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ABSTRACT 

 Previous work in our lab has identified a point mutation in HTA1, one of the genes 

encoding histone H2A, which causes an increase-in-ploidy phenotype in Saccharomyces 

cerevisiae.  This histone mutant strain was used to carry out a transposon insertion screen to 

identify suppressors of the increase-in-ploidy phenotype.  This screen identified all three 

subunits of the Hda histone deacetylase complex, HDA1, HDA2, and HDA3.  This study aims to 

elucidate the function of the Hda complex in chromosome segregation by exploring interactions 

among the members of the complex, as well as interactions between Hda complex and 

kinetochore components.  We find that the Hda complex interacts with the chromosomal 

passenger complex (CPC), part of the tension-sensing machinery in the cell.  Further 

experiments on the CPC revealed that a mutant allele of one of the components, BIR1, is 

synthetically lethal with our original histone H2A mutant.  Our results led us to another 

component of the tension-sensing machinery, SGO1.  Interestingly, sgo1Δ is also synthetically 

lethal with the histone H2A mutant.  Our results indicate that the increase-in-ploidy phenotype of 

the histone H2A mutant is likely due to the inability to create or sense the adequate tension 

between kinetochores and microtubules that is necessary for faithful chromosome segregation. 
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 All eukaryotes must carry out basic cellular processes, such as DNA replication, 

transcription, translation, and chromosome segregation, in order for survival.  These basic 

cellular processes are well conserved from simple eukaryotes, such as the budding yeast 

Saccharomyces cerevisiae, to complex eukaryotes, such as metazoans.  Using the simple 

eukaryote S. cerevisiae as a model organism, we aim to understand the role that chromatin plays 

in chromosome segregation. 

 Chapter II of this dissertation contains a published literature review in which we present 

the current body of knowledge regarding histones and genome integrity.  This comprehensive 

review explores histones modifications, histone variants, histone gene dosage, and histone 

mutants that are relevant to chromatin dynamics, chromosome segregation, and genome 

integrity.   

  Chapter III focuses on the involvement of the Hda histone deacetylase complex with 

centromere function and chromosome segregation.  The Hda complex has primarily been 

implicated in transcriptional regulation, but we identify a novel role for this complex in 

chromosome segregation.  Additionally, we identify interactions between the Hda complex and 

kinetochore components. 

  In chapter IV, we expand upon the data shown in chapter III by presenting new finding of 

additional interactions between the Hda histone deacetylase complex and kinetochore 

components.  This study reveals interesting interactions between chromatin and the tension 

sensing machinery of the cell.  Chapters III and IV will be included in manuscripts which will be 

submitted for publication at a later date. 
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A. Abstract 

Chromosomes undergo extensive structural rearrangements during the cell cycle, from 

the most open chromatin state required for DNA replication to the highest level of compaction 

and condensation essential for mitotic segregation of sister chromatids.  It is now widely 

accepted that chromatin is a highly dynamic structure that participates in all DNA-related 

functions, including transcription, DNA replication, repair, and mitosis; hence, histones have 

emerged as key players in these cellular processes.  We review here the studies that implicate 

histones in functions that affect the chromosome cycle, defined as the cellular processes involved 

in the maintenance, replication, and segregation of chromosomal DNA.  Disruption of the 

chromosome cycle affects the integrity of the cellular genome, leading to aneuploidy, polyploidy 

or cell death.  Histone stoichiometry, mutations that affect the structure of the nucleosome core 

particle, and mutations that affect the structure and/or modifications of the histone tails, all have 

a direct impact on the fidelity of chromosome transmission and the integrity of the genome. 

 

B. Introduction 

Eukaryotic chromosomal DNA is packaged in the cell nucleus as chromatin.  The 

nucleosome is the fundamental repeat unit of chromatin, evolutionarily conserved and composed 

of histone proteins and DNA.  Two molecules of histones H3 and H4 form a tetramer that is 

bound by two H2A-H2B dimers to form the histone octamer, to which 147 bp of DNA wrap 

around to form the nucleosome core particle 1-3.  The high-resolution structure of the nucleosome 

core has provided the framework for additional studies on histone-histone and histone-DNA 

interactions in eukaryotes.  Histones are relatively small, basic proteins that consist of globular 

and tail domains. The globular domain is formed by the histone fold motif (helix-loop-helix-
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loop-helix). The four core histones interact with each other and DNA through the histone fold 

domains to form the nucleosome core particle 1. The flexible N-terminal tails protrude from the 

nucleosome and are important for inter-nucleosome interactions, which lead to higher order 

chromatin structure, in combination with linker histone H1 and a variety of non-histone proteins 

2.  The N-terminal tails are also subjected to various covalent post-translational modifications, 

including phosphorylation, methylation, acetylation, ubiquitination, ADP ribosylation, and 

sumoylation.  These modifications have been implicated in regulating several cellular processes 

such as DNA replication, transcription, and chromatin condensation, among others 4-8.   

Extensive research over the last two decades has led to a better understanding of 

chromatin function, and replaced the original notion of histones being a structural component, 

the mere nuclear scaffolding for DNA compaction, with histones being a dynamic and interactive 

participant of cellular functions 9.  Although numerous in vivo and in vitro studies have 

demonstrated that histones affect all aspects of chromosome function, including transcription, 

replication, recombination and chromosome segregation, the particular roles in these processes 

are as yet poorly understood.   

Here we provide an overview of the literature that implicates histone function in the 

maintenance of genome integrity.  We focus on functions that affect the chromosome cycle, 

defined as the cellular processes involved in the maintenance, replication, and segregation of 

chromosomal DNA.  Disruption of the chromosome cycle affects the integrity of the cellular 

genome, leading to aneuploidy, polyploidy or cell death. 

C. Histone gene dosage 

The earliest studies that linked histones with the maintenance of genome integrity were 

done by investigating the effects of differing the stoichiometry of individual histones within the 
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cell.  The budding yeast Saccharomyces cerevisiae has proven to be an ideal model organism for 

these types of studies due to its relatively simple genomic organization of the histone genes.  

Cells subjected to overexpression of either the H2A/H2B or H3/H4 gene pairs show an increase 

in chromosome loss, which suggests that the ratio of H2A and H2B to H3 and H4 is important 

for proper chromosome segregation 10.  It was later shown that underexpression of the histone 

H3-H4 genes could also affect mitotic chromosome transmission 11.  Deletion of one of the gene 

pairs encoding H2A-H2B showed cell-cycle defects 12, and depletion of H2B and H4 by placing 

the genes under inducible promoters inhibits chromosome segregation and in turn causes cell 

cycle arrest 13, 14.  The connection between these genetic studies and altered chromatin structure 

was provided by micrococcal nuclease mapping of nucleosomes on isolated nuclei.  Specific 

genetic loci showed disrupted nucleosome arrays in yeast cells lacking one of the two H2A-H2B 

coding gene pair 15.  One of the disrupted loci was the centromere of chromosome III.  

Additional chromatin mapping studies in cells repressed for expression of either H2B or H4 

corroborated the sensitivity of centromeric chromatin structure to histone gene depletion 16.  

Recent work in fission yeast has shown that the relative levels of histone H3, H4 and the 

centromere-specific histone H3 variant CENP-A influence the assembly of centromeric 

chromatin and recruitment of kinetochore proteins, affecting the fidelity of chromosome 

segregation 17.  In support of this finding, overexpression of H3 in budding yeast increases the 

rate of chromosome loss with a concomitant reduction in the levels of the centromere-specific 

histone H3 variant Cse4 18.  In addition, partial depletion of H4 was shown to affect chromatin 

assembly during DNA replication that resulted in increased levels of homologous recombination, 

leading to genetic instability 19.  These studies clearly show that each of the four core histones 
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must be maintained in a proper stoichiometry for normal cell cycle progression and high-fidelity 

chromosome segregation.   

D. Histone mutants 

Mutational analysis of histones has allowed researchers to show that not only the balance 

of histones is important, but also that the histone proteins themselves can lead to phenotypes 

associated with defects in the chromosome cycle.  Two independent mutants of H2A in S. 

cerevisiae cause increase in ploidy and increased frequency of chromosome loss.  The mutations 

reside in evolutionarily conserved residues near the N-terminus of the structured globular domain 

(S19F and G29D) that make contact with DNA.  These alleles show cell cycle defects, genetic 

interactions with kinetochore mutants, and altered centromeric chromatin structure, suggesting a 

role for H2A in microtubule attachment at the centromere-kinetochore 20.  Work in the fission 

yeast Schizosaccharomyces pombe has led to the finding of temperature sensitive mutations in 

the inner region of H2B that cause defects in centromeric chromatin and chromosome 

segregation 21.  These mutations affect DNA contact (G52D) as well as histone-histone 

interactions (P102L) in the core nucleosome particle, stressing the importance and stringency of 

the nucleosome architecture in chromatin function.   

Early deletion studies in S. cerevisiae demonstrated that the highly conserved N-terminal 

tails of H3 and H4 are essential for cell cycle progression.  Although H3 and H4 N-terminal tails 

can be individually deleted without losing cell viability, deletion of the H3 and H4 N-terminal 

tails in combination yields inviable cells with terminal phenotypes associated with cell division 

cycle defects 22.  In a more detailed study of H4 N-terminal tail mutations, Megee at al. 23 

reported the requirement of the four most N-terminal lysine residues (domain A, positions 5, 8, 

12 and 16) for normal nuclear division.  The mutant cells activate the DNA damage checkpoint 
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and arrest at G2/M.  Reintroduction of a lysine residue within domain A, without the requirement 

of polypeptide sequence specificity, restored cell-cycle progression, strongly supporting a role 

for the post-translational modifications of N-terminal lysines in cell division.  In another study, a 

temperature-sensitive allele of H4, carrying two amino acid replacements (T82I and A89V) 

caused severe nuclear division and mitotic chromosome transmission defects 24.  The primary 

mutation at position 82 is located within one of the H4 surfaces that interacts with DNA, and the 

T82I mutation is lethal but rescued by the A89V mutation.  Thus, similarly to the H2A mutants, 

H4 residues that lie in the path of DNA can have strong effects on cell cycle functions. 

Recent analysis of a histone H3 mutant (G44S) that causes pleiotropic phenotypes related 

to cell cycle progression, including benomyl and hydroxyurea sensitivity, led to the discovery of 

a mitotic tension-sensing function 25.  Prior to anaphase, the bipolar attachment of sister 

chromatid kinetochores to the spindle microtubules generates tension that is monitored by the 

spindle assembly checkpoint.  This tension-sensing checkpoint is essential to allow the cell to 

stall the cell cycle and correct erroneous or missing attachments that can result in aneuploidy.  

Yeast cells carrying the H3 G44S mutant fail to activate the spindle assembly checkpoint during 

tension-less situations, leading to the missegregation of chromosomes and aneuploidy.  

Interestingly, this impairment results from a defective interaction between H3 and Sgo1p 

(shugoshin), a protein required for tension sensing and present in pericentric chromatin.   

Systematic histone substitution and deletion mutant collections have been created in S. 

cerevisiae to probe the contribution of each residue to chromosome function 26, 27.  These 

collections of alleles have been screened for phenotypes associated to DNA repair and sensitivity 

to DNA damaging agents, providing new insights into the contribution of each residue to the 

DNA damage response.  These valuable resources will undoubtedly provide novel information as 
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the libraries are screened for additional phenotypes associated with the maintenance of genome 

integrity.  

In many cases, mutational analyses of individual amino acids in each of the histones, 

particularly in their terminal “tails”, have been carried out to study the effect of abolishing 

specific post-translational modifications.  Those studies that link histone modifications to the 

chromosome cycle are discussed below. 

E. Histone modifications 

Covalent modifications of the N-terminal tails of histones have been implicated in the 

regulation of various cellular processes. The mechanisms by which many of these modifications 

carry out their effects in the cell are still largely unclear. Some may work by changing the charge 

of the histone, and in turn causing the DNA to associate more tightly or loosely with the 

nucleosome.  Other modifications may serve as a “mark” to recruit chromatin remodeling 

complexes or other regulatory proteins.  Lastly, there is an emerging “histone code” in which 

multiple modifications act in concert with each other and have a so-called “crosstalk” to regulate 

cellular functions 4, 5, 28.  Importantly, covalent modifications have been found in all organisms 

analyzed; however, the specific amino acids that are modified, the type of modification, and the 

associated function can vary among species, creating an enormous challenge in the efforts to 

decode the histone language.   

1. Methylation 

Histone methylation is the result of the covalent attachment of methyl groups from S-

adenosyl-L-methionine onto the epsilon-amino group of lysine, arginine, and histidine residues 

catalyzed by specific histone methyltransferases 29, 30. The reversible nature of this modification 

became clear many years later with the identification of histone demethylases 31.  Three forms of 
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methylated lysine –mono-, di- and tri-methylation- are found on histones, and each one can 

signal a different chromatin state.  Methylation of histone H3 on Lys9 (H3K9me) has long been 

recognized as a determinant of silent chromatin and heterochromatin 32.  Fission yeast 

centromeres are marked by H3K9me heterochromatin that facilitates the assembly of the 

essential centromere-specific H3 variant CENP-A at the central domain 33, 34.  Mutations in the 

histone methyltransferase Clr4 distort the pericentric heterochromatin and disrupt chromosome 

segregation 35.  Dimethylation of histone H3 Lys9 (H3K9me2) and trimethylation of histone H3 

Lys9 (H3K9me3) are also present in pericentric heterochromatin in Drosophila, mouse and 

human cells 36.   Similarly to fission yeast, loss of the suv39h histone methyltransferases disrupts 

mammalian heterochromatin and affects genome stability 37, 38.  The regulation of pericentric 

heterochromatin is carried out by the chromodomain proteins Swi6/HP1, which bind H3K9me2 

and are essential for mitotic progression 39-42.  In mammalian cells, H3K9me3 methylation 

increases in late G2 phase and mitosis and rapidly decreases in G1.   Loss of H3K9 methylation 

in G2 leads to centromere and kinetochore defects and chromosome misalignment 43, 44.  Histone 

H4K20 trimethylation has been described in fission yeast, Drosophila and mammalian cells 36.  

In human cells, H4K20me3 is abundant in pericentric heterochromatin and cell-cycle regulated.  

H4K20me3 decreases in S phase and increases in late G2 and mitosis 45.  Interestingly, in murine 

cells H4K20 trimethylation is catalyzed by two histone methyltransferases, Suv4-20h1 and Suv4-

20h2, which interact with HP1 and function in a suv39h dependent manner 46.  This finding led 

to the proposal of a sequential mechanism of H3K9me3 and H4K20me3 in the formation of 

pericentric heterochromatin.  Although these results did not provide a direct connection between 

these histone modifications and mitosis, recent work has shown that the loss of methylation at 

H3K9 and H4K20 leads to less compact pericentric heterochromatin and loss of tension at the 
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centromere during mitosis 43.  In addition, the monomethyl to dimethyl transition of histone 

H4K20 has been associated with chromosome behavior during mitosis and cytokinesis.  Subunits 

of the human factor HCF-1 associate with chromatin and regulate the expression of the H4K20 

methyltransferase PR-Set7.  Loss of HCF-1 during mitosis leads to increased PR-Set7 expression 

and dimethylation of H4K20, resulting in defective chromosome alignment and segregation 47.   

Methylation of H3K79 and H4K20 are the main modifications involved in DNA repair, 

hence, essential to the integrity of the cell’s genome.  Although methylated H3K79 and H4K20 

are present throughout the genome, they become evident at DNA repair foci after DNA damage 

48.  Dimethylated H4K20 at these foci is specifically recognized and bound by the checkpoint 

protein Crb2/53BP1, which triggers a G2/M arrest to allow DNA repair to take place 49, 50.  

Consistent with these data, depletion of the methyltransferases Suv4-20h1 and Suv4-20h2 

decreases the number of DNA repair foci containing 53BP1 51.  Surprisingly, Crb2/53BP1 only 

recognizes H4K20me and H4K20me2, but not H4K20me3 50, 52, therefore, it appears that 

different functions are associated with different proteins that recognize distinct levels of 

methylation at the same histone residue.  Methylation of H3K79 is the main signal for DNA 

repair in budding yeast.  Dot1 is the evolutionarily conserved methyltransferase capable of 

adding mono-, di-, and trimethyl groups to H3K79.  Originally identified by mutations that 

disrupted telomeric silencing, cells lacking Dot1 are also defective in the checkpoint response to 

DNA damage and DNA repair pathways 53, 54.  Supporting the critical function of H3K79 

methylation in the chromosome cycle, mouse ES cells lacking Dot1L, the murine Dot1 

homologue, show reduced levels of the heterochromatic marks H3K9me2 and H4K20me3 at 

centromeres and telomeres, along with the general depletion of H3K79me.  These histone 

changes are likely the cause of the aneuploidy and telomere elongation defects observed in these 
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cells 55. 

