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ABSTRACT 

Identification of blast resistance genes in rice germplasm is one of the most 

important activities of rice breeding programs in worldwide.  The objective of this 

research was to characterize two major blast resistance genes, Pi-z and Pi-b, in selected 

rice germplasm. A simple sequence repeat DNA marker, AP5659-1 linked to the Pi-z 

gene, and a Pib dominant marker derived from the Pi-b gene were first used to screen a 

rice core collection consisting of 1700 accessions estimated to represent 70% of the 

genetic diversity of rice in the US National Small Grains Collection.  There were 131 rice 

germplasm accessions with marker profiles indicating the presence of Pi-z, and178  

indicating the presence of Pi-b.  This research assessed accessions using the tightly linked 

SSR markers - AP5659-1, AP5659-5, AP4791 and RM527 - for the Pi-z gene; and a Pi-b 

dominant marker plus DNA markers RM 208 and RM 166 for the Pi-b gene respectively.  

Finally, isolates of Magnaporthe oryzae representing differential races, including IB33, 

IB49 and IE1k for Pi-z; and IB54 and IE1k for Pi-b; were used to evaluate disease 

reactions of the inoculated rice accessions. Experimental findings indicated that the total 

number of lines containing Pi-z and Pi-b were reduced to 117 for Pi-z and 164 for Pi-b as 

a result of seed mix. Using the combination of DNA marker and pathogenicity assays, 81 

germplasm accessions with Pi-z and 130 germplasm accessions with Pi-b were identified.  

In addition, 54 germplasm accessions with different resistance genes were also noted.  

These accessions carrying Pi-z and Pi-b and other unknown blast resistance genes were 

once elite commercial cultivars in different rice production regions and may represent 

valuable genetic resources for breeders to use for improving blast resistance using marker 

assisted and conventional breeding. 
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Introduction 

Rice blast, caused by the filamentous ascomycete fungal pathogen Magnaporthe 

oryzae B. Couch = (Magnaporthe grisea sensu Yaegashi and Udagawa), is one of the 

most devastating diseases affecting global rice production. Resistance to blast in most 

cases follows a classical gene for gene relationship, in which a resistance gene is 

effective against blast isolates having the corresponding avirulence gene.  

Resistance in rice varieties carrying one major resistance gene has often been 

overcome by the emergence of the virulent races of the pathogen. Based on the gene for 

gene theory, an additive effect would be expected when two resistance genes were 

combined in one rice variety. Therefore, combining genes with overlapping resistance 

from different sources (stacking) has been considered an effective breeding objective to 

develop more durably resistant rice cultivars.  

In the southern US, the major blast resistance genes Pi-ta, Pi-b, Pi-ks, Pi-kh, and 

Pi-z are effective against contemporary blast pathogen populations. Pi-ta was considered 

to be the most efficient and thus most widely used. It was effectively deployed to prevent 

blast for over a decade in Arkansas.  In 2004, the novel blast race IE-1k was found to 

overcome Pi-ta and resulted in significant economic loss in several rice fields in 

Arkansas. In searching for sources of resistance, Pi-b and Pi-z were found to confer 

resistance to IE-1k. 

The objective of this research was to characterize Pi-z and Pi-b, two resistance 

genes used to combat a broad spectrum of races of Magnaporthe oryzae in elite 

germplasm collections from around the world. DNA markers tightly linked to the Pi-z 

and Pi-b locus were chosen to eliminate the chances of recombination and identify
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 germplasm accessions with the genes. Pathogenicity assays were also used on 

these elite germplasm collections to further confirm the DNA marker findings. DNA 

markers and pathogenicity assays together not only provided more accurate identification 

of rice germplasm having both R genes but also facilitated the identification of novel R 

genes.   

The germplasm identified as having Pi-z and Pi-b could be used as donors using 

marker assisted selection and conventional breeding strategies for cultivar improvement. 
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Abstract 

Rice blast disease caused by the fungal pathogen Magnaporthe oryzae is one of 

the most destructive rice diseases worldwide.  Resistance (R) genes to blast encode 

proteins that detect pathogen signaling molecules encoded by M. oryzae avirulence (AVR) 

genes.  R genes can be a single copy gene or a member of clustered gene families that 

have evolved through duplication and diversification.  Recent advances in blast R gene 

cloning and subsequent characterization have provided useful insights into R gene 

mediated signaling transduction pathways.  This review summarizes recent advances in 

cloning and characterization of blast R genes, and presents an update on evolutionary 

dynamics of R proteins, their interaction, and co-evolution with the signaling molecules 

encoded by the AVR genes, and potential implications for crop protection. 

Key words 

 

R genes, AVR genes, blast disease, gene interaction, Magnaporthe oryzae
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Introduction  

Rice (Oryza sativa L.) is the staple food for more than half of the world's 

population.  Maintaining stable rice production is extremely important to feed the 

constantly growing human population.  However, rice blast caused by the pathogen 

Magnaporthe oryzae B. Couch remains one of the most serious threats to secure global 

rice production.   

M. oryzae germinates when a conidium attaches to the surface of the rice leaf, and 

subsequently, hyphae produce appressoria for penetration.  Penetration normally occurs 

within 24 h of spore germination depending on strains [93].  M. oryzae directly penetrates 

the cell membranes leading to subsequent intracellular growth of mycelia that result in 

the destruction of a living cell [39]. Before cell death, mycelia were thought to move to 

the adjacent cell via unknown mechanisms including a possible utilization of 

plasmodesmata [45]. The growth of the fungus within the cell often results in impairment 

of transportation of water and minerals in the vascular system.  Once inside the plant, the 

fungus produces thousands of spores on conidiophores emerging from stomata that can 

be dispersed by air currents to nearby rice plants for subsequent infection (Fig.1).  The 

fungus is highly adaptive to its host and capable of causing infection at any growing 

stage. It has also been known to overcome resistance in a new rice cultivar in a few years 

after commercialization. 

Rice blast was first reported in Asia, and is now present in more than 80 countries 

where rice is grown [14].  It is estimated to cause economic losses of up to USD 60 

million annually in South and Southeast Asia (The International Service for the 

Acquisition of Agri-biotech Applications )[14].  According to the International Rice 
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Research Institute (IRRI), more than 266,000 tons of rice is lost due to blast disease in 

India annually.  In Japan, the figure is similar, with an estimated 200,000 tons of rice lost 

annually due to blast disease [24].  In China, blast disease has been an increasing 

challenge for rice breeding programs and crop production for the past two decades.  In 

the United States, blast disease occurs sporadically but causes significant crop losses in 

favorable years.  The destructive nature of blast has drawn worldwide attention and 

intensive investigation.  Today it is one of the best characterized model host-

pathosystems for understanding molecular mechanisms of host genetic resistance. 

Although well characterized, M. oryzae is highly variable and can overcome deployed 

resistant cultivars in a very short time. 

Due to the extensive studies conducted worldwide, rice was among the first plant 

species to have its complete genome sequenced [2].  A draft genome sequence of M. 

oryzae has also been determined [8, 25, 89]. Availability of genome sequences of rice 

and Magnaporthe oryzae has expedited progress in map-based cloning of resistance 

genes in rice and understanding the molecular bases of resistance, interaction and co-

evolution of rice and M. oryzae.  In this review, we first describe mapped and cloned 

blast resistance genes, then summarize the current understanding of host-pathogen 

interactions and co-evolution, and finally discuss the utilization of this knowledge for 

crop protection. 

Blast R genes 

Genetic studies of resistance to M. oryzae began when Goto established the 

differential system for races of the blast pathogen in Japan in the early 1960‟s [28, 29].  

Interaction of O. sativa with M. oryzae in most cases follows the classical gene-for-gene
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 interaction where a resistance (R) gene named as Pyricularia (Pi) is effective in 

preventing M. oryzae races that contain the corresponding avirulence gene [33,87]. The 

name Pi was derived from the imperfect asexual fungus Pyricularia oryzae 

(=Magnaporthe oryzae). The rules of gene nomenclature in rice blast resistance were 

introduced in 1993. New blast resistance genes are designated as Pi followed by a 

numeral, except for those reported before 1993. The suffix „(t)‟ (tentative) is attached 

until the completion of allelism tests. A total of 80 major Pi genes and 35 minor R genes 

have now been described [5].  Among them, Pita, Pi9, Pi2/Piz-(t), Pid2, Pi36, Pi37, Pike, 

Pi5, Pit, Pid3, pi-21and Pb1 have been cloned (Fig. 3).  The fine mapping and cloning of 

the Pikh gene from „Tetep‟ has also been reported by Sharma et al. [85, 97]. Lack of 

supporting evidence has raised significant doubts to this claim [96]. Pith in „Tate‟ has 

now been designated Pi54 [79]. 

Mapped blast R genes  

Bellini [5,59] described fine mapping of a total of 15 blast R genes (IPi, IPi3, 

Pb1, Pi15, Pi24, Pi25, Pi33, Pi39, Pi42, Pi5, Pigm(t), Pik, Pi-x(t), Pi-y1(t), and Pi-y2(t) 

(Table 3).  Additional recently mapped blast R genes are described below: 

Piz(t)* 

Piz(t)* was first identified in the US rice cultivar „Zenith‟ [48]. Piz-(t), another 

blast resistant gene, was also mapped at the same location as Piz(t)*, close to the 

centromere of chromosome 6 [34, 62]. Piz-(t) was cloned from an indica rice cultivar [10, 

66, 74].  The Piz(t)*gene conferring resistance to two races of blast was mapped within a 

57 kb region on the physical map of „Nipponbare‟ in a location where Pi2 was located 

[18]. Three simple sequence repeats (SSRs), AP5659-1 and AP5659-5 and AP5659-3, 
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were found to be very tightly linked to the Piz(t)*locus, with one marker, AP5659-3, co-

segregating with Piz(t)*mediated resistance.  Two simple sequence repeat (SSR) marker 

haplotypes, AP4791 and AP5659-1, were unique for cultivars carrying the Piz(t)*gene, 

indicating these markers could be useful for selection of resistance genes at the Pi-z(t)* 

locus in rice germplasm [18]. 

Pi42(t) and Pi43(t) 

Pi42(t) and Pi43(t) were identified from the resistant indica cultivar „Zhe733‟ 

[55]. These two major R genes provide complete resistance to IE-1k.  Pi-42(t) was 

mapped between SSR markers RM310 and RM72 on chromosome 8, differing from 

Pi42, mapped on chromosome 12 [55].  Pi43(t) was closely associated with two flanking 

SSR markers RM1233 and RM224 on chromosome 11 in a chromosomal region carrying 

the resistance gene Pi1 [55]. Recombinant inbred lines containing Pi42(t) and Pi43(t) 

also tested resistant to US races IB-1, IB-45, IB-49, IB-54, IC-17, IE-1, IG-1, and IH-1. 

Two molecular markers, RM72 and RM1233, were also identified while identifying the 

genes [55] and could be used for fine mapping and facilitating incorporation of Pi42(t) 

and Pi43(t) into advanced breeding lines by marker-assisted selection.    

Pi47(t) and Pi48(t)   

Pi47(t) and Pi48(t) were identified from the resistant indica cultivar „Xiangzi 

3150‟ („XZ3150‟) [38] using a recombinant inbred line (RIL). Segregation analysis 

suggested that resistance was conditioned by two dominant nucleic genes, tentatively 

designated Pi47(t) and Pi48(t) [38]. Pi47(t) was located between RM206 and RM224 on 

chromosome 11, and Pi48(t) was located between RM5364 and RM7102 on chromosome 

12.  The composite interval mapping analysis of the four resistant components of the
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 RILs to the field blast population revealed that Pi47(t) and Pi48(t) were also the major 

genetic factors responsible for field resistance observed in „XZ3150‟. The analysis  

showed that the two  regions in chromosome 11 and 12, i.e., Pi47 and Pi48, were 

responsible for all four blast-resistant phenotypes in the field. The peaks of the two 

regions closely overlapped with the regions of Pi47 and Pi48, which were identified by 

inoculation with the isolate 193-1-1 in a growth chamber experiment performed by 

Huang et al[38]. The LOD score for the four resistant phenotypes at the Pi47 region 

ranged from 8 to 15 while those at the Pi48 region ranged from 7  to 18. When the RILs 

carrying the two major genes were removed from the CIM analysis, no QTL with LOD 

scores over 3.0 were identified (data not shown), suggesting that the two R genes were 

the major contributors to „XZ3150‟ blast resistance in the field. 

Cloned blast R genes 

To date, a total of 14 blast R genes including 12 major and 2 minor R genes have 

been cloned (Table 1; Fig. 2). 

Pib 

Pib on chromosome 2 was the first blast R gene cloned [84, 94].  This gene 

confers high levels of resistance to most blast races in Japan.  Pib conveys resistance to 

seven blast races in the US (Table 4).  Pib has been introgressed into various japonica 

cultivars independently from two Indonesian and Malaysian cultivars.  In the US, Pib 

was introgressed into rice cultivars Saber and Bolivar from the Chinese indica cultivar 

„Teqing‟ [68, 69, 19].  Pib is a member of a small gene family encoding a cytoplasmic 

protein with nucleotide binding sites (NBS) and C-terminal leucine rich repeats (LRRs), 

but no distinct transmembrane domain.  An NBS domain is a signaling motif shared by



 

9 

 

 plant R-gene products [32, 15, 72, 6].  A duplication of the kinase 1a, 2 and 3a motifs of 

the NBS region was found in the N terminal half of the Pib protein. In addition, eight 

cysteine residues were clustered within the LRRs, a feature not observed in any other R 

proteins [67, 91]. Northern blot analysis of the Pib gene family members (Pib, PibH8, 

HPibH8-1 and HPibH8-2) revealed that their expression was regulated by environmental 

signals such as temperature, light, water and chemical treatments, including jasmonic 

acid, salicylic acid, ethylene and probenazole [94]. The Pib gene family is, to the best of 

our knowledge, the first plant R gene family to be investigated extensively at the 

transcription level. 

Pita 

Pita on chromosome 12 was the second blast R gene cloned [9]. Pita confers 

resistance to a wide range of blast races worldwide.  „Katy‟ was the first US cultivar 

reported to contain the Pita gene.  The Pita gene in 'Katy‟ was derived from the landrace 

indica variety „Tetep‟ [50, 72, 82].  Subsequently, a total of seven rice cultivars in the US 

were developed using Pita from „Katy‟. Pita encodes a putative cytoplasmic receptor 

with a centrally localized nucleotide-binding site and leucine-rich domain (LRD) at the 

C-terminus. It has a conserved internal hydrophobic domain characteristic of other NBS-

class R gene proteins [44] between two amino acids and four potential N glycosylation 

sites. Pita differs from the dicot class of NBS R genes in having a unique N terminus.  It 

does not have a leucine zipper or Toll /interleukin-1 receptor homology. The Pita 

carboxyl terminal domain is rich in leucine and is thus referred to as the leucine rich 

domain. It lacks the classical LRR motif found in other genes of this class. Susceptible 

rice varieties were found to contain a single amino acid difference relative to the Pita
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 resistance protein - the amino acid residue serine was in place of alanine at the 918 

position.  

