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1. SCOPE OF WORK 

The dissertation is comprised of three parts.  Part I describes proteomic analysis of native 

bacterial proteins from Escherichia coli (E.coli) that bind during Immobilized Metal Affinity 

Chromatography (IMAC).  Part II describes the value in exploiting proteome based data as a 

tool toward the design an E. coli expression strain that is particularly useful when Immobilized 

Metal Affinity Chromatography is employed as the initial capture step of a homologous protein 

purification process.  Part III describes a methodology of chromosomal mapping of all 

contaminant gene products.   

 

The objective of Part I was to identify all E. coli proteins that bind to Co(II), Ni(II), and Zn(II) 

IMAC columns, describing the isoelectric point, molecular weight, and metabolic essentiality of 

the characterized proteins were considered.  Information regarding this group of proteins is 

presented and used to define the IMAC bioseparation-specific metalloproteome of E. coli.  Such 

data concerning the potential contaminant pool is useful for the design of separation schemes, as 

well as designing optimized affinity tails and strains for IMAC purification.  Part II examined 

proteins known to co-elute during Co(II), Ni(II), and Zn(II) IMAC purifications.  Methods to 

circumvent the effects of punitive protein removal were proposed and carried out.  Specifically, 

triosephosphate isomerase (TIM; tpiA gene product), a protein known to bind during IMAC, was 

redesigned through site directed mutagenesis to eliminate surface exposed histidine.    By 

extension of this rational, Part III provides a theoretical model of using in silico mapping 

(Circos diagrams) to create a practical system of applying data described in Part I.  Such a tool, 

has potential to allow future investigators the possibility of mapping large scale genomic 
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deletions; significantly streamlining cell line development when compared to the individual 

targeting methodologies seen in Part II.  
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2. OVERVIEW 

Use of recombinant proteins as therapeutic agents continues to increase in medicine.  An April 

2010 global market report indicates that approximately 50% of all newly approved drugs in some 

way incorporate a bio-pharma active ingredient.  Forecasts in this report also indicate the global 

market for biopharmaceuticals is projected to reach US$182.5 billion by 2015, a fifteen percent 

increase from current standings (UK Global Research, 2010).  It is foreseeable, that this kind of 

growth will require significant streamlining of current process methodologies to facilitate 

sustainable global demand.   

 

In recent years, developments in upstream technologies have dramatically improved 

bioprocessing scale, yield, and performance.  Historically, due to a lack of available information 

of the internal workings of biological systems, purification research primarily focused on 

downstream process improvements; where developments in purification chemistries and fluid 

dynamics predominated (Porath, Carlsson, Olsson, & Belfrage, 1975).  However, with more 

recent advancements in the understanding of biological systems as a whole, contemporary 

studies have looked more seriously into the possibility of making improvements to the 

recombinant host itself; vis. genetic engineering of specialized recombinant expression hosts 

(Tan, Kern, & Selleck, 2005).   

 

For decades, the Escherichia coli recombinant expression system has been used for 

characterization of protein structure and function and it has become a fundamental tool in 

biochemical research practices. Simultaneously, industrial practices have implemented the E.coli 

expression platform as one of the most efficient and cost effective tools for the production of 
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both industrial and simple unconjugated recombinant proteins of medicinal value.  During this 

time, the addition of an affinity tag for simplifying the targeting proteins with unknown 

purification characteristics has become common.  Indeed, in industrial settings, it is common 

practice to include a well characterized immobilized metal affinity tag to all expression 

constructs at the onset of any new project regardless of the target protein properties (Hengen, 

1995). 

 

The research presented hypothesized that if one has prior knowledge of which contaminant 

proteins must be circumvented to obtain enhanced purity during a recombinant purification 

process; he/she could use such information to customize a recombinant strain that perimts a more 

simplified protein purification process.  Using this novel host cell could (i.) decrease the size of 

the chromatography columns required, (ii.) shorten the time required to obtain the final 

recombinant product, and (iii.) reduce overall costs of the purification process itself.   

 

This dissertation describes E. coli proteins that bind to IMAC columns under common industrial 

and academic conditions, the effect of modifications to such contaminant proteins at the 

molecular level with relation to overall cell health, and the potential for using large scale knock-

outs (i.e. deleting large portions of a bacterial chromosome) to derive a minimal genome 

recombinant expression host.  As part of a parallel study, in Part I we characterize the E.coli 

metallo-proteome; comprising the IMAC Total Contaminant Pool (TCP) and Elution 

Contaminant Pool (ECP).  Relative concentrations of individual contaminant species, which have 

the greatest effect on decreasing column capacity at the initial capture step, have been defined 

(Varakala, 2008).  The data describing contaminant proteins can be utilized to select the most 
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efficient combination of chromatography conditions to come to a homologous sample.  

Selections of secondary and polishing purification steps could then be determined based on 

physical properties of the remaining contaminant pool.   

 

As a complimentary continuation of this work, Part II of this dissertation describes a 

methodology of simplifying large scale purification processes by using molecular techniques to 

knock-out or genetically modify endogenous contaminant proteins known to co-elute during 

IMAC purifications from E.coli feed-streams.  Growth characterization of a representative 

mutant strain is analyzed relative to expression of a recombinant target. 

 

Part III describes the future application of data produced in Parts I and II, respectively. Future 

research could use this data to create of a functional map of the E. coli chromosome to detail 

specific locations of essential and non-essential IMAC contaminant genes.  Therefore, 

continuation of this work gives rise to the application and utility of being able to perform large 

scale chromosomal modifications to produce a minimal genome recombinant host.  Finally, a 

personal recommendation to continue this work by multiplexing the production of complex 

biomolecules in mammalian cell lines is briefly discussed. 
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3. LITERATURE REVIEW 

 

3.1 -omics:  Large Scale Applied Biological Sciences 

 

For most in the biological sciences community, the time spanning the mid-1990’s to present 

could be coined as the “–omics era”.  With the advent and implementation of laser adsorption 

measurement, robotic automation, and microprocessor integrated platforms into daily use 

analytical equipment; combined with tethering such equipment to the World Wide Web 

(Berners-Lee, 1999), biologist and biological engineers are now able to obtain large scale data 

sets in near real-time.  The technology of the –omics era has brought about dramatic changes in 

the way biological experiments are contrived and carried out (Kiechle, Zhang, & Holland-Staley, 

2004).  The sciences of genomics, transcriptomics, and proteomics all converge to allow 

researchers the ability to answer biological questions that, in the past, could merely be speculated 

as to the functions, interactions, regulatory mechanisms, or pathology of macromolecules within 

the context of cellular function. 
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3.2 Genomics 

 

The study of genomics originated as a discipline within the scope of genetics where the major 

focus was driven by the complete sequencing of an organism’s genome.  Today, the field has 

diversified into multiple efforts that aim to determine not only the DNA sequence of organisms, 

but also aims to include high resolution genome mapping (O'Brien et al., 1993).  In 1995, H. 

influenza (1.8 Mb) was the first free-living organism to have its genomic DNA (gDNA) 

sequenced and annotated (Fleischmann et al., 1995).  Since this time, with the advent of high 

through-put shotgun sequencing, as well as tools such as the Illumina™ sequencing platform, the 

field of genomics has considerably changed the way biological science is conducted.  At the time 

of this manuscript, the NCBI BioProject database cites archival of 2,192 Eukaryotes, 14,448 

Prokaryotes, and 297 Archaea genome sequences in their database. 

 

The first near complete sequence of an individual human genome was published in June 2007 

(Levy et al., 2007; Venter et al., 2007).  Modern genomics has since become a mainstay in 

medicine in the 21st century, as the promise of “individualized” medical treatment moves closer 

to becoming reality (Evans & Relling, 2004).  Genomics could be considered the primary level 

of study in biological systems.  More recent applications in field have shifted toward 

comparative genomics.  Here deep sequencing techniques are used to discriminate short single 

nucleotide polymorphisms (SNPs) within the genome. Subsequently, comparisons of such an 

individual sequence are made to that of the population consensus to determine if abnormal or 

allele specific traits are present (Ajay, Parker, Abaan, Fajardo, & Margulies, 2012).  
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3.3 Transcriptomics 

 

The transcriptome is considered to be the entire set of RNA molecules expressed in an organism, 

tissue, or cell type.  Transcriptomics is considered to be a secondary level of study in biological 

systems.  It has the overarching goal of providing researchers statistically measurable 

information concerning active expression of genes within a cell, tissue, or organism.  Because of 

the dynamic nature of the transcriptome, gene expression studies have a requirement of defining 

the cellular or organismic physiological state at the specific moment of sample collection.   

 

Recent publications in the field of transcriptomics predominantly include:  cellular or tissue 

response to treatment/ medication (de Groot et al., 2007; Patterson et al., 2008), differential 

regulatory function attributed to specific genetic mutation or cancer phenotype (Andersson, 

Sulkowski, & Porath, 1987; Augenicht, Taylor, Anderson, & Lipkin, 1991; Augenlicht & 

Kobrin, 1982; Augenlicht, Wahrman, Halsey, & al., 1987; Chakravarchy & Pietenpol, 2003; Jain 

et al., 2012; Morin et al., 2008; Wu et al., 2010), stem cell or developmental expression profiles 

(Cloonan et al., 2008; Fujiwara et al., 2011; Hermann et al., 2009; Jain, et al., 2012; Li, Yang, 

Nakashima, & Rana, 2011), and alternative regulatory or metabolic pathway(s) organisms/ cells 

may utilize when metabolically challenged (Çakir, Kirdar, & Ülgen, 2004; Hirai et al., 2005; 

Hirai et al., 2004). 

 

Early transcript expression profiling was performed by Northern blot analysis and the production 

of complimentary DNA (cDNA) libraries (Alwine, Kemp, & Stark, 1977; Belyavsky, 

Vinogradova, & Rajewsky, 1989; Schlamp et al., 2008).  Although still considered to be a 
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principal molecular technique, more recent technological advances now allow for high 

throughput genome wide expression profiling through DNA microarray technology (Maskos & 

Sothern, 1992; Winn et al., 2011), serial analysis gene expression (SAGE) (Nystrom, Fierlbeck, 

Granqvist, Kulak, & Ballermann, 2009; Velculescu, Zhang, Vogelstein, & Kenzler, 1995; Wu, et 

al., 2010), and quantitative PCR (qPCR) (Jeanty, Longrois, Mertes, Wagner, & Devaux, 2010; 

Pecson, Martin, & Kohn, 2009), quantitative reverse transcription PCR (qRT-PCR) (Curtis et al., 

2010; Jain, et al., 2012).   
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3.3.1 DNA Microarray Technology 

 

Since first being published in 1982, DNA microarrays have revolutionized the bioinformatics 

field (Augenlicht & Kobrin, 1982).  By allowing investigators to compare expression profiles of 

hundreds to even thousands of genes simultaneously, this technology has significantly 

contributed to the advancement of biomedical research.  For example, following initial 

publication exploring carcinoma  transplants in immuno-compromised  mice, Augenicht and 

colleagues’ published two follow-up studies using DNA Chip technology in human colonic 

cancer studies (Augenicht, et al., 1991; Augenlicht, et al., 1987).  Since their publications’, the 

ability to simultaneously contrast transcriptome-wide analyses of experimental groups has led to 

a far greater understanding of genotypic cancer expression patterns.  Knowledge gained from this 

work has given the medical community a powerful tool for accurately predicting how 

aggressively to a treat cancer patients or patients facing other genetically linked diseases. 

 

Germane to this dissertation is the work by Haddadin and Harcum (Haddadin & Harcum, 2005).  

Using fed-batch fermentation combined with whole genome microarrays, they were able to 

characterize gene expression profiles of wild-type Escherichia coli MG1655 to that of E.coli 

MG1655 transformed with an IPTG inducible plasmid, under varying states.  Their work 

confirms significant departures in gene expression between the two strains under various growth 

states, as well as under recombinant induction.   
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3.3.2 RNA-Seq 

 

Whole transcriptome shotgun sequencing or “RNA-Seq” has been touted as the next 

“revolutionary tool for transcriptomics” (Wang, Gerstein, & Snyder, 2009).   Built on deep 

sequencing technology, RNA-Seq offers the researcher a quantitative, high-throughput sequence-

based tool for surveying entire transcriptomes at single-base resolution (Holt & Jones, 2008; 

Wilhelm et al., 2008).  RNA-Seq has been applied to Saccharomyces cerevisiae (Nagalakshmi et 

al., 2008), Saccharomyces pombe (Wilhelm, et al., 2008), Arabidopsis thaliana, Mus musculus 

(Mortazavi, Williams, McCue, Schaeffer, & Wold, 2008), as well as Human cancer and stem cell 

lines (Cloonan, et al., 2008; Morin, et al., 2008).   

 

It should be noted that it is common in the field of transcriptomics for experimental designs to 

use ex vivo models by way of culturing the tissue or cell line of interest (Fujiwara et al. 2011, 

Hermann et al. 2009, Li et al. 2011).  This methodology affords the researcher the ability to 

influence and measure expression patterns across multiple cell lines, viz parallel experimental 

groups, simultaneously.  However, due to the relative instability and dynamic expression patterns 

inherent to RNA molecules, this ‘experimental tool’ could conceivably bias the outcome. To 

account for bias, a recurring pattern in transcriptomics studies is the inclusion of a parallel 

control group obtained through direct excision of the organ/ tissue of interest, followed by 

isolating the RNA transcripts via phenol: chloroform reagent (Chomczynski and Sacchi 2006, 

Hermann et al. 2009).  Inclusion of this type of control specimen allows researchers the ability to 

resolve variations in expression across multiple treatments by normalizing transcript patterns; 

consequently giving a higher confidence interval to the overall study.  
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3.4 Proteomics 

 

Proteomics has been defined as the study of the entire compliment of proteins, including 

modifications made to a particular set of proteins, produced by a cell, organism or system (Marc 

R. Wilkins et al., 1996; M.R. Wilkins, Sanchex, Gooley, & al., 1996).  Following genomics and 

transcriptomics, proteomics is considered the tertiary level of study of biological systems.  

Within the field there are notable applications, techniques and tools that directly contribute to the 

overarching discipline.   

 

Most studies in this field use tools, such as two dimensional gel electrophoresis (2DGE) 

combined with mass spectroscopy (MS) to determine functional expression levels within an 

organism under defined conditions.  For example, in an article comparing proteomic separation 

techniques, Chiou and Wu offer a comparison of common electrophoretic methods (Chiou & 

Wu, 1999).  Gygi and colleagues give insights in to potential pitfalls associated with using 2DGE 

as a separation technique (Gygi, Corthals, Zhang, Rochon, & Aebersold, 2000).  Fey and Larsen 

offer expert opinions on the application of 2DGE, suggesting that while the tool has definite 

drawbacks, it is the best methodology for high through-put proteome screening (Fey & Larsen, 

2001).    

 

By far, the most relevant biological application of 2DGE - MS has been in comparative 

expression proteomics.  Areas of application are very broad, including toxicological response 

(Sa-Correia & Teixeira, 2010), metabolomics (Christopher Kirkpatrick, 2001), purification 

process development (Kumar, Tabor, & Richardson, 2004), hepatocellular binding of heavy 
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metals (S. D. Smith, She, Roberts, & Sarkar, 2004), metalloproteomics (S. D. Smith, et al., 

2004), cancer biomarker identification for prognostic treatment strategy (Chakravarchy & 

Pietenpol, 2003), systems biology (Aebersold & Mann, 2003), protein-protein interactions 

(Kumar et al., 2004), and the integration of cellular signaling networks(Choudhary & Mann, 

2010), and Complexomics (Lasserre et al., 2006) to name a few. 
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3.4.1  Liquid Chromatography 

 

Liquid chromatography is traditionally defined as a process of separating a complex aqueous 

mixture into its composing parts.  Typically, a feed solution is introduced to a packed column 

containing a stationary phase where fractionation is accomplished through specific chemistry 

inherent to each part making up the whole of the feed stream.  This action is accomplished by 

continuously feeding solvent to the column following introduction of the solution to be 

fractionated, while simultaneously collecting individual peaks as they elute off the column.   
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3.4.2  Immobilized Metal Affinity Chromatography 

 

Immobilized-Metal Affinity Chromatography (IMAC) is a fractionation technique that utilizes 

covalently bound chelating compounds on solid chromatographic supports to capture metal ions, 

which serve as affinity ligands for various peptides / proteins (Gaberc-Porekar & Menart, 

2001b).  Porath and colleagues first published on IMAC as a separation method in 1975 (Porath, 

et al., 1975).  Advantages of IMAC, compared to other affinity techniques, include ease of 

column regeneration and stability of the stationary phase.   

