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ABSTRACT 

The wedge-billed woodcreeper (Glyphorynchus spirurus) is a common understory suboscine 

passerine of lowland Neotropical rainforests. It frequently joins mixed-species understory flocks 

but also regularly forages alone, and thus is an excellent model species on which to conduct 

comparative behavioral observations to examine the hypothesized costs and benefits of flock-

following.  Individuals exhibit variable flocking propensities (proportion of time spent with 

flocks), and thus observing the correlations between flocking propensity and physical and 

environmental factors can provide further insight into the importance of flock-following to the 

ecology of this species. Despite its abundance at many sites and its wide geographic range, 

surprisingly few studies have focused on the ecology and behavior of this species; previous 

observations suggested that this species occupies large, overlapping home ranges, which has 

important implications for intraspecific interactions and flock-following behavior.  This study 

had three primary objectives: 1) to compare the foraging behavior and movement patterns of the 

wedge-billed woodcreeper in and out of flocks to examine the importance of hypothesized costs 

and benefits of flock-following for this species; 2) to determine which physical and 

environmental factors have the greatest influence on individual flocking propensity; and 3) to 

quantify the extent of home range overlap among individuals and to examine the influence of 

this overlap on space use and flock-following behavior.  Wedge-billed woodcreepers used more 

open microhabitats in flocks than alone, supporting an anti-predator hypothesis for the benefit of 

flocking behavior.  A decrease in time spent per trunk in flocks than alone, and a decrease in 

time spent with a flock with increasing movement rate, suggests an energetic cost associated 

with following flocks.  Average flocking propensity was 32% in 2011 and 20% in 2012, 

considerably lower than previously reported in the literature and predicted under the assumption 



that individuals always join a flock when one is present in the home range.  Body mass was the 

strongest predictor of individual flocking propensity, with larger individuals spending more time 

in flocks, and the correlation between the differences in body mass and flocking propensities of 

overlapping neighbors suggests that larger individuals may exclude smaller individuals from 

flocks.  The distribution of flock-following locations was not influenced by the space use of 

larger neighbors, although a rigorous examination of simultaneous space use, coupled with a 

genetic analysis to determine if any overlapping neighbors are genetically related, would be 

necessary to provide a robust test of this hypothesis.  Home ranges overlapped extensively in this 

study, thus the wedge-billed woodcreeper does not appear to defend exclusive home ranges at 

this site, unlike most other understory insectivores including other woodcreepers.  Finally, in 

order to provide additional information about the behavior and natural history of this species, this 

dissertation includes a chapter that describes a previously known display behavior and provides 

notes about incubation and fledgling care.
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Mixed-species flocks of birds are a prevalent feature of avian communities throughout 

the world (Powell 1985, Greenberg 2000).  Mixed-species flocks are generally defined as a 

group of two or more species interacting and traveling together (Morse 1970, Greenberg 2000), 

as distinguished from other types of mixed-species groups that result from mutual attraction to a 

food resource (e.g. frugivores attracted to a fruiting tree [Leck 1971], insectivores following an 

ant swarm [Willson 2004]), from which individual species arrive and depart independently.  The 

composition or prevalence of flocks may vary seasonally (McClure 1967, Powell 1979, Alves 

and Cavalcanti 1996), and in temperate environments, mixed-species flocks disappear entirely 

during the breeding season (Morse 1970).  However, in many lowland rainforests throughout the 

world, mixed-species flocks defend stable territories and participate in flocks year-round 

(Moynihan 1962, Munn and Terborgh 1979, Partridge and Ashcroft 1976, Diamond 1987, 

Goodale and Kotagama 2004). 

Most hypothesized benefits of flocking fall under two categories: increased foraging 

efficiency and protection from predators.  These types of benefits are not mutually exclusive, 

particularly when decreased time spent in vigilance allows for more time spent feeding (Dolby 

and Grubb 1998, Fernandez-Juricic et al. 2004b, Sridhar et al. 2009).  Flock members may gain 

foraging benefits by copying information from other flock members about successful patches or 

by taking prey flushed by others (Powell 1985, Terborgh 1990, Veena and Lokesha 1993, 

Greenberg 2000).  Members of winter woodland flocks in the North Temperate Zone have been 

shown to benefit by copying behaviors of successful individuals (Krebs 1973, Waite and Grubb 

1988).   However, many members of tropical mixed-species insectivore flocks engage in 

stereotyped,species-specific behaviors that are not conducive to social learning (Henderson 1989, 

Hutto 1994). With the exception of the bluish-slate and cinereousantshrikes 
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(Thamnomanesschistogynus and T. caesius respectively), there is little evidence that Neotropical 

understory flock members frequently take flushed prey (Munn 1986, English 1998). 

 Anti-predator benefits are generally believed to be a more important function than 

foraging enhancement for tropical mixed-species insectivore flocks.  This is supported in part by 

the reduced prevalence of flocks on predator-free islands (Beauchamp 2004) and the increased 

survival rate for obligate flock-followers in the Neotropics (Jullien and Clobert 2000).  Flock-

following may incur anti-predator benefits via a number of mechanisms, including improving 

vigilance, decreasing the probability of the individual being selected during an attack, and 

creating confusion for an attacking predator (Powell 1985, Terborgh 1990, Greenberg 

2000).Improved vigilancehas been cited as the most likely benefit operating in mixed-species 

forest flocks (Terborgh 1990, Greenberg 2000), with reduced scanning rates in individuals 

foraging in flocks compared to individuals foraging alone (Alves and Cavalcanti 1996, Dolby 

and Grubb 1998, Fernandez-Juricicet al. 2004, Sridhar et al. 2009).Furthermore, some species 

have been recorded foraging in more exposed situations in flocks than alone (Munn 1984, Dolby 

and Grubb 2000, Tubelis et al. 2006).   

In some flocks, certain species appear to act as sentinels, such as greater racket-tailed 

drongos (Dicrurus paradiseus) in Sri Lanka (Goodale and Kotagama 2005), chalk-browed 

mockingbirds (Mimus saturninus) and shrike-like tanagers (Neothraupis fasciata) in the 

Brazilian Cerrado (Tubelis 2007), and Thamnomanes antshrikes in Amazonia (Munn and 

Terborgh 1979, English 1998); these species engage in sit-and-wait foraging tactics that allow 

them to maintain a high level of vigilance while foraging, and they are generally the first to 

produce alarm calls in the presence of a predator.  Small- to medium-sized passerines that engage 

in active foraging maneuvers are believed to be more vulnerable to predatory attack by raptors 
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than ground-dwellers or species that engage in sit-and-wait tactics (Thiollay 1999, Sridhar et al. 

2009). Experimental evidence on guppies demonstrated that some foraging behaviors diverted 

the forager’s attention from the surroundings and increased response time during a predatory 

attack; additionally foragers engaged in these “vulnerable” maneuvers were preferentially 

attacked by predators (Krause and Godin 1996).  Sharp-shinned hawks (Accipiter striatus) also 

preferentially attacked foraging over vigilant birds and solitary over grouped individuals (Roth et 

al. 2006).A number of vulnerability attributes are correlated with the propensity of a species to 

join flocks (Buskirk 1976, Thiollay 1999, Sridhar et al. 2009), and such species may benefit from 

the vigilance and sentinel behaviorof the antshrikes in Amazonian flocks.   

There are a number of possible costs associated with joining a mixed-species flock, and 

the cost-benefit balance likely influences how frequently a given species associates with flocks.  

Several studies on North Temperate woodland flocks have demonstrated both intraspecific and 

interspecific competition within flocks, with subordinate individuals or species restricting their 

foraging niches in the presence of dominants (Morse 1970, Alatalo 1981, Schneider 1984, 

Crimprich and Grubb 1994).  However, it has been suggested that, due to the presence of 

species-specific foraging niches, members of mixed-species flocks experience reduced 

competition costs compared to similar-sized single-species flocks (Gradwohl and Greenberg 

1980).  In fact, several recent studies have document significant positive associations among 

species pairs within mixed-species flocks (Arbeláez-Cortés et al. 2011, Sridhar et al. 2012).  

Another potential cost is kleptoparasitism, where one species steals prey from another species in 

the same flock (McClure 1967, Munn 1986, King and Rappole 2001).  Sentinel species, 

including fork-tailed drongos (Dicrurus adsimilis) in Botswana (Herremans and Herremans-

Tonnoeyr 1997) and Thamnomanes anthrikes in Amazonia (Munn 1986, English 1998), have 
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been documented to give apparently false alarm calls that cause other flock members to drop 

their prey, which is then snatched by the sentinel.One possible cost that remains largely untested 

is that species must conform to the movement rate of the flock, which could result in the use of 

suboptimal movement patterns and reduced foraging efficiency for some species (Partridge and 

Ashcroft 1976, Hutto 1988).  For instance, babblers (Timaliidae) in Ceylon frequently lagged 

behind the other flocking species and had to interrupt foraging to catch back up (Partridge and 

Ashcroft 1976). 

Mixed-species flocks of Amazonian rainforests are among the most diverse and 

seasonally stable in the world (Greenberg 2000).  Two mixed-species flock types are recognized, 

with canopy and understory flocks consisting mostly of separate species and generally moving 

independently of one another (Munn 1985, Terborgh et al. 1990, English 1998).  Canopy flocks 

appear to occupy larger territories than understory species, perhaps in part due to the tendency of 

many canopy species to consume fruit in addition to insects; conversely, understory flock species 

are strictly insectivorous (Munn 1985).  Understory flocks contain 6-10 “core” species, called 

such because they defend a common flock territory from conspecifics and rarely forage away 

from the flock (Munn and Terborgh 1979, Jullien and Thiollay 1998, English 1998).  Exact 

species composition varies regionally, but core species typically include one or two species of 

Thamnomanes spp. antshrikes, up to four species of antwrens (Myrmotherula and 

Epinecrophylla), one or two foliage-gleaners (Automolus and Phylidor), and one or more 

woodcreepers (usually Xiphorhychus spp.; Munn and Terborgh 1979, Jullien and Thiollay 1998, 

English 1998).  In addition, there are seven or more species, termed “regular flock species” by 

Munn and Terborgh (1979), which forage almost exclusively with flocks but occupy territories 

that encompass more than one understory flock; these species include Automolus infuscatus, 
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Xenops minutus, Hylophilus ochraceiceps, Habia rubica, and some woodcreepers (Munn and 

Terborgh 1979, Jullien and Thiollay 1998, English 1998).  An additional 25 or more species, 

variously termed “frequent” or “occasional” flock members depending on the regularity with 

which they are found in flocks, follow mixed-species flocks but are also regularly seen foraging 

alone (Munn and Terborgh 1979, Jullien and Thiollay 1998, English 1998).  These may include 

additional woodcreepers, foliage-gleaners, and antbirds (Thamnophilidae), as well as flycatchers 

(Tyrannidae), small woodpeckers (Picidae), tanagers (Thraupidae), trogons (Trogonidae), and 

nunbirds (Monasa spp.).   

The wedge-billedwoodcreeper (Glyphorynchusspirurus) is a facultative flock-follower of 

the lowland Neotropics, frequently joining mixed-species understory flocks but also regularly 

foraging alone (Munn and Terborgh 1979, English 1998, Jullien and Thiollay 1998).  Previous 

comparisons of foraging behavior of species in and out of Amazonian flocks tended to rely on 

obligate species (e.g. Munn 1984), which by definition are rarely found away from flocks and 

therefore such foraging behaviorsare irregular and may be influenced by other factors.  The 

Wedge-billedWoodcreeperis thus a good model species on which toconduct comparative 

behavioral observations. 

The wedge-billed woodcreeper is a widespread suboscine passerine of the Neotropics, 

found in most lowland forests including mature rainforest and secondary forest (Marantz et al. 

2003).  Despite its wide geographic range and abundance at many locations, relatively few 

studies have focused on the ecology or behavior of this species.  Gradwohl and Greenburg 

(1980) offered evidence, based on several color-marked individuals, that this species occupies 

extensively overlapping home ranges on Barro Colorado Island in Panama; however, home range 

overlap was not mentioned for this species as part of similar understory mixed-species flock 
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studies in French Guiana (Jullien and Thiollay 1998) or central Brazil (described as a “typical 

territorial species", Johnson et al. 2011), and Marantz et al. (2003) suggest that home range 

overlap may vary across this species' range.  The existence and extent of home range overlap is 

an important factor that may influence the probability that an individual joins a flock.  In 

Neotropical understory flocks, most species aggressively exclude conspecifics from the flock 

territory, such that each species in the flock is represented by a single individual, pair, or family 

group (Munn and Terborgh 1979, Jullien and Thiollay 1998, English 1998).  However, if the 

wedge-billed woodcreeper occupies extensively overlapping home ranges, they either must 

tolerate other conspecifics in flocks, unlike other flock members, or actively exclude 

conspecifics in these overlapping areas, with one individual or pair exhibiting a form of social 

dominance within this shared space.   

The primary goals of this study were to use the wedge-billed woodcreeper as a model 

species for which to examine hypothesized costs and benefits of joining mixed-species flocks, 

and to examine the influence of intraspecific interactions on individual space use and flock-

joining behavior.  In Chapter 2 I compare the foraging behavior of the wedge-billed woodcreeper 

in and out of flocks and discuss the differences in the context of proposed costs and benefits of 

flocking behavior.  In Chapter 3 I examine the effects of body mass, body condition, and 

environmental characteristics of the home range on individual flocking propensity.  In Chapter 4 

I discuss the influence of habitat characteristics and overlapping neighbor space on flock-

following locations, and I provide details on the phenomenon of home range overlap among 

individuals at this study site.  In Chapter 5 I provide the first description of a display behavior 

used in multiple contexts including courtship, along with notes about the timing and behaviors 

associated with incubation and fledgling care. 
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Abstract 

 Flocking propensity in any given species is probably determined by the balance of costs and 

benefits of joining a flock.  The wedge-billed woodcreeper (Glyphorynchusspirurus) frequently 

joins mixed-species understory bird flocks but also often forages alone.  In this study, I 

compared the foraging behavior and microhabitat use of Wedge-billed woodcreepers foraging in 

and out of flocks, and I examined the differences in the context of severalhypothesized costs and 

benefits of flocking.  I observed wedge-billed woodcreepers in two forest plots at Tiputini 

Biodiversity Station, Orellana Province, Ecuador during Jan-Mar of 2010-2012.  I measured 

foraging height range, time spent per trunk, vertical movement rate, distance flown between 

trunks, extent of foliage cover around the foraging bird, hitch (search movement) rate, peck (prey 

attack) rate, and scan rate.  I tracked woodcreepersin 2012 using radio telemetry to measure 

movement rates and to record the locations of flock-joining and -leaving. Woodcreepers in flocks 

foraged in more exposed microhabitats, spent less time per trunk, and exhibited greater hitch 

rates and vertical movement rates, and foraged in a narrower height range than woodcreepers 

foraging alone.  Scanning rates, peck rates, and distance flown between trunks did not differ 

between flock situations.  Horizontal movement rate did not differ in and out of flocks, but the 

length of individual flock-following sessions was negatively correlated with movement rate. 

These observations support an anti-predator benefit of flocking for this species.  Conversely, 

woodcreepers may experience an energetic cost or decreased foraging efficiency associated with 

conforming to flock movement patterns. 

 

Introduction 
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Mixed-species bird flocks are prevalent year-round throughout much of the world’s lowland 

rainforests,and they are particularly diverse in the Neotropics (Powell 1985).  Mixed-species 

flocks of understory insectivores in the Amazon Basin generally consist of one or two antshrike 

(Thamnomanes)species and 10-12 “core” species that share a common territory that is defended 

against other conspecifics (Munn and Terborgh 1979, Wiley 1980, English 1998, Jullien and 

Thiollay 1998).  The core species are considered to be obligate flock-followers, rarely or never 

seen foraging away from flocks.  In addition, 30 or more species are facultative flock-followers, 

joining these flocks for varying lengths of time but also regularly foraging away from them 

(Munn and Terborgh 1979, English 1998, Jullien and Thiollay 1998).  

