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ABSTRACT 

 This dissertation consists of three research parts: 1) development of rapid detection 

methods for foodborne pathogens; 2) immune response of chicken cells against Salmonella and 

bacteriophage P22; 3) evaluation of novel control measures for poultry productions. In order to 

develop rapid and accurate detection methods for foodborne pathogens, two types of PCR assays 

were utilized. Three foodborne pathogens included Campylobacter, Escherichia coli and 

Salmonella in watershed were qualitatively and quantitatively detected by multiplex PCR and 

qPCR (chapter 2). Since Salmonella species are commonly present in poultry and poultry 

products as well as most popular foodborne pathogen in the United States, we have developed 

multiplex PCR for simultaneous detection of Salmonella genus, Salmonella subspecies I, S. 

Enteritidis, S. Heidelberg, and S. Typhimurium. In addition, low numbers of Salmonella were 

quantified via qPCR (chapter 3). To evaluate the immune responses in chicken macrophage 

cells against Salmonella and bacteriophage P22 invasion, cell culture models were utilized. The 

productions of cytokines such as IL-4, IL-8, IL-10, and IFN-γ were measured by ELISA and 

qRT-PCR (chapter 4). Prebiotics is a non-digestible food component that provides beneficial 

effects on the host by stimulating the growth and activity of selected bacteria in the lower 

intestinal tract. In this study, we evaluated a production performance in pasture flock raised 

broilers after treatment with three different prebiotics. Furthermore, microarray was conducted to 

evaluate different gene expressions according to prebiotics treatments using small intestinal cells 

and ingenuity pathway analysis (IPA) software was used to analyze functional networks among 

up- or down-regulated genes based on microarray data (chapter 5). Lastly, DGGE was 

performed to evaluate gastrointestinal microflora shifts in pasture flock raised chickens 

supplemented with prebiotics (chapter 6). 
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INTRODUCTION 

 

 The increase of foodborne diseases leads to develop not only rapid and accurate 

molecular detection methods in foods but also alternative food additives to reduce foodborne 

pathogens in poultry. The outbreaks caused by foodborne pathogens were estimated to be 

approximately 9.4 million illnesses and more than 55,961 persons are hospitalized because in 

many cases food consumption occurred without the respective individual being aware that the 

contaminated food can potentially cause disease. Both Campylobacter and Salmonella can be 

present in the GI tract of chickens without exhibiting external symptoms while these bacteria can 

cause disease in humans by ingestion of contaminated poultry. To detect these foodborne 

pathogens in poultry products, we developed multiplex PCR and quantitative PCR based on 

specific region of genomic DNA. 

 The consumer demands for organic and natural poultry products continue to increase 

because of organic or natural products are better than their conventional counterparts in terms of 

safety, taste, and increased health benefits. In order to reduce foodborne pathogens in poultry, 

prebiotics and bacteriophage are utilized widely as biological alternatives in the pre-harvest 

control of enteric foodborne pathogens. In this study, we have evaluated the effects of prebiotics 

and bacteriophage for not only the reduction of Salmonella in poultry but also alterations in gut 

microflora using microarray and DGGE. 
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1. Abstract 

 The demands for nonconventional poultry products by consumers continue to increase in 

the United States. In pasture flock and organic poultry production, probiotics and prebiotic feed 

additives have potential advantages because they promote intestinal health and may offer a 

replacement for current intervention strategies that are not considered acceptable for these 

production systems. Prebiotics have been demonstrated to produce effects on the gastrointestinal 

(GI) tract including modulation of microflora by promoting selective increases in beneficial 

bacteria concomitant with decreases in undesirable bacteria. In-depth assessment of microbial 

community changes during host growth and development as well as the establishment of 

beneficial microbial species by adding biologicals such as probiotics and prebiotics is important 

to achieve predictable and consistent improvements in chicken health and productivity. To 

analyze microflora shifts and metabolites produced by bacteria in the gut as well as host 

responses to biological additives, sophisticated molecular techniques are now available and are 

becoming more widely used. Polymerase chain reaction (PCR) assays, denaturing gradient gel 

electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) offer approaches 

for detecting microbial shifts in the gut. Likewise, the employment of microarrays and analysis 

by the Ingenuity Pathway Analysis (IPA) programs on gut tissues can reveal insight into gut 

physiological and responses to dietary and other changes. Combining all these technologies will 

provide a plenary understanding of poultry gut health in alternative production systems.  
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2. Introduction 

 The demands for organic and natural poultry products by consumers continue to increase 

in the United States (US) because of an ongoing perception that organic or natural products are 

better than their conventional counterparts in terms of safety, taste, and increased health benefits 

(Harper and Makatouni, 2002; Van Loo et al., 2012b). The general term “organic” foods is 

utilized to define foods that are produced without using chemical fertilizers, additives, and 

synthetic pesticides as well as not processed with irradiation (DeSoucey, 2007). Among organic 

foods, the overall organic meat market size is small compared to the conventional meat 

industries in the US. However, according to the Organic Trade Association (OTA), the organic 

meat industry has grown $29 billion in 2010 compared to $ 3.6 billion in 1997 (OTA, 2011). 

Specifically, organic poultry productions have increased from 2 million in 2000 to over 5 million 

in 2005 and the numbers of laying hens have increased from approximately 1.1 million in 2000 

to 5.6 million in 2008 (ERS, 2010). With increases in organic poultry products in the US, new 

management approaches are needed to compensate for potential food safety concerns and bird 

health (O’Bryan et al. 2008). 

 In this review, an overview will be presented on alternative poultry production systems 

and some of the key characteristics. This will be followed by a general discussion on the primary 

foodborne pathogens associated with poultry and much of this will focus on conventional poultry 

studies since less has been published on these topics for alternative poultry production systems. 

The primary biologic intervention that will be discussed in any detail will be prebiotics and for 

other interventions the reader is referred to several review sources (O’Bryan et al., 2008; Sirsat et 

al., 2009; Ricke et al., 2012). Finally, some description of microbiome developments will be 

provided as suggestions for potential applications to alternative poultry production systems.  
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3. Poultry Rearing Systems 

3.1. Conventional Production Systems 

 Conventional rearing systems for poultry products have been commonly utilized in 

animal industry and represent over 95% of overall poultry production in the US (MacDonald, 

2008). The word “conventional” in the poultry industry essentially refers to commercial broiler 

chickens such as rapidly growing Cornish and White Rock species that have high feed 

conversion rates and are raised in housing units up to 6 to 8 weeks to achieve an average market 

weight (6.5 to 8.5 lbs) (Fanatico et al., 2008; National Chicken Council, 2010). The poultry 

growth and environmental conditions are critical factors for commercial poultry industry to 

diminish economic loss due to mortalities. In general, conventional broiler chickens are grown in 

poultry grower houses ranging from 6.5 to 8.5 lbs/ft2 (National Chicken Council, 2010). 

Furthermore, conventional chickens are raised in standard indoor housing and fed commercial 

antimicrobials and dietary supplements, while undergoing standard management practices such 

as beak trimming to prevent diseases and increase productivity (Henderson et al., 2009; Van Loo 

et al., 2012a). 

 

3.2. Organic Production Systems 

 An increased awareness for high quality foods has resulted in continued demands for 

non-conventionally produced foods (Van Loo et al., 2012b). Although many consumers perceive 

that organically grown poultry products such as broiler chickens and eggs are safer and more 

nutritious than when grown under traditional conditions, the USDA defines organic foods as 

being different from conventionally produced products only in growing, handling and processing 

methods, not in safety and nutrition aspects (Bailey and Cosby, 2005; USDA National Organic 



6 
 

Program, 2008; Ricke et al., 2012; Van Loo et al., 2012b). The USDA has developed guidelines 

to standardize and regulate organic foods in accordance with the Organic Foods Production Act 

of 1990 (AMS/USDA, 2008; Pittman et al., 2012). Essentially by these guidelines animal 

production systems in the organic program should be reared without synthetic pesticides, 

antibiotics, hormones, and mammalian byproducts in the feed (AMS/USDA, 2008). However, 

prebiotics, probiotics, and vaccines are allowed to replace antibiotic growth promoters 

(AMS/USDA, 2008; O’Bryan et al., 2008; Fanatico et al., 2009; Van Loo et al., 2012c). In 

addition, living conditions, feeds, and breeder sources are important factors that are taken into 

consideration when acquiring organic certification (USDA National Organic Program, 2008; 

Fanatico et al., 2009). The birds should have unrestricted access to outside environments for 

exercise, fresh air, and sunlight except during inclement weather. Only organic and non-

genetically modified feed ingredients are permitted for organic production (Fanatico et al., 2009; 

Chalova and Ricke, 2012). To prevent potential growth deficiencies from insufficient dietary 

sources of trace elements, minerals approved by the Food and Drug Administration (FDA) can 

be used in organic diets for chickens (Chalova and Ricke, 2012). Since there are no certified 

organic hatcheries in the US, non-organic chicks must be managed and grown under organic 

system conditions after the second day of hatch (Fanatico et al., 2008, 2009). 

 

3.3. Pasture Flock Production Systems 

 The term “pasture raised” or “free range” is generally used to infer that birds have been 

grown outside so that they can utilize fresh grass, air, and sunlight (Plamondon, 2003; Siemen et 

al., 2007). The containment areas can be divided into categories of fixed and movable pen types. 

Due to the fixed pen being fairly large and constructed of solid materials, birds can be protected 
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from predators such as coyotes, minks, and foxes as well as inclement weather (Plamondon, 

2003; Fanatico et al., 2009). In contrast, lightweight movable pens are considered efficient at 

providing ongoing fresh pasture access because they are convenient to move either daily or 

weekly depending on the management of the individual grower and the pasture space available 

(Plamondon, 2003; Fanatico et al., 2009; Van Loo et al., 2012a). 

 

4. Foodborne Pathogens 

 In the US, a wide range of foodborne pathogens are reported to cause various human 

diseases each year. The outbreaks caused by these pathogens were estimated to be 37.2 million 

illnesses, 228,744 hospitalizations and 2,612 deaths (Scallan et al., 2011). Each year 

approximately 9.4 million illnesses occur, more than 55,961 persons are hospitalized and 1,351 

mortalities occur from foodborne illness because in many cases food consumption occurred 

without the respective individual being aware that the contaminated food can potentially cause 

disease (Scallan et al., 2011). In developing countries, 15 to 34% of deaths due to diarrhea occur 

in children (Girad et al., 2006; Haddad et al., 2010). There are various foodborne infections 

caused by different foodborne microorganisms including viruses (59%), bacteria (39%), and 

parasites (2%), and more than 250 different foodborne illnesses have been classified (Frenzen 

2005; Scallan et al., 2011). Pathogenic bacteria or toxins invade small intestines through the 

gastrointestinal (GI) tract and may cause diseases with symptoms such as vomiting, nausea, 

diarrhea, and abdominal cramps. 

 In the poultry industry, both Campylobacter and Salmonella can be present in the GI tract 

of chickens without the infected bird exhibiting external symptoms (Lafont et al., 1983; Newell 

and Fearnley, 2003; Horrocks et al., 2009). However, these bacteria can cause disease in humans 
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by ingestion of contaminated poultry products which may have become contaminated during 

slaughter or processing. In addition, these foodborne pathogens can be transmitted via incoming 

contaminated animals (Saito et al., 2009). Historically, several antibiotics have been used to 

control foodborne pathogens but emergence of multidrug resistant (MDR) pathogens has led to 

concerns over antibiotic resistance potentially impacting human health (Jones and Ricke, 2003; 

O’Bryan et al., 2008; Boerlin, 2010). In the past, conventional rearing systems have utilized 

various antibiotics regularly to stimulate growth performance, whereas certified organic poultry 

production have always been prohibited from using antibiotics (Jones and Ricke, 2003; Siemon 

et al., 2007; O’Bryan et al., 2008). Both Campylobacter and Salmonella isolated from 

conventional farms in some studies have exhibited a greater frequency of antibiotic resistance 

than organic flocks (Cui et al., 2005; Lestari et al., 2009; Alali et al., 2010).  

 

4.1. Campylobacter 

 Campylobacter are Gram-negative, spiral, motile, oxidase positive, and can be cultured 

under microaerophilic (5% O2, 10% CO2, and 85% N2) conditions (Snelling et al., 2005). 

Campylobacter are zoonotic, water-, and food-borne pathogens and are ubiquitous in animals, 

birds, and the environments. Campylobacter species consist of several subspecies including C. 

jejuni, C. coli, C. lari, and C. fetus. Among these species, C. jejuni and C. coli are the most 

common in animals and humans (Friedman et al., 2000). Campylobacter can be divided into 

serotypes based on the Penner and Lior system which targets thermo-stable and thermo-labile 

antigens (Lior et al., 1982; Patton et al., 1985). Both heat-stable and heat-labile antigens have 

been used for determining Campylobacter serotypes (Patton et al., 1985). Penner and Hennessy 

developed Campylobacter serotyping methods based on soluble heat-stable antigens and have 
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identified over 60 serotypes (Penner and Hennessy, 1980; Walker et al., 1988; de Zoete et al., 

2007). The Lior system, composed of 108 serotypes, was specifically developed to detect heat-

labile antigens by using live, whole cells on a glass slide (Lior et al., 1982; Walker et al., 1988; 

de Zoete et al., 2007). 

 Since C. jejuni are naturally present in the GI tract of poultry without causing disease to 

the host, poultry products can be contaminated during processing if intestinal contents are 

ruptured (Ringoir et al., 2007; Horrocks et al., 2009). The Campylobacter infectious dose in 

humans is approximately 500 cells and lower numbers can cause the disease in children, senior, 

and immune-compromised persons (Jacob-Reitsma, 2000). The symptoms of human 

Campylobacter infections, referred to as campylobacteriosis include fever, diarrhea with blood, 

abdominal pain which may continue for 24 h to a week with varying severity based on the 

individual’s health status (Black et al., 1988). Campylobacter species are one of the most 

prevalent foodborne pathogens causing enteric disease in the US and worldwide (Scallan et al., 

2011). There are 18 million cases of human campylobacteriosis and 13 laboratory-confirmed 

cases per 100,000 persons reported annually and infections in children under 4 years old are the 

most common in the US (Kirkpatrick and Tribble, 2010). To prevent C. jejuni infections in 

humans, several therapies have been utilized such as antibiotic administration, phage therapy, 

and the use of vaccines in poultry have been proposed (de Zoete et al., 2007; Buckley et al., 

2010). 

 In addition, C. jejuni infections have been related to a rare autoimmune nervous disorder 

referred to as Guillain-Barré syndrome (GBS) (Hahn, 1998). The symptoms of GBS can occur 

following C. jejuni infections and target the peripheral nervous systems (Nachamkin, 2001). 

According to serological and culture tests, approximately 30 to 40% of GBS patients exhibited 
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evidence of a prior C. jejuni infections (Nachamkin et al., 2000). The occurrence of GBS is 

thought to be due to the molecular mimicry of the lipooligosaccharide (LOS) of C. jejuni which 

reacts with human gangliosides (Monteiro et al., 2009; Israeli et al., 2010). Although the 

incidence of GBS is considered fairly low, 0.6 to 4/100,000 persons per year, it remains a major 

concern because of its life-threatening nature to humans when it does occur (Israeli et al., 2010). 

 

4.2. Salmonella 

 Salmonella are Gram-negative, facultative, motile bacteria of the enterobacteria group 

and are divided taxonomically into Salmonella enterica and Salmonella bongori (V) (Brenner et 

al., 2000; Grimont et al., 2000; Kim et al., 2006; Park et al., 2009). Salmonella enterica species 

are subsequently divided into six subspecies: S. enterica subsp. enterica (I), salamae (II). 

arizonae (IIIa), diarizonae (IIIb), houtenae (IV), and indica (VI) (Brenner et al., 2000; Grimont 

et al., 2000; Kim et al., 2006). Salmonella enterica subspecies can cause a variety of diseases, 

commonly referred to as salmonellosis in humans and other animals (Grimont et al., 2000; 

D’Aoust et al., 2007). However, S. bongori species is non-pathogenic and rarely detected in 

humans (D’Aoust et al., 2007; Park et al., 2009). Salmonella enterica species are composed of 

more than 2500 serotypes according to the Kauffmann-White scheme method based on somatic 

(O), flagellar (H), and capsular (K) antigens (Grimont and Weill, 2007). 

 Salmonella infection symptoms are divided into two general categories: typhoid fever in 

humans which is caused by S. Typhi and Paratyphi, and gastroenteritis in humans and animals 

caused by other S. enterica serovar (Kim et al., 2006; Nester et al., 2009). Typhoid fever is a 

systemic disease where the infected individual exhibits high fever, abdominal pains, and general 

weakness (Nath and Maurya, 2010). Numerous typhoid fever outbreaks continue to be reported 
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annually in the world with high mortality (15%) rates (Park et al., 2009). Salmonellosis caused 

by pathogenic Salmonella strains produce gastroenteritis symptoms characterized by nausea, 

headache, diarrhea, and fever (Bäumler et al., 2000; D’Aoust and Maurer, 2007; Park et al., 

2009). In the US, approximately 40,000 cases are reported annually and result in approximately a 

1% mortality level. Most people recover within a few days without medical treatments; however 

for immunodeficient individuals, elderly, or young children, the resulting infections may be more 

serious and even fatal. 

 Most Salmonella infections are transmitted by contaminated foods, water, and fecal 

routes, but rarely person-to-person transmission (Murray, 2000; Park et al., 2008). At least 106 to 

109 bacteria are required to cause salmonellosis in healthy adults (Nester et al., 2009). 

Salmonella are sensitive to acidic conditions, and they rarely persist in the small intestine or 

stomach but can adapt and tolerate lower pH levels as well as high concentrations of 

fermentation organic acids (Foster, 1991; Foster and Spector, 1995; Kwon and Ricke, 1998; 

Ricke, 2003a; Dunkley et al., 2009; Nester et al., 2009). Salmonella can survive severe acid 

conditions lower than pH 3 and express acid-shock proteins via acid tolerance response systems 

at log or stationary growth phases (Foster, 1991; Foster and Spector, 1995). When surviving 

Salmonella reach the lumen of small intestine, adhesion of the bacterial cell occurs when it 

attaches to a specific receptor on the surface of the epithelial cells (Lamont, 2004). The contact 

with epithelial cells activates a type III secretion system (Lamont, 2004). From this stage, 

Salmonella may penetrate into various deep tissue locations of the body including the liver, bile, 

the bloodstream, and the spleen within a few days (Raskin et al., 1997; Nester et al., 2009). 

 In poultry, more than 200 different Salmonella serovars are capable of colonizing the GI 

tract (Gast, 2007; Foley et al., 2011). Salmonella infections often lead to different outcomes for 
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newly hatched poultry versus more mature stock except for instances where the GI tracts of adult 

birds are experiencing substantial stress such as removal of feed and a subsequent alteration of 

the gut microflora and fermentation (Durant et al., 1999; Ricke, 2003b). In susceptible young 

chicks and poults, Salmonella infections can sometimes lead to illness and death at high 

frequencies (Smith and Tucker, 1980; Barrow et al., 1987). In older birds, infections are often 

subclinical, causing production losses that are often undetectable to producers (Smith and Tucker, 

1980). Nevertheless, the bacterium can be transmitted to humans through contaminated food, 

with poultry carcasses, and eggs serving as important sources for amplification of the bacteria to 

infectious levels (Ricke et al., 2001; Ricke, 2003b; Finstad et al., 2012; Howard et al., 2012). 

 

4.3. Campylobacter and Salmonella Incidences in Alternative Poultry Production 

 Since Campylobacter species are fairly common commensal microorganisms in chickens, 

most studies have reported Campylobacter presence in poultry regardless of whether they 

originated from conventional, organic or pasture flock poultry (Newell and Fearnley, 2003; Cui 

et al., 2005; Esteban et al., 2008; Han et al., 2009; Hanning et al., 2010). Furthermore, most of 

these studies have detected similarities in Campylobacter prevalence between conventional and 

organic flocks, indicating that environmental conditions have minimal influence on overall 

Campylobacter contamination levels (Cui et al., 2005; Han et al., 2009). Hanning et al. (2010) 

screened 242 samples from 2 pasture flocks, facilities and retail carcasses for 8 months, and 

isolated 105 Campylobacter species (43%). Han et al. (2009) also detected a 43.3% 

Campylobacter contamination level in birds raised in conventional and organic chickens in 

Louisiana. However, Griggs et al. (2006) and Luangtongkum et al. (2006) reported an even 

greater percentage of Campylobacter prevalence in organically raised broiler chickens with 96% 
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and 89%, respectively. Stern and Line (1992) reported that 67 to 98% of retail chicken meats 

were contaminated by C. jejuni during the slaughtering process. 

 Only limited studies have been performed to compare Salmonella prevalence in chicken 

meat between conventional and organic birds at retail stores in the US (Van Loo et al., 2012a, b). 

Cui et al. (2005) collected conventional and organic chicken meat from retail stores in Maryland 

and reported that Salmonella prevalence in organic birds (61%) was greater than conventional 

(44%) chickens. Lestari et al. (2009) also compared Salmonella incidence in organic (20.8%) and 

conventional (22%) chicken carcasses in Louisiana. However, several groups evaluated 

Salmonella prevalence using only organic or pastured raised broiler chickens. Melendez et al. 

(2010) recovered Salmonella isolates from two pasture chicken farms, a local processing plant, 

and a retail natural food market. They isolated 18 Salmonella strains from carcasses (n=36) and 

41 strains from pasture farm facilities (n=164) such as feed, water, and sponges. Bailey and 

Cosby (2005) collected a total of 53 all-natural chickens from 8 lots and 135 free-range chickens 

from four different commercial producers in 14 different lots to evaluate the presence of 

Salmonella. They reported that three of 8 lots and 25% (n=53) of the chickens were positive for 

Salmonella in all-natural chickens, also nine of 14 lots and 31% (n=135) of the chickens were 

contaminated by Salmonella. 

 

5. Gut Microflora 

 The microbial composition of the chicken GI tract and its roles in health, development, 

and responses to feeding trials has been the subject of numerous studies (Zhu et al.,2002; Lu et 

al., 2003; Xu et al., 2003; Biggs et al., 2007; Donalson et al., 2008a). Based on these studies, a 

better understanding of how the microbial communities are temporally altered during host 
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growth and development and resist important intestinal pathogens can potentially be attributed to 

the presence of specific beneficial microbial species as well as by an earlier establishment of a 

more stable and diverse adult cecal community (Ricke and Pillai, 1999; Gong et al., 2002; Zhu et 

al., 2002; Lu et al., 2003; Patterson and Burkholder, 2003; Ricke et al., 2004; Chaucheyras-

Durand and Durand, 2010; Torok et al., 2011; Siragusa and Ricke, 2012). The ceca are 

considered the primary site of focus because they not only contain one of the most diverse and 

abundant bacterial communities in the chicken including strict anaerobes such as methanogens, 

but also may harbor pathogens such as S. enterica and C. jejuni where these organisms can be 

the most numerous (Zhu et al., 2002; Saengkerdsub et al., 2007a, b; Dunkley et al., 2009; 

Horrocks et al., 2009; Foley et al., 2011). 

 

5.1. Functions 

 The GI tract is a highly complex ecosystem with the mucosal surface of the small 

intestine providing a site for colonization by numerous microorganisms (Lu et al., 2008; Davis et 

al., 2010). To understand the interaction between host and microorganisms in complex 

ecosystems, various studies have been conducted but are still somewhat limited in scope 

(Holzapfel and Schillinger, 2002; Gibson et al., 2004). The immense microbial populations in the 

human GI tract have diverse autochthonous bacterial genera and have the potential to elicit 

regulatory effects on body functions (Holzapfel and Schillinger, 2002). In poultry, the ceca 

contain the largest number of microorganisms in the GI tract (Callaway et al., 2009; Kim and 

Mundt, 2011). More than 200 different bacteria have been isolated and most of these are strict 

anaerobes (Kim and Mundt, 2011). In poultry, extensive strict anaerobic activities including 

formation of short-chain fatty acids (SCFA) and methanogenesis occurs in the ceca of birds fed a 
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variety of diets (Ricke et al., 2004; Saengkerdsub et al., 2006, 2007a, b). Some GI tract 

microorganisms in various animal species including poultry GI microflora have the potential to 

hydrolyze and ferment dietary fiber into oligosaccharides and other low molecular weight 

carbohydrates (Kass et al., 1980; Ricke et al., 1982; Sunvold et al., 1995; Dunkley et al., 2007a, 

c). 

 

5.2. Benefits 

 In the poultry industry, feed withdrawal is a procedure used to reduce fecal material in 

the intestinal content and fecal contamination of carcasses when intestines are ruptured during 

processing (Finstad et al., 2012). In laying hens, it has been shown that the removal of feed for 

long periods of time can lead to histological changes in the GI tract of poultry and alter the 

indigenous microbial population levels and fermentation activities that results in colonization 

opportunities for pathogens including Salmonella (Durant et al., 1999; Ricke, 2003b; Dunkley et 

al., 2007b, 2009). Dietary fiber can be utilized preferentially by Bifidobacteria and Lactobacillus 

species leading to the production of lactic acid and SCFA, both of which are inhibitory to 

Salmonella (Kaplan and Hutkins, 2000). Furthermore, the presence of fiber can lead to the 

maintenance of a normal microbial population in the bird GI tract (Fuller and Turvey, 1971; Bird, 

2000; Woodward et al., 2005; Dunkley et al., 2007c). 

 

5.3. Prebiotics and Probiotics 

 Prebiotics and probiotics represent biological alternatives in the pre-harvest control of 

enteric pathogens such as Campylobacter, Salmonella and Escherichia coli (Holzapfel and 

Schillinger, 2002; Patterson and Burkholder, 2003, Siragusa and Ricke, 2012). Prebiotics can be 
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defined as non-digestible food components that provide beneficial effects on the host by 

stimulating the growth and activity of selected bacteria in the lower intestinal tract 

(Schrezenmeir and de Vrese, 2001). In previous reports, prebiotics were demonstrated to produce 

several detectable effects on the chicken GI tract including increases in stool volume and 

modulation of colonic microflora by selective stimulation of beneficial bacteria as well as 

inhibition of undesirable bacteria (Holzapfel and Schillinger, 2002; Patterson and Burkholder, 

2003; Jacob and Pescatore., 2012). Prebiotics are not hydrolyzed by digestive enzymes in the 

upper GI tract of the respective host but are selectively utilized by beneficial bacteria such as 

Bifidobacteria and Lactobacillus which are generally regarded as safe (GRAS) (Roberfroid, 

1998; Swennen et al., 2006). The definition of a probiotic is a product that contains sufficient 

numbers of viable bacteria which can alter the microflora in the host and exert detectable 

beneficial health effects in this host (Schrezenmeir and de Vrese, 2001; Siragusa and Ricke, 

2012). In general, lactic acid bacteria such as Bifidobacteria and Lactobacillus have been 

traditionally used as probiotics added to fermented milk products or lyophilized forms (Ziemer 

and Gibson, 1998). More complex microbial consortia have been successfully applied to poultry 

to limit colonization of Salmonella in the GI tract (Ricke and Pillai, 1999; Nisbet, 2002; Siragusa 

and Ricke, 2012). 

 

5.4. Prebiotic Applications in Poultry 

 Poultry may be exposed to Salmonella at or soon after hatching. Exposure and infection 

of poultry with Salmonella at the early stages of development can result in a diminished ability to 

clear Salmonella and eventually spread contamination throughout the slaughtering facility during 

processing (Gast and Holt, 1997; Park et al., 2008; Finstad et al., 2012). According to several 
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reports, antibiotic therapy is ineffective in the control of enteric Salmonella colonization in 

poultry, and antibiotics can disturb the beneficial protective microflora, and consequently 

increase susceptibility of poultry to Salmonella colonization (Seuna et al., 1980; Manning et al., 

1994; Angulo et al., 2000; Threlfall et al., 2001). For these reasons, more recent research has 

focused on alternative methods for the control of Salmonella infections in poultry (Siragusa and 

Ricke, 2012). In recent years, the rising concern associated with increased MDR bacterial 

pathogens and the increased interest in organic poultry production systems has led research 

towards the application of non-antibiotic interventions capable of either killing or retarding 

growth of pathogenic microorganisms (Jones and Ricke, 2003; Ricke, 2003a; Berghman et al., 

2005; Ricke et al., 2005; O’Bryan et al., 2008; Sirsat et al., 2009). 

