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ABSTRACT 

Our research group is working toward the development of novel antifungal peptides 

based on a natural model of peptide histatin-5. Histatin-5 is found in human saliva and known to 

protect our body against oral infections by Candida species. Candidiasis, or an infection caused 

by Candida species, is considered one of the most medically important fungal infections 

worldwide.  Blood stream infections caused by Candida species are the fourth leading cause of 

hospital-acquired fungal infections that is associated with high mortality rates and high costs of 

treatment.  This study investigated the modes of action of histatin-5 with the use of one 16-mer 

derivative lacking eight amino acids from the N-terminus of the native histatin-5 and three 

enantio, retro and retroenantio 16-mer analogs. All four derivatives showed significant fungicidal 

activity with Candida albicans via mechanisms independent of SSA2p hypothesized to be the 

histatin-5 receptor on the plasma membrane of C. albicans. All four derivatives were shown to 

target artificial yeast phospholipid membranes and their killing activities involved the electron 

transport chain or respiration of the yeast cells. The data obtained from this study suggested the 

existence of a short five amino acid sequence within the 24-residue sequence of histatin-5 

peptide that may have fungicidal properties. Several novel peptides were generated by the 

dimerization of the 5-mer amino acid sequence and these peptides were shown to have strong 

antifungal activities. In vitro assays were used to investigate potential toxicity of the new 

antifungal peptides to mammalian cells and these peptides were shown to be nontoxic to NIH3T3 

murine fibroblasts and sheep red blood cells at concentrations up to 100μM. The testing of acute 

toxicity and immunogenicity of some of these peptides in mice was also performed to obtain data 

on the in vivo tolerance of animals. The results of this work are presented in the following 

chapters of this dissertation.  
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A. Infections caused by Candida species in humans 

 Candidiasis is one of the most common fungal infections in humans and it is caused by 

the Candida species. Candida species are commensal organisms normally found on the skin and 

in the cavities of the human body (Skinner & Fletcher, 1960); however, they can become 

pathogenic when the normal defense or flora of host subjects is disrupted by disease or 

immunosuppression.  Among pathogenic Candida species, several entities are commonly 

implicated in human candidiasis such as Candida albicans, Candida glabrata, Candida 

parapsilosis and Candida tropicalis (Hazen, 1995, Lewis, 2009). The clinical settings of 

candidiasis can vary from mild to severe depending on the sites of infection and status of the host 

immune system. Several common forms of human candidiasis encountered in clinical practice 

are thrush (oropharyngeal/ esophageal candidiasis), vaginal yeast infections (genital/ 

vulvovaginal candidiasis) and invasive candidiasis (blood stream infections).   

Thrush caused by Candida species is a form of mucosal infection. It can occur in very 

low- birth-weight (< 1000g) neonates (Faix et al., 1989, Saiman et al., 2000), elderly or immuno-

compromised individuals such as those who are being treated with immunosuppressive drugs, 

cytotoxic chemotherapy or radiotherapy (Ellepola & Samaranayake, 2001).  Clinical signs and 

symptoms of thrush caused by Candida species, especially C.albicans, include white plaques on 

oral or pharyngeal mucosa that are usually painless. However, fissures at the corners of the 

mouth could be found and those lesions could be very painful (Harrison, 2005). Oral thrush can 

spread to adjacent anatomical structures of the oral cavity such as the esophagus and cause 

difficulties in swallowing (Vazquez & Sobel, 2002).  Mucosal candidiasis can progress into more 

invasive forms if the integrity of the affected mucosa is disrupted by trauma, surgery, 

procedures, etc. (Harrison, 2005) 
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Vaginal yeast infections are another common form of candidiasis in adults. Candida 

vaginitis is characterized by a local itching and burning sensation coupled with a white scanty 

vaginal discharge (Sobel, 2007). The condition is common among adult female population. It 

was estimated that approximately two-third of American adult females experienced at least one 

episode of vulvovaginal candidiasis during their life time (McCormack et al., 1994). In one 

epidemiology study done via telephone interview of more than 2000 American women aged 18 

year or older, 6.5 percent reported at least one episode of suspected Candida vaginitis in the 

previous 2 months period.  The study estimated the annual cost for the treatment of Candida 

vaginitis to be approximately 1.3 billion USD (Foxman et al., 2000). 

Among the most severe forms of candidiasis is Candida blood stream infections which 

are a health problem in the United States and worldwide. Candida species were reported to be 

the fourth leading cause of nosocomial bloodstream infections in a group of 24,179 patients in 49 

US hospitals during a 7-year study period (Wisplinghoff et al., 2004). Other epidemiology 

studies reported the incidence of invasive candidiasis in the range of 6-24 cases/100,000 US 

populations/year during the period of 1998-2000 (Hajjeh et al., 2004, Diekema et al., 2002). At 

the worldwide level, the incidences of invasive candidiasis in European countries such as Iceland 

and Denmark were reported to be 4.9 and 11 cases/100,000 populations/year, respectively 

(Asmundsdottir et al., 2002, Arendrup et al., 2005). Invasive candidiasis was shown to be 

associated with mortality rate up to 40% (Gudlaugsson et al., 2003, Bougnoux et al., 2008) and a 

high cost of treatment. The annual treatment cost for blood stream candidiasis was estimated to 

be at least 200 million USD/year in the US (Rentz et al., 1998) and 520 million AUD/5 years in 

Australia (Slavin et al., 2004). For the above reasons, candidiasis is an important fungal infection 

in humans that should be dealt with seriously.    
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B. Structures of the cell wall and plasma membrane of C.albicans 

 C. albicans is a diploid yeast (Jones et al., 2004) that can exist in either the yeast or 

hyphal form. The latter is thought to be essential for the virulence of C. albicans via the up-

regulation of virulence factors such as adhesin and protease (Lane et al., 2001, Nantel et al., 

2002). In vitro studies suggested that the hyphal form was more invasive than the yeast form 

(Dalle et al., 2010) and it was found in the epithelial cells of patients suffering from cutaneous 

candidiasis (Scherwitz, 1982). In terms of structure, both forms have a cell wall composed of 

chitin, β-glucans and mannoproteins, with 50-60% of the weight of the cell wall being composed 

of β-glucans while mannoproteins and chitins account for 30-40% and 0.6-3%, respectively 

(Chattaway et al., 1968, Sullivan et al., 1983). Current models suggest that the β-(1,3) glucan 

molecules are bound together by hydrogen bonds in the cell wall of C. albicans and that those 

molecules form a scaffold for mannoproteins and chitins to bind (Kapteyn et al., 2000, Kapteyn 

et al., 1995). Electron microscopy studies have suggested that the C. albicans cell wall has a 

fibrillar network outside its outermost layer and that this fibrillar network could play a role in the 

adhesion of C. albicans to the host cell (Tokunaga et al., 1986)  

Like other eukaryotic cells, C. albicans has a phospholipid plasma membrane with 7-10% 

of the dry weight of the plasma membrane reported to be phospholipids and the phospholipid 

composition of the plasma membrane varied depending on its biological forms (Marriott, 1975). 

Thus far, the neutral phosphatidyl ethanolamine was reported to be among the most abundant 

phospholipids of C. albicans plasma membrane in both the yeast and hyphal forms (Marriott, 

1975).  The molar ratio of ergosterol to phospholipids in the plasma membrane of C. albicans 

has not been reported in the literature, however, this ratio may be close to the value of 0.5 

currently known for other fungal organisms (van Meer et al., 2008). In vitro study with artificial 
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membranes that contained ergosterol at different concentrations suggested that the presence of 

ergosterol improved the fluidity of phospholipid membranes (Hsueh et al., 2005). Ergosterol is, 

therefore, an important component of the plasma membrane in fungi and is among the targets of 

some antifungal agents such as the polyene and azole drugs.  

 

C. Mechanisms of action of current antifungal agents  

The treatment of candidiasis and other fungal infections is currently based on the use of 

antifungal agents grouped as polyenes, azoles, pyrimidine analogues and echinocandins. These 

drugs have different targets on the Candida cells and they can act via the disruption of the yeast 

cell wall, the inhibition of ergosterol or β-glucan synthesis, or the disruption of RNA and DNA 

synthesis in the yeast cells. The use of these drugs separately or in combination has been 

effective in the treatment of many patients suffering from candidiasis. 

Polyenes, such as amphoterin B or nystatin, are antifungal agents which kill fungi by 

forming pores in the plasma membrane after binding to ergosterol molecules on the phospholipid 

bilayer (Figure 1). Data obtained from studies with artificial membranes suggested that 

amphotericin B and nystatin formed pores of approximately 4 angstroms in radius in the 

phospholipid bilayers (Holz & Finkelstein, 1970, Holz, 1974). One study with sterol-containing 

artificial phospholipid membranes suggested that the transition of amphotericin B from the 

monomeric to the aggregate state in the phospholipid bilayer occurred when its relative 

concentration to lipids reached a threshold and the transition coincided with the ion channel 

activity of the membranes (Fujii et al., 1997). The formation of pores on target membranes 

ultimately results in the disruption of cellular integrity and death of yeast cells (Liao et al., 1999, 

Phillips et al., 2003).   
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Unlike polyenes, which work via pore formation, azole agents inhibit the 14-α 

demethylase enzyme involved in the synthesis of ergosterol, an important constituent of fungal 

biomembranes (Yoshida & Aoyama, 1987, Hitchcock et al., 1990) (Figure 1). These azole 

agents were shown to have a high affinity for cytochrome P45014DM (now called Erg11p), the 

enzyme responsible for the 14 α-demethylation reaction of lanosterol.  Furthermore, the azoles 

were shown to form complexes with the heme iron of cytochrome P45014DM (Yoshida & 

Aoyama, 1987, Hitchcock et al., 1990). The azoles are the most commonly used antifungal 

agents and they have fungistatic effects on many fungi; however, they do display fungicidal 

activity on Cryptococcus neoformans and Aspergillus fumigatus (Klepser et al., 1998, Lass-Florl 

et al., 2001).  

Beside the polyenes and azoles, the pyrimidine analogs, such as fluorocytosine, exert 

antifungal activities by disrupting RNA chain elongation and inhibiting DNA synthesis in 

susceptible fungal cells (Figure 1). Fluorocytosine synthesis was first reported in 1957 

(Duschinsky, 1957) and the drug was used to treat candidiasis and cryptococcosis several years 

later (Tassel & Madoff, 1968). 5-Fluorocytosine is known to enter the yeast cells and be 

converted into 5-fluorouracil and then 5-fluorouridylic acid. 5-Fluorouridylic acid is then 

phosphorylated before being incorporated into RNA and results in the disruption of protein 

synthesis (Polak & Scholer, 1975).  Another metabolite of 5-fluorouracil is 5-fluorodeoxyuridine 

monophosphate that is known to inhibit the enzyme thymidylate synthase (Diasio et al., 1978). 

5-Fluorocytosine is rarely used in monotherapy, rather it is usually employed in combination 

with other antifungal agents to achieve better treatment of fungal infections. 

Recently added to the list of antifungal agents are the echinocandins that have a cyclic 

peptide core and a lipid side chain. Echinocandins are potent antifungal agents known to block 
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the formation of 1, 3 β-D glucan of fungal cell wall via noncompetitive inhibition of the enzyme 

1, 3 β-D glucan synthetase (Sawistowska-Schroder et al., 1984) (Figure 1). 1,3 β-D glucan is an 

important component of the yeast cell wall. Further studies identified FKS1 as the gene that 

encoded for a transmembrane subunit involved in the enzymatic activity and susceptibility of the 

enzyme 1, 3 β-D glucan synthetase to echinocandins (Douglas et al., 1994). Some FKS1 

Candida mutants have been identified to have reduced susceptibility of the enzyme 1, 3 β-D 

glucan synthetase to echinocandins fungicidal activity (Park et al., 2005). Three members of the 

echinocandin group, namely caspofungin, micafungin and anidulafungin, currently have the 

approval from the Federal Drug Agency for the treatment of human candidiasis. These 

echinocandins are currently being used in severe cases of candidiasis, fluconazole-resistant 

candidiasis or in cases of candidiasis in which the patients are intolerant to fluconazole (Pappas 

et al., 2009).  

 

 

 

 

 

 

 

 

 

Figure 1. Modes of action of current antifungal.  Schematic diagram of the mechanism-of-

action of the Echinocandins, Polyenes, Azoles, and Flucytosine as described in the text. 
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D. The emergence of drug-resistant Candida species and the need to develop new antifungal 

agents 

Despite the availability of current antifungal agents, the emergence of drug-resistant 

Candida strains has been an alarming finding.  Candida species, like other medically important 

fungi, could develop mechanisms that help them evade the killing action of antifungal agents. 

Modifications in ergosterol biosynthesis, for example, were known to be used by Candida 

lusitaniae to escape the antifungal action of the polyenes such as amphotericin B (Young et al., 

2003).  Some clinical isolates with very low ergosterol content in their phospholipid membranes 

were reported to have reduced susceptibility to amphotericin (Dick et al., 1980, Nolte et al., 

1997).  In terms of resistance to azoles agents, up-regulation of drug efflux transporter proteins 

encoded by CDR1 and CDR2 were detected in azole-resistant isolates of C. albicans (Sanglard et 

al., 1995, Sanglard et al., 1997). The increased expression of these efflux transporter proteins are 

believed to reduce intracellular accumulation of azole s and confer azole-resistance in some 

Candida species.  In addition to the up-regulation of ATP binding cassette transporters, mutation 

of the ERG11 gene, which encodes for the enzyme 14α-demethylase, is thought to mediate the 

resistance of some Candida strains to azoles (Marichal et al., 1999, Perea et al., 2001).   

Resistance to the members of echinocandin drugs by Candida species has also been 

reported. Mutations in the FKS1 gene which codes for one subunit of the enzyme 1,3 β-D glucan 

synthetase is thought to mediate the resistance to the antifungal activity of echinocandin drugs 

(Douglas et al., 1997). Mutations of amino acids in a region from Phe 641 to Asp 648 of Fks1p 

was shown to correlate with reduced susceptibility to caspofungin in a study using site-directed 

mutagenesis of the Fks1p in C. albicans.  In addition, some clinical isolates of C. albicans with 

reduced susceptibility to caspofungin were also shown to have Ser 645 of Fks1p replaced by 

another amino acid (Park et al., 2005).  In contrast to what was found with azole antifungal 
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drugs, over-expression of ATP binding cassette transporters encoded by CDR1, CDR2 or MDR1 

was not shown to confer reduced susceptibility of C. albicans to echinocandins (Niimi et al., 

2006).  

The emergence of new drug-resistant C. albicans strains demands the development of 

newer antifungal drugs for the fight against candidiasis and other fungal infections. One logical 

direction towards the development of fungal therapeutics is the adaptation of antifungal agents 

that already exist in the nature. Among those agents, antifungal peptides with their special modes 

of action seem to offer promising candidates. 

 

E. The existence of antifungal peptides in nature 

Antifungal peptides can be found in nature and represent a line of host defense in various 

species such as plants, insects, animals and humans.  More than 500 naturally occurring peptides 

that possess antifungal activities have been registered in the Antimicrobial Peptide Database 

(Wang, 2003).  Among those peptides, at least 50 entities are of human origin while the others 

have been found in various species such as plants, bees, frogs, pigs, etc.  Natural antifungal 

peptides are believed to help protect host species against pathogenic fungi. One example of 

peptides with such protective actions is the magainins. Magainin peptides were found on the skin 

of African clawed frogs Xenopus laevis and are known to inhibit growth or induce lysis of 

bacteria, fungi and protozoa which exist in contaminated water where the species live (Zasloff, 

1987).  Antifungal peptides are enormously diverse in terms of amino acid sequences and 

antimicrobial spectrum, however, they share common features such as having an amphipathic 

amino acid sequence or a net cationic charge at physiologic pH (Yeaman & Yount, 2003). 

Furthermore, antifungal peptides usually possess specific structures such as α-helix (Lequin et 
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al., 2003), β-sheet (Fahrner et al., 1996) or a combination of disulfide bonds (Huang et al., 

2004). Those secondary structures are currently being used to classify antimicrobial peptides in 

some registries (Wang, 2003, Sitaram & Nagaraj, 2002). 

 

F. The selectivity of antifungal peptides in relation to common components of fungal cell 

walls or biological membranes 

Why certain antifungal peptides specifically target pathogenic fungi, but not the host cells 

is not fully understood.  However, the structure of fungal cells as compared to those of bacterial 

and mammalian cells may provide some answers.  Unlike bacterial and mammalian cells, many 

fungi possess a cell wall rich in chitin, β (1, 3)-glucan and mannoproteins (Levitz, 2010) which 

are known to be among possible targets of antifungal peptides (De Lucca & Walsh, 1999, 

Makovitzki et al., 2006). Chitin-binding property was reported in a number of antifungal 

peptides such as Ac-AMP1, Ac-AMP2 (Broekaert et al., 1992), shrimp penaeidins (Destoumieux 

et al., 2000), tachystatin (Fujitani et al., 2002), Cy-AMP1 (Yokoyama et al., 2009), hyastatin 

(Sperstad et al., 2009), etc. With respect to the Cy-AMP1 peptide, its antifungal activity was 

markedly reduced by experimental mutations of its chitin-binding domain while its antibacterial 

activity was not affected by the changes (Yokoyama et al., 2009).   