 Most hypothesized benefits of flocking fall under two categories: increased foraging 

efficiency and protection from predators.  These types of benefits are not mutually exclusive, 

particularly when decreased time spent in vigilance allows for more time spent feeding (Dolby 

and Grubb 1998, Fernandez-Juricic et al. 2004b, Sridhar et al. 2009).  Flock members may gain 

foraging benefits by copying information from other flock members about successful patches or 

by taking prey flushed by others (Powell 1985, Terborgh 1990, Greenberg 2000).  However, 

many members of tropical mixed-species insectivore flocks engage in stereotyped,species-

specific behaviors that are not conducive to social learning (Henderson 1989, Hutto 1994), and 

furthermore, typically only one individual or family group per species is present in a flock 

(Munn and Terborgh 1979, English 1998, Jullien and Thiollay 1998). With the exception of the 

bluish-slate and cinereousantshrikes (Thamnomanesschistogynus and T. caesius respectively), 

there is little evidence that Neotropical understory flock members frequently take flushed prey 

(Munn 1986, English 1998). 
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 Anti-predator benefits are generally believed to be a more important function than 

foraging enhancement for tropical mixed-species insectivore flocks.  This is supported in part by 

the reduced prevalence of flocks on predator-free islands (Beauchamp 2004) and the increased 

survival rate for obligate flock-followers in the Neotropics (Jullien and Clobert 2000).  Flock-

following may incur anti-predator benefits via a number of mechanisms, including improving 

vigilance, decreasing the probability of the individual being selected during an attack, and 

creating confusion for an attacking predator (Powell 1985, Terborgh 1990, Greenberg 

2000).Improved vigilance, either by the actions of sentinel species or the presence of many 

individuals, has been cited as the most likely benefit operating in mixed-species forest flocks 

(Terborgh 1990, Greenberg 2000).  Evidence for this hypothesis comes from numerous studies 

that document reduced scanning rates in individuals foraging in flocks compared to individuals 

foraging alone (Alves and Cavalcanti 1996, Dolby and Grubb 1998, Fernandez-Juricicet al. 

2004b, Sridhar et al. 2009).  Furthermore, some species have been recorded foraging in more 

exposed situations in flocks than alone (Munn 1984, Dolby and Grubb 2000, Tubelis et al. 2006).   

Small- to medium-sized passerines that engage in active foraging maneuvers are believed 

to be more vulnerable to predatory attack by raptors than ground-dwellers or species that engage 

in sit-and-wait tactics (Thiollay 1999, Sridhar et al. 2009). Experimental evidence on guppies 

demonstrated that some foraging behaviors diverted the forager’s attention from the 

surroundings and increased response time during a predatory attack; additionally foragers 

engaged in these “vulnerable” maneuvers were preferentially attacked by predators (Krause and 

Godin 1996).  Sharp-shinned hawks (Accipiter striatus) also preferentially attacked foraging over 

vigilant birds and solitary over grouped individuals (Roth et al. 2006).A number of vulnerability 

attributes are correlated with the propensity of a species to join flocks (Buskirk 1976, Thiollay 

15 
 



1999, Sridhar et al. 2009), and such "vulnerable" species may benefit from the detection afforded 

by the vigilance of sentinel species or the presence of many individuals in flocks. 

 Relatively few studies have examined the possible costs associated with joining a mixed-

species flock, and the cost-benefit balance likely influences how frequently a given species 

associates with flocks.  Due to the presence of species-specific foraging niches, competition 

costs are likely reduced for members of mixed-species flocks compared to similar-sized single-

species flocks (Gradwohl and Greenberg 1980).  In fact, several recent studies have documented 

significant positive associations among species pairs within mixed-species flocks (Arbeláez-

Cortés et al. 2011, Sridhar et al. 2012).A likely cost for members of mixed-species flocks is that 

species must conform to the movement rate of the flock, which could result in the use of 

suboptimal movement patterns and reduced foraging efficiency for some species (Partridge and 

Ashcroft 1976, Hutto 1988).  For instance, babblers (Timaliidae) in Ceylon frequently lagged 

behind the other flocking species and had to interrupt foraging to catch back up (Partridge and 

Ashcroft 1976). 

 The wedge-billed woodcreeper (Glyphorynchusspirurus) is a facultative flock-follower of 

the lowland Neotropics, frequently joining mixed-species understory flocks but also regularly 

foraging alone (Munn and Terborgh 1979, English 1998, Jullien and Thiollay 1998).The wedge-

billed woodcreeperis thus a good model species on which toconduct comparative behavioral 

observations.  Like most other woodcreepers, it forages by moving vertically along trunks and 

gleaning arthropods from the bark (Marantz et al. 2003).  This behavior confers a large vertical 

component to its movement patterns that is lacking in the majority of core flock species, most of 

which glean insects from leaves (Munn and Terborgh 1979, English 1998).  Therefore, in order 

to keep up with a moving flock, a wedge-billed woodcreeper might make one or more of the 
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following behavioral modifications: reduce the height range searched per trunk, increase vertical 

movement rate, or increase the distance flown between trunks.  Any of these modifications might 

manifest as a cost if they result in decreased foraging efficiency, or if an increase in movement 

rate is not compensated by an increase in energetic intake.  

The purpose of this study was to compare the foraging behavior of wedge-billed 

woodcreepers in and out of flocks to determine the most likely costs and benefits derived by this 

facultative flock-follower.  If the main benefit gained from flock-following is anti-predator 

vigilance, then we hypothesize that thewedge-billed woodcreepers would forage in more dense 

cover and spend more time in vigilant behavior away from flocks than in flocks.  I hypothesized 

that the primary cost to flock-following is an increase in movement rate that compromises 

foraging efficiency.  Therefore I expected one or more of the following behavioral changes: 1) an 

increase in either horizontal or vertical movement rates, or both, while following flocks; 2) a 

decrease in attack to search maneuver ratio in flocks than alone; and 3) a decrease in time spent 

with a flock as a function of flock movement rate.  

 

Methods 

Study area 

This study was conducted atTiputini Biodiversity Station (0°38’15”S, 76°08’59”W) in Orellana 

Province, Ecuador.  The station encompasses 638 ha of rainforest within the 1,682,000-ha 

UNESCO Yasuni Biosphere Reserve.  The forest is composed mainly of undisturbed terra firme 

rainforest, with a strip of varzea bordering theTiputini River.  The mean elevation at the station is 

~220m above sea level, and the region receives roughly 3200mm of rainfall annually with a 

relatively dry period from January to February.  The current project was conducted on two ~100-
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ha plots within the reserve, separated by ~1.5 km (Blake 2007).  Both plots consisted primarily 

of mature terra firme forest, with one plot characterized by a more dissected topography and the 

other plot flatter overall (although with a similar mean elevation; Blake 2007) with relatively 

more treefalls and swampy depressions.  Abundance of wedge-billed woodcreepers and the 

flock-leading cinereous and dusky-throated antshrikes (T. ardesiacus) are similar in both plots 

(Blake 2007). 

Field methods 

I conducted foraging observations during all daylight hours from 12 Janto 5 Mar 2010, 17 Jan to 

7 Feb 2011, and 14 Jan to 27 Mar 2012.  In 2010 I systematically searched the plot trails for 

wedge-billed woodcreepers (hereafter "woodcreepers").  When I encountered a flock, I 

conducted observations on the first woodcreeper spotted in the flock.  Only one individual per 

flock was observed unless other individuals were identifiable by color bands.  In 2011 and 2012, 

I conducted observations opportunistically on unmarked and radio-tagged individuals (see 

below).  I averaged repeated observations of five marked individuals in 2010, six in 2011, and 

ninein 2012, separately for flocking and non-flocking situations, for the current analysis.   

Each foraging observation was categorized as “no flock” or “flock”.  I considered a 

woodcreeper to be in a flock if it was actively foraging inside a flock or ≤10 m of a flock edge 

(maximum nearest-neighbor distance in Wiley [1980]).I began the observation when the focal 

individual flew to a new tree and continued until I lost track of the bird.  For observations that 

included a complete bout on a trunk (bird was seen both alighting on and departing from that 

trunk), I visually estimatedstart height and end height to the nearest 0.5 m, and I measurd the 

time spent on that trunk (2010, 2012).  I estimated the distance flown between trunks to the 

nearest 1 m in 2010.  I categorized cover within a 1-m-radius sphere of the foraging individual as 
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open (<25% cover), medium (25-75%), or dense (>75%).  In 2010, I dictated foraging 

maneuvers continuously into a digital voice recorder.  Maneuvers were categorized as pecks (any 

movement where the bill struck the surface of the trunk), hitches (one hitch = single hop 

resulting in an upward movement along the trunk), and scans (or head cocks as in Sullivan 

[1984]; twisting the head to the side in apparent attempt to scan the environment).  The peck, 

hitch, and scan counts were then divided by the observation time to measure peck, hitch, and 

scan rates (no./min).   

I captured wedge-billed woodcreepers in both study plots in 2012 using 2.6-m mist nets 

as part of a long-term demographic study of understory birds (see Blake and Loiselle 2012 for 

additional details).  Twenty-three individuals were captured between 10 Jan and 17 Mar 2012 

and fitted with a radio transmitter (0.45g BD-2, Holohil Systems Ltd., Carp, Ontario) using a 

thigh harness (Rappole and Tipton 1991) made from either cotton or elastic thread. Individuals 

were released at the site of capture. 

 I tracked woodcreepers during all daylight hours using Advanced Telemetry Systems 

Field Master receivers and hand-held three-element Yagi antennas for 2-3 h per day, beginning 

at least 24 hafter capture.  I randomized the order of tracking each day such that all individuals 

had an equal proportion of tracking sessions among daily time periods.  I determined the location 

of the woodcreeper by homing, in which the woodcreeper was approached until it was either 

seen, or until the lack of directionality in the signal indicated close proximity (~10m; technicians 

were trained with the transmitters prior to tracking in order to calibrate their abilities to judge 

distances using the equipment).I recorded location using a GPS unit every 15 min during the 

tracking sessions, along with the time and location of any flock-joining or flock-leaving.I 

occasionally recorded location at shorter time intervals if the focal individual changed direction 
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multiple times while traveling a long distance (e.g. > 100m), or if a focal individual moved away 

and then returned to the same spot. 

Statistical analysis 

I compared flight distance between trunks, hitch rate, peck rate, scan rate, peck:hitch ratio, height 

range, time spent per trunk, cover use, horizontal movement rate, and vertical movement rate of 

woodcreepers foraging in and out of flocks.  I pooled data from multiple years and from both 

plots.  I used the Shapiro-Wilk test to determine if data were normally distributed and ln-

transformed if necessary and re-tested the data for normality. I used at-test or Mann-Whitney U-

test to compare each variable between flocking and non-flocking situations.I used log-linear 

regression to model the effect of flocking situation on the frequency of cover category use.  I 

performed all statistical analyses in program R 2.15.1 (R Development Core Team 2012) at 

α<0.05. 

I formed two subsets of the data to investigate the effects of an unknown level of 

pseudoreplication present in the behavioral data set due to repeated observations of unmarked 

individuals.  One set, termed the “independent set”, included single randomly selected 

observations from marked individuals and randomly selected observations from unmarked 

individuals spaced 400m apart in both plots from all years.  I chose this distance because the 

likelihood that observations spaced 400m apart were from the same individual is very small, 

given the high density (Blake and Loiselle 2012) and the average home range size of this species 

at this site (~4 ha, Darrah, unpubl. data).  The second subset, termed the “pseudoreplication set”, 

contained only repeated observations of 20 marked individuals from all years.  Due to the small 

sample size of many behavior data, I generated these subsets using cover data only.  In both 

subsets, I modeled the effect of flocking situation on cover use using log-linear regression. 
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I measured distances and times between consecutive locations within tracking sessions 

for each individual using the Movement Path Metrics feature in Geospatial Modeling 

Environment (GME; Beyer 2009) and categorized each location as "in flock" or "no flock".  I 

used the distances and times to calculate the movement rate (m/min) between points.  To test the 

hypothesis that movement rates differ in flocks and out of flocks, I conducted an ANOVA on 

movement rates with factors flock, individual, and flock-individual interaction.  To explore the 

relationship between flock-following behavior and movement rates, I grouped the data for each 

individual into flock sessions (single events of joining and then leaving a flock), with the time 

spent in the flock and the average movement rate calculated for each session.  I fit a linear 

mixed-effects model of the effect of movement rate on flock session length using residual 

maximum likelihood methods in program R, with individual included as a random effect.  

 To consider the possibility that any high movement rates in flocks simply resulted in 

reaching the woodcreeper’s home range boundary sooner, I explored the relationships among 

flock-joining locations, flock-leaving locations, and session length.  I estimated the utilization 

distribution (UD) for each individual in 2012 in GME using fixed-kernel density estimation, with 

the smoothing parameter chosen using the least squares cross-validation method (Seaman and 

Powell 1996). For each individual, I measured the volume of the UD at each cell of the kernel 

density raster by generating percent volume contours (1-99%; Kertson and Marzluff 2010) using 

the Contour tool in GME.  I converted the contours to a raster of volume measurements in 

ArcMAP (ESRI, Redlands, California) using the Feature to Raster tool in ArcTool Box.  I plotted 

the locations of flock-joining and flock-leaving for each individual onto that individual’s UD 

volume raster, and I measured the volume of the UD at each flock-joining or -leaving point as an 

index of proximity to the edge of the home range.  I used linear mixed-effects regression with 
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individual as a random effect in program R to investigate the effects of flock-joining location and 

session length on flock-leaving location. 

 

Results 

Foraging Behavior 

Woodcreepers spent less time per trunk while foraging in flocks than when foraging alone (F = 

18.83, df = 1 and 3, p< 0.001; Table 1), and this pattern did not differ between years (F = 1.83, df 

= 1 and 3, p = 0.18).  In 2010, hitch rate was significantly greater in flocks (U = 59, p = 0.03), 

while peck rate (U = -19, p = 0.43) and scan rate (U = -20.5, p = 0.28) differences were non-

significant (Table 1).  Woodcreepers used a smaller height range per trunk while foraging in 

flocks than alone (U = -2194.5, p = 0.046), as a result of a significant decrease in end height (t = 

2.31, df = 74, p = 0.02) in flocks, but no change in start height (t = -1.70, df = 75.6, p = 0.093).  

Vertical movement rate was greater in flocks than alone (t = 2.4, df = 61.8, p = 0.016).  There 

was no difference in flight distance between trunks (U = -9.5, p = 0.70) between flocking 

situations (Table 1).  Woodcreepers used significantly less cover when foraging in flocks 

compared to foraging alone (χ2 = 12.75, df = 2, p = 0.002; Fig. 1). 

Effects of pseudoreplication 

Wedge-billed woodcreepers used areas of less dense cover more frequency in flocks than alone 

in the independent set (χ2 = 6.99, df = 2, p = 0.03), while this was marginally non-significant in 

the pseudoreplication set (χ2 = 5.31, df = 2, p = 0.07; Table 2).   

Movement rates and flock sessions 

Movement rates of wedge-billed woodcreepers did not differ in and out of flocks (F = 1.68, df = 

1 and 24, p = 0.19), although there was significant variation in average movement rate among 
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individuals (F = 3.06, df = 22 and 24, p < 0.001).  Mean individual movement rates varied from 

1.35 m/min (0.22 SE) to 2.9 m/min (0.27 SE), with an overall mean of 2.2 m/min (0.55 SE) out 

of flocks and 2.36 m/min (0.11 SE) in flocks.  Overall mean flock-following session length was 

36.1 min (2.32 SE; range 5-210 min) with a mean of 91.7 m (5.6 SE; range 0-377 m) traveled per 

session.  Session length was inversely related to movement rate (t = -2.33, df = 150, p = 0.02; 

Fig. 2).  Location of flock-leaving was positively correlated with location of flock-joining (t = 

12.12, df = 150, p < 0.001; Fig. 3) and unrelated to the length of the session (t = -3.45, df = 150, 

p = 0.12). 

 

Discussion 

Woodcreeper vertical movement rate was greater in flocks than alone, despite a 

concurrent decrease in height range utilized in flocks.  The increased search movement (hitch) 

rate without a concurrent increase in prey attack (peck) rate, suggests that woodcreepers may 

incur an energetic cost while following flocks. Woodcreepers may have reduced the time spent 

per trunk in order to keep up with flock movements, given that they did not increase the distance 

flown between trunks while following flocks in this study.  In a study on mixed-species flocks in 

Panama, Pomaraet al. (2003) also found that slate-throated redstarts (Myioborusminiatus) 

increased movement rates but not attack rates when foraging in flocks.  They attributed this 

change to a shift from sit-and-wait flycatchingto a more active foraging strategy suitable for 

keeping up with a moving flock. If the time spent per trunk by woodcreepersis constrained by the 

need to keep up with the flock, this may or may not represent a cost of flock-following.  On the 

one hand, increased search rate without a concurrent increase in attack rate suggests a reduction 

in foraging efficiency while in flocks.  On the other hand, it is possible thatwoodcreeperscould 
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compensate by taking only larger, more profitable prey items (Giraldeau and Caraco 2000).  To 

further complicate matters, it is probable that some proportion of “pecks” constitutes search 

behavior rather than prey attack.  Unfortunately it was not possible to measure prey capture rate 

in this species due to its rapid movements and often tiny prey consumed (English 1998, Marantz 

et al. 2003), although an increased search rate would be expected to yield a greater capture rate 

(Norberg 1977, Robinson and Holmes 1982).  Thus it appears that woodcreepers increased 

search rates while in flocks, but it is not clear how this may have affected foraging efficiency. 

