a Trp “cage.”  Nevertheless, the results will 

indicate that the R12 and R14 substitutions confer quite different modulations of the helix 

properties, with R12 not only driving the helix to the surface of DOPC membranes but also 

distorting the structure of the surface-bound helix. 

3.3 Materials and Methods 

Fmoc-amino acids with protected side chains were purchased from Novabiochem (San Diego, 

CA).  The tryptophan and arginine side chains were protected with t-butoxycarbonyl and 

2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl protecting groups, respectively.  

Commercial fmoc-L-alanine-15N and fmoc-L-leucine-15N were purchased from Cambridge 

Isotope Laboratories (Andover, MA).  Commercial L-alanine-d4 was also purchased from 

Cambridge Isotope Laboratories (Andover, MA) and was modified with an Fmoc group on a 100 

mg scale as described.(13)  Fmoc-L-alanine-d4 was recrystallized from 20 mL ethyl 
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acetate:hexane 80:20 and successful synthesis was confirmed using 1H NMR.  DLPC, DMPC, 

and DOPC lipids were purchased from Avanti Polar Lipids (Alabaster, Alabama).  Other 

solvents and chemicals were the highest grade available. 

Peptide Synthesis 

Peptides R12GW4,20ALP23 and R14GW4,20ALP23 (see Table 1) were synthesized on a 0.1 mmol 

scale using solid-phase FastMoc® chemistry(7) on a model 433A Applied Biosystems peptide 

synthesizer (Life Technologies, Foster City, CA).  In most cases, two ala-d4 residues were 

incorporated into each peptide in different isotopic abundances.  In certain cases where spectral 

assignments remained ambiguous, a single 2H-labeled alanine residue was used instead.  15N-

labeled peptides were also synthesized, containing two or three 15N-labeled Ala or Leu residues.  

The peptides were purified on a Zorbax 300SB-C3 column (9.4 x 250 mm, 5-µm particle size; 

Agilent Technologies, Santa Clara, CA) with a gradient of 86-90% methanol (with 0.1% 

trifluoroacetic acid) over 11 min (R12GW4,20ALP23) or 13 min (R14GW4,20ALP23).  Analytical 

HPLC and MALDI mass spectrometry were used to confirm peptide purity and identity (See 

Figure S1). 

Circular Dichroism Experiments 

Circular dichroism (CD) spectroscopy samples were prepared to analyze peptide helicity by 

using a 1:60 peptide:lipid mixture (62.5 nmol peptide and 3.75 mol lipid).  To create lipid 

vesicles, the samples were sonicated at 22 °C.  The samples were analyzed using a Jasco (Easton, 

MD) J-1500 CD/Fluorescence spectropolarimeter with a 1 mm cell path, 1.0 nm bandwidth, 0.1 

mm slit, and a scan speed of 20 nm/min, with averaging of 10 scans. 

2H Solid-State NMR Experiments 
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Mechanically aligned solid-state NMR samples were prepared as described previously(7) with a 

peptide/lipid ratio of 1:60 (1.33 mol /80 mol) and 45% hydration (w/w) using deuterium-

depleted water from Cambridge Isotope Laboratories (Andover, MA).  Bilayer alignment was 

confirmed using 31P NMR on a Bruker (Billerica, MA) Avance 300 spectrometer with broadband 

1H decoupling, with samples oriented at both  = 90° (bilayer normal perpendicular to the 

magnetic field) and  = 0° (see Figure S2).  Solid-state 2H NMR experiments were performed 

with a solid quadrupolar echo pulse sequence at 50 °C using a Bruker Avance 300 spectrometer 

at both sample orientations.  The pulse sequence included a pulse time of 3.0 µs, an echo delay 

of 105 µs, and a recycle delay of 120 ms.  Each 2H NMR experiment acquired between 0.8 and 

1.5 million scans. 

15N-1H/15N Solid-State NMR Experiments 

Static solid-state NMR samples were prepared as described previously(7) using glass slides with 

dimensions measuring 5.7 x 10 mm NO. 000 purchased from Matsunami Glass (Bellingham, 

WA) and glass cells with dimensions measuring 5.4 x 7.4 x 18 mm purchased from New Era 

Enterprises (Vineland, NJ).  Samples contained 1.33 mol peptide and 80 mol lipid (1:60) and 

were hydrated to 45% (w/w) using deuterium depleted water. 

SAMPI4 (14) separated local field spectra were recorded on a Bruker Avance NEO 600 MHz 

NMR spectrometer with Larmor frequencies of 600.13 and 60.81 MHz for 1H and 15N, 

respectively,  using a low electrical field static 1H-X probe with a flat coil configuration(15) 

with 1600 scans, 32 t1 increments, and a recycle delay of 4.0 s at 50 °C.  The t1 evolution was 

preceded by CP-MOIST cross-polarization(16)  with a contact time of 810 μs, during which the 

radio-frequency (RF) spin-lock amplitude of 50 kHz was applied for both 1H and 15N channels. 

The SPINAL-64(17) decoupling sequence with the 1H RF amplitude of 62.5 kHz was applied for 
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1H heteronuclear decoupling during the 15 ms acquisition time.(17)  The 1H carrier frequency of 

9 ppm was used and is optimal for transmembrane helices in oriented bilayers.  The 15N NMR 

data were processed and displayed using NMRPipe/NMRDraw(18) and Sparky(19) and adjusted 

using the theoretical dipolar coupling scaling factor for SAMPI4 evolution.(14) The chemical 

shifts were externally referenced to 15N-labeled solid ammonium sulfate, set to 26.8 ppm, 

corresponding to the signal from liquid ammonia at 0 ppm.(20)  

Data Analysis   

Analysis of the 2H NMR spectra was performed using the semi-static geometric analysis of 

labeled alanines (GALA) as described previously by van der Wel et al 2002.(21)  The deuterium 

quadrupolar splittings of the alanine methyl groups (q) are dependent on the macroscopic 

sample orientation as seen in eq 1 below. 

∆𝜐𝑞 = QCC ×  𝑆𝑧𝑧 × [
1

2
(3𝑐𝑜𝑠2𝜃 − 1)] × [

1

2
(3𝑐𝑜𝑠2𝛽 − 1)] × 〈

1

2
(3𝑐𝑜𝑠2𝛾 − 1)〉  (1) 

Known constants within this equation include the angle between the membrane normal and the 

applied magnetic field () = 90° or 0°, the quadrupolar coupling constant for an aliphatic C-D 

bond (QCC) = 168 kHz, and the tetrahedral bond angle of the CD3 group () = 109.5° which 

results in a 1/3 reduction of the coupling constant due to the fast rotation of the methyl group.  

This leaves the principal order parameter Szz, which serves as an estimate for peptide motion, and 

 the angle between the magnetic field and the C-C bond of the alanine side chain, as 

variables.  The  angle, in turn, is dependent on the average peptide orientation as seen in eq 2 

below.   

θ = 𝜀∥[𝑐𝑜𝑠 𝜏0  −  𝑠𝑖𝑛 𝜏0  ×  𝑐𝑜𝑠 (𝜌0 + 𝜀⊥ + 𝜑) × 𝑡𝑎𝑛 𝜀∥]     (2) 

The angles defining the local side chain orientation with respect to the C-C bond (||) and a 

plane perpendicular to the helix direction (⊥) are fixed to 59.4° and -43.3° respectively, as 



66 
  

determined previously.(21)  The angle  is the angle between a reference point (here C of 

Gly1)(21) and C of the deuterium labeled residue in the peptide. 

The GALA method, therefore, considers an -helical geometry and three adjustable parameters: 

the apparent tilt 0 of the helix axis with respect to the bilayer normal, the helix azimuthal 

rotation 0 and the order parameter Szz (eq1 and eq 2).(21)  The GALA calculation finds the 

lowest RMSD fit between the experimental q’s and those calculated for the peptide helix as it 

samples available orientations with respect to the bilayer normal and the reference point for .  

Deviations from -helical geometry result in either a uniformly high global RMSD or individual 

data points deviating from the GALA quadrupolar wave.(8)  For our analysis, we searched 

ranges of 0 (0 - 90°) and 0 (0 - 359°), each incremented by steps of 1°, and Szz (0 - 1.0) by steps 

of 0.1. 

To modify the GALA calculation to match the 2H NMR data to a 310-helix instead of an α-helix, 

the calculation for the angle  was changed by modifying η, the helical wheel separation 

between the residue in question (n) and the previous residue (n – 1) in equation 3 below.  For a 

canonical α-helix η = 100°, and for a canonical 310-helix η = 120°. 

φ = (𝑛 − 1) × η + 360   (3)   

A canonical 310-helix with η = 120° would result in every third Ala residue generating, 

predictably, the same 2H-methyl quadrupolar splitting, which was not observed in this study. The 

value of η = 120° also is unreasonable because of side chain repulsion between residue n and 

residue (n+3).  Instead, average 310-helix torsion angles (-71°, -18° for ϕ, ψ) found in nature were 

used resulting in η = 112.5°.(22) This value of η also results in || of 61° and ⊥ of -38° required 

for equation 2 above.  The angles || and ⊥ were calculated using a combination of UCSF 

Chimera and Blender (open-source 3D graphics software).(23-24) 
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The availability of eight core alanine residues in GW4,20ALP23 is especially useful when 

studying peptides that exhibit increased dynamic motion.(12,25)  The large data pool allows for a 

more demanding Gaussian analysis to be utilized over 2H quadrupolar splittings individually or 

combined with 15N chemical shifts and 15N/1H dipolar couplings, as derived from model 6 of 

Strandberg et al, 2009.(26)  This model of helix dynamics considers a Gaussian distribution of 

helix tilt  and rotation  angles centered at the angles 0 and 0 with widths as the oscillations 

about them,  (helix wobble) and  (rotational slippage) respectively. The calculation performs 

a grid search over the variables 0, 0 and their standard deviations  and , while fixing a 

principal order parameter Szz to either 1.0 (no isotropic motion) or 0.88 as an estimate for the 

isotropic internal motion of a transmembrane peptide, or another value.  Our analysis was 

performed by varying, in 1° increments, 0 from 0° to 90°, 0 from 0° to 359°,  from 0° to 30° 

and  from 0° to 200°.  In cases of a limited availability of data points, a modified Gaussian 

calculation was used instead by restraining  to a small finite value and varying the remaining 

three parameters as above.  The in-house program estimates the helical geometry based on a 

polyalanine α-helix model.  Modifying the torsion angles within the model allows the data to be 

fit to a tighter 310-helix.  The α-helix torsion angles for ϕ and ψ (-64° and -40°)(27) were 

modified to -71° and -18°, respectively, to represent a 310-helix, based on the mean torsion 

angles found within naturally occurring 310-helices.(22) 

In cases of helix distortion, the peptide kink angle (κ) can be calculated using equation 4 below 

with the rotation () and tilt () relative to either the C-terminal or N-terminal segment of the 

peptide helix.(28) 

cos 𝜅 = sin(𝜏𝑁) sin(𝜏𝐶) cos(∆𝜌)  +  cos(𝜏𝑁) cos(𝜏𝐶)    (4)   
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3.4 Results 

The parent peptide helix of GW4,20ALP23 exhibits extensive dynamic averaging in lipid-bilayer 

membranes.(12)  The present experiments reveal the influence of introducing a single charged 

Arg residue into this highly dynamic helical framework at position 14 or position 12 of the 23-

residue sequence. 

