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ABSTRACT 

Candida species are the fourth leading cause of nosocomial infection. The increased incidence of 

drug-resistant Candida species has emphasized the need for new antifungal drugs.  Histatin 5 is a 

naturally occurring human salivary antifungal peptide and the first line of defense against 

infections of the oral cavity. This research has focused on understanding the activity of histatin 5, 

and subsequently designing novel peptides that may serve as models for the further development 

of therapeutics to treat fungal infection. This objective has been achieved in three steps: studying 

the structural requirement of histatin 5 involved in antifungal activity, the identification of a 

short peptide sequence, referred to as KM motif, important for fungicidal activity, and finally, 

the development of a novel antifungal peptide with potent activity.  In the initial phase of this 

work it was demonstrated that reversing the sequence of histatin 5 C-16 peptide to create a retro 

peptide did not interfere with the fungicidal activity or secondary structure of the peptide. This 

suggested that the spatial arrangement of amino acid residues was more relevant for fungicidal 

activity than the actual peptide sequence.  In the second phase of the work, we identified and 

characterized a five amino acid sequence, termed the KM motif, within histatin 5 that maintained 

fungicidal properties.  Although this short peptide was less active than histatin 5, the data 

suggested it was killing fungi via a mechanism similar to histatin 5.  In the final phase, a novel 

antimicrobial peptide, termed KM-12, was generated containing two KM motifs dimerized via 

disulfide bonds. The activity of KM-12 on C. albicans was approximately fifteen times more 

potent than the monomeric peptide and ten times more active than the native histatin 5.  KM-12 

was shown to have antifungal activity with several Candida species, including fluconazole-

resistant species. In conclusion, KM-12 is promising antifungal peptide that will serve as a lead 

candidate for the development of antifungals peptide for pharmaceutical applications. 
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1.1-Candida species   

The Candida genus represents a group of eukaryotic microorganisms belonging to the kingdom 

of Fungi - phylum Ascomycota.  The genus Candida contains about 150 species and 

approximately 30 have been associated with human diseases 
1, 2

.  Fungi differ from other 

eukaryotes by the presence of a rigid cell wall and the presence of ergosterol instead of 

cholesterol in the cell membrane 
3
.   Normally, Candida species live in a commensalism 

relationship with the host, including humans.  However,  this genus is also the most common 

fungal pathogen of humans and the cause of several diseases including mucosal and bloodstream 

infections 
4
.  Vaginal candidiasis, for example, alone affects approximately 75 % of women 

around the world  
5, 6

.  Furthermore, Candida infections can lead to significant mortality and 

extended hospital treatment 
7
.  In the United States, Candida species are the fourth leading cause 

of nosocomial blood stream infection with up to 40% mortality 
8
.  Candida infections are 

dramatically increased in patients suffering from immunodeficiencies as several forms of 

Candida can become invasive and cause systemic disease.  For instance, research has shown 

90% of HIV patients and 50% of AIDS patients had oral candidiasis.  In terms of health care 

costs, systemic Candida infections in the United States alone cost about 1.8 billion dollars and 

that accounts for 70% of the costs of fungal infections 
4
.  Candida species can be subdivided into 

Candida albicans and non-albicans groups.  The major non-albicans species include Candida 

glabrata, Candida parapsilosis, Candida tropicalis, Candida krusei, Candida lusitaniae, 

Candida kefyr and Candida dubliniensis 
9
.  

1.1.1 Candida albicans  

Candida albicans is a dimorphic opportunistic fungal pathogen naturally found as a commensal 

in the gastrointestinal tract and oral cavity, even though it is the most common isolated fungus in 
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clinical microbiology laboratories 
2, 10, 11

.  Candida albicans has the ability to grow in two 

distinct forms: budding yeast and hyphae.  In vitro transitions between these two morphological 

forms can be induced in response to several environmental factors such as pH, temperature, or 

compounds such as N-acetylglucosamine or serum 
12

.   Morphologically, Candida albicans can 

be found in one of three forms: yeast, pseudohyphae and true hyphae.  Yeast forms as rounded 

cells and the daughter cells separate from the mother cell via budding.  Pseudohyphae consist of 

a chain of cells, which have different degrees of elongation but still have a constriction between 

adjacent cellular compartments.  True hyphae are tube-like as the sides are parallel along the 

entire length without any constriction 
13, 14

.   

The virulence of Candida albicans has been shown to be  associated with their ability to switch 

between the yeast and hyphal morphologies 
15

.   Several observations have supported the role of 

hyphae in virulence: the C. albicans hyphal form is usually found at sites of infection 
14

,  hyphae 

and pseudohyphae have been shown to be important for tissue invasion 
16

, and finally other 

Candida species that do not form true hyphae are much less frequently isolated from humans 
17

.   

The suggested virulence mechanism is that hyphal cells express cell-wall proteins which may 

facilitate the adhesion to the human tissues, as well as the escape from phagocytosis 
18

.  So while 

the hyphae and pseudohyphae forms can promote tissue penetration at the early stages of 

infection, the yeast form might be more appropriate for spreading in the bloodstream 
16, 19, 20

. 

As mentioned previously, Candida albicans  is the fourth most common hospital acquired 

infection in the United States,  the treatment of which is estimated to cost more than $1 billion 

annually in the United States
4
.  Candida albicans represents one of the major causes of mucosal 

infection and systemic infection.  Furthermore, it causes a range of complications including 

superficial infections such as vaginitis in healthy women, severe mucosal infection in mouth and 
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esophagus of HIV patients (chronic mucocutaneous candidiasis), and systematic infections 

among post chemotherapy and organ or bone marrow transplant patients, such as myocarditis 

and Candida septicemia 
12, 16, 21

. 

1.1.2 Epidemiology and risk factors  

The major risk factors for Candida infections have changed dramatically in last 20 years since it 

was prominently associated with patients having malignancy or neutropenia 
22

 .  Currently, the 

risk factors have changed with the growing number of immunocompromised individuals.  New 

risk factors include the suppression of the immune response, uncontrolled use of broad-spectrum 

antibiotics and the exposure to pathogens and Candida 
9
.  The suppression of immunity is not 

limited to HIV and patients with malignancies, it also includes premature infants, patients over 

70 years of age, post-chemotherapy patients, post-transplantation patients or those on steroid 

medication, renal failure patients, patients with malnutrition or with another severe disease
23, 24

.  

The uncontrolled usage of broad antibiotics promotes fungal colonization and encourages 

development of antibiotic resistance bacterial strains.  For example, research has shown that 

post-surgery patients that received multiple different antimicrobial therapies were 800 times 

more susceptible to Candida derived wound infections than other patients 
8
.  Exposure to 

Candida can happen through direct contact with patients via sexual intercourse or being in the 

hospital for a prolonged stay.  Moreover, direct contact with body fluids is another way to expose 

patients to Candida, such as the bloodstream during catheterization during surgery and 

hemodialysis, peritoneal fluid during peritoneal dialysis and in the lung during mechanical 

ventilation 
20

. 
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1.1.3 Candida and human immunity  

The human immune response is a combination of innate and adaptive immunity.   Innate 

immunity is the first to be activated 
25

.  Skin and mucosal membranes are considered as the first 

line of innate immunity by forming a physical barrier and prevent microorganisms from passing 

through.  After the yeast passed the first barrier it will be detected by germ line-encoded 

receptors (pattern recognition receptors) that  recognize conserved molecular patterns common in 

microorganisms (pathogen-associated molecular patterns)
26

.  This recognition will activate 

phagocytosis and initiate the production of chemotactic factors.  The involved phagocytic cells 

vary depending on yeast type.   For example, the primary effector cells during Candida albicans 

infections are neutrophils while macrophages are the primary cells that respond to  Cryptococcus 

infection 
27

.   Chemotactic factors play an important role in human immunity as they are the link 

between innate and adaptive immunity.  Moreover, they attract more leukocytes to the site of 

infection and activate several biological procedures including antigen presentation, Th cell 

differentiation, and production of defense peptides.  Activation of  the adaptive immunity means 

the activation of  B-cells, T-cells and the general inflammatory responses 
28

.   Some yeast has 

succeeded in escaping from the recognition and later from the host defense.  For example, 

Candida albicans not only escapes recognition, it also suppresses host immunity by inducing the 

production of TLR2-mediated anti-inflammatory cytokine (IL-10). 

Antimicrobial peptides (AMPs) play important roles in host immunity.  These peptides are able 

to attack the yeast cells and inactivate them by direct contact via several mechanisms of action 
29

. 

Moreover, the AMP killing activity does not always associate with the specific activation of the 

host immune response, since some AMPs are produced constantly under normal conditions.  For 

example,  the histatins , anti-fungal peptides produced by salivary glands, are constantly secreted 
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in human saliva at an average level of 3.33 microgram/ml, despite the absence of fungal 

infection 
30

.  Antimicrobial peptides also play an important role in activation and mediation of 

adaptive immunity in response to inflammation 
31

.  Their roles can be summarized  as being 

chemotactic for leukocytes and T-cells,  and they activate the production of several immune 

factors such as interleukin-1, Interferon-gamma and tumor necrosis factors 
32

. 

1.1.4 Treatment of fungal infections  

1.1.4.1 Azoles 

The azole type of anti-fungal agents has been used to treat various fungal infections for more 

than 30 years.  The azoles can be divided into two groups, the imidazoles and the triazoles.  

Imidazoles (i.e. miconazole and ketoconazole) have a two-nitrogen azole ring, while triazoles 

(i.e. fluconazole, itraconazole, voriconazole and posaconazole) have 3 nitrogen azole rings. Both 

the triazoles and imidazoles share a common mechanism of action.  Imidazoles are mostly used 

as topical agents to treat fungal infections and they have been essentially replaced by the 

triazoles for systemic infection due to their pharmacokinetics and safety issues 
33

.  Azoles inhibit 

the cytochrome P450 enzyme-dependent 14-α-sterol-demethylase which is required for the 

conversion of lanosterol to ergosterol.  Thus, ergosterol is depleted and the sterol intermediate 

(14α-methyl-3,6-diol) accumulates within the cell membrane, that leads to growth arrest 
34

. 

Azoles are in general considered fungistatic; however, there have been some exceptions reported 

with itraconazole and voriconazole, that have shown some fungicidal activity against Aspergillus 

spp 
35

.  
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Different azole compounds have different affinities for the 14-α-sterol-demethylase; 

consequently, they have various antifungal activities, side effects and drug-drug interactions. 

Imidazoles have a low affinity to the demethylase enzyme and as a result, a higher dosage is 

required.  Due to toxicity problems, imidazoles has been restricted to topical applications  such 

as creams, lotions,  shampoos, vaginal suppositories, lozenges, and solutions for epidermal 

candidiasis.  In contrast, the triazoles can be found in several formulations that can be 

administrated topically, orally and intravenously.  

Several side-effects have been reported with azoles including events as simple as skin dryness 

associated with fluconazole to as serious as hepatic failure with itraconazole 
34, 36

.  Liver toxicity 

is the main adverse reaction associated with all azoles 
37

.  Azoles have several significant drug 

interactions in humans due to the inhibition of liver oxidative metabolism via the binding to 

cytochrome P450 enzymes.  The inhibition of these enzymes interferes with liver metabolism, 

and subsequently increases drug concentrations in blood resulting in drug toxicity.  Azole 

treatment can increase the overall blood levels of cyclosporine, calcium channel blockers and 

warfarin 
34, 38

 due to negative drug interactions when taken together.  Nevertheless, the azoles 

remain the safest available anti-fungal agent.  Aqueous solubility has been a significant barrier to 

the development of new azole-based drugs and the lack of solubility has limited their systematic 

use outside of a hospital environment.   

The extensive use of azoles has resulted in an appearance of drug resistant Candida strains and 

their incidence has increased dramatically since last decade 
40-43

.  Moreover, a report has shown 

AIDS patients may harbor azole resistant Candida in their oral cavities 
40

.  However , the rate of 

azole resistance among the most common Candida species remain low with the exception of C. 

glabrata 
44

.  
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Four different mechanisms of azole resistance have been described in Candida spp.  The first 

mechanism decreases the azole concentration near the target enzyme via efflux pumps.  Two 

gene families that encoded efflux pumps have been defined, Candida drug resistance gene 

(CDR), which encodes an ATP-binding cassette (ABC)-type transporter, and multi-drug 

resistance gene (MDR),which encodes a major facilitator transporter 
45

.  These genes have been 

identified in different Candida spp.:  C.albicans (MDR1, CDR1, CDR2) 
45, 46

,  C. 

glabrata (CDR1, CDR2)
47, 48

, and C. dubliniensis ( MDR1 , CDR1)
49

.  The induction of the CDR 

genes generates resistance to all azole drugs, while the MDR genes are selective for fluconazole 

43
.   

The second mechanism of resistance involves the alteration of the target enzyme.  It has been 

shown that mutations in ERG11, the gene encoding for the target enzyme (C14α-demethylase) , 

reduces or halts the azole-binding capability of the enzyme
50

.  Furthermore, the mutations can 

range from a single point mutation 
51

 to multiple mutation within the same gene 
41, 52

. 

 The third mechanism involves the overexpression of azole target enzyme.  Increasing the 

concentration of the target enzyme means more drugs are needed and the common therapeutic 

concentration is no longer effective 
41

.  The fourth mechanism of azole resistance in Candida 

species involves the development of bypass pathways 
43

 . The alternative pathway prevents the 

accumulation of steroid intermediates via replacing the ergosterol with a latter product.  This 

replacement keeps the membrane functionality and negates the action of azole on the ergosterol 

biosynthesis pathway.  Mutations in the ERG3 gene, an example of this class, avoids the 

formation of 14α-methyl-3,6-diol from 14α-methylfecosterol 
53

.  Finally, more than one 

mechanism of resistance can be occurred within one strain and their effect will be additive. 
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1.1.4.2 Polyenes 

Polyenes are a group of antifungal drugs originally derived from Streptomyces species and they 

have been widely used to treat systemic and oral fungal infections 
54

.  Some examples of the 

polyene drug family include amphotericin B (AmB), nystatin and natamycin.  They are 

macrocyclic molecules with multiple conjugated double bonds, in which a heavily hydroxylated 

region of the ring is facing the conjugated system 
55

.  

The mechanism of action for this class of drugs begins with the hydrophobic moiety binding to 

ergosterol within the fungal cell membrane and producing an aggregate.  This subsequently leads 

to pore formation in cell membrane and leakage of vital cytoplasmic components, such as K+, 

and ultimately inducing cell death  
56

.  Molecular modeling studies have suggested that AmB 

creates aqueous pores consisting of eight molecules linked hydrophobically to ergosterol 

embedded in yeast membrane phospholipids 
57

.  In addition, AmB causes a direct membrane 

damage in Candida albicans by the generation of oxidative reactions 
58

.  

AmB is fungicidal against the majority of Candida species 
59

.  Though AmB is the most 

effective antifungal drug available, its narrow therapeutic index continues to limit its clinical 

utility.   AmB has the ability to bind cholesterol of mammalian cell membranes, which is 

responsible for a major aspect of human toxicity
60

; however , studies have shown that AmB 

exhibits a greater affinity for ergosterol-containing membranes  versus cholesterol-containing 

membranes
60

.  Renal failure and nephrotoxicity are  common toxic consequences of  AmB 

treatment, as several studies have reported the rate of acute renal failure in patients on AmB 

range from 49% and 65% 
61

.  To overcome the toxicity, several AmB formulations have been 

evaluated and the best formulation was found to be AmB in liposomes as it permits higher doses 
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with the lowest rate of nephrotoxicity 
62

.  Currently, the lipid formulations have been used as 

second-line of therapy since the liposome formulations cannot completely solve the mammalian 

cell toxicity and the liposome formulations are considerably more expensive than other anti-

fungal drugs 
63

.  

Although polyene resistance has not been a major clinical problem to date, multiple cases have 

been reported in Candida species, including C.albicans
64

, C. krusei
65

, C. lusitaniae
66

, C. 

glabrata
67

 and C. tropicalis
68

.  The exact mechanism of resistance is not clear but most of the 

resistant strains shares a common feature, their ergosterol content was low compared to 

susceptible strains 
41

.  Proposed mechanisms of polyene resistance include alterations in 

membrane ergosterol content via the accumulation of other sterols, alterations in the sterol to 

phospholipid ratio or changing the ergosterol structure by reorienting or masking
69

.   It is worth 

mentioning that cross-resistance to azole and polyene classes of drugs have been reported in 

Candida species 
70

.  Furthermore, the efflux pump mechanism that functions with azole 

compounds has not been identified, so far, in polyene resistance strains 
71, 72

. 

1.1.4.3 Echinocandins 

Echinocandins are the most recently discovered class of antifungal drugs that has been 

introduced for clinical use.  There are now three echinocandins approved for clinical use: 

caspofungin, micafungin, and anidulafungin 
73

.  Echinocandins are derived from semisynthetic 

modifications of fungal lipoproteins:  caspofungin from pneumocandin B0 from Glarea 

lozoyensis
74

,  micafungin from FR901370 (hexapeptide) from Coleophoma empedra
75

, and 

anidulafungin from echinocandin B0 from A. nidulans
76

.  Moreover, they  are cyclic 

hexapeptides N-linked to long acyl lipid side chains with a molecular weight of approximately 
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1,200 
77

.  The enchinocandins have a unique mode of action in which they act as noncompetitive 

inhibitors of the enzyme 1, 3-β- and 1, 6-β-D-glucan synthase. 1,3-β-D-glucan is an essential 

carbohydrate component of all fungal cell walls which covers 30%–60% of the fungal cell wall  

in Candida species.  Inhibition of enzymatic activity leads to changes in the cell wall 

components that result in osmotic instability and cell lysis 
77

.  Compared to other antifungal 

drugs, the echinocandins possess low human toxicities due to the fact that human cells lacks 1,3-

β-D-glucan
78

.  The most common side-effects are urticarial, pruritus and elevation in 

transaminase levels 
79.  

Echinocandins are fungicidal against a wide range of species and they are effective against 

biofilms 
80

.  In some cases, echinocandins are fungistatic.  For example, caspofungin is 

considered fungistatic against Aspergillus whereby they block hyphal tip growth 
80

.  Since the 

glucan composition varies between yeast species the echinocandins activity against these species 

will vary.  These agents are not recommended as the first line of treatment for fungal infections 

76, 80
.  Echinocandin resistance has been identified in C. albicans

81
, C. krusi 

82
, C. glabrata 

83
, C. 

lusitaniae 
84

  and C. parapsilosis 
85

.  The echinocandins resistance is mediated by point 

mutations of FKS1 gene encoding a component of the β-1,3-D-glucan synthase complex 
86

 .  

1.1.4.4 Antimetabolites 

Flucytosine (5-FC), also known as 5-fluorocytosine, is a fluorinated analog of cytosine and one 

of the oldest antifungal agents.  Furthermore, it is the only antifungal agent that functions as an 

antimetabolite.  Flucytosine is considered a fungistatic agent and its activity comes from the 

rapid conversion of 5-FC to 5-Fluorouracil (5-FU); therefore, 5-FC by itself has no antifungal 

activity.  5-FC gets into the cell via a cytosine permease, which are also transports cytosine, 
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hypoxanthine and adenine.  Inside the fungal cell, 5-FC undergoes a deamination process via 

cytosine deaminase to generate 5-FU 
87

.  

There are two potential pathways for 5-FU fungistatic activity 
88

.  The first pathway is 5-FU 

undergoes further metabolism by uridine monophosphate pyrophosphorylase to generate 5-

fluorodeoxyuridine monophosphate (FdUMP).  Then, FdUMP, an inhibitor to thymidylate 

synthetase, halts thymidine biosynthesis, and accordingly DNA synthesis.  The second pathway 

starts with the transformation of 5-FU into 5-fluorouridine triphosphate (FUTP), then FUTP 

replaces uracil in fungal RNA and later inhibits protein synthesis.  5-FC is highly selective 

against fungi because mammalian cells lack the cytosine deaminase.  Due to a high rate of 

resistance, the use of 5-FU as a monotherapy is restricted.  The compound is typically used in 

combination with other antifungal agents such as amphotericin B 
59

. 

The mechanisms of resistance to 5-FC in Candida  is mediated by enzymatic modifications that 

either impair 5-FC cellular uptake via a mutation in cytosine permease 
89

 or a defect in 5-FC 

metabolism which can be achieved by mutations in the gene encoding either the cytosine 

deaminase or uracil phosphoribosyl transferase 
41, 90

 . 

1. 2 Antifungal peptides (APFs) 

The major reservoir for generating new antimicrobial peptides (AMPs) is natural sources that 

might be any living organism such as vertebrates, invertebrates, plants and bacteria 
91

.  Besides 

their roles in innate immunity, AMPs serve as promising candidates for new therapeutic 

compounds.  AMPs are attractive models because they possess unique features, such as broad 

activity, rapid action, low microbial resistance and high selectivity.  Thus, several synthetic and 

semi-synthetic peptides have been synthesized for this purpose. Therapeutic peptides are 
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designed mainly after careful studies of the biophysical characteristics and structure-activity 

relationship of naturally occurring AMPs 
92

.  

The broad activity of AMPs makes it difficult to exclusively classify them as either antifungal or 

antibacterial.  There are relatively few examples where a peptide retains only antifungal or 

antibacterial activities.  In some cases, AMPs could be antibacterial; however, their antifungal 

activities have not been tested yet, and Vice versa. This section will discuss antimicrobial 

peptides that exhibit anti-fungal activities and they will be referred to as antifungal peptides 

(AFPs).  

1.2.1 Classification 

The antimicrobial (AMPs) and antifungal peptides (AFPs) represent a diverse array of sequences 

and there could be no perfect way to classify them.  Several reviews have classified the AMPs 

using different criteria: secondary structures 
93, 94

, source and the mechanism of action 
94-96

, cells 

that produce the peptide 
97, 98,99

,  post-translation modification 
100

 and the species (eukaryotic and 

prokaryotic ) 
101, 102

.   In general, there are around 700 AMPs with antifungal activity found in 

the antimicrobial peptide database (http://aps.unmc.edu /AP/ main.php)
103

 .  Peptide net charge is 

an alternative way to categorize them.  Consequently, the peptides could be divided into three 

groups:  anionic, neutral and cationic. 

1.2.1.1 Cationic AFPs: 

The vast majority of the AFPs are cationic and they display a positive net charge (Figure 1).  

Cationic AFPs are gene-encoded peptides mainly derived from larger precursors via proteolytic 

processing 
104

.  
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1.2.1.1.1 Biophysical properties of cationic AFPs. 

This section will discuss the main biophysical characteristics of AFPs in general and the cationic 

peptides more specifically.  The characteristics are: stereospecificity, conformation, charge, 

amphipathicity, and hydrophobicity.  It is important to note that some of these characteristics are 

interdependent; therefore, modification of one character could lead to alterations in the other. 

Stereospecificity. Stereospecificity means certain biological processes or chemical reactions are 

specified for only one of several possible stereoisomers.  Within peptides the focus is on 

enantiomers or optical isomers.  Generally,  stereospecificity in binding processes is an essential 

requirement for peptide or protein-target interaction and lacking this characteristic might suggest 

a lack of overall specificity
105

.  In AMPs, binding to the target microorganism is required to 

achieve an activity; however, the majority of the AMPs are not stereospecific with some 

exceptions 
106

.  Several publications have shown that all-D-amino acid peptides demonstrated 

similar antimicrobial activities as their all-L-enantiomers 
107-110

.   As a subgroup of AMPs, AFPs 

exhibited the same characteristic 
107, 111

 and multiple examples were published demonstrating the 

stereoisomeric AFPs was equal in activity
107, 111

.   For example, all-D variants of the histatin 

peptide fragments (including P-113) are equally internalized and they exhibited the same 

activity.  Therefore, the involvement of a stereospecific receptor was excluded 
112, 113

 .  However, 

in some case the stereospecificity may interfere with the AFPs activity but at a lesser extent than 

other AMPs.  For example , the Bac7 peptide, a cathelicidin derived peptide,  has shown a 

stereospecific binding to C. neoformans membrane at concentrations near the MIC values; 

however,  this interaction became non-stereoselective at higher concentrations 
114

.  The thanatin 

peptide is another example of a stereospecific peptide, where the activity against Gram-positive 
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bacteria was inhibited in all-D enantiomers, but the activity is retained against fungi just like L- 

thanatin 
115

.   

Conformation.  Similar to other AMPs, there is no dominant conformation within the AFPs; they 

differ in sequence and secondary structure.  The antifungal peptides could be defined according 

to their conformation into four categories:  α-helix, β-hairpen or sheet, mixed α- helix /β-sheet, 

and amino acid rich peptides (Figure 2).  

The α-helices are abundant within AFPs; however, they frequently exist as unstructured 

conformers. These peptides become helical only upon interaction with an amphipathic membrane 

such as a fungal plasma membrane 
116

.  The β-sheet containing AFPs are less abundant than α-

helix and this category is highly diverse at the level of primary structure but they share common 

features, such as the amphipathic structure 
117

.  While studying the peptides within the 

antimicrobial database 
118

, it has been noted that AFPs with beta structure share a common 

feature: they have at least 2 cysteine residues which is not always true within the broader group 

of AMPs since beta structure peptides have been identified without a disulfide bridge 
119-122

 .   

Most amino acid-rich AFPs could be further divided into one of the following groups:  Gly-rich, 

Pro-rich, Arg-rich, His-rich, and Trp-rich.  According to the antimicrobial peptide database, 

AFPs did not contain any Lys-rich peptides typically found in AMPs, such as the dermaseptin 

family 
123

 and GLK-19 
103

.  AFPs that are enriched in particular amino acids exhibited different 

conformations and they can form unusual helices or sheets.  For example, Tritrpticin, a 

tryptophan-arginine rich peptide, has retained multiple structures upon binding to a micelle, 

including a turn-turn and extended α-helix structure 
124

.  Another example is SP-B, a proline-rich 
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peptide that exhibited both antibacterial and antifungal activity.  The secondary structure of this 

peptide is composed of polyproline-II helices, unordered and turn motifs 
125

.  

Charge.  The positive charge is an essential requirement for AFP activity whereby an 

electrostatic binding to the negatively charged membrane is initiated (Table 1).  However, 

increasing the positive charge does not always improve the antifungal activity, depending on the 

peptide sequence and secondary structure 
126

.  The increase in positive net charge has shown 

different effects on the antifungal activity.  For example, increasing the number of lysine 

residues within dF17-6K (compare with dF21-10K) improved the antifungal activity 
127

.  On the 

other hand, increasing the charge within MtDef4 peptide from +6 to +7 had an inhibitory effect 

on the activity against F. graminearum 
128

 .  It has been demonstrated that increased peptide 

positive net charge beyond a threshold might lead to a strong interaction with the negatively 

charged membrane, resulting in an inhibition in peptide translocation into the cell 
117

.  In some 

peptides, the amount of the positive charge and the net charge was not as important as the 

location of the cationic residue 
126

.  Commonly, AFPs that exhibited positive charge achieve the 

activity via pore formation; however, some exceptions have been observed 
129

.   The remaining 

AFPs are neutral or anionic and they will be discussed later in this chapter. 

  Amphipathicity.  Most of the AMPs as well as the AFPs form amphipathic structures upon 

interaction with target membranes.  Amphipathicity is defined as the ability of a molecule to 

adopt a shape or structure in which clusters of hydrophobic and hydrophilic amino acids are 

spatially organized in discrete sectors 
93

.  Amphipathicity for a peptide is usually determined by 

the mean hydrophobicity (H) and the hydrophobic moment (µH) 
117

.  Mean hydrophobicity for a 

peptide is calculated by summing the hydropathy values of all the amino acids then dividing it by 

the number of residues. The hydropathy value for each amino acid has been determined and 
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tallied into different scales. The most common scales are the Kyte-Doolitle
130

 and the Eisenberg 

scales 
131

.   The hydrophobic-moment (µH) is the hydrophobicity of a peptide measured for 

different angles of rotation per residue
132

.  Moreover, it is calculated for all angles of rotation 

from 0 to 180 degrees 
132, 133

.  Measuring the µH for a peptide assist in recognizing amphipathic 

structures via determining when the residues on one side of the structure are more hydrophobic 

than on the other 
134

.  In general, increasing the hydrophobic moment leads to increased 

antifungal activity via promoting membrane permeabilization.  However, it has been reported 

that high amphipathicity also leads to increased hemolytic activity.  For the development of new 

peptides, especially with membrane lytic mechanisms, it has been suggested to keep µH less than 

for hemolytic peptides (µH less than 0.3) 
92

.   Several examples demonstrated the importance and 

the function of amphipathicity in antifungal activity.  For instance, In P19(6/E) peptide research 

has shown reduction of the amphipathicity by scrambling the sequence was enough to reduce the 

antifungal activity against C. albicans and C. neoformans  even though  the amino acid 

composition, charge, mean hydrophobicity and helix forming propensity in 50% TFE were kept 

the same 
135

.  On the contrary, reduction of the YLK peptide amphipathicity by utilizing helix 

breaker residues enhanced the antifungal activity 
92

 .   

Most of the α-helical peptides have amphipathic structures, yet it is not a requirement for the 

antifungal activity.  For example, kaxins are a class of antifungal peptides that do not exhibit an 

amphipathic structure 
127, 136

.  This class has displayed antifungal activity with minimum 

hemolytic activity and that supported the correlation between peptide amphipathicity and 

hemolysis  
127

.  

The amphipathicity isn’t restricted for α-helix peptides; β-structures could also be amphipathic. 

Tachyplesin and polyphemusin  are examples of amphipathic β-sheet 
137

 while Rhesus theta 
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defensin-1 (RTD-1) peptide is an example of non-amphipathic β-sheet 
138

.  In amino acid -rich 

peptides, the amphipathic structure was also observed such as in histatin 5(His-rich) 
139

 and Pac-

525 (Trp-rich)
140

 .  It is also important to mention that all proline-arginine rich peptides (AMP or 

AFP) cannot form amphipathic structures, thus the proline abundance results in the formation of 

polyproline helical type-II structures 
141

. 

Hydrophobicity.  Peptide hydrophobicity is defined as the percentage of hydrophobic residues 

within a peptide length. The vast majority of antifungal peptides have hydrophobic values 

ranging between 30-60% (Figure 3).  Hydrophobicity is an essential requirement for peptide 

membrane interactions as well as membrane permeabilization.  Furthermore, the peptide 

partitioning into the phospholipids layer is also controlled by peptide hydrophobicity.  Increasing 

peptide hydrophobicity might correlate with an increase in the activity, but it also has been 

linked to increased hemolysis activity 
117, 142

.   For example, increasing the hydrophobicity of the 

D1 peptide, to generate a peptide termed D4, led to the induction of increased hemolytic activity 

by approximately 286-fold.  In the same example, the modification of the D1 peptide also 

interfered with the fungicidal activity; however, the change was observed for the target 

susceptibility rather than the peptide effectiveness.  The D1 peptide was more active against 

Zygomycota fungi while the D4 peptide was more active against Ascomycota fungi 
117, 142

.  

