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ABSTRACT  
 

 
 Calcium oxalate crystals are found in most plant species.  In Medicago 

truncatula wild-type A17, crystals accumulate in leaves along the secondary veins and 

the only role attributed to them so far is defense against chewing insects. Calcium 

oxalate deficient (cod) mutants were isolated in M. truncatula; the cod mutants include 

cod5, which completely lack crystals in the leaves and cod6 that accumulates fewer and 

smaller crystals compared to A17.  We analyzed gene expression in the cod mutants and 

A17 using GeneChip® Medicago Genome Arrays and found important differences in 

transcriptome between the three genotypes.  In particular, we found a gene annotated as 

glyoxalase I (GLXI) referred by its tentative consensus number, TC122307, which is 

up-regulated in cod6 and down-regulated in cod5 as compared to constitutive levels in 

A17.  Similarly, another GLXI-like gene, TC123769, is up-regulated in cod6 and 

transcripts are down-regulated in cod5.  In previous studies, overexpression of GLXI has 

been linked to salt tolerance using transgenic approaches.  Therefore, we evaluated salt 

tolerance in the cod mutants to determine if they respond differently to salt stress and if 

this response could be attributed to differential expression of the GLXI-like genes in M. 

truncatula.  The cod6 mutant was significantly more tolerant to sodium chloride 

compared to A17 and cod5.  Transcript levels of TC122307 and TC123769 do not 

increase in leaves following sodium chloride treatment.  We also measured GLXI 

activity in the cod mutants and A17 and found no differences between genotypes.  

Moreover, tolerance to methylglyoxal, the substrate of GLXI, was evaluated and we 

found that the three genotypes were equally sensitive to toxic levels of methylglyoxal.  

Therefore, we conclude that TC122307 and TC123769 do not encode a functional 
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GLXI.  Another gene, TC122323, which is more likely to encode GLXI based on 

sequence analysis, is constitutively expressed in the three genotypes which would 

explain the similar glyoxalase I activity levels in the cod mutants and the equal 

sensitivities to methylglyoxal.  Overall, TC122307 and TC123769 are not likely to 

encode GLXI, but potentially contribute to salt tolerance in cod6 and encode members 

of the vicinal oxygen chelate enzyme superfamily.  Therefore, the genes encoding these 

proteins are excellent candidates for further study as tools to enhance salt tolerance in 

crop plants.   
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INTRODUCTION 

 

Calcium oxalate (CaOX) crystals are found in over 200 plant families and are the 

most abundant mineral crystals in plants (McNair, 1932). Proposed roles of CaOX 

crystals include plant defense against chewing insects (Korth et al., 2006), 

detoxification, ion balance and tissue support (Franceschi and Nakata, 2005).  Although 

these crystals are widespread and abundant, their precise physiological role(s) and the 

mechanisms of their formation are not known.  It is clear however, that the localization, 

size, and shape of CaOX crystals can be modulated by multiple genes. Calcium oxalate 

defective (cod) mutants have been isolated in the model legume Medicago truncatula 

(Nakata and McConn, 2000).  These crystals are found in a sheath surrounding 

secondary veins in leaves of wild-type M. truncatula cv. Jemalong A17.  The cod 

mutants that show alterations in crystal amount include cod5, which lacks crystals, and 

cod6 containing smaller and fewer crystals along the vascular strands when compared to 

wild-type A17 (Nakata and McConn, 2000).  To assess differential gene expression that 

potentially leads to or results from the cod mutation phenotypes, transcriptome data 

were analyzed from the cod mutants and wild-type M. truncatula.  The specific 

objectives of this research project were to: (1) analyze GeneChip® Medicago Genome 

Array data from the cod mutants and wild-type M. truncatula, (2) characterize members 

of the glyoxalase I-like gene family within M. truncatula based upon their differential 

expression patterns in the cod mutants, and (3) evaluate phenotypic and gene expression 

responses of cod mutants to salt stress.  Finally, in order to take the initial steps toward 
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functional characterization, I produced transgene constructs of glyoxalase I-like genes 

from M. truncatula for expression in Arabidopsis.   

 

The model legume Medicago truncatula 

 Legumes are economically important, providing grain, forage, edible oils and 

resources for industry.  Legumes are also important for their contribution to sustainable 

agriculture as nitrogen-fixers in association with rhizobial bacteria.  Crop legumes 

include soybean, alfalfa, and common bean. These crops have relatively long life cycles 

and large genome sizes that add complexity to research efforts and limit their usefulness 

as research tools.  Therefore a closely related species, Medicago truncatula Gaertn. or 

‘barrel medic’, has been chosen as a model legume system to be used in genetic 

research.  A relatively short life cycle, self-pollination, small diploid genome and 

efficient methods for transformation have established M. truncatula as one of the most 

accepted models for legume biology (Cook, 1999). 

A joint initiative to sequence the genome of M. truncatula began over eight 

years ago.  Currently, the Medicago genome sequencing project is closer to completion 

with the assembly of about 90 % of all gene-rich regions (Young and Udvardi, 2009).  

Other genomic tools include expressed sequence tags (ESTs) available in the public 

database of the DFCI Medicago truncatula Gene Index 

(http://compbio.dfci.harvard.edu/cgi-bin/tgi/gimain.pl?gudb=medicago), the gene 

expression atlas (Benedito et al., 2008), and a wide range of mutant populations.  These 

genomic resources have facilitated research and provided insights into growth, 
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development and other processes as well as interactions with other organisms (Young 

and Udvardi, 2009).  For these reasons we chose M. truncatula as our plant system. 

 

Calcium oxalate crystals 

Calcium oxalate (CaOX) crystals in plants are formed in diverse shapes and 

sizes from environmentally derived calcium and biologically synthesized oxalate 

(Franceschi and Nakata, 2005).  The presence of CaOX in plants has been explained as 

a means to regulate calcium levels and to reduce the toxic effect of oxalate to a more 

tolerable form (Libert and Franceschi, 1987).  Although the mechanisms that control 

CaOX formation are unknown, the many shapes and locations of these crystals 

observed among multiple plant species make it evident that many factors contribute to 

crystal formation (Nakata and McConn, 2007). These crystals are found in well over 

200 plant families and in many cases can be found in numerous tissues within the same 

species. Crystals of CaOX have been observed inside plant cells within the vacuoles of 

specialized cells called idioblasts and outside cells as well (Franceschi and Nakata, 

2005).  The most common forms of CaOX crystals are the raphide, styloid, prism, 

crystal sand, and druse (Franceschi and Horner, 1980). 

 

Calcium oxalate crystals in M. truncatula 

In wildtype M. truncatula (cv. Jemalong A17), prismatic crystals ranging from 

8-10 microns in length accumulate in a sheath along the secondary vein, and smaller 

crystal sand forms in interveinal mesophyll cells in mature leaves.  Mutants defective in 

CaOX formation (cod) were first isolated from M. truncatula by screening an ethyl 
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methanesulfonate (EMS)-mutagenized population (Nakata and McConn, 2000), and 

show alterations in crystal number and shape.  For example, significantly fewer crystals 

along the vascular strands are found in cod6 when compared to A17, and cod5 does not 

accumulate any crystals along vascular strands.  Each mutant was crossed with A17 and 

the progeny resulted in wild-type crystal patterns, demonstrating that these cod 

phenotypes are due to a recessive mutation.  In addition, the cod5 and cod6 lines were 

crossed with each other and the ensuing progeny display a wild-type crystal phenotype, 

indicating that the mutant phenotypes result from non-allelic mutations (Nakata and 

McConn, 2000).  The cod5 mutant has been used to investigate the importance of 

crystal formation in plant growth and development.  Nakata and McConn (2003) found 

that cod5 displayed similar growth habits as wild-type controls, suggesting that CaOX 

crystal formation does not play a critical role in plant growth and development in M. 

truncatula grown within a controlled environment.  Moreover, four additional mutants 

containing increased CaOX druse crystals within mesophyll cells were identified in M. 

truncatula.  These mutants were designated mesophyll oxalate defective (mod), and a 

genetic analysis showed that the druse crystal accumulation in each mutant is due to a 

single mutation at different loci; again indicating that multiple loci affect the 

accumulation and localization of CaOX crystals (Nakata and McConn, 2007). 