 Prebiotics have become popular due to the ease of application. Although many different 

types of prebiotics such as peptides, proteins, and lipids can be utilized, oligosaccharides are the 

primary prebiotics because they can be hydrolyzed and fermented by gut bacteria (Gibson and 

Roberfroid, 1995; Ziemer and Gibson, 1998; Sako et al., 1999). In general, fructo-

oligosaccharides (FOS), galacto-oligosaccharides (GOS), and mannan-oligosaccharides (MOS) 

have been used widely in humans and animals (Gibson and Roberfroid, 1995; Malinen et al., 

2002; Biggs et al., 2007). Fructo-oligosaccharides are naturally occurring oligosaccharides, 

usually of plant origin, and are the only product recognized and used as a food ingredient and 

prebiotics (Gibson and Roberfroid, 1995; Bomba et al., 2002). Since FOS include β-linkages as 

part of their chemical structures, they can resist adsorption and enzymatic degradation in the 

upper GI tract to reach the ceca, where the majority of fermentation occurs in chickens (Gibson 

and Roberfroid, 1995; Xu et al., 2003; Júskiewicz et al., 2004). Numerous reports have 

demonstrated that beneficial bacteria such as Bifidobacteria and Lactobacillus were increased in 
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the large intestines of broilers when supplemented with FOS consistently (Roberfroid et al., 1998; 

Fukuta et al., 1999; Xu et al., 2002). Donalson et al. (2007, 2008a, b) used FOS alfalfa and layer 

ration combinations to assess laying hen cecal microflora fermentation and potential to inhibit 

Salmonella in in vitro incubations and feeding studies. Based on these studies, it appeared that 

the presence of FOS led to increase levels of acetate, propionate, butyrate, volatile fatty acid and 

lactic acid concentrations, limiting S. Enteritidis colonization in the ovaries and liver (Donalson 

et al., 2007, 2008a, b). 

 The prebiotic GOS have also been used to control intestinal microflora added to feeds. 

Although GOS have been less investigated in the poultry industry compared to FOS, they do 

produce bifidogenic effects in humans (Malinen et al., 2002; Gopal et al., 2003). Jung et al. 

(2008) demonstrated that GOS preferentially stimulated Bifidobacteria and significantly 

modified intestinal microflora in broiler chickens. Ito et al. (1990) and other groups (Rowland 

and Tanaka, 1993) reported similar results using human feces. Mannan-oligosaccharides are 

commonly present in yeast cell walls and have been reported to promote microbial changes in 

poultry (Biggs et al., 2007). In general, the mechanism of MOS in the small intestines of poultry 

is distinguishable from other prebiotics’ functions because they interfere with binding site 

attachment by pathogens rather than serving as substrates for GI tract bacterial metabolism (Ofek 

et al., 1977). Since most pathogens possess mannose-specific type-1 fimbriae antigen on their 

cell walls, they can potentially bind MOS instead of small intestine surfaces and consequently, 

move through the intestine without colonization (Newman, 1994). 

 In poultry, oligosaccharides reach the hindgut and alter lower intestinal tract physiology 

and function, which could be beneficial in preventing bacterial contamination on broiler 

carcasses (Orban et al., 1997). The SCFA also have a bacteriostatic effect on some enteric 
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bacteria including S. Typhimurium and reduce intestinal pH to change environments favorable 

for beneficial GI tract bacteria such as Bifidobacteria and Lactobacillus (Van der Wielen et al., 

2000; Ricke, 2003a; Forchielli and Walker, 2005). McHan and Shotts (1993) reported that in 

vitro toxic effect of SCFA to some Enterobacteriaceae generated a 50 to 80% reduction in S. 

Typhimurium populations in the presence of SCFA. It has been suggested that propionic acid 

was more effective in inhibiting pathogenic bacteria (Nisbet et al., 1996b; Marounek et al., 

1999), whereas others observed that acetate was more effective (Van der Wielen et al., 2000).  

 Although both prebiotics and probiotics can be useful for reducing Salmonella 

colonization, prebiotics offer several advantages over probiotics including application and 

governmental approval for use (Holzapfel and Schillinger, 2002; Gibson et al., 2004). A problem 

arises with probiotics in that only defined cultures are allowed to be used per FDA regulations. 

Nisbet (2002) summarized a series of studies involving competitive exclusion cultures (CE) 

including a 29 bacterial consortia isolated from ceca of broiler chickens that originated from 

continuous-flow cultures and was approved by FDA. However, many of the probiotics that have 

been determined to be effective have not been defined, which makes them unsuitable due to 

unpredictable candidate probiotic strains, loss of activity by storage quality during clinical trials 

and high costs of clinical trials (O’Sullivan et al. 1992; Klaenhammer, 2000). A second issue 

with probiotics arises in application because they are typically live cultures and questions arise as 

to whether or not they survive passage through intestinal tract and if they can colonize once they 

reach the intestinal tract (Casey et al., 2004; Higgins et al., 2004). Depending on the type of 

probiotic culture not only is survival of the bacteria in vivo important but ensuring that their 

specific metabolic properties associated with their beneficial characteristics remain intact is 

equally important. This has been shown to be particularly true for defined probiotic cultures 
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which consist of a large number of bacterial strains where it has been demonstrated that 

maintaining the metabolic relationship among the microbial consortia was essential to retaining 

their efficacy against Salmonella (Nisbet et al., 1996a, b). Consequently, combining a prebiotic 

with a probiotic where the prebiotic serves as selective substrate for the probiotic in vivo has 

recently received more consideration as a means to ensure successful establishment of the 

resulting “synbiotic’ (Patterson and Burkholder, 2003). In addition, the dosage of probiotics a 

bird may receive can be variable if delivered in the drinking water (Watkins and Kratzer, 1984; 

Timmerman et al., 2006). Conversely, prebiotics are usually feed additives that can be mixed 

during the feed milling process so all the birds receive the same feed to prebiotic dose ratio 

(Davis et al., 2010). Overall, prebiotics are easier to use than probiotics because producers do not 

have to adjust any rearing conditions (Patterson and Burkholder, 2003; Davis et al., 2010).  

 In summary, biological dietary amendments such as prebiotics show considerable 

promise for benefiting not just alternative poultry production systems but conventional systems 

as well. However, both application and predictable outcomes continue to be somewhat 

inconsistent and hamper more universal recommendations for routine use. This is no doubt due 

at least partially to differing management systems, bird breeds and types as well as 

environmental exposure. However, a key issue is the complexity of the bird GI tract and the 

influence of dietary manipulation on the microbial consortia that make up the collective 

microbiome. Historically, comprehensive assessment of the gut microbiome was fairly 

superficial due to lack of experimental tools that offered detailed analysis of the microflora and 

the corresponding metabolic activities (Ricke and Pillai, 1999). However, the advent of high 

throughput sequencing and metabolomics has changed this perception and offers the first 

opportunities to truly conduct detailed and extensive comparative analysis of poultry gut ecology 
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(van der Werf et al., 2005; Crhanova et al., 2011; Danzeisen et al., 2011; Kwon and Ricke, 2011). 

Consequently, for the first time there are tremendous opportunities to potentially develop a much 

more complete understanding of gut ecosystem dynamics in their entirety (microbiome and host 

interface). This is critical because even though commercial poultry production systems have 

diverged between conventional and alternative systems, both are now seeking research advances 

on alternative treatments to promote health and well being of their respective grower systems. 

Identifying common and universal responses in all poultry gut ecosystems versus those unique to 

a particular management system is needed to be effective commercial implementation. The 

remainder of this review focuses on some of the analytical tools that have become available and 

how they might be used to address these issues. 

 

6. Bacteriophage 

 Bacteriophages were discovered in 1917 by Felix D’Herelle, 

who suggested using bacteriophages as a method for bacterial 

infection treatment. He introduced the name bacteriophage which 

originated from ‘bacteria’ and the Greek phagein which means “to eat” 

(Sabour and Griffiths, 2010). Also, he used the word ‘plaque’ to 

describe the clear zone caused by infection of single bacteriophage to 

bacteria on the agar plates (Sabour and Griffiths, 2010). 

Bacteriophages are viruses that are host-specific killers of bacterial cells and can be defined as 

obligate intracellular parasites lacking an independent metabolism. They are typically composed 

of head, neck, tail sheath, and tail fibers (Figure 1). Bacteriophages are able to reproduce in the 

bacteria and lyse the bacteria using bacteriophage particles such as holin and endolysin. The 

Figure 1. The structure of 
general bacteriophage 
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schematic overview of bacteriophage infection cycles are described in Figure 2. The 

bacteriophages are bound to specific surface proteins such as lipooligosaccharides of Gram 

negative bacteria and complex murein of Gram positive bacteria or capsules on host cells 

(Sabour and Griffiths, 2010). After irreversible adsorption, the bacteriophage genomic materials 

are injected to host cells through bacterial barriers and internalization. The host cell RNA 

polymerase can recognize promoter on bacteriophage genome and subsequently lead to 

expression for synthesis of bacteriophage virions. When optimal conditions for metabolism are 

established, the replication of bacteriophage genome is initiated to multiply inside the host cells 

and newly formed particles are assembled to form mature bacteriophage. Finally, newly formed 

bacteriophages are released from the host cells in search of other host cells as prey.  

 

Figure 2. Schematic overview of bacteriophage infection cycle (Sabour and Griffiths, 2010) 

 

6.1. Classification of Bacteriophage 

 A single or double strand of DNA or RNA molecule is a component of bacteriophage 

particles or virions, which is coated with proteins and lipoproteins. According to the 

International Committee on the Taxonomy of Viruses (ICTV), the bacteriophages can be 

classified into 13 families based on virion nucleic acid compositions and morphologies. Among 

these families, double strand DNA bacteriophages of the order Caudovirales represent over 95% 

and are mainly associated with foodborne pathogens. In addition, the order of Caudovirales can 
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be distinguished by distinct tail morphologies; long flexible tails (60%), double layered with 

contractile tails (25%) and short stubby tails (15%) (Ackermann, 2007; Sabour and Griffiths, 

2010). 

 The bacteriophages can be divided into two major types based on life cycle differences, 

namely lytic (virulent) and lysogenic (temperate) bacteriophage. Lytic bacteriophages 

immediately use the host metabolism for the production of new bacteriophage virions and release 

their particles by lysis of host cells. In contrast, lysogenic bacteriophages are able to replicate in 

the host cells by two ways; lysing host cells such as lytic bacteriophages or stable combining 

with host DNA (Sabour and Griffiths, 2010). Lysogenic bacteriophage DNA can be integrated 

into the host chromosomal DNA and replicated along with the bacterial genetic material as well 

as be induced by an environmental trigger to excise from the host’s chromosome and enter into a 

lytic cycle (Sulakvelidze, 2011). 

 

Figure 3. Two types of bacteriophage life cycle (Sabour and Griffiths, 2010) 

 

6.2. Virulence Factors of Bacteriophage 

 Bacteriophages and their protein production such as endolysin have been used widely to 

control foodborne pathogens. They have own cell wall hydrolases (lytic enzymes) called 

endolysin which are highly effective molecules to digest bacterial peptidoglycans, teichoic acids 
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and lipopolysaccharides (LPS) immediately (Goode et al., 2003; Sabour and Griffiths, 2010). 

The endolysin degrades the peptidoglycan layers until the cells are unable to maintain the 

internal pressure and the mature bacteriophage particles are released. In addition, holin which is 

one of the virulence factors of bacteriophage is important for host cell lysis because it creates 

channels in the host cell walls to export bacteriophage particles (Sabour and Griffiths, 2010). 

 In developed countries, bacteriophage therapy was abandoned in favor of the 

development and widespread use of antibiotics. Antibiotic treatments have predominated over 

the usage of bacteriophage in last few decades due to several advantages such as easy production 

scale up, stability of the resulting preparation and broad spectrum capabilities (Levin and Bull, 

2004). However, the interest in phage therapy is now gaining momentum in animal productions 

due to food safety concerns and the emergence of multidrug-resistant veterinary pathogens 

(Nakai and Park, 2002; Levin and Bull, 2004; Ricke et al., 2012). Bacteriophages can be 

administered directly to poultry or their respective endolysins. The endolysin gene was cloned 

into a vector and transformed to host cells for expression, and the endolysins were subsequently 

administered to poultry orally or by adding to feeds. The advantages and disadvantages of two 

different therapies using bacteriophages are summarized in Table 1. 

Table 1. Comparative advantages and disadvantages between bacteriophage and lysin therapy 
(Sabour and Griffiths, 2010) 

Therapy Advantages Disadvantages 
Bacteriophage - Self-replication 

- Both gram negative and positive 
- Many uses (humans, animals, and food) 
- Specific target 
- No harmful to normal microflora 

- Resistance easily evolved 
- Limited host range 
- Potential transfer of toxin genes 
- Consumer acceptance 

Lysin - Protein therapeutic 
- Resistance not yet reported 
- Many uses (humans, animals, and food) 
- Specific target 
- No harmful to normal microflora 

- No self-replication 
- Protein stability 
- Limited host range 
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6.3. Therapeutical Use of Bacteriophage 

 Several studies have shown that bacteriophages may be useful in reducing the number of 

bacterial foodborne pathogens including Escherichia coli O157 (O’Flynn et al., 2004), 

Campylobacter jejuni (Goode et al., 2003), Listeria species (Leverentz et al., 2003) and 

Salmonella serovars (Andreatti Filho et al., 2007) contaminating the surface of food. Studies 

have also recently sought to utilize bacteriophages to treat airsacculitis in chickens (Huff et al., 

2003) and infections of fish (Nakai and Park, 2002). Utilization of bacteriophages as surface 

prophylactic agents will present different challenges than the use of bacteriophages as 

therapeutic agents. In addition to understanding the pharmacodynamics of the therapeutics, use 

of bacteriophages to modulate pathogen loads in complex ecosystems such as the intestine will 

present additional logistical challenges (Ricke et al., 2012). Several studies have investigated the 

use of bacteriophages to reduce Campylobacter and Salmonella loads in the poultry intestine; 

however, its application has resulted only in modest success (Higgins et al., 2007; Toro et al., 

2005).  

 Campylobacter and Salmonella have been found in poultry products and eggs and are 

considered one of the primary sources of foodborne diseases (Ricke, 2003a, b; Park et al., 2008; 

Dunkley et al., 2009; Horrocks et al., 2009; Foley et al., 2011; Finstad et al., 2012; Howard et al., 

2012). Campylobacter is a zoonotic, water-, and food-borne pathogen that is ubiquitous in 

animals, birds and the environment as well as naturally present in the intestinal tract of poultry 

(Horrocks et al., 2009). For this reason poultry food products can be contaminated during 

processing if intestinal contents are ruptured. Also, Salmonella is a major cause of foodborne 

infection after consumption of contaminated poultry products. Bacteriophage therapy has been 

conducted in live poultry to prevent the foodborne pathogen contaminations (McCrea et al., 
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2006). Single bacteriophage or cocktails of 4 different bacteriophages for Salmonella Enteritidis 

were inoculated to newly hatched chicks through oral administration and exhibited significant 

reduction in S. Enteritidis after 24 h (Andreatti Filho et al., 2007). Although several studies based 

on bacteriophages have been performed to reduce Salmonella, it has not eliminated them due to 

multiple routes for Salmonella transmission in the flocks and environment (Sabour and Griffiths, 

2010). In addition to Salmonella bacteriophage treatment, Campylobacter therapy in poultry has 

been also investigated by many researchers (Horrocks et al., 2009). Wagenaar et al. (2005) have 

conducted two experiments that are therapeutic and preventative aspects of bacteriophages for 

control of Campylobacter in broiler chickens. In the therapeutic experiments, although 

Campylobacter numbers were drastically reduced for several days, the numbers eventually 

stabilized 1 log lower than control. Also, it showed that the bacteriophages have the ability to 

delay the growth of Campylobacter in the preventative experiment. Therefore, bacteriophage 

therapy for control of Campylobacter potentially is useful immediately before slaughter 

(Wagenaar et al., 2005). 

 Bacteriophages can be used to control bacterial populations at any stage of the food 

chains. In the pre-harvest application, bacteriophages can be added to food and water directly to 

inhibit the spread of foodborne diseases at the farm (Joerger, 2003). Also, additional advantages 

for bacteriophage interventions are the lower development costs compared to new antibiotics 

(Brüssow, 2002). Bacteriophage therapies for meats and poultry productions are particularly 

attractive because bacteriophages represent an acceptable intervention that can be made fairly 

specific for targeting foodborne pathogens on the meat surfaces. Bacteriophages have been 

directly applied to meat surfaces for reducing specific foodborne pathogens. Bacteriophage 
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applications to meats have merits for commercialization but will require regulatory approval 

(Ricke et al., 2012). 

 

6.4. Optimizing Bacteriophage Sources for Therapeutic Application 

 As discussed previously, since bacteriophages are specific to target bacteria and have no 

harmful effects on normal microbial populations in the gut, the usage of bacteriophages has a 

great advantage instead of broad spectrum antibiotics. However, bacteriophage therapies have 

disadvantages as well. When closely related bacterial strains are mixed in a sample, 

bacteriophages may only infect some of bacterial cells with specificity in a sample. Minor 

mutations in the LPS structures or bacterial surface proteins can make the difference between 

bacteriophage attachments and infections versus resistances (Tanji et al., 2004). According to a 

previous report, bacteriophage isolated from bovine fecal samples which is specific to E. coli 

O157:H7 was bound to the O157 serotype antigen and not to other common antigens such as 

flagella, pili, fimbrae, or lipopolysaccharide core. Strains of E. coli with absent or altered O157 

antigen cannot be infected by these phages (Tanji et al., 2004).  

 Multiple bacteriophages that are targeting the same bacterial species on several surface 

receptors are able to reduce bacteria released from bacateriophage infection. When a mixture of 

three bacteriophages isolated from chickens were given to young broiler chicks, it was reported 

that 3.5 fold reductions occurred in S. Enteritidis levels until 25 days after treatment (Fiorentin et 

al., 2005) 

 

6.5. Animal Host Response to Phage Entry 
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 Since bacteriophage structure is composed of outer protein coats, bacteriophages are 

considered as antigenic and thus are recognized by antibodies (Dabrowska et al., 2005). This 

might have a significant influence on bacteriophage therapy. For example, Huff et al. (2010) 

detected increased bacteriophage specific IgG serum levels in birds pretreated with an 

intramuscular injection of a phage specific for the E. coli causing colisepticemia. When 

bacteriophage reacted with the antibody, the bacteriophage activity was inhibited and led to 

increasing mortalities of birds indicating that the bacteriophage therapy encountered immune 

interference. When bacterial infections are dealt with bacteriophage administered to the animal 

host through one of the routes previously discussed, the target bacteria are theoretically removed 

either by direct bacteriophage lysis or via an immuno-stimulation of antibodies in response to the 

target bacterial cell lysates generated by the bacteriophage (Borysowski and Górski, 2008). 

 

7. Analysis and Molecular Tools 

 More recently, researchers have focused on changes in the gut ecosystem and 

quantification of microbial population shifts attributable to added prebiotics as well as chicken 

host responses to evaluate the effects of prebiotics (Xu et al., 2003; Ibuki et al., 2010; Torok et 

al., 2011). Because prebiotics introduced into the gut may lead to decrease in the pathogenic 

bacteria contamination levels in birds during production there is also interest in the metabolites 

produced by the microflora selected by the presence of prebiotics that may directly inhibit 

pathogen establishment in the gut.  

 Historically, microbiologists developed a variety of techniques to detect and identify GI 

tract microflora from the small intestine, large intestine, ceca, and feces based on a series of 

biochemical, specific microbiological, immunological, and molecular biological techniques 
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(Ricke and Pillai, 1999; Dwivedi and Jaykus, 2011). Traditionally, culture-based methods based 

on the growth media were commonly used to detect viable cells. Since most GI tract microflora 

are more likely to be strictly anaerobic and the GI tract microbial consortia correspondingly 

complex, it is difficult to identify and characterize individual species using traditional culture 

methods such as selective media (Ricke and Pillai, 1999; Dwivedi and Jaykus, 2011). To analyze 

the microflora changes, metabolites and chicken response to prebiotics, molecular techniques 

such as PCR, denaturing gradient gel electrophoresis (DGGE), temperature gradient gel 

electrophoresis (TGGE), microarrays, next generation sequencing (NGS), and ultra pressure 

liquid chromatography-mass spectroscopy (UPLC-MS) have been widely used. As more data is 

generated the resulting increase in genome sequences including both bacteria and animals should 

expedite identification of gut microflora and the physiological relationship(s) between them and 

the chicken host in a much more detailed manner. 

 

7.1. PCR 

 Since the PCR technique was developed in 1983 by Kary Mullins, there have been 

tremendous advancements in molecular biology technology and applications. The PCR technique 

has been used for biological, medical, and various molecular applications included cloning, 

sequencing, identification of functional genes, detection of infectious pathogens, and gut 

indigenous organisms such as methanogens (Saengkerdsub et al., 2007a; O’Regan et al., 2008; 

Park et al., 2009, 2011; Kollanoor-Johny et al., 2012). This technique is able to amplify few 

copies of DNA fragment to millions of copies of DNA within few hours. All PCR reactions 

consist of template DNA fragment, primer pair (forward and reverse) for initiation of specific 

region amplification, Taq polymerase for extending of the DNA fragment, dNTP (dATP, dTTP, 
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dCTP, dGTP) for adding nucleotides during extension, and MgCl2 for helping the reaction. In 

addition, a thermocycler which can adjust and repeat the heating and cooling of the reaction is 

needed. After PCR reactions, the amplicons are electrophoresed onto agarose gel including 

fluorescence dye such as SYBR green or Ethidium Bromide (EtBr), and can be visualized on the 

transilluminator. The PCR is used widely for the detection of foodborne pathogens due to 

sensitivity, and accuracy. The entire experimental process, including sample preparation, can be 

completed within 5 h. Furthermore this technique can identify various pathogens and 

discriminate individual species simultaneously in a single reaction (Park et al., 2009, 2011).  

 

7.2. Multiplex PCR 

 Multiplex PCR is a further developed technique of normal PCR to identify pathogens 

simultaneously in a mixed sample as well as detect gene mutations and deletions among same 

genomic DNA template. The reagents cost and sample preparation time are less in a multiplex 

PCR than single PCR. In general, one primer pair can amplify multiple regions in a template 

DNA or over two primer pairs are used to amplify each specific target sequences. Several factors 

should be considered to develop optimized multiplex PCR from primer design to PCR conditions. 

The primer pairs used in multiplex PCR should be designed based on detailed sequences to avoid 

non-specific reactions, contain similar G/C contents for specific annealing temperature and 

produce visually a distinguishable amplicon size in agarose gel electrophoresis (Edwards and 

Gibbs, 1994). Thermocycler parameters included annealing temperature and extension time is 

usually determined by the characterization of primer pairs and expected product size. 

 Multiplex PCR was widely utilized to identify and discriminate Salmonella serotypes in 

human clinical samples, foods, poultry and poultry products (Malkawi and Gharaibeh, 2003; 
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Cortez et al., 2006; Kim et al., 2006; Park et al., 2009, 2011). Cortez et al. (2006) have 

developed multiplex PCR to differentiate Salmonella spp., S. Typhimurium and S. Enteritidis in 

chicken abattoirs. From these data, 29 (10%) out of 288 samples were positive for Salmonella 

spp. and 16 (5.6%) and 7 (2.4%) samples were identified as S. Typhimurium and S. Enteritidis, 

respectively. Also, Park et al. (2009) have optimized multiplex PCR to detect whole Salmonella 

genus and discriminate genetically related Salmonella strains including S. Typhi, S. 

Typhimurium, and S. Enteritidis. They have added internal amplification control (IAC) in a 

multiplex PCR mixture to prevent false-positive and false-negative results. Kim et al. (2006) 

have applied two five-plex PCR assays to S. enterica subspecies serotyping method using 30 

different serotypes that commonly isolated from clinical samples. The results showed that 97% 

were correct among 111 clinical samples. 

 

7.3. Quantitative Real-Time PCR (qPCR) 

 Quantitative real-time PCR (qPCR) has been developed to quantify genomic DNA copy 

number changes and differential gene expression levels between wild type and mutant strain. In 

general, there are two distinct qPCR methods based on detection mechanisms using fluorophore. 

TaqMan probe system application was developed by Applied Biosystems (Foster City, CA) and 

this probe consists of short length oligonucleotides including fluorophore reporter and quencher 

dye at the 5’ and 3’-end, respectively. The 5’ to 3’ exonuclease activity of Taq polymerse cleaves 

a probe which hybridizes with target sequences and fluorescence signals are released for 

quantitative measurements during the exponential stages of qPCR reactions. In contrast, SYBR 

green can bind double-stranded DNA and release signals to quantify the amounts.  Although the 

TaqMan probe system showed more sensitivity and specificity than SYBR green system, there 
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are several limitations such as difficulty in probe construction and high cost per assay. SYBR 

green-based qPCR has more commonly utilized due to the convenience and low cost. However, 

melting curve analysis should be incorporated with SYBR green-based qPCR assay in order to 

discriminate between target amplicons and non-specific products ranging from 60 ˚C to 95 ˚C as 

well as compensate for low specificity.  

 A qPCR has been used widely to detect Salmonella in various foods such as eggs, meats, 

milk, poultry products and raw sausage (Malorny et al., 2004; Perelle et al., 2004; Seo et al., 

2004; Wang et al., 2004; McCarthy et al., 2009). O’Regan et al (2008) developed real-time 

multiplex PCR to detect multiple Salmonella serovars in chicken samples and this assay reduced 

total assay time from 114 h to 31 h compared with traditional method (ISO 6579:2002). They 

also evaluated the relative accuracy, relative sensitivity, and relative specificity of optimized 

assay with naturally contaminated chicken samples and determined to be 89, 94 and 87%, 

respectively. McCarthy et al (2009) established multiplex PCR and qPCR based on TaqMan 

probe system to discriminate S. Typhimurium and S. Heidelberg in food and clinical samples. 

The qPCR detection limit of both Salmonella strains was 60 CFU/ml and total assay time was in 

less than 48 h. Interestingly, selective broth (Rappaport-Vassiliadis, RV) was more sensitive than 

non-selective broth (buffered peptone water, BPW) for Salmonella detection with a limitation of 

61 CFU/ml in RV and 6,100 CFU/ml in BPW. 

 

7.4. DGGE and TGGE 

 Both DGGE and TGGE techniques have been used to compare and analyze bacterial 

populations in complex ecosystems such as GI tracts and fecal samples (Muyzer, 1999; Hume et 

al., 2003; Dunkley et al., 2007; Hill et al., 2008; Hanning and Ricke, 2011). TGGE separates 
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DNA molecules which have different G+C contents based on temperature changes while DGGE 

is dependent on different concentrations of denaturing agents (Muyzer, 1999). In general, both 

TGGE and DGGE techniques amplify a common region of the 16S ribosomal DNA (rDNA) 

using a genomic DNA mixture and amplicons are subsequently separated on a polyacrylamide 

gel by different temperatures and containing a gradient of denaturant, respectively. In this way, 

amplicons are separated based on G+C content and the resulting banding pattern can be analyzed 

to identify microbial populations according to the treatments and corresponding time of 

collection as well as determining the complexity of the microflora (Owens et al., 2008). Because 

bands are separated based on G+C contents of a partial 16S rDNA sequence, the exact bacterial 

diversity is difficult to determine because some bacterial species may have very similar G+C 

contents and subsequently appear as one band (Palys et al., 1997; Muyzer, 1999; Hanning and 

Ricke, 2011). Sequencing can be conducted to alleviate this problem. Single bands that are 

sequenced will have only one DNA sequence and can be assumed to be a single band. In addition, 

the recovered DNA fragments from the gel can be sequenced to identify species by searching 

comprehensive databases such as the basic local alignment search tool (BLAST) (Altschul et al., 

1990). Although DGGE has been reported to be a suitable technique for qualitative analysis, it is 

limited as a quantitative analysis of each bacterial species (Hill et al., 2008; Hanning et al., 2011). 