Lipopeptides is a class of antifungal peptide where lipophilic moieties are attached to cationic 

peptides.  Although this class is very hydrophobic, they had a low hemolysis activity 
143

.  

It should also be noted that hydrophobicity is not the only factor related to hemolysis, the 

presence of tryptophan was also linked to the hemolytic activity.  A study has shown that 

replacing one asparagine residue with tryptophan in the NDGP peptide was enough to increase 

the hemolytic activity approximately 24 fold 
92

.  Further, it has been concluded that tryptophan- 
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tryptophan interactions and tryptophan-lipid interactions are responsible for the increase in 

hemolytic activity of melittin-tryptophan analogs rather than the hydrophobicity 
92

.  It has been 

published that tryptophan has a strong ability to insert into membranes as well as to interfere 

with lipid polymorphism 
144

.  The hemolytic activity associated with tryptophan-containing 

peptides has been inspected in multiple research studies and the results were varied.  For 

instance, the Pac-525 peptide is a tryptophan-rich peptide that exhibits low hemolysis activity 
140

.  

1.2.1.1.2 -Mechanisms of cationic AFPs action  

AFPs achieved fungicidal or fungistatic activity via multistep mechanisms.  First, the peptide is 

attracted to the negatively charged yeast membrane.  The interaction with the membrane results 

in secondary structure changes that induce the required conformation for the activity, a required 

step for α-helical cationic peptides.  The peptide then inserts into the cell membrane and 

interferes with the phospholipid bilayer integrity via pore formation or disruption of the whole 

membrane barrier.  In some cases, the peptide is required to move into the cytoplasm and act on 

internal cellular targets.   

For simplicity, the mechanism of action of AFPs could be split into two categories:  pore-

forming and non-pore forming mechanisms.  In the pore forming mechanism, the peptide 

primarily works at the plasma membrane and no internal targets are required to achieve the 

activity.  Furthermore, permeabilization and pore formation are the major cause of cell death.  

This mechanism has been reviewed on several occasions 
145-149

, and several models have been 

proposed to explain peptide action via this mechanism.   In the first mechanism, peptides arrange 

perpendicular to the membrane to form either a barrel-stave or toroidal channels.  The second 

model is achieved when peptides orient parallel to the surface of phospholipid bilayer and form 
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an extensive layer or carpet 
149

.  In the third mechanism, peptides aggregate in micelle-like 

complexes with lipids and span the membrane; however, no particular orientation has been 

observed
146

.  In some cases, pore formation and membrane interruption are not enough to cause 

cell death unless they are combined with another mechanism as the peptide-generated pore could 

be the means by which the peptide reaches the cytoplasm.  In some cases, the translocation 

across the membrane is energy-dependent, requiring a transporter protein and ATP
150

 .  

Several models have described the other mechanisms where the peptide target is actually inside 

the cell. The most common intracellular targets are; the binding to DNA
151

 , the inhibition of 

protein synthesis 
152

, the inhibition of ATPase activity and protein refolding
153

,  the 

depolarization of mitochondria and depletion of ATP 
129

, the formation of reactive oxygen 

species and apoptosis
154

 and the depolymerization of the actin cytoskeleton 
155

. 

1.2.1.2 Anionic AFPs  

The first anionic AMPs were described in 1984 
156

 and after that several anionic peptides were 

identified in both eukaryotes and prokaryotes 
157, 158

.  It has been found that anionic AMPs might 

play an important role in innate immunity 
159

.  Out of 116 anionic peptides are described in the 

peptide database, only 11 peptides have shown antifungal activity.  

The biophysical properties of the anionic AFPs could be summarized as: the net charge ranges 

from -1 to -8 at neutral pH, the size ranges from 11 to 90 amino acids, they exhibit an 

amphipathic structure and the secondary structure varies between α-helix and β-sheet (Table 2). 

This peptide category is more specialized than the cationic group and they displayed a narrow 

spectrum of activity, thus the majority of the peptides in this category are active only against 

fungi. 
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There is no definite antifungal mechanism for anionic peptides and almost every peptide has its 

own mechanism.  Nevertheless, all of them share a common step, binding to the target 

membrane. In cationic peptides, the positive charge is essential for the initial interaction with the 

negatively charged membranes.  Moreover, the ionic attraction between the opposite charges also 

plays a role in target selectivity.  In contrast, the anionic peptides display a negative net charge 

that could lead to repulsion with the negatively charged membrane.  It was found that the overall 

positive charge is not a prerequisite for the binding to the membrane and the key modulators of 

lipid bilayers-peptide interaction is the charge distribution and the secondary structure 
160

. 

Consequently, the anionic peptides might be able to interact with the membrane because their 

basic amino acids are distributed in such a way as to give them the accessibility and limit the 

repulsive effect of negatively charged residues.  This model does not fit all anionic peptides since 

some of these peptides do not have a single basic amino acid, such as Tn-AFP and EP-20 (Table 

2).  These peptides retain the capability of binding to the membrane and this binding is critical 

for the activity 
159,161

.  The other explanation is that the anionic peptides form cationic salt 

bridges with membrane negative charges via metal ion cofactors 
158, 159, 161

. 

 Various mechanisms are involved in anionic AFPs activities.  The inhibition of cell wall 

biosynthesis, protein synthesis 
162

 as well as the inhibition of spore germination 
163

 have all been 

observed.  Another proposed mechanism is the depletion of metal ion (Cu
2+

 or Fe
2+

) 

supplementation and alteration of yeast respiratory profile 
164, 165

.  Furthermore, membrane 

permeabilization and the induction of reactive oxygen species as well as nitric oxide have also 

been observed
166

 . Yet another mechanism reported is the alterations in cell morphogenesis and 

membrane disruption 
160, 167

.  
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1.2.1.3 Neutral AFP 

As stated previously, the vast majority of AFP families are cationic; however, a few are neutral.  

For example, Aurein 1.1 is neutral; whereas, the other 11 Aurin peptides are cationic.  The 

brevinin family of peptides is another example where brevinin-1- OR3, OR6, OR8, and OR9 are 

neutral peptides and the rest are cationic 
168

.  An exceptional case is GP-19 peptide, which is 

neutral, and GP-20 peptide is anionic 
162

. 

 The general biophysical properties of neutral AFPs are: the net charge is neutral at pH 7, the 

peptide size ranges from 13 to 50 amino acids, most of neutral AFPs form an amphipathic 

structure, the secondary structures for the know neutral AFPs are helical, except for Drosomycin-

2 which is a mixture of α-helix and β-sheet (Table 3). 

Most of these peptides have both antibacterial activity and antifungal activities with the 

exception of GHH20, Galleria defensin and Ha-DEF1, which lack the antibacterial activity. 

Surprisingly, Galleria defensin-like peptide, which shares 95% homology with Galleria defensin, 

possessed an antibacterial activity for gram-positive bacterium (S. lutea) along with the 

antifungal activity. 

The mechanisms of action for the neutral AFPs are membrane permeabilization and disruption.  

It has been suggested that the positive charges within the neutral peptides are able to initiate 

electrostatic interactions with the negatively charged membrane prior the membrane disruption 

169
 
162

 
170

.  However, two neutral AFPs (Gp-19 and Temporin-1PRb) lack charged amino acids 

and they exhibit activity via membrane disruption.  
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1.2.2 Posttranslational modifications of natural AFPs. 

Several post-translation modifications have been observed in naturally occurring AFPs and each 

modification had an influence on the AFPs activity.  The knowledge of these modifications is 

important to reach a full understanding about peptide activity and later, to be used to improve the 

activity or solve problems related to antifungal activity.  This section will discuss the following 

modifications: glycosylation, amidation of C-terminus, isomerization which includes 

diasteromers and enantiomers, halogenation, phosphorylation, hydroxylation and cyclization. 

The data in this section are general and subjected to change at any time, as new AMPs could be 

published or added to the database. Furthermore, some of the AMPs have not yet been tested for 

antifungal activity.  

Glycosylation.  The addition of carbohydrates is one of the most common post-translational 

modifications and it is typically observed at asparagine or serine/threonine residues.  N-linked 

and O-linked are both common types of glycosylation 
171

, and in rare cases S-linked peptides 

have been discovered 
172

.  In AMPs, glycosylation was observed in proline-rich peptides such as 

in Drosocin 
173

 and Pyrrhocoricin 
174

.  Moreover, the O-glycosylation of these peptides was 

determined to be essential for full antimicrobial activity;  this is not always the case since S-

linked glycosylation had no effect on the antimicrobial activity
175

. 

  No natural AFPs have been found to be glycosylated in the antimicrobial peptide database 
103

.  

In synthetic AFPs, several cases have been published.  For example, the antifungal activities of  

caspofungin , a semi-synthetic lipopeptide, was improved after the addition of a monosaccharide 

176
. 
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Amidation of carboxy terminus.  The main role of amidation is to improve peptide stability in the 

presence of aminopeptidases 
177

 and in some cases to increase the anti-fungal activity  
178

. 

Several examples of AFPs with an amidated C-terminal were identified in nature such as 

Ctriporin from scorpions 
179

 and Ranacyclin from Rana esculenta skin 
180

.  Moreover, the 

amidation has also been a common approach in synthetic AFPs 
100

.  

Isomerization (Diasteromers).  This is the ability of peptide to exist in two conformations, cis 

and trans.  In general, the isomerization increased the antimicrobial activity and improved the 

stability of multiple peptides 
181

.  Diasteromers have been identified in AMPs like Caenopore-5 

182
 as well as in AFPs like Cyclo(L-Phe- 4-OH-L-Pro)

183
 . 

Isomerization (enantiomers):  There are a few examples of naturally occurring AMPs with D-

conformation, such as bombinin H4 
184

, lactocin S 
185

 and gramicidin A 
186

.  However, none of 

them had antifungal activity.  Several AFPs have been synthesized using D-amino acids in an 

attempt to improve the peptide stability against proteases 
112, 113

. 

Halogenation.  In nature, the most common halogenation is bromination and chlorination. 

Bromination mainly occurred in AMPs, and more precisely, in the tryptophan indole ring while 

chlorination was generally observed in AFPs.  Bromination has been described in different 

AMPs such as Hedistin and in hagfish cathelicidins 
100, 187

.  The role of indole bromination in 

cathelicidins was suggested to reduce the peptide susceptibility to proteolysis via steric 

modifications 
188

.  Misgurin from the mudfish Misgurnus anguillicaudatus is an example of an 

antifungal peptide that has been modified by chlorination; however, the role of the chlorination 

was unclear and it did not alter the antifungal activity 
100

. 
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Phosphorylation.  Nature has produced multiple examples of phosphorylated AMPs and AFPs. 

Phosphorylation has been found to be essential for AMPs activity.  For instance, enkelytin, an 

antibacterial peptide derived from proenkephalin A, has two phosphoserines that are required for 

the full activity
189

.  Prochromacin and chromacin are also examples in which the modifications 

were mandatory for peptide activity (glycosylation and phosphorylation )
190

.  In AFPs, the 

situation was different and phosphorylation may be not required for the antifungal activity. 

Histatin 1 is an example of  a phosphorylated AFP where the modification didn’t have any effect 

on the peptide activity; however, it did increase the stability of the peptide in saliva 
191

. 

 Hydroxylation.  In AMPs, hydroxylation was primarily observed at lysine, arginine, tryptophan 

and phenylalanine residues.  The effect of hydroxylation on the peptides is unclear and it has 

been shown to have different effects.  For example, the hydroxylation of the MGD-2 peptide was 

essential for antimicrobial activity; however, other studies have suggested that the peptide 

activity was not changed by the hydroxylation 
192

.  The Cecropins AMP family is an example of 

a hydroxylated lysine peptide and only cecropin B has shown anti-fungal activity 
193

. 

Halocyamines, tetrapeptides from Halocynthia roretzi, are an example of 

dihydroxyphenylalanine modified AFP 
194

.  Styelin D and callinectin are examples of anti-

microbial peptides with dihydroxyarginine and hydroxyl-tryptophan residues, respectively 
192, 194

, 

but both peptides did not display fungicidal activity. 

Methylation: The most common sites of methylation are tyrosine and lysine residues.  Clavanins 

are natural AMPs with a methylated  tyrosine 
195

; however, none of them has exhibited 

antifungal properties.  The synthesized AFP cecropin A-melittin had trimethyl-lysines and a 

study has shown that the methylation decreased the hemolytic activity and promoted the 

selectivity against certain microorganisms
196

.   
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Cyclization.  Although not considered a posttranslational modification, cyclization has given 

unique properties to peptides, such as increasing antifungal activity, reducing  the toxicity and 

improving the stability in proteases 
197

.  Tunicyclins B 
198, 199

 and cyclopsychotride A 
200

 are 

examples of cyclic naturally occurring AFPs.  Moreover, there are several examples of synthetic 

antifungal peptides such as RTD-1, where the cyclization has improved the antifungal activity 
201

 

1.2.3 Disadvantages of antifungal peptides and proposed solutions. 

The general disadvantages of AMPs, and AFPs specifically, could be summarized as: poor oral 

and tissue absorption, rapid in vivo degradation, poor stability (shelf-life) and potential 

immunogenicity.  Moreover, most peptides are rapidly excreted, poorly bioavailable and salt 

sensitive. Human toxicity and hemolysis have also been observed with some AMPs.  These 

issues will be addressed in detail below.  

Stability.  The stability is not an issue for naturally occurring AMPs within their environment for 

multiple reasons.  First, most of the AMPs are derived by proteolysis of larger proteins or 

peptides; therefore, equilibrium exists between peptide generation and degradation.   For 

example, buforin II is generated from histone 2A 
202

, lactoferricin from lactoferrin 
203

 and histatin 

5 from histatin 1. Second, small peptide fragments that are generated via proteolysis of the active 

peptide, in some cases, maintain some antifungal activity.  For example, 12 fragments of histatin 

1 have been identified and most of them retain antifungal activity.  Finally, there might be 

something within the physiological environment that supports peptide stability and increase the 

half-life.  For instance, the ability of histatin 1 to bind to hydroxyapatite within the enamel 

pellicle decreases the proteolytic degradation 
191

.  
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For synthetic peptides, stability and bioavailability problems may be solved via peptide 

formulations or modifications.  Several approaches have been used to improve the stability, such 

as liposome-encapsulation 
204

 , use of peptoids 
205

 , D-conformation-based peptide
206

 , and β-

peptides
207

.  The use of different peptide formulations has been the major approach to improve 

peptide bioavalability, delivery, and stability.  The melittin-lipid disk is an example of a 

formulated peptide in which polyethylene glycol-stabilized lipid was fused to the melittin peptide 

208
.  Carbon nanotubes and magnetics nanoparticles are useful tools for drug delivery; therefore, 

this may represent a promising avenue of research for peptide delivery 
209

 . 

Toxicity.  In therapeutics, drug toxicity is directly proportional to the concentration; however, the 

toxic concentration varies between the drugs.  Natural AFPs, within their tissues, have shown a 

high target specificity and low toxicity.  Most multicellular organisms express a cocktail of 

peptides within their `defensive' tissues,  in which the cocktail contains several classes of AMPs 

and AFPs 
93

.  Furthermore, these peptides probably have a synergistic effect and work at low 

concentrations far from their toxic levels 
210

.  However, the synergistic effect is absent in most in 

vitro assays, since each AFP is tested individually.  Furthermore, different isoforms of the same 

peptide could be present at the same time.  For example, different forms of Rhesus θ defensins 

(RTD-1, RTD-2, and RTD-3) have been identified in leukocytes of Rhesus macaques, where the 

cellular abundance of the three peptides (RTD1, RTD-2 and RTD-3) differs at a ratio of 29:1:2, 

respectively.  In spite of having multiple forms, all of the RTD isoforms have the same 

antifungal activity; however, they do display distinct antibacterial activity as well as differences 

in net charges RTD-1 (+5), RTD-2 (+6), and RTD-3 (+4) 
201

. 

 Specificity.  One major challenge in designing new antifungal peptides is achieving high 

specificity toward fungal cells. The perfect AFP would ideally have an affinity for multiple 
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targets within the microbe and the targets must be accessible and relatively immutable. 

Unfortunately, this is not the case for most AFPs, either natural or synthetic.  Host cell toxicity 

might be solved after a full understanding of the mechanism by which the peptides recognize 

their target 
92, 117

.   The literature has provided several examples in which the cytotoxicity of 

synthetic peptides was reduced successfully via modifications in the peptide composition 
211-213

. 

However, each case is unique and the solutions have varied.  An example of reduced toxicity was 

observed with the melittin peptide, where cytotoxicity was reduced by fusing melittin with 

cecropin A or the magainin peptide rather than by amino acids substitution 
214, 215

. 

  Salt sensitivity.  Salt sensitivity may present the greatest challenge for the majority of AMPs as 

well as AFPs, for clinical use since they are typically salt-sensitive at physiological concentration 

of ions.  Table 4 shows synthetic and natural AFPs that seem to maintain activity in the presence 

of salts.  Since salt insensitivity is only found in a small number of peptides, the general 

biochemical properties of these peptides will be discusses briefly as potential solutions for other 

peptides that exhibit salt-sensitivity. 

One parameter is the net charge that varies dramatically between anionic and cationic peptides; 

however, the majority of salt insensitive peptides are cationic with net charge greater or equal to 

+4 at pH 7.  There is no preferred secondary structure, as it varies between α-helical and β-sheet. 

The amphipathicity has been observed in this group with an exception of RTD-1 which did not 

display any amphipathicity, and surface models have suggested a clustering of positive charges 

138
.  The second parameter of salt-insensitive peptide is the secondary structure.  The fungicidal 

activity of these structured peptides is accomplished via pore formation or membrane 

permeabilization.  This group can be subdivided into two groups, helices and sheets, where each 

group has something in common other than secondary structure.  By looking to the amino acid 
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composition, most β-structure peptides have more arginine than lysine and also share the ability 

to form disulfide bonds.  Studying the peptide structure and amino acid compositions of β- 

peptides sheds light on the role of disulfide bonds and cyclization in salt tolerance.  It has been 

found the cyclization and disulfide bonds are essential for the salt insensitivity in RTD-1
216

 , TP-

1
217

,  and arenicin-1
218

 peptides.  However, the essential factor in potegrin 1 was structure 

rigidity and the presence of disulfide bonds did not have any effect 
136

.  The major general 

conclusion is from looking at salt-insensitive β-peptides is that disulfide bonds and/or structure 

rigidity may be crucial to salt insensitivity. 

 On the contrary, α-helical peptides did not have any cysteine nor disulfide bonds.  Peptides in α-

helical subclass did not show any common essential feature.  The only observed similarity is that 

the majority of α-helices have lysine more than arginine in their sequence; however,  it has been 

reported that the substitution of arginine to lysine in Ci-MAM-A24 increased salt sensitivity 
219

 . 

In addition, arginine was not always preferred and in some cases the increase in arginine 

percentages led to increase salt sensitivity 
202

.   DCD-1 is a unique example of α-helical peptide, 

that has been shown to be only 20% active at low salt conditions and the activity is retained by 

increase the salt content; however, this is not the case for the majority of AFPs.  Furthermore, 

DCD-1 is also affected by pH since basic pH was the optimal 
220

.  

1.3 Histatins  

Human histatins are a family of small histidine-rich peptides secreted in saliva by parotid, 

submandibular, and sublingual glands
221

.  Histatins have been also identified in some higher 

primates species including  the great ape, Hylobatidae and Cercopithecidae 
222

.  Histatins are 

important members of innate immunity and are essential for dental and oral defense 
223

. 
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Moreover, histatins has been shown to have other functions including  wound healing and 

formation of the acquired enamel pellicle 
224

.  Research has shown the entire histatin peptide 

family is encoded by two genes (HIS1 and HIS2) which are localized on chromosome 4q13.  

Both HIS1 and HIS2 are exclusively expressed in the salivary glands where the full length 

precursors , histatin 1 and histatin 3,  are synthesized,  respectively 
225

.  The other members of 

histatin family are generated by an irresolute proteolytic pathway
226, 227

 or via alternative splicing 

of the genes 
228

.  The size of human histatins ranges from 7 to 38 amino acids in length
103, 228

.  

The common feature in all histatin members is the fact they are enriched in histidine, lysine, and 

arginine residues.  The predominant histatins are histatin 1, 3 and 5 consisting of 38, 32 and 24 

residues, respectively.  These three peptides comprise around 80 % of histatin family.  Their 

average concentrations in the parotid saliva ranges from 7 to 28 µg/ml for histatin 1, 6 to 43 

µg/ml for histatin 3, and 10 to 43 µg /ml for histatin 5.  Furthermore, the mean concentrations for 

histatin 1, histatin 3, and histatin 5 in submandibular and sublingual saliva are 28 to 122 µg/ml, 5 

to 75 µg/ml, and 26 to 90 µg/ml, respectively. 

 1.3.1 Histatin 5  

Histatin 5 is composed of 24 amino acids and it is generated from a proteolytic processing of 

histatin 3.  Moreover, histatin 5 is the most potent member of the histatin family against fungal 

species.  Besides its role as an antimicrobial peptide (both fungicidal  and bactericidal  ) 
229-231

, 

histatin 5 enhances the glycolytic activity of oral micro-organism 
226

, inhibits lipopolysaccharide 

mediated activities
232

, prevents co-aggregation and hemagglutination in certain bacteria 
228

, 

inhibits bacterial enzymes such as collagenase and trypsin protease
233

, inhibits Candida albicans 

colonization in oral cavity 
234

, reduces nickel allergy via direct binding with Ni(II) ions
235

, 
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controls oral infection via down regulating the IL-8 responses 
236

 and promotes the secretion of 

histamine from mast cells
237

. 

1.3.1.1Unique features of histatin 5. 

 Histatin 5 has some unique features not found in other AMPs.  First, histatin 5 is enriched in the 

amino acid histidine, which has a pKa of 6.0 for the side chain.  Thus, this can result in the 

alteration of the peptide net charge as well as antimicrobial activities.  Histatin 5 net charge is 

dramatically changed by altering the pH from 4 to7 to 9 , at pH 4.5 the net charge is +12.9, at pH 

7 it is  +6.6 and at pH 9 it is +3.6 
238

.  Second, histatin 5 has an ability to form complexes with 

several ions metals that may promote histatin 5 killing activity via binding to divalent cations 

which are essential to microorganisms life cycle
239

.  Finally, Histatin 5 is adsorbed to 

hydroxyapatite on the teeth
240

.  This feature prolongs histatin 5 life via protection from 

proteolysis by proteases in the oral cavity.  The binding to teeth lowers the overall antimicrobial 

activity, but it is sufficient to prevent Candida albicans colonization of the oral cavity
234

.  

1.3.1.2 Histatin 5 spectrum of antimicrobial activity. 

 Histatin 5 shows a broad spectrum of activity against oral and non-oral pathogens , including 

fungi (Candida albicans, Cryptococcus neoformans, Candida stellatoidea, Candida tropicalis, 

Candida glabrada, Trichosporon pullulans, Candida guillermondii, Candida lambica, Candida 

pseudotropicalis, Candida krusei, and Candida parapsilosis) , bacteria (Streptococcus mutans, 

Porphyromonas gingivalis, Actinomyces viscosus, Actinomyces naeslundii, methicillin resistant 

Staphylococcus aureus and Actinomyces odontolyticus )
228, 231, 241

 as well as protozoa 

(Leishmania donovani ) 
242

.  
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1.3.1.3 Secondary structure of histatin 5.  

Histatin 5 has been studied extensively; therefore, the biophysical properties and NMR structure 

have been examined.  Regarding the secondary structure, histatin 5 has no defined structure in 

water, but it adopts helical conformations in hydrophobic environments such as trifluoroethanol 

and synthetic lipids 
139, 243, 244

.   The NMR structure of  histatin 5 in aqueous and non-aqueous 

solution has been solved
244

.  The NMR studies have been also carried for some of histatin 5 

derivatives  including the C-16 peptide
243

 and P-113 peptide
245

.  The NMR studies supported the 

other biophysical studies suggesting that histatin 5 and its derivatives have a random coil 

structure in aqueous solution, but in a hydrophobic environment  or biological membrane , they 

adopt a helical conformation and the positively charged residues are clustered together to form a 

hydrophilic patch.  The electrostatic and hydrogen-bonding interaction of cationic and polar 

residues with the head groups of the plasma membranes of target cells are the reasons for 

induced helical structure 
243

.  The ability to form α-helical structures is essential for the activity 

in most of the cationic peptides
246, 247

; however, the role of helicity in histatin 5 activity remains 

a question.  Situ et al. have demonstrated that  reducing  the ability to form a helical structure in 

histatin via replacing  three amino acids with proline (a helix breaker) has little effect on the 

fungicidal activity 
219

.  

1.3.1.4 Amphipathicity and hydrophobicity of histatin 5.  

Amphipathicity is an essential requirement for AMPs activity, especially the pore-forming 

peptides 
246, 248

; however, it has been suggested that histatin 5 exhibits a weak amphipathic 

structure as compared to other AMPs.  Furthermore, increasing the amphipathic character of 

histatin 5 via histidine replacement did not improve the activity 
249

.  Another unique histatin 5 
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character is the hydrophobicity.  In a comparative study between histatin 5 and other AMPs 

(PGLa, dhvar1, dhvar4, KL, CRAMP18, SPLN14-27, SPLN28-41, equinatoxin II and magainin 

2) using a hydrophobicity plot that is generated by the mean of hydrophobicity, histatin 5 would 

appear as a “globular “ protein region, while the other AMPs were ranked as “surface-

seeking”
250

 .  The hypothetical difference between them is that part of histatin 5 has only little 

affinity to biological membranes while another portion contains sequences with high affinity to 

biological membrane 
131, 139

.  

1.3.1.5 Charge of histatin 5. 

The net charge of the cationic peptides plays an important role in target recognition as it initiates 

the interaction with the negatively charged plasma membrane and the AMPs.  Therefore, 

increasing the peptide cationic charge might lead to increased activity.  Unlike other AMPs, 

histatin 5 didn’t follow this rule, as its fungicidal activity remained the same at different pH 

while the net charge shifted from +12.9 at pH 4 to + 6.6 at pH 9 
251

.  

1.3.1.6 The amino acids composition of histatin 5.  

In some AMPs the full length peptide is not essential to achieve optimal antimicrobial activity 

and the activity can be restricted to a smaller fragment of the peptide 
252-254

.  Multiple studies 

have analyzed the amino acid composition of histatin 5 in attempts to identify the functional 

sequence relevant for fungicidal activity.  To-date, multiple histatin 5 fragments have shown a 

comparable activity to the full peptide and one fragment has an activity exceeding histatin 5.  

The fungicidal activity of C-16 peptide, which represents the C-terminal 16 amino acid of 

histatin 5, and Dh-5 peptide, which represents the C-terminal 14 amino acid of histatin 5, was 

close in activity to the full length 24 amino acid histatin 5.  Since that discovery, Dh-5 has been 
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referred to as the histatin 5 functional domain 
139, 255, 256

.  A study has claimed the identification 

of a six amino acid motif (KRKFHE) in all active histatins.  In addition, the same study also 

identified H10-1 peptide, a 10 amino acid fragment with significant antifungal activity.  

However, the activity of H10-1 was only 30% of the full length histatin 5.  Later, P-113, a twelve 

amino acid fragment, was identified with fungicidal activities higher than parent histatin 5 

peptide.  In a comparative analysis between histatin 5 and P-113, the fungicidal activity was 

improved in P-113 with the LD50 reduced nearly two-fold from 7.3 µg/ml to 3.9 µg/ml under the 

assay conditions used. 

 1.3.1.7 Structure-function relationship for histatin 5.  

In spite of the fact that histidine is the predominant amino acid in histatin 5, replacing all of the 

histidines in the histatin 5 derivative termed P-113 with phenylalanine did not affect the 

fungicidal activity in vitro.  Moreover, the histidine side chain will be uncharged at physiological 

pH.  Nevertheless this finding did not exclude the role of histidine in vivo since the presence of 

the histidines could be essential for peptide stability and tissue binding 
257

.  

Despite the above finding, the role of the positive charges that arise from lysine and arginine has 

not been eliminated.  Any change in Lys-11 or Arg-12 or Lys-13 or Arg-22 in histatin 5 via 

replacing them with an uncharged amino acid leads to a reduction in the fungicidal activity or 

complete inhibition  of activity
228

 .  Another study also confirmed this result by showing the 

replacement of Lys-11 and Arg-22 with glutamic acid and glycine, respectively, inhibits histatin 

5 activity and eliminates peptide localization to the cytoplasm 
238

.  This phenomenon has been 

observed not only with the full length histatin 5, but also with the active derivatives (P-113 and 

Dh5).  A single replacement of  Lys-13 with threonine or glutamic acid in Dh5 was sufficient to 
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diminish the fungicidal activity 
241

.  Furthermore, replacement of Lys-2 and Lys-10 in another 

histatin 5 derivative (P-113) peptide with glutamine abolished activity.  Additionally, replacing 

any of the arginines in P-113 with glutamic acid leads to reduced activity 
257

.  A single lysine 

substitution for a histidine in Dh5 peptide increases the candidacidal activity of the peptide by 

almost two-fold 
249

.  Taken together, these studies suggest that the lysine and arginine residues of 

histatin 5 are of greater relevance for fungicidal activity than the presence of the abundant 

amount of histidine residues. 

1.3.1.8 Structural modifications of histatin 5.  

Histatin 5, along with its derivatives, has undergone several structural modifications in an 

attempt to improve the antimicrobial activity and to increase the stability of the peptide.  The 

modifications include: cyclization, acetylation of N-terminus and lysine residues, amidation of 

the C-terminus, the addition of a hydrophobic lipid tail, and the use of D-conformation amino 

acids as well as other amino acid derivatives. 

 Peptide cyclization has been used to improve the activity and serum stability of antimicrobial 

peptides
124

 .  For example, the cyclic form of histatin1 has a superior activity to the linear peptide 

258
.  The cyclization did not only increase the biological activity, the receptor affinity also 

improved through the stabilization of the peptide conformation
253

.   This has not been the case 

with histatin 5 as head-to-tail cyclization did not affect its antimicrobial activity 
259

.  

Nonetheless,  DB2-121, a cyclic analog of histatin 5 has shown potent activity and less toxicity 

than the linear version 
260

. 

 One of the major problems with AMPs in general and histatin 5 specifically is the susceptibility 

to protease degradation.  Modification of N-terminus and lysines via acetylation or methylation 



36 
 

is a method that has been used to improve the peptides stability 
261

.  The acetylation of histatin 5 

N-terminus and methylation of lysine did not show any effect on histatin 5 activity, while the 

acetylation of the lysines abolished the fungicidal activity
262

.  In general, it has been observed 

that amidated peptides exhibit higher antimicrobial activity over a peptide with a free C-terminus 

263
.  This improvement could be explained by the fact that the amidated peptides have a higher 

positive charge than those with a free C-terminus 
263

.  Furthermore, the amidation may enhance 

the antimicrobial activity by stabilizing the α-helical structure at the membrane interface and/or 

by improving the peptide stability
159, 264

.  The amidation of histatin 5 analogs , Dh5 and P-113, 

increased the candidacidal activity almost twofold 
249

.  