In terms of lipid compositions, fungal membranes contain ergosterol while those of 

mammalian cells contain cholesterol (van Meer et al., 2008). Sterols molecules could be a factor 

that helps antifungal peptides distinguish between yeast and mammalian biomembranes.  One 

example of that argument was a study in which the antifungal peptide cateslytin was shown to 

induce changes in fluidity and the separation of artificial membranes that contained ergosterol 

but not cholesterol (Jean-Francois et al., 2009).  In another study, the incorporation of 
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cholesterols into unilamellar phospholipid vesicles was shown to inhibit the permeabilizing 

effect of two class-L peptides on those vesicles (Tytler et al., 1995).   

 

G. Biological membranes as a main site of interaction between antifungal peptides and 

fungi 

Current in vitro data support the concept that antifungal peptides can interact with the 

phospholipid membranes of fungi.  One common method used in such studies is the 

measurement of fluorescent emission spectra of antifungal peptides labeled with 7-nitrobenz-2-

oxa-1, 3-diazole-4-yl (NBD) after the labeled peptides are allowed to interact with artificial 

membranes. The presence of a blue-shift of the spectrum suggests the relocation of the labeled 

peptides into a more apolar environment,  i.e. the phospholipid layers of the biomembranes 

(Pouny et al., 1992).  A number of antifungal peptides such as dermaseptin-b (Strahilevitz et al., 

1994), LL37 (Oren et al., 1999), temporins (Domanov & Kinnunen, 2006), and pseudin-2 (Park 

et al., 2011) were shown to interact with artificial phospholipid membranes via the utilization of 

this labeling technique. 

Freeze-fracture electron microscopy is another approach that has provided further 

evidence of interaction between antifungal peptides and biological membranes. In this technique, 

the cell membrane of fungal cells is fractured along the interface of its inner and outer leaflets 

and a metal replica of the fracture surfaces is created. Information on the surface of the inner and 

outer leaflets of the cell membrane together with the distribution of inter-membranous protein 

particles is obtained by the examination of those replicas under a transmission electron 

microscope.  A study utilizing freeze-fracture electron microscopy in combination with immuno-

staining showed that treatment with LL37 peptide resulted in the relocation of the peptides into 
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the membrane of C. albicans as well as corresponding morphological changes to the fungal 

membrane (Den Hertog et al., 2005). 

In addition to those studies, neutron diffraction studies have suggested that some 

antifungal peptides could result in pore formation on phospholipid membranes.  In those studies, 

the structural changes of the phospholipid membranes treated with antimicrobial peptides were 

detected by changes in the neutron scattering properties of the membranes. Data in terms of 

neutron in-plane and off-plane scattering were then analyzed for the detection of pores as well as 

the sizes of the pores formed on the membranes. The use of D2O exchange helped alter the 

scattering properties of the pores and facilitate the acquisition of images with better contrast (He 

et al., 1996, Ludtke et al., 1996, Yang et al., 1998, Yang et al., 1999). Magainin-2 and protegrin-

1 were showed by neutron diffraction technique to be among the antifungal peptides which 

resulted in pore formation in artificial phospholipid membranes (Yang et al., 2000).  

The formation of pores on target membranes by antifungal peptides can also be detected 

indirectly by the use of fluorescent dye-trapped vesicles. In this technique, fluorescent dyes such 

as fluorescein-dextran (Ladokhin et al., 1997), carboxy fluorescein (Lee et al., 2001) or calcein 

(Viejo-Diaz et al., 2004) are loaded into phospholipid vesicles that are subsequently mixed with 

the peptides of interest. The release of the fluorescent dyes from the vesicles is monitored by a 

spectrofluorometer and indirectly suggests the formation of pores on the phospholipid layers of 

those vesicles. Melittin (Ladokhin et al., 1997), cecropin A (Kang et al., 1998), PMAP-23 (Lee et 

al., 2001) and some other natural antifungal peptides were shown to permeabilize artificial 

phospholipid vesicles resulting in the release of trapped fluorescent dyes from phospholipid 

vesicles.   
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H. Proposed mechanisms of action for the interaction of antimicrobial peptides and target 

phospholipid membranes 

Currently, there are three proposed mechanisms of action by which antimicrobial peptides 

interact with biological membranes.  Studies using artificial membranes suggested that some 

antimicrobial peptides with antifungal properties could permeabilize those artificial membranes 

via different mechanisms termed the barrel-stave, the toroidal and the carpet models.  

In barrel-stave model, antimicrobial peptide molecules are believed to interact among 

themselves and insert into target phospholipid membranes in a way that their hydrophobic 

segments face the phospholipid layers of the membranes while their hydrophilic segments face 

the lumen of transmembrane pores formed by the antimicrobial peptide molecules (Vogel & 

Jahnig, 1986).  Symbolically, the peptide molecules function as the “staves” and the pores 

formed on the phospholipid membrane are “barrels”. Antifungal peptides such as melittin (Vogel 

and Jahnig 1986) and perforin (Rosado et al., 2008) may worked via this mode of action.  . 

Another mechanism used to explain peptide-membrane interactions is the toroidal model. 

This model suggests that antimicrobial peptides form amphipathic alpha-helices that orientate in 

a direction perpendicular to the plane of target membranes and form pores on the latter (Ludtke 

et al., 1996). The toroidal model is different from the barrel-stave mechanism in that it suggests 

some peptide molecules are always associated with the lipid head-groups of target membranes 

and that the wall of transmembrane pores are formed not only by peptide molecules but also by 

lipid head-groups. In addition, some lipid molecules of target phospholipid membranes bend on 

themselves and result in a configuration of the membrane like the inside of a torus that gives the 

model its name (Matsuzaki et al., 1989, Ludtke et al., 1996, Yang et al., 2001). A classic example 

of antifungal peptides thought to act via this model is a natural broad-spectrum antimicrobial 
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peptide named magainin-2 found in the skin of Xenopus laevis African clawed frogs (Ludtke et 

al., 1996, Zasloff, 1987).  Other antifungal peptides also believed to act via this model are 

melittin and protegrin (Yang et al., 2001). 

A third model of antimicrobial peptides-membrane interaction is the carpet mechanism 

proposed about two decades ago (Gazit et al., 1996).  The study used attenuated total reflectance 

Fourier-transform infrared (ATR-FTIR) spectroscopy to explore secondary structures and the 

orientation of cecropin P1 peptide molecules when the antimicrobial peptide interacted with the 

negative or zwitterionic artificial membranes.  ATR-FTIR is a technique which utilizes infrared 

radiation to study secondary structures of peptides and proteins (PerkinElmer, 2005).  Samples 

containing peptide or protein are exposed to infrared radiation and the absorption by the peptide 

or protein molecules in the samples will determine the infrared spectrum of the samples. The 

location of amide I and II bands in the infrared spectrum is related to secondary structures of the 

protein or peptide. Further deconvolutional and dichroic analyses of these bands provide 

information on the components and orientation of those secondary structures (Gazit et al., 1996). 

ATR-FTIR data from the above study suggested that cecropin P1 molecules are orientated 

parallel to the membrane, but did not enter negative or zwitterionic artificial membranes. That 

finding is part of what led to the proposal of the carpet model (Gazit et al., 1996).  The current 

carpet model proposes that antimicrobial peptides form monomers or oligomers which orientate 

parallel to target membranes and these molecules will disrupt the integrity of the membranes 

when a certain threshold concentration of the peptides is reached (Shai, 2002, Wimley & 

Hristova, 2011). Among antifungal peptides, dermaseptin B2 was shown to act via this carpet 

mechanism on anionic phospholipid membranes (Galanth et al., 2009). 
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The interaction between antimicrobial peptides and yeast cell membranes could 

eventually lead to the formation of not only pores but ion channels on target membranes. These 

pores or channels could result in the efflux of potassium, loss of mitochondrial transmembrane 

potential, ATP deficiency and cell death. Peptides of this group usually have α-helical or β-sheet 

secondary structures which can partition into and form channels in the phospholipid bilayers of 

biomembranes. Two examples of peptides with such a property are tritrpticin and protegrin-1 

(Schibli et al., 2002, Capone et al., 2010). Tritrpticin is a peptide belongs to the family of 

cathelicidin peptides found in neutrophil granules. Experiments with bi-planar phospholipid 

membranes suggested that aromatic side chains of tritrpticin, especially those of tryptophan 

residues, partitioned into the artificial phospholipid membranes (Schibli et al., 2002). 

Furthermore, tritrpticin was shown to induce ion conductance when a constant voltage was 

applied across a negatively charged or zwitterionic phospholipid membrane (Salay et al., 2004). 

Those findings suggested tritrpticin forms ion channels in phospholipid membranes. In addition 

to tritrpticin, protegrin-1 is another antifungal peptide thought to form ion channels in 

phospholipid bilayers (Capone et al., 2010).  

There were a small number of studies which suggested that antimicrobial peptides bound 

to a target site, especially lipids, on the membranes of fungal cells.  Ergosterol or cholesterol 

molecules, widely known to be present on eukaryotic cell membranes, were shown to bind to 

cecropin or dermaseptin antifungal peptides when they were mixed together in vitro (De Lucca et 

al., 1998). Other possible binding sites for antifungal peptides are lipid complexes containing 

sphingolipids. Saccharomyces cerevisiae mutants deficient in a membranous sphingolipid named 

mannosyldiinositolphosphorylceramide were less avid for and less susceptible to the Dahlia 

merckii-dervied antimicrobial peptide 1 (DmAMP1) compared to wild-type strains (Thevissen et 
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al., 2000). In addition to DmAMP1, another defensin peptide named RsAFP2 isolated from the 

radish seed of Raphanus sativus was also shown to interact with glycosylceramides present on 

the cell membrane of Pichia pastoris yeast cells.  Pichia pastoris cells depleted in 

glycosylceramide were shown to be resistant to the antifungal peptide RsAFP2 (Thevissen et al., 

2004). 

 

I. Intracellular targets of antifungal peptides 

Some antifungal peptides are believed to be internalized into the intracellular space where 

they exert their killing effects on intracellular targets.  One study using flow cytometry to explore 

the internalization of the antifungal tenacin-3 peptide suggested that the internalization process 

of tenacin-3 was energy and temperature dependent.  In addition, the finding that the population 

of dead cells evaluated by propidium iodine was smaller than that of tenacin-3 positive cells in 

the same samples suggested that some cellular process was required for the killing effects of the 

peptide when the peptide was already inside the treated cells (Kim et al., 2001).  

Once inside the fungal cells, intracellular targets of antifungal peptides could be DNA 

and RNA molecules which bear negative charges.  A truncated derivative of dermaseptin S3 

peptide was found to result in nuclear DNA fragmentation and programmed cell death in S. 

cerevisae. Mutations of four genes known to be involved in yeast apoptosis conferred reduced 

susceptibility of these mutant strains to the truncated derivative.  Furthermore, gel shift assay and 

in vitro DNAse protection assay suggested this peptide bound to DNA (Morton et al., 2007).  

Another peptide named papiliocin found in the swallowtail butterfly Papilio xuthus was also 

believed to target nuclear DNA and mitochondria.  C. albicans cells treated with papiliocin 
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showed increased loss of mitochondrial transmembrane potential, and the intracellular 

accumulation of reactive oxygen species and apoptosis (Hwang et al., 2011). 

 

J. The model of natural peptide histatin-5 and the introduction of histatin-5-based 

antimicrobial agent into clinical setting 

Histatin-5 (DSHAKRHHGYKRKFHEKHHSHRGY, 24 amino acids) is a naturally-

occurring antimicrobial peptide present in saliva.  It was isolated from human saliva more than 

20 years ago and found to have killing activity on C. albicans (Oppenheim et al., 1988).  In 

addition to C. albicans, other fungal species such as Aspergillus fumigatus and Cryptococcus 

neoformans were also shown to be susceptible to histatin-5 (Helmerhorst et al., 1999, Situ & 

Bobek, 2000). The antimicrobial spectrum of histatin-5 also covers bacterial species such as 

Streptococcus mitis (Murakami et al., 1991).  Known for its antifungal activities, histatin-5 

insufficiency may be involved in the development of oropharyngeal candidiasis of patients who 

have reduced salivary secretion as a result of head and neck radiation or Sjogren syndrome.  

Efforts to identify functional domains or fragments of histatin-5 that have pharmaceutical 

application have gained some promising results.  A group of researchers identified a 12-mer 

fragment of histatin-5 (P-113) that retained the antifungal activities of the parent peptide histatin-

5 (Rothstein et al., 2001). An all-D amino acid isoform of P-113 named P-113D was shown to be 

active against Pseudomonas aeruginosa in the sputum of cystic fibrosis patients (Sajjan et al., 

2001).  A phase-2 clinical trial of a group of 106 healthy human subjects suggested that the 12-

mer fragment (P-113) in gel formulations might have protective effects against experimental 

gingivitis evaluated by bleeding-on-probing criteria. The authors of the study concluded that the 

gel formulation was well tolerated and no increase in side effects compared to placebo was 
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recorded (Paquette et al., 2002). In brief, histatin-5 has been shown to be a good model of natural 

antimicrobial peptide that may have pharmaceutical values. 

 

K. Objectives of this study 

Given the promise of histatin-5 as a potential antifungal therapeutic, our studies focused on 

understanding the amino acid residues within histatin-5 that were critical for antifungal activity.  

With that knowledge in hand, we then sought to develop novel peptides with increased 

antifungal activity and to evaluate those peptides both in vitro and in vivo for potential toxicity to 

mammalian cells.  Thus my research can be divided into three components: (1) Investigate the 

mode of interaction between histatin-5 and its cellular targets and further identify the antifungal 

fragment(s) of histatin-5 by the characterization of its 16-mer derivatives; (2) Develop novel 

antifungal peptides based on the core structure of the functional fragment(s) identified in 

objective 1 and evaluate possible toxicity of the newly developed peptides on mammalian cells 

in vitro; and (3) Evaluate potential acute toxicity and immunogenicity of some novel antifungal 

peptide candidates in mice. 
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CHAPTER 2 

CHARACTERIZATION OF FOUR 16MER DERIVATIVES OF HISTATIN-5 AND THE 

IDENTIFICATION OF AN ACTIVE ANTIFUNGAL MOTIF FOR DEVELOPMENT OF 

NOVEL ANTIFUNGAL PEPTIDES 
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A. Introduction 

Histatin-5 (DSHAKRHHGYKRKFHEKHHSHRGY, 24 amino acids) is a naturally-

occurring peptide present in the secretions of the parotid and submandibular salivary glands 

(Oppenheim et al., 1988). It is coded for by the HTN3 gene located on the short arm of 

chromosome 4 (GenBank, Gene ID: 3347) in humans. The gene is transcribed into a messenger 

RNA of 601 nucleotides and translated into a precursor protein of 51 amino acids. The precursor 

protein is converted via proteolysis into histatin-3 of 32 amino acids and subsequently histatin-5 

of 24 amino acids in human saliva (Oppenheim et al., 1988, Castagnola et al., 2004). All three 

peptides were shown to possess antifungal activities against the yeast and hyphal forms of 

Candida albicans and the most active peptide among the three entities was identified as histatin-

5 (Xu et al., 1991). Histatin-5 is stable in unfiltered human saliva for 30-60 minutes and 

subjected to degradation by bacterial proteases present in the salivary fluid (Situ & Bobek, 

2000).  

Current data indicate that histatin-5 is effective against several medically important 

fungal pathogens. The antimicrobial spectrum of histatin-5 is known to cover several strains of 

C. albicans, C. glabrata, Aspergillus fumigatus, Cryptococcus neoformans, and even some 

strains of bacteria (Murakami et al., 1991, Tsai & Bobek, 1997, Helmerhorst et al., 1999b, Situ & 

Bobek, 2000). Furthermore, histatin-5 was shown to be effective against some C. albicans and C. 

glabrata strains that were resistant the azole antifungal agents (Tsai & Bobek, 1997) 

Although the histatin-5 peptide was discovered more than 20 years ago, the mechanism 

of fungicidal activity has not been fully elucidated. The killing mechanism of histatin-5 was 

shown to involve its ability to permeabilize the membranes of C. albicans yeast cells (Edgerton 

et al., 1998). In addition, histatin-5 was shown to enter the intracellular space of the yeast cells 
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treated with the peptide and the uptake of histatin-5 was attenuated in the presence of an electron 

transport chain inhibitor or a proton gradient uncoupler such as sodium azide or carbonyl cyanide 

m-chlorophenyl hydrazone, respectively (Gyurko et al., 2000, Jang et al., 2010). The finding that 

the intracellular uptake of histatin-5 required functional mitochondrial electron transport chain 

suggested the uptake process required cellular energy.  

Once inside the yeast cells, fluorescently-labeled histatin-5 co-localized with 

mitochondria and resulted in mitochondrial transmembrane potential loss and cell death 

(Helmerhorst et al., 1999a, Ruissen et al., 2001). The targeting of histatin-5 to mitochondria was 

thought to be mediated by its structural similarities with some pre-sequences found in 

mitochondria-targeting peptides or proteins (Helmerhorst et al., 1999a, Nicolay et al., 1994) 

Another result of treatment with histatin-5, C. albicans cells displayed an increase in intracellular 

reactive oxygen species and this was thought to be responsible for the death of the yeast cells 

(Helmerhorst et al., 2001a). However, the postulated role of reactive oxygen species in the 

killing mechanism of histatin-5 was not supported by other authors (Veerman et al., 2004). The 

requirement of cellular respiration in the mode of action of histatin-5 on C. albicans was further 

supported by a study in which treatment of C. albicans with histatin-5 in anaerobic conditions 

resulted in less killing compared to that in aerobic conditions (Helmerhorst et al., 1999a). In 

addition, a petite mutant of C. albicans depleted in mitochondria was shown to be less 

susceptible to the antifungal effect of histatin-5 (Gyurko et al., 2000). All the above findings 

supported the involvement of mitochondrial function or respiration in the killing mechanisms of 

histatin-5.  