R14GW4,20ALP23 

Solid-state NMR techniques have proven useful for determining the extent of a transmembrane 

peptide’s helicity(29) and furthermore the helix average orientation and dynamics within its lipid 

environment.  A key result is that the presence of R14 lowers dramatically the extent of motional 

averaging.  The reduced motion is evident from the wide range of 2H quadrupolar splittings, 

from 1 kHz to 33 kHz, observed for the collection of Ala methyl side chains in R14GW4,20ALP23 

(Figure 3, Figure S3, Table 2), compared to the narrow range of 1 kHz to 16 kHz when R14 is 

absent in GW4,20ALP23.(12)  For reference, a moderately dynamic peptide such as 

GW5,19ALP23 produces core alanine 2H quadrupolar splittings that span a range of about 1 kHz 

to 27 kHz.(30)  Therefore, the presence of R14 indeed decreases the high extent of motional 

averaging of the 2H NMR signals from the host peptide helix. 

The helix orientations can be compared using the semi-static GALA method to analyze the 

patterns of alanine methyl 2H quadrupolar splittings.(21)  Indeed, the GALA quadrupolar wave-

plots (Figure 4A) reveal a rather constant helix azimuthal rotation 0 of ~224° (Table 3) for 

R14GW4,20ALP23 in DLPC, DMPC and DOPC bilayer membranes.  An essentially constant 

preferred value of 0, independent of the bilayer thickness, is indicative and even diagnostic of 

low dynamic averaging.(30-31)  Hand in hand with the low dynamic averaging, the tilt 0 of the 

R14GW4,20ALP23 helix decreases systematically as the lipid bilayer thickness increases (0 being 
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21°, 17°, 14° in DLPC, DMPC, DOPC; respectively).  This behavior contrasts sharply with that 

of GW4,20ALP23, which shows extensive variation for 0 and no correlation for 0 with the lipid 

environment (Figure 4C).  The arginine residue R14 has served to stabilize the membrane-

incorporated helix in a preferred orientation. 

The quadrupolar wave plots for R14GW4,20ALP23 are nicely similar to those of 

R14GW5,19ALP23, illustrating similar helix tilt angles and a difference of only 25° in the 

azimuthal rotation 0 about the helix axis (Figure 4 A,B).  While it is apparent that the location 

of the Arg residue dominates the tilt in both peptides, the small difference in rotation is due to 

differences in the locations of the interfacial tryptophans, W4,20 as opposed to W5,19.  

Interestingly, residues A19 and A21 of R14GW4,20ALP23 fall off their respective curves for the 

core helix in all three lipids, whereas A3 fits in all three cases (Figure 4A).  These features imply 

more extensive fraying of the helix at the C-terminal as opposed to the N-terminal.(8, 32)  The 

circular dichroism spectra (Figure 5A) show a difference in the peptide’s 222 to 208 ratio in 

DOPC and DMPC vesicles compared to DLPC and TFE (0.71 vs 0.8), which may be due to 

small changes in helix backbone structure or differing side-chain torsion angles for the indole 

rings.(33)  

A Gaussian analysis of the 2H quadrupolar splittings(26, 31, 34) provides further insight into the 

dynamics of the R14GW4,20ALP23 helix, in particular the lowering of the rotational slippage 

about the helix axis ().  As seen in Table 3, with R14 present,  drops from a large value to 

less than 25° in all three lipids.  These values are not only significantly less than those of 

GW4,20ALP23, but are also lower than those observed for the parent GW5,19ALP23 helix.  

Indeed, a single arginine residue generally dictates a preferred helix rotation 0 and lowers the 

width of the distribution  about 0.(25)  The strikingly low extent of rotational slippage 
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exhibited by R14GW4,20ALP23 implies that the mere presence of R14 is enough to restrict the 

host peptide helix to minimal amounts of motional averaging. 

R12GW4,20ALP23 

In the framework of GW5,19ALP23, an introduction of R12 leads to multiple states for the 

helix.(9)  In similar fashion, in the framework of GW4,20ALP23, at least one residue, A9, exhibits 

two states (Figure 6; see also Figure S4).  Do the two different quadrupolar splittings of 11.4 kHz 

and 27.4 kHz (Table 2) for residue A9 in R12GW4,20ALP23 reflect global changes for the entire 

molecule or local structural plasticity near residue A9?  We note in this case that local variations 

are more likely because only residue A9, and possibly A11, exhibits multiple 2H NMR peaks 

(Figure 6).  (Only one state can easily be resolved for A11; see discussion.)  This contrasts with 

the behavior of R12GW5,19ALP23 which shows three states for the global helix in DOPC and 

generates multiple 2H NMR peaks for every Ala residue.(9)  The range of observed 2H-Ala 

quadrupolar splittings (0.5 to 37 kHz; see Table 2) also is higher for R12GW4,20ALP23 than for 

R12GW5,19ALP23. 

To fit describe the orientation of the R12GW4,20ALP23 helix, a GALA or Gaussian fit (Table 4) 

describes a surface-bound -helix for the C-terminal of the core sequence from residue A9(a) 

through A19.  This -helical segment is oriented with 0 of about 86° with respect to the bilayer 

normal, rotated such that 0 = 33°, and fits with an RMSD of 1.25 kHz (Table 4) on the surface 

of a DOPC bilayer.  Notably, the alternate configuration for alanine-9 (spectrally indicated by the 

2H NMR |q| for A9(b); Figure 6 and Table 2) and the sole configurations for alanines 3, 5, and 

7 do not fit the -helix defined by the C-terminal segment (Figure 7A).  Instead, the N-terminal 

segment fits a suitably analyzed 310-helix on the DOPC membrane surface. 
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While uncommon in typical transmembrane domains, the arginine rich voltage sensing domains 

of channel proteins are sometimes observed to contain 310-helix motifs;(35-37) see Discussion.  

Modifying the GALA and Gaussian calculations to fit the N-terminal portion of the peptide to a 

tighter 310-helix yields interesting results that provide further insight.  The canonical Pauling 310-

helix with exactly 3.0 residues/turn(38) would not fit the experimental data, since every third 

residue would occupy the same position on a helical wheel and would therefore generate the 

same 2H quadrupolar splitting, which is not the case here.  In line with our observations, 

nevertheless, the average helical wheel residue separation in 310-helices observed in nature is not 

120° but rather is roughly 112.5°, which corresponds to about 3.2 residues/turn.  We therefore 

used values of 112°-114° for the radial separation to model the solid-state NMR data for the N-

terminal as a 310-helix.(22, 39)  When applied to the 2H quadrupolar splittings (Table 2), or in 

combination with the 15N data (see below), the best Gaussian and GALA fits predict a surface 

bound N-terminal 310-helical segment with 112.5° as the average residue radial separation, 

oriented with 0 of 85°-88°, 0 around 350° and RMSD values between 0.5 and 0.9 kHz (Table 

4).  These N-terminal average tilt angles above 85° calculated for the tighter 310-helix are 

strikingly similar to the predicted surface orientation of the C-terminal α-helix.  The 

discontinuity at residue A9, nevertheless, indicates an unwinding denoted by the 30°-40° 

difference in azimuthal rotation about the axes of the - and 310-helices (Table 4; Figure 7).  

Notably, the 2H NMR observables can only fit the C-terminal residues to an -helix and the N-

terminal residues to a tighter helix such as a 310-helix.  For the N-terminal 2H data, a modified 

Gaussian calculation(29) was incorporated in order to obtain an estimate of the dynamics if fitted 

to a 310-helix.  In this case, both  and  would be moderate (table 4).  Therefore, a tighter 
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helix, such as a 310-helix, with likely varying torsion angles,(22, 39) is a probable structure for 

the N-terminal portion of R12GW4,20ALP23 on the DOPC membrane surface. 

The 15N NMR spectra also indicate the surface orientation and the discontinuity at residue A9 for 

the R12GW4,20ALP23 helix.  The 2H and 15N solid-state NMR experiments therefore agree.  For 

example, the spectra obtained from the SAMPI4 experiments (Figure 8) have 15N chemical shifts 

between 95 and 70 ppm as well as dipolar couplings between 4 and 6 kHz, which indicate a 

surface bound orientation,(40) perpendicular to the membrane normal, in contrast to the 

spectrum for a transmembrane helix (figure 8A).  Residue A9 once again shows resonance 

doubling.  Furthermore, the dipolar wave plot depicted in figure 9 shows a discontinuity in 

frequency and amplitude of the dipolar wave at residue A9, as the patterns N-terminal and C-

terminal to residue A9 are distinctly different, with a much larger amplitude for the wave C-

terminal to alanine 9. 

Supporting the 15N dipolar wave, the expanded region of the two-dimensional SAMPI4 spectrum 

(Figure 8B) shows separate elliptical patterns for the C-terminal and N-terminal segments.  The 

15N polarity index slant angle (“PISA”) pattern in Figure 8B predicts a tilt 0 of 89° and a 0 of 

42° for the C-terminal residues (Table 4), in agreement with the 2H NMR data.  The small 

difference of 10° in the estimate for 0 (Table 4) is likely due to the lower sensitivity of the 

SAMPI4 experiment, compared to the 2H experiment, to the helix azimuthal rotation.  Once 

again, the 15N chemical shift range for the N-terminal residues indicates a surface-bound 

orientation for this portion of the helix (Figure 8).(41-42)  

Gaussian analyses reported in table 4 indicate that the 15N NMR observables “could” fit the N- 

and C-terminal segments, with different 0 values, to -helical or 310-helical segments on the 

DOPC membrane surface.  The ambiguity for the 15N experiment is expected due to the similar 
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locations of 90° tilted peptide 310-helix and -helix PISA wheels.(39)  Nevertheless, the 2H 

quadrupolar splittings can fit the C-terminal residues only to an -helix, and the N-terminal 

residues only to a 310-helix (see above).  Additionally, only a 310-helix fits the 15N data for the N-

terminal if the extent of rotational slippage () is moderate ( of 39 - 44°) instead of very 

high.  A hypothetically higher  would in turn lead to more signal averaging and “would” make 

feasible an N-terminal -helix, with similar PISA wheel size as the blue wheel in figure 8B.  