Pi9 

Pi9 on chromosome 6 is known to confer resistance to the US race IC17 [77] 

(Table.4). Pi9 belongs
 
to the NBS–LRR class of R genes.  Although Pi9

 
has two introns 

in its coding region, unlike other R genes in rice, one of the introns
 
is much larger (5362 

bp) than that of the Pib gene. Whether
 
this unique feature in the Pi9 gene has any 

association with its broad
 
resistance spectrum will require further research. The Pi9

 

protein has a conserved nT motif (WAEQIRDLSYDIEDSLDEF) which is located
 
107 

amino acids before the P-loop.  The LRR domain in Pi9 is similar to that of the Pib 

protein and consists mainly
 
of imperfect LRR repeats. A unique structural feature of the

 

Pi9 protein is that it contains a 57-amino-acid non-LRR region
 
at the C terminus.  In 

contrast, the LRRs in both Pib and Pita
 
extend to the end of the C terminus.  Further 

research is needed
 
to investigate whether this 57-amino-acid sequence at the C

 
terminus 

of Pi-9 has any special function in regulating resistance
 
specificity to rice blast. Unlike 

Pib, the expression profile of the Pi-9 gene showed that Pi-9 was constitutively expressed 

in Pi-9-carrying
 
plants and was not induced by blast infection. 

Pi2/Piz-(t) 

The Pi2/Piz-(t) gene is located on chromosome 6 and is indica-derived [101].  

The structure of Pi2 and Piz-(t) in terms of intron and exon size and position was 

determined by cloning the Pi2/Piz-(t) coding (CDS) region.  The transcripts consisting of 

the entire CDS were cloned by reverse transcriptase-PCR with the primer pair NBS4F 

and NBS2R, which can amplify both Pi2 and Piz-(t).  Results showed 3,332- and 3,335
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-bp fragments for Pi2 and Piz-(t), respectively, that contain a 117-bp 5′ UTR and a 116-

bp 3′ UTR for both Pi2 and Piz-(t). Aligning the sequences of the cloned Pi2′ and Piz-(t)′ 

transcripts with their genomic sequences revealed that Pi2 and Piz-(t) contain two introns 

that have the same genomic position and identical sequence to each other. The first 

intron, 3,839 bp in length, is 116 bp downstream of the start codon, corresponding to the 

region before the NBS domain. The second intron, 128 bp in length, is 31 bp upstream of 

the stop codon, corresponding to the region after the LRR domain.  A DNA fragment in 

the first intron was identified which was 177 bp in length and shared 93% sequence 

identity to the first 177 bp portion of the second exon [101]. Pi2 and Piz-t encode a 

1,032– and a 1,033–amino-acid protein product, respectively, belonging to a nT-NBS-

LRR class of R proteins. The nT motif is located 68 to 86 amino acids away at the N-

terminal region. The centralized NBS domain is located 153 to 460 amino acids away 

from the N terminal and has all the essential motifs [4,30]: kinase 1a or P-loop (193 to 

202 amino acids), kinase 2 (281 to 287 amino acids), and kinase 3a or RNBS-B (307 

to315 amino acids), and GLPL (373 to 378 amino acids). There are also 17 imperfect 

LRR repeats predicted based on the xxLxLxx motif representing most of the 3′ portion of 

the protein. 

Piz-(t) showed a similar expression pattern as Pi2. The constitutive expression 

pattern of Pi2 and Piz-t is quite similar to that of both Pi-9 [77] and Pita [9] but different 

from Pib, which exhibits an induced expression pattern after rice blast inoculation [94]. 

Pid2
    

 

Pid2
 
on

 
chromosome 6 was first identified in the indica cultivar „Digu‟ [12].  Pid2 

represents a new class of plant resistance genes. Similar to Pita, Pid2 is also a single copy
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 gene.  Pid2 confers resistance to numerous Chinese blast races. However, there has been 

no report of resistance to US blast races.
  
Pid2 encodes a predicted protein of 825 amino 

acids.  The amino acid sequence of the Pid2 protein contains the domain characteristics 

of receptor-like kinases (RLK), an extracellular domain, a transmembrane (TM) domain, 

and an intracellular kinase domain.  Pid2 also contains a predicted extracellular bulb-type 

mannose-specific lectin (B-lectin) binding domain that has not been reported in other 

plant R proteins. The N-terminus of Pid2, amino acids 1–32, contains a hydrophobic 

region with a predicted transit peptide function.  The putative extracellular domain 

contains two regions with known motifs.  First, amino acids 48–16 encode a B-lectin 

domain (SMART 1e-19) that was predicted to mediate protein–mannose interactions or 

ligand binding [94].  Additionally, amino acids 337 to 418 are predicted to encode a weak 

PAN domain (smart e-02) that binds proteins or carbohydrates [12].  The core of the PAN 

domain in the region of amino acids 337–403 was predicted to be connected with the 

formation of three disulphide bridges [12]. The TM-spanning region contains 23 

hydrophobic amino acids (amino acids 436–458) that are associated with a membrane- 

spanning helix. The cytoplasmic region contains a predicted serine–threonine kinase with 

11 kinase subdomains without the conserved R in subdomain VI, suggesting that Pid2 

belongs to the non-RD class of kinases. The Pid2 protein is localized in the plasma 

membrane. Similar to Pita, a single amino acid at position 441 distinguishes resistant and 

susceptible alleles of Pid2. Both quantitative RT-PCR and northern analysis indicated 

that Pid2 is constitutively expressed. 

Pi36 

Pi36 on chromosome 8 was first identified in the indica cultivar „Kasalth‟ [63]. 

Pi36 confers resistance to a wide variety of Chinese blast races (Table 4). Pi-36 is a
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 single-copy
 
gene and is more closely related to the barley powdery

 
mildew resistance 

genes Mla1 and Mla6 than to the rice blast
 
R genes Pita, Pib, Pi-9, and Piz-t.  It has not 

been reported if the gene conveys resistance to any US blast races.  The 1056-amino acid 

sequence of the Pi36 protein has six conserved motifs typical of NBS proteins.  The 

GMGGLGKTT sequence (beginning at residue 206) is the kinase 1a (P loop) consensus, 

while IVIDDIWD (beginning at residue 286) and GSKILVTTRK (beginning at residue 

310) represent the kinase 2 and kinase 3a consensus motifs [30, 90], respectively. Also, 

GVPLAIITIAS (beginning at residue 372) and LKNCLLYL (beginning at residue 427) 

represent the conserved NBS domains 2 and 3 consensus motifs [30, 90], respectively. 

The conserved NBS motif VHD (beginning at residue 501) is similar to the conserved 

MHD (methionine–histidine–aspartate) motif.  The C-terminal region of the protein 

includes 17 imperfect LRR repeats (residues 578–1056), composed of 15% leucine. The 

repeats, based on an LxxLxxLxxLxL consensus, vary in length between 22 and 44 amino 

acids. The CC region contains three perfect hxxhxxh and one hxxhxxx motif (where h 

represents one of L, I, M, V, or F, and x is any residue). Together, these findings indicate 

that Pi36 is a CC–NBS–LRR type R gene.  Similar to Pita and Pid2, a single substitution 

event (Asp to Ser) at residue
 
590 was considered to be associated with the resistant 

phenotype. An RT–PCR analysis
 
showed that Pi-36 is constitutively expressed in 

„Kasalath‟. 

Pi37 

Pi37 on chromosome 1 was identified in the rice cultivar „St.
 
No. 1‟ [60]. Pi37 

confers resistance to a wide range of Chinese rice blast races but not the Japanese rice 

blast races (Table 4). No reports were available with regards to the response to US blas
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t races. Pi-37 was considered to be the first representative of a cereal NBS–LRR
 
gene 

lacking an intron.
 
 Pi37 encodes a cytoplasmic protein with NBS–LRR domains.  In the 

NBS region, two substitutions (V239A and I247M)
 
were shown to be associated with the 

resistance phenotype.  The Pi-37 open reading frame encoded a 1291-residue 

polypeptide.
 .
The N-terminal section contained three typical NBS family motifs

 
[89], 

specifically GGAGKS (beginning
 
at residue 222), LLVLDDV (beginning at residue 297), 

and GSRVLVTSRR
 
(beginning at residue 327). These corresponded to the kinase 1a (P-

loop), the kinase 2, and the kinase 3a consensus
 
motifs [30, 90], respectively. The C-

terminal region
 
of the protein has 25 irregular LRRs between residues

 
590 and 1290.  The 

intron positions were highly
 
conserved over long evolutionary periods [80, 81].

 
Semi-

quantitative
 
expression analysis showed that in „St. No. 1‟, Pi-37 was constitutively

 

expressed and only slightly induced by blast infection. Transient
 
expression experiments 

indicated that the Pi-37 product was restricted
 
to the cytoplasm. 

Pikm 

Pikm on chromosome 11 was first identified in the Chinese japonica cultivar 

„Hokushi Tami‟ [52]. Complete resistance of Pikm requires functions of two family 

members Pikm1-TS and Pikm2-TS. Pikm1-TS and Pikm2-TS reside adjacently and 

encode non-TIR NBS-LRR-class proteins. Although Pikm1-TS and Pikm2-TS reside 

adjacently at the Pikm locus as a cluster, their structures differ.  First, they differed in the 

number and position of introns: both Pikm1-TS and Pikm2-TS contained an intron at the 

N-terminal side of the sequence encoding the kinase 2 motif in the NBS domain. In 

addition, Pikm1-TS also contained another intron upstream of the sequence encoding the 

NBS domain.  Second, the Pikm1-TS product contained a C-terminal non-LRR region, 

however Pikm2-TS did not.  Finally, Pikm1-TS contained well conserved repeat units
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 matching a consensus sequence in its LRR domain, whereas Pikm2-TS did not.  All of 

the above-mentioned structural differences indicate that these two genes did not evolve 

from one another by a simple duplication event. 

     Expression of both Pikm1-TSand Pikm2-TS was detected in uninoculated plants.  

Following blast inoculation, expression of Pikm1-TS increased from 0.5 to 3 days after 

inoculation (DAI), and declined toward the original level by 5 DAI.  Therefore, the 

induced expression in Pikm1-TS was not detected in the negative control inoculations, 

indicating that the observed induction of Pikm1-TS expression was due to the challenge 

of blast infection. In contrast, although expression of Pikm2-TS appeared to increase 

slightly from 0.5 to 3 DAI, the extent of the induction was relatively minor. 

Pi5  
Pi5 on the short arm of chromosome 9 was first reported in rice cultivar „RIL260‟ 

[11, 32, 53].  Pi5 confers resistance to numerous Korean and Philippines blast races [40] 

(Table 4).  Similar to Pikm, two members, Pi5-1 and Pi5-2 are required for resistance.  

Both members were predicted to encode an N-terminal CC, a centrally located NB and 

LRR, and C-terminal regions. Residues 109–576 of Pi5-1 and 109-567 of Pi5-2 have an 

NB domain.  The conserved internal domains characteristic of NB-containing R-gene 

products were also identified in Pi5-1 and Pi5-2, including the P-loop, kinase-2, RNBS-

B, GLPL, RNBS-D, and MHDV domains.   The Pi5-1 and Pi5-2 proteins harbor a unique 

C terminus that is distinct from those of other NB–LRR proteins [12] and that does not 

match any known protein motif.  The position of introns in the NB domain of the Pi-5
 

protein was studied to better understand the phylogenetic relationship between
 
Pi-5 and 

other cloned rice blast resistance genes. Notably, Pi5-1
 
and Pi5-2 harbor an intron 

between their RNBS-D and MHDV domains[54]. In addition, Pi5-1 and Pi5-2 appear to
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 have more
 
introns (four and five, respectively) compared to other identified

 
blast R 

genes. The distinctive number of introns and
 
the genomic positions of Pi5-1 and Pi5-2 

further validate that they belong to the same clade
 
and are different from other NB–LRR 

genes [54]. Gene expression results indicated that Pi5-1 transcripts accumulate after 

pathogen challenge, whereas the Pi5-2 gene is constitutively expressed [16]. 

Pit 

The Pit gene, located on chromosome 1 [36], was initially reported in the 

Indonesian rice variety „Tjahaja‟ [37].  Pit confers resistance to a broad spectrum of 

Japanese blast races [36] (Table 4).  The structure of the Pit protein is typical of NBS-

LRR proteins.  Pit contains conserved motifs indicative of an NBS domain, and the 

putative LRR domain (with 18 imperfect repeats) matches the cytoplasmic LRR 

consensus sequence. A COILS analysis of the Pit protein sequence detected two CC 

regions, located between the 27th and 54th (maximum probability: 52%), and between 

the 112th and 147th, amino acid positions (maximum probability: 86%) [64]. In the N-

terminal region of the protein, an nT motif located between the 68th and 81st amino acid 

position was identified between the two CC regions [4]. These results indicate that Pit is 

a CC-NBS-LRR-type R gene [103]. 

Expression of Pit-K59 and Pit-Npb was compared by RT-PCR at 0, 8, 16, 24 and 

48 h after inoculation with M. oryzae or water (mock inoculation). In „Nipponbare‟ 

leaves, a constitutive but low level of Pit expression was detected.  . The decline in 

transcription in K59 was probably not a result of the inoculation, but a result of the 

experimental conditions (dark treatment with high humidity). 
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The increased level of Pit transcription in K59 compared with „Nipponbare‟ was 

suggested to be due to the LTR retrotransposon Renovator. Renovator is known to 

contain a promoter in its long terminal repeat (LTR) which enhances expression, in this 

case of Pit. Renovator belongs to a family of Ty1/copia-like retrotransposons classified as 

rn_44 in the RetrOryza database[37]. Renovator  is 5.5- kb long and is composed of two 

identical 114-bp LTRs, bordered by a 5-bp target site duplication[37]. 

Many plants have a large number of NBS-LRR-type R gene analogs (RGAs), of 

which only a few have been assigned functions as disease resistance genes. RGA 

superfamilies are thought to have been generated by tandem or segmental duplication of 

ancestral genes during evolution. For an RGA to function as an R gene, it must be 

expressed in an appropriate temporal and spatial manner. Therefore, duplication of the 

coding sequence alone is not sufficient for multiplying R genes. New R genes could be 

generated by duplication of a transcriptionally active R gene as a unit, including 

transcriptional regulatory sequences as well as coding sequences, followed by sequence 

diversification. 

Another mechanism could be the transcriptional activation of otherwise 

transcriptionally-inactive RGAs through acquisition of promoter sequences. It was 

reported that Pit was created as a result of transcriptional activation of an inactive 

sleeping RGA [36]. The functional Pit allele was formed as a result of insertion of 

Renovator upstream of the Pit sequence. The acquisition of promoter sequences therefore 

seems to be a general mechanism that generates R genes. 

Pid3
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Pid3 was first reported in indica variety „Digu‟ [84].  The gene is known to confer 

resistance to indica and japonica races collected from China (Table 4). There is no report 

if this gene confers resistance to US blast races. The Pid3 gene encodes a 924-amino-acid 

polypeptide that contains a conserved NBS domain in positions 158–466 from the 

translation initiation site. The NBS domain has four sequence motifs, GMGGIGKTA 

(positions 202–210), KRYVLVLDDVW (positions 280–290), IGRIILTSRNYDV 

(positions 307–319), and GLPIAI (positions 373–378), corresponding to kinase 1a (p-

loop), kinase 2, kinase 3a, and GLPL motifs, respectively. At the C terminus is the LRR 

region that comprises 13 imperfect LRR repeats. The MHD motif, MHDILRV (positions 

502–508), and the NBS–LRR linker motif, EQNFCIVVNHS (positions 516–526), are 

present between the NBS domain and the LRR region. At the N terminus, there is a 

conserved motif, RSLALSIEDVVD (positions 78–89), but no TIR or coiled-coil motif is 

found.  Expression studies indicated that the gene was constitutively expressed[84]. 

 pi21 

The pi21 locus was originally identified as a major QTL that was mapped on 

chromosome 4 [24,59]. The resistant pi21 allele was first identified in the japonica 

cultivar „Owarihatamopchi‟. This recessive pi21 gene is known to confer non-race-

specific resistance. The dominant Pi21 gene encodes a proline-rich protein that has a 

putative heavy metal binding domain and putative protein- protein interaction motifs. 