Because there may be a PCR bias towards amplification of some specific 16S rDNA sequences, 

caution must be taken when implying quantitative results based on band intensity (McCracken et 

al., 2001). 

 

7.5. Microarrays 
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 Microarrays based on DNA, RNA and proteins represent innovative techniques for the 

detection and characterization of bacteria in food matrices as well as for the assessment of 

differential gene expression levels of bacterial cells after exposure to a wide variety of conditions 

of experimental interest (Ibuki et al., 2010; Sirsat et al., 2010; Higgins et al., 2011). Microarrays 

are usually composed of artificially synthesized short length (25 to 80 bp) oligonucleotides, 

referred to as probes, that are specific for a selected target bacterium and these numerous probes 

are arrayed on the slide glass or silicon (Eom et al., 2007). Bacterial genomic DNA or cDNA 

synthesized from total RNA is hybridized with these probes with high specificity. The 

completion of probe-target hybridization is detected and quantified by signals emitted from 

fluorescence dyes such as Cy3 and Cy5 chemicals (Kim et al., 2006). Microarrays have been 

developed traditionally in close conjunction with available genome sequences and various 

methods for the detection of foodborne pathogens (Goldschmidt, 2005; Kim et al., 2006; Sirsat et 

al., 2010). However, there are some limitations for application of microarrays such as sensitivity, 

reproducibility, and probe homology with target sequences. To overcome these limitations and 

perform a microarray successfully, factors should be considered including genomic DNA or total 

RNA purity, concentration, prior amplification through PCR, removal of hybridization inhibitors 

to enhance the sensitivity, and over 90% of probe sequence identity (Kim et al., 2002; Arota et 

al., 2006; Eom et al., 2007; Sirsat et al., 2011a). 

 Microarrays can be applied to identify differential gene expression levels in the chicken 

host (in vivo) and using chicken cell lines (in vitro). For the in vivo assays, microarray results can 

represent gene expression changes by selected experimental treatments at different time points 

during the chicken lifespan up to 8 weeks. Ibuki et al. (2010) fed β-1, 4-mannobiose to one-day-

old chicks for 4 weeks to confirm the effects of β-1, 4-mannobiose on chicken gene expression 
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levels in the small intestines and the mucosal immune systems using ileal samples. de Greeff et 

al. (2010) designed a microarray to evaluate the effects of conventionally and organically 

produced diets to assess jejunal gene expressions of different chickens. Furthermore, Higgins et 

al. (2011) performed microarrays to characterize chicken gene expression levels in the presence 

of Salmonella at early time points and assess the influence of probiotic treatments. To do this, 

Salmonella and the probiotic culture were inoculated to day-of-hatch chicks and the ceca were 

isolated and analyzed 24 h post-treatment (Higgins et al., 2011). Both regulated genes at each 

time point were associated with apoptosis and the nuclear factor kappa B complex (Higgins et al., 

2011). 

 Microarrays have also shown utility for rapidly assessing overall transcriptomic 

responses with in vitro cell line models. Specific chicken cells such as lung, liver and 

macrophage can be cultivated through cell culture and treated by pathogens to evaluate immune 

response. Lee et al. (2010, 2012) reported transcriptional profiling of chicken embryo lung cells 

infected with laryngotracheitis virus (ILTV) based on microarray results using a cell culture 

model. Furthermore, these identified genes were associated with cancer, cellular growth, death 

and genetic disorders (Lee et al., 2010). Sirsat et al. (2011b) evaluated pathogenic gene 

expression levels of S. Typhimurium under sublethal heat stress towards Caco-2 cells using a 

Salmonella microarray chip. The heat stress enhanced the ability of adhesion of bacterial cells to 

Caco-2 cell and promoted microbial virulence (Sirsat et al., 2011b). In addition, Milillo et al. 

(2011) reported differential gene expression levels in Salmonella by combining of two organic 

acids (sodium acetate and sodium propionate) to achieve true multiple-hurdle effectiveness. 

 

8. Conclusions 
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 The market demands for organic and alternative poultry production have continued to 

expand in the past few decades due to the respective consumers’ perception of these products 

being a source of safer and healthier foods. Conventional chickens may be reared with traditional 

commercial antimicrobials and dietary additives to increase productivity, while chemicals and 

antimicrobial usage in organic and pasture flock chickens are much more strictly controlled. 

However, depending on environmental exposure alternative poultry production systems have an 

added challenge with respect to control of foodborne pathogen contamination due to reduced 

biosecurity which increases bird contact with potential vectors of foodborne pathogens. 

Campylobacter and Salmonella are the most common pathogenic bacteria present in the chicken 

ceca which also contains diverse and abundant bacterial communities. Since MDR pathogens 

have emerged, alternatives such as prebiotics to decrease pathogens in chickens are greatly 

needed. Prebiotics exhibit several effects on the GI tract and colonic microflora by selective 

stimulation of beneficial bacteria as well as inhibition of undesirable bacteria. However, 

effectively and economically administering such compounds to achieve a consistent and 

predictable outcome will require a more in-depth analysis of the host and its corresponding 

microbiome. For the first time, such analytical tools are in-hand and have potential application.  

 To identify and detect GI tract microflora from the gut and feces, numerous techniques 

have been developed based on biochemical, microbiological, immunological and molecular 

biological features. The DGGE/TGGE approached have been utilized to compare and analyze 

bacterial communities in complex GI tract ecosystems by amplification of common 16s rDNA 

sequences. Microarrays represent a comprehensive approach for the detection and 

characterization of foodborne pathogens in food matrices as well as the identification of 

differential gene expression levels in the chicken host when exposed to different experimental or 
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environmental conditions. In conclusion, as the organic and alternative poultry production 

systems continue to become more popular, there will be an increased need for efficient methods 

to rapidly and accurately detect host, microbiome and metabolome responses to derive 

predictable responses that allow for routine formulation in commercial settings. Such 

standardization is needed if there is to be less risk due to exposure from foodborne pathogens and 

potentially improved bird performance originating from these alternative systems.  
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1. Abstract 

 Three pathogens, Campylobacter, Salmonella, and shiga-toxin producing Escherichia 

coli (STEC) are leading causes of bacterial gastroenteritis in the United States and worldwide. 

Although these three bacteria are typically considered foodborne pathogens, outbreaks have been 

reported due to contaminated drinking water and irrigation water. The aim of this research was to 

develop two types of PCR assays that could detect and quantify three pathogens, Campylobacter 

spp., E. coli O157:H7, and Salmonella spp. in watershed samples. In conventional PCR, three 

target strains were detected by multiplex PCR using each specific primer pairs simultaneously. 

Under optimized multiplex PCR conditions, the assay produced a 90-bp product for 

Campylobacter jejuni, a 150-bp product for E. coli O157:H7, and a 262-bp product for 

Salmonella Typhimurium and the limitation of detection was approximately 700 copies for all 

three bacteria. In addition, real-time PCR was performed to quantify the three pathogens using 

SYBR green fluorescence. The assay was designed so that each target had a different melting 

temperature (C. jejuni (80.1˚C), E. coli O157:H7 (83.3˚C), and S. Typhimurium (85.9˚C)). 

Therefore, this system could quantify and distinguish three pathogens simultaneously in a single 

reaction.
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2. Introduction 

 Three pathogens, Campylobacter spp., shiga toxin-producing Escherichia coli (STEC), 

and Salmonella spp. are leading causes of bacterial gastroenteritis in the United States (US) and 

worldwide (Shelton et al., 2006; Botteldoorn et al., 2008; D’Souza et al., 2009). Campylobacter 

spp. have been estimated to affect 2.4 million people annually, causing approximately 124 deaths 

and costing $1.2 to $6 billion (Mead et al., 1999; CDC, 2008). Campylobacter spp. are 

responsible for 17% of all hospitalizations related to illness, and although Campylobacter spp. 

have a much lower case fatality rate than Salmonella spp. and E. coli O157:H7, they account for 

5% of food-related deaths (Zhao et al., 2001). The Centers for Disease Control estimates 73,000 

cases of E. coli O157 STEC infections occur annually and are transmitted by food or other 

vehicles (Rangel et al., 2005). The annual cost of this disease is estimated at $405 million in 

terms of premature death, medical care and lost productivity. In the US, disease caused by an 

estimated 1.4 million non-typhoidal Salmonella spp. infections (Rabsch et al., 2001), resulted in 

168,000 visits to physicians, 15,000 hospitalizations and 580 deaths annually in the US. The total 

cost associated with illnesses due to Salmonella spp. infection is estimated at $3 billion annually 

in the US. (Faúndez et al., 2004). 

 These pathogens can inhabit the gastrointestinal tract of agricultural animals, including 

cattle, swine and poultry, as commensals without causing any signs or symptoms of disease in 

the animals. While inhabiting the gastrointestinal tract, pathogens can be shed into the 

environment and may subsequently contaminate water sources (Topp et al., 2009). Other animals 

including wild birds, rodents, reptiles, amphibians, and deer can carry and shed these pathogens 

into water sources as well (Pasmans et al., 2008; Pickering et al., 2008). Feces from birds and 

animals, including cattle, contaminated with Campylobacter spp. have been detected in surface 
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water supplies used as drinking water sources (Bopp et al., 2003). In addition, sewage leaks into 

ground water have led to contamination of drinking water and outbreaks of Salmonella spp. and 

Campylobacter spp. gastroenteritis (O’Reilly et al., 2007).   

 Although these three pathogens are typically considered food-borne, outbreaks have been 

reported due to contaminated drinking water. An estimated 20% of cases of illness caused by C. 

jejuni and 15% of salmonellosis cases are due to vehicles of infection other than food, including 

water (Mead et al., 1999). In many rural areas, water derived from groundwater may be the only 

practical source of drinking water (Pedley and Howard, 1997) and rural waterborne disease 

outbreaks have been associated with contaminated groundwater (Clark et al., 2003; Kussi et al., 

2004). All three pathogens have been associated with large waterborne outbreaks in North 

America territory (Bopp et al., 2003; Clark et al., 2003; O’Reilly et al., 2007). Considering the 

large impact that these three pathogens have on the health of humans, it is important to prevent 

potential illnesses. Given that water can be a source of these pathogens either directly (drinking 

water) or indirectly (irrigation water), prevention of illnesses could be accomplished by 

consistent monitoring of water supplies. Detection of bacteria in water samples can be 

complicated by factors such as fecal inhibitors of nucleic acid based detection assays (Loge et al., 

2002), viable but non-culturable bacteria (Leskinen and Lim, 2008), inhibitors from soil 

suspension in water samples (Juen and Traugott, 2006), and low quantities of cells requiring a 

large volume of sample. The aim of this research was to develop multiplex PCR and real-time 

PCR assays that could simultaneously detect and quantify three pathogens, Campylobacter spp., 

Enterohemorrhagic E. coli (EHEC), and Salmonella spp. in a single reaction. Methods to 

overcome factors that inhibit analysis of samples were also addressed. 
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3. Materials and Methods 

3.1. Bacteria and Culturing Conditions 

 For development and optimization of the two PCR assays, Campylobacter jejuni NCTC 

11168, Escherichia coli O157:H7 American Type Culture Collection (ATCC) 43888, and 

Salmonella enterica Typhimurium ATCC 14028 were used. Campylobacter jejuni was cultured 

on Campylobacter enrichment agar (Acumedia Manufacturers Inc, Lansing, MI, USA) and 

incubated at 42˚C for 48 h under microaerophilic (5% O2, 10% CO2, and 85% N2). Both E. coli 

O157:H7 and S. Typhimurium were cultured on Tryptic Soy Agar (EMD Chemicals Inc, 

Gibbstown, NJ, USA) and plates were incubated at 37˚C for 24 h. In addition 14 strains of 

bacteria were used to qualify the specificity of the primer pairs (Table 1), and were cultured on 

the appropriate media and under the appropriate growth conditions.  

 

3.2. DNA Extraction for multiplex PCR and Real-Time PCR Assays 

 Freshly cultured cells were collected from an agar plate with a sterile loop and suspended 

in 2 mL of Phosphate Buffered Saline (PBS), pH 7.4. Of the 2 mL suspension, 100 µL was 

utilized for a dilution series to enumerate the cells in suspension. One mL of each cell suspension 

was subsequently frozen at -20˚C. After samples were firmly frozen (at least 1 h), genomic DNA 

was extracted from the samples first by thawing frozen samples at room temperature. The 

samples were centrifuged at 16,000 x g for 3 min and 900 µL of the supernatant was discarded. 

After vortexing the samples were boiled in a water bath for 10 min and subsequently refrigerated 

at 4˚C for 10 min. Finally, samples were centrifuged at 16,000 x g for 2 min and 100 µL of the 

supernatant was used as template DNA. All samples were immediately used for multiplex and 

real-time PCR assays after preparation.  
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3.3. Conventional Multiplex PCR Assay 

 The PCR assay was optimized using an MJ PTC 100 thermocycler (Bio-Rad, Hercules, 

CA, USA). Primer sets for the PCR assay are listed in Table 2. All primers were synthesized by 

Integrated DNA Technologies (IDT, Coralville, IA, USA). The reactions resulted in a 90-bp 

fragment for C. jejuni, a 150-bp fragment for E. coli O157:H7 (Sharma et al., 1999), and a 262-

bp fragment for S. Typhimurium (Cheng et al., 2008). The Campylobacter spp. primers were 

designed by targeting a conserved region of the hsp60 gene. Reactions specific for each pathogen 

were first done independently and each reaction consisted of a 25 μL total volume mixture with 

12.5 μL of SYBR Green Premix Ex TaqTM (Takara, Fisher Scientific, Pittsburg, PA, USA), 800 

nM of each primer, 1.6 μL of bovine serum albumin (BSA, 20 mg mL-1), 1 μL of DNA template 

and water to volume. After each PCR reaction was optimized independently, a multiplex PCR 

reaction was optimized to detect all three pathogens simultaneously and three independent 

experiments were performed to verify the reproducibility. The multiplex PCR reaction consisted 

of 25 μL total volume mixture with 12.5 μL of SYBR Green Premix Ex TaqTM (Takara, Fisher 

Scientific, Pittsburg, PA, USA), 400 nM of Campylobacter spp.-specific primers, 400 nM of E. 

coli O157:H7-specific primers, 960 nM of Salmonella spp.-specific primers, 1.6 μL of BSA (20 

mg mL-1), 3 μL of three DNA template and water to volume. The PCR reaction was optimized to 

conditions of 94˚C for 2 min. then 35 cycles of 94˚C for 30 s, 55˚C for 30 s and 72˚C for 30 s 

with a final extension cycle at 72˚C for 5 min. The PCR products were separated in a 2% agarose 

gel at 100 V for 20 min. Gels were stained with ethidium bromide (10 mg mL-1) and viewed with 

a UV transilluminator.  

 

3.4. SYBR Green Real-Time PCR Assay 
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 The SYBR green real-time PCR assay was optimized using an Eppendorf Masterplex 

thermocycler ep (Eppendorf, Westbury, NY, USA). Gradient Technology in the Eppendorf unit 

was used to optimize annealing and extension temperatures and times. Real-time PCR assays 

were conducted as three independent experiments and triplicate samples per each experiment. 

The same primer sets utilized for conventional PCR, listed in Table 1, were also used for the 

SYBR green real-time PCR reaction. A 25 μL total volume reaction mixture consisted of 12.5 μL 

of SYBR Green Premix Ex TaqTM (Takara, Fisher Scientific, Pittsburg, PA, USA) 800 nM of 

each primer, 1.6 μL of BSA (20 mg mL-1), 1 μL of DNA template and water to volume. The 

PCR reaction was optimized to the conditions of 95˚C for 2 min. followed by 40 cycles of 95˚C 

for 15 s, 55˚C for 15 s and 68˚C for 20 s with fluorescence being measured during the extension 

phase. Melting curves were subsequently done and consisted of 95˚C for 15 s, 60˚C for 20 

minutes increasing in 0.5˚C increments to 95˚C. The real time PCR results were confirmed 

further through agarose gel electrophoresis. 

 

3.5. Construction of SYBR Green Real-Time PCR Standard Curve 

 To create the standard curve for the SYBR green real-time PCR assay, serial dilutions of 

DNA were prepared from DNA of C. jejuni, E. coli O157:H7 and S. Typhimurium as described 

in the previous section. The 10-fold serial dilutions of three independent experiments were used 

to determine the initial starting concentration of cells and template DNA copy numbers. The 

fluorescence along with the DNA template number results were used to construct a linear curve 

that correlated the first cycle number at which fluorescence was detected to the number of cells 

per mL. For each reaction, the threshold cycle number (Ct) was determined to be the cycle 

number at which fluorescence was greater than 400 of fluorescence units. The efficiency of the 
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reactions were calculated with the formula E=10(-1/slope) -1. Melting curves were created and 

analyzed with the Eppendorf realplex software (version 2.0). 

 

3.6. Spiking and Analysis of Watershed Samples 

 Watershed samples were collected on 10 occasions and prepared as previously described 

(Metcalf et al., 2009). All samples were analyzed for the presence of Campylobacter spp., E. coli 

O157:H7, and Salmonella spp. using conventional plating techniques. To spike watershed 

samples for analysis, 2 mL of a cell suspension in PBS was prepared. Of the 2 mL suspension, 

100 μL was utilized for a dilution series to enumerate cells in each suspension. One milliliter of 

the cells then was pelleted by centrifugation at 16,000 x g for 2 min. The supernatant was 

discarded and the cells were resuspended in 10 mL of watershed sample, and 1 mL aliquots were 

made. The cell suspensions were frozen at -20˚C and DNA was extracted in the same manner as 

described for cells suspended in PBS as well as stored at 4˚C for 7 days to confirm viability 

difference according to storage period and conventional plating methods were employed as three 

independent experiments. All PCR assays also were performed using the spiked watershed 

samples. The reaction components were the same with the exception of the addition of 1.6 μL of 

BSA (20 mg mL-1).  

 

4. Results 

4.1. Primer Specificity and Sensitivity 

 To evaluate the specificity of three primer pairs used in this study, 22 strains were 

selected including target microorganisms (Table 1). Campylobacter spp.-specific primer pairs 

were synthesized using hsp60 gene to fit multiplex PCR conditions and the other two primer 
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pairs were adopted from previous reports (Sharma et al., 1999; Cheng et al., 2008). Although 

each primer pair showed high specificity for target bacteria in a uniplex PCR, primer dimers 

caused by Salmonella spp.-specific primers emerged with a low concentration of template DNA 

in the multiplex PCR and real-time PCR.  

 

4.2. Optimization of Multiplex PCR 

 In this study, the concentrations of the three primer pairs were adjusted to yield similar 

band intensities; 400 nM of Campylobacter spp.-specific primers, 400 nM of E. coli O157:H7-

specific primers, 960 nM of Salmonella spp.-specific primers. Under this optimized multiplex 

PCR condition, three types of PCR were performed; uniplex (Fig. 1, lanes 1-3), duplex (Fig. 1, 

lanes 4-6), and triplex (Fig.1, lane 7). Each PCR results exhibited high specificity and sensitivity 

of target products and the amplicon size was the same as the expected value.  

 

4.3. Detection Limits of Multiplex PCR in Pure Culture 

 Each target genomic DNA was prepared from 1 ml of pure culture bacteria containing 

7.33 × 107 copies, and was diluted 10-fold until 7.33 × 100 copies. In a uniplex PCR, the 

Campylobacter spp.-specific primer pair was more sensitive than the other two primer pairs in 

detecting target microorganisms. The detection limit of C. jejuni was 7.33 × 101 copies, while E. 

coli O157:H7, and S. Typhimurium were 7.33 × 102 copies in pure culture samples (Table 3). In 

contrast to uniplex PCR, multiplex PCR showed detection limits of 7.33 × 103 copies in mixed 

culture sample detection of the three bacteria due to primer competition as well as dimer 

formation (Fig. 2-A) and all results were based on triplicate experiments.  
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4.4. Application of Multiplex PCR to Spiking Watershed Samples 

 Watershed samples were collected from a local farm and analyzed using traditional 

selective media to confirm whether samples were contaminated naturally. Samples were 

aliquoted and analyzed immediately by conventional plate method and PCR and also analyzed 

after 7 days storage at 4˚C. By conventional plating, the number of C. jejuni, E. coli O157:H7, 

and S. Typhimurium in samples stored for 7 days decreased by 1 to 2 logs compared to initial 

inoculation levels (Table 4). C. jejuni was reduced from 5.3 × 109 CFU mL-1 to 2.2 × 107 CFU 

mL-1, E. coli O157:H7 was reduced from 9.3 × 108 CFU mL-1 to 6.7 × 107 CFU mL-1, and S. 

Typhimurium was reduced from 3.2 × 109 CFU mL-1 to 4.3 × 108 CFU mL-1 (Table 4). 

To evaluate multiplex PCR assay, different concentrations of each bacteria were inoculated into 

the watershed samples; 0-day samples of C. jejuni contained 5.3 × 109 to 5.3 × 102 CFU mL-1, E. 

coli O157:H7 contained 9.3 × 108 to 9.3 × 101 CFU mL-1, S. Typhimurium contained 3.2 × 109 to 

3.2 × 102 CFU mL-1 and 7 day samples (C. jejuni (2.2 × 107 to 2.2 × 100 CFU mL-1), E. coli 

O157:H7 (6.7 × 107 to 6.7 × 100 CFU mL-1), S. Typhimurium (4.3 × 108 to 4.3 × 101 CFU mL-1)). 

Uniplex and multiplex PCR results showed that there was no obvious difference between 0 and 

7-days samples (Fig. 2-B, C) in detection limitation. Only the detection limitation of C. jejuni 

was decreased by 4 fold in a uniplex PCR (data not shown). 

 

4.5. Real-Time PCR for Standard Curve Using Pure Culture DNA 

 Purified genomic DNA of C. jejuni, E. coli O157:H7, and S. Typhimurium were used to 

design standard curves and the calculated DNA copy numbers ranged from 7.33 × 107 copy μL-1 

to 7.33 × 101 copy μL-1. Only the C. jejuni standard curve could be constructed to start at 7.33 × 

100 copy μL-1 due to high sensitivity of primer pair. As a result, the lowest copy number was 
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determined as the detection limit in pure culture DNA for each bacterium. The melting 

temperature of C. jejuni was approximately 80.1˚C, E. coli O157:H7 was 83.3˚C, and S. 

Typhimurium was 85.9˚C, respectively. The Salmonella spp.-specific primer pair dimer 

exhibited a melting temperature peak at 76.5˚C at low template concentrations, but this did not 

influence identification of target products.   

 

4.6. Application of Real-Time PCR to Watershed Samples 

 Both 0- and 7-day samples were analyzed three times through independent experiments. 

Each bacterium cell number was calculated based on standard plate count method that was 

averaged among the three plates. In 0 day samples, the detection limits of the SYBR green real-

time PCR assay were determined by using the threshold (Ct) values from three independent 

reactions. For C. jejuni, the assay detected 53 CFU ml-1. For E. coli O157:H7, the assay could 

detect 93 CFU ml-1. For S. Typhimurium, the assay detected 3,200 CFU ml-1 (Table 5). In 7-day 

samples, the detection limit of C. jejuni was 2.2 CFU ml-1, E. coli O157:H7 was 67 CFU ml-1, 

and S. Typhimurium was 430 CFU ml-1 (Table 5). The Ct values of each bacterium are shown in 

table 5 and these values were averaged from three independent experiments. The melting 

temperatures of the amplicons for C. jejuni, E. coli O157:H7, and S. Typhimurium were the same 

for spiked watershed samples and pure cultures in PBS; C. jejuni was 80.1˚C, E. coli O157:H7 

was 83.3˚C, and S. Typhimurium was 85.9˚C, respectively (Fig. 3). The differences of melting 

temperatures allowed more specific identification of the three bacteria. 

 

5. Discussion 
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 Numerous types of media have been developed to enumerate microorganisms including 

pathogens important to the food industry. Selective media for pathogens has been useful to detect 

viable cells associated with human illnesses in food matrices (Gracias and Mckillip, 2004). 

Although culture based methods have been used traditionally and are employed widely, there are 

many limitations such as length of time (minimum of 24 h), false-negative results and the 

necessity for conformational assays (Gracias and Mckillip, 2004; Cheng et al., 2008). In addition, 

pre-enrichment steps are necessary to recover stressed and injured cells. Accurate quantification 

of Salmonella spp. by plating from watershed samples was not possible in these experiments 

because direct plating would underestimate the true cell concentration due to the inability to 

recover injured, stressed cells (Gracias and Mckillip, 2004). Furthermore, because enrichment is 

necessary to detect these populations, quantification from enriched samples would result in gross 

overestimation of the actual concentration of cells (O’Leary et al., 2009). 

 To overcome culturing limitations, molecular approaches have been prepared as a means 

to identify and quantify the pathogens rapidly and accurately. Molecular methods that have been 

developed and modified accordingly to detect and quantify pathogens simultaneously using 

DNA include multiplex PCR (m-PCR) and quantitative real-time PCR (qPCR). The m-PCR 

approach has utility for identifying subspecies in genus among unknown mixed samples in a 

single reaction while qPCR has been developed to quantify DNA with high accuracy and 

sensitivity from environmental water samples (Fey et al., 2004). In addition, qPCR using SYBR 

green fluorescence is more convenient and economical than a primer. In this study, m-PCR and 

qPCR assays were optimized to analyze watershed samples, because m-PCR has the advantage 

of identifying three pathogens simultaneously in a single reaction and utilize qPCR for 

quantifying the pathogens.  
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 Both culturing and qPCR detected a reduction of viable cells after 7 days in spiked 

watershed samples. This implies that 4˚C was biocidal to the pathogens (Mizunoe et al., 1999; 

Matches and Liston 2006), especially C. jejuni, which is more sensitive to low temperatures than 

the other two pathogens (Chan et al., 2001). The difference in viable cells at 0 and 7 day in 

spiked watershed samples did not change the detection limit of m-PCR, because the visible PCR 

amplicons on agarose gel are limited to detecting 5 ng or more of DNA. However, after the 

watershed samples were spiked, the sensitivity of the qPCR assay increased after samples were 

stored at 4˚C for 7 days (Table 5) because the DNA of nonviable cells was detected. The 

discrepancy between plating and qPCR may be result of genomic DNA from nonviable cells 

being detected.  

 An inability to distinguish between viable and non-viable cells has been a criticism of 

DNA- based detection methods. To alleviate this problem, mRNA was isolated from total RNA 

and used in the PCR method. However, several limitations have been emerged in application of 

mRNA to these assays. The short life span due to rapid degradation, the instability of mRNA, the 

difficulty of recovery, and increased assay time all result in a reduction in the accuracy of 

quantification (Guy et al., 2006).  

 In this study, genomic DNAs were prepared from samples using a boiling method 

without a clean-up step in order to conserve DNA. Although purifying DNAs through a column 

would reduce PCR inhibitors, a loss of template DNA would reduce the PCR assay sensitivity. 

Deletion of PCR inhibitors is crucial to increase PCR sensitivity and specificity. Chemicals 

including tannic, humic, fulvic acids and acidic plant polysaccharides derived from plant are 

plentiful in natural water and can inhibit the Taq polymerase binding affinity (Kreader, 1996; 

Demeke and Jenkins, 2010). Bovine serum albumin (BSA) has been used extensively to break 



73 
 

down many substances binding lipids by hydrophobic reaction and anions due to its high lysine 

content, thus preventing the interference of inhibitors with PCR as well as preserving Taq 

polymerase activation (Kreader, 1996). In this study, we found the addition of BSA to our spiked 

watershed samples reduced inhibitors and allowed the assay to be as sensitive as the pure 

bacterial cultures samples prepared in PBS. 