Altogether, nevertheless, the 15N and 2H NMR observables agree concerning the surface location 

for R12GW4,20ALP23, the rotational discontinuity of 30°-40° at residue A9, the C-terminal -

helix motif and the N-terminal 310-helix motif (Table 4). 

3.5 Discussion 

Arginine dominates the GWALP23 peptide helix dynamics and behavior in a manner dependent 

on its location within the sequence relative to those of the juxta-terminal interfacial Trp residues.  

In the original GW5,19ALP23 peptide, the presence of R14 on the opposite face of the helix from 

that occupied by the two Trp residues (Figure 2) allows the peptide to remain transmembrane in 

bilayers of DOPC, yet with a 10° increase in tilt and 80° change in helix azimuthal rotation.(9)  

By contrast, R12, more centrally located and effectively “trapped” within a Trp “cage” defined 

by W5 and W19, leads to multiple states for the helix, including two competing transmembrane 

orientations and one at the surface of DOPC bilayers.(9)  The multi-state behavior can be 

“rescued” by moving the tryptophans outward to positions 3 and 21.(11)  In the context of W3 

and W21, arginine R12 as well as R14 can be accommodated in a suitably tilted transmembrane 

helix.(11)  Toleration of R12 with W3 and W21 as opposed to W5 and W19 has been attributed 

to the guanidium group occupying a different helix face and no longer needing to compete with 

the Trp residues for favorable interactions at the interface.  Interestingly, R14 also is 
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accommodated with W3 and W21, perhaps because the Trp “cage” is effectively larger than that 

defined by W5 and W19. 

For the present investigation, the structural context for W4 and W20 on the helix framework is 

entirely different.  From this perspective, neither position 12 nor position 14 is located on a helix 

face containing a Trp residue. Therefore, while the two former cases (W5,19 and W3,21) have 

addressed primarily the possibility that Trp could restrict water access to a central Arg side 

chain, the W4,20 sequence removes this side chain competition and introduces instead a new 

factor, high dynamic motion for the parent helix when no arginine is present.  Indeed, the helix 

of GW4,20ALP23 undergoes extensive motional averaging in the form of rotational slippage 

about the helix axis in order to compensate for apparently competing radial locations of the Trp 

residues and a rotation-dependent hydrophobic mismatch.(12)  The inclusion of Arg at either 

position 12 or 14 within this sequence severely limits the excessive dynamic averaging and in 

each case leads to helix structural distortions, previously unobserved in the former GW5,19ALP23 

framework. 

Importantly, the Arg side chain carries a positive charge under all conditions.(10, 43)  The 

finding is verified by numerous experimental and computational results.(10, 44-47)  Indeed, the 

solution pKa for Arg has been revised upward to a value of 13.8,(43) and recent experiments 

showed that R14GW5,19ALP23 remains fully charged up to pH 13 within an ether-linked lipid 

environment.(10)  Helix translocation, side chain snorkeling and membrane deformation can also 

serve to stabilize the positive charge, allowing the Arg side chain to engage in favorable 

interactions at the membrane interface.(9, 48-49)  
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Influence of R14.  The unmodified GW5,19ALP23 helix already displayed a transmembrane 

orientation with low levels of dynamic averaging.(31)  Incorporating R14 resulted in a 10° 

increase in tilt, 80° change in helix rotation and mean helix displacement/membrane thinning 

(observed via coarse grain simulations)(9) that allow the Arg to snorkel and access the 

membrane interface.  The transmembrane orientations for the helices with W5,19 and W4,20 are 

similar, with low dynamic averaging for each, when R14 is present.  The respective helix tilt 

angles differ by about 9° in DLPC and DMPC (Table 3) but by only about 3° in DOPC.  The 

helix azimuthal rotation differs modestly by 25-36° when the Trp sequence context is changed 

with R14 present (see Table 3, Figure 4).  The arginine residue R14 is therefore the primary 

determinant of the helix tilt and azimuthal rotation, but the interfacial Trp residues – whether W5 

and W19, or W4 and W20 – exert secondary influence for fine tuning of the helix tilt and 

rotation.  Residue R14 also lowers the extent of dynamic averaging, dramatically for the highly 

dynamic GW4,20ALP23 helix, and much more modestly for the already low-averaging 

GW5,19ALP23 helix.(25)  The rotational slippage in the form of  for both helices with R14 is 

remarkably low in all three lipids (< 25°, Table 3), indeed lower than for GW5,19ALP23 with 

arginine absent.  Therefore, the single arginine residue governs the overall properties of these 

transmembrane helices, with the small differences in the tilt and rotation due to the locations of 

the juxta-terminal Trp residues. 

The dominance of arginine R14 over the peptide dynamics would also explain the helix 

unwinding observed at the C-terminal in R14GW4,20ALP23.  The opposing radial positions of the 

distal tryptophans, W4 and W20, are responsible for the high dynamic motion exhibited by the 

host peptide.  This arrangement causes the indole side chains to compete with one another for 

better positions at the lipid/water interface. Furthermore, as the helix cannot solely rely on 
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adjusting its 0 and 0 to satisfy hydrophobic mismatch, it additionally exhibits increased 

oscillations about its average 0 to meet the demands of the membrane interior.(12)  

Incorporating R14 into GW4,20ALP23 introduces an interaction between the Arg side chain and 

the lipid membrane that is strong enough to drastically limit the rotational averaging about 0, 

exemplified by the massive drop in  from 122° to 10° in DOPC, essentially locking the 

transmembrane helix into place.  In spite of the arginine dominance, the competition between the 

two Trp residues remains, such that W20 likely causes additional C-terminal residues to unravel 

from the core helix (Figure 4), in order to obtain a preferential orientation for the W20 indole 

ring at the lipid/water interface.  While residues A3 and A21 often are observed to unwind, (see 

figure 3)(29, 32) now additional fraying of residues W20 and A19 is observed when R14 is 

present.  By contrast, residue A3 near the N-terminal now fits to the central helix of 

R14GW4,20ALP23, indicating a shifting of the midpoint of the core helix.  The N-terminus is 

likely compensating for the unwinding at the other end of the helix (see figure 10 for a model). 

Influence of R12.  Placing the Arg residue (R12) at the center of GWALP23 sequences with 

varying locations for the outer Trp residues has interesting consequences.  The peptide 

R12W5,19ALP23 produces 2H NMR spectra with multiple states for every alanine residue in 

DOPC bilayers.  According to molecular dynamics simulations, it adopts three primary states of 

which two are transmembrane and one is at the membrane surface.(9)  When the tryptophans are 

moved outward by two residues each, R12W3,21ALP23 has ample room to accommodate R12 

between the outer Trp residues.(11)  The helix with W3 and W21 is able to remain 

transmembrane by adopting large tilt angles (24-30°) to accommodate the snorkeling of R12 

toward the surface of DOPC, DMPC or DLPC bilayers, without interference from the aromatic 

side chains. 
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Introducing a small amount of cholesterol (10 mol %) was enough to drive R12GW5,19ALP23 

completely to the surface of DOPC bilayers.(10)  Similarly, H12 and K12 both drive 

GW5,19ALP23 to the membrane surface, at low pH when H12 or K12 is positively charged.(6-7)  

Here, R12GW4,20ALP23 adopts a single overall orientation perpendicular to the DOPC bilayer 

normal, yet unlike the previous peptides, R12GW4,20ALP23 is distorted when bound on the 

membrane surface.  The distortion is apparent from (a) the NMR resonance doubling of A9 and 

(b) the N-terminal residues preceding A9 not fitting to the same quadrupolar wave plot as the rest 

of the helix on the C-terminal side of A9 (Figures 6-8).  The resonance doubling of A9 is likely 

observed because the helix actually starts to distort at residue A11, next to the central Arg at 

position 12.  Thus, A9 is found, with about equal probability, within both the N-terminal and C-

terminal helical segments.  While residue A11 gives only one major 2H NMR signal, additional 

minor peaks may be evident (Figure 6), although we are unable to assign specific minor peaks.  

Interestingly, and seemingly by coincidence, the major 2H |q| value for A11 fits both the N-

terminal 310-helix and the C-terminal -helix (Figure 7).  While R14 caused unwinding of the 

R14GW4,20ALP23 helix at A19 (see above), the larger and more central distortion with R12 likely 

also is caused by the competing Trp residues W4 and W20, while the Arg again dominates the 

peptide dynamics.  The C-terminal helix exhibits  of 12°-25°, significantly lower than the 

parent helix when Arg is absent (Table 4).  We note that the CD spectra (Figure 4B) are not 

particularly sensitive to the helix distortion revealed by the 2H and 15N NMR spectra. 

As noted, it is likely that the R12GW4,20ALP23 helix on the DOPC membrane surface contains a 

310-helical segment as well as an -helical segment.  The 2H quadrupolar splittings of the C-

terminal alanines fit only to an -helix.  Fitting the 2H quadrupolar splittings of the N-terminal 

alanines to an -helix is not possible, nevertheless, even in combination with the 15N data (table 
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4).  On the other hand, a tighter 310-helix predicts a surface bound N-terminal segment with only 

a 40° difference in azimuthal rotation from the C-terminal helix.  The rotational difference and 

the tighter N-terminal 310-helix then would allow the W20 side chain to reside at the membrane 

interface, oriented toward the lipids (see Figure 11), instead of projecting out of the membrane as 

would have been dictated by an extension of the C-terminal -helix.  Indeed, the 15N chemical 

shifts also discount the possibility of a transmembrane orientation and are instead characteristic 

of an orientation perpendicular to the bilayer normal.(39, 50)  In a 310-helix, the carbonyl 

oxygens are more exposed, such that the folding of such a transmembrane structure is 

unfavorable due to the low dialectic of the bilayer interior.(27)  On the membrane surface, 

nevertheless, a 310-helix becomes a reasonable motif for adjusting the relative radial locations of 

the side chains of W4 and W20, such that both of the indole rings can face the membrane 

interface (Figure 11).  We note as well that both the C-terminal -helix and N-terminal 310-helix 

orientations are similar to the major interfacial state preferred by R12GW5,19ALP23 when 

cholesterol is added to the membrane.(10)  

The 15N separated local field experiments are in full support of a surface-bound helix, yet 

essentially show little sensitivity to the geometric differences between an -helix or 310-helix at 

this orientation.  The insensitivity is largely because the plane perpendicular to the magnetic 

field/bilayer normal is additionally a reflection plane for the resonance frequencies(50-51) 

resulting in overlapping PISA wheel arcs over a small range of 1H-15N dipolar couplings and 15N 

chemical shifts, which are both further reduced by motional averaging.  While this symmetry 

plane also affects the 2H experiments, they instead span a much wider frequency range (0-50 

kHz)(10, 52) for surface bound helices and are therefore more sensitive in distinguishing the 

particular type of helix.  The distinction would be easier for a transmembrane oriented peptide, 
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as -helices and 310-helices aligned on a plane parallel to the magnetic field each produce a 

distinctive PISA wheel pattern.(39)  Indeed there are precedents for an Arg-rich motif containing 

an -helix that kinks into a 310-helix, for example in the voltage sensing domains of membrane 

channel proteins.(53-56)  A model for such a helix transition may be manifest here. 