The conjugation of a fatty acid to antimicrobial peptides has been used as a method to enhance 

the activity and selectivity of the peptide
265

.  This effect result from increasing the hydrophobic 

interaction between the plasma membrane and the peptide
266

.  Research has shown that the 

addition of an eight carbon hydrophobic tail to histatin 5 derivative H10-2 increased the 

antifungal activity approximately by 50% in comparison with the native peptide 
267

.  

Using peptide enantiomers has always been an ideal method to bypass peptide susceptibility to 

proteases and a way to improve peptide half-life.  D-amino acids have been used in histatin 5 and 

its derivative P-113 and the results were the same for both of them; the enantiomers had 

improved stability in proteases and exhibited the same fungicidal activities 
206, 257

 .  

As mentioned previously, all cationic antimicrobial peptides exhibit a similar problem, 

sensitivity to salts
270

.  This problem leads to inactivation of the antimicrobial activity of peptides, 

even at physiological salt concentrations 
271

.  Histatin 5 and its fragments are also salt sensitive 

and their activity was totally abolished in a presence of 150 mM NaCl 
257

.  However, a strategy 
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to increase salt resistance of the histatin 5 derivative peptide P-113 has been published.  The 

strategy is based on using uncommon amino acids via replacement of tryptophan or histidine 

residues with the bulky amino acids β-naphthylalanine and β-(4, 4′-biphenyl)-alanine 
272, 273

, 

respectively.  

1.3.1.9 Histatin 5 mechanism of action.  

The exact mode of action of histatin 5 remains unclear.  The proposed antifungal activity of 

histatin 5 occurs through a multi-step mechanism that involves binding, translocation and 

toxicity to fungal cells.  Unlike other AMPs, the binding of histatin 5 to the cell wall was 

proposed to be the first step 
150, 238, 274, 275

 with laminarin (β-1,3-glucan ) reported to modulate 

histatin 5 binding to Candida albicans 
275

.   Besides carbohydrate, histatin 5 has been shown to 

bind to the cell wall protein (Ssa2), which may facilitate the intracellular translocation
150

.  

The Ssa proteins are conserved members of the heat shock protein 70 family in yeast.  

Candida albicans only has two members: Ssa1p and Ssa2p.  It has been found that Ssa2, but not 

Ssa1, was required for histatin 5 translocation  into the cell
276

.  The role of Ssa2 in the fungicidal 

activity of histatin 5 has been the subject of debate since an ssa2Δ homozygous mutant was 

susceptible to histatin 5, demonstrating an activity that was only 25 % less than with an SSA2 

wild type strain.  Moreover, the role of a specific protein receptor would seem unlikely given that 

a histatin 5 derivative containing only D-amino acids were as active as the L-conformation.   

In addition other cell surface proteins, including polyamine transporters, have been suggested to 

have a role in histatin 5 translocation into cells.  Six different polyamine transporters have been 

identified in Candida albicans and named the Dur gene family.  However, the deletion of the 

Dur genes reduced the fungicidal activity of histatin 5, but did not completely abolish it. 

Nevertheless, the involvement of an energy-dependent process in histatin 5 killing mechanism 



38 
 

seems to be unanimously agreed upon, but at what stage in the process this occurs remains 

unresolved.  

Several models have been proposed to explain histatin 5 activity and intracellular targets.  The 

first model hypothesized that histatin 5 attaches and depolarizes energized mitochondria
238

.  The 

cause of death in this model was assigned to the generation of reactive oxygen species
277

 rather 

than loss of respiration, because Candida spp. are fully functional under anaerobic conditions 
275

. 

However, the role of ROS is disputed, as other studies showed ROS has no role in histatin 5 

induced yeast death 
278, 279

.  In another model, histatin 5 binds to cell membranes and increases 

the permeability, resulting in the efflux of cellular content, such as ATP
129

, ions (magnesium and 

potassium)
280

, and nucleotides
129

.  Moreover, it has been shown that loss of intracellular contents 

was facilitated by Trk1, a membrane potassium transporter after exposure to histatin 5
281

.  In this 

model, the fungicidal activity is achieved via disruption of cellular ionic balance instead of 

membrane integrity
273

.   In another proposed mechanism,  histatin 5  causes a disordered volume 

regulation and cell cycle arrest 
273

, which might be correlated to the loss of ATP
129

.  In summary, 

the mechanism of histatin 5 antifungal activity remains unresolved.  Any of the proposed models 

or a combination of the models may prove to be true. 
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Figure 1: Distribution of the net charge within anti-fungal peptides. The data were generated 

using the antimicrobial peptide database 
103

. 
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Figure 2: Distribution of the secondary structure within anti-fungal peptides. The data were 

generated using antimicrobial peptide database 
103

. 
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Figure 3: Percentage of the hydrophobic residues within anti-fungal peptides. The data were 

generated using the antimicrobial peptide database 
103

. 

 

 

 

 

 

 

 

 

 



42 
 

 

 

1-
10

11
-2

0

21
-3

0

31
-4

0

41
-5

0

51
-6

0

61
-7

0

71
-8

0

0

10

20

30

40

Peptide length

P
e
rc

e
n

ta
g

e

 

 

 

Figure 4:  Percentage of peptide length within anti-fungal peptides. The data were generated 

using antimicrobial peptide database 
103

. 
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Table 1:  Examples of cationic anti-fungal peptides sorted in ascending order by the net 

charge. 

Name Origin Sequence Activity Secondary 

structure  

Charge Ref. 

Heliomicin Heliothis 

virescens 

(worm) 

DKLIGSCVWGAVNY

TSDCNGECKRRGYK

GGHCGSFANVNCW

CET 

C. albicans 

C. neoformans 

Helix and 

Beta-1I2U 

+1 282 

Metchnikow

in 

Drosophila 

melanogaster 

HRHQGPIFDTRPSPF

NPNQPRPGPIY 

F. graminearum 

 

unknown +2 283 

Maximin 1 Bombina 

maxima (frog) 

GIGTKILGGVKTALK

GALKELASTYAN 

C. albicans unknown +3 284 

Ranatuerin 1 Rana 

catesbeiana 

(frog) 

SMLSVLKNLGKVGL

GFVACKINKQC 

C. albicans unknown +4 285 

Melittin Apis mellifera 

(bee) 

GIGAVLKVLTTGLP

ALISWIKRKRQQ 

C. albicans Helix-

1MLT 

+5 286 

Tachystatin 

A2 

Achypleus 

tridentatus 

(crab) 

YSRCQLQGFNCVVR

SYGLPTIPCCRGLTC

RSYFPGSTYGRCQR

Y 

C. albicans Beta-1CIX +6 287 

MBP-1 Maize, Zea 

mays L (plant) 

RSGRGECRRQCLRR

HEGQPWETQECMR

RCRRRG 

F. graminearum 

F. moniliforme 
Helix-CD +7 288 

Lactoferricin 

B 

Bos Taurus 

(cow) 

FKCRRWQWRMKKL

GAPSITCVRRAF 

C. albicans 

T. 

mentagrophytes 

T. rubrum 

(not all fungi) 

Beta-1LFC +8 289 

1AFP Aspergillus 

giganteus 

ATYNGKCYKKDNIC

KYKAQSGKTAICKC

YVKKCPRDGAKCEF

DSYKGKCYC 

F. sambucinum 

N. crassa 

A. niger 

(not all fungi) 

Beta-1AFP +9 290 

BMAP-27 Bos taurus 

(cow) 

GRFKRFRKKFKKLF

KKLSPVIPLLHLG 

C. albicans 

C. neoformans 
Helix-

2KET 

+10 291 

sBD-1 Ovis arues 

(shep) 

NRLSCHRNKGVCVP

SRCPRHMRQIGTCR

GPPVKCCRKK 

C. albicans unknown +11 292 

Buforin I 

 

bufo 

gargarizans 

(frog) 

AGRGKQGGKVRAK

AKTRSSRAGLQFPV

GRVHRLLRKGNY 

C. albicans 

S. cerevisiae 

C. neoformance 

unknown +12 293 

CXCL14 

 

Homo sapiens 

 

SKCKCSRKGPKIRYS

DVKKLEMKPKYPHC

EEKMVIITTKSVSRY

RGQEHCLHPKLQST

KRFIKWYNAWNEK

RRVYEE 

C. albicans unknown +13 294 

CodCath 

 

Gadus morhua 

(fish) 

SRSGRGSGKGGRGG

SRGSSGSRGSKGPSG

SRGSSGSRGSKGSRG

GRSGRGSTIAGNGN

RNNGGTRTA 

C. albicans unknown +15 295 
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Table 2: Anionic anti-fungal peptides sorted in ascending order by the net charge. 

Name Origin Sequence Activity Secondary 

structure  

Charge Ref. 

Tn-AFP   Trapa atans 

(Plant fruit) 
LMCTHPLDCSN C.tropicalis  Unknown  -1 296 

An-AFP Aspergillus 

niger  

(Fungi) 

SKYGGECSVEHNTCT

YLKGGKDHIVSCPSAA

NLRCKTERHHCEYDE

HHKTVDCQTPV 

C. albicans 

S. cerevisiae 

T. beigelii 

F. solani 

F. oxysporum 

A. fumigatus 

A. flavus 

Unknown -1 297 

Kalata B1 Viola 

betonicifolia 

(plant) 

GLPVCGETCFGGTCNT

PGCTCTWPICTRD 

C. kefyr Helix and 

Beta- 1PT4  
-1 298, 

299 

PvD1 Phaseolus 

vulgaris 

(plant seed) 

KTCENLADTYKGPCFT

TGSCD 

C. albicans, 

 C. parapsilosis,  

C. tropicalis 

C. 

guilliermondii,  

K. marxiannus  

S. cerevisiae 

 

Expected 

Helix and 

Beta  

 

-1 166, 

300 

human 

Dermcidin 

Homo sapiens 

(sweat) 

 

SSLLEKGLDGAKKAV

GGLGKLGKDAVEDLE

SVGKGAVHDVKDVLD

SV 

C. albicans Helix-2KSG -2 161 

EP-20 Xenorhabdus 

budapestensis 

(Bacteria)  

EGPVGLADPDGPASAP

LGAP 

 

P. capsici 

V. dahliae 

Unknown -3 162 

Beta-

amyloid 

peptide 

including 

beta -42 

Homo sapiens DAEFRHDSGYEVHHQ

KLVFFAEDVGSNKGAI

IGLMVGGVV 

 

C. albicans Helix  

-1IYT 

-3 160 

Ls-Stylicin1 Litopenaeus 

stylirostris 

SSFSPPRGPPGWGPPC

VQQPCPKCPYDDYKC

PTCDKFPECEECPHISI

GCECGYFSCECPKPVC

EPCESPIAELIKKGGYK

G 

F. oxysporum  Unknown 

 

-3 163 

Gm anionic 

peptide-2 

Galleria 

mellonella 

(Moth) 

EADEPLWLYKGDNIER

APTTADHPILPSIIDDV

KLDPNRRYA 

P. pastoris 

P. stipites 

C. albicans 

C. fructus 

Z. marxianus 

Unknown -4 302 

Microplusin  Rhipicephalus 

(Boophilus) 

Microplus 

(cattle tick) 

HHQELCTKGDDALVT

ELECIRLRISPETNAAF

DNAVQQLNCLNRACA

YRKMCATNNLEQAMS

VYFTNEQIKEIHDAAT

ACDPEAHHEHDH 

 

S. cerevisiae 

C. neoformans 

Helix- 2KNJ -8 164 
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Table 3: Example of neutral anti-fungal peptides.  

Name Origin Sequence Activity Secondary 

structure  

Ref. 

Aurein 1.1 

 

Litoria 

raniformis 

(frog) 

GLFDIIKKIAESI 

 

GLFDIIKKIAESF 

C. albicans 

C. Tropicalis  

C. Krusi 

C. Parapsilosis 

C. glabrata 

Helix-2F3A 

1VM5 

303 

Maculatin 1.1 Litoria 

genimaculate 

(frog) 

GLFVGVLAKVAAH

VVPAIAEHF 

C. albicans Helix 304 

Skin peptide 

tyrosine-

tyrosine 

Phyllomedusa 

bicolor (frog) 

YPPKPESPGEDASPE

EMNKYLTALRHYIN

LVTRQRY 

C. albicans 

A. fumigatus 

C. neoformans 

unknown 305 

-Galleria 

defensin 

-Galleria 

defensin like 

Galleria 

mellonella 

(moth) 

DTLIGSCVWGATNY

TSDCNAECKRRGYK

GGHCGSFLNVNCW

CE 

 

DKLIGSCVWGATNY

TSDCNAECKRRGYK

GGHCGSFWNVNCW

CEE 

C. albicans 

G. candidum 

C. neoformans 

F. oxysporum 

unknown 306 

 

302 

Gm cecropin 

D-like peptide 

Galleria 

mellonella  

(moth) 

ENFFKEIERAGQRIR

DAIISAAPAVETLAQ

AQKIIKGGD 

A. niger unknown 302 

Histatin 2 Homo sapiens RKFHEKHHSHREFPF

YGDYGSNYLYDN 

C. albicans unknown 307 

Temporin-

1PRb 

Rana pirica 

(frog) 

ILPILGNLLNSLL C. albicans 

 >100 µM 

unknown 308 

Neuropeptide 

Y 

Homo sapiens 

 

YPSKPDNPGEDAPA

EDMARYYSALRHYI

NLITRQRY 

C. neoformans 

C. albicans 

C. krusei 

C. utilis 

Helix-1RON 169 

309 

GHH20 

Histidine rich 

glycoprotein 

Homo sapiens 

 

GHHPHGHHPHGHHP

HGHHHPH 

C. parapsilosis  

C. albicans 

Helix 310 

 

Ha-DEF1 

 

Helianthus 

annuus 

(sunflower) 

ELCEKASQTWSGTC

GKTKHCDDQCKSW

EGAAHGACHVRDG

KHMCFCYFNC 

S. cerevisiae unknown 311 

Drosomycin-2 

 

Drosophila 

melanogaster 

DCLSGKYKGPCAV

WDNEMCRRICKEEG

HISGHCSPSLKCWCE

GC 

N. crassa 

G. candidum 

S. cerevisiae 

Helix and Beta-

1MYN 

312 

Sm-AMP-D1 

 

Stellaria media 

L 

(plant) 

KICERASGTWKGICI

HSNDCNNQCVKWE

NAGSGSCHYQFPNY

MCFCYFDC 

Phytopathogenic 

fungi 

unknown 313 

Brevinin-1-

OR3 

Odorrana 

rotodora (frog) 

 

IDPFVAGVAAEMMQ

HVYCAASKKC 

C. albicans unknown 168 

http://www.rcsb.org/pdb/explore/explore.do?structureId=1MYN
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OR6 

OR8 

OR9 

 

IIPFVAGVAAEMME

HVYCAASKKC 

ILPFVAGVAAEMME

HVYCAASKKC 

ILPFVAGVAAMEME

HVYCAASKKC 

Andersonin-

X1 

Odorrana 

andersonii 

(frog) 

GLFSKFAGKGIVNFL

IEGVE 

C. albicans unknown 168 

GP-19 

 

Xenorhabdus 

budapestensis 

NMC-10 

(bacteria) 

GPVGLLSSPGSLPPV

GGAP 

F. omysporum 

P. capsici 

V. dahlia 

F.graminearum 

unknown 162 
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Table 4: Salt-resistant anti-fungal peptides.  

Name Sequence  Source Seconda

ry 

structur

e 

Disulfide 

bond 

Activity 

(MIC) 

Net 

char

ge 

Ref. 

Thanatin 

 

Thanatin-1 

 

S-Thanatin 

 

 

GSKKPVPIIY

CNRRTGKC

QRM 

 

 

GSKKPVPIIY

CNRRGKCQ

RM 

 

 

 

GSKKPVPIIY

CNRRSGKCQ

RM 

Podisus 

maculiventris 

(insect) 

recombinant 

beta 1(C11-

C18) 

-N. crassa           

  0.6-1.2 µM 

 

-B. cinerea             
1.2-2.5 µM 

 

-N. haematococca   

1.2-2.5 µM 

 

-T. viride                 

1.2-2.5 µM 

 

-A. brassicola          

2.5-5 µM 

 

-F. culmorumn       

2.5-5 µM 

 

-A. pisi                       

5-10 µM 

 

-F. oxysporumn      
10-20 µM 

 

-C.albicans    

 25-50 µM 

 

+6 

 

314 

RTD-1 

(theta-

defensin) 

RTD-2 

RTD-3 

 

GFCRCLCRR

GVCRCICTR 

 

 

GVCRCLCRR

GVCRCLCRR 

 

 

GFCRCICRR

GFCRCICTR 

Rhesus 

Macaque  

(monkey) 

beta 3 (C3-

C16) 

(C5-C14) 

(C7-C12) 

 

-C.albicans   

1μg/ml 

 

-C. neoformans 

4μg/ml 

 

+5 

+6 

+4 

216 

201 

Tachyplesin 

I  

Tachyplesin 

II 

 

KWCFRVCY

RGICYRRCR 

 

RWCFRVCY

RGICYRKCR 

Tachypleus 

tridentatus 

(crab) 

beta 2(C3-

C16) 

(C7-C12) 

 

-C. albicans  

3.1 μg/ml 

 

-C. neoformans  

1.56 μg/ml 

 

-C. kefyr  

0.9 µM 

 

C. tropicalis  

+6 137 

217 
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0.5 uM 

Arenicin-1 RWCVYAYV

RVRGVLVR

YRRCW 

Arenicola 

marina 

Sand worm 

beta 1(C3-

(20) 

 

-C. albicans  

4.5 μg/ml  

+6 218 

Protegrin 1 RGGRLCYCR

RRFCVCVGR 

Pig beta 2 (C6-

C15) 

(C8-C13) 

-C. neoformans  

2 μM 

 

-C. albicans  

4 μM, 

+6 315 

Ci-MAM-

A24 

WRSLGRTLL

RLSHALKPL

ARRSGW 

Ciona 

intestinalis 

helix no -C. albicans  

6 μM 

 

-C. albicans (SC 

5314)  3.1  μM 

 

+6 219 

N-[RLLR]2-

C 

RLLRRLLR synthetic helix no -C. albicans  

0.5 μg/ml 

 

-S. cerevisia  

0.5 μg/ml 

 

-C. neoformans 

 0.5 μg/ml 

+4 270 

P-18  KWKLFKKIP

KFLHLAKKF 

synthetic helix no C. albicans  

2-4 μM 

+7 297 

human 

Dermcidin 

(DCD-1) 

rDCD-1L 

 

SSLLEKGLD

GAKKAVGG

LGKLGKDA

VEDLESVGK

GAVHDVKD

VLDSV 

 

SSLLEKGLD

GAKKAVGG

LGKLGKDA

VEDLESVGK

GAVHDVKD

VLDSVL 

Homo 

sapiens 

 

 

recombinant 

helix no  

-C. albicans  

10 μg /ml 

 

-C. albicans 

 12 μg /ml 

 

-2 220 

 

316 

Melittin GIGAVLKVL

TTGLPALIS

WIKRKRQQ 

Apis mellifera 

(insect) 

helix no NA +5 286 

Pelteobagrin

  

GKLNLFLSR

LEILKLFVG

AL 

Yellow catfish unknown no -C. albicans 

5.4 μM 

+2 317 
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Chapter 2 

Analysis of wild-type, enantio, retro and retroenantio derivatives of the Histatin 5 16mer  
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2.1 Introduction 

Candida species are the fourth most common cause of nosocomial blood infections in the United 

States, resulting in a mortality rate of up to 40 % 
1
.  The estimated health care costs for the 

treatment of Candida infections is approximately 1.8 billion dollars annually 
2
.  Given the 

morbidity and mortality associated with Candida infections, and the increased incidence of drug-

resistant Candida species, there is a strong emphasis on the development of new anti-fungal 

drugs with novel mechanisms-of-action 
3
.  To this end, antimicrobial peptides (AMPs) are 

considered a promising alternative to the traditional chemical antifungal drugs that are currently 

available.  Antimicrobial peptides (AMPs) are known to play an important role in the human 

innate immune response against pathogenic and opportunistic microorganisms 
2
. In addition, 

some of these naturally occurring peptides have displayed anti-fungal activities with distinct 

modes of action 
4, 5

. AMPs also offer the advantage of higher selectivity against target organisms 

with reduced host toxicity as compared to the currently available anti-fungal drugs.  Thus, a 

logical starting point in the development of novel anti-fungal peptides would be to identify a 

naturally occurring peptide with fungicidal activity and seek to enhance that activity.  

Histatins are a family of naturally occurring peptides found on the mucosal surfaces of the oral 

cavity, a common location of Candida infections 
7
. In fact, the oral cavity is one of the 

predominant sites of Candida infection in the human body, with Candida albicans being the 

most commonly isolated 
8
.  In oral cavity, there are actually five distinct AMPs; however, only 

three exhibit significant anti-fungal activity:  HNP1-4 , histatins, and β-Defensins 
9
. The histatins 

are a family of histidine-rich cationic peptides produced by the human parotid, submandibular, 

and sublingual salivary glands 
10, 11

 . Histatin 5 is one member of the histatin peptide family that 

has been shown to possess the most potent fungicidal activity and it has been extensively 
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characterized
4, 13

.  Moreover, histatin 5 is among the smallest of the AMPs, making it 

economically suitable for development as an antifungal compound.   

Histatin 5 is a twenty-four amino acid peptide whose mechanism of action has been examined in 

detail; however, the mechanism by which it kills fungi remains controversial.  Two distinct 

mechanisms-of-action have been proposed, a membrane lysis mechanism and a nonlytic 

mechanism.  In the membrane lysis mechanism, histatin 5 binds directly to the lipids of the 

Candida plasma membrane, increases membrane permeability, and consequently causing cell 

death due to loss of membrane integrity 
14, 15

.  In contrast, the non-lytic mechanism suggests that 

histatin 5 targets the metabolic activity of C. albicans, where the killing would result from the 

inhibition of cellular respiration via depolarization of the energized mitochondrion and the 

inhibition of ATP production
16,17

. 

To target the mitochondria for inhibition, histatin 5 must be transported across the plasma 

membrane.  The translocation of histatin 5 across the plasma membrane has been proposed to 

occur by multiple mechanisms.  Artificial liposome experiments have suggested that the 

translocation of histatin 5 is independent of any active endocytic pathways 
14

; whereas, several in 

vivo studies have suggested that a plasma membrane protein Ssa2 is essential for the histatin 5 

translocation process
18, 19

.  However, the involvement of a specific protein receptor in histatin 5 

translocation and subsequent antifungal activity seems unlikely since it was found that a histatin 

5 derivative containing only D-amino acids was as active at the native peptide containing L-

amino acids in fungicidal activity
20, 21

.  
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Several studies have shown that the full-length twenty-four amino acid peptide is not required for 

histatin 5 fungicidal activities since a truncated peptide, termed C-16 (a 16 amino acid fragment 

of histatin 5), retains the full fungicidal activity 
20

.  Since histidine is a major substituent in 

histatin, the net charge for histatin 5 should be affected by pH.  Moreover, changing the pH from 

acidic to basic is sufficient to shift the net charge of the peptide from +14 to +5 based on 

computational analyses.  Surprisingly, histatin 5 and C-16 retain the same activity against 

Candida albicans over a broad range of pH (from pH 5 to 9); indicating the optimal number of 

positive charges and their role in fungicidal activity of histatin 5 remains unknown.  

For the studies described in this chapter, histatin 5 has been selected as a model peptide.  

Moreover, the 16 amino acid derivative of histatin 5 (C-16) was used since it is smaller, yet 

retains antifungal activity indistinguishable from the 24 amino acid peptide found naturally [20].  

The work presented in this chapter focuses on understanding the structural requirements for the 

fungicidal activity of histatin 5 using C-16 as a model.  A simple approach was used to initially 

examine the structural requirements of the peptide, namely to evaluate whether the linear order 

of amino acids from N- to C-terminus or the enantiomeric form of the peptide affects the anti-

fungal activity.  To address these questions, four C-16 histatin 5 derivatives were synthesized: 

the wild-type C-16 peptide; C-16 peptide in which the amino acid sequence is reversed (retro-C-

16); the wild-type C-16 with D-amino acids (enantio); and the retro-C-16 peptide with D-amino 

acids (retroenantio).  The availability of these four histatin 5 derivatives allowed us to address 

the relevance of the specific amino acid sequence as well as the stereochemistry of the peptide as 

it relates to anti-fungal activity.   

 



81 
 

 2.2 Materials and Methods  

 

Peptide synthesis. N-Fmoc protected amino acids and Wang resin was purchased from 

NovaBiochem (San Diego, CA) and Advanced Chemtech (Louisville, KY), respectively.  All 

peptides were synthesized on a Model 433A solid-phase peptide synthesizer (Applied 

Biosystems; Foster City, CA) using the Wang resin and Fmoc-protected amino acids.  To 

improve the synthesis yields, modified FastMoc chemistry was used with extended deprotection 

and coupling times.  After synthesis, the peptides were deprotected and cleaved from the Wang 

resin using a high concentration TFA (trifluroacetic acid) cleavage cocktail consisting of 85% 

TFA, 5% dH2O, 5% triisopropylsilan, and 5% phenol.  The resin was allowed to mix in the 

cocktail solution at room temperature for 3 h then precipitated in 50 ml 1:1 v/v methyl-t-butyl 

ether/hexane per ml of cleavage cocktail.  The peptides were subsequently dissolved in 1:1 v/v 

acetonitrile/ddH2O and recovered by lypholization under high vacuum. Crude peptides were 

purified on a PRP-3 reverse phase column (7 by 305 mm; Bio-Rad, Hercules, USA) on a Hitachi 

L7100 HPLC instrument using a linear gradient of 0 – 30% acetonitrile and water.  Peptides 

were lyophilized multiple times from acetonitrile:water (1:1) to ensure complete removal of 

TFA.  The peptide was then further purified by HPLC and peptide purity was verified by mass 

spectroscopy.  Concentrations of the four peptides were determined by dried weight. 

Fungicidal activity assays. The fungicidal activities of the peptides were determined by the 

microdilution plate assay using Candida albicans SC5314 as described previously 
13

.  C. 

albicans SC5314 was grown overnight on Sabouraud Dextrose agar plates at 30
o
C.  Following 

overnight growth, a single C. albicans colony was diluted in 1 ml of 10 mM sodium phosphate 

buffer at pH 7.4.  A hemocytometer was used to quantify the number of cells/ml and the cell 

concentration was adjusted to 1.8 × 10
5
 cells/ml.  Cell suspensions (20 µl) were mixed with 20 µl 
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of peptide dissolved in 10 mM sodium phosphate buffer at pH 7.4 and incubated for 2 h at 37C 

with shaking at speeds of 550 rpm. The reactions were stopped by the addition of 360 µl yeast 

nitrogen base (3.4 g yeast nitrogen base without ammonium sulfate or amino acids and 10 g 

ammonium sulfate per liter) and 40 µl of cell suspension was spread on Sabouraud dextrose agar 

plates and incubated for 24 h at 37C.  The number of colony-forming units (CFUs) was 

qualified and each assay was repeated in triplicate.  Loss of viability was calculated as [1-(CFUs 

in the presence of the peptide/CFUs with no peptide)] × 100. 

 Minimum Inhibitory Concentration (MIC) assay. MIC assays were carried following the 

CLSI M27-A2 standard with the modification as described below.  Briefly, two-fold serial 

dilutions of the peptides were prepared with RPMI-1640 (Sigma R-7755) in 100 μl per well of a 

96-well flat-bottom microtiter plates (Costar, Cambridge, MA).  To demonstrate the effect of salt 

on peptide activity, different RPMI-1640 dilutions (1X, 0.5X, 0.25X, and 0.125X) were used.   

To each well of the microtiter plates containing the peptide, a 100 μl C. albicans cell suspension 

containing 1 × 10
4
 cells /mL in a resazurin/water solution (0.01% w/v) was added.  The final 

concentration of the peptides in the assay ranged from 0.2 to 100 μM (0.4 to 206.7μg/ml, 

respectively).   The microtiter plates were subsequently incubated at 35°C and examined at both 

24 h and 48 h after exposure to peptide.  Each assay plate contained a positive control of 

Candida albicans without added peptide and the negative control of RPMI-1640 medium 

containing only the resazurin/water solution.  For each peptide three independent assays were 

performed. The MIC assay results were interpreted visually using the criteria of the lowest 

peptide concentration that remained blue (indicating no growth) or the first dilution that changed 

from blue to slightly purple (equivalent to prominent growth inhibition).  The peptide 

concentrations were determined based on the extinction coefficient of the four peptides. 
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Effect of pH, sodium chloride, EGTA, sodium azide and temperature on peptide killing 

activity. The effect of pH on the killing activity of the four peptides was tested by performing 

the fungicidal activity assays as described above using 10 mM sodium phosphate buffer at pH 

values ranging from 5 to 9.  The pH of the buffer was adjusted using 2 M HCl or NaOH. The 

peptide net charge was calculated at the same pH range using Protein Calculator v3.3 server 

(http://www.scripps.edu/~cdputnam/protcalc.html) 
24

.  To study the effect of temperature on the 

killing activity, the fungicidal activity assay was performed in 10 mM phosphate buffer pH 7 at 

two different temperatures, 4
o
C and 37

o
C.  The effect of sodium chloride (5 mM, 10mM and 25 

mM), EGTA (10 µM, 50 µM, 100 µM, 250 µM, and 1000 µM) and sodium azide (5 mM) was 

evaluated using the fungicidal assays in 10 mM phosphate buffer pH= 7 at 37°C.   

Circular dichroism spectroscopy. Circular dichroism spectroscopy measurements for the four 

peptides were performed using a Jasco-710 spectropolarimeter as described previously with 

some modifications 
25

.  The reading was made using a quartz cell with a 0.1cm path length at 25
o
 

C.  The measurements were performed on the peptides at a final concentration of 240 µM (100 

µg) in the presence of 50% trifluoroethanol (v/v) (TFE).  The spectra were recorded every 0.2 

nm between the absorbance range of 190 to 250 nm with a 1.0 nm bandwidth and a scan speed of 

20 nm/min.  Six scans were performed and averaged.  The background was subtracted from all 

spectra, and curve smoothing applied.  The CD spectra are reported as the mean residue 

ellipticity ([Ө]) in degrees. cm
2
. dmol

-1
.  The CD data were further analyzed using the web-based 

K2D2 program (http://www.ogic.ca/projects/k2d2/).  The helical wheel projections were made 

with a tool created by Don Armstrong and Raphael Zidovetzki 
26, 27

. 