Previous studies also suggested the involvement of several factors in the uptake of 

histatin-5 into the intracellular space of C. albicans cells. Histatin-5 was believed to bind to 
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Ssa2p on the cell membrane and in the cytosol of C. albicans. The Ssa2p is currently thought of 

as a cell membrane receptor for histatin-5 and believed to play an important role in the killing 

mechanism of histatin-5 (Li et al., 2003). C. albicans cells containing a homozygous gene 

knockout of SSA2 were reported to have reduced susceptibility to histatin-5 (Li et al., 2006). 

However, more recent studies have suggested that histatin-5 is internalized via several members 

of the Dur polyamine transporters. C. albicans mutants depleted of certain Dur proteins were 

reported to have significantly reduced susceptibility to histatin-5 (Kumar et al., 2011). Polyamine 

transporters had been found previously in Escherichia coli and Saccharomyces cerevisiae 

(Igarashi & Kashiwagi, 1999). Furthermore, polyamines are organic cations known to be 

involved in the cellular synthesis of DNA and proteins and cell growth (Tabor & Tabor, 1984, 

Cohen, 1998). 

Efforts have been made to identify the functional domains within the 24-residue sequence 

of histatin-5 necessary for the antifungal activity of the peptide. One early attempt identified a 

16mer derivative lacking eight amino acids from the N-terminus of the histatin-5. The derivative 

was reported to have antifungal activity comparable to histatin-5 against C. albicans (Raj et al., 

1990). The smallest derivative reported to retain the antifungal activities of histatin-5 peptide 

was known to be comprised of 12 amino acids located around the center of the histatin-5 amino 

acid sequence (Rothstein et al., 2001). Since the oligomerization of a functional domain within 

an antimicrobial peptide could generate a much stronger antimicrobial peptide compared to its 

parental entities (Oppenheim et al., 2012), the determination of functional domain of a natural 

antimicrobial peptide is essential in the design of novel synthetic antimicrobial peptides. 

Our research group is interested in the killing mechanism of histatin-5 and the application 

of that knowledge to the development of novel antifungal peptides. The initial goal was to 
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address the simple question of whether the linear amino acid sequence of histatin-5 was 

important for the antifungal activity or alternatively, whether the spatial arrangement of the 

amino acids relative to each other is more relevant. Secondly, we wanted to examine the role of 

stereochemistry in the antifungal activity of the histatin-5 peptide. For these studies, we chose to 

use a 16 amino acid derivative of histatin-5 lacking eight amino acids from the N-terminus, since 

this peptide was previously shown to possess all of the antifungal properties of the native peptide 

(Raj et al., 1990). In addition to the histatin-5 16mer (WL) peptide derivative, we generated three 

additional peptides termed the retro- (RL), enantio (WD) and retroenantio (RD) analogs to 

further explore the mechanism of action of histatin-5 (Table 2.1). In this study, we investigated 

the mechanism of killing of the four 16-mer derivatives of histatin-5 with the use of several C. 

albicans strains and artificial phospholipid membranes. Our goal was to address whether the four 

histatin-5 derivatives possess equal antifungal activity or whether some of the peptides would 

display reduced activity relative to that of the others. If all four peptides displayed similar 

antifungal properties, this would suggest that the linear amino acid sequence of histatin-5 was 

less relevant than the spatial positioning of the amino acids relative to each other. Moreover, if 

the D-isomers displayed similar activity, this would suggest that stereochemistry is not relevant 

for fungicidal activity.
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B. Materials and methods 

Chemicals, enzymes and reagents.  Enzymes, chemicals and reagents used in this study 

were purchased and stored as specified by the corresponding manufacturers. The enzymes 

BamHI, BglII, EcoRI, EcoRV, SalI, GoTaq polymerase, and Klenow DNA polymerase were 

purchased from Promega Corporation. Random primers were purchased from Invitrogen. BglII 

was also purchased from NEB and KOD polymerase from EMD Biosciences Incorporation. 

Yeast extract, peptone, Bacto 
TM

 agar, Sabouraud Dextrose Broth, and yeast nitrogen base were 

purchased from BD Biosciences. Glucose, sodium chloride, uridine and ammonium sulfate were 

obtained from EMD Millipore. Antimycin A, acridine orange, and sodium azide were purchased 

from Sigma-Aldrich. Sodium phosphate dibasic was purchased from J.T. Baker and sodium 

phosphate monobasic was obtained from ICN. 5-Fluoroorotic acid was purchased from US 

Biologicals and 
32

P-ATP from MP Biomedicals. The lipids 1, 2-dipalmitoyl-sn-glycero-3-

phosphocholine (DPPC), 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE), soy PI,  

and 1μm polycarbonate membranes were purchased from Avanti Polar Lipids. Ergosterol was a 

gift from Dr. Daniel Fologea of Boise State University. PD-10 desalting columns were purchased 

from GE Health care Life Sciences. Hybridization transfer membranes were purchased from 

PerkinElmer Life Sciences. Alkali-Cation Yeast kit was purchased from MP Biomedicals. 

Peptide synthesis.  N-Fmoc protected amino acids and Wang resin was purchased from 

CalBiochem-NovaBiochem Corporation and Advanced Chemtech, respectively. All peptides 

were synthesized on a Model 433A solid-phase peptide synthesizer (Applied Biosystems 

Incorporation) using the Wang resin and Fmoc-protected amino acids. To improve the synthesis 

yields, modified FastMoc chemistry was used with extended deprotection and coupling times. 

After synthesis, the peptides were deprotected and cleaved from the Wang resin using a high 
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concentration TFA (trifluroacetic acid) cleavage cocktail consisting of 85% TFA, 5% dH2O, 5% 

triisopropylsilan, and 5% Phenol. The resin was allowed to mix in the cocktail solution at room 

temperature for 3 h then precipitated in 50 ml 1:1 v/v methyl-t-butyl ether/hexane per ml of 

cleavage cocktail. The peptides were subsequently dissolved in 1:1 v/v acetonitrile/ddH2O and 

recovered by lyophilization under high vacuum. Crude peptides were purified on a PRP-3 

reverse phase column (7 by 305 mm; Bio-Rad, Hercules, USA) on a Hitachi L7100 HPLC 

instrument using a linear gradient of 0 – 30% acetonitrile and water. Peptides were lyophilized 

multiple times from acetonitrile: water (1:1) to ensure complete removal of TFA. The peptide 

was then further purified by HPLC and peptide purity was verified by mass spectroscopy. Stock 

solutions of the four 16-mer peptides of 330 µM were prepared in 10 mM sodium phosphate 

buffer pH 7.4 and diluted to the desired concentrations. All the peptide concentrations were 

based on the extinction coefficient of the peptides at 280nm. All peptide solutions were stored at 

-20
o
C until being used. The name and sequence of the peptides used in this study are given in 

Table 2.1.  

Yeast strains and growth medium. The C. albicans yeasts strains SC5314 (wild-type 

clinical isolate) and BWP17 (ura3Δ::imm434 /ura3Δ::imm434 his1Δ::hisG/ his1Δ::hisG 

arg4Δ::hisG/ arg4Δ::hisG) were obtained from Fred Winston (Harvard Medical School, Boston, 

MA). C. albicans strains were routinely grown on Sabouraud Dextrose agar plates (30g of 

Sabouraud dextrose broth and 20g of agar per liter) and streaked on fresh plates every 3-4 days. 

For genetic manipulation, strains were grown on synthetic complete medium lacking the 

appropriate amino acids for auxotrophic marker selection (Guthrie, 2004). 

Disruption of SSA2 in C. albicans.  The plasmid used for the disruption of SSA2 alleles 

was constructed from pDM715 and URA3-blaster cassette (Figure 2.1). The plasmid pDM715 
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was digested with BglII within SSA2 and the BglII/BamHI digested hisG-URA3-hisG cassette 

was ligated into the plasmid to generate the disrupted copy of the gene. The correct insertion of 

the hisG-URA3-hisG cassette into SSA2 was determined by restriction enzyme digestion and 

polymerase chain reaction (PCR) analysis and the plasmid designated pDM715UB. Using the 

ssa2::hisG-URA3-hisG cassette, SSA2 was disrupted using the method previously described 

(Fonzi & Irwin, 1993). The pDM715UB plasmid was digested with BamHI and SalI to release 

the ssa2::hisG-URA3-hisG cassette and C.albicans transformation was performed with the use of 

Alkali-Cation Yeast kit. C. albicans transformants were selected on synthetic complete medium 

lacking uracil (SC-Ura). Colonies that grew on SC-Ura were isolated and genomic DNA was 

purified as described (Hoffman and Winston, 1987). The genomic DNA was subsequently used 

as a template for PCR to identify yeast mutants containing the disrupted SSA2. For the PCR 

confirmation of the gene disruption, primers oDM0587 (5’-CTG GAA TTA AGA GAA CAA 

CAA CATG-3’) and oDM0536 (5’- CAG TAC CAG AAT CGA GCT GGC GCC AAG CGC- 

3’) were employed. Following confirmation of the disruption, the correct strains were grown on 

synthetic medium containing 5-FOA to select for loss of URA3 via recombination between the 

hisG cassette sequences (Fonzi & Irwin, 1993). The second allele of SSA2 was subsequently 

disrupted in an identical manner and PCR employed to confirm the disruption of the second copy 

of the gene using oDM0587 (5’-CTG GAA TTA AGA GAA CAA CAA CATG-3’) and 

oDM0369 (5’-GGT GAG GCA TGA GTT TCT GCT CTC TCA-3’). Final confirmation of the 

strain construction was determined by Southern blot analysis. After the ssa2 null mutations were 

confirmed the his1Δ::hisG and arg4Δ::hisG auxotrophies were rescued to prototrophy. For this, 

the plasmid pDM583 containing ARG4 was digested with Hpa1 to target integration of the wild-

type gene to the arg4::hisG locus following transformation and subsequently selected on SC-Arg 
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medium. The his1Δ::hisG auxotrophy was rescued similarly using the plasmid pDM604 digested 

with Nru1 to target integration at the his1::hisG locus, and selected on SC-His medium. Thus, 

the strains used for the fungicidal activity assays were all prototrophic. 

Southern blot analysis.  The disruption of both alleles of SSA2 was confirmed by 

Southern Blot. For the blot, 5μg of genomic DNA was isolated from the BWP17 parent strain, 

the ssa2::hisG-URA3-hisG heterozygous mutant, the 5-FOA selected ssa2::hisG heterozygous 

mutant and the ssa2::hisG/ssa2:: hisG-URA3-hisG  homozygous mutant (Hoffman & Winston, 

1987) and subsequently digested with BglII at 37
o
C overnight. The products of digestion were 

resolved on a 0.8% agarose gel and transferred to PDVF membranes for Southern blot analysis 

as previously described (Johnson et al., 2005). A 
32

P-ATP-labeled DNA probe was prepared for 

the hybridization by random priming method (Johnson et al., 2005). The probe was obtained by 

digestion of pDM715 plasmid with EcoRI and EcoRV and a DNA fragment of 1.5 Kb was 

purified by agarose gel electrophoresis and radioactively labeled. 

Microdilution fungicidal assay.  To evaluate the fungicidal activity of peptides the 

appropriate C. albicans strains were grown overnight in YPD medium at 30
o
C. Following 

growth, 1 ml of the culture was centrifuged at 16,000 x g for 1 min. and the cells were washed 

twice in 10mM sodium phosphate buffer (pH 7.2) and resuspended in 1 ml of 10mM sodium 

phosphate buffer. Cell count was performed using a hemocytometer and number of cells per 

culture was adjusted to a concentration of 2.5 x10
5
 cells/ml. In fungicidal activity assays, 20μl of 

peptides at appropriate concentrations or 10mM sodium phosphate buffer (pH 7.4) was added to 

20 μl of C. albicans cells. The cultures were incubated at 37
o
C on a shaker at 170 rpm for 2 

hours. Following the 2 h incubation, 360 μl of Yeast Nitrogen Base (3.4g of yeast nitrogen base 

and 10g ammonium sulfate per liter) was added to stop the killing reaction. The reactions were 
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mixed and 40μl of the cell suspension was spread on Sabouraud dextrose agar plates. The plates 

were incubated at 37
o
C overnight in a humidified incubator and the number of viable colonies 

was determined. To evaluate the effect of sodium azide or antimycin A on the killing activity of 

the antifungal peptides, the C. albicans cells were treated with 5 mM sodium azide or 5 µM 

antimycin A in sodium phosphate buffer (pH 7.4) during the killing assay.  

Fluorescence leakage assays.  Ergosterol-containing liposomes were prepared from 

phospholipids and ergosterol dissolved in an organic solvent that contained chloroform, 

methanol and water at a volume ratio of chloroform:methanol:H2O of 65:35:8. Lipid mixtures 

were prepared at a concentration of 12 mg of lipids per 1 ml of organic solvent and had a weight 

ratio of DPPC:DPPE:soy PI:ergosterol of 5:4:1:2. This relative ratio was used to mimic 

C.albicans yeast membranes (Ratledge, 1988, Park & Lee, 2009). Lipid mixtures were 

thoroughly mixed, dried under a nitrogen stream for 20-30 minutes, and then evaporated in a 

vaccum evaporator overnight. Lipid cakes were hydrated with 1ml of 110 mM amonium sulfate 

during a period of 1 h at 72
o
C in a water bath with vigorous shaking. Non-ergosterol liposomes 

were prepared under the same solvent conditions except the lipid mixtures were prepared at a 

concentration of 10 mg of phospholipids per 1 ml of organic solvent and had a weight ratio of 

DPPC:DPPE: soy PI of 5:4:1. Lipid suspensions were then subjected to three additional free-

thaw cycles and extruded through stacked 1μm polycarbonate membranes for at least 17 cycles 

to yield unilamellar vesicles. The extrusion was performed at 72-75
o
C using a thermo-controller. 

Buffer exchange was done after the extrusion step by gel filtration as per protocol provided with 

PD10 desalting columns. The buffer exchange step replaced the extra-liposomal buffer of 110 

mM amonium sulfate with a 150 mM sodium chloride solution. The size distribution of 

unilamellar vesicles (liposomes) in the final lipid suspensions was investigated with the use of 
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Zeta Potential Analyzer Utilizing Phase Analysis Light Scattering Machine (Zetapals, 

Brookhaven Instruments Corp.). Liposomes in 150mM sodium chloride were stored at 4
o
C until 

use. For the fluorescence leakage assays, liposomes were loaded with 10 μM acridine orange in 

10mM sodium phosphate buffer (pH 7.4) supplemented with 5% glucose. The method used for 

loading liposome with acridine orange was performed as described previously by Barenolz et al. 

(Barenolz, 1993). In brief, 60µl of liposome suspension was added into 1940 μl of 10μM 

acridine orange in 10mM sodium phosphate buffer/ 5% glucose and kept at room temperature in 

the dark for 4 hours. Extra-liposomal acridine orange was removed by gel filtration with the use 

of PD10 desalting columns. During this gel filtration step, extra-liposomal solution of 150mM 

sodium chloride was replaced with 10mM sodium phosphate buffer pH 7.4/ 5% glucose. 

Liposomes loaded with fluorescence have low fluorescent intensity because of the self-

quenching phenomenon (Morrison, 2008). To evaluate the ability of the antimicrobial peptides to 

permeabilize the liposomes, the acridine-orange-loaded liposomes in 10mM sodium phosphate 

buffer/ 5% glucose were tested with the antimicrobial peptides in four-sided polystyrene cuvettes 

(Sarstedt, catalog number 67.754). The fluorescent intensity of the sample was monitored by 

Fluoromax 4P fluorospectrometer (Horiba Scientific). In more details, 120 µl of peptide was 

added into 1880 μl of liposome suspension following 300 s of fluorescence measurement to 

obtain a baseline value. The liposomes and varying concentrations of peptide were incubated 

form 1500 s and fluorescence measured. After 1500 s, Triton X-100 was added at a final 

concentration of 0.1% to lyse all liposomes. For control samples, 120 µl of 10mM sodium 

phosphate buffer was added into liposome suspensions instead of the peptides. The fluorescent 

intensity of the samples was monitored continuously during a 30 min period (excitation 490 nm, 

emission 525 nm) and plotted as percentage of acridine orange release compared to the total 
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release obtained with Triton X 100. The formula used to calculate percentage of release is as 

followed: 

Percentage of fluorescence release = 100% x  

 

Ft: fluorescent intensity at time t   

Fo: fluorescent intensity at time 0 

F total: fluorescent intensity obtained with triton X-100 at time 1800s 

 

  

     Ft - Fo 

 

   F total - Fo 
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C. Results 

Synthesis of four derivatives of histatin-5.  It has previously been shown that a 16 

amino acid derivative of histatin-5, lacking the N-terminal eight amino acids is functionally 

identical to the wild-type peptide in terms of fungicidal activity (Raj et al., 1990). Thus, we 

chose the 16mer peptide as the starting point for our studies. To evaluate the structural features 

of histatin-5 that were important for fungicidal activity, four histatin-5 16mer derivatives were 

generated: 1) the 16mer peptide with L-amino acids which is referred to as the wild-type peptide 

(WL); 2) the 16mer peptide with the L-amino acids in the reverse order of sequence which is 

referred to as the retro-peptide RL); 3) the wild-type 16mer synthesized with D-amino acids 

which is called the enantio peptide (WD); and 4) the retro-peptide synthesized with D-amino 

acids called the retroenantio peptide (RD) (Table 2.1). Using these four peptides, we wanted to 

investigate whether the linear N- to C-terminal amino acid sequence was important for histatin-5 

activity or whether it was merely the relative spatial positioning of the amino acids that was 

important for antifungal activity. Moreover, using the D-amino acid peptide derivatives, we 

wanted to evaluate whether the stereochemistry of the peptides was important for the antifungal 

properties of the histatin-5 derivatives.   