  The molecular assays developed in this research provide several advantages over 

currently published methods. The time to detect and identify the three pathogens was reduced 

from 48 hours with culturing to just 4 hours with the m-PCR. To the best of our knowledge, this 

is the first m-PCR method published to detect Campylobacter, E. coli O157:H7 and Salmonella 

simultaneously from watershed samples. The m-PCR assay allowed less time and reagents to be 

used. Because quantification with plating was not possible with these watershed samples, the 

qRT-PCR method reported here allows pathogens to be quantified rapidly and accurately. 

Inhibitors present in water and soils are both present in watershed run-off and our method was 

optimized so that the assay was just as sensitive as using pure cultures in PBS.  
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Table 1. Confirmation of each specific primer pair 
 

Species PCR results 
C# E* S† 

Campylobacter jejuni NCTC 11168 +§ -∫ - 
Campylobacter coli + - - 
Escherichia coli ATCC 25922 - + - 
Escherichia coli O157:H7 ATCC 43888 - + - 
Salmonella Typhimurium ATCC 14028 - - + 
Salmonella Heidelberg - - + 
Salmonella Infantis - - + 
Salmonella Montevideo - - + 
Bacillus cereus ATCC 10987 - - - 
Bacillus cereus ATCC 11778 - - - 
Bacillus licheniformis ATCC 12579 - - - 
Citrobacter freundii ATCC 11168 - - - 
Enterobacter aerogenes - - - 
Listeria monocytogenes ATCC 15313 - - - 
Listeria monocytogenes ATCC35152 - - - 
Listeria innocua ATCC 33090 - - - 
Listeria grayi ATCC 19120 - - - 
Listeria ivanovii ATCC 19119 - - - 
Listeria welshimeri ATCC 35897 - - - 
Staphylococcus aureus ATCC 25923 - - - 
Staphylococcus aureus ATCC 6538 - - - 
Staphylococcus epidermidis ATCC12228 - - - 
#C: Campylobacter spp. specific primer, *E: Escherichia coli O157:H7 specific primer 
†S: Salmonella spp. specific primer, §+: Positive result in PCR, ∫-: Negative result in PCR 



 
 

Table 2. Sequence of primer pairs used in this study 
 

Species Primer Sequence (5’-3’) Amplicon size (bp) Target gene Reference 

C. jejuni campsh 
CAA GTT GCT ACA ATC TCA GCC A 

90 hsp60 This study 
GAT AAC ACC ATC TTT GCC CAC T 

E. coli O157:H7 eae150 
GGC GGA TTA GAC TTC GGC TA 

150 Eae Sharma et al., 1999 
CGT TTT GGC ACT ATT TGC CC 

S. Typhimurium invA3 
AAC GTG TTT CCG TGC GTA AT 

262 invA Cheng et al., 2008 
TCC ATC AAA TTA GCG GAG GC 

 

78 
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Table 3. Detection limits of uniplex and multiplex PCR in watershed samples 
 

Type Strain Pure culture 
(CFU mL-1) 

Watershed sample (CFU mL-1)# 

0-day 7-day* 

Uniplex PCR 

C. jejuni 7.33 × 101 5.3 × 101 2.2 × 102 

E. coli O157:H7 7.33 × 102 9.3 × 102 6.7 × 102 

S. Typhimurium 7.33 × 102 3.2 × 103 4.3 × 103 

Multiplex PCR 
C. jejuni  
E. coli O157:H7 
S. Typhimurium 

7.33 × 103 
7.33 × 103 
7.33 × 103 

5.3 × 102 

9.3 × 104 

3.2 × 103 

2.2 × 102 

6.7 × 103 

4.3 × 103 
#Watershed sample (CFU mL-1): N=3 for plates, calculated the average on three independent 
plates, *7-day: Cells from frozen stock 
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Table 4. The difference in bacterial cell concentrations according to the storage period 
 

Strain 
Watershed sample (CFU mL-1)# 

0-day (Initial inoculation) 7-day* 

C. jejuni 5.3 × 109 2.2 × 107 

E. coli O157:H7 9.3 × 108 6.7 × 107 

S. Typhimurium 3.2 × 109 4.3 × 108 
#Watershed sample (CFU mL-1): N=3 for plates, calculated the average on three independent 
plates, *7-day: Cells from frozen stock 
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Table 5. Sensitivity of SYBR green real-time PCR for detection of C. jejuni, E. coli O157:H7, 
and S. Typhimurium in watershed samples at 0- and 7-days 
 

Strain 
0-day 7-day# 

CFU* Ct value 
(mean±SD†) CFU Ct value 

(mean±SD) 

C. jejuni 

5.3 × 101 31.95 ± 0.32 2.2 × 100 27.42 ± 0.45 
5.3 × 102 28.50 ± 0.14 2.2 × 101 23.96 ± 0.06 
5.3 × 103 24.57 ± 0.27 2.2 × 102 20.89 ± 0.23 
5.3 × 104 21.02 ± 0.88 2.2 × 103 17.35 ± 0.01 
5.3 × 105 17.54 ± 0.22 2.2 × 104 14.32 ± 0.09 
5.3 × 106 14.53 ± 0.79 2.2 × 105 11.29 ± 0.29 

E. coli O157:H7 

9.3 × 101 33.26 ± 1.77 6.7 × 100 29.73 ± 0.30 
9.3 × 102 30.91 ± 0.37 6.7 × 101 26.23 ± 0.04 
9.3 × 103 27.73 ± 0.33 6.7 × 102 22.78 ± 0.07 
9.3 × 104 24.56 ± 0.26 6.7 × 103 19.57 ± 0.10 
9.3 × 105 21.46 ± 0.18 6.7 × 104 16.43 ± 0.10 
9.3 × 106 18.71 ± 0.49 6.7 × 105 13.83 ± 0.49 

S. Typhimurium 

3.2 × 103 29.53 ± 0.57 4.3 × 102 31.61 ± 1.84 
3.2 × 104 25.87 ± 0.03 4.3 × 103 27.58 ± 0.42 
3.2 × 105 22.18 ± 0.29 4.3 × 104 24.18 ± 0.22 
3.2 × 106 18.93 ± 0.05 4.3 × 105 20.88 ± 0.01 
3.2 × 107 16.73 ± 0.12 4.3 × 106 17.66 ± 0.18 

#7-day: Cells from frozen stock, *CFU; Calculated cell number based on plate count 
†SD; N=3 for plates and Ct value, standard deviation was calculated using Microsoft Office 
Excel program  
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Figure 1.  Multiplex PCR products from genomic DNA of C. jejuni, E. coli O157:H7, and S. 

Typhimurium were electrophoresed in 2% agarose gel at 100 V for 20 min. Lane M showed 50 

bp DNA ladder and lane NC was negative control. One of each bacterium was presented in a 

reaction tube; one PCR amplicon was emerged (lane 1; C. jejuni, lane 2; E. coli O157:H7, lane 3; 

S. Typhimurium). Two bacteria were presented in a reaction tube; two PCR amplicons were 

emerged (lane 4; C. jejuni, E. coli O157:H7, lane5; C. jejuni, S. Typhimurium, lane 6; E. coli 

O157:H7, S. Typhimurium), Three bacteria were presented in a reaction tube; three PCR 

amplicons were emerged (lane 7; C. jejuni, E. coli O157:H7, S. Typhimurium)  
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Figure 2. Multiplex PCR products from PBS, 0- and 7-days watershed samples were 

electrophoresed in 2% agarose gel at 100 V for 20 min to verify the limitation of detection. Lane 

M showed 50 bp DNA ladder and lane NC was negative control. In a PBS sample (A), lane 1 to 

8 represented the genomic DNA range from 7.33 × 107 to 100 copies. The inoculation levels of 

each bacterium in watershed 0-day sample (B) was 5.3 × 109 to 102 CFU mL-1 for C. jejuni 

(lanes 1 to 8), 9.3 × 108 to 101 CFU mL-1 for E. coli O157:H7 (lanes 1 to 8), and 3.2 × 109 to 102 

CFU mL-1 for S. Typhimurium (lanes 1 to 8). The inoculation levels of each bacterium in 

watershed 7-day sample (C) was 2.2 × 107 to 100 CFU mL-1 for C. jejuni (lanes 1 to 8), 8.2 × 107 

to 101 CFU mL-1 for E. coli O157:H7 (lanes 1 to 8), and 4.3 × 108 to 101 CFU mL-1 for S. 

Typhimurium (lanes 1 to 8).  
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Figure 3. Comparison of melting temperature in real-time PCR between 0- and 7-days (frozen) 

watershed samples. Each 0- and 7-days sample showed distinct melting temperature, C. jejuni 

was 80.1˚C, E. coli O157:H7 was 83.3˚C, and S. Typhimurium was 85.9˚C. Also dimer caused 

by Salmonella spp.-specific primers represented peak at 76.5˚C.  
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1. Abstract 

 The Salmonella genus is divided taxonomically into six Salmonella enterica subspecies 

and Salmonella bongori. In general, Salmonella subspecies I can cause foodborne diseases, 

commonly referred to as salmonellosis in humans and animals. The majority of the Salmonella 

serovars involved subspecies I can colonize in the intestinal tracts of humans as well as poultry, 

and the consumption of contaminated poultry and poultry products is one of the primary sources 

of human salmonellosis. Thus, strategies for the rapid detection of Salmonella serovars in poultry 

are needed to further reduce the incidence of salmonellosis in humans. The aim of this research 

was to develop multiplex PCR and quantitative real-time PCR (qPCR) assays that could 

simultaneously detect Salmonella genus, Salmonella subspecies I, S. Enteritidis, S. Heidelberg, 

and S. Typhimurium since these three Salmonella serovars can cause disease in humans and are 

most common isolates associated with poultry and poultry products. Five primer pairs were 

utilized to establish multiplex PCR and the assay consisted of a 423 bp product for Salmonella 

genus, a 137 bp product for Salmonella subspecies I, a 171 bp product for S. Enteritidis, a 216 bp 

product for S. Heidelberg, and a 310 bp product for S. Typhimurium, respectively. The optimized 

multiplex PCR technique was applied to 66 Salmonella isolates from conventional, organic and 

pasture flock raised chickens and environmental samples from farm. We also spiked three 

Salmonella strains to chicken breast meats to evaluate the specificity and sensitivity of multiplex 

PCR as well as qPCR was optimized to quantify Salmonella strains in samples. These results 

confirmed that multiplex PCR and qPCR approaches would provide rapid and consistent results 

and would be useful for the detection and quantification of Salmonella in contaminated poultry, 

foods and environmental samples. 
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2. Introduction 

 The Salmonella genus is divided taxonomically into six Salmonella enterica subspecies 

(subsp.) and Salmonella bongori. The majority of Salmonella serovars involved in S. enterica 

subsp. I can colonize in the intestinal tracts of humans as well as poultry, and cause foodborne 

diseases in humans, commonly referred to as salmonellosis. Annually, salmonellosis costs an 

estimated 2.3 billion dollars for medical care costs and loss of productivity (Scallan et al., 2011). 

Foodborne salmonellosis originating from poultry and poultry products is a major problem and 

feed continues to be regarded as an important source of contamination in poultry as well as a 

potential risk to humans (Crump et al., 2002; Maciorowski et al., 2006; Soria et al., 2011). 

Numerous selective media based methodologies have been examined over the years for counting 

Salmonella in foods but unfortunately they have shown limitations in specificity and sensitivity 

for accurate detection. Rapid and advanced techniques based on nucleic acids such as PCR have 

been developed over the last few decades to overcome these disadvantages (Bansal et al., 2006; 

O’Regan et al., 2008; McCarthy et al., 2009). 

 A multiplex PCR assay for simultaneous detection and discrimination of various 

Salmonella species in foodstuffs, poultry products and watershed samples was developed and 

widely utilized among several types of conventional PCR methods (Hong et al., 2009; McCarthy 

et al., 2009; Park et al., 2009, 2011; Saeki et al., 2013). Since multiplex PCR can amplify 

specific DNA sequences and discriminate each target strain in a sample simultaneously, we can 

save considerable time and cost (reduce the total assay time to within 3 h, multiple assays at one 

time and 60% less cost versus a single PCR-based assay) for each assay. Considering these 

advantages in development of rapid and accurate detection techniques, a novel multiplex PCR 

assay is needed to cover the entire spectrum of Salmonella possibilities by simultaneously 
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detecting the general presence of Salmonella (universal conserved sequence for entire genus 

covering 2,579 serovars), a conserved sequence that can detect as a group all Salmonella subsp. I 

(1,531 serovars) which cause diseases in warm blood animals including humans (Grimont and 

Weill, 2007). Finally, specific sequences for distinguishing each of the three key Salmonella 

serovars (Enteritidis, Heidelberg and Typhimurium) which represent the most common three 

serovars in the United States and originating from poultry that result in foodborne disease in 

humans (Vugia et al., 2004). In addition, quantitative real-time PCR (qPCR) has been widely 

used to detect low copy numbers (10 cells) of Salmonella due to much higher sensitivity over 

conventional PCR methods. 

 In this study, we developed multiplex PCR and qPCR assays to detect and quantify 

Salmonella in artificially contaminated chicken breast meat. Multiplex PCR was optimized for 

detection of overall Salmonella genus, Salmonella subsp. I as a group and each of the three 

Salmonella serovars (Enteritidis, Heidelberg and Typhimurium) individually, and qPCR for 

quantification of Salmonella as low as possible. 

 

3. Materials and Methods 

3.1. Bacterial Strains 

 A total 23 Salmonella serovars and 12 non-Salmonella pathogens were used in this study 

to develop multiplex PCR as well as qPCR, and listed in Table 1. Salmonella serovars were 

grown on Tryptic Soy Agar (EMD Chemicals Inc, Gibbstown, NJ, USA) at 37˚C for 24 h and 

other bacteria were cultivated on appropriate media under optimal growth conditions. One 

colony of each strain was inoculated to 5 ml of broth and incubated 18 h under appropriate 

conditions and then, grown cultures were subsequently harvested for DNA extraction. 
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3.2. DNA Extraction and Primer Specificity 

 A 3 ml of bacterial cells were collected from overnight grown cultures and extracted 

genomic DNA using the Qiagen DNeasy Blood Tissue kit (Qiagen, Valencia, CA, USA) 

according to the manufacturer’s instruction. The isolated genomic DNA concentration and purity 

were measured using a NanoDrop ND-1000 (Thermo Scientific, Wilmington, DE, USA) and 

DNA samples were subsequently stored at -20˚C until used. 

 A total of five primer pairs were used to establish multiplex PCR in this study and listed 

in Table 2. Four primer pairs which are specific for Salmonella genus, Salmonella subsp. I, S. 

Enteritidis S. Typhimurium were adopted from previous reports and one primer pair specific for 

S. Heidelberg was constructed in this study to optimze multiplex PCR condition (Bronowski et 

al., 2009). All primer pairs were synthesized by Integrated DNA Technologies (IDT, Coralville, 

IA, USA) and the specificity of each primer pair was evaluated using 23 Salmonella serovars and 

12 non-Salmonella pathogens listed in Table 1. 

  

3.3. Multiplex PCR and Specificity 

 The novel multiplex PCR assay was optimized using a MJ PTC 100 thermocycler (Bio-

Rad, Hercules, CA, USA) and five primer pairs which confirmed the specificity via single PCR. 

The internal amplification control (IAC) was constructed following previous report (Park et al., 

2009) and added to the PCR mixture to confirm the multiplex PCR results. A total of 30 μl of 

multiplex PCR mixture consisted of 15 μl of Premix Ex TaqTM (Takara, Fisher Scientific, 

Pittsburg, PA, USA), five primer pairs with different concentrations, 75 ng of template DNA 

mixture (25 ng per each strain), 5 ng of IAC, 1 μl of bovine serum albumin (BSA, 20 mg/ml) and 

RNase-DNase free water to final volume. The multiplex PCR reaction was optimized to 
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conditions of 94˚C for 2 min. then 30 cycles of 94˚C for 30 s, 63˚C for 30 s and 72˚C for 30 s 

with a final extension cycle at 72˚C for 5 min. The PCR amplicons were separated in a 3.5% of 

agarose gel at 100 V for 25 min., subsequently stained with ethidium bromide (10 mg/ml) and 

viewed with a UV transilluminator.  

 The established multiplex PCR detection limit was determined using S. Enteritidis, S. 

Heidelberg and S. Typhimurium genomic DNA mixture. Each Salmonella serovar genomic DNA 

was prepared from containing 4.68 × 106 copies, and subsequently diluted as 10-fold until 4.68 × 

102 copies was obtained. A total of 66 Salmonella strains isolated from conventional, organic and 

pasture flock raised chickens were used to evaluate multiplex PCR specificity. These isolates 

were acquired from previous studies and identified the serovars using Kauffman-White scheme 

serotyping method (Clement et al., 2010; Melendez et al., 2010). 

 

3.4. Quantitative Real-Time PCR (qPCR) 

 The Salmonella genus specific primer pair (SG) which was the same used in the 

multiplex PCR was utilized to optimize qPCR. A total 20 μl of reaction mixture consisted of 10 

μl of SYBR® Green Premix Ex TaqTM II, 800 nM of primer, 1 μl of BSA (20 mg/ml), 5 μl of 

template DNA and RNase-DNase free water to bring to the final volume. Positive and negative 

reactions were run simultaneously. The qPCR assay based on SYBR green was established using 

an Eppendorf Masterplex thermocycler ep. Gradient Technology (Eppendorf, Westbury, NY, 

USA) and the conditions of 95˚C for 2 min. followed by 40 cycles of 95˚C for 15 s, 60˚C for 15 s 

and 68˚C for 20 s with fluorescence being measured during the extension phase. Melting curves 

were subsequently generated and consisted of 95˚C for 15 s, 60˚C for 20 min. increasing in 0.5˚C 

increments to 95˚C. The qPCR results were confirmed further through 1.5% of agarose gel 
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electrophoresis at 100 V for 20 min., gels were stained with ethidium bromide (10 mg/ml) and 

viewed on a UV transilluminator. The qPCR assay was conducted as triplicate samples per each 

experiment and three independent experiments. 

 

3.5. Spiked Three Salmonella to Chicken Breast Meat 

 A Salmonella presence in chicken breast meat was examined using xylose lysine tergitol 

(XLT-4) selective media in prior to experiment. A 25 g samples of chicken breast meat was 

inoculated with 2.2 × 108 to 2.2 × 100 CFU/g of S. Enteritidis, S. Heidelberg and S. Typhimurium 

mixture and subsequently incubated at room temperature for 1 h. Subsequently, 225 ml of 

buffered peptone water (BPW) was added for enrichment, homogenized using a stomacher and 

incubated at 37˚C. To evaluate the multiplex PCR detection limit at different enrichment time 

points, 1 ml aliquots were taken from enrichment samples at each 0, 4, 8, 18 h during incubation. 

One ml of enrichment samples was pelleted by centrifugation at 16,000 x g for DNA extraction. 

The supernatant was discarded and added 100 μl of DNase-RNase free water for cell suspension 

and then, genomic DNA was isolated by a boiling method (Park et al., 2011). A five μl of 

isolated genomic DNA was utilized for multiplex PCR and qPCR. Alternatively, enrichment 

samples were plated on XLT-4 selective media to calculate Salmonella cell numbers. 

 

4. Results 

4.1. Primer Specificity 

 The specificity of total five primer pairs were evaluated using 23 Salmonella strains and 

12 non-Salmonella pathogens. Salmonella genus and Salmonella subsp. I primer pairs produced 

a 423 bp and a 137 bp of expected product size in 23 Salmonella strains respectively, and no 
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amplification with non-Salmonella pathogens. Three strains of each Salmonella serovar specific 

primer pair also only amplified a 171 bp for S. Enteritidis, a 216 bp for S. Heidelberg, and a 310 

bp for S. Typhimurium, respectively (Table 1). Since the primer pairs used in this study showed 

high specificity toward target species, multiplex PCR and qPCR assays were further optimized 

using these primer pairs. 

 

4.2. Multiplex PCR 

 The multiplex PCR using 5 primer pairs was optimized to detect Salmonella genus, 

Salmonella subsp. I, S. Enteritidis, S. Heidelberg, and S. Typhimurium in a single reaction. The 

multiplex PCR mixture including only S. Typhimurium genomic DNA generated four bands 

after PCR reaction; 100 bp for IAC, 137 bp for Salmonella subsp. I, 310 bp for S. Typhimurium 

and 423 bp for Salmonella genus specific products (Figure 1, lane 1). The samples included each 

S. Enteritidis and S. Heidelberg also amplified four bands but the species-specific bands were 

different (Figure 1, lanes 2 and 3). Three target Salmonella serovars were present in a sample; six 

bands were produced corresponding to Salmonella genus, Salmonella subsp. I, S. Enteritidis, S. 

Heidelberg, S. Typhimurium and IAC (Figure 1, lane 4). 

 Each Salmonella serovar genomic DNA ranging from 4.68 × 106 copies to 4.68 × 102 

copies was prepared to evaluate the detection limit and multiplex PCR showed detection limit of 

4.68 × 104 copies (Figure 2, lane 3) with six bands. A total of 66 Salmonella isolates from 

conventional, organic and pasture flock raised chicken carcass were used to confirm optimized 

multiplex PCR specificity. These isolates serovars were identified by conventional serotyping 

methods (Clement et al., 2010; Melendez et al., 2010). The multiplex PCR was performed using 

66 isolates, identified as Salmonella subsp. I and 16 out of 66 isolates were classified as S. 
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Enteritidis. No S. Heidelberg or S. Typhimurium was detected and this result corresponded with 

previous serotyping results (Table 3) (Clement et al., 2010; Melendez et al., 2010). 

 

4.3. Quantitative Real-Time PCR (qPCR)  

  The qPCR based on SYBR green was established to detect the entire Salmonella genus 

using SG primer pair. A standard curve was constructed using three Salmonella DNA mixture 

ranging from 4.68 × 106 copies to 4.68 × 101 copies and each sample were prepared in triplicate 

per experiment. The correlation coefficient (R2) value and efficiency were calculated and showed 

0.998 and 92%, respectively (Figure 3A). The melting temperature was generated to identify 

correct PCR products and the value was approximately 91.5˚C (Figure 3B).  

 

4.4. Analysis of Spiked Chicken Breast Meats 

 In order to validate the multiplex PCR and qPCR established in this study, we tested 

artificially contaminated chicken breast meats. A 25 g of chicken breast meat was spiked with 

three Salmonella (Enteritidis, Heidelberg and Typhimurium) serovars ranging from 2.2 × 108 to 

2.2 × 100 CFU/g. Figure 4 showed multiplex PCR results using different enrichment time point 

samples. Although the multiplex PCR was unable to amplify all target bands without enrichment 

(0 h), Salmonella subsp. I, S. Enteritidis and S. Typhimurium specific bands were produced at the 

level of 2.2 × 107 CFU/g (Figure 4A, lane 2). At 4 h and 8 h enrichment samples, all six bands 

were amplified at the level of 2.2 × 106 CFU/g and 2.2 × 101 CFU/g, respectively (Figure 4B, 

lane 3, and Figure 4C, lane 8). In addition, optimized multiplex PCR could detect approximately 

2 CFU of Salmonella per gram after 18 h enrichment (Figure 4D, lane 9). There was no 

amplification in negative control sample except one band for IAC. 
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 In qPCR results using spiked samples, the detection limit varied depending on different 

enrichement time points. A 2.2 × 105 CFU/g of Salmonella was detected after 4 h enrichment. 

However, 22 CFU and 2.2 CFU per gram of Salmonella was determined to be the detection limit 

after 8 h and 18 h enrichment, respectively (Table 4). In addition, there was no PCR amplicons 

except primer dimers. With the qPCR optimized in this study, 22 CFU of Salmonella can be 

detected within total 11 h assay time including 8 h enrichment, 1 h for DNA preparation and 2 h 

for qPCR assay. 

 

5. Discussion 

 Since Salmonella species are one of the prominent foodborne pathogens causing disease 

in humans, the principal aims of this study were the development of rapid and accuarate 

detection methods. Several methods based on nucleic acids and antigens have been developed to 

identify Salmonella in foodstuffs such as PCR, ELISA, microarray and next generation 

sequencing (NGS). In this study, we established multiplex PCR to detect Salmonella genus, 

Salmonella subsp. I and three most prominent Salmonella serovars in a single reaction 

considering assay time, cost and accuracy.  

 In order to establish the multiplex PCR successfully, specific primer construction for 

each target species and no cross-reaction with other primer pairs are important factors. Therefore, 

the specificity of primer pairs should be evaluated prior to multiplex PCR using various 

organisms which posess high genetic homology via single PCR as well as the BLAST algorithm. 

Four primer pairs adopted from previous reports were constructed based on comparative 

genomics and evaluated for their specificity using over 100 Salmonella species (Kim et al., 2006). 

Since S. Heidelberg serogroup (1,4,[5]12:r:1,2) is similar to S. Typhimurium (1,4,[5],12:i:1,2), 
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traditional serotyping method might be difficult to discriminate each other because only the 

difference is the Phase I antigen (Grimont and Weill, 2007). In this study, we have designed S. 

Heidelberg specific primer pair and the specificity was confirmed by 25 S. Heidelberg isolates 

from turkey farm (data not shown). Furthermore, the multiplex PCR results that applied to 66 

Salmonella isolates which were serotyped in a previous report showed that this assay can be 

useful to detect Salmonella subsp. I and three most Salmonella strains (Enteritidis, Heidelberg 

and Typhimurium) in poultry and poultry products (Clement et al., 2010; Melendez et al., 2010). 

In a previous reports, McCarthy et al (2009) developed multiplex PCR and qPCR to discriminate 

S. Typhimurium and S. Heidelberg in different food matrices using specific primer pairs 

constructed by comparative genomics. However, they used S. Typhimurium specific primer pair 

for differentiation of S. Heidelberg and failed to design S. Heidelberg specific primer pairs. 

 Rapid and accurate Salmonella detection methods in foods are needed for food safety 

issue. In general, a non-selective enrichment step (8-24 h) is combined with PCR-based methods 

to detect as low as viable Salmonella present in foods and increase assay sensitivity (Soumet et 

al., 1994; Maciorowski et al. 2000; Ferretti et al., 2001; Myint et al., 2006). Maciorowski et al. 

(2000) have evaluated the Salmonella detection limit in animal feeds by different enrichment 

time using PCR. Although they could not detect any Salmonella within 7 h enrichment, 2 out of 

8 samples (25%) included at least 30 CFU/g of Salmonella were positive after 13 h enrichment 

as well as 4 out of 8 samples (50%) were Salmonella positive after 24 h enrichment. Therefore, 

enrichment step is necessary in order to detect viable Salmonella in foods using PCR (Keer and 

Birch, 2003; Cocolin et al., 2011). 

 Soumet et al. (1994) have developed PCR assays for Salmonella detection in chicken 

products using six different DNA isolation methods. After 10 h enrichment, Salmonella can be 
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detected in spite of PCR inhibitors and DNases. Ferretti et al. (2001) also optimized PCR assay 

with a 6 h nonselective enrichment for detection of various Salmonella serotypes in Italian 

salami at the level of as low as 1 CFU in 100 ml of food homogenate. Myint et al. (2006) 

evaluated naturally Salmonella contaminated poultry tissue samples using PCR without 

enrichment and reported all negative results. However, Salmonella was detected in all samples 

after enrichment. In contrast, Wolffs et al. (2006) developed real-time PCR to detect and 

quantify Salmonella in biological samples without enrichement. They utilized two step filtration 

systems; 40 um filter to remove large food particle and durapore 0.22 um filter (Millipore 

Corporation, Bedford, MA, USA) to capture Salmonella then extracted DNA on the membrane. 