Peptide Stability in Artificial Gastric Juice.  The stability of each peptide was tested using 

artificial gastric juice prepared as described previously with slight modifications 
28

. The artificial 

http://www.scripps.edu/~cdputnam/protcalc.html
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gastric juice was prepared by dissolving 2 g NaCl and 3.2 g pepsin in 7.0 ml 0.085 M HCl and 

the volume was increased to 1000 ml with distilled water (pH 1.2). The peptide (5 µg in volume 

of 10 µl) was added to 90 µL of artificial gastric juice and incubated at 37
o
C for 60 min. The 

reaction was terminated by boiling for 10 min and the sample was centrifuged at 13,000 rpm for 

10 min. in a microcentrifuge.  The supernatant was collected, neutralized with NaOH, and 

analyzed by reverse phase HPLC.  The HPLC run time was 15 min with an injection volume of 

50 µl.  Chromatograms were recorded by UV detection at 220 nm.  The individual peptides in 10 

mM phosphate buffer (pH=7.4), were used as positive controls.  Concentrations of the peptides 

were determined based on the extinction coefficient. 

Peptide Stability in Human Saliva.  Whole saliva samples (5 ml) were collected from three 

healthy donors ranging in age from 25 to 35 years in accordance with a protocol approved by the 

University of Arkansas Institutional Review Board.   The stability of the peptides in human 

saliva was determined as described previously with slight modifications 
28

.  After the saliva was 

collected, it was immediately centrifuged at 13,000 rpm for 10 min at 4
o
C in a microcentrifuge 

and the supernatant was aliquoted 1 ml portions and stored at -80
o
 C.  One milliter of saliva from 

each volunteer was pooled, mixed and filtered through a 0.45 µm membrane filter.  The stability 

assays was performed using a constant ratio of peptide to saliva (1:9). Twenty µl of peptide in 10 

mM sodium phosphate buffer (pH=7.4) was mixed with 180 µl of saliva to give a final peptide 

concentration of 0.5 mg/ml. The mixture was incubated for 60 min at 37
o
C, and the reaction 

terminated boiling the samples for 10 min. The samples were subsequently filtered and analyzed 

by reversed phase HPLC. The HPLC total run time was 15 min and the injection volume was 

100 µl. Chromatograms were recorded by UV detection at 220 nm. The peptide dissolved in 
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artificial saliva was used as a control. The peptide concentration was determined based on the 

extinction coefficient of the peptides. 
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2.3 Results 

 

Synthesis of the histatin 5 peptide derivatives.  To understand the structural features and 

stereochemistry of histatin 5 that is important for the antifungal activity we synthesized the wild-

type histatin 5 C-16 peptide (termed W) 
20

 along with three derivatives shown in Table 1.  The 

first derivative was identical to the C-16 peptide except it contained only D-amino acids (termed 

WD).  The second derivative is a “retro” isomer in which the order of amino acids is reversed 

from N- to C-terminus (termed R).  The third derivative was identical to the retro isomer except 

D-amino acids were used for the synthesis.  The W and R peptides had the identical amino acid 

composition with the difference being the N- to C- terminal linear order.  The N- to C- terminal 

sequence of R is represented by 1, 2, 3...n amino acid, while R peptide is represented by the 

sequence n, n-1,..3, 2, 1.  The WD and RD peptides are stereoisomers of W and R, respectively.    

All peptides were synthesized and the molecular mass of each peptide was evaluated by mass 

spectrometry and was shown to match the predicted mass based on the amino acid composition 

(Figure 1).  The quality of each peptide was verified by HPLC to be >97% pure (Figure 2). 

Fungicidal activity of the histatin 5 derivatives. To compare the relative antifungal activity of 

the four peptides, two different assays were performed with C. albicans SC5314. First, the dose-

dependent killing activity of the four peptides was examined.  In this assay, different 

concentrations (0.1, 1, 5, 10, 25, 50 and 100 µM) of the four peptides were evaluated and the 

dose-dependent killing activity after 2 h incubation was found to be indistinguishable (Figure 3).  

. Furthermore, all four peptide exhibited a similar fungicidal activity with an LD50 of less than 

3µM (Table 2 and Figure 4).   

Since the dose-dependent killing assay is not time dependent, it is possible that all of the peptides 

demonstrated similar killing activity, yet the rate at which they killed the fungal cells varied over 
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the 2 h incubation time.  To address this possibility, a time-dependent fungicidal activity assay 

was performed in which C. albicans was incubated with 10 µM of each peptide and the 

fungicidal activity was determined at time intervals of 15, 30, 60 and 120 min (Figure 5).   The 

kinetics of the anti-fungal activity of all four peptides was found to be similar at all data points (p 

< 0.05). Since the standard fungicidal assay is incubated for 2 h, it was relevant to determine 

whether the four peptides continued to demonstrate activity beyond the 2 h incubation; 

alternatively, the activity of the peptides may plateau at some point prior to 2 h.  To address this 

question, another fungicidal activity assay was performed over a period to 8 h (Figure 6).  These 

data demonstrate that the activity of all four peptides plateau at approximately 2 h with 20% of 

the cells remaining viable when exposed to 10 µM of each peptide. 

On the basis of the fungicidal activity data, the R, RD, W, and WD peptides demonstrated 

similar killing activity, suggesting the linear order of amino acids from the N- to the C-terminus 

is not relevant for the fungicidal activity.  Moreover, these data also demonstrate that the 

enantiomeric form of the peptide is also not significant for fungal killing activity.  These 

observations strongly argue against a cell surface protein receptor playing a role in the killing 

activity as will be discussed later. 

The effect histatin 5 inhibitors on fungicidal activity.  To further explore the similarities or 

differences between the four histatin 5 peptide derivatives, a series of experiments were 

performed  using conditions known to inhibit the fungicidal activity of histatin 5, namely 

reduced temperature 
29

, increased concentrations of sodium chloride and the respiratory inhibitor 

sodium azide 
30

.  The goal was to determine whether the four peptides display any differences in 

killing activity as compared to the native histatin 5.  
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Previous studies have demonstrated that the killing of C. albicans cells by histatin 5 is halted at 

4
o
C by presumably preventing translocation of the peptide into the cytoplasm

29, 31
 or by altering 

the fluidity of the plasma membrane.  To evaluate the effect of temperature on the activity of the 

W, R, WD and RD peptides, each peptide was incubated with Candida albicans at two different 

temperatures, 4
o
C and 37

o
C.   The activity of all four peptides was found to be dramatically 

inhibited at 4
o
C as compared to 37

o
C (Figure 7).  

As common with many peptide-based antimicrobials, it has been shown previously that 

increasing concentrations of sodium chloride (NaCl) can inhibit the killing activity of histatin 5.  

To examine the inhibitory effect of NaCl on the W, R, WD, and RD peptides, two different 

assays were performed.   First, the peptides were tested at different concentrations of NaCl up to 

25 mM, which mimics the physiological concentration of NaCl in human saliva 
32

. Second, a 

minimum inhibitory concentration assay (MIC) was performed for each peptide to evaluate the 

fungicidal activity at physiological concentration of various salts 
33

.  As shown in Figure 8, NaCl 

has the same inhibitory effect on fungicidal activity for the four peptides using 5 µM of each 

peptide.  The decrease in the activity was clearly observed at 10 mM NaCl or higher. For the 

MIC assay, the standard RPMI-1640 medium used at 1X, 0.5X, 0.25X and 0.125X normal 

concentrations.  The logic was to set up a visual assay typically found in a clinical setting that 

would reflect the effect of physiologic salts on the activity of candidate fungicidal peptides.  As 

expected, the activity of the four 16mer peptides was completely inhibited in 1X, 0.5X, and 0.25 

X RPMI-1640 medium. The only observed activity was at the lowest RPMI-1640 concentration 

(0.125X) (Table 3).  Interestingly, the D-conformation peptides (WD and RD) displayed slightly 

better activity in 0.125X RPMI. The MIC value for WD and RD peptides was 103-207 µg/ml, 

while the W and R peptide activity was outside the range of the assay (>207 µg/ml).    
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Sodium azide, an inhibitor of cytochrome oxidase activity, has been shown previously to inhibit 

histatin 5 fungicidal activity 
30

 which is likely reflective of its killing mechanism.   Hence, the 

sensitivity of the four histatin 5 peptide derivatives W, R, WD, and RD to the treatment of cells 

with sodium azide would provide preliminary evidence suggesting that all four peptides are 

killing by similar mechanisms.  Thus, the fungicidal activity of the four peptides was evaluated 

in the presence of 5 mM sodium azide.  To compensate for ionic strength effects caused by the 

presence of sodium and azide ions, the control reactions without sodium azide were performed in 

buffer supplemented with 5 mM of sodium chloride. These data demonstrated that the inhibitory 

activity of sodium azide was similar for all four peptides, providing support for the model that all 

four peptides function via similar killing mechanisms (Figure 9).  

pH sensitivity of the histatin 5 derivatives.  As mentioned in the Introduction, histatin 5 is a 

cationic peptide containing a large number of histidine residues (29% histidine).  If the histidines 

are structurally important for the killing activity, and the fact that pKa of imidazole sidechain is 

approximately 6.0, it would not be surprising that the fungicidal activity of histatin 5 is pH-

sensitive.  Consistent with this hypothesis, the predicted peptide net charge was calculated across 

a range of pH values (Figure 10A).  It is predicted that the net charge changes significantly as the 

pH shifts from acidic to basic, from +8 net charge at pH 5 to +3 net charge at pH 9.  To evaluate 

the relevance of pH in the activity of the histatin 5 derivatives, the fungicidal activity of the 

peptides were determined at various pH values ranging from 5 to 9 (Figure 10B).  It was found 

that no significant difference in the fungicidal activity occurred across the range of pH values, 

suggesting the histidine residues within histatin 5 may not be a primary factor in the killing 

activity of histatin 5.  
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The role of zinc in the fungicidal activity of the histatin 5 derivatives.  It has been previously 

demonstrated that Histatin 5 contains a zinc-binding domain of a general sequence HEXXH 
34, 35

 

that is part of the C-16 peptide used in the studies reported in this chapter.  However, it is unclear 

whether the retro peptides retain the ability to bind zinc.  Moreover, the overall contribution of 

zinc-binding to the fungicidal activity of histatin 5 remains controversial.  To evaluate whether 

zinc-binding contributes to the killing activity of the W, WD, R, and RD peptides, EGTA was 

added as a metal chelator to remove any metal ions, including Zn
+2

 in the fungicidal activity 

assay.  EGTA was chosen in preference to EDTA because EGTA shows no fungicidal activity 

alone in concentrations up to 10 mM.  As shown in Figure 8, the addition of EGTA to the 

fungicidal activity assay had only a slight inhibitory effect on the killing activity of the four 

peptides, suggesting that zinc is not a major contributing cofactor to the killing mechanism of the 

histatin 5 peptide derivatives. 

Structural analysis of the histatin 5 derivatives. To evaluate whether there were any major 

differences in secondary structure of the four histatin peptide derivatives, circular dichroism 

(CD) spectroscopy was performed (Figure 12).  The data were acquired for each peptide in the 

presence of 50% trifluoroethanol.  As illustrated in Figure 12, all four peptides folded into alpha 

helical structures and the deconvolution of the spectrum using the K2D2 software program 
38

 

yielded a similar percentage of helical structure in all peptides (41.1 % in W and WD, while the 

value was 40.8% in R and RD).  As expected, the CD spectra of WD and RD were mirror images 

of W and R, respectively, with the same ellipticity value but with the opposite sign.  The 

distribution of charges on a hypothesized alpha helical structure was evaluated using helical 

wheel projections (Figure 13) 
39

. The charge distribution remained the same in the R peptide 
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versus the W peptide keeping the basic amino acids biased to one side of the helix, and 

uncharged and nonpolar on the other side. 

The stability of the histatin 5 derivatives in human saliva.  Histatin 5 is secreted from the 

salivary glands into the oral cavity where it is active in controlling microbial cell growth.  Thus, 

the stability in human saliva of the wild-type C-16 versus the retro-C16 peptide was compared to 

determine whether they displayed any differences.  The stability assay was performed by 

incubating the W and R peptides with human saliva for 60 min and concentration of the peptide 

after the incubation period was monitored using HPLC (Figure 14) as described in the Materials 

and Methods.  These data demonstrated that both peptides were completely degraded after 60 

min incubation in human saliva. 

The stability of histatin 5 derivatives in simulated gastric juice.  Since histatin 5 is present in 

saliva, it is likely to pass through to the stomach, and to the small bowel.  Since Candida spp. are 

a common commensal of the gastrointestinal tract, the stability of the histatin 5 peptide may be a 

relevant issue for the control of Candida spp. growth in the gastrointestinal tract.  To examine 

the stability of the histatin 5 related peptides, artificial gastric juice was prepared as described in 

the Materials and Methods.  The simulated gastric juice was subsequently used to evaluate the 

stability of the peptides after 60 min at 37
o
C.  Surprisingly, these data demonstrated that the 

wild-type 16mer peptide (W) was extremely stable in gastric juice, while the retro (R) peptide 

was degraded completely during the 60 min incubation (Figure 15). The results were confirmed 

by mass spectrometry.  The W peptide with a mass of 2067 g/mole was the only molecule 

detected, which represents the full-length 16 amino acid peptide (Figure 17).  In contrast, two 

fragments were detected in R peptide samples with the full-length peptide barely detectable 

(Figure18). The analysis of mass spectrometry data revealed that the R peptide was cleaved only 
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in one location, immediately after the single phenylalanine in the peptide (Table 4).  The D-

isomers of both the W and R peptides were stable in artificial gastric juice as expected 

(Figure16). The results of peptide stability in artificial gastric juice are summarized in Figure 19. 
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2.4 Discussion  

 

Currently available antifungal agents have been effective against fungal infection for an extended 

number of years; however, the increased use of these agents has been associated with a 

development of new resistant strains, including Candida species.  The increase in resistant fungal 

pathogens has emphasized the need for new antifungal agents.  AMPs have been used widely as 

a base for the development of new clinically approved antibacterial and antifungal drugs 
40,41, 42

. 

Studying the structure and mode of action of AMPs could lead to a development of new drugs 

via chemically mimicking AMPs in structural features such as the net charge, amphipathicity, 

and selectivity for the pathogen.  For example, Ceragenix, a squalamine peptide based antibiotic, 

is effective against a broad spectrum of bacterial infections 
43

and mPE (PMX70004), a 

phenylethynylene derivative of the maganin peptide, exhibits a broad-spectrum of activity 

against oral cavity pathogens
44

. 

 Despite the lack of understanding the mechanism of action of histatin 5, all of the proposed lytic 

or nonlytic mechanisms for histatins would imply that they have a target that is distinct from the 

current antifungal agents.  After a careful analysis of the histatin 5 amino acid sequence and 

studying the published data, we developed the hypothesis that the distribution of positively 

charged amino acid residues and secondary structure are the critical factors in histatin 5 

fungicidal activity rather than the total net charge or the specific N- to C-terminal amino acid 

sequence.  The question was how to effectively begin to address the proposed hypothesis.  

Several prior studies with different peptides have shown that using the retro peptide model has 

been a successfully strategy in dissecting the structural requirements of antimicrobial peptides.  

In most cases retro and diastereo analogs retained the same activity as the original peptides 
49-53

.  

Thus, the generation of retro peptides and stereoisomers was adopted as a strategy to understand 
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the structure features of histatin 5 important for fungicidal activity.  We chose to use the C-16 

histatin 5 peptide derivative since several publications have shown that the C-16 peptide of 

histatin 5, an N-terminal truncated derivative containing 16 amino acid residues, retains the same 

fungicidal activity as the full-length 24 amino acid peptide.  Thus, the C-16 peptide, referred to 

as the W peptide in this study, was used as a model due to the shorter sequence that eliminates 

amino acid residues that did not influence antifungal activity.  The optimal way to test our 

hypothesis that the linear N- to C-terminal order of amino acids was not relevant was by 

generating a retro peptide, where the amino acid composition and the total net charge remained 

the same as the W peptide. The retro peptide, referred to as the R peptide, was synthesized using 

same amino acid sequence as the W peptide but the amino acid sequence was reversed (Table 1).  

To evaluate stereospecificity, two additional peptides with D-amino acids were synthesized, and 

termed the WD and RD peptides (Table 1). 

The first step was to examine the fungicidal activity of the four histatin 5 derivatives.  The 

fungicidal activity assays showed that the W, WD, R and RD peptides were equally active over a 

range of concentrations against Candida albicans. The differences in activity were found to be 

insignificant (P<0.05) (Figure 1).  The LD50 value for histatin 5 and C-16 peptide has been 

published previously, and the values range from 2 to 7.3 µM against most Candia albicans 

strains 
10, 45-48

.  The LD50 values for W, WD, R, and RD peptides were calculated and shown to 

be similar to each other and to the previously published data (Table 2).  Since there was the 

possibility that the four peptides may kill C. albicans at different rates, the kinetics of killing was 

examined in a time course assay. These studies indicated that all four peptides reached a 

maximum killing activity after 2 h of incubation (Figure 5, 6). The kinetic studies indicated no 

significant difference between the four histatin 5 peptide derivatives.   
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While the four histatin 5 peptides derivative demonstrated similar fungicidal activities, it was 

plausible that they were functioning via distinct mechanisms.  Thus, we examined the activity of 

the four histatin 5 peptide derivatives under conditions known to effect histatin 5 killing activity.    

Low temperature has been shown to inhibit histatin 5 fungicidal activity via one of two 

suggested mechanisms: affecting cell metabolism by reducing cell respiration and ATP 

production 
31

, and increasing membrane rigidity.  This in turn leads to a decrease in the binding 

of histatin 5 to the yeast cell membrane and reduces or eliminates the translocation to cytoplasm 

30
 .  Our data showed that low temperature displayed the same effect on all four peptides, 

inhibiting 70% of their fungicidal activity against Candida albicans.  This result demonstrates 

that regardless of the exact effect of temperature on histatins 5 activity, the retro peptides likely 

work through the same pathways as W peptide.  The inhibitory effect of low temperature was not 

unique to histatin 5, as it has been observed in several antibacterial and antifungal peptides
54-56

.   

Histatin 5 activity can also be blocked by the inhibition of cellular respiration using sodium 

azide
17

.  Sodium azide is a potent inhibitor of mitochondrial respiration as it inactive cytochrome 

c oxidase via intercalating between the home a3 iron and Cu3 at the oxygen reduction site 
57

.  

Also, sodium azide binds to the F1 catalytic domain within mitochondrial F-ATPase’s and 

inhibits the hydrolyase activity 
58,59

.   Multiple previous studies have shown that 5 mM sodium 

azide inhibits both the conventional and the alternative respiratory pathways in Candida 

albicans
17, 60

. 

This observation led to the hypothesis that histatin 5 may target energized mitochondria. Thus, 

the influence of azide on Candida albicans susceptibility to the four histatin 5 peptide derivatives 
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was examined.  As illustrated in Figure 9, the activity of the peptides was equally inhibited by 

azide.  Taken together, the inhibition by low temperature and azide suggests that the fungicidal 

activity of the four peptides is occurs via a similar or identical mechanism.  

In general, the killing activities of cationic AMPs are sensitive to ionic strength, with some 

limited exceptions 
32, 61,

 
62, 63

.  Because of the nature of the ionic interaction between cationic 

AMPs and the negatively charged membrane of the target organism, it can be weakened by 

monovalent and divalent cations to reduce their activity 
64

.   Histatin 5 activity has been 

evaluated under different physiological conditions and it was found to be affected by the 

presence of salts including sodium chloride 
32

.  In this study, the four peptides were evaluated in 

a presence of NaCl simulating two different physiological environments: oral cavity with salt 

concentration ranges from 5 to 25 mM sodium chloride 
65

 and RPMI1640 tissue culture medium. 

The RPMI-1640 medium contains multiple salts along with 150 mM sodium chloride, which 

simulates the human cellular environment
29

.   At 25 mM NaCl, the four histatin 5 peptide 

derivatives were all inhibited by 35%, while it was totally impaired in RPMI-1640 medium.  

Published data showed that the activity of histatin 5 against Candida albicans (SC5314) was 

abolished totally in 150 mM NaCl 
66

 and was undetectable in RPMI medium 
67

.  It’s important to 

mention that besides salt content, RPMI 1640 medium also induces the hyphal growth of C. 

albicans 
68, 69

.  The role of hyphae will be discussed later.  Our results show the effect of NaCl on 

R and RD peptides matches W and WD peptide.  This finding further supports the hypothesis 

that these peptides work via similar mechanisms that require an ionic interaction for activity. 

In addition to  salt sensitivity, cationic AMPs activity is also pH dependent in many cases
61

.  The 

pH has an effect on AMPs activities by interfering with the target cell or the peptide.  C. albicans 

has the ability to grow either as unicellular budding spherical yeast or as filamentous 
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pseudohyphal and hyphal forms 
70

.  The ability to switch between these two forms plays an 

important role in Candida pathogenicity 
71

.  This switching process can be stimulated by changes 

in pH 
72

, namely moving toward pH 7 or greater.  Previously published data suggests that the 

activity of antifungal agents against different Candida forms varies with the hyphae being more 

resistant 
71

.  This factor must be taken into consideration when developing an effective 

therapeutic agent against Candida spp.  In the case of histatin 5, prior studies have suggested the 

peptide has the same activity against all of the morphological forms of Candida
46

. 

The net charge of cationic peptides plays an important role in their activity and an increase in net 

charge usually leads to an increase in the antimicrobial activity 
15, 73

 .   The net charge on 

peptides is dictated by the presence and abundance of basic amino acids (arginine, lysine and 

histidine) and acidic amino acids (aspartic acid and glutamic acid).  The pH interferes directly 

with the peptide net charge as each amino acid has a unique pKa and isoelectric value.  Thus, the 

vast majority of cationic AMPs are more active at acidic medium than basic medium 
32

.  Unlike 

other AMPs, pH has little effect on histatin 5 fungicidal activity 
74

.   As the data shown in Figure 

10A the net charge decreased dramatically as the pH shifted from acidic to basic and that change 

can be related to the abundance of histidine residues.  The pKa of histidine side chain (imidazole 

ring) is 6 
75

 which means it will lose the positive charge and become neutral at physiological pH 

(7.4) and above. Changing the pH from 5 to 9 is sufficient to shift the net charge of histatin 5 

from +14 to +5; however, the published data suggest that this change in histatin 5 charge did not 

correlate with any significant effect on the fungicidal activity. The same observation was made 

with bot the W and R peptides in our study; they retained fungicidal activity over the same range 

of pH from 5 to 9 (Figure10B).  After excluding the positive charges contributed by histidine 

residues, only few positive charges remained in histatin 5 or the derivatives examined in this 
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study.  Thus, if there is a role for positive charge in histatin 5 activity, it would be represented by 

lysine and arginine residues.  Several published results have supported this conclusion.  For 

example, the replacement of lysine-13 with glutamic acid and arginine-22 with glycine was 

enough to reduce histatin 5 killing activity 
76

.  A single substitution of histidine for a lysine 

increases the fungicidal activity of histatin 5 by 50 % 
5
.  Because pH did have an effect on our 

four peptides, not all positive charges may be required for R and W peptide.  These results are 

not unique to histatin 5, as similar observations have been reported with other peptides 
32

. 

 Histatin 5 peptide sequence contains two different metal binding motifs, ATCUN and a zinc 

binding domain 
77

.  Binding to Cu
2+

 and Ni
2+

 ions, the ATCUN motif is located at the N-terminal 

and it is represented by a sequence of DSH.  On the other hand, the HEXXH sequence represents 

the zinc binding motif.  The C-16 peptide sequence used in our study still contains the zinc 

binding motif, but not the ATCUN motif.   The zinc-binding motif could improve histatin 5 

activity by binding with metal ions
78

.  Since reversing the C-16 sequence in the retro peptide 

may influence zinc-binding, it was important to evaluate the relevance of metal ion binding to 

the activity of the four peptides.  Thus, the influence of zinc-binding on the activity of the four 

histatin 5 peptide derivatives was examined by the inclusion of EGTA in the fungicidal activity 

assay in an effort to chelate any divalent ions in the medium.  EGTA was chosen over EDTA 

because the latter displays some antifungal activity of its own, while EGTA lacked any 

antifungal activity up to 10mM 
37

.  The data demonstrated that the fungicidal activity of all four 

peptides was not affected significantly over a wide range of EGTA concentrations (10 µM to 

1mM) (Figure 11).  This finding strongly suggests that metal binding is not a major factor in the 

fungicidal activity of histatin 5. 
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Histatins in general and the C-16 (W) peptide specifically have been shown to form an alpha 

helical structure in a presence of trifluoroethanol (TFE) and synthetic lipids 
5, 79

.  The formation 

of a helical structure leads to the amphipathic structure by which the hydrophobic residues are 

biased to one side of helix and the hydrophilic residues to the opposite side.  Furthermore, the 

ability to form an amphipathic alpha helix was found to be essential for the fungicidal activity of 

histatins
5
.  To evaluate the effect of reversing the sequence on peptide structure and to determine 

whether the R peptides retained the ability to form an amphipathic alpha helix, CD spectra were 

performed in 50% TFE to mimic a hydrophobic environment 
80

.  The percentage of alpha helix 

in each peptide was calculated using K2D2 software.  CD spectra have been used in several 

publications to determine the secondary structure of retro peptides and the results have varied.  In 

some cases the percentage of α-helix was similar in the retro peptide 
81

 while it was different in 

others 
51, 52, 82

.   The CD data obtained with the four histatin 5 derivatives demonstrated that 

reversing the sequence of the W peptide, generating R peptide, did not interfere with the ability 

of the peptide to form an alpha helical structure as the percentage of helix was very similar 

(Figure 12).  The amphipathicity of R peptide was evaluated using a helical wheel model and the 

results for the R peptide suggested that this peptide could form an amphipathic structure (Figure 

13).  It should be noted that the exact region of the peptides that form the helix at 50% TFE is 

undefined. The CD data confirm the similarity between the tested peptides and proof that 

reversing the sequence of W peptide didn’t interfere with the potential amphipathicity or the 

propensity to form an alpha helix.    

Human saliva contains a pool of protease enzymes, more than thirteen, with various activities 

such as trypsin-like, chymotrypsin-like and histidine peptidase 
83, 84

.  These enzymes are mostly 

secreted from white blood cells and microflora, but some are produced by the salivary glands 
85, 
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86
.   The main cleavage sites of salivary proteases are lysine and arginine residues for trypsin-like 

enzymes, aromatic amino acids for chymotrypsin-like, and histidine is the primary target for 

histidine protease 
83, 84

.  The stability of histatin 5 in saliva has been evaluated in multiple 

publication and the kinetics of histatin proteolysis in saliva have also been measured 
78, 83

.  The 

rate of histatin 5 degradation in saliva was approximately17.8 µg/ml/h and the T1/2 was 

approximately 8 h 
33

.  However these studies didn’t use whole saliva, instead they used a diluted 

version (1:10) 
33

.  Histatin 5 is not highly stable in saliva due to the abundance of histidine, 

lysine and arginine residues.  In this study, the stability of the four histatin 5 derivatives was 

evaluated using undiluted saliva.  Not surprisingly, D-amino acid peptides (WD and RD) showed 

extreme stability, while the L-peptides (W and R) were totally degraded after a sixty minute 

period of time.  The stability of D conformation AMPs in saliva and protease enzymes has been 

confirmed in multiple occasions 
28, 86-90

.   The stability of other AMPs has been evaluated in 

saliva and in several cases they were degraded completely in less than 60 min 
86, 87

.  For 

example, the T1/2  for the KSL peptide, in saliva was less than 5 minutes and the peptide was 

totally degraded within 10 minutes 
28

.  In summary, no superior stability was observed for the 

retro peptide in human saliva; however, the D-amino acid peptides are highly stable. 

Since the histatin 5 that is secreted from the oral cavity will travel to the stomach, the stability in 

simulated gastric juice was measured.  Pepsin, a major digestive enzyme found in gastric juice, 

cleaves peptides and proteins before and after any hydrophobic residue, such as phenylalanine, 

tryptophan, and tyrosine. Therefore, there were three possible cleavage sites within the W and R 

peptides (two tyrosine and one phenylalanine), which could generate six possible proteolytic 

fragments (Table 4).  Unexpectedly, HPLC data showed that the W peptide is stable in the 

simulated gastric juice for over 60 minutes, while the R peptide was totally degraded within the 
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same period of time (Figure15). The mass spectrometry data revealed that pepsin selectively 

cleaved the R peptide at phenylalanine and it did not cleave at tyrosine residues as anticipated.  

This is not the first reported case in which pepsin selectively cleaved one predicted residue over 

another 
28, 91

.  In addition, the stability of the W peptide is not the first AMP to be stable in the 

stomach as several peptides that target H. pylori 
92, 93

 have proved to be stable in the stomach. 

Because we are the first to report a stability of histatin 5 analogs in gastric juice, we cannot 

generalize these data or compare it to the full-length histatin 5.  As predicted, the D-

conformation peptides were stable in simulated gastric juice 
28

.  

In an attempt to understand the stability of the W peptide, we used the software program Expasy 

Peptide Cutter to predict the stability of the W peptide over the R peptide in pepsin.  The 

possible explanation could be the accumulation of positively charged amino acid residues before 

the susceptible residue because in W peptide there are three basic amino acid residues before the 

phenylalanine (K
+
R

+
K

+
F) while in R peptide the basic residues occur after the phenylalanine 

(FK
+
R

+
K

+
).   Thus, the stretch of positively charged amino acids may interfere with pepsin 

activity with the W peptide.  It is important to mention that this observation was considered in 

the design of other antifungal peptides under development in our laboratory. 
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2.5 Conclusions 

 

In summary, reversing the sequence of the W peptide to generate the R peptide did not interfere 

with the fungicidal activity or the peptide secondary structure.  The results of the killing assays 

in a presence of common histatin 5 inhibitors (NaCl, sodium azide, EGTA and low temperature) 

endorse the similarity between the W and R peptides, and support the hypothesis that both work 

through the same pathway.  An ionic interaction step is required for all peptides to achieve their 

activity.  Chirality and stereospecificity have no role in the peptide activity as the D-

conformation peptides retained the full activity. The secondary structure and distribution of 

certain positive charges are essential factors for the fungicidal activity rather than the specific N- 

to C-terminal amino acid sequence.   
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Table 1: Histatin 5 peptide derivatives synthesized.    

Peptide  Sequence
1
 

Histatin 5 (24 amino acid natural peptide DSHAKRHHGYKRKFHEKHHSHRGY 

Normal (C-16) Histatin 5 (W)                        GYKRKFHEKHHSHRGY 

Normal (C-16) Histatin 5 with D-amino acids 

(WD) 

          GykrkfhekhhshrGy 

Retro (C-16) Histatin 5 (R)                        YGRHSHHKEHFKRKYG 

Retro (C-16) Histatin 5 with D-amino acids (RD)            yGrhshhkehfkrkyG 
1
 Lower case sequence is used to designated D-amino acids 
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Table 2:  The LD50 for the W, WD, R, and RD peptides against Candida albicans (SC5314).  