Despite the decreased time spent per trunk in flocks, movement rates (m/min, generally 

measured over a 15-min period) did not differ in flocks or without.  This may be due in part to 

the different time scales over which these variables were measured; the movement rate data 

reveals broader-scale movements that would not capture finer-scale variation due to visiting 

consecutive trunks in a non-linear pattern.  However, movement rate was negatively correlated 

with flock session length, suggesting that woodcreepers may drop out of flocks sooner if they are 

moving faster.  While flock movement rates were not measured in this study, examination of 

Figure 3 in Jullien and Thiollay (1998) reveals that Thamnomanes-led understory flocks 

(composition similar at the genus level to those in western Amazonia) moved at rates ranging 

from 1-11 m/min in lowland rainforest of French Guiana.  If western Amazonian flocks move at 

similar rates, then flocks may regular move at a rate well above the average movement rate of 

wedge-billed woodcreepers at this site. There may be an energetic cost associated with keeping 

up with a rapidly moving flock, such that after a certain threshold is reached, the costs of 

following outweigh the benefits and the woodcreeper leaves the flock. 

The negative relationship between movement rate and flock-following session lengthwas 

notresult of reaching the edge of the woodcreeper’s home range more quickly; the relative 
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positions of flock-joining and flock-leaving locations were positively correlated, which suggests 

that woodcreepers did not always travel from one edge of their home range to the other in a flock 

and regularly left flocks that were present in the core of their home range (>50% volume; Fig. 4).  

This differs from the observations of Pomara et al. (2007) for four passerine species in Panama, 

which were observed to join flocks for as long as the flock was present within the follower’s 

home range.  This has often been assumed to be the case for flock-followers in Amazonia (Munn 

and Terborgh 1979, Gradwohl and Greenberg 1980, Marantz et al. 2003, Jullien and Thiollay 

1998), but this study demonstrates that, for the wedge-billed woodcreeper, additional factors 

(such as flock movement rate) besides flock presence within the home range may influence an 

individual’s decision to join a flock. 

 Wedge-billedWoodcreepers foraged in more exposed microhabitats when in flocks than 

when alone, which is consistent with the anti-predator hypothesis of flock function.  Similarly, 

Munn (1984) reported several species that used less exposed microhabitats in the absence of the 

sentinel antshrikes, and Dolby and Grubb (2000) found that white-breasted nuthatches 

(Sittacarolinensis) were more reluctant to visit exposed feeders in the absence of tufted titmice 

(Baeolophus bicolor).  Many animals respond to increases in predation risk by foraging in more 

protected areas, even if these areas are less profitable (Sih 1982, Lima and Dill 1990, Suhonen 

1993).  The reduced predation risk associated with flocking may release the Wedge-

billedWoodcreeper from such constraints, allowing individuals to forage on a wider range of 

trunk surfaces.  Such an explanation would mirror the observations of Tubelis et al. (2006), who 

suggested that participation in mixed-species flocks allowed some forest species to use more 

open habitats away from forest that they avoided while foraging alone.  An alternative 

explanation is that the wedge-billed woodcreeper is subordinate to other flock members and thus 
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is competitively excluded from more protected sites, as has been demonstrated in white-throated 

sparrows (Zonotrichiaalbicollis; Schneider 1984) and parid flocks (Morse 1970, Alatalo 

1981,Cimprich and Grubb 1994).  However, direct interspecific competition is likely to be 

minimal in the present case due to niche separation between the wedge-billed woodcreeper and 

other flock members, including other woodcreepers (Marantz et al.2003).  The wedge-billed 

woodcreeper was never observed being supplanted by larger woodcreeper species in this study. 

There was no significant reduction in scanning rate in woodcreepers foraging in flocks 

compared to foraging alone.  This is contrary to the many studies that have demonstrated reduced 

scanning rates in individuals in flocks (Sullivan 1984, Fernandez-Juricicet al. 2004b, Sridhar et 

al. 2009).Foraging theories have historically assumed that vigilance and foraging maneuvers are 

mutually exclusive (e.g. Pulliam et al. 1982, Lima 1987), but more recent studies have suggested 

that many species can maintain some level of vigilance during feeding(Lima and Bednekoff 

1999, Dukas and Kamil 2000, Cresswell et al. 2003).  Due to the vertical body orientation of a 

foraging woodcreeper and the wide view afforded by laterally-positioned eyes (Fernandez-

Juricicet al. 2004a), it is likely that woodcreepers can simultaneously search for food and 

predators.  Indeed, few (n=12) unequivocal scans were observed in this study regardless of the 

social situation.  Focusing attention on a foraging substrate, however, can result in a delayed 

reaction to dangerous stimuli perceived in the peripheral vision (Dukas and Kamil 

2000),therefore foraging birds can still receive vigilance benefits by joining a flock even if they 

are able to maintain some level of personal vigilance. 

In this study, social behavior was categorized as “with flock” or “without flock”.  

Although this ignores variation in flock size and composition, for the purposes of this study this 

dichotomy is adequate.  First, the presence and number of core species varied little over spatial 
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or temporal scales (pers. obs.; see English 1998 for additional details on flock composition in the 

area); all flocks contained both species of Thamnomanesantshrikes, three or more Myrmotherula 

andEpinocrophyllaantwrens (generally including long-winged antwren [M. longipennis], white-

flanked antwren [M. axillaris], and gray antwren [M. menetriesii]), one or more foliage-gleaners 

(Automolus and Phylidor spp.), and one or two Xyphorynchusspp. woodcreepers.  A large source 

of variation in flock size and composition that may be of interest for future investigation is the 

concurrent presence or absence of a canopy flock (Munn and Terborgh 1979, English 1998), 

which would affect the average height of flock members and thus possibly the height range used 

by attendant wedge-billed woodcreepers.  On one hand, if the primary benefit of joining a flock 

is to gain an anti-predator benefit in terms of improved vigilance, the exact composition of the 

flock should have little effect on most behaviors of an attendant wedge-billed woodcreeper as 

long as the sentinel antshrikes are present; on the other hand, several studies have documented 

that the movement rate of flocks increases with total flock size (Powell 1985, Greenberg 2000), 

and thus the total size of the flock may affect the length of time a wedge-billed woodcreeper can 

remain with the flock.   

 In the comparison between data subsets with extensive pseudoreplication and little to no 

pseudoreplication, the patterns of foraging behavior were broadly similar.Analysis of flocking 

status on the use of different vegetation densities revealed a significant tendency to use more 

open microhabitats in flocks and denser microhabitats away from flocks in the independent 

subset only, although this effect was only marginally non-significant in the pseudoreplication 

subset and exhibited the same overall pattern.  The similarity of these results to each other and to 

those of the entire data set, despite the smaller sample size of the pseudoreplication subset and 

the extensive pseudoreplication that that likely far exceeds any hidden in the entire data set, 

27 
 



suggests that analyses on the remainder of the behavior dataset were robust to some violation of 

statistical independence between observations. 

Wedge-billed woodcreepers appear to join flocks to benefit from the additional vigilance 

provided by other flock members, freeing them to foraging in more exposed areas.At present, the 

hypothesized cost is an increased energetic demand, reduced foraging efficiency, or both, 

associated with the need to modify movement rates to keep up with the flock.  Future studies 

could employ video of foraging behavior, which could be examined at slow speed, to allow a 

robust measurement of prey attack and capture rates to test this hypothesis. 
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Table 1.  Means (±SE) of foraging and habitat variables recorded for wedge-billed woodcreepers 

(Glyphorynchusspirurus)foraging in and out of flocks from Jan-Mar 2010-2012 at Tiputini 

Biodiversity Station, Orellana Province, Ecuador. 

  Alone Flock 

Height Range (m) 2.6 (0.4) n=32 1.5 (0.2) n=44 

Start Height (m) 1.1 (0.5) n=32 1.4 (0.5) n=44 

End Height (m) 1.9 (0.6) n=32 1.6 (0.5) n=44 

Time on Trunk (s) 112.9 (15.9) n=35 48.6 (6.3) n=44) 

Vertical Movment Rate (s/m) 74.1 (10.7) n=32 46.4 (9.5) n=44 

Peck Rate (n/min) 16.4 (5.7) n=13 10.6 (3.5) n=17 

Hitch Rate (n/min) 14.8 (2.5) n=13 26.1 (4.1) n=17 

Scan Rate (n/min) 0.9 (0.4) n=13 0.6 (0.3) n=17 

Flight Distance (m) 5.6 (4.6) n=10 5.5 (1.1) n=21 
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Table 2.A comparison from two data subsets of the frequency of cover category use (density of 

vegetation within a 1-m radius of foraging individual; dense > 75%, medium= 25-75%, open < 

25%) of wedge-billed woodcreepers (Glyphorynchusspirurus) observed foraging in and out of 

flocks from Jan-Mar 2010-2012 at Tiputini Biodiversity Station, Orellana Province, Ecuador.   

 

Cover 

Category 

Independent Data Seta 

Category Frequency 

Pseudoreplication Data Setb 

Category Frequency 

 

No Flock With Flock No Flock With Flock 

Dense 5 3 3 0 

Medium 17 12 12 7 

Open 9 23 12 15 

      

aSingle observations of known individuals and randomly-selected observations of unmarked 

individuals spaced >400 m apart 

bRepeated observationsof 20 marked individuals 
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Figure 1.Frequency of cover category use (density of vegetation within a 1-m radius of foraging 

individual; dense > 75%, medium= 25-75%, open < 25%) of wedge-billed woodcreepers 

(Glyphorynchusspirurus) observed foraging in (“Y”) and out (“N”) of flocks from Jan-Mar 

2010-2012 at Tiputini Biodiversity Station, Orellana Province, Ecuador.   
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Figure 2.The relationship between movement rates (m/min) and flock-following session lengths 

(min) of 23 individual wedge-billed woodcreepers (Glyphorynchusspirurus) tracked using radio-

telemetry from Jan-Mar 2012 at Tiputini Biodiversity Station, Orellana Province, Ecuador. 
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Figure 3.Relationship between relative flock-joining and -leaving locations (measured as the 

utilization distribution [UD] volume within home ranges) of 23 individual wedge-billed 

woodcreepers (Glyphorynchusspirurus) tracked using radio-telemetry from Jan-Mar 2012 at 

Tiputini Biodiversity Station, Orellana Province, Ecuador. 
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CHAPTER 3: ECOLOGICAL CORRELATES OF FLOCKING PROPENSITY IN THE 

WEDGE-BILLED WOODCREEPER (GLYPHORYNCHUS SPIRURUS) IN EASTERN 
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Abstract 

Wedge-billed woodcreeper (Glyphorynchus spirurus) is a common understory bird of lowland 

rainforests throughout the Neotropics.  It frequently follows mixed-species understory flocks but 

also often forages alone.  Physical and environmental factors that may affect the time an 

individual spends with flocks (flocking propensity) include frequency of flock-following 

opportunities, intraspecific interactions due to overlapping home ranges, body condition, and 

habitat characteristics.  Individual wedge-billed woodcreepers were tracked using radio telemetry 

from Jan-Feb 2011 and Jan-Mar 2012.  Home range size, estimated using a fixed-kernel density 

function, averaged 4.0 (2011) to 4.1 (2012) ha and ranged from 2.0-8.8 ha, with significant 

overlap among individuals. Flocking propensity was measured directly for the first time in this 

species by continuously following individuals and measuring percent time each individual spent 

in a flock. It was 30% in 2011 and 20% in 2012, which is considerably lower than reported in 

previous studies that simply counted birds in and out of flocks.  This was also lower than the 

expected value of 47% based on home range size and number of flocks in the study area, 

indicating that wedge-billed woodcreepers do not always join flocks when one is present.  Body 

mass was the strongest predictor of flocking propensity, with larger individuals spending more 

time in flocks; there was a weak effect of habitat composition and no effects of frequency of 

flock-joining opportunities or body condition.  A comparison of the difference in body mass with 

the difference in flocking propensity among overlapping individuals revealed a significant 

positive relationship, and the effect was significantly stronger than a body mass-only effect 

generated in a bootstrap procedure comparing subsamples of all possible pairings.  This suggests 

that larger individuals may be able to exclude smaller individuals from flocks. 

 

Introduction 
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Mixed-species bird flocks are a prevalent feature of many lowland rainforests throughout 

the world (Partridge and Ashcroft 1976, Munn and Terborgh 1979, Greenberg 2000, Goodale 

and Kotagama 2004).  Anti-predator benefits are generally believed to be the most important 

function for tropical mixed-species insectivore flocks.  This is supported in part by the reduced 

prevalence of flocks on predator-free islands (Beauchamp 2004) and the increased survival rate 

for obligate flock-followers in the Neotropics (Jullien and Clobert 2000).  Improved vigilance, 

either by the actions of sentinel species or the presence of many individuals, has been cited as the 

most likely anti-predator mechanism operating in mixed-species forest flocks (Terborgh 1990, 

Greenberg 2000).  Evidence for this hypothesis comes from numerous studies that document 

reduced scanning rates in individuals foraging in flocks compared to individuals foraging alone 

(Alves and Cavalcanti 1996, Dolby and Grubb 1998, Fernandez-Juricic et al. 2004, Sridhar et al. 

2009).  Furthermore, some species have been recorded foraging in more exposed situations in 

flocks than alone (Munn 1984, Dolby and Grubb 2000).   

 There is extensive variation in the proportion of time than a species or individual spends 

foraging with a flock (flocking propensity).  A number of vulnerability attributes are correlated 

with the propensity of a species to join flocks (Buskirk 1976, Thiollay 1999, Sridhar et al. 2009); 

for instance, small- to medium-sized passerines that engage in active foraging maneuvers 

generally join flocks more frequently than ground-dwellers or species that engage in sit-and-wait 

tactics (Thiollay 1999, Sridhar et al. 2009).Habitat characteristics may influence the flocking 

propensity of species on a regional scale (Tubelis et al. 2006, Pomara et al. 2007), and species 

that inhabit areas of mature forest with an open understory also join flocks more frequently than 

species that occupy dense vine tangle or edge habitats (Thiollay and Jullien 1998).Another factor 

that may influence flocking propensity is the frequency at which a flock is present in a follower’s 
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home range, as a function of home range size and number of flocks present in the area (Pomara 

et al. 2007). 

Mixed-species flocks of understory insectivores in the Amazon Basin generally consist of 

one or two antshrike (Thamnomanes spp.) species that appear to act as flock sentinels and 

leaders, and 10-12 obligate flocking species that share a common territory that is defended 

against other conspecifics (Munn and Terborgh 1979, Wiley 1980, English 1998, Jullien and 

Thiollay 1998). In addition, 30 or more species are facultative flock-followers, joining these 

flocks for varying lengths of time but also regularly foraging away from them (Munn and 

Terborgh 1979, Jullien and Thiollay 1998).  It is often assumed that facultative species join 

flocks whenever there is opportunity, i.e. as the flock passes through an individual’s territory 

(Munn and Terborgh 1979, Gradwohl and Greenberg 1980, Marantz et al. 2003, Jullien and 

Thiollay 1998).  Most of these obligate and regular flock-followers aggressively exclude other 

conspecifics from the flock, such that each species is represented in the flock by a single 

individual or family group. 

The wedge-billed woodcreeper (Glyphorynchus spirurus) is a frequent member of mixed-

species flocks throughout its range, but it also often forages alone and does not occupy a 

common territory with obligate flock members (Munn and Terborgh 1979, English 1998, Jullien 

and Thiollay 1998).It is one of the most common understory birds of lowland rainforests 

throughout the Neotropics (Marantz et al. 2003, Blake and Loiselle 2012), and yet relatively little 

is known about its ecology or behavior.  It appears to occupy relatively large, overlapping home 

ranges in Barro Colorado Island in Panama (Karr 1971, Gradwohl and Greenberg 1980), 

although this may not be the case across its range (Marantz et al. 2003), and in South America it 

appears to occupy much smaller home ranges (3-5 ha; Jullien and Thiollay 1998, Johnson et al. 
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2011) than many other small understory birds.  The extent of home range overlap among 

individuals has implications for intraspecific interactions, includingthe possibility of conflict 

when a flock is present in an area of overlap among several individuals of one species, as may be 

the case for the wedge-billed woodcreeper. 