Wild type pi21 appears to slow down defense responses [24]. However, deletions in the 

proline-rich motif inhibit slowing of defense responses. It was reported that the deletion 

was in 18-and 48-bp sequences and the resistant pi21 allele carrying the 18 and 48 bp 

deletion was only observed in a japonica cultivar. Hence it was hypothesized that the 



 

19 

 

deletion of both the 18- and 48-bp sequences resulted in a defect of the pi21 function, 

which represents the consensus sequence motif PxxPxxP, the core motif for protein-

protein interaction in multicellular organisms [24]. The proline rich motifs (PRMs) were 

thought to be associated with host defense, possibly through competitive inhibition of 

protein-protein interaction of the proline rich motif and its counterpart [57]. The PRMs 

contain several proline residues, most of which are organized in repeats of three. The 

heavy metal transport/detoxification protein domain has two conserved cysteines 

involved in metal binding.  Although it conferred resistance to blast, the pi21 allele was 

associated with poor flavor in cooked rice, and thus was not used in commercial cultivars. 

Expression results indicated that the gene is not constitutively expressed, but dependent 

on stress factors including humidity [24].  

Pb1 

The panicle resistance blast 1 gene (Pb1) was derived from the indica cultivar 

„Modan‟ [35].  Pb1 is located in the middle of the long arm of chromosome 11 [22, 23]. 

The gene confers resistance to a wide variety of Japanese blast races and a few races from 

Indonesia, China, the Philippines, Brazil and Thailand. There is no report of its resistance 

to US blast races (Table 4). The gene is partially resistant to leaf blast but is more 

efficient in conferring resistance to panicle blast, and resistance is quantitative. 

Pb1 has two putative CC domains, CC1 and CC2, located in its N-terminus, with 

an nT motif-like sequence intervening them. The COILS analysis [62] did not consider 

these sequences as CC domains, and the periodical occurrence of leucine, or other 

hydrophobic amino acids, was observed in these regions. In addition, this region shared 

amino acid sequence similarity with CC domains of other CC-NBS-LRR proteins, 
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including barley MLA10 [31] and Arabidopsis RPM1 [30]. In many R proteins, a 

pentapeptide EDVID motif is located within the nT motif [4]. The EDVID motif is 

associated with intramolecular interaction with other parts of CC-NBS-LRR R proteins, 

and is needed for inducing the hypersensitive response (HR) phenotype [78]. This motif 

is degenerated in Pb1 [35] so it is likely not functionally conserved in Pb1. In many R 

proteins the pentapeptide EDVID motif is conserved within the nt motif [4]. Adjacent to 

the CC region is the NBS domain-like region, followed by an LRR domain consisting of 

14 imperfect leucine-rich repeats (residues 928–1296).  The Pb1 protein differed from the 

previously reported R proteins, particularly in the NBS domain, which is different from 

the typical NBS-LRR proteins because it lacks the P loop. A long stretch of peptides with 

no significant sequence similarity to other sequences is located after the CC region, and a 

walker-like sequence is present at amino acid position 641. The NBS domain also has 

RNBS-B and GLPL motif-like sequences. The RNBS-D and MHD motifs near the C-

terminal ends of the NBS domain, which transduce pathogen perception by LRR into R 

protein activation [64], are highly conserved in the Pb1 and R protein [35]. Therefore, the 

NBS domain of Pb1 is homologous to those in R proteins in its C-terminal region, but its 

homology becomes weaker towards the N-terminus.  Hayashi et al [35] reported that the 

local genome duplication of a 60-kb region placed a promoter sequence just upstream of 

a transcriptionally inactive „sleeping‟ RGA, resulting in activation of the RGA and 

generation of Pb1. The structure of the Pb1 locus indicates that the coding and the 

promoter sequences were located at the 5‟ and 3‟-termini, respectively, of the ancestral 

60-kb region before the duplication occurred. The genome duplication at this specific site 

was therefore critical for the generation of Pb1. The acquisition of promoter sequences 
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therefore seems to be a general mechanism that generates R genes, and is of particular 

importance in the case of Pb1. The characteristic temporal and spatial pattern of Pb1 

promoter activity is likely to be one of key factors contributing to the durability of its 

resistance and therefore its practical usefulness as a panicle resistance gene [35]. 

R-AVR Recognition 

A simple explanation of gene for gene interaction is when products of both R and 

AVR interact directly [42].  The Pita/AVR-Pita interaction has been the only  well 

characterized R /AVR interaction demonstrated in the rice blast system to date. Transient 

expression in rice cells of the Pita gene together with AVR-Pita induces a resistance 

response. The AVR-Pita176 protein was demonstrated to bind specifically to the LRD of 

the Pita protein, both in the yeast two-hybrid system and in an in vitro binding assay, 

suggesting that the AVR-Pita176 protein binds directly to the Pita LRD region inside the 

plant cell to initiate a Pita-mediated defense response [41, 9]. Identification of genes 

downstream of R genes has become critical for understanding the R–AVR interaction 

pathway. The absence of efficient NSB-LRR R protein - protein assay, gene function 

redundancy and lethality when mutagenesis is used all contribute to an inefficient R-AVR 

recognition. Using a mutagenesis approach, a Pita-susceptible mutant referred to as Ptr(t) 

was identified which was required for Pita resistance [48, 49]. Ptr(t) is probably specific 

to Pita-mediated signal recognition because it is not required by other R genes. Genetic 

analysis results showed that Ptr(t) segregated as a single dominant nuclear gene linked 

with Pita. Genetic analysis also revealed that Pita and Ptr(t) genes are located in a nine 

megabase region.  Cloning this gene will improve understanding of Pita-mediated signal 

recognition and transduction.
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AVR proteins serve as R-protein associated effectors that activate host defense 

responses.  However, AVR proteins are involved in pathogenesis and pathogen fitness, 

and have provided useful information in understanding the co-evolution between fungal 

effectors and host R proteins.  Thus far, 40 AVR genes of M. oryzae have been identified 

[65], nine of which have been cloned (Table 2).  Effectors are protein molecules secreted 

by the pathogen and commonly located in unstable genomic regions.   Multiple genetic 

mutation events, like deletion [75], point mutations [75], and transposon insertion [46], 

have been found to be main driving forces in the creation of new virulent races that break 

major R genes. Orbach et al [75] found that a fragment deletion from intron 3 to exon 4 in 

the avr-pita
- 
mutant strain CP983; several nonsense mutations (e.g. TGG1487TAG in the 

mutant strain CP918 and TTA1736TGA in the mutant strain CP1615); and a missense 

mutation (e.g. GAA1718GGA in the mutant strain CP1635) increased the virulence of the 

AvrPita gene. In addition, transposon insertion usually leads to loss of function of Avr 

genes in the pathogen through a change in gene expression level or pattern. Fudal et al 

[21] found that an insertion of a 1.9-kb MINE retrotransposon in the last ACE1 exon led 

to a loss of ACE1 avirulence and activated its virulence in the virulent isolate 2/0/3. 

Similar events were also reported in AvrPita [102] and AvrPiz [58].  So far, Pi-ta and 

AVR-Pita are still the only pair of R and AVR genes that are well characterized. With 

more matched R and AVR genes cloned in the future, the recognition mechanisms of blast 

R genes can be further examined. 

 Co-evolution of R and AVR genes  

M. oryzae is highly variable and can overcome deployed resistant cultivars in a 

very short time. The ability to overcome the resistance of one single gene is due to the 
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instability of AVR in M. oryzae. Pita, Pid2, Pi36 are single copy genes with a single 

amino acid determining resistance specificity.  Other blast R genes are members of small 

gene families that can evolve specificity during unequal crossing over.  Most cloned blast 

R genes are predicted to encode highly similar cytoplasmic proteins with NBS-LRR 

domains [6].  AVR genes encode effector molecules which favor disease development and 

are under constant selection.  The fundamental question for co-evolution is how R genes 

have evolved the ability to detect pathogen signals (Fig.4). Only a few studies are 

available due to the limited number of cloned, matched pairs of Pi and AVR genes.  One 

of the best examples is the Pita and AVR-Pita interaction [42]. There are two 

predominant hypotheses for the co-evolution of R and AVR genes in plants. The ARMS 

race hypothesis predicts that both R and AVR genes are under diversified selection. The 

trench warfare hypothesis suggests that either R or AVR is under balanced selection. The 

Pi-ta/AVR Pi-ta interaction does not support the arms race hypothesis.  Pita is located 

near the centromere, a region that is relatively stable [9]. The region is considered to be 

stable because it is a region that embeds fewer active genes than other regions of the 

chromosome. A transposon was reported at the promoter region of the Pita 

gene.  Similarly, another blast R gene Pit was demonstrated to be activated by another 

transposon in the promoter region [37, 46]. Both cases led to a hypothesis that 

transposons possibly could play a positive role in regulating blast R genes. It may be 

suggested that Pita engages in „trench warfare‟ with AVR-Pita where both genes have 

their strategies to prevent or cause disease. Additionally, Pita encodes 12 distinct putative 

products between 315 and 1033 amino acids that can function as resistance proteins [13], 

suggesting that posttranscriptional modification through exon skipping and alternative
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 splicing  can play an important role in evolution of a blast R gene.  The same linkage 

block (5.4-27 Mbp) was consistently found in resistant rice cultivars that carry Pi-ta, and 

possibly suggests that additional plant components needed for Pita-mediated resistance 

are clustered within a small genomic interval [41].  This is consistent with historical 

observations that genetic factors responsible for resistance to different pathogens are 

found in small genetic intervals [41].  Together, we can suggest that there are several 

critical components of resistance and all are important in R gene evolution. 

In contrast, despite a lack of convincing experimental evidence, AVR gene 

products are predicted to be involved in promoting pathogen virulence and fitness.  

Diversification of AVR genes is considered to be one of the strategies that the pathogen 

can develop for survival [42]. Diversity can arise from partial and complete deletions, 

frame-shift mutations, or transposon insertions.  These mutational events have been 

found in AVR-Pita and AVR-Co39 [101, 17]. Further molecular characterization of 

matched pairs of blast Pi and AVR genes should help determine if these genomic 

rearrangements are key strategies that the pathogen has evolved in overcoming host 

resistance. 

Strategies for preventing blast disease 

R gene-mediated resistance has several attractive features for disease control. 

When induced in a timely manner, the responses can efficiently stop pathogen growth 

with minimal collateral damage to the plant. No input is required from the farmer and 

there are no adverse environmental effects. One approach is to sow a mixture of lines 

each expressing a different R gene(s) in the same field.  A susceptible line can be 

included in the mixture to reduce the selection pressure for mutations in Avr genes [73]. 
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 A multiline protocol was tested with striking success experimentally [101], 

however, multiline resistance has not been widely accepted because of logistic difficulties 

in deployment. Many R genes lack durability because they can be defeated by a single 

loss-of-function mutation in the corresponding Avr gene (thereby rendering the pathogen 

„invisible‟ to host tissue). Because individual Avr genes often make only incremental 

contributions to virulence, pathogens can alter or discard an Avr gene with little or no 

fitness penalty [53]. Traditional breeding strategies have used R genes „one at a time‟ in 

crop monocultures. Such homogeneous host populations exert strong selection for 

mutation of the relevant Avr gene, and then become extremely vulnerable to the emergent 

pathogen.  As an alternative to single-gene deployment, multiple R genes („pyramids‟) 

can be bred into individual plant lines [76].  In reality, these pyramids require the 

pathogen to accumulate mutations in multiple Avr genes to escape detection, which is not 

likely to occur if the mutations have a strong cumulative effect on virulence.  In 

summary, stacking major blast R genes in an elite rice cultivar has been the most 

commonly attempted strategy for rice crop protection [86]. 

Future perspectives 

Although understanding plant diseases and their control strategies has been 

investigated in great detail, the global food supply is still suffering severe losses incurred 

by a multitude of pathogens and pests [71,97]. Plant diseases are known to reduce crop 

yield severely and the impact of disease is more severe in developing nations.  

R genes encode putative receptors that respond to the products of AVR genes 

expressed by the pathogen during infection. In many cases, a single R gene can provide 

complete resistance to one or more strains of particular pathogen [51], when transferred 
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to a previously susceptible plant of the same species.  R genes have been used in regional 

conventional resistance breeding programs for decades [76].  However, plants do not 

have the benefit of a circulating antibody system like animals so plant cells autonomously 

maintain constant monitoring against pathogens by expressing large arrays of R genes 

[15, 43]. Much effort in the future will be engaged towards understanding innate 

resistance mechanisms in order to develop innate immunity in plants. 
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Table 1. Summary of chromosomal location, copy number, predicted product and expression of cloned rice blast resistance genes. 

R gene 

cloned 

Chromosome 

Number 

Copy 

Number 

Protein Type Localization Expression Reference 

Pib 2 multiple CC-NBS-LRR  Circadian, inducible 

by stress 

Plant J. 19 (1999), pp. 55–64. 

Pi-ta 12 1 CC-NBS-LRR Cytoplasm Constitutive Plant Cell 12 (2000), pp. 2033–

2045. 

Pi9 6 multiple CC-NBS-LRR  Constitutive Genetics 172 (2006), pp. 1901–

1914. 

Pi2/Piz-t 6 multiple CC-NBS-LRR  Constitutive Mol. Plant Microbe Interact. 19 

(2006), pp. 1216–1228. 

Pi-d
2
 6 1 Receptor 

kinase/B lectin 

Membrane Constitutive Plant J. 46 (2006), pp. 794–804. 

Pi36 8 1 CC-NBS-LRR  Constitutive Genetics 176 (2007), pp. 2541–

2549. 

Pi37 1 multiple CC-NBS-LRR Cytoplasm Constitutive Genetics 177 (2007), pp. 1871–

1880. 

Pikm 11 multiple CC-NBS-LRR  Constitutive Genetics 180 (2008), pp. 2267–

2276. 

Pi5 9 multiple CC-NBS-LRR  Pi5-1 is pathogen 

dependent 

Pi5-2 is constitutive 

Genetics 181 (2009), pp. 1627–

1638. 

Pit 1 multiple CC-NBS-LRR  Transcriptionally 

inactive 

Plant J. 57 (2009), pp. 413–425 

Pid3  multiple CC-NBS-LRR  Constitutive Genetics 182 (2009), pp. 1303–1311 

pi21 4 multiple Proline con-

taining protein 

/CC-NBS-LRR 

Cytoplasm Inducible by stress Science.325 (2009), pp. 998-1001 

Pb1 11 multiple CC-NBS-LRR  Transcriptionally 

inactive 

Plant J. 64 (2010), pp. 498–510 
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Table 2. Summary of the corresponding R gene and predicted product of cloned Magnaporthe oryzae AVR gene. 

AVR gene 

cloned 

R gene Encoding protein Reference 

PWL1  Glycine rich, hydrophilic protein, secreted protein  Mol. Plant Microbe Interact. 8 (1995), pp. 939–

948; Plant Cell, 7 (1995), pp.1221-1233 

PWL2  Glycine rich, hydrophilic protein, secreted protein Mol. Plant Microbe Interact. 8 (1995), pp. 939–

948; Plant Cell, 7 (1995), pp.1221-1233 

Avr Pi-ta  Pi-ta Secreted protein Plant Cell. 12(2000), pp.2019-2032 

Avr1-CO39 Pi-CO39 Secreted protein Genomics of Disease. (2008), pp199-216 

ACE1 Pi33 Polyketide synthase/peptide synthetase  Plant Cell. 16(2004), pp.2499- 2513. 