 

Peptide  LD50 (µM)
1
 

Normal (C-16) Histatin 5 (W) 2.705 ± 0.445 

Normal (C-16) Histatin 5 with D-amino acids (WD) 2.400 ± 0.289 

Retro (C-16) Histatin 5 (R) 2.928 ± 0.472 

Retro (C-16) Histatin 5 with D-amino acids (RD) 2.477 ± 0.177 
1
Data represents three independent experiments and the error represents the standard 

deviations. LD50 is defined as the peptide concentration at which 50% of the viable cells were 

killed under the assay conditions and was determined using linear regression equations as 

shown in Figure 4. 
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Table 3: Minimum Inhibitory Concentration assay for the W, WD, R and RD peptides 

RPMI-1640 medium
1
.  

Peptide 1X 0.5X 0.25X 0.125X 

W >206.7 >206.7 >206.7 206.7 

R >206.7 >206.7 >206.7 >206.7 

WD >206.7 >206.7 >206.7 103-206.7 

RD >206.7 >206.7 >206.7 103-206.7 
1
 Data are expressed in µg/ml. 
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Table 4:  Mass Spectrometric identification of the degraded R and W peptides in simulated 

gastric juice as determined by MALDI-TOF.  

Peptide Sequence
1
 Mass (m/z) 

R Y-G-R-H-S-H-H-K-E-H-F-K-R-K-Y-G 2067 

Degraded R-1 Y-G-R-H-S-H-H-K-E-H-F 1434 

Degraded R-2 K-R-K-Y-G 651 

W G-Y-K-R-K-F-H-E-K-H-H-S-H-R-G-Y 2067 

1 
Slash (/) represents the detected cleavage site .The bold underlined amino acids represent the 

possible cleavage sites for pepsin. 
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Figure 1: Mass spectrometry of the four peptides (W, WD, R, RD) using matrix-assisted 

MALDI-TOF mass spectrometry. The expected mass of the four peptides is 2067 g/mol.   W is 

normal (C-16) histatin 5 peptide while R is the retro peptide.  WD and RD are enantiomers of W 

and R peptide, respectively. 
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Figure 2: HPLC elution profiles of the four peptides. Elution time (minute: seconds) of the 

main peak is shown for each peptide.  The peptides are W is normal (C-16) histatin 5 peptide 

while R is the retro peptide.  WD and RD are enantiomers of W and R peptide, respectively. 
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Figure 3: Relative fungicidal activity of W, WD, R and RD peptides against C. albicans 

SC5314. Different concentrations of each peptide were incubated with C. albicans (1.8×10
5
 

cells/ml) in 10 mM Sodium phosphate buffer for 2 h at 37
o
C.  The percent fungal cell viability 

was determined by counting the viable colonies on Sabouraud dextrose agar (SDA) as compared 

to the number of colonies on peptide-free control plate. Data represents the mean of three 

independent experiments and the error bar represents the standard deviation. 
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Figure 4: Determination of the LD50 for W, WD, R and RD.  The data generated in Figure 3 

was used to calculate the LD50 of each peptide using linear regression equations and the results 

are summarized in Table 2. 
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Figure 5: Kinetics of fungicidal activity against C. albicans for the W, WD, R, and RD 

peptides. For each assay, 10 µM peptide was incubated with Candida albicans (1.8×10
5 

cells/ml) in 10 mM sodium phosphate buffer for different time periods (15 ,30 ,60 and 120 min).  

The percentage of viable cells at each time point was calculated relative to a control without 

peptide incubated for an identical time. Data represents the mean of three independent 

experiments and the error bar represents the standard deviation. 
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Figure 6: Extended kinetics of fungicidal activity against C. albicans for the W, WD, R, and 

RD peptides.  For each assay, 10 µM peptide was incubated with Candida albicans (1.8×10
5 

cells/ml) in 10 mM sodium phosphate buffer for different time periods (0.25, 0.5, 1, 2, 4, 6, and 8 

h).  The percentage of viable cells at each time point was calculated relative to a control without 

peptide incubated for an identical time. Data represents the mean of three independent 

experiments and the error bar represents the standard deviation. 
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Figure 7: The effect of temperature on fungicidal activity. For each assay, 10 µM of W, R, 

WD, and RD peptides were incubated with C. albicans (1.8×10
5 

cells/ml) in 10 mM sodium 

phosphate buffer for 2 h at either 4
o
C or 37

o
C as indicated.  The percentage of viable cells was 

calculated as (viable colonies in the presence of peptide / viable colonies without peptide) × 100. 

Data represents the mean of three independent experiments and the error bar represents the 

standard deviation. 
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Figure 8: The effect of sodium chloride on fungicidal activity. For each assay, 5 µM of W, R, 

WD, and RD peptides were incubated with C. albicans (1.8×10
5 

cells/ml) in 10 mM sodium 

phosphate buffer for 2 h in the presence of increasing concentrations of sodium chloride ( 0, 5 

,10, and 25 mM).   The percentage of viable cells was calculated as (viable colonies in the 

presence of peptide / viable colonies without peptide) × 100. Data represents the mean of three 

independent experiments and the error bar represents the standard deviations. 
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Figure 9: The effect of sodium azide on fungicidal activity of W, WD, R and RD peptide against 

C. albicans. 5µM of each peptide was incubated with Candida albicans (1.8×10
5 

cells/ml) in 10 

mM Sodium phosphate buffer for 2 hours in the presence of 5mM sodium azide. A control 

contains 5mM sodium chloride was used. The percentage of viable cells was calculated as 

(viable colonies in the presence of peptide / viable colonies without peptide) × 100. Data 

represents the mean of three independent experiments and the error bar represents the standard 

deviations. 
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Figure 10:  The pH dependence of fungicidal activity of the four histatin 5 peptide 

derivatives.   (A) The calculated net charge of the peptides at different pH values. The net 

charges were calculated using Protein Calculator v3.3 - Scripps Research Institute.  (B) For each 

assay, 20 µM of the indicated peptide was incubated with Candida albicans (1.8×10
5 

cells/ml) 

for 2 h at 37
o
C in 10 mM sodium phosphate buffer at different pH values (5, 6, 7, 8 and 9). The 

percentage of viable cells was calculated as (viable colonies in the presence of peptide / viable 

colonies without peptide) × 100. The data represents the mean of three independent experiments 

and the error bar represents the standard deviation.  
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Figure 11: Role of zinc binding in fungicidal activity of the histatin 5 peptide derivatives.  

For each assay, 10 µM of peptide was incubated with Candida albicans (1.8×10
5 

cells/ml) in 10 

mM sodium phosphate buffer in a presence of increasing concentrations of EGTA as indicated.  

The percentage of viable cells was calculated as (viable colonies in the presence of peptide / 

viable colonies without peptide) × 100. The data represents the mean of three independent 

experiments each and the error bars represents the standard deviation. 
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Figure 12: CD spectra in 10 mM phosphate (pH 7.4) at 25
o
C in the presence of 50% TFE (A) R 

and RD peptides (B) W and WD peptides. The samples were prepared as described in Materials 

and Methods.  CD spectra are displayed in mean residue ellipticity [θ]. 
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Figure 13:  Predicted helical wheel projections of the R peptides (left) and the W peptides 

(right).  The helical wheel projections were prepared with the tool created by Don Armstrong and 

Raphael Zidovetzki. Amino acids illustrated in the light background are charged while those 

amino acids depicted in the dark background represent non- polar and polar uncharged amino 

acids. 
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Figure 14: Stability of the wild-type (W) versus retro (R) peptide in human saliva. The R 

(panel A) and the W (panel B) peptides were incubated in human saliva for 60 min at 37
o
C and 

the level of peptide degradation was determined by HPLC.  The samples were prepared and 

processed as described in Materials and Methods. 
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Figure 15: Stability of the wild-type (W) versus retro (R) peptide in artificial gastric juice. 

The R (panel A) and the W (panel B) peptides were incubated in artificial gastric juice for 60 

min at 37
o
C and the level of peptide degradation was determined by HPLC.  The samples were 

prepared and processed as described in Materials and Methods. 
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Figure 16: Stability of D-isomers of the wild-type (WD) versus retro (RD) peptide in 

artificial gastric juice. The RD (panel A) and the WD (panel B) peptides were incubated in 

artificial gastric juice for 60 min at 37
o
C and the level of peptide degradation was determined by 

HPLC.  The samples were prepared and processed as described in Materials and Methods. 
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Figure 17: Mass spectrum analysis of the wild-type (W) 16mer peptide.  The W peptide was 

incubated in artificial gastric juice for 60 min at 37
o
C.  The peak shown in Figure 15B was 

analyzed by mass spectrometry. 
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Figure 18: Mass spectrum analysis of the retro (R) 16mer peptide.  The R peptide was 

incubated in artificial gastric juice for 60 min at 37
o
C.  The peak shown in Figure 15A was 

analyzed by mass spectrometry.  The relevant peaks are indicated by the arrows with the 

appropriate amino acid sequence. 
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Figure 19:  The relative stability of the four histatin 5 peptide derivatives.  Following 

exposure of the peptides to human saliva or artificial gastric juice for 60 min at 37
o
C, the relative 

stability of the peptides were evaluated by HPLC and the percent of peptide present a 0 min 

versus 60 min at exposure to saliva or gastric juice is shown.  The error bars represent the 

standard deviation from three independent experiments. 
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CHAPTER 3 

Identification of a small domain within histatin 5 essential for fungicidal activity  
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3.1 Introduction 

Candida species are one of the most common opportunistic pathogens in humans, and the fourth 

leading cause of nosocomial blood infection that lead to a high level of mortality. Candida 

albicans is the major cause of invasive mucosal fungal infections observed in humans. The 

increased incidence of drug-resistant Candida and the high frequency of fungal infections in 

immune compromised patients emphasize the need for a new class of antifungal drugs with novel 

mechanisms of action. 

Naturally occurring antimicrobial peptides (AMPs) play an important role in the human innate 

immune response against pathogenic and opportunistic microorganisms. Moreover, some of 

these peptides exhibit antifungal activities with distinct modes of action 
1, 2

.  AMPs could 

represent promising candidates for the treatment of fungal infections, and they may serve as an 

alternative to chemical therapeutics. These peptides are also advantageous because they exhibit a 

selective toxicity against the target microorganism and target organisms are less likely to acquire 

resistance to the peptides due to their common mechanism of action at the plasma membrane.  

Nevertheless, AMPs cannot enter the therapeutic drug market unless some general application 

problems are solved, including the susceptibility to enzymatic degradation, pharmacokinetic 

problems, salt sensitivity, and manufacturing costs. 

Human histatins are a family of histidine-rich peptides that are secreted into the saliva by the 

parotid, submandibular and sublingual glands.  They are important members of the innate 

immune response that is essential for dental and oral microbial defense.  Thus, the histatins 

possess significant antimicrobial activities, and they are considered to be the first line of defense 

against Candida infections of the oral cavity.  Histatin 5 has the most potent fungicidal activity 
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among the histatin family as well as compared to other oral antimicrobial peptides.  Histatin 5 

structure has been well-characterized, so it is a useful model for designing new antifungal drugs.  

Unfortunately, prior studies have failed to identify a region of histatin 5 less than 12 amino acids 

that maintains antifungal activity.  It has been shown previously that the fungicidal activity of 

histatin 5 does not require the full length peptide as several fragments exhibit similar activity.  C-

16 (16 amino acid) is an example of an active histatin 5 fragment that retains full activity 

(Chapter 2). The previous chapter demonstrated that the fungicidal activity of C-16 peptide 

depends on the distribution of positive charges over an alpha helical structure, as the retro C-16 

retained a similar activity.  In addition, the essential positive charges seem to be those derived 

from lysine and arginine residues, but not the histidine residues, as suggested by the lack of 

sensitivity to pH (Chapter 2).  

The studies described in this chapter seek to further delineate the structural requirement for the 

fungicidal activity of histatin 5. After our previous finding that retro C-16 is as active as the 

normal peptide (C-16), we identified a small symmetrical sequence within the C-16 peptide that 

would not appear to be affected by the orientation of the amino acid sequence (retro versus 

normal), and the sequence of this fragment is -YKRKF- , later referred to as the KM motif.  The 

role of the KM motif in histatin5 antifungal activity was further investigated by comparing with 

the sequence of known histatin 5 derivatives published over the past decade (see Table 1 and 3 

with references therein).  The result revealed that the KM motif was found in nearly every 

peptide fragment that displayed antifungal activity, and any change in the five amino acid KM 

sequence led to the abolishment or decrease in antifungal activity. 
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The studies described in this chapter seek to evaluate the importance of the KM motif in 

antifungal activity.  This was accomplished by initially synthesizing and evaluated two peptides, 

KM-5 and KM-6.  Both peptides were pentameric and contained the same amino acid 

composition as KM; however, KM-5 had a retro sequence (FKRKY) while KM-6 a normal 

sequence (YKRKF).  We then evaluated and compared the activity of these pentamers against 

the C-16 peptide.  To date, the KM motif appears to be the shortest active histatin 5 fragment 

identified and it will serve as a model for designing a therapeutic peptide. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



139 
 

3.2 Materials and methods 

Strains : Candida albicans (SC5314)
3
, and Saccharomyces cerevisiae BY4741(MATa his3Δ0 

leu2Δ0 met15Δ0 ura3Δ0 pat1::natMX4 ) were used.  S. cerevisiae strain was a generous gift 

from Dr. Ines Pinto (University of Arkansas-Fayetteville). 

Peptide synthesis. N-Fmoc protected amino acids and Rink resin was purchased from 

NovaBiochem (San Diego, CA) and Advanced Chemtech (Louisville, KY).  All KM peptides 

were synthesized with an acetylated N-terminus and amidated C-terminus.  The peptides were 

synthesized on a model 433A solid-phase peptide synthesizer (Applied Biosystems; Foster City, 

CA) using Rink resin and Fmoc-protected amino acids (NovaBiochem). After synthesis, the 

peptides were deprotected and cleaved from the resin using a high TFA (trifluroacetic acid) 

cleavage cocktail consisting of 85% TFA, 5% dH2O, 5% triisopropylsilan, and 5% phenol.  The 

resin was mixed in the cocktail solution at room temperature for 3 hours, after which the peptide 

was precipitated into 50 ml 1:1 v/v methyl-t-butyl ether/hexane per ml of cleavage cocktail. The 

peptides were subsequently dissolved in 1:1 v/v acetonitrile/ddH2O and recovered by 

lypholization under high vacuum.  Crude peptides were purified on PRP-3 reverse phase column 

(7 by 305 mm; Bio-Rad, Hercules, USA) on a Hitachi L7100 HPLC instrument using a linear 

gradient of 0 – 30 % acetonitrile and water (both were contained 0.1% TFA). The purity of each 

peptide was evaluated by mass spectroscopy .The peptides concentrations were determined by 

the extinction coefficient. 

Fungicidal activity assays.  The fungicidal activities to C. albicans and S. cerevisiae were 

examined by micro dilution plate assay as described previously
4
.  C. albicans and S. cerevisiae 

was grown overnight on agar plates at 30
o
C.  Sabouraud dextrose agar plates were used for C. 
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albicans, and YPD (2% yeast extract, 1% Bacto-peptone and 2% glucose)
5
 and YPL (2% yeast 

extract, 1% Bacto-peptone and 2% lactate)
6
  plates for S. cerevisiae. Following overnight 

growth, a single C. albicans colony was diluted in 1 ml of 10 mM sodium phosphate buffer at pH 

7.4.  A hemocytometer was used to quantify the number of cells/ml and the cell concentration 

was adjusted to 1.8 × 10
5
 cells/ml.  Cell suspensions (20 µl) were mixed with 20 µl of peptide 

dissolved in 10 mM sodium phosphate buffer at pH 7.4 and incubated for 2 h at 37C with 

shaking at speeds of 550 rpm. The reactions were stopped by the addition of 360 µl yeast 

nitrogen base (3.4 g yeast nitrogen base without ammonium sulfate or amino acids and 10 g 

ammonium sulfate per liter) and 40 µl of cell suspension was spread on the appropriate growth 

medium plates and incubated for 24 h at 37C.   The number of colony-forming units (CFUs) 

was counted and each assay was repeated in triplicate.  Loss of viability was calculated as [1-

(colonies from suspension with peptide/colonies from suspension with no peptide)] × 100. 

 Effect of pH, low temperature, and sodium chloride on KM-5 activity. The effect of pH on 

the fungicidal activity of KM-5 peptide was tested at three distinct pH values: 5 (acidic), 7 

(neutral) and 9 (basic). Briefly, the fungicidal activity assays were performed using 25µM of 

each peptide.  The pH was adjusted using 2 M HCl or 2 M NaOH.  The influence of pH on the 

peptide net charge was evaluated using Protein Calculator v3.3 serve 

(http://www.scripps.edu/~cdputnam/protcalc.html)
7
.  To study the effect of temperature on the 

fungicidal activity, fungicidal activity assays were performed at neutral pH at two different 

temperatures, 4
o
C and 37

o
C.  The effect of sodium chloride on peptide activity was evaluated 

using the fungicidal activity assays in phosphate buffer (10 mM, pH 7) at 37°C.  Different 

concentrations of sodium chloride were added to the phosphate buffer: 5mM and 10mM.  In all 

assays, C-16 (W) was used as a control for a direct comparison. 
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Circular dichroism spectroscopy.  Circular dichroism spectroscopy measurements were 

performed on a Jasco-710 spectropolarimeter as described previously with some modifications
8
. 

The reading was made using a quartz cell of 0.1cm path length and at 25
o
 C.  KM-5 was 

measured in water and in the presence of 50% TFE (v/v), and all samples had a 120 µM final 

concentration. The spectra were recorded every 0.2 nm between the absorbance range of 190 to 

250 nm with a 1.0 nm bandwidth and a scan speed of 20 nm/min.  Six scans were performed and 

averaged.  The background was subtracted from all spectra, and curve smoothing applied.  The 

CD spectra are reported as the mean residue ellipticity ([Ө]) in degrees.cm
2
.dmol

-1
.  CD data 

were further analyzed using the web-based K2D3 program (http://www.ogic.ca/projects/k2d2/).  
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3.3 Results  

Analysis of histatin 5 and derivative peptides.  After the studies described in Chapter 2, 

namely that the retro C-16 showed activity similar to the normal peptide (C-16), we examined 

the sequence of both versions of the peptide and we identified a small symmetrical sequence 

within the peptides that would not appear to be dramatically affected by the orientation of the 

amino acid sequence (retro versus normal), and the sequence of this region was -YKRKF- , later 

referred to as the KM motif.  Our hypothesis was that this small five amino acid peptide could be 

responsible for a significant portion of the antifungal activity.  This was supported by the 

observation that the antifungal activity of histatin 5 was not dramatically influenced by pH, 

suggesting the abundance of histidine residues within histatin 5 were not relevant for fungal 

killing activity.    

To further support the proposed hypothesis, the published sequence of various histatin 5 

derivatives that were generated over the past several years were examined.  The comparison was 

divided into two categories: peptides derived directly from histatin 5 (Table 1) and histatin 5 

substituted analogs (Table 2).  Since the published data for each peptide was reported from 

different laboratories in which the threshold of peptide concentration and LD50 was unique to 

each laboratory, the activity of each peptide was correlated to the maximum concentration used 

in that particular study.  Any peptide exhibiting an activity at a concentration lower than the 

threshold concentration was considered active, while all other peptides that did not show any 

activity at the maximum concentration were classified inactive.   

In the first step of the comparative analysis, histatin 5 peptide derivatives were compared to each 

other and to the retro C-16 peptide, R described in Chapter 2 (Table 1). The result of the first 
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comparison suggested that the sequence YKRKF (later named as KM) is found in all active 

fragments, and an incomplete KM sequence caused significant reduction in the peptide activity.  

The next step in the comparison was to examine histatin 5 derived peptides that contained amino 

acid substitutions, and the activity correlated to the presence of KM motif.  This comparison 

demonstrated that a single amino acid substitution within the KM motif was sufficient to reduce 

or totally abolish the antifungal activity of the peptide, further emphasizing the significance of 

KM motif in antifungal activity (Table 2).  Nevertheless, there were some exceptions identified 

in which peptides were either not active, despite the presence of KM motif, or the existence of 

KM motif didn’t promote 50% killing activity (Table 3). 

Fungicidal activity of the KM motif.  Given the comparative sequence data described above, 

we hypothesized that the fragment YKRKF or the KM motif may be solely responsible for the 

antifungal activity, and the major functional domain within histatin 5.  To evaluate this 

hypothesis, two peptides were synthesized KM-5 (FKRKY) and KM-6 (YKRKF), and the 

antifungal activity of the peptides was evaluated.  Both peptides were pentamers containing the 

KM motif, but KM-5 had the retro sequence.  In addition, both peptides were modified by N-

terminal acetylation and C-terminal amidation to improve the stability.  The fungicidal activity of 

both peptides was evaluated with C. albicans using 25µM peptide and correlated to the activity 

of the C-16 histatin 5 peptide derivative.  As Figure 1 illustrates, both KM-5 and KM-6 

possessed equivalent antifungal activity as 25 µM of peptide killed approximately 80% of the 

cells; however, both peptides were less potent than the C-16 that killed 95% of the fungal cells at 

the same concentration.   
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Since KM-5 and KM-6 had identical results in the fungicidal activity assays, we proceeded in 

studying the activity of only one of them: KM-5.  Dose-dependent and killing kinetic 

experiments were performed to determine the LD50 and the kinetics of antifungal activity by 

KM-5.  The LD50 was found to be 5.2 µM as determined from a dose response curve (Figure 2).  

The results of the kinetic studies are shown in Figure 3.  The fungicidal activity against 

C.albicans was time-dependent, reaching the maximum killing activity in two hours, similar to 

the C-16 histatin peptide (see Chapter 2). 

 Fungicidal Activity of KM-5 substitution analogs.  Since the relevant sequence of histatin 5 

was delimited to five amino acids, it was important to next determine the contribution of the 

various amino acids to the antifungal activity of the peptide.  Thus, several amino acid 

substitutions within KM-5 were evaluated for fungicidal activity to optimize the sequence for the 

maximum antifungal activity (Table 4).  The fungicidal activity of these analogs was tested with 

C.albicans using a standard 25 μM concentration of each peptide.  In general, increasing the 

positive charge in cationic antimicrobial peptides (AMPs) enhances the activity, especially if the 

positive charges are derived from arginine or lysine residues.  Besides the net charge, the 

secondary structure of AMPs plays an important role by inducing the amphipathic character 

essential for antifungal activity.  

Role of positively charged amino acids as well as secondary structure on the antifungal activity 

was assessed using two different KM-5 analogs, KM-7 and KM-8, where the central arginine 

was replaced by either serine or proline, respectively. In KM-7, this alteration should only 

change the charge and preserve the symmetry, size and amphipathic character of the peptide.  On 

the other hand, the proline-substituted peptide (KM-8) was synthesized by introducing a 

nonpolar alpha-helix breaker.  In KM-8, proline will interfere with any peptide secondary 



145 
 

structure as well as the amphipathic character. For both peptides, KM-7 and KM-8, the 

fungicidal activity was abolished (Figure 4). 

 To evaluate the role of the tyrosine in the antifungal activity as well as to increase the symmetry 

within KM-5, KM-9 was generated, in which tyrosine was substituted with phenylalanine. As 

illustrated in Figure 4, KM-9 exhibited a slight decrease in the activity. The same results were 

observed using KM-10, an analog in which the amino acids were randomly shuffled within the 

peptide (Figure 4). To further compare the antifungal activity of KM-5, KM-9, and KM-10 a 

dose-dependent assay was performed to distinguish slight differences between these three 

peptides.  As shown in Figure 5, the activity of the three peptides similar at multiple 

concentrations; however, the antifungal activity of KM-5 was consistently stronger.  

Finally, the role of stereospecificity was evaluated by generating KM-5-D, in which the peptide 

was synthesized using D-enantiomers of the amino acids.  The fungicidal activity assays 

demonstrated that using D-enantiomers did not affect the antifungal activity as both KM-5 and 

KM-5-D possessed the same activity (Figure 4). 

Effect of pH on KM-5 fungicidal activity.  Many AMPs display pH-dependent antimicrobial 

activity via interfering with the target cell or with the peptides itself.  To evaluate the pH-

dependency of KM-5, the fungicidal activity was examined at pH values of 5, 7, and 9.  For 

comparison, the C-16 histatin peptide was analyzed in parallel.  The results showed that the 

antifungal activity of C-16 did not change across the range of pH levels as shown in Chapter 2; 

however, KM-5 demonstrated slightly greater activity under neutral or basic pH (Figure 6).  At 

acidic pH, the activity of KM-5 was inhibited by approximately 30% compared to neutral and 

basic conditions than at acidic pH. As shown in Figure 6B, changes in the pH from acidic to 
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basic had a large effect on C-16 net charge, from +12 to +4 when the pH changed from 5 to 9, 

respectively.  However, under the same circumstances the net charge of KM-5 was slightly 

reduced from +3 to +2.  

Effect of temperature and salt on KM-5 fungicidal activity.  It has been reported that the 

activity of antimicrobial peptides in general and histatin 5 specifically are often weaker in a 

presence of NaCl as well as at low temperature.  In the studies shown in Chapter 2, it was 

demonstrated that the activity of C-16 is affected by NaCl and low temperature. Since KM-5 is a 

derivative of histatin 5, its antifungal activity was evaluated under the same conditions.  To study 

the role of temperature, the antifungal activity was measured for KM-5 and C-16 at 4
o
C and 

37
o
C. As Figure 7A shows, the activity of both peptides was inhibited dramatically at 4

o
C.  

The salt effect was measured by incubating KM-5 and C-16 at 5 mM and 10 mM NaCl (Figure 

7B).  As was expected, the antifungal activity of KM-5 and C-16 were attenuated by the addition 

of NaCl in a dose dependent manner.  While 5 mM NaCl was sufficient to inhibit the activity of 

KM-5 by 50%, the activity of C-16 was not affected.  However, the inhibitory effect of NaCl on 

both peptides was obvious at a concentration of 10 mM NaCl.  

Role of respiration in the fungicidal activity of KM-5.  It is known that the activity of histatin 

5 is affected by the metabolic activity of Candida and the activity was completely inhibited in a 

presence of inhibitors of respiratory metabolism such as sodium azide, as shown in Chapter 2.  

Furthermore, several studies have shown that the yeast Saccharomyces cerevisiae, which 

produces ATP primarily by fermentation, is resistant to the antifungal activity of histatin 5
10

. 
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To evaluate the role of respiratory metabolism in the fungicidal activity of KM-5, S. cerevisiae 

and C. albicans were grown in rich medium containing glucose; whereby, S. cerevisiae would 

produce ATP primarily by fermentation while C. albicans would use respiration.  Thus, the 

prediction would be that S. cerevisiae would be more resistant to KM-5 antifungal activity than 

C. albicans.  As shown in Figure 8A, S. cerevisiae was resistant to killing by KM-5 at 25 µM 

concentration; whereas, C. albicans was sensitive at the same concentration. 

To further explore the role of respiratory metabolism in the KM-5 killing mechanism, S. 

cerevisiae was grown on rich medium containing either glucose to induce fermentation or lactate 

to induce respiratory metabolism.  As shown in Figure 8B, when S. cerevisiae cells are grown 

under conditions that induce respiratory metabolism (lactate as a carbon source), they become 

more sensitive to the fungicidal activity of KM-5, suggesting respiratory metabolism is important 

for the killing activity.   

Analysis of the secondary structure of KM-5 by circular dichroism spectroscopy.  To study 

the possible secondary structure of KM-5, CD spectroscopy experiments were conducted.  The 

data were acquired for KM-5 in aqueous solution as well as in the presence of 50% TFE. As 

illustrated in Figure 9, KM-5 did not obtain a defined secondary structure, but maintain a random 

coil structure in both water and 50% TFE.   However, the possibility of beta-turn structure was 

observed.  The deconvolution of the spectrum using K2D3 program 
13

 yielded a similar 

percentage of helical and beta structure in both environments (in water: 1 % helix and 26% beta 

while in TFE: 1% helix and 24% beta).  
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3.4 Discussion  

The current therapeutic agents have been effective in treating fungal infection for a long period 

of time; however, the increased use of these agents has been associated with the development of 

new resistant strains. The increase of resistant fungal pathogens underscores the search for new 

antifungal agents with different mechanism of action. AMPs have been used widely as a base for 

the development of new clinically approved antibacterial and antifungal drugs 
14,15, 16

.   Histatin 

5, a salivary antimicrobial peptide , may serve as a good model for new therapeutic peptides 
2, 17-

20
.   While the histatin 5 mechanism of action has not been fully explained, all suggested modes 

of actions would imply histatin 5 has a distinct target from the currently available antifungal 

agents 
2
 on the commercial market. 

One of the general problems limiting the use of therapeutic peptides as drugs is the cost 

effectiveness.  In order to utilize a peptide as a commercial drug it must be cost effective to 

produce.  Several attempts were carried out to optimize the histatin 5 peptide and attain the 

smallest active fragment.  To date, P-113 is the most effective and smallest fragment of histatin 

5, and it is composed of 12 amino acids.  However, using histatin 5 peptide derivatives coupled 

with our prior studies (Chapter 2), we have identified a shorter antifungal peptide, referred to as 

KM-5; it is less than half the size of P-113. 

Previously, we reported that the retro C-16 peptide, retained fungicidal activity equivalent to the 

as non-retro peptide.  Following this finding, a direct comparison between the retro and non-retro 

peptide showed the existence of a short symmetrical sequence.  This fragment contains five 

amino acids with a sequence of YKRKF, later named as the KM motif, where arginine is the 

dyad of symmetry between two lysine residues and two aromatic amino acids.  We hypothesized 
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that this sequence might be the active motif of C-16 as well as histatin 5, yet this sequence would 

remain the same in both the retro and non-retro peptide.  

Before we proceed with testing this hypothesis, a sequence comparison of several histatin 5 

peptide derivatives and analogs was carried out, focusing on the presence of the KM motif and 

how its presence correlated fungicidal activity.  It was found that the KM motif was present in 

the majority of peptides that maintained antifungal activity.  Given these observations, the 

putative fungicidal activity of this small peptide was tested using KM-5 and KM-6, and the 

activity of both peptides was compared to C-16.  The fungicidal activity assays performed with 

Candida albicans demonstrated that both KM-5 and KM-6 have an antifungal activity and they 

are equivalent, and this finding endorses the hypothesis of symmetry.  On a molar basis, both 

KM-5 and KM-6 was found to be less active than the C-16 peptide.  However, the fungicidal 

activity of KM-5 against Candida albicans in mg/mL is equal to if not better than C-16.   