Construction of an ssa2/ssa2 homozygous mutant of C. albicans.  Previous studies 

have suggested the Ssa2p is a cell surface receptor involved in the binding and uptake of histatin-

5 (Li et al., 2003), prerequisite steps for fungicidal activity. Using the four peptide derivatives 

described above, we hypothesized that if Ssa2p was essential as a receptor for the uptake of 

histatin-5, then we should see distinct differences in the killing activity of the wild-type versus 

the retro peptide. As a corollary to this hypothesis, it was also predicted that the D-amino acid 

peptides should lack or have reduced activity since they would interact with a cell surface 
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receptor with lower affinity due to the chirality change. To further explore the role of Ssa2p in 

the fungicidal activity of the 16mer peptides, a ssa2/ssa2 homozygous mutant of C. albicans was 

constructed as outlined in the Materials and Methods, and Southern blot analysis was used to 

confirm the successful homozygous knock-out of SSA2 (Figure 2.2). A schematic of the 

predicted genomic structure following the gene knockout is shown (Figure 2.2A), along with the 

probe using for Southern blotting. Compared to the wild-type parent strain, the heterozygous 

ssa2::hisG-URA3-hisG mutant showed two bands of 2.6 and 6.5Kb indicating the successful 

generation of the heterozygote (Figure 2.2B, lane 2). Following the removal of the URA3 gene 

via homologous recombination between the hisG repeats, the 6.5kb fragment was reduced to 

3.8kb indicative of the ssa2::hisG allele structure (Figure 2.2B, lane 3). Following a second 

round of gene disruption, the ssa2:hisG-URA3-hisG/ssa2:hisG mutant was confirmed by the 

presence of the 6.5kb and 3.8kb DNA fragments (Figure 2.2B, lane 4).   

Fungicidal activity of the histatin-5 16mer peptide derivatives with wild-type and 

ssa2 homozygous mutants of C. albicans.  To evaluate the killing activity of the four histatin-5 

peptide derivatives against C. albicans, a microdilution fungicidal activity assay was performed 

as outlined in the Materials and Methods. As shown in Figure 2.3 and Figure 2.4, both the L- 

and D- amino acid derivatives of histatin-5 (WL and WD, respectively) showed comparable 

killing activity on the wild-type and ssa2/ssa2 mutant of C. albicans with an LD50 of ~1.5 µM.  

When the retro (RL) and retroenantio (RD) peptides were examined, it was found that they had a 

slightly reduced fungicidal activity against both the wild-type and the ssa2/ssa2 mutant; 

however, the activity remained significant with an LD50 of ~7 µM. These data suggest that the 

wild-type and enantio peptides have identical fungicidal activity and a similar pattern was 

observed with the retro and retroenantio peptides, suggesting that the spatial positioning of the 
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amino acids within the peptide is more relevant for fungicidal activity than the specific N- to C-

terminal amino acid sequence. Moreover, the identical fungicidal activity of the D-amino acid 

peptides indicates that the stereochemistry of the peptides is not relevant. Finally, when 

comparing the fungicidal activity of each peptide in the wild-type versus ssa2/ssa2 mutant of C. 

albicans, there was no significant difference. Taken together, these data strongly suggest that 

Ssa2p is not the receptor for the histatin-5 16mer peptide derivatives. 

It was plausible that the four 16mer peptides showed similar fungicidal activities, yet they 

were killing yeast cells via distinct mechanisms. Since prior studies have demonstrated that 

histatin-5 fungicidal activity was dependent on active respiratory metabolism in the yeast cell 

(Gyurko et al., 2000, Jang et al., 2010), we examined the fungicidal activity of the four histatin-5 

peptide derivatives in the presence of electron transport chain inhibitors. Using the microdilution 

fungicidal assay, the fungicidal activity of the four 16mer peptides was evaluated in the presence 

of 5 mM sodium azide, an inhibitor of the electron transport chain. As a control, 5 mM sodium 

chloride was added instead of sodium azide. As shown in Figure 2.5, the antifungal activity of 

all four 16mer peptides was inhibited by the respiratory inhibitor, consistent with previously 

published results (Gyurko et al., 2000, Jang et al., 2010). It was also plausible that sodium azide 

was inhibiting through other mechanisms independent of respiratory metabolism. For example, 

the azide could be interacting directly with the peptide, inhibiting its ability to bind to cells. To 

rule out this possibility, a second respiratory inhibitor, antimycin A, was also evaluated using the 

microdilution assay. As shown in Figure 2.6, antimycin A also inhibited the antifungal activity 

of the four 16mer peptides, albeit, the wild-type L- and D- amino acid peptides (WL and WD, 

respectively) were less inhibited than the retro (RL) and retroenantio (RD) peptides.  
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Nevertheless, these data strongly suggest that the wild-type, enantio, retro, and retroenantio 

16mer peptides were all functioning through a similar mechanism in killing C. albicans cells. 

Liposome leakage assays.  The microdilution fungicidal assays indicated the wild-type 

(WL), enantio (WD), retro (RL), and retroenantio (RD) 16mer peptides had similar fungicidal 

activity against C. albicans. To further evaluate the ability of these peptides to directly 

permeabilize membranes, an in vitro liposome leakage assay was developed. In this assay, 

liposomes were prepared with a membrane content similar to that of C. albicans having a weight 

ratio of DPPC:DPPE: soyPI: ergosterol equal to 5:4:1:2 (Ratledge, 1988, Park & Lee, 2009). The 

liposomal vesicles were subsequently loaded via passive transport with acridine orange, a 

fluorescent dye that can be detected by fluorometry. The release of the acridine orange from the 

liposome would then served as an indicator of membrane permeabilization. 

Liposomes were initially evaluated for a baseline level of fluorescence for 300 s, and 20 

µM of each peptide was evaluated for membrane permeabilization activity. As shown in Figure 

2.7, the control sample containing only 10 mM sodium phosphate buffer did not result in the 

release of acridine orange fluorescence (excitation 490nm, emission 525nm) over the 1500 s 

course of the experiment. With the addition of 20 µM of the four 16mer peptides, all peptides 

showed equivalent permeabilization of the liposomal membranes and release of acridine orange, 

with approximately 60% vesicle lysis. Moreover, the kinetics of membrane permeabilization was 

similar for the four peptides. After 1500 s, 0.1% TritonX-100 was added to the reaction to 

permeabilize all liposomes. It is possible that the 20 µM peptide concentration was excessive, 

masking any small differences in the activity of the four peptides or the kinetics of their activity. 

To address this concern, the experiment was repeated using a 1 µM concentration of each of the 

four 16mer peptides. As shown in Figure 2.8, the results were identical in terms of kinetics of 
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permeabilization; however, only 20% of the liposomes were permeabilized. These data suggest 

that all four peptides are equally active in membrane lysis, but it is likely that a specific number 

of peptide molecules per liposome are required. Thus, reducing the concentration of the peptide 

decreased the overall membrane permeabilization. 

With the liposome assay developed, it was possible to manipulate the lipid composition 

to determine which membrane components are important for the interaction of the histatin-5 

derived peptides with the membrane. One of the obvious targets is ergosterol, a membrane sterol 

typically found in the membranes of yeast and fungi. Moreover, current azole drugs target 

ergosterol biosynthesis; therefore, it was important to address whether ergosterol was important 

for the activity of the histatin-5 derived peptides. Thus, liposomes were prepared as outlined 

above, except ergosterol was not included in the preparation. As shown in Figure 2.9, liposomes 

lacking ergosterol were equally susceptible to membrane lysis by the four histatin-5 derived 

peptides at a 20 µM concentration, with approximately 60% lysis of the membranes. These data 

suggests that the permeabilization of liposome membranes by the wild-type, enantio, retro, and 

retroenantio 16mer peptides is independent of membrane ergosterol content. Moreover, it should 

be noted that no proteins are present in these artificial membranes, suggesting the peptides can 

permeabilize membranes in a protein-independent manner. 

Antifungal activity of novel fungicidal peptides.  Through the study of the four 

histatin-5 derived peptides and by examination of the prior literature related to histatin-5, we 

identified a domain within histatin-5 that was hypothesized to possess antifungal activity (Yazan 

Akkam, Ph.D dissertation, University of Arkansas, 2013). That putative domain contained five 

amino acids (FKRKY), and close examination of the amino acid sequence revealed that this 

small peptide would be symmetrical with two aromatic amino acids flanking a symmetric 
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sequence with the dyad of symmetry at the arginine residue. If this were the domain that 

possessed the fungicidal activity, it would explain the reason the wild-type versus retro peptides 

were equally active in killing assays. To evaluate this hypothesis, a microdilution fungicidal 

assay was performed with the 5mer peptide (WL) and the retro sequence of the 5mer (RL) and 

both 5mers displayed fungicidal activity similar to the wild-type 16mer peptides at a 

concentration of 4 µM (Figure 2.10). These data suggested that the sequence FKRKY was 

responsible for the antifungal properties of histatin-5 and the fungicidal activity of this peptide is 

orientation independent. 

With this information in hand, additional peptides were synthesized based on the 

sequence of the 5mer. The KM12 peptide was a dimer of FKRKY via cysteine disulfide 

formation. The KM14 peptide was similar to KM12 except the aromatic amino acids 

phenylalanine and tyrosine were changed to tryptophan with the goal of making the peptide more 

active against biological membranes. Previous studies showed that tryptophan residues preferred 

membrane interfacial region and could function as an anchor of a peptide to a phospholipid 

bilayer (de Planque et al., 1999, de Planque et al., 2003). Finally, KM23 and KM29 were 10mer 

and 9mer peptides, respectively, lacking the cysteine residues. As shown in Figure 2.10, the 

microdilution assay indicated that KM12, KM14, KM23, and KM29 were all equally active in 

killing C. albicans. More importantly, all four peptides were significantly more active than the 

16mer peptides, indicating that multimerization of the FKRKY sequence enhanced fungicidal 

activity.                
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D. Discussion 

In this study, it was shown that four 16mer derivatives of histatin-5 had antifungal 

activities against C.albicans. The wild-type 16-mer (WL) and the enantiomeric 16-mer (WD) 

showed comparable killing actions against C.albicans, suggesting that these peptide derivatives 

kill the yeast cells via chiral independent mechanisms. The use of all D- or L-isoforms of 

antimicrobial peptides to probe for clues of receptor-related killing actions of antimicrobial 

peptides had been reported in the literature (Bessalle et al., 1990, Wade et al., 1990). If both the 

D- and L-isoforms of a given peptide showed equivalent antimicrobial activities, it is very 

unlikely that the peptide would require chiral receptor-type interaction with its targets.   

All four histatin-5 peptide derivatives used in this study showed a similar tendency to 

form α-helix in 50% trifluoroethanol (TFE) (Yazan Akkam, Ph.D dissertation, University of 

Arkansas, 2013). With the L-isoforms, the presence of a strong positive band at 194-197 nm and 

two strong negative bands at 206-210 and 220-224 nm on circular dicroism spectra suggested the 

existence of α-helical conformations of the L-isoforms in 50% TFE solution. With the D-

isoforms, the presence of a strong negative band at 194-197 nm and two strong positive bands at 

206-210 and 220-224 nm on circular dichroism spectra also suggested α-helical secondary 

structures of the D-isoforms in 50% TFE solution (Figure 2.11) (Yazan Akkam, Ph.D 

dissertation, University of Arkansas, 2013). CD spectra characteristics of α-helical 

conformations in aqueous and nonaqueous solutions had been reported in the literature (Jung & 

Dubischar, 1975). The four histatin-5 peptide derivatives, however,  showed random coil 

structures in CD spectra if they were dissolved in 10mM sodium phosphate buffer (Yazan 

Akkam, personal communication) as histatin-5. The histatin-5 parent peptide was shown in 

previous studies to form α-helix in TFE solution but have random coil structures in aqueous 

solvents (Raj et al., 1998, Helmerhorst et al., 2001b). Interestingly, α-helical conformations was 
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determined previously to not have an important role in the mode of action of histatin-5 (Situ et 

al., 2000). 

The data shown in this study also suggests that Ssa2p did not play an important role in 

the killing action of the four peptide derivatives. It was shown that the wild-type 16-mer and 

enantio isoforms of the peptide had comparable antifungal activites against C.albicans. This was 

also observed for the retro and retroenantio isoforms of the peptide, suggesting the mechanism of 

killing was unlikely to be protein receptor-dependent. Ssa2p is a heat shock protein present in the 

cell wall, cytosol (Lopez-Ribot et al., 1996) and cell membrane of C.albicans yeast cells 

(Candida genome database, ORF 19.1065) (Cabezon et al., 2009). It was hypothesized that 

Ssa2p functions as a binding receptor for histatin-5 and that Ssa2p is required for the antifungal 

activity of the peptide in Saccharomyces cerevisiae and C.albicans (Li et al., 2003, Li et al., 

2006). C.albicans ssa2 mutants were reported to be less susceptible to histatin-5 compared to its 

parent wild-type strain (Li et al., 2006); however, this is in contrast to the results we observed 

with an ssa2 homozygous mutant of C. albicans. Neverthless, the mechanism(s) by which Ssa2p 

could affect the uptake of histatin-5 into the yeast cytoplasm remains unknown. The data of this 

study suggested that the four peptide derivatives killed C.albicans yeast cells via Ssa2p-

independent mechanism(s), and that is supported by our results with the ssa2-null mutant which 

showed similar susceptibility to the four peptide derivatives as the wild-type strain.  

Comparable killing actions of the L- and D-isoforms on C. albicans suggested that the 

four peptide derivatives did not need a chiral-receptor-typed interaction with its targets. With  

respect to the histatin-5 peptide, a recent study suggested that histatin-5 was translocated across 

the phospholipid membranes of C. albicans cells by members of the Dur polyamine transporters 
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(Kumar et al., 2011). The role of the Dur transporters will need further investigation in the 

future. 

The four histatin-5 peptide derivatives were shown to require a functional electron 

tranport chains (ETC) for fungicial activity. Inhibition of the ETC in the yeast cells by sodium 

azide blocked the activities of the complex IV of the yeast ETC attenuated the killing effects of 

the four peptide derivatives. The use of antimycin A, which inihibited the oxidation of ubiquinol 

of the ETC, showed the same attenuating effects on the killing activities of the four peptide 

derivatives. It was postulated that energy (adenosine triphosphate) depletion would resulted in 

increased rigidity of the cell membranes of the C.albicans yeast cells and prevent the interaction 

between cationic peptides and their target membranes (Veerman et al., 2007). However, histatin-

5 was also reported to result in mitochondrial transmembrane potential loss and cell death once 

being inside the yeast cells of C.albicans (Helmerhorst et al., 1999a). The data of this study 

suggested that the four peptide derivatives used a similar mode of action to target the yeast cells 

of C.albicans as histatin-5 did and that mode of action required a functional electron transport 

chain or respiration of the yeast cells to work efffectively. 

The finding that the mode of action of the four peptide derivatives involved mitochondria 

corresponded with the data obtained from other studies that used cationic peptides with structural 

sequences similar to ours. The motif sequence of hydrophobic residue-K-R-K- hydrophobic 

residue present in our four 16mer derivatives and histatin-5 was shown to target to mitochondria 

which had negative phospholipid bilayers similar to those of bacteria (Yousif et al., 2009). The 

parent peptide histatin-5 was also shown to colocalized with mitochondria in fluorescent staining 

(Ruissen et al., 2001, Ruissen et al., 2002). It is very likely that the four 16mer peptides used in 

this study with the motif sequence of hydrophobic residue-K-R-K- hydrophobic residue in their 
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sequence could disrupt the normal structure of mitochondria and lead to the death of C.albicans 

yeast cells.  

The ability to permeabilize the phospholipid membranes of the C.albicans yeast cells is 

likely to play a role in the mechanisms of action of the four 16mer derivatives. The four 

derivatives were shown to permeabilize the artificial yeast phopholipid membranes in liposome 

leakage assays. Even in the absence of ergosterol in the phospholipid bilayers, the release of 

acridine orange from fluorescence loaded liposomes was also detected  when those liposomes 

were treated with the four peptides. The ability of the four peptide derivatives to permeabilize 

artificial yeast phospholipid membranes were comparable at the peptide concentrations of 20 μM 

and 1μM.  