 

Up to now, divalent Cu(II), Ni(II), Zn(II), and Co(II)  have successfully been used as affinity ligands 

in IMAC (Ueda, Gout, & Morganti, 2003).  Under correct stereo special configuration, these 

divalent transition metals demonstrate favorable binding properties to macromolecules 

displaying N, O, and S (Gaberc-Porekar & Menart, 2001b).  Amino acids such as histidine, 

cysteine, glutamic acid, and aspartic acid have electron donating side chains, however histidine 

shows the greatest affinity towards chelated metals under conditions of high salt content (Yip, 

Nakagawa, & Porath, 1989).  Several chelates are commercially available for IMAC, including 

iminodiacetic acid (IDA), nitrilotriacetic acid (NTA), and carboxymethylated aspartic acid; 

however IDA or NTA chemistry predominate the field (Chaga, 2001). 

 

Since the introduction of metal affinity tags by Smith and colleagues, and subsequent 

development by Beitle and Ataai, IMAC has developed into one of the most robust methods for 

the purification of recombinant proteins (Arnau, Lauritzen, Petersen, & Pedersen, 2006; Beitle & 

Ataai, 1993; Lichty, Malecki, Agnew, Michelson-Horowitz, & Tan, 2005; M. C. Smith, Furman, 
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Ingolia, & Pidgeon, 1988).  IMAC is widely used as an initial capture step in recombinant 

protein purification, however the presence of nascent host proteins that display similar affinity 

toward transitional metals currently preclude IMAC as a single step purification method for 

recombinant proteins.  Notably, loss of column capacity and a complication in gradient elution 

often occur when genomic proteins are retained during adsorption.   

 

Previous studies have also shown IMAC useful in separating nucleotides, probing a protein 

surface amino acid residues, and studying  protein – protein interactions (Andersson, et al., 1987; 

Hubert & Porath, 1980; Rossetto, Schiavo, Laureto, Fabbiani, & Montecucco, 1992).   
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4.0  ABSTRACT 

 

A description of native bacterial proteins from Escherichia coli that bind during Immobilized 

Metal Affinity Chromatography (IMAC) has been prepared by passing extracts through IMAC 

columns of varying metal ion, and identifying proteins that bind through proteome analysis.  

Specifically, Co(II), Ni(II), and Zn(II) IMAC columns were examined, and the isoelectric point, 

molecular weight, and essentiality of the characterized proteins were determined.  Information 

regarding this group of proteins is presented and used to define the IMAC bioseparation-specific 

metalloproteome of E. coli.  Such data concerning the potential contaminant pool is useful for 

the design of separation schemes, as well as designing optimized affinity tails and strains for 

IMAC purification. 
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5.0  INTRODUCTION 

 

Proteomics is the analysis of gene and cellular function at the protein level.  Traditionally it 

has been used to determine biologic events including protein expression, post-translational 

modifications, and protein-protein interactions. This analysis is done by combining modern 

techniques like mass spectrometry, high-resolution chromatography and bioinformatics 

(Giometti, 2003; Shi, Xiang, Horváth, & Wilkins, 2004).  Other uses of proteomics include 

the search for biomarkers in clinical diagnosis and therapy (Drake, Cazares, Semmes, & 

Wadsworth, 2005). Proteomics depends on advanced and sensitive technologies which allow 

rapid separation and identification of proteins (Hoog & Mann, 2004).  Typically the 

resolution of a mixture of proteins from a sample is done by 2 dimensional (2D) gel 

electrophoresis (Fey & Larsen, 2001). Determination of proteins is done by identifying their 

digested peptides by mass spectroscopy (MS) (Drake, et al., 2005).  The combination of 2D 

gel electrophoresis, MS, and pretreatment strategies including chromatography has been 

established as a successful technique for protein identification and characterization (Gygi, et 

al., 2000; Stasyk & Huber, 2004).   

 

Germane to this work is the use of proteome based data to characterize Immobilized Metal 

Affinity Chromatography (IMAC).  Porath et al. introduced IMAC as a separation method in 

1975 (Porath, et al., 1975).  This method is based on the affinity between peptides / proteins 

and metal ions bound to a support matrix.  IMAC can also be used to separate nucleotides 

(Hubert & Porath, 1980), and has proven useful in probing surface amino acids of proteins 

(Andersson, et al., 1987; Rossetto, et al., 1992) and interactions between proteins 
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(Andersson, et al., 1987).  IMAC has advantages compared to other affinity techniques that 

include ease of regeneration and stability.  Up to now, divalent Cu, Ni, Zn, and Co has been 

used in IMAC (Ueda, et al., 2003).  These divalent transition metals have favorable binding 

with N, O, and S and under conditions of high salt content, favor nitrogen coordination 

(Gaberc-Porekar & Menart, 2001b).  Within the column, transition metal ions (e.g. Ni(II)) are 

bound by immobilized chelating ligands.  Several commercial chelating groups are available 

for IMAC: iminodiacetic acid (IDA), nitrilotriacetic acid (NTA), and carboxymethylated 

aspartic acid (Chaga, 2001).  IDA is a commonly used as metal-chelating ligand in IMAC 

(Lindgren, 1994).  Amino acids like histidine, cysteine, glutamic acid and aspartic acid have 

electron donating side chains, but histidine has the greatest affinity towards chelated metals 

under conditions of high NaCl content (Yip, et al., 1989). With the introduction of affinity 

tags (e.g. His6), IMAC has developed into one of the most robust methods for the purification 

of recombinant proteins (Arnau, et al., 2006; Lichty, et al., 2005). 

Although IMAC is widely used for single-step purification of recombinant proteins, the 

presence of host cell proteins having an affinity toward transition metal ions remain 

problematic. Notably, the loss of column capacity and the complication of gradient elution 

occur when genomic proteins are retained during adsorption.  A priori selection of 

chromatographic steps is nearly impossible in a rational manner due to lack of knowledge 

regarding the contaminant proteins.  To this end, this article reports on contaminant proteins 

of Escherichia coli that will bind to IMAC columns under various conditions.  Identification 

of these metal binding proteins will aid in the design of purification strategies for 

recombinant proteins.   
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6.0 MATERIAL AND METHODS 

 

6.1 Cell culture and Sample Preparation 

 

Escherichia coli BL21 cells were obtained from the Stratagene (La Jolla, CA). Cells were 

cultured in Luria-Bertani (LB) medium in a 7-L Applikon Bioreactor (Applikon Inc., Dover, 

NJ) with 5 L working volume at 37º C with 200 rpm agitation rate and 500 ml/min aeration 

rate. Cells were harvested during late exponential phase. Cells pellets were obtained by 

centrifugation at 10,000 g for 10 min. Cell pellets were suspended in 100mL IMAC Loading 

Buffer (0.5 M NaCl, 0.05 M phosphate, pH 7.2) supplemented with non-chelating protease 

inhibitor from Sigma (St. Louis, MO).  Cell lysis was performed by sonication on ice using 

twenty 1 sec pulses using a Branson Sonifier S-150 (Danbury, CT).  For improved lysis, the 

cell lysate was frozen at -80º C overnight and sonication was repeated on following day.  

Cellular debris was removed by centrifugation at 30,000 rcf for 20 min, followed by filtration 

with a 0.2 µm syringe filter to remove any remaining particulate matter.  Collected 

supernatant samples were applied directly to IMAC columns. 
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6.2 IMAC and sample preparation 

 

Chromatography experiments were performed on an AKTA™ FPLC (GE Healthcare, 

Piscataway, NJ) system at room temperature.  HiTrap™ Chelating Sepharose (pre-packed 

columns) of 5 ml volume were charged with Co(II) or Ni(II) or Zn(II). Metal ions were 

coupled to the resin by applying two column volumes (CV) of a 50mM solution of the 

corresponding metal chloride.  Unbound metal ions were removed by washing with 5 CV of 

deionized water.  Binding/wash buffer contained 0.05 M phosphate, 0.5 M NaCl, at pH 7.2.  

Samples were filtered with a 0.2 µm syringe filter to remove any solids and applied after the 

column was equilibrated with 3 CV of binding/wash buffer.  The column was washed with 3 

CV of binding/wash buffer to remove non-specific binding proteins from the column.  Bound 

proteins were eluted with 50mM ethylene diamine tetraacetic acid (EDTA). Samples were 

desalted using a pre-packed column of 53 ml (GE Healthcare) by isocratic elution with 5mM 

phosphate buffer supplemented with Sigma protease inhibitor tablets to reduce protease 

activity to the extent possible.  Samples were stored in -80º C before concentration. Protein 

samples were concentrated using an Amicon™ stirred cell using 5000 MWCO membranes 

(Millipore, Billerica, MA).  Total protein concentration was measured with a DC protein 

assay kit according to the manufacturer (Bio-Rad, Hercules, CA).  
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6.3 Protein Identification 

 

Concentrated samples were sent to Midwest Biosciences (Lawrence, KS) for protein 

identification.  The methodology for protein identification procedure may be found at the 

following website (http://www.proteinid.com/proteinid.html).  Briefly samples were digested 

with trypsin and applied to a peptide trap column to remove salt and impurities. Peptides 

were separated by microcapillary C18 reverse-phase chromatography column and delivered 

to MS for identification.  MS/MS spectra corresponding to peptides were identified by 

matching protein sequence databases. This analysis was done using TURBOSEQEST™ 

software.  
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6.4 Data Analysis 

 

A property list of the proteins that bind to IMAC columns was developed based on literature 

information and in silico analysis.  Essentiality of genes corresponding to contaminant proteins 

was based on Gerdes et al (Gerdes et al., 2003).  This reference contains a comprehensive 

experimental assessment of E. coli MG1655.  Isoelectric point (pI) and molecular weights were 

calculated by using a pI/MW calculation tool on the ExPASy server 

(http://www.expasy.ch/tools/pi_tool.html).  Isoelectric values of proteins were calculated based 

on the amino acid pKa values and molecular weights were calculated from the isotopic masses of 

amino acids.
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7.0 RESULTS 

 

7.1 IMAC Contaminant Proteins 

 

A comprehensive list of the genes responsible for the expression of E. coli proteins that bind to 

High Trap Chelating Sepharose with Co(II), Ni(II), or Zn(II) as the affinity ligand has been 

compiled (Tables 1, 2 and 3).  Proteins were bound to the aforementioned metal affinity ligands 

by the IDA chelating group, and eluted using a step in EDTA concentration. Chromatography 

was performed both in the presence and absence of imidazole.  For each metal ion examined, 

Figures 1 and 2 summarize the distribution of a total contaminant pool (TCP) with respect to 

essentiality of gene product.  The TCP of each metal ion had a slightly larger pool of 

nonessential proteins, with Co(II) IDA binding both the least number of gene products deemed 

essential and a favorable ratio of essential: nonessential (E:N) of 0.61.  Note that for each metal 

ion, total proteins identified in the TCP did not equal the sum of essential and nonessential 

proteins.  The disparity was due to the fact that although the genome of E. coli is well 

documented, there still a remains significant fraction of gene products within the proteome that 

remain uncharacterized and are not well studied with respect to function and essentiality 

(Blattner et al., 1997).
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Table 1: Genes associated with total contaminant pool of Co-IMAC 
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Table 2: Genes associated with total contaminant pool of Ni-IMAC 
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Table 3: Genes associated with total contaminant pool of Zn-IMAC 
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Figure 1: Distribution of a total contaminant pool (TCP) with respect to essentiality of 
gene product. 
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Figure 2: Distribution of commonality between contaminant pools with respect to Co(II), 
Ni(II), and Zn(II) chealates used in IMAC separations. 
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Other comparisons were made between the TCP corresponding to each metal ion.  TCPs of 

Co(II) and Ni(II) had the greatest similarity, in agreement with prior studies (Y. Cai et al. 2004).  

A lack of commonality between Zn(II) and Ni(II) also occurred, as 22 identified proteins bound 

to both Co(II) and Zn(II).  2D representations of pI and MW for total contaminant proteins 

identified for three metals are presented in Figures 3 and 4, with this data representing the first 

report of IMAC TCPs.  Virtually all of the TCP resided in the range 5.5 - 7.0, and proteins with 

pI values above 7.0 were not encountered to a significant extent.  Indeed, there were less than ten 

proteins with theoretical or measured pI values between 7.0 and 10.5.  Most of the TCPs resided 

between pI values of 5 - 7 and below 80 kDa MW.  One gene product had a pI value greater than 

7 and a MW greater than 60 kDa in Co(II) and Zn(II) TCPs, and no gene product was found in 

that range for Ni(II). 
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Figure 3:  Distribution of contaminating species found in IMAC metalloproteome relative 

to isoelectric point. 
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Figure 4a:  Distribution of contaminant proteins found in Co(II) IMAC purifications when 
an IDA chelate and pH step elution is employed.   
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Figure 4b:  Distribution of contaminant proteins found in Ni(II) IMAC purifications when 
an IDA chelate and pH step elution is employed.   
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Figure 4c:  Distribution of contaminant proteins found in Zn(II) IMAC purifications when 
an IDA chelate and pH step elution is employed.   
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Information regarding the metabolic function of genes was determined. Figure 5 describes the 

distribution of nonessential proteins for several functional categories (e.g. biosynthesis, 

carbohydrate metabolism) within a TCP, with the charted value defined as a percentage of the 

total TCP for a given condition (e.g. Co(II) in the presence of imidazole).  For example, if one 

considers entries which describe binding in the presence of imidazole, 11, 7, and 11 percent of 

the TCPs for Zn(II), Ni(II), and Co(II), respectively, are considered nonessential and related to 

amino acid biosynthesis.  The group which represents the largest qualification was unclassified, 

representing approximately 25 percent of the total populations.  In rank order, the top five 

categories of proteins in a TCP were: unclassified, protein metabolism and secretion, nucleotide 

and cofactor metabolism, carbohydrate metabolism, and amino acid metabolism.  With the 

exception of protein metabolism and secretion and nucleotide and cofactor metabolism, each 

category had less than half essential proteins.
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Figure 5:  Distribution of nonessential contaminating proteins of the total contaminant pool 

based on gene product functional category. 
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8.0 DISCUSSION 

 

IMAC, an established method of bioseparation, served as the focus of a study of how modern 

biochemical techniques can shed light on groups of proteins.  Specific to this work was the initial 

characterization of proteins which bind to IDA-bound chelated metal ions.  To our knowledge no 

attempt has been made to provide a large dataset describing the proteome associated with a 

bioseparation method.  While the converse has occurred, viz. IMAC has been used to fractionate 

a proteome, data of this nature has not been viewed with respect to bioprocesses design (Shi, et 

al., 2004; Stensballe, Andersen, & Jensen, 2001; Sun, Chiu, & He, 2005). 