In order to optimize KM-5 activity, several KM-5 analogs were synthesized and their fungicidal 

activity against C. albicans was measured.  The results showed that KM-5 is the optimal 

sequence and any interference with the positive charge, secondary structure or the amino acid 

sequence reduces the antifungal activity. The single arginine residue in KM-5 is equivalent to 

Arg-22 in histatin 5.  There are other studies that have shown the importance of this residue, as a 

substitution leads to a decrease in the activity.  It is not surprising that the removal of a single 

positive charge from a five amino acid peptide would have a dramatic effect on activity due to 

the change in the net charge of the peptide.  In general, positive charges in AMPs have an 

essential role in membrane binding because of the ionic interaction between the cationic peptide 

and the negatively charged membrane.  Introducing a helix breaker in KM-5 abolished the 

activity completely; however, this change might also be contributed to the change in the peptide 
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net charge.  In addition, generating an analog of KM-5 that was symmetrical, via replacing 

tyrosine with phenylalanine, had a slightly inhibitory effect on fungicidal activity.  This could 

result from the lack of hydrogen-bonding with phenylalanine. Using D-enantiomer of KM-5 did 

not affect the antifungal activity, eliminating the role of stereospecficity in KM-5 activity.  

Similar results were reported in several antimicrobial peptides including full length histatin 5 and 

C-16 peptide (see Chapter 2). 

The secondary structure of KM-5 was evaluated by circular dichroism spectroscopy.  It was 

found that KM-5 in aqueous solution was largely a random coil structure with a possibility to 

form a beta-turn. Unexpectedly, the presence of 50% TFE did not induce a change in the 

structure as it remained a random coil. Similar cases of small AMPs (even tetramer) adopting a 

beta-turn have been reported 
26, 28-32

.  Besides, TFE has been reported to induce less effect on 

short peptides that adapted a beta-turn structure.  For example, increasing the percentage of TFE 

up to 90% showed a small effect on Prp peptides.  On the contrary, increasing TFE percentage 

resulted in an increase in the percentage of beta-turn 
33

.    

The study of secondary structure suggests that KM-5 has significantly less α-helical character 

than histatin 5 and C-16 histatin. This reduction in helical content of KM-5 could be due to the 

fact that KM-5 is too small to adapt a thermodynamically stable helical structure as the potential 

number of hydrogen bonds along the backbone for KM-5 is reduced to five.  The same pattern of 

secondary structure was also observed in P-113 peptide, a dodecameric derivative of histatin 5.   

As previously shown, NaCl and low temperature have an inhibitory effect on C-16 histatin as 

well as on full length histatin 5
34

.   The antifungal activity of KM-5 was also found to be salt and 

temperature dependent.   With some exceptions, the killing activities of cationic AMPs are 
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sensitive to the ionic strength of the surrounding medium 
34, 35, 36, 37

.   As the nature of interaction 

between cationic AMPs and the negatively charged plasma membrane is ionic, it can be 

weakened by monovalent and divalent cations, consequently the fungicidal activity will be 

reduced 
38

.  As Figure 7 illustrates, the activity of KM-5 follows the same trend at C-16 as both 

were inhibited by NaCl; however, the NaCl inhibitory effect was more pronounced in KM-5. 

This might be related to the fact that C-16 has more basic amino acids than in KM-5, hence the 

interaction between C-16 and the membrane is stronger, and a higher concentration of the salt is 

required to interrupt this interaction.  

Besides salt and temperature dependence, the antimicrobial activity of most cationic AMPs is pH 

dependent 
35

.  Changing the pH typically has an effect on AMPs activity through two different 

mechanisms, either interfering with the target microorganism or directly with the peptide.  

Candida albicans has the ability to grow either as unicellular budding yeast or filamentous, as in 

pseudohyphal and hyphal forms
41

.  This ability, which plays an important role in Candida 

pathogenicity 
42

 can be stimulated by pH 
43

.  Moreover, the effect of AMPs on each Candida 

morphological form is not equivalent
42

.   The pH can also directly influence the antimicrobial 

peptide as several studies have shown the secondary structure and the net charge of AMP are to 

change at different pH 
44-46

. 

Unlike other AMPs, the antifungal activity of histatin 5 and the C-16 peptide against C. albicans 

was similar over a wide range of pH (from 5 to 9) (see Chapter 2).  On the contrary, the activity 

of KM-5 was observed to change slightly by a pH shifting from acidic to basic as the activity 

decreased in acidic medium. The net charge of KM-5, within the tested range, would not change 

since all positive charges in KM-5 come from lysine and arginine residues. It is unlikely that the 

pH made a significant change on the secondary structure because KM-5 adopted a partial 
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secondary structure and has largely remained a random coil. We tested the possibility that KM-5 

might be losing the C-terminal amide under the influence of acidic or basic medium, but the 

mass spectrometry results did not detect any changes (data not shown).  Similar observations 

have been reported for several other AMPs
34, 47, 48

. 

The mode of action of histatin 5 is unclear as numerous studies have suggested the involvement 

of multiple pathways.  However, it has been demonstrated that cellular respiration and 

mitochondrial ATP synthesis are necessary for the antifungal activity of histatin 5.  The role of 

respiration was clearly observed in Saccharomyces as it is resistant to killing by histatin 5.  There 

is an important metabolic difference between Saccharomyces and Candida.  S. cerevisiae is 

classified as a Crabtree-positive yeast; when it is grown on a fermentable medium (glucose) 

under aerobic conditions, the sugar is largely fermented to ethanol.  On the other hand, C. 

albicans is a Crabtree-negative yeast; when grown under the same conditions the cells respire, 

even when the carbon source is fermentable.  This difference could explain the observed 

susceptibility of Candida albicans to KM-5 and C-16.  Fungicidal activity of both peptides 

requires the presence of active mitochondria
49

.   To evaluate the effect of respiration on KM-5 

activity, the activity was measured on S. cerevisiae in non-fermentable medium (YPL) and 

compared to the fermentable medium YPD.  The results showed that KM-5 has more effective 

antifungal activity in YPL over YPD.  These data strongly suggest that oxidative 

phosphorylation is required for KM-5-induced cell death. 

Although small peptides (5 or 6 amino acids) are traditionally not considered long enough to 

form a distinctive secondary structure or pass through the membrane of microorganisms, several 

small antifungal
22-24

, antibacterial
25, 26

and antiviral 
27

peptides have been reported including a 
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currently available antifungal drug class, the echinocandins.  The KM5 peptide represents an 

excellent lead peptide for the future development of an effective antifungal therapeutic peptide.  

3.5 Conclusion  

KM-5 is the shortest active fragment in histatin 5 and our results show that it might work through 

the same mechanism as histatin 5.  The activity of KM-5 was inhibited in the presence of histatin 

5 inhibitors: low temperature and sodium chloride.  Moreover, KM-5 activity requires respiratory 

metabolism to be active in killing fungi.  Although KM-5 is less active than the C-16 peptide, it 

offers a model target peptide to be further developed as an antifungal therapeutic.  The smaller 

size makes it attractive for development because of the lower cost of production. 
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Table 1: The sequence and activity of histatin 5 peptide derivatives 

Name Sequence Activity
1
 Reference 

Histatin 5 DSHAKRHHGYKRKFHEKHHSHRGY Yes 
50

 

Fragment 1 DSHAKRHHGYKRK No 
51

 

N-16 DSHAKRHHGYKRKFHE Yes 
19, 50

 

P-118         AKRHHGYKRKF Yes 
2
 

P-119         AKRHHGYKRK No 
2
 

P-113         AKRHHGYKRKFH Yes 
2
 

P-103            KRHHGYKRKFHEKHHSHR Yes 
2
 

P-117            KRHHGYKRKFH Yes 
2
 

Fragment 2                     HGYKRK No 
51

 

C-16                        GYKRKFHEKHHSHRGY Yes 
50

 

Dh5                              KRKFHEKHHSHRGY Yes 
50, 52

 

H10-1 KRKFHEKHHS Yes 
21

 

Histatin  9 RKFHEKHHSHRGYR No 
2
 

C-12 KFHEKHHSHRGY No 
2, 50

 

Fragment 3 FHEKHHSHR No 
51

 

C-10                                          HEKHHSHRGY No 
50

 

Retro C-16 (R) YGRHSHHKEHFKRKYG                              Yes Our study 
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Table 2: The histatin 5 substitution derivatives. 

Name Sequence Activity Reference 

m68  DSHAKRHHGYKREFHEKHHSHGGY No 
53 

reHsn-5 GSHAKRHHGYKRKFHEKHHSHRGY Yes 
19 

reHsn-5- K13T GSHAKRHHGYKRTFHEKHHSHRGY Yes 
19 

reHsn-5- K13T/R22G GSHAKRHHGYKREFHEKHHSHGGY Yes 
19 

reHsn-5- K13E GSHAKRHHGYKREFHEKHHSHRGY Yes 
19 

reHsn-5-F14A/H15A DSHAKRHHGYKRKAAEKHHSHRGY No 
19 

3P DSHAKRHHGYKRKFHPKHPSPRGY Yes 
54 

P-113-Q2.10         AQRHHGYKRQFH No 
2 

P-113-Q2.3.9.10         AQQHHGYKQQFH No 
2 

P-113-Q3.9         AKQHHGYKQKFH Yes 
2 
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Table 3: Inactive histatin 5 substitution derivatives containing the KM motif. 

Name Sequence Activity Reference 

P-114                 HHGYKRKFHEKH No 
2 

P-115 YKRKFHEKHHSH No 
2 

P-123 DSHAKRHHGYKRKF No 
55 

M10                  HHGYKRKFHE No 
19, 21 

Fragment 4                     HGYKRKFHEK No 
51 

1P DSHAKRHHGYKRKFHEKHHSPRGY Yes 
54 

2P DSHAKRHHGYKRKFHEKHPSPRGY Yes 
54 
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Table 4: KM peptides containing amino acid substitutions. 

Name Sequence Activity
1
 

KM-5 Ac-FKRKY-NH2 Yes 

KM-5-D Ac-fkrky-NH2 Yes 

KM-6 Ac-YKRKF-NH2 Yes 

KM-7 Ac-FKSKY-NH2 No 

KM-8 Ac-FKPKY-NH2 No 

KM-9 Ac-FKRKF-NH2 Yes 

KM-10 Ac-KFRYK-NH2 Yes 

1 Fungicidal activity summarized based on data in Figure 5. 
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Figure 1: Comparison of the fungicidal activity of KM-5, KM-6 and histatin C-16.   

Fungicidal activity assays were performed using 25 µM of each peptide incubated with C. 

albicans (1.8×10
5 

cells/ml) in 10 mM sodium phosphate buffer for 2 hours at 37
o
C.  The 

percentage of viable cells was calculated as (viable colonies in the presence of peptide / viable 

colonies without peptide) × 100.  The data represents the mean of three independent experiments 

with the error bars representing the standard deviation.  
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Figure 2: Determination of the LD50 for KM-5.  A) A dose-dependent assay was performed in 

which C. albicans cells were exposed to varying concentrations of KM5 (2.5, 3.5, 5, 10, 15, 20, 

25, 35 and 50 µM) for 2 hours at 37
o
C.  B) The LD50 of the peptide was calculated using a linear 

regression equation.  The data represents the mean of three independent experiments with the 

error bars representing the standard deviation.  
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Figure 3:  The kinetics of KM-5 fungicidal activity.   The kinetics of KM-5 fungicidal activity 

was determined using 10 µM KM-5.  KM-5 was  incubated with C. albicans (1.8×10
5 

cells/ml) 

in 10 mM sodium phosphate buffer for different time periods (30, 60 ,120 and 240 min). The 

percentage of viable cells was calculated as (viable colonies in the presence of peptide / viable 

colonies without peptide) × 100.  The data represents the mean of three independent experiments 

with the error bar representing the standard deviation. 
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Figure 4: Fungicidal activity of KM-5 substitution analogs.  The fungicidal activity of the 

KM-5 peptide analogs described in Table 4.  For each peptide (25µM) was incubated with C. 

albicans (1.8×10
5
 cells/ml) in 10 mM sodium phosphate buffer for 2 hours at 37

o
C.  The 

percentage of viable cells was calculated as (viable colonies in the presence of peptide / viable 

colonies without peptide) × 100.  The data represents the mean of three independent experiments 

with the error bar indicating the standard deviation. 
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Figure 5:  Dose-dependent comparison of the fungicidal activity of KM-5, KM-9 and KM-

10.   The indicated concentrations of each peptide were incubated with C. albicans (1.8×10
5
 

cells/ml) in 10 mM sodium phosphate buffer for 2 hours at 37
o
C.  The percentage of viable cells 

was calculated as (viable colonies in the presence of peptide / viable colonies without peptide) × 

100.  The data represents the mean of three independent experiments with the error bars 

representing the standard deviation. 
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Figure 6: Effect of pH on fungicidal activity of KM-5.  (Panel A) 25 µM of the indicated 

peptides were incubated with Candida albicans (1.8×10
5 

cells/ml) for 2 hours in 10 mM sodium 

phosphate buffer adjusted to the indicated pH (5 , 7 and 9).  The percentage of viable cells was 

calculated as (viable colonies in the presence of peptide / viable colonies without peptide) × 100. 

The data represents three independent experiments and the error bar representing the standard 

deviation.  (Panel B)  The calculated net charge of each peptide at different pH values as 

determined by the Protein Calculator v3.3 software. 
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Figure 7: The effect of sodium chloride and low temperature on the fungicidal activity of 

KM-5.  For each assay, 25 µM of peptide was incubated with C. albicans (1.8×10
5 

cells/ml) in 

10 mM sodium phosphate buffer for 2 hours at 37
o
C.  (Panel A)  Fungicidal assay performed in 

the presence of the indicated concentrations of sodium chloride.  (B) Fungicidal assay performed 

at either 4
o
C or 37

o
C. The percentage of viable cells was calculated as (viable colonies in the 

presence of peptide /viable colonies without peptide) × 100.  The data represents the mean of 

three independent experiments and the error bars indicate the standard deviation. 
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Figure 8: The role of respiratory metabolism in the fungicidal activity of KM-5.  A) Comparison 

of the fungicidal activity of 25 µM KM-5 on S. cerevisiae versus C. albicans. B) Comparison of 

the fungicidal activity of KM-5 on S. cerevisiae grown in the presence of glucose (YPD) or 

lactate (YPL) as the carbon source. The activity was measured in 10 mM sodium phosphate 

buffer for 2 hours at 37
o
C.  The percentage of viable cells was calculated as (viable colonies in 

the presence of peptide / viable colonies without peptide) × 100.  The data represents the mean of 

three independent experiments with the error bars indicating the standard deviation. 
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Figure 9: CD spectra of KM-5.   The CD spectra were determined in aqueous solution using 

120 µM KM-5, and in the presence of 50% TFE at 25
o
C as indicated.  The samples were 

prepared as described in Materials and Methods. The CD spectra are displayed in mean residue 

ellipticity [θ].  The percentage of secondary structure is indicated in the graph legend in the inset. 
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CHAPTER 4 

The development and characterization of KM-12 as a potent fungicidal peptide.  
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4.1 Introduction 

Although Candida species are primarily commensal microorganisms in the gastrointestinal, 

urinary, and vaginal tracts of healthy individuals 
1,2

, they are also opportunistic pathogens that 

can be associated with high mortality especially in immune compromised patients 
3
.  In fact, 

Candida species are the most common fungal pathogens that cause disease in humans 
1
. 

Recently, infections by Candida spp. have increased as drug resistant strains have emerged.  The 

drug resistance mainly developed from the overuse of antifungal drugs, as well as cross-

resistance between Candida spp.
4
.  Moreover, some Candida spp. exhibit inherent resistance to 

the available fungal drugs.   For example, Candida glabrata is resistant to fluconazole at 

therapeutic concentrations and Candida lusitaniae shows resistance to amphotericin B
5
.  Due to 

the toxicity issues associated some antifungal agents, such as amphotericin B: the triazoles are 

considered the drug of choice for treating Candida infections
6
.  Unfortunately, the widespread 

use of the azoles has resulted in an increase in azole-resistance
7
.  These circumstances have led 

to a renewed interest in the development novel antifungal drugs with different mechanisms of 

action. 

Histatin 5 is a cationic antimicrobial peptide (AMP) produced in human saliva and it is the first 

line of defense against oral fungal infection.  Histatin 5 possesses the most potent antifungal 

activity among the oral antimicrobial peptides and it has been a potential candidate for drug 

therapy or as a template for antifungal drug design
8
.   Previously, we identified the KM motif 

(Chapter 3), as a possible functional motif in histatin 5 and its antifungal activity has been 

examined on C. albicans.  In this chapter, we describe the further development of a potent 

antifungal peptide utilizing the KM motif.  The peptide, termed KM-12 is a dimeric peptide 

composed of two KM motifs, with a cysteine residue introduced to facilitate dimerization of the 
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monomeric KM motif.  It was hypothesized that the antifungal activity displayed by the KM 

motif may be improved additively by using two copies of the motif.   To our surprise, the 

dimerization of two KM motifs caused a synergistic effect, with fungicidal activity that was 

much greater than the additive prediction.  Our results show that KM-12 exhibited a potent 

activity against multiple Candida species and that the dimerization of the KM motif improved 

the fungicidal activity by almost 15-fold.  The pharmacological and fungicidal activity of KM-12 

was examined.  These studies include: an evaluation of the dose dependency, the kinetics of 

activity, the effect of general histatin 5 inhibitors, the secondary structure of the peptide, and the 

stability of KM-12 in saliva, serum and artificial gastric juice. 
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4.2 Material and method 

Strains : Candida albicans SC5314 
9
 and Saccharomyces cerevisiae BY4741(MATa his3Δ0 

leu2Δ0 met15Δ0 ura3Δ0 pat1::natMX4) are strains available in the McNabb laboratory.   

Candida glabrata ATCC90030, Candida parapsilosis ATCC22019, Candida tropicalis 

ATCC750, Candida krusei ATCC6258, Candida lusitaniae (ATCC200951), Candida kefyr 

(ATCC4135) and Candida dubliniensis MYA-646 were purchased from the American Type 

Culture Collection (ATCC).   

Peptide synthesis. N-Fmoc protected amino acids and Rink resin was purchased from 

NovaBiochem (San Diego, CA) and Advanced Chemtech (Louisville, KY).  All peptides were 

synthesized with an acetylated N-terminus and amidated C-terminus.  The peptides were 

synthesized on a model 433A solid-phase peptide synthesizer (Applied Biosystems; Foster City, 

CA) using Rink resin and Fmoc-protected amino acids (NovaBiochem).  

Cleavage of the peptide from the Rink resin.  After synthesis, the peptides were deprotected 

and cleaved from the resin using two high TFA (trifluoroacetic acid) cleavage cocktails. 

Method A.  The cleavage cocktail consisted of 85% TFA, 5% dH2O, 5% triisopropylsilan, and 

5% phenol.  The resin was mixed in the cocktail solution at room temperature for 3 h at 480 rpm, 

after which the peptide was precipitated into 50 ml 1:1 v/v methyl-t-butyl ether/hexane (MTBE) 

per ml of cleavage cocktail.  The peptides were dissolved in 1:1 v/v acetonitrile/ddH2O and 

recovered by lypholization under high vacuum.  Crude peptides were then purified on a PRP-3 

reverse phase column (7 by 305 mm; Bio-Rad, Hercules, USA) on a Hitachi L7100 HPLC 

instrument with a linear gradient of 0 – 30 % acetonitrile and water (both were contained 0.1% 

TFA).  The purity of each peptide was evaluated by mass spectroscopy (MALDI and ESI).  The 
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peptides concentrations were determined by the extinction coefficient.  Method B.  KM peptides 

were cleaved from the resin using 90% TFA, 5% Thioanisol, 3% Ethandithiol, and 2% anisole. 

The cleavage mixture was shaken for 4 h at 480 rpm at room temperature, and then precipitated 

in ether.  Two different solutions were evaluated; 1:1 v/v methyl-t-butyl ether/hexane and diethyl 

ether, where 50 ml of ice-cold solution was used per ml of cleavage cocktail.  After which the 

crude peptides were purified, processed and identified as described above. 

Dimerization of the peptides. The 10 mg/ml concentration of peptides in reduced form, except 

for KM-18, was oxidized in an aqueous solution (10 mM sodium phosphate buffer) containing 

10% DMSO at pH 8.5. For KM-18, the intramolecular disulfide bond was initiated at a peptide 

concentration of 1 mg/10ml.  The mixture was incubated in a shaking incubator at 550 rpm 

overnight at 37
o
C.  The dimerization was monitored by Ellman reagent (Sigma-Aldrich), reverse 

phase-HPLC, and verified by ESI mass spectroscopy.  The sample was subsequently lyophilized 

three times and precipitated in isopropanol (10% v/v) to ensure the removal of any trace amounts 

of TFA and DMSO.  The reduction of KM-12 dimer to the monomeric form was achieved by the 

addition of 5 mM DTT and incubated at room temperature overnight 
10, 11

.  The oxidation state of 

the peptide was verified by reverse phase-HPLC. 

Fungicidal activity assays.  The fungicidal activity of the peptides against C. albicans and S. 

cerevisiae was examined by micro dilution plate assay as described previously
12

.  C. albicans 

and S. cerevisiae was grown overnight on agar plates at 30
o
C.  Sabouraud dextrose agar was used 

for C. albicans growth, and YPD (2% yeast extract, 1% bacto-peptone and 2% glucose)
5
 and 

YPL (2% yeast extract, 1% bacto-peptone and 2% lactate)
6
  plates for S. cerevisiae.  Following 

overnight growth, a single colony was diluted in 1 ml of 10 mM sodium phosphate buffer at pH 

7.4. A hemocytometer was used to quantify the number of cells/ml and the cell concentration 
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was adjusted to 1.8 × 10
5
 cells/ml.  Cell suspensions (20 µl) were mixed with 20 µl of peptide 

dissolved in 10 mM sodium phosphate buffer at pH 7.4 and incubated for 2 h at 37C with 

shaking at speeds of 550 rpm. The reactions were stopped by the addition of 360 µl yeast 

nitrogen base (3.4 g yeast nitrogen base without ammonium sulfate or amino acids and 10 g 

ammonium sulfate per liter) and 40 µl of cell suspension was spread on the appropriate growth 

medium plates and incubated for 24 h at 37C. The number of colony-forming units (CFUs) was 

counted and each assay was repeated in triplicate.  Loss of viability was calculated as [1-

(colonies from suspension with peptide/colonies from suspension with no peptide)] × 100.  KM-

12 lethal dose 50 (LD50) was estimated by performing linear regression analysis (the percent of 

viability versus the log10 concentration) and determining the x axis intercepts 
14

.  The LD50 was 

the concentration that killed 50% of Candida albicans.  For examining the kinetics of fungicidal 

activity, the peptide was incubated with Candida albicans for different periods of time and the 

viability determined as described above. 

Minimum inhibitory concentration (MIC) assay. MIC assays were carried following the CLSI 

M27-A2 standard with the modification as described below.  Briefly, two-fold serial dilutions of 

the peptides were prepared with RPMI-1640 (Sigma R-7755) in 100 μl per well of a 96-well flat-

bottom microtiter plates (Costar, Cambridge, MA).  To demonstrate the effect of salt on peptide 

activity, different RPMI-1640 dilutions (1X, 0.5X, 0.25X, and 0.125X) were used.   To each well 

of the microtiter plates containing the peptide, a 100 μl C. albicans cell suspension containing 1 

× 10
4
 cells /mL in a resazurin/water solution (0.01% w/v) was added.  The final concentration of 

the peptides in the assay ranged from 0.2 to 100 μM (0.4 to 206.7 μg/ml, respectively).   The 

microtiter plates were subsequently incubated at 35°C and examined at both 24 h and 48 h after 

exposure to peptide.  Each assay plate contained a positive control of Candida albicans without 
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added peptide and the negative control of RPMI-1640 medium containing only the 

resazurin/water solution.  For each peptide three independent assays were performed. The MIC 

assay results were interpreted visually using the criteria of the lowest peptide concentration that 

remained blue (indicating no growth) or the first dilution that changed from blue to slightly 

purple (equivalent to prominent growth inhibition).  The peptide concentrations were determined 

based on the extinction coefficient of the four peptides. 

 The MIC values for fluconazole-sensitivity on Candida spp. were also determined using the 

same procedure. 

Circular dichroism spectroscopy.  CD spectra were obtained for KM-12 in 10 mM sodium 

phosphate buffer pH 7 as well as following incorporation into liposomes of 1,2-dimyristoyl-sn-

glycero-3-phosphocholine (DMPC) and micelles of sodium dodecyl sulfate (SDS) at 1:50 

(mol/mol) peptide :lipid ratio.  Preparation of samples for CD spectroscopy.  Tubes containing 

4.5 µL (0.1µmol) of KM-12 were vacuumed dry overnight, and the buffer and/or appropriate 

lipids were added separately.  To study the structure in an aqueous solution, KM-12 was 

hydrated with 500 µl of 10mM of sodium phosphate buffer pH=7 to achieve a final concentration 

of 200 µM peptide.  For DMPC liposomes, 678 µl of DMPC/chloroform stock (5 mg/ml) 

(Avanti, AL, USA) were added to KM-12, mixed and dried under nitrogen, and vacuumed dry 

for 48 hours.  Following drying, 500 µl of 10mM of sodium phosphate buffer pH=7 was added 

and the sample treated with ultra-sonication for 1 h.   For SDS micelles, 1.44 mg of SDS was 

dissolved in 500 µl of 10 mM of sodium phosphate buffer pH 7 to yield 10 mM SDS.  Then SDS 

solubility was ensured by sonication in a water bath for 10 min.  The SDS solution was then used 

to rehydrate KM-12, and the sample was mixed and subsequently sonicated for 30 min. All 

samples were centrifuged at 10,000 rpm for 5 min to remove any particulate material, and the 



179 
 

absorbance was measured on diode array (200 -300 nm) to confirm that the absorbance across 

the spectrum was below 1 absorbance unit.  Circular dichroism measurements. CD spectra for 

KM-12 were generated using a Jasco-710 spectropolarimeter as described previously with some 

modifications
15

.  The reading was made using a quartz cell with a 0.1cm path length at 25
o
 C. 

The spectra were recorded every 0.2 nm in the absorbance range of 190 to 250 nm with a 1.0 nm 

bandwidth and a scan speed of 20 nm/min.  Six scans were performed and averaged.  The 

background was subtracted from all spectra, and curve smoothing applied.  The CD spectra are 

reported as the mean residue ellipticity ([Ө]) in degrees. cm
2
. dmol

-1
.  The mean residue 

ellipticity ([θ]mrw) was calculated by the following equation 
15

: 

[θ]mrw = θ/ (10 x c x l x N) where c is molar protein concentration, l is the cell path length in cm, 

and N is the number of amino acids in the peptide.  CD data were further analyzed using the 

web-based K2D3 program (http://www.ogic.ca/projects/k2d2/)
16

 and CDPro software
17

. 

Effect of sodium chloride, sodium azide and temperature on fungicidal activity. To study 

the effect of temperature on the killing activity, the fungicidal activity assay was performed 

using 2.5 µM KM-12  in 10 mM phosphate buffer pH 7 at two different temperatures, 4
o
C and 

37
o
C.  The effects of sodium chloride and sodium azide were studied using the fungicidal 

activity assays in 10 mM sodium phosphate buffer pH 7 at 37°C with  the variable being the 

different concentrations of sodium chloride (5 mM,10 mM and 25 mM) , or 5 mM sodium azide. 

Peptide Stability in Artificial Gastric Juice.  The stability of KM-12 was tested using artificial 

gastric juice prepared as described previously with slight modifications 
18

.  The artificial gastric 

juice was prepared by dissolving 2 g NaCl and 3.2 g pepsin in 7.0 ml 0.085 M HCl and the 

volume was increased to 1000 ml with distilled water (pH 1.2).  The peptide (5 µg in volume of 

10 µl) was added to 90 µL of artificial gastric juice and incubated for different periods of time (0, 
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5, 10 and 20, 40 minutes) at 37
o
C.  The reaction was terminated by boiling for 10 min and the 

sample was centrifuged at 13,000 rpm for 10 min. in a microcentrifuge.  The supernatant was 

collected, neutralized with NaOH, and analyzed by reverse phase HPLC.  The peptides were 

analyzed by reverse phase HPLC using a PRP-360 column (Bio-Rad).  A gradient elution was 

performed with mobile phase A (0.1% TFA in water) and mobile phase B (0.1% TFA in 

acetonitrile).  The peptide was eluted with a gradient from 95:5 to 65:35 (mobile phase A: B) for 

15 min at flow rate 1 ml/min. The HPLC total run time was 20 min and the injection volume was 

50 µl. Chromatograms were recorded by UV detection at 220 nm and the data analyzed using 

CHROMULAN v0.79 software. Data were recorded from three independent assays to determine 

the half-life of the peptide.  For the detection of cleavage sites, two samples (0 min and 60 min 

post exposure to gastric juice) of KM-12 were subjected to ESI mass spectrometry analysis, and 

then the spectra were overlapped and further analyzed. 

Peptide Stability in Human Saliva.  Whole saliva samples (5 ml) were collected from three 

healthy donors ranging in age from 25 to 35 years in accordance with a protocol approved by the 

University of Arkansas Institutional Review Board.   The stability of the peptides in human 

saliva was determined as described previously with slight modifications 
28

.  After the saliva was 

collected, it was immediately centrifuged at 13,000 rpm for 10 min at 4
o
C in a microcentrifuge 

and the supernatant was aliquoted 1 ml portions and stored at -80
o
 C.  One ml of saliva from each 

volunteer was pooled, mixed and filtered through a 0.45 µm membrane filter.  The stability 

assays was performed using a constant ratio of peptide to saliva (1:9).  Twenty µl of peptide in 

10 mM sodium phosphate buffer (pH 7.4) was mixed with 180 µl of saliva to give a final peptide 

concentration of 0.5mg/ml.  The peptide in saliva was incubated for different periods of time (0, 

20, 40, and 60 min) at 37
o
C, and the reaction terminated boiling the samples for 10 min. The 



181 
 

samples were subsequently filtered and analyzed by reversed phase HPLC as described above. 

The HPLC total run time was 20 min and the injection volume was 100 µl. The peptide dissolved 

in artificial saliva was used as a control. The sample was analyzed by mass spectrometry to 

identify the peptide fragments. 

Calculation of peptide half-life.  Following HPLC, the peak area of the KM-12 peak was 

examined (after subtraction of saliva and simulated gastric juice baseline) and correlated to the 

concentration.  The area under the curve for KM-12 at time 0 (500 µg/ml) was considered as 

100% and the change in the peak area was correlated to the concentration of KM-12. Natural 

logarithm of the peptide concentration (ln) was plotted versus incubation time, and fit into first-

order decay equation 
20

.  

ln[A] kt ln[A]o 

Where [A] the concentration of peptide at time t, k is the reaction rate coefficient, t is the time and 

[A]0 is initial peptide concentration . The first order decay equation is a linear equation under 

natural logarithm: 

 

The t1/2 was then calculated using this formula: 

t1/2 
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The stability and protein binding capacity of KM-12 in serum.  Peptide stability and protein 

binding capacity was assayed in diluted serum as previously described with some modification 

19
.  Forty microliters of fetal bovine serum (Equitech-Bio) were added to 20 μl of KM-12 

dissolved in distilled water at a concentration of 0.5 mg/ml.  The volume was adjusted to 200 μl 

with 10 mM phosphate buffer (pH 7) and the samples incubated a 37
o
C for 5 min.  After 

incubation, 20 μl of trichloroacetic acid (TCA) was added and the mixture incubated at 4°C for 

10 min and subsequently centrifuged at 13000 rpm for 10 min.  The supernatant was 

subsequently neutralized with NaOH.  The amount of KM-12 present in the supernatant was 

determined by reverse phase-HPLC as described in previous section with the controls of  peptide 

alone and peptide in serum after 0 min incubation.  
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4.3 Results  

Peptide synthesis and cleavage from the resin:  The peptides used in this study are shown in 

Table 1.  Due to the presence of cysteine in the peptide, the synthesis and preparation of the 

peptides required an optimization of the protocols for cleaving the peptide from the resin after 

synthesis.  Three different cleavage protocols were evaluated to achieve the optimal yield. All 

three protocols contained the same percentage of TFA and the differences between them were 

the thiol scavengers and the precipitation procedure.  Method A utilized non-thiol scavengers 

(5% triisopropylsilan, and 5% phenol), MTBE and 3 h incubation time that resulted in a complex 

HPLC profile where several byproduct peaks appearing along with KM-11 (Figure 1A).  