AvrPiz-t Piz-t Secreted protein Mol. Plant Microbe Interact. 22 (2009), pp.411-

420. 

AvrPia Pia Secreted protein Mol. Plant Pathology.10 (2009), pp.361–374; The 

Plant Cell 21(2009), pp. 1573-1591. 

AvrPii Pii Secreted protein The Plant Cell 21(2009), pp. 1573-1591.  

AvrPik/km/kp Pik/km/kp Secreted protein The Plant Cell 21(2009), pp.1573-1591 
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Table  3.  Mapped blast resistance genes on known chromosomal locations using DNA markers. 

Gene Chromosome DNA marker* Rice 

Germplasm 

Reference  

IPi 12   Genetics 138 (1994), pp. 1251-1274. 

IPi3 12   Genetics 138 (1994), pp. 1251-1274. 

PiI5 9 RM316 GA25  Acta Bot. Sin. 45 (2003), pp. 871-877; Plant Breed.126 

(2007b), pp. 287-290. 

Pi24 1 RGA3620, RG241A, 

N7520‐600 

Azucena Theor. Appl. Genet. 106 (2003), pp. 794-803. 

Pi25(t) 2 RM21 IR64 Theor. Appl. Genet. 106 (2003), pp. 794-803. 

Pi33 8 RM72,RM331,RM404,RM4

83 

IR64 Theor. Appl. Genet.107 (2003), pp. 1139-1147. 

Pi34 11 RM21, RM5961 Chubu32 Theor. Appl. Genet. 104 (2002), pp. 547-552. 

Pi39 12 RM 247,RM463 Q15 Genetics. 176 (2007a), pp. 2541-2549. 

Pi42 9 RM2529,RM1337  Mol. Plant Microbe Int. (2008) Q. Pan, unpublished . 

Pi42(t) 8 RM310,RM72 Zhe733 Mol. Breed. 24 (2009), pp. 127-134. 

Pi43(t) 11 RM224,RM1233 Zhe733 Mol. Breed. 24 ( 2009), pp.127-134. 
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Pi47(t) 11 RM206,RM224 Xiangzi 3150 Phytopathology.[Online] 

2010.http://apsjournals.apsnet.org/doi/abs/10.1094/PHY

TO-08-10-02099 (accessed January 16th 2011). 

Pi48(t) 12 RM5364,RM7102 Xiangzi 3150 Phytopathology.[Online] 2010. 

http://apsjournals.apsnet.org/doi/abs/10.1094/PHYTO-

08-10-02099  (accessed January 16th 2011). 

Pi-z 

[Piz(t)*] 

6 RM 527,AP5659-1,AP5659-

3,AP5659-5,AP4791 

Zenith Mol. Breed. 17, (2006), 149-157. 

Pigm(t) 6  Gumei4  Bull. Natl. Inst. Agric. Sci. 21(1970), pp.61-71. 

Pik 11 L198, R1506, RM144, 

RM224 

K60 Huang, unpublished; Rice Genet. Newsl. 22(2005), pp.76-

77. 

Pix(t) 2 NA Nd Rice Genet. Newsl. 22(2005), pp.76-77. 

Pi-yl(t) 2 RM3248(0.8),RM208 (0.8) Yanxian1 Rice Genet. Newsl. 22(2005), pp.76-77. 

Pi-y2(t) 2 RM3248(1.3), RM208 (1.7) Yanxian1 Rice Genet. Newsl. 22(2005), pp.76-77. 

Pi22 6  Suweon 365 Breeding and ecology. (1997) Pages 435-436 in: 8th 

SABRAO Congr. Annu. Meet. Korean Breed. Soc. 

Pi23 5  Suweon 365 Breeding and ecology. (1997) Pages 435-436 in: 8th 

SABRAO Congr. Annu. Meet. Korean Breed. Soc. 

Pi35(t) 1 RM1216,RM1003 Hokkai 188 Theor. Appl. Genet. 113(2006), pp.697-704. 

Pif 11  St No.1 Bull. Chugoku Natl. Agric. Exp. Stn. E6 (1970), pp.1-19. 

javascript:AL_get(this,%20'jour',%20'Phytopathology.');
javascript:AL_get(this,%20'jour',%20'Phytopathology.');
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Pikur1 4  Kuroka Bull. Chugoku Natl. Agric. Exp. Stn. A20 (1971), pp. 21-

25. (In Japanese) 

Pikur2 11  Kuroka Ann. Phytopathol. Soc. Jpn. 54(1988), pp. 460-465. (In 

Japanese, English abstract) 

Pise1 11  Sensho Ann. Phytopathol. Soc. Jpn. 36(1970), pp. 304-312. 

 

Table 4.   Resistance spectrum of the cloned blast resistance gene to known Magnaporthe oryzae races. 

R Gene US blast races*  International blast races  

Pib IB1,  IB45, IH1, IG1, IC17, IE1 and IE1K 003.0 

Pi-ta IB1, IB49, IB54, IB45, IH1, IG1, IC17and IE1    

Pi9 IC17 PH9,36B23,86061ZE39,97-4-1,95116AZ93,75-49,97-

51,CHNOS,95097AZC13,87088ZE3,86062ZB15,CP16-32,R01-

1,KJ201,ML25,ML8,O-249,DB-24,GUY11 and ES6 

Pi2/Piz-t IH1, IG1, IC17, IE1 and IE1K KJ201,81278ZB15,G2,CHE86061,G2,G11,G15,CHNOS60-2-3 and 

ROR1 

Pi-d2  ZB15 

Pi36  CHL39 and CHL273 

Pi37  CHL1159 

Pikm  P2-b and Kyu92-22 
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Pi5  PO6-6,KJ105a,KJ107,KJ401,R01-1and K1215 

Pit  007.0 and 777.3 

Pid3  Zhong-10-8-14 

pi21  007.0 

Pb1  003.0  and MAFF101506 
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Figure Legends 

Fig.1. Rice blast disease.  Germinated asexual conidium (A), Sporulated mycelia on 

disease lesion (B), typical symptom of leaf blast disease (C) and mature rice plants with 

panicle blast and leaf blast in a rice field (D). Photographs by Dr. Yulin Jia. 

Fig.2. Phylogenetic tree of cloned blast R gene constructed using Vector NTI, using 

genomic sequence (A) and coding region (B). 

Fig. 3. Schematic presentation of cloned blast resistance gene showing functional motifs. 

Fig. 4. Molecular mechanisms of blast R gene mediated responses in compatible and 

incompatible interactions. 
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Abstract  

The Pi-z gene in rice confers resistance to a wide range of races of the rice blast 

pathogen, Magnaporthe oryzae. The objective of this study was to characterize Pi-z in 

111 rice germplasm accessions using DNA markers and pathogenicity assays. The 

existence of Pi-z in rice germplasm accessions was detected by the presence of four 

simple sequence repeat (SSR) markers (RM527, AP4791, AP5659-1, AP5659-5) closely 

linked to Pi-z , and was verified using pathogenicity assays with an AVR strain (IE1k) 

and  two virulent races (IB33 and IB49). Among 111 germplasm accessions evaluated, 73 

were predicted to possibly contain the Pi-z gene using both SSR markers and 

pathogenicity assays. The remaining 38 germplasm accessions responded inconsistently 

to the blast races IB33, IEIk and IB49 with expected SSR marker alleles, suggesting the 

presence of unexpected SSR alleles and additional R gene(s). The germplasm 

characterized in this study can be used to expand the fundamental understanding of 

resistance to blast and for marker-assisted breeding to improve blast resistance. 

Introduction  

Rice blast, caused by the filamentous ascomycete fungus Magnaporthe oryzae 

(formerly Magnaporthe grisea), threatens rice production worldwide.  Genetic resistance 

in rice to M. oryzae follows a typical gene-for-gene model, in which a resistance (R) gene 

prevents infection by races of M. oryzae containing the corresponding avirulence (AVR) 

gene (Silue et al. 1992). Resistant cultivars, fungicides, suitable planting dates, optimum 

fertilizer applications and adequate flood depth are useful tools to manage the disease 

(Bonman 1992; Lee 1994). Among these management options, the utilization of R genes 

is the most economical and environmentally benign method for control of this disease. 
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Thus far, more than 80 race-specific R genes to M. oryzae have been identified, and some 

of them have been cloned and designated for marker-assisted selection (MAS) (Yu et al. 

1991; McCouch et al. 1994; Godwa et al. 2003; Ballini et al. 2008; Jia et al. 2009).  

Among the known blast R genes, the Pi-z gene, first identified by Kiyosawa 

(1967) in the medium grain cultivar „Zenith‟, has been effectively introgressed into 

numerous rice cultivars to prevent infection by a wide range of races of the rice blast 

pathogen. Pi-z is usually found in tropical japonica medium grain rice cultivars in the 

U.S. (Fjellstrom et al. 2006) and confers resistance to five U.S. races of blast (IH-1, IG-1, 

IC-17, IE-1 and IE-1k), as well as susceptibility to two races (IB49 and IB33).   

Historically, the AVR race IE1k and the virulent races IB49 and IB33 have been used to 

determine the presence of Pi-z in rice germplasm (Marchetti et al. 1987; Conaway-

Bormans et al. 2003).   The Pi9/2/zt complex mapped at the same chromosomal location 

of Pi-z(t) was recently characterized (Liu et al. 2002; Zhou et al. 2006), and thus “t” is 

removed from Pi-z(t) throughout this manuscript.  Four simple sequence repeat (SSR) 

markers associated with the Pi-z gene have been identified and recommended for use in 

germplasm characterization and MAS in the U.S. (Fjellstrom et al. 2006).  

Recently, MAS has become one of the most commonly used methods in breeding 

for improved resistance to rice blast (Jia 2003).  For MAS, selections are based on DNA 

markers closely linked to a blast R gene that confers resistance to a particular race of the 

pathogen. MAS can be used to screen seeds or seedlings under laboratory conditions, 

which is much faster than traditional pathogenicity assays in which accurate selection can 

only be made during later stages of plant growth. In addition, MAS can avoid the 

overlapping effects of other matched pairs of R and AVR genes. However, disagreements 
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between markers and disease reactions can occur in some breeding lines due to different 

genetic backgrounds and/or potential recombination events between markers and trait.  

Accurate identification of a particular R gene in diverse elite germplasm using 

DNA markers and differential blast races is an essential step for ensuring the accuracy of 

R gene utilization in using MAS for different rice breeding programs. Keeping this is 

mind the following  

objectives were developed. 1) to identify the Pi-z gene in 111 rice germplasm accessions 

with SSR markers closely linked to the Pi-z gene; 2) to determine disease reactions of 

these germplasm  accessions to differential U.S. blast races; and 3) to identify a better 

AVR race for detecting the Pi-z for conventional breeding. These three objectives should 

assist the accurate identification of Pi-z in diverse elite germplasm accessions from all 

over the world. 

Material and Methods  

Plant Materials  

A total of 111 rice accessions were identified from a USDA core collection that 

consists of 1790 accessions from 113 countries representing an estimated 70% of the 

genetic diversity of the entire USDA collection (Yan et al. 2007) utilizing the most 

closely linked SSR marker AP5659-1to Pi –z(t).  One gram of seed from each accession 

was provided by the Genetic Stock Collections of Oryza at the Dale Bumpers National 

Rice Research Center (DB NRRC). Four rice cultivars from the Molecular Plant 

Pathology Program at the DB NRRC - „Bengal‟ (PI 561735), „Jefferson‟ (PI 

593892)[+Pi-z], „Wells‟ (PI 612439), and „Zhe733‟ (PI 629016) [-Pi-z] - were used as 

controls. Eight seeds of each accession were germinated in 96 well inserts (10 x 20 x 2
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cm), (Hummert International, Missouri USA). Prior to seeding, the inserts were placed in 

trays (26.67
 
x 53.34 x 6.35[in cm], Model # INT0804, Hummert International, Missouri, 

USA), filled with silt loam soil (pH 5.5 – 5.8) fertilized with Osmocote Pro 15-9-12 

(Scotts-Sierra Horticultural Products Company, OH), autoclaved, and stored at -20 
0
C for 

three days. The trays were completely filled with water. Rice plants were grown for 3 

weeks in the greenhouse maintained at 23 -29 
0
C during the day in winter (November to 

April) and 29-32 
0
C in summer (May to October) and 22-25 

0
C during the night all year 

long until the 3 to 4 leaf stage, in preparation for pathogenicity assays and subsequent 

DNA extraction. 

Pathogenicity assays  

Pathogenicity assays were performed on 111 germplasm accessions and four 

control germplasm accessions. M. oryzae isolates, an avirulent (AVR) isolate ZN61 (race 

IB49), virulent (VIR) isolates TM2 (race IE-1k) and FL9 (race IB33) were selected for 

pathogenicity assays. There were four replicates for each germplasm accession.  The Pi-z 

gene could be verified by the pattern of resistance or susceptibility to a pair of AVR and 

VIR races.  Pathogen inoculation was performed using a modified procedure based on 

Valent et al (1991). Briefly, plants were inoculated with 40 ml of a spore suspension (5 X 

10
5
 spores/ml, 0.25% gelatin) using a hand atomizer connected to an air compressor (100 

kPa). Inoculated plants were maintained at approximately 95% relative humidity in clear 

polyethylene autoclave bags (24 x 36 cm) at room temperature (Product code 018143 

Fisher Scientific, USA). Approximately 24 h after inoculation, plants were moved to the 

greenhouse for an additional 6 d. Disease reactions were assessed 7 d after inoculation 
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using a visual rating scale (Fig. 1). For each accession, 7 to 8 seedlings were evaluated, 

and each pathogenicity assay was conducted three times. 

DNA extraction 

DNA was extracted using a rapid DNA extraction procedure (Xin et al. 2003) from each 

of four replicates for further analysis. After extraction, sample DNAs were prepared for 

PCR through a Biomek 2000 Lab Automation Work Station (Beckman and Coulter, Brea, 

CA) using manufacturer protocols.  

SSR marker selection  

Five SSR markers previously mapped to the Pi-z locus were used for marker selection 

(Fig. 2; Table 2, Fjellstrom et al. 2006).  Four SSR markers, AP5659-1, AP5659-5, 

RM527 and AP4791, were selected for the present study:  

1) AP5659-1 displays unique marker alleles (220 nt) in germplasm accessions carrying 

the Pi-z gene (Fjellstrom et al. 2006);  

2) AP5659-5 has a 279 nt allele for all germplasm accessions with Pi-z, although this also 

was found in an accession carrying Pi-9, another R allele at the Pi-z locus (Liu et al. 

2002). 

3) RM 527 with a 217 nt allele was found in all Pi-z germplasm accessions but has also 

been found in germplasm accessions not carrying Pi-z;  

4) AP4791 is another marker that can be used to detect association with Pi-z (Fjellstrom 

et al. 2006); and 

Another marker AP5659-3 was reported to co-segregate with the Pi-z resistance 

gene, and considered the most closely linked to Pi-z of those identified to date. However, 
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this marker has a null allele in some medium and long grain cultivars and therefore not 

selected (Fjellstrom et al. 2006).  

SSR marker analysis 

SSR marker analysis was performed by capillary electrophoresis. For each 

marker, forward primers were labeled with fluorescent dyes 6FAM, NED, or Hex from 

Applied Biosystems (Foster City, CA, USA) or Integrated DNA Technologies 

(Coralville, IA, USA). Reverse primers were not labeled. DNA was amplified with MJ 

Research Tetrad thermocyclers (Waltham, MA, USA) under the following PCR 

conditions: (1) initial denaturation at 94 
0
C for 5 min; (2) 35 cycles of 94 

0
C for 1 min, 

55-67 
0
C (marker dependent) for 1 min, and 72 

0
C for 2 min; (3) 5 min final extension at 

72 
0
C. PCR products were pooled based on color and size range of the amplified PCR 

products and the DNA was denatured by heating at 94 
0
C for 5 min. 