 

Plant responses to salt stress 

Plants have evolved complex signaling pathways to cope with abiotic stresses 

such as drought, salinity, osmotic stress and cold.  These environmental factors are 

major causes of crop yield decreases worldwide, leading to losses of billions of dollars 
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per year (Pitman and Läuchli, 2004).  Soil salinity can be a result of use of saline water 

for irrigation, poor drainage, excessive and unnecessary fertilizer applications and other 

factors (Bernstein, 1975).  Salinity occurs particularly in arid and semiarid regions and 

causes a decrease in plant growth as well as necrotic leaf symptoms (Bernstein, 1975).  

Shoot growth is generally more affected than root growth, although roots are exposed 

directly to salt (Bernstein, 1975).  Plants under salt stress also develop chlorosis due to 

the decrease of chlorophyll content (Hernández et al., 1995).  Salt-induced symptoms 

are originally caused by the disruption of osmotic and ionic homeostasis, which leads to 

water deficit and damage of proteins and membranes (Bernstein and Hayward, 1958; 

Vinocur and Altman, 2005).  The response to salt stress will vary depending on the 

stage of development; salt-tolerant plants usually adapt gradually to salinity as they 

grow older (Bernstein and Hayward, 1958).  In addition, differential response to salt 

stress has been observed within a species at certain developmental stages.  For example, 

35 alfalfa cultivars responded differently to salt stress at the seedling stage (Al-Khatib 

et al., 1993).  Moreover, germination can often occur once salt conditions diminish, as 

is the case of sugar beet seed (Bernstein and Hayward, 1958).  In general, stage of 

development and nature of the crop influence the degree of salt tolerance.  

Strategies to increase salt tolerance in economically important plants include the 

selection of plants under high salt conditions with subsequent breeding techniques and 

marker-assisted selection (Yamaguchi and Blumwald, 2005).  Other possible 

alternatives are to manipulate regulation of stress-related genes or to introduce novel 

genes by genetic engineering (Wang et al., 2003).  As an example, transgenic tomato 

plants overexpressing a vacuolar Na+/H+ antiporter protein  were generated and were 
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able to produce fruit under salt-stress conditions, demonstrating that the alteration in 

regulation of a single gene is sufficient to enhance salt tolerance (Zhang and Blumwald, 

2001). 

During salt stress, osmotic effects cause water deficit which leads to the 

formation of reactive oxygen species (ROS), such as hydrogen peroxide (H2O2), 

superoxide (O2
• ־  ), hydroxyl radical (·OH), and singlet oxygen (1O2) (Parida and Das, 

2005). Therefore, another approach to increase salt tolerance is to manipulate the 

regulation of genes involved in the production of antioxidants to reduce stress-induced 

ROS (Vinocur and Altman, 2005).  For example, the AtALDH3 gene encoding an 

aldehyde dehydrogenase was overexpressed in Arabidopsis thaliana (Arabidopsis) 

resulting in higher tolerance to salt and drought stress.  The AtALDH3 gene product 

catalyzes the oxidation of toxic aldehydes produced by ROS reacting with lipids and 

proteins (Sunkar et al., 2003). 

Medicago truncatula is a salt-sensitive species (glycophyte) and is adapted to 

different environmental conditions; therefore it is a good model to understand salt stress 

responses in legumes (Merchan et al., 2007).  A study examined the mean shoot 

biomass of M. truncatula accessions under saline conditions and showed very few 

differences, indicating that there is similar response to salt stress among accessions 

(Veatch et al., 2004).  In an attempt to increase salt tolerance in M. truncatula, 

transgenic plants overexpressing the Δ1-pyrroline-5-carboxylate synthetase (P5CS) gene 

from Vigna aconitifolia were generated.  These plants accumulate higher proline levels 

that enhance osmotolerance, and ultimately display nitrogen-fixing activity, a desirable 

attribute of legumes (Verdoy et al., 2006).  A leucine-rich repeat receptor-like kinase 
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(RLK), namely Srlk, induced in root tissue by salt stress was identified in M. truncatula.  

An RNAi approach revealed that decreased Srlk expression prevents inhibition of root 

growth during salt stress conditions.  In addition, gene expression analysis showed that 

salt-responsive genes were down-regulated in the Srlk-RNAi roots under salt 

conditions, suggesting that Srlk is involved in the regulation of early response to salt 

stress in roots by modulating expression of salt-responsive genes (de Lorenzo et al., 

2009).  These studies suggest that the identification of genes responsible for salt 

tolerance or involved in the regulation of adaptation and their manipulation is an 

excellent approach to generate plants that are salt-tolerant.  

 

The glyoxalase system 

Glyoxalase I is ubiquitous in nature and its primary function has been associated 

with the detoxification of methylglyoxal (MG), which is a toxic 2-oxo-aldehyde by-

product of glycolysis and threonine degradation (Yadav et al., 2005a).  Methylglyoxal 

accumulates under several stress conditions and is degraded by the glyoxalase 

detoxifying system that consists of two enzymes; glyoxalase I (EC 4.4.1.5, 

lactoylglutathione lyase) and II (EC 3.1.2.6, hydroxyacylglutathione hydrolase) 

(Thornalley, 1990; Yadav et al., 2005a).  Glyoxalase I (GLXI) utilizes an intermediate 

hemithioacetal formed from MG and reduced glutathione in a non-enzymatic reaction 

and converts it into S-D-lactoylglutathione.  Glyoxalase II (GLXII) catalyzes the 

hydrolysis of S-D-lactoylglutathione to D-lactic acid with the regeneration of reduced 

glutathione (Fig. 1) (Thornalley, 1990). 
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 Glyoxalase I has been purified and studied in several organisms, such as 

Saccharomyces cerevisiae (Inoue et al., 1998) and Homo sapiens (Aronsson et al., 

1979).  In plants, GLXI has been characterized in Glycine max (Skipsey et al., 2000), 

Lycopersicum esculentum (Espartero et al., 1995), Brassica juncea (Veena et al., 1999), 

and most recently in Triticum aestivum (Lin et al., 2010).  Previous studies suggest that 

GLXI plays a regulatory role in cell division in plants.  In Datura callus, GLXI activity 

correlates with cell proliferation in presence of spermidine, a growth stimulant; however 

activity is inhibited by vinblastine and MG, inhibitors of cell division (Ramaswamy et 

al., 1984).  Glyoxalase I was also studied in Brassica oleracea where cell proliferation 

was reduced in the presence of calmodulin inhibitors, which caused a decrease in GLXI 

activity (Bagga et al., 1987).  In callus cultures of Amaranthus paniculatus, cell 

proliferation increased under blue light stimulation, which consequently caused an 

increase in GLXI activity (Chakravarty and Sopory, 1998).  These studies show that the 

function of GLXI is associated with cell division and proliferation, although the causal 

relationship has not yet been established. 

 

The glyoxalase system in stress response 

Several reports revealed that GLXI transcripts increase during stress response in 

plants.  Sodium chloride and mannitol application caused an increase in transcript 

accumulation of GLXI in L. esculentum (tomato), reaching higher accumulation after 72 

h of treatment (Espartero et al., 1995).  In T. aestivum (wheat), the gene encoding 

GLXI, designated TaGlyI, was induced by the fungal pathogen Fusarium graminearum, 

NaCl and ZnCl2 (Lin et al., 2010).  It has been also shown that MG levels increase in 
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leaves and roots of Oriza sativa, Pennisetum glaucum, N. tabacum, and B. juncea under 

salinity stress (Yadav et al., 2005a).  Transgenic tobacco plants overexpressing GLXI 

from B. juncea in sense orientation showed significant tolerance to NaCl compared with 

wild-type plants, as indicated by higher chlorophyll content (Veena, 1999).  Double 

transgenic tobacco plants overexpressing GLXI from B. juncea and GLXII from O. 

sativa also resulted in enhanced salinity tolerance (Singla-Pareek et al., 2003).  The 

same transgenic plants display tolerance to high ZnCl2 levels and are able to produce 

viable seeds indicating that the glyoxalase system can provide protection to Zn2+ 

toxicity in addition to NaCl stress (Singla-Pareek et al., 2006).  The overexpression of 

GLXII alone also proved to be effective to rescue rice from toxic levels of MG and 

NaCl (Singla-Pareek et al., 2008).  In addition, GLXI from B. juncea was introduced 

into Arabidopsis under the control of the salt-inducible promoter rd29, and this 

conferred tolerance to 150 mM NaCl (Roy et al., 2008).  Even in a non-plant organism, 

S. cerevisiae, GLXI was found to be up-regulated by NaCl corresponding to an increase 

in enzyme activity, indicating that GLXI plays a role during adaptation of osmotic stress 

in yeast (Inoue et al., 1998). 