Moreover, the yield of KM-11 was low as the height of KM-11 peak was less than the 

byproducts.  In the second approach, the thiol scavengers were changed to thioanisol, 

ethandithiol, and anisole (Figure 1B) to improve the yield of KM-11 and simplify the complexity 

of the HPLC profile, but some byproducts remained.  The sizes of the two major byproducts 

were determined by mass spectrometry to be larger than KM-11 with 58 m/z and 288 m/z.  

Finally, using the same thiol scavengers as in the second approach, the precipitation step was 

performed using diethyl ether and this yielded an HPLC profile containing the single KM-11 

peak (Figure 1C) that was confirmed by mass spectrometry.   

To determine whether these conditions for cleavage and precipitation were unique to KM-11, the 

first and third approaches outlined above were reevaluated for the cleavage of the KM-13 peptide 

that also contains an N-terminal cysteine.  As illustrated in Figure 2, the HPLC profile for the 

cleavage products using the non thiols scavengers and methyl-t-butyl ether/hexane precipitation 

was very complex as seen with KM-11, while the thiols scavengers and diethyl ether 

precipitation yielded a single KM-13 peak.  These data demonstrate that the cleavage of 
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cysteine-containing peptides from the Rink resin requires nontraditional cleavage procedures, 

and the inclusion of thiol scavengers and diethyl ether precipitation was subsequently used for 

the preparation of all cysteine-containing peptides.  

Peptide dimerization: All of the peptides used in this study (Table 1), except KM-17, were 

synthesized as a monomer and subsequently dimerized via disulfide bond formation.  For KM-

17, which contains both an N- and C- terminal cysteine a disulfide bond was formed to produce a 

circular peptide.  The dimerization was accomplished by incubation of the peptides in the 

presence of 10% DMSO and dimerization monitored by Ellman reagent and HPLC.  As 

illustrated in Figure 3, the oxidation is a time dependent process and 24 h of incubation at room 

temperature was the optimal time for 95% of the monomer to be converted to a dimer. 

The efficiency of dimerization and the identity of the peptides purified by HPLC were confirmed 

by mass spectrometry.  Unfortunately, MALDI-TOF was unable to confirm the effectiveness of 

the dimerization process. For example, the MALDI spectrum for KM-12 (the dimer of KM-11) 

contained two peaks at 885 m/z (KM-11) and 1767 m/z (KM-12) with equal intensity (Figure 

4A); however, when the same sample was analyzed by ESI, the major peak was the dimer 

(Figure 4B).  Since the HPLC elution profile and the Ellman reagent reaction also suggested the 

samples were dimers with no free cysteine residues, it was concluded that the MALDI-TOF 

analysis was inherently causing the reduction of the disulfide bonds.   Thus, peptide samples 

containing a cysteine residue were confirmed using ESI spectrometry.   

The circularized monomer of KM-17, referred to as KM-18, was dimerized at a concentration of 

1mg/10 ml to promote intramolecular disulfide bond formation. The HPLC profile showed two 

additional peaks, besides KM-17, representing possible dimers (Figure 5). The peptide mixture 
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produced from KM-17 oxidation was also reduced by dithiothreitol to confirm the peaks in the 

HPLC profile were derived by the disulfide bond formation of KM-17 (Figure 5).  Mass 

spectrometry was used to verify the identity of the KM-17-derived peptides (Figure 6).  

 Fungicidal activity of the KM-12:  To evaluate whether the KM-11 dimer, termed KM-12, 

resulted in the enhancement of the fungal killing activity against Candida albicans fungicidal 

activity assays were performed (Figure 7).  The antifungal activity increased significantly by the 

dimerization of KM-11, as a 2.5 µM concentration of KM-12 killed close to 100 % of the cells 

while the KM-11 monomer killed only 55%.  The monomeric form of KM-11 was maintained by 

performing the fungicidal activity assay in the presence of 5 mM DTT.  In data not shown, it was 

determined that 5 mM DTT does not affect the viability of C. albicans. 

To specifically define the LD50 of KM-12 with C. albicans, a dose dependent fungicidal assay 

was performed (Figure 8).  It was found that the peptide reached 100% killing at a concentration 

of 2.5 µM and the LD50 was determined to be 0.308±0.035 µM.  To determine the rate of 

fungicidal activity against C. albicans, the kinetics of killing was determined using 2.5 µM of 

KM-12 (Figure 9), and it was found that less than 20% of the cells were viable after 1h and KM-

12 achieved nearly 100% killing in 2 h.    

Characterization of fungicidal activity of KM-12.  Since KM-12 was developed using the 

histatin 5 model, it is plausible that the mechanism of action may be the same.  To determine 

whether the antifungal activity of KM-12 was similar to that of histatin 5, some of the known 

characteristics of histatin 5 were examined for KM-12; namely sensitivity to salt, sodium azide, 

low temperature, and the activity against Saccharomyces cerevisiae. 
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The salt sensitivity was evaluated by examining the effect of NaCl on the activity of KM-12 at 

different concentrations of NaCl (5mM, 25mM and 150mM).  It was found that NaCl possessed 

an inhibitory effect that was dose dependent with a 50% reduction in the maximum antifungal 

activity achieved at 150 mM NaCl (Figure 10A).  Although the KM-12 antifungal activity is 

sensitivity to NaCl concentration, it was less sensitive than the C-16 histatin 5 or KM5 peptide 

examined in Chapter 2 and 3.  It was also observed that incubation at 4
o
C exhibited an inhibitory 

effect on killing as shown in Figure 10B.  

The role of cellular respiration in the activity of KM-12 was evaluated using two different 

approaches: killing activity in the presence of the respiratory inhibitor sodium azide and the 

killing activity of S. cerevisiae during fermentative growth.   It was found that 5 mM sodium 

azide inhibited the fungicidal activity of KM-12 by 80% (Figure 10C).  On the other hand, as 

illustrated in Figure 10D, KM-12 exhibited a similar potency of killing against S. cerevisiae 

versus C. albicans, where 2.5 µM of KM-12 killed 93% of S. cerevisiae cells while the same 

concentration killed 99% of the C. albicans.  The explanation for the latter observation is 

unclear. Nevertheless, the results with sodium azide inhibition suggests that active respiration is 

important for the killing activity of KM-12, similar to the other histatin 5 peptide derivatives that 

have been examined (Chapter 2 and 3). 

Activity of KM-12 in the minimum inhibitory concentration assay.  The fungicidal activity of 

KM-12 was evaluated using a more clinically relevant assay, the minimum inhibitory 

concentration assay (MIC).   This assay is performed in RPMI-1640 tissue culture medium, 

composed of several salts and cations, to more closely simulate the physiological condition. To 

evaluate the effect of ionic strength, an assay was performed at different concentration of RPMI-

1640: 1X, 0.5 X, 0.25 X and 0.125 X, where X is the full ionic strength.  Not surprisingly, it was 
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found that RPMI-1640 demonstrated an inhibitory effect and the activity of KM-12 was totally 

abolished in 1X RPMI-1640 (Table 2).  Furthermore, the antifungal activity was improved by 

diluting the RPMI-1640, demonstrating the salt sensitivity of the peptide.  For example, the MIC 

value decreased from >176 µg/ml in 1X RPMI to 5.5 µg/ml in 0.125X RPMI.  Nevertheless, it is 

important to note that the MIC value for KM-12 was dramatically improved over that of the C-16 

histatin 5 peptide which had virtually no killing activity even in 0.125X RPMI-1640 (Table 3 of 

Chapter 2). 

  Optimizing the KM12 fungicidal activity.  KM-12 is a prototype peptide where the sequence 

could potentially be optimized to achieve increased fungicidal activity.  Moreover, the 

optimization could assist in solving problems associated with KM-12, such as salt-sensitivity. To 

achieve that, several analogs were synthesized with slight modifications to the sequence.  Two 

types of modifications were tried: mutating specific amino acid residues and changing the 

position of the cysteine residue to alter the structure of the peptide dimer. Following synthesis, 

preparation of the dimer and purification, the fungicidal activity of each peptide was evaluated 

by MIC assay against Candida albicans in 0.125X RPMI.  The MIC activity of KM-12 and each 

of the analogs is shown in Table 3. 

  The effect of the hydrophobicity on fungicidal activity was examined by changing both the 

phenylalanine and tyrosine residues to tryptophan to produce the KM-14 peptide.  This change 

did not improve the antifungal activity as the MIC value was 11.8 µg/ml.  To improve the salt 

sensitivity, the lysine residues were replaced with histidine and arginine residues, generating 

KM-26 and KM-28, respectively. This change also did not improve either the activity or the salt 

sensitivity as the MIC values for KM-26 and KM-28 were 44.7 and 11.2 µg/ml, respectively. To 

evaluate whether the position of cysteine within the peptide influenced activity, the cysteine 
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residue was moved to the center of the peptide (KM-16), and this had an inhibitory effect on 

fungal cell killing as the MIC value for KM-16 was 44 µg/ml.  The addition of an extra cysteine 

to the C-terminus to permit circularization of the monomer, generating KM-18 and two circular 

dimeric byproducts (KM-19 and KM-20) was evaluated.  The activity of KM-18 was less potent 

than KM-12 with a MIC value ranging from of 8 to16 µg/ml, while the activity of the circular 

dimers (KM-19 and KM-20) was essentially abolished.  It is important to note that the activity of 

KM-18 was near to that of KM-12, and if the circularization improves with the pharmacokinetic 

and stability properties of the peptide the slight reduction in activity may be a reasonable 

exchange for improved physiological properties.  Therefore, the circular monomer remains a 

viable lead peptide worthy of further in vivo investigation in the future.     

Spectrum of KM-12 fungicidal activity.  To evaluate whether KM-12 exhibited a broad 

activity spectrum, the killing activity of the peptide was examined on the most common 

pathogenic Candida species (C. glabrata, C. parapsilosis, C. tropicalis, C. krusei, C. lusitaniae, 

C. kefyr and C. dubliniensis) and MIC values were determined.  First for each strain, the activity 

of a common therapeutic azole compound, fluconazole, was evaluated in parallel to determine 

whether KM-12 displayed a broader activity spectrum than current azole therapeutics.  As shown 

in Table 4, three strains displayed resistance to fluconazole: C. glabrata, C. krusei and C. 

tropicalis.  KM-12 exhibited a broader spectrum of activity against the fluconazole-resistant 

Candida species (C. krusei and C. tropicalis). C. glabrata was resistant to both fluconazole and 

KM-12.  C. glabrata resistance to KM-12 may prove to be a useful observation in the future as 

we explore the mechanism-of-action of KM-12.  
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Structural analysis of KM-12.  The secondary structure of KM-12 was evaluated using circular 

dichroism (CD) spectroscopy in aqueous solution as well as in the presence of charged lipids 

(neutral and negatively charged).  An experiment was conducted to study the effect of charged 

lipids on the secondary structure of KM-12.  In this study DMPC liposomes (1:50) were used to 

mimic neutral lipids, while SDS micelles (1:50) were used to simulate negatively charged lipids.  

As illustrated in Figure 11, KM-12 remained largely in a random coil structure in aqueous 

solution with some tendency to form a partial secondary structure, 5% α-helix and 11% β-turn. In 

the presence of DMPC liposomes the overall structure did not change as the majority of KM-12 

remained in a random coil conformation, but the propensity to form a β-turn increased to 20%. In 

contrast, the peptide tendency to form β-turn reduced (12%) in SDS micelle and the peptide 

adopted a partial α-helix (23%), suggesting that negatively charged lipids on the membrane may 

be important for the formation of the secondary structure of KM-12. 

Stability of KM-12 in human saliva.  To evaluate the potential of using KM-12 in 

pharmaceutical applications for Candida infections of the oral cavity, the stability of KM-12 in 

human saliva was evaluated.  The peptide was incubated in human saliva for various periods of 

time and the level of remaining peptide was determined using HPLC.   In addition, the T1/2 and k 

constant was calculated, and the proteolytic cleavage sites were identified using mass 

spectrometry. The chromatogram (Figure 12A) shows that KM-12 is susceptible to the enzyme 

degradation in saliva as the peak representing KM-12 decreased dramatically by extending the 

incubation time in saliva. The initial concentration of KM-12 was 500 µg/ml and after 60 min in 

human saliva, the peptide concentration was reduced to approximately100 µg/ml. The kinetics of 

degradation suggested that KM-12 proteolysis in human saliva is following a first order reaction 

in which the estimated T1/2 was 26.35 ±2.45 minute and k constant was 0.0263 min
-1

 as shown in 
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Figure 12B.  Mass spectrometry suggested one major fragment at 1321.8 m/z. This size is 

correlated with only one possible fragment that would occur if KM-12 has been cleaved after the 

first lysine from the N-terminus of one monomer as shown in Figure 13.  

 Stability of KM-12 in artificial gastric juice.  In order to use KM-12 for systemic 

pharmaceutical applications via oral administration, the stability of KM-12 in simulated gastric 

juice was evaluated.  Stability was examined at various times over a 60 min incubation period 

and the presence of the full length peptide was quantified using HPLC.  The kinetics of KM-12 

degradation in pepsin, including T1/2 and k constant, were also determined. Mass spectrometry 

was also used to identify the cleavage sites. The HPLC data shows that the KM-12 peak 

decreased rapidly in the presence of simulated gastric juice and the peptide was completely 

degraded after a 40 min incubation period (Figure 14). The degradation of KM-12 by pepsin 

follows a first order reaction (Figure 14B) where the estimated T1/2 was 7.83 ± 1.44 min and the k 

constant was 0.0946 min
-1

.   The comparison between the mass data of KM-12 exposed to 

artificial gastric juice for 0 min versus 60 min revealed that KM-12 is primarily cleaved after the 

phenylalanine leaving 1174.6 and 593 m/z peptides (Figure15).  

Stability in Serum.  Since oral medications will be absorbed into the blood stream or potentially 

delivered as an intravenous drug, the stability of KM-12 in serum as well as KM-12 binding to 

serum components was evaluated.  KM-12 was incubated in 20% FBS for 0 and 5 minutes, and 

the serum proteins were precipitated with TCA before the supernatant was quantified by HPLC.  

Two important observations were seen during the HPLC analysis (Figure 16): a reduction in 

KM-12 peak and an increase in KM-11 monomer peak.  Although the 0 min sample was mixed 

with serum and instantly precipitated with TCA, that was a sufficient time period to decrease the 

concentration  of KM-12 by 40% and increase the concentration of KM-11 (monomer ) by 50% . 
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After 5 min, approximately 80 % of KM-12 was either bound to serum proteins and precipitated 

or reduced to monomer.   
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4.4 Discussion: 

In the last decade, the number of drug-resistant Candida strains has increased, emphasizing the 

need to develop novel drug models with unique mechanisms of action.  Several researchers have 

shown histatin 5 is a good model for an antifungal drug and several attempts have been 

conducted to optimize and utilize histatin 5
21, 22

.  Previously, we identified a short sequence 

(Chapter 3) within histatin 5 that contributes the majority of the antifungal activity, referred to as 

the KM motif.   The KM motif is composed of five amino acids and retains strong antifungal 

activity against C. albicans.   

In this study we took a step forward and tried to develop a more potent antifungal peptide 

utilizing the KM motif.  The optimal goal of this study was to design peptides with the following 

properties: work via a mechanism similar to histatin 5, maintain a relatively small size, to have 

stronger fungicidal activity than histatin 5, to have broad spectrum activity against multiple 

Candida species, and finally to be stable in human fluids.  Furthermore, this study defines the 

optimal conditions to synthesize these peptides efficiently. 

 Since KM-5 exhibited antifungal activity similar to histatin 5, a logic way to increase the 

activity without interfering with the mode of action was to dimerize KM-5 with the goal of 

additively increasing activity.  To accomplish this objective, a cysteine residue was added to the 

N-terminus of KM-5, and the dimer generated by a disulfide bridge.  To achieve the optimal 

production of these peptides several protocols were evaluated for the cleavage of the peptide 

from the Rink resin. The differences between the protocols were the type of scavengers and the 

precipitation strategy.  The change in cleavage protocol was required because the use of nonthiol 

scavengers yielded various byproducts and poor cleavage, likely related to the presence of a 

cysteine residue.  Our results showed that using thiol (Thioanisol, Ethandithiol, Anisole) 
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scavengers, and performing the precipitation in diethyl ether were the optimal conditions for 

obtaining the highest yield of pure peptide (Figure 1 and 2).  The unexpected complexity of the 

cleavage product using standard conditions of peptide synthesis occurred because of the presence 

of cysteine, arginine, and tryptophan. The main function of scavengers is to reduce the amount of 

byproduct formed
23

.  It has been published that thiol scavengers are essential for peptides 

containing cysteine-tert-butyl 
24

.  Although the tert group is easily removed during the cleavage, 

it tends to reattach to the free sulfhydryl if a thiol scavenger is not present 
25

.  Also tert-butyl can 

form carbocation counterparts (tert-butyl cations) which might interact with tryptophan, tyrosine 

and methionine 
25

.  

Even though several protocols showed the use of thiol scavengers to be enough to reduce the 

byproducts, a large contaminating peak was still observed in the KM-11 cleavage product 

(Figure 1). The mass spectrometry showed this byproduct is 56 m/z larger than KM-11, which is 

equal to a tert-butyl group.  So it is likely that the tert-butyl alkylation occurred in spite of the 

presence of thiols.  It has been published that the use of MTBE in some peptides, especially 

aromatic-rich peptides, produces a significant level of tert-butyl-peptide byproduct 
26

.  The tert-

butyl was not generated from the peptide protecting group; rather it came from tert-butyl-O 

cleavage of MTBE under the strongly acidic condition.  This problem was alleviated by using 

diethyl ether for peptide precipitation. 

After the peptide had been synthesized, the dimerization process was initiated. All peptides were 

dimerized successfully in the presence of 10 % DMSO at pH 8 (Figure 3 and 5). The 

dimerization was monitored using HPLC, Ellman reagent and mass spectrometry (MALDI-TOF 

and ESI).  Interestingly, although HPLC and Ellman reagent confirmed the oxidation, MALDI-

TOF failed to support the result as the spectrum showed the dimer and monomer at the same 
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intensity (Figure 4).  In contrast, ESI confirmed that the dimer is the predominant species in the 

reaction consistent with the HPLC and Ellman data.   This observation is not new as the 

ionization used in MALDI is capable of breaking the disulfide bonds and causing rearrangements 

unless a special matrix is used (2-(4-hydroxyphenylazo) benzoic acid: α-cyano-4-

hydroxycinnamic acid (1:10)) 
27

 .  

KM-12 was the first dimer generated and it contained two copies of the KM motif.  The 

dimerization boosted the antifungal activity of the KM motif by almost 15 fold over the 

monomer as the LD50 decreased from 5 µM to 0.3 µM (Figure 8).  Previously we measured the 

LD50 of the C-16 histatin 5 and KM-5 peptides with C. albicans using the fungicidal activity 

assay, and these peptides displayed an LD50 of 2.7 µM and 5µM, respectively. It has also been 

previously published that the LD50 of histatin 5 and P-113 (an active fragment of histatin 5) on C. 

albicans are 2.3 µM and 4.47 µM, respectively 
28

.  In the light of the reported data, KM-12 

exhibited a significantly more potent fungicidal activity than KM-5, C-16, histatin-5, or P-113. 

This comparison may not be completely valid since all of these peptides were not directly 

compared in the same experiment.  However, the C-16 peptide has been shown to retain the full 

activity of histatin-5 and the LD50 value obtained from our study is in agreement to histatin 5 

from other studies, 2.7 µM and 2.3 µM respectively. It is important to emphasize that the in vitro 

fungicidal assay does not reflect the actual activity in vivo.  For example, histatin 5 in the oral 

cavity is more active than in the fungicidal activity assay for multiple reasons.  First, it is 

constantly produced in the oral cavity.  The mean concentration of  histatin 5 in submandibular 

and sublingual saliva at any giving time is 26 to 90 µg /ml
29

.  Secondly, histatin 5 has an ability 

to bind with Zn
+2

 and this may  enhance the antifungal activity 
30

.  Finally, histatin 5 is adsorbed 
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to the hydroxyapatite of the teeth
31

, and this prolongs half-life of histatin 5 by protecting it from 

proteolysis enzymes 
32

. 

 Several examples of antimicrobial peptides (AMPs), both naturally occurring and synthetic, 

have been published utilizing disulfide dimerization to improve the activity 
33

.  For example, 

PAMP-36 , a cathelicidin-derived peptide produced naturally by pig leukocytes, is a homodimer 

composed of 36 amino acid in which the dimerization improved the activity as well as the ability 

to permeabilize the target membrane 
34

.  An example of a synthetic antimicrobial peptide is 

(CKPV)2 , a homodimer peptide developed from melanocortin hormone 
35

.   

With some exceptions, most cationic antimicrobial peptides, including histatin 5, are inhibited by 

sodium chloride.  As the nature of interaction between cationic AMPs and the negatively charged 

membrane is ionic, it can be weakened by monovalent and divalent cations, thus the fungicidal 

activity will be reduced
36, 37,

 
38-40

.  KM-12 is also inhibited by sodium chloride but to a lesser 

extent than histatin 5 (Figure 10).  The presence of 150 mM NaCl was enough to inhibit the 

activity of histatin 5 completely
37

, while KM-12 was only 50% inhibited.  This phenomenon 

might be related to the fact that KM-12 has more basic amino acids than in histatin 5, hence the 

interaction between KM-12 and the membrane is stronger; thereby a higher concentration of the 

salt is required. The effect of salts on the activity of KM-12 was also evaluated using RPMI-

1640 tissue culture medium to more closely simulate a physiological environment in which 

multiple salts are present.  Moreover, the MIC assay in RPMI-1640 is the standardized clinical 

assay used to evaluate fungal sensitivity to drugs; hence, it provides a platform for the analysis of 

the KM peptides consistent with that used in a clinical environment.  The influence of RPMI 

ionic strength on KM-12 activity was obvious as the activity was decreased by increasing the 

concentration of RPMI (Table 2). In spite of the sensitivity to salt, the activity of KM-12 is 
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superior to histatin-5 and KM-5. The MIC value for KM-12 at 0.125X RPMI-1640 was 5.5-11 

µg/ml, while histatin 5 C-16 peptide displayed a MIC value of 206.7µg/ml (Chapter 2). 

Moreover, histatin 5 did not demonstrate fungicidal activity at 0.25 X and 0.5 X RPMI while 

KM-12 did with MIC values of 44-88 and 176.8µg/ml, respectively.  It’s important to mention 

that MIC is also an in vitro assay and it does not necessarily correlate with the potential in vivo 

activity; however, it is an excellent assay for comparing the KM peptides to known antifungal 

compounds. 

Although the exact mode of action of histatin 5 remains unclear, research has shown histatin 5 

targets active mitochondria and subsequently depolarizes the mitochondrial membrane
43

.  In this 

study, two assays were conducted to evaluate the role of respiration in KM-12 activity: sodium 

azide sensitivity and the fungicidal activity against S. cerevisiae grown by fermentation.  Sodium 

azide, as a potent inhibitor of mitochondrial respiration, inactivates cytochrome c oxidase via 

intercalating between the heme a3 iron and Cu3 at the oxygen reduction site 
44

.  In addition, azide 

binds to the F1 catalytic domain within mitochondrial F-ATPases and inhibits the hydrolyase 

activity 
45,46

.   Multiple publications have shown that 5 mM sodium azide inhibits both the 

conventional and the alternative respiratory pathway in Candida albicans
43, 47

.  The activity of 

KM-12 was inhibited severely by the presence of 5mM sodium azide.  These data suggests that, 

similar to histatin 5, the fungicidal activity of KM-12 may be related to the cellular respiration 

(Figure 10).   

Although Saccharomyces and Candida produce energy via respiration and fermentation, histatin 

5 
48, 49

, C-16 and KM-5 possess potent activities only against Candida species.  This difference 

may be related to the fact that S. cerevisiae grows as a Crabtree-positive yeast that ferments 

glucose even in the presence of oxygen; whereas, C. albicans is a Crabtree negative yeast that 
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relies on respiration in the presence of oxygen. Consequently, S. cerevisiae mitochondria will be 

less active and histatin-5 will lose the ability to kill these cells. The ability of S. cerevisiae to 

hinder the translocation of histatin 5 to the cytoplasm is another possible explanation that has 

been suggested 
49

.  Surprisingly, KM-12 killed 92% of S. cerevisiae at a concentration of 2.5µM 

on a fermentable medium, while C-16 and KM-5 failed to achieve killing at 25 µM (Figure 10).  

This result suggests that KM-12 may work through a modified mechanism.  This activity is not 

unique for KM-12 as several antimicrobial peptides have been published that exhibit potent 

activity on S. cerevisiae, such as MUC7 
50

, Cecropin B, and Arasin 1
51

 . 

Another difference between the histatin 5 C-16 peptide and KM-12 is the kinetics of fungicidal 

activity.  KM-12 attains the maximum activity within 1 hour while C-16 and the KM-5 peptides 

required two hours (Figure 9). This suggests that KM-12 is not only more potent that C-16 and 

KM-5, it also has a more rapid onset of action. Unfortunately, the kinetic results cannot be 

compared directly with other AMPs due to the use of different peptide concentrations and 

different incubation times. 

After the killing activity of KM-12 had been characterized, several KM-12 analogs were 

generated in an effort to improve the fungicidal activity and to increase the tolerance to salt.  The 

first KM-12 derivative involved replacing the tyrosine and phenylalanine with tryptophan to 

increase the hydrophobicity (KM-14).  It has been published previously that tryptophan has a 

greater propensity to insert into membranes as well as to interfere with lipid polymorphism 
52

 

which may lead to increase the activity . Although such an amino acid change has boosted the 

activity of other AMPs
53, 54

, it did not improve the activity of KM-12 (Table 3).  Therefore KM-

14 was excluded from further studies. Other reasons that lead to the exclusion of KM-14 from 

further study are: tryptophan tends to increase red blood cell hemolysis activity
55

 and it is less 
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stable in gastric juice
56

.  The second replacement involved substituting lysine residues with 

histidine (KM-26) to improve the salt tolerance.  The histidine positive charge is pH dependent, 

and at physiological pH it exhibits less positive charge than lysine. Accordingly, the 

hydrophobicity will be increased by this substitution as well retaining some of the positive 

charge. This amino acid replacement was shown to  improve the activity of the histatin 5 related 

P-113 peptide
28

; however,  it did not improve the activity or salt tolerance of KM-12 (Table 3).  

Another analog was KM-28, in which lysine residues were substituted with arginine. It has been 

published that the arginine side chain interacts more strongly with lipid phosphates than the 

lysine side chain at physiological temperature 
57

; therefore, this change was expected to improve 

the activity and salt tolerance . Unfortunately, this change did not improve fungicidal activity or 

salt tolerance. On the contrary, the MIC value (µg/ml) was higher than KM-12 (Table 3). 

The final peptide modifications involved changing the cysteine location (KM-16) and the 

addition of an extra cysteine (KM-18 and KM-19).  The influence of cysteine location within 

KM-12 was studied by shifting the cysteine to the center (FKCRKY) rather than being at the N-

terminus (CFKRKY).  The relocation of the cysteine was not a random selection; it was picked 

because a related sequence was found in another naturally occurring AMP which has potent 

antibacterial and antifungal activities, Lactoferricin B (FKCRRW) 
58, 59

.  The dimerization of 

KM-16 didn’t improve the activity; in contrast it increased the MIC value. This result indicates 

the continuity of positive charges is essential for maintaining maximal antifungal activity (Table 

3).   
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Several naturally occurring antimicrobial peptides contain multiple cysteine residues, where the 

disulfide bond is responsible for improving the rigidity of the peptide structure. Consequently, 

this enhances the activity and more importantly, the salt resistance 
60, 61,62 

. Theta-defensin is an 

example of an AMP in which multiple disulfide bonds play an essential role in salt sensitivity 
63, 

64
, and the rigid structure may also enhance the activity through reducing the sensitivity to 

proteolytic cleavage 
51, 65

 .  The addition of an extra cysteine to the C-terminus of KM-11, 

producing a cyclic monomer (KM-18) and cyclic dimers (KM-19 and KM20), did not increase 

the activity or the salt tolerance (Table 3. However it should be noted that KM-18, the cyclic 

monomer, had an MIC value similar to KM-12.  Thus, KM-18 remains a viable candidate for 

further investigation, particularly since cyclization of peptides has been shown to increase the 

activity of antifungal peptides
64,66,

 
67, 68,

 
69

.  

 Non-albicans species of Candida are responsible for 35-65% of systemic Candida infections in 

the general patient population
70

. They are more frequent in immune compromised patients 

including HIV/AIDS, cancer, and neonatal pediatric patients
70-72

.  Some of these species also 

exhibit resistance to the most common fungal medications : C.parapsilosis
73, 74

 
75

, C. dubliniensis 

76
, C. kefyr 

72
 and C. lusitaniae 

70, 71
 isolates have been found that are resistance to amphotericin 

B, while C.glabrata
77

, C.tropicalis
78

, C.krusei
79

 are inherently resistant to fluconazole .  The 

ultimate goal of our work is to design an antifungal peptide that is not only active against C. 

albicans but also on non-albicans strains. Excluding C. glabrata, KM-12 possesses a potent 

activity on all non-albicans species when assayed in 0.125X RPMI-1640 medium, while 

fluconazole failed to kill C .tropicalis and C. krusei (Table 4).  Many strains of C. glabrata have 

been shown to be resistant to histatin 5 and other histatin family members 
80

, thus the resistance 

of C. glabrata to KM-12 was expected.  The exact mechanism for this resistance is not fully 
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understood, however recent research has shown that it might be due to the reduction of histatin 5 

uptakes into the cell
81

.  This reduction may be explained by the fact that polyamine transporters 

(Dur3p and Dur31p) in C. glabrata are uncharacterized which are essential for histatin 5 

translocation into the C. albicans cell. The overexpression of Dur3p and Dur31p in C. glabrata 

strains increased the susceptibility to histatin 5 by two-folds
81

.  It’s important to mention that 

although C. glabrata and C. albicans belong to the same genus, C. glabrata is more 

phylogenetically related to S. cerevisiae than C. albicans
82

.  Also the composition of the cell wall 

is different as C. glabrata has higher surface levels of β-1,3-glucans as compared with C. 

albicans
81

. 