Many cationic peptides were known to disrupt the biomembranes of microbes. Several 

mechanisms such as barrel-stave, toroidal and carpet models have been used to explain the 

permeabilizing ability of those peptides (Yeaman & Yount, 2003). Histatin-5 was also shown to 

disrupt the membrane of C.albicans cells (Den Hertog et al., 2005); however, it was 

undetermined which model was really involved in the case of histatin-5. In this study, the 

changes from L- to D- isoforms and the inversion of the amino acid sequence did not affect the 

ability to permeabilize the artificial phospholipid bilayers of liposomes of the four 16-mer 

derivatives. This finding suggested that the spatial relationship and electrical charge of amino 

acid residues in the sequences of the histatin-5 derivatives are of importance in the mechanisms 

of action of the four peptides.  

As the inversion of the amino acid sequence or the change from L-isoforms to D- 

isoforms did not have any dramatic effects on the killing and permabilizing activities of the 16-

mer derivatives, it is logical to raise a question about the existence of a symmetrical functional 
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domain in the amino acid sequence of the four 16-mer derivatives. The existence of such a 

symmetrical sequence would help explain part of our data.  

Functional domains of histatin-5 peptide had been proposed previously. An amino acid 

sequence of residues 9-24 within the sequence of histatin-5 was considered to comprise the 

fungicidal domain of histatin-5 while the first eight amino acids from the N-terminus was shown 

to not play an important role in the antifungal activity of histatin-5 (Raj et al., 1990, Helmerhorst 

et al., 1997). A 12-mer peptide from amino acid 4 to 15 within the sequence of histatin-5 was 

reported to retain the antifungal activities of the histatin-5 parent peptide (Rothstein et al., 2001). 

Combining the data of these two study with ours, we identified a short amino acid sequence from 

amino acid 10 to 15 (GYKRKF) of histatin-5 that could contain antifungal domain of histatin-5. 

As the data from a previous study (Rothstein et al., 2001) also suggested that the phenylalanine 

residue present in this short sequence was essential for the activity of histatin-5, we suspected 

that the symmetric sequence of YKRKF could play an important role in the antifungal activity of 

histatin-5. Two 5mer peptides named 5mer WL (YKRKF) and 5mer RL (FKRKY) were 

synthesized and both showed antifungal activities against C.albicans. Interestingly, the  

dimerization of these amino acid sequence generated new peptides with very strong antifungal 

activities against C.albicans such as KM12, KM14, KM23 and KM29. These new antifungal 

peptides were shown to be much more active compared to their parent peptides of 5mer WL, 

5mer RL  or 16mer WL. We anticipate that the multimerization of this common functional 

domain could prove to be an effective way to generate new antifungal peptides with 

pharmaceutical value. Our next step will focus on the characterization of these new antifungal 

peptides and the investigation of potential in vitro and in vivo toxicity of these peptide 

candidates. 



52 

 

Table 2.1: Name and sequence of the peptides used in this study.  

Number Name Sequence Isomeric 

form (L or 

D) 

Acetylated 

and 

amidated 

1 16mer WL GYKRKFHEKHHSHRGY L No 

2 16mer WD GYKRKFHEKHHSHRGY D No 

3 16mer RL YGRHSHHKEHFKRKYG L No 

4 16mer RD YGRHSHHKEHFKRKYG D No 

5 5mer RL FKRKY L Yes 

6 5mer WL YKRKF D Yes 

7 5mer RD FKRKY D Yes 

8 Monomer-6mer CFKRKY L Yes 

9 KM12 
YKRKFC-CFKRKY 

L Yes 

10 KM14 
WKRKWC-CWKRKW 

L Yes 

11 KM23 YKRKFFKRKY L Yes 

12 KM29 YKRKFKRKY L Yes 
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Figure 2.1:  A schematic diagram of the plasmid pDM715 containing the SSA2 gene and 

hisG-URA3-hisG cassette that was inserted into SSA2 to generate the null allele used to 

knockout SSA2 in C. albicans. 
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Figure 2.2:  Confirmation of the SSA2 disruption by Southern Blot. A: Schematic diagram of 

the SSA2 genomic locus and the predicted structure following gene disruption. The probe for 

SSA2 in Southern blot is indicated. B: Southern Blot of four C. albicans strains. The genotypes 

of the strains are indicated on the left. 
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Figure 2.3:  The susceptibility of the C. albicans wild-type and ssa2 null mutant to the 16-

mer WL and 16-mer RL peptides. C. albicans cells with the indicated genotype were 

incubated with varying concentrations of the 16-mer peptides in 10mM sodium phosphate buffer 

(NaPB) for 2h at 37
o
C as outlined in the Materials and Methods. The number of C. albicans 

colonies grown on Sabouraud without versus with peptide treatment were counted and compared 

among different treatment groups. 
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Figure 2.4:  The susceptibility of the C. albicans wild-type and ssa2 null mutant to the 

16mer WD and 16mer RD peptides.  C. albicans cells with the indicated genotype were 

incubated with varying concentrations of the 16-mer peptides in 10mM sodium phosphate buffer 

(NaPB) for 2h at 37
o
C as outlined in the Materials and Methods. The number of C. albicans 

colonies grown on Sabouraud without versus with peptide treatment were counted and compared 

among different treatment groups. 
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Figure 2.5:  Inhibitory effect of sodium azide on the killing activity of four 16mer peptides. 

Microdilution fungicidal activity assays were performed on C. albicans using 25 µM of the four 

16mer histatin-5 peptide derivatives in the presence of 5 mM sodium azide. As controls, the cells 

were incubated with 5 mM sodium chloride. Data were expressed as mean ± SEM, n=3). 
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Figure 2.6:  Inhibitory effect of antimycin A on the killing activity of four 16mer peptides. 

Microdilution fungicidal activity assays were performed on C. albicans using 25 µM of the four 

16mer histatin-5 peptide derivatives in the presence of 5 µM antimycin A. As controls, the cells 

were incubated with ethanol (EtOH) only. Data were expressed as mean ± SEM, n=3). 

 

 

 

 

 

 



59 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7: Liposome fluorescence leakage assays. The four 16mer histatin-5 derivative 

peptides at concentrations of 20 μM were incubated with acridine orange loaded ergosterol-

containing liposomes. The percentage of fluorescent leakage from liposomes at time t (s) 

compared to total leakage obtained with Triton X-100 at time 1800 s. Peptides were added to the 

sample at 300 s. Control sample was treated with sodium phosphate buffer (NaPB) instead of 

peptides. Maximal fluorescent intensities were in the range of 80,000-220,000 counts per 

second).   
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Figure 2.8: Liposome fluorescence leakage assays. The four 16mer histatin-5 derivative 

peptides at concentrations of 1 μM were incubated with acridine orange loaded ergosterol-

containing liposomes. The percentage of fluorescent leakage from liposomes at time t (s) 

compared to total leakage obtained with Triton X-100 at time 1800 s. Peptides were added to the 

sample at 300 s. Control sample was treated with sodium phosphate buffer (NaPB) instead of 

peptides. Maximal fluorescent intensities were in the range of 80,000-220,000 counts per 

second).   
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Figure 2.9 Fluorescent leakage assays with liposomes lacking ergosterol. The four 16mer 

histatin-5 derivative peptides at concentrations of 20 μM were incubated with acridine orange 

loaded liposomes lacking ergosterol. The percentage of fluorescent leakage from liposomes at 

time t (s) compared to total leakage obtained with Triton X-100 at time 1800 s. Peptides were 

added to the sample at 300 s. Control sample was treated with sodium phosphate buffer (NaPB) 

instead of peptides. Maximal fluorescent intensities were in the range of 80,000-220,000 counts 

per second).   
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Figure 2.10:  The antifungal activities of several novel peptide antifungals on C. albicans.  

Microdilution fungicidal activity assay was used to compare the killing activity of KM 12, KM 

14, KM 23 and KM 29 to the 16mer peptides and the five-amino-acid core peptide (5mer WL) or 

the retro version of the 5mer (RL). All peptides were tested using a 4 µM concentration. Data 

were expressed as mean ± SEM, n = 3). 
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Figure 2.11:  The circular dichroism spectra of four 16-mer derivatives of histatin-5. The 

CD spectra were obtained in 50% trifluoroethanol (TFE) solution. Data provided by Dr.Yazan 

Akkam. 
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CHAPTER 3 

EVALUATION OF THE TOXICITY OF NEW ANTIFUNGAL PEPTIDES WITH THE 

USE OF CULTURED MAMMALIAN CELLS 
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A. Introduction 

The in vitro evaluation of toxicity of a newly developed drug is a mandatory step before 

the administration of that drug to an animal or human subject. The purpose of the step is to 

investigate its potential toxic effects on cultured mammalian cells before the drug is administered 

in vivo. Several mammalian cell lines commonly used for this step are fibroblasts, HeLa and 

hepatoma cells. Those cell lines are preferred to primary cells due to various factors such as 

culture feasibility and ability to obtain reproducible results (Bourdeau, 1990). Although in vitro 

toxicity assays cannot guarantee a drug will be non-toxic in vivo, those assays are considered a 

preliminary tool that helps screen for potential major cellular toxicity issues associated with a 

newly developed drug. There are also cell lines from specific organs such as the brain, lung, 

liver, reticular system that could be used to further evaluate potential organ-specific toxicity 

(Bourdeau, 1990).  

In vitro toxicity assays use a number of parameters to evaluate potential toxicity of a 

candidate drug to cultured mammalian cells. One of those parameters is morphological criteria 

which use a checklist to look at ultrastructural changes in the nucleus, nucleolus, cellular matrix 

and the plasma membrane of the cultured cells exposed to a drug of interest (Walton, 1975, 

Walton & Buckley, 1975). In addition to morphology, viability of the cells could be evaluated by 

dye exclusion assays (Strober, 2001) or by biochemical reagents that quantify metabolism 

parameters such as reductase activities and intracellular adenosine triphosphate levels (Lundin et 

al., 1986, Maehara et al., 1987). Also included in the list are cytotoxicity assays that quantify the 

release of lactate dehydrogenase  into cell culture media (Korzeniewski & Callewaert, 1983) or 

activated caspases levels in cell lysates (Niles et al., 2008).  

In terms of toxicity assays that quantify reductase activities, resazurin (Ahmed et al., 

1994) and tetrazolium salts such as MTT (Mosmann, 1983), XTT (Paull, 1988, Roehm et al., 
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1991), MTS (Cory et al., 1991) and WST-1 (Ishiyama, 1993) are commonly used. The general 

principle of viability assays with tetrazolium salts is that these salts are reduced by mitochondrial 

and cytosolic dehydrogenases into formazan that can be quantified by colorimetric means 

(Gonzalez & Tarloff, 2001). Unlike MTT, tetrazolium salts such as XTT, MTS and WST-1 are 

water soluble and could be added directly into culture media. The formazan products generated 

by these salts are also water soluble; therefore, a solubization step is not required in the assays 

that use these salts as compared to the assays with MTT. One noticeable advantage of toxicity 

assays with resazurin is that its metabolite of resorufin could be detected by fluorescent methods 

(Ahmed et al., 1994, Bueno et al., 2002).  

The validity of using ATP to evaluate mammalian biomasses had been studied and 

reported in the literature (Lundin et al., 1986). Adenosine triphosphate (ATP) is a form of energy 

of the cells and the combination of intracellular levels of adenosine monophosphate (AMP), 

adenosine diphosphate (ADP) and ATP could be used to calculate energy charge (Atkinson & 

Walton, 1967) which is an indicator of viability of the cell. Intracellular amount of ATP was 

shown to correlate well with the number of mammalian cells determined by cell count (Lundin et 

al., 1986, Hasenson et al., 1985). The incorporation of luciferase enzyme from firefly into ATP 

assays makes those assays become more convenient for research usage (Lundin, 2000). 

Dye exclusion assay is another method used to quantify viable cells. The dyes commonly 

used in this type of assay are trypan blue and propidium iodide.  Trypan blue is a diazo dye with 

a negative charge and cannot penetrate the cell membrane of viable cells (Evans & Schulemann, 

1914). When the cell is dead or there are pores on the cell membranes, trypan blue can cross the 

cell membrane and stains the cells with a blue color that can be detected with the use of a 

microscope (Tran et al., 2011, Strober, 2001). Similar to trypan blue, propidium iodide cannot 
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penetrate the cell membrane of viable cells. When the cell is dead or the cell membranes are 

disrupted by hypotonic solution, propidium iodide can cross the cell membranes and intercalate 

nuclear DNA molecules. The intercalation of propidium iodide into DNA molecules emits 

fluorescence that can be detected by fluorescence microscope or flow cytometer (Krishan, 1975).  

Unlike viability assays, cytotoxicity assays use biochemical agents to evaluate enzymes 

or substances involved in apoptosis and cell death. In terms of drug exposure, cytotoxicity assays 

require longer drug exposure time of up to 48 hours compared to that of 1-4 hours in viability 

assays (Riss 2004). Cytotoxicity assays are commonly used in the development of anticancer 

drugs. In cytotoxicity assays with lactate dehydrogenase, the release of cytosolic enzyme lactate 

dehydrogenase into culture medium is used to evaluate cell death (Korzeniewski & Callewaert, 

1983, Decker & Lohmann-Matthes, 1988). In caspase cytotoxicity assays, activated initiator or 

effector caspases are detected by caspase-specific antibodies or by fluorochrome substrate that 

becomes fluorescent after being cleaved by caspase enzymes (Niles et al., 2008). Caspase 

enzymes were shown to correlate with cell death and apoptosis (Li & Yuan, 2008) 

Hemolysis assays are a tool commonly used to investigate potential membrane disruption 

effects of antimicrobial peptides. Antimicrobial peptides are known to possess positive or 

negative charges which could interact with and disrupt the plasma membrane of target cells by 

mechanisms such as toroidal, barrel-starve and carpet models. Strong antimicrobial peptides such 

as melittin and alamethacin were known to cause hemolysis of red blood cells (Laine et al., 

1988, Dathe et al., 1998). Hemolysis assay, therefore, is an indispensable part of any testing step 

of a newly developed antimicrobial candidate. 

In this study, we incorporated several toxicity assays to investigate potential toxic effects 

of several new antifungal peptides developed at our lab. Viability assays were used to examine 
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the viable versus dead populations of NIH3T3 cells as a result of exposure to the peptides for 

24h, 48h and 72 h. Hemolytic assay was utilized to explore potential lytic effects of the peptides 

on sheep red blood cells.  
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B. Materials and methods 

Chemicals and reagents.  Chemical reagents were purchased and stored at conditions 

specified by the corresponding manufacturers. Trypan blue 0.4%, Phosphate buffer saline pH 

7.2, Dulbecco's Modified Eagle's Medium with phenol red, DMEM without phenol red, and 

Penicillin-Streptomycin were purchased from Gibco-BRL. WST-1 reagent was obtained from 

Roche Applied Science. Propidium iodide was purchased from MP Biomedicals. Newborn calf 

serum and L-glutamine were obtained from Sigma-Aldrich. Sheep red blood cells were 

purchased from Innovative Research Incorporation and stored at 4
o
C. Peptides were synthesized 

at our lab and dissolved in 10mM sodium phosphate buffer at millimolar concentrations in order 

to reduce the volume of peptide stock solutions needed for toxicity assays. The name and 

sequence of antifungal peptides used are provided in Chapter 2 in Table 2.1. 

Culturing of cells.  NIH3T3 cells (catalog number CRL-1658) were purchased from 

American Type Culture Collection and stored in liquid nitrogen. The cells were sub-cultured in 

Dulbecco's Modified Eagle's Medium supplemented with 10% newborn calf serum, glutamine 

(8mM), penicillin (100 U/ml) and streptomycin (100µg/ml) before being used in toxicity assays.  

Cellular toxicity evaluated by morphological changes.  NIH3T3 cells were seeded on 

96 tissue culture plates (BD Falcon) or 8-well culture slides (BD Falcon) at a density of 15,600 

cells/cm
2
 and allowed to attach to the bottom of the wells overnight in a humidified incubator at 

37oC/7% CO
2
. Overnight culture media were replaced with phenol red-free DMEM 

supplemented with peptides or buffer and the cells were incubated in the new culture media for 

24 h or 48 h. At the end of designated treatments, the cultured cells were observed with a light 

microscope for the detection of morphological changes.  
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Cell viability evaluated by trypan blue.  NIH3T3 were seeded to 96-well tissue culture 

plates as described in morphological assays. For trypan blue dye exclusion assays, NIH3T3 cells 

in 96-well plates were stained with trypan blue 0.4% (1:10 final dilution ratio) at 24 h after 

peptide treatment with peptide at final concentration of 100 μM (based on dry weight) or buffer 

only. Viable and dead cells were counted from a population of at least 200 cells per well with the 

use of a light microscope.  

Cellular viability evaluated by WST-1.  NIH3T3 cells were seeded on 96 tissue culture 

plates as described in morphological assays. The cells were designated to be treated with buffer 

or antifungal peptides at final concentrations up to 100μM in phenol red-free DMEM during a 

period of 24, 48 and 72 h. If the treatment period lasted for 72 h, culture media were replaced at 

48h in order to ensure that the cells were provided with sufficient nutrients during the treatment 

period. 10μL of WST-1 was added into the wells at the end of the treatments and the plates were 

further incubated at 37
o
C for 45 min in a humidified incubator. Absorbance was measured at 

450nm with the use of a microplate reader (EL808, Bio-Tek Instrument, Inc.).  

Cellular viability evaluated by flow cytometry.  NIH3T3 cells were seeded on 24-well 

tissue culture plates at a density of ~ 28,000 cells/well and allowed to attach to the bottom of the 

wells overnight in a humidified incubator at 37
o
C/7% CO2. Normal DMEM culture medium was 

replaced with culture media that contained antifungal peptide at final concentration of 50 µM. 