 

Characterizations that result from this work can guide improvements in affinity tails, as well as 

enhancements to the recombinant host itself.  The aforementioned are deemed long term 

improvements, while short term gains are possible by using the dataset in a direct fashion.  The 

latter will be discussed first.  The data are helpful to find useful differences between a 

hypothetical recombinant target protein and impurities; appropriate physical or chemical 

properties (surface charge, molecular weight, hydrophobicity) may be chosen to select the 

separation steps that follow the IMAC affinity capture step.  For example, if one chose to express 

a recombinant product in the range of 60 - 80 kDa with an isoelectric point between 6 - 7, 

Figures 3 and 4 aid in understanding the nature of the contaminating proteins that may be 

encountered.  Theoretically, by using Co(II) IMAC one will encounter two host cell impurities 

which could be removed by ion exchange or gel filtration.  More importantly, these two gene 

products are non-essential according to literature and could be removed from consideration via 

gene knockout.  Similar comments may be made with respect to zones with minimal contaminant 
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for divalent nickel and zinc.  As the MW / pI characteristics of a hypothetical target moves 

towards the cluster for each metal ion (cf. Figures 4a-c) the total impurities that may be 

encountered increase, but number of essential proteins do not dramatically change.  Again, gene 

knockout of a potential candidate is a useful strategy as the likelihood of encountering a 

nonessential gene product remains favorable.  Should one choose to develop an improved IMAC 

strain that displays a minimum TCP, deletion of nonessential gene products or modification of 

histidine content for proteins deemed essential is very possible based on this data set.  Indeed, as 

more of the E. coli proteome is characterized, information such as this could serve as a powerful 

tool to develop an IMAC-optimized host strain that lacks the nonessential contaminants and / or 

alter their histidine content.  Factoring in the space defined by MW / pI values, several zones of 

few impurities could be expanded via this strategy.   

 

There is a great deal of overlap between TCPs for all three metal ions as shown in Figure 2.  

Further breakdown with respect to metabolic function (cf. Figure 5) shows how promising the 

prospect of developing an IMAC-optimized bacterial strain can be due to the lack of essentiality 

identified for the majority of proteins.  The predicted proteome for E. coli has been described 

(Han & Lee, 2006).  The predictive proteome of 4,288 ORF, which correlates well with 

experimentally derived subsets, can be compared to the metalloproteome of Co(II), Ni(II), or Zn(II).  

The metalloproteomes favored alkaline proteins (pI >7) over acidic proteins (pI<7), and showed 

a similar distribution of acidic proteins to that of the genome.  However, the TCPs presented few 

alkaline proteins, arguably with one in the range above 60 kDa for three metals.  This suggests 

the design of a bifunctional IMAC + ion exchange affinity tail.  Bifunctional tails have been 

described in previous literature reports (Lichty, et al., 2005; Tan, et al., 2005).  They have not 
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been designed a priori based on bioprocess data.  
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9.0 CONCLUSIONS 

 

E. coli genomic proteins that bind to IMAC columns through IDA as the chelating agent for 

different metal ligands were identified using proteomic techniques.  Commonality, essentiality 

and metabolic functions of these proteins were presented.  Three metals showed similarity in 

binding, with approximately 50% of each metal protein pool common. Interestingly, 70% of each 

metal binding protein pool was deemed non-essential with respect to bacterial growth per 

literature data.  These protein pools represent the total contaminant pool for IMAC capture step, 

with further characterization helpful to select complementary steps to IMAC, develop new 

affinity tails, develop simple elution methods, and ultimately build an E. coli host strain(s) that 

express a reduced contaminant pool.
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Part II: A redesigned Escherichia coli triosephosphate isomerase restores growth 
properties in a bacterial strain useful for Immobilized Metal Affinity 
Chromatography (IMAC)  
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10.0 Abstract 

 

The bacterium Escherichia coli is one of the most commonly used organisms in biotechnology 

for recombinant protein production and high-throughput development of biopharmaceuticals.  

The focus of this article is the utilization of proteome based data to design an E. coli expression 

strain that is improved for initial protein capture via Immobilized Metal Affinity 

Chromatography (IMAC). Proteome data was specifically applied to guide the modification of a 

known IMAC binding protein, triosephosphate isomerase (tpiA gene product), and the use of site 

directed mutagenesis eliminated binding properties. The designer tpiA gene, when reintroduced 

into an E. coli strain deficient in this enzyme activity, produced a functional protein lacking in 

surface exposed histidine and was able to restore glycolytic function. 

 

Keywords 

Escherichia coli, Immobilized metal affinity chromatography, PCR mutagenesis, Protein 

engineering, Triosephosphate isomerase 
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11.0 Introduction 

 

Within the application of immobilized metal affinity chromatography (IMAC), protein affinity to 

divalent metals is principally dependent on correct spatial orientation of surface exposed 

histidine (Gaberc-Porekar and Menart 2001).  While it is an established method to add extra 

histidine in the form of an affinity tag (e.g. His6) to provide increased specificity towards IMAC, 

other contaminating species can easily show affinity to the chelated metal ion (Co(II), Ni(II), 

Zn(II) or Cu(II)) (Bolanos-Garcia and Davies 2006; Cai et al. 2004; Gaberc-Porekar and Menart 

2001).  These contaminating species, when adsorbed to the chromatography column can cause a 

reduction in column capacity, complications in gradient elution and a need for other companion 

bioseparation steps. For example, a survey of several IMAC papers indicate that when His6 is 

used in conjunction with Co(II), (i) approximately 18 - 43% of proteins bound to the column are 

not the target recombinant, (ii) elution conditions of the peak of interest can vary from 20 - 500 

mM imidazole, and (iii) it is necessary for chromatographic steps like ion exchange or size 

exclusion to accompany initial IMAC purification (Efremenko et al. 2006; Ha et al. 2008; 

Hutchinson and Chase 2006; Hutchinson et al. 2006; Liu et al. 2007; McCluskey et al. 2007; N. 

Abdullah and Chase 2005).   For these reasons, elimination of contaminant species from the 

genomic contaminant pool is likely to improve the recovery process as a whole. 

 

In order to develop a bacterial host for use in recombinant protein expression that is modified to 

ease the chromatographic burden for IMAC, a logical first step is to qualitatively establish any 

similarities between metalloproteomes when divalent metal ions are used as the affinity ligand 

(Cai et al. 2004).  For example, triosephosphate isomerase (tpiA gene product) was identified as a 
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common protein during IMAC adsorption regardless of metal ion chosen for an IMAC capture 

step, and is of sufficiently high concentration to affect column capacity when the recombinant 

target protein (e.g. membrane protein) is not expressed in high quantities.  To modify the tpiA 

gene such that the transcribed protein will not significantly bind IMAC resins, substitutions for 

three histidine codons via mutagenesis are necessary. The study described in this paper 

investigated alterations in the tpiA gene to greatly diminish IMAC adsorption. We report on the 

design of an engineered tpiA gene, enzymatic activity of the triosephosphate isomerase 

containing three residue mutations, and restoration of E. coli growth when introduced via 

plasmid transformation. 

 

Retention of this glycolytic enzyme is necessary to maintain integrity of the Embden-Meyerhof 

pathway.  Triosephosphate isomerase is a catabolic enzyme that does not require cofactors, 

prosthetic groups, or metal ions.  Its functional role is located at the branching step of the 

glycolytic pathway, where it catalyzes the interconversion of dihydroxyacetone phosphate to 

glycerol-3-phosphate through acid-base catalysis and electrophilic stabilization, respectively 

(Raines et al. 1986).  It is seen in nature as a homodimer, with a subunit molecular weight of 

approx. 26 500 Daltons (Putman et al. 1972) and large hydrophobic interdigitating loops at the 

subunit interface that interact at the back wall of the active site (Casal et al. 1987; Schliebs et al. 

1997).  Triosephosphate isomerase of Escherichia coli possesses three surface histidine residues 

near the N-terminus, with two forming a His-X2-His motif, hypothesized to be the cause of 

adsorption.  
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12.0 Material and Methods 

 

12.1 Bacterial Strains and Growth 

 

E. coli VR101 (tpiA-), a glycolysis compromised strain, was a kind gift from the Saab-Rincon 

lab (Saab-Rincon et al. 2001).  This strain was prepared through homologous recombination of 

an E. coli strain (JM101) designed to introduce a kanamycin resistance gene into the tpiA open 

reading frame (ORF).  This insertion rendered the chromosomal gene inactive.  E. coli BL21 

(DE3) was used to provide a copy of a wild-type tpiA template for PCR amplification followed 

by ligation into the pGEX-6P-2 vector (GE Life Sciences, Uppsala, Sweden).  E.coli BL21 Star 

(Invitrogen, Carlsbad, CA) was used as a comparable expression strain for production of 

recombinant product.  E.coli TB-1 was used for stable cryogenic storage of DNA constructs. 
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12.2 PCR Methodology 

 

E. coli BL21 (DE3) chromosomal DNA was purified using a Chromosomal DNA Extraction Kit 

(Qiagen, Valencia, CA) to provide a wild-type template for PCR amplification of the tpiA gene 

sequence.  PCR amplification was carried out using Platinum Taq Polymerase Supermix™ 

(Invitrogen, Carlsbad, CA) with the following primers:  Forward (BamHI site underlined) 

CGGGATCCATGCGACATCCTTTAGTGATGGGTAACTG; Reverse (EcoRI site underlined) 

GCAGAAGCGGCTAAACAGGCTTAAGAATTCC.  Briefly, the forward primer begins at the 

ATG starting codon for the tpiA gene with an upstream BamHI site to allow for directional 

ligation into the pGEX-6P-2 vector.  The reverse primer includes the TAA stop sequence seen 

within the genomic sequence allowing for amplification of the entire ORF, and an EcoRI site 

immediately downstream to allow for directional ligation into the vector. 

 

Mutagenesis PCR was carried out using purified plasmid containing wild type tpiA as template 

DNA.  Platinum Taq Polymerase Supermix™ (Invitrogen, Carlsbad, CA) supplemented with 2µl 

dimethyl sulfoxide (DMSO) and the following primers were used: 5’ forward (BamHI site 

underlined; mutation points in bold; template annealing sequence in italics) 

GCGGATCCATGCGAGCTCCTTTAGTGATGGGTAACTGGAAACTGAACGGCAGCCGC

GTCATGGTTCGCGAGCTGGTTTCTAACCTGCGTAAAGAG; 3’ reverse (EcoRI site 

underlined) GCAGAAGCGGCTAAACAGGCTTAA GAATTCC.  The forward mutagenesis 

primer contained the same directional ligation properties as the wild type primer.  The annealing 

sequence was moved down stream within the ORF to allow the mutation sequence to act as an 

extended overhang with respect to the template sequence.  The annealing sequence of the 
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forward primer was designed to match the physical properties of the 3’ reverse primer used in the 

wild type tpiA gene amplification.  PCR product containing the mutations will henceforth be 

referred to as tpiA:IMAC.1.  
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12.3 Plasmid Construction 

 

Both the tpiAwt and tpiA:IMAC.1 PCR products as well as the pGEX-6P-2 vector (3µg) (GE Life 

Sciences, Uppsala, Sweden) were double digested using EcoRI (2µl at 20kU/ml) and BamHI 

(2µl at 20kU/ml) (New England Biolabs, Ipswich, MA, USA).  Double digests were purified 

using a Qiagen Gel Extraction kit, followed by visualization by agarose gel electrophoresis.  The 

tpiAwt and tpiA:IMAC sequences (112ng) were independently ligated into the digested plasmid 

(100 ng) using T4 DNA ligase at 28°C for 2 hours.  Plasmids were transformed into E. coli TB-1 

which was subsequently selected on LB agar containing ampicillin (150 μg/ml). 

 

Resulting transformants were checked by PCR using MCS primers (GE Biosciences, Uppsala, 

Sweden) with parallel cultures of the transformant colonies grown in 1mL LB supplemented 

with 150µg/mL ampicillin.  PCR checks were visualized on a 1% agarose gel, with positive 

amplification cultures correlating to positives grown overnight at 37°C.  Qiagen Mini-Preps™ 

were performed to isolate plasmids.  Resulting plasmids were sequenced at the DNA Sequencing 

Core Facility, University of Arkansas for Medical Sciences using an Applied Biosystems 3100 

Genetic Analyzer. 

 

Chemically competent E. coli VR101 was transformed with the tpiA:IMAC.1 plasmid.  The 

resulting transformants were selected on LB agar containing ampicillin (150 μg/ml) and 55 

µg/ml kanamycin.  Chemically competent E. coli BL21 Star was also transformed with plasmids, 

with the resulting transformants plated on LB agar containing ampicillin (150 μg/ml). Interest in 

the former strain stemmed from the basic premise of the work, restoration of triosephosphate 
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isomerase activity, whereas the latter strain was used to produce the enzyme in large quantities 

for enzyme characterization (kinetic activity and IMAC adsorption properties). 
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12.4 Expression in E.coli VR101:pGEX -6P-2_tpiA.IMAC.1 

 

Seed cultures were inoculated 1:100 from cryogenic stock into Luria Bertani (LB) antibiotic 

supplemented media in 50mL conical tubes (ampicillin (150µg/mL); kanamycin (55 µg/ml)).  

Cultures were grown overnight in an orbital incubator set to 37°C and 200rpm.  The following 

morning, one liter Erlenmeyer flasks containing 500mL working volume of LB and antibiotic 

were inoculated.  Recombinant expression of the GST:eTIM fusion protein was induced at 

OD600 = 0.35 and culture growth was monitored for an additional 6 hrs.  Cell pellet was 

recovered by centrifugation (10,000 rcf; 10 min). The pellet was resuspended in 20mL PBS 

supplemented with protease inhibitor without EDTA and sonicated at 0°C using 3 cycles of 15 x 

1 second bursts, with a 3-5 minute resting period between rounds.  Crude lysate was frozen in -

80°C freezer overnight.  The following morning the crude lysate was thawed on ice and the 

sonication step was repeated.  Cellular debris was cleared by centrifugation at 25,000 rpm for 20 

minutes.  The supernatant was decanted into a clean 50mL conical tube and stored at -20°C.  Cell 

debris pellet was stored for future use at -80°C.  
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12.5 Purification of eTIM 

 

Cell lysate was thawed on ice and syringe filtered through a 0.45µm PES filter.  Ten milliliters 

cleared lysate was loaded into an Atka FPLC super loop and passed over a 5mL GST column at 

1.0 ml/min, allowing 3 column volumes (CV) flow through to clear any non-bound proteins from 

the column.  A 5ml aliquot of “Cleavage Buffer” supplemented with 500U of PreScission™ 

Protease was loaded into the FPLC super loop and passed over the column at 1.0 ml/min to 

initiate GST:eTIM cleavage.  Cleaved eTIM was collected as a single 10mL collection tube and 

immediately transferred to ice until further use.  Following elution, the GST column was washed 

with several CVs of 50mM Tris pH-7.2 to remove residual glutathione from the column. 

 

Cleavage fractions were quantified by BioRad DC Assay and visualized by SDS PAGE.  

Cleaved eTIM was prepped for buffer exchange using a G-25 26/10 desalting column into IMAC 

Bind/Wash Buffer (0.5M NaCl; 50mM Na2PO4; 10mM Imidazole pH = 7.47).  Recovered eTIM 

fraction was collected in a 10mL volume and stored at -20°C for further analysis.  A HiTrap HP 

Chelating column was charged with 3 CV of 5mg/mL CoCl2 and rinsed with 10 CV of Milli-Q 

water.  Column was equilibrated with IMAC Bind/Wash Buffer for 3 CV.  Five milliliters of a 

lysate containing eTIM sample were loaded to the column at 1mL/min, and 5mL fractions were 

collected in the flow through and elution steps.  As will be shown, the eTIM did not bind to the 

column and was collected in the flow through.  Each 5mL fraction containing eTIM flow-

through was combined to create a single 10mL fraction for activity studies.  
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12.6 Assay of Triosephosphate Isomerase 

 

A kinetic activity assay from Sigma-Aldrich Life Sciences (St. Louis, MO) was used to measure 

specific activity of the engineered protein relative to wild-type kinetic properties, using 

purchased rabbit enzyme as a control (Sigma-Aldrich Life Sciences, St. Louis, MO).  Total 

protein was measured using a BioRad DC assay kit (BioRad, Hercules CA). To gauge restoration 

of in vivo activity, cells transformed with tpiA.IMAC.1 were grown in batch cultures and cell 

growth was monitored.  In these cultures, no IPTG was added for induction. 
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13.0 Results 

 

Figure 1 describes the overall cloning strategy for the preparation of the engineered isozyme of 

triosephosphate isomerase that does not show binding affinity towards IMAC columns.  PCR 

was used to amplify the chromosomal copy of tpiA and clone it into a pGEX vector, which was 

subcloned into the E.coli TB-1.  This plasmid was in turn used as the template sequence for a 

mutagenic PCR reaction which resulted in a tpiA gene with the following substitutions: H3A, 

H17V, H20R1.  These substitutions were based on a sequence analysis using the bioinformatics 

software application Bio-Edit™ (Ibis Biosciences, Carlsbad, CA).  While the software 

application was originally designed for phylogenetic analysis of protein isoforms, here we 

implement it as a protein engineering tool to infer to the essentiality of surface exposed histidine.  