KM-12 primarily adopted a random coil structure; however there was some local structure.  In 

the presence of DMPC liposome mimicking a neutral cell membrane, KM-12 gained a 

propensity to form an alpha helix, while in SDS micelles it showed a tendency to form a beta-

turn structure (Figure 11).  It is likely that the short length of KM-12 prevents the formation of a 

strong secondary structure.  In all cases, KM-12 is too small to cross a yeast cell membrane in an 

α-helix structure, which requires at least 20 amino acids 
28

.   This result suggests that KM-12 as 

well as histatin 5 may use the carpet model to cross the membrane, where no secondary structure 

and specific size are required 
83, 84

.  In the carpet model, the peptides bind and align in parallel to 

the surface of the yeast membrane, and then the membrane is permeabilized and/or is 

disintegrated into micelle-like structures at high concentrations of peptides
85

.  So how do KM-12 

and histatin 5 differentiate between human and yeast cells? Until now the answer is unclear but 

the selectivity may be related to the fact that histatin 5 has the ability to bind to laminarins (beta-

glucans), yeast cell wall polysaccharides, before translocation into the cytosol
86

.  KM-12 may 
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also bind to the cell wall before it interacts with the cell membrane.  Since humans lack cell 

walls, KM-12 selectively binds to fungal cells. 

After characterizing the in vitro activity of KM-12, the stability in human fluids was evaluated.  

Because Candida infections can be local (oral and vaginal) or systemic (blood) and the route of 

drug administration varies (topical, mouth and intravenous), the stability of KM-12 was 

examined in saliva, gastric juice and serum.  

 Human saliva contains a pool of protease enzymes, more than 13, with various activities such as 

trypsin-like, chymotrypsin-like and histidine peptidases 
87, 88

.  These enzymes are mostly 

secreted from white blood cells and microflora, but some are produced by the salivary glands 
89, 

90
.  The main target cleavage sites of salivary proteases are lysine and arginine residues for 

trypsin-like enzymes, aromatic amino acids for chymotrypsin-like enzymes, and histidine is the 

primary target for histidine proteases 
87, 88

.  KM-12 is unstable in human saliva with a T1/2 of 26 

minutes (Figure 12).  The stability of histatin 5 in saliva has been evaluated in multiple 

publication and the kinetics of histatin proteolysis in saliva have also been measured
87, 91

.  The 

rate of histatin 5 degradation in saliva was found to be 17.8 µg/ml/h and the T1/2 was around 8 h 

87
.  However these studies did not use whole saliva, instead they used a 1:10 diluted version, so 

the data are not directly comparable.  The difference in stability between KM-12 and histatin 5 

may relate to the fact that histatin 5 can be adsorbed to the teeth 
31

.  This feature prolongs histatin 

5 life via protecting it from proteolysis enzymes. The stability of other AMPs has been evaluated 

in saliva and in several cases they were degraded completely with less than 60 min
90, 92

.  For 

example, the T1/2  for the KSL peptide, a deca-AMP , in saliva was less than 5 minutes and the 

peptide was totally degraded within 10 minutes 
18

.  The problem of KM-12 stability can be 

solved using D-amino acids and this idea has been confirmed in multiple AMPs 
18, 90, 92-95

. 
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We also examined the stability of KM-12 in simulated gastric juice which becomes important 

when considering oral administration of an antifungal compound.  Pepsin, an enzyme found in 

simulated gastric juice, cleaves peptides and proteins before and after hydrophobic residues, such 

as phenylalanine, tryptophan, and tyrosine
18

.  KM-12 is unstable in simulated gastric juice with a 

T1/2 of 7.8 min (Figure 14).  Using the mass spectrometry, we identified phenylalanine as the 

only cleavage site in KM-12 (Figure 15). Therefore, the stability in gastric juice could be solved 

by simply replacing the phenylalanine for D-phenylalanine.  In fact, this idea was tested and the 

peptide containing D-phenylalanine was stable over for over 60 min in artificial gastric juice 

(Akkam, unpublished observation). 

 The stability of KM-12 in serum as well as the binding to serum proteins was evaluated to study 

the possibility of using KM-12 intravenously. These results showed KM-12 has a tendency to 

bind to serum proteins and the peptide was found to be unstable in serum (Figure 16). Although 

20 % FBS was used in the assays, approximately 50% of KM-12 was either bound to serum 

proteins or was reduced to monomer. Binding to serum protein has benefits as it increases the 

volume of distribution and the duration of action. The serious problem was the reduction of KM-

12 because the activity will be reduced.  The only solution is to remove the cysteine and dimerize 

the peptide using a different method such as lysine-lysine covalent bond, or to produce a 10 

amino acid peptide without dimerization.   
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4.5 Conclusions 

 KM-12 is a novel antimicrobial peptide designed utilizing two KM motifs dimerized via a 

disulfide bond.  The activity of KM-12 on C. albicans is approximately fifteen times more potent 

than the monomer and ten times more active than histatin 5 or the C-16 peptide.  KM-12 

possesses potent antifungal activities on most common Candida species, including those resistant 

to fluconazole. The results of this study suggest that the mode of action for KM-12 may be 

similar to histatin 5 as the activity was inhibited in the presence of common histatin 5 inhibitors. 

Unlike histatin 5, C-16 and KM-5 peptide, KM-12 exhibits the ability to kill S. cerevisiae on 

fermentable medium. Structurally, KM-12 retains a random coil structure in aqueous solution, 

DMPC liposomes, and SDS micelles.  KM-12 was evaluated for use as an oral, topical and 

intravenous compound.  The T1/2 was 26 and 7.8 minutes in saliva and simulated gastric juice, 

respectively. In serum, a portion of KM-12 was reduced to the monomeric form; however, KM-

12 has shown a tendency to bind serum proteins. In conclusion, KM-12 is promising antifungal 

peptide and may serve as a candidate drug for pharmaceutical applications against Candida 

infections.  KM-12 is a prototype design in which additional modifications may be required to 

achieve maximum benefits.   
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Table 1: KM peptides synthesized in this study.   

Name Sequence
1
 Molecular weight (g/mol) 

KM-11 CFKRKY 855 

KM-13 CWKRKW 947 

KM-15 FKCRKY 855 

KM-17 CFKRKYC 988 

KM-25 CFHRKY 894 

KM-27 CFRRRY 941 
1
 Underlined letter represents the cysteine and the italic represents the variable amino acid. 
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Table 2:  MIC assay for KM-12 activity against Candida albicans.  

The concentration of RPMI MIC value (µg/ml) 

1X >176.8 

0.5X 176.8 

0.25X 44-88 

0.125X 5.5-11 
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Table 3:  MIC assay of KM-12 analogs against Candida albicans.  

Peptide name Sequence
1
 Mean 

Hydrophobic
2
 

moment 

MIC
3
 

µg/ml  

KM-12 CFKRKY 

CFKRKY 

0.40 5.5 - 11 

KM-14 CWKRKW 

CWKRKW 

0.12 118 – 23.6 

KM-16 FKCRKY 

FKCRKY 

0.40 44 - 88 

KM-18 KRK 

F       Y    

C   C 

0.35 8 - 16 

KM-19 & KM-20 CFKRKYC 

CFKRKYC 

0.35 197.2 

KM-26 CFHRKY 

CFHRKY 

0.37 44.65 

KM-28 CFRRRY 

CFRRRY 

0.39 11.16 

1
Red line indicates a disulfide bond. 

3
Mean hydrophobic moment was calculated using the Kyle and Doolittle scale

96 . 

3
 MIC assay was performed in 0.125X RPMI-1640 medium. 
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Table 4:  MIC assay for comparison of the activity of fluconazole and KM-12 on different 

Candida species. 

Candida strain
1
 Fluconazole KM-12

2
 

C. albicans  1.4 -2.8 5.5 - 11 

C. dublinesis 1.95 -3.9 11- 22 

C. glabrata 37.5 88.4 

C. kefyr 1.35 – 2.34 2.75-5.5 

C. krusei 75-150 5.5-11 

C. lucitaniae 0.29 – 0.58 1.38-2.75 

C. tropicalis >150 2.75-5.5 

C. parapsilosis 15 5.5 

1 
Specific clinical isolate and assay are described in the Materials and Methods 

2
 Assay was performed in 0.125X RPMI-1640 medium 
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Figure 1:  HPLC profiles for three different protocols of KM-11 cleavage from the Rink 

resin.  (A) A cocktail composed of 85% TFA, 5% dH2O, 5% triisopropylsilan, and 5% phenol was 

incubated with KM-11 for 3 h and peptides were precipitated in 1:1 v/v methyl-t-butyl ether/hexane. (B) 

A cocktail composed of 90% TFA, 5% thioanisol, 3% ethandithiol, and 2% anisole was incubated with 

KM-11 for 4 h and the peptide precipitated in 1:1 v/v methyl-t-butyl ether/hexane. (C) The same cocktail 

as in panel B but the peptide was precipitated in diethyl ether. 

 

 

 

 

 

KM-11 
KM-11 + 58 

KM-11 

KM-11 

0 5 10 15 20 25 

A 

B 

C 

Time (min) 



209 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2:  HPLC profiles for different protocols of KM-13 cleavage from the Rink resin.  

(Upper panel) A cocktail composed of 85% TFA, 5% dH2O, 5% triisopropylsilan, and 5% 

phenol was incubated with KM-11 for 3 h and peptides were precipitated in 1:1 v/v methyl-t-

butyl ether/hexane.  (Lower panel) A cocktail composed of 90% TFA, 5% thioanisol, 3% 

ethandithiol, and 2% anisole was incubated for 4 h and the peptides precipitated in diethyl ether.  
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Figure 3:  HPLC profile of the kinetics of KM-11 dimerization. The peaks containing the 

monomer (KM-11) and dimer (KM-12) are indicated.  The procedure for dimerization and HPLC 

are outlined in the Materials and Methods.  
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Figure 4: Mass spectrometry of KM-12 dimerization. Mass spectrometry was performed on 

the KM-12 peptide purified by HPLC as shown in Figure 3 using:  (a) MALDI-TOF and (b) ESI 

spectrometry.  
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Figure 5: The HPLC profile of the kinetics of KM-17 dimerization.   The peaks containing 

the linear monomer (KM-17), the circularized monomer (KM-18) and two dimer peptides (KM-

19 and KM-20) are indicated.  The procedure for dimerization and HPLC are outlined in the 

Materials and Methods.  The addition of dithiothreitol (DTT) to the oxidized peptide sample was 

used to confirm the peaks were derived from KM-17 (Bottom panel).  
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Figure 6: Mass spectrometry profile of KM-17 following oxidation of the peptide.  MALDI 

data for the dimerization of KM-17 at initial concentration of 1mg/10 ml. (Panel A) After 

dimerization and (Panel B) before dimerization. 
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Figure 7:  Effect of KM-11 dimerization on the antifungal activity.  The KM-12 peptide (2.5 

µM) was incubated with C. albicans (1.8×10
5
 cells/ml) for 2 h at 37

o
C in 10 mM sodium 

phosphate buffer pH 7.4 or in the same buffer containing 5 mM DTT.  The percentage of viable 

cells was calculated as (viable colonies in the presence of peptide / viable colonies without 

peptide) × 100.  The data represents the mean of three independent experiments with the error 

bars representing the standard deviation.  
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Figure 8: Dose-dependent fungicidal activity of KM-12. (A) Dose-dependent fungicidal 

activity of KM-12 against C. albicans. (B) Linear regression used for calculating the LD50 of 

KM-12 against C. albicans.  Different concentrations of KM-12 were incubated with C. albicans 

(1.8×10
5
 cells/ml) in 10 mM sodium phosphate buffer for 2 h at 37

o
C.  The percentage of viable 

cells was calculated as (viable colonies in the presence of peptide / viable colonies without 

peptide) × 100.  The data represents the mean of three independent experiments with the error 

bars representing the standard deviation.  
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Figure 9: Kinetics of KM-12 fungicidal activity.  The KM-12 peptide (2.5 µM) was incubated 

with Candida albicans (1.8×10
5 

cells/ml) in 10 mM sodium phosphate buffer for different time 

periods (15, 30, 60 and 120 min).  The percentage of viable cells was calculated as (viable 

colonies in the presence of peptide / viable colonies without peptide) × 100.  The data represents 

the mean of three independent experiments with the error bars representing the standard 

deviation.  
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Figure 10: Characterization of KM-12 antifungal activity.  The effect of:  (A) Salt, (B) 

temperature, (C) respiratory activity, and (D) the fungicidal activity on Saccharomyces 

cerevisiae were examined by fungicidal activity assays.  For each assay, 2.5 µM KM-12 was 

incubated with C. albicans or S. cerevisiae (1.8×10
5 

cells/ml) in 10 mM sodium phosphate buffer 

for 2 h at 37
o
C.   The percentage of viable cells was calculated as (viable colonies in the presence 

of peptide / viable colonies without peptide) × 100.  The data represents three independent 

experiments and the error bar represents the standard deviation. 
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Figure 11:  Circular dichroism spectroscopy of KM-12.   CD spectra of KM-12 peptide in 

sodium phosphate buffer pH 7 as well as in the presence of SDS micelles and DMPC liposome 

were determined as outlined in the Materials and Methods.   The calculated percentage of α-helix 

and β-turn is indicated.  CD spectra are displayed in mean residue ellipticity [θ]. 

 

 

 



219 
 

14.5 15.0 15.5

-2

-1

0

1

2

3

4

0 min

20 min

40 min

60 min

A

Time (min)

m
V

o
lt

s

KM-12

 

0 20 40 60 80
4.0

4.5

5.0

5.5

6.0

6.5

7.0

y=-0.0263x+6.2208

R2=0.9978

t1/2=26.35  2.45 min

k = 0.0263 min-1

Time (min)

ln
 p

e
p

ti
d

e
 c

o
n

c
e
n

tr
a
ti

o
n

 (


g
/m

l)

 

Figure 12: Stability of KM-12 in human saliva.  A) HPLC profile of KM-12 following 

incubation with human saliva for the indicated times as outlined in the Materials and Methods.  

B) The determination of the half-life of KM-12 in human saliva.  
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Figure 13: Mass spectrometry of KM-12 after exposure to human saliva.  KM-12 was 

incubated with human saliva for 60 min, the reaction was terminated and subsequently mass 

spectrometry was performed to identify the cleavage site within the peptide.  The putative 

cleavage product is shown. 
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Figure 14:  The stability of KM-12 in artificial gastric juice. A) HPLC profile of KM-12 

following incubation with artificial gastric juice for the indicated times as outlined in the 

Materials and Methods.  B) The determination of the half-life of KM-12 in artificial gastric juice.  
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Figure 15: Mass spectrometry of KM-12 in artificial gastric juice.  KM-12 was incubated 

with artificial gastric juice for 0 min and 60 min, the reaction was terminated and subsequently 

mass spectrometry was performed.  The two samples were analyzed using ESI, and the data were 

merged together to identify the proteolytic fragments.  The putative cleavage product is shown. 
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Figure 16: Stability of KM-12 in serum.  KM-12 was incubated in 20% fetal bovine serum for 

5 min, processed as described in Materials and Methods, and analyzed by HPLC.  The KM-11 

(monomer) and KM-12 (dimer) peaks are indicated.  
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Candida species are the most common fungal pathogens that affect humans 
1
.  Although 

Candida species are primarily considered commensal microorganisms of the gastrointestinal, 

urinary, and vaginal tracts of healthy individuals, they are also opportunistic pathogens and can 

be associated with high levels of mortality
2,

 
3
.  The incidence of Candida infections are 

dramatically increased in immune compromised patients.  For instance, research has shown 90% 

of HIV patients had oral candidiasis.  In terms of the economic burden to the health care system, 

systemic Candida infections in the United States alone cost about 1.8 billion dollars and that 

accounts for 70% of the overall fungal infection costs 
4
.  Among all fungi, Candida albicans is 

the major cause of both mucosal and systemic human infections.  

Currently there are four categories of antifungal drugs: azoles, polyenes, echinocandins, and 

antimetabolites.  Each class has some limitations, and multiple cases of drug-resistant Candida 

have been identified for each category.  At therapeutic concentrations, azole compounds are 

fungistatic and only a few members of this family of drugs can be used to treat systemic 

infections.  There are multiple genes that have been identified that affect resistance to azole 

compounds in C. albicans (MDR1, CDR1, CDR2) 
5, 6

,  C. glabrata (CDR1, CDR2)
7, 8

, and C. 

dubliniensis (MDR1 , CDR1)
9
.   

The polyene compounds, such as amphotericin B, while highly effective in killing fungi, have a 

narrow therapeutic index, limiting clinical use to only the most severe cases where other 

antifungals are not useful.   Renal failure and nephrotoxicity are common consequences of 

polyene treatment, and it has been reported that the rates of acute renal failure in patients on 

polyenes are between 49% and 65% 
10

.   Although fungal resistance to polyenes has not been a 

major clinical problem, multiple cases have been reported in Candida species, including C. 

albicans
11

, C. krusei
12

, C. lusitaniea
13

, C. glabrata 
14

 and C. tropicalis
15

. 
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Echinocandins are the most recently discovered class of antifungal drugs introduced for clinical 

use.  Because of the relative high risk of acquiring resistance, echinocandins are not 

recommended to be used as an initial therapy 
16, 17

.  Echinocandin resistant strains of  C. albicans 

18
, C. krusi

19
, C. glabrata 

20
,  C. lusitaniae

21
 and C. parapsilosis 

22
 have been observed in 

patients. 

 Antimetabolites, such as 5-flucytosine, are considered fungistatic and the acquisition of 

resistance occurs at a high rate.  Thus, their use as a monotherapy is restricted, but can be 

combined with other antifungal agents such as amphotericin B 
23

 to effectively treat patients as 

needed.  Again, several cases of resistant Candida species have been reported 
24-26

. 

The limited arsenal of antifungal drugs coupled with the growing number of drug resistant 

clinical isolates of Candida species stresses the need for the development of new antifungal 

agents with new mechanisms of action 
27, 28

.  The resistance to current drugs has, in part, resulted 

from the excessive use of antifungals as an approach to prevent fungal infections in immune 

compromised patients 
29

.  In addition, some Candida species exhibit inherent resistance to the 

current fungal drugs.  For example, the majority of Candida glabrata clinical isolates are 

resistant to fluconazole at therapeutically permissible concentrations, and Candida lusitaniae is 

known to be resistant to amphotericin B
30

. 

The average length of time for a drug to reach the market and get FDA approval is 

approximately 15 years
31

.  Therefore, the current focus on developing new antifungal drugs is a 

logic step before our current arsenal of drugs fail.  Additionally, designing new drugs with novel 
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mode of action is essential. Antifungal drugs with novel mechanisms of action are less likely to 

be affected by current resistance mechanisms and subject to the possibility of cross-resistance. 

 This research has focused on designing, developing and characterizing a novel family of 

antimicrobial peptides which may serve as a model for new antifungal drugs.  This family, 

named Kumar-McNabb antimicrobial peptides (KM), was developed utilizing natural 

antimicrobial peptide models. The KM peptides were developed in a multistep process: selecting 

histatin 5 as a natural model, studying the structural requirement for histatin 5 activity, 

identification of KM motif as the minimum functional domain of histatin, and finally utilizing 

the KM motif to design a family of new peptides. 

Histatin 5 as a model for a naturally occurring peptide.  Besides their role in innate 

immunity, antimicrobial peptides (AMPs) serve as promising candidates for new therapeutics. 

AMPs are attractive models because they possess unique features such as broad activity, rapid 

action, low microbial resistance and high selectivity 
32

.   In general, the major source of new 

AMPs is natural 
33

.  Therefore, the search for a model peptide began by searching for AMPs  that 

exist in a common infection site for Candida species such as mucosal tissues, especially the oral 

cavity 
34

.  In the oral cavity, five different AMPs were identified; however,  only three of them 

exhibited significant antifungal activity: HNP1-4 , histatins and β-defensins 
35

.  The histatins are 

a family of histidine-rich cationic peptides produced by salivary glands 
36, 37

 and are considered 

to be the first line of defense against Candida infections of the oral cavity 
36

.  Histatin 5, a 

member of the histatin family, has the most potent fungicidal activity among oral AMPs, and has 

been studies extensively for several years 
38, 39

.  
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Structural requirement of histatin 5 fungicidal activity.  Histatin 5 is a histidine-rich peptide 

composed of twenty amino acids.  Several studies have shown that the full length peptide is not 

required for fungicidal activity since an N-terminal truncated peptide, termed C-16 (a 16 amino 

acid fragment of histatin 5), retains the full activity 
40

.  Since histidine is the most abundant 

amino acid in histatin, it would be presumed that the antimicrobial activity of the peptide would 

be strongly affected by the pH of the environment. In fact, changing the pH from acidic to basic 

is enough to shift the net charge from +14 to +5.  Surprisingly, histatin 5 and C-16 retain the 

same activity against C. albicans over a wide range of pH (5 - 9) which strongly suggests that the 

histidine residues may not be involved in the antifungal activity.  

The optimal number of positive charges and their role in histatin 5 fungicidal activities, as well 

as the structural requirements for the fungicidal activity (represented by C-16 fragment) were 

studied in this dissertation.  Initially, four C-16 analogs were synthesized, referred to as C-16 

(W), retro-C-16 (R) and two additional peptides containing only D-amino acids. The fungicidal 

activities of the four peptides were examined against Candida albicans, as well as the effects of 

temperature, EGTA (a chelator of divalet cations), sodium chloride, pH and sodium azide. The 

stability in saliva and artificial gastric juice were also evaluated.  

Our results have shown that all four peptides exhibited the same activity against C. albicans, and 

the results of killing assays in the presence of common histatin 5 inhibitors (NaCl, sodium azide, 

EGTA and low temperature) support the hypothesis that the analog peptides have the possibility 

to work through the same pathway as histatin 5.  Furthermore, the results suggested that the 

mode of action doesn’t involve any receptor-mediated activity as the retro peptide and the D-

amino acid-containing peptides exhibited the same activity. Surprisingly, the four peptides were 

also structurally similar and contained the same percentage of alpha helix in the presence of 50% 
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of TFE). The secondary structure studies of the retro and wild peptides using CD spectroscopy 

showed that the retro and wild peptide largely adapt a random coil structure in aqueous solution. 

The only difference observed between these peptides was the stability in gastric juice where the 

C16 peptide was more stable than the retro peptide. 

 These initial studies yielded several important results. First, the antifungal activity of histatin 5 

is likely to be related to the spatial relationship of the amino acids within the peptide rather than 

the specific N-to C-terminal sequence or stereospecificity. Secondly, the antifungal activity was 

shown to be dependent on the positive charges that come from arginine and lysine residues, but 

not likely histidine. Thirdly, the characteristics of peptide’s killing activity and mode of action 

imply that the four derivatives achieved the activity via same mechanisms pathways. Finally, our 

studies and other’s indicate that a smaller region within histatin-5 derivatives may have potent 

antifungal activity.   

Identification of the KM motif, the functional domain of histatin 5.  One of the general 

problems utilizing therapeutic peptides as therapeutic agents is cost effectiveness.  In order to 

utilize a peptide as a commercial drug it must economically feasible to prepare.  Over the past 

two decades, several attempts have been carried out to optimize histatin 5 and attain the smallest 

active fragment.  P-113, a12 amino acid peptide, is the most effective and smallest fragment of 

histatin 5-derived peptide developed to date.   

After our studies with the retro C-16, we noted the presence of a small symmetrical sequence 

within C-16 peptide that would not be affected by the orientation of the amino acid sequence 

(retro or normal), and this fragment was (-YKRKF- , referred to as Kumar-McNabb or KM 

motif).  Furthermore, this sequence contained three positively charged residues that were 
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required for the activity. The role of this KM fragment in histatin 5 anti-fungal activity was 

investigated by establishing a sequence comparison using published histatin 5 fragments and 

known analogs. The result revealed that the KM motif is found in every active fragment and any 

change in KM sequence lead to the abolishment or a decrease in the activity. 

The function of the KM motif in antifungal activity was evaluated with two pentameric peptides, 

KM-5 and KM-6.  Both peptides contained the same amino acid composition as the KM motif; 

however, KM-5 had the retro amino acid sequence (FKRKY) while KM-6 (YKRKF) had the 

normal sequence found in histatin 5. It is important to mention that those pentamer peptides were 

acetylated and amidated to improve the stability. The activity of the pentamers against C. 

albicans was evaluated and compared to C-16 peptide. Later, the similarities in the mechanism 

of action were compared to the histatin 5 C-16 peptide by evaluating the effect of sodium 

chloride, sodium azide, low temperature, as well as the activity against S. cerevisiae. Finally, the 

general characteristics of KM-5 activity were measured by determining the LD50, the kinetics of 

fungicidal activity, and the effect of pH. 

Our results show that the KM motif is the shortest active fragment in histatin 5, and is less than 

half the size of P-113.  The activity of KM-5 is not affected in the retro orientation (KM-6) and 

that may explain why the retro C-16 peptide retained full activity as C-16.  The characteristics of 

KM-5 fungicidal activity were similar to C-16 peptide and histatin 5.  Moreover, like histatin 5, 

active respiration is also required for optimal KM-5 activity. By synthesizing several KM-5 

analogs, it was found that any interference with the positively charged amino acid residues 

reduces the anti-fungal activity. 
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Although KM-5 (LD50=5.5 µM) is less active than the C-16 peptide (LD50=3 µM), it is much 

smaller and would be more economically efficient.  Our results, supported by published data, 

suggest that the KM motif might be the functional motif of histatin 5 and the C-16 peptide.    

This study is not the first to report the presence of a common sequence in some histatin 5 

fragments.  KRKFHE has been reported as a common motif in the active fragments but its 

activity has not been evaluated 
41

.  Also KM-5 is not the only antimicrobial peptide with five 

amino acid in sequence , several small anti-fungal
42-44

, antibacterial
45, 46

and antiviral 
47

peptides 

have been reported including the antifungal drug family, the echinocandins. 

Utilizing KM motif to design a new family of antimicrobial peptides.  In this study, we 

developed the KM-12 peptide, a potent antifungal peptide, utilizing KM-5 as a model.  KM-12 is 

a homodimeric peptide composed of two KM motifs, where a cysteine residue was introduced to 

the N-terminus of KM-5 to facilitate dimerization through disulfide bond formation.  It is 

important to mention that the addition of cysteine didn’t interfere with activity as the monomer, 

which retained the same activity as KM-5. With dimerization we achieved several targets. 

Firstly, KM-12 peptide has a high probability to work via the same mechanism like histatin 5 as 

the dimerization did not interfere with KM motif sequence.  Secondly, from a cost effectiveness 

point of view, KM-12 is cheaper to make than any other 12mer peptide because only a six amino 

acid peptide (monomer) is required.  Finally, the dimerization improved the activity 

approximately 10-fold over the naturally occurring histatin 5. 

  Although several analogues were synthesized to improve fungicidal activity and salt tolerance, 

it was found that the KM-12 sequence was the optimal.  The studies of KM-12 antifungal 

characteristics support the theory that KM-12 might work through the same mechanism of action 

as histatin 5.  KM-12 activity was inhibited by histatin 5 inhibitors such as sodium azide, sodium 
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chloride and low temperature.  However, there were some differences noted.  The kinetics of 

yeast killing is faster with KM-12 than histatin 5 as KM-12 achieved 95% loss of viability in one 

hour while histatin 5 achieved the same percentage killing after two hours.  Furthermore, 2.5 µM 

KM-12 had the ability to kill 95 % of S. cerevisiae on fermentable media while histatin 5 has 

failed, as it required 25µM histatin 5 C-16 peptide to achieve 50% killing activity. 

 Focusing on the potential of KM-12 in the fungal drug market, the spectrum of KM-12 activity 

against various Candida species was evaluated.  KM-12 was tested against C. glabrata, C. 

parapsilosis, C. tropicalis, C. krusei, C. lusitaniae, C. kefyr and C. dubliniensis.  Except for C. 

glabrata, KM-12 exhibited a potent activity against all Candida species, including those that 

displayed fluconazole resistance (C. tropicalis and C. krusei).   

Regarding the possibility of manufacturing KM-12 peptides on a large scale, the synthesis 

protocol and dimerization procedure were optimized. The optimal resin cleavage conditions were 

achieved using a cleavage cocktail of 90% TFA, 5% Thioanisol, 3% Ethandithiol, and 2% 

anisole. The optimal incubation time for cleavage was 4 hours and the optimum precipitation 

buffer after cleavage was diethyl ether.  

Because we sought an antimicrobial peptide for pharmaceutical application, the stability in 

human fluids was evaluated using KM-12.   As all AMPs, KM-12 was unstable in simulated 

gastric juice and saliva. The t1/2 of KM-12 in gastric juice and saliva was 7.8 and 26 minutes, 

respectively.  We used mass spectrometry to identify the cleavage sites within KM-12 when 

exposed to saliva and gastric enzymes, creating the possibility of resolving this problem via the 

use of D-amino acids at the cleavage sites.  
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The negative aspects of  KM-12 are the fact that the disulfide bond linking the dimer is liable in 

serum and the peptide is highly sensitive to salt concentration.  One solution for resolving the 

instability of the peptide in serum is to remove the cysteine residues and generate a ten amino 

acid peptide.  Salt sensitivity is a general problem in all cationic antimicrobial peptides. The 

effect of salt was obvious using RPMI-1640 medium to simulate physiological conditions.  The 

fungicidal activity of KM-12 was improved by diluting the RPMI-1640 medium to reduce the 

salt content.  Although KM-12 is salt sensitive, it’s still more active in the presence of salt than 

histatin 5.  The salt sensitivity and instability in serum may narrow the usage of KM-12 to topical 

application. 

 After we designed the KM-11 peptide (CFKRKY),  a search on the database using the sequence 

revealed that a similar sequence is found in multiple peptides, such as the C-terminus of MtDef4 

peptide (FRRRCF) and the N-terminus of Lactoferricin B (FKCRRW). In spite of MtDef4 

containing 46 amino acid, any interference with the C-terminal region inhibits the activity 

against  plant fungi Fusarium graminearum  
48

. Research on Lactoferricin B has shown that the 

N-terminal sequence has the ability to suppress Candida cell growth 
49

 . Interestingly in both 

peptides, the disulfide bond is not essential for the activity. 

 In summary, this study focused on developing a new family of antimicrobial peptides, later 

referred to as Kumar-McNabb (KM) peptides, utilizing the histatin 5 peptide model.  This family 

is designed to serve as a model for the development of additional peptides that serve as 

therapeutic agents for the treatment of Candida infections.  Although a promising prototype 

peptide was designed and evaluated, future research is needed to achieve maximum benefits and 

solve problems associated with the prototypic peptide, KM-12. 
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