3.6 Conclusions 

Incorporating one single central Arg residue into the highly dynamic GW4,20ALP23 helix 

framework has led to unique consequences.  Placing Arg at position 14 arrests the dynamics, 

reorients the helix and causes the C-terminal residues around W20 to unwind from the helix, 

probably to optimize the interfacial interactions of residue W20.  By contrast, an Arg residue at 

position 12 brings the entire helix to the surface of DOPC bilayer membranes and distorts the 

helix so that residues 3-11 form a 310-helix while residues 9-19 remain -helical, with deuterated 

Ala-9 itself giving two distinct 2H NMR spectral signals that represent both of the helix motifs. 
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3.9 Tables 

TABLE 1  Sequences of Arginine Containing GW4,20ALP23 and GW5,19ALP Peptides 

 

Name Sequence Reference 

GW4,20ALP23 acetyl-GGAW4ALALALALALALALAW20AGA-amide (12) 

R12GW4,20ALP23 acetyl-GGAW4ALALALARALALALAW20AGA-amide This work 

R14GW4,20ALP23 acetyl-GGAW4ALALALALARALALAW20AGA-amide This work 

GW5,19ALP23 acetyl-GGALW5LALALALALALALW19LAGA-amide (5)  

R12GW5,19ALP23 acetyl-GGALW5LALALARALALALW19LAGA-amide (11) 

R14GW5,19ALP23 acetyl-GGALW5LALALALARALALW19LAGA-amide (11) 
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TABLE 2  Quadrupolar Splitting Magnitudes (|Δνq|, in kHz) for Labeled Alanine CD3 Groups in 

R14GW4,20ALP23 and R12GW4,20ALP23a 

 

Lipid(s) 
R14GW4,20ALP23 Alanine CD3 Position/ Δνq (kHz) 

3 5 7 9 11 13 15 17 19 21 

DLPC 30.0 20.2 25.8 0.1 11.2 20.0 13.2 27.0 33.0 24.0 

DMPC 29.4 14.2 23.2 2.6 8.8 19.7 12.5 28.0 28.0 24.0 

DOPC 30.2 8.2 20.1 7.3 4.1 19.3 10.8 28.1 22.4 14.3 

Lipid 
R12GW4,20ALP23 Alanine CD3 Position/ Δνq (kHz) 

3 5 7 9(a)/(b) 11 13 15 17 19 21 

DOPCb 18.9 0.5 23.2 27.4/11.4 21.0 0.7 13.2 37.1 25.0 31.0 

 

aβ = 0° sample orientation.  
 

bResidue A9 gives two signals in DOPC, designated as 9a (27.4 kHz) and 9b (11.4 kHz). 
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TABLE 3    GALA and Gaussian Fits Using Ala-CD3 |Δνq| magnitudes of Arg Containing 

GWALP23 Family Peptidesa 

 

Lipid Peptide 
GALA fit results Gaussian fit results Ref. 

τo ρo Szz RMSD τo ρo σρ στ RMSD  

DLPC 

W4,20 6.0° 322° 0.72 0.70 16° 321° 85° 15° 0.49 (12) 

W5,19 20.7° 305° 0.71 0.66 23° 304° 33° 5°b 0.70 (12) 

R14W4,20 21.3° 223° 0.77 0.92 21° 223° 24° 14° 0.74 This 

R14W5,19 30.0° 259° 0.83 1.58 30° 260° < 10° 5°b 1.65 (9);This 

DMPC 

W4,20 3.3° 349° 0.71 0.85 5° 347° 51° 20° 0.68 (12) 

W5,19 11.7° 311° 0.87 0.90 13° 308° 44° 5°b 1.10 (12) 

R14W4,20 16.7° 228° 0.85 0.75 17° 228° 12° 6° 0.72 This 

R14W5,19 25.8° 252° 0.81 1.59 26° 252° 28° 5°b 0.97 (9);This 

DOPC 

W4,20 1.7° 133° 0.81 0.80 9° 129° 122° 5° 0.78 (12) 

W5,19 6.0° 323° 0.87 0.60 9° 321° 48° 5°b 0.70 (12) 

R14W4,20 13.3° 221° 0.90 0.81 14° 220° 9° 2° 0.87 This 

R14W5,19 16.1° 246° 0.94 1.29 16° 246° < 10° 5°b 1.20 (9);This 
 

a The abbreviations refer to peptides based on the locations of selected aromatic residues, W4,20 

in GW4,20ALP23 and W5,19 in GW5,19ALP23, with or without arginine R14, as noted.  See also 

Table 1.  
 

bA modified three variable gaussian treatment 31, 57 was used to analyze the six core Ala-CD3 

data points constraining στ to 5°. 
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TABLE 4  R12GW4,20ALP23 Structure, Orientation and Dynamics at the Surface of DOPC 

Bilayersa  

 

R12W4,20 C-Terminus N-Terminus 

α-Helix τ0 ρ0 σρ σρ RMSD (kHz) τ0 ρ0 σρ σρ RMSD (kHz) 

2H 83° 31° 12° 28° 1.28b No fit. 

15N,1H/15N 87° 42° 25° 5° 0.69 88° 178° 44° 7° 0.89 

Combined 84° 34° 22° 5° 0.86 No fit. 

310-Helixc   

2H No fit. 85° 353° 27° 30° 0.66d 

15N, 1H/15N 86° 22° 42° 5° 0.66 88° 348° 48° 7° 0.74 

Combined No fit. 85° 349° 29° 27° 1.22 

 
a The N-terminal fits were calculated using 2H resonances for residues A3, A5, A7, A9b, and 

A11, or 1H/15N observables for residues A5, L6, A7, L8, A9b.  The C-terminal data points 

included 2H quadrupolar splittings for residues A9a, A11, A13, A15, A17, A19, or 1H/15N 

observables for residues A9a, A13, L14, A15, L16 and A17.  The combined fits used the 2H 

quadrupolar splittings together with the indicated 1H/15N observables.  

 
b For comparison with the Gaussian fit for the 2H data to the C-terminal α-helix, a semi-static 

GALA analysis gave τ0 = 86° ρ0 =33°, Szz of 0.64 and RMSD of 1.25 kHz.   
 

c The results suggest that the 15N/1H results could fit either an α-helix or a similarly oriented 310-

helix for either segment (N-terminal or C-terminal), with in all cases a significant discontinuity 

(change in azimuthal rotation ρ0) at residue 9.  The 2H results, by contrast, show distinct 

preferences of an α-helix for the C-terminus and a 310-helix for the N-terminus.  The 2H 

quadrupolar splitting is highly sensitive to the local bond orientation.   
 

dFor comparison, a semi-static GALA analysis gave τ0 = 86°, ρ0 = 3°, Szz of 0.51 and RMSD of 

0.47 kHz.  
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3.10 Figures 

 

FIGURE 1  GWALP-like Peptide Models. From left to right: GW4,20ALP23, R12GW4,20ALP23, 

R14GW4,20ALP23, GW5,19ALP23.  See Table 1 for the amino acid sequences.  While not depicted 

here, the helix terminals tend to fray. 
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FIGURE 2  Helical wheel plots for GWALP-like peptides highlighting the Trp (W) locations with 

respect to residues 12 and 14. Top: GW5,19ALP23; bottom: GW4,20ALP23.  Ala residues used for 
2H-labeling are depicted in gray.  Trp residues are shown in yellow. Positions Z12 and Z14 

(blue) are either Leu or one of them is substituted with Arg. 
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FIGURE 3  2H NMR spectra for labeled alanines of R14GW4,20ALP23 in mechanically aligned 

DLPC, DMPC and DOPC bilayers set at β = 90°, temperature 50°C. The identities of the pairs 

of 2H -labeled alanines in each sample, from top to bottom, are (A5100%, A750%); (A9100%, 

A1150%); (A13100%, A1550%); (A17100%, A1950%); (A3100%, A2150%).  

 

 

  



92 
  

 

 

FIGURE 4   GALA quadrupolar wave plots for A) R14GW4,20ALP23, B) R14GW5,19ALP23 and C) 

GW4,20ALP23 in DLPC (red), DMPC (blue) and DOPC (black) bilayers.  Data points with white 

filling were omitted from the analysis.  The helix orientations corresponding to the quadrupolar 

waves are listed in Table 3. 
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FIGURE 5   Circular dichroism spectra for A) R14GW4,20ALP23 and B) R12GW4,20ALP23 in lipid 

vesicles.  The dotted black lines indicate where the mean residue ellipticity is zero.  The DOPC 

double bond absorbs below 200 nm and is responsible for the distortion shown. 
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FIGURE 6  2H NMR spectra for labeled alanines R12GW4,20ALP23 in mechanically aligned 

DOPC bilayers.  β = 90°.  50°C.  The label positions and % deuteration are from top to bottom: 

(A5100%, A750%); (A9100%, A1150%); (A13100%, A1550%); (A17100%, A1950%); (A3100%, A2150%). 
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FIGURE 7  GALA quadrupolar wave plots for R12GW4,20ALP23 DOPC bilayers.  A. Wave plot 

for the C-terminal a-helix (0 86°, 0 33°), with data points for A9b, A7, A5 and A3 (red) not 

fitting the curve and omitted in the analysis used to generate the wave plot.  B. Wave plot for a 

310-helix for the N-terminal (A3-A11 with A9b). 
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FIGURE 8  Separated local field 15N spectra for a transmembrane helix and a distorted surface 

helix.  A. The red peaks arise from resonances for selected 15N backbone labels on 

transmembrane KWALP23 in static aligned DLPC bilayers oriented at  = 0°, with the ellipse 

representing a helix tiled 19° from the bilayer normal.  The blue peaks arise from 15N labels in 

R12GW4,20ALP23, bound to the surface of DOPC bilayers.  B. Expansion and highlights for 

selectively labeled R12GW4,20ALP23 peptides in static aligned DOPC bilayers oriented with  = 

0°.  The PISA wheels shown are fitted to C-terminal residues (red, -helix) and N-terminal 

residues (blue, 310-helix). See also table 4.  The assignments for 15N backbone labels are shown.  