Flocking propensity estimates for the wedge-billed woodcreeper range from 40-60% 

(Munn 1985, Marantz et al. 2003, Jullien and Thiollay 1998), although none of these studies 

have measured flocking propensity directly by following individuals for extended time periods; 

instead they have calculated flocking propensity as the proportion of the total number of 

observations of that species that were in a flock.  Just as foraging behavior, body size, and 

microhabitat use are correlated with flocking propensity at the species level (Buskirk 1976, 

Thiollay 1999, Sridhar et al. 2009), many of these factors might be expected to influence 

flocking propensity at the individual level.  Individuals might be expected to vary in flocking 

propensity as a function of individual variation in vulnerability attributes as a function of 

foraging behavior, body size, and microhabitat use are correlated with flocking propensity at the 

species level (Buskirk 1976, Thiollay 1999, Sridhar et al. 2009).  If joining flocks is always 

beneficial, then wedge-billed woodcreepers would be expected to join a flock whenever one is 

present in the home range (Pomara et al. 2007), therefore flocking propensity should be 

correlated with home range size and/or flock space use patterns.  Additionally, if flock-following 

provides anti-predator benefits, individuals that occupy home ranges with dense understory may 

spend less time in flocks because they are presumable less vulnerable to predation than those 

with an open understory.  Finally, due to home range overlap among individuals, competitive 

interactions with neighbors may restrict some individuals from joining flocks as frequently as 

expected. 

42 
 



The purpose of this study was to investigate the influence physical and ecological factors 

on individual flocking propensity in the wedge-billed woodcreeper.  Specific objectives were: 1) 

to determine if flocking propensity is proportional to flock-joining opportunities, 2) to examine 

the possibility that individuals compete for access to flocks, and 3) to determine if flocking 

propensity is influenced by habitat composition of the home range. 

 

Methods 

Study Area 

This study was conducted at Tiputini Biodiversity Station (0°38’15”S, 76°08’59”W) in Orellana 

Province, Ecuador.  The station encompasses 638 ha of rainforest within the 1,682,000-ha 

UNESCO Yasuni Biosphere Reserve.  The forest is composed mainly of undisturbed terra firme 

rainforest, with a strip of varzea bordering the Tiputini River.  The mean elevation at the station 

is ~220m above sea level, and the region receives roughly 3200mm of rainfall annually.  The 

current project was conducted on two ~100-ha plots within the reserve, separated by ~1.5 km 

(Blake 2007).  Each plot contained trails that form a grid, with ten 1000-m-long transects 

running east-west, spaced 100 m apart north-south, and six 800-m-long transects spaced 200 m 

apart running north-south.  Both plots were dominated by terra firmeforest, with one plot being 

overall flatter than the other but with a similar total range in elevation (~200-235 m). 

Data Collection 

Wedge-billed woodcreepers were captured in both study plots in 2011 and 2012 using 2.6-m 

mist nets as part of a long-term demographic study of understory birds (see Blake and Loiselle 

2012 for additional details).  Eighteen wedge-billed woodcreepers in Jan 2011 and 23 in Jan-Mar 

2012 were captured and fitted with a radio transmitter (0.45g BD-2, Holohil Systems Ltd, Carp, 
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Ontario, Canada) using a thigh harness (Rappole and Tipton 1991) made from either cotton or 

elastic thread.  Body mass, tail length, tarsus length, bill length (nares to tip), and wing chord 

were measured.  Individuals were released at the site of capture. 

 Wedge-billed woodcreepers (hereafter “woodcreepers”) were tracked using Advanced 

Telemetry Systems Field Master receivers and hand-held three-element Yagi antennas for 2-3 h 

per day, beginning at least 24 h after capture, and continuing throughout the battery life of the 

transmitter (2-3 wks) or until the transmitter was dropped due to harness breakage (four cases in 

2011, one case in 2012).  Order of tracking was randomized each day such that individuals were 

tracked equally during all daily time periods.  Location of the woodcreeper was determined by 

homing, in which the woodcreeper was approached until it was either seen, or until the lack of 

directionality in the signal indicated close proximity (~10m; two technicians in 2012 were 

trained with the transmitters prior to tracking to calibrate their abilities to judge distances using 

the equipment).  A GPS unit was used to record the location to an accuracy of ~10 m.  Location 

was recorded every 15 min during tracking sessions. 

 The flocking status of woodcreepers was continuously monitored during tracking 

sessions.  A woodcreeper was determined to be a part of a flock (defined as two or more species 

traveling together, categorized as understory or canopy flock [Munn and Terborgh 1979]) if it 

was inside a flock or ≤10 m of a flock edge (maximum nearest-neighbor distance in Wiley 

[1980]).  Time of any flock-joining or flock-leaving was recorded.  Flocking propensity was 

calculated for each individual at the end of the season by dividing time spent in flocks by total 

observation time.  Examination of plots of cumulative flocking propensity as a function of 

cumulative observation time suggested that 500 min of observation was sufficient to estimate 

flocking propensity of most individuals to an accuracy of ±0.05 (Fig. 1).  Due to insufficient 
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observation time per individual in 2011, only 2012 data were used in analyses involving 

individual flocking propensity. 

 Surveys for flocks and wedge-billed woodcreepers were conducted along the plot trails 

throughout the 2012 season (9 Jan – 13 Apr), primarily between 06:00-12:00.  Observers walked 

slowly (15-20 m/min) along east-west trails, and recorded locations of all wedge-billed 

woodcreepers and understory flocks detected (understory flock defined as at least one 

Thamnomanes spp. individual with at least one individual of another regular flock attendant) 

using GPS or by plotting the location onto a gridded map.  Due to the vocal activity of the 

Thamnomanes spp., flocks could be detected up to 50 m from the observer, allowing for 

complete coverage between transects (spaced 100 m apart).Detection probability at this distance 

may sometimes be < 1 during times of quieter flock activity (late morning/early afternoon), but 

the order of transect visitation was randomized each day to avoid bias.  Flocks near the trail (< 

25 m)were searched for wedge-billed woodcreepers for up to 20 min.  The total survey area (96 

ha divided equally between the two plots) was visited 15 times throughout the season.  Surveys 

were halted during periods of wind or rain. 

 Habitat characteristics were measured at sampling points arranged in a 20 m x 25 m grid 

within each woodcreeper home range.  At each sampling point, canopy cover was measured 

using a spherical densiometer, canopy height was measured to the nearest 5m using a laser range 

finder, and understory openness was estimated as the distance at which tree trunks were 

completely obscured by intervening foliage.  Openness was estimated separately for the 4 

cardinal directions and then averaged.  The overall habitat type at each point was classified as 

mature forest, disturbed forest (characterized by presence of many saplings and/or vine tangles), 
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swamp (with standing water and palms), or gap (those gaps that were large and dense enough to 

prevent entry by the observer). 

Statistical Analysis 

 The utilization distribution (UD) for each individual in both years was estimated in 

Geospatial Modeling Environment (Beyer 2009) using fixed-kernel density estimation, with the 

smoothing parameter chosen using the least squares cross-validation method (Seaman and 

Powell 1996, Kernohan et al. 2001). The UD was used to generate a 95% volume contour to 

define the home range of each individual in 2012 (Worton 1989).  Due to small sample sizes in 

2011 (< 40 locations per individual), an 85% volume contour was used to estimate home range 

because of the tendency of kernel methods to overestimate home range size with few locations 

(Seaman et al. 1999). 

 Expected flocking propensity (EFP) based on home range size (h) and number of flocks 

(f) in the survey area (s) was calculated using the following formula from Pomara et al. (2007): 

EFP = 1 − [(s − h)/s]f 

The number of flocks in the survey area was calculated as the mean number of flocks detected 

during each complete survey of the study area.  EFP was calculated at the species and individual 

level using mean and individual home range sizes, respectively. Observed flocking probability 

(OFP) was compared to EFP using linear regression.  In addition, a “naïve” estimate of flocking 

propensity was calculated as the number of wedge-billed woodcreepers detected in flocks during 

the surveys divided by the total number of wedge- billed woodcreeper detections. 

 The volume of intersection index (VI; Fieberg and Kochanny 2005) for pairs with 

overlapping home ranges was calculated using the kerneloverlap function in package adehabitat 

in Program R (R Development Core Team 2012).  This measure improves upon a measure of 
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areal overlap between two home ranges by accounting for the UD of both individuals, and thus 

considers the probability that each individual uses the shared space.  The index is calculated 

using the following equation: 

VI = � min�UD�1(x, y), UD� 2(x, y)� dxdy
∞∞

−∞−∞

 

whereUD�1and UD� 2 are the UD estimates for individuals 1 and 2, respectively.  All pairs with a 

VI>0.10 were considered to have significant overlap (Walter et al. 2011) and were used in the 

following analysis.  For each overlapping pair, the difference in flocking propensity and the 

difference in body mass were calculated.  A linear regression was performed to test for a 

significant correlation between mass difference and difference in flocking propensity among 

potentially interacting woodcreeper pairs. 

An investigation of the relationship between relative body mass and relative flocking 

propensity among non-interacting individuals was undertaken in attempt to differentiate between 

the influence of body mass relative to those of an individual’s neighbors from the influence of 

body size only on individual flocking propensity.  A bootstrap simulation was conducted in 

program R by generating 1000 random subsamples (n =21 per subsample) of the differences in 

body mass and flocking propensity for all possible pairwise combinations between individuals in 

the study.  For each subsample, a linear regression was conducted to estimate the regression 

coefficient for effect of difference in body mass on difference in flocking propensity.  A 

frequency distribution of regression coefficients from the simulation was generated, and the 

observed regression coefficient was compared to the simulation results by determining percent of 

simulated results that were greater than or less than the observed coefficient. 
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 Body condition was estimated for each individual in 2012 by calculating the scaled mass 

index, M�i = Mi �
L0
Li
�
bSMA

, where Mi is the body mass of individual i, Li is a linear body 

measurement of individual i, L0 is the mean linear body measurement of the sample population, 

and bSMA is the scaling exponent estimated by the SMA regression of mass and a linear body 

measurement (Peig and Green 2009).  The relationship between body mass and all length 

measurements were examined using Pearson’s correlation coefficients, and only wing chord hada 

significant correlation with body mass (r=0.43, n=47, p=0.003).  Thus, wing chord was used as 

the linear body measurement in the above equation to calculate body condition. 

 Habitat sampling points and flock locations (from transect data) were imported into 

ArcMap 10 (ESRI, Redlands, CA).  The Intersect tool was used to determine how many flock 

locations and which habitat sampling points occurred within each home range.  A measure of 

flock density (no. points/ha) for each home range was calculated as the number of flock locations 

divided by the home range size.  Average values of canopy height, canopy cover, and understory 

openness were calculated for each home range.  Proportions of each habitat type within the home 

range were calculated by dividing the number of points characterized as a given habitat type by 

the total number of sampling points within the home range.  There were significant correlations 

among all habitat characteristics except proportion swamp, and proportion gap was only 

correlated with canopy cover.  Therefore, a principle components analysis (function prcomp in 

R) was conducted using all habitat variables except proportion gap and proportion swamp.  The 

first principle component was used in subsequent analyses as a general measure of habitat type, 

with high values indicating mature forest with a taller canopy, greater canopy cover and greater 

understory openness (Fig. 2). 
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 A set of a priori candidate models of flocking propensity as a function of habitat, body 

mass, body condition, and flock density within the home range was formed.  Flock density was 

included as an index of flock-joining opportunities.  The habitat principle component was used to 

model habitat effects.  Regression coefficients were estimated using maximum likelihood 

(function glm in R) for each model in the candidate set and models were ranked using AICc 

values (Aikaike’s Information Criterion corrected for small sample size; Burnham and Anderson 

2002).  Models with a ΔAICc<2.00 were considered to have the most support.   

 

Results  

Home Range Size and Overlap  

Mean home range size using the 95% UD contour was 4.0 ha (0.6 SE) in 2011 and 4.1 ha (0.5 

SE) in 2012, and did not differ between plots (t = 1.24, df = 36, p = 0.223; Harpia = 4.4 ha [0.4 

SE], Puma = 3.7 ha [0.5 SE]).  There were 10 cases of significant home range overlap (VI ≥ 

0.10) in 2011 (mean 0.37 [0.1 SE], range 0.12-0.71) and 21 cases in 2012 (mean 0.30 [0.04 SE], 

range 0.10-0.63).    

Correlates of Flocking Propensity 

The EFP for 2012 was 0.46 based on a mean of 14.5 flocks in the survey area.  The naïve 

flocking propensity, calculated as the proportion of all wedge-billed woodcreeper detections that 

were in a flock, was 0.51.  The combined flocking propensity of 18 individuals in 2011(total 66.4 

h of observation) was 0.32.  The mean flocking propensity for23 wedge-billed woodcreepers in 

2012 was 0.20 (range 0.02-0.35; 0.09 SE), with a mean of 24.6 (3.5 SE) observation hours per 

individual.  OFP and EFP were not correlated (F = 0.16, p = 0.69).  Flocking propensity did not 
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vary by time of day (F = 2.7, df = 89, p = 0.368; Fig. 3) or by month (t = 0.03, df = 21, p = 0.976; 

Fig. 4).  

 Body mass was included in the top four models (Table 1).  The two models with greatest 

support (ΔAICc ≤ 2) were the model with mass only and the model with habitat and mass (Table 

1).  The model-averaged coefficient estimate for body mass was 0.06 (0.03 SE, 0.01-0.11 CI), 

indicating a positive correlation between body mass and flocking propensity (Fig. 5).  Flocking 

propensity was positively correlated (0.03, 0.03 SE, -0.03-0.08 CI) with the habitat principle 

component (higher flocking propensity with greater canopy height, canopy cover, and understory 

openness), although the effect was not significant because the confidence interval of the estimate 

overlapped zero. 

 Difference in flocking propensity between overlapping individuals in 2012 was 

significantly correlated with difference in mass between those individuals (F = 12.35, n = 21, p = 

0.002; Fig. 6), with a regression coefficient estimate of 0.08 (0.024 SE).  The bootstrap 

simulation comparing random pairs resulted in a mean coefficient estimate of 0.04 (0.0009 SE; 

Fig. 7).  The regression coefficient using overlapping individuals was greater than 0.95% of the 

bootstrap estimates.   

 

Discussion 

Home Range Overlap 

Home ranges overlapped extensively among individuals in both years, a pattern that has also 

been observed in Barro Colorado Island in Panama (Karr 1971, Gradwohl and Greenberg 1980).  

Such home range overlap may not be found across the species’ range (Marantz et al. 2003); 

home range overlap was not mentioned for this species in French Guiana (Jullien and Thiollay 
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1998) or central Brazil (described as a “typical territorial species" [Johnson et al. 2011]) and is 

perhaps limited to areas of high density, such as the current study area (English 1998, Blake and 

Loiselle 2012).It is currently unknown if this overlap involves related or unrelated individuals, or 

if it occurs more extensively between individuals of the same or opposite sex. 

Correlates of Flocking Propensity 

 The average flocking propensity for wedge-billed woodcreepers in this study was 32% in 

2011 and 20% in 2012, which is considerably lower than the 40-60% reported for this species in 

other studies (Munn 1985, Marantz et al. 2003, Jullien and Thiollay 1998) and expected (47%) 

based on the assumption that flock-followers always join a flock in its home range.  This 

discrepancy is most likely due to methodological differences.  Previous studies have estimated 

flocking propensity as percentage of total number of sightings of a species that were within a 

flock, and when flocking propensity was estimated in the same way using observations in this 

study, the value was 51%, well within the range reported in the literature.  This study is the first 

to present direct measures of flocking propensity fromindividuals that were followed over 

extended time periods.  It is likely that individuals are more easily detected in a flock than alone, 

especially in studies that are focused on observing behavior of flocking species.   