PCR products were diluted between 500 and 1000X, and 2 ul of the diluted product were 

added to 9 ul of formamide-containing ROX-labeled size standards (Applied Biosystems, 

Foster City, CA). PCR products from different primer pairs having different size ranges 

and labels were combined for simultaneous analysis using a Mini Prep75 (Tecan Group 

Ltd., Männedorf, Switzerland) instrument based on the manufacturer protocols, and 

analyzed to determine the size of the SSR alleles. The reaction was run on an ABI Prism 

3730 DNA Analyzer (Applied Biosystems) following the manufacturer instructions. 

Fragment size and SSR marker genotype analysis were performed with Gene Mapper® 

software version 3.7 (Applied Biosystems). Analyzed alleles were exported into a 

Microsoft Excel spreadsheet.  

Results and Discussion 
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In the present study, we relied on previously identified markers closely linked 

with the Pi- z locus and differential blast races to identify accessions with Pi-z . The 

germplasm accessions selected in this study were from 1700 rice germplasm accessions 

initially analyzed for several R genes (Yan et al. 2007). Our data further supported the 

findings of previously identified markers for Pi-z (Fjellstrom et al. 2006) and blast races.  

The gene-for-gene theory predicts that a germplasm  accession is resistant due to Pi-z 

when this germplasm is (i) resistant to an AVR race IE1k (ii) and susceptible to a virulent 

(VIR) race, IB33 or IB49. As expected, the cultivar „Bengal‟ carrying Pi-z was resistant 

to IE1k and susceptible to both IB33 and IB49. The cultivar „Wells‟ lacking Pi-z was 

susceptible to all three races. The cultivar „Zhe733‟ carrying Pi42(t) and Pi43(t) was 

resistant to all three M. oryzae races (Lee et al. 2009). The cultivar „Jefferson‟ carrying 

Pi-z was susceptible to IB33 and IB49 but resistant to IE1k (Table 1). Using these M. 

oryzae differential races, we identified 77 germplasm accessions that were resistant to 

IE1k but susceptible to IB33 and IB49, indicating the possible presence of Pi-z (Fig.3).  

Of these 77 accessions, 40 had identical marker alleles for all four SSR markers (Table 

1). The presence of the same marker alleles in these accessions suggests the possibility 

that they contain a single Pi-z haplotype. This finding is important because these 40 

accessions were collected from several geographic regions of the world: the United 

States, South America, Europe, Asia and Africa (Table 1). One possibility for this 

haplotype similarity is that the original donor parent for the Pi-z gene may contain the 

same genomic fragment for all these cultivars. In contrast, 33 accessions showed 1-3 of 

the Pi-z allele (haplotype) markers, suggesting that these rice germplasm accessions 

contain different Pi-z haplotypes, presumably inherited from different donors. Although 
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pathogenicity data supported the presence of Pi-z, no expected marker (null) alleles were 

found in the remaining four accessions. The existence of the Pi-z gene in these four 

accessions could not be verified with the available present markers and differential blast 

races that were studied. There could be the possibility of a gene that conferred resistance 

to IE1k but resistance was not due to Pi-z since marker alleles for Pi-z were not detected. 

This further validates the importance of MAS (Jia 2003). 

 According to the gene for gene theory, if resistance in these accessions is due to 

Pi-z only, susceptibility to IB49 and IB33 would be expected. Using pathogenicity 

assays, a total of 16 germplasm accessions were found to be resistant to all three races 

(Fig. 3 and Table 1). These findings suggest the presence of additional R genes in these 

germplasm accessions. There were 9 germplasm accessions that were susceptible to all 

isolates tested, 8 of which showed the presence of 2-4 expected marker alleles. 

„Montakcl‟ from Egypt was the only cultivar susceptible to all isolates evaluated but that 

did not show any expected marker allele. There were 5 germplasm accessions that were 

resistant to IB49, and 4 (3+1, Fig.3) that were resistant to IB33 in addition to being 

resistant to IE1k, indicating the presence of additional R genes. There was 1 germplasm 

accession that was resistant to both IB33 and IB 49 but susceptible to IE1k suggesting Pi-

z was absent or non functional. 

Race IB49 versus IB33 

In the rice blast system, a pair of blast races is adequate to identify the 

corresponding R gene (Silue et al. 1992).  An additional blast race will increase the 

complexity for R gene identification since it may contain a different avirulence gene. 

Each AVR gene is sufficient to trigger the corresponding R gene mediated resistance.  
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IB33 was a laboratory-generated strain (F. Lee, unpublished data) and IB49 was a field 

isolate.  Both these isolates were similar in DNA fingerprinting analysis (Correll et al. 

2000; Zhou et al. 2007). If AVR/VIR  interaction cannot be observed to detect an R gene, 

it may suggest that there are R genes in rice that interfere with expected disease reactions. 

In the present study, 16 accessions were found to be resistant to all three blast races.  The 

presence of the Pi-z gene in these accessions could not be verified, although 12 contained 

one to four expected alleles using differential blast races. Since it was difficult to 

determine the presence or absence of the gene based on the pathogenicity assay, the 

marker allele linked with the gene was used to indicate its presence. The assumption was 

that the linked allele associates with the gene and/or quantitative trait locus (QTL) of 

interest.  Hence MAS should be useful for traits that are difficult to measure, exhibit low 

heritability, and/or are expressed late in development.  MAS has been previously used 

with success in rice breeding (Jia 2003).  

R gene modifier 

R genes can have different phenotypic effects in different germplasm accessions 

or in different genetic backgrounds (Jia and Martin 2008). These differences are often 

conditioned by R gene modifiers, some critical for complete resistance (Jia and Martin 

2008). In the present study, we found nine germplasm accessions that may contain 0-4 

Pi-z marker alleles that were susceptible to all three races tested. Although it is possible 

that mutations in the coding region of Pi-z can result in the loss of resistant function, 

these findings suggest that some of these germplasm accessions may have at least one 

nonfunctional critical modifier rendering susceptibility. A similar study was recently 

reported for the Pi-ta gene where a component Ptr(t) in a mutant M2354 was disrupted 

http://en.wikipedia.org/wiki/Allele
http://en.wikipedia.org/wiki/Gene
http://en.wikipedia.org/wiki/Quantitative_trait_locus
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by fast neutrons. As a result, M2354 lost Pi-ta mediated resistance although the Pi-ta 

gene in M2354 was intact and expressed (Jia and Martin 2008).     

Identification of additional R genes  

In this study, five germplasm accessions, Chao Puak Deng and Assaw from 

China, Biribra from Ghana, CA902/b/2/2 from Chad, and Agami Mont-1 from Egypt, 

were resistant to both IE-1k and IB49 and susceptible to IB33, suggesting these 

accessions contain additional R genes. In addition, three accessions, Perititovo 1417 from 

Madagascar, R 100/2 from Zaire and Ku Mun Do No. 84 from Korea, were also 

determined to carry additional R genes to IB33. The cultivar Wanni Dahanala from Sri 

Lanka was known to be resistant to IB49 and IB33 but susceptible to IE1K, indicating the 

absence of Pi-z yet indicating the presence of additional R genes. The cultivar Shimla 

Early from Iraq was susceptible to IE1k and IB49 resistant to IB33, suggesting the 

presence of other genes but not Pi-z. Three accessions (PI 184675-4 from Iran; Ken Yen 

from China, and GPNO 22232 from Germany) did not show any Pi-z haplotype alleles 

for the SSR markers, yet showed resistance to all three races. Despite the presence of R 

genes it is unknown if these materials could be useful as resistant donors. This suggests 

that MAS would not work for these five germplasm accessions. If a germplasm is 

selected as an R gene donor, marker analysis should be performed and the results verified 

using pathogenicity assays on local differential races. Despite MAS use as a promising 

new tool that can overcome some disadvantages of pathogenicity assays for monitoring R 

genes, the power of MAS is often limited by the availability of a near-isogenic pair of 

AVR/VIR genes. In our study, the existence of Pi-z(t) could not be verified because the 

differential races used were not near-isogenic. This is a typical situation in the rice blast 
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system because one isolate may contain different AVR genes as mentioned previously. 

Furthermore, the presence of all marker alleles does not always indicate the presence of 

functional R genes. Hence, MAS is not a silver bullet. 

Geographic origin of accessions carrying Pi-z 

Rice accessions predicted to contain Pi-z were noted from 42 countries on six 

continents, Asia, Europe, North America, South America, Africa and Australia (Table 1).  

U.S. and Puerto Rico, 5 + 4 of 76 respectively, had most of the germplasm accessions 

with Pi-z.  Cote D‟ Ivoire of West Africa had 7 of 77 germplasm accessions with Pi-z in 

the present study.  Interestingly enough, we did not identify any accessions predicted to 

contain Pi-z from India or China, major rice producing nations.   

In conclusion, we not only verified the Pi-z gene in 73 of 77 rice germplasm 

accessions utilizing previously identified DNA markers (Fjellstrom et al 2006), but also 

demonstrated the usefulness of DNA markers and pathogenicity assays with differential 

blast races for germplasm characterization.  IE1k proved to be a better AVR race than 

IB49 for detecting the presence of the Pi-z gene in rice germplasm. Differential blast 

races, IE1k, IB33 and IB49 further verified the predicted existence of the Pi-z gene for 

conventional breeding for blast resistance. Previous work identified the Pi-z gene in 

germplasm accessions utilizing only two DNA markers, RM 527 and AP4791, and no 

pathogenicity assays were included. All results presented were summarized in Table 1. 

For germplasm requests, please visit (www.ars.usda.gov/spa/dbnrrc/gsor) at GSOR of 

DB NRRC. 
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Table 1.  Summary of disease reaction, pathogenicity assays, SSR marker profile for the analysis of the Pi-z gene in rice germplasm. 

Accession 

Number 
Name Origin 

Disease Reaction SSR Markers No. of 

Expected 

Pi-z 

Alleles 

Pi-z* 
IB49 

(ZN61) 

IE1k 

(TM2) 

IB33 

(FL9) 
AP5659-1 AP5659-5 AP4791 RM527 

GSOR310003 WC3398 Mexico S    3 R    1 S    4 220 279 290 217 4 + 

GSOR310010 Coray 4 Honduras S    3 R    2 S    3 204 299 Null 238 0 - 

GSOR310013 WC 4431 Panama S    3 R    1 S    3 220 279 287 217 3 + 

GSOR310021 PR325 Puerto Rico S    3 R    1 S    3 220 279 287 217 3 + 

GSOR310022 PR358 Puerto Rico S    3 R    0 S    3 222 279 287 217 2 + 

GSOR310035 Stg58-2158 United States, 

Arkansas 

S    3 R    0 S    3 220 279 Null 217 3 + 

GSOR310037 Stg625377 United States, 

Arkansas 

S    3 R    0 S    3 220 279 290 217 4 + 

GSOR310046 Clor11009 United States, 

Louisiana 

S    3 R    0 S    5 220 279 290 217 4 + 

GSOR310051 15 Iran S    3 R    0 S    3 220 279 290 217 3 + 

GSOR310064 PR433 Puerto Rico S    3 R    0 S    3 220 279 290 217 3 + 

GSOR310073 Fortuna Negro Peru, Lima S    4 R    2 S    3 Null 297 300 217 1 + 

GSOR310074 Mejicano Peru, Lima S    3 R    1 S    3 220 279 290 217 4 + 

GSOR310078 Saku Mongolia S    3 R    0 S    3 220 279 290 217 4 + 
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GSOR310107 1021 Guatemala, 

Jalapa 

S    3 R    2 S    4 220 279 290 217 4 + 

GSOR310146 WC3396 Jamaica S    3 R    2 S    4 220 279 287 217 4 + 

GSOR310177 AP439 Venezuela R    2 R    0 R    1 220 279 292 233 4 - 

GSOR310201 WC 1909 Japan S    3 R    2 S    3 203 290 Null 233 0 - 

GSOR310214 Campino Portugal S    3 R    0 S    3 220 279 290 217 4 + 

GSOR310222 Baraggia Italy, Piedmont S    3 R    0 S    3 220 279 300 217 2 + 

GSOR310265 Nilo 48A El Salvador S    3 S    4 S    3 220 279 290 217 4 - 

GSOR310301 H57-3-1 Argentina, 

Buenos Aires 

S    4 R    0 S    3 220 279 290 217 4 + 

GSOR310302 H62-3-1 Argentina, 

Buenos Aires 

S    5 S    3 S    5 220 276 290 217 3 - 

GSOR310303 H71-11-1 Argentina, 

Buenos Aires 

S    3 R    2 S    4 220 297 300 217 2 + 

GSOR310321 Bankoram Ghana, Ashanti S    3 R    0 S    3 220 279 287 217 3 + 

GSOR310322 PindeGogo 

Wiere 

Suriname S    3 R    0 S    4 220 279 287 217 3 + 

GSOR310327 52/16-0-2 Papua, New 

Guinea 

S    4 R    0 S    5 220 279 290 217 4 + 

GSOR310329 GPNO 15007 Senegal S    4 S    3 S    4 220 279 290 217 4 − 

GSOR310336 Chao Puak Laos R    0 R    0 S    3 220 279 300 221 2 − 
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Deng 

GSOR310391 Assaw China, Sichuan R    0 R    0 S    3 220 279 290 217 4 − 

GSOR310404 Ken Yen China R    1 R    0 R    0 Null 295 296 221 0 − 

GSOR310477 BIRIBRA Ghana R    0 R    1 S    4 220 279 300 221 2 − 

GSOR310480 Djimoron Guinea S    3 R    2 S    4 220 279 300 221 2 + 

GSOR310500 VARY LAVA 

9 

Madagascar S    4 R    0 S    5 220 279 287 217 3 + 

GSOR310502 Perititovo 1417 Madagascar S    3 R    0 R    1 220 279 287 238 2 − 

GSOR310503 Manga Kely 

694 

Madagascar S    3 R    0 S    3 220 279 287 217 3 + 

GSOR310512 CA497/V/7 Chad S    3 R    0 S    3 220 279 290 217 4 + 

GSOR310518 Gaza Mozambique S    4 R    1 S    5 220 279 290 238 3 + 

GSOR310525 India Pa Lil 92 Sierra Leone S    3 R    2 S    5 220 279 287 238 2 + 

GSOR310533 MAKALIOKA 

752 

Madagascar S    3 R    1 S    4 220 279 290 238 3 + 

GSOR310535 CA435/B/5/1 Chad S    3 R    0 S    4 220 279 290 217 4 + 

GSOR310538 PI 184675-4 Iran R    0 R    0 R    0 202 290 304 235 0 − 

GSOR310562 Higueyano Dominican 

Republic, La Alt 

S    3 R    0 S    5 220 279 290 217 4 + 

GSOR310577 GPNO22232 Germany, R    0 R    0 R    0 Null 294 296 221 0 − 
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Saarland 