The role of the glyoxalase system during stress was also investigated in the 

nematode Onchocerca volvulus, in which transcript levels of GLXI increased 3.2 fold in 

response to oxidative stress triggered by xanthine/xanthine oxidase and 1.95-fold in 

response to plumbagin (Sommer et al., 2001).   

The role of glyoxalase system in disease processes has also been studied.  

Transcripts encoding GLXI and GLXII display a concomitant increase with GLXI and 

GLXII activity in human breast cancer tissue compared to normal tissue (Rulli et al., 
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2001).  In addition, GLXI was up-regulated in P301L mutant tau transgenic mice, which 

develop Alzheimer’s disease, suggesting a role of GLXI in this disease (Chen et al., 

2004).  It was also suggested that the glyoxalase system is involved in the development 

of diabetic complications; as shown by an increase in glyoxalase metabolites in blood 

samples of diabetic patients (McLellan et al., 1994).  Together, these studies show the 

relevance of the glyoxalase system in disease and stress conditions in a wide variety of 

species (Thornalley, 1990). 

 

The vicinal oxygen chelate (VOC) enzyme superfamily 

 Glyoxalase I is a member of the vicinal oxygen chelate (VOC) enzyme 

superfamily and catalyzes an isomerization reaction (Armstrong, 2000).  Members of 

the VOC superfamily catalyze different types of reactions; however they share a 

common structural scaffold and use distinct metal ions for catalysis (Babbitt and Gerlt, 

1997).  The main characteristic of this superfamily is a pair of βαβββ motifs that form 

the metal-binding active site (Armstrong, 2000).  The reactions of the members of this 

family stabilize a transitional state containing vicinal anionic oxygen atoms, catalyzing 

reactions of epimerization, oxidative cleavage of C-C bonds and nucleophilic opening 

of epoxide (Armstrong, 2000). 

 Most DNA sequence data deposited in public databases is annotated based on 

computational analysis; therefore the majority of predicted protein sequences are not 

experimentally characterized.  A recent study by Schnoes et al. (2009), analyzed the 

level of misannotation in public protein sequence databases.  The study found that the 

VOC enzyme superfamily has a high level of misannotation in three databases: 
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GenBank NR, UniProtKB/TrEMBL, and Kyoto Encyclopedia of Genes and Genomes 

(KEGG).  The level of misannotation ranged from around 25 % to over 60 %.  Other 

families analyzed that had a high level of misannotation are enolase, haloacid 

dehalogenase and terpene cyclase amidohydrolase.  The database with the lowest level 

of misannotation, close to zero, was the manually curated Swiss-Prot (Schnoes et al., 

2009).  An example of misannotation in the VOC superfamily is a sequence from 

soybean annotated as GLXI (accession no. CAA48717).  In the same organism the 

authentic GLXI (accession no. CAA09177) has been experimentally characterized and 

the protein encoded by sequence CAA48717 was found to be a glutathione transferase 

(Skipsey et al., 2000; Schnoes et al., 2009).  Another example of misannotation is the 

Arabidopsis At1g07645 which is also annotated as GLXI.  The Arabidopsis gene 

(At1g07645) is an orthologue of the recently characterized Xhdsi-1VOC from Xerophyta 

humilis, both genes encode a protein that lacks the conserved glutathione and zinc 

binding sites which are required for activity in GLXI (Mulako et al., 2008).  Moreover, 

overexpression of Xhdsi-1VOC in E. coli failed to increase tolerance to MG and 

expression of this gene failed to rescue yeast carrying a mutation in GLXI (Mulako et 

al., 2008).  Evidence showed that the Xhdsi-1VOC and At1g07645 genes encode novel 

members of the VOC superfamily (Mulako et al., 2008).  These studies demonstrate that 

misannotation is not uncommon in the VOC superfamily; therefore the genes annotated 

as GLXI in M. truncatula should be characterized with this caveat in mind. 

GeneChip® Medicago Genome Arrays were used to identify genes differentially 

regulated in the cod mutants.  We found a glyoxalase I-like gene (TC122307) that is 

highly expressed in cod6 and down-regulated in cod5, as compared to expression levels 
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observed in the wild-type parental line A17.  Overexpression of glyoxalase I (GLXI) 

from Brassica juncea increases tolerance to sodium chloride (NaCl) and methylglyoxal 

in transgenic tobacco, indicating that GLXI confers tolerance to plants under salt stress 

(Veena et al., 1999).  Thus, we evaluated the response of the cod mutants to salinity to 

determine if the protein encoded by TC122307 potentially contributes to salt tolerance 

in M. truncatula.  To further analyze the role of this gene during salt stress, we analyzed 

transcript levels of TC122307 and another GLXI-like gene (TC123769).  Finally, we 

evaluated GLXI activity and tolerance to methylglyoxal in the cod mutants to determine 

whether up-regulation of GLXI genes in cod6 could increase GLXI activity and 

tolerance to methylglyoxal compared to cod5.  We produced transgene constructs of 

glyoxalase I-like genes of M. truncatula to transform Arabidopsis.  The production of 

these transgenic lines will help to evaluate the role of these genes in salt tolerance. 
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MATERIALS AND METHODS 

 

Plant material and growth conditions 

Medicago truncatula cv. Jemalong line A17, cod5 and cod6 were maintained in 

a growth chamber under controlled conditions of 22ºC with a 12-hour photoperiod and a 

photosynthetic photon flux of 170 µmol m-2 s-1.  Plants were fertilized with water-

soluble tomato plant food, Miracle-Gro® every two weeks and Gnatrol® (Valent USA 

Corporation) was applied as biological larvicide control at the same intervals. 

 

GeneChip® array data analysis 

The sequence information in the GeneChip® Medicago Genome Arrays was 

obtained from The Institute for Genomic Research (TIGR) M. truncatula gene index 

and gene predictions from genome sequence by the International Medicago Genome 

Annotation Group (IMGAG) (http://affymetrix.com).  Total RNA taken from fully 

expanded leaves of eight-week-old A17, cod5, and cod6 plants was submitted to the 

DNA Analysis Core Lab at the Dana Farber Cancer Institute and analyzed via 

Affymetrix Medicago Genome Array GeneChips; each plant genotype was analyzed 

with three independent biological replicates (K. Korth, unpublished).  

In order to classify probe sets in the Affymetrix M. truncatula genome array and 

to retrieve the description of the best match sequence in the GenBank, we used the 

GeneBins database (http://bioinfoserver.rsbs.anu.edu.au/utils/GeneBins/).  With the 

information obtained we made a list of differentially expressed genes from three 



 14 

pairwise comparisons (cod5 vs. A17, cod6 vs. A17, and cod6 vs. cod5) with their 

tentative annotation and probable biological function. 

Heat maps were created with Nexus expression version 1.0 

(http://www.biodiscovery.com) in which A17 was compared to each cod mutant line.  

Differentially regulated genes were identified using a P-value threshold of 0.05 and a 

log-ratio threshold of 0.1. 

 

Salt treatments 

 For the long-term experiments one-month-old plants were transferred to river 

sand and allowed to establish for a week.  For treatments, solutions were applied from 

the bottom via flooding, and allowed to saturate the sand medium for one hour and then 

drained.  Initial treatment started with lower concentration of sodium chloride (50 mM) 

and calcium chloride (25 mM) for the first 24 h.  We increased the concentration to 100 

mM sodium chloride and 50 mM calcium chloride at the second treatment and 

continued with these concentrations until the plants showed early signs of desiccation 

and the experiment was terminated when salt-stress symptoms were evident, about 4 

weeks after initial application of salt solutions.  Salt stress symptoms were evaluated 

visually at the end of the experiment.  Sodium chloride-treated plants were 

phenotypically rated using a scale from 1 to 6, based on a scale by Valencia et al. 