Body mass was the strongest predictor of individual flocking propensity, with larger birds 

spending more time in flocks than smaller birds.  The causative nature of this relationship could 

lie in either direction.  On one hand, it is possible that spending more time in flocks could result 

in a larger adult body size if individuals gain a significant foraging advantage from joining 

flocks.  However, if this were the case, one would expect body condition to be at least as 

strongly correlated with flocking propensity as body mass, but it was unrelated to flocking 

propensity in this study.  The alternative explanation, that larger birds are able to join flocks 
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more frequently, is more plausible given the data.  The extensive home range overlap among 

individuals in the study area sets up the possibility of intraspecific competition, and indeed when 

overlapping pairs were examined, difference in flocking propensity and difference in body size 

were significantly correlated.  The strength of this effect was significantly greater than that 

obtained using random pairs of individuals, providing additional support that this resulted from 

interactions among individuals and not simple body mass per se.  Competitive ability is 

positively correlated with body mass in many animals (Allen and Aspey 1986, French and Smith 

2005, Calsbeek 2009), so it is likely that larger individuals are able to exclude smaller 

individuals from flocks in areas of home range overlap.  Chasing and calling was frequently 

observed between individuals in flocks, but it was rarely possible to determine the identity of 

both participants in these encounters.  The hypothesis that individuals compete for access to 

flocks in areas of overlapping home range, with larger individuals excluding smaller ones, must 

be tested further to ascertain if this pattern holds across seasons, years, and geographic range.  A 

study involving simultaneous tracking of overlapping pairs and flocks would provide more direct 

evidence with which to test this hypothesis. 

 Neither home range nor flock location density within an individual’s home range, both 

indices of flock-joining opportunities, were related to individual flocking propensity.This is 

contrary to Pomara et al.’s (2007) observations that home range size was a significant predictor 

of flocking propensity for four species in Panama, and it suggests that, unlike many other flock 

attendants in Amazonia (Munn and Terborgh 1979, Jullien and Thiollay 1998), wedge-billed 

woodcreepers do not always join a flock when one is present in its home range.  It was common 

to observe individuals not to join flocks that were audible within their home range (generally 20-

50 m from the observer).  Intraspecific competition, as discussed above, could be one reason why 
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an individual would fail to join a flock passing through that individual’s home range.  Other 

possibilities include costs associated with flock-following, such as interspecific competition, 

energy expenditure associated with keeping up with a moving flock, or the use of suboptimal 

movement patterns to conform to the flock (Hutto 1988, Terborgh 1990, Greenberg 2000).  The 

relative size of these costs, and whether or not they are outweighed by benefits, may vary among 

individuals as a function of body size and condition, and may vary on a temporal or spatial scale 

as a function of local habitat characteristics, reproductive status, and weather conditions.  An 

investigation of the effects of such factors is beyond the scope of this study.   

 There was a weak effect of habitat characteristics within the home range on individual 

flocking propensity, with a marginal tendency toward greater flocking propensity in individuals 

with home ranges encompassing more mature forest, greater canopy height and canopy cover, 

and a more open understory.  However, due to the statistical insignificance of the effect, this 

observation does not provide strong support for the anti-predator benefit hypothesis.  Little is 

known about the microhabitat preferences or hunting behavior of Neotropical raptors, but it 

might be reasonable to assume that a dense understory might confer reduced predation risk 

compared to an open understory, by providing additional concealment and nearby cover for the 

forager (Grubb and Greenwald 1982, Suhonen 1993).  At a species level, it has been 

demonstrated that flocking propensity is positively correlated with habitat openness in 

Neotropical rainforests, with a greater proportion of mature forest understory species regularly 

joining flocks than species that occupy dense vine tangle or edge habitats, regardless of other 

ecological or behavioral factors (Thiollay and Jullien 1998).  Examining flock-joining patterns of 

individual wedge-billed woodcreepers within their home ranges with respect to local habitat 

variation, rather than comparing overall flocking propensity of the individual to an average home 
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range habitat value, may reveal a stronger relationship between flock-joining behavior and 

habitat. 

Conclusions 

 The flocking propensity of wedge-billed woodcreepers at this site was considerably lower 

than estimates based on the proportion of total sightings in a flock, and was lower than the 

predicted value based on the assumption that a wedge-billed woodcreeper will always join a 

flock that is present in its home range.  Intraspecific competition, as a result of significant home 

range overlap among individuals, may be an important factor limiting flocking propensity for 

some individuals, although a detailed study of simultaneous space use and flock movements 

would be necessary to test this hypothesis.  
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Table 1.Model selection results1 of logistic regression models incorporating various 

combinations of body mass, body condition, and home range characteristics as potential 

predictors of flocking propensity of individual wedge-billed woodcreepers (Glyphorynchus 

spirurus) at Tiputini Biodiversity Station, Orellana Province, Ecuador. 

Model2 ΔAICc AICc LL K wi 

Mass+Hab 0.00 -42.70 26.46 4 0.29 

Mass 0.65 -42.05 24.66 3 0.21 

Mass+FD 2.13 -40.57 25.40 4 0.10 

Mass+Hab+FD 2.19 -40.51 27.02 5 0.10 

SMI 2.43 -40.27 23.77 3 0.09 

FD 3.27 -39.43 23.34 3 0.06 

Hab 3.68 -39.02 23.14 3 0.05 

FD+SMI 4.26 -38.44 24.33 4 0.03 

Hab+SMI 4.32 -38.38 24.30 4 0.03 

Global 5.45 -37.25 27.25 6 0.02 

Hab+FD 5.61 -37.08 23.65 4 0.02 

SMI+Hab+FD 6.71 -35.99 24.76 5 0.01 

1AICc = Aikaike's Information Criterion corrected for small sample sizes, LL = log likelihood, K 

= no. paramaters, wi = model weights 

2Mass = body mass (g); SMI = scaled mass index; Hab = first principle component incorporating 

canopy height, canopy cover, understory openness, proportion mature forest, and proportion 

disturbed forest within individual home ranges; FD = understory flock location density per home 

range. 
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Figure 1. Example graph of cumulative flocking propensity (proportion of observation time spent 

in mixed-species flock) as a function of cumulative observation time for a sample of five wedge-

billed woodcreepers (Glyphorynchus spirurus) tracked using radio telemetry from 13 Jan – 11 

Feb 2012 at Tiputini Biodiversity Station, Orellana Province, Ecuador. 
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Figure 2.  First two principle components of five habitat variables measured from 23 wedge-

billed woodcreeper (Glyphorynchus spirurus) home ranges in 2012 at Tiputini Biodiversity 

Station, Orellana Province, Ecuador.  Mature and disturbed forest indicate proportions of those 

habitat types within each home range. 
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Figure 3. Average flocking propensities (proportion of observation time spent with a mixed-

species flock) per daily time period of 23 wedge-billed woodcreepers (Glyphorynchus spirurus) 

tracked using radio telemetry from 13 Jan – 31 Mar 2012 at Tiputini Biodiversity Station, 

Orellana Province, Ecuador.   
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Figure 4.  Average flocking propensities (proportion of observation time spent with a mixed-

species flock) per month of 23 wedge-billed woodcreepers (Glyphorynchus spirurus) tracked 

using radio telemetry from 13 Jan- 11 Feb 2012 (n=14) and from 28 Feb – 31 Mar 2012 (n=9) at 

Tiputini Biodiversity Station, Orellana Province, Ecuador.   

 

 

 

 

 

 

 

 

 

 

 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

13 Jan-11 Feb 28 Feb-31 Mar

Flocking 
Propensity 

62 
 



Figure 5.  Relationship between body mass and flocking propensity in 23 wedge-billed 

woodcreepers (Glyphorynchus spirurus) tracked using radio telemetry from 13 Jan – 31 Mar 

2012 at Tiputini Biodiversity Station, Orellana Province, Ecuador.  Line represents predicted 

relationship using a model-averaged regression coefficient. 
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Figure 6. Relationship between difference in mass and difference in flocking propensity between 

individual wedge-billed woodcreepers (Glyphorynchus spirurus) with overlapping home ranges 

(defined as VI≥0.10).  Woodcreepers were tracked using radio telemetry from 13 Jan – 31 Mar 

2012 at Tiputini Biodiversity Station, Orellana Province, Ecuador.  Line represents estimated 

regression (F = 12.35, n = 21, p = 0.002). 
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Figure 7. Frequency distribution of regression coefficients estimated using linear regression of 

mass differences and flocking propensity differences between individual (n =23) wedge-billed 

woodcreepers (Glyphorynchus spirurus) tracked using radio telemetry from Jan-Mar 2012 at 

Tiputini Biodiversity Station, Orellana Province, Ecuador.  Bootstrap simulation was conducted 

with 1000 subsamples (n = 21 per subsample) of all possible pairwise combinations (n =252).  

Vertical line indicates regression coefficient estimate using data from pairs with significant home 

range overlap (VI≥0.10; n = 21). 
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Abstract 

The wedge-billed woodcreeper (Glyphorynchus spirurus) is a frequent member of mixed-species 

understory flocks throughout the Neotropics.  In some regions individuals appear to occupy 

overlapping home ranges, although the extent to which individuals use these shared areas, and 

the consequences for flock-following behavior in shared areas, are unknown.  Wedge-billed 

woodcreepers were tracked using radio telemetry at Tiputini Biodiversity Station, Orellana 

Province, Ecuador.  Home range size was estimated using a fixed kernel method with least-

squares cross validation, and the 95% isopleth was used to define home range extent.  Home 

range overlap was quantified by calculating the volume of intersection (VI) of the kernel 

distributions.  There were ten cases in 2011 and 21 cases in 2012 of significant home range 

overlap (VI>0.10) between neighbors.  For each overlapping pair, frequencies of use of shared 

and non-shared areas were compared to expected use probabilities based on the sizes of the 

respective areas.  Of 14 directional interactions in 2011, one was a significant attraction and the 

remaining responses were non-significant; of 46 directional interactions in 2012, 23 were non-

significant, 17 were significant attractions, and six were significant avoidances.  Logistic 

regression was used to investigate the effect of the utilization distribution of overlapping 

neighbors and understory openness on the distribution of flock-following locations.  There was 

no support for an effect of the space use of a larger neighbor (p = 0.07) or understory openness (p 

= 0.55) on the distribution of flock-following locations.  This study reveals that the wedge-billed 

woodcreeper engages in considerably less territorial defense than is characteristic of most other 

rainforest insectivores.  The distribution of flock-following locations does not support the 

hypothesis that individuals compete for access to flocks in overlapping areas, although I caution 
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that a study investigating simultaneous space use coupled with genetic analyses to reveal 

relationships between interacting neighbors is needed to resolve this issue. 

 

Introduction 

 Vertebrates exhibit a range of territoriality and spacing patterns (Brown and Orians 1970, 

Maher and Lott 2000), ranging from aggressive defense of an area for exclusive use to a variety 

of non-defended space use patterns.  In general, the term “home range” is used to indicate simply 

the area that an individual uses on a daily basis for foraging, roosting, and reproductive 

behaviors, whereas “territory” is used to indicate defense of an area by an individual to maintain 

exclusive use (Brown and Orians 1970).  Defense of exclusive territories is characteristic of 

species that rely on resources that are predictable and uniformly distributed, because they are 

more economical to defend than patchily-distributed resources (Brown and Orians 1970, Maher 

and Lott 2000).  For instance, most insectivores of the rainforest understory defend territories 

year-round (Munn and Terborgh 1979, Greenberg and Gradwohl 1986, Duca et al. 2006), 

whereas frugivores exhibit a wide range of spacing systems with little or no defense of exclusive 

areas (Stutchbury and Morton 2001).   

 Studies of movement patterns and space use within a territory or home range can reveal 

the importance of various features within the home range.  While many studies focus on the 

importance of habitat or landscape features on space use patterns (e.g. Janke and Gates 2013, 

Montgomery et al. 2013), the movement patterns of other individuals or other species may also 

have a significant effect (e.g. Horne et al. 2008).  This may include attraction to potential mates 

(Horne et al. 2008), or avoidance of competitors (Berger and Gese 2007, Kamler et al. 2012) or 

predators (Millspaugh et al. 2000, Proffitt et al. 2009).   
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 The wedge-billed woodcreeper (Glyphorynchus spirurus) is a facultative flock-follower 

throughout its extensive range in Neotropical forests, often joining mixed-species understory 

flocks but also frequently foraging alone.  Attendants of tropical mixed-species insectivore 

flocks are believed to benefit from joining flocks due to decreased predation risk as a result of 

the actions of sentinel species or the presence of many individuals (Munn and Terborgh 1979, 

Terborgh 1990a, Greenberg 2000, Jullien and Clobert 2000), as evidenced by observations of 

some species foraging in more exposed situations in flocks than alone (Munn 1984, Dolby and 

Grubb 2000).  At the species level, it has been demonstrated that flocking propensity (proportion 

of time spent in flocks) is positively correlated with habitat openness in Neotropical rainforests, 

with a greater proportion of mature forest understory species regularly joining flocks than 

species that occupy dense vine tangles or edge habitats, regardless of other ecological or 

behavioral factors (Thiollay and Jullien 1998).  The space use patterns of wedge-billed 

woodcreepers may therefore be influenced by the presence or absence of flocks within the home 

range, with the expectation that they would be more likely to join flocks in mature forest with an 

open understory than in more dense, disturbed areas. 

 In addition to habitat, another important factor that may influence the distribution of 

flock-following locations is the presence of another wedge-billed woodcreeper in that flock.  In 

Neotropical understory flocks, most species aggressively exclude conspecifics from the flock 

territory, such that each species in the flock is represented by a single individual, pair, or family 

group (Munn and Terborgh 1979, English 1998, Jullien and Thiollay 1998).  Up to ten "core" 

species defend a common flock territory, while many other regular attendants join flocks only  

when one is present within its own territory (Munn and Terborgh 1979, English 1998, Jullien and 

Thiollay 1998).  However, Gradwohl and Greenberg (1980) offered evidence, based on several 
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color-marked individuals, that the wedge-billed woodcreeper occupied extensively overlapping 

home ranges on Barro Colorado Island in Panama.  If this is the case, this presents two possible 

scenarios: either 1) wedge-billed woodcreepers tolerate other conspecifics in flocks, unlike other 

flock members; or 2) wedge-billed woodcreepers actively exclude conspecifics in these 

overlapping areas, with one individual or pair exhibiting social dominance within this shared 

space, in a manner similar to that seen in obligate army-ant following antbirds (Willson 2004).  

Previous analyses revealed a positive correlation between body mass and flocking propensity 

(Darrah and Smith, in prep), with the suggestion that larger individuals may exclude smaller 

individuals from flocks in these shared spaces.  However, further studies on individual space use 

are needed to test this hypothesis. 

 The objectives of this study were: 1) to quantify the extent of home range overlap among 

individual wedge-billed woodcreepers, 2) to determine if areas of intraspecific overlap are 

avoided, 3) to determine if understory openness or space use by conspecifics influence the 

locations at which individual woodcreepers join flocks. 

 

Methods 

Study Area 

This study was conducted at Tiputini Biodiversity Station (0°38’15”S, 76°08’59”W) in Orellana 

Province, Ecuador.  The station encompasses 638 ha of rainforest within the 1,682,000-ha 

UNESCO Yasuni Biosphere Reserve.  The forest is composed mainly of undisturbed terra firme 

rainforest, with a strip of varzea bordering the Tiputini River.  The mean elevation at the station 

is ~220 m above sea level, and the region receives roughly 3200 mm of rainfall annually.  The 

current project was conducted on two ~100-ha plots ("Harpia" and "Puma") within the reserve, 
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separated by ~1.5 km (Blake 2007).  Each plot contained trails that form a grid, with ten 1000-m-

long transects running east-west, spaced 100 m apart north-south, and six 800-m-long transects 

spaced 200 m apart running north-south.  Both plots were dominated by terra firmeforest, with 

Puma being overall flatter than the other but with a similar total range in elevation (~200-235 m). 

Data Collection 

Wedge-billed woodcreepers (hereafter "woodcreepers') were captured in both study plots in 2011 

and 2012 using 2.6-m mist nets as part of a long-term demographic study of understory birds 

(see Blake and Loiselle 2012 for additional details).  Eighteen woodcreepers in Jan 2011 and 23 

in Jan-Mar 2012 were captured and fitted with a radio transmitter (0.45g BD-2, Holohil Systems 

Ltd, Carp, Ontario, Canada) using a thigh harness (Rappole and Tipton 1991) made from either 

cotton or elastic thread.  Body mass, tail length, tarsus length, bill length (nares to tip), and wing 

chord were measured.  Individuals were released at the site of capture. 