Histone methylation can also influence cell cycle progression in a more indirect fashion.  

H3K4 methylation has been shown to increase in mitosis and is thought to be a mark for the 

activation of certain mitotic-specific genes, such as cyclin B1 56.  This finding provides a 

connection between the transcriptional regulation of factors driving the cell cycle and histone 

methyltransferases. 

2. Acetylation 

 Histones are reversibly acetylated on lysine residues primarily in the N-terminal tails.  

The transfer of the acetyl group from acetyl-coenzyme A is catalyzed by histone 

acetyltransferases (HATs).  Histone acetylation has been mainly implicated in transcriptional 

regulation, with histones in transcriptionally active regions being acetylated.  The reversal of 

acetylation has been associated with transcriptional repression and chromatin compaction 57, 58.  

Underacetylated histones H3 and H4 are abundant in centromeric heterochromatin of metaphase 

chromosomes 59, and an overall reduction of histone H3 and H4 acetylation occurs in the 

transition from interphase to mitosis 60.  However, histones H3 and H4 remain acetylated in loci 

that are still transcriptionally active during mitosis or need to be reactivated quickly following 

mitosis 56.  Deletion of the H3 acetyltransferases SAS3 and GCN5 in S. cerevisiae leads to G2/M 

mitotic arrest 61, perhaps as a result of transcriptional defects.   

Histone deacetylase activity is essential for mitotic progression.  Inhibition of 

deacetylation has been associated with delayed G2/M transition 62 and mitotic arrest 63.  

Treatment of cells with histone deacetylase inhibitors affects the formation of pericentric 

heterochromatin, resulting in kinetochore assembly defects 64, chromosomal instability and 

defective checkpoint activation 65.  Depletion of the mammalian histone deacetylase HDAC3 
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also affects chromosome condensation, sister chromatid cohesion, and kinetochore-microtubule 

attachment, leading to defective chromosome segregation 66-68.  Depletion of the human histone 

deacetylase HDAC3 causes premature dissociation of sister chromatids and acetylation of 

centromeric H3K4, which correlates with the loss of dimethylation at the same position, 

illustrating the complexity of the “histone code” in the regulation of mitotic events 67.  It has also 

been suggested that deacetylation of H4K16 by the SirT2 deacetylase during the G2/M transition 

is required for chromatin condensation 69.   

Additionally, deletion of a histone deacetylase complex (Hda1) in S. cerevisiae 

suppresses a histone H2A mutant that causes increase in ploidy and increased frequency of 

chromosome loss, providing a genetic link between histone deacetylation and mitotic function 70.  

These histone H2A mutants alter the nucleosome architecture and pericentric chromatin structure 

in a significant way, leading to the hypothesis that pericentric chromatin contributes to 

kinetochore formation and microtubule attachment in budding yeast 20.  The increased 

acetylation observed in the suppressors may compensate directly for a defective histone post-

translational modification in the H2A mutant-containing nucleosomes, restoring an epigenetic 

mark specific for pericentric chromatin.  Alternatively, indirect suppression may occur by 

bypassing the chromatin structural defect, creating an epigenetic environment favorable for the 

formation of a functional centromere-kinetochore complex and microtubule attachment.  Further 

studies will be necessary to decipher the factors that interact with pericentric chromatin and 

contribute to the bipolar kinetochore-microtubule attachment and proper chromosome 

segregation in S. cerevisiae. 

 

 Acetylation of H3K56 deviates from the well-characterized modifications of the histone 
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tails, but this modification has been shown to play an important role in DNA replication and 

repair.  Lysine 56 resides in the H3 core and is acetylated in yeast cells by the Rtt109 

acetyltransferase as a mark of newly synthesized chromatin during S phase.  Although this 

modification was originally described in yeast, it has recently been identified in mammalian cells 

71.  In the absence of DNA damage H3K56 acetylation is removed during the G2/M phase of the 

cell cycle.  In contrast, cells with DNA lesions maintain high levels of acetylated H3K56, 

modification that is crucial for the DNA damage response 72, 73.  Consistently, rtt109 mutants 

display hypersensitivity to DNA damaging agents and elevated levels of spontaneous 

chromosome breaks 74, 75.  Moreover, H3K56R mutants are also sensitive to DNA-damaging 

agents and unable to reassemble chromatin after DNA repair 76, 77. 

3. Phosphorylation 

Phosphorylation of histones, mainly at serine residues, has long been recognized as an 

important modification involved in chromosome dynamics during mitosis and DNA repair 

processes.  Phosphorylation of histone H3 at serine10 (H3S10pho) has been found in all 

organisms analyzed so far, and shown to be required for chromatin compaction and condensation 

in mammals and most eukaryotes 78, 79.  During mitosis, levels of H3S10pho are high through the 

activity of the evolutionarily conserved Aurora B kinase 80.  Mutants of H3S10 in Tetrahymena 

that are unable to be phosphorylated display problems in chromosome segregation caused by 

lack of chromosome condensation 81. In a converse study, increased mitotic levels of H3S10pho 

induced by overexpression of the mammalian AIM-1 (Aurora B) kinase led to lagging 

chromosomes and aneuploidy 82.  Thus, regulated levels of H3S10pho are required for proper 

mitotic progression.  One of the proposed mechanisms by which H3S10pho may function is a 

binary switch responsible for the association /dissociation of the chromodomain protein HP1 
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from mitotic chromosomes.  Phosphorylation of H3S10 in mitosis induces the dissociation of 

HP1 bound to H3K9me, the latter required for heterochromatin maintenance, while the levels of 

H3K9me remain unchanged 83, 84.  Another study has suggested that phospho-acetylation of H3 

(SP10-K14Ac) is required for eviction of HP1 from chromatin 85.  Recent work has shown that 

H3S10pho also regulates the binding of two human SR protein splicing factors, SRp20 and 

ASF/SF2, with chromatin.  These SR proteins associate with interphase and late post-mitotic 

chromatin, but are dissociated from mitotic chromatin following H3S10 phosphorylation.  They 

also interact with HP1, which fails to dissociate from chromatin when the SR proteins are absent 

86.  Much like H3S10, H3S28 is also phosphorylated and is closely correlated with chromatin 

condensation 87.  An additional phosphorylation event at threonine 3 (H3T3), catalyzed by the 

Haspin kinase, has been shown to be required for metaphase chromosome alignment 88.  The 

functional connection between the H3T3 and H3S10 phosphorylation events remains unknown.  

Phosphorylation of H3 at Thr 45 has been recently reported in budding yeast and linked to DNA 

replication 89.  Although the specific functions of H3 phosphorylation remain to be elucidated, 

the emerging information points to a dynamic interaction between H3 kinases, phosphatases, and 

chromatin associated factors required for the formation of the proper chromatin conformation of 

the mitotic chromosome. 

Two other phosphorylations, H2A-S1 and H4S1, are also associated with mitotic 

chromatin condensation. 90. While most histone modifications are at the N-terminal tails, they 

can be modified elsewhere as well.  Phosphorylation of H2A-T119 takes place at the C-terminus 

and happens specifically during mitosis 91, where it is enriched at centromere regions in 

Drosophila 92.  Recent work has provided a functional link to this modification.   In fission yeast, 

H2A-S121 (equivalent to Drosophila H2A-T119) is phosphorylated by the mitotic kinase Bub1 
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and recruits shugoshin/Sgo1 to centromeres, which secures proper chromosome partitioning. 93.  

These data establish an essential function for H2A phosphorylation in maintaining mitotic 

chromosome stability.  

4. Ubiquitination 

Ubiquitination is the covalent conjugation of ubiquitin to lysine residues.  Histones are 

usually monoubiquitinated, a modification that does not lead to protein degradation. 

Monoubiquitination of H2BK123 in S. cerevisiae is mediated by the Rad6/Ubc2 ubiquitin 

conjugating enzyme and the Bre1 ubiquitin ligase.  Mutants that are unable to be ubiquitinated at 

H2BK123 show mitotic and meiotic defects 94.  Recently, it has also been shown that 

ubiquitination of H2BK123 is required for trimethylation of H3K4 and H3K79 95, a cross talk 

that has been mainly implicated in the regulation of gene expression.  Histone ubiquitination has 

also been linked to DNA repair.  DNA lesions caused by UV-irradiation induce 

monoubiquitination of histone H2A by the Ring2 ubiquitin ligase 96, as well as ubiquitination of 

H3 and H4 by the CUL4-DDB-Roc1 ubiquitin ligase complex 97.  It is likely that these 

modifications alter the chromatin structure and facilitate the recruitment of repair proteins to the 

damage loci.   

In mammalian cells, deubiquitination of H2A is required for normal mitosis and cell 

cycle progression.  It is also apparent that deubiquitination of H2A is required for H3S10 

phosphorylation 98.  Thus, histone ubiquitination has emerged as an important signal for various 

cellular processes.  Further research is needed to determine the specific involvement of this 

modification in cell cycle progression. 
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F. Histone variants 

Histone variants are specialized histones that replace core histones in a DNA-replication 

independent manner, generating an altered chromatin structure with distinct cellular functions 99. 

1. CenH3 

All eukaryotes, from yeast to humans, have a histone H3 variant (called CenH3, in 

general) that takes the place of the canonical H3 in centromeric nucleosomes.  CenH3 is called 

Cse4 in S. cerevisiae, Cnp1 in S. pombe, CID in Drosophila, and CENP-A in mammals. CenH3 

is only 50% identical to the canonical H3, compared with most other histone variants that are 

more conserved with respect to the canonical histone.  CenH3 in Saccharomyces cerevisiae, 

called Cse4, occurs only in one nucleosome per chromosome directly at the centromere because 

the budding yeast centromeres are only 125bp long 100.  On the other hand, higher eukaryotes 

have regional centromeres that can be up to 1 megabase long; blocks of CenH3-containing 

nucleosomes are interspersed with blocks of H3-containing nucleosomes 101.  

The composition of the centromeric nucleosome in S. cerevisiae has been a topic of 

recent debate.  It was reported that a nonhistone protein, Scm3, could assemble with Cse4 and 

histone H4 to form a centromeric nucleosome hexamer that lacked H2A-H2B 102.  A later study 

showed that Cse4 forms an octameric nucleosome with H2A, H2B, and H4 103.  The latter study 

suggests that Scm3 is perhaps intimately associated with Cse4-H4 tetramers as an intermediate 

complex before nucleosome formation, but is not included in the resultant histone octamer. 

CenH3-containing nucleosomes are assembled into centromeric chromatin, which 

becomes the scaffolding on which the kinetochore is formed during mitosis.  CenH3 is essential 

for the formation of a stable kinetochore.  Mutational analysis in S. cerevisiae has demonstrated 

that loss of CenH3 leads to mitotic arrest and missegregation of chromosomes 104. Lastly, CenH3 
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is an important epigenetic mark in organisms with regional centromeres, as the highly variable 

centromeric DNA of higher eukaryotes is not sufficient for kinetochore formation.  Specification 

of kinetochore location is directed by the epigenetic mark of CenH3 dilution to daughter DNA 

strands following S phase, allowing the centromeric chromatin to be heritable 105. 

 

2. H3.3 and H3.1 

 In addition to CenH3, there are two other histone H3 variants in higher eukaryotes called 

H3.1 and H3.3.  While not as well characterized as the other histone variants with respect to 

genome integrity, they do appear to play significant roles in the chromosome cycle.  In 

metazoans, H3.3 is a replication-independent H3 variant that has mainly been implicated as an 

epigenetic mark for active chromatin 106.  Interestingly, Drosophila that are deficient for H3.3 

display widespread transcriptional defects, sterility, and semi-lethality 107.  H3.1 and H3.3 have 

nearly identical sequences to the canonical H3, with only a stretch of 4 amino acids contributing 

to the difference in function and selective deposition at specific genetic loci 108.  H3.1 is a 

replication-dependent H3 variant found in mammals, the function of which remains unknown.  

3. H2A.Z 

 Another histone variant that has been implicated in genome integrity is the H2A variant 

H2A.Z.  Studies in D. melanogaster have shown that the loss of H2A.Z leads to depletion of 

HP1alpha from chromosome arms, thus affecting the integrity of heterochromatin.  This defect in 

forming higher order chromatin structures is likely the cause of the chromosome segregation 

errors 109.  H2A.Z has also been shown to affect chromosome segregation and centromere 

silencing in the fission yeast S. pombe.  It was determined that H2A.Z is required for the 

expression of Cnp3, the S. pombe homolog of CENP-C, which is a centromere protein that is 
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essential for maintenance of centromere silencing 110.  H2A.Z is not an essential protein in the 

budding yeast S. cerevisiae, but phenotypic and genetic studies have implicated it in genome 

stability 111.  Unlike CenH3, which has a direct effect on chromosome segregation at centromeric 

regions, H2A.Z has a more indirect effect on genome integrity by affecting heterochromatin at 

chromosome arms as well as transcription of certain centromeric proteins. 

 

4. H2AX 

Histone modifications provide a critical signal during the DNA damage response, by 

marking the sites of DNA lesions and making them accessible to the repair machinery 48.  In 

mammalian cells, the histone variant H2AX becomes rapidly phosphorylated in response to 

double-strand breaks (DSB) 112. The phosphatidylinositol-3-OH kinase-like family of protein 

kinases, which include ataxia telangiectasia mutated (ATM), ataxia telangiectasia-related (Rad-3 

related or ATR) and DNA-dependent protein kinase (DNA-PK), catalyzes the phosphorylation of 

Ser 139 in the highly conserved carboxy terminal Ser-Gln-Glu (SQE) motif, generating gamma-

H2AX 113, 114.  In S. cerevisiae and D. melanogaster, which lack H2AX, a conserved SQ motif is 

found at the C-terminus of the canonical H2A and the H2Av variant, respectively.  

Phosphorylation of Ser 129 of H2A in yeast signals DSB repair via non-homologous end-joining 

115. The presence of gamma-H2AX on the chromatin surrounding the DNA lesion triggers a 

signal cascade for the recruitment and retention of the DNA repair proteins to the damaged site, 

along with chromatin remodeling complexes and mitotic checkpoint factors 116.  Recent work has 

provided evidence that additional post-translational modifications, including acetylation and 

ubiquitination of gamma-H2AX and other chromatin components, are necessary for the repair 
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process, either through the non-homologous end-joining or homologous recombination pathways 

116, 117.   

5. Macro H2A 

 This is the most atypical histone variant.  MacroH2A (mH2A) is a vertebrate specific 

variant, consisting of an N-terminal domain homologous to the canonical H2A and a large C-

terminal region referred to as the macro domain, connected by a basic hinge region 118.  This 

non-histone like region accounts for two thirds of the molecular mass of mH2A.  There are two 

closely related variants, macroH2A1 and macroH2A2, which preferentially associate with the 

inactive X chromosome (Xi), suggesting a role in transcriptionally repressed chromatin.  

However, they are also found in autosomes, where they appear to exert a function in gene 

repression and heterochromatization 119.  In vitro studies have shown that nucleosomes 

containing mH2A1 can interfere with chromatin remodeling and transcription initiation 120, 121.  

Interestingly, the macro domain can bind and maintain in an inactive form poly(ADP-ribose) 

polymerase 1 (PARP-1), contributing to X chromosome inactivation and gene silencing.  Release 

of mH2A from promoters activates PARP-1, which in turn activates transcription through ADP 

ribosylation 122.  Recently, extensive analysis of hundreds of mH2A targets reveled that they are 

enriched in genes controlling developmental processes and cell fate decisions 123 

Like other histones, mH2A variants are also subjected to post-translational modifications 

124.  Phosphorylation of S137 in mH2A1, which resides in the hinge region of mH2A, was shown 

to be present in male and female cells during mitosis, but excluded from the X chromosome 125.  

This finding suggests a role for mH2A in chromatin function throughout the cell cycle, outside 

Xi, and regulated by its own post-translational modifications.  
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G. Conclusions 

In order to maintain the integrity of the genome the cell requires precise temporal and 

spatial chromatin dynamics during the chromosome cycle.  Ample evidence indicates that the 

proper balance of histones is essential for maintaining nucleosome assembly and chromatin 

structure.  The centromeric and pericentric regions of the chromosome are particularly sensitive 

to histone balance, since the incorporation of the cenH3 variant to centromeric regions and the 

structure of pericentric chromatin are perturbed when histone stoichiometry is altered.  

Aneuploidy is a common consequence of altered histone balance, likely the result of defective 

centromere-kinetochore structures, although not necessarily the only cause of it.  More studies 

are needed to understand genomic instabilities associated with defective chromatin assembly 

during DNA replication as a consequence of histone imbalance. 