(2008); 1 assigned to healthy plant with no chlorosis, 2 for 25 % of leaf chlorosis, 3 for 

50 % of leaf chlorosis, 4 for 75 % of leaf chlorosis, 5 for 100 % chlorosis, and 6 for 

plant death and complete leaf necrosis (Fig.8).  
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 In addition, a SPAD meter (Konica Minolta Holdings, Inc.) was used to quantify 

chlorophyll content in leaves.  The average of fifteen measurements per plant was 

recorded for data analysis.  For dry weight determination, aerial parts of each plant were 

collected and dried at 50 ˚C for 24 hours. 

 

Mineral analysis 

 Chloride was analyzed on a Spectro Ciros Inductively Coupled Plasma (ICP).  

The plant tissue was dried and ground.  A 0.1 g-sample was extracted with 30 ml 

distilled water and filtered.  The wavelength used was 134.724 (Kalra, 1998). 

 Calcium and sodium were analyzed using a wet ash procedure and nitric acid 

(HNO3) digestion.  We used 0.25g/25ml total volume (Plank, 1992).  Analysis was 

performed on a Spectro Arcos ICP; calcium wavelength is 315.887 and sodium is 

589.592.  An external check sample was used to verify results. 

 

Phylogenetic analysis 

 Predicted amino acid sequences of characterized GLXI were obtained from 

GenBank (http://www.ncbi.nlm.nih.gov/genbank/).  We searched for genes in M. 

truncatula with high similarity to Glycine max glyoxalase I (GmGlxI) using BLAST 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi).  The multiple sequence alignment was 

generated with Clustal W (1.81) from Biology WorkBench (http://workbench.sdsc.edu/) 

and the secondary structure prediction with PSIPRED (Bryson et al., 2005).  The 

phylogenetic tree was drawn via the neighbor-joining method using Geneious Basic 

5.0.3 (Drummond et al., 2010). 
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Primer design 

Oligonucleotide primers designed for polymerase chain reaction (PCR) were 

analyzed for possible hairpins and primer dimers using OligoAnalyzer 3.1 from 

Integrated DNA Technology (http://www.idtdna.com/analyzer/Applications/ 

OligoAnalyzer/).  The melting temperature differences between each pair were not 

greater than 3˚C. 

 

RNA extraction and cDNA synthesis 

Plant material was collected and immediately frozen in liquid nitrogen.  Total 

RNA was extracted using TriReagent (Molecular Research Center, Inc. Cincinnati, OH) 

as indicated in the manufacturer’s protocol and solubilized in DEPC-treated water.  

RNA was quantified using a NanoDrop Spectrophotometer ND-1000, and up to 5 μg of 

total RNA was used for cDNA synthesis.  Following the manufacturer’s instructions, 

cDNA was synthesized using the SuperScript® III First-Strand Synthesis System for 

RT-PCR (Invitrogen) with oligo-dT primers. 

 

Semi-quantitative RT-PCR 

 For PCR we used 1 μl of cDNA diluted 1:5 and Crimson Taq™ DNA 

polymerase (New England Biolabs Inc.) was used according to manufacturer’s protocol.  

The PCR conditions were as follows, 95˚C for 2 min; 25 cycles of 95˚C for 30 sec, 

56˚C for 30 sec, and 72˚C for 30 sec; 72˚ for 5 min.  PCR products were loaded on a 1.4 

% agarose gel.  PCR products ranged from 370 to 470 bp.  As internal control we used 

primers (Table 4) to amplify a 448-bp DNA fragment from Mtαtubulin (GenBank 
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accession No. ES613496). 

RNA blot analysis 

 Total RNA was extracted from leaves using TRI Reagent and dissolved in 

stabilized formamide.  Total RNA was loaded on each lane and separated on 1 % 

agarose formaldehyde gel.  Separated RNA was transferred (Sambrook et al., 2001) to 

Genescreen Plus nylon membrane (PerkinElmer, Boston, MA) and hybridized with 

radio-labeled probes (Church and Gilbert, 1984). 

 

Methylglyoxal treatment 

 Eight healthy and fully expanded trifoliates were detached and weighed from 

A17, cod5 and cod6 plants.  Trifoliates were floated in 0.1 % Silwet L-77 (Lehle seeds, 

Round Rock, TX), transferred to 1.5 mM methylglyoxal (MP Biomedicals LLC, Solon, 

OH) or water as a control and incubated for 84 h at 24˚C with mild shaking.  The 

treatment was carried out under continuous fluorescent white light.  Chlorophyll was 

extracted and measured as described by Palta (1990). 

 

Glyoxalase I activity assay 

Glyoxalase I extraction was performed following the procedure described by 

Jain et al. (2002).  Fresh leaf tissue taken from one fully expanded trifoliate was crushed 

with a mortar and pestle in 2 ml ice-cold 0.1 M sodium phosphate buffer (pH 7) 

containing 1 mM phenylmethylsulphonylfluoride (PMSF) and 10% (w/v) 

polyvinylpyrrolidone (PVP).  Crude extract was transferred to a 1.5-ml Eppendorf tube 

and centrifuged for 10 min at 4˚C at 10,000 x g.  For chemical formation of t he 
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hemithioacetal substrate, a solution containing 100 mM sodium phosphate buffer (pH 

7.5), 3.5 mM MG, 1.7 mM reduced glutathione and 15 mM MgSO4 7H2O was 

incubated for 7 min at 25̊C in a final volume of 1 ml.  Enzyme extract (25 μl) was 

added to the substrate solution, mixed by pipetting and absorbance was measured at 240 

nm for 240 sec at 30 sec intervals using the Smart-Spec 3000 spectrophotometer (BIO-

RAD). Protein concentration was determined using the Quick StartTM Bradford Protein 

Assay (BIO-RAD) following the manufacturer’s instructions. 

 

Production of constructs of glyoxalase I-like genes from M. truncatula to generate 

transgenic Arabidopsis plants 

 The open reading frames of TC122307 and TC122323 were amplified from 

cDNA using specific primers (Table 5) anchored with the BamHI and XbaI sites and 

cloned in the pCAMBIA2300s vector (modified from pCAMBIA2300, 

www.cambia.org) downstream the CaMV35S promoter (Fig. 15) and the presence of 

the each gene was confirmed by PCR and DNA sequencing.  The individual constructs 

will be transformed into Agrobacterium tumefaciens strain GV3101.   

Agrobacterium tumefaciens-mediated transformation will be performed based 

on the protocol developed by Clough and Bent (1998). 
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RESULTS AND DISCUSSION 

 

Gene expression analysis of cod mutants via GeneChips 

In an effort to compare gene expression profiles in cod5, cod6 and parental wild-

type line A17, GeneChip® Medicago Genome Arrays (http://www.affymetrix.com) 

were probed with RNA taken from leaf tissue of the three genotypes (Korth, 

unpublished data).   

The GeneChip® includes more than 50,000 M. truncatula probe sets.  Hundreds 

of genes were found to be differentially regulated in the cod mutants using a P-value 

threshold of 0.05 and a log-ratio threshold of 0.1 (Fig. 2 and Fig. 4).  The number of 

genes in the cod mutants with transcript levels varying significantly from those in A17 

depends on the fold-change threshold used, with fewer genes identified using a lower P-

value. 

 Using the set parameters, 193 genes are down-regulated in cod5 vs. A17 and 16 

genes are down-regulated in cod6 vs. A17.  Many fewer genes, only eight, were up-

regulated in cod5 when comparing levels to expression in A17; and 20 genes were up-

regulated in cod6.  A considerable number of genes were differentially expressed in 

cod6 compared to cod5, 91 were up-regulated and 12 were down-regulated (Table 1). 

 Although cod5 and cod6 have a shared phenotype of greatly decreased 

concentrations of CaOX crystals in secondary veins (Nakata and McConn, 2000), there 

are substantial differences in overall gene expression between the cod mutants.  When 

comparing both cod mutants with A17, only four genes are co-regulated in cod5 and 

cod6.  All four were down-regulated and only functional category of two genes was 
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identified; one being involved in transcription regulation and the other gene annotated 

as a cytochrome P450.  It is important to note here that although cod5 and cod6 both 

have severely decreased CaOX concentrations, cod6 will sometimes accumulate low 

levels of crystals in secondary veins and low levels of sand crystals in mesophyll cells, 

whereas CaOX is never visible in leaf tissue of cod5 (Nakata and McConn, 2000). 