 Woodcreepers were tracked using Advanced Telemetry Systems Field Master receivers 

and hand-held three-element Yagi antennas for 2-3 h per day, beginning at least 24 h after 

capture, and continuing throughout the battery life of the transmitter (2-3 wk) or until the 

transmitter was dropped due to harness breakage (four cases in 2011, one case in 2012).  Order 

of tracking was randomized each day such that individuals were tracked equally during all daily 

time periods.  Location of the woodcreeper was determined by homing, in which the 

woodcreeper was approached until it was either seen, or until the lack of directionality in the 

signal indicated close proximity (~10m; two technicians were trained in 2012 with the 

transmitters prior to tracking in order to calibrate their abilities to judge distances using the 

equipment).  A GPS unit was used to record the location to an accuracy of ~10 m.  Location was 
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recorded every 15 min during the tracking sessions.  Identity (based on color bands or radio 

signal) of any woodcreepers observed near (< 15 m) the focal individual was recorded. 

 The flocking status of woodcreepers was continuously monitored during tracking 

sessions.  A woodcreeper was determined to be a part of a flock (defined as two or more species 

traveling together, categorized as understory or canopy flock, Munn and Terborgh 1979) if it was 

inside a flock or ≤10 m of a flock edge (maximum nearest-neighbor distance in Wiley [1980]).  

Time of any flock-joining or flock-leaving was recorded. 

Habitat characteristics were measured at sampling points arranged in a 20 m x 25 m grid 

within each woodcreeper home range.  At each sampling point, understory openness was 

estimated as the distance at which tree trunks were completely obscured by intervening foliage.  

Openness was estimated separately for the four cardinal directions and then averaged.  A raster 

dataset of understory openness was created in ArcMAP (ESRI, Redlands, CA) with a cell size of 

5 m, and data extrapolated to cells up to 15 m from each sampling point by averaging the cell 

values within a 15-m radius. 

Statistical Analyses 

The utilization distribution (UD) for each individual in both years was estimated in 

Geospatial Modeling Environment (Beyer 2009) using fixed-kernel density estimation, with the 

smoothing parameter chosen using the least squares cross-validation (LSCV) method (Seaman 

and Powell 1996, Kernohan et al. 2001).  The UD was used to generate a 95% volume contour to 

define the home range of each individual in 2012.  Due to the small number of locations per 

individual in 2011(mean = 19, 2.1 SE, range 10-44) and resulting overestimation of the home 

range using kernel techniques (Kernohan et al. 2001), the 85% isopleth was used to delimit the 

home range for that year.  Home range was also estimated using the minimum convex polygon 
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(MCP) method for comparison with previous studies (Kernohan et al. 2001).  For each 

individual, the volume of the UD was measured at each cell of the kernel density raster by 

generating percent volume contours (1-99%; Kertson and Marzluff 2011) using the contour tool 

in Geospatial Modeling Environement.  This was converted to a raster of UD volume 

measurements in ArcMAP using the Feature to Raster tool in ArcTool Box. 

 The volume of intersection index (VI; Fieberg and Kochanny 2005) for pairs with 

overlapping home ranges was calculated using the kerneloverlap function in package adehabitat 

in Program R (R Development Core Team 2012).  This measure improves upon a simple 

measure of areal overlap between two home ranges by accounting for the UD of both 

individuals, and thus considers the probability that each individual uses the shared space.  The 

index was calculated using the following equation (Fieberg and Kochanny 2005): 

VI = � min�UD�1(x, y), UD� 2(x, y)� dxdy
∞∞

−∞−∞

 

whereUD�1and UD� 2 are the UD estimates for individuals 1 and 2, respectively.  All pairs with a 

VI ≥ 0.10 were considered to have significant overlap (Walter et al. 2011). 

Static Interaction Analysis 

To test for significant attraction or avoidance of areas of home range overlap between potentially 

interacting pairs, the frequencies of observations of an individual in the shared and non-shared 

areas were compared to the expected probabilities using a χ2test (Minta 1992).  The expected 

probability of use of the shared area was calculated for each individual by dividing the size of the 

shared area by the total size of the individual’s home range.   Given two individuals α and β with 

a shared home range area AB, the divergence (main effect, L) between α’s expected and 

observed use of the shared area (A) and its use of the non-shared area (A� ) is calculated as: 
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LA:A� = ln
p2n1
p1n2

 

where pi and ni denote the expected probability and the recorded frequencies of occurrences, 

respectively, of α in the shared (p1, n1) and non-shared (p2, n2) areas. L > 0 indicates that α used 

the shared area more frequently than expected, while L < 0 indicates that alpha used the shared 

area less frequently than expected.  To test for significance, the χ2 statistic was calculated as: 

χA:A�
2 =

(n1 − p1n)2

(p2p1n)  

with df = 1.  Tests were conducted separately using total home range (95% or 85% isopleths) and 

core areas (50% isopleths).  Space use in core areas was examined for 2012 only due to the small 

number of observations per individual in 2011. 

Space use and flock status 

To examine the influence of habitat and neighbor space use on the distribution of individual 

flock-following locations, separate files were created for locations where an individual was 

present in a flock and where it was found alone.  The Sample tool in ArcMAP was used to 

extract understory openness and neighbor UD volume at each location. The effects of the 

following factors on probability of flock-following at a given location were examined: UD 

volume of the largest overlapping individual (body mass, or longer wing chord if body mass 

equal), the UD volume of the neighbor with greatest overlap regardless of size, and understory 

openness.  Each factor was tested separately rather than as part of a set of candidate models 

because some factors could only be tested on a subset of the data (i.e. not all individuals had a 

larger neighbor).  Maximum likelihood methods were used to fit logistic regression mixed 

models of the effect of each factor on flock-following probability, with flock status as a binary 

response variable and individual identity as a random effect.  
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Results 

Home Range Size and Intraspecific Interactions 

Mean home range size using the fixed kernel method was 4.0 ha (0.56 SE) in 2011 and 4.1 ha 

(0.47 SE) in 2012, and did not differ between plots (t = 1.24, df = 36, p = 0.22; Harpia = 4.4 ha 

[0.42 SE], Puma = 3.7 ha [0.47 SE]).  In 2011, with fewer locations per individual (mean 19 [2.1 

SE], range 10-44) the MCP method resulted in a much smaller estimate (mean 1.6 ha [0.37 SE]), 

while in 2012 with more points per individual (mean 96 [3.3 SE], range 60-114) the mean MCP 

was similar (3.8 ha [0.4 SE]) to the 95% volume kernel estimate for that year.   

 There were ten cases of significant home range overlap in 2011 between pairs of 

individuals and 21 cases in 2012 (Fig. 1).  The VI in these cases ranged from 0.11-1.0 in both 

years with a mean of 0.45 (0.06 SE) in 2011 and 0.44 (0.04 SE) in 2012.  There were five cases 

of core overlap in 2011 and eight cases in 2012, with VI ranging from 0.24-0.82 in 2011 and 

0.17-1.0 in 2012, and a mean of 0.43 (0.5 SE) in 2011 and 0.45 (0.06 SE) in 2012.  In two cases 

in 2011 and one case in 2012, high core area overlap was believed to involve mate pairings due 

to the frequency with which the individuals were observed in close proximity of each other. 

In 2011, of 20 individual responses in ten pairwise interactions, one was a significant 

attraction,two were significant avoidances, while the remainder were non-significant.  In 2012, 

of the 46 individual responses in 23 pairwise interactions, 23 were non-significant, 17 were 

significant attractions, and six were significant avoidances.  For core areas, of 16 responses in 

2012, two were significant attractions (one of which was believed to involve a mated pair) while 

the remainder were non-significant effects.  In all cases of significant attraction where both 

members of a pair were tracked during the same time period (n=10), the individuals involved 
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were documented using the shared space at the same time (within 15 m of each other) at least 

once, and of those with avoidance responses that were tracked during the same time period 

(n=5), only one pair was documented in close proximity, and that only a single instance. 

Three individuals were tracked in both years, and investigation of the estimated home 

ranges suggested that they occupied areas of similar size and configuration in both years (Fig. 2).  

One individual tracked in 2011 occupied an area that closely matched that of another individual 

tracked in 2012 (Fig. 3); according to capture data, both individuals were present in this home 

range in 2011 but probably not in 2012.  A similar situation existed for near-complete overlap 

involving three individuals (Fig. 3), one tracked in 2011 and two tracked in 2012; all three were 

present at least in 2010 and 2011 according to capture data (J. Blake, pers. comm.).  Another 

individual tracked in 2011 was observed in 2012 and believed to be mated to a bird tracked in 

both years. 

Individuals were observed associating with a mean of 2.6 (0.2 SE) other woodcreepers 

(range 1-5, not including fledglings [n=3]) in 2012.  These other associations (color-banded birds 

plus one unbanded bird per plot) indicate the presence of at least 14 individuals with home 

ranges at least partially overlapping those of the 23 radio-tracked birds.  This is necessarily an 

underestimate due to the likely presence of multiple unbanded birds in the area; eight of 15 

radio-marked individuals in Harpia and seven of eight in Puma were seen at least once near an 

unbanded bird.  If each of these associations is assumed to represent a separate unmarked 

individual, this gives a maximum estimate of 27 additional individuals with home ranges 

overlapping those of the radio-tracked birds. 

Space Use and Flock Status 
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The locations where wedge-billed woodcreepers were found in flocks were not influenced by 

understory openness (β�= 0.02 [0.03 SE], z=0.58, p = 0.56, Fig. 4), space use by a larger neighbor 

(β�  = 0.005 [0.002 SE], z = 1.79, p = 0.07, Fig. 5), or space use by the neighbor with greatest 

overlap (β� = 0.003 [0.002 SE], z = 1.45, p = 0.15). 

 

Discussion 

Home Range Size 

Mean home range size in both years was ~4 ha, roughly similar to several published reports for 

this species (French Guiana: mean 2.94 ha, range 2.75-3.21 [Jullien and Thiollay 1998]; central 

Brazil: 5.2 ha[Johnson et al. 2011]), although considerably smaller than reported for central 

Panama (placed in a category of 9-16 ha [Robinson et al. 2000]).  The MCP home range estimate 

was much smaller than the kernel estimate in 2011, but similar to the kernel estimate in 2012; 

this is likely due to the sensitivity of this method to sample size (Kernohan et al. 2001), which 

was much smaller in 2011.In both years, there was a wide variation in home range size, with a 

minimum of ~2 ha in both years and a maximum of almost 9 ha.  Two individuals with home 

ranges > 7 ha made several movements > 300 m away from the home range boundary, one 

individual crossing the Tiputini River in the process.  It is possible that one individual may have 

been in the process of dispersal, but the second individual was present in the same home range in 

consecutive years.  Such presumed exploratory movements have been documented for this 

species in previous studies (English 1998, Blake and Loiselle 2012).There were two other 

individuals in 2012 with contiguous home ranges that exceeded 7 ha that were not observed to 

make such movements. 

Intraspecific Interactions 
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The home ranges of wedge-billed woodcreepers in both years of this study overlapped 

considerably, which corroborates the observations of Gradwohl and Greenberg (1980) of color-

banded wedge-billed woodcreepers on Barro Colorado Island.  On the other hand, the home 

range maps for this species in Jullien and Thiollay (1998) do not show any overlap, and home 

range overlap was not mentioned by Johnson et al. 2011 in their study in central Brazil.  A 

comparison of home ranges occupied by individuals in consecutive years, and by separate 

individuals in different years, suggests that despite this overlap, home range boundaries were 

stable over time, as suggested by long-term capture data (Blake and Loiselle 2012).  Stable 

territoriality has been documented in many antbird species (Greenberg and Gradwohl 1997, 

Gorrell et al. 2005, Duca et al. 2006), with territory size remaining constant despite turnover in 

territory owners and temporal variation in resource abundance (Greenberg and Gradwohl 1997, 

Duca et al. 2006).  It has been hypothesized that territory size in these species is determined by 

the size necessary to sustain the pair during times of food scarcity (Stutchbury and Morton 

2001), and individuals may increase survivorship by switching to better territories when 

vacancies arise rather than by expanding territory borders (Morton et al. 2000, Fedy and 

Stutchbury 2004).  It is unknown whether wedge-billed woodcreepers exhibit similar territory 

switching behavior, or whether they instead vary the extent of home range overlap in response to 

seasonal changes in resource abundance. 

Wedge-billed woodcreepers generally did not avoid areas of home range overlap, and 

most individuals were documented within close proximity (<10m) of two or more separate 

individuals throughout observation.  Therefore, much of the home range did not appear to be 

defended by a resident individual, although this does not exclude the possibility that some 

resources within the home range, such as the area surrounding a nest, might be defended.  This 
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contrasts with the pattern of territoriality documented for other rainforest insectivores, including 

antbirds (Munn and Terborgh 1979, Greenberg and Gradwohl 1986, English 1998, Duca et al. 

2006) and other woodcreeper species (Pierpont 1986), which defend exclusive territories.  Rivera 

et al. (2003) documented some overlap among home ranges of the ivory-billed woodcreeper 

(Xiphorhynchusflavigaster), although individuals were not observed using shared areas at the 

same time.  

Territoriality theory predicts that for an insectivore in aseasonal environments of wet 

lowland tropics, where insect availability is relatively uniform over space in time compared to 

the seasonal patterns of abundance in flowers and fruits (Terborgh 1990b, Leigh and Wright 

1990), individuals should defend exclusive territories (Brown and Orians 1970, Davis and 

Hartley 1996, Maher and Lott 2000).  However, at extreme levels of resource abundance, 

territorial behavior may disappear, either because food is no longer limiting and therefore not 

worth defending, or because the resources support such a high density of intruders that defense 

becomes too costly (Gill and Wolf 1975, Carpenter and MacMillen 1976, Maher and Lott 2000, 

McLaughlin et al. 2000).  Studies of a variety of vertebrates have documented that an increase in 

population density leads to a reduction in territoriality (Benson et al. 2006, Chaverri et al. 2006) 

or territory size (Mares et al. 1982, Kjellander et al. 2004).  In the wedge-billed woodcreeper, 

arthropod abundance may be sufficiently great that defense of foraging areas for exclusive use 

does not outweigh the cost of defense, particularly given the large number of possible intruders 

present in areas of high population density (including the present study area; Blake and Loiselle 

2012).  Furthermore, because this species nests in cavities, it is possible that the availability of 

nest sites is a more important determinant of spacing behavior and population size than food 

resources (Sick 1993), thus only such localized resources may be defended.  It would be 
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informative to study patterns of territorial behavior and home range overlap in this species across 

a range of population densities and resource abundances. 

Space Use and Flocking 

It was hypothesized that woodcreepers might be more likely to join flocks in areas of mature 

forest with an open understory, where they might be more vulnerable to predation than in denser 

habitats that provide protective cover (Grubb and Greenwald 1982, Suhonen 1993).  However, 

understory openness did not appear to influence the distribution of flock-following locations for 

individual wedge-billed woodcreepers in this study.  Relatively little is known about the habitat 

use or hunting behaviors of Neotropical raptors, particularly for the genera Micrastur and 

Accipiter in primary forests of Amazonia (Bierregaard 1995), although observations indicate that 

most Micrastur species hunt for small vertebrates in the understory from concealed perches 

(Robinson 1994).  It might be false to assume that a small passerine is significantly more 

vulnerable to attack in an open understory than in a denser, disturbed understory.  Furthermore, 

while it is generally assumed that diurnal raptors are the primary predators of small understory 

passerines in Neotropical rainforests (e.g. Munn and Terborgh 1979), the extent to which other 

groups of vertebrates may prey on small passerines remains largely unexplored.  Anecdotal 

evidence suggests that snakes may at least opportunistically capture wedge-billed woodcreepers 

(Greene 1997).  It is possible that dense microhabitats harbor a separate suite of predators and 

are therefore not considerably safer than areas of open understory. 

 The space use of overlapping neighbors did not significantly affect flock-following 

locations of wedge-billed woodcreepers.  It was expected, based on the observations of Darrah 

and Smith (in prep) that body mass was correlated with flocking propensity, that individuals 

would join flocks less frequently in areas of high use by a larger neighbor.  On one hand, this 
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suggests that wedge-billed woodcreepers might tolerate neighbors in the same flock, which is 

consistent with the apparently low degree of home range defense and associations with multiple 

conspecifics exhibited by this species at this site.  However, the methods used in this study did 

allow for a detailed examination of simultaneous space use, and it is therefore possible that 

individuals joined flocks in the same locations, but not at the same time.  In a concurrent study 

(Darrah and Smith, in prep) it was demonstrated that wedge-billed woodcreepers do not join 

flocks every time one is present in its home range; therefore in an area of intraspecific overlap, 

the subordinate individual could be present in a flock while the dominant individual is absent 

from that area.   