By comparing sequence data across multiple species, such data gives incite as to which residue 

substitution are most likely to result in a favorable outcome. 

 

Sixty three sequence alignments (Figure 2) of various triosephosphate isomerase isoforms 

indicate significant amino acid variation within the region; including aliphatic, hydrophobic, and 

amphiphilic residues.   Respective alanine, valine, and arginine residue substitutions were chosen 

in light of micro-environment chemistries within the region of interest, thus dictating the most 

favorable substitutions for each respective position.  During construct design, significant 

consideration was given as to the location of histidine removal relative to location of the enzyme 

active site.  It was determined that due to the significant distance between the location of 

mutagenesis and the enzymes active site (centered on position Glu167) there was little chance of 

                                                            
1 Amino acid numbering follows the convention for E. coli str. K-12 sub-strain MG1655.  Designations use the 
single letter amino acid code.  H3A signifies that in the engineered enzyme Histidine-3 has been changed to 
Alanine. 
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interfering with enzymatic kinetics.  Of note, care was taken to preserve the integrity of Lys11, 

due to its punitive role in stabilizing substrate intermediates (Kempf et al. 2007; Nickbarg et al. 

1988; Nickbarg and Knowles 1988; Pompliano et al. 1990). 

 

E. coli VR101 growth properties in the presence and absence of the tpiA:IMAC.1 plasmid were 

examined in batch cultures (Figure 3).  A trace of the OD for the parent strain indicated a 

severely compromised metabolism, as evident by the exceedingly long approach to a steady state 

value of 0.2 OD. In contrast, plasmid bearing VR101 responded quite well to the reintroduction 

of engineered tpiA with the aforementioned residue mutations, as evident by its growth curve 

(Figure 3).  Batch growth resulted in a higher final OD of 1.7, which was eight and one half 

times that of the parent strain.  The maximum specific growth rate (µmax) was calculated, defined 

by 

 

dt
dX

X
1

max =µ  

 

where X is cell concentration and t time.  Under conditions employed in this study, the value of 

the maximum growth rate was 0.84 h-1.  Also presented in Figure 3 is the growth characteristics 

of BL21 (DE3), a strain used commercially for the production of recombinant protein.  Aside 

from a small departure late during exponential growth, both BL21 (DE3) and E. coli VR101 

harboring tpiA:IMAC.1 displayed similar values of both µmax and final OD.  The similarities in 

growth characteristics indicate that in vivo, isomerase activity has been restored to a value 

comparable to typical E. coli. 
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Figure 1: Cloning strategy implemented to obtain ptpiA.IMAC.1. 
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Figure 1:  Wild-type and mutant tpiA 
constructs were created through end-
point PCR.  Resulting sequences were 
ligated into vectors for cryogenic 
archival.  Resulting plasmids were then 
independently transformed into E.coli 
JM101 and VR101, respectively.  
Bacterial growth, enzymatic activity, and 
IMAC binding ability were determined. 
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Figure 2:  TIM sequence alignments of 20 species showing region on mutagenesis for the removal surface exposed histidine. 
 
 
gi|16131757   -------MRH PLVMGNWKLNGSRH-MVHELVSNLRKELAG--VAGCAVAIAPPEMYIDMAKREAEGS--HIMLGAQNVDLN-LSGAFTGE  
 
gi|15834098   -------MRH PLVMGNWKLNGSRH-MVHELVSNLRKELAG--VAGCAVAIAPPEMYIDMAKREAEGS--HIMLGAQNVDLN-LSGAFTGE  
 
gi|26250685  -------MRH PLVMGNWKLNGSRH-MVHELVSNLRKELAG--VAGCAVAIAPPEMYIDMAKREAEGS--HIMLGAQNVDLN-LSGAFTGE  
 
gi|19075524  ----MA--RK FFVGGNFKMNGSLE-SMKTIIEGLNTTKLN--VGDVETVIFPQNMYLITTRQQVKK---DIGVGAQNVFDK-KNGAYTGE  
 
gi|16767347  -------MRH PLVMGNWKLNGSRH-MVNELVANLRKELTG--VAGCDVAIAPPEMYIDLAKRAAAGS--HIMLGAQNVDLN-LSGAFTGE  
 
gi|15599942 -------MRR PLVAGNWKMHGTHS-SVAELIKGLR-QLAL--PSGVDVAVMPPCLFISQVIQGLAGK--AIDVGAQNSAVEPMQGALTGE  
 
gi|125972663 ------MSRK VIAAGNWKMNKTPK-EAVEFVQALKGRVA--DAD-TEVVVGVPFVCLPGVVEAAKGS--NIKVAAQNMHWE-KGAFTGE 
 
gi|33597944 --MTTAENRARLVLGNWKMHGNLA-ENAALLAELR-AADA--AAHCEMGVCVPFPYLAQTAAALQGS--AIGWGAQDVSAGAYTGE 
 
gi|15608576 ------MSRKPLIAGNWKMNLNHY-EAIALVQKIAFSLPDKYYDRVDVAVIPPFTDLRSVQTLVDGDKLRLTYGAQDLSPH-SGAYTGD 
 
gi|33865357 -------MRRPVIAGNWKMHMTCA-QARDYMAAFLPQIER-APQDREIVLAPPFTALSTMAAAAEHS--VVGLASQNVHWQ-DHGAFTAE 
 
gi|168185507  -------MRKAIIAGNWKMNNTIS-QGLKLVEELKPLVA--GAN-SDVVVCPPTLALDAVVKATEGT--NIKVGAQNMHFE-ESGAFTGE 
 
gi|19745720   ------MSRKPIIAGNWKMNKNPQ-EAKAFVEAVASKLP--STDLVDVAVAAPAVDLVTTIEAAKDS--VLKVAAQNCYFE-NTGAFTGE 
 
gi|6320255    ----MA--RTFFVGGNFKLNGSKQ-SIKEIVERLNTASIP--EN-VEVVICPPATYLDYSVSLVKKP--QVTVGAQNAYLK-ASGAFTGE 
 
gi|4507645    ----MAPSRKFFVGGNWKMNGRKQ-SLGELIGTLNAAKVP--AD-TEVVCAPPTAYIDFARQKLDP---KIAVAAQNCYKV-TNGAFTGE 
 
gi|15674692   ------MSRK PIIAGNWKMNKNPQ-EAKAFVEAVASKLP--STDLVDVAVAAPAVDLVTTIEAAKDS--VLKVAAQNCYFE-NTGAFTGE 
 
gi|15679059   MLEDLELKDTPIVILNFKTYLESTGERALELASICGDVAD--ETGVNMAVAPQHMDLHRVSDAVEIP-----VLAQHIDAV-DAGGHTGS 
 
gi|33591972 --MTTAENRARLVLGNWKMHGNLA-ENAALLAELR-AADA--AAHCEMGVCVPFPYLAQTAAALQGS--AIGWGAQDVSAH-AKGAYTGE 
 
gi|29832840 -----MTSRMPLMAGNWKMNLNHL-EAIAHVQKLAFALADKDYEACEVAVLPPYTDLRSVQTLVDGDKLKIKYGAQDVSAH-DSGAYTGE 
 
gi|58337021   ------MSRTPIIAGNWKLHMNPE-QTTEFVDAVKGKLP--DPSKVESLICAPAVDLDALRKAAEGS--NLHIGAENCYFE-DEGAYTGE 
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gi|29832840   -----MTSRMPLMAGNWKMNLNHL-EAIAHVQKLAFALADKDYEACEVAVLPPYTDLRSVQTLVDGDKLKIKYGAQDVSAH-DSGAYTGE  
 
gi|30064787   -------MRH PLVMGNWKLN GSRH-MVHEL VSNLRKELAG --VAGCAVAI APPEMYIDMA KREAEGS--H IMLGAQNVDL N-LSGAFTGE 
 
gi|16131757 TSAAMLKDIGAQYIIIGHSERRTYHKESDELIAKKFAVLKEQGLTPVLCIGETEAENEAGKTEEVCARQIDAVLKTQGAAAFEGAVIAYE 
 
gi|15834098  TSAAMLKDIGAQYIIIGHSERRTYHKESDELIAKKFAVLKEQGLTPVLCIGETEAENEAGKTEEVCARQIDAVLKTQGAAAFEGAVIAYE 
 
gi|26250685 TSAAMLKDIGAQYIIIGHSERRTYHKESDELIAKKFAVLKEQGLTPVLCIGETEAENEAG KTEEVCARQIDAVLKTQGAA AFEGAVIAYE  
 
gi|19075524  NSAQSLIDAGITYTLTGHSE RRTIFKESDEFVADKTKFALEQGLTVVACIGETLAEREANETINVVVRQLNAIADKVQN--WSKIVIAYE 
 
gi|16767347 TSAEMLKDIGAQYIIIGHSERRTYHKESDE LIAKKFAVLK EQGLTPVLCI GETEAENEAG KTEEVCARQI DAVLKTQGAA AFEGAVIAYE 
 
 gi|15599942 TAPSQLADVGCSMVLVGHSERRLILGESDEVVSRKFAAAQSCGLVPVLCVGETRAEREAGKTLEVVARQLGSVIDELGVGFARAVVAYE  
 
gi|125972663  VSGPMLAELGVDYVIIGHSERRQYFGETDETVNKKVHAAFKYGLKPIICVGESLTQREQGVTAELVRYQVKIALLGLSAEQVKEAVIAYE 
 
 gi|33597944 VAAPMLAEFGCRWVLVGHSERRTLHAESDQLVADKARAALEAGLTPVVCVGESLQEREGGNTLGVRQLEPVL-ALGRDALVRMVLAYE 
 
gi|15608576 VSGAFLAKLGCSYVVVGHSERRTYHNEDDALVAAKAATALKHGLTPIVCIGEHLDVREAGNHVAHNIEQLRGSLAGLLAEQIGSVVIAYE 
 
gi|33865357 ISAEMLLEHGVAYTIVGHSEPRKYFSESDEQINHRARCSQAKGLIPIVCVGESDEQRERGEAERVIRRQIEQGLEGLDAN---KLVVAYE  
 
gi|168185507  IAPAMLEELGVKYVILGHSERRQYFGENDADLNKKMKKAFEHNLTPILC GETLEEREADVTEEVLAKQI KLDLAGLTKE QIAETVIAYE 
 
gi|19745720   TSPKVLAEMGADYVVIGHSERRDYFHETDEDINKKAKAIFANGLTPIICCGESLETYEAGKAAEFVGAQVSAALAGLSAEQVASLVLAYE 
 
gi|6320255  NSVDQIKDVGAKWVILGHSERRSYFHEDDKFIADKTKFALGQGVGVILCIGETLEEKKAGKTLDVVERQL NAVLEEVKD- -WTNVVVAYE 
 
gi|4507645 ISPGMIKDCGATWVVLGHSERRHVFGESDELIGQKVAHAL AEGLGVIACI GEKLDEREAG ITEKVVFEQT KVIADNVKD- -WSKVVLAYE 
 
 gi|15674692 TSPKVLAEMGADYVVIGHSERRDYFHETDEDINKKAKAIFANGLTPIVCCGESLETYEAGKAVEFVGAQVSAALAGLSAEQVASLVLAYE 
 
gi|15679059   ILAECARDAG AAGTLINHSE KRMQLADIEW VISR----MK ELEMMSVVCT NNVMTTAAAA ALG------- ---------- ---PDFVAVE                
 
gi|33591972 VAAPMLAEFGCRWVLVGHSERRTLHAESDQLVADKARAALEAGLTPVVCVGESLQEREGGNTLGVIERQLEPVL-ALGRALVRMVLAYE 
 
gi|29832840 ISGSMLAKLKCTYVAVGHSERRQYHHETDEIVNAKVKASFRHGLIPILCV GEELEVREAG NHVTHTLTQV EGGLKDVPAEQAETIVIAYE 
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gi|58337021 TSPKVLKEMGIDYVIIGHSERRGYFHETDEDINKKAKAIFANGMKPIICCGESLETREANKQEDWVVAQIKAALDGLTAEQVSSLVIAYE  
 
gi|29832840 ISGSMLAKLKCTYVAVGHSERRQYHHETDEIVNAKVKASFRHGLIPILCVGEELEVREAG NHVTHTLTQV EGGLKDVPAE QAETIVIAYE 
 
gi|30064787 TSAAMLKDIGAQYIIIGHSERRTYHKESDELIAKKFAVLK EQGLTPVLCI GETEAENEAG KTEEVCARQI DAVLKTQGAA AFEGAVIAYE 
 
gi|16131757  PVWAIGTGKSATPAQAQAVHKFIRDHIA-KVDANIAEQVIIQYGGSVNASNAAELFAQPDIDGALVG-GA SLKADAFAVI VKAAEAAKQA 
 
gi|15834098  PVWAIGTGKSATPAQAQAVHKFIRDHIA-KVDANIAEQVIIQYGGSVNASNAAELFAQPDIDGALVG-GA SLKADAFAVI VKAAEAAKQA 
 
gi|26250685 PVWAIGTGKSATPAQAQAVHKFIRDHIA-KVDANIAEQVIIQYGGSVNASNAAELFAQPD IDGALVG-GA SLKADAFAVI VKAAEAAKQA 
 
gi|19075524  PVWAIGTGKT ATPEQAQEVH AEIRKWATNK LGASVAEGLR VIYGGSVNGG NCKEFLKFHD IDGFLVG-GA SLKP-EFHNI VNVHSL--- 
 
gi|16767347  PVWAIGTGKSATPAQAQAVHKFIRDHIA-KADAKIAEQVIIQYGGSVNASNAAELFAQPDIDGALVG-GA SLKADAFAVI VKAAEAAKQA  
 
gi|15599942  PVWAIGTGLT ASPAQAQEVHAAIRAQLA-AENAEVAKGVRLLYGGSVKAASAAELFGMPD IDGGLVG-GA SLNADEFGAI CRAAGS---- 
 
gi|125972663  PIWAIGTGKT ATNEQAEEVC GIIRECIKEL YGQDVAEAIR IQYGGSVNAA NAAELFNMPN IDGGLVG-GA SLKLDDFEKI AKYNK-----  
 
gi|33597944   PVWAIGTGRT ASPEQAQEVH SAIRVALD-G LQAS---QVR VLYGGSVKGA NAASLFAMPD IDGGLVG-GA SLVAEEFLRI AAA-------  
 
gi|15608576  PVWAIGTGRVASAADAQEVCAAIRKELASLASPRIADTVRVLYGGSVNAKNVGDIVAQDDVDGGLVG-GASLDGEHFATLAAIAAGGPL 
 
gi|33865357   PIWAIGTGKT CEAAEANRIC GLIRSWVG-- -----ATDLI IQYGGSVKPT NIDELMAMSD IDGVLVG-GA SLKPDSFARI ANYQAI----  
 
gi|168185507  PIWAIGTGKT ATSDQAEETI AFVRKTVAGM FGAEAAEKMR IQYGGSVKPA TIKEQMAKPN IDGGLIG-GA SLKAADFAAIVNFDK----- 
 
gi|19745720   PIWAIGTGKSATQDDAQNMCKAVRDVVAADFGQEVADKVRVQYGGSVKPENVKDYMACPDVDGALVG-GASLEADSFLAL LDFLN--- 
 
gi|6320255    PVWAIGTGLA ATPEDAQDIH ASIRKFLASK LGDKAASELR ILYGGSANGS NAVTFKDKAD VDGFLVG-GA SLKP-EFVDI INSRN-----  
 
gi|4507645    PVWAIGTGKT ATPQQAQEVH EKLRGWLKSN VSDAVAQSTR IIYGGSVTGA TCKELASQPD VDGFLVG-GA SLKP-EFVDI INAKQ---- 
 
gi|15674692 PIWAIGTGKSATQDDAQNMCKAVRDVVAAD FGQEVADKVR VQYGGSVKPE NVKDYMACPD VDGALVG-GA SLEADSFLAL LDFLN- 
 
gi|15679059   PPELIGSGIP VSRAEPEVIT GSVDAVKK-- ----VNPEVS VLCGAGISTG DDMKAAVDLG AEGVLLASGI ILADSPRDAL LDLVSKV---  
 
gi|33591972   PVWAIGTGRT ASPEQAQEVH SAIRVALD-G LQAS---QVR VLYGGSVKGA NAASLFAMPD IDGGLVG-GA SLVAEEFLRI AAA-------  
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gi|29832840 PVWAIGTGKV CGADDAQEVC AAIRAKLAEL YSQELADQVR IQYGGSVKSG NVAEIMAKPD IDGALVG-GA SLDADEFVKI ARFRDQ- 
 
gi|58337021   PIWAIGTGKT ASSDQAEEMC KTIRETVKDL YNEETAENVR IQYGGSVKPA NVKELMSKPD IDGGLVG-GA SLDPESFLAL VNYQD--- 
 
gi|29832840  PVWAIGTGKV CGADDAQEVC AAIRAKLAEL YSQELADQVR IQYGGSVKSG NVAEIMAKPD IDGALVG-GA SLDADEFVKI ARFRDQ- 
 
gi|30064787 PVWAIGTGKSATPAQAQAVHKFIRDHIA-KVDANIAEQVIIQYGGSVNASNAAELFAQP IDGALVG-GA SLKADAFAVI VKAAEAAKQA 
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Figure 3: Growth Characterization of E.coli RH101: pGEX -6P-2_tpiA.IMAC.1 when 
compared to E.coli VR101 and E.coli BL21 (DE3). 
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To address the possibility that differences in expression levels could, in part, explain the 

restoration of growth, kinetic properties of the engineered tpiA gene product was examined.  