Temperature 50 °C. 
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FIGURE 9  Dipolar waves depicting the static 1H-15N dipolar couplings as a function of residue 

position for transmembrane GW5,19ALP23 in DLPC bilayers (top) adapted from 25 and surface 

bound R12GW4,20ALP23 in DOPC bilayers (bottom). 
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Figure 10  3D model of R14GW4,20ALP23.  The C-terminal unwinding begins at residue A19. 
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FIGURE 11  3D model for R12GW4,20ALP23 of the surface of a DOPC bilayer.  Side chain space 

filling model is shown in the top panel with the predicted helix distortion. In the bottom panel, 

the upper peptide assumes no distortion and adopts the entire orientation for the C-terminal 

residues (red) as fit to an -helix with average orientation o = 86o and azimuthal rotation o = 

33o.  In the peptide below, the N-terminal residues (blue) instead fit a 310-helix with a similar o 

= 89o  but a different o = 353o).  The discontinuity occurs at residue A9 (purple), which displays 

two signals in the 2H NMR spectra (Figures 6-7).  The rotational discontinuity and helix 

variation place both tryptophans W4 and W20 in similar interfacial locations, which the arginine 

R12 projects outward from the bilayer surface. 
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3.11 Supplemental Figures 

 

FIGURE S1  A) MALDI-MS spectra of R14GW4,20ALP23 unlabeled (top) and double labeled 

R12GW4,20ALP23 with Ala-D4 (bottom).  Expected m/z of the [M+H] ion for both peptides is 

2219.2. B) RP-HPLC elution profile to confirm purification of R12GW4,20ALP23 (gray) and 

R14GW4,20ALP23 (black).   
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FIGURE S2   31P NMR spectra with 1H broadband decoupling for R12GW4,20ALP23 (left) and 

R14GW4,20ALP23 (right) in mechanically aligned DLPC, DMPC and DOPC bilayers; 

temperature set to 50°C.   
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FIGURE S3   2H NMR spectra for R14GW4,20ALP23 in mechanically aligned DLPC, DMPC and 

DOPC bilayers set at β = 0° and performed at 50°C.   
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FIGURE S4    2H NMR spectra for R12GW4,20ALP23 in mechanically aligned DOPC bilayers set 

at β = 0° and performed at 50°C.   
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CHAPTER 4 

A Link Between Flanking Aromatic Residue Competition and Transmembrane Peptide 

Dynamics 

4.1 Abstract 

Transmembrane protein dynamics are often difficult to analyze due to the numerous 

experimental complications associated with these types of proteins.  Simple model systems can 

instead be used to circumvent such obstacles in order to provide information about the basic 

principles behind protein-lipid interactions.  Recently the GW4,20ALP23 peptide was reported to 

undergo significant amounts of motional averaging over 2H and 15N NMR observables in model 

bilayers of different thicknesses.  Here two new peptides based on the GW4,20ALP23 sequence, 

lacking charged or polar residues, are characterized in DLPC, DMPC and DOPC bilayers using 

solid-state 2H NMR.  One, L5,19GW4,20ALP23 an isomer of the moderately dynamic 

GW5,19ALP23, was made to analyze the importance of terminal leucine residues near the 

interface and how they affect rotational slippage about the peptide’s azimuthal rotation.  The 

same motional averaging profile is observed when compared to the parent sequence.  The second 

peptide, F4,5GW20ALP23, is found to unwind significantly at the C-terminal portion of the helix 

in the various lipid bilayers and furthermore undergoes only moderate levels of dynamic motion.  

Interestingly, the majority of the helix adopts low tilt values in all three lipid bilayers and both 

solid-state 2H NMR and CD experiments suggest the helix possibly undergoes oligomerization. 

4.2 Introduction 

Aromatic amino acids, like Trp, Tyr or Phe, situated at the lipid bilayer interfacial region of 

transmembrane proteins help stabilize the protein’s membrane orientation.(1, 2)  Tryptophan’s 

indole ring, for example, can form hydrogen bonds with the polar lipid head groups.(1-4)  Single 
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spanning transmembrane peptides such as GWALP23 have provided valuable insight into how 

various arrangements of flanking aromatic side chains influence transmembrane peptide behavior 

and protein-lipid interactions.(5-8)  Originally, peptides containing multiple Trp residues such as 

the WALP family peptides exhibited high dynamic motion about their azimuthal rotation.(9)  

Cutting down the number of Trp residues to two in GW5,19ALP23 resulted in a well behaved 

peptide system that exhibited low dynamics and a tilt that scaled with bilayer thickness to satisfy 

hydrophobic matching.(10)     

Recently, the tryptophan residues of GW5,19ALP23 were moved outward to opposite faces of the 

helix at positions 4 and 20.  It is believed that this new peptide, GW4,20ALP23 undergoes 

excessive motion about its azimuthal rotation in order to compensate for the competition 

between the two opposing aromatic residues while still satisfying hydrophobic mismatch.  In the 

new framework, additional alanine residues are located on either side of the terminal Trp 

residues and can be used as additional labeling sites in 2H solid-state NMR experiments.  The 

inclusion of these alanine residues results in GW4,20ALP23 lacking leucine residues at these 

locations when compared to the moderately dynamic GW5,19ALP23.  Therefore, to determine 

how terminal leucine residues affect the peptide dynamics, a modified W4,20 peptide was 

created as a true isomer of GW5,19ALP23, instead containing Leu residues at positions 5 and 19.  

While only containing six core alanine residues for 2H solid-state NMR labeling, the 

L5,19GW4,20ALP23 peptide is shown to exhibit the same lipid bilayer dependent dynamics as 

GW4,20ALP23 while instead adopting the same lipid-dependent tilt behavior as GW5,19ALP23.   

Phenylalanine (F), which lacks the ability to form hydrogen bonds, has served as a control for 

investigations into high peptide dynamics caused by competing aromatic residues such as Tyr in 

Y4,5GW5,19ALP23.(7)  W5 and L4 of GW5,19ALP23 were replaced with phenylalanine residues 
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(F4,5) and the resultant peptide was shown to undergo only moderate amounts of motional 

averaging and exhibited a behavior similar to that of the parent peptide.(7, 11)  The same 

modification was made in this study to GW4,20ALP23 and while similar dynamics were 

observed, the peptide adopts lower on-average tilt angles accompanied by C-terminal distortion.  

Both CD and NMR experiments offer evidence of oligomerization. 

4.3 Materials and Methods 

Fmoc-amino acids were purchased from NovaBiochem (San Diego, CA). Commercial L-Ala-d4 

was purchased from Cambridge Isotope labs (Andover, MA) and modified with an Fmoc group 

as described.(12)  All peptides were synthesized via solid-state FastMoc synthesis on a 0.1 mmol 

scale as previously described.  Most peptides were synthesized with two Ala-d4 labeled residues 

in either 100% or 50% labeled abundances.  Both peptides (L5,19GW4,20ALP23 and 

F4,5GW20ALP23) were purified via reverse-phase HPLC on an octyl silica column (Zorbax Rx-

C8, 9.4 × 250 mm, 5 μm particle size; Agilent Technologies, Santa Clara, CA) and a gradient of 

92–98% methanol (with 0.1% trifluoroacetic acid) over 40 min.  Purification and synthesis were 

confirmed by MALDI-mass spectrometry and reversed-phase HPLC (see supplemental figure 

S1). 

Circular dichroism (CD) experiments were performed on a Jasco (Easton, MD) J-1500 

CD/Fluorescence spectropolarimeter with a 1 mm cell path, 1.0 nm bandwidth, 0.1 mm slit, and 

a scan speed of 20 nm/min, with averaging of 5 scans.  Far UV/CD experiments were conducted 

to determine the extent of peptide helicity in peptide-lipid samples (62.5 nmol/3.75 µmol; P/L; 

1:60) using DLPC, DMPC and DOPC lipid vesicles.  Near UV/CD experiments were performed 

to analyze the perturbations of the Trp and Phe aromatic side chain local environments using 
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0.665  peptide-lipid samples (1:60) in DLPC, DMPC and DOPC vesicles (each sample 

contained ~1.5 mg of peptide).   

Steady-state fluorescence experiments were performed on peptide-lipid samples (1:60) prepared 

by diluting (1/20) with water samples prepared for CD (see above). Experiments were performed 

using a Jasco (Easton, MD) J-1500 CD/Fluorescence spectropolarimeter.  The samples were 

excited at 280 nm and excitation slit width of 5 nm.  Emission spectra were recorded with a 5 nm 

emission slit width between 300-450 nm, with a with averaging of 5 scans.         

Solid-state NMR experiments were performed on mechanically aligned peptide-lipid samples 

(1:60 mol/mol) prepared as described previously(13) with DLPC, DMPC and DOPC lipids 

purchased from Avanti Polar Lipids (Alabaster, AL).  Samples were hydrated with deuterium 

depleted water (Cambridge Isotopes) up to a hydration of 45% (w/w).  Bilayer alignment was 

confirmed using 31P NMR with broadband 1H decoupling at both  = 90° and  = 0° 

macroscopic sample orientations.  2H NMR experiments were performed using a 300 MHz 

Bruker Avance Spectrometer with a solid quadrupolar-echo pulse sequence(14) with a 3.0 s 90° 

pulse length, a 90 ms recycle delay and 115 s echo delay. The collected spectra recorded 

between 0.7 and 1.5 million scans and were processed with 100 Hz line broadening. 

The 2H Ala-quadrupolar splittings were analyzed using the semi-static GALA method(13) which 

generates a quadrupolar wave based on the peptide’s given orientation with regards to its 

apparent tilt (), apparent rotation (0), and an isotropic motion order parameter (Szz) as 

described in detail in Chapter 3.  The experimental 2H quadrupolar splittings are compared to 

those calculated by the analysis for each Ala residue in the sequence to determine the peptide’s 
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average orientation with the lowest root mean square deviation (RMSD).  The adjustable 

parameters were varied as follows:  (0°-90° by 1°),  (0°-359° by 1°) and Szz (0.1-1.0 by 0.1). 