   Histone mutations can be generally divided into two groups, those that affect the globular 

domain of histones in the core nucleosome particle, and those that affect the flexible histone 

tails.  The first group of mutations usually leads to distortions in the nucleosome architecture, 

which correlate with phenotypes that can be associated with specific cellular functions.  It is 

becoming apparent that there are domains within the nucleosome particle that may be recognized 

by specific proteins devoted to distinct cellular functions.  This possibility raises questions of 

specificity, recognition, and targeting that will require extensive research to be elucidated.  Most 

mutations within the histone tails have been induced to study the effect of their post-translational 

modifications.  It is clear that all four histones undergo modifications that are crucial for the 

chromosome cycle; what is not so clear yet is the specific role of each modification, although 

some correlations are evident.  Examples of such associations are the methylation of H3 lysines 

and heterochromatin formation, histone deacetylation and mitotic progression, and H3 



 22 

phosphorylation with chromosome condensation.  Most of what we have learned so far comes 

from studies that abolish individual modifications, either by mutations in the modified amino 

acid, or by mutations in the modifier enzyme (methyltransferase, acetyltransferase, etc.).  The 

use of modification-specific antibodies has provided major advances in connecting specific 

histone modifications to cellular functions. Undoubtedly, histones provide key signals in the 

dynamic behavior of chromatin throughout the chromosome cycle.  The difficult task ahead lies 

in the identification of the proteins that recognize and bind nucleosomal histones in their specific 

modified state, and to link them to their respective cellular pathway. 
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A.  Introduction  

 DNA is packaged into eukaryotic cells in the form of chromatin, a dynamic structure 

consisting of nucleic acid, histone proteins, and a variety of non-histone proteins.  Histones are 

highly evolutionarily conserved from yeast to humans. Two each of the core histones H2A, H2B, 

H3, and H4 come together to form the histone octamer, and approximately 147 bp of DNA wraps 

around each octamer twice to form the fundamental unit of chromatin, the nucleosome (Luger et 

al. 1997; van Holde 1988; White, Suto, and Luger 2001).  The nucleosomes are packaged into 

higher order structure to form chromosomes.   

 An important feature of histone proteins is the N-terminal tails that protrude from the 

nucleosome. These tails can be post-translationally modified by acetylation, methylation, 

ubiquitylation, and phosphorylation (reviewed in Williamson and Pinto 2012).  Histone 

modifications affect a very diverse array of cellular processes including DNA damage repair, 

transcription, silencing, and chromosome segregation.  Modifications can work in parallel or 

antagonistically, and much remains unclear about the complex “histone-code” that promises to 

unlock many secrets of epigenetics.   

 For chromosome segregation to proceed properly, the chromosomes must satisfy all 

requirements of the spindle assembly checkpoint (SAC), including accurate biorientation of 

kinetochores on sister chromatids and attachment of microtubules to kinetochores.  Kinetochores 

assemble on the centromeric (CEN) regions of DNA, and facilitate the binding of microtubules 

during mitosis.  Budding yeast Saccharomyces cerevisiae have “point centromeres” consisting of 

only 125bp of DNA (Furuyama and Biggins 2007).  This is in contrast to the much larger 

regional centromeres of higher eukaryotes that can be as large as 100 megabases long 

(Cleveland, Mao, and Sullivan 2003).   
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 Although S. cerevisiae lacks the centromeric heterochromatin that is seen in higher 

eukaryotes, there is a nuclease-resistant core flanked by phased nucleosomes (Bloom and Carbon 

1982).  The centromeric phasing of nucleosomes has been shown to be affected by mutations in 

genes encoding the histone proteins (Pinto and Winston 2000).  These studies clearly link 

histones to chromosome segregation, although their particular roles are not clearly understood.   

Previously, we used a transposon insertion screen to identify suppressors of an increase-

in-ploidy phenotype of two mutants of HTA1, one of the two genes encoding histone H2A 

(Kanta et al. 2006).  From this screen we identified HDA1, HDA2, AND HDA3, the three 

subunits of the Hda histone deacetylase complex (Wu, Carmen, et al. 2001).  Histone 

deacetylation has been shown to be essential for normal mitotic progression, and loss of histone 

deacetylation activity gives rise to G2/M delay (Mikhailov, Shinohara, and Rieder 2004), mitotic 

arrest  (Sandor et al. 2000), and abnormal pericentric heterochromatin (Shin et al. 2003). 

The Hda complex has primarily been implicated in transcriptional regulation (Wu, Suka, 

et al. 2001), but here we propose a role for this complex in chromosome segregation.  Here we 

show that the original truncated tn-alleles identified from the screen behave as null alleles, 

indicating that loss of deacetylase activity is necessary for suppression of the hta1 mutants.  

Previously, we showed by chromatin immunoprecipitation that the Hda complex is present at 

centromeric regions of DNA, and able to deacetylate centromeric histones.  Here we show that 

the Hda complex binds to DNA up to 20kb away from the centromere, indicating that pericentric 

chromatin may also be an important target of deacetylation, and required for kinetochore 

function.  We also report genetic and physical interactions between the Hda complex and 

kinetochore components.  Lastly, we demonstrate that the suppression of an ndc10 kinetochore 
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mutant by loss of Hda1 deacetylation restores the defective chromosome segregation of the 

mutant further implicating the importance of histone deacetylation in chromosome segregation.  
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B.  Materials and Methods 

Yeast strains, genetic methods, growth, and media: The yeast strains used are listed in Table 

1.  Unless indicated, strains are isogenic to FY2, originally derived from S288C (Winston, 

Dollard, and Ricupero-Hovasse 1995).  Strain construction and other genetic manipulations were 

carried out by standard methods (Guthrie and Fink 1991; Rose, Winston, and Hieter 1990).  All 

yeast media, including YPD, synthetic minimal, omission media (SC), and media containing 5-

fluoroorotic acid (5-FOA) were made as described previously (Rose, Winston, and Hieter 1990). 

Benomyl plates were made by adding benomyl (Sigma, St. Louis) to hot YPD to a final 

concentration of 10 µg/ml. Canavanine plates contain 60 µg/ml of canavanine sulfate (Sigma).   

Genes were tagged with 13xMYC at the 3’ end by PCR using plasmid GHB160 as 

template, with 3xFLAG at the 3’ end by PCR using plasmid GHB342 as template, and with 

3xHA at the 3’ end by PCR using GHB159 as template as previously published. (Longtine et al. 

1998; Schneider et al. 1995) 

 Synchronization of cells in G1 was carried out by adding a final concentration of 0.9mM 

α-factor to exponentially growing cells. Cultures were incubated at 30° for 2.5 hours, washed 

twice in α-factor-free medium, and resuspended in fresh YPD.  Synchronization of cells in S-

phase was carried out by adding a final concentration of 200mM hydroxyurea (USBiological) to 

exponentially growing cells. Cultures were incubated at 30oC for 2.5 hours, washed twice in 

hydroxyurea-free medium, and resuspended in fresh YPD. Synchronization of cells in G2/M was 

carried out by adding a final concentration of 15 µg/ml nocodazole (USBiological) to 

exponentially growing cells.  Cultures were incubated at 30oC for 2.5 hours, washed twice in 

nocodazole-free medium, and resuspended in fresh YPD.   
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For the recovery from nocodazole assay, nocodazole was added to a liquid culture of 

exponentially growing cells in a final concentration of 50 µg/ml and incubated for 6 hours at 

30oC.  Approximately 200 cells were plated on YPD, allowed to grow for 2 days at 30oC, and 

assessed for viability by counting CFU’s.  

 

Bacterial strains and plasmids: Plasmids were amplified and isolated from Escherichia coli 

strain DH5α, according to standard procedures (Ausubel et al. 1988). 

 

Flow cytometry: DNA content of yeast cells was determined as described, using a Becton 

Dickinson (San Jose, CA) FACSCalibur instrument (Pinto and Winston 2000). 

 

Canavanine assay of ploidy:  The ploidy status of yeast cells was assessed by monitoring the 

function of the CAN1 gene (Schild, Ananthaswamy, and Mortimer 1981).  Recessive can1 

mutations confer resistance to canavanine (Can), therefore the frequency of Canr mutants is 

greater in haploid cells than in diploid cells, or among strains with two copies of chromosome V, 

the location of CAN1.  Patches of yeast cells grown on YPD were replicated onto SC-Arg plates 

with or without canavanine and mutagenized by UV irradiation (300 ergs/mm2) with a UV 

source (Stratalinker UV crosslikker, Stratagene, Agilene Technologies).  Plates were incubated at 

30°C for 4 days.  Haploid cells that became Canr would form papillae on plates containing 

canavanine after exposure to UV irradiation.  Diploid cells would remain Cans. 

 

Yeast Two-hybrid analysis: The yeast strain EGY48 was transformed with the bait plasmid 

pEG202 and the prey plasmid pJG4-5, both containing the genes of interest.  Strains were plated 
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on SC-Leu+X-Gal media containing either glucose or galactose as the carbon source and 

incubated at 30°C for 2 days. 

 

β-galactosidase assay: β-galactosidase activity was determined from liquid cultures using 

ONPG as substrate as previously described (Clontech Laboratories, Inc.). 

 

Immunoprecipitation:  Protein extracts were prepared by resuspending 50ml of exponentially 

growing cultures in 500µl of RIPA buffer (10mM Tris-HCl pH 8, 250mM LiCl, 0.5% NP-40, 

0.5% DOC, 1mM EDTA, 1X Roche EDTA-free protease inhibitor cocktail).  Primary antibody 

was added and the slurry was incubated at 4oC for 2 hours.  15µl of Protein A Dynabeads (Dynal, 

Great Neck, NY) was added to the reaction and incubated for 2 hours at 4oC.  Beads were 

washed 5 times with 1ml RIPA buffer, resusupended in 20µl of 2x SDS loading buffer (100mM 

Tris-HCl pH 6.8, 4% SDS, 20% glycerol, 0.2% bromophenol blue, 200mM DTT), and incubated 

in boiling water bath for 5 minutes.  10µl of the immunoprecipitate was loaded on 4-20% 

gradient polyacrylamide iGels (NuSep) for SDS-PAGE, transferred to PVDF membrane, and 

analyzed by Western blot.  

 

Western blot:  Extracts were prepared by resuspending 1.5ml of an exponentially growing 

culture in 200µl of Rapid Protein Extract Sample Buffer (60mM Tris-HCl pH 6.8, 6M urea, 2% 

SDS, 5% β-mercaptoethanol, 0.0025% bromophenol blue) and incubating in a boiling water bath 

for 5 minutes.  Following centrifugation, 10ml of the supernatants were loaded onto a 4-20% 

gradient polyacrylamide iGel (Nusep) for SDS-PAGE.  Proteins were transferred to PVDF 

membrane, and the membrane was blocked with 5% nonfat dry milk in TBST (150mM NaCl, 
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100mM Tris-HCl pH 8.0, 0.5% Tween-20).  Primary and secondary antibodies were diluted in 

5% nonfat dry milk in TBST, and blots were developed with chemiluminescent substrate 

(Millipore).  Blots were imaged using a FluorChem 8900 (Alpha Innotech). 

 

Chromatin Immunoprecipitation:  ChIP was carried out as previously described (Kanta et al. 

2006).  ChIP results were quantified by resolving the PCR products on 1.5% agarose gels stained 

with ethidium bromide.  Gels were imaged using a FluorChem 8900 (Alpha Innotech), and 

relative band intensity was determined using AlphaEase FC software.  The following primers 

were used for PCR (Table 2): CEN3 (oIP142, oIP143), CEN1 (oIP140, oIP141), CEN4 (oIP144, 

oIP145), ENA1 (oIP193, oIP194), TEL-VIR (oIP150, oIP151), PGK1 (oIP92, oIP93), and HO 

(oIP234, oIP235).  The following primers were used for PCR walking away from CEN3: 5kb L 

(oIP204, oIP205), 2kb L (oIP206, oIP207), 1kb L (oIP208, oIP209), 0.5kb L (oIP210, oIP211), 

0.25kb L (oIP212, oIP213), 0.25kb R (oIP214, oIP215), 0.5kb R (oIP216, oIP217), 1kb R 

(oIP218, oIP219), 2kb R (oIP220, oIP221), and 5kb R (oIP222, oIP223). 

 

Fluorescent microscopy:  Cells carrying GFP-tagged centromeres were imaged using an Axio 

Imager M1 (Zeiss).  Ten focal slices of each image was obtained, and compiled into one image 

using ImageJ (NIH).  
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Table 1. List of yeast strains used in this study. 

EGY48 MATa his3 trp1 ura3 LexAop(x6)-LEU2 
FY1333 MATα leu2Δ0 ura3Δ0 
IPY247 MATa/α leu2Δ1/leu2Δ1 ura3-52/ura3-52 his3Δ200/his3Δ200 TRP1/trp1Δ63 

lys2Δ202/LYS2 
IPY466 MATa leu2Δ0 ura3Δ0 BIR1-3xHA 
IPY461 MATa leu2Δ0 ura3Δ0 HDA1-13xMYC::KanMX 
IPY475 MATα leu2Δ0 ura3Δ0 trp1Δ63 HDA1-13xMYC::KanMX  

HDA2-3xFlag::KanMX HDA3-3xHA 
IPY476 MATα leu2Δ0 ura3Δ0 HDA1-13xMYC::KanMX hda2-546-3xFlag::KanMX 

HDA3-3xHA 
IPY478 MATa ura3Δ0 HDA1-13xMYC::KanMX HDA2-3xFlag::KanMX 

 hda3-548::3xHA 
IPY481 MATa leu2Δ0 ura3Δ0 hda1-646-13xMYC::KanMX HDA2-3xFlag::KanMX 

HDA3-3xHA 
IPY491 MATα leu2Δ0 ura3Δ0 hda1Δ::URA3 HDA2-3xFlag::KanMX HDA3-3xHA 
IPY541 MATa leu2Δ1 ura3-52 his3Δ200 trp1Δ63 (hta2-htb2)Δ::TRP1 
IPY543 MATα  leu2Δ1 ura3-52 his3Δ200 trp1Δ63 (hta2-htb2)Δ::TRP1 hda1Δ::HIS3 
IPY549 MATa  leu2Δ1 ura3-52 his3Δ200 trp1Δ63 (hta2-htb2)Δ::TRP1 hda1Δ::HIS3 

hta1-300 
IPY550 MATα  leu2Δ1 ura3-52 his3Δ200 trp1Δ63 (hta2-htb2)Δ::TRP1 hta1-300 
IPY811 MATa his3-11,15::lacI-GFP-HIS3 trp1-1::lacO256 –TRP1 leu2-3,112 ura3-1 
IPY979 MATα  leu2Δ0 or leu2-3,112, ura3Δ0 or ura3-1 trp1::lacO256-TRP1 

his3-11,15::lacI-GFP-HIS3 hda1Δ::KanMX 
IPY980 MATα leu2Δ0 or leu2-3,112, ura3Δ0 or ura3-1 trp1::lacO256-TRP1 

his3-11,15::lacI-GFP-HIS3 ndc10-1 
IPY981 MATα leu2Δ0 or leu2-3,112, ura3Δ0 or ura3-1 trp1::lacO256-TRP1 

his3-11,15::lacI-GFP-HIS3 hda1Δ::KanMX ndc10-1 
IPY631 MATα leu2Δ0 ura3Δ0 DAM1-13xMYC::KanMX 
IPY1000 MATa his3Δ200 lys2-801 CSE4-3xHA::URA3 HDA1-13xMYC::KanMX 
IPY943 MATa ura3Δ0 HDA1-3xFLAG::KanMX DAM1-13xMYC::KanMX 
IPY1010 MATa ura3Δ0 or ura3-52 leu2Δ1 or leu2-3,112 his3Δ200 dam1-1 
IPY1011 MATa ura3Δ0 or ura3-52 leu2Δ1 or leu2-3,112 his3Δ200 dam1-1 

hda1Δ::HIS3 
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Table 2.  Primers used in this study. 