 The formation of CaOX crystals in plants is widespread among hundreds of 

plant families and the crystals can accumulate to very high levels.  In spite of their 

abundance and these crystals being studied for many years, the physiological role(s) of 

CaOX in plants is still debated.  One of the most common proposed roles for this 

mineral is the regulation and/or sequestration of excess calcium within cells (Libert and 

Franceschi, 1987).  Calcium itself is a highly abundant element in plant cells, reaching 

concentrations of 30 to 90 nM in the cytoplasm and > 5 μM within the vacuole 

(Clarkson et al., 1988).  Furthermore, calcium concentration is known to be a very 

important factor in gene regulation, physiological events, and enzyme activities in 

plants (Kim et al., 2009; Roberts and Harmon, 1992).  Therefore, if the formation of 

CaOX in M. truncatula is necessary for fine-tuned regulation of calcium concentrations, 

then one might predict that the absence of crystals would lead to varied calcium levels 

which would result in a high number of genes being co-regulated in cod5 and cod6.  We 

did not observe such co-regulation.  Based on this result, we conclude that it is unlikely 

that CaOX formation plays an important role in regulating downstream gene expression 

profiles.  These data would seem to be in agreement with a previous study from 

McConn and Nakata (2000).  In a careful comparison of phenotypic cod5 and A17 plant 

performance in greenhouse and growth chamber studies, McConn and Nakata (2003) 
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concluded that CaOX formation was not important in regulating physiological 

outcomes.  The only biological function that be assigned to CaOX crystals in M. 

truncatula thus far, is the deterrent and anti-nutritive activities that they have on 

chewing insects (Korth, et al., 2006).   

Cluster analysis of GeneChip data shows similar expression patterns between 

cod6 and A17 in which most of the genes have higher expression levels (Fig. 2, cluster 

4).  The largest subset of differentially regulated genes showed lower expression levels 

in cod5 and are represented by clusters 3 and 4 (Fig. 2).  In order to identify relevant 

biological functions associated to each probe set in the largest group, we used the 

GeneBins public database (http://bioinfoserver.rsbs.anu.edu.au/utils/GeneBins/) 

(Goffard and Weiller, 2007).  The largest class of the down-regulated transcript 

sequences in cod5 corresponds to unclassified sequences making up 37 % of the total, 

followed by 10 % being genes involved in carbohydrate metabolism and 8 % in 

transcription regulation (Fig. 3).  Other biological functions suggested to be down-

regulated in cod5, each with 6 % of the total differentially expressed products, are 

signal transduction and glycan biosynthesis and metabolism.  Five percent of the 

differentially expressed genes have no homolog.  Three groups are each represented by 

5 % of the genes; biodegradation of xenobiotics, metabolism of cofactors and vitamins, 

and cell growth/death.  The functional categories of ligand-receptor interaction, amino 

acid metabolism, lipid metabolism, biosynthesis of secondary metabolites, energy 

metabolism, transport, cell communication and folding sorting and degradation are 

represented by one to three percent of genes (Fig. 3).  Therefore, a single mutation 

affecting CaOX formation in cod5 likely causes an important change in gene expression 



 22 

impacting many other processes in plant metabolism; however those changes do not 

affect plant performance (Nakata and McConn, 2003).  Carbohydrate metabolism is the 

category represented by the highest number of down-regulated genes in cod5.  This 

mechanism could potentially affect growth of CaOX crystals in cod5, as it was 

previously showed that polysaccharides are one of the factors that affect crystal growth 

and morphology (Kok et al., 1986).  The second largest group of down-regulated genes 

with an ascribed function in cod5 is transcription regulation.  The set of genes in this 

functional category could be also causing changes in expression of genes involved in 

other processes.  There is a possibility that the mutation responsible for the CaOX 

phenotype in cod5 is not directly associated with CaOX formation and control 

transcription of genes involved in carbohydrate metabolism causing a reduction of 

CaOX formation to undetectable levels. 

The difference in the CaOX phenotype between the cod mutants is that cod6 

contains small crystals along the vascular strand and cod5 completely lack crystals 

(Nakata and McConn, 2000).  Therefore, the relatively low presence of CaOX crystals 

in cod6 could be a result of the up-regulation of one or more genes.  In cod6 we found 

91 up-regulated genes as compared to expression in cod5 (Table 1).  The lack of overlap 

in gene expression in the cod mutants also suggests that many genes affect crystal 

formation; this is in agreement with previous observations indicating that multiple 

genes control crystal formation in M. truncatula (Nakata and McConn, 2000).  Again, it 

also suggests that expression of hardly any genes is impacted by a decrease in CaOX 

concentrations.   
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 The cod mutants used in this study were generated from an EMS-mutagenized 

population and they have been backcrossed at least twice (Nakata and McConn, 2000).  

Even though the mutant lines have a single mutation with respect to CaOX phenotype, 

there is a possibility of these lines carrying mutations not associated with CaOX 

phenotype.  The mutated genes in the cod mutants have not been yet identified; 

therefore differences of transcript profiles in the cod mutants could possibly be 

associated with other mutations. 

 

Response of M. truncatula cod mutants to salt stress 

Among the differentially expressed genes in A17, cod5 and cod6, we identified 

one annotated as encoding a putative glyoxalase I, also referred to a lactolylglutathione 

lyase. This gene has the distinction of being highly expressed in cod6 and severely 

down-regulated in cod5, as compared to constitutive expression levels in A17 (Fig. 4).  

This glyoxalase I-like gene, referred by its MtGI tentative consensus number 

TC122307, is expressed at levels 9.06-fold higher in cod6 compared to A17, and 11.6-

fold lower in cod5 versus A17 (Table 2).  This result was validated with RNA blot from 

leaf tissue of cod mutants and A17 (data not shown).  Another glyoxalase I-like gene, 

TC123769, was 4.63 fold higher in cod6 as compared to A17 (Table 2) and 19.13 fold 

higher in cod6 as compared to cod5.  The glyoxalase I-like predicted mRNA sequences 

were aligned to each other and have a 79.9 % identity at the nucleic acid level.  The 

expression pattern for these genes in the cod mutants was rare among our array data, in 

that transcript accumulation was significantly different from A17, and was inverse in 

the two cod mutants. 
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Transcripts and polypeptide levels of GLXI increase in tomato roots, stems and 

leaves from plants treated with NaCl, mannitol or abscisic acid (Espartero et al., 1995).  

Furthermore, overexpression of GLXI from Brassica juncea was previously shown to 

increase tolerance to NaCl in transgenic tobacco plants (Veena et al., 1999).  Therefore, 

the increase in salt tolerance by overexpressing this gene shows that GLXI plays a role 

in salt tolerance.  Because glyoxalase I-like genes were up-regulated in cod6 and down-

regulated in cod5, we surmised that this plant system would provide a valuable resource 

for evaluating the potential role of this enzyme in conferring salt tolerance in M. 

truncatula.  We evaluated tolerance to salt stress in the cod mutants to determine 

whether this putative GLXI was associated with salt tolerance to cod6.  

Increasing concentration of NaCl caused appearance of associated salt stress 

symptoms in the three genotypes after four weeks of treatment as reflected by 

phenotypic rating.  Although cod6 showed substantial growth inhibition as compared to 

water-treated controls, this genotype showed considerably less necrosis and chlorosis as 

compared to cod5 and A17.  On the other hand, cod5 showed more leaf chlorosis and 

necrosis, while A17 showed less salt-stress symptoms than cod5 (Fig. 5).  The three 

genotypes did not show any symptoms following application of 50 mM CaCl2, or water 

(Fig. 5).  In general, M. truncatula genotypes were more sensitive to sodium than 

calcium salt, as shown by the response to NaCl treatments. This is a common response 

in glycophytes (Bernstein and Hayward, 1958), and further suggests that in this case 

much of the damage to the plant results from the sodium cation rather than the chloride 

anion.  Phenotypic rating was performed to evaluate salt tolerance. Our results showed 

that cod6 had significantly less symptoms compared to cod5 and A17 (P < 0.001) (Fig. 
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6B).  In addition, chlorophyll content (Fig. 6C) and fresh weight (Fig. 6D) were 

significantly higher in cod6 after the NaCl treatment confirming the results from the 

phenotypic rating.  In contrast, A17 and cod5 had similar responses to NaCl treatment 

as shown by phenotypic rating, chlorophyll content and fresh weight (Fig. 6).  Together 

these results provide evidence for tolerance to salt stress in cod6, suggesting the high 

level of expression of the genes encoding TC122307 and TC123769 is associated with 

this trait.   