Cells were designated to be treated with peptides or with buffer alone for 48 h. At 48 h, cells 

were harvested with trypsin and washed with phosphate-buffered saline. Cells were centrifuged 

at 149 x g for 10 min and cell pellets were resuspended in 0.25 ml of propidium iodide staining 

buffer (8µg/ml of propidium iodide in phosphate-buffered saline). Cells were incubated in 

propidium iodide staining buffer at room temperature for 15 min and then put on ice for 
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immediate analysis by flow cytometry (Becton Dickinson, FACSort
TM

). Maximal absorbance 

wavelength for propidium iodide is 535nm and maximal emission wavelength is 617nm.  

Hemolysis assays.  Hemolysis assays were carried out using sheep red blood cells in 96-

well plates. 100µl of peptide in phosphate-buffered saline at appropriate concentration was 

prepared by serial dilution in the wells of 96-well plates. The maximal final concentration of 

peptides was 100 µM. Positive control wells used Triton X-100 at final concentration of 1% 

instead of peptides and negative control wells used phosphate buffered saline. 100 µl of 1% 

sheep red blood cells in phosphate-buffered saline were added into the wells prepared as 

described above and the cells were then incubated at 37
o
C for an hour in an automatic shaker at 

170 rpm. The plates were centrifuged at 1000g for 5 minutes and 100 µl of supernatants per well 

were collected for the measurement of absorbance at 405nm by a microplate reader (EL808, Bio-

Tek Instruments, Inc.). The percentages of hemolysis were calculated by the following equation: 

 

 

 

Where:  

 Abs (sample) is the absorbance of supernatant obtained from the samples treated with 

peptides 

Abs (negative control) is the absorbance of supernatant obtained from the samples treated 

with phosphate buffered saline 

Abs (positive control) is the absorbance of supernatant obtained from the samples treated 

with 1% Triton X-100. 
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C. Results 

Morphological evaluation of antimicrobial peptide toxicity.  To evaluate the 

morphological effects of the antimicrobial peptides on mammalian cells, we chose to examine 

the peptides KM12 and KM14 that were synthesized in our lab. KM12 peptide sequence is 

YKRKFC-CFKRKY with the 5mer domain of FKRKY that was shown in Chapter 2 to have 

antifungal activity comparable to histatin-5. The 5mer domain was dimerized via disulfide bonds 

generated through artificially added cysteine residues. The KM14 peptide sequence is 

WKRKWC-CWKRKW. The aromatic residues phenylalanine and tyrosine were changed to 

tryptophan with the goal of enhancing membrane interaction and possibly antifungal activity.  

These peptides were shown to have potent antifungal activity (see Chapter 2), and they were 

considered our “lead compounds” in the development of novel antifungals. Thus, 50 µM of these 

peptides were incubated with NIH3T3 cells for either 24 h or 48 h in DMEM containing 10% 

newborn calf serum. As shown in Figure 3.1, no significant morphological abnormalities were 

observed at 24 h or 48 h post-exposure with either KM12 or KM14. 

Viability assay for antimicrobial peptide toxicity.  Although no morphological changes 

in cells were observed by the addition of KM12 and KM14 peptides, the next step was to 

evaluate the metabolic activity of the mammalian cells in the presence of the antifungal peptides. 

For these studies, the WST-1 reagent was employed. NIH3T3 cells were incubated with various 

concentrations of the peptide and the metabolic activity of the cells was determined at 24, 48, 

and 72 h post-exposure to the peptide. 

As a starting point for the development of these assays, the 5mer peptide (FKRKY) 

synthesized with D-amino acids was used (termed the R5D peptide). The NIH3T3 cells were 

incubated with increasing concentrations of the peptide for 24, 48, or 72 h and the cells were 
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examined for viability by the WST-1 assay as outlined in the Materials and Methods. As shown 

in Figure 3.2, no significant difference in the metabolic activity of the NIH3T3 cells was 

observed, even at 200 µM peptide concentrations. One potential caveat to this experiment is the 

fact that the NIH3T3 cells are grown in DMEM containing 10% newborn calf serum. It was 

possible that the R5D 5mer peptide was bound by serum proteins and unable to interact with the 

cells; hence, no toxicity observed. To address this concern, NIH3T3 cells were initially grown in 

DMEM containing 10% calf serum, and switched to DMEM containing 0.5% calf serum for 

evaluating the peptide toxicity. While NIH3T3 cells will not proliferate significantly at 0.5% calf 

serum, they can be maintained in culture for 24 h. When the NIH3T3 cells in 0.5% serum were 

exposed to R5D peptide for 24 h at concentrations as high as 200 µM, no significant difference 

in metabolic activity was observed (Figure 3.3). These data indicate that the core 5mer peptide 

(FKRKY) does not display any cytotoxicity as determined by the WST-1 assay. 

When the KM12 and KM14 peptides were evaluated using the same WST-1 assay at 

peptide concentration up to 50 µM, no significant decrease in cell viability was observed (Figure 

3.4 and Figure 3.5). In fact, there was an increase in the absorbance at 450nm (absorbance of the 

WST-1 reagent following reduction to formazan) in the controls as well as the KM12 and KM14 

treated groups when the values were compared at 24h, 48h and 72h. This indicated that the 

NIH3T3 cells continued to proliferate in the presence of the peptides, suggesting KM12 and 

KM14 did not cause cytotoxicity. 

Evaluation of cell toxicity by trypan blue and FACS.  Thus far, none of the assays 

performed suggested KM12 or KM14 were toxic to cells. Nevertheless, we wanted to examine 

individual cells more closely to determine whether the prior assays simply lacked the precision to 

detect low level toxicity. For these experiments, we chose to examine cell viability via trypan 
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blue staining and propidium iodide uptake. Both trypan blue and propidium iodide are excluded 

from live cells, but they are taken into dead cells. Thus, NIH3T3 cells were exposed to 50 µM 

KM12 for 24 h and the cell viability was determined by trypan blue staining (Figure 3.6). The 

percentage of live cells at 24 h in trypan blue exclusion assays was 93.7% for the control group 

and 94.1% for the KM12 treated group. Thus, no significant difference in cell viability was 

observed. Additionally, NIH3T3 cells were exposed to 50 µM KM12 or KM14 for 48 h and 

FACS analysis performed to evaluate propidium iodide uptake. These data showed the 

percentages of live cells in the control, KM12 and KM14 treated groups were 94.2%, 95.6% and 

91.7%, respectively (Figure 3.7). Therefore, no significant difference in cell viability was 

observed following exposure of NIH3T3 cells to either KM12 or KM14, reinforcing the results 

of the prior methods of toxicity evaluation.   

Evaluation of red blood cell hemolysis.  As a final in vitro step in evaluating the 

antifungal peptides for cytotoxicity, we employed red blood cell hemolysis. As noted in the 

introduction, RBC hemolysis is a gold standard for evaluating peptide toxicity. Thus, various 

peptides synthesized in our lab were evaluated for their ability to lyse sheep red blood cells using 

the protocol described in the Materials and Methods. As shown in Figure 3.8, the four 16mer 

peptides and the two 5mer peptides discussed in Chapter 2 showed no significant hemolysis 

activity with approximately 3% hemolysis at concentrations of 100 µM, which is considered 

negligible. The KM12, KM14, KM23, and KM29 peptides also displayed negligible hemolysis 

activity at concentrations up to 100 µM with a maximum hemolysis of ~3% observed (Figure 

3.9).   
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D. Discussion 

 In this study, several different cytotoxicity assays were employed to investigate potential 

toxic effects of our newly developed antifungal peptides on mammalian cultured cells. As each 

assay has its own limitations, the combination of different assays was used to achieve a better 

conclusion in terms of potential toxicity of the new peptides. We evaluated morphological 

changes of NIH3T3 cells after treatment with the antifungal peptides. Viability assays with the 

use of WST-1, trypan blue and propidium iodide were also used to evaluate viability of the cells 

after treatment with the peptides. Finally, hemolysis assays were used to evaluate potential 

disruption of the plasma cell membrane of red blood cells as a result of treatment with the novel 

antifungal peptides. 

 In morphological assays, the morphology of NIH3T3 cells treated with R5D, KM12 and 

KM14 peptides at a concentrations up to 50 μM were identical to those treated with buffer alone. 

One obvious limitation of our morphological assays was that we did not perform electron 

microscopy for the evaluation of cell morphology based on a checklist proposed by Walton et al 

(Walton 1975). For that reason, the conclusion that our peptides did not induce morphological 

changes of cultured NIH3T3 should be interpreted with prudence. However, we were able to 

conclude that the antifungal peptides did not affect the ability of the cultured cell to form 

monolayer on the bottom of culture plates or slides. 

 Cell viability assays using WST-1 showed a trend increase in absorbance at 450nm with 

time in all the control groups and the groups treated with the antifungal peptides. This finding 

supported the concept that WST-1 is a valid assay to detect viable cell mass. A practical point 

worth mentioning in WST-1 assay is that the cell density during seeding step must be determined 

appropriately so that the adhered cells do not reach 100% confluence before the addition of 
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WST-1. Otherwise, non-adhered cells floating in cultured media as a result of over-confluence 

will die and the absorbance will not accurately reflect the proliferation of the cells in the culture 

wells. The absorbance of WST-1 metabolites in our assays increased with time from 24 h to 48 h 

72 h in the control groups and the peptide-treated groups. This finding suggested that the cell 

density used was appropriate for the WST-1 assay and the absorbance, therefore, correlated with 

the cell mass present in the corresponding cultured well. Compared with the control groups, 

viability of NIH3T3 cells treated with KM12 and KM14 peptides was not less and could be even 

better, suggesting the mammalian cells continued to proliferate in the presence of the antifungal 

peptides.  

Although WST-1 assay is a valid tool to detect viable biomass, it is not designed for the 

detection of non-respiring or dead cells. Dye exclusion assays with trypan blue and propidium 

iodide, therefore, were used to evaluate both the populations of dead and live cells in the samples 

treated with the three new antifungal peptides of 5-mer RD (R5D), KM12 and KM14. Propidium 

iodide has an advantage over trypan blue due to the fact that it can be used in combination with 

flow cytometry to inspect a population of thousands of cells in a matter of seconds to minutes. 

The results in this study showed that treatment of NIH3T3 did not significantly affect the 

viability of NIH3T3 after 48 h of peptide exposure. The percentages of live and cells in all the 

samples were greater than 91% and less than 9% , respectively, even after a step of harvesting by 

trysinization.  

 With respect to hemolysis assays, the percentages of hemolysis in the samples treated 

with new antifungal peptides developed at our lab at concentrations up to 50 µM were 

comparable to those in the negative control groups. Increasing the concentration of antifungal 

peptides to 100µM resulted in a slight increase of hemolysis in the samples treated with peptides 
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compared to those in the negative control groups. These mild increases in hemolysis of red blood 

cells could be explained by the carpet model which suggests that antimicrobial peptides at their 

threshold concentration could act like a detergent and disrupt phospholipid membranes. 

However, it is important to note that these concentrations are much greater than those needed in 

vitro to kill fungal cells.  Nevertheless, data are helpful in determining the appropriate 

concentrations of antifungal peptide to be used in in vivo toxicity testing. 

 In summary, several different toxicity assays were used in this study to investigate 

potential toxicity of 5-mer RD, KM12, KM14, KM23 and KM29 peptides on mammalian cells 

such as murine fibroblasts and sheep red blood cells. Prototype antifungal peptides developed at 

our lab under the names of KM12 and KM14 were shown to be non-toxic to mammalian cells at 

concentrations up to 100µM in these toxicity assays. Our next step will focus on the 

investigation of potential acute toxicity and immunogenicity of these peptides in mice. 
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Figure 3.1: NIH3T3 morphology following exposure to antifungal peptides. A: cells in 

culture media alone for 24 h, B and C: cells treated with KM12 and KM 14 at a concentration of 

50 µM for 24 h. D: cells in culture media alone for 48 h, E and F: cells treated with KM12 and 

KM14 at a concentration of 50 µM for 48 h. All peptide concentrations were determined based 

on extinction coefficients. 

  

  

 

A 

B 

C 

 

D 

E 

F 



83 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: WST-1 viability assays with R5D peptide. NIH3T3 cells which formed a 

monolayer on the bottom of the wells of 96-well plates were treated with different concentrations 

of the R5D (5mer) peptide in 10% newborn calf serum DMEM medium for 24 h, 48 h and 72 h. 

The cells were incubated at 37
o
C/7%CO2.  WST-1 was added to culture medium at the end of 

treatment period and absorbance was measured at 450 nm by a microplate reader. Data were 

expressed as mean ± SEM, n = 4. 
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Figure 3.3: WST-1 viability assays with R5D peptide in reduced serum. NIH3T3 cells which 

formed a monolayer on the bottom of the wells of 96-well plates were treated with different 

concentrations of R5D peptide in DMEM with 0.5% newborn calf serum (starving media) for 24 

h. WST-1 was added into culture media at the end of treatment period and absorbance was 

measured at 450 nm by a microplate reader. Data were expressed as mean ± SEM, n = 4. Peptide 

concentrations were based on dry weight. 
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Figure 3.4: WST-1 viability assays with KM12 peptide. NIH3T3 cells which formed a 

monolayer on the bottom of the wells of 96-well plates were treated with different concentrations 

of KM12 peptide in DMEM plus 10% newborn calf serum for 24 h, 48 h and 72 h at 

37
o
C/7%CO2. WST-1 was added into culture media at the end of treatment period and 

absorbance was measured at 450 nm by a microplate reader. Data were expressed as mean ± 

SEM, n = 4. 
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Figure 3.5:  WST-1 viability assays with KM14 peptide. NIH3T3 cells which formed a 

monolayer on the bottom of the wells of 96-well plates were treated with different concentrations 

of KM14 peptide in DMEM plus 10% newborn calf serum for 24 h, 48 h and 72 h at 

37
o
C/7%CO2. WST-1 was added into culture media at the end of treatment period and 

absorbance was measured at 450 nm by a microplate reader. Data were expressed as mean ± 

SEM, n = 4. 
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TRYPAN BLUE EXCLUSION ASSAY 

 

 

CONTROL  wells 

 

KM12- treated wells 

 Well 

1 

Well 

2 

Well 

3 

Well 

4 

total % 

total 

Well 

1 

Well 

2 

Well 

3 

Well 

4 

total %  

total 

Live 239 204 245 204 892 93.7 201 280 277 255 1013 

 

94.1 

 

Dead 15 8 10 27 60 6.3 7 17 8 31 63 5.9 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6: Trypan blue dye exclusion assay of NIH3T3 cells after treatment with KM12 

peptide. NIH3T3 cells grown in 10% newborn calf serum DMEM were treated with 50µM of 

KM12 peptide for 24 h at 37
o
C/7%CO2. At the end of treatment period, the cells were stained 

with trypan blue. The percentage of live cells and dead cells in the control and KM12- treated 

groups were shown.  
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PROPIDIUM IODIDE STAIN IN COMBINATION WITH FLOW CYTOMETRY 

 Control samples KM12 treated samples 

 Sample 

1 

Sample 

2 

Sample 

3 

total % 

total 

Sample 

1 

Sample 

2 

Sample 

3 

total % 

total 

Live 3590 3707 3511 10808 94.2 3572 3827 3798 11197 95.6 

Dead 332 143 191 666 5.8 281 132 104 517 4.4 

 KM14 treated samples  

 Sample 

1 

Sample 

2 

Sample 

3 

total % 

total 

     

Live 2229 4165 3976 10370 91.7      

Dead 462 293 178 933 8.3      

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7: Post-treatment viability of NIH3T3 cells evaluated by propidium iodide staining 

and flow cytometry. NIH3T3 cells grown in 10% newborn calf serum DMEM were treated with 

50µM of KM12 or KM14 peptide for 48 h at 37
o
C/7%CO2. At the end of treatment period, the 

cells were stained with propidium iodide and analyzed by flow cytometry. The percentage of live 

and dead cells in the control and peptide-treated groups were shown.  
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Figure 3.8:  Hemolysis of sheep red blood cells treated with 16mer derivatives, 5mer WL 

and 5mer RL peptides. Sheep red blood cells in phosphate-buffered saline were incubated with 

the indicated peptides at concentrations ranging from 0.2 -100 µM. The supernatants were 

obtained after 1 h incubation at 37
o
C and absorbance was measured at 405 nm. The percentages 

of hemolysis were expressed as mean ± SEM, n = 3. 

 

 

 

 

 

 

 



90 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9:  Hemolysis of sheep red blood cells treated with KM12, KM14, KM23 and 

KM29 peptides. Sheep red blood cells in phosphate-buffered saline were incubated with KM12, 

KM14, KM23 and KM29 peptides at concentrations ranging from 0.2-100 µM. The supernatants 

were obtained after 1 h at 37
o
C and absorbance was measured at 405 nm. The percentages of 

hemolysis were expressed as mean ± SEM, n = 3. 
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CHAPTER 4  

EVALUATION OF ACUTE TOXICITY AND POTENTIAL IMMUNOGENICITY OF 

ANTIFUNGAL PEPTIDES IN MICE 
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A. Introduction  

Acute toxicity and immunogenicity are among the major concerns that arise when 

peptide-based drugs are to be administered to a human subject. Antimicrobial peptides with 

potential effects on phospholipid membranes may inadvertently target and disrupt the 

phospholipid membranes of host cells via nonspecific interactions. Many antimicrobial peptides 

have in their structures positive or negative charges which allow them to interact with charged 

phospholipid molecules on the target membranes. Those interactions could lead to the disruption 

of the target cell membranes via barrel-stave, toroidal or carpet models. Antimicrobial peptides 

with strong activities against bacteria such as melittin (Sessa et al., 1969, Hermetter & Lakowicz, 

1986, Laine et al., 1988) and alamethacin (Dathe et al., 1998) are known to cause hemolysis of 

mammalian red blood cells. That unwanted effects obviously poses a great harm to host subjects 

if the peptides are to be used in human therapeutics.  