Through this system, 220 CFU of Salmonella in 100 ml of sample could be detected via real-

time PCR. 

 A total of five primer pairs used in this study showed no cross reaction with normal 

microflora present in chicken breast meat and 22 CFU of Salmonella was detected via multiplex 

PCR after 8 h enrichment. To the best of our knowledge, this is the first multiplex PCR assay to 

detect Salmonella genus, Salmonella subsp. I, S. Enteritidis, S. Heidelberg and S. Typhimurium 

simultaneously from chicken breast meats. 
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Table 1. Bacterial strains used in this study 
 
 

Strains Source 
Primer 

SGa SS-Ib SEc SHd STe 

Salmonella 

S. Enteritidis ATCC 13076 + + + - - 
S. Heidelberg ATCC 8326 + + - + - 
S. Typhimurium ATCC 14028 + + - - + 
S. Kentucky 

Isolates from 
chicken, turkey 
and farm 

+ + - - - 
S. Mbandaka + + - - - 
S. Newport + + - - - 
S. Muenster + + - - - 
S. Agona + + - - - 
S. Senftenberg + + - - - 
S. Montevideo + + - - - 
S. Worthington + + - - - 
S. Anatum + + - - - 
S. Rough + + - - - 
S. Infantis + + - - - 
S. Alachua + + - - - 
S. Barranquilla + + - - - 
S. Georgia + + - - - 
S. Give + + - - - 
S. Manhattan + + - - - 
S. Oranienburg + + - - - 
S. Rubislaw + + - - - 
S. Taksony + + - - - 
S. Tennessee + + - - - 

Non-
Salmonella 

B. cereus ATCC 11778 - - - - - 
B. licheniformis ATCC 12579 - - - - - 
C. freundii  - - - - - 
E. aerogenes  - - - - - 
E. coli ATCC 25922 - - - - - 
L. grayi ATCC 19120 - - - - - 
L. innocua ATCC 33090 - - - - - 
L. ivanovii ATCC 19119 - - - - - 
L. monocytogenes ATCC 35152 - - - - - 
L. welshimeri ATCC 25897 - - - - - 
Staph. aureus ATCC 6538 - - - - - 
Staph. epidermidis ATCC 12228 - - - - - 

SGa: Salmonella genus, SS-Ib: Salmonella subsp. I, SEc: S. Enteritidis, SHd: S. Heidelberg, STe: S. 
Typhimurium



 
 

Table 2. Primer sequences used in this study 
 

Target Primer Sequence (5’ to 3’) Size 
(bp) Target gene Conc. 

(uM) Reference 

Salmonella genus  SG  TTTGG CGGCG CAGGC GATTC 
GCCTC CGCCT CATCA ATCCG  423 STM3098  0.27 Kim et al., 

2006  

Salmonella subsp. I  SS-I  GGTGG CCTCG ATGAT TCCCG 
CCCAC TTGTA GCGAG CGCCG  137 STM4057  0.27 Kim et al., 

2006  

S. Typhimurium  ST AACAA CGGCT CCGGT AATGA GATTG 
ATGAC AAACT CTTGA TTCTG AAGAT CG  310 STM4497  0.2 Park et al., 

2009  

S. Enteritidis  SE GCCGA GCTTG ATGAC AAACC TG 
GCGCT TCGCT TTTCC AACTG CC  171 SEN0997  0.2 Park et al., 

2008  

S. Heidelberg  SH TGTTT GGAGC ATCAT CAGAA 
GCTCA ACATA AGGGA AGCAA  216 Restriction enzyme 

(ACF69659) 5 This study 
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Table 3. Application of multiplex PCR to Salmonella strains isolated from conventional, organic and pasture flock raised chickens 
 

Source Strain No. Identification Reference 

Conventional chickens 1 Salmonella subsp. I Clement et al. (2010) 

Organic chickens 11 (2) Salmonella subsp. I (S. Enteritidis) Clement et al.  (2010) 

Pasture flock raised chickens and farm 54 (14) Salmonella subsp. I (S. Enteritidis) Melendez et al. (2010) 
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Table 4. Comparison of Salmonella genus detection limit between multiplex PCR and qPCR  
 

 Enrichment time point 

Strain 
0 h 4 h 8 h 18 h 

Ca Mb Qc C M Q C M Q C M Q 

Salmonella mixture 
(Enteritidis, Heidelberg, 

and Typhimurium) 

2.2 × 108  -d +e 2.4 × 108 + + 1.4 × 109 + + 1.3 × 109 + + 
2.2 × 107  - + 5.0 × 107 + + 1.1 × 109 + + 1.2 × 109 + + 
2.2 × 106  - - 9.0 × 106 + + 6.7 × 108 + + 1.1 × 109 + + 
2.2 × 105 - - 3.0 × 105 - + 3.1 × 108 + + 9.9 × 108 + + 
2.2 × 104 - - 3.3 × 105 - - 1.1 × 108 + + 9.8 × 108 + + 
2.2 × 103 - - 1.2 × 105 - - 7.0 × 107 + + 9.9 × 108 + + 
2.2 × 102 - - 2.0 × 105 - - 4.2 × 107 + + 9.9 × 108 + + 
2.2 × 101 - - 1.4 × 104 - - 3.2 × 107 + + 1.0 × 109 + + 
2.2 × 100 - - 6.0 × 103 - - 2.5 × 106 - + 8.9 × 108 + + 

Ca: Average Salmonella numbers of triplicate plates using XLT-4 media (CFU/g) 
Mb: Multiplex PCR results showing Salmonella genus specific product (423 bp) 
Qc: qPCR results using Salmonella genus specific primer pair (SG) 
-d: PCR negative 
+e: PCR positive 
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Figure 1. Multiplex PCR results using pure genomic DNA of Salmonella type strains 

Lane M: 100 bp ladder, lane 1: S. Typhimurium (ATCC 14028), lane 2: S. Enteritidis (ATCC 

13076), lane 3: S. Heidelberg (ATCC 8326), lane 4: S. Typhimurium (ATCC 14028), S. 

Enteritidis (ATCC 13076), and S. Heidelberg (ATCC 8326), lane 5: negative control 

  



108 
 

 

Figure 2. Evaluation of multiplex PCR detection limit using three Salmonella pure genomic 

DNA mixture  

M: 100-bp DNA ladder, lanes 1-5: 4.68 × 106 to 4.68 × 102 copies of S. Typhimurium (ATCC 

14028), S. Enteritidis (ATCC 13076), and S. Heidelberg (ATCC 8326), lane 6: negative control 
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Figure 3. Standard curve construction and melting temperature of qPCR. 

(A) Standard curve was generated using three Salmonella genomic DNA ranging frm 4.68 × 101 

to 4.68 × 106 copies. 

(B) Melting temperature showed approximately 91.5˚C. 
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Figure 4. Application of multiplex PCR to artificially inoculated chicken breast meats 

(A): 0 h enrichment, (B): 4 h enrichment, (C): 8 h enrichment, (D): 18 h enrichment 

M: 100 bp DNA ladder, PC: positive control (pure DNA mixture of three Salmonella strains), 

NT: no template for PCR, lanes 1-9: 2.2 × 108 to 2.2 × 100 CFU/g of S. Typhimurium (ATCC 

14028), S. Enteritidis (ATCC 13076), and S. Heidelberg (ATCC 8326), lane 10: negative control 
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Major Advisor: Dr. Steven C. Ricke 

Date: June 4th, 2013  



112 
 

 

CHAPTER 4 

 

 

Enhancement of Macrophage Chicken Cytokine Response to Salmonella Typhimurium 

When Combined with Bacteriophage P22 

 

Si Hong Park1,2, Debabrata Biswas3, Jody Lingbeck2, Ok Kyung Koo2  

and Steven C. Ricke1,2* 

 

1Cell and Molecular Biology Program, Department of Food Science, University of 

Arkansas, Fayetteville, AR 

2Center for Food Safety and Department of Food Science, University of Arkansas, 

Fayetteville, AR 

3Current address: Department of Animal and Avian Sciences and Center for Food Safety 

and Security Systems, University of Maryland, College Park, MD 

 

 

 

 

 

 

FEMS Microbiology Letters 339: 137-144, 2013 



113 
 

1. Abstract 

 Salmonella infections are reported as the second most common pathogen causing 

foodborne disease in the United States and several Salmonella serovars can colonize the 

intestinal tracts of poultry. Reducing Salmonella in poultry is crucial to decrease the incidence of 

salmonellosis in humans. In this study, we evaluated the immune response of chicken 

macrophage cells (HD-11) and effects of bacteriophage P22 against the extra- and intracellular S. 

Typhimurium LT2. Four treatments; 1) HD-11 cells as control, 2) HD-11 cells with LT2, 3) HD-

11 cells with LT2 and P22 and 4) HD-11 cells with P22 were administered and IL-8 responses of 

HD-11 cells were measured using an ELISA. Also, four cytokine (IL-4, 8, 10 and IFN-γ) gene 

expression levels in the presence of LT2 and/or P22 were quantified by qRT-PCR. We found that 

P22 lysed the extra- and intracellular LT2 which adhered and were taken up by the HD-11 cells. 

The ELISA assay indicated that HD-11 cells produced significantly higher IL-8 cytokine levels 

in the supernatant during the intracellular lyses of LT2 by P22 (P < 0.05). The IL-8 expression 

levels measured by qRT-PCR also exhibited similar results with the IL-8 production based on 

ELISA measurements. 
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2. Introduction 

 Salmonella has the potential to cause fatal bacterial infections in infants and individuals 

with a suppressed immune system (Scallan et al., 2011; Finstad et al., 2012). The majority of the 

foodborne Salmonella serovars can colonize in the intestinal tracts of humans and one of the 

major routes of human salmonellosis is believed to be consumption of contaminated poultry and 

poultry products (Finstad et al., 2012). Thus, strategies for the control and prevention of poultry 

colonization are needed to further reduce the incidence of salmonellosis in humans. Currently, 

there are several preventative measures for limiting Salmonella establishments in poultry flocks 

including dietary alterations, prebiotics, probiotics, antimicrobials such as organic acids and the 

administration of vaccine strains (Ricke, 2003a, b; Vandeplas et al., 2010). However, there are 

very limited options for reducing already established Salmonella in the avian gastrointestinal 

tract (Toro et al., 2005; Atterbury et al., 2007). 

 In many developed countries, bacteriophage therapy was abandoned in favor of the 

development and widespread production of antibiotics (Stone, 2002). However, interest in phage 

therapy has gained momentum in animal productions over the past few years as antibiotics have 

fallen out of favor (Nakai & Park, 2002; Joerger, 2003; Levin & Bull, 2004; Atterbury et al., 

2007; Ricke et al., 2012). The bacteriophage P22 used in this study is able to bind specific 

somatic antigen structures of lipopolysaccharide (LPS) present in Salmonella serogroup A, B and 

D1 included S. Typhiumurium via tailspike proteins (TSP) (Marietto-Gonçalves et al., 2011). 

P22 utilize TSP enzymes to penetrate the outer membrane of S. Typhimurium and allow P22 to 

inject genetic materials into host cells. The virions produced by replication of P22 DNA inside 

the host cells assemble to form mature P22 and subsequently lyse the respective host cells. 
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 Since cytokines are considered as crucial regulators or mediators against antigens in the 

host immune system, the change of cytokine expression levels in the presence of Salmonella and 

bacteriophage is important for understanding roles in inflammation and apoptosis during 

pathogen infections (Liu et al., 2010). Research on avian cytokines has expanded due to the 

increased interest in avian immune responses against pathogens and advanced techniques that are 

now available for studying these responses in detail (Giansanti et al., 2006).  

 In this study, we hypothesized that P22 could enhance reduction of intracellular S. 

Typhimurium if the phage was allowed to come in contact with the host cell. To test this 

hypothesis we used an in vitro host chicken cell model (HD-11 macrophage) to differentiate the 

cellular immune response against S. Typhimurium with or without P22. As part of this study, 

HD-11 cytokine expression levels were assessed using an enzyme-linked immunosorbent assay 

(ELISA) and quantitative reverse transcriptase polymerase chain reaction assays (qRT-PCR). 

 

3. Methods and Materials 

3.1. Bacterial Strains and Growth Conditions 

 Salmonella Typhimurium LT2 (ATCC 19585) and ST55, a reduced motility mutant, were 

used in this study (Aswad & Koshland Jr., 1975). One loop of each S. Typhimurium strain was 

taken from frozen stock and streaked onto Luria-Bertani (LB) (EMD Chemicals Inc, Gibbstown, 

NJ, USA) plate. After incubation for 24 h at 37˚C, one colony was selected and grown in 5 mL 

of LB broth for 24 h at 37˚C under aerobic growth conditions. 

 

3.2. Propagation and Enumeration of Bacteriophage P22 
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 The Salmonella Typhimurium LT2 strain was grown on LB plates overnight at 37̊ C 

under aerobic incubation conditions and cells were collected in phosphate buffer saline (PBS) 

solution. The OD600 adjusted LT2 strain was subsequently added to 50 mL of LB broth in a 

conical flask and triplicate cultures were grown to late log phase including approximately 108 

colony forming unit (CFU) at which point P22 including 106 plaque forming unit (PFU) was 

added to an approximate multiplicity of infection (MOI) of 0.01. Incubation with shaking was 

continued overnight and grown cultures were filtered to remove LT2 cells and bound phages. 

Unbound free phages were enumerated on host lawns of LT2 strain and stored at -20˚C. P22 

stocks were evaluated the contamination of phage resistant bacteria prior to use. 

 

3.3. Cell Culture 

 Chicken macrophage (HD-11) cells were maintained in minimal essential medium (MEM) 

with 10% fetal bovine serum (FBS) and grown routinely in a 75-cm2 flask at 37˚C in a 5% CO2-

humidified incubator. Confluent stock cultures were treated with trypsin to release the attached 

cells and new stock cultures were seeded with 105 cells per mL. For the adherence and uptake 

assays, 24-well tissue culture plates (BD Biosciences, Franklin Lakes, NJ, USA) were seeded 

with 105 cells per mL of HD-11 cells and incubated at 37˚C in a 5% CO2 humidified incubator 

for 18 to 20 h and a semi-confluent monolayer was obtained. Prior to the experiment, the 

monolayer was washed and incubated in MEM containing 10% FBS without antibiotic. 

 

3.4. Adherence and Uptake Assays 

 Adherence and uptake assays were performed using a modified procedure derived from 

Biswas et al (2006). One loop of LT2 and ST55 grown overnight was collected from LB plates 



117 
 

and suspended in MEM with 10% FBS. The OD of each strain suspension was subsequently 

adjusted to an absorbance value of 0.2 at 600 nm. A 100 µL of the suspension containing 

approximately 107 CFU (MOI of 100) was inoculated into duplicate wells of a 24-well tissue 

culture plate containing semi-confluent monolayers of HD-11 cells. The concentration of each 

strain was determined simultaneously on LB plates as described previously. Infected monolayers 

were incubated for 2 h at 37˚C under a 5% CO2 humidified atmosphere to allow LT2 and ST55 

adherence and uptake by the cells. One plate was washed five times with PBS and P22 including 

107 PFU (MOI of 1) was added followed by incubation for 4, 8 and 16 h to lyse bacterial cells. 

After incubation, the HD-11 cells were lysed with 0.1% Triton X-100 (Sigma, St. Louis, MO, 

USA) in PBS for 15 min to enumerate the number of extra- (adherence) and intracellular (uptake) 

LT2 and ST55. Other plates were re-incubated for another 2 h in fresh media containing 250 µg 

mL-1 of gentamicin to kill the extracellular bacteria. After incubation, the number of intracellular 

(uptake) LT2 and ST55 were evaluated using the same method described previously. Three wells 

with only HD-11 cells and the other three wells infected with only P22 were prepared as controls. 

Results were expressed as the average number of adhered and invaded cells by LT2 and ST55 in 

three to five independent assays. 

 

3.5. Detection of IL-8 Cytokine Produced by HD-11 Cells Using ELISA 

 A total of four treatments were utilized in this study, 1) HD-11 cells as control, 2) HD-11 

cells with LT2, 3) HD-11 cells with LT2 and P22 and 4) HD-11 cells with P22, to evaluate IL-8 

production levels along with a negative control of added with PBS instead of HD-11 cells. The 

ELISA was performed following the protocol provided by BD Biosciences (Catalog No. 555244, 
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BD Biosciences). Visible light absorbance readings of four different treatments were taken at a 

wavelength of 450 nm to quantify the level of IL-8 cytokine. 

 

3.6. Sample Treatments for Cytokine Expression 

 Five treatments were prepared to evaluate the different cytokine expression levels of HD-

11 cells in the presence of LT2 and P22. Treatment A consisted of only HD-11 cells as the 

control, treatment B was HD-11 cells with P22, treatment C was HD-11 cells with LT2, 

treatment D was HD-11 cells with P22 and LT2, and treatment E was the same as treatment D 

except for adding gentamicin. Since gentamicin is unable to kill LT2 cells that have already 

entered into HD-11 cells, treatment E was used to compare cytokine production levels against 

intracellular LT2 (Durant et al., 2000). All five treatments were used for qRT-PCR analysis to 

verify the expressions of the four cytokines (IL-4, IL-8, IL-10 and IFN-γ). 

 

3.7. Total RNA Isolation 

 Total RNAs from five treatment samples were isolated using Trizol reagent (Sigma) to 

perform qRT-PCR. A 1 mL aliquot of Trizol reagent was added to each sample and collected 

immediately using a scraper. Total RNA was extracted and subsequently DNase I (New England 

Biolabs, Ipswich, MA, USA) treatment was performed for 1 h at 37˚C to remove possible 

contaminating genomic DNA. Total RNA was purified by Qiagen RNeasy mini kit (Qiagen, 

Valencia, CA, USA) according to the manufacturer’s instruction and the concentration was 

measured by a NanoDrop ND-1000 (Thermo Scientific, Wilmington, DE, USA). 

 

3.8. Quantitative Reverse Transcriptase PCR (qRT-PCR) Assay 
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 The qRT-PCR assay was optimized using an Eppendorf Masterplex thermocycler ep 

Gradient Technology (Eppendorf, Westbury, NY, USA). Three primer pairs for IL-4, IL-10 and 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were adopted from previous work 

(Abdul-Careem et al., 2007; Lee et al., 2010) and the other two primer pairs for IL-8 and IFN-γ 

were synthesized in this study (Table 1). The specificity of designed primer pairs was confirmed 

by a basic local alignment search tool (BLAST) program. The 20 µL of reaction mixture 

consisted of 10 µL of EXPRESS SYBR GreenERTMqPCRSuperMix with Premixed ROX 

(Invitrogen, Carlsbad, CA, USA), 0.5 µL of EXPRESS SuperScript Mix for One-Step SYBR 

GreenER (Invitrogen), 500 nM of each primer, 500 ng of total RNA template and DEPC treated 

water to volume. The qRT-PCR was optimized for the reaction conditions of 50˚C for 5 min for 

the synthesis of cDNA. This was followed by 40 cycles of 95˚C for 15 s, 57˚C for 15 s and 68˚C 

for 20 s. Melting curves were subsequently created which consisted of 95̊ C for 15 s, 60˚C for 20 

min. increasing by 0.5˚C per minute to a final temperature of 95˚C. Each experiment was 

performed in triplicate. 

 

3.9. Statistical Analysis 

 The GAPDH gene was used as an internal standard to normalize the qRT-PCR and the Ct 

values were calculated with the Eppendorf realplex software (version 2.0). The relative gene 

expression changes in transcription levels of the four cytokines between the control and 

treatments were determined using the 2−ΔΔCt method (Livak & Schmittgen, 2001). The data were 

generated by three independent experiments and each trial was carried out in triplicate. Statistical 

analysis was performed using JMP® Genomics 5.0 software (SAS Institute Inc., Cary, NC, USA). 



120 
 

The experimental data were analyzed using a T test and a calculated P value of < 0.05 was used 

to delineate significant differences. 

 

4. Results 

4.1. Adherence and Uptake of S. Typhimurium 

 In this series of experiments, we measured the adherence and uptake of LT2 and ST55 

and demonstrated that our cell culture model could be used to screen for extra- and intracellular 

survival of both strains. Based on Fig. 1, it appears that both LT2 and ST55 adhered to HD-11 

cells at 3.6 ± 0.2% and 2.5 ± 0.3% of their initial inoculation levels, respectively. Similarly, LT2 

(0.39 ± 0.04%) were taken up by HD-11 cells more than ST55 (0.25 ± 0.02%). Since LT2 

exhibited greater difference in adherence and uptake than ST55 strain (P < 0.05), we continued 

the study with LT2.  

 

4.2. Evaluation of Extra- and Intracellular Killing of LT2 by P22 

 In a follow-up study utilizing the HD-11 cell culture model, we observed that P22 was 

capable of killing both extra- and intracellular LT2. Figure 2 showed relative recovery of LT2 

strains at each time point. By the first 8 h after inoculation, no significant differences in both 

extra- and intracellular recoveries of LT2 occurred between 4 h and 8 h while almost all LT2 

cells were eliminated at 16 h. 

 We also observed that HD-11 cells produced significantly higher amounts of cytokine 

(IL-8) in the supernatant in the presence of LT2 with P22 (P < 0.05). This finding indicates that 

intracellular lysis of LT2 strains enhanced the cell mediated immune response of chicken 

macrophages. In this study, we detected the IL-8 produced by LT2-infected HD-11 cells during 
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killing of extra- and intracellular bacterial cells by P22. The expression patterns of IL-8 in the 

LT2-infected HD-11 cells are illustrated in Fig. 3. The IL-8 expression level in the HD-11 cell 

increased over two fold in the presence of LT2 compared to HD-11 cells alone and P22 also 

stimulated the expression of IL-8. In addition, IL-8 expression level increased significantly in the 

presence of both LT2 and P22. 

 

4.3. Cytokine Expression Levels by qRT-PCR 

 The primer pairs amplified PCR products with high specificity for each target gene with 

the respective melting curve. Electrophoresis of PCR products was conducted on an agarose gel 

to confirm the exact PCR result as well as each amplicon size as shown in Table 1. Infection of 

LT2 and P22 increased cytokine expression levels in HD-11 cells. The fold changes in cytokine 

expression levels due to the four different treatments compared to the naïve cells are presented in 

Table 2. The GAPDH gene served as the reference gene to normalize cytokine expression levels 

as fold changes. The IL-4 gene exhibited increases when LT2 and P22 were administered to the 

chicken cells but adding gentamicin caused a decrease in IL-4 gene expression. For the IL-8 gene, 

all treatments significantly increased gene expression levels (P < 0.05) and treatment E in 

particular exhibited a more than two fold increase compared to other treatments. The expression 

of IL-10 gene was markedly increased for treatment B (P < 0.05) with no significant differences 

in any of the other treatments. Finally, IFN-γ gene appeared to be highly up-regulated for 

treatment B. 

 

5. Discussion 
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 The significance of this study was the detection of changes in immune responses to LT2 

on chicken macrophage cells (HD-11) when combined with P22 since macrophages play 

important roles in the innate immune system. Cytokines produced by innate immune cells 

influence the adaptive immune response and cell signaling molecules in intracellular 

communication (Witheanage et al., 2004). The cytokines evaluated in this study were selected 

for the important roles they play in innate and adaptive immunity. Furthermore, they interact 

with a wide variety of cell products during the immune response (Schroder et al., 2004). In the 

present study, the effects of P22 on the host (LT2) and the production of four different cytokines 

in chicken macrophage cells were evaluated by adherence and uptake assays as well as ELISA 

and qRT-PCR. The specific killing ability of P22 to LT2 has been reported in several studies 

(Pope et al., 2004; Toro et al., 2005). The phage utilized in this study was able to initiate killing 

of extra- and intracellular S. Typhimurium within a few hours after infection and completed 

bacterial lysis within 16 h. 

 Cytokines are generally divided into several categories by the activity and/or effects they 

produce (Giansanti et al., 2006). Pro-inflammatory cytokines IL-8 is produced by stimulation of 

macrophages and IFN-γ can also be induced by natural killer (NK) cells as well as T cells, and 

both cytokines are associated with innate immune response (Giansanti et al., 2006; Apte et al., 

2008). In contrast, IL-10 produced by mast cells inhibits both NK cell activity and pro-

inflammatory cytokine synthesis (Pestka et al., 2004). The cytokine IL-4 which is a key regulator 

in humoral and adaptive immune response decreases the production of macrophages and IFN-γ 

(Apte et al., 2008). There were no significant differences in IL-4 expression levels among any of 

the treatments. IL-4 is a key cytokine for humoral immunity and stimulates B- and T-cell 

proliferation and is characterized as a signal for decreasing production and deactivation of 
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macrophages (Bogdan & Nathan, 1993; He et al., 2011). The expression levels of IL-4 on each 

treatment exhibited no significant changes statistically when compared to control. IL-10 is an 

anti-inflammatory cytokine and inhibits the ability of antigen presenting cells (APCs). Therefore, 

the presence of LT2 in HD-11 cells (treatments C, D and E) led to no significant differences in 

expression levels of IL-10. The IFN-γ is an important cytokine in host defense mechanism 

against viral and intracellular pathogens. It is stimulated by macrophages and induces 

antimicrobial as well as antiviral activities (Liu et al., 2010).  

 In addition, the expression levels of IL-8 have been shown to be greatly increased by S. 

Typhimurium infection at multiple organs in chicken such as liver, cecal tonsil and jejuna 

(Witheanage et al., 2004). Since IL-8 is an important chemokine in immune system against 

bacterial and viral infections, the expression level of IL-8 was investigated by both indirect 

ELISA and qRT-PCR. Although individual infection of LT2 and P22 stimulated IL-8 expression 

levels, the presence of both increased IL-8 production significantly more than either individual 

treatment. These two results were supported by both the ELISA and qRT-PCR. In addition, the 

drastic over 40 fold increase in IL-8 production compared to control in all treatments implied 

that the infection of LT2 and P22 could stimulate IL-8 production in HD-11 cells. IL-8 mRNA 

expression levels in treatment B were higher than treatment C (Table 2) however, both 

treatments showed reverse results in protein expression levels (Fig. 3). The difference in 

correlation between mRNA and protein expression levels may be due to several factors such as 

various and complicated post-transcriptional mechanisms in translation from mRNA to protein, 

different half lives of protein as well as both mRNA and protein experimental limitations 

(Greenbaum et al., 2003). IL-8 is one of the CXC chemokines produced by macrophages and is 

an important mediator for initiation of innate immune response in the infected cells. 
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 The utilization of bacteriophages to modulate pathogen load in complex ecosystems such 

as the intestine represents additional logistical challenges (Barrow, 2001; Ricke et al., 2012). 

Nonetheless, in the late 1980s, Smith and coworkers successfully used bacteriophages to control 

E. coli diarrhea in calves (Smith et al., 1987). Their study demonstrated the potential 

effectiveness of bacteriophage use to treat intestinal bacterial infections even in the complex 

milieu of the gastrointestinal system. In previous reports, several studies have shown that 

bacteriophages may be useful in reducing the number of bacterial foodborne pathogens including 

Escherichia coli O157:H7 (Sheng et al., 2006), Campylobacter jejuni (Goode et al., 2003), 

Listeria monocytogenes (Leverentz et al., 2003) and Salmonella serovars (Higgins et al., 2005; 

Wall et al., 2010) contaminating the surface of food, poultry and swine. In addition, 

bacteriophages have been investigated for their ability to reduce Salmonella already established 

in the poultry intestine; however, this application has resulted in only modest success (Toro et al., 

2005; Atterbury et al., 2007; Higgins et al., 2007). Huff et al (2010) examined the immune 

response of chicken against bacteriophage SPR02 by IgG level titers in serum. Prior exposure to 

the same bacteriophage increased IgG levels in the chicken such that the therapeutic 

effectiveness of bacteriophage was believed to be decreased by the avian immune response. 