Under salt stress conditions in rice cell cultures, glycolysis and TCA cycle 

enzymes are induced (Umeda et al., 1994) which may increase the production of MG, a 

by-product of glycolysis.  Subsequently, activity of the enzymes of the glyoxalase 

system may increase as well (Espartero et al., 1995).  Therefore, plants respond to salt 

stress by enhancing rates of glycolysis and ultimately increasing activity of the 

glyoxalase system to detoxify MG.  This could be a good explanation for salt tolerance 

by the up-regulation of GLXI.  

 

Mineral analysis of salt-treated plants  

 We measured calcium, sodium, and chloride levels from foliar tissues of NaCl-, 

CaCl2- and water-treated plants.  Our results show similar sodium levels in the three 

genotypes following salt treatments, which indicate that all the lines are uptaking 

sodium.  However, as we discussed above cod6 show less symptoms under high salinity 

conditions, therefore cod6 has mechanisms to cope with these conditions when 

compared to cod5 and A17.  Chloride levels were also similar in the three genotypes 

even when NaCl or CaCl2 was applied, indicating that all the lines have the ability to 
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uptake chloride, however they do not seem to exclude chloride.  In many other plant 

species, such as Glycine, Lotus, Hordeum/Triticum, Trifolium and Eucalyptus chloride 

exclusion from shoots correlate with salt tolerance (Teakle and Tyerman, 2010).  In M. 

truncatula it has been suggested that both sodium and chloride exclusion contribute to 

salt tolerance (Aydi et al., 2008).  Our results show that the cod mutants and wild-type 

A17 take up sodium and chloride in similar levels (data not shown).  In the case of 

sodium, none of the lines seem to exclude sodium either, but cod6 has a mechanism to 

cope with high sodium levels as reflected by salt treatments (Fig. 5, 6).  

 In a previous study, Nakata and McConn (2003) found similar calcium levels in 

leaves of cod5 and A17 under normal conditions.  In addition, this study measured 

oxalate content in leaf tissue and based on comparison of calcium and oxalate content in 

cod5 and A17, concluded that crystal formation is not necessary to sequester excess 

calcium in M. truncatula.  In other plant species it has been shown that CaOX crystals 

play a major role in calcium regulation by sequestering excess calcium (Nakata, 2003).   

 We measured calcium in leaves of salt-treated plants; sodium chloride and water 

applications resulted in similar calcium levels in cod mutants and A17.  The addition of 

CaCl2 to cod lines caused a significant increase (t-test, P < 0.05) in calcium content of 

cod5 compared to wild-type A17 (Fig. 7).  Such increase was also higher in cod6 

compared to A17 although the difference was not significant (t-test, P > 0.05).  These 

results may suggest that the lack of mechanisms to sequester calcium as CaOX crystals 

leads to the higher calcium content in leaves of cod5 suggesting that CaOX crystal 

formation plays a role in sequestering excess calcium in M. truncatula.  However, more 

research will be needed to confirm this statement.  
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 Calcium concentration in the cells is restricted in plants to ~10-7 M in order to 

prevent a negative impact of this element to distinct cellular processes (Webb, 1999).  

Many studies proposed that plants produce CaOX crystals in response to higher levels 

of calcium (Franceschi and Horner, 1980; Franceschi and Nakata, 2005).  In this 

respect, the vacuole has been recognized as the most important organelle for 

compartmentation of excess calcium (Webb, 1999; Ilarslan et al., 2001).  It is also 

possible that one or more down-regulated genes in cod5 are involved in calcium 

transport via the activity of channels or pumps (Franceschi and Nakata, 2005) to the 

vacuoles consequently lacking mechanisms to form CaOX crystals.  In this respect, in 

the GeneChip array data we found a gene (GenBank: AY059633.1) encoding a putative 

M. truncatula type IIB calcium ATPase (MtMCA2) which is 3.88 fold lower in cod5 as 

compared to wild-type.   

 Type IIB Ca2+-ATPases from higher plants have been localized to 

endomembranes (Geisler et al., 2000) and the main role of Ca2+-ATPases localized in 

the plasma membrane and endoplasmic reticulum (ER) is the regulation of Ca2+ 

concentration in the cytoplasm (Briskin, 1990; Bush, 1995).  In tomato, a Ca2+-ATPase 

expected to be localized in the ER was found to be induced by salt stress (Wimmers et 

al., 1992).  Even in the moss, Physcomitrella patens, transcripts from a Ca2+-ATPase 

(PCA1) accumulate in higher levels by dehydration, NaCl and abscisic acid (Qudeimat 

et al., 2008).  Moreover, mutants lacking a functional PCA1 showed higher 

susceptibility to salinity stress, indicating that Ca2+-ATPase is essential for stress 

tolerance in the moss (Qudeimat et al., 2008).   
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 The function of Ca2+ in stress tolerance has not been defined yet; however the 

rapid increase in cytosolic Ca2+ levels during salt stress suggests that Ca2+ probably 

functions as a stress signal (Niu et al., 1995).  Therefore, it has been previously 

proposed that the increase in cytosolic Ca2+ during salt stress could be potentially 

decreased by the enhanced activity of Ca2+-ATPase (Niu et al., 1995).  In the case of 

cod5, a putative Ca2+-ATPase is down-regulated and therefore it could contribute to 

more sensitivity to salt stress in this cod mutant.  

 

Glyoxalase I activity in the cod mutants 

 In Brassica juncea, transcript levels of a gene encoding GLXI correlated with 

protein and GLXI activity levels from cotyledonary leaves and roots (Veena et al., 

1999).  We measured GLXI activity from cod mutants and A17 to determine whether 

TC122307 and TC123769 transcript levels correlate with GLXI enzyme activity.  If 

these genes encode GLXI, we would expect higher levels of GLXI activity in cod6 and 

decreased levels in cod5, compared to enzyme activity in A17.  However, enzyme 

assays show that GLXI activity in leaf tissue from A17 and the cod mutants is not 

significantly different (Fig. 8).  These results were similar in three independent 

measurements, suggesting that TC122307 and TC123769 do not encode GLXI.   

 

Tolerance to Methylglyoxal 

 Methylglyoxal is the substrate of GLXI (Thornalley, 1990), therefore plants 

producing high levels of GLXI have the ability to detoxify MG and prevent its toxic 

effect.  Previous studies showed MG tolerance in transgenic lines overexpressing GLXI 
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by measuring chlorophyll content from MG -treated leaves (Veena et al., 1999; Singla-

Pareek et al., 2003).  We analyzed MG tolerance in leaves from cod mutants to 

determine whether overexpression of TC122307 and TC123769 in cod6 would confer 

tolerance to MG.  Chlorophyll contents from cod mutants and A17 were very similar in 

untreated leaves, however following an 84-hour MG treatment chlorophyll content 

decreased significantly in each of the genotypes (Fig. 9).  The cod mutants were equally 

sensitive to the treatment.  We did not observe enhanced tolerance to MG in cod6; 

therefore TC122307 and TC123769 are not likely to encode GLXI, confirming enzyme 

activity data from leaves which also suggested that these genes do not encode GLXI. 

 

Sequence analysis of glyoxalase I-like genes 

 In a search of the M truncatula EST database, we identified a glyoxalase I-like 

gene (TC122323) 90.3 % identical to glyoxalase I from Glycine max (GmGlxI).  