Similar specific activity values demonstrate that enzyme from E. coli, rabbit, and E. coli 

tpiA:IMAC.1 possess similar catalytic potential.  As seen in Table 1, calculations show specific 

activities to be nearly identical (U/mg).  This fact, when combined with growth data, leads us to 

believe that the described mutations have no effect on the function of the enzyme itself. 
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Table 1:  Specific activity of the engineered TIM enzyme compared to Rabbit TIM and 
E.coli wtTIM. 

 

 

  

Protein Sample Ave. U/mL Standard 
Deviation 

Concentration 

Protein 

Units/ mg 
protein 

Rabbit TIM 0.579 0.1093 2.49 ng/mL 232.3 

E.coli TIMwt 1221.6 24.99 5.26 µg/mL 232.3 

E.coli eTIM 384.72 75.01 1.66 µg/mL 232.3 
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While eTIM restored growth conditions it was also necessary to confirm that the modified 

protein no longer bound to an IMAC chelating resin. Figure 4 shows chromatography fractions 

following Prescission protease cleavage of eTIM.  Lane 6-8 confirm that the modified eTIM 

does not bind to Co(II) IMAC column as evidenced by the presence of bands in lane 6 and 7, and 

its absence in lane 8. 
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Figure 4: 12.5% SDS-Page gel showing cleaved eTIM does not bind Co(II) IMAC column. 

 

           

Lane  1         2         3         4          5          6        7         8          9         10 

Lane 1:  Benchmark Ladder (10µl) 

Lane 2:  Crude Lysate (7µL) 

Lane 3:  GST: TIM elution (10µL) 

Lane 4:  GST cleaved (10µl) 

Lane 5:  eTIM cleaved (10µl) 

Lane 6:  eTIM IMAC load (10µl) 

Lane 7:  eTIM IMAC flow-through 

Lane 8:  EDTA purge of Co(II) column 

Lane 9:  5µg load BSA  
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14.0 Discussion 

Comparing all three OD trends indicated that the overall strategy defined in this paper restored 

growth properties to levels comparable to that of commercially used strains. In general, genomic 

proteins that either reduce column capacity, require a gradient designed to minimize contaminant 

elution, and / or necessitate the addition of other purification steps can be removed from 

consideration by first eliminating the chromosomal copy of the essential gene product.  When the 

protein is essential for cell growth, designing and constructing a version of the protein with a 

lack of binding features, and transforming the deletion strain with an appropriate plasmid 

harboring the designer gene can resupply wild-type activity while simplifying protein isolation.  

For the case of IMAC purification, removal of surface exposed histidine accomplishes this task. 

 

Triosephosphate isomerase shows extensive conservation with respect to active site residues.  

However, regions that contain the three surface exposed histidine residues show few conserved 

features when compared across multiple species alignments.  Of the conserved features, Glu167, 

His95, and possibly Lys11 have been described as the primary acting residues offering catalytic 

function (Nickbarg et al. 1988; Nickbarg and Knowles 1988).  In the active site, Glu165 acts as a 

catalytic base during the enolization step of the conversion of dihydroxyacetone phosphate to 

glycerol-3-phosphate (Raines et al. 1986; Straus et al. 1985).  This reaction is stabilized by a 

short α-helix region flanked by His95 and His103, in which His95 acts as an acid during the 

collapse of the reaction to form glycerol-3-phosphate, while stabilizing hydrogen bonding during 

the enolization step (Lodi and Knowles 1993).  These histidine residues are buried in the 

secondary structure, and are not capable of interacting with IMAC media (Aparicio et al. 2003; 

Blacklow et al. 1991). 
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Based on ClustalW2 alignments and a thorough search of the literature, surfaced exposed 

histidine at the N-terminal region shows no functional role with respect to folding or catalytic 

activity.  As such, these residues were replaced using PCR mutagenesis.  In frame residue 

substitutions were designed into the forward primer that allowed for residue replacement at the 

locations corresponding to the three histidine residues that were surface exposed.  The codon 

substitutions resulted in Ala3 for His3, Val18 for His18, and Arg21 for His21 in the engineered 

E.coli tpiA gene product.  Kinetic assays confirmed the preservation of enzymatic activity, 

confirming to hypothesis that that N-terminal surface exposed histidine were unimportant from a 

catalytic standpoint. 

 

While in vitro measurements were encouraging, growth characteristics provided the final test of 

the engineered tpiA gene.  Leaky expression of the modified tpiA gene product clearly restored 

growth.  When comparing it to the E. coli BL-21control strain, it is with in the approximate 

range of wild-type growth characteristics.  The fact that the modified tpiA gene is expressed from 

plasmid is inconsequential, as it may be chromosomally integrated should one desire a plasmid 

free host strain.  To this end, future efforts will investigate protein expression and IMAC 

purification to illustrate improvement in bioseparation by, in particular, recovering column 

capacity. 
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Part III:  Future extension of proteomic approach toward development of a minimal 
genome recombinant expression host. 
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14.0  Discussion 

 

To date, a priori selection of appropriate chromatographic steps for isolating a homologous 

recombinant protein has been impossible in any rational manner.  This is, in part, due to two 

specific deficits of knowledge relating to understanding of the biochemical composition of the 

feed stream:  i.) a lack of knowledge regarding specific contaminant proteins from which the 

recombinant target must be resolved, ii.) relatively little empirical data is available as to how a 

recombinant host could modify gene expression should mutagenesis be employed toward 

optimizing the crude lysate.   

 

This dissertation has addressed these gaps by defining the Escherichia coli metalloproteome.   

Herein, I have provided a complete list of all IMAC contaminant proteins, and where possible I 

have annotated the genomic contaminant protein by g.i. #, associated gene name(s), protein 

name(s), and metabolic function.  The complete IMAC contaminant protein list was assembled 

based on replicated empirical data (n=3), and using an industry standard recombinant expression 

host grown under batch fermentation conditions.   

 

From an academic perspective, addressing the second knowledge deficit is a significantly more 

challenging prospect.  As a proof of concept toward the generation of a specialized ‘purification 

process’ recombinant host, I chose characterize deletion and/ or site-directed mutagenesis as 

methods of circumventing IMAC contaminant proteins.  Rational, for choosing two contaminant 

proteins was based on data indicating proportional concentration of individual contaminants 

relative to the overall concentration of the elution contaminant pool (ECP).   
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As an example of eliminating a non-essential contaminant protein, the melA gene product was 

found to be the second most concentrated protein species to make up the ECP.  Melibiose 

dehydrogenase (melA) is a constitutively expressed protein which under laboratory controlled 

growth conditions for recombinant protein production is considered metabolically non-essential.  

I demonstrate that an E.coli: ΔmelA knock-out strain was successfully able to express a 

recombinant product with yields statistically similar to that of the E.coli BL21 (DE3) control 

strain.  Thus, I demonstrate a simple gene knock-out to be a functional method of eliminating a 

non-essential genomic contaminant from both the total contaminant pool (TCP) and/or elution 

contaminant pool (ECP).   

 

As an example of eliminating a metabolically essential contaminant protein, triosephosphate 

isomerase (TIM), tpiA gene product, was chosen as it propotionally makes up the highest relative 

concentration contaminant protein species. Triosephosphate isomerase is a high abundance 

constitutively expresses enzyme functionally localized to the branching step of glycolysis.  

While TIM is not classified as metabolically essential, it was determined that due to the punitive 

consequences with regard to cell growth and recombinant protein production, gene knock-out 

could not be considered as a viable option.  Using bioinformatics sequence alignment and three 

dimentional protein structure tools, I was able to determine a logical alternative would be to use 

PCR mediated site-directed mutagenesis to replace the N-teminal IMAC binding motif, thus 

eliminating TIM from the ECP and TCP.  Using a published enzymatic assay I was able to show 

that the engineered IMAC TIM (eTIM) enzyme was statistically identical with respect to specific 

activity.  Furthermore, upon transformation into a strain lacking a function tpiA gene, the eTIM 
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plasmid was able to completely restore normal growth characteristics when compared to the 

E.coli BL21 (DE3) control. 

 

15.0  Considerations for Future Work: 

 

As described in Part II, the traditional approach to microbial cell line development would dictate 

independent mutagenesis techniques for each contaminant protein species, followed by growth 

and recombinant expression characterization to determine functionality.  For the independent 

researcher this method would likely be considered both economic and time prohibitory, 

particularly when dealing with an extensive contaminant pool of more than 6-8 proteins.  

Therefore, I believe a logical extension of this project would be to implement the provided 

metallo-proteome data into a more functional tool.   

 

Mapping the E. coli chromosome in such a way as to detail specific locations of essential vs. 

non-essential IMAC contaminant gene products would a productive first step.  Due to the scope 

of information required, computer generated mapping would likely be the most practical method 

to comprehensively analyze my dataset included in Part I of this dissertation.  Such a task is 

ideally suited for in silico mapping software platforms that allow for multiplex data output.   

 

Ellen Brune, a current Ph.D. student in the Beitle Group, has recently done just this.  By 

inputting the TCP and ECP data set from Part I of my work into the Circos software platform; 

she and colleagues’ are currently in the process of demonstrating how it is possible to visualize 

each contaminant gene product relative to its respective location within the E.coli chromosome.  
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Indeed, this facet of the overall project is beginning to show the significant value of this data by 

allowing for a global perspective of how best to utilize proteome driven data toward recombinant 

cell line development. 

 

As previously mentioned, one such tool for viewing this type data is the Circos software 

platform.  Circos was first published in Genome Research in 2009 (Krzywinski et al., 2009).   

Originally designed as a comparative genomics tool, Circos was specifically intended to easily 

visualize genetic data across multiple species; again demonstrating the utility of using 

phylogenetic analysis tools toward the genetic engineering of specialized cell lines.  Figure 1 

shows an example of how Circos diagrams could be used to map the E.coli chromosome with the 

respect to TCP and ECP data2.  The full E.coli chromosome is presented on the outer ring 

applying NCBI COG color coding to correlate gene function.  The internal marks connect 

metalloproteome data for each metal ion used in this study.  As an example, to illustrate the 

overall impact of this tool, my original data set, described in Part I of this dissertation comprised 

over one hundred printed pages.  However, using Circos mapping future researchers will have 

the ability to analyze the same data set in a small fraction of the time. 

  

                                                            
2 Adapted with permission from the Ph.D. proposal of Ellen Brune to whom full credit for this 
figure is due. 
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Figure 1:  Circos plot of the E. coli chromosome and IMAC metalloproteome according 
TCP and ECP data provided in Part I. 
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The utility of the Circos plot lies in the streamlining of the cell line development process as a 

whole.  As opposed to a gene specific knock-out (GSK) or the PCR derived site-directed 

mutagenesis techniques implemented in Part II, the Circos plot will allow future researchers to 

utilize large-scale knockout (LSK) techniques to oblate a larger number of contaminating protein 

species simultaneously (Osterman & Gerdes, 2008). 
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Appendix I:  Compilation of Contaminant Species 

 

Appendix I list all elution contaminant species observed for each of the three metals investigated 

in this study (Co(II), Ni(II), and Zn(II)).  Contaminant identification was obtained through tandem 

mass spectrometry of individual column elutions.  Mascot™ data mining was used to associate 

peptide mass fingerprints to gene products from the E. coli proteome.  Resulting proteins 

showing greater than 95 percent confidence level were archived as IMAC elution contaminant 

species. 

 

ABBREVIATIONS Database Origin 

ref National Institute of Standards and Technology (NIST) 

gb National Center for Biotechnology Information (NCBI) 

emb European Bioinformatics Institute (EMBL-EBI) 

pdb Protein Data Bank 

dbj DNA Data Bank of Japan 

 

To maximize utility of the document, redundancies in the mass spectral output were removed for 

clarity.  Disagreements with contaminant protein numbers found in Appendix II are attributed to 

uncharacterized/ unnamed proteins within the dataset.  Unedited mass spectrometry data has 

been archived in the laboratory of Dr. Robert Beitle, Ph.D., P.E. 
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Contaminants Observed in Co(II) IMAC only 

Reference gi 
Number Database   File ID Peptide 

1 91213796 ref YP_543782.1 Mg2+-importing ATPase, P-type 1 
(MgtA) 

2 91214109 ref YP_544095.1 ABC transporter ATP-binding protein 
YjjK 

3 75208804 ref ZP_00702003.1 AICAR transformylase/IMP 
cyclohydrolase PurH 

4 26246587 ref NP_752626.1 Alkyl hydroperoxide reductase subunit F 

5 537084 gb AAA97139.1 alternate gene name mgt; CG Site No. 
497 

6 75234553 ref ZP_00718894.1 ATPase components of ABC transporters 
with duplicated ATPase 

7 147365 gb AAA24422.1 ATP-dependent protease binding subunit 
8 216538 dbj BAA03143.1 BasR 

9 91212788 ref ZP_00702003.1 bifunctional AICAR 
formyltransferase/IMP cyclohydrolase 

10 15834183 ref NP_312956.1 
bifunctional 
phosphoribosylaminoimidazole-
carboxamide formyltransferase 

11 75207853 ref ZP_00708331.1 Biotin carboxylase 

12 26245956 ref NP_751995.1 carbamoyl-phosphate synthase; large 
subunit 

13 75229613 ref ZP_00716152.1 Cation transport ATPase 

14 13786943 pdb 1FL2 Chain A, Catalytic Component  of 
Alkylhydroperoxide Reductase (Ahpf F) 

15 1942723 pdb 1EFU Chain C, Elongation Factor Complex Ef-
TuEF-Ts 

16 91210463 ref YP_540449.1 CoA-linked acetaldehyde dehydrogenase 
17 91209194 ref YP_539180.1 conserved hypothetical protein YadF 
18 1788586 gb AAC75312.1 conserved protein 
19 1786291 gb AAC73213.1 conserved protein 
20 87082081 gb AAC75354.2 conserved protein 