As many antimicrobial peptides are non-self molecules, possible immune responses of 

the human body to those peptides must be taken into consideration. The body is equipped with 

innate and acquired immune systems that constantly scan for the presence of foreign material and 

respond accordingly. The innate immune system is a line of defense that uses neutrophils, 

eosinophils, mononuclear phagocytes and natural killer cells to identify and remove foreign 

pathogens that enter the body (Janeway & Medzhitov, 2002). Pattern recognition receptors 

present on the plasma membranes of those immune cells such as toll-like receptor-2 (TLR2), 

toll-like receptor-1: toll-like receptor-2 (TLR1:TLR2) could recognize foreign proteins or 

peptides that are structures of bacteria and viruses (Xu et al., 2000, Takeuchi et al., 2002, 

Aliprantis et al., 1999). The activation of those pattern recognition receptors results in the 
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activation of intracellular signaling pathways and the production of cytokines known to be 

involved in cellular signaling and inflammation (Dunne & O'Neill, 2003).  

Foreign peptides entering the body are processed by phagocytic antigen-presenting cells 

and then presented to T lymphocytes in major histocompatibility complexes. Intracellular 

peptides such as those of viral origin are processed inside antigen-presenting cells by an 

endogenous pathway in which they are bound to class I MHC molecules for the presentation to 

CD8+ T lymphocytes. Extracellular protein or peptide antigens are taken into the intracellular 

space of antigen-presenting cells and processed by another pathway called the exogenous 

pathway. In this pathway, digested protein or peptide antigens are bound to class II MHC 

molecules in cytoplasmic vesicles before being delivered to the host cell membrane where they 

interact with CD4+ T lymphocytes. The presentation of extracellular peptides bound to class II 

MHC molecules are performed by professional antigen-presenting cell such as dendritic cells and 

macrophages (Vyas et al., 2008). The presentation of small foreign peptides in combination with 

MHC molecules to T lymphocytes will result in the activation of the two important branches of 

the adaptive immunity.   

Responses of the adaptive immune system to foreign protein or peptide antigens could 

include the activation cell-mediated and humoral-mediated immunity. Important effectors of the 

cell-mediated immunity branch are CD8+ cytotoxic T lymphocytes, macrophages and natural 

killer cells. These effector cells kill infected cells by toxic chemicals or phagocytosis. Beside the 

cell-mediated immunity branch, the humoral-mediated immunity branch can also react to the 

presence of foreign protein or peptide antigens by the formation of immunoglobulins. B 

lymphocytes of the humoral-mediated immunity can produce IgG antibodies which neutralize 

the activity of foreign protein or peptide antigens. Furthermore, B lymphocytes can form IgE 
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antibodies known to be involved in hypersensitivity reactions. Examples of formation of 

antibodies to peptide-based drugs have been described (Yagi et al., 1963, Ferraiolo et al., 1988). 

The formation of memory cells and secondary immune responses should also be taken 

into account when a newly-developed peptide is to be administered to a human subject for an 

extended period of time. Foreign peptides introduced into the body could initiate a mild primary 

immune response but with the formation of memory cells, secondary immune responses could be 

strong and dangerous in subsequent administrations of the peptide. The formation of memory 

cells is one principle for the protective effects of vaccination. Unfortunately, this phenomenon 

could be dangerous if the body forms memory cells and strongly respond to the re-administration 

of therapeutic peptides.  

For safety reasons, acute toxicity testing is a step to determine the dose that either cause 

no adverse effects or life-threatening toxicity (NIH, 1996). Acute toxicity testing is performed 

with the administration of a single dose or multiple doses of drug during a period that does not 

exceed 24 h (NIH, 1996). The NIH guidance for industry recommends that the testing should 

include two routes of drug administration in which one is the intended route to be used in human 

and the other is the intravenous route. Besides, NIH also recommends the test to be performed in 

at least two mammalian species that includes one non-rodent species. In this study, we evaluated 

potential acute toxicity of two newly developed antifungal peptides namely KM12 and KM14 in 

Hsd: ICR (CD1
®

) mice. This was a step that followed our previous study which showed that 

these peptides were nontoxic to NIH3T3 cells grown in culture media. We also investigated 

potential immunogenicity of these two peptides in mice in order to further determine their safety 

profile. The results of these testing were presented in the following sections. 
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B. Materials and methods  

Chemicals and reagents.  Chemicals and reagents were purchased and stored at 

conditions specified by the corresponding manufacturers. Glucose was purchased from EMD and 

phosphate buffered saline from Gibco-BRL. Acetic anhydride (J.T. Baker) methanol (EMD) and 

10N NaOH) were purchased from VWR Scientific. Ammonium bicarbonate was purchased from 

Fluka. PVDF membrane 0.45 μm was purchased from Biotrace. Mouse anti-acetylated lysine 

(catalog number 9681S) was purchased from Cell Signaling and HRP conjugated goat anti-

mouse IgG antibodies (catalog number SC-2005) from Santa Cruz Biotechnology. 

 Peptides.  The peptides CFKRKY and CWKRKW were commercially synthesized by 

Peptide Internationals. The peptides were dimerized to form KM12 and KM14 peptides, 

respectively. Purified KM12 and KM14 were recovered by high-performance liquid 

chromatography and their sequence was confirmed by mass spectrometry. KM12 and KM14 

were stored at -20
o
C and dissolved in either phosphate-buffered saline or 5% glucose. Stock 

concentrations of KM12 and KM14 were prepared in phosphate-buffered saline at concentrations 

of 35 mg/ml and 45.58 mg/ml, respectively. The peptides were diluted in sterile phosphate- 

buffered saline or 5% glucose to the appropriate concentration before injection into mice. The 

total volume per injection was less than 0.1 ml. Hsd:ICR (CD1
®

) mice were purchased from 

Harlan 
TM

 and kept in clean cages in accordance with current guidelines for animal care in 

research. 

Evaluation of acute toxicity of KM12 and KM14 in mice.  The protocol used for the 

testing of acute toxicity of KM12 and KM14 on mice was approved by the Institutional Animal 

Care & Use Committee (IACUC) of the University of Arkansas. Hsd: ICR (CD1
®

) mice were 

randomly allocated into three groups of control, KM12 and KM14 treatment. There were five 
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mice per treatment group. The peptides were prepared in sterile phosphate-buffered saline or 5 % 

glucose at the appropriate dose and the volume per injection was no greater than 0.1 ml. Injection 

was done via the tail veins of the mice and started with a dose of 8mg/kg of body weight using a 

standard up-down dosing protocol. Based on the responses of the mice to the starting dose, an 

adjustment in the dosage of the peptide would follow. If good tolerance to the starting dose was 

recorded, the peptide dosages would then be doubled until toxicity was detected or an upper limit 

dosage of 64 mg/kg of body weight per injection was reached. Alternatively, the peptide dosage 

would be reduced stepwise by a decrement of 2 mg/kg of body weight until no signs of toxicity 

were recorded. Tolerance to the injected peptides was evaluated in each mouse by the monitoring 

of clinical signs for at least 3 h post-injection. Those signs include reduced motor activity, 

piloerection, redness of the ear lobe, cyanosis, protruding eyeballs, slow or labored breathing, 

loss of response in the rear legs, convulsions and death. A score was given based on the criteria 

described in Table 4.1. All the injected mice were followed up for at least 14 days and sacrificed 

for gross evaluation of internal organs. The brain, heart, lungs, liver and spleen of those 

sacrificed mice were evaluated by gross morphology and the weight of each organ was recorded. 

Evaluation of KM12 immunogenicity in mice.  The immunogenicity of KM12 peptide 

in Hsd:ICR mice were investigated in a group of Hsd:ICR (CD1
®

) mice injected with KM12 

once a month for four months at a safe dosage determined by the acute toxicity testing. Control 

mice were injected with 5% glucose only. Mice were injected once per month with KM12 

prepared in sterile 5% glucose. Injections were intravenous, intramuscular or intra-peritoneal 

routes with five mice used per route of injection. At the fifth month, the injected mice were 

subjected to general anesthesia for the collection of blood via cardiac puncture and then 

euthanized by cervical dislocation. Blood samples were allowed to stand at room temperature for 
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30 min and serum was recovered by centrifugation at 1500 x g for 10 minutes. Serum samples 

were stored at -20
o
C until being used.  

Detection of antibodies against KM12 in mouse serum.  The presence of antibodies, if 

any, in the mouse serum samples was investigated by Dot Blot. In brief, 0.45 µm PVDF membrane 

was soaked in 100% methanol for 5 min and then in TBS (30ml of 5M NaCl, 100ml of 1M Tris-HCl pH 

8, and water up to 1000 ml) for at least 5 minutes before being used use. 10μg of KM12 prepared in 30 

μl of phosphate-buffer saline was applied onto the PVDF membrane with the use of Hybridot 

manifold BRL 1050mm (Bethesda Research Laboratories). 10μg of acetylated KM12 in buffer 

was used as control and applied onto PVDF membrane at a remote position. The membrane was 

allowed to dry completely for several hours at room temperature before being used. The control 

acetylated KM12 was prepared by a method described by Hunt (Hunt, 2001). In brief, lysine 

residues of the KM12 peptide were acetylated by a reagent composed of acetic anhydride and 

methanol mixed at a volume ratio of 1:3, respectively. Thus, 10μg of KM12 per well 

(approximately 6 nmol) in 120 μl of 50 mM ammonium bicarbonate was added to 300 μl of 

acetylating reagent and the whole mixture was allowed to stand at room temperature for one 

hour. The mixture was neutralized with 175μl of 10N NaOH and dotted onto one well of PVDF 

membrane with the use of a vacuum Hybridot manifold.  Membranes dotted with peptides were 

allowed to dry at room temperature and standard protocol for Western Blot was performed. 

Nonspecific binding sites on PVDF membranes were blocked with TBS-0.05% Tween 20 -5% 

milk (30ml of 5M NaCl, 100ml of 1M Tris-HCl pH=8, 5 ml of 0.5% Tween 20, 50g low fat dry 

milk, and water up to 1000ml) for at least 2 hours at 37
o
C. The membranes were incubated with 

anti-acetylated lysine mouse IgG2 antibodies (dilution ration 1:1000) or diluted mouse serum 

(dilution ratio 1:100) in TBS- 0.05% Tween 20 -2% milk at 4
o
C overnight on a roller and then 
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gently washed three times with TBS-0.05% Tween 20. The membranes were then incubated with 

goat anti-mouse IgG for 45 minutes at room temperature and then subjected to three washes of 

10 minutes each with TBS-0.05% Tween 20 to remove unbound antibodies. The blotted 

membranes were developed with Immobilon Western Chemiluminescent HRP substrate and 

analyzed with the use of FluorChem 
TM

 8900 and images were acquired for further analysis by 

Quantity One software (Basic version, BioRad). In the analysis step, a circle was drawn around 

each recognizable dot present at corresponding sites of KM12 or acetylated KM12 on the 

membranes and the average intensity of those circles were determined by the Quantity One 

software. An increase of at least 20% in average chemiluminescent intensity of a circle compared 

to that of adjacent local background was considered positive for an immune response.  
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C. Results 

Acute toxicity evaluation of KM12 and KM14.  To determine the toxicity of the 

antifungal peptides KM12 and KM14 in vivo, mice were chosen. An up-down protocol was 

employed in which a dose of the peptide is selected (8 mg/kg) and based on the response of the 

animal the dose is either doubled (16 mg/kg) or reduced by half (4 mg/kg) and the study 

proceeds until a tolerable dose is identified. For the KM12 peptide, a dosage of 8mg/kg in 

phosphate-buffered saline was well tolerated by the mice. However, when the dose was 

increased to 16 mg/kg some mice were noted to develop signs of acute toxicity such as reduced 

motor activities (n=4), protruding eyeballs accompanied by convulsion (n=3) or death (n=1) 

(Table 4.2). A reduction of the injected dose to 12 mg/kg did not improve significantly the signs 

of acute toxicity; however, a dosage of 10 mg/kg was tolerated by the mice. When the solvent for 

the KM12 peptide was switched from phosphate-buffered saline to 5% glucose the KM12 

peptide seemed better tolerated. Two mice were injected with KM12 prepared in 5% glucose at a 

dose of 16 mg/kg and they developed convulsions but survived the injection. Given the poor 

tolerance of 16 mg/kg, the dose determined to be safe for the immunogenicity analysis was 

10mg/kg of body weight. 

The KM14 peptide was poorly tolerated by the mice even at a starting dose of 8 mg/kg. 

Two mice injected with KM14 peptide prepared in phosphate-buffered saline died with signs of 

general muscle stiffness. Post-mortem examination of the brain, heart, lung, liver and kidneys of 

those mice did not show any abnormality by gross morphology. When KM14 was prepared in 

5% glucose, there seemed to be an improvement in the tolerance of the injected mice. One mouse 

injected with KM14 prepared in 5% glucose developed temporary loss of motor activity but 

survived the injection. Nevertheless, given the generally poor tolerance of KM14 by mice, this 
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peptide was no longer included in the evaluation since the antifungal activity in vitro was not 

improved as compared to KM12. Based on the results of this acute toxicity testing, KM12 in 5% 

glucose at the dose of 10mg/kg was selected for the next step of immunogenicity testing. The 

evaluation of KM14 was discontinued due to poor in vivo tolerance. 

Immunogenicity of KM12 peptide.  To determine whether mice would develop an 

immune response to KM12 an experiment was set up in which the peptide was injected monthly 

via tail vein (5 mice), intramuscular (5 mice) or intraperitoneal (5 mice), along with the controls 

for each site of injection (5 mice per site X 3 sites). Thus, a total of 30 mice were used in the 

study with 29 mice completing the study, one mouse died at the third month following 

convulsions after the IV injection of KM12. Some other mice in the intravenous injection group 

also developed unwanted signs during or right after the injection of KM12 (Table 4.3), however 

they survived after fourth months of monthly KM12 intravenous injection. Two mice in the 

intraperitoneal treatment group showed skin lesions related to in-cage fighting and those lesions 

improved after they had been separated from other mice in the treatment group. None of the mice 

in the intramuscular injection group or the three control groups showed any signs related to the 

injection during the 4-month period. Autopsy at the end of 4-month period of injection did not 

show any gross abnormalities.  

Thirty serum samples obtained from 15 mice injected with the KM12 peptide via 

subcutaneous, intramuscular or intraperitoneal routes, as well as from 15 control mice were used 

in dot blot experiments. The purpose of dot blot was to detect the presence of anti-KM12 

antibodies, if any, in those serum samples. Due to the small size of KM12, a positive control 

peptide was developed by acetylating lysine residues on KM12 in vitro. This peptide could then 
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be detected using anti-acetylated lysine antibodies to confirm that the peptide was present on the 

surface of PVDF membranes and to control for the Western blotting technique. 

With respect to Dot Blot, one serum sample from the KM12 intravenous treatment group 

was positive for anti-KM12 IgG antibodies (Figure 4.1A). That serum sample was obtained from 

a mouse that died at the third month of intravenous injection of KM12. The four other mice in 

the intravenous injection group did not develop any detectable levels of anti-KM12 antibodies in 

their serum although some of them also developed adverse reactions during the course of 

intravenous KM12 injection such as rapid breathing, reduced motility, jerking movements and 

convulsion (Table 4.2). In addition to the mouse in the intravenous treatment group, one mouse 

in the intramuscular treatment group also developed antibodies against KM12 (Figure 4.1B). 

However, none of the mice in the intramuscular treatment groups developed any observable 

adverse reactions to KM12 injection during the course of 4-month KM12 administration, and  

none of the mice in the intraperitoneal route of injection showed antibody production.   
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D. Discussion 

The doses of 8 mg/kg and 10 mg/kg of body weight of KM12 peptide were well-tolerated 

by the mice. The starting dose of 8 mg/kg was chosen based on a search in the literature. The 

concentration of KM12 in the extracellular fluid of the injected mice, in theory, could reach a 

level of 7.0 - 9.3 μM if with assumptions that total body water accounted for 60-80% of total 

body weight in mice (Sheng & Huggins, 1979) and that the KM12 peptide distributed within that 

water compartment. In reality, the volume of distribution of a peptide drug could be much less or 

greater than the volume of total body water depending on the biochemical properties of the 

peptide such as its molecular weight, charges, lipid solubility and its binding capacity to serum 

proteins (Wilkinson, 2001). For that reason, actual blood concentrations of KM12 achieved after 

an intravenous injection must be determined by appropriate methods before any concrete 

conclusions on those concentrations are to be reached. The use of 5% glucose as solvent seemed 

to improve the tolerance of the mice to KM12 peptide compared to phosphate-buffer saline 

solvent. As 5% glucose is a typical solvent for the delivery of drugs in human while sodium 

phosphate buffer is not, this is a positive finding. 