Predicted amino acid sequences from genes annotated as glyoxalase I in M. truncatula 

were aligned with GLXI proteins confirmed as having GLXI enzyme activity.  Multiple 

sequence alignment shows conserved amino acids that form the zinc binding sites 

shared by TC122323 and other characterized GLXI sequences (Fig. 10).  In addition, 

the predicted secondary structure (βαβββ) characteristic of the VOC superfamily 

(Armstrong, 2000) is shared by TC122323 and characterized GLXI proteins.  The gene 

sequences of TC122307 and TC123769 are not predicted to encode the conserved 

amino acids that form the zinc-binding domain which is essential for GLXI activity 

(Mannervik and Ridderstrom, 1993).  These genes are, however, predicted to encode the 

βαβββ structure as predicted by PSIPRED (Bryson et al., 2005) (data not shown).  
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Taken together, our data strongly suggest that TC122307 and TC123769 are 

misannotated as GLXI, but are members of the VOC superfamily.  This sort of result is 

supported in a study by Schnoes et al. (2009), which showed a gene misannotated as 

GLXI but found to encode a glutathione transferase.  The explanation for this 

misannotation is that families within a superfamily share tertiary structure (one or more 

βαβββ), but catalyze distinct reactions which make the annotation process more 

complex (Schnoes et al., 2009).  

 A phylogenetic tree was generated to visualize the genetic relationship between 

the three genes identified as members of the GLXI family in M. truncatula (Fig. 11).  

As we expected, TC122307 and TC123769 do not appear to be GLXI proteins.  

However, TC122307 and TC123769 are grouped closer to novel members of the VOC 

superfamily (Mulako et al., 2008).  These novel members include Xhdsi-1VOC from 

Xeropjhyta humilis and At1g07645 from Arabidopsis which are induced during 

dessication (Mulako et al., 2008); therefore it is interesting to note that TC122307 and 

TC123769 as members of the VOC superfamily also play a role in abiotic stress.  In 

addition, TC122323 groups closer to GmGlxI and other characterized glyoxalase I, 

suggesting that TC122323 encodes the authentic GLXI in M. truncatula. 

 

Gene expression analysis of GLXI-like genes following salt treatments 

 We analyzed gene expression of GLXI-like genes TC122307, TC123769 and 

TC122323 in M. truncatula following NaCl and water applications at three days and 

one week after initial application.  Transcripts of TC122307 accumulate in A17 and 

cod6 after three days of initial application of NaCl (Fig. 12).  Higher transcript levels 
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were detected in cod6 as compared to constitutive expression in A17.  We did not detect 

transcripts of TC122307 in cod5 after NaCl. Comparing these results with water-

controls we conclude that NaCl does not induce transcript accumulation in TC122307 in 

any of the lines.  After one week of initial salt-treatments we did not observe changes in 

expression of TC122307 compared to expression levels after three days.  Same 

expression pattern was observed for TC123769 after three and one week of initial 

treatment in all the lines.  This could be due to the fact that both genes are almost 80 % 

identical at the nucleic acid level.  Together, these results suggest that TC122307 and 

TC123769 are co-regulated.  Based on gene expression analysis both genes are possibly 

controlled by similar transcription factors; therefore we aligned sequences from the 

upstream regions of T122307 and TC123769 but did not find similarity (data not 

shown).  On the other hand, transcript abundance of TC122323 was uniform in the three 

genotypes under all conditions, showing that it is constitutively expressed in the cod 

mutants and A17.  

 Transcript abundance of glyoxalase I-like genes in M. truncatula was also 

evaluated using a semi-quantitative RT-PCR approach to exclude the possibility that co-

regulation of TC122307 and TC123769 in the RNA blot data (Fig. 12) was caused by 

cross hybridization (Fig. 13).  Gene-specific primers were designed to amplify a 370 to 

470 fragment from the ORF of each gene (Table 4).  Our results agree with the RNA 

blot data in that TC122307 and TC123769 are co-regulated and TC122323 is uniformly 

expressed in the three genotypes under normal conditions.  Even though many reports 

show an increase of GLXI transcripts and GLXI activity following salt treatments 

(Espartero et al., 1995; Veena, 1999, Lin et al., 2010) and assuming that TC122323 is 
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the authentic GLXI, this gene is not induced by salinity stress in M. truncatula.  A 

similar response has been reported where GLXI activity had no change after salt 

treatment in tobacco cells (Hoque et al., 2008).  These results suggest that the up-

regulation of glyoxalase I is not a general effect against abiotic stresses. 

 We also analyzed gene expression of TC122307 following CaCl2 in leaf tissue 

from M. truncatula to evaluate if transcript abundance was affected by this salt (Fig. 

14).  We conclude that CaCl2 does not have an effect on transcript accumulation of 

TC122307, because we did not observe any change in mRNA levels in cod mutants and 

A17 compared to water control. 

 

Production of transgene constructs of GLXI-like genes from M. truncatula  

 We generated constructs to overexpress TC122307 and TC122323 in 

Arabidopsis.  The open reading frames of TC122307 and TC122323 were 

independently amplified by PCR from cDNA using primers (Table 5) containing 

restriction sites (Fig. 16).  We cloned the genes into pCAMBIA2300s vector containing 

a CaMV 35S promoter upstream the ORF from TC122307 or TC122323 (Fig. 15, 17).  

The integrity of the genes was confirmed by restriction digestion (Fig. 18), PCR (Fig. 

19), and sequencing (data not shown).  Transgenic plants will be produced by 

inoculating Arabidopsis plants with A. tumefaciens carrying a pCAMBIA2300s 

containing TC122307 or TC122323 using the floral dip method (Clough and Bent, 

1998).  These plants will be used to assess the role of these genes in salt adaptation by 

evaluating their performance under high salt conditions. 
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CONCLUSIONS 

 

 Gene expression data of M. truncatula cod mutants obtained with GeneChip 

arrays show major differences in transcriptomes of cod5, cod6, and wild-type A17.  

Hundreds of genes were found to be differentially expressed when the cod mutants were 

compared to each other, although the mutants share a very similar phenotype with 

respect to CaOX crystals.  Therefore, we conclude that CaOX formation is not likely to 

impact calcium modulation that would ultimately regulate gene expression patterns.   

 In the array data we identified two GLXI-like transcripts (TC122307 and 

TC123769) overexpressed in cod6 and down-regulated cod5.  Because previous studies 

show that up-regulation of GLXI in transgenic plants confers resistance to salt stress 

(Veena et al., 1999; Singla-Pareek et al., 2003), we analyzed the response of cod 

mutants to salinity.  Salt treatments showed that cod6 is more tolerant to NaCl stress 

compared to wild-type A17, and cod5, the latter being the most sensitive.  We found a 

connection between expression profiles of these GLXI-like genes and salt tolerance in 

the cod mutants.  However, mRNA levels of TC122307 and TC123769 do not increase 

following salt application as shown in other characterized GLXI genes (Veena et al., 

1999; Espartero et al., 1995; Lin et al., 2010).  Enzymatic GLXI activity was similar in 

the cod mutants and A17.  In addition, all the lines were equally sensitive to toxic levels 

of methylglyoxal, the substrate of GLXI.  These results show that it is highly probable 

that TC122307 and TC123769, both annotated as GLXI, do not encode functional 

GLXI.  This conclusion is further supported by the predicted amino acid sequences 

encoded by these two transcripts.  Based on multiple sequence alignment, these genes 
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are members of the VOC enzyme superfamily but they do not contain the hallmark 

metal-binding sites associated with authentic GLXI enzymes.  

 Gene expression analyses showed that TC122307 and TC123769 are not 

induced by salt stress and that both genes are co-regulated.  Another gene, encoding 

TC122323, is predicted to be translated to a putative GLXI; however, this gene is not 

induced by salt stress either.  We found that TC122323 is constitutively expressed in the 

cod mutants and A17; which probably explains the similar responses of all genotypes to 

methylglyoxal and the similar levels of GLXI activity in leaf tissue.  These results and 

sequence analysis indicate that TC122323 is the authentic GLXI in M. truncatula, 

although functional characterization of enzyme activity has not been demonstrated.  