GSOR310586 Baluola 11 Zaire R    0 R    1 R    0 Null 297 293 217 1 − 

GSOR310591 R 89 Zaire R    0 R    0 R    0 220 279 290 217 4 − 

GSOR310596 R 100/2 Zaire S    3 R    1 R    0 220 279 290 217 4 − 

GSOR310602 P 817 Russian 

Federation 

S    4 R    0 S    5 220 279 290 238 3 + 

GSOR310635 IM 16 Nigeria S    3 R    0 S    3 220 279 290 217 4 + 

GSOR310638 IRAT 104 Cote D'Ivoire R    0 R    0 R    0 220 279 290 217 4 − 

GSOR310642 IRAT132 Cote D'Ivoire S    3 R    0 S    3 220 279 290 217 4 + 

GSOR310643 IRAT 134 Cote D'Ivoire S    3 R    0 S    3 220 279 290 217 4 + 

GSOR310644 IRAT139 Cote D‟Ivoire S    3 R    0 S    3 220 279 290 217 4 + 

GSOR310683 IITA130 Nigeria, Oyo S    3 R    0 S    3 220 279 290 217 4 + 

GSOR310692 Tox177-1-2-B Nigeria, Oyo S    3 R    0 S    3 220 279 290 217 4 + 

GSOR310704 CT7378-2-1-3-

1-4 

Colombia, Valle S    5 R    0 S    3 220 279 290 217 4 + 

GSOR310707 Medusa Italy, Lombardy S    3 R    0 S    4 220 279 290 217 4 + 

GSOR310712 IRAT13 Cote D'Ivoire S    3 R    0 S    3 220 279 290 217 4 + 

GSOR310734 CNAX 5072-2-

1-2 

Colombia S    3 R    0 S    3 220 279 290 217 4 + 
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GSOR310762 IRAT44 Burkina Faso S    3 R    0 S    3 220 279 290 217  4 + 

GSOR310774 WAB502-13-4-

1 

Cote D'Ivoire S    3 R    0 S    3 220 279 290 217 
 4 

+ 

GSOR310775 WAB 501-11-5-

1 

Cote D'Ivoire S    3 R    0 S    3 220 279 290 217 
 4 

+ 

GSOR310777 WC3532 Peru S    3 R    0 S    3 220 279 290 217  4 + 

GSOR310805 Chivacia-1 Venezuela, 

Aragua 

S    3 R    0 S    3 220 279 290 217 
 4 

+ 

GSOR310815 PR 147 Puerto Rico  R   1 R    0 R    0 220 279 287 217  3 − 

GSOR310829 Stg 64M3390 United States, 

Arkansas 

S    5 R    0 S    3 220 279 290 217 
 4 

+ 

GSOR310831 Zenith Puerto Rico S    5 R    0 S    4 220 279 290 217  4 + 

GSOR310833 71Cr-308 United States, 

Louisiana 

S    3  R    0 S    5 220 279 290 217 
 4 

+ 

GSOR310886 WC2656 Zaire S    3 R    0 S    3 220 279 290 217 4 + 

GSOR310889 Brazilero Perla El Salvador, La 

Libertad 

R    1 R    0 R    0 220 279 287 217 
3 

− 

GSOR310892 Mamoriaka Madagascar S    3 R    0 S    4 220 279 287 238 2 + 

GSOR310915 Zale Myanmar, 

Rangoon 

S    3 R    0 S    3 Null 295 293 221 0 - 

GSOR310965 Vary Tarva 

Osla 

Portugal S    3 R    0 S    4 220 297 300 217 
2 

+ 
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GSOR310966 Perlita Jalapa Guatemala S    5 R    0 S    3 220 279 287 217 3 + 

GSOR311012 WC 5015 Mexico, Federal 

District 

S    4 R    0 S    3 220 279 290 217 
4 

+ 

GSOR311025 IR647-PDI-C1 Philippines, 

Luzon 

S    3 R    0 S    3 220 295 296 221 
1 

+ 

GSOR311037 H75-23-1 Argentina, 

Buenos Aires 

S    4 R    0 S    3 220 279 290 217 
4 

+ 

GSOR311049 Blakka Tere 

Thelma 

Suriname S    3 R    0 S    4 220 279 287 217 
3 

+ 

GSOR311060 Hal Suduwi Sri Lanka S    4 R    0 S    4 220 279 287 223 2 + 

GSOR311069 Lay Sort Laos S    3 R    0 S    3 220 279 290 217 4 + 

GSOR311080 YRL-1 Australia S    3 R    0 S    3 220 279 290 217 4 + 

GSOR311099 Ku Mun Do  

No.84 

Korea S    4 R    0 R    0 220 279 290 217 
4 

− 

GSOR311104 EEA 406 Brazil, Rio 

Grande do Sul 

S    3 R    0 S    3 220 276 290 217 
3 

+ 

GSOR311118 Cadung Ket Vietnam S    3 R    0 S    3 220 279 296 221 2 + 

GSOR311150 Five months Guyana S    3 R    0 S    4    220 279 290 217 4 + 

GSOR311180 Sapundali Local India S    3 R    2 S    3 220 279 290 238 3 + 

GSOR311186 CA 902/8/2/2 Chad R    0 R    0 R    0 220 279 290 217 4 − 

GSOR311198 WC6570 Spain R    1 R    0 R    0 220 279 287 217 3 − 
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GSOR311200 Kalila 50 Madagascar R    2 R    0 R    0 220 279 287 217 3 − 

GSOR311204 CA 902/b/2/2 Chad R    1 R    0 S    3 220 279 290 217 4 − 

GSOR311222 Agami Mont-1 Egypt R    0 R    0 S    3 220 276/279 287 217 3 − 

GSOR311257 Basala BaatkaS-

R 

Zaire R    0 R    0 R    0 220 279 290 217 4 − 

GSOR311269 Shimla Early Iraq S    4 S    3 S    5 220 279 290 238 3 + 

GSOR311272 Sadri Dum 

Sufaid 

Iran S    5 R    0 S    3 220 279 300 221 2 + 

GSOR311277 Ghoal Champa Iran S    4 R    0 S    3 220 279 300 221 2 + 

GSOR311278 Montakcl Egypt S    3 S    4 S    5 Null 300 270 223 0 − 

GSOR311305 IB 94 Nigeria S    3 R    0 S    3 220 279 290 217 4 + 

GSOR311306 Mange 2 Nigeria R    0 R    0 R    0 Null 295 296 221 0 − 

GSOR311309 IRAT 142 Cote D'Ivoire S    3 R    0 S    3 220 279 290 217 4 + 

GSOR311341 63-83 Cote D'Ivoire S    3 R    0 S    3 220 279 290 217 4 + 

GSOR311349 Tox 782-20-1 Nigeria, Oyo R    0 R    1 R    0 220 279 290 217 4 − 

GSOR311371 Estrela Colombia, Valle S    4 R    0 S    3 220 279 287 217 3 + 

GSOR311403 Panama 1048 Colombia, Valle R    0 R    0 R    0 220 279 287 238 2 − 

GSOR311565 517 Uruguay,Treinta 

y Tres 

S    3 R    0 S    3 Null 295 296 221 0 - 
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GSOR311583 Bakula Sierra Leone, 

Southern 

S    3 R    0 S    3 220 279 287 217 3 + 

GSOR311590 Sadri Siah Dum Iran S    3 S    5 S    3 220 279 287 240 2 − 

GSOR311624 Suduwi 305 Sri Lanka S    3 R    0 S    3 220 279 287 238 2 + 

GSOR311630 Hatadawee Sri Lanka S    3 S    5 S    3 220 279 306 221 2 − 

GSOR311632 Wanni 

Dahanala 

Sri Lanka R    2 S    5 R    1 220 279 287 238 2 − 

GSOR311634 Patchaiperumal Sri Lanka, 

Kurunegala 

S    3 S    4 S    3 220 279 306 221 2 − 

GSOR311635 AMANE Sri Lanka, 

Matale 

S    3 S    5 S    3 220 279 306 221 2 − 

GSOR311673 Sadri Ter Misri Iran S    3 R    0 S    3 220 279 287 240 2 + 

PI561735 Bengal 

(Control) 

 S    3 R    0 S    3 220 279 290 217 4 + 

PI612439 Wells (Control)  S    5 S    3 S    4 203 290 290 233 1 − 

PI629016 Zhe 733 

(Control) 

 R    0 R    0 R    2 205 290 301 223 2 − 

PI593892 Jefferson 

(Control) 

 S    3 R    0 S    3 220 279 293 217 3 + 

               *  + indicates  the presence of Pi-z; - indicates the presence of Pi-z could not be determined and verified. 
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Table 2.  Summary of marker sizes, chromosomal locations, annealing temperature, dilution and sequences of simple sequence repeat 

markers at the Pi-z (t) locus.  

Markers 

Size 

(bases) 

Chrom. 

Location 

Chrom. 

Distance 

(cM) 

Annealing 

Temp (°C) Dilution Forward Reverse Start  Stop 

RM527 210- 247 6 62.1+ /59 61 1:500 

5‟-

GGCTCGATCTAGAAAAT

CCG-3‟ 

5‟-

GGCTCGATCTAGAAAA

TCCG-3‟ 

9862290 9862522 

AP4791 270-320 6  55 1: 1000 

5‟-

AAACGGAGGGAGTACAT

TG-3‟ 

5‟-

GGATCGTCGATTTGATT

TG-3‟ 

10093246 10093556 

AP5659-1 190-220 6 62 +/60 61 1:500 

5‟-

TGCTGAGATAGCCGAGA

AATC-3‟ 

5‟-

ACTAGCTGCCCACCTA

AGC-3‟ 

10414829 10415031 

AP5659-5 250-330 6  55 1:500 

5‟-

CTCCTTCAGCTGCTCCTC

-3‟ 

5‟-

TGATGACTTCCAAACG

GTAG-3‟ 

10357166 10357453 

Physical locations were determined from Release 3, TIGR Rice Pseudomolecules 

http://www.tigr.org/tdb/e2k1/osa1/pseudomolecules/info.shtml. Approximate nucleotide (nt) sizes were based on Nipponbare 

sequence determined from Gene Bank database information. Chromosome distance was based on IRMI Map 2003; Chromosome 

distance was based on Cornell Map 2001
 
at www.gramene.org.
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Figure Legends  

Fig. 1. Evaluation standard for determining disease reactions of rice germplasm. Resistant 

(0-2): No lesion formation- 0; Lesions covering less than 5% of total leaf area, lesions 

restricted at the site of infection-1; Lesions covering between 5% to 10% of the total leaf 

area; restricted spindle lesions at diameter less than 2 mm - 2; Susceptible (3-5): Lesions 

in several locations on the leaf to form a large eye-shaped brown area (diameter greater 

than 2mm) - 3; Lesions covering greater than 50% of the leaf area, diseased area with 

lesion greater than 30% of the total leaf area - 4; Lesions covering greater than 70% of 

the total leaf area - 5.  

Fig. 2. Genetic and physical maps of the Pi-z gene as defined by SSR markers.  

Genetic map showing indicated SSR markers spanning the Pi-z locus (A) and physical 

map of the Pi-z locus as delimited by indicated SSR markers. Modified from Fjellstrom 

et al. 2006. 

Fig.3. Analysis of the Pi-z gene in rice germplasm using disease reaction and SSR 

marker. The diagram shows results of disease reactions and expected SSR marker alleles 

for germplasm in different categories. 
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Abstract  

The Pi-b gene in rice confers resistance to a wide range of races of the rice blast 

pathogen, Magnaporthe oryzae, including race IE1k that overcomes Pi-ta. In this study, 

the presence of Pi-b in 164 rice germplasm accessions from the National Small Grains 

Collection was determined utilizing DNA markers and pathogenicity assays.  The 

presence of Pi-b was evaluated with two simple sequence repeat markers (SSRs) and a 

dominant marker Pibdom derived from the Pi-b gene sequence.  Pathogenicity assays 

using two AVR races (IE1k and IB1) and a virulent race (IB54) were performed to verify 

the resistance responses of accessions.  Of the 164 accessions evaluated, 129 contained 

the Pi-b gene as determined using both SSR markers and pathogenicity assays, albeit 

different haplotypes were detected.  The remaining 35 germplasm accessions were 

different in their responses to the blast races IB54, IE1k, and IB1, thus indicating the 

presence of R gene(s) other than Pi-b. The accessions characterized in this study could be 

used for marker-assisted breeding to improve blast resistance in indica and japonica 

cultivars worldwide. 

Introduction 

  Rice blast is the most destructive disease affecting rice production worldwide. 

The use of resistant cultivars has been the most economical and efficient method for 

controlling this disease.  However, the lifespan of many resistant cultivars is only a few 

years, due to the breakdown of resistance in the face of hypervariability of the pathogen 

(12). The inheritance of major-gene-mediated resistance to the blast pathogen has been 

studied extensively worldwide.  A major resistance gene is effective in preventing 

infection by races of Magnaporthe oryzae B. Couch containing the corresponding 

avirulence gene (4, 22). Presently, more than 70 blast R genes have been identified, and 
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13 of them have also been characterized using molecular markers and subsequently used 

to develop resistant cultivars (1,2,3,7,9,10,13,14,15,20,21,24,28).    

Molecular markers tightly linked to major R genes are important for MAS, 

particularly during the early stages of plant growth, and when the molecular markers are 

used to circumvent the association with undesirable agronomical traits (linkage drag).  

Although a large number of blast R genes have been fine mapped based on closely linked 

markers and/or some of them cloned based on marker information, there are only a few 

examples where the markers have had a direct impact in plant breeding, e.g. DNA 

markers derived from two cloned blast R genes (Pi-b and Pi-ta)  and currently used in 

several rice breeding programs
 
(11). In addition, PCR-based SNP markers for genes at the 

Pi-z locus are also known to be used in breeding programs
 
(8).

 

 Pi-b has been used extensively in rice breeding programs in Japan, China, and 

Indonesia (27, 18).  Pi-b, encoding a cytoplasmic protein with nucleotide binding sites 

and leucine rich repeat (NBS-LRR), was the first cloned blast R gene (24). The 

availability of a high-density linkage map (7) and DNA markers in the Pi-b region (19) 

have facilitated the identification of additional molecular markers more closely linked to 

Pi-b (5).  In the US, Pi-b has been identified in rice cultivars resistant to blast races IA45, 

IB1, IH1, IB45, IG1, IE1k, IC17 and IE1k (Fig.1). Pi-b was introduced into the US rice 

cultivar „Saber‟ from the Chinese cultivar „Teqing‟
 
(17). Race IE1k overcomes Pi-ta 

resistance, and was subsequently used to predict the existence of Pi-b in rice cultivars 

utilizing classical pathogenicity assays (16) (Fig. 1).  The AVR race IB1 was also used to 

ensure that resistance is not due to Pi-z.  Although Pi-z was also resistant to IE1k (Fig.1), 

Pi-z was susceptible to IB1 but Pi-b was not. 
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  The objectives of this study were to identify the Pi-b gene in a core collection of 

1711 rice germplasm accessions from the National Small Grains Collection using 

previously identified SSR markers closely linked to the Pi-b gene, a dominant marker 

derived from Pi-b, and to determine disease reactions of the accessions containing Pi-b to 

differential U.S. blast races.  

Materials and Methods  

Plant Materials 

  A USDA core collection consisting of 1711 accessions from 113 countries 

representing an estimated 70% of the genetic diversity of the entire USDA rice collection 

(26) was used for this study.  Four grams of seed from each accession was provided by 

the Genetic Stock Collections of Oryza at Dale Bumpers National Rice Research Center 

(DB NRRC). Rice cultivar „Saber‟ (PI 633624) [+Pi-b], was used as the positive control. 