oIP-92 5’-CACACTCTTTTCTTCTAACCA-3’ 
oIP-93 5’-CTTCAAGTCCAAATCTTGGACAGAC-3’ 
oIP-140 5’-CTCGATTTGCATAAGTGTGCC-3’ 
oIP-141 5’-GTGCTTAAGAGTTCTGTACCAC-3’ 
oIP-142 5’-GATCAGCGCCAAACAATATGG-3’ 
oIP-143 5’-AACTTCCACCAGTAAACGTTTC-3’ 
oIP-144 5’-GCGCAAGCTTGCAAAAGGTCACATG-3’ 
oIP-145 5’-CGAATTCATTTTGGCCGCTCCTAGGTA-3’ 
oIP-150 5’-GCGTAACAAAGCCATAATGCCTCC-3’ 
oIP-151 5’-CTCGTTAGGATCACGTTCGAATCC-3’ 
oIP-193 5’-CACCTGACAGAAGAAAAAACAAGG-3’ 
oIP-194 5’-CACTTGATGAAGATATCTGCTT-3’ 
oIP-204 5’-GCGAACCCTTCTCCATTTGGCAAT-3’ 
oIP-205 5’-CCTCGAAGGCCATCAAGTAGAAAA-3’ 
oIP-206 5’-CCGAAGGCTGGTATGTGATTTGTT-3’ 
oIP-207 5’-GATGGGCCAAAATACTGGAATATCG-3’ 
oIP-208 5’-ACTGCTATTAAGCGCCACTT-3’ 
oIP-209 5’-TTCTAACCACTGTGTCATCCGT-3’ 
oIP-210 5’-CCGTATCATGGACGATTTCCTT-3’ 
oIP-211 5’-TTGTCAAGTTGCTCACTGTGATTT-3’ 
oIP-212 5’-CCATCCAATACCTTGATGAACTTTTC-3’ 
oIP-213 5’-CGCCATGCCATGTTTATGAA-3’ 
oIP-214 5’-CGTTTACTGGTGGAAGTTTTGCTC-3’ 
oIP-215 5’-GGGGCGGAAATTCATTTGAA-3’ 
oIP-216 5’-CAAATGAATTTCCGCCCCAT-3’ 
oIP-217 5’-CCAGTAGGTTTGTACTATAATGTGGGTG-3’ 
oIP-218 5’-ACGTGCATTAAATCTCACTGTCAC-3’ 
oIP-219 5’-TGCAGGTGCTATTTGACGACT-3’ 
oIP-220 5’-CGTCCAAACATGAAAGTGCTCCTT-3’ 
oIP-221 5’-CTGGCCTTCTTATCATACGTTGTC-3’ 
oIP-222 5’-GGAAAACGCATACCGCTAAAGAAG-3’ 
oIP-223 5’-CCGCTCCTTGTATTCTACCATTG-3’ 
oIP-226 5’-GAAGCCTATCAATAAGTGGA-3’ 
oIP-227 5’-CTTACTGTCCTACTACACCT-3’ 
oIP-234 5’-CATGATGAAGCGTTCTAAACGCAC-3’ 
oIP-235 5’-TAGCCGTGACGTTTGCGATGTCTT-3’ 
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C.  Results 

Suppressor alleles of Hda complex are deficient in complex formation 

 Prior work in our lab led to the identification of truncated alleles of all three members of 

the Hda complex as suppressors of the increase-in-ploidy phenotype of hta1-300 (Figure 1).  To 

better understand the mechanism of this suppression, we carried out yeast two-hybrid 

experiments to study the binding among Hda complex members using both full-length and 

truncated proteins (Figure 2).  The yeast two-hybrid strain EGY48 was transformed with a 

plasmid containing either HDA2 or hda2546 fused to the LexA DNA binding domain (bait, 

pEG202), and a second plasmid containing HDA3, hda3548, HDA1, or hda1646 fused to the B42 

activation domain under the control of a GAL4 promoter (prey, pJG4-5).  A third plasmid 

(pSH18-34) was also present in these strains that contains the LexA operator sequence with β-

galactosidase as a reporter gene.  A positive interaction between the bait and the prey yields a 

complete transcription factor that can bind to the LexA operator sequence and drive transcription 

of β-galactosidase, which can easily be observed on media containing X-Gal.  From this 

experiment, we observed that the truncated alleles have much lower binding activity, indicating 

that less or no Hda complex is being formed.  One exception is Hda3548, which shows strong 

binding to Hda2 and Hda2546.  This is likely due to the fact that Hda3 can activate the system on 

it’s own without the need for an activation domain (data not shown).  Therefore, endogenous 

Hda3 that is binding to the Hda2 or Hda2546 bait could activate transcription of β-galactosidase 

and give a false positive.  

 These results were confirmed by β-galactosidase assays (Figure 3 and 4).  Protein extracts 

were obtained from the two-hybrid strains and incubated with the chromogenic substrate ortho-

nitrophenyl-β-galactoside (ONPG) to determine the levels of enzymatic activity. The two-hybrid 
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results were also confirmed by co-immunoprecipitation (Figure 5).  Alleles corresponding to the 

original transposon insertion mutants obtained from the suppressor screen of the increase in 

ploidy phenotype of the histone hta1-300 mutation were generated in their chromosomal 

locations and epitope-tagged with different epitopes to allow us to use commercially available 

antibodies for their identification.  The truncated alleles, hda1646, hda2546, and hda3548 were then 

used for pairwise combinations of immunoprecipitation and immunoblotting (Western blot) with 

antibodies that recognized their individual epitopes. .  All strains were immunoprecipitated with 

anti-Flag antibodies, which recognized the wild-type or truncated form of Hda2, and blotted with 

the corresponding antibody against the wild type or truncated forms of Hda2 (Flag), Hda3 (HA) 

or Hda1 (Myc).  Lane 2 shows that all three members of the complex; Hda1, Hda2, and Hda3, 

were pulled down by Hda2, as predicted by previous work (Wu, Carmen, et al. 2001) However, 

when the complex contained any of the truncated forms of the Hda subunits there was a 

significant decrease in the amount of protein associated with the complex (lanes 3-5), with 

minimal amounts of Hda3.  In addition, Hda1646 appears particularly unstable, and also critical 

for the stability of Hda3 (lane 5).  This finding was surprising, since the deacetylase activity is 

considered to be associated with the N-terminus of Hda1 (Lee, Maskos, and Huber 2009), and 

the hda1-646 allele only cleaves less than 9% of the Hda1 C-terminus.  Since Hda1646 appeared 

to be essential for the stability of the complex, we confirmed its behavior by comparing it with a 

strain that carries a deletion of HDA1.  Lane 6 shows that in the absence of Hda1, Hda2 and 

Hda3 no longer form the complex.  Therefore, we conclude that the truncated alleles of the Hda 

complex are deficient in complex formation. 
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Deletion of HDA1 suppresses the increase-in-ploidy phenotype of histone H2A mutants. 

 Based on our finding that the hda1, hda2 and hda3 suppressors appear to be loss of 

function alleles deficient in forming the Hda complex, we created a double mutant strain 

carrying the histone hta1-300 and hda1Δ alleles to test whether hda1Δ would suppress the 

increase-in-ploidy defect caused by hta1-300.  Segregants from a cross containing the individual 

mutations as well as the double mutant were tested for ploidy by the canavanine test.  As shown 

in Figure 6, the double mutant shows papillation consistent with a haploid strain, and similar to 

the suppression seen with the original hda1 suppressor (Kanta et al. 2006).  We confirmed these 

results by determining the DNA content of the strains using flow cytometry (Figure 7).  The 

results show that the hta1-300 hda1Δ strain remains haploid, in contrast to the hta1-300 strain 

that has become completely diploid.  

  

CEN localization of the Hda complex is not affected by the cell cycle   

It has been shown that many kinetochore and centromeric proteins only bind to the CEN 

regions in G2/M phase (Dorn and Maddox 2012).  Previous work from our lab has shown by 

chromatin immunoprecipitation that the Hda complex localizes to centromeric regions (Kanta et 

al. 2006), and that is active in deacetylating lysine 14 of histone H3 and lysine 16 of histone H2B 

in centromeric chromatin (Almutairi, Williamson and Pinto, unpublished).  Here we build upon 

these studies by assaying whether the Hda complex has a cell-cycle specific CEN binding similar 

to kinetochore proteins by arresting cells in different phases of the cell cycle, and then used 

chromatin immunoprecipitation to assay Hda1 binding at CEN3.  Cells were arrested in G1 phase 

using α-factor, in S phase using hydroxyurea, and in G2/M phase using nocodazole.  We show 

that the Hda complex is present at the centromere in all phases of the cell cycle (Figure 8 and 9).  
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One possible explanation is that the Hda complex is always present at CEN regions in order 

establish a particular “chromatin environment” that is beneficial for genome integrity.  

 

Pericentric localization of the Hda complex 

 It is widely accepted that S. cerevisiae has a “point centromere” consisting of only 125 bp 

of DNA that are sufficient for proper centromere function and kinetochore formation.  

Additionally, the pericentric chromatin on either side of the centromere forms an elastic loop 

consisting of roughly 15kb of DNA (reviewed in Bouck, Joglekar, and Bloom 2008).  Using 

chromatin immunoprecipitation and PCR primers walking away from the centromere, we found 

that the Hda complex is present on every chromosomal locus that we assayed, spanning up to 5 

Kb away on either side of the centromere (Figure 10 and 11).  Further studies confirmed that the 

Hda complex is present at up to 20 Kb away from the centromere (data not shown). This is in 

clear contrast to the outer kinetochore protein Dam1, which is localized to the centromere only 

and not to the pericentric regions (Fig 12 and 13). 

 

Interactions with kinetochore components 

 Because we have shown that the Hda complex is present and active at centromeric 

regions, and that deletion of this complex suppresses a chromosome segregation defect caused by 

mutations in histone H2A, we hypothesized that the Hda complex could be interacting with other 

components of the chromosome segregation machinery, namely the kinetochore.  To test this 

hypothesis, we explored genetic interactions between the Hda complex and kinetochore 

components.  We created strains carrying double mutations between hda1Δ and temperature 

sensitive alleles of NDC10 and DAM1.   Similar to other mutants defective in kinetochore 
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function, these alleles are also sensitive to the microtubule-depolymerizing drug benomyl.  

NDC10 encodes the p110 subunit of the CBF3 complex, which binds to the CDEIII region of the 

centromere and is essential for kinetochore assembly (Goh and Kilmartin 1993; Lechner and 

Carbon 1991).  Dam1 is an essential component of the DASH complex and is involved in 

kinetochore-microtubule attachments (Hofmann et al. 1998; Westermann et al. 2006).  We tested 

growth of the single and double mutants at 26oC (permissive temperature for all strains) in YPD 

and YPD containing benomyl (Figure 14).  At 26oC in YPD, the hda1Δ ndc10-1 and hda1Δ 

dam1-1 double mutants showed no synthetic interactions.  In YPD containing 10µg/ml of 

benomyl, the ndc10-1 and dam1-1 single mutants showed decreased viability that was partially 

suppressed by combining the mutations with hda1Δ.  Additionally, hda1Δ was also able to 

suppress the temperature sensitivity of ndc10-1 and dam1-1, as seen by the hda1Δ ndc10-1 

double mutant strain at 29.5oC and the hda1Δ dam1-1 double mutant at 34oC.   

 Upon discovering the genetic interactions between the Hda complex and components of 

the kinetochore, we asked if there was also physical interactions.  Strains were created carrying 

epitope-tagged HDA1 in combination with either epitope-tagged NDC10 or DAM1.  We show by 

co-immunoprecipitation that Hda1 interacts with Dam1 (Figure 15).  However, we did not detect 

a significant interaction with Ndc10 (data not shown).  Together with the evidence from genetic 

interactions, this data strongly indicates that Hda1 has a role in kinetochore function.   

 

hda1Δ suppresses ndc10-1 mutant by restoring normal chromosome segregation   

To address the mechanism of how hda1Δ suppresses the benomyl sensitivity phenotype 

of the ndc10-1 mutant, we used fluorescence microscopy with strains carrying GFP-tagged 

centromeres.  These strains carry an array of 256 lac operators integrated at the TRP1 locus, 
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which is approximately 12kb away from CEN4.  Additionally, lacI-GFP is expressed from the 

HIS3 locus (Straight et al. 1996).  This results in a GFP signal very close to the centromere of 

chromosome IV and allows viewing centromere movement through the cell cycle.  We created 

single mutants of hda1Δ and ndc10-1 as well as the double mutant hda1Δ ndc10-1 in the GFP-

tagged centromere background.  These strains were grown in liquid YPD cultures with a low 

concentration (5µg/ml) of nocodazole, which is a microtubule-depolymerizing drug similar to 

benomyl.  Following incubation with the nocodazole for 2 hours, the cells were viewed under 

fluorescence microscopy to calculate the percentage of cells that had missegregated 

chromosomes.  Due to the low dose of nocodazole, some cells continued dividing (cycling) 

normally.  We considered missegregated chromosomes to be those that showed two distinct GFP 

foci that were misaligned.  Cells that showed one distinct GFP focus with a large budded 

daughter cell were considered to be the normal response to the drug (Figure 16). Under these 

conditions, we found that the  

ndc10-1 mutant had a 12% missegregation rate, while the hda1Δ ndc10-1 double mutant had a 

6% missegregation rate which is comparable to wild type and the hda1Δ single mutant (Figure 

17).   

 Next we addressed the issue of viability concerning these mutants in response to 

nocodazole.  Strains carrying single mutations of hda1Δ and ndc10-1 as well as the double 

mutant hda1Δ ndc10-1 were grown to saturation overnight in YPD, and then diluted in YPD 

containing 50µg/ml of nocodazole and incubated for 6 hours.  Following exposure to the drug, 

cells were washed and approximately 200 cells were plated on YPD.  After incubation, colony-

forming units (CFU’s) were counted for viability.  Our results show that the ndc10-1 mutant has 

an 81% survival rate, and the double mutant hda1Δ ndc10-1 has a 100% survival rate which is 
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comparable to wild type and the single mutant hda1Δ (Figure 18).  Together, these results 

indicate that deletion of the Hda complex suppresses the chromosome segregation defects of 

ndc10-1, and this suppression restores normal viability.  Therefore, we conclude that 

deacetylation by the Hda complex affects centromere-kinetochore function. 
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D.  Discussion 
 
 Our previous work has shown that deletion of the Hda histone deacetylase complex can 

suppress a chromosome segregation defect caused by mutations in histone H2A.  We have also 

showed by chromatin immunoprecipitation that the Hda complex is localized to centromeric 

regions of DNA (Kanta et al. 2006), and the complex is active in deacetylating lysine 14 of 

histone H3 and lysine 16 of histone H2B (Almutairi, Williamson and Pinto, unpublished).  In this 

study, we used yeast two-hybrid and co-immunoprecipitation assays to investigate the 

interactions between subunits of the Hda complex.  We found that the original suppressor alleles, 

which encode truncated Hda subunits, are defective in complex formation, and these alleles 

behave the same as the null mutants of the Hda complex with respect to their suppressor function 

of the increase-in-ploidy defect caused by the H2A mutations.  These findings also imply that the 

C-teminus of each subunit, Hda1, Hda2, and Hda3, is essential for the formation of the complex.   

 Next, we wanted to know if the centromeric localization of the Hda complex is cell-cycle 

dependent.  Due to the fact that we are implicating the Hda complex in chromosome segregation, 

we hypothesized that the Hda complex would be enriched at the centromere in G2/M.  Here we 

show that the Hda complex is present at the centromere in all phases of the cell cycle in 

relatively equal amounts.  One possible explanation is that the Hda complex is always present at 

CEN regions in order establish a particular “chromatin environment” that is beneficial for 

genome integrity.  Looking further away from the centromere, the data shows that the Hda 

complex is present up to 20kb away from the centromere in either direction.  This is in contrast 

to the outer kinetochore protein, Dam1, which is found only very close to the centromere, 

suggesting that the Hda complex is not behaving as a true kinetochore component.  This 

extensive association of the Hda complex with pericentric chromatin might relate to the 
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specialized chromatin loop structures proposed to take place during mitosis when bioriented 

kinetochores are pulled toward the spindle poles (Yeh et al. 2008). 

 We also explored genetic interactions between the Hda complex and kinetochore 

components, finding that hda1Δ can suppress the temperature and benomyl sensitivities of both 

ndc10-1 and dam1-1.  This information is supported by co-immunoprecipitation data that shows 

an interaction between Hda1 and Dam1.  We did not, however, find interactions by co-

immunoprecipitation between Hda1 and Ndc10 or the centromeric H3 variant, Cse4 (data not 

shown).  Dam1 has been shown to be phosphorylated by the Aurora kinase Ipl1 (Cheeseman et 

al. 2002) and methylated by Set1 (Zhang et al. 2005), and we speculate that it is possible that 

Dam1 could also be regulated by acetylation.  In this context, acetylation by the Hda complex 

would modulate the activity of Dam1, or other potential kinetochore substrates, in addition to its 

role on histones.  Even though Hda1 does not appear to behave as a true kinetochore protein, its 

localization to CEN regions is dependent on Ndc10.  Since a functional kinetochore does not 

assemble in the absence of Ndc10, we can infer that a functional kinetochore is necessary for 

Hda1 activity at centromeric and pericentric regions. 