21 91210106 ref YP_540092.1| delta-1-pyrroline-5-carboxylate 
dehydrogenase 

22 26246130 ref NP_752169.1 DNA polymerase III subunit alpha 

23 1790552 gb AAC77074.1 DNA-binding response regulator in two-
component regulatory system 

24 1788589 gb AAC75315.1 
fused UDP-L-Ara4N 
formyltransferase/UDP-GlcA C-4'-
decarboxylase 

25 75228928 ref ZP_00715520.1 Glucan phosphorylase 
26 91209331 ref YP_539317.1 glutamate 5-kinase 
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27 15833345 ref NP_312118.1 glutamate synthase large subunit 

28 75255300 ref  ZP_00727133.1 Glyceraldehyde-3-phosphate 
dehydrogenase 

29 4377499 emb CAA26035.1 glycogen phosphorylase 
30 26248643 ref NP_754683.1 hypothetical protein c2797 
31 26248681 ref NP_754721.1 hypothetical protein c2835 
32 15832397 ref NP_311170.1 hypothetical protein ECs3143 
33 15832432 ref NP_311205.1 hypothetical protein ECs3178 
34 91211549 ref YP_541535.1 hypothetical protein YfbG 
35 75515848 ref  ZP_00737983.1 IMP dehydrogenase/GMP reductase 
36 15833513 ref NP_312286.1 maltodextrin phosphorylase 

37 75190291 ref ZP_00703558.1 NAD-dependent aldehyde 
dehydrogenases 

38 75512755 ref ZP_00731043.1 
NADH 
dehydrogenase/NADH:ubiquinone 
oxidoreductase 75 kD sub 

39 1788619 gb ZP_00731043.1 NADH:ubiquinone oxidoreductase, 
chain G 

40 75259718 ref ZP_00731020.1 Nucleoside-diphosphate-sugar 
epimerases 

41 56540641 gb AAV92774.1 PmrA 
42 15830514 ref NP_309287.1 proline dehydrogenase 
43 1788943 gb AAC75641.1 protein disaggregation chaperone 
44 91211588 ref YP_541574.1 protein YfbU 
45 15829384 ref NP_308157.1 putative carbonic anhdrase 

46 91210003 ref YP_539989.1 pyruvate formate lyase activating 
enzyme 1 

47 91212872 ref YP_542858.1 ribosome-associated heat shock protein 
15 

48 15832671 ref NP_311444.1 serine hydroxymethyltransferase 
49 15831680 ref NP_310453.1 threonyl-tRNA synthetase 
50 91212813 ref YP_542799.1 transcription antitermination protein 
51 15830746 ref NP_309519.1 transcription-repair coupling factor 
52 75513895 ref ZP_00736248.1 Triosephosphate isomerase 
53 75189611 ref ZP_00702878.1 Uncharacterized conserved protein 
54 75227376 ref ZP_00714154.1 Uncharacterized conserved protein 
55 75187076 ref ZP_00700343.1 Uncharacterized conserved protein 
56 41964 emb CAA29949.1 unnamed protein product 
57 41627 emb CAA26133.1 unnamed protein product 
58 43066 emb CAA23560.1 unnamed protein product 
59 466691 gb AAB18530.1 unnamed protein product 
60 42497 emb CAA25363.1 unnamed protein product 
61 499181 emb CAA25357.1 unnamed protein product 
62 42821 emb CAA23627.1 unnamed protein product 
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63 42773 emb CAA38206.1 unnamed protein product 
64 41676 emb CAA68776.1 unnamed protein product 
65 43112 emb CAA25253.1 unnamed protein product 
66 42284 emb CAA23597.1 unnamed protein product 
67 41039 emb CAA23528.1 unnamed protein product 
68 581130 emb CAA23584.1 unnamed protein product 
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Contaminants Observed in Ni(II) IMAC only 

Reference gi 
Number 

NCBI 
Database   File ID Peptide 

1 15832855 ref NP_311628.1 2-C-methyl-D-erythritol 4-phosphate 
cytidylyltransferase 

2 75228118 ref ZP_00714789.1 2-methylthioadenine synthetase 
3 91209238 ref YP_539224.1 30S ribosomal protein S2 

4 75258319 ref ZP_00729750.1 3'-Phosphoadenosine 5'-phosphosulfate 
(PAPS) 3'-phosphatase 

5 26246419 ref NP_752458.1 5-amino-6-(5-phosphoribosylamino) 
uracil reductase 

6 56199744 gb AAV84339.1 60 kDa chaperonin 

7 91214109 ref YP_544095.1 ABC transporter ATP-binding protein 
YjjK 

8 91212678 ref YP_542664.1 Acetyl CoA carboxylase; biotin 
carboxylase subunit 

9 75188736 ref ZP_00702003.1 AICAR transformylase/IMP 
cyclohydrolase (PurH) 

10 15832808 ref NP_311581.1 alanyl-tRNA synthetase 

11 26246587 ref NP_752626.1 Alkyl hydroperoxide reductase; subunit 
F 

12 75189732 ref ZP_00702999.1 Allophanate hydrolase subunit 1 

13 15834446 ref NP_313219.1 ammonium transport system structural 
protein 

14 15834469 ref NP_313242.1 anaerobic ribonucleoside triphosphate 
reductase 

15 75238135 ref ZP_00722139.1 Anthranilate phosphoribosyltransferase 
16 15833068 ref NP_311841.1 arginine decarboxylase 
17 75235446 ref ZP_00719654.1 Aspartate carbamoyltransferase 
18 15832652 ref NP_311425.1 ATP synthase; beta subunit 
19 15833927 ref NP_312700.1 ATP synthase; subunit epsilon 

20 75259275 ref ZP_00730623.1 ATPases involved in chromosome 
partitioning 

21 83585826 ref ZP_00924466.1 ATPases with chaperone activity; ATP-
binding subunit 

22 91209919 ref YP_539905.1 ATP-dependent clp protease ATP-
binding subunit clpA 

23 41114 emb CAA40846.1 ATP-dependent protease regulatory 
subunit 

24 26250788 ref NP_756828.1 B12-dependent methionine synthase 
25 216538 dbj BAA03143.1 BasR 

26 26250778 ref NP_756818.1 
bifunctional phosphoribosyl-
aminoimidazolecarboxamide 
formyltransferase 
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27 75512769 ref ZP_00735271.1 BioD-like N-terminal domain of 
phosphotransacetylase 

28 75254956 ref ZP_00726900.1 Biotin carboxylase 

29 26245956 ref NP_751995.1 Carbamoyl-phosphate synthase; large 
subunit 

30 75512001 ref ZP_00734596.1 Carbonic anhydrase 
31 75242370 ref ZP_00726132.1 Cation transport ATPase 
32 75239112 ref ZP_00723092.1 Chaperonin GroEL (HSP60 family) 
33 26248955 ref NP_754995.1 ClpB protein 

34 91210463 ref YP_540449.1 CoA-linked Acetaldehyde 
dehydrogenase 

35 83585801 ref ZP_00924442.1 Coenzyme F420-dependent N5 
36 26246951 ref NP_752991.1 Condesin; subunit B 
37 58176674 pdb 1RWU Conserved Protein Ybed; A Chain A 
38 26250631 ref NP_756671.1 coproporphyrinogen III oxidase 
39 91213772 ref YP_543758.1 CysQ protein 
40 91211857 ref YP_541843.1 Cysteine desulfurase 
41 87081779 gb AAC73827.2 cytochrome d terminal oxidase; subunit I 
42 91212281 ref YP_542267.1 Decarboxylating glycine dehydrogenase 

43 75230173 ref ZP_00716674.1 Dehydrogenases with different 
specificities 

44 26247036 ref NP_753076.1 Delta-1-pyrroline-5-carboxylate 
dehydrogenase 

45 15833925 ref NP_312698.1 D-fructose-6-phosphate amidotransferase 
46 15829373 ref NP_308146.1 dihydrolipoamide acetyltransferase 
47 91209184 ref YP_539170.1 dihydrolipoamide dehydrogenase 

48 75511822 ref ZP_00734440.1 
Dihydroxyacid 
dehydratase/phosphogluconate 
dehydratase 

49 91213221 ref YP_543207.1 DNA gyrase subunit B 
50 91213223 ref YP_543209.1 DNA polymerase III; beta-subunit 
51 15829440 ref NP_308213.1 DNA polymerase III; subunit alpha 

52 33357282 pdb 1L8I DNA Protection And Binding; Dps 
Protein; L Chain L 

53 26246788 ref NP_752828.1 DNA protection during starvation 
conditions 

54 75230656 ref ZP_00717127.1 DNA-binding ferritin-like protein 
(oxidative damage protection) 

55 26248709 ref NP_754749.1 erythronate-4-phosphate dehydrogenase 
56 15832458 ref NP_311231.1 Erythronate-4-phosphate dehydrogenase 

57 91211380 ref YP_541366.1 Galactitol-Specific Enzyme IIA of 
Phosphotransferase System 

58 14278248 pdb 1FS0 Gamma/ EPSILON ATP SYNTHASE; E 
Chain E 
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59 75237019 ref ZP_00721075.1 Glucan phosphorylase 
60 75242483 ref ZP_00726227.1 Glucosamine 6-phosphate synthetase 
61 91209331 ref YP_539317.1 glutamate 5-kinase 

62 26249799 ref NP_755839.1 Glutamate synthase; [NADPH] large 
chain precursor 

63 15832532 ref NP_311305.1 glutamyl-tRNA synthetase 

64 91210996 ref YP_540982.1 glyceraldehyde-3-phosphate 
dehydrogenase A 

65 26249318 ref NP_755358.1 Glycine dehydrogenase 

66 75515689 ref ZP_00737824.1 Glycine/D-amino acid oxidases 
(deaminating) 

67 4377499 emb CAA26035.1 glycogen phosphorylase 
68 75235452 ref ZP_00719660.1 Glycosidase 
69 1943396 pdb 1GTP Gtp Cyclohydrolase I; T Chain T 
70 91211926 ref YP_541912.1 heat shock protein 
71 91210562 ref YP_540548.1 hypothetical oxidoreductase YciK 
72 26248681 ref NP_754721.1 hypothetical protein c2835 
73 26248712 ref NP_754752.1 hypothetical protein c2870 
74 75210279 ref ZP_00710441.1 hypothetical protein EcolB_01002524 
75 75255649 ref ZP_00727421.1 hypothetical protein EcolE2_01004299 
76 15829900 ref NP_308673.1 hypothetical protein ECs0646 
77 15830132 ref NP_308905.1 hypothetical protein ECs0878 
78 15830926 ref NP_309699.1 hypothetical protein ECs1672 
79 15831647 ref NP_310420.1 hypothetical protein ECs2393 
80 15832432 ref NP_311205.1 hypothetical protein ECs3178 
81 38704075 ref NP_311235.2 hypothetical protein ECs3208 
82 15833295 ref NP_312068.1 hypothetical protein ECs4041 
83 91209704 ref YP_539690.1 hypothetical protein UTI89_C0659 
84 91211373 ref YP_541359.1 hypothetical protein UTI89_C2360 
85 91212578 ref YP_542564.1 hypothetical protein UTI89_C3587 
86 91213596 ref YP_543582.1 hypothetical protein UTI89_C4643 
87 91209194 ref YP_539180.1 hypothetical protein YadF 
88 26246680 ref NP_752720.1 Hypothetical protein ybgJ 
89 91209834 ref YP_539820.1 hypothetical protein YbiB 
90 91210263 ref YP_540249.1 hypothetical protein YcfP 
91 91210899 ref YP_540885.1 hypothetical protein YdiI 
92 26248098 ref NP_754138.1 Hypothetical protein yebU 
93 91211621 ref YP_541607.1 hypothetical protein YfcK 
94 91213273 ref YP_543259.1 hypothetical protein YieN 
95 26250492 ref NP_756532.1 Hypothetical protein yieN 

96 91212533 ref YP_542519.1 hypothetical transcriptional regulator 
YhaJ 

97 91211831 ref YP_541817.1 inosine-5'-monophosphate 
dehydrogenase 
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98 91211860 ref YP_541846.1 inositol monophosphatase 
99 15833016 ref NP_311789.1 lysyl-tRNA synthetase 

100 91213341 ref YP_543327.1 Magnesium, Cobalt, and Nickel 
Transporter 

101 15833513 ref NP_312286.1 Maltodextrin phosphorylase 

102 91213796 ref YP_543782.1 Mg2+-importing ATPase (MgtA); P-type 
1 

103 75227515 ref ZP_00714276.1 MoxR-like ATPases 
104 38704071 ref NP_311194.2 NADH dehydrogenase; gamma subunit 
105 91210444 ref YP_540430.1 NarL transcriptional dual regulator 
106 48429400 gb AAT42468.1 NrdA 

107 75235453 ref ZP_00719661.1 Oxygen-sensitive ribonucleoside-
triphosphate reductase 

108 147130 gb AAA24310.1 PdxB protein 
109 26249306 ref NP_755346.1 Peptide chain release factor 2 

110 91212840 ref YP_542826.1 peptidyl-prolyl cis-trans isomerase A 
(rotamase A) 

111 26250714 ref NP_756754.1 Peroxidase/catalase HPI 
112 15832435 ref NP_311208.1 phosphate acetyltransferase 
113 91211075 ref YP_541061.1 phosphogluconate dehydratase 
114 75187102 ref ZP_00700369.1 Phosphoglycerate dehydrogenase 

115 26248921 ref NP_754961.1 phosphoribosylformyl-glycinamidine 
synthase 

116 75236283 ref ZP_00720392.1 Phosphotransferase system 
mannitol/fructose-specific IIA do 

117 15829423 ref NP_308196.1 PII uridylyl-transferase 
118 56540641 gb AAV92774.1 PmrA 

119 75188498 ref ZP_00701765.1 Predicted S-adenosylmethionine-
dependent methyltransferase 

120 15830514 ref NP_309287.1 proline dehydrogenase 

121 56553868 pdb 1TJ2 Proline Dehydrogenase Domain; A 
Chain A 

122 75230227 ref ZP_00716728.1 Protein chain release factor A 
123 91210391 ref YP_540377.1 protein YcgK precursor 
124 91211588 ref YP_541574.1 protein YfbU 
125 91212449 ref YP_542435.1 protein YgiN 
126 38704200 ref NP_312715.2 putative 2-component regulator 

127 15829630 ref NP_308403.1 putative ATP binding protein of a 
transporter system 

128 91211400 ref YP_541386.1 putative ATPase 
129 15829384 ref NP_308157.1 putative carbonic anhdrase 
130 15831283 ref NP_310056.1 putative glycoprotein 
131 91213267 ref YP_543253.1 putative methyltransferase GidB 
132 13362678 dbj BAB36631.1 putative peptidase 
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133 26248459 ref NP_754499.1 Putative protease yegQ 
134 15833543 ref NP_312316.1 putative regulator 
135 15831799 ref NP_310572.1 putative rRNA methylase 
136 15829721 ref NP_308494.1 Pyrimidine deaminase 
137 91209182 ref YP_539168.1 pyruvate dehydrogenase E1 component 

138 91210003 ref YP_539989.1 pyruvate formate lyase activating 
enzyme 1 

139 15831818 ref NP_310591.1 pyruvate kinase 

140 75511991 ref ZP_00734586.1 Pyruvate/2-oxoglutarate dehydrogenase 
complex 

141 75512959 ref ZP_00735440.1 Response regulators consisting of a 
CheY-like receiver domain 

142 15831568 ref NP_310341.1 response transcriptional regulatory 
protein RstB 

143 26247224 ref NP_753264.1 Ribonuclease E 
144 75512710 ref ZP_00735212.1 Ribonucleotide reductase; alpha subunit 
145 75258017 ref ZP_00729491.1 Ribosome-associated protein Y (PSrp-1) 
146 91212806 ref YP_542792.1 RNA polymerase beta subunit 
147 75240443 ref ZP_00724377.1 rRNA methylase 
148 15832671 ref NP_311444.1 serine hydroxymethyltransferase 
149 91209847 ref YP_539833.1 stationary phase nucleoid protein Dps 
150 15832860 ref NP_311633.1 sulfate adenylyltransferase subunit 2 
151 75210206 ref ZP_00710374.1 Threonyl-tRNA synthetase 
152 91212813 ref YP_542799.1 transcription anti-termination protein 
153 91213304 ref YP_543290.1 transcription termination factor Rho 
154 91210819 ref YP_540805.1 transcriptional regulatory protein RstA 