 In conclusion, the cod6 mutant which expresses high levels of transcripts for 

two predicted members of the VOC superfamily displays considerably enhanced levels 

of salt tolerance.  Although the specific substrate(s) of the encoded proteins is unknown, 

the underlying genes represent excellent candidates for further study and engineering of 

increased salt tolerance in plants.   
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Figure 1.  Steps in the conversion of methylglyoxal to D-lactic acid by the glyoxalase 

system.  A non-enzymatic reaction generates the hemithioacetal from methylglyoxal 

and reduced glutathione (GSH); the hemithioacetal is in turn converted to S-D-

lactoylglutathione by glyoxalase I (GLXI).  Another enzyme, glyoxalase II (GLXII), 

catalyzes the hydrolysis of S-D-lactoylglutathione to D-lactic acid with the regeneration 

of GSH.    
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Figure 2.  Heat map showing a graphical representation of average probe intensity for 

each plant genotype.  Intensities of each probe are comparisons of cod5 versus A17 and 

cod6 versus A17 and the colors represent these relative levels.  Higher expression is 

represented by red, lower expression by green, white indicates no value and black is 

mid-range between high and low expression.  Probes were split into five clusters to 

illustrate the expression patterns between the three genotypes.  The largest clusters (3 

and 4) assemble the largest subset of differentially expressed genes. 
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Table 1.  Number of genes differentially expressed in the cod mutants with respect to 

expression in A17.  
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Figure 3.  Functional categories of down-regulated genes in cod5.  GeneBins was used 

to classify gene expression data.   The majority of the classified genes are in the 

carbohydrate metabolism category.  
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Figure 4.  Heat map highlighting expression pattern of a subset of genes in cluster 1 (as 

shown in Figure 1), grouped with TC122307.  Intensities of each probe are compared in 

A17 vs. cod5 and A17 vs. cod6, and the colors represent these relative levels.  Higher 

expression is represented by red, lower expression by green, white indicates no value 

and black is midrange between high and low expression.  
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Table 2.  List of up-regulated genes in cod6 compared to A17. The number of 

unclassified genes is 14, and 10 genes do not have a significant match in the Genbank 

database.  
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Table 3.  List of down-regulated genes in cod6 compared to A17. The number of 

unclassified genes is seven, and five did not have a significant match in the Genbank 

database. 
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Figure 5.  Response of M. truncatula cod mutants to salt stress.  Plants showing 

symptoms following treatment with 100 mM NaCl, 50 mM CaCl2, or water (H2O) for 

four weeks.  
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Figure 6.  Effect of salinity stress in the cod mutants.  Plants were treated with 100 mM 

NaCl or water (H2O).  (A) Phenotypic rating scale of 1-6, 1 for healthy plant with no 

chlorosis and 6 for complete leaf necrosis and plant death (B) Phenotypic rating, (C) 

Chlorophyll content, and (D) Fresh weight were measured to evaluate tolerance to salt 

stress.  Columns labeled with a star are significantly different (t-test, P < 0.001) within 

genotypes.  The error bars indicate standard error. 
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Figure 7.  Calcium content in leaves of cod mutants following salt treatment.  Plants 

were treated with 100 mM NaCl, 50 mM CaCl2 or water (H2O) for 4 weeks and dry 

tissue from leaves was used for calcium content measurement. Levels not connected by 

same letter are significantly different (t-test, P < 0.05). The error bars indicate standard 

error. 
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Figure 8. Glyoxalase I activity in leaf tissue of A17, cod5 and cod6.   Graph represents 

data from one independent assay.  One trifoliate from each genotype was collected for 

the assay.  A unit is defined as the amount of enzyme that catalyzes the formation of 1 

µmol of substrate per minute (NC-IUB, 1979).  No significant difference was found 

between genotypes (t-test, P > 0.05).  The error bars indicate standard error.  
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*
   

* * 

Figure 9.   Methylglyoxal tolerance in the cod mutants.  Chlorophyll content in cod5, 

cod6, and A17 was measured following 84 h incubation in 1.5 mM methylglyoxal to 

evaluate tolerance.  Significant difference was found between treated and non-treated 

leaves (t-test, P < 0.05).  The error bars indicate standard error  
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Figure 10.  Multiple sequence alignment of deduced amino acid sequences of 

glyoxalase I-like genes in M. truncatula and previously reported glyoxalase I proteins 

from other plant species: Glycine max, GmGlxI (CAA09177.1), Brassica juncea, 

BjGlxI, (CAA73691), Solanum lycopersicum, SlGlxI (CAA88233), Homo sapiens, 

HsGlxI (AAD38008), TC122307, TC123769, TC122323.  Conserved amino acids that 

form the zinc-binding sites are boxed.  ClustalW program was used for the alignment. 

The asterisks (*) indicate conserved residues, two dots (:) indicate conserved 

substitutions, and one dot (.) indicates semi-conserved substitutions. Predicted 

secondary structure (βαβββ) characteristic of the VOC superfamily is indicated. 
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Figure 11.  Phylogenetic tree of predicted M. truncatula glyoxalase I-like protein 

sequences (TC122307, TC123769, TC122323), previously characterized glyoxalase I 

(Glycine max, GmGlxI; Brassica juncea, BjGlxI; Solanum lycopersicum, SlGlxI; Homo 

sapiens, HsGlxI) and novel enzymes of the VOC superfamily (Xerophyta humilis, 

Xhdsi-1VOC; Arabidopsis thaliana, At1g07645).  Tree was generated via the neighbor-

joining method.  
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Figure 12.  Transcript abundance in leaves following long-term salt application.  

Twenty-day-old plants were exposed to 50 mM NaCl for the first 24 hrs and 100 mM 

afterwards. We applied water (H2O) as a control. Leaf samples from two plants per 

genotype were collected 3 days and 1 week after initial application.  Total RNA (15 μg) 

was extracted and loaded in each lane, separated on an agarose-formaldehyde gel and 

transferred to a nylon membrane for hybridization. RNA was hybridized with the 

indicated radioisotope-labeled probe.  
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Figure 13.  Semi-quantitative RT-PCR analysis of mRNA transcript abundance of 

glyoxalase I-like genes TC122307, TC123769 and TC122323 in leaf tissue of A17, 

cod5, and cod6.  Alpha tubulin (Mtαtubulin) was used as a housekeeping gene.   
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Figure 14.  Transcript abundance in leaves following different types of salt treatment. 

Three plants per genotype were subjected to each treatment. Five-week-old plants were 

exposed to 50 mM NaCl for the first 24 hrs and 100 mM afterwards 48 and 72 hrs of 

first application.  Other plants were subjected to 50 mM CaCl2 or water (H2O) for 72 

hrs (conditions were as described in Fig. 2).  
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 Figure 15.  Schematic representation of the overexpression construct in 

pCAMBIA2300s vector.  The expression of TC122307 is driven by the constitutive 

promoter CaMV35s and Kanamycin is used for plant selection.  
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Figure 16.  Electrophoresis of PCR product amplified from cDNA using primers 

designed to amplify the open reading frame of TC122307.  Lane M, shows 100 bp DNA 

ladder.  Arrow indicates the 646 bp band.  
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Figure 17.  Electrophoresis of restriction digestion reactions of TC122307 (cut insert) 

and pCAMBIA2300s (cut vector) with BamHI and XbaI restriction enzymes.  Lane M, 

shows 1 Kb DNA ladder.  The arrows indicate the approximate size of the bands.  
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Figure 18.   Electrophoresis of digestion reaction of pCAMBIA2300s/TC122307 with 

BamHI and XbaI to confirm presence of the transgene TC122307.  Lane M, shows 1 Kb 

DNA ladder.  Arrows indicate the vector and insert.  
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Figure 19.  Electrophoresis of PCR products amplified from the indicated plasmid 

DNA template (pCAMBIA2300s, pCAMBIA/TC122307-1 and pCAMBIA/TC122307-

2) with primers complementary to pCAMBIA2300s and the insert TC122307 in the 

case of pCAMBIA2300s/TC122307 -1 and -2.  The plasmid alone (pCAMBIA2300s) 

was amplified with primers complementary the plasmid.  Lane M, shows a 1 Kb DNA 

ladder.  Smaller bands were amplified from pCAMBIA2300s/TC122307 -1 and -2 

compared with PCR product from vector alone.  
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Table 4.  List of primers used for semi-quantitative RT-PCR.  
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Table 5.  List of primers used to make the overexpression constructs.  
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