 To better understand the mechanism of how hda1Δ suppresses the benomyl sensitivity 

phenotype of ndc10-1, we used strains carrying a GFP-tagged centromere to follow chromosome 

segregation by fluorescence microscopy in these cells.  We find that the ndc10-1 single mutants 

have double the rate of missegregated chromosomes as the wild-type, and the double mutant 

hda1Δ ndc10-1 has a rate of missegregation comparable to wild-type.  We infer that hda1Δ is 

suppressing ndc10-1 by restoring normal chromosome segregation, further strengthening our 

proposed role for the Hda complex in centromere-kinetochore function.  Our current model 

proposes a role for histone deacetylation by the Hda complex at centromeric and pericentromeric 
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regions, as well as a function through deacetylation of potential kinetochore substrates (Figure 

19). 

A recent report has shown that hypoacetylation of H4K16 at centromeric regions is 

important for proper kinetochore function and accurate chromosome segregation (Choy et al. 

2011).  H4K16 is deacetylated by Sir2 and is not a known target of the Hda complex.  Inhibiting 

HDAC’s in human tumor cell lines blocks mitotic progression by altering pericentric chromatin 

and in turn interfering with kinetochore assembly (Robbins et al. 2005). In addition, 

deacetylation and methylation of H3K9 is involved in chromosome condensation during cell 

cycle progression in a variety of human tumor cell lines (Park et al. 2011). In human tumor cell 

lines, HDAC3 interacts with AKAP95 and HA95, which are Aurora kinase B-anchoring 

proteins.  This interaction is required for deacetylation of H3 in mitosis and allows for optimal 

H3S10 phosphorylation by Aurora B.  H3S10 phosphorylation leads to dissociation of HP1 from 

H3K9 and allows normal mitotic progression (Li et al. 2006). Work in S. pombe has shown that 

inhibiting deacetylation with the HDAC inhibitor trichostatin A or by mutations affects 

chromosome segregation by interfering with the anaphase promoting complex cyclosome 

(APC/C) (Kimata et al. 2008).  These examples underscore the connection between deacetylation 

and chromosome segregation.  They also emphasize the conservation of function among species.  

It is unclear at this point if the main centromeric role of the Hda complex in Saccharomyces is 

deacetylating histones or non-histone proteins with centromere function.  Certainly these two 

functions of the Hda complex are not mutually exclusive.  Our future studies will aim to clarify 

the function of deacetylation at the kinetochore. 
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Figure 1.  Structure of the hda1, hda2 and hda3 alleles isolated as suppressor of the hta1-300 

increase-in-ploidy phenotype.  The isolated alleles had1-646, hda2-546, hda3-548 and hda1-514 

carry transposon insertions followed immediately by stop codons, creating proteins with a C-

terminal truncation.  The bars representing the length of the alleles are shown to scale. 
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Figure 2.  The yeast two-hybrid strain EGY48 was transformed with a plasmid containing either 

HDA2 or hda2546 fused to the LexA DNA binding domain (bait, pEG202), and a second plasmid 

containing HDA3, hda3548, HDA1, or hda1646 fused to the B42 activation domain under the 

control of a GAL4 promoter (prey, pJG4-5).  A third plasmid (pSH18-34) was also present in 

these strains that contains the LexA operator sequence with β-galactosidase as a reporter gene.  

Strains were grown on X-Gal media containing either glucose or galactose and incubated at 30°C 

for 2 days. 
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Figure 3. β-galactosidase assay in correspondence with Figure 2. 
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Figure 4. β-galactosidase assay in correspondence with Figure 2. 
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Figure 5.  Interactions among the Hda complex subunits in strains carrying the hda1-646, hda2-

546, and hda3-548 suppressor alleles.  Co-immunoprecipitation experiments were carried out 

with yeast extracts from untagged (lane1, FY1333) or epitope-tagged strains (lanes 2-6, IPY475, 

IPY478, IPY476, IPY481, IPY491).  Relevant genotypes are indicated.  Lane 1, untagged. Lane 

2, wild type HDA1-Myc HDA2-Flag HDA3-HA. Lane 3, HDA1-Myc HDA2-Flag hda3548-HA. 

Lane 4, HDA1-Myc hda2546-Flag HDA3-HA. Lane 5, hda1646-Myc HDA2-Flag HDA3-HA. Lane 

6, hda1Δ HDA2-Flag HDA3-HA. 
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Figure 6.  Canavanine assay for monitoring cell ploidy.  Strains were patched on YPD and 

replica plated on SC-arg plus canavanine plates, exposed to UV irradiation and incubated at 

30dC.  Haploid can1 cells that become Canr forms colonies (papillae), while cell that are diploids 

for the CAN1 locus remain Cans.  Strains are  wild type haploid (IPY541), wild type diploid 

(IPY247), hda1Δ (IPY 543), hta1-300 (IPY550), and hta1-300 hda1Δ (IPY549). 
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Figure 7. Ploidy determination by flow cytometry.  DNA content represented by relative 

fluorescent of wild type haploid (IPY541), wild type diploid (IPY247), hda1Δ (IPY 543), hta1-

300 (IPY550), and hta1-300 hda1Δ (IPY549). 
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Figure 8.  Hda1 associates with centromeric chromatin in all phases of the cell cycle.  Wild-type 

strains containing untagged (IPY466) or Myc-epitope tagged (IPY466) Hda1 were arrested in G1 

using alpha-factor, in S-phase with hydroxyurea, or in G2/M with nocodazole.  Cells that were 

not arrested (no treatment) represent unsynchronized, exponentially growing cultures.  

Formaldehyde cross-linked chromatin was prepared, and extracts were immunoprecipitated with 

anti-Myc antibodies.  PCR was performed on total input DNA (in) and immunoprecipitated DNA 

(IP) to visualize the core centromeric region of CEN3. 
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Figure 9.  Graph showing relative chromatin immunoprecipitation of Hda1 at CEN3 in different 

phases of the cell cycle.   
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Figure 10. Pericentric localization of Hda1. Formaldehyde cross-linked chromatin was prepared 

from wild type strains that were untagged (IPY466) or Myc-epitope tagged Hda1 (IPY461). 

Extracts were immunopreciptated with anti-Myc antibodies. PCR was performed on total input 

DNA (in) and immunoprecipitated DNA (IP) using primer walking up to 5kb right (R) or left (L) 

of CEN3. 
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Figure 11. Graph showing relative chromatin immunoprecipitation of Hda1 at 5kb left and right 

of CEN3. 
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Figure 12. Pericentric localization of Dam1. Formaldehyde cross-linked chromatin was prepared 

from wild type strains that were untagged (FY1333) or Myc-epitope tagged Dam1 (IPY631).  

Extracts were immunopreciptated with anti-Myc antibodies. PCR was performed on total input 

DNA (in) and immunoprecipitated DNA (IP) using primer walking up to 5kb right (R) or left (L) 

of CEN3. 
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Figure 13. Graph showing relative chromatin immunoprecipitation of Dam1 at 5kb left and right 

of CEN3. 
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Figure 14. Interactions between Hda1 and kinetochore components.  Suppression of ndc10-1 and 

dam1-1 by hda1Δ. Double mutants were generated by crosses between hda1Δ strains and 

kinetochore mutants. Serial dilutions (108–103cells/ml) were spotted (4µl) onto YPD or benomyl 

plates and incubated at the indicated temperatures for 2 days. The genotypes correspond to the 

following strains: wild-type (IPY811), hda1Δ (IP979), ndc10-1 (IPY980), hda1Δ ndc10-1 

(IPY981), dam1-1 (IPY1010), and hda1Δ dam1-1 (IPY1011). 
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Figure 15. Co-immunoprecipitation interaction between Hda1 and Dam1. Protein extracts from 

wild-type strains untagged (FY1333) or double tagged DAM1-MYC HDA1-FLAG (IPY943) were 

immunoprecipitated with anti-Myc antibodies, separated by SDS-PAGE, followed by western 

blotting with anti-Flag antibodies. 
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Figure 16. Diagram of the categories that cells were grouped into for counting with fluorescence 

microscopy. 
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Figure 17. hda1Δ suppresses a chromosome segregation defect caused by ndc10-1. Strains were 

created with GFP-tagged CEN4 to view chromosome segregation in vivo.  Wild-type (IPY811), 

hda1Δ (IPY979), ndc10-1 (IPY980), and hda1Δ ndc10-1 (IPY981) were grown to mid-log phase 

and then viewed using fluorescence microscopy. 200 cells were counted and placed into one of 

the categories from Figure 16.  The error bars indicate standard error from three independent 

experiments.  
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Figure 18.  Recovery from benomyl assay.  Wild-type (IPY811), hda1Δ (IPY979), ndc10-1 

(IPY980), and hda1Δ ndc10-1 (IPY981) strains were grown to mid-log and then incubated with 

50µg/ml benomyl for 6 hours.  Following incubation, cells were counted and approximately 200 

cells of each strain were plated on YPD plates and allowed to grow at the permissive (26°C) for 

2 days followed by counting viable colony forming units (CFU’s).  Error bars indicate standard 

error from three independent experiments. 
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Figure 19.  Schematic representing the yeast centromeric region with interactions between the 

Hda complex, chromatin, and kinetochore components. 
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A.  Introduction 
 
 During mitosis, cells undergo a highly regulated and precisely timed set of events to 

ensure that both daughter cells accurately inherit equal genetic material.  Eukaryotic DNA is 

packaged into cells in the form of chromatin, a dynamic structure consisting of DNA, histone 

proteins, and non-histone proteins.  The functional repeating unit of chromatin, the nucleosome, 

consists of an octamer of two each of the four core histones wrapped around twice by 

approximately 147bp of DNA (Luger et al. 1997; White, Suto, and Luger 2001; van Holde 

1988).  Because histones are so intimately associated with DNA, they participate in every 

cellular process involving DNA including replication, transcription, DNA damage repair, and 

chromosome segregation (reviewed in Williamson and Pinto 2012). 

Also crucial to accurate chromosome segregation is the kinetochore, a large multi-subunit 

protein complex that assembles on each chromosome at the centromere and facilitates the 

binding of microtubules during metaphase.  The binding of microtubules to kinetochores is 

monitored by the spindle assembly checkpoint (SAC).  The SAC ensures that all kinetochores 

are bound to microtubules in a bi-oriented fashion, and that proper tension is being placed on the 

chromosomes.  When the requirements for the SAC are satisfied, cohesin proteins that hold sister 

chromatids together are degraded allowing the chromosomes to be segregated to opposite ends of 

the cell.   

One protein complex involved in the SAC is the chromosomal passenger complex (CPC), 

which consists of the Ipl1 kinase (Aurora B), Sli15 (INCENP), Bir1 (Survivin), and Nbl1 

(Borealin).  The CPC is an essential complex that is conserved from yeast to humans, and is 

involved in ensuring kinetochore bi-orientation by promoting kinetochore-spindle reattachments 

until adequate tension is obtained.  The CPC has a dynamic localization throughout mitosis, 
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localizing to kinetochores at the onset of mitosis and moving to the spindle midzone in late 

anaphase.  While they have a common localization throughout the cell cycle, they are not always 

together as a complex containing all members.  Subcomplexes of chromosomal passenger 

proteins exist that carry out specialized functions.  Bir1 and Sli15 form a separate complex that is 

active in linking centromeres to spindle microtubules (Sandall et al. 2006) and also regulating 

septin dynamics during anaphase (Thomas and Kaplan 2007).  A separate complex consisting of 

Sli15-Ipl1 has been shown to promote turnover of mono-attached kinetochores to ensure correct 

bi-oriented microtubule-kinetochore attachments (Tanaka et al. 2002).  Lastly, a Bir1-Sli15-Ipl1 

complex is present in mitotic cells, although information about its function is limited (Thomas 

and Kaplan 2007).  

The chromosomal passenger proteins are not the only tension-sensing proteins in the cell.  

Some of the function of the CPC is shared by Sgo1, which was originally identified to protect the 

centromeric cohesin Rec8 during meiosis (Kitajima, Kawashima, and Watanabe 2004) and to 

sense tension between sister chromatids during mitosis (Indjeian, Stern, and Murray 2005).  It 

has been reported that Sgo1 is recruited to centromeric and pericentromeric regions through 

interactions with H3 G44 (Luo et al. 2010) and H2A S121 (S. A. Kawashima et al. 2010), and 

that its localization is dependent on the kinase Bub1 (Kitajima, Kawashima, and Watanabe 

2004).  Interestingly, overexpression of the CPC components Bir1 or Sli15 can suppress the 

increase-in-ploidy phenotype of bub1Δ (Storchová et al. 2011), indicating that Bub1-Sgo1 could 

potentially share parallel functions with the CPC. 

Previous work identified two single amino acid substitution alleles of one of the genes 

that codes for histone H2A, hta1-200 and hta1-300, which lead to increase in ploidy, 

chromosome loss, and cold sensitivity (Pinto and Winston 2000).  A suppressor screen was 



 80 

carried out to identify secondary mutations in other genes that could suppress the increase in 

ploidy phenotype of the H2A mutants. This screen led to the identification of the Hda histone 

deacetylase complex. Loss of function alleles, either partial or complete deletions, of any of the 

three members of this complex, HDA1, HDA2, and HDA3, are sufficient to suppress the 

chromosome segregation defects of the histone mutant (Kanta et al. 2006).  

 In this study, we explore interactions between the Hda complex, kinetochore components, 

and chromatin to shed light on the chromatin requirements for faithful chromosome segregation.  

We carried out a yeast two-hybrid library screen to search for proteins that interact with the Hda 

complex and identified Bir1, a component of the CPC.  We also show genetic interactions 

between the Hda complex and the CPC and between chromatin and the CPC.  To further study 

the role of Bir1, we generated a temperature sensitive allele. The allele that we isolated, bir1-1, is 

synthetically lethal in combination with hta1-300.  This phenotype is unique to BIR1, as the 

other CPC components only show mild phenotypes in combination with the histone mutant.  In a 

screen to identify high copy suppressors of bir1-1, we found SGO1 (Shugoshin), a protein 

involved in the mitotic tension-sensing checkpoint.  Interestingly, we find that sgo1Δ is also 

synthetically lethal with hta1-300. Our results suggest a network of interactions where 

centromeric chromatin and the CPC participate in the establishment and surveillance of 

kinetochore attachment and tension, functions that are modulated by the Hda histone deacetylase 

complex.  
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B.  Materials and Methods 

Yeast strains, genetic methods, growth, and media: The yeast strains used are listed in Table 

1.  Unless indicated, strains are isogenic to FY2, originally derived from S288C (Winston, 

Dollard, and Ricupero-Hovasse 1995).  Strain construction and other genetic manipulations were 

carried out by standard methods (Guthrie and Fink 1991; Rose, Winston, and Hieter 1990).  All 

yeast media, including YPD, synthetic minimal, omission media (SC), and media containing 5-

fluoroorotic acid (5-FOA) were made as described previously (Rose, Winston, and Hieter 1990). 

Benomyl plates were made by adding benomyl (Sigma, St. Louis) to hot YPD to a final 

concentration of 10 µg/ml. Canavanine plates contain 60 µg/ml of canavanine sulfate (Sigma).   

In general, genes were tagged with 13xMYC at the 3’ end by PCR using plasmid 

GHB160 as template, with 3xFLAG at the 3’ end by PCR using plasmid GHB342 as template, 

and with 3xHA at the 3’ end by PCR using GHB159 as template as previously published 

(Longtine et al. 1998; Schneider et al. 1995).  BIR1 was tagged with 3xFLAG at the 3’ end by 

PCR amplification of GHB342 using the primers oIP138 and oIP139. The PCR product was used 

to transform FY1333 and transformants were selected on YPD+G418.  hta1-300 was tagged with 

clonat resistance gene at the 3’ end by PCR amplification of pAG25 using the primers oIP328 

and oIP329.   

 

Bacterial strains and plasmids: Plasmids were amplified and isolated from Escherichia coli 

strain DH5a, according to standard procedures (Ausubel et al. 1988). 