155 15830746 ref NP_309519.1 Transcription-repair coupling factor 
(superfamily II helicase) 

156 91212815 ref YP_542801.1 translation elongation factor EF-Tu 
157 2392136 pdb 1AH9 Translational Initiation Factor (If1) 
158 15834470 ref NP_313243.1 Trehalase 6-P hydrolase 
159 75513895 ref ZP_00736248.1 Triosephosphate isomerase 
160 26249151 ref NP_755191.1 tRNA pseudouridine synthase D 
161 91209155 ref YP_539141.1 UDP-N-acetylmuramate-L-alanine ligase 
162 75187076 ref ZP_00700343.1 Uncharacterized conserved protein 
163 75512344 ref ZP_00734896.1 Uncharacterized conserved protein 

164 75514816 ref ZP_00737045.1 Uncharacterized protein conserved in 
bacteria 

165 43112 emb CAA25253.1 unnamed protein product 
166 42886 emb CAA23639.1 unnamed protein product 
167 41964 emb CAA29949.1 unnamed protein product 
168 43066 emb CAA23560.1 unnamed protein product 
169 42773 emb CAA38206.1 unnamed protein product 
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170 42497 emb CAA25363.1 unnamed protein product 
171 41039 emb CAA23528.1 unnamed protein product 
172 434012 emb CAA24742.1 unnamed protein product 
173 91210668 ref YP_540654.1 YdcG precursor 
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Contaminants Observed in Zn(II) IMAC  

Referenc
e 

gi 
Number 

NCBI 
Database   File ID Peptide 

1 15830974 ref NP_309747.1 2-dehydro-3-deoxyphosphooctonate 
aldolase 

2 91211354 ref YP_541340.1 2'-deoxycytidine 5'-triphosphate 
deaminase 

3 26250194 ref NP_756234.1 2-hydroxyacid dehydrogenase 

4 87082289 gb AAC76577.2 2-keto-D-gluconate reductase 
(glyoxalate reductase) 

5 75228118 ref ZP_00714789.1 2-methylthioadenine synthetase 

6 75511704 ref ZP_00734342.1 3-isopropylmalate dehydratase; large 
subunit 

7 91209134 ref YP_539120.1 3-isopropylmalate isomerase 
(dehydratase) subunit 

8 15832331 ref NP_311104.1 50S ribosomal protein L25 

9 26246970 ref NP_753010.1 ABC transporter ATP-binding protein 
Uup 

10 91214109 ref YP_544095.1 ABC transporter ATP-binding protein 
YjjK 

11 75188007 ref ZP_00701274.1 ABC-type (unclassified) transport 
system; ATPase component 

12 15834140 ref NP_312913.1 acetylornithine deacetylase 
13 15829376 ref NP_308149.1 aconitate hydratase 
14 91210287 ref YP_540273.1 adenylosuccinate lyase 
15 75511729 ref ZP_00734358.1 Alcohol dehydrogenase; class IV 

16 26246587 ref NP_752626.1 Alkyl hydroperoxide reductase; subunit 
F 

17 75258283 ref ZP_00729731.1 Asparagine synthetase A 
18 15829958 ref NP_308731.1 asparagine synthetase B 
19 26250490 ref NP_756530.1 asparagine synthetase; (AsnA) 

20 75235446 ref ZP_00719654.1 Aspartate carbamoyltransferase; 
catalytic chain 

21 537087 gb AAA97142.1 aspartate carbomoyltransferase; catalytic 
subunit 

22 91213799 ref YP_543785.1 aspartate-carbamoyltransferase (PyrI) 

23 1333747 emb CAA23585.1 aspartokinase II-homoserine 
dehydrogenase II 

24 83586215 ref ZP_00924851.1 Aspartokinases 
25 14278248 pdb 1FS0 ATP SYNTHASE; E Chain E 
26 15831269 ref NP_310042.1 ATP-dependent helicase 

27 91209919 ref YP_539905.1 ATP-dependent protease; ATP-binding 
subunit (clpA) 

28 26250788 ref NP_756828.1 B12-dependent methionine synthase 
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29 15834123 ref NP_312896.1 bifunctional aspartate kinase 
II/homoserine dehydrogenase II 

30 15834183 ref NP_312956.1 
bifunctional 
phosphoribosylaminoimidazolecarboxa
mide formyltransferase 

31 91209091 ref YP_539077.1 carbamoyl-phosphate synthase small 
chain 

32 75515621 ref ZP_00737778.1 Carbamoylphosphate synthase; large 
subunit 

33 75515620 ref ZP_00737777.1 Carbamoylphosphate synthase; small 
subunit 

34 75188955 ref ZP_00702222.1 Cation transport ATPase 
35 91210026 ref YP_540012.1 cell division protein MukB 
36 24054822 gb AAN45715.1 chaperone Hsp60; GroEL 

37 91209071 ref YP_539057.1 chaperone Hsp70; DNA biosynthesis; 
auto-regulated heat shock proteins 

38 26248955 ref NP_754995.1 ClpB protein 

39 91210463 ref YP_540449.1 CoA-linked acetaldehyde 
dehydrogenase 

40 15830261 ref NP_309034.1 Condesin subunit B 
41 91209194 ref YP_539180.1 conserved hypothetical protein YadF 
42 87081995 gb AAC74944.2 copper homeostasis protein 
43 91211857 ref YP_541843.1 cysteine desulfurase 

44 75211496 ref ZP_00711586.1 Cysteine sulfinate desulfinase/cysteine 
desulfurase 

45 87081779 gb AAC73827.2 cytochrome d terminal oxidase; subunit I 
46 26249982 ref NP_756022.1 DamX protein 

47 26247036 ref NP_753076.1 Delta-1-pyrroline-5-carboxylate 
dehydrogenase 

48 26250472 ref NP_756512.1 D-fructose-6-phosphate 
amidotransferase 

49 83584870 ref ZP_00923528.1 Diadenosine tetraphosphate hydrolase 
(Ap4A) 

50 15829288 ref NP_308061.1 dihydrodipicolinate reductase 
51 15829373 ref NP_308146.1 dihydrolipoamide acetyltransferase 

52 15832368 ref NP_311141.1 DNA gyrase; Topoisomerase type II; 
subunit A 

53 26250759 ref NP_756799.1 DNA-directed RNA polymerase; beta 
subunit 

54 147896 gb AAA50992.1 elongation factor G 
55 26247623 ref NP_753663.1 enoyl-(acyl carrier protein) reductase 

56 75240068 ref ZP_00724029.1 Enoyl-[acyl-carrier-protein] reductase 
(NADH) [Escherichia 

57 26248709 ref NP_754749.1 erythronate-4-phosphate dehydrogenase 
58 15831113 ref NP_309886.1 exoribonuclease II 
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59 15830240 ref NP_309013.1 formate acetyltransferase 1 
60 15830988 ref NP_309761.1 formyltetrahydrofolate deformylase 

61 75230210 ref ZP_00716711.1 Formyltetrahydrofolate hydrolase 
[Escherichia coli B7A] 

62 147895 gb AAA50991.1 FusA 

63 1790376 gb AAC76922.1 fused aspartokinase II/homoserine 
dehydrogenase II 

64 87082027 gb AAC75083.2 
fused histidinol-
phosphatase/imidazoleglycerol-
phosphate dehydratase 

65 1788589 gb AAC75315.1 fused UDP-L-Ara4N formyltransferase; 
UDP-GlcA C-4'-decarboxylase 

66 5739461 gb AAD50483.1 GalF 
67 1786437 gb AAC73346.1 gamma-glutamate kinase 
68 75237019 ref ZP_00721075.1 Glucan phosphorylase 
69 75228928 ref ZP_00715520.1 Glucan phosphorylase 
70 24417729 gb AAN60453.1 glucose-1-phosphate uridylyltransferase 
71 15833937 ref NP_312710.1 glucose-inhibited division protein A 
72 91209331 ref YP_539317.1 glutamate 5-kinase 
73 15831721 ref NP_310494.1 glutamate dehydrogenase 
74 551808 gb AAA23908.1 glutamate synthase 
75 15833345 ref NP_312118.1 glutamate synthase large subunit 
76 75186830 ref ZP_00700097.1 Glutamine amidotransferase 

77 91211830 ref YP_541816.1 glutamine-hydrolyzing amonia 
dependent GMP synthetase 

78 26248778 ref NP_754818.1 glutamyl-tRNA synthetase 
79 26247882 ref NP_753922.1 Glutathione S-transferase 
80 75257054 ref ZP_00728614.1 Glutathione S-transferase 

81 75228875 ref ZP_00715476.1 Glycine/serine 
hydroxymethyltransferase 

82 4377499 emb CAA26035.1 glycogen phosphorylase 
83 75212206 ref ZP_00712246.1 Glycosidases 
84 75214531 ref ZP_00713099.1 GTPases - translation elongation factors 
85 91211926 ref YP_541912.1 heat shock protein 
86 26247246 ref NP_753286.1 HIT-like protein ycfF 
87 75231824 ref ZP_00718165.1 HrpA-like helicases 
88 91210562 ref YP_540548.1 hypothetical oxidoreductase (YciK) 
89 26248141 ref NP_754181.1 hypothetical protein c2289 
90 26248643 ref NP_754683.1 hypothetical protein c2797 
91 26248681 ref NP_754721.1 hypothetical protein c2835 
92 75255649 ref ZP_00727421.1 hypothetical protein EcolE2_01004299 
93 15829865 ref NP_308638.1 hypothetical protein ECs0611 
94 15829900 ref NP_308673.1 hypothetical protein ECs0646 
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95 38703933 ref NP_309508.2 hypothetical protein ECs1481 
96 15830926 ref NP_309699.1 hypothetical protein ECs1672 
97 15831274 ref NP_310047.1 hypothetical protein ECs2020 
98 15831647 ref NP_310420.1 hypothetical protein ECs2393 
99 15832397 ref NP_311170.1 hypothetical protein ECs3143 
100 15832432 ref NP_311205.1 hypothetical protein ECs3178 
101 91212860 ref YP_542846.1 hypothetical protein UTI89_C3886 
102 91210263 ref YP_540249.1 hypothetical protein YcfP 
103 91210659 ref YP_540645.1 hypothetical protein YdcF 
104 91210899 ref YP_540885.1 hypothetical protein YdiI 
105 26248556 ref NP_754596.1 Hypothetical protein yeiR 
106 91211549 ref YP_541535.1 hypothetical protein YfbG 
107 91212992 ref YP_542978.1 hypothetical protein YhiR 

108 15832078 ref NP_310851.1 imidazole glycerol phosphate synthase 
subunit HisH 

109 75229117 ref ZP_00715692.1 Imidazoleglycerol-phosphate 
dehydratase 

110 91211831 ref YP_541817.1 inosine-5'-monophosphate 
dehydrogenase 

111 1786882 gb AAC73762.1 isopentenyl-adenosine A37 tRNA 
methylthiolase 

112 15829330 ref NP_308103.1 isopropyl malate isomerase; large 
subunit 

113 75242656 ref ZP_00726400.1 Lactate dehydrogenase 

114 1787820 gb AAC74612.1 L-allo-threonine dehydrogenase; 
NAD(P)-binding 

115 15833513 ref NP_312286.1 maltodextrin phosphorylase 

116 9257169 pdb 3MAT Methionine Aminopeptidase Transition-
State Inhibitor Complex; A Chain A 

117 91213796 ref YP_543782.1 Mg2+-importing ATPase; MgtA 
118 91209707 ref YP_539693.1 N-acetyl glucosamine metabolism 

119 83588394 ref ZP_00927018.1 NAD/FAD-utilizing enzyme apparently 
involved in cell division 

120 91211575 ref YP_541561.1 NADH dehydrogenase I; chain G 
121 26246640 ref NP_752680.1 NagD protein 
122 91210444 ref YP_540430.1 NarL transcriptional dual regulator 
123 48429400 gb AAT42468.1 NrdA 

124 75259718 ref ZP_00731020.1 Nucleoside-diphosphate-sugar 
epimerases 

125 147130 gb AAA24310.1 PdxB protein 
126 91214089 ref YP_544075.1 peptide chain release factor RF-3 
127 75256286 ref ZP_00727958.1 Peptide chain release factor RF-3 
128 75242168 ref ZP_00725962.1 Periplasmic glucans biosynthesis protein 
129 15832435 ref NP_311208.1 phosphate acetyltransferase 
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130 26246403 ref NP_752442.1 Phosphate regulon transcriptional 
Regulatory protein (phoB ) 

131 91211075 ref YP_541061.1 phosphogluconate dehydratase 

132 75243131 ref ZP_00726837.1 Phosphoglycerate dehydrogenase and 
related dehydrogenases 

133 15832677 ref NP_311450.1 phosphoribosylformylglycinamidine 
synthase 

134 1787458 gb AAC74291.1 phosphoribosylpyrophosphate synthase 

135 75228259 ref ZP_00714914.1 Phosphoribosylpyrophosphate 
synthetase 

136 12514920 gb AAG56065.1 phosphoribosylpyrophosphate 
synthetase 

137 56540577 gb AAV92742.1 PmrA 

138 91209466 ref YP_539452.1 positive response regulator for pho 
regulon 

139 75188498 ref ZP_00701765.1 Predicted S-adenosylmethionine-
dependent methyltransferase 

140 75242722 ref ZP_00726466.1 Predicted transcriptional regulators 
containing the CopG/Ar 

141 75210026 ref ZP_00710209.1 Predicted UDP-glucose 6-
dehydrogenase 

142 91210785 ref YP_540771.1 probable oxidoreductase YdfG 
143 26247820 ref NP_753860.1 Probable oxidoreductase ydfG 
144 15830514 ref NP_309287.1 proline dehydrogenase 

145 56553868 pdb 1TJ2 Proline Dehydrogenase Domain; A 
Chain A 

146 1788943 gb AAC75641.1 protein disaggregation chaperone 

147 75188266 ref ZP_00701533.1 Protein involved in catabolism of 
external DNA 

148 86517026 gb ABC98205.1 PrsA 
149 86516774 gb ABC98079.1 PurB 

150 26247168 ref NP_753208.1 Putative 2-hydroxyacid dehydrogenase 
ycdW 

151 15829384 ref NP_308157.1 putative carbonic anhdrase 
152 15830664 ref NP_309437.1 putative dehydrogenase 
153 91209729 ref YP_539715.1 putative esterase/lipase YbfF 
154 72003790 gb AAZ65830.1 putative GalF 
155 15831283 ref NP_310056.1 putative glycoprotein 
156 91213267 ref YP_543253.1 putative methyltransferase GidB 
157 15832611 ref NP_311384.1 putative oxidoreductase 
158 91209183 ref YP_539169.1 pyruvate dehydrogenase 

159 91210003 ref YP_539989.1 pyruvate formate lyase activating 
enzyme 1 

160 75234414 ref ZP_00718775.1 Pyruvate-formate lyase 
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161 75212945 ref ZP_00712943.1 Response regulators consisting of a 
CheY-like receiver domain 

162 26246420 ref NP_752459.1 riboflavin synthase; subunit beta 
163 26247224 ref NP_753264.1 Ribonuclease E 

164 91211527 ref YP_541513.1 Ribonucleoside diphosphate reductase 1; 
alpha subunit B1 

165 91210428 ref YP_540414.1 ribose-phosphate pyrophosphokinase 
166 43017 emb CAA23653.1 ribosomal protein L14 
167 83584673 ref ZP_00923339.1 Ribosomal protein L3 
168 75214891 ref ZP_00713370.1 Ribosomal protein L6P/L9E 
169 75258017 ref ZP_00729491.1 Ribosome-associated protein Y (PSrp-1) 
170 91212806 ref YP_542792.1 RNA polymerase beta subunit 