Twelve seeds of each accession were germinated in 96 well inserts (10 x 20 x 2
 
cm), 

(Hummert International, Missouri USA). Prior to seeding, the inserts were placed in trays 

(26.67
 
x 53.34 x 6.35[in cm], Model # INT0804, Hummert International, Missouri, USA) 

and filled with silt loam soil (pH 5.5 – 5.8) fertilized with Osmocote Pro 15-9-12 (Scotts-

Sierra Horticultural Products Company, OH), autoclaved and stored at -20 
0
C for three 

days. The trays were completely filled with water. Seedlings were grown for 4 weeks in 

the greenhouse maintained at 23 -29 
0
C during the day in winter (November to 

December) and 22-25 
0
C during the night until the 3 to 4 leaf stage, in preparation for 

pathogenicity assays and subsequent DNA extraction. 

Pathogenicity assays  
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Pathogenicity assays were performed on 164 experimental germplasm accessions 

confirmed by SSR markers as having Pi-b, and a positive control „Saber‟ (17). A virulent 

(VIR) isolate (unnamed-race IB54); avirulent (AVR) isolates TM2 (race IE1k) and 

(unnamed-race IB1) of M. oryzae were selected for pathogenicity tests.  There were four 

replicates for each germplasm accession. The presence of the Pi-b gene in each accession 

was verified by the pattern of resistance or susceptibility to a pair of AVR and VIR 

isolates.  Pathogen inoculation was performed using a modified procedure based on 

Valent and colleagues (23) (Fig.2). Briefly, plants were inoculated with 40 mL of a spore 

suspension (5 X 10
5
 spores/ml, 0.25% gelatin) using a hand atomizer connected to an air 

compressor (100 kPa). Inoculated plants were maintained at approximately 95% relative 

humidity in a clear polyethylene autoclave bag 24 x 36 [in cm] and 1.5 mm thick at room 

temperature (Product code 018143 Fisher Scientific, USA).  Approximately 24 h after 

inoculation, plants were moved to the greenhouse for an additional 6 d. Disease reactions 

were assessed 7 d after inoculation using a visual rating scale (Fig.2). For each accession, 

7 to 8 seedlings were evaluated and each pathogenicity assay was conducted three times. 

DNA extraction 

DNA was extracted from bulked leaves from each of four replicates for further analysis 

by the rapid DNA extraction procedure (25).  After extraction, sample DNAs were 

prepared for PCR through a Biomek 2000 Lab Automation Work Station (Beckman and 

Coulter, Brea, CA) using manufacturer protocols.  

DNA markers and analysis 

Two simple sequence repeat markers (SSRs) RM208 and RM166 closely linked to Pi-b 

were used for this study (Fig. 3; Table 2) (5). Germplasm accessions with these markers 
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were examined utilizing a marker Pib-dom derived from a portion of Pi-b utilizing a 

method described previously (5).  Fluorescently labeled SSR markers were analyzed by 

capillary electrophoresis based on the methods previously described (5). For each marker, 

forward primers were labeled with fluorescent dyes (6FAM, NED, and Hex) from 

Applied Biosystems (Foster City, CA, USA) or Integrated DNA Technologies 

(Coralville, IA, USA). Reverse primers were not labeled. DNA was amplified using MJ 

Research Tetrad thermocyclers (Waltham, MA, USA) under the following PCR 

conditions: (1) initial denaturation at 94 
0
C for 5 min; (2) 35 cycles of 94 

0
C for 1 min, 

55-61 
0
C (marker dependent) for 1 min, and 72 

0
C for 2 min; (3) 5 min final extension at 

72 
0
C. PCR products were pooled based on color and size range of the amplified PCR 

products and the DNA was denatured by heating at 94 
0
C for 5 min. PCR products were 

diluted between 200, 500 and 2000X, and 2 ul of the diluted product were added to 9 ul 

of formamide-containing ROX/LIZ (dependent on the size of the product) labeled size 

standards (Applied Biosystems, Foster City, CA). PCR products from different primer 

pairs having different size ranges and labels were combined for simultaneous analysis 

using a Mini Prep75 (Tecan Group Ltd., Männedorf, Switzerland) instrument based on 

the manufacturer protocols, and analyzed to determine the size of the SSR alleles. The 

reaction was run on an ABI Prism 3730 DNA Analyzer (Applied Biosystems) following 

manufacturer instructions. Fragment size and SSR marker genotype analysis were 

performed with Gene Mapper® software version 3.7 (Applied Biosystems). Analyzed 

alleles were exported into a Microsoft Excel spreadsheet. Allele sizes for all SSR markers 

used in the present study are listed in Table 1.  

Results and Discussion  
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In the present study, there were only two accessions - Daudzai Field mix from 

Pakistan and ARC 10378 from India – that did not have any expected marker alleles for 

the Pi-b gene and were susceptible to IBI, IE-1k and IB54.  Both marker and 

pathogenicity assays suggested that these two germplasm accessions did not contain Pi-b.  

Hence, these served as ideal negative controls.  A total of 178 rice accessions were 

initially identified by utilizing a dominant marker for Pi-b.  Later, 164 out of these 178 

accessions were verified by SSR markers RM166 and RM208.  The remaining 14 

accessions were removed due to suspected seed mix.  The gene-for-gene theory predicts 

that a germplasm  accession contains Pi-b only if the germplasm  accession is (i) resistant 

to AVR races, such as IE1k and IB1, and (ii) susceptible to a virulent (VIR) race, such as 

IB54.  The cultivar „Saber‟ carrying Pi-b was resistant to IE1k and IB1and susceptible to 

IB54 as predicted (Table 1). Utilizing these differential races, Pi-b was verified in 130 of 

164 germplasm accessions since they were resistant to IE1k and IB1 but susceptible to 

IB54 (Fig.4) and followed the gene for gene relationship pattern. Out of the 130 

accessions with Pi-b, 88 had the expected alleles for all three markers examined (Table 1; 

Fig. 4). The presence of all three Pi-b marker alleles in these germplasm accessions 

suggests that they contain the same Pi-b haplotype. This was unexpected because these 

88 germplasm accessions were collected from several geographic regions of the world, 

including the United States, South America, Europe, Asia and Africa (Fig 4; Table 1).  

Regardless, it is still possible that these germplasm accessions may have inherited Pi-b 

from the same donor.  In contrast, 19 germplasm accessions contained two of the 

expected marker alleles, suggesting that these accessions contain different Pi-b 

haplotypes, presumably having inherited them from different donors.  Additionally, 16 
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germplasm accessions had followed the gene for gene concept but had no expected 

marker alleles for the gene in question. Thus, the presence of Pi-b utilizing our present 

markers and differential blast races could not be verified. In this study, 28 germplasm 

accessions were found to be resistant to both IE-1k and IB54, suggesting these accessions 

contain Pi-b independent R genes that are responsible for resistance to IB54.   

There were 24 of 28 accessions with all three expected alleles for Pi-b, indicating 

the possibility of receiving Pi-b from the same donor.  In contrast, one accession had two 

expected alleles, one had one expected allele, and two had no expected alleles, indicating 

that they received Pi-b from different donors.  The presence of a different avirulence 

gene can mask the ability to identify the other R gene.   Finally, a total of 5 germplasm 

accessions (BR-IRGA-410 from Brazil, R647 from China and RP2199-16-2-2-1 from 

India, 17465-4 and Bilo from Fiji) had all expected marker alleles for the Pi-b gene but 

were susceptible to both IE1k and IB54 (Fig.4;Table1).  One hypothesis is that the 

modifiers of Pi-b resistance are non-functional in these five accessions.  Exact reasons for 

the inconsistency of marker and phenotype analysis in this collection needs to be further 

investigated. 

Geographical Distribution 

Rice germplasm with Pi-b was found in 39 countries (Table 1).  Germplasm 

accessions containing Pi-b in our study were mostly from China with 20 out of 114 

tested.  Germplasm accessions from the Philippines was second, with 16 of 114 

accessions containing Pi-b. Accessions from Columbia and India followed with 9 and 8 

germplasm accessions out of 114, respectively.  
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            Although Pi-b is not as well studied as Pi-ta, this gene is a major blast resistant 

gene in the US. The gene confers resistance to 7 US blast races (Fig.1).  Pi-b is 

particularly useful because it also offers resistance to IE1k, a virulent race that has 

overcome resistance mediated by Pi-ta.  We not only verified the Pi-b gene in 114 rice 

germplasm accessions, but also demonstrated the usefulness of combining DNA markers 

and pathogenicity assays to confirm the presence of resistance genes in rice germplasm 

accessions. The pathogenicity assays helped verify the accuracy of DNA markers and 

also identified additional blast R genes. For germplasm requests, please visit 

(www.ars.usda.gov/spa/dbnrrc/gsor) at GSOR of DB NRRC. 
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Table 1. Summary of disease reaction, pathogenicity assays, SSR marker profile for the analysis of the Pi-b gene in rice germplasm. 

Sample Country Name   

 

   

 

IB54 

 

 

IE1k 

 Presence 

of Pi-b 

Pibdom RM208 RM166 IB1  

GSOR310164 Mexico C1-6-5-3  164  R 0 R 0 R 0 ? 

GSOR310278 Iraq Amber 33  168 318 S 3 R 0 R 2  * 

GSOR310285 Philippines IR 532-1-47 360 179 316 S 3 R 0 R 0 + 

GSOR310298 Guyana 51779 360 179 316 S 3 R 2 R 0 + 

GSOR310319 India  BC5-55  164 318 S 3 R 2 R 0 * 

GSOR310326 Philippines IR 1103-15-8-5-3-3-

3 

360 179 316 S 3 R 2 R 0 + 

GSOR310340 Laos Chao Hay b 360 179 316 S 4 R 0 R 0 + 

GSOR310350 Papua, New 

Guinea 

C 8435 360 179 316 R 1 R 0 R 0 ? 

GSOR310352 Malaysia Padi Bangka  164 418 S 3 R 0 R 0 * 

GSOR310363 Colombia P773-44-3-1 360 179 316 S 3 R 2 R 0 + 

GSOR310367 Colombia P 738-97-3-1 360 179 316 S 3 R 0 R 0 + 

GSOR310368 Colombia P 761-40-2-1  179 316 S 3 R 0 R 0 + 

            SSR Markers             Disease Reactions 
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GSOR310436 Cuba Zayas Bazan  176 318 S 3 R 0 R 0 * 

GSOR310481 India Anandi 360 179 316 S 3 R 0 R 0 + 

GSOR310485 Sri Lanka Perum Karuppan 360 164 318 S 4 R 2 R 0 + 

GSOR310487 Indonesia SIGADIS 360 179 316 S 4 R 0 R 0 + 

GSOR310517 Hong Kong Fa Loh Pak  164 316 S 3 R 2 R 0 + 

GSOR310528 United States J 312 360 179 316 S 3 R 0 R 0 + 

GSOR310539 Mali Segadis 360 179 316 S 4 R 0 R 0 + 

GSOR310540 Thailand T442-57  176 316 R 1 R 0 R 0 ? 

GSOR310542 Bangladesh BR51-319-9 360 179 316 S 3 R 0 R 0 + 

GSOR310543 Costa Rica CR 1113 360 179 316 R 1 R 2 R 0 ? 

GSOR310545 Indonesia B462B-PN-31-2 360 179 316 S 4 R 0 R 0 + 

GSOR310547 Peru HUALLAGA 360 179 316 S 3 R 2 R 0 + 

GSOR310548 Thailand BKN 6820-6-3-2 360 179 316 S 3 R 2 R 0 + 

GSOR310549 Sri Lanka BG 90-2 360 179 316 S 3 R 0 R 0 + 

GSOR310553 Iran 205  170 318 S 3 R 2 R 0 * 
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GSOR310555 Colombia COLOMBIA 1  176 318 S 5 R 1 R 0 * 

GSOR310566 Ecuador INIAP 7 360 179 316 R 1 R 2 R 0 ? 

GSOR310567 Guatemala TIKAL2 360 179 316 S 3 R 2 R 0 + 

GSOR310574 Malaysia SM II 360 179 316 S 3 R 2 R 0 + 

GSOR310575 Haiti Gros Riz 360 176 316 S 3 R 2 R 0 + 

GSOR310576 India PUSA 33 360 179 316 S 3 R 1 R 0 + 

GSOR310583 Fiji 17465-4 360 179 316 S 3 S 4 S 3 - 

GSOR310612 Uzbekistan Uz Begohef 2 360 179 316 S 3 R 2 R 0 + 

GSOR310630 Thailand BKN 6987-68-14 360 179 316 S 4 R 2 R 0 + 

GSOR310631 Guinea GPNO 22236 360 179 316 S 4 R 2 R 0 + 

GSOR310632 Philippines IR 4482-5-3-9-5 360 179 316 S 3 R 2 R 0 + 

GSOR310636 Cote D‟Ivoire IRAT 8 360 179 316 S 3 R 0 R 0 + 

GSOR310648 Zimbabwe IR 400 360 179 316 R 0 R 0 R 0 ? 

GSOR310650 India PR 106 360 179 316 S 3 R 0 R 0 + 

GSOR310655 Chile CH 272-132 360 179 316 S 3 R 0 R 0 + 
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GSOR310657 Egypt CR418-3-12 360 179 316 S 3 R 0 R 0 + 

GSOR310658 Egypt CR 561-4-2-1 360 179 318 S 4 R 2 R 0 + 

GSOR310659 Egypt YNA 223  168 418 S 3 R 0 R 0 * 

GSOR310663 Kazakhstan Kasakstanica 360 164 318 S 3 R 0 R 0 + 

GSOR310668 Azerbaijan Bak Saly Mestnyj  164 418 S 3 S 3 S 4 - 

GSOR310683 Nigeria IITA 130  164 421 S 3 R 0 R 0 * 

GSOR310685 Brazil BR-IRGA-410 360 179 316 S 3 S 3 S 3 - 

GSOR310686 Brazil Pratao  164 418 S 3 R 0 R 0 * 

GSOR310687 Philippines IR 9660-48-1-1-2 360 179 316 R 1 R 2 R 0 ? 

GSOR310688 Korea, South MILYANG 56 360 179 316 R 1 R 0 R 0 ? 

GSOR310689 Korea, South RAEGYEONG 360 179 316 R 1 R 0 R 0 ? 

GSOR310690 Korea, South  360 179 316 S 3 R 0 R 0 + 

GSOR310709 Bangladesh BR19 360 179 316 S 3 R 0 R 0 + 

GSOR310730 Dominican 

Republic 

JUMA 61 360  316 R 0 R 0 R 0 ? 
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GSOR310732 Colombia C 3CU77-1CU-2CU-

2CU-2CU-SMCU2 

360 179 316 S 3 R 0 R 0 + 

GSOR310735 Panama ANAYANSI 360 179 316 S 3 R 0 R 0 + 

GSOR310741 Cuba PERLA 360 179 316 S 3 R 0 R 0 + 

GSOR310746 Cambodia 376 360 179 316 S 4 R 2 R 0  + 

GSOR310748 Nepal IR-44595 360 176 316 S 3 R 0 R 0 + 

GSOR310750 Nigeria FARO 37 360 179 316 R 0 R 0 R 0 ? 

GSOR310751 India RP1821-5-17-2 360 179 316 R 0 R 0 R 0 ? 

GSOR310752 Cuba ECIA 128 360 179 316 R 0 R 0 R 0 ? 

GSOR310753 Egypt GZ1368-5-4 360 179 316 R 0 R 0 R 0 ? 

GSOR310754 Argentina H232-44-1-1  164 418 S 3 R 2 R 0 * 

GSOR310756 Dominican 

Republic 

J355-6-2-1-1 360 179 316 R 0 R 0 R 0 ? 