A Gaussian treatment (based on model 6 from Strandberg et al 2009) was also used to expand on 

the above semi-static analysis in order to determine the extent of additional dynamic motion 

about the peptide’s average rotation in the form of “rotational slippage” () and about the 

peptide’s average tilt, “helix wobble” ().  This calculation requires four adjustable parameters: 

0 (0°-90°), 0 (0°-359°),  (0°-30°) and  (0°-200°) which were all varied by 1° while holding 

Szz constant at 0.88 as an estimate of peptide motion.  A modified version of this calculation was 

also performed holding  to a low finite value when a limited number of data points were 

available.(7)       

4.4 Results 

L5,19GW4,20ALP23 

The GW4,20ALP23 sequence was modified by replacing A5 and A19 with Leu to determine 

whether the high dynamic motion exhibited by the peptide is governed by the Trp residues or the 

hydrophobicity of the transmembrane core.  Oriented solid-state NMR can be used answer such 

questions and estimate the average orientation and dynamics of a transmembrane peptide in a 

lipid bilayer system.  The deuterated methyl group quadrupolar splitting range for 

L5,19GW4,20ALP23 in table 2 is narrow (0.1 kHz to 15 kHz; figure 2, table 2) and resembles that 

of GW4,20ALP23 (0.1 kHz to 16 kHz), indicating high motional averaging could be present.(15)  

A moderately dynamic peptide such as GW5,19ALP23 for example produces splittings over a 

range of 0.1 kHz to 27 kHz.(10)     
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Comparison of experimental quadrupolar splittings to those calculated for various helix 

orientations with respect to the magnetic field allows one to determine the peptide’s 

transmembrane behavior.  Incorporating the NMR observables into the semi-static GALA 

calculation predicts low values of 0 (< 10°) and varying values of 0 for L5,19GW4,20ALP23 in 

all three lipid bilayers (see table 3) with no observed trend for either trait.  The isomer, 

GW5,19ALP23 adopts a tilt that decreases as lipid bilayer thickness is increased, while also 

making minor adjustments about ρ0.(10)  Lower predicted 0 values and non-static 0 values 

across all three membranes are typically symptomatic of high motional averaging, usually in the 

form of rotational slippage ().(6, 7, 15, 16)  This necessitates the use of a more aggressive 

Gaussian treatment which considers these additional oscillations.  Due to the limited number of 

data points in the core sequence, a modified calculation was used constraining  to a low finite 

value.(7)  As predicted, the  values are high in DLPC and DOPC (80° and 108°; see table 3) 

and the actual tilt in both lipids is higher than that predicted by the GALA, 23° and 11° 

respectively. Alternatively, the rotational slippage in DMPC is much lower (34°) and the 

predicted tilt is essentially unchanged between the two calculations.  Interestingly, the τ0 adopted 

by L5,19GW4,20ALP23 in each of the three lipids is almost identical to that of its isomer, 

GW5,19ALP23 (see table 3).  The trend in σρ however, matches that observed in the dynamic 

profile of the parent GW4,20ALP23 peptide in all three lipid bilayers, even the moderate σρ 

observed in DMPC.  Although a 20° drop in σρ is observed in the two thicker lipids, these results 

likely indicate the Trp radial locations are responsible for the dynamic motion while the makeup 

of the hydrophobic core primarily dictates the tilt (see discussion).              

F4,5W20ALP23 
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The quadrupolar splitting range for F4,5GW20ALP23 is also small (0.8 kHz to19.5 kHz; see table 

2, figure 4).  At least five of the spectra recorded for labeled residues A3/A21 and A15/A17 

produce three sets of quadrupolar splittings.  In DOPC for example, the two CD3 labels at A15 

and A17 generate 2H NMR spectrum with three sets of quadrupolar splittings with high signal 

intensities (figure 5).  The larger quadrupolar splitting disappears when either label is removed.  

Incorporating two populations of single-labeled A15 and A17 peptides (2:1) into the same 

sample regenerates the third splitting at a much lower intensity.  Summation of the two single-

label spectra can also regenerate the splitting to roughly the same effect.  The additional 

splittings observed for the various spectra could be resultant of a similar minor state for each 

label or an unknown interaction occurring within the system. 

Far UV/CD spectra indicate the peptide has typical -helical structure in both DLPC and DMPC 

vesicles (figure) with 222 nm to 208 nm ellipticity ratios at 0.98 and 1.06 respectively.  In 

DOPC however, the spectrum yields an even higher 222 nm to 208 nm ratio of 1.8.  Ratios 

greater than 1.0 are often observed for coiled-coils.(17, 18)  The parent framework has 222 nm 

to 208 nm ratios of less than 0.9 in all three lipids (see Chapter 2).  Furthermore, the near 

UV/CD spectrum for the peptide in DOPC shows suppressed peaks at 260 nm and 290 nm when 

compared to DLPC and DMPC, indicating a significant difference in the local environments of 

the terminal Phe and Trp residues. 

The GALA analysis predicts reasonable 0 values in DLPC and DMPC bilayers (17° and 8°) and 

a ~30° difference in 0.  Interestingly, the apparent tilt is near zero in DOPC (table 3).  Typically, 

a low 0 is usually indicative of high motional averaging caused by an extensive .  However, 

despite the low quadrupolar splitting range, the Gaussian analysis is surprisingly in agreement 
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with the semi-static GALA method and only moderate amounts of rotational slippage are 

predicted compared to both GW4,20ALP23 and L5,19GW4,20ALP23.  The dynamics of 

F4,5GW20ALP23 are instead more akin to those of GW5,19ALP23 (table 3).  In all three lipid 

bilayers, C-terminal residues after A15 do not fit to the quadrupolar wave plot.  Past experiments 

have shown that residues off these curves are not a part of the core helix.(11, 19)  Therefore at 

least seven C-terminal residues, including W20, are not part of the core helix in F4,5GW20ALP23. 

4.5 Discussion 

The original WALP peptides contained two flanking Trp residues at either terminus and 

underwent high degrees of motional averaging about their average rotation.(9)  Side chain 

competition between the neighboring Trp residues is likely the primary factor, although with four 

Trp residues at various radial locations about the helix it is impossible to attribute the high 

dynamics to a single Trp pair.  Removing a Trp residue at either helix end resulted in the 

formation of the GW5,19ALP23 framework.  This peptide adopts a well-defined tilt in lipid 

bilayers and expresses only moderate levels of dynamic averaging.(10, 15)  Moving the Trp 

residues outward to opposing radial locations about the helix in GW4,20ALP23 reintroduced high 

dynamic motion about the helix azimuthal rotation.(15)  Side chain competition due to the radial 

locations of the Trp residues was once again suggested to be the primary cause of the observed 

motional averaging.  The new sequence, however, was not a complete isomer of the W5,19 

peptide.  In particular, the tryptophans at positions 4 and 20 lacked adjacent leucine residues and 

it was unknown if their absence had any impact on the observed dynamics.   

L5,19GW4,20ALP23 
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Here, a complete isomer of GW5,19ALP23 using the W4,20 framework was characterized.  

L5,19GW4,20ALP23 undergoes high degrees of rotational slippage (σρ) in both DLPC and DOPC 

bilayers with low/moderate amounts in DMPC.  This follows the same pattern as the dynamic 

profile of the parent GW4,20ALP23 helix, however a 20° drop in σρ is observed in the two thicker 

lipids when the two additional Leu residues are present in the core sequence.  The lower σρ is 

likely due to the longer leucine side chain which may be less “slippery” compared to alanine.  

Regardless, even with this difference in σρ, it seems the radial distribution of the flanking Trp 

residues is still primarily responsible for the dynamics observed, once again supporting side 

chain competition between these two residues.  The major impact altering the core sequence had 

was in forcing the peptide to adjust its tilt to compensate for hydrophobic mismatch.  This causes 

the helix to adopt almost identical tilt angles to that of its isomer, GW5,19ALP23, in each lipid 

bilayer. 

F4,5GW20ALP23 

Previous studies that replaced W5 and L4 of GW5,19ALP23 with F5 and F4 did not determine 

any significant difference in the peptide dynamics or orientation when comparing both peptides 

(see Table 3).(7)  Both peptides maintain a similar, static rotation and analogous tilt angles that 

scale with lipid bilayer thickness.  Importantly, the extent of dynamic motion is moderate 

whether W5 is present or not.  Side chain competition between two Phe residues is not an issue 

as neither group is capable of hydrogen bond formation, and presumably, the two side chain 

phenyl rings can adopt favorable positions when simply placed near the interface.(7) 

Here, we are interested in characterizing the dynamics of the GW4,20ALP23 framework when W4 

and A5 are removed and replaced with F4 and F5.  Indeed, the removal of W4 decreases the 

rotational slippage to less than 50° in all three lipids.  Interestingly, the C-terminal residues from 
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A17 outward (including W20) are not a part of the core helix.  No helix distortion was observed 

previously with W19 present, so the question remains: why is the distortion observed here in this 

sequence with residue W20?  One possibility is the presence of the Leu residues surrounding 

W19 stabilize the helix, whereas the Ala residues surrounding W20 may make the helix more 

susceptible to breakage.  The lower dynamics of F4,5GW20ALP23 do not seem to play any part in 

causing the distortion as the parent GW4,20ALP23 sequence also distorts at residue A17 in DOPC 

bilayers while undergoing a rotational slippage of 122° (Table 3, Figure 3).  In DMPC bilayers, 

both F4,5 peptides share a similar tilt with the major orientation difference being the azimuthal 

rotation (Table 3).  W20 may be situated at an unfavorable location due to the average rotation of 

the helix (see Figure 7).  Deformation of the helix at the C-terminus would allow W20 to adopt a 

more desirable orientation at the interface. 

Oligomerization is a possibility for F4,5GW20ALP23.  In DOPC bilayers, F4,5GW20ALP23 is 

almost parallel to the bilayer normal.  Helix distortion discussed above could potentially help the 

peptide to avoid hydrophobic mismatch, however; this near-zero tilt angle is highly irregular for 

single spanning transmembrane domains.  The CD spectra show both the potential for a coiled-

coil motif in all three lipids with the highest probability in DOPC.   Furthermore, the additional 

quadrupolar splittings observed in the various NMR spectra could be due to some type of 

interaction between two or more helices.  Similar 2H NMR spectral features have been observed 

while varying the temperature in experiments with ErbB-2 transmembrane peptides in oriented 

bilayers, and the same phenomenon could be occurring here with F4,5GW20ALP23.(20) 

4.6 Conclusions           

The primary factor in causing the unique pattern of dynamic motion for the GW4,20ALP23 

framework in various lipid bilayers has now been confirmed as the side chain competition 
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between the flanking tryptophan residues.  Modifying the hydrophobicity of the core sequence 

using L5,19GW4,20ALP23 leads to a slight decrease in dynamics, but mainly forces the peptide to 

adjust its tilt in lipid bilayers.  The replacement of W4 with F4,5 also removes the side chain 

competition and decreases the dynamics.  It also causes the peptide to partially distort at the C-

terminus and undergo possible oligomerization. 
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4.9 Tables 

TABLE 1  Sequences of GWALP23 Family Peptides 

 
Name Sequence Reference 

GW4,20ALP23 acetyl-GGAW4ALALALALALALALAW20AGA-amide (15) 

GW5,19ALP23 acetyl-GGALW5LALALALALALALW19LAGA-amide (10) 

L5,19GW4,20ALP23 acetyl-GGAW4L5LALALALALALALL19W20AGA-amide This work 

F4,5GW20ALP23 acetyl-GGAF4F5LALALALALALALAW20AGA-amide This work 

F4,5GW19ALP23 acetyl-GGA F4F5LALALALALALALW19LAGA-amide (7) 
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TABLE 2  Quadrupolar Splittings (|Δνq|, in kHz) for Deuterated Alanine Methyl Groups in 

L5,19GW4,20ALP23 and F4,5GW20ALP23a 

 

Lipid(s) L5,19GW4,20ALP23 

3 7 9 11 13 15 17 21  

DLPC 11.3 6.3 2.1 2.5 6.4 2.2 7.6 0.6  

DMPC 13.2 7.6 6.4 0.2 10.9 3.8 8.8 2.2  

DOPC 13.0 4.2 11.2 3.2 9.8 7.6 5.8 3.8  

Lipid F4,5GW20ALP23 

3 7 9 11 13 15 17 19 21 

DLPC 9.2 2.2 11.4 9.1 17.2 12.0 19.4 16.4 5.4 

DMPC 4.4 9.2 6.2 2.5 13.1 3.4 13.4 14.1 7.1 

DOPC 0.8 6.4 11.6 6.2 9.8 9.1 3.4 10.1 3.4 
 

aβ = 0° sample orientation. 
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TABLE 3    GALA and Gaussian Analyses Using Ala-CD3 |Δνq| magnitudes of GW4,20ALP23 

Peptidesa 

 
Lipid Peptide GALA Gaussian Ref. 