 Bacterial infections in animal hosts theoretically can be controlled by bacteriophage 

treatment through two mechanisms; direct bacteriophage lysis or immune response via bacterial 

lysate produced by bacteriophages (Merril et al., 1996; Borysowski & Górski, 2008). Thus, 

bacterial infection in a host can be directly eliminated by adding bacteriophages. However, 

bacteriophage itself can increase specific IgG serum levels in the animal host by intramuscular 

injection because outer protein structures of bacteriophage are recognized as antigens in the host 

cells thus they can be neutralized by antibodies (Huff et al., 2010; Ricke et al., 2012). As a result, 
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bacteriophage specific antibodies decreased the antibacterial phage activities and increased the 

mortalities of animal host (Huff et al., 2010).  

 In this study, we evaluated several chicken macrophage cell (HD-11) cytokine responses 

to the presence of either bacteriophage or S. Typhimurium, and were able to detect differential 

immune responses by the host cells. However, since this was an in vitro model system this does 

not ensure that such direct cell to phage interactions would occur in vivo. To assess such 

interactions when using bacteriophage for systemic treatments in food animals such as chickens, 

it will be essential in future studies to investigate the overall animal host immune response 

against the bacteriophage activities as well as responses at the cellular levels of the host.  
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Table 1. Primer pair sequences used in this study 
 

Target Primer Sequence (5’ - 3’) Amplicon size (bp) Reference 

IL-4 CIL-4 
(AC2007) 

TGT GCT TAC AGC TCT CAG TG 
212 Abdul Carem et al., 2007  

TGG AGT AGT GTT GCC TGC TG 

IL-8 CIL-8 
 (SHP-1) 

GCT CTG TCG CAA GGT AGG AC 
231 This study 

GGC CAT AAG TGC CTT TAC GA 

IL-10 CIL-10 
 (AC2007) 

AGC AGA TCA AGG AGA CGT TC 
103 Abdul Carem et al., 2007 

ATC AGC AGG TAC TCC TCG AT 

INF-γ CINF-γ 
(SHP-1) 

AGC CGC ACA TCA AAC ACA TA 
192 This study 

TCC TTT TGA AAC TCG GAG GA 

GAPDH chGAPDH 
GGC ACT GTC AAG GCT GAG AA 

99 Lee et al., 2010 
TGC ATC TGC CCA TTT GAT GT 
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Table 2. Cytokine gene expression in response to 5 treatments 
 

Treatment 
Fold changes§ 

IL-4 IL-8 IL-10 IFN-γ 

A Näive cell 1E 1E 1E 1E 

B HD-11 + bacteriophage (P22) 1.1E 52.3BC 17.4DE 17.5DE 

C HD-11 + S. Typhimurium LT2 1.6E 40.3CD 2.3E 9.3E 

D HD-11 + S. Typhimurium LT2 + 
bacteriophage (P22) 1.5E 68.2B 2.7E 5E 

E HD-11 + S. Typhimurium LT2 + 
bacteriophage (P22) + gentamicin -1.3E 201.1A 1.2E 2.5E 

§Fold changes: Values with different superscript capital letters (A to E) in columns and rows are 
significantly different (P < 0.05). 
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Figure 1. Adherence and uptake rate of HD-11 by LT2 and ST55 strains. Results were expressed 

as the percentage of adhered and invaded bacteria cells for three to five individual experiments. 

Different lower case letters (a to d) indicate significant differences within experiments (P < 0.05). 

ST-LT2#: Salmonella Typhimurium LT2 strain, ST-ST55*: Salmonella Typhimurium ST55 

strain 
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Figure 2. Effects of P22 on both extra- and intracellular LT2 recovery. Data showed the time 

period dependence of recovery. The relative percentage of recovery was determined as recovery 

presence of P22 divided by the recovery in the absence of P22 (i.e., 100% relative recovery). 

Different lower case letters (a to c) indicate significant differences within experiments (P < 0.05). 

Left bar stands for LT2 recovery without P22 and right bar stands for LT2 recovery with P22 at 

each time point 

  



134 
 

 

Figure 3. Supernatant IL-8 levels of HD-11 (cell) infected with LT2 and/or P22. Supernatant 

was collected from only HD-11, HD-11 infected with LT2, HD-11 cells infected with initially 

LT2 and later killed by P22 and HD-11 infected with P22. Different lower case letters (a to d) 

indicate significant differences within experiments (P < 0.05). 
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1. Abstract 

 Pasture flock raised poultry are becoming an increasingly popular product, but only 

limited options are currently available for maintaining gut health. For these producers, prebiotics 

are an attractive option because they are generally recognized as safe (GRAS) and can be mixed 

into the feed and thus do not require adjustments to production protocols. However, if prebiotic 

treatments reduce production performance, they would not be useful to producers. Thus, the 

objectives of this study were to measure performance of pasture flock raised broilers as well as 

transcriptomic analysis of small intestines fed one of three prebiotic treatments. The 

experimental design was replicated and birds were split into 4 groups, each group fed one feed 

additive 1) galactoligosaccharides (GOS; 2% W/W); 2) fructooligosacchrides (FOS; 1% W/W); 

3) plum fibers (1% W/W); or 4) no additives. During the 6 week rearing period, 10 birds from 

each group were selected and euthanized to collect the small intestine. Throughout the study, 

mortality was monitored and body weight (BW) measurements were taken at 2 week intervals. 

There were no significant differences in BW at 2 wk of age bird. At 6 wk of age, those birds fed 

the GOS had a lower BW than the other 3 groups, and the group receiving feed supplemented 

with FOS had the highest final BW. Parts yields were also measured and results showed that 

there were no significant differences in parts yields among the treatments. In microarray data, a 

total of 1182, 2192 and 1845 differentially expressed genes in plum fibers, FOS and GOS were 

identified, respectively. Also, each 376, 713 and 628 genes were identified as functionally 

known genes and clustered into 63, 77, and 71 of biological functional group by IPA program. 
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2. Introduction 

 Organic and pasture flock poultry producers utilize a non-conventional system approach 

to poultry production. Some producers utilize mobile pens and move the pens on a routine basis 

in order to provide fresh pasture for the birds. Other producers may have a non-mobile housing 

unit with access to an enclosed outdoor area. There can be many variations of the design, but 

access to outdoors is given to the birds in all of these production systems (Tuytenns et al., 2011). 

Organic and pasture flock poultry products are becoming more popular and likewise the demand 

for these products is also increasing. Many consumers are attracted to these types of products 

because they believe organic and pasture raised poultry products will improve consumer health 

as compared to conventionally raised poultry (Van Loo et al., 2011). One of the factors driving 

this attitude is the fact that organic and pasture flock producers reduce or eliminate the use of 

antibiotics and vaccines. As such, producers are limited in the types of intervention measures that 

can be utilized to keep birds healthy. Many producers have considered prebiotics and probiotics 

as potential feed additives to improve gut health and overall health of the flock (Donalson et al., 

2007; 2008a, b). 

 Historically, several approaches such as antibiotics, probiotics and prebiotics have been 

widely used to improve broiler chicken performance and reduce enteric diseases caused by 

poultry products (Ricke and Pillai, 1999; Jones and Ricke, 2003; Patterson and Burkholder, 2003; 

Biggs et al., 2007; Huyghebaert et al., 2011; Callaway and Ricke, 2012; Siragusa and Ricke, 

2012). Generally, antibiotics have been more widely used than other growth promoters due to the 

prominent features in improving growth rates and acting as prophylactic agents (Jones and Ricke, 

2003; Huyghebaert et al., 2011). However, the emergence of multidrug resistant (MDR) 

pathogens and consumer demands for antibiotic free chickens has led to a push to the 
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development of alternatives in the poultry industry. Prebiotics have been considered as one of the 

potential replacements for antibiotics to resolve these concerns. A prebiotic can be defined as “a 

non-digestible food ingredient that beneficially affects the host by selectively stimulating the 

growth and/or activity of one or a limited number of bacteria in the colon” (Gibson and 

Roberfroid, 1995). Prebiotics are not hydrolyzed by digestive enzymes in upper gastrointestinal 

tracts of the respective host but are selectively utilized by beneficial bacteria such as 

Bifidobacteria and Lactobacillus which are generally regarded as safe (GRAS) (Roberfroid, 

1998; Swennen et al., 2006). Although many different types of prebiotics such as peptides, 

proteins and lipids can be utilized, oligosaccharides are the primary prebiotics because 

oligosaccharides can be hydrolyzed and fermented by gut bacteria (Gibson and Roberfroid, 1995; 

Ziemer and Gibson, 1998; Sako et al., 1999). 

 A variety of oligosaccharides prebiotics have been investigated to promote gut health in 

chickens (Patterson and Burkholder, 2003; Park and Oh, 2010). The prebiotic oligosaccharide, 

fructooligosaccharides (FOS) has been shown to increase beneficial bacteria and inhibit 

Clostridium perfringens, Escherichia coli and Salmonella colonization in the large intestines of 

poultry (Bailey et al., 1991; Hofacre et al., 2005; Biggs et al., 2007; Donalson et al. 2007, 2008a, 

b). Galactooligosaccharides (GOS) ranges from 2 to 6 sugar moieties created by enzymatic 

reaction using lactose as substrate and acquired from degradation of galactan side chains in 

pectin (Jones et al., 1997; Park and Oh, 2010). Since several prebiotics possess common 

physiological features with dietary fibers, many studies have been performed to establish specific 

mechanisms attributable to prebiotics and gut microflora in humans and animals. Shifts to higher 

levels of short chain fatty acids (SCFA) such as acetate, propionate and butyrate produced by 

increasing beneficial bacteria and/or enhancing fermentation activities of specific gut microflora 
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metabolizing dietary prebiotics can lead to decreases pathogenic bacteria (Delzenne and 

Williams, 1998; Ricke, 2003). Furthermore, prebiotics have also been associated with lipid 

metabolism in a variety of animals that exhibit decreased hepatic and triglycerol levels in blood 

serum (Cheng and Lai, 2000; Delazenne and Kok, 2001).  

 To our knowledge, although prebiotic effects on gut microflora shifts in humans and 

animals have been extensively investigated, understanding the relationship between prebiotics 

and host metabolism at the molecular level has remained elusive. Notably, lipid metabolism is 

highly associated with prebiotics and needs to be studied at the molecular level. The goal of this 

study was to evaluate performance productions of broiler chickens after treatment with three 

different prebiotic supplements. Additionally, lipid metabolism in broiler chickens given 

prebiotics supplements was investigated. To do this, microarrays were conducted to evaluate 

different gene expressions according to prebiotic treatments using samples of small intestinal 

cells and ingenuity pathway analysis (IPA) software was used to analyze functional networks 

among up- or down-regulated genes based on microarray data. 

 

3. Materials & Methods 

3.1. Experimental Birds and Housing 

 A total of 340 day-of-hatch Cornish Cross White Plymouth Rock commercial broiler 

chicks were obtained from a local hatchery (Cobb 500; Cobb-Vantress, Fayetteville, AR, USA). 

The birds were split into 4 groups for a total of 85 birds in each pen. For the first 2 wk of life, the 

birds were placed in conventional housing pens measuring approximately 50 ft2 (4.65 m2). The 

floors of the pens were lined with wood shavings, nipple drinking units to provide water, and 

floor pans to provide feed. At 2 wk of age, birds were moved into outdoor pens measuring 
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approximately 80 ft2 (7.23 m2) which consisted of a wood base with wire mesh sides and roofing. 

Plastic tarps were used on the roofs to shield the birds from excess sun and rain. The feed and 

water access was similar to the indoor access. Birds had access to feed and water ad libitum for 

the duration of the experiment with the exception of a 12 h feed withdrawal at the end of the 

experiment. On a weekly basis, the pens and birds were moved to fresh pasture that was located 

10 feet from the previous locations and had not been previously used for poultry rearing 

purposes.  

 

3.2. Prebiotic and Feed Formulation 

 Three prebiotics were added to the starter and finisher feeds in each group and fed with 

water ad libitum. Each group consisted of 1) control (no prebiotic), 2) plum fibers (California 

Dried Plum Board, Sacramento, CA, USA) added at 1 Kg per ton of feed, 3) 

fructooligosacharrides (FOS; GTC Nutrition, Golden, CO, USA) added at 1 Kg per ton of feed 

and galactooligosacharrides (GOS; GTC Nutrition) added at 2 Kg per ton of feed respectively. 

Feed was supplemented with the prebiotics consistently during the experimental period. Every 2 

wk, a total 10 birds from each group were selected randomly for necropsy, transported to the 

laboratory and euthanized humanely using CO2. The extracted small intestines were immediately 

transferred to Trizol reagent (Invitrogen, Carlsbad, CA, USA) for RNA isolation as described in 

the following section. 

 

3.3. Performance Measurement and Processing 

 Throughout the duration of the study, mortality was noted in each group. Every 2 wk, a 

total of 10 birds from each treatment group were removed from the pens, euthanized humanely, 
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and weighed. On 42 day of the study, the birds were processed for this portion of the study using 

commercial methods (Mehaffey et al., 2006). From each of the 4 treatment groups, all remaining 

birds were processed (n = 36 to 46). Tagged carcasses were weighed after evisceration and the 

carcasses were sectioned into 5 pieces consisting of legs, wings, breasts, tenders, and the 

remaining rack including skin. Separate weight data points were collected for each of these 

pieces. Carcasses were chilled for 4 h at 4˚C before deboning. Yield was expressed as a 

percentage of ready-to-cook carcasses (without giblets). 

 

3.4. Statistical Analysis 

 Data were analyzed by ANOVA using the GLM procedure of SAS (SAS Institute Inc., 

2002). The mean of treatments were separated by LSMEANS analysis. A probability of P < 0.05 

was prerequisite for statistical significance. Each pen was considered as one experimental unit. 

 

3.5. Total RNA Isolation 

 Total RNA of small intestine from each treatment was isolated using Trizol reagent to 

perform microarray and quantitative reverse transcriptase PCR (qRT-PCR). One mililiter of 

Trizol reagent was added to 200 mg of small intestines and homogenized immediately. Total 

RNA was isolated according to Linton’s method (Linton et al., 2010) and DNase I (New England 

Biolabs, Ipswich, MA, USA) was treated for 1 h at 37˚C to eliminate possible contaminating 

genomic DNA. Total RNA was subsequently purified by Qiagen RNeasy mini kit (Qiagen, 

Valencia, CA, USA) following the manufacturer’s instruction, and the concentration and purity 

were measured by a NanoDrop ND-1000 (Thermo Scientific, Wilmington, DE, USA). The 

quality of total RNA was evaluated by 1% agarose gel electrophoresis. 



145 
 

 

3.6. Microarray 

 The microarray system was designed to compare the control and each of the three 

different prebiotics treatments. A two color labeling system was applied to generate 

complementary RNA (cRNA) probes labeled with fluorescence using a Two Color Microarray 

Quick Labeling kit (Agilent Technologies, Palo Alto, CA, USA) according to the manufacturer’s 

instruction. In order to evaluate dye effects on labeled cRNA, the spike-in controls including two 

sets of ten synthesized RNA mixtures were used following the manufacturer’s instruction 

(Zahurak et al., 2007). Prepared spike-in mixtures were added to either control or prebiotics 

treatments and co-hybridized with arrays.  

 In brief, 2 µg of total RNA mixed with spike-in were transcribed into cDNA by reverse 

transcriptase and oligo dT primers and subsequently, T7 RNA polymerase synthesized cRNA 

and labeled with Cy3 for control or Cy5 for prebiotic treatment. The labeled cRNA probes were 

purified using the Qiagen RNeasy Mini Kit (Qiagen). The concentrations and labeled cRNA 

probes quality were measured by NanoDrop ND-1000 (Thermo Scientific). Each 815 ng of Cy3 

and Cy5 labeled cRNA were used for hybridization onto a 4 X 44 Agilent custom chicken oligo 

microarray chip. After 16 h hybridization, the slides were washed using commercial wash 

buffers (Agilent Technologies) and scanned by a GenePix 4000B scanner (Molecular Devices 

Corporation, Sunnyvale, CA, USA). This experiment was repeated as four replicates. 

 

3.7. Microarray Data Analysis 

 To normalize background-corrected red and green color intensities of each spot, locally 

weighted scatterplot smoothing linear regression (LOWESS) normalization method was utilized 
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to remove unexpected systematic variations during microarray experiments. Each spot showing 

both foreground intensity of >100 and signal to noise ratio (SNR) of >3 were screened as reliable 

signals as well as Spike-ins were considered as reference ratios reported previously (Zahurak et 

al., 2007). Normalized genes were analyzed by one-way ANOVA test to identify significant 

differential expressed genes over time. All statistically analyses were performed using Microsoft 

Excel 2010 and JMP Genomics 5.0 (SAS Institute, Cary, NC, USA) licensed with Cell and 

Molecular Biology Graduate Program, University of Arkansas, Fayetteville, AR, USA. 

 

3.8. Quantitative Reverse Transcriptase PCR (qRT-PCR) 

 The qRT-PCR assay was optimized using an Eppendorf Masterplex thermocycler ep 

Gradient Technology (Eppendorf, Westbury, NY, USA). High up- or down-regulated genes at 6 

week as well as presented in three treatments were selected to evaluate expression levels with 

microarray data. Primer pairs for selected genes were designed using Primer 3 program 

(http://frodo.wi.mit.edu/primer3/input.htm), and primer pair based on GAPDH gene was adopted 

from previous report as endogenous control for relative quantification (Lee et al., 2010). All 

primer pairs were synthesized by Integrated DNA Technologies (Coralville, IA, USA, USA) and 

information is listed in Table 1. The total 20 µl of reaction mixture consisted of 500 ng of total 

RNA, 500 nM of each primers, 10 µl of EXPRESS SYBR GreenERTMqPCR SuperMix with 

Premixed ROX (Invitrogen), 0.5 µl of EXPRESS SuperScript Mix for One-Step SYBR GreenER 

(Invitrogen) and DEPC water to final volume. The qRT-PCR was performed with the reaction 

conditions of 50˚C for 5 min for the synthesis of cDNA from total RNA, then followed by 40 

cycles of 95˚C for 15 s, 57˚C for 15 s and 68˚C for 20 s. Melting curves were subsequently 

created which consisted of 95˚C for 15 s, 60˚C for 20 min. increasing by 0.5˚C per minute to a 
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final temperature of 95˚C. All PCR products were electrophoresed onto 1% agarose gel for 

confirmation as well as each experiment was repeated in triplicate. The relative differential gene 

expressions were calculated by the 2−ΔΔCT method. 

 

3.9. Bioinformatics Using Ingenuity Pathway Analysis (IPA) 

 The Ingenuity Pathways Analysis (IPA; Ingenuity Systems®) 6.5 software was used in 

this study to interpret the functional connections among differentially expressed genes and 

molecular networks. The IPA program can be used as a bioinformatics tool to identify biological 

mechanisms at molecular levels in biological researches. The differentially expressed genes 

based on microarray data in each treatment over time were categorized by biological functions 

with an appropriate fold-change values and p-values based on the IPA database and the crucial 

associated genes were identified. Since the IPA program can potentially generate numerous 

networks with selected molecules, numbers of generated networks were limited to 10 and 35 

molecules in each network, respectively.     

 

4. Results and Discussion 

4.1. Body Weight (BW), Mortality and Yield 

 Body weight (BW) of the birds was dependent upon the feed additive and time of BW 

measurement (Table 2). There were no significant differences in BW at 2 wk of age bird. At 6 

wk of age, those birds fed the GOS had a lower BW than the other 3 groups and the group 

receiving feed supplemented with FOS had the highest final BW and average mortality was 4.4% 

(data not shown). With respect to feed treatments, average mortality was the lowest (P < 0.05) 

for birds given feed supplemented with GOS (2%), and there were no significant differences in 
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mortality among the other 3 treatment groups. Parts yields were also measured and results show 

that there were no significant differences in parts yields among the treatments (Table 3). 

 Gut health has been equated to and may be used as a measurement of overall health of 

birds (Manning et al. 2007). To improve gut health, products such as probiotics and prebiotics 

are used to enhance the concentrations of beneficial bacteria in the host gut. Gut health and 

overall health can be measured using performance standards such as weight gain, mortality, and 

intestinal histological measurements (Thompson and Applegate, 2006; Manning et al., 2007). 

However, other measurements including carcass yield and feed conversion are critical for 

producer profits. Treatments that decrease any performance measurements are not useful for 

producers. For example, Jarquin et al. (2007) used organic acids and probiotics as treatments in 

broilers to eliminate Salmonella from the gastrointestinal tract and crop, but found that weight 

was significantly reduced in the treatment groups. The authors concluded that the birds were 

refusing the water due to the off flavor and odor, which subsequently reduced weight gain. 

Additional studies have been performed with various organic acids and some studies reported 

similar results but varied depending on the concentration and acid used (Dibner and Buttin, 

2002). For feed additives specifically, some feed supplements can reduce the passage rate of 

feeds (Cave, 1984; Dibner and Buttin, 2002). This can reduce the intake of feed and result in a 

numerical increase in feed efficiency. However, the end result is a smaller bird, which may not 

necessarily improve profitability for a producer. The data from this study indicated that GOS, 

FOS, and plum fibers could be used and did not reduce production performance. Feed additives 

have been evaluated for improving overall yield. Typically, proteases are added to improve the 

amino acid utilization, which in turn may increase the size of the muscle (Fisher, 1993; Cafe et 

al., 2002).  
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 The feed additives used in this study were nondigestible carbohydrates and should not 

have any improvement on amino acid utilization, but could possibly reduce the performance in 

ways such as reducing passage rate or reducing amino acid utilization. However, the data 

indicated that none of the treatments reduced the yield of the bird performance parameters 

measured in this study. Additional studies should be done to confirm these results over several 

seasons and with more flocks. In conclusion, the prebiotic feed additives used in this study did 

not reduce the final weight gain, had no effect on mortality and did not decrease yield of the 

carcass. Thus, these feed additives can be used by producers without reducing production 

parameters. Future studies include investigating other effects the prebiotics may have on other 

factors including assessing any changes in the gut microflora. 

 

4.2. Microarray 

 To identify different transcriptional gene expression levels between control (no prebiotics) 

and each prebiotics treatment, microarrays including whole chicken genomes were conducted 

using total RNA isolated from small intestine. A total of 44K probes on slides were evaluated in 

each microarray assay using 2, 4 and 6 weeks samples of each prebiotics treatment. The dye-

swaps in two of four total replicates were performed and no possible dye effects were detected 

(data not shown). At least 2 fold up- or down-regulated genes at one of the time points were 

selected and confirmed as significant differences via one-way ANOVA test with the JMP 

Genomics 5.0. A total of 1182, 2192 and 1845 differentially expressed genes in plum fibers, FOS 

and GOS were identified, respectively. These selected genes were analyzed by IPA software to 

generate gene networks and functional annotations. 
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4.3. qRT-PCR 

 To confirm the microarray results, 15 genes commonly present in three treatments were 

randomly chosen and qPCR with GAPDH gene as internal control was performed with the same 

total RNA originally used in the microarrays. The microarray values were calculated by log2 fold 

changes while those of qPCR were determined by 2-ΔΔCt and then converted to log2 value to 

compare with microarray values. The fold changes comparison between microarray and qRT-

PCR were well-matched (Table 4).  

 

4.4. Functional gene ontology 

 Recently, several bioinformatics tools have been developed for analysis of biological 

relationship between diffentially expressed fuctional genes acquired from microarray data. The 

IPA, one of bioinformatics programs, was utilized to analyze relevance of functional gene 

ontologies and genetic networks. Each ot the 376, 713 and 628 genes were identified as 

functionally known genes and clustered into 63, 77 and 71 biological functional group by IPA 

program in plum fibers, FOS and GOS treatments, respectively. Each of the top 10 groups that 

included the greatest number of genes is represented in Figure 1. Six out of 10 groups were 

commonly presented in three treatments and associated with small molecule biochemistry, lipid 

metabolism, molecular transport, genetic disorder, dermatological diseases and conditions and 

gastrointestinal disease. Among these functional groups, the lipid metabolism group was further 

investigated to verify the correlation with administration of the prebiotics. 

 In the development of numerous bioinformatics database utilization, several studies for 

transcriptomic profiling in chickens have been accomplished (Désert et al., 2008; Zheng et al., 

2009; Ciraci et al., 2010; Higgins et al., 2011; Sibut et al., 2011). Désert et al. (2008) 
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investigated metabolic responses including energy-metabolic response in the liver of 4 wk male 

chickens using microarray and bioinformatics tools. They found 1162 of differentially expressed 

genes in chicken liver at feeding-to-fasting transition and analyzed genetic networks using IPA. 

After 16 h of fasting, genes associated with glucogenesis, peroximal fatty acid beta oxidation and 

ketogenesis were up-regulated while genes involved in fatty acid and cholesterol systhesis were 

down-regulated. Zheng et al. (2009) identified 543 genes involved in regulation of muscle 

growth at 1, 2, 4, 6, and 8 wks of broilers and layer chickens as well as gene ontology analysis 

was performed using GOEAST software. Interestingly, Sibut et al. (2011) utilized lean and fat 

chickens for transcriptomic analysis to investigate differentially expressed genes associated with 

muscle glycogen contents and meat quality. This is the first study for understanding of molecular 

mechanisms in chicken meat quality. 

 

4.5. Gene Networks Analysis 

 Gene networks mapped by IPA program represented the interaction among focus 

molecules with fold change values. Although various assay setting conditions for generating 

networks were presented, the simplest assay condition consisted of 10 networks and 35 focus 

molecules was adopted to analyze the large number of genes. Of the networks generated 6, 4 and 

4 out of each of the 10 networks in plum fibers, FOS and GOS treatments respectively were 

associated with lipid metabolism (Table 5), because many prebiotics were involved in lipid 

metabolism with a putative influence in animals and humans (Delzenne and Wiliams 2002). 

Thus, networks related to lipid metabolism are discussed in the following section. 

 

4.5.1. Plum Fibers Treatment  
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 Network #1 generated based on plum fibers supplemented chicken is closely related to 

lipid metabolism, small molecule biochemistry and molecular transport pathway with 29 focus 

molecules over time (Figure 2). Interestingly, acetyl-CoA C-acyltransferase appeared to 

associate with four core molecules (ACAA1, ACAA2, HADHA and HADHB). The expression 

level of ACAA1 (acetyl-CoA acyltransferase 1) and ACAA2 (acetyl-CoA acyltransferase 2) 

molecules which are associated with catabolism of long chain fatty acids through beta-oxidation 

were increased over 4 fold changes at 6 wk compared to 2 and 4 wks samples (He et al., 2011; 

Schlüter et al., 2011). Both HADHA (hydratase alpha subunit) and HADHB (hydratase beta 

subunit) molecules were also increased over time. Since these two molecules play important 

roles in long chain fatty acids metabolism, the fatty acids without sufficient level of both 

enzymes cannot be converted to energy and cause disease such as lethargy and hypoglycemia 

(Choi et al., 2007). FABP6 (fatty acid binding protein 6) which is involved in fatty acid uptake 

and transport is a highly conserved cytoplasmic protein that binds long chain fatty acids and bile 

acids (Hughes and Piontkivska, 2011). This molecule was increased over time along with 

SCARB1 (scavenger receptor class B, member 1) that is an integral membrane transporter 

protein identified in liver. The principal role of SCARB1 in the liver is to take up cholesterol 

from lipoprotein (Daniels et al., 2011). 

 

4.5.2. FOS Treatment 

 Network #6 in FOS treatment is associated with lipid metabolism, small molecule 

biochemistry and molecular transport pathway with 29 focus molecules (Figure 3) as well as all 

molecules were highly up-regulated at 6 wk compared to 2 and 4 wk chickens. Both PPARA 

(peroxisome proliferator-activated receptor alpha) and PPARD (peroxisome proliferator-
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activated receptor delta) acted directly on ACOX1 (acyl-CoA oxidase 1) which is the first 

enzyme for fatty acid beta oxidation-pathway. ACOX1 is responsible for pseudoneonatal 

adrenoleukodystrophy caused by accumulation of long chain fatty acids (El Hajj et al., 2012). 