The presence of one disulfide bond in the structure of KM12 peptide could be suboptimal 

in terms of drug stability because the bond is subjected to reduction reaction after the peptide is 

introduced into the body. In vitro experiments at our lab suggested that KM12 peptide was 

reduced into two monomers of CFKRKY peptide when the former was added into 10% new born 

calf serum (Yazan Akkam, data not shown). Although KM12 in the presence of 10% new born 

calf serum did not show any toxicity to murine fibroblasts in WST-1 and propidium iodide 

assays, it cannot be ruled out that the monomer CFKRKY peptide played a role in the 

development of acute unwanted effects in the  mice that developed symptoms. In addition to 
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possible cleavage at the disulfide bond, KM12 peptide is also subjected to cleavage at the 

aromatic peptide bonds by proteases present in the extracellular fluid of mice and human such as 

carboxypeptidase A (Rawlings et al., 2012, Stewart & Gilvarg, 1999, Wei et al., 2002, 

Fontenele-Neto et al., 2005, Lyons & Fricker). Small amino acid fragments of the KM12 

peptide, in theory, could be responsible for the unwanted signs recorded in the KM12 injected 

mice.   

The role of cysteine residues in the development of unwanted effects toward KM12 in 

injected mice needs further investigations. Although cysteine is a natural amino acid and does 

not contain sulfa moiety (SO2-NH2) well known for their potential risk of allergic reactions in 

human, its presence in the sequence of KM12 peptide could be suboptimal. The oxidation 

reaction between sulfhydryl groups to form unusual cross-links between body proteins has been 

implicated in the pathophysiology of glucose 6-phosphate dehydrogenase deficiency (Johnson et 

al., 1979). We incorporated cysteine residue into the sequence of our prototype peptide for the 

purpose of dimerization of two monomer peptide of CFKRKY into a more potent antifungal 

peptide of KM12 peptide. However, this approach needs to be modified if the antifungal peptides 

being developed are to be delivered by parenteral routes due to issues with stability and 

immunogenicity.  

Potential cleavage of KM12 at the disulfide bond and other peptide bonds raised an 

important question in terms of potential fast clearance of the peptide. Small peptides of less than 

14,600 Da such as lysozyme were shown to have high glomerular sieving coefficients and high 

clearances by the kidney (Maack et al., 1979). If KM12 with a molecular weight of 1768 Da is 

broken down into two smaller peptides of 885 Da, those smaller peptides could be subjected to 

even faster clearance by the kidney. However, in vitro studies at our lab suggested that KM12 is 
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bound to serum proteins. In in vitro studies at our lab, trichloroacetic acid was able to precipitate 

KM12 in the presence of 10 % newborn calf serum while it failed to precipitate KM12 dissolved 

in sodium phosphate buffer. That finding suggested that the peptide bound to serum proteins, 

probably albumin, which was precipitated by trichloroacetic acid (Yazan Akkam, data not 

shown). The binding of KM12 or KM12 cleavage products to serum proteins could help solve 

the problem with fast renal clearance, however, it raises another important issue with the 

immunogenicity of KM12 peptide. 

It is known that  a hapten is non-immunogenic given its low molecular weight, however, 

it could induce an immunological response if bound to a carrier protein (Landsteiner, 1947). The 

monomer cleavage product of KM12 has one cysteine residue that could form disulfide bond 

with serum proteins under the influence of free radicals and the monomer-carrier protein 

complex may function like a hapten. The development of side effects at the second month of 

intravenous injection and the detection of IgG antibody against KM12 in intravenously and 

intramuscularly injected mice suggested that KM12 peptide was recognized by the mouse 

immune system and defensive immune reactions were developed against the peptide. The fact 

that all the first injections were uneventful regardless which route was used further supported the 

argument that immune responses were involved in the development of the side effects observed 

in the symptomatic mice. As the monomer peptide of CFKRKY had a molecular weight of less 

than 1000 Da, it was very likely that a hapten-protein complex was involved in the development 

of antibodies against KM12.  

 Our next question was the potential antigenic determinant, if any, of the CFKRKY 

monomer or KM12. Previous studies have provided valuable tools that could help with this 

question. A study on solvent accessibility of the side chains of peptides provided a tool to 
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calculate surface probability of each amino acid residue in the sequence of one peptide of interest 

(Janin & Wodak, 1978). As the region(s) of antigenic determinant on a peptide of interest should 

be exposed for recognition by immune cells, hydrophilicity of the amino acids in the sequence of 

a peptide was used as one parameter to help define antigenic determinant of that peptide (Hopp 

& Woods, 1981). A tool to plot backbone flexibility and help identify highly mobile regions in 

the structures of a peptide of interest was also developed (Karplus, 1985). Mobile regions of a 

peptide were shown to be indicator of antigenic determinant of peptides (Westhof et al., 1984). A 

group of researchers introduced a valuable algorithm that combined several parameters such as 

surface probability, hydrophilicity, backbone flexibility and secondary structure prediction to 

determine antigenic determinants of a protein or peptide (Jameson & Wolf, 1988). This 

algorithm is usually used by commercial companies in the development of antibodies against a 

peptide of interest.  

 With respect to the antigenic determinant of the monomer CFKRKY or KM12 peptides, 

it is very likely that the antigenic determinant, if any, resides within the region that has positive 

charges of the peptides. As lysine and arginine are amino acids that have net positive charge, 

they are more likely to be exposed to hydrophilic environment of the extracellular fluid than the 

aromatic amino acid of phenylalanine. Tyrosine residue with one hydroxyl group on its side 

chain is also likely to be exposed to hydrophilic environment of the extracellular fluid. An 

attempt to identify antigenic determinant of the monomer CFKRKY with the use of criteria set 

out by Hopp and Wood and the software program Antigenicity Plot provided by Bioinformatics 

Organization (Luca Toldo, 1997) did not show any results for the CFKRKY monomer. However, 

the program suggested that the antigenic determinant of KM23 and KM29 could reside within 
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the region of KRKY sequence and closer to the C- terminus than to the N- terminus of the 

peptides (Figure 4.2 and Figure 4.3).  

 In summary, this in vivo study with mice helped clarify the potential acute toxicity and 

immunogenicity of two novel antifungal peptides developed at our lab. The dose of 10 mg/kg of 

KM12 was tolerated by the mice; however, the same dose was toxic if KM14 was used. 1 out of 

5 mice developed IgG antibodies against KM12 peptide after fourth months of monthly KM12 

injection via either intravenous or intramuscular routes. The presence of cysteine residue and 

disulfide bond in the structure of KM12 peptide affected its stability in extracellular fluid and 

increased its ability to bind serum proteins. KM12 peptide or its CFKRKY monomer may 

function as a hapten and induced immunological response in the mice after binding to serum 

proteins. The data obtained from this study are useful for the development of novel histatin-5 

based antifungal peptides that contains the functional motif of YKRKF.  
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Table 4.1:  Clinical signs during the first three hours of intravenous injection of KM12 and 

KM 14 peptides in Hsd:ICR mice. 

Score Signs observed during a period of 3 h post-injection 

5 No signs observed 

4 Light redness of ear skin 

3 Reduced motor activity and redness of ear skin 

2 Reduced motor activity, piloerection and bright redness of ear skin 

1 Protruding eyeballs, temporary loss of motor activity, piloerection, redness of 

earskin/legs and labored breathing 

0.5 Protruding eyeballs, temporary loss of motor activity, piloerection, redness of 

ear skin/ legs, convulsions with subsequent loss of response in rear legs and 

labored breathing 

0 Death 
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Table 4.2 Acute toxicity of KM12 and KM14 peptides on Hsd:ICR (CD1
®
) mice with 

different dosage regimens.  

PEPTIDE USED  DOSAGE  SIGNS OBSERVED ON TESTED ANIMALS  

Control with PBS  

(n=3) 

PBS,  

IV 

None 

KM12 IN PBS  

(n=6) 

8mg/kg, 

IV  

None  

KM12 IN PBS 

(n=6) 

16 mg/kg, 

IV  

Reduced motor activity (n=4), protruding eyeballs 

accompanied by convulsion ( n=3), death (n=1)  

KM12 IN PBS 

(n=5) 

12 mg/kg, 

IV  

Labored breathing (n=4), reduced motor activity (n=4), 

protruding eyeball ( n=1), redness in ear skin (n=1)  

KM12 IN PBS 

(n=5) 

10 mg/kg, 

IV  

None  

KM12 in 5 % 

glucose (n=2)  

16mg/kg, 

IV  

Convulsion (n=2), no death  

KM14 in PBS 

(n=2) 

8mg/kg, 

IV  

Death (n=2) 

KM14 in 5% 

glucose   

(n=1) 

8mg/kg, 

IV 

Temporary loss of motor activity, no death  
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Table 4.3 Signs observed in Hsd:ICR mice during a four- month course of injection of 

KM12 and KM14. 

MONTH  ROUTE USED 

N=5 per group  

DOSAGE  SIGNS OBSERVED  ON TESTED ANIMALS  

First 

month  

IV, IM, IP  10μg/g  None  

Second 

month  

IV  10μg/g  Rapid breathing and temporary reduced of 

motility ( n=3)  

IM, IP  10μg/g  None  

Third 

month  

IV  10μg/g  Convulsion ( n=4), rapid breathing ( n=1), 

bulging eyes ( n=2), reduced motility ( n=2), 

death ( n=1)  

IM, IP  10μg/g  None  

Fourth 

month  

IV  10μg/g  Reduced motility ( n=4), convulsion ( n=1), 

Jerking movements ( n=1)  

IM, IP  10μg/g  None  
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Figure 4.1:  Dot Blot of serum samples obtained 

from 30 mice injected with KM12 peptide. 

Panel A: IV group, panel B: IM group, panel C: IP 

group, panel D: control IV group, panel E: control 

IM group, panel F: control IP group. Panel G: Dot 

Blot of serum samples used in IV lane 2 (lane1), IV lane 5 (lane2), IM lane 2 (lane 4), IM lane 3 

(lane 5) and acetylated KM12 (lane3). 
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Figure 4.2: Antigenicity plot of KM23. The antigenicity plot of KM23 was obtained with the 

use of software provided by Bioinformatic Organization. Higher index means higher antigenicity 

property. 
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Figure 4.3:  Antigenicity plot of KM29. The antigenicity plot of KM29 was obtained with the 

use of software provided by Bioinformatic Organization. Higher index means higher antigenicity 

property. 
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The emergence of multidrug-resistant Candida strains demands the introduction of new 

agents into the current arsenal of antifungal drugs. Candida species are common pathogens 

found in cases of opportunistic fungal infections in humans. Furthermore, Candida species were 

ranked as the fourth leading cause of hospital acquired blood stream infections (Wisplinghoff et 

al., 2004). Current antifungal drugs used for the treatment of candidiasis are known to work 

efficiently via their specific cellular targets in the affected fungal cells; however, the drugs could 

be toxic to the host and their cellular targets in fungi cells could be altered in drug-resistant 

strains. The development of new antifungal agents with new modes of action will be part of a 

solution to the current problem of antifungal drug resistance.   

Histatin-5 peptide with known killing activity against Candida species is used in this 

study as a model for the development of new peptide-based antifungal agents. The peptide is 

present naturally in human saliva and active against several strains of fungi such as Candida 

albicans and Candida glabrata. The histatin-5 peptide was previously shown to kill C. albicans 

yeast cells by disrupting the cell membrane (Edgerton et al., 1998) and mitochondrial functions 

of the affected yeast cells (Helmerhorst et al., 1999, Ruissen et al., 2001). Although histatin-5 

has been discovered for more than 20 years, its mode of action is not fully understood. More 

studies are needed to help better understand how the peptide works on affected fungal cells. In 

this study, the mechanism of killing by histatin-5 was investigated with the use of four 16mer 

derivatives of histatin-5. Furthermore, the disruption of the SSA2 gene that was proposed as the 

putative receptor for histatin-5 and the use of artificial membranes were also employed in order 

to better understand the interaction between its derivatives and their targets. We hoped the 

findings obtained from this study would help design new antifungal drugs based on the natural 

model of histatin-5 peptide.  
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Previous studies on the mechanism of action of histatin-5 on C. albicans suggested that 

the peptide required Ssa2p of the yeast cells as a receptor to exert its killing action (Li et al., 

2003, Li et al., 2006); however, the data of this study did not support that concept. In this study, 

the ssa2 null mutant of C. albicans showed comparable susceptibilies to the four 16mer 

derivatives as the wild-type strain. The finding that both the 16mer wild-type peptide and its D-

isomer (16mer WD) had comparable killing activities on C. albicans yeast cells suggested that 

the two peptides did not need a chiral-receptor-type interaction with its targets to exert their 

killing activity. As the 16mer wild-type peptide is known to function as well as the 24mer 

histatin-5 in antifungal killing activity (Raj et al., 1990), it is very likely that the mode of action 

of histatin-5 does not require Ssa2p as reported.  

Further in vitro experiments with artificial membranes and electron transport chain 

inhibitors provided more information on how the 16mer derivatives acted on the targeted C. 

albicans yeast cells. The release of fluorescence from liposomes as a result of treatment with the 

16mer peptides suggested that the peptides could disrupt the membranes in a protein-independent 

manner to gain access into the intracellular space of the C. albicans yeast cells.  The finding that 

the killing effects of the four 16mer peptides were attenuated with the use of electron transport 

chain inhibitors such as sodium azide or antimycin A suggested that the electron transport chain 

or cellular respiration was involved in the modes of action of the four derivatives as in that of 

histatin-5. It is logical for us to think that mitochondria were one potential intracellular target of 

the four 16mer peptides or that ATP was needed for the entry of the four derivatives into the 

intracellular space of C. albicans yeast cells.   

The data obtained from the experiments with the four 16mer derivatives in this study 

helped confirm the existence of a short 5mer functional domain of histatin-5. The 5mer domain 
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was identified as YKRKF and located to the middle portion of histatin-5. Although the 

antifungal activity against C. albicans of this 5mer was no stronger than the 16mer WL, the 

dimerization of this functional domain generated new short peptides with very strong antifungal 

activities such as the KM12, KM14, KM 23 and KM 29. These new peptides were shown to have 

stronger antifungal activities against C. albicans than the 16mer WL wild-type peptide in killing 

assays. It is hoped that peptides synthesized by the dimerization or multimerization of the 5mer 

domain would have some pharmaceutical value. 

The next step in this study after the discovery of the 5mer domain and the development of 

new peptides with strong antifungal activities was the testing of potential toxicity of these 

peptides in mammalian cells. Several toxicity assays such as toxicity assays with WST-1, dye 

exclusion assays and hemolysis assays were used to evaluate potential toxicity of these new 

peptides on mammalian cells in vitro. The results obtained from these in vitro toxicity assays 

were promising when the new antifungal peptides at concentrations up to 100 μM did not show 

signs of significant toxicity to the mammalian cells as compared to controls. The concentration 

used in toxicity testing was much higher than the concentration of 5μM needed to kill more than 

95% of the yeast cells. The data on the safety profile of KM12 and KM14 on mammalian cells in 

vitro allowed us to move forward with the testing of acute toxicity and immunogenicity of KM12 

and KM14 in mice.  

The step of testing potential toxicity of KM12 and KM14 on mice provided useful 

information that could help us better design histatin-5-based antifungal peptides with potential 

pharmaceutical values. In this step, KM14 peptide was showed to be toxic to the injected 

Hsd:ICR (CD1
®

) mice at an intravenous dose of 10 mg/kg while the same dose of KM12 peptide 

was well tolerated by the mice. In terms of immunogenicity, monthly intravenous and 
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intramuscular injection of KM12 at a dose of 10mg/kg for 4 months resulted in the formation of 

anti-KM12 antibodies in 20% of the mice that received either intravenous or intramuscular 

injection of the peptide. The formation of IgG antibodies against the KM12 peptide in the 

injected mice might be due to the cleavage at the disulfide bond of KM12 by reduction reaction 

in the extracellular fluid to form its constituent monomer of CFKRKY that had the potential to 

function as a hapten.  A lesson that we have learned from this study is that the dimerization of 

CFKRKY monomer by disulfide bond is suboptimal. At least, the stability and immunogenicity 

of the peptides created from the dimerization of the 5mer monomers via disulfide bonds must be 

taken into account if this mode of peptide synthesis is to be used.   

Although the multimerization of the 5mer domain has been shown in this study to 

generate new peptides with strong antifungal activities, the road toward the introduction of a new 

peptide-based antifungal drug into clinical practice is viewed as lengthy and will be full of 

hurdles. In addition to the issues of stability and immunogenicity that could be overcome by the 

use of D-amino acid, careful design and testing the final peptide products in animals, 

antimicrobial peptides usually possess charges that could interact with ions normally present in 

the body fluids. As a consequence of these ionic interactions, the activities of antimicrobial 

peptides could be significantly affected by the presence of those ions at physiological 

concentrations. The antifungal activities against C. albicans of the peptides used in this study 

were tested in the presence of 10mM sodium phosphate buffer which contains a sodium 

concentration much lower than that of the extracellular fluids of 135 mM. It is predicted that the 

antifungal activities of these peptides will be much weaker in serum which contains proteins and 

higher concentrations of ions such as sodium, calcium and chloride ions, etc. If the issue of 

reduction in antifungal activity due to the presence of high salt concentrations could be 
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overcome, peptide-based antifungal drugs will definitely play a role in the future fights against 

fungal infections in human.   
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