τo ρo Szz RMSD τo ρo σρ στ RMSD 
 

DLPC W
4,20

 6.0° 322° 0.72 0.70 16° 321° 85° 15° 0.49 (15) 

W
5,19

 20.7° 305° 0.71 0.66 23° 304° 33° 5°b 0.70 (15) 

L5,19W4,20 10.7° 225° 0.31 0.32 23° 224° 80° 5° b 0.57 This 

F4,5W20 16.7° 180° 0.48 0.80 18° 180° 30° 5°b 0.30 This 

F4,5W19 21.3° 317° 0.67 0.50 18° 314° < 5° 15° 0.50 (11) 

DMPC W
4,20

 3.3° 349° 0.71 0.85 5° 347° 51° 20° 0.68 (15) 

W
5,19

 11.7° 311° 0.87 0.90 13° 308° 44° 5°b 1.10 (15) 

L5,19W4,20 9.0° 204° 0.45 1.31 11° 205° 34° 5° b 0.89 This 

F4,5W20 8.3° 212° 0.64 0.35 10° 213° < 30° 5°b 1.03 This 

F4,5W19 11.3° 331° 0.80 1.3 - - - - - (11) 

DOPC W
4,20

 1.7° 133° 0.81 0.80 9° 129° 122° 5° 0.78 (15) 

W
5,19

 6.0° 323° 0.87 0.60 9° 321° 48° 5°b 0.70 (15) 

L5,19W4,20 2.7° 99° 0.80 0.72 11° 98° 108° 5° b 0.76 This 

F4,5W20 1.7° 95° 0.95 0.42 3.0° 88° 47° 5°b 1.18 This 

F4,5W19 6.0° 323° 0.80 0.90 10° 329° 54° 9° 1.60 (11) 

a The abbreviations refer to peptides based on the locations of selected aromatic residues, W4,20 

in GW4,20ALP23 and W5,19 in GW5,19ALP23.  See also Table 1.  

bA modified three variable gaussian treatment was used to analyze the six core Ala-CD3 data 

points constraining στ to 5°. 
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4.10 Figures 

 

FIGURE 1  From left to right, 3D models of GW5,19ALP23, GW4,20ALP23 and F4,5GW20ALP23. 

See also table 1 for sequences. 
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FIGURE 2  2H NMR spectra of L5,19GW4,20ALP23 acquired at  = 90, with temperature set at 50 

°C.  From top to bottom, 2H labeled alanines and abundances are: A7100%, A950%; A11100%, 

A1350%; A15100%, A1750%; A3100%, A2150%. 
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FIGURE 3  Semi-static analysis quadrupolar wave plots for GW4,20ALP23 (top), 

L5,19GW4,20ALP23 (middle) and F4,5GW20ALP23 (bottom) in DLPC (red), DMPC (blue), and 

DOPC (black).  White filled dots represent residues which were not included in the analysis to 

obtain the average orientation. 
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FIGURE 4  2H NMR spectra of F4,5GW20ALP23 acquired at  = 90°, with temperature set at 50 

°C.  From top to bottom, 2H labeled alanines and abundances are: A7100%, A950%; A11100%, 

A1350%; A15100%, A1750%; A3100%, A2150%. 
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FIGURE 5  2H NMR spectra of F4,5GW20ALP23 acquired at  = 90°, with temperature set at 50 

°C.  (A) Spectrum of peptide containing both A17 and A15 2H labels shown at top.  (B,C) Peptide 

with single label at either positions A15 or A17 are below.  (D) The summed single label spectra 

using Bruker TopSpin. € Sample containing two peptide populations labeled at either A15 or 

A17 in a 2:1 ratio at overall peptide:lipid ratio of 1:60.     
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FIGURE 6  Near and far UV-circular dichroism spectra for F4,5GW20ALP23 in DLPC, DMPC, 

and DOPC lipid vesicles (1:60 peptide/lipid). 
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FIGURE 7  3D models of F4,5GW19ALP23 (left) and F4,5GW20ALP23 (right) with either 

undistorted or distorted conformations at orientations predicted in DMPC bilayers (see Table 3). 
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4.11 Supplemental Figures 

 

FIGURE S1  (A)MALDI MS spectra for F4,5GW20ALP23 with Ala-D4 (Top) and 

L5,19GW4,20ALP23 with two Ala-D4 (bottom).  Expected m/z for [M+H] ions are 2213.45 and 

2260.79 respectively. (B) Analytical HPLC profile spectra for purified F4,5GW20ALP23 (Top) 

and L5,19GW4,20ALP23 (bottom).   
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FIGURE S2  31P NMR spectra with 1H broadband decoupling for F4,5GW20ALP23 (left) and 

L5,19GW4,20ALP23 (right) in mechanically aligned DLPC, DMPC and DOPC bilayers; 

temperature set to 50°C.   
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FIGURE S3   2H NMR spectra for L5,19GW4,20ALP23 in mechanically aligned DLPC, DMPC and 

DOPC bilayers set at β = 0° and performed at 50°C. 
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FIGURE S4   2H NMR spectra for F4,5GW20ALP23 in mechanically aligned DLPC, DMPC and 

DOPC bilayers set at β = 0° and performed at 50°C.   
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CHAPTER 5 

Titration of Glutamic Acid at the Lipid Bilayer Interface 

5.1 Abstract 

Simple model transmembrane peptides and solid-state 2H NMR can be used together in order to 

deduce the titration points of ionizable residues at various depths within lipid bilayers.  The 

GW5,19ALP23 (acetyl-GGALW5(LA)6LW19LAGA-amide) peptide framework was modified to 

include a Glu(E) residue at position 4 in order to determine the pKa of the carboxylic acid side 

chain at the membrane interface.  Solid-state 2H NMR was used to monitor the changes in 

deuterated Ala-methyl quadrupolar splittings of residue Ala3 as the pH was increased.  Changes 

in the measured quadrupolar splitting of Ala3 can be attributed to the charged state of the 

neighboring Glu4.  Titration curves were established for Glu4 in DLPC, DMPC and DOPC lipid 

bilayers.  A lipid dependence was observed as the calculated pKa of Glu4 increases with lipid 

acyl chain length (4.8 up to 11.0) as the ionizable side chain loses access to water.  These results 

provide important insights into the wide range of pKa values calculated for the Glu side chain 

within proteins and at various depths of the lipid bilayer.      

5.2 Introduction 

A lipid bilayer membrane consists of a low dielectric hydrophobic core surrounded by polar lipid 

head groups and the high dielectric content of both the outer and inner cellular spaces.  While the 

membrane interior would appear to be inhospitable to charges, membrane proteins will 

sometimes contain titratable residues within this region.  Furthermore, their presence is usually 

important for the biological function of the protein.  The side chain protonation state of residues 

like Arg, His, Lys, Glu and Asp is dependent on numerous local electrostatic environmental 

factors such as lipid hydrophobic effects, hydrogen bonding, membrane fluidity and solvent 
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accessibility.(1-3)  The charged state of such residues will have consequences on the helix 

orientation, dynamics and structure.  Arg residues for example are found throughout the voltage 

sensing domains of numerous channel proteins(4, 5) and have been observed to cause helix 

distortions even within simple model peptides (see Chapter 3).  Glu can be found in the interior 

of certain membrane proteins and when charged can alter protein folding.(6) 

Selectively deuterated transmembrane peptides can be analyzed with oriented solid-state NMR to 

determine the titration point of such residues at various depths within lipid bilayers.  The model 

GW5,19ALP23 sequence (acetyl-GGALW(LA)6LWLAGA-amide) adopts a well-defined tilt 

within lipid bilayers and has been used to determine the pKa of residues such as His, Tyr, Arg 

and Lys.(7-9)  Varying degrees of success have been achieved while characterizing the 

protonation state of Glu, made difficult by the indifferent response of the helix to ionization state 

of the carboxylate side chain.(10) 

Here the titration point of the Glu side chain is probed at the membrane interface of DLPC, 

DMPC and DOPC bilayers, again using the GW5,19ALP23 sequence.  Residue L4 of the parent 

sequence was mutated to Glu and the pKa was determined via observing pH-dependent changes 

in the neighboring A3 deuterated methyl group quadrupolar splitting (Figure 1).  Titration points 

were determined in DLPC, DMPC and DOPC bilayers and were also dependent on lipid bilayer 

thickness despite the interfacial location of the Glu residue.                                    

5.3 Materials and Methods 

N-Fmoc-amino acids with additional protecting groups were purchased from NovaBiochem (San 

Diego, CA).  Deuterated alanine was purchased from Cambridge Isotope Laboratories 

(Tewksbury, MA) and modified with an Fmoc group as described previously.(11)  Successful 
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synthesis was confirmed with 1H NMR.  Lipids were purchased from Avanti Polar Lipids 

(Alabaster, Alabama).  Solid-phase FastMoc® peptide synthesis was performed to make 2H-

labeled E4GW5,19ALP23 peptides on a 0.1 mmol scale using an Applied Biosciences 433A 

peptide synthesizer (Foster City, CA).  Peptides were purified using reverse-phase HPLC with a 

gradient of 88-92% MeOH over 13 min using an octyl silica column (Zorbax Rx-C8, 9.4 × 250 

mm, 5 μm particle size; Agilent Technologies, Santa Clara, CA).  Peptide purity and molar mass 

were confirmed by HPLC and MALDI-MS (see supplemental Figure S1). 