GSOR310757 India RP2151-173-1-8 360 179 316 S 3 R 2 R 0 + 

GSOR310770 China MIYANG 360 179 316 S 4 R 0 R 0 + 

GSOR310772 Brazil CL SELECCION 56 360 179 316 R 0 R 1 R 0 ? 
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GSOR310773 Cuba ECIA76-S89-1 360 179 316 S 3 R 0 R 0 + 

GSOR310856 China WC 521  164 418 S 3 R 1 R 0 * 

GSOR311005 Philippines IR 8-296-2-1 360 179 316 S 3 R 0 R 0 + 

GSOR311024 India RP1 332 360 179 316 S 3 R 2 R 0 + 

GSOR311032 Guyana 50638 360 179 316 S 3 R 0 R 0 + 

GSOR311033 Argentina FORTUNA 

CORRIENTES SEL 

INTA 

360 179 421 S 3 R 0 R 0 + 

GSOR311039 Philippines IR 1321-19 360 179 316 R 0 R 0 R 0 ? 

GSOR311042 Philippines IR 1314-28-1-2 360 179 316 S 3 R 0 R 0 + 

GSOR311044 Philippines IR 773A1-36-2-1-3 360 179 316 R 0 R 0 R 0 ? 

GSOR311059 Philippines IR 1103-49-4-1-3-3-

2 

 164 418 S 3 R 0 R 0 * 

GSOR311061 Philippines Siryan 360 179 316 S 4 R 0 R 0 + 

GSOR311066 Laos Kh. Mack Fay 360 179 316 S 3 R 0 R 0 + 

GSOR311073 Indonesia Tukan Tuna 360 179  S 3 R 0 R 0 + 

GSOR311076 Bulgaria Sesilla 360 179 316 S 3 R 0 R 0 + 

GSOR311082 Pakistan Hansraj  164  R 0 R 0 R 0 ? 
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GSOR311097 Portugal Indo Yiaia Lonica 360 179 316 R 0 R 0 R 0 ? 

GSOR311113 Hong Kong Shui Ya Jien 360 179 316 S 3 R 0 R 0 + 

GSOR311152 Fiji Rani 360 179 316 S 3 R 0 R 0 + 

GSOR311153 Philippines IR 2061-214-2-3 360 176 316 S 3 R 0 R 0 + 

GSOR311154 Philippines IR2151-598-3-5 360 179 316 S 3 R 0 R 0 + 

GSOR311162 Guyana 60-283 360 179 318 S 3 R 2 R 0 + 

GSOR311168 Philippines IR9-60 360 179 316 S 3 R 0 R 0 + 

GSOR311184 Thailand Bang Tuey 360 176 316 S 4 R 0 R 0 + 

GSOR311207 India NP 97  164 316 S 3 R 2 R 0 + 

GSOR311210 Philippines IR 2151-745-3-1 360 179 316 S 3 R 2 R 0 + 

GSOR311213 Bangladesh BIPLAB 360 179 316 S 3 R 2 R 0 + 

GSOR311214 Philippines IR 1514A-E597 360 176 318 S 3 R 1 R 0 + 

GSOR311217 Pakistan Sella Manzkhora 360 179 316 S 3 R 0 R 0 + 

GSOR311219 Korea, South SUWEON 258 360 179 316 R 1 R 0 R 0 ? 

GSOR311223 Indonesia KN-1 B-361-BLK-2 360 172 316 S 3 R 0 R 0 + 
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GSOR311238 Sierra Leone Chen Chu Ai 360 179  S 3 R 1 R 0 + 

GSOR311239 Brazil Pratao Tipo Guedes  164 421 S 4 R 0 R 0 * 

GSOR311244 Peru INTI 360 179 316 R 0 R 0 R 0 ? 

GSOR311248 Dominican 

Republic 

Mingolo 360 179 316 S 4 R 0 R 0 + 

GSOR311249 Dominican 

Republic 

TONO BREA 439 360 179 316 S 5 R 0 R 0 + 

GSOR311253 Fiji BILO 360 179 316 S 3 S 3 S 3 - 

GSOR311262 Zaire R 46/3  164 421 S 3 R 0 R 0 * 

GSOR311264 Zaire Sechele  164 421 S 3 R 2 R 0 * 

GSOR311294 Senegal CAS 209 360 179 316 S 3 R 2 R 0 + 

GSOR311298 Thailand Jek Chuey 159 360 179 316 S 3 R 2 R 0 + 

GSOR311302 Sierra Leone SL 22-613 360 179 421 S 4 R 2 R 0 + 

GSOR311304 Nigeria ADNY 11 360 179 316 R 0 R 0 R 0 ? 

GSOR311306 Nigeria Mange2 360 179 316 S 3 R 0 R 0 + 
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GSOR311310 India Archana 360 179 318 S 4 R 0 R 0 + 

GSOR311317 Philippines IR 1615-246 360 179 316 S 3 R 0 R 0 + 

GSOR311325 Italy Bajang Allorio 360 179 316 S 3 R 0 R 0 + 

GSOR311344 Philippines IR 9209-26-2 360 179 316 S 4 R 2 R 0 + 

GSOR311348 Korea. South SEOGWANGBYEO 360 179 316 S 3 R 0 R 0 + 

GSOR311359 Colombia 17632 360 179 316 S 3 R 0 R 0 + 

GSOR311360 Colombia 19965 360 179 316 S 3 R 0 R 0 + 

GSOR311366 China Te Qing 360 179 316 S 3 R 0 R 0 + 

GSOR311380 Bangladesh BR24 360 179 316 S 3 R 0 R 0 + 

GSOR311399 Colombia AMISTAD 82 360 179 316 S 3 R 0 R 0 + 

GSOR311402 Ecuador INIAP 11 360 179 316 S 4 R 0 R 0 + 

GSOR311403 Colombia PANAMA 1048 360 179 316 S 3 R 0 R 0 + 

GSOR311405 Colombia HURI 282 360 179 316 S 3 R 0 R 0 + 

GSOR311409 Mexico CAMPECHE A 80 360 179 316 R 1 R 0 R 0 ? 

GSOR311411 Peru SAN MARTIN 86 360 179 316 R 1 R 0 R 0 ? 
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GSOR311421 Philippines C2764-10-2 360 179 316 R 1 R 0 R 0 ? 

GSOR311423 Philippines IR 58614-B-B-8-2 360 176 316 S 3 R 0 R 0 + 

GSOR311424 Japan BL 1 360 179 418 S 3 R 0 R 0 + 

GSOR311430 Cuba ECIA 66 360 179 316 S 3 R 2 R 0 + 

GSOR311433 Philippines IR 54055-142-2-1-2-

3 

360 179 316 S 4 R 0 R 0 + 

GSOR311435 Vietnam CM1, HAIPONG 360 179 316 S 3 R 0 R 0 + 

GSOR311436 China ZHONGYU NO.1  172 318 S 3 R 0 R 0 * 

GSOR311438 Liberia 2071-621-2 360 179 316 S 3 R 2 R 0 + 

GSOR311439 China 4582 360 172 316 S 3 R 0 R 0 + 

GSOR311441 China GP-2 360 179 316 S 3 R 0 R 0 + 

GSOR311442 Philippines IR58025 B 360 179 316 S 3 R 0 R 0 + 

GSOR311443 China GUI 99 360 179 316 S 3 R 0 R 0 + 

GSOR311445 China Z 535 360 179 316 S 4 R 0 R 0 + 

GSOR311447 China XIANGZHAOXIAN 

NO. 15 

360 179 316 S 4 R 0 R 0 + 

GSOR311448 China HUNANRUANMI 360 179 316 S 3 R 0 R 0 + 
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GSOR311449 China ZHONGYU NO. 6 360 179 316 S 3 R 0 R 0 + 

GSOR311456 China ERXI NO. 149 360 179 316 S 3 R 0 R 0 + 

GSOR311459 China 71198 360 179 316 S 3 R 0 R 0 + 

GSOR311467 China JINNUO NO. 6 360 176 316 S 3 R 2 R 0 + 

GSOR311468 China DIAN NO. 01  172 316 S 3 R 0 R 0 + 

GSOR311471 China YOU NO. 51 360 179 316 S 3 R 0 R 0 + 

GSOR311477 China H 323 360 179 316 S 3 R 0 R 0 + 

GSOR311478 China CDR 22 360 179  S 3 R 0 R 0 + 

GSOR311481 China SHUFENG 121 360 179 316 S 3 R 0 R 0 + 

GSOR311494 China R 647 360 179 316 S 5 S 3 S 3 _ 

GSOR311503 China ZHONG 413 360 179 316 R 0 R 0 R 0 + 

GSOR311511 China MPH 501 360 179 316 S 3 R 0 R 0 + 

GSOR311513 China ZAO 402 360 179 316 R 0 R 0 R 0 + 

GSOR311518 Bangladesh Bhujon Kolpo 360 179 316 S 3 R 0 R 0 + 

GSOR311519 Bangladesh Khoia 360 179 316 S 3 R 0 R 0 + 
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GSOR311520 Bangladesh Bogra 360 179 316 S 3 R 0 R 0 + 

GSOR311521 Philippines IR 56450-28-2-2 360 179 316 S 3 R 0 R 0 + 

GSOR311524 India RP2199-16-2-2-1 360 179 316 S 3 S 3 R 0 + 

GSOR311525 Indonesia S972B-22-1-3-1-1 360 179 316 S 4 R 0 R 0 + 

GSOR311640 India ARC 10378  176 418 S 5 S 3 S 4 - 

GSOR311668 Pakistan Daudzai Field Mix  164 318 S 5 S 3 S 4 - 

  Saber 360 179 316 R 0 S 0 R 0  + 

+ Accessions containing Pi-b with different haplotypes  

? Accessions containing additional R genes 

- Accessions which do not contain Pi-b 

* Accessions with no marker alleles with pathogenicity response similar to accessions containing Pi-b 
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Table 2.  Summary of marker sizes, chromosomal locations, annealing temperature, dilution and sequences of simple sequence repeat 

markers at the Pi-b  locus. 

Approximate nucleotide (nt) sizes were based on „Nipponbare‟ sequence determined from Gene Bank database information. 

 

 

 

 

 

 

 

Markers Size 

(bases) 

Chromosome 

Location 

Chromosome 

Distance 

Annealing 

Temperature(0C) 

Dilution Forward Primer Reverse Primer 

Pibdom 360 2 0.0 55 1:2000 GAACAATGCCCAAACTTGAGA GGGTCCACATGTCAGTGAGC 

RM208 179 2 0.0 55 1:500 TCTGCAAGCCTTGTCTGATG TAAGTCGATCATTGTGTGGACC 

RM166 316 2 2.3 61 1:200 GGTCCTGGGTCAATAATTGGGTTACC TTGCTGCATGATCCTAAACCGG 
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Figure Legends 

Fig.1.  Major blast resistance genes and their response to various US blast races. Pi-b has 

a broader spectrum of resistance than other genes shown and is resistant to IE1k. 

Fig. 2. Pathogenicity Assay  

A-D. Different stages of seedling development until the third leaf stage; E. AVR 

race IE1k ;  F. Virulent race IB54; G. Seedlings sprayed with 40 ml of spore 

suspension/tray using a concentration of 5X10
5
 spores/ml. The spores were 

sprayed by placing the seedling tray in plastic bags making sure that inoculum 

was evenly distributed;  H. The seedlings were left for incubation at room 

temperature; I. Plastic bags were opened and the seedlings allowed to grow for 

approximately 7 days for disease symptoms to appear; J. Improved evaluation 

standard for determining disease reactions of rice germplasm. Resistant (0-2); No 

lesion formation- 0; Lesions covering less than 5% of total leaf area, lesions 

restricted at the site of infection-1; Lesions covering between 5% to 10% of the 

total leaf area; restricted spindle lesions at diameter less than 2 mm - 2; 

Susceptible (3-5): Lesions in several locations on the leaf to form a large eye-

shaped brown area (diameter greater than 2mm) - 3; Lesions covering greater than 

50% of the leaf area, diseased area with lesion greater than 30% of the total leaf 

area - 4; Lesions covering greater than 70% of the total leaf area - 5. Note: 

Improvement was based on disease reactions of both indica and japonica cultivars 

to blast. Plants at the three to four leaf stage were inoculated and the second 

youngest leaf was evaluated one week after inoculation. 

Fig. 3. SSR marker genotype analysis 
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A. Allele maker for a Pib dominant marker; B. Allele marker for RM208; and  C. 

Allele marker for RM166. The DNA used was from the different cultivars. The 

SSR marker genotype analysis was performed using Gene Mapper® software 

version 3.7, Applied Biosystems, Foster City, CA. 

Fig.4. Analysis of the Pi-b gene in rice germplasm using disease reaction and SSR 

markers. The diagram shows results of disease reactions and expected SSR 

marker alleles for germplasm in different categories. 
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Summary 

 Pi-z and the Pi-b genes are two widely studied blast resistant genes in the 

Southern US. These genes confer resistance to the blast race IE1k, known to overcome 

rice cultivars containing the widely used resistant gene Pi-ta, making these genes of 

interest to researchers and rice breeders.  In 2004, IE1k resulted in significant economic 

loss in several rice fields planted to the rice cultivar „Banks‟, known to contain Pi-ta. 

Subsequently, „Banks‟ was discontinued by the rice industry. 

 The overall objective of our studies were to identify germplasm accessions from 

the worldwide Oryzae collection at the Dale Bumpers National Rice Germplasm Center 

containing  Pi-z and Pi-b for use by rice breeders. 

Today, marker-assisted selection (MAS) is one of the most widely used methods 

in rice breeding for improved resistance to blast disease. MAS selections are based on 

DNA markers closely linked to a blast R gene that confers resistance to a particular race 

of the pathogen. MAS can be used to screen seeds or seedlings under laboratory 

conditions, which is much faster than traditional pathogenicity assays in which accurate 

selection can only be made during later stages of plant growth. In addition, MAS can 

avoid the overlapping effects of other matched pairs of R and AVR genes. Since it is more 

difficult and time-consuming to determine the presence or absence of the gene based 

solely on pathogenicity assays, the marker allele which is linked with gene is used to 

determine the presence of the gene. The assumption is that the linked allele associates 

with the gene and/or quantitative trait locus (QTL) of interest.  Hence MAS can be useful 

for traits that are difficult to measure, exhibit low heritability, and/or are expressed late in 

development. 

http://en.wikipedia.org/wiki/Allele
http://en.wikipedia.org/wiki/Gene
http://en.wikipedia.org/wiki/Quantitative_trait_locus
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This research used a non SNP type of marker approach to characterize the Pi-z 

gene which was not reported previously. Also, the markers used were more closely linked 

than the SNP markers developed previously, hence minimizing chances of 

recombination. This research also confirmed marker analysis by using targeted 

pathogenicity assays.  

Pi-b characterization utilized a dominant marker (Pibdom),a fragment from the 

Pi-b cloned gene. In addition, SSR markers and pathogenicity assays were also utilized to 

characterize this gene.   

The germplasm accessions identified can be utilized as donors for breeding and as 

reference accessions by inoculating with additional isolates of M. oryzae. Germplasm 

accessions identified as lacking Pi-z and Pi-b alleles can be used as recurrent breeding 

parents for receiving the genes to develop improved resistance to current blast races.  

The Pi-z gene was confirmed in 81 germplasm accessions with different 

haplotypes out of 117 germplasm accessions which were marker tested previously at 

DBNRRC. The findings also matched the pathogenicity data. The study also confirmed 

Pi-b in 88 of 164 germplasm accessions from around the world, and previously marker 

tested at DBNRRC.   Characterization was accomplished utilizing previously identified 

DNA markers and pathogenicity assays, resulting in improved results.  

For germplasm requests, please visit (www.ars.usda.gov/spa/dbnrrc/gsor) at 

GSOR of DB NRRC. 

 

 

 
 