PPARA is a ligand-dependent nuclear receptor and major regulator for lipid metabolism in liver. 

In general, PPARA is activated through ligand-binding and associated with fatty acid transport 

and peroximal fatty acid beta-oxidation (Harris and Finck, 2011). Both ACADS (acyl-CoA 

dehydrogenase short chain) participated in long chain fatty acid to generate acyl-CoA and 

ELOVL6 (elongation of long chain fatty acids) were affected by PPARA (He et al., 2010; 

Schlüter et al., 2011).   

 

4.5.3. GOS Treatment 

 Network #1 in GOS treatment is related to lipid metabolism, small molecule 

biochemistry and molecular transport pathway with 29 focus molecules (Figure 4). Although 

most of the molecules associated with lipid metabolism are the same compared to plum and FOS 

treatments, differential expression levels of each molecule are higher than both treatments. 

FABP5 (fatty acid binding protein 5) found in epidermal cells and FABP6 (fatty acid binding 

protein 6) in ileal cells are up-regulated over a 9 fold change at 6 wk sample. Both molecules are 

highly conserved cytoplasmic transporters that bind long-chain fatty acids and hydrophobic 

ligands (Veerkamp et al., 1999; Hughes and Piontkivska, 2011) and ACAA1 molecule also 

increased in the 6 wk sample. PHYH (phytanoyl-CoA hydroxylase), one of cytoplasmic enzyme 

interact with ABCD3 (ATP-binding cassette, subfamily D) to transport enzyme into cells and 

this enzyme is associated with alpha-oxidation of branched chain fatty acids in peroxisomes 

(Mihalik et al., 1997). 
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5. Conclusion 

 In this study, we have evaluated the effect of three prebiotics on the bird performance and 

trancriptomic analysis of small intestines using molecular techniques and bioinformatics tools. 

Since there were no significant differences in BW, mortality and parts yield among treatment, 

prebiotics used in this study have no side effects on productivity. Furthermore, prebiotics can 

increase several protein expressions associated with lipid metabolism in small intestines. The 

breakdown of long chain fatty acids in the gut might increase beneficial bacteria as well as 

promote gut health. In order to confirm the effects of fatty acids on gut microflora, next 

generation sequencing needs to be performed.  
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Table 1. Primer pair sequences used in this study 
 

Primers name Accession number Sequence Gene symbol 

PT-1 NM_205147 GGACTCATTGATTGGGCACT CYP1A4 TCCAGCTCTGCCTGAATCTT 

PT-2 BU124208 TGGGAGCATGAACACGAATA LOC424523 CACCAGCAGTTGTAGGCAAA 

PT-12 NM_001001751 AGCTCTGTCCCTGTGAAGGA CYP3A7 TGGCCATAAGAGGAGTGAGG 

PT-14 NM_001001203 CATTCAGAACTCGTCCGACA EREG GAATGCTGCAGGAAGTCACA 

PT-18 Z68489 TGGTATGCCAACAGAAGCTG LCT TTCACGTGATGTAGCCCAAA 

PT-19 XM_414163 ACTGGGTATCCATCCATCCA BCMO1 CCAAAGCCCCATTGTTCTTA 

PT-23 XM_414111 ACAAAAGCCTGCAAGGAAGA GPT2 AGCCACATATCCGTTTCCAG 

PT-25 NM_205513 CAGGGTGTCAAAATGTGTGC CALB1 AAGCTTCCCTCCATCAGACA 

PT-27 XM_416675 ACCAACAGGGTCTCAACCAG LIPI AGCTCCAGCTGACAGCATCT 

PT-53 NM_204322 GCAAACATTGAAGCTGTGGA GLDC CCATCCTGCCTTCCTCTATG 

PB-10 BX936187 AAGGTTGCAAACCTCAATGG RDH5 CGCTGTTTGAATCTCTCACG 

PB-11 CR389474 CCACTGGAAAACCAGAAGGA LRCH2 ACAGGAGACTGTGGGGACAC 

PB-14 NM_001008463 CCAGAAGGAGCACACAGGTT PGS1 AGCAATTCACCAGCTCCTGT 

PB-16 NM_205240 GTGAAACCAGTTGCCAAGGT ST6GALNAC1 ATGCTGGGAAGTGCTATCGT 

PB-27 NM_205268 TGGCTGCATACAGACAGGAG NOV GGCTCTTCGTTTTCACAAGG 
           

  



 
 

Table 2. Body weight of birds fed1,2 one of 3 feed supplements 1) galactoligosaccharides3; 2) fructooligosacchrides4; 3) plum fibers5 
or 4) no feed additives  
                                                                                                  

     Feed Additive 

Cornish White 
rock cross broilers 

Bird age Control Plum GOS FOS 

2wks 250.7 + 19.9a 208 + 10.6b 227.4 + 10.9a 231.8 + 13.9a 

4wks 976.7 + 43.2a 940.9 + 30.9a 974.5 + 49.9a 873.6 + 52.3b 

6wks 1866 + 74.8a 1867 + 70.2a 1697 + 64.6b 1924 + 55.1c 
a,b Within a row and at each age, means without a common superscript are significantly different (P < 0.05) 
1Values are means ± SEM; n = 10 
2For the first two weeks of life, chick starter formula was utilized and for the remaining 4 weeks of the experiments, a grower formula 
was utilized. Feed additives were given for the duration of the experiment (6 weeks).  
3GOS; 2% W/W; GTC nutrition, Golden, CO, USA 
4FOS; 1% W/W; GTC Nutrition, Golden, CO, USA 
5Plum fibers; 1% W/W; California Dried Plum Board, Sacramento, CA, USA 
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Table 3. Parts yield1 of carcasses expressed as a percentage of carcass yield without giblets 
(WOG) of birds fed2 one of 3 feed supplements 1) galactoligosaccharides3; 2) 
fructooligosacchrides4; 3) plum fibers5 or 4) no feed additives. 
 

 Control 
N=43 

Plum 
N=37 

FOS 
N=46 

GOS 
N=36 

Wing % 11.1 + 1.66a 10.6 + 1.7a 11.0 + 1.6a 10.66 + 1.7a 

Breast % 22.1 + 3.3a 22.5 + 3.6a 22.2 + 3.2a 22.5 + 3.6a 

Tender % 5.7 + 0.9a 5.6 + 0.9a 5.4 + 0.8a 5.6 + 0.9a 

Legs % 5.6 + 0.9a 5.6 + 0.9a 5.4 + 0.8a 5.6 + 0.9a 

Rack % 28.8 + 4.3a 28.8 + 4.7a 28.8 + 4.2a 28.8 + 4.6a 
aMeans without a common superscript are significantly different (P < 0.05). 
1Yield expressed as percentage of ready-to-cook carcass 
2For the first two weeks of life, chick starter formula was utilized and for the remaining 4 weeks 
of the experiments, a grower formula was utilized. Feed additives were given for the duration of 
the experiment (6 weeks).  
3GOS; 2% W/W; GTC nutrition, Golden, CO, USA 
4FOS; 1% W/W; GTC Nutrition, Golden, CO, USA 
5Plum fibers; 1% W/W; California Dried Plum Board, Sacramento, CA, USA 
  



 
 

Table 4. Comparison of fold changes between microarray and qRT-PCR 
 

GenBank 
Accession 
Number 

Gene 
Symbol 

Plum FOS GOS 

2 week 4 week 6 week 2 week 4 week 6 week 2 week 4 week 6 week 

Ma Pb M P M P M P M P M P M P M P M P 

NM_205147 CYP1A4 -0.4 -2.06 -0.79 -1.36 4.32 3.4 0.5 0.23 -0.63 -1.15 5.32 4.38 0.89 0.1 -1.27 -0.45 4.73 2.93 

BU124208 LOC424523 0.37 0.14 0.74 2.46 5.11 8.24 0.08 0.14 -0.31 1.07 4.76 7.24 0.46 0.01 -1.67 -0.74 4.57 6.87 

NM_001001751 CYP3A7 0.96 -0.17 0.49 1.22 4.21 3.64 1.1 0.29 -0.02 0.96 4.07 2.54 1.05 1.8 -0.68 0.6 3.76 2.7 

NM_001001203 EREG 0.41 -0.84 0.27 1.25 2.96 1.77 0.23 -0.42 -0.09 0.83 4.2 3.01 0.02 1.24 -0.04 1.21 2.31 1 

Z68489 LCT -0.35 -1.32 0.11 0.85 3.46 2.56 0.58 0.26 -0.01 0.68 3.54 2.32 0.42 1.58 -0.63 0.58 4.11 2.72 

XM_414163 BCMO1 0.73 0.49 0.39 1.49 3.83 3.02 0.6 0.01 0.07 1.49 3.48 2.89 0.22 1.49 -0.71 0.77 4.11 3.32 

XM_414111 GPT2 1.06 0.61 0.48 0.59 3.53 2.18 1.03 0.86 0.1 0.45 4.03 2.32 1.3 0.85 -0.3 0.42 3.82 1.88 

NM_205513 CALB1 0.55 1.21 -0.16 0.19 3.21 1.81 0.66 1.3 0.73 0.55 3.67 1.92 0.37 0.79 -0.62 0.24 4 2.3 

XM_416675 LIPI 0.69 0.07 0.06 0.68 3.44 1.58 0.61 0.44 -0.21 0.12 3.98 1.7 0.41 -0.2 -0.62 0.39 3.28 1.11 

NM_204322 GLDC 0.43 -0.23 -0.88 -0.27 3.55 2.18 0.72 0.54 0.12 0.65 3.46 1.43 1.42 0.69 -1.09 -0.4 3.53 1.45 

BX_936187 RDH5 -3.18 -4.64 0.6 0.79 0.16 0.3 -2.7 -1.18 -0.09 0.14 1.5 1.12 -3.04 -3.18 -0.5 0.48 0.83 -0.38 

CR389474 LRCH2 -0.27 -1.32 -1.59 0.64 0.34 0.12 -0.21 0.9 -1.85 0.24 0.41 -0.64 -0.01 -0.56 -1.91 0.44 0.34 -1.43 

NM_001008463 PGS1 -1.08 -0.12 -1.76 1.15 0.55 1.02 -0.08 -0.88 -1.31 0.5 1.87 -1.26 -0.29 -0.54 -1.75 0.03 2.62 0.22 

NM_205240  -1.29 -2.23 1.35 1.07 1.76 -
0.23 0.55 -0.1 1.94 1.92 0.69 -2.77 -0.52 -1.24 1.55 2.22 2.56 -1.47 

NM_205268 NOV 1.23 1.04 -2.22 -2 2.53 1.75 0.41 0.54 -2.65 -1.9 3.28 0.92 1.18 1.04 -2.29 -1.08 1.35 -1.58 

Ma: Microarray, Pb: qRT-PCR 
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Table 5. List of functional networks associated with lipid metabolism 
 

Treatment ID Networks functions Focus molecules Score 

Plum 

1 Lipid metabolism, Small molecule biochemistry, Molecular transport 29 46 
3 Lipid metabolism, Small molecule biochemistry, Energy production 25 37 
4 Lipid metabolism, Drug metabolism, Endocrine system development and function  25 37 
6 Lipid metabolism, Molecular transport, Small molecule biochemistry 22 30 
7 Lipid metabolism, Dermatological diseases and conditions, molecular transport 21 29 
10 Lipid metabolism, Small molecule biochemistry, Cardiovascular disease 19 24 

FOS 

2 Lipid metabolism, Genetic disorder, Metabolic disease 30 39 

3 Lipid metabolism, Cellular assembly and organization, Nervous system 
development and function 28 35 

4 Lipid metabolism, Nucleic acid metabolism, Small molecule biochemistry 28 35 
6 Lipid metabolism, Molecular transport, Small molecule biochemistry 27 33 

GOS 

1 Lipid metabolism, Small molecule biochemistry, Molecular transport 32 46 
4 Lipid metabolism, Nucleic acid metabolism, Small molecule biochemistry 28 36 
5 Lipid metabolism, Drug metabolism, Cellular assembly and organization 28 36 
9 Lipid metabolism, Small molecule biochemistry, Molecular transport 23 27 163 
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Figure 1. Top 10 functional gene ontologies of each treatment based on differentially expressed 

genes. The 376, 713 and 628 genes of plum, FOS and GOS treatment were categorized into 

functional groups by associated molecules using IPA program. The X-axis represented functional 

groups name and Y-axis showed number of molecules. 
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Figure 2. Network #1 of selected gene analysis associated with supplementing plum fiber. The 

interactions among molecules are represented with symbols and color. Red shows up-regulated 

genes while green color represents down-regulated genes. The intensities of color depicts the 

fold change values over time.  
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 Figure 3. Network #6 of selected gene analysis associated with supplementing FOS. Interaction, 

symbols and color are same scheme described in Figure 2.  

  



167 
 

 

Figure 4. Network #1 of selected gene analysis associated with supplementing GOS. Interaction, 

symbols and color are same scheme described in Figure 2. 
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1. Abstract 

 Prebiotics include nondigestible carbohydrate dietary additives and other biological 

components that stimulate the growth of one or more beneficial bacteria in the gastrointestinal 

(GI) tract that are beneficial to the host. The beneficial bacteria can inhibit colonization of 

pathogenic bacteria by producing antimicrobial substances and competing for niches within the 

gut. In this study, we have evaluated the effects of both Biolex® MB40 and Lieber® ExCel 

which are commercial prebiotics derived from brewer’s yeast cell walls. The two prebiotics were 

added to GMO-free normal chicken feeds in the starter and finisher feeds in each group. Each 

group consisted of 1) control (no prebiotic), 2) Biolex® MB40 with 0.2%, 3) Leiber® ExCel 

with 0.2%. Feeds were consistently supplemented with the prebiotics during the experimental 

period. At 8 week, a total 15 of birds from each group were randomly selected for necropsy. The 

polymerase chain reaction based denaturing gradient gel electrophoresis (PCR-based DGGE) 

technique was utilized to compare microbial populations in control and both treatment groups. 

Feeds supplemented with either Biolex® MB40 or Leiber® ExCel prebiotics showed more 

consistent compared to control group. For Biolex® MB40 supplemented group, all samples were 

clustered with over 74% of relatedness. In Leiber® ExCel supplemented group showed 77% of 

relatedness among 4 samples except for one as an outlier. According to sequencing results, 

Bacteriodes salanitronis was constantly present in all groups, and Barnesiella ciscericola and 

Firmicutes were detected in both treatment groups. 
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2. Introduction 

 Prebiotics have been used for new alternatives in general gut health promotion as well as 

utilized for reducing pathogen colonization (Patterson and Burkholder, 2003, Siragusa and Ricke, 

2012). Prebiotics include nondigestible carbohydrate dietary additives and other biological 

components that stimulate the growth of one or more beneficial bacteria in the gastrointestinal 

(GI) tract that are beneficial to the host (Schrezenmeir and de Vrese, 2001). In general, prebiotics 

are mixed with feeds as additives during the milling process so all birds can access the same 

feeds, including prebiotics over the entire feeding cycle (Callaway and Ricke, 2012). Prebiotics 

can be utilized preferentially by beneficial bacteria such as Lactobacillus and Bifidobacteria 

species (Callaway and Ricke, 2012), which leads to the production of lactic acid and short chain 

fatty acids (SCFA) both of which are inhibitory to pathogens (Kaplan and Hutkins, 2000; Ricke 

et al., 2013). In addition, the presence of prebiotics can lead to the maintenance of a normal 

microbial population (Kaplan and Hutkins, 2000; Callaway and Ricke, 2012). The beneficial 

bacteria can inhibit colonization of pathogenic bacteria by producing antimicrobial substances 

and competing for niches within the gut (Ricke and Pillai, 1999). 

 The polymerase chain reaction based denaturing gradient gel electrophoresis (PCR-based 

DGGE) technique has been widely utilized to compare microbial populations in various 

environments including feces and gut samples (Hume et al., 2003; Dunkley et al., 2007; Hill et 

al., 2008; Hanning and Ricke, 2011). This technique amplifies a common region of the 16S 

ribosomal RNA gene and amplicons are subsequently separated on a gradient polyacrylamide gel 

(Park et al., 2013). Double strands of PCR amplicons are partially unwinded due to denaturant 

concentrations and separated based on G+C contents. The resulting banding pattern can be 

compared to identify microfloral shifts between control and treatments (Owens et al., 2008). 
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Furthermore, the recovered DNA fragments from the gel can be sequenced to identify species by 

searching comprehensive databases, such as the basic local alignment search tool (BLAST) 

(Altschul et al., 1990). 

 Considering the prebiotic influences on the gastrointestinal microflora and the impact of 

microflora have on host health, the purpose of this study was to determine whether supplemented 

prebiotics caused shifts in gastrointestinal bacteria. In this study, we have evaluated the effects of 

both Biolex® MB40 and Lieber® ExCel, which are commercial prebiotics derived from 

brewer’s yeast cell walls. Biolex® MB40 contains high concentration of beta-D-glucan and 

mannanoligosaccharides (MOS) which have been shown to bind detrimental substances for 

pathogenic bacteria (Oyofo et al., 1989). The components in Lieber® ExCel are similar to 

Biolex® MB40 as well as include natural RNA components (i.e. nucleotides) 

(http://www.leibergmbh.de/int/animal-nutrition/products). The first step to achieve this objective 

was utilizing the culture independent technique, PCR-based DGGE, to analyze and compare the 

microflora profiles. These microbial profiles were subsequently compared to determine 

microflora shifts based on DGGE gel banding patterns. Finally, selected bands were excised 

from the gel for further sequencing analysis to identify specific bacteria of interest that indicated 

which type of prebiotics supported the growth of specific bacteria. 

 

3. Materials and Methods 

3.1. Pasture Flock Chicken Study 

 A total of 147 day-of-hatch naked neck chicks were acquired from a local hatchery 

(Peterson Farms, Decatur, AR, USA). The birds were randomly distributed to 3 pens for a total 

of 49 birds per each pen. Birds had access to feed and water ad libitum for the duration of the 
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experiment. Also, the pens and birds were moved twice a week to fresh pasture that had not been 

previously used for poultry rearing purposes. 

 Two prebiotics were added to GMO-free normal chicken feeds (Hiland Naturals, 

Killbuck, OH, USA) in the starter and finisher feeds in each group. Each group consisted of 1) 

control (no prebiotic), 2) Biolex® MB40 with 0.2% (Leiber GmbH, Hafenstraße, Germany), 3) 

Leiber® ExCel with 0.2% (Leiber GmbH). Feeds were consistently supplemented with the 

prebiotics during the experimental period. At week 8, a total 15 birds from each group were 

randomly selected for necropsy, transported to the Poultry Health Corelaboratory (Fayetteville, 

AR, USA) and euthanized humanely using CO2 gas. The cecal samples were extracted 

immediately and stored in -20˚C for microbial analysis. 

 

3.2 DNA Extraction 

 DNA was isolated from 15 birds of each group using the Qiagen stool mini kit (Qiagen, 

Valencia, CA, USA) with some modifications to enhance DNA yields. In brief, 0.7 mm garnet 

beads (Mo Bio Laboratories Inc., Carlsbad, CA, USA) were added to cecal samples to lyse cells 

with vortexing vigorously for 1 min. Samples were centrifuged to remove unhomogenized 

materials and the supernatant was transferred into a fresh 2 ml of microcentrifuge tube 

containing 0.1 mm glass beads (Mo Bio laboratories Inc.). Beads beating was performed for 10 

min by horizontal vortexing and the samples were incubated at 95˚C heating block for 6 min. 

The remainder of the DNA extraction protocol was performed according to the manufacturer’s 

instructions. The extracted DNA concentration and purity were measured using a NanoDrop ND-

1000 (Thermo Scientific, Wilmington, DE, USA) and DNA was subsequently stored at -20˚C 

until used. 
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3.3. PCR Reaction for DGGE 

 The conventional PCR assay was optimized using an MJ PTC 100 thermocycler (Bio-

Rad, Hercules, CA, USA). A 50 µl of total reaction volume comprised of 50 ng of template 

DNA, 800 nM of each primer (Muyzer et al. 1993) (IDT, Coralville, IA, USA), 25 µl of Jump 

Start Ready Mix (Sigma, St. Louis, MO, USA), and was brought to a final volume with DNase-

RNase free water. The PCR conditions consisted of pre-denaturation at 95˚C for 2 min, then 17 

cycles of denaturation at 94˚C for 1 min., annealing at 67˚C for 45 s decreasing by -0.5˚C per 

cycle to a touchdown temperature of 59˚C, and annealing at 72˚C for 2 min. The reaction was 

followed with 12 cycles of denaturation at 94˚C for 1 min, annealing at 58˚C for 45 s with a final 

extension step at 72˚C for 7 min. The PCR products were confirmed on 1.5% of agarose gel and 

visualized on transilluminator (Bio-Rad, Hercules, CA, USA). 

 

3.4. DGGE  

 PCR-based DGGE was performed using a 10 µl of the PCR products mixed with 5 µl of 

loading buffer. The samples were loaded into the wells of a polyacrylamide gradient gel 

composed of acrylamide:bisacrylamide (37:1) (Bio-Rad), with a 35% to 60% gradient of urea 

(Amersham Biosciences, Piscataway, NJ, USA) and formamide (Sigma). Electrophoresis was 

carried out using the DCode Universal Mutation Detection System (Bio-Rad) in 1X TAE buffer 

at 59˚C and 55 V for 17 h. The polyacrylamide gel was stained with SYBR Green (Cambrex 

Bioscience, Walkersville, MD, USA) in 1X TAE for 40 min. with gently shaking, destained in 

distilled water for 10 min. and viewed on a transilluminator. DGGE banding patterns among 

individual samples in each treatment as well as between treatments were analyzed using 

UPGMA algorithm (Bio-Rad) to determine the correlation.   
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3.5. DNA Recovery from Excised Gel for Sequence Analysis 

 Comparing banding patterns among groups, common or specific bands were excised from 

the polyacrylamide gel for sequence analysis. Briefly, excised fragments were disrupted via 

pinhole tube, transferred in 300 µl of TE buffer and incubated for 15 min. at 65˚C heating block 

for dissolving DNA. The suspension was transferred to a Spin-X® centrifuge tube (Corning, 

Tewksbury, MA, USA) and centrifuged at 16,000 x g for 5 min. to isolate DNA from the 

polyacrylamide gel. In order to precipitate DNA, the filtrate was mixed with 900 µl of ethanol, 

133 µl of 7.5 M ammonium acetate, 3 µl of glycogen (20 mg/ml) and vortexing vigorously, and 

then incubated at -80˚C for 1 h. The mixture was pelleted via centrifugation at 16,000 xg for 15 

min. and the pellet was washed with 70% of cold ethanol. The isolated DNA was subsequently 

sequenced using ABI 3100 capillary analyzing system (Applied Biosystems, Foster City, CA, 

USA) and the sequences were compared with database in GenBank using the BLAST algorithm. 

  

4. Results 

4.1. Analysis of Microbial Population Shifts in Chicken Cecum Using PCR-Based DGGE 

 All chicken cecal samples produced 233-bp of amplicons via conventional PCR in prior 

to DGGE and these products were subsequently used for DGGE analysis (Figure 1). DGGE were 

performed to verify microbial population shifts by supplemented one of prebiotics (Biolex® 

MB40 and Leiber® ExCel) using UPGMA algorithm (Figure 2). Fifteen chicken cecal samples 

in control group and 14 samples in both treatment groups (one sample per treatment was 

discarded due to contamination) were utilized for DGGE analysis. Based on DGGE banding 

patterns, each group phylogenetic tree was generated by the UPGMA algorithim, which 

illustrated the correlation among individual chickens (Figure 2). Fifteen individual chicken cecal 
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samples in the control were clustered with over 58% homology (Figure 2A). Also, each of the 14 

cecal samples supplemented with Biolex® MB40 or Leiber® ExCel showed over 66% and 51% 

homology, respectively (Figure 2B and 2C). The Biolex® MB40 group showed more 

consistency with a greater homology than other two groups. 

 In order to compare the correlation between control and both treatment groups, cecal 

samples in each group were pooled into 5 samples considering individual DGGE banding pattern 

similarities and subsequently DGGE was performed using pooled samples (Figure 3). A 

phylogenetic tree was generated based on DGGE results and shown in Figure 4. Interestingly, the 

phylogenetic tree of control and two treatment groups exhibited 3 distinct clusters in each group 

except one outlier of Leiber® ExCel treatment (Figure 4). In the control group, four sample 

banding patterns were exhibited over 68% relatedness and one sample clustered in the Leiber® 

ExCel group with 70% relatedness. Feeds supplemented with either Biolex® MB40 or Leiber® 

ExCel prebiotics showed more consistent compared to control group. For the Biolex® MB40 

supplemented group, all samples were clustered with over 74% of relatedness. In Leiber® ExCel 

supplemented group showed 77% of relatedness among 4 samples except for one as an outlier. 

 

4.2. Sequencing 

 DGGE banding patterns showed high similarities within control and both treatment 

groups (Figure 3). However, some bands were specific in one group and the intensity of several 

common or specific bands were different among groups. For instance, band number 4 and 16 are 

specific for Biolex® MB40 treatment and control group, respectively (Figure 3). In addition, 

band number 2, 9, and 19 are common and appeared constant intensity over all groups (Figure 3). 
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These specific and common bands were excised from a polyacrylamide gel for sequencing 

analysis and identification results were shown in Table 2. 

 From the sequencing results, although several bands (12, 21, 22, 23, and 24) were 

identified as an uncultured bacterium and failed for sequencing (3, 5, 7, 8, and 18), remainder of 

bands were identified as a specific species with high homology. Bacteriodes salanitronis (2, 9, 

13, and 19) was constantly present in all groups, and Barnesiella ciscericola and Firmicutes (6) 

were detected in both treatment groups. Interestingly, Helicobacter ganmani (1) and uncultured 

porphyromonadaceae (4) were only present in Biolex® MB40 treatment group. In only control 

group, Paraprevotella clara (17) and Alistipes species (20) were present with high intensity as 

well as Bacteriodes coprocola (16) was identified. 

  

5. Discussion 

 The significance of this study was to evaluate the microbial population shifts in broiler 

chickens fed with one of two commercial prebiotics including beta-D-glucan and MOS. The 

beta-D-glucan polysaccharides are composed of D-glucose monomers joined by glycosidic 

bonds. They are used for medical treatment because of their antimicrobial properties (Balzarini, 

2007). The MOS have been widely used as a nutritional additive to preserve gut health since they 

were initially introduced in the late 1980s (Oyofo et al., 1989). The mannose sugar site in MOS 

can bind to Salmonella fimbriae and inhibit Salmonella colonization in the broiler intestinal cells 

(Oyofo et al., 1989). Since the advantages of MOS in pathogenic bacteria inhibition and 

performance improvement in broilers, MOS has been used in poultry rearing systems (Biggs et 

al., 2007). 
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 The microflora in gastrointestinal tract plays crucial roles by not only preventing 

pathogen colonizations but contributing to the complexity of the gut ecosystems that can 

generate antimicrobial metabolites such as SCFA to inhibit other species (Ricke and Pillai, 1999; 

Ricke, 2003b). In addition, this microbial population in birds can be changed with several 

alterations in feed additives and other factors (Ricke, 2003a; Dunkley et al., 2007; Siragusa and 

Ricke, 2012).  

 In this study, the gastrointestinal bacteria Firmicutes and the Bacteriodes were identified 

in all groups (Figure 3 and Table 2). Firmicutes are phylum of bacteria presenting Gram-positive 

cell wall structure are commonly present in gastrointestinal tracts, and are composed of over 250 

genera including Bacilli and Clostridia (Bajzer and Seeley, 2006). Bacteriodes genus is a Gram-

negative bacterium and utilizes plant glycans as their main energy sources (Martens et al., 2008). 