One factor complicating this investigation is the unknown relationships between 

interacting pairs; it is unknown whether any of these pairs were siblings or parent and offspring, 

and although there were three pairs that appeared to be mates, such relationships could not be 

determined with certainty.  Individuals are often less aggressive toward kin than non-kin in a 

wide range of organisms (Waldman 1988, Watson et al. 1994, Bilde and Lubin 2001, Griffiths 

and Armstrong 2002).  It would be informative in future studies to determine what effect, if any, 

genetic relatedness has on home range overlap and intraspecific aggression in this species. 

This study reveals significant overlap among individual wedge-billed woodcreeper home 

ranges, with no evidence that overlap areas were used less frequently than non-shared areas.  

Observations suggested that neighbors regularly used these overlap areas simultaneously, and 

may even tolerate one another in flocks, unlike all other regular members of understory mixed-

species flocks.  Understory openness did not influence the locations of flock-following, 

suggesting either than understory openness is a poor index of predation vulnerability, or that 

other factors are more important in determining where and when an individual joins flocks.  A 
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detailed study of simultaneous space use patterns of neighbors, combined with genetic analyses 

to reveal the sex and degree of relatedness of interacting individuals, is needed to understand the 

significance of the spacing pattern observed in this study and to what extent individuals may 

compete for access to flocks.   

 

Acknowledgements 

I would like to thank B. A. Loiselle and J. G. Blake for their invaluable comments and logistical 

assistance in the field, and for permitting me to use their plots for this study.  I thank the staff of 

Tiputini Biodiversity Station for their support and C. de Romo for arranging transportation to 

and from the field station.  I thank N. Strycker and R. Rylander for volunteering their time to aid 

in data collection.  Financial support was provided by the University of Arkansas Graduate 

School and the Arkansas Audubon Society Trust. 

 

Literature Cited 

Benson, J. F., M. J. Chamberlain, and B. D. Leopold. 2006. Regulation of space use in a solitary 
felid: population density or prey availability? Animal Behaviour 71:685–693. 

Berger, K. M., and E. M. Gese. 2007. Does interference competition with wolves limit the 
distribution and abundance of coyotes? Journal of Animal Ecology 76:1075–1085. 

Beyer, H. L. 2009.Geospatial Modelling Environment.http://www.spatialecology.com/gme/. 

Bierregaard, R. O., Jr. 1995. The biology and conservation status of Central and South American 
Falconiformes: a survey of current knowledge. Bird Conservation International 5:325–
340. 

Bilde, T. and Y. Lubin. 2001. Kin recognition and cannibalism in a subsocial spider. Journal of 
Evolutionary Biology 14:959–966. 

Blake, J. G. 2007. Neotropical forest bird communities: a comparison of species richness and 
composition at local and regional scales. Condor 109:237–255. 

82 
 



Blake, J. G. and B. A. Loiselle. 2012. Temporal and spatial patterns in abundance of the wedge-
billed woodcreeper (Glyphorynchusspirurus) in lowland Ecuador. The Wilson Journal of 
Ornithology 124:436–445. 

Brown, J. L. and G. H. Orians. 1970. Spacing patterns in mobile animals. Annual Review of 
Ecology and Systematics 1:239–262. 

Carpenter, F. L. and R. E. MacMillen. 1976. Threshold model of feeding territoriality and test 
with a Hawaiian honeycreeper. Science 194:639–642. 

Chaverri, G., M. Gamba-Rios, and T. H. Kunz. 2007. Range overlap and association patterns in 
the tent-making bat Artibeus watsoni. Animal Behaviour 73:157–164. 

Davis, N. B. and I. R. Hartley. 1996. Food patchiness, territory overlap and social systems: an 
experiment with dunnocks Prunella modularis. Journal of Animal Ecology 65:837–86. 

Dolby, A. S. and T. C. Grubb, Jr. 2000. Social context affects risk taking by a satellite species in 
a mixed-species foraging group. Behavioral Ecology 11:110–114. 

Duca, C., T. J. Guerra, and M.Â.Marini. 2006. Territory size of three antbirds (Aves, 
Passeriformes) in an Atlantic Forest fragment in southeastern Brazil. RevistaBrasileira de 
Zoologia 23:692–698. 

English, P. H.  1998. Ecology of mixed-species understory flocks in Amazonian Ecuador.  Ph.D. 
Dissertation, University of Texas, Austin. 

Fedy, B. C. and B. J. M. Stutchbury. 2004. Territory switching and floating in white-bellied 
antbird (Myrmeciza longipes), a resident tropical passerine in Panama. Auk 121:486–496. 

Fieberg, J. and C. O. Kochanny. 2005. Quantifying home-range overlap: the importance of the 
utilization distribution. Journal of Wildlife Management 69:1346–1359. 

Gill, F. B. and L. L. Wolf. 1975. Economics of feeding territoriality in the golden-winged 
sunbird. Ecology 56:333–345. 

Gorrell, J. V., G. Ritchison, and E. S. Morton. 2005. Territory size and stability in a sedentary 
Neotropical passerine: is resource partitioning a necessary condition? Journal of Field 
Ornithology 76:395–401. 

Gradwohl, J. and Greenberg, R. 1980. The formation of antwren flocks on Barro Colorado 
Island, Panama. Auk 97:385–395. 

Greenberg, R. 2000. Birds of many feathers: The formation and structure of mixed-species flocks 
of forest birds. Pages 521–558 in On the Move: How and Why Animals Travel in Groups 
(S. Boinski and P. A. Garber, Eds.) The University of Chicago Press, Chicago. 

Greenberg, R. and J. Gradwohl. 1986. Constant density and stable territoriality in some tropical 
insectivorous birds. Oecologia 69:618–625. 

83 
 



Greene, H. W. 1997. Snakes: The Evolution of Mystery in Nature. University of California 
Press, Berkeley. 

Griffiths, S. W., and J. D. Armstrong. 2002. Kin-based territory overlap and food sharing among 
Atlantic salmon juveniles. Journal of Animal Ecology 71:480–486. 

Grubb, T. C., Jr. and L. Greenwald. 1982. Sparrows and a brushpile: foraging responses to 
different combinations of predation risk and energy cost. Animal Behaviour 30:637–640. 

Horne, J. S., E. O Garton, and J. L. Rachlow. 2008. A synoptic model of animal space use: 
simultaneous estimation of home range, habitat selection, and inter/intra-specific 
relationships. Ecological Modelling 214:338–348. 

Janke, A. K. and R. J. Gates. 2013. Home range and habitat selection of northern bobwhite 
coveys in an agricultural landscape. Journal of Wildlife Management 77:405–413. 

Johnson, E. I., P. C. Stouffer, and C. F. Vargas. 2011. Diversity, biomass, and trophic structure 
of a central Amazonian rainforest community. RevistaBrasileira de Ornitologia 19:1–16. 

Jullien, M.  and J.-M. Thiollay. 1998. Multi-species territoriality and dynamic of Neotropical 
forest understorey bird flocks. Journal of Animal Ecology 67:227–252. 

Jullien, M. and J. Clobert. 2000. The survival value of flocking in Neotropical birds: reality or 
fiction? Ecology 81:3416–3430. 

Kamler, J. F., U. Stenkewitz, U. Klare, N. F. Jacobsen, and D. W. MacDonald. 2012. Resource 
partitioning among cape foxes, bat-eared foxes, and black-backed jackals in South Africa. 
Journal of Wildlife Management 76:1241–1253. 

Kernohan, B. J., R. A. Gitzen, and J. J. Millspaugh. 2001. Analysis of animal space use and 
movements. Pages 125–166 in Radio Tracking and Animal Populations (J. J. Millspaugh 
and J. M. Marzluff, Eds.). Academic Press, San Diego. 

Kertson, B. N. and J. A. Marzluff. 2011. Improving studies of resource selection by 
understanding resource use. Environmental Conservation38:18–27. 

Kjellander, P., A. J. M. Hewison, O. Liberg, J.-M.Bideau, and B. Cargnelutti. 2004. 
Experimental evidence for density-dependence of home-range size in roe deer (Capreolus 
capreolus L.): a comparison of two long-term studies. Oecologia 139:478–485. 

Leigh, E. G., Jr. and S. J. Wright.1990. Barro Colorado Island and tropical biology.Pages 28–47 
in Four Neotropical Rainforests (A. H. Gentry, Ed.). Yale University Press, New Haven. 

Maher, C. R. and D. F. Lott. 2000. A review of ecological determinants of territoriality within 
vertebrate species. American Midland Naturalist 143:1–29. 

Marantz, C. A., A. Aleixo, L. R. Bevier, andM. A. Patten. 2003.Family Dendrocolaptidae 
(Woodcreepers). Pages 358–447 in Handbook of the Birds of the World, Vol. 8. 
Broadbills to Tapaculos (J. del Hoyo, A. Elliott, and D. Christie, Eds.). Lynx Edicions, 
Barcelona. 

84 
 



Mares, M. A., T. E. Lacher, Jr., M. R. Willig, N. A. Bitar, R. Adams, A. Klinger, and D. Tazik. 
1982. An experimental analysis of social spacing in Tamiasstriatus. Ecology 63:267–273. 

McLaughlin, P. D., S. H. Ferguson, and F. Messier. 2000. Intraspecific variation in home range 
overlap with habitat quality: a comparison among brown bear populations. Evolutionary 
Ecology 14:39–60. 

Millspaugh, J. J., G. C. Brundige, R. A. Gitzen, and K. J. Raedeke.2000. Elk and hunter space-
use sharing in South Dakota. Journal of Wildlife Management64:994–1003. 

Minta, S. C. 1992. Tests of spatial and temporal interaction among animals. Ecological 
Appliations 2:178–188. 

Montgomery, R. A., G. J. Roloff, and J. J. Millspaugh. 2013. Variation in elk response to roads 
by season, sex, and road type. Journal of Wildlife Management 77:313–325. 

Munn, C. A. 1984. The behavioral ecology of mixed-species bird flocks in Amazonian Peru. 
Ph.D. Dissertation, Princeton University, Princeton. 

Munn, C. A. and J. W. Terborgh. 1979. Multi-species territoriality in Neotropical foraging 
flocks. Condor 81:338–347. 

Morton, E. S., K. C. Derrickson, and B. J. M. Stutchbury. 2000. Territory switching behavior in a 
sedentary tropical passerine, the dusky antbird (Cercomacra tyrannina). Behavioral 
Ecology 11:648–653. 

Pierpont, N. 1986. Interspecific aggression and the ecology of woodcreepers (Aves: 
Dendrocolaptidae). Ph.D. Dissertation, Princeton University, Princeton, New Jersey. 

Proffitt, K. M., J. L. Grigg, K. L. Hamlin, and R. A. Garrott. 2009. Contrasting effects of wolves 
and human hunters on elk behavioral responses to predation risk. Journal of Wildlife 
Management 73:345–356. 

R Development Core Team. 2012. R: A Language and Environment for Statistical Computing. R 
Foundation for Statistical Computing, Vienna. 

Rappole, J. H. and A. R. Tipton. 1991. New harness design for attachment of radio transmitters 
to small passerines. Journal of Field Ornithology 62:335–337. 

Rivera, J. H. W., D. Ayala, and C. A. Haas. 2003. Home-range size, habitat use, and 
reproduction of the ivory-billed woodcreeper (Xiphorhynchusflavigaster) in dry forest of 
western Mexico. Journal of Field Ornithology 74:141–151. 

Robinson, S. K. 1994. Habitat selection and foraging ecology of raptors in Amazonian Peru. 
Biotropica 26:443–458. 

Robinson, W. D., J. D. Brawn, and S. K. Robinson. 2000. Forest bird community structure in 
central Panama: influence of spatial scale and biogeography. Ecological Monographs 
70:209–235. 

85 
 



Seaman, D.E. and R. A. Powell. 1996. An evaluation of the accuracy of kernel density estimators 
for home range analysis. Ecology 77:2075–2085. 

Sick, H. 1993. Birds in Brazil: A Natural History. Princeton University Press, Princeton. 

Stutchbury, B. J. M. and E. S. Morton. 2001. Behavioral Ecology of Tropical Birds. Academic 
Press, San Diego. 

Suhonen, J. 1993. Predation risk influences the use of foraging sites by tits. Ecology 74:1197–
1203. 

Terborgh, J. 1990a. Mixed flocks and polyspecific associations: costs and benefits of mixed 
groups of birds and monkeys. American Journal of Primatology 21:87–100. 

Terborgh, J. 1990b. An overview of research at Cocha Cashu Biological Station.Pages 48–59 in 
Four Neotropical Rainforests (A. H. Gentry, Ed.). Yale University Press, New Haven. 

Thiollay, J.-M and M. Jullien. 1998. Flocking behavior of foraging birds in a Neotropical rain 
forest and the antipredator defence hypothesis. Ibis 140:382–394. 

Waldman, B. 1988.The ecology of kin recognition. Annual Review of Ecology and Systematics 
19:543–571. 

Walter, W. D., J. Beringer, L. P. Hansen, J. W. Fischer, J. J. Millspaugh, and K. C. Vercauteren. 
2011. Factors affecting space use overlap by white-tailed deer in an urban landscape. 
International Journal of Geographical Information Science 25:379–392. 

Watson, A., R. Moss, R. Parr, M. D. Mountford, and P. Rothery. 1994. Kin landownership, 
differential aggression between kin and non-kin, and population fluctuations in red 
grouse. Journal of Animal Ecology 63:39–50. 

Wiley, R. H. 1980. Multispecies antbird societies in lowland forests of Surinam and Ecuador: 
stable membership and foraging differences. Journal of Zoology, London 191:127–145. 

Willson, S. K. 2004. Obligate army-ant-following birds: a study of ecology, spatial movement 
patterns, and behavior in Amazonian Peru. Ornithological Monographs 55:1–67. 

86 
 



Figure 1.  Home ranges of 14 wedge-billed woodcreepers (Glyphorynchus spirurus) tracked 

using radio telemetry during Jan-Mar 2012 at Tiputini Biodiversity Station, Orellana Province, 

Ecuador. 
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Figure 2.  Home ranges of three wedge-billed woodcreepers (Glyphorynchus spirurus) tracked in 

consecutive years (Jan-Feb 2011 and Jan-Mar 2012) at Tiputini Biodiversity Station, Orellana 

Province, Ecuador. 
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Figure 3. Home ranges of six wedge-billed woodcreepers (Glyphorynchus spirurus) tracked 

during Jan-Feb 2011 and Jan-Mar 2012 at Tiputini Biodiversity Station, Orellana Province, 

Ecuador. 
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Figure 4.  The relationship between understory visibility (m) and locations where 21 individual 

wedge-billed woodcreepers (Glyphorynchus spirurus) were observed in a mixed-species flock 

(Yes) or away from a flock (No) atTiputini Biodiversity Station, Orellana Province, Ecuador. 
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Figure 5.Relationship between the utilization distribution (UD) of a larger overlapping neighbor 

and locations where 13 individual wedge-billed woodcreepers (Glyphorynchus spirurus) were 

observed in a mixed-species flock (Yes) or away from a flock (No) atTiputini Biodiversity 

Station, Orellana Province, Ecuador. 
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CHAPTER 5: NOTES ON BREEDING AND COURTSHIP BEHAVIOR OF THE 

WEDGE-BILLED WOODCREEPER (GLYPHORYNCHUS SPIRURUS) IN EASTERN 

ECUADOR 
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Introduction 

 The wedge-billed woodcreeper (Glyphorynchus spirurus) is a common suboscine 

passerine of lowland forests of the Neotropics, ranging from southern Mexico to northern Bolivia 

and eastern Brazil (Marantz et al. 2003).  Despite its abundance and extensive geographic range, 

few studies have investigated the behavior or ecology of this species.  In this paper I provide 

dates of eggs and fledglings for a site in eastern Ecuador, describe a previously unknown display 

that is likely involved in courtship, and give notes on incubation and fledging care behavior. 

 

Methods 

This study was conducted at Tiputini Biodiversity Station (0°38’15”S, 76°08’59”W) in Orellana 

Province, Ecuador.  The station encompasses 638 ha of rainforest within the 1,682,000-ha 

UNESCO Yasuni Biosphere Reserve.  The forest is composed mainly of undisturbed terra firme 

rainforest, with a strip of varzea bordering the Tiputini River.  The mean elevation at the station 

is ~220m above sea level, and the region receives roughly 3200mm of rainfall annually.  The 

current project was conducted on two ~100-ha plots within the reserve, separated by ~1.5 km 

(Blake 2007).   