Mechanically oriented solid-state NMR samples were prepared as previously described (12) 

consisting of peptides in (DLPC, DMPC or DOPC) lipid bilayers at a 1:60 peptide:lipid molar 

ratio and a final hydration of 45% (w/w) with 10 mM glycine, citrate, 4-(cyclohexylamino)-1-

butanesulfonate or phosphate buffer in deuterium-depleted water (Cambridge Isotope 

Laboratories) at pH values between 3.0 and 13.0.  Bilayer alignment at both  = 90° and  = 0° 

sample orientations was confirmed with 31P NMR spectroscopy on a Bruker Avance 300 mHz 

spectrometer with 1H broadband decoupling and 128 scans.  Static solid-state 2H NMR 

experiments were performed with a quadrupolar echo pulse sequence(13) at 50 °C using a 

Bruker Avance 300 MHz spectrometer at a Larmor frequency of 46.08 MHz over both sample ( 

= 90° and  = 0°) orientations.  The pulse sequence included a pulse time of 3.2 µs, an echo 

delay of 115 µs, and a recycle delay of 90 ms.  Each 2H NMR experiment acquired between 0.9 

and 1.5 million scans. Fourier transformation was applied using an exponential weighting 

function with 150 Hz line broadening. 
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5.4 Results  

Solid-state NMR can be used to monitor the changes in the quadrupolar splitting of Ala3 in 

E4GW5,19ALP23 to determining the titration point of the Glu4 side chain. Importantly, the 

sequence contains no other ionizable residues and therefore any observed changes in the NMR 

experiments are directly related to the charged state of the Glu4 side chain.  The methyl 2H 

quadrupolar splitting of Ala3 decreased from 15.5 kHz to 12.4 kHz in DLPC bilayers and from 

16.1 kHz to 13.6 kHz in DMPC within the pH range of 3.0 to 8.0, and increased from 16.8 kHz 

in DOPC up to 20.1 kHz in the pH range of 8.0 to 13.0 (see Table 2, Figure 2).  The less flexible 

i + 2 residue, W5 was mutated to Ala-CD3 and upon increasing the pH, no difference in the 

quadrupolar splitting is observed over the pH range of 3.0 to 8.0 in DLPC bilayers, indicating the 

core transmembrane helix is less sensitive to the ionized state of the Glu side chain (Figure S3). 

Three titration curves were obtained for the Ala3 quadrupolar splitting in each lipid bilayer.  

Previous studies have shown that there is not titration observed for the parent peptide framework 

as no ionizable residues are included within the sequence.(7)  The midpoint and thereby 

predicted pKa of the Glu4 side chain is 4.8 in DLPC, 6.3 in DMPC and 11.0 in DOPC (Figure 3).  

The increase in pKa coinciding with lipid bilayer thickness likely indicates a lipid dependence on 

the titration point of the Glu4 side chain at the membrane interface.  The high pKa predicted in 

DOPC offers support for previous experiments that predicted higher titration points when side 

chain is buried deeper into the lipid bilayer and has less access to water (see discussion).(10)   

5.5 Discussion 

GW5,19ALP23 has served as a useful model peptide framework for determining the titration 

points of numerous residues within lipid bilayers.(7, 10)  Monitoring the changes in the 
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deuterated methyl quadrupolar splittings of Ala residues that neighbor titratable side chains has 

proven to be an effective way of predicting the pKa.(7)  The titration of Glu at various depths of 

lipid bilayers using these methods has proven to be difficult as the helix orientation is indifferent 

to the charged state of the side chain.(10)  Analyzing Glu4 at the membrane interface offers 

certain advantages over positions within the helix core.  For example, there is the added 

flexibility of the neighboring terminal residue Ala3 which is normally frayed and not part of the 

core -helix.(14, 15)  The buried Glu side chain would prefer a local environment that favors its 

charge state.  As Glu4 adjusts its average orientation based on its ionized state, any consequential 

change in the orientation of Ala3 can be observed with the high sensitivity of 2H NMR.  

Accordingly, the methyl quadrupolar splitting of Ala3 changed in each lipid bilayer.  The methyl 

quadrupolar splitting of the other neighboring residue, Ala5, did not change in response to pH 

variation in the thinnest bilayer which indicates the core helix does not show an orientational 

dependence to the charged state of the interfacial Glu4 side chain.  Unwinding studies have 

shown that within the GW5,19ALP23 sequence, residue 5 is normally a part of the core helix 

whereas residues 4 and lower fray.(14, 15)  Therefore, Glu4 side chain is likely able to adjust its 

orientation to stabilize its charged state without affecting the core α-helix. 

The titration curves show an increase in pKa for Glu4 side chain as bilayer thickness also 

increases.  Therefore, the side chain carboxylic acid titration shows a lipid dependence at the 

membrane interface.  Within the thinnest bilayer, the glutamic acid side chain has a similar but 

slightly higher pKa than in soluble small model proteins or solution which is on average 4.3 to 

4.5.(1)  The side chain pKa accordingly increases with bilayer thickness as the carboxylic acid 

becomes less able to efficiently gain access to water.   
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The high titration point of Glu4 in DOPC at pH 11.0 is not unreasonable and finds support from 

experiments with transmembrane model peptides and actual membrane proteins.  For example, 

previous studies on Glu located at various depths within the core sequence of GW5,19ALP23 

(positions 14 and 16) found helix structural changes at higher pH values (pH 12 to 13) while the 

core helix orientation largely remained uninfluenced by the charged state of the Glu side 

chain.(10)  Furthermore, while the pKa of exposed Glu residues in soluble proteins are closer to 

4.3, the pKa of transmembrane Glu286 in Rhodobacter sphaeroides cytochrome c oxidase is 

raised to 9.4 which has been both experimentally calculated(16) and reproduced with continuum 

electrostatic calculations.(17)  The lipid dependence of the Glu4 pKa at the bilayer interface 

observed in experiments here provides insight into how buried ionizable residues can have such a 

wide range of pKa’s based on the conditions of their local microenvironments.     

5.6 Conclusions 

The GW5,19ALP23 framework was used to successfully determine the titration point of glutamic 

acid at the membrane interface.  The glutamic acid side chain pKa shows a lipid dependence 

based on the thickness of the bilayer.  In the thinnest bilayer, the pKa is similar to its solution 

pKa.  Upon increasing the lipid acyl chain length, the titration point occurs at higher pH values 

(up to pH 11.0) likely as a result of decreased access to water. 
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5.9 Tables 

TABLE 1  Sequences of GW5,19ALP23, E4GW519ALP23 and E4A5GW19ALP Peptides 

 

Name Sequence 

GW5,19ALP23 acetyl-GGALW5LALALALALALALW19LAGA-amide 

E4GW5,19ALP23 acetyl-GGAEW5LALALALALALALW19LAGA-amide 

E4A5GW19ALP23 acetyl-GGAEA5LALALALALALALW19LAGA-amide 

 

*Underlined residues were labeled with Ala-D3 
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TABLE 2  Quadrupolar Splitting Magnitudes (|Δνq|, in kHz) for Labeled Alanine CD3 Group of 

Ala3 in E4GW5,19ALP23a 

 

Lipid(s) 

pH / Δνq (kHz) 

3.0 4.6 5.0 6.0 8.0 11.0 13.0 

DLPC 15.5 14.2 13.3 13.4 12.4 -- -- 

DMPC 16.1 16.4 16.4 15.6 13.6 -- -- 

DOPC 16.8 -- 16.8 -- 16.8 19.0 20.1 

 

aβ = 0° sample orientation. 
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5.10 Figures 

 

FIGURE 1  3D Model of E4GW5,19ALP23.  Deuterium labeled residue A3 is highlighted in 

yellow. 
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FIGURE 2   2H NMR spectra for labeled Ala3 of E4GW5,19ALP23 in mechanically aligned 

DLPC, DMPC and DOPC bilayers set at β = 90° and β = 0°, temperature 50°C and sample pH 

as indicated. 
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FIGURE 3  Titration curves monitoring the CD3 quadrupolar splitting of Ala3 in 

E4GW5,19ALP23 within oriented DLPC (Black), DMPC (Blue) and DOPC (Red) bilayers.  Dotted 

lines represent midpoints at pH values of 4.8 (DLPC), 6.3 (DMPC) and 11.0 (DOPC). 
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5.11 Supplemental Figures 

 

FIGURE S1  (A)MALDI MS spectra for E4GW5,19ALP23 with Ala-D4 (Top) and E4A5GW19ALP23 

with Ala-D3 (bottom).  Expected m/z for [M+H] ions are 2276.75 and 2161.69 respectively. (B) 

Analytical HPLC profile spectra for purified E4GW5,19ALP23 (Top) and E4A5GW19ALP23 

(bottom). 

  



145 
  

 

 

FIGURE S2  31P NMR Spectra of E4GW5,19ALP23 in DLPC, DMPC and DOPC bilayers at 

indicated pH values set at β = 90°(red) and β = 0° (black), temperature 23°C. 
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FIGURE S3  2H NMR spectra for labeled Ala5 of E4A5GW19ALP23 in mechanically aligned 

DLPC bilayers set at β = 90°, temperature 50°C and sample pH as indicated. 
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Chapter 6 

Conclusions 

Model transmembrane peptides can help us to understand how protein-lipid interactions 

influence protein structure, folding and function on the fundamental level.  The radial locations 

of interfacial tryptophan residues about the α-helix have proven to govern the extent of dynamic 

motion within the host transmembrane peptide as seen with the highly dynamic GW4,20ALP23 

framework (Chapter 2).  Introducing a charged arginine residue into such a dynamic model 

system not only arrests the high dynamics, but also induces structural distortions at the helix 

termini as the tension caused by the aromatic side chain competition remains and needs to be 

relieved.  As shown with the surface bound R12GW4,20ALP23 peptide, new secondary structures 

such as a 310-helix can form which is a strikingly similar phenomenon found in the voltage 

sensing helices of channel proteins (Chapter 3).   

Modifying the hydrophobicity of the GW4,20ALP23 core sequence dynamic peptide failed to 

significantly affect the extent of dynamic motion, instead only affecting the peptide’s average 

tilt.  Removing one of the flanking tryptophans and replacing it with two non-hydrogen bond 

forming phenylalanine residues lowered the dynamics significantly and also caused structural 

distortion at the remaining interfacial Trp residue.  Both sets of experiments were able to finally 

prove the high dynamics are caused by the radial Trp locations (Chapter 4).    

Finally, the interfacial pKa of glutamic acid was determined to have a lipid dependence based on 

the bilayer thickness.  The titration point in the thinnest bilayer is similar to its solution pKa 

while in the thickest bilayer, the carboxylic acid side chain isn’t deprotonated until a 

significantly higher pH is reached (Chapter 5).  Altogether, studies such as these are meant to 
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answer fundamental questions that can ultimately further advance our understanding of the 

complex relationship shared between membrane proteins and lipids in which they reside.        
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