 

Flow cytometry: DNA content of yeast cells was determined as described, using a Becton 

Dickinson (San Jose, CA) FACSCalibur instrument (Pinto and Winston 2000). 
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Immunoprecipitation:  Protein extracts were prepared by resuspending 50ml of exponentially 

growing cultures in 500ml of RIPA buffer (10mM Tris-HCl pH 8, 250mM LiCl, 0.5% NP-40, 

0.5% DOC, 1mM EDTA, 1X Roche EDTA-free protease inhibitor cocktail).  Primary antibody 

was added and the slurry was incubated at 4oC for 2 hours.  15ml of Protein A Dynabeads 

(Dynal, Great Neck, NY) was added to the reaction and incubated for 2 hours at 4oC.  Beads 

were washed 5 times with 1ml RIPA buffer, resusupended in 20ml of 2x SDS loading buffer 

(100mM Tris-HCl pH 6.8, 4% SDS, 20% glycerol, 0.2% bromophenol blue, 200mM DTT), and 

incubated in boiling water bath for 5 minutes.  10ml of the immunoprecipitate was loaded on 4-

20% gradient polyacrylamide iGels (NuSep) for SDS-PAGE, transferred to PVDF membrane, 

and analyzed by Western blot.  

 

Western blot:  Extracts were prepared by resuspending 1.5ml of an exponentially growing 

culture in 200ml of Rapid Protein Extract Sample Buffer (60mM Tris-HCl pH 6.8, 6M urea, 2% 

SDS, 5% b-mercaptoethanol, 0.0025% bromophenol blue) and incubating in a boiling water bath 

for 5 minutes.  Following centrifugation, 10ml of the supernatants were loaded onto a 4-20% 

gradient polyacrylamide iGel (Nusep) for SDS-PAGE.  Proteins were transferred to PVDF 

membrane, and the membrane was blocked with 5% nonfat dry milk in TBST (150mM NaCl, 

100mM Tris-HCl pH 8.0, 0.5% Tween-20).  Primary and secondary antibodies were diluted in 

5% nonfat dry milk in TBST, and blots were developed with chemiluminescent substrate 

(Millipore).  Blots were imaged using a FluorChem 8900 (Alpha Innotech). 

 

Yeast Two-hybrid analysis: The yeast strain EGY48 was transformed with the bait plasmid 

pEG202 and the prey plasmid pJG4-5, both containing the genes of interest.  Strains were plated 
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on SC-Leu+X-Gal media containing either glucose or galactose as the carbon source and 

incubated at 30°C for 2 days. 

 

b-galactosidase assay:  b-galactosidase activity was determined from liquid cultures using 

ONPG as substrate as previously described (Clontech Laboratories, Inc.). 

 

Chromatin Immunoprecipitation:  ChIP was carried out as previously described (Kanta et al. 

2006).  ChIP results were quantified by resolving the PCR products on 1.5% agarose gels stained 

with ethidium bromide.  Gels were imaged using a FluorChem 8900 (Alpha Innotech), and 

relative band intensity was determined using AlphaEase FC software.  The following primers 

were used for PCR: CEN3 (oIP142, oIP143), CEN1 (oIP140, oIP141), CEN4 (oIP144, oIP145), 

ENA1 (oIP193, oIP194), TEL-VIR (oIP150, oIP151), PGK1 (oIP92, oIP93), and HO (oIP234, 

oIP235).  The following primers were used for PCR walking away from CEN3: 5kb L (oIP204, 

oIP205), 2kb L (oIP206, oIP207), 1kb L (oIP208, oIP209), 0.5kb L (oIP210, oIP211), 0.25kb L 

(oIP212, oIP213), 0.25kb R (oIP214, oIP215), 0.5kb R (oIP216, oIP217), 1kb R (oIP218, 

oIP219), 2kb R (oIP220, oIP221), and 5kb R (oIP222, oIP223). 

 

Generation of temperature sensitive mutant of BIR1: Temperature sensitive mutants were 

obtained as described (Muhlrad, Hunter, and Parker 1992).  Conditions for mutagenic PCR using 

pIP92 as DNA template were as follows: 1x Platinum Taq Buffer (Invitrogen), 3mM MgCl2, 

100µM MnCl2, 1µM each of the primers oIP226 and oIP227 (Table 2), biased dNTP’s (100mM 

of three of the bases, 20mM of the biased base), and 5 units of Platinum Taq (Invitrogen).  Four 

PCR reactions were set up, each one containing dNTP’s with a different biased base (A, G, C, 
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T).  The mutagenic PCR reactions were cleaned with a Qiagen MinElute PCR Purification kit 

and pooled together.  pIP115 was gapped with SnaBI and SphI.  The gapped plasmid and 

mutagenic PCR were used to co-transform the yeast strain x139-2A for in vivo recombination. 

Transformants were screened at 37°C for temperature sensitivity.  Plasmid DNA was isolated 

and sequenced from transformants showing temperature sensitivity. 

 

bir1-1 high copy suppressor screen:  

IPY808 was transformed with a high-copy Yep13-based library (2µm-LEU2). Cells were plated 

on SC-Leu medium and incubated at 37°C and screened for transformants that were no longer 

temperature sensitive.  Plasmid DNA was isolated sequenced from non-temperature sensitive 

transformants. 
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Table 1. Yeast strains used in this study 

EGY48 MATa his3 trp1 ura3 LexAop(x6)-LEU2 
FY1331 MATa trp1Δ63 ura3Δ0 
FY1333 MATα leu2Δ0 ura3Δ0 
FY604 MATα his3Δ200 leu2Δ1 ura3-52 trp1Δ63 (hta2-htb2)Δ::TRP1 
FY1819 MATα his3Δ200 leu2Δ1 lys2-128δ ura3-52 trp1Δ63 (hta2-htb2)Δ::TRP1 hta1-200 

<pSAB6> 
IPY69 MATa his3Δ200 leu2Δ1 ura3-52 trp1Δ63 (hta2-htb2)Δ::TRP1 hta1-300 <pSAB6> 
IPY75 MATa/α his3Δ200/his3Δ200 leu2Δ1/leu2Δ1 ura3-52/ura3-52 trp1Δ63/trp1Δ63  

(hta2-htb2)Δ::TRP1/(hta2-htb2)Δ::TRP1 
IPY171 MATa his3Δ200 leu2Δ1 ura3-52 
IPY311 MATα leu2Δ0 ura3Δ0 BIR1-HA 
IPY384 MATα ura3Δ0 trp1Δ63 BIR1-HA HDA1-MYC::KanMx 
IPY387 MATα ura3Δ0 leu2Δ0 BIR1-HA HDA3-FLAG::KanMx 
IPY394 MATa ura3Δ0 BIR1-HA HDA2-FLAG::KanMx 
IPY497 MATa ura3Δ0 hda1Δ::URA3 BIR1-HA HDA2-FLAG::KanMx 
IPY498 MATα ura3Δ0 leu2Δ0 BIR1-FLAG::KanMx 
IPY713 MATa trp1Δ63 lys2Δ202 his3Δ200 leu2Δ1 ura3-52 bir1Δ::HIS3 <pIP92> 
IPY748 MATα trp1Δ63 leu2Δ0 ura3Δ0 SLI15-MYC::KanMX HDA1-FLAG::KanMx 
IPY753 MATα ura3Δ0 leu2Δ0 IPL1-MYC::KanMx HDA1-FLAG::KanMx  
IPY808 MATa trp1Δ63 leu2Δ1 lys2Δ202 ura3-52 his3Δ200 bir1Δ::HIS3 

pIP116 (bir1-1-LEU2-CEN) 
IPY858 MATa leu2Δ0 or leu2-3,112 ipl1-2 hda1Δ::HIS3 
IPY859 MATα ura3-52 or ura3Δ0 leu2Δ0 or leu2-3,112 ipl1-2 
IPY862 MATα lys2-801 leu2Δ0 ura3-52 or ura3Δ0 sli15-3 hda1Δ::URA3 
IPY864 MATa ura3-52 or ura3Δ0 trp1Δ63 his3Δ200 sli15-3 
IPY950 MATα leu2Δ1 or leu2-3,112 ura3-52 or ura3Δ0 sli15-3 (hta2-htb2)Δ::TRP1  

HDA1-MYC::KanMx HDA2-FLAG::KanMx 
IPY969 MATα leu2Δ1 ura3-52 hda1Δ::HIS3 
IPY985 MATa leu2Δ1 trp1Δ63 ura3-52 his3Δ200 (hta2-htb2)Δ::TRP1 hta1-300::clonat 

<pSAB6> 
IPY987 MATa ura3Δ0 or ura3-52 trp1Δ63 his3Δ200 leu2Δ1 or leu2-3,112  

(hta2-htb2)Δ::TRP1 hta1-300::clonat ipl1-2 <pSAB6> 
IPY988 MATα ura3Δ0 or ura3-52 trp1Δ63 his3Δ200 leu2Δ1 or leu2-3,112  

(hta2-htb2)Δ::TRP1 hta1-300::clonat ipl1-2 <pSAB6> 
IPY990 MATα ura3Δ0 or ura3-52 trp1Δ63 leu2Δ1 or leu2-3,112 (hta2-htb2)Δ::TRP1  

hta1-300::clonat sli15-3 <pSAB6> 
IPY1015 MATa ura3-53 or ura3Δ0 leu2Δ1 or leu2-3,112 trp1Δ63 his3Δ200 

(hta2-htb2)Δ::TRP1 ipl1-2 pSAB6 
IPY1016 MATα ura3-53 or ura3Δ0 leu2Δ1 or leu2-3,112 trp1Δ63 his3Δ200  

(hta2-htb2)Δ::TRP1 ipl1-2 <pSAB6> 
Wx38-2a MATα ura3Δ0 or ura3-52 leu2Δ1 or leu2Δ0 trp1Δ63 his3Δ1 or his3Δ200 <pSAB6 

and/or pIP156> 
Wx38-2b MATa ura3Δ0 or ura3-52 leu2Δ1 or leu2Δ0 trp1Δ63 his3Δ1 or his3Δ200 
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 (hta2-htb2)Δ::TRP1 sgo1Δ::KanMx <pSAB6 and/or pIP156> 
Wx38-2c MATα ura3Δ0 or ura3-52 leu2Δ1 or leu2Δ0 trp1Δ63 his3Δ1 or his3Δ200 

hta1-300::clonat <pSAB6 and/or pIP156> 
Wx38-2d MATa ura3Δ0 or ura3-52 leu2Δ1 or leu2Δ0 trp1Δ63 his3Δ1 or his3Δ200  

(hta2-htb2)Δ::TRP1 sgo1Δ::KanMX hta1-300::clonat <pSAB6 and/or pIP156>  
Wx38-5a MATα ura3Δ0 or ura3-52 leu2Δ1 or leu2Δ0 trp1Δ63 his3Δ1 or his3Δ200  

hta1-300::clonat <pSAB6 and/or pIP156> 
Wx38-5b MATa ura3Δ0 or ura3-52 leu2Δ1 or leu2Δ0 trp1Δ63 his3Δ1 or his3Δ200 

sgo1Δ::KanMX 
Wx38-5c MATα ura3Δ0 or ura3-52 leu2Δ1 or leu2Δ0 trp1Δ63 his3Δ1 or his3Δ200  

(hta2-htb2)Δ::TRP1 sgo1Δ::KanMX hta1-300::clonat <pSAB6 and/or pIP156> 
Wx38-5d MATa ura3Δ0 or ura3-52 leu2Δ1 or leu2Δ0 trp1Δ63 his3Δ1 or his3Δ200  

(hta2-htb2)Δ::TRP1 
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Table 2. Primers used in this study 
oIP-92 5’-CACACTCTTTTCTTCTAACCA-3’ 
oIP-93 5’-CTTCAAGTCCAAATCTTGGACAGAC-3’ 
oIP-138 5’-GATGACAATCAATTGATCGATATTGCTAAGAAAATGGGCATTTTAAGG 

GAACAAAAGCTGG-3’ 
oIP-139 5’-AAAACTACAAAAAATACAAACCTTTAGCCTGTTTATCAAATTAGTCTA 

TAGGGCGAATTGGG-3’ 
oIP-140 5’-CTCGATTTGCATAAGTGTGCC-3’ 
oIP-141 5’-GTGCTTAAGAGTTCTGTACCAC-3’ 
oIP-142 5’-GATCAGCGCCAAACAATATGG-3’ 
oIP-143 5’-AACTTCCACCAGTAAACGTTTC-3’ 
oIP-144 5’-GCGCAAGCTTGCAAAAGGTCACATG-3’ 
oIP-145 5’-CGAATTCATTTTGGCCGCTCCTAGGTA-3’ 
oIP-150 5’-GCGTAACAAAGCCATAATGCCTCC-3’ 
oIP-151 5’-CTCGTTAGGATCACGTTCGAATCC-3’ 
oIP-193 5’-CACCTGACAGAAGAAAAAACAAGG-3’ 
oIP-194 5’-CACTTGATGAAGATATCTGCTT-3’ 
oIP-204 5’-GCGAACCCTTCTCCATTTGGCAAT-3’ 
oIP-205 5’-CCTCGAAGGCCATCAAGTAGAAAA-3’ 
oIP-206 5’-CCGAAGGCTGGTATGTGATTTGTT-3’ 
oIP-207 5’-GATGGGCCAAAATACTGGAATATCG-3’ 
oIP-208 5’-ACTGCTATTAAGCGCCACTT-3’ 
oIP-209 5’-TTCTAACCACTGTGTCATCCGT-3’ 
oIP-210 5’-CCGTATCATGGACGATTTCCTT-3’ 
oIP-211 5’-TTGTCAAGTTGCTCACTGTGATTT-3’ 
oIP-212 5’-CCATCCAATACCTTGATGAACTTTTC-3’ 
oIP-213 5’-CGCCATGCCATGTTTATGAA-3’ 
oIP-214 5’-CGTTTACTGGTGGAAGTTTTGCTC-3’ 
oIP-215 5’-GGGGCGGAAATTCATTTGAA-3’ 
oIP-216 5’-CAAATGAATTTCCGCCCCAT-3’ 
oIP-217 5’-CCAGTAGGTTTGTACTATAATGTGGGTG-3’ 
oIP-218 5’-ACGTGCATTAAATCTCACTGTCAC-3’ 
oIP-219 5’-TGCAGGTGCTATTTGACGACT-3’ 
oIP-220 5’-CGTCCAAACATGAAAGTGCTCCTT-3’ 
oIP-221 5’-CTGGCCTTCTTATCATACGTTGTC-3’ 
oIP-222 5’-GGAAAACGCATACCGCTAAAGAAG-3’ 
oIP-223 5’-CCGCTCCTTGTATTCTACCATTG-3’ 
oIP-226 5’-GAAGCCTATCAATAAGTGGA-3’ 
oIP-227 5’-CTTACTGTCCTACTACACCT-3’ 
oIP-234 5’-CATGATGAAGCGTTCTAAACGCAC-3’ 
oIP-235 5’-TAGCCGTGACGTTTGCGATGTCTT-3’ 
oIP-328 5’-GGGTATATAATTAACGGTAACATATGTCATGCATGATATAAATCAGGG 

GCATGATGTGACT-3' 
oIP-329 5'-ACTCAATCATGTTCAAGTAAGCAACAGTGCCCAATGAACCTAAGCTCG 

TTTTCGACACTGGAT-3’ 
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C.  Results 

Hda complex interacts with chromosomal passenger complex 

 To further characterize the Hda complex and to better understand it’s role in chromosome 

segregation, we carried out a yeast two-hybrid library screen (Ausubel et al. 1988; Guthrie and 

Fink 1991).  Using Hda2 as the bait and lacZ as a reporter gene, we screened a yeast library for 

proteins that could interact in vivo by looking for β-galactosidase activity on plates containing X-

gal.  Interestingly, from this screen we found an interaction with Bir1, the yeast homolog of 

human survivin and a member of the chromosomal passenger complex (CPC).  The library clone 

of BIR1 did not contain the complete open reading frame (ORF), therefore we confirmed the 

interaction by cloning the full BIR1 ORF into our two-hybrid system and observed a comparable 

interaction (Figure 1).  

 To determine whether Bir1 interacted with Hda2 alone or the complete Hda complex, co-

immunoprecipitation experiments were carried out between Bir1 and each of the three subunits 

of the Hda complex.  The results indicated that Bir1 interacts with all members of the Hda 

complex, Hda1, Hda2, and Hda3 (Almutairi, Williamson, and Pinto, unpublished). 

 Since Bir1 is also part of a protein complex, the CPC, we asked if the Hda complex was 

interacting on its own or as part of the complex.  Using strains carrying HDA1-FLAG in 

combination with either SLI15-MYC or IPL1-MYC, we performed co-immunoprecipitation.  We 

find that the interaction with the Hda complex is not specific to Bir1, as Sli15 and Ipl1 also show 

interactions by co-IP (Figure 2).   