 Wedge-billed woodcreepers (hereafter "woodcreepers") were captured in both study plots 

in 2012 using 2.6-m mist nets as part of a long-term demographic study of understory birds (see 

Blake and Loiselle 2012 for additional details).  Twenty-three woodcreepers were captured in 

Jan-Mar 2012 and fitted with a radio transmitter (0.45g BD-2, Holohil Systems Ltd, Carp, 

Ontario, Canada) using a thigh harness (Rappole and Tipton 1991) made from either cotton or 

elastic thread.  Individuals were released at the site of capture. 
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 Woodcreepers were tracked using Advanced Telemetry Systems Field Master receivers 

and hand-held three-element Yagi antennas for 2-3 h per day, beginning at least 24 h after 

capture, and continuing throughout the battery life of the transmitter (~2 wk) or until the 

transmitter was dropped due to premature harness breakage (one case).  Order of tracking was 

randomized each day such that individuals were tracked equally during all daily time periods.  

Location of the woodcreeper was determined by homing, in which the woodcreeper was 

approached until it was either seen, or until the lack of directionality in the signal indicated close 

proximity (~10m; two technicians were trained with the transmitters prior to tracking in order to 

calibrate their abilities to judge distances using the equipment).  While the primary aim of the 

radio-tracking was to investigate flock-following behavior and space use patterns of this species 

(Darrah and Smith, in prep), any behaviors related to breeding were noted during observation.   

 

Display Behavior 

 One radio-marked individual (named “Brandt”) was observed engaging in the following 

display with an unmarked bird on 31 Jan, beginning at 10:40, while following a mixed-species 

flock.  The unmarked bird was ~1m above the ground, and Brandt was ~ 30 cm above and 

slightly to the side on the same trunk.  Both individuals were wing-flicking and calling while 

bowing their heads, the unmarked individual pointing its head up and toward Brandt, while 

Brandt was extending its head to the side and slightly down toward the other bird (Fig. 1).  Each 

head extension lasted about one second, followed by a 1-2 s pause before performing another 

head extension.  After performing this behavior for 10 min, Brandt flew to a different trunk ~1m 

away and continued calling.  A third individual was heard calling, and the mixed-species flock 

began moving away from the area.  At 11:05 Brandt and the second individual briefly rejoined 
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the flock, but did not follow it as the flock continued to move.  At 11:25 the two birds were again 

seen performing the display, with Brandt again above the other individual, <1m from the ground.  

Brandt hitched down the trunk between head extensions until the two birds were side-by-side on 

the trunk, pointing bills toward each other during each extension.  The birds occasionally called, 

and frequently opened their bills during the extensions.  It was difficult to determine which bird 

was initiating each extension; at times it appeared to be Brandt, at other times it appeared to be 

the unbanded individual.  This display continued until 12:00, when the birds moved to a nearby 

trunk and continued the behavior, ~ 15 cm from the ground, with Brandt briefly switching to the 

bottom position.  At 12:15 both birds tumbled to the ground, one on top of the other in what 

appeared to be copulation, and then flew back to the trunk.  This behavior was repeated at 12:20, 

followed by a pause of several seconds with one bird on top of the other on the ground before 

returning to the trunk.  Afterwards a third individual appeared nearby, followed by much calling 

and moving around by all three individuals. 

 Brandt was again observed performing this display on 8 Feb, this time in an area ~300 m 

from its core home range,toward one individual of a pair of unmarked birds.  The unmarked bird 

responded with display, but also repeatedly flew away from Brandt.  Brandt performed this 

display for 20 min, following the unmarked pair for a distance of at least 50 m.   

 A brief version of this display was observed twice in what appeared to be different 

contexts from that described above.  At 9:10 on 2 Feb, one individual (“Juliet”) approached to 

within 30 cmunder a banded individual on the same trunk.  Both birds were calling, and Juliet 

performed a head extension, with head flat against the trunk and bill open and pointing up 

toward the other bird, after which the other bird flew away.  Juliet was discovered with a 

fledgling 30 min later (details below), and the banded bird was never subsequently observed near 
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the fledgling.  On 6 Mar, an unmarked individual was seen performing this display toward a 

fledgling associated with another radio-marked bird.  The fledgling responded by repeatedly 

sidling away from the displaying bird and after ~30 s flying from the trunk.  Fifteen minutes later 

in the same area, the unmarked bird (assumed to be the same) once again approached the 

fledging, which again flew away in response. 

 

Breeding Notes 

 Of the 23 individuals radio-tracked from 12 Jan - 31 Mar, five were discovered to be 

breeding, as evidenced by eggs or fledglings.  One individual was flushed from a nest on 27 Jan.  

The nest was located in a cavity ~1 m high in a stump, with two eggs located on the floor of the 

cavity at the level of the entrance, and hence easily visible.  During the first tracking session of 

this bird (29 Jan, 6:45-8:30), it incubated for at least one hour, starting at 7:30.  It was not 

observed at the nest on 30 Jan from 10:30-12:30, and on 31 Jan the eggs had disappeared, with 

half an eggshell at the base of the stump. 

 A nest of another individual was discovered on 20 Mar within the home range of one of 

the birds being tracked ("Spongy"), although the bird that flushed from the nest was unbanded.  

The nest was in a hollow between trunks, with an opening ~1.5 m high, although the contents 

could not be seen.  On 23 Mar at 11:30, Spongy was flushed from this nest.  It did not approach 

the nest during a tracking session later that same day from 13:50-14:50. During 2-h tracking 

sessions from 24-28 Mar, incubation by Spongy ranged from 0-45 minutes (Table 1).  At the end 

of one session during which Spongy did not approach the nest (28 Mar), the unbanded bird was 

flushed from the next.  Nestlings were first heard on 29 Mar.  On 31 Mar Spongy's transmitter 
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battery died, and when the nest was checked that day and again several times that week, no bird 

was flushed nor nestlings heard, and the nest was presumed to have failed.  

 Three radio-tracked birds were observed caring for a fledgling from 2-10 Feb, 1-14 Mar, 

and 4-14 Mar.  A fourth fledgling was observed briefly on 28 Mar near a radio-tracked bird, but 

it was not observed again during the remaining three tracking days and was believed to belong to 

a different pair.  In the other three cases, the fledgling was observed until transmitter failure.  All 

three individuals were observed feeding the fledgling during one or more observation periods 

(Table 2), and in one case an additional individual (presumably the other parent) was observed 

feeding a fledgling.Juliet followed a mixed-species flock with its fledgling on 7 Feb for 20 

minutes, with two other adults present in the flock.  During three observation periods, another 

radio-tracked individual gave soft versions of its song while near its fledgling, and the fledgling 

responded by calling and flying toward the parent.  This behavior was also observed twice during 

observation of the third radio-tracked individual, and during a later observation period of that 

same individual, an unmarked bird gave a quiet song to which the fledgling called in response.   

 

Discussion 

Wedge-billed woodcreepers were observed breeding throughout the study period (Jan-Apr), 

coinciding with breeding times given for northern Amazonia and southeastern Colombia in 

Marantz et al. (2003).  Given the low proportion of individuals observed breeding (5/23) during 

this period, it is likely that breeding in this area extends beyond the observation period.  It is 

possible that some proportion of the population might be found breeding at any time of the year, 

as has been documented in antbirds in the area (Tallman and Tallman 1997).  Two of the five 
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breeding individuals in this study were simultaneously undergoing molt; this coincidence of molt 

and breeding was also observed for antbirds by Tallman and Tallman (1997).  

 Both members of a pair were observed incubating one of the two nests discovered, 

corroborating previous observations (Marantz et al. 2003).  Despite an average clutch size of 2 

eggs, only one fledgling was ever observed in this study.  Both parents apparently take part in 

feeding fledglings, although the rate of feedings appeared to be low and fledglings were 

observed foraging for themselves occasionally.  A soft version of the adult song appears to play 

an important role in parent-offspring communication. 

 The head-extension behavior described in this paper is an inconspicuous part of the 

behavioral repertoire of this species, which perhaps accounts for its lack of formal description in 

the literature until now.  I know of no other similar behavior described for other species of 

woodcreepers.  It appears to play an important role in courtship, with one instance of this 

behavior leading up to copulation, but the other contexts in which this display was observed 

suggested an additional function in aggressive encounters. 
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Table 1.Duration and times of egg incubation by a radio-tracked wedge-billed woodcreeper 

(Glyphroynchus spirurus) at Tiputini Biodiversity Station, Orellana Province, Ecuador, in 2012. 

Date Observation Period 
Time of 
Incubation 

Duration 
(min) 

21-Mar 6:40-8:40 none 0 
23-Mar 13:50-14:50 none 0 
24-Mar 8:25-10:10 8:25 30 
25-Mar 6:55-8:55 7:47 18 
26-Mar 8:45-10:45 none 0 
27-Mar 12:05-14:05 13:00 45 
28-Mar 6:15-8:15 none 0 
29-Mar 9:25-11:25 none 0 
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Table 2.Frequency of fledgling feedings by three radio-tracked adult wedge-billed woodcreepers 

(Glyphorynchus spirurus), with additional behavioral notes, observed at Tiputini Biodiversity 

Station, Orellana Province, Ecuador, in 2012. 

Individual Date Observation 
Feeding 
Frequency Other Notes 

1 2-Feb 9:10-11:10 0 
 1 4-Feb 8:30-10:30 0 
 1 5-Feb 12:20-13:35 0 
 1 6-Feb 13:25-14:30 0 
 1 7-Feb 10:10-13:10 2 joined flock with fledgling 

1 8-Feb 6:20-8:20 0 
 1 9-Feb 13:40-16:45 1 
 1 10-Feb 6:20-9:00 1 
 2 1-Mar 6:15-8:00 1 fledgling foraging, song and approach1 

2 2-Mar 10:20-12:05 0 
 2 3-Mar 11:25-12:25 0 
 2 4-Mar 9:55-12:55 1 fledgling foraging 

2 5-Mar 8:35-10:35 0 
 2 6-Mar 14:45-16:45 0 song and approach 

2 7-Mar 11:15-13:15 0 
 2 8-Mar 9:50-11:50 0 
 3 4-Mar 13:20-16:20 0 song and approach 

3 5-Mar 6:25-8:25 0 
 3 6-Mar 9:40-11:40 0 
 3 6-Mar 16:45-17:30 1 song and approach 

3 7-Mar 8:40-11:15 0 
 3 8-Mar 12:35-13:35 0 
 3 9-Mar 6:45-7:45 0 
 3 10-Mar 6:40-9:40 0 
 3 11-Mar 7:45-10:45 0 fledgling foraging 

3 12-Mar 9:10-10:40 1 song and approach 
3 13-Mar 6:35-9:35 0 

 3 14-Mar 10:55-11:55 0 
  

1“Song and approach” refers to the adult giving one or more songs, followed immediately by the 

fledgling approaching the adult. 

  

101 
 



Figure 1.  Photos of two wedge-billed woodcreepers (Glyphorynchus spirurus) in a) neutral 

position and b) performing head extensions. 

a. 

 
b. 
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CHAPTER 6: CONCLUSIONS 
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Foraging observations of wedge-billed woodcreepers in and out of flocks supported the anti-

predator hypothesis for the benefits of joining flocks, although some predictions based on this 

hypothesis were not upheld.  As expected, wedge-billed woodcreepers foraged in more exposed 

microhabitats while in flocks than while alone, a behavior that has been documented for other 

flock-following species (Munn 1984, Dolby and Grubb 2000, Tubelis et al. 2006).  However, 

scanning rates were not significantly lower in flocks as was expected.  Given the few scanning 

behaviors observed in this study in either situation, wedge-billed woodcreepers can likely 

maintain some level of vigilance while feeding without cocking the head in scanning behavior 

(Lima and Bednekoff 1999, Dukas and Kamil 2000, Cresswell et al. 2003), although with the 

likely result of reduced awareness of threats perceived in the peripheral vision (Dukas and Kamil 

2000).  Also unexpectedly, the extent of understory openness did not influence the distribution of 

flock-following locations, suggesting that wedge-billed woodcreepers are no more likely to join 

a flock in open areas than in dense areas.  It is possible that understory openness is not a good 

index of vulnerability to predation in this species, due to the paucity of information of the 

importance of non-avian predators.  Furthermore, as will be discussed below, other factors such 

as intraspecific competition and costs of following may be more important in determining where 

and when an individual will join a flock. 

 The most likely cost incurred to a wedge-billed woodcreeper joining a flock appears to be 

energetic, in the form of reduced foraging efficiency, increased energy expenditure, or both.  

Wedge-billed woodcreepers spent less time per trunk in flocks than when alone, which resulted 

from an increase in search movement (hitch) rate without a concurrent increase in prey attack 

(peck) rate, suggesting a reduction in foraging efficiency (Giraldeau and Caraco 2000).  

However, the difficulty in observing and quantifying prey capture rate for this species, and hence 
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energy intake, precluded a robust interpretation of this observation, and it remains possible that 

wedge-billed woodcreepers are able to compensate for the increased search rate by selecting only 

larger, more profitable prey (Giraldeau and Caraco 2000).  Despite this limitation, the 

observation that the time wedge-billed woodcreepers spent following a flock decreased with 

flock movement rate provides additional support for an energetic cost associated with 

conforming to flock movements.   

 Flocking propensity at the species level (20-30% per year) was considerably lower than 

the 40-60% generally reported in the literature (Munn 1985, Marantz et al. 2003, Jullien and 

Thiollay 1998), and predicted based on flock-joining opportunities using respective territory 

sizes of wedge-billed woodcreepers and mixed-species understory flocks (Pomara et al. 2007).  

The discrepancy between the values in this study and those in the literature appear to be 

methodological; this is the first study to measure flocking propensity directly via radio telemetry, 

rather than estimating flocking propensity as the proportion of total sightings that were within a 

flock (e.g. Jullien and Thiollay 1998).  Individual flocking propensity was not correlated with the 

frequency of flock presence within the home range, and individuals were regularly observed 

foraging alone when a flock was audible neaby.  Additionally, the distribution of flock-joining 

and flock-leaving locations indicated that individuals do not simply join a flock as it enters its 

home range and leave the flock when it crosses back out of the home range, unlike most other 

regular flocking species (Munn and Terborgh 1979, Gradwohl and Greenberg 1980, Jullien and 

Thiollay 1998).   

Individual flocking propensity was positively correlated with body mass, and the 

correlation between the differences in body mass and flocking propensity of interacting 

neighbors suggests the existence of intraspecific competition for access to mixed-species flocks.  
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Contrary to this hypothesis, the distribution of flock-following locations of individuals was not 

influenced by the space use of larger neighbors.  However, the methods used in this study did not 

allow for a detailed examination of simultaneous space use, and it is therefore possible that 

individuals joined flocks in the same locations, but not at the same time.  Furthermore, it is 

unknown whether any of these pairs were siblings or parent and offspring, and although there 

were three pairs that appeared to be mates, such relationships could not be determined with 

certainty.  Individuals are often less aggressive toward kin than non-kin in a wide range of 

organisms (Waldman 1988, Watson et al. 1994, Bilde and Lubin 2001, Griffiths and Armstrong 

2002).  Therefore, a robust test of the hypothesis of intraspecific competition for access to flocks 

would necessitate collecting simultaneous space use and interaction data along with a study of 

genetic relatedness among interacting individuals. 

 Home ranges of individual wedge-billed woodcreepers overlapped extensively, and 

individuals regularly used these overlap areas simultaneously, contrasting with the defense of 

exclusive territories seen in many antbirds (Thamnophilidae; Munn and Terborgh 1979, 

Greenberg and Gradwohl 1986, English 1998, Duca et al. 2006) and other woodcreeper species 

(Pierpont 1986).  It is unknown why the wedge-billed woodcreeper does not defend exclusive 

territories in the manner of other insectivores, which is the spacing pattern predicted by theory 

due to the defensibility of arthropod resources distributed relatively uniformly over space and 

time (Brown and Orians 1970, Maher and Lott 2000).  However, at extreme levels of resource 

abundance, territorial behavior may disappear, either because food is no longer limiting and 

therefore not worth defending, or because the resources support such a high density of intruders 

that defense becomes too costly (Maher and Lott 2000, McLaughlin et al. 2000).  In the wedge-

billed woodcreeper, arthropod abundance may be sufficiently great that defense of foraging areas 
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for exclusive use does not outweigh the cost of defense, particularly given the large number of 

possible intruders present in areas of high population density (including the present study area; 

Blake and Loiselle 2012). It would be informative to study patterns of territorial behavior and 

home range overlap in this species across a range of population densities and resource 

abundances. 
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