Furthermore, Bacteroides species show an additional benefit in the host by preventing 

colonization of pathogens (Hentges, 1989). Bacteriodes genus is one of the predominant 

anaerobic bacteria found in chicken cecum (Lan et al., 2006). In this study, Bacteriodes 

salanitronis was identified in all groups with great band intensity and Bacteriodes coprocola was 

found only in the control group. Identification of these bacteria was conrrespondence compared 

with previous reports (Bajzer and Seeley, 2006). Helicobacter ganmani found in Biolex® MB40 

treatment was first isolated from intestines of laboratory mice and showed similar features as 

other Helicobacter species (Robertson et al., 2001). Campylobacter species is a commensal 

bacterium colonizing the gastrointestinal tract in poultry (Horrocks et al, 2009) and both 

treatment groups represented C. jejuni, C. coli, and C. lari.  

 Although PCR-based DGGE technique has several limitations for analysis of whole 

bacterial populations in gastronintestinal tracts, this assay proved to be useful for comparing 
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microbial population shifts influenced by prebiotic treatments. Furthermore, additional 

sequencing data provided concerning specific species of bacteria that may have been specifically 

impacted due to prebiotic supplements. In conclusion, microflora in both prebiotic supplemented 

groups are consistent than the control group based on phylogenetic tree analysis. Prebiotics 

might control microflora in cecum with increasing beneficial bacteria and decresing pathogens. 

Also, further studies to analyze all microbial populations using whole genome sequencing for 

confirmation are warranted. 
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Table 1. Primer pair sequences used in this study 
 

Primer Sequence (5’ to 3’) Gene Size Reference 

Hume-F 
CGC CCG CCG CGC GCG GCG GGC 
GGG GCG GGG GCA CGG GGG 
GCCTAC GGG AGG CAG CAG 16s rRNA 233 bp Muyzer et al., 

1993 
Hume-R  ATT ACC GCG GCT GCT GG 
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Table 2. Identification of DGGE bands via sequencing between control and two treatments 
 

Band No.  Identification  

1  Helicobacter ganmani  
2, 9, 13, 19 Bacteriodes salanitronis  
4 Uncultured porphyromonadaceae  
6  Barnesiella viscericola, Firmicutes  
10 Barnesiella viscericola 
11 Campylobacter jejuni, C. coli, C. lari 
14 Uncultured rumen bacterium 
15 Uncultured Rikenellaceae 
16 Bacteriodes coprocola 
17 Paraprevotella clara 
20 Alistipes sp. 
12, 21, 22, 23, 24 Uncultured Bacterium 
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Figure 1. PCR results using DNA isolated from chicken cecal samples prior to DGGE 

Lane M: 100 bp DNA ladder, lanes 1 to15: Individual chicken samples, NC: negative control



 
 

 

Figure 2. Analysis of phylogenetic tree based on individual chicken samples 

(A) Control showed 15 of individual chickens; (B) Biolex® MB40 and (C) Leiber® ExCel showed 14 of individual chickens
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Figure 3. DGGE result using pooled samples 

Lanes 1 to 5: Biolex® MB40, lanes 6 to 10: Leiber® ExCel, lanes 11 to 15: control 

Each band number on the gel is corresponding to number in Table 2. 

  



 
 

 

Figure 4. Analysis of phylogenetic tree based on DGGE results using pooled samples 

T1: Leiber® MB40 (#1 to #5), T2: Leiber® ExCel (#6 to #10), C: Control (#11 to #15)
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CONCLUSIONS 

 

 The demands for organic and alternative poultry production by consumers have 

continued to expand in the past few decades since these products being a source of safer and 

healthier foods. Both Campylobacter and Salmonella are the most common foodborne pathogens 

pressent in the chicken ceca which also contains diverse and abundant bacterial communities. 

Prebiotics represent several effects on the GI tract by selective stimulation of beneficial bacteria 

as well as inhibition of undesirable bacteria.  

 The molecular methods developed in this research provide several advantages over 

currently published methods. The time to detect and identify the three pathogens was reduced 

from 48 hours with culturing to just 4 hours with the multiplex PCR. The multiplex PCR assay 

allowed less time and reagents to be used. The DGGE approached have been utilized to compare 

and analyze bacterial communities in complex GI tract ecosystems by amplification of common 

16s rDNA sequences. Microarrays represent a comprehensive approach for the detection and 

characterization of foodborne pathogens in food matrices as well as the identification of 

differential gene expression levels in the chicken host when exposed to different experimental or 

environmental conditions.  

 In conclusion, as the organic and alternative poultry production systems continue to 

become more popular, there will be an increased need for efficient methods to rapidly and 

accurately detect host, microbiome and metabolome responses to derive predictable responses 

that allow for routine formulation in commercial settings. Such standardization is needed if there 

is to be less risk due to exposure from foodborne pathogens and potentially improved bird 

performance originating from these alternative systems. 
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APPENDIX 

1. Other publications - Si Hong Park 

- Journal of Applied Microbiology, 111: 426-432, 2011 

 

- Journal of Food Protection, 75: 174-178, 2012 

 

- Food Bioscience, 1: 66-72, 2013 

 
 
- Journal of Nutrition and Food Sciences, 3: 178, 2013 
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2. Institutional Animal Care and Use Committee (IACUC) 

- Regarding the IACUC approval for chicken study in chapter 5 and chapter 6, we do not need     
  the IACUC approval for these studies. 
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3. Institutional Biosafety Committee (IBC) Number 

- This is an IBC number approval letter for chapter 2, 3 and 4. 
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08034 renewal                               IBC#:  08034  

Please check the boxes for each of the forms that are applicable to the research project you are 
registering.  The General Information Form - FORM 1 (this form) MUST be completed on all 
submitted project registrations, regardless of the type of research. 

Recombinant DNA (EVEN IF IT IS EXEMPT from the NIH Guidelines.) (FORM 2)  
Pathogens (human/animal/plant) (FORM 3)  
Biotoxins (FORM 4)  
Human materials/nonhuman primate materials (FORM 5)  
Animals or animal tissues and any of the above categories; transgenic animals or tissues; wild 
vertebrates or tissues (FORM 6)  
Plants, plant tissues, or seed and any of the above categories; transgenic plants, plant 
tissues, or seeds (FORM 7)  
CDC regulated select agents (FORM 8)  

To initiate the review process, you must attach and send all completed registration forms via 
email to ibc@uark.edu.  All registration forms must be submitted electronically.  To complete 
the registration, print page 1 of this form, PI sign, date, and mail to:  Compliance Coordinator-
IBC, 120 Ozark Hall, Fayetteville, AR 72701, or FAX it to 479-575-3846. 
 
As Principal Investigator: 

I attest that the information in the registration is accurate and complete and I will submit 
changes to the Institutional Biosafety Committee (IBC) in a timely manner.   
I am familiar with and agree to abide by the current, applicable guidelines and regulations 
governing my research, including, but not limited to:  the NIH Guidelines for Research 
Involving Recombinant DNA Molecules and the Biosafety in Microbiological and Biomedical 
Laboratories manual.  
I agree to accept responsibility for training all laboratory and animal care personnel involved 
in this research on potential biohazards, relevant biosafety practices, techniques, and 
emergency procedures.  
If applicable, I have carefully reviewed the NIH Guidelines and accept the responsibilities 
described therein for principal investigators (Section IV-B-7).  
I will submit a written report to the IBC and to the Office of Recombinant DNA Activities at NIH 
(if applicable) concerning:  any research related accident, exposure incident, or release of 
rDNA materials to the environment; problems implementing biological and physical 
containment procedures; or violations of NIH Guidelines.  
I agree that no work will be initiated prior to project approval by the IBC.  
I will submit my annual progress report to the IBC in a timely fashion.  

 

mailto:ibc@uark.edu�
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Principal Investigator Typed/Printed Name:  Dr. Steven C. Ricke 
 

Signature (PI): _______________________________________ Date: _____________________ 

 

CONTACT INFORMATION: 
Principal Investigator: 

Name: Steven C. Ricke 
Department: Food Science 

Title: Professor 
Campus Address: FDSC E-27 

Telephone: 479-575-4678 
*After Hours Phone: 479-387-4433 

Fax: 479-575-6936 
E-Mail: sricke@uark.edu 

Co-Principal Investigator: 
Name: Click here to enter text. 

Department: Click here to enter text. 
Title: Click here to enter text. 

Campus Address: Click here to enter text. 
Telephone: Click here to enter text. 

*After Hours Phone: Click here to enter text. 
Fax: Click here to enter text. 

E-Mail: Click here to enter text. 
 

*Required if research is at Biosafety Level 2 or higher 

 
PROJECT INFORMATION: 
 

Have you registered ANY project previously with the IBC?  Choose an item.    
 

Is this a new project or a renewal? 

New Project Renewal  
Project Title: Real-time PCR detection and quantification of Salmonella virulence in 

poultry and feed 
Project Start Date: 7/1/2008 
Project End Date: 6/30/2014 
Granting Agency: Cobb-Vantress 

 

Indicate the containment conditions you propose to use (check all that apply): 
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Biosafety Level 1
 Ref:    1      2 Biosafety Level 1A

 Ref:    1      2 Biosafety Level 1P
 Ref:    1      2 

Biosafety Level 2
 Ref:    1      2 Biosafety Level 2A

 Ref:    1      2 Biosafety Level 2P
 Ref:    1      2 

Biosafety Level 3
 Ref:     2 Biosafety Level 3A

 Ref:     2 Biosafety Level 3P
 Ref:     2 

 

References: 

 1:  Biosafety in Microbiological and Biomedical Laboratories (BMBL) 4th Edition 

 2:  NIH Guidelines for Research Involving Recombinant DNA Molecules 

 3:  University of Arkansas Biological Safety Manual 

 
If you are working at Biosafety Level 2 or higher, has your laboratory received an onsite 
inspection by the Biosafety Officer or a member of the IBC? 

Yes No  
If yes, enter date if known:  Click here to enter a date. 
If no, schedule an inspection with the Biological Safety Officer. 
 

Please provide the following information on the research project (DO NOT attach or insert 
entire grant proposals unless it is a Research Support & Sponsored Programs proposal). 
 
Project Abstract: 
 
The proposed research aims at reducing and preventing Salmonella colonization in poultry. Salmonella is 
a leading cause of foodborne bacterial diarrhea in the U.S. Poultry and poultry products are considered 
to be a major source of Salmonella infections in humans. Salmonella can colonize the gut of the chicken 
without causing any symptoms of disease.Infection of poultry breeder flocks with Salmonella is not 
tolerated and infected flocks are destroyed causing a large loss of profits. Poultry feed is considered to 
be a major source of Salmonella and therefore control of this initial contamination is crucial to 
preventing flock colonization. Processing of feed aims at eliminating Salmonella, but may not always be 
effective. Detection of Salmonella in feed may be hindered by inadequate sampling procedures, levels of 
Salmonella being too low to detect and / or inhibitors of PCR present in the feed. 
 

Specific Aims: 
 
1) To develop a nucleic-acid based PCR assay for the detection of Salmonella in feed to be used to 
determine if the feed process reduces or eliminates Salmonella. 2) Determine if processing of feed 
contaminated with Salmonella enhances virulence of Salmonella using a reverse transcriptase PCR assay 
and a bird model. 
 

Relevant Materials and Methods (this information should be specific to the research project 
being registered and should highlight any procedures that involve biohazardous or 
recombinant materials): 
 

http://www.cdc.gov/od/ohs/biosfty/bmbl4/bmbl4toc.htm�
http://grants.nih.gov/grants/guide/notice-files/NOT-OD-02-052.html�
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http://www.cdc.gov/od/ohs/biosfty/bmbl4/bmbl4toc.htm�
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http://www.cdc.gov/od/ohs/biosfty/bmbl4/bmbl4toc.htm�
http://grants.nih.gov/grants/guide/notice-files/NOT-OD-02-052.html�
http://www.cdc.gov/od/ohs/biosfty/bmbl4/bmbl4toc.htm�
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http://grants.nih.gov/grants/guide/notice-files/NOT-OD-02-052.html�
http://grants.nih.gov/grants/guide/notice-files/NOT-OD-02-052.html�
http://grants.nih.gov/grants/guide/notice-files/NOT-OD-02-052.html�
http://www.cdc.gov/od/ohs/biosfty/bmbl4/bmbl4toc.htm�
http://grants.nih.gov/grants/guide/notice-files/NOT-OD-02-052.html�
http://ehs.uark.edu/DocumentPages/BiosafetyManual04.pdf�
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Handling:a. Feed processing simulation experiments. A cryogenic vial containing a bacterial culture in 
glycerol will be removed from the freezer and placed in a biological safety cabinet. A loop full of the 
bacterial culture will be inoculated into the appropriate media and allowed to grow in the incubator 
(37C or 42C). After 24 to 48 hours, the cultures will be washed by centrifugation and resuspended in 
fresh broth or saline solution. Samples will be taken and enumerated on plates to determine the exact 
starting concentration. Feed components, such as corn and soy bean, will be soaked in Salmonella 
cultures to allow bacteria to attach and penetrate the foods. After incubation, feed components will be 
rinsed to remove any unattached cells with sterile PBS. Feed components then will be dried, by freezing 
or vacuuming. Feed components will be treated by heating to 70C for 2 minutes to simulate heat 
treatment in a feed mill processing. The feed components then will be suspended in an enrichment 
broth of Rappaport medium for 24 h at 37C. Serial diluted portions of the enriched samples will be 
inoculated onto Brilliant Green agar to determine the viability of Salmonella.b. Real-time and reverse 
transcriptase PCR assays. A cryogenic vial containing a bacterial culture in glycerol will be removed from 
the freezer and placed in a biological safety cabinet. A loop full of the bacterial culture will be inoculated 
into the appropriate media and allowed to grow in the incubator (37C or 42C). After 24 to 48 hours, the 
cultures will be washed by centrifugation and resuspended in fresh broth or saline solution. Salmonella 
will be inoculated into feed and dried as described above. The feed will be processed under simulated 
conditions as described above. Feed will be sampled and samples will be used for DNA preparations 
utilized in real-time and reverse transcriptase PCR assays. A sample will also be taken and inoculated 
into pre-enrichment broth as described above to validate the real-time PCR assays. c. Preparation and 
challenge of Salmonella. A cryogenic vial containing a bacterial culture in glycerol will be removed from 
the freezer and placed in a biological safety cabinet. A loop full of the bacterial culture will be inoculated 
into the appropriate media and allowed to grow in the incubator (37C or 42C). After 24 to 48 hours, the 
cultures are washed by centrifugation and resuspended in fresh broth or saline solution. Samples will be 
taken and enumerated on plates to determine the exact starting concentration. Poultry will be 
inoculated with Salmonella by utilizing feed prepared as described above at the Arkansas Veterinary 
Farm and personnel are required to wear surgical gloves and laboratory coats or overalls during the 
procedure.d. Isolation of Salmonella from the tissues. Tissue samples will be collected at the University 
of Arkansas Veterinary farm and personnel are required to wear surgical gloves and laboratory coats or 
overalls. Tissues will be transported to the lab at POSC (L-311) for determination of pathogen content. 
Samples will be inoculated into the appropriate media and allowed to grow in an incubator (37 or 42, 48 
hours) for enumeration. No bird challenges will be conducted prior to IACUC approval. Because 
Salmonella is a BSL-2 pathogen, all the same precautions taken in the laboratory will also be taken at the 
poultry health farm. These procedures will include:For security purposes, the birds will be housed in an 
isolator access limited to authorized personnel. Only personnel that have been trained and working on 
this experiment will be permitted to enter the isolator where birds are being housed. On door, warning 
signs will be posted which reads – “Biohazard, No Eating, Smoking, or Drinking. This is a restricted area”. 
Emergency contact information with phone numbers will be posted on the doors. A list of biohazardous 
agents in use also will be posted on the door. In the isolator room, a list of emergency phone numbers 
will be posted which includes phone numbers for medical emergency, poison control center, chemical 
emergency, chemical/biological spill and the University Health Center.In the event of personnel 
exposure, depending on the nature of exposure, the lab personnel are trained to take simple measures 
such as washing using tap water, etc. to decontaminate first and then contact PI and office of 
Environmental Health and Safety and Pat Walker Health Center for further instruction and treatment. 
The PI, Pat Walker Health Center, Office of Environmental Health and Safety and Fire Department’s 
contact information will be posted on the front door of the isolator room and by the telephone. 
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The information requested above can be entered directly or cut & pasted into the space 
provided, or can be provided as an attached word document.  If you provide an attachment, 
please indicate “See Attached” and list the file name(s) in the space below: 
 
Click here to enter text. 
 

PERSONNEL QUALIFICATIONS & FACILITY INFORMATION: 
List all personnel (including PI and Co-PI) to be involved in this project: 

Name (First and Last) - Position (Title, 
academic degrees, certifications, and 
field of expertise) 

Qualifications/Training/Relevant Experience (Describe 
previous work or training with biohazardous and/or 
recombinant DNA; include Biosafety Levels ) 

Example:  Bob Biohazard - Associate 
Professor, PhD- Microbiology 

14 yrs working with E. coli at BL1, Salmonella enterica at BL2, 8 yrs 
working with transgenic mice. 

Dr. Steven Ricke 20+ years of experience working as a PI, running research 
laboratory, and working with BSL-2 pathogens 

Robin Jarquin, MSc, graduate 
student 

Graduate Assistant trained under Dr. Steven Ricke, 8 years 
working with BSL-2 level pathogens and 8 years working with 
chicken models 

Arunachalam Muthaiyan, Ph.D., Post 
Doctoral Associate, Food Science 

11 years working in BL-1  and BL-2 labs and working with E. coli, 
Acinetobacter calcoaceticus,  Staphylococcus aureus and Listeria 
monocytogenes 

Corliss O’Bryan, PhD, Post 
Doctoral Assoc, Food Science 

30 years working with BSL1 and BSL2 microorganisms, 15 
years lab supervisory experience 

Ashley Clement, Grad student, 
Program Assoc. 

4 years working with BSL2 pathogens 

Si Hong Park, graduate student 3 years working with BSL2 pathogens 
Robert Story, MA, Program 
Associate 

20 years working with BSL1 and 2 organisms 

Click here to enter text. Click here to enter text. 
 
Additional Personnel Information (if needed): 
 
Click here to enter text. 
 
List all the laboratories/facilities where research is to be conducted: 
 

Building: Room #: Category: *Signage Correct? 
POSC  L-311 Laboratory Yes 

POSC L-344 Autoclave/BioStorage Yes 

POSC L-341 Autoclave/BioStorage Yes 

Poultry Vet Farm Determined 
by Vet. 
Farm 

Animal Care Yes 

Biomass 132 Laboratory Yes 
Biomass 101 Autoclave/BioStorage Yes 
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  Choose an item. Choose an item. 
  Choose an item. Choose an item. 
  Choose an item. Choose an item. 
  Choose an item. Choose an item. 
* Biohazard signs are required for entrances to Biosafety Level 2 (including Animal Biosafety 
Level 2) areas.  EH&S will supply these signs.  If an updated biohazard sign is required, please 
indicate the location and what agents/organisms/hazards should be listed on the sign:  

 

Click here to enter text. 

Additional Facility Information (if needed): 
 
Click here to enter text. 
 

 

SAFETY PROCEDURES: 
Please indicate which of the following personal protective equipment (PPE) will be used to 
minimize the exposure of laboratory personnel during all procedures that require handling or 
manipulation of registered biological materials. 

Gloves: 
Latex  Vinyl  
Nitrile  Leather  
Other  

Specify:  Click here to enter text. 

 
Face & Eye Protection: 

Face Shield  Safety Goggles  
Safety Glasses   
Other  

Specify:  Click here to enter text. 

 
Clothing Protection: 

Re-usable Lab Coat  Re-usable Coverall  
Disposable Clothing Protection   
Other  

Specify:  Click here to enter text. 

 
Dirty or contaminated protective clothing cleaning procedures:  (Check all that apply) 

Autoclaved prior to laundering or disposal  Laundered on site using bleach  
Laundered by qualified commercial service   
Other  

Specify:  Click here to enter text. 
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Outline procedures for routine decontamination of work surfaces, instruments, equipment, 
glassware and liquid containing infectious materials.  Autoclaving or using fresh 10% bleach 
as a chemical disinfectant are preferred treatments; please specify and justify any exceptions: 
 
Work surfaces will be decontaminated with a freshly prepared 10% bleach solution before and after 
working. Exception is biosafety cabinets which will be disinfected before and after use with Lysol® No 
Rinse Sanitizer in order to avoid the corrosiveness of the bleach on the metal of the biosafety cabinets. 
Instruments and equipment will be decontaminated by wiping down with 10% bleach. Paper towels 
used for these purposes will be discarded in biohazard bags. Glassware, waste, and disposable tubes will 
be autoclaved under standard conditions (15 psi, 121 C, 20 min). Disposable items (pipette tips, pipets, 
etc) will be discarded into 10% bleach. After 30 minutes it will be permissible to place these items in a 
biohazard bag for autoclaving before disposal. 
 

Describe waste disposal methods to be employed for all biological and recombinant materials.  
Include methods for the following types of waste:  (ref: UofA BiosafetyManual ) 

Sharps: 
 
Placed into 10% bleach solution for decontamination followed by discarding into sharps waste container. 
 

Cultures, Stocks and Disposable Labware: 
Placed into biohazard bags and autoclaved before disposal.  Liquids will be disposed of in drains after 
autoclaving. Disposable glass will be placed in glass disposal after autoclaving. 
 

Pathological Waste: 
 
Liquid biological waste will always be discarded into freshly made 10% bleach and then autoclaved for 
decontamination treatment before it is discarded.  Other biological waste will be placed carefully into 
biohazard waste bags, autoclaved at 15 psi, 1210C for 20 min. 
 

Other: 
 
Click here to enter text. 
 

Autoclave(s), to be used in this project, location(s) and validation procedures: 
 
Autoclaves are located in L-344 and BIOR 101. All the materials and disposables contaminated with the 
pathogens will be either 1) disposed into biohazard bags (procedures conducted in L311) or 2) burned in 
the farm incinerator (performed at the farm). The glassware and containers as well as the biohazard 
bags will be autoclaved at 121C and 15psi for 15 to 45 min in the autoclave in POSC L-344. Autoclaved 
dishware is washed with detergent for future use. For biohazard bags, the autoclave tapes will be 
checked after autoclave to ensure sterilization. The bags then will be placed in an ordinary trash bag for 
disposal.Autoclaves conditions are also validated using a sterilization integrator (VWR catalog # 34010-
019). 
 

Will biological safety cabinet(s) be used? 
  Yes 
 
If yes, please provide the following information: 
 

http://ehs.uark.edu/DocumentPages/BiosafetyManual04.pdf�
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Make/Model Serial Number Certification Expiration Location (bldg/room) 
Lab Conco/Delta Series 011117862E 10-11 L-313 

Lab Conco/Delta Series 050334974 10-11 L-313 

Biosafety Cabinet Level 
II ThermoForma 
Model 1186 

100663 11/30/2011 
 

Biomass Res. Center, 
Room 132 

Biosafety Cabinet Level 
II FormaScientific 
Model 1000 

13324-539 11/30/2011 
 

Biomass Res. Center, 
Room 132 

Biosafety Cabinet Level 
II FormaScientific 
Model 1126 

12118-128 11/30/2011 
 

Biomass Res. Center, 
Room 132 

Biosafety Cabinet Level 
II Forma Scientific 
Model 1284 

104294-5978 11/30/2011 Biomass Res. Center 
Room 136 

Biosafety Cabinet Level 
II Baker Model VBM 
400 

SP7888V 11/30/2011 Biomass Res. Center, 
Room 132 

 

Additional Biological Safety Cabinet Information (if needed): 
Click here to enter text. 
 

Indicate if any of the following aerosol-producing procedures will occur:  (check all that apply) 
Centrifuging  Grinding  

Blending  Vigorous Shaking or Mixing  

Sonic Disruption  Pipetting  

Dissection  Innoculating Animals Intranasally  

Stomacher  
 

Other  
Describe:  Click here to enter text. 

 

Describe the procedures/equipment that will be used to prevent personnel exposure during 
aerosol-producing procedures: 
 
All personnel are required to wear surgical gloves and laboratory coats or overalls during procedures 
involving infectious the agent. Any procedure involving pipetting will be done under a biosafety cabinet 
to prevent personnel exposure to aerosols. All centrifuges are contained units to prevent exposure to 
aerosols. 
 

EMERGENCY PROCEDURES: 
 

In the event of personnel exposure (e.g. mucous membrane exposure or parenteral 
inoculation), describe what steps will be taken including treatment, notification of proper 
supervisory and administrative officials, and medical follow up evaluation or treatment: 
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In the event of exposure, the affected area will be rinsed or washed thoroughly (eyes, nose, mouth or 
skin abrasion). The PI will immediately be informed. The individual will be encouraged to consult with 
the physicians in the University of Arkansas Center for any symptoms related to the diseases that could 
be caused by the agent. In the event of personnel exposure, depending on the nature of exposure, the 
lab personnel are trained to take simple measures such as washing using tap water, etc. to 
decontaminate first and then contact PI and office of Environmental Health and Safety and Pat Walker 
Health Center for further instruction and treatment. The PI, Pat Walker Health Center, Office of 
Environmental Health and Safety and Fire Department’s contact information is posted on the front door 
of L-311 and by the telephone.A list of Emergency phone numbers is posted in the laboratory (L-311, 
BIOR 132). This includes the phone numbers for medical emergency, poison control center, chemical 
emergency, chemical/biological spill and the University of Arkansas Health Center. 
 

In the event of environmental contamination, describe what steps will be taken including a 
spill response plan incorporating necessary personal protective equipment (PPE) and 
decontamination procedures. 
 

In case of spills, the responsible researcher will wear gloves and cover the spill area with paper 
towels (small spills) or chemical sorbent pads and soak in disinfectant for 5 minutes. The 
materials will be discarded into the biohazard bag. Material Safety Data Sheets are located in L-
311 and BIOR 132 for reference. In addition, a first aid kit, biohazardous spill kit, and chemical 
spill kit are located in L-311 and BIOR 132. A spill kit for large chemical spills is located at the 
end of the hall inside the lab wing and in BIOR 132. A list of Emergency phone numbers is 
posted in the laboratory (L-311, BIOR 132). This includes the phone numbers for medical 
emergency, poison control center, chemical emergency, chemical/biological spill and the 
University of Arkansas Health Center. All researchers handling the infectious agent are 
encouraged to consult a physician in the University Health Center for any symptoms related to 
the disease that could be caused by the agent. 
 

TRANSPORTATION/SHIPMENT OF BIOLOGICAL MATERIALS: 
 
Transportation of Biological Materials: The Department of Transportation regulates some 
biological materials as hazardous materials; see 49 CFR Parts 171 - 173. Transporting any of 
these regulated materials requires special training for all personnel who will be involved in the 
shipping process (packaging, labeling, loading, transporting or preparing/signing shipping 
documents). 
 

Will you be involved in transporting or shipping human or animal pathogens off campus?  
No 

If yes, complete the remaining: 
 

Cultures of Human or Animal Pathogens  
Environmenatl samples known or suspected to contain a human or anumal pathogen  

http://www.access.gpo.gov/nara/cfr/waisidx_06/49cfrv2_06.html�
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Human or animal material (including excreta, secreta, blood and its components, tissue, tissue 
fluids, or cell lines) containing or suspected of containing a human or animal pathogen.  

 

Transportation/Shipment Training: Have any project personnel who will be involved in 
packaging, labeling, completing, or signing shipping documents received formal training to ship 
infectious substances or diagnostic specimens within the past 3 years? 
Choose an item. 

If yes, please provide the following information: 
 

Name Date Trained Certified Shipping Trainer 
Click here to enter text. 
 

Click here to enter a date. Click here to enter text. 
 

Click here to enter text. 
 

Click here to enter a date. Click here to enter text. 
 

Click here to enter text. 
 

Click here to enter a date. Click here to enter text. 
 

Click here to enter text. 
 

Click here to enter a date. Click here to enter text. 
 

Click here to enter text. 
 

Click here to enter a date. Click here to enter text. 
 

 
 
 

 
 