 To better understand the functional significance of the interactions between the Hda 

complex and the CPC, we explored genetic interactions.  We created single and double-mutant 
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strains of hda1Δ and the temperature sensitive alleles ip1-2 or sli15-3.  We tested growth of the 

single and double mutants at 26oC (permissive temperature for all strains) on YPD and YPD 

containing 10 µg/ml benomyl, a microtubule-depolymerizing drug.  At 26oC on YPD, there were 

no synthetic interactions for the double mutants hda1Δ sli15-3 or hda1Δ ipl1-2 (Figure 3).  In 

YPD containing benomyl, the ipl1-2 single mutant shows decreased viability that is partially 

suppressed by combining the mutation with hda1Δ.  The hda1Δ ipl1-2 double mutant also shows 

greater viability than ipl1-2 alone on YPD at 29oC and 30oC.  We also show that hda1Δ can 

partially suppress the temperature sensitive phenotype of sli15-3 on YPD at 34.5oC and 37oC.  

These genetic interactions are also seen in strains carrying ip1-2 or sli15-3 in combination with a 

deletion in HDA2 or HDA3, the other two components of the Hda deacetylase complex (data not 

shown).  Thus, removal of the deacetylase activity associated with the Hda complex partially 

compensates for the growth defects caused by the ip1-2 and sli15-3 mutations. 

 

Centromeric localization of Bir1 

 Work in our lab has previously identified a novel role for the Hda complex at centromeric 

regions of DNA (Kanta et al. 2006) (Williamson and Pinto, unpublished).  Since we have also 

found that the Hda complex is present at pericentric regions up to 20kb away from the 

centromere, we asked whether Bir1 has a broad pericentric localization similar to the Hda 

complex, or if it localizes only very close to the centromere similar to kinetochore proteins.  

Using chromatin immunoprecipitation followed by PCR using primers walking away from 

CEN3, we show that Bir1 is enriched at the core region of CEN3 and diminishes in the 

pericentric regions (Figure 4 and 5).  Thus, Bir1 behaves like other components of the 

kinetochore, associated only with the core centromeric region, and differs from the extensive 
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localization of the Hda complex.  We conclude that the Hda complex does not function in the 

targeting of Bir1 to the centromere-kinetochore complex. 

  

BIR1 deletion analysis 

 There has been some dispute in the literature regarding whether BIR1 is an essential gene, 

with some groups reporting that it is essential and others reporting that is not essential.  We 

addressed this discrepancy in our strain background (S288C) by creating a BIR1/bir1Δ::HIS3 

heterozygous diploid, then allowed that diploid to undergo sporulation and subsequent dissection 

and spore germination on YPD.  Initially, the dissection showed 2:0 segregation, with the BIR1 

haploids alive and the bir1Δ haploids appearing to be dead.  However, after longer incubation a 

subset of the bir1Δ segregants formed very small colonies.  These survivors form heterogeneous 

colonies (Figure 6), appear very sick, and show dramatic aneuploidy by flow cytometric analysis 

(Figure 7).  From this information, we conclude that BIR1 is not essential in our strain 

background; however, the recovered bir1Δ strains are extremely sick and genomically unstable.  

Therefore, for the remainder of this work, we treat it as an essential gene.  

 In order to better study null phenotypes of BIR1, we generated a temperature sensitive 

allele by PCR mutagenesis (Figure 8).  The resulting allele, bir1-1, has two point mutations at 

the C-terminus of the 954 amino acid protein, K887R and K950stop (Figure 9).  To determine if 

one or both of these mutations were responsible for the temperature sensitivity we created strains 

carrying individual mutations, but neither retained the temperature sensitivity.  Hence, both 

mutations are required in order for the resulting protein to be temperature sensitive.  
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Genetic interactions between CPC and histone H2A mutations 

 Having the bir1-1 temperature sensitive allele allowed us to explore genetic interactions 

between the bir1 mutant and the original histone H2A mutants that cause altered centromere 

chromatin structure and chromosome segregation defects (Pinto and Winston 2000).  We crossed 

a strain carrying the histone H2A hta1-300 allele covered with the wild-type plasmid (pSAB6) 

with a strain carrying the bir1-1 allele in a plasmid and the chromosomal locus deleted 

(bir1Δ::HIS3).  The germination efficiency of the dissected tetrads was very poor.  Since Bir1 is 

known to play an essential role in meiotic chromosome segregation it is likely that the poor 

germination reflected some degree of insufficiency of wild type Bir1 in the diploid.  Of over 50 

dissected tetrads, none of the recovered meiotic segregants contained the double bir1-1 hta1-300 

mutant, although all other combinations were obtained.  Thus, we conclude that there is synthetic 

lethality between bir1-1 and hta1-300, indicating that the cell cannot tolerate the disturbances 

caused by the combination of the two loss of function alleles.   

 We also tested the combination of mutations in the other components of the CPC, the Ipl1 

kinase and Sli15.  Strains carrying the hta1-300 and either of the temperature sensitive alleles 

ipl1-2 or sli15-3 were constructed.  Both strains were viable at permissive temperatures and 

semi-permissive temperature (30°C), although some variation was observed in the hta1-300 ipl1-

2 strain (Figure 10). Neither of the double mutants showed a synthetic or suppressor phenotype 

on YPD medium containing 10µg/ml benomyl (data not shown).  Therefore, the synthetic 

lethality is specific for the combination of hta1-300 and bir1-1.   However, we could not rule out 

a suppressor effect of the CPC mutants on the ploidy increase phenotype of the hta1-300 allele.  

Therefore, we tested the double mutants hta1-300 ipl1-2 and hta1-300 sli15-3 for the papillation 

phenotype on canavanine containing plates and confirmed those phenotypes by measuring DNA 
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content by flow cytometry.  The results of the canavanine assay show no suppression of the 

increase-in-ploidy phenotype (Figure 11).  The ipl1-2 and hta1-300 strains are expected to 

diploidize but show some papillae, although reduced compared with the wild type, indicating 

that the strains are still in transition (after removal of the wild-type gene), as evidenced by the 

flow cytometry data (Figure 12).  Since the ipl1-2 and hta1-300 share the increase-in-ploidy 

phenotype it was not expected to have a suppression effect, but rather a synthetic effect.  In 

conclusion, we identified one novel phenotype, the synthetic lethality between bir1-1 and hta1-

300. 

 

Analysis of high dosage expression of Bir1 

Based on the synthetic lethality observed between bir1-1 and hta1-300 we hypothesized 

that the histone defect could result in deficient tension generated at microtubule-kinetochore 

attachment, a defect that would need the tension-sensing function of Bir1 for survival.  If that 

were to be the case, then overexpression of Bir1 might overcome the histone defect and suppress 

the increase-in-ploidy phenotype.  Thus, we set out to test the effect of Bir1 overexpression in 

the hta1-300 mutant by introducing a 2µ plasmid that carries the wild type BIR1 in high copy.  

The results of the canavanine assay shown in Figure 13 indicate that there is no suppression of 

the hta1-300 ploidy defect by overexpression of Bir1.  Although the ploidy phenotype may be 

related to inappropriate tension at the kinetochore, increasing Bir1 levels in the tested conditions 

is not sufficient no overcome the problem. 
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SGO1 is a high copy suppressor of bir1-1 

Because information on the role of BIR1 has been limited to this point, we carried out a 

genetic screen to find other genes that can suppress the temperature sensitive phenotype of  

bir1-1.  The goal was to discover genes that may clarify the function that Bir1 has in relation to 

the Hda deacetylase complex and centromeric chromatin.  Cells carrying the bir1-1 allele were 

transformed with a 2µ genomic library and checked for viability at the permissive 

temperature.  From this screen we identified SGO1 (shugoshin), a gene that has recently been 

implicated in sensing mitotic tension by acting through chromatin (Luo et al. 2010).  We 

confirmed this interaction by constructing a yeast two-hybrid strain using Sgo1 as the bait 

combined with either full length Bir1, N-terminal half Bir1, or C-terminal half of Bir1 as the 

prey.  These strains were used for β-galactosidase assays, and we find that the full length Bir1 

interacts with Sgo1 (Figure 14).  The N- and C-terminal halves of Bir1 showed interaction values 

comparable to the negative control, indicating that the intact Sgo1 protein is necessary to 

establish the interaction. 

Because of its action through chromatin, we decided to explore genetic interactions 

between sgo1Δ and our original histone mutant, hta1-300.  We created double mutant strains that 

carry sgo1Δ hta1-300, both covered by plasmids containing the URA3 auxotrophic marker and 

wild type copies of SGO1 and HTA1, respectively.  After growth on selective media allowing the 

cells to lose these plasmids, and subsequent plating on media containing 5-Fluororotic acid 

(FOA) to counter select for the cells that lost the plasmid, sgo1Δ and hta1-300 single mutants are 

able to grow, however the sgo1Δ hta1-300 double mutant is inviable (Figure 15).  This indicates 

that sgo1Δ is synthetic lethal with hta1-300.  

 



 94 

High copy BIR1 does not suppress sgo1Δ hta1-300 

Based on the observations that the double mutants bir1-1 hta1-300 and sgo1Δ hta1-300 

show synthetic lethality, SGO1 overexpression can suppress the temperature sensitivity of bir1-

1, and BIR1 overexpression can suppress the benomyl sensitivity of bub1Δ (the kinase associated 

with Sgo1), we asked the question if overexpression of BIR1 can suppress the synthetic lethality 

of sgo1Δ hta1-300.  The double mutant sgo1Δ hta1-300 strain covered with URA3-marked 

plasmids containing wild type copies of SGO1 and HTA1 was transformed with a LEU2-marked 

high-copy (2µ) plasmid containing BIR1.  These strains were checked for viability on media 

containing 5-FOA, which allows selection of cells that have lost the URA3-marked (SGO1 and 

HTA1) plasmids (Figure 16).  Under the conditions that we tested, overexpression of BIR1 does 

not suppress the synthetic lethality of sgo1Δ hta1-300.  
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Discussion 

 We have previously shown that a mutant of histone H2A that causes chromosome 

segregation defects can be suppressed by deletion of the Hda histone deacetylase complex 

(Kanta et al. 2006).  In an attempt to further characterize the Hda complex and understand its 

novel role in chromosome segregation and centromeric function, we carried out a yeast two-

hybrid screen to look for interacting proteins.  From this screen we identified BIR1, and 

subsequently confirmed both physical and genetic interactions between the Hda complex and the 

CPC.  Deletion of the Hda complex does not affect centromeric localization of Bir1.  Since the 

Hda complex is not essential for cell viability, it is not unexpected that the Hda complex does not 

target Bir1 to centromeres.  Additionally, we showed by chromatin immunoprecipitation that 

Bir1 is localized only to the core centromeric regions while the Hda complex is present up to 20 

Kb away from the centromere in the pericentric regions.  These results suggest that the 

interaction between Bir1 and the Hda1 complex may be transient, where Bir1 or other 

component of the CPC may the posttranslationally modified and the subject of deacetylation by 

the Hda complex. 

 To address a conflict in the literature regarding the issue of whether BIR1 is an essential 

gene in Saccharomyces cerevisiae, we constructed the bir1Δ strain and showed that although 

BIR1 is not essential strictly speaking, very few bir1Δ segregants of meiosis survived and formed 

viable colonies. However, these survivors are very sick, grow extremely slow, and have 

significant aneuploidy and in some cases polyploidy.  These findings help to reconcile the 

differences observed by others in their analyses of bir1Δ strains.  It is very likely that the extreme 

sickness we observed can become lethal in other strain backgrounds.  Since the surviving bir1Δ 

were so sick and genomically unstable, we continued our analysis of BIR1 by generating a 
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temperature sensitive mutant, bir1-1.  This mutant contains two point mutations (K887R and 

K950stop) at the C-terminus of the protein.  The positioning of these mutations is not surprising 

considering that only the final ~80 amino acids of Bir1 are required for viability (Widlund et al. 

2006).   

 Our attempts to generate a bir1-1 hta1-300 double mutant were not successful, and our 

results suggest that the yeast cell cannot tolerate the combination of both loss of function alleles.  

Interestingly, this synthetic lethality does not extend to the other members of the CPC.  Double 

mutants of ipl1-2 hta1-300 are slightly sicker than the single mutants and sli15-3 hta1-300 shows 

no synthetic phenotype.  We can infer that BIR1 has a distinct role in chromatin dynamics that is 

separate from that of other members of the CPC, at least with respect to its interaction with 

chromatin. 

 Based on the synthetic lethality between bir1-1 and hta1-300, we thought that 

overexpressing BIR1 could potentially suppress the increase-in-ploidy phenotype of the hta1-300 

and hta1-200 mutants.  However, our experiment showed that an increased dosage of BIR1 had 

no effect on the ploidy defects associated with other histone H2A mutants.  Although the 

synthetic lethality suggests that Bir1 and chromatin have functions in the same pathway, namely 

the association of centromeres to the microtubules and the establishment of biorientation, the fact 

that Bir1 acts in combination with other CPC proteins may explain why the overexpression of 

Bir1 is not sufficient to suppress the histone H2A defects.  Alternatively, the tension sensing 

function of Bir1 is required but not sufficient to compensate for the defects caused by the altered 

centromeric chromatin present in the histone mutants. 

 Because information on Bir1 is limited with respect to chromatin and chromatin 

modifiers, we sought to identify interactions with other proteins that could help us better 
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understand its role.  Using the bir1-1 allele that we generated, we carried out a high copy 

suppressor screen to look for other genes in high copy that could suppress the temperature 

sensitive phenotype.  From this screen we found SGO1, and confirmed a physical interaction 

with Bir1 by two-hybrid analysis.  Also from this screen, we identified IPL1 and SLI15, the other 

components of the CPC.  This is complementary to the finding that overexpression of BIR1 or 

SLI15 suppresses the benomyl sensitivity of sgo1Δ (Storchová et al. 2011).  

It’s conceivable that SGO1 and BIR1 share similar or partially overlapping functions in 

the cell, and providing the cell with more Sgo1 compensates for a less functional Bir1.  

Considering that Sgo1 has been implicated in sensing mitotic tension by acting through 

chromatin (Luo et al. 2010), we tested genetic interactions between sgo1Δ and hta1-300 and 

found that the two mutations are synthetic lethal.   

 In Schizosaccharomyces pombe, which has two homologs of shugoshin (Sgo1 and Sgo2), 

Sgo2 is required for efficient targeting of the chromosomal passenger proteins to the centromere.  

Furthermore, both SpSgo2 and Bir1 are mutually necessary for their centromeric localization 

(Vanoosthuyse, Prykhozhij, and Hardwick 2007; Shigehiro A Kawashima et al. 2007).  From 

this information, together with our results, we believe that Sgo1 and Bir1 possibly have 

overlapping functions in the tension-sensing machinery of the cell. It’s possible that the 

overlapping function of Bir1 and Sgo1 could be as part of the same pathway, or as a parallel 

pathway that accomplishes a similar task. The fact that high copy SGO1 can suppress bir1-1 

indicates that these overlapping functions are likely in parallel pathways.   

 Recently, it has been shown that Sgo1 acts in combination with the kinase Bub1 to 

phosphorylate H2A S121, and this affects tension at all kinetochores and pericentromeric regions 

(Haase et al. 2012).  If Bir1 functions in a parallel pathway to Sgo1, then it is possible that Bir1 
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interacts with the aurora kinase Ipl1, similar to the Sgo1/Bub1 interaction, to control tension at 

another location. If Sgo1 recognizes a particular region of the nucleosome surface, as suggested 

by Luo et al. (2010), then Bir1 might interact with a different nucleosomal region.   

Both of these pathways appear necessary for the survival of the histone mutants, since 

mutations in either bir1 or sgo1 make the H2A mutants inviable.  It is likely that histone 

mutations that affect centromeric chromatin, like the H2A alleles, cause genomic instabilities as 

a result of microtubule misattachments that are sensed and partially alleviated by the functions of 

Bir1 and Sgo1.  The involvement of the Hda1 histone deacetylase complex is still intriguing and 

presents an opportunity to further investigate the role acetylation-deacetylation at the 

centromere-microtubule interphase (Figure 17). 
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Figure 1.  Bir1 interacts with Hda2 by two-hybrid.  Two-hybrid strains (EGY48) were 

constructed by transforming with the bait plasmid containing Hda2 (pIP87) and either full length 

Bir1 (pIP100) or the Bir1 fragment obtained from the library (plasmid) screen as the prey.  

Strains were streaked on X-gal medium containing either glucose (control) or galactose as the 

carbon source and incubated at 30°C for two days.  
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Figure 2.  Hda1 interacts with chromosomal passenger proteins by co-immunoprecipitation. 

Protein extracts from wild-type strains untagged (FY1333) or double tagged SLI15-MYC HDA1-

FLAG (IPY748), IPL1-MYC HDA1-FLAG (IPY753), and BIR1-HA HDA1-MYC (IPY384) were 

immunoprecipitated with either anti-Myc or anti-HA antibodies, separated by SDS-PAGE, 

followed by western blotting with either anti-Flag or anti-Myc antibodies. 
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Figure 3.  Suppression of ipl1-2 and sli15-3 by hda1Δ.  Double mutants were generated by 

crosses between hda1Δ strains and ipl1-2 or sli15-3 strains. Serial dilutions (108–103cells/ml) 

were spotted (4µl) onto YPD or benomyl plates and incubated at the indicated temperatures for 2 

days. The genotypes correspond to the following strains: wild-type (IPY171), hda1Δ (IPY969), 

sli15-3 (IPY864), hda1Δ sli15-3 (IPY862), ipl1-2 (IPY859), and hda1Δ ipl1-2 (IPY858). 
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Figure 4.  Pericentric localization of Bir1.  Chromatin extracts from an untagged strain 

(FY1333) and a strain carrying BIR1-FLAG (IPY498) were immunoprecipitated with anti-Flag 

antibodies followed by DNA purification.  PCR primer walking was performed up to 5kb left or 

right of the core region of CEN3.  

  



 103 

 

 

 

 

 

 

  
 
Figure 5.  Relative PCR band intensity from figure 4 was analyzed using AlphaEase FC 

software.   
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Figure 6. Growth phenotype of bir1Δ.  A BIR1/bir1Δ heterozygous diploid was constructed and 

allowed to undergo sporulation.  The left side of the image shows a BIR1+ haploid segregant, and 

the right side shows one of the rare bir1Δ “survivors.”  
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Figure 7.  DNA content of bir1Δ survivors.  FACS analysis was performed on the BIR1/bir1Δ 

heterozygous diploid, BIR1+ haploid, and four of the bir1Δ survivors. 
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Figure 8.  bir1-1 is temperature sensitive.  Strains carrying either wild-type BIR1 (IPY713) or 

bir1-1 (IPY808) were grown in liquid YPD overnight at the permissive temperature (26°C).  5µl 

of the overnight culture was spotted on YPD plates and incubated at the indicated temperatures 

for 2 days. 
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Figure 9.  Schematic showing the location of the mutations in the bir1-1 allele. 
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Figure 10.  Synthetic phenotype of hta1-300 ipl1-2.  Double mutants were generated by crosses 

between ipl1-2 and hta1-300 strains. Serial dilutions (108–103cells/ml) were spotted (4µl) onto 

YPD plates and incubated at the indicated temperatures for 2 days. The genotypes correspond to 

the following strains: wild-type (FY604), hta1-300 (IPY985), ipl1-2 (IPY1015 and IPY1016), 

and hta1-300 ipl1-2 (IPY987 and IPY988). 
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Figure 11.  Canavanine assay for ploidy.  Strains with indicated genotypes were streaked on SC-

Arg medium containing canavanine and exposed to 5000 µJoules of UV radiation.  Growth 

indicates the strain is haploid and no growth indicates the strain is diploid or beyond. Genotypes 

correspond to the following strains: WT diploid (IPY75), WT haploid (FY604), ipl1-2 

(IPY1015), sli15-3 (IPY950), hta1-300 sli15-3 (IPY990), and hta1-300 ipl1-2 (IPY988). 
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Figure 12.  DNA content by flow cytometry.  Strains from figure 11 were prepared for flow 

cytometry and analyzed using a Becton Dickinson FACSCalibur instrument.  Genotypes 

correspond to the following strains: WT diploid (IPY75), WT haploid (FY604), ipl1-2 

(IPY1015), sli15-3 (IPY950), hta1-300 sli15-3 (IPY990), and hta1-300 ipl1-2 (IPY988). 
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Figure 13.  Overexpression of BIR1 does not suppress the increase-in-ploidy phenotype of hta1-

300 or hta1-200.  WT (FY604), hta1-300 (IPY69), and hta1-200 (JH492) strains were 

transformed with either YEP181 (empty vector) or pIP140 (BIR1-2µ-LEU2), followed by 

analysis with the canavanine assay for ploidy.   
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Figure 14.  Bir1 interacts with Sgo1 by two-hybrid.  Two-hybrid strains were constructed using 

Sgo1 as the bait (pIP155) and either C-terminal Bir1 (pIP98), N-terminal Bir1 (pIP99), or full 

length Bir1 (pIP100) as the prey.  These strains were assayed for B-galactosidase activity. 
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Figure 15.  hta1-300 is synthetic lethal with sgo1Δ.  Double mutants were obtained by crossing 

hta1-300 and sgo1Δ single mutants covered by pSAB6 (HTA1-URA3-CEN) and pIP156 (SGO1-

URA3-CEN), respectively.  Strains were streaked on 5-FOA medium to check for the ability to 

grow in the absence of the wild-type SGO1 and HTA1 plasmids. 
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Figure 16.  Overexpression of BIR1 does not rescue the synthetic lethality of hta1-300 sgo1Δ.  
Strains carrying hta1-300 sgo1Δ covered by pIP156 (SGO1-URA3-CEN) and pSAB6 (HTA1-
URA3-CEN) were transformed with pRS425 (empty vector) and pIP114 (BIR1-LEU2-2µ), 
followed by plating on 5-FOA medium to check for the ability to grow in the absence of the 
cover plasmids. 
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Figure 17.  Schematic showing the interactions between chromosomal passenger proteins, 

chromatin, Hda complex, and Sgo1. 

 
 
 
 
 
 
 
 
 
 



 116 

E.  References 
 
Ausubel, FM, R Brent, RE Kingston, DD Moore, JG Seidman, JA Smith, and K Struhl. 1988. 
Current Protocols in Molecular Biology. New York: Greene Publishing Associates and Wiley-
Interscience. 
 
Guthrie, C, and Gerald R. Fink. 1991. “Guide to Yeast Genetics and Molecular Biology.” 
Methods in Enzymology 194: 1–863. 
 
Haase, Julian, Andrew Stephens, Jolien Verdaasdonk, Elaine Yeh, and Kerry Bloom. 2012. 
“Bub1 Kinase and Sgo1 Modulate Pericentric Chromatin in Response to Altered Microtubule 
Dynamics.” Current Biology: CB 22 (6) (March 20): 471–481. doi:10.1016/j.cub.2012.02.006. 
 
van Holde, K. 1988. Chromatin. New York: Springer-Verlag. 
 
Indjeian, Vahan B, Bodo M Stern, and Andrew W Murray. 2005. “The Centromeric Protein 
Sgo1 Is Required to Sense Lack of Tension on Mitotic Chromosomes.” Science (New York, N.Y.) 
307 (5706) (January 7): 130–133. doi:10.1126/science.1101366. 
 
Kanta, H., L. Laprade, A. Almutairi, and I. Pinto. 2006. “Suppressor Analysis of a Histone 
Defect Identifies a New Function for the Hda1 Complex in Chromosome Segregation.” Genetics 
173 (1) (May): 435–450. 
 
Kawashima, S. A., Y. Yamagishi, T. Honda, K. Ishiguro, and Y. Watanabe. 2010. 
“Phosphorylation of H2A by Bub1 Prevents Chromosomal Instability Through Localizing 
Shugoshin.” Science (New York, N.Y.) 327 (5962) (January 8): 172–177. 
 
Kawashima, Shigehiro A, Tatsuya Tsukahara, Maria Langegger, Silke Hauf, Tomoya S 
Kitajima, and Yoshinori Watanabe. 2007. “Shugoshin Enables Tension-generating Attachment 
of Kinetochores by Loading Aurora to Centromeres.” Genes & Development 21 (4) (February 
15): 420–435. doi:10.1101/gad.1497307. 
 
Kitajima, Tomoya S, Shigehiro A Kawashima, and Yoshinori Watanabe. 2004. “The Conserved 
Kinetochore Protein Shugoshin Protects Centromeric Cohesion During Meiosis.” Nature 427 
(6974) (February 5): 510–517. doi:10.1038/nature02312. 
 
Longtine, M S, A McKenzie 3rd, D J Demarini, N G Shah, A Wach, A Brachat, P Philippsen, 
and J R Pringle. 1998. “Additional Modules for Versatile and Economical PCR-based Gene 
Deletion and Modification in Saccharomyces Cerevisiae.” Yeast (Chichester, England) 14 (10) 
(July): 953–961. doi:10.1002/(SICI)1097-0061(199807)14:10<953::AID-YEA293>3.0.CO;2-U. 
 
Luger, K., A. W. Mader, R. K. Richmond, D. F. Sargent, and T. J. Richmond. 1997. “Crystal 
Structure of the Nucleosome Core Particle at 2.8 A Resolution.” Nature 389 (6648) (September 
18): 251–260. 
 



 117 

Luo, J., X. Xu, H. Hall, E. M. Hyland, J. D. Boeke, T. Hazbun, and M. H. Kuo. 2010. “Histone 
H3 Exerts a Key Function in Mitotic Checkpoint Control.” Molecular and Cellular Biology 30 
(2) (January): 537–549. 
 
McAinsh, Andrew D, Jessica D Tytell, and Peter K Sorger. 2003. “Structure, Function, and 
Regulation of Budding Yeast Kinetochores.” Annual Review of Cell and Developmental Biology 
19: 519–539. doi:10.1146/annurev.cellbio.19.111301.155607. 
 
Muhlrad, D, R Hunter, and R Parker. 1992. “A Rapid Method for Localized Mutagenesis of 
Yeast Genes.” Yeast (Chichester, England) 8 (2) (February): 79–82. doi:10.1002/yea.320080202. 
 
Pinto, I., and F. Winston. 2000. “Histone H2A Is Required for Normal Centromere Function in 
Saccharomyces Cerevisiae.” The EMBO Journal 19 (7) (April 3): 1598–1612. 
 
Rose, Mark D., Fred Winston, and Philip Hieter. 1990. Methods in Yeast Genetics: A Laboratory 
Course Manual. Revised. Cold Spring Harbor Laboratory Pr. 
 
Sandall, Sharsti, Fedor Severin, Ian X McLeod, John R Yates 3rd, Karen Oegema, Anthony 
Hyman, and Arshad Desai. 2006. “A Bir1-Sli15 Complex Connects Centromeres to 
Microtubules and Is Required to Sense Kinetochore Tension.” Cell 127 (6) (December 15): 
1179–1191. doi:10.1016/j.cell.2006.09.049. 
 
Schneider, B L, W Seufert, B Steiner, Q H Yang, and A B Futcher. 1995. “Use of Polymerase 
Chain Reaction Epitope Tagging for Protein Tagging in Saccharomyces Cerevisiae.” Yeast 
(Chichester, England) 11 (13) (October): 1265–1274. doi:10.1002/yea.320111306. 
 
Storchová, Zuzana, Justin S Becker, Nicolas Talarek, Sandra Kögelsberger, and David Pellman. 
2011. “Bub1, Sgo1, and Mps1 Mediate a Distinct Pathway for Chromosome Biorientation in 
Budding Yeast.” Molecular Biology of the Cell 22 (9) (May): 1473–1485. doi:10.1091/mbc.E10-
08-0673. 
 
Tanaka, Tomoyuki U, Najma Rachidi, Carsten Janke, Gislene Pereira, Marta Galova, Elmar 
Schiebel, Michael J R Stark, and Kim Nasmyth. 2002. “Evidence That the Ipl1-Sli15 (Aurora 
kinase-INCENP) Complex Promotes Chromosome Bi-orientation by Altering Kinetochore-
spindle Pole Connections.” Cell 108 (3) (February 8): 317–329. 
 
Thomas, Scott, and Kenneth B Kaplan. 2007. “A Bir1p Sli15p Kinetochore Passenger Complex 
Regulates Septin Organization During Anaphase.” Molecular Biology of the Cell 18 (10) 
(October): 3820–3834. doi:10.1091/mbc.E07-03-0201. 
 
Vanoosthuyse, Vincent, Sergey Prykhozhij, and Kevin G Hardwick. 2007. “Shugoshin 2 
Regulates Localization of the Chromosomal Passenger Proteins in Fission Yeast Mitosis.” 
Molecular Biology of the Cell 18 (5) (May): 1657–1669. doi:10.1091/mbc.E06-10-0890. 
 



 118 

White, C. L., R. K. Suto, and K. Luger. 2001. “Structure of the Yeast Nucleosome Core Particle 
Reveals Fundamental Changes in Internucleosome Interactions.” The EMBO Journal 20 (18) 
(September 17): 5207–5218. 
 
Widlund, Per O, John S Lyssand, Scott Anderson, Sherry Niessen, John R Yates 3rd, and Trisha 
N Davis. 2006. “Phosphorylation of the Chromosomal Passenger Protein Bir1 Is Required for 
Localization of Ndc10 to the Spindle During Anaphase and Full Spindle Elongation.” Molecular 
Biology of the Cell 17 (3) (March): 1065–1074. doi:10.1091/mbc.E05-07-0640. 
 
Williamson, Wes D, and Ines Pinto. 2012. “Histones and Genome Integrity.” Frontiers in 
Bioscience: A Journal and Virtual Library 17: 984–995. 
 
Winston, F, C Dollard, and S L Ricupero-Hovasse. 1995. “Construction of a Set of Convenient 
Saccharomyces Cerevisiae Strains That Are Isogenic to S288C.” Yeast (Chichester, England) 11 
(1) (January): 53–55. doi:10.1002/yea.320110107. 
  



 119 

 

 

 

 

 

 

 

 

 

 

 

V.  CONCLUSION 
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 All eukaryotes must carry out basic cellular processes, such as DNA replication, 

transcription, translation, and chromosome segregation, in order for survival.  These basic 

cellular processes are well conserved from simple eukaryotes, such as the budding yeast 

Saccharomyces cerevisiae, to complex eukaryotes, such as metazoans.  Using the simple 

eukaryote S. cerevisiae as a model organism, we aim to understand the role that chromatin plays 

in chromosome segregation. 

 Previous work identified a single point mutation in HTA1, one of the genes coding for 

histone H2A, which causes chromosome segregation defects ranging from aneuploidy to 

polyploidy.  Subsequently, it was determined that mutations in each of the genes encoding the 

three members of the histone deacetylase (Hda) complex, HDA1, HDA2, and HDA3, could 

suppress the increase-in-ploidy phenotype of the histone H2A mutant.  This work characterizes 

the Hda complex and establishes a novel role for it in centromere function and chromosome 

segregation.  

 We have found that the original mutant alleles of the Hda complex that were isolated as 

suppressors of the histone H2A mutant behave as null alleles, as comparable suppression can be 

obtained by deletion of the Hda complex.  Additionally, we show that the Hda complex localizes 

to centromeric and pericentromeric regions of DNA in a cell cycle independent manner and is 

able to deacetylate centromeric chromatin.   

 Strengthening our proposal of a role for the Hda complex in centromere function we 

present biochemical and genetic data indicating that the Hda complex interacts with kinetochore 

components.  We show that the Hda complex interacts with Dam1, a non-histone protein that has 

been shown to be post-translationally modified by the histone methyltransferase Set1 and the 

Aurora kinase Ipl1.  We also show that deletion of the Hda complex suppresses a mutant form of 
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the inner kinetochore component Ndc10 by restoring normal chromosome segregation.  In 

addition to deacetylating centromeric chromatin, it is possible that the Hda complex modulates 

the activity of kinetochore components by deacetylation of kinetochore proteins.   

 Interestingly, we have found that the Hda complex interacts with the chromosomal 

passenger complex (CPC), which is involved in the spindle assembly checkpoint.  A mutant 

allele of one of the CPC components, bir1, is lethal in combination with the histone H2A 

mutation.  Because information on Bir1 is limited with respect to chromatin, we carried out a 

genetic screen to identify high copy suppressors of the bir1 mutant.  From this screen we 

identified Sgo1, another component of the cell's tension sensing and spindle checkpoint 

machinery that has been shown to interact with chromatin.  We tested genetic interactions 

between sgo1 and the histone H2A mutant, and found that deletion of SGO1is also lethal in 

combination with the histone H2A mutant. These results suggest that the histone H2A mutant 

causes genomic instabilities as a result of microtubule misattachments or tension deficiencies 

that are sensed and partially alleviated by the functions of Bir1 and Sgo1.  

 Using the model organism Saccharomyces cerevisiae, we have furthered the body of 

understanding of the molecular mechanisms of chromosome segregation, a process highly 

conserved in eukaryotes and essential for maintaining genomic integrity.  We conclude that 

centromeric chromatin and chromatin modifiers such as the Hda histone deacetylase complex 

interact with kinetochore components and checkpoint proteins in the establishment of a 

functional centromere-kinetochore complex.  Furthermore, we propose that the Hda complex 

may have kinetochore or spindle checkpoint proteins as targets for deacetylation, modifications 

that may be relevant in the establishment or maintenance of centromere-microtubule interactions. 
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