171 1073424 pir   S53980 hypothetical protein A - 
Escherichia coli 

172 15832671 ref NP_311444.1 serine hydroxymethyltransferase 
173 75231698 ref ZP_00718039.1 Short-chain alcohol dehydrogenase 

174 75195640 ref ZP_00705710.1 Short-chain alcohol dehydrogenase of 
unknown specificity 

175 688004 gb AAB31771.1 spirosin; 95 kDa spirosome subunit (N-
terminal) 

176 15831680 ref NP_310453.1 threonyl-tRNA synthetase 
177 687792 gb AAC43729.1 threonyl-tRNA synthetase 
178 42685 emb CAA27600.1 thyA (C-terminal) 
179 24022343 gb AAN41256.1 thymidilate synthetase 
180 83584784 ref ZP_00923446.1 Thymidylate synthase 
181 91212223 ref YP_542209.1 thymidylate synthetase 

182 14916721 sp P58220 
TKRA_ECO57 2-ketogluconate 
reductase (2KR) (2-ketoaldonate 
reductase) 

183 91212813 ref YP_542799.1 transcription antitermination protein 
184 91213304 ref YP_543290.1 transcription termination factor rho 
185 15830856 ref NP_309629.1 transcriptional regulatory protein 
186 26250678 ref NP_756718.1 Transcriptional Regulatory protein cpxR 
187 91210819 ref YP_540805.1 transcriptional regulatory protein RstA 
188 15831568 ref NP_310341.1 transcriptional regulatory protein RstB 

189 75255629 ref ZP_00727408.1 Transcription-repair coupling factor 
(superfamily II helicase) 

190 91212815 ref YP_542801.1 translation elongation factor EF-Tu 
191 2392136 pdb 1AH9 Translational Initiation Factor If1 
192 26251145 ref NP_757185.1 Trehalose-6-phosphate hydrolase 
193 75513895 ref ZP_00736248.1 Triosephosphate isomerase 
194 15832083 ref NP_310856.1 UDP-glucose 6-dehydrogenase 
195 18266397 gb AAL67551.1 UDP-glucose pyrophosphorylase (GalF ) 
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196 75259180 ref ZP_00730528.1 UDP-glucose pyrophosphorylase 
[Escherichia coli E22] 

197 18266410 gb AAL67564.1 UDP-glucose-6-dehydrogenase Ugd 

198 15833322 ref NP_312095.1 UDP-N-acetylglucosamine 1-
carboxyvinyltransferase 

199 75187076 ref ZP_00700343.1 Uncharacterized conserved protein 

200 75512080 ref ZP_00734665.1 Uncharacterized protein involved in 
chromosome partitioning 

201 75513021 ref ZP_00735483.1 Uncharacterized protein involved in 
copper resistance 

202 75514702 ref ZP_00736957.1 Universal stress protein UspA and 
related nucleotide-binding 

203 41964 emb CAA29949.1 unnamed protein product 
204 581130 emb CAA23584.1 unnamed protein product 
205 43257 emb CAA25773.1 unnamed protein product 
206 42886 emb CAA23639.1 unnamed protein product 
207 42497 emb CAA25363.1 unnamed protein product 
208 42984 emb CAA25720.1 unnamed protein product 
209 466691 gb AAB18530.1 unnamed protein product 
210 43066 emb CAA23560.1 unnamed protein product 
211 434010 emb CAA24740.1 unnamed protein product 
212 42821 emb CAA23627.1 unnamed protein product 
213 43112 emb CAA25253.1 unnamed protein product 
214 41627 emb CAA26133.1 unnamed protein product 
215 43268 emb CAA25785.1 unnamed protein product 
216 15834174 ref NP_312947.1 uroporphyrinogen decarboxylase 

217 91211327 ref YP_541313.1 UTP-glucose-1-phosphate 
uridylyltransferase 

218 26248415 ref NP_754455.1 UTP--glucose-1-phosphate 
uridylyltransferase 

219 91210391 ref YP_540377.1 YcgK precursor 
220 26247702 ref NP_753742.1 ydcF 
221 91210668 ref YP_540654.1 YdcG precursor 
222 91211588 ref YP_541574.1 YfbU 
223 58177208 pdb 1WPB Yfbu Gene Product; P Chain P 
224 48429440 gb AAT42488.1 YleA 
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Appendix II:  Contaminant protein metabolic function & essentiality for growth under 
recombinant production conditions.  

 

Appendix II compiles Elution Contaminant Pool (ECP) proteins by metabolic function and 

essentiality.  Essentiality was determined by biological activity of each contaminant protein 

relative to the cell’s ability to utilize an alternate metabolic pathway(s) to drive growth.  

Metabolic function was determined using the EcoCyc® metabolomics database.  Due to the 

analogous nature of the protein characterization work, where available, I have provided the 

Blattner ID number for each contaminant protein.   

 

Abbreviations Definition 

E Essential for growth or biological function 

N Non-essential for growth or biological function 

X Non-essential; knock-out significantly inhibits growth  

? Uncharacterized protein or metabolic pathway 

 

 

An essentiality value of “X” was given to distinguish a scenario intrinsic to recombinant protein 

production.  While traditional gene knock-out of this contaminant gene is not considered lethal 

under laboratory growth conditions; the effect of such a mutation would likely have an 

unfavorable impact on recombinant production or process through-put.
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IMAC Zn(II) Contaminant Gene Products and Determined Essentiality for Growth 

All 
Genes #  Gene E/N Length Protein Description & E.C. # Blattner # Pathway 

1 accC X 449 Biotin carboxylase (EC 6.3.4.14) (A subunit of acetyl-CoA 
carboxylase (EC 6.4.1.2) b3256 LPC 

2 aceE N 887 Pyruvate dehydrogenase E1 component (EC 1.2.4.1) b0114 CHM 

3 aceF E 630 Dihydrolipoamide acetyltransferase component of pyruvate 
dehydrogenase complex (EC 2.3.1.12) b0115 NCM 

4 acnB N 865 Aconitate hydratase 2 (EC 4.2.1.3) b0118 CHM 
5 adhE N 891 Aldehyde-alcohol dehydrogenase b1241 MSM 
6 ahpF N 531 Alkyl hydroperoxide reductase subunit F (EC 1.6.4.-) b0606 MSM 
7 alaS E 876 Alanyl-tRNA synthetase (EC 6.1.1.7) b2697 PMS 
8 argE X 383 Acetylornithine deacetylase (EC 3.5.1.16) b3957 AAM 

9 aroH E 348 Phospho-2-dehydro-3-deoxyheptonate aldolase, Trp-sensitive 
(EC 4.1.2.15) b1704 AAM 

10 artP N 242 Arginine transport ATP-binding protein artP b0864 MTR 
11 asnA N 330 Aspartate--ammonia ligase (EC 6.3.1.1) b3744 AAM 
12 asnB N 554 Asparagine synthetase B [glutamine-hydrolyzing] (EC 6.3.5.4) b0674 AAM 
13 atpC E 139 ATP synthase epsilon chain (EC 3.6.3.14) b3731 BEN 
14 atpG N 287 ATP synthase gamma chain (EC 3.6.3.14) b3733 BEN 
15 basR N 222 Transcriptional regulatory protein basR/pmrA b4113 SMC 
16 bcp N 156 Bacterioferritin co-migratory protein b2480 UNC 
17 carA N 382 Carbamoyl-phosphate synthase small chain (EC 6.3.5.5) b0032 AAM 
18 carB N 1073 Carbamoyl-phosphate synthase large chain (EC 6.3.5.5) b0033 AAM 
19 cbpA N 306 Curved DNA-binding protein b1000 UNC 
20 clpA N 758 ATP-dependent clp protease ATP-binding subunit clpA b0882 PMS 
21 clpB N 857 ClpB protein b2592 UNC 
22 clpP N 207 ATP-dependent Clp protease proteolytic subunit (EC 3.4.21.92) b0437 PMS 
23 coaA E 316 Pantothenate kinase (EC 2.7.1.33) b3974 NCM 
24 corA E 316 Magnesium and cobalt transport protein corA b3816 MTR 
25 cpxR N 232 Transcriptional regulatory protein cpxR b3912 SMC 
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26 crp X 210 Catabolite gene activator b3357 RCD 
27 crr N 169 PTS system, glucose-specific IIA component (EC 2.7.1.69) b2417 MTR 
28 csrA X 61 Carbon storage regulator b2696 RCD 
29 cueO N 516 Blue copper oxidase cueO precursor b0123 UNC 
30 cydA E 523 Cytochrome D ubiquinol oxidase subunit I (EC 1.10.3.-) b0733 BEN 
31 cysD N 302 Sulfate adenylyltransferase subunit 2 (EC 2.7.7.4) b2752 MSM 
32 dapB E 273 Dihydrodipicolinate reductase (EC 1.3.1.26) b0031 AAM 
33 dfp E 430 DNA/pantothenate metabolism flavoprotein b3639 NCM 
34 dnaE E 1160 DNA polymerase III alpha subunit (EC 2.7.7.7) b0184 NAM 
35 dnaK E 638 Chaperone protein dnaK b0014 PMS 
36 dnaN X 366 DNA polymerase III, beta chain (EC 2.7.7.7) b3701 NAM 
37 dps N 167 DNA protection during starvation protein b0812 UNC 
38 edd N 603 Phosphogluconate dehydratase (EC 4.2.1.12) b1851 CHM 
39 elaB N 101 ElaB protein b2266 UNC 
40 fabI E 262 Enoyl-[acyl-carrier-protein] reductase [NADH] (EC 1.3.1.9) b1288 LPC 
41 fbp N 332 Fructose-1,6-bisphosphatase (EC 3.1.3.11) b4232 CHM 
42 folE E 222 GTP cyclohydrolase I (EC 3.5.4.16) b2153 NCM 

43 folX N 120 D-erythro-7,8-dihydroneopterin triphosphate epimerase (EC 5.-
.-.-) b2303 NCM 

44 fur N 148 Ferric uptake regulation protein b0683 RCD 
45 fusA E 704 Elongation factor G b3340 PMS 
46 galF E 297 UTP--glucose-1-phosphate uridylyltransferase (EC 2.7.7.9) b2042 CHM 

47 galU E 302 UTP--glucose-1-phosphate uridylyltransferase (EC 2.7.7.9) b1236 CHM 

48 gapA E 331 Glyceraldehyde 3-phosphate dehydrogenase A (EC 1.2.1.12) b1779 CHM 

49 gatA N 150 PTS system, galactitol-specific IIA component (EC 2.7.1.69) b2094 MTR 
50 gatD E 346 Galactitol-1-phosphate 5-dehydrogenase (EC 1.1.1.251) b2091 CHM 
51 gcvP N 957 Glycine dehydrogenase [decarboxylating] (EC 1.4.4.2) b2903 AAM 
52 gdhA N 447 NADP-specific glutamate dehydrogenase (EC 1.4.1.4) b1761 MSM 
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53 gidA N 629 Glucose inhibited division protein A b3741 UNC 
54 gidB N 207 Glucose inhibited division protein B b3740 UNC 
55 glgB N 728 1,4-alpha-glucan branching enzyme (EC 2.4.1.18) b3432 CHM 
56 glk N 321 Glucokinase (EC 2.7.1.2) b2388 CHM 

57 glmS E 609 Glucosamine--fructose-6-phosphate aminotransferase 
[isomerizing] (EC 2.6.1.16) b3729 CHM 

58 glnD E 890 [Protein-PII] uridylyltransferase (EC 2.7.7.59) b0167 SMC 

59 gltB N 1517 Glutamate synthase [NADPH] large chain precursor (EC 
1.4.1.13) b3212 MSM 

60 gltX E 471 Glutamyl-tRNA synthetase (EC 6.1.1.17) b2400 PMS 
61 glyA E 417 Serine hydroxymethyltransferase (EC 2.1.2.1) b2551 AAM 
62 groL E 548 60 kDa chaperonin b4143 PMS 
63 gst N 201 Glutathione S-transferase (EC 2.5.1.18) b1635 BEN 
64 guaA N 525 GMP synthase [glutamine-hydrolyzing] (EC 6.3.5.2) b2507 NCM 
65 guaB N 488 Inosine-5'-monophosphate dehydrogenase (EC 1.1.1.205) b2508 NCM 
66 gyrA E 875 DNA gyrase subunit A (EC 5.99.1.3) b2231 NAM 
67 gyrB X 804 DNA gyrase subunit B (EC 5.99.1.3) b3699 NAM 
68 hemD E 246 Uroporphyrinogen-III synthase (EC 4.2.1.75) b3804 NCM 
69 hemE E 354 Uroporphyrinogen decarboxylase (EC 4.1.1.37) b3997 NCM 

70 hemN N 459 Oxygen-independent coproporphyrinogen III oxidase (EC 1.-.-
.-) b3867 NCM 

71 hepA N 968 RNA polymerase associated protein b0059 UNC 
72 hisB N 356 Histidine biosynthesis bifunctional protein hisB b2022 AAM 

73 hisH N 196 Imidazole glycerol phosphate synthase subunit hisH (EC 2.4.2.-
) b2023 AAM 

74 hrpA N 1281 ATP-dependent helicase hrpA b1413 UNC 
75 hslR N 133 Heat shock protein 15 b3400 SMC 
76 hslV N 176 ATP-dependent protease hslV (EC 3.4.25.-) b3932 SMC 
77 hybC N 567 Hydrogenase-2 large chain precursor (EC 1.18.99.1) b2994 BEN 
78 ilvD N 605 Dihydroxy-acid dehydratase (EC 4.2.1.9) b3771 AAM 
79 infA ? 72 Translation initiation factor IF-1 b0884 UNC 
80 iscS E 412 Cysteine desulfurase (EC 4.4.1.-) b2530 NCM 
81 ispD E 236 2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase (EC b2747 LPC 
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2.7.7.60) 

82 kdsA N 284 2-dehydro-3-deoxyphosphooctonate aldolase (EC 4.1.2.16) b1215 CHM 

83 leuC N 466 3-isopropylmalate dehydratase large subunit (EC 4.2.1.33) b0072 AAM 
84 lexA X 202 LexA repressor (EC 3.4.21.88) b4043 NAM 
85 lpdA E 474 Dihydrolipoamide dehydrogenase (EC 1.8.1.4) b0116 CHM 
86 lysS X 505 Lysyl-tRNA synthetase (EC 6.1.1.6) b2890 NAM 
87 lysU N 505 Lysyl-tRNA synthetase, heat inducible (EC 6.1.1.6) b4129 NAM 
88 maa N 183 Maltose O-acetyltransferase (EC 2.3.1.79) b0459 CHM 
89 malP N 797 Maltodextrin phosphorylase (EC 2.4.1.1) b3417 CHM 
90 map E 264 Methionine aminopeptidase (EC 3.4.11.18) b0168 PMS 
91 mdoB X 750 Phosphoglycerol transferase I (EC 2.7.8.20) b4359 LPC 
92 mdoH N 847 Periplasmic glucans biosynthesis protein mdoH b1049 CHM 

93 metH N 1227 5-methyltetrahydrofolate--homocysteine methyltransferase (EC 
2.1.1.13) b4019 AAM 

94 metL N 810 Bifunctional aspartokinase/homoserine dehydrogenase II b3940 AAM 
95 mfd N 1148 Transcription-repair coupling factor b1114 NAM 
96 mgtA N 898 Mg(2+) transport ATPase, P-type 1 (EC 3.6.3.2) b4242 MTR 
97 minC N 231 Septum site-determining protein minC b1176 RCD 

98 mpl N 457 UDP-N-acetylmuramate:L-alanyl-gamma-D-glutamyl-meso-
diaminopimelate ligase (EC 6.3.2.-) b4233 LPC 

99 mrp N 379 Mrp protein b2113 UNC 
100 msrA N 212 Peptide methionine sulphoxide reductase (EC 1.8.4.6) b4219 PMS 
101 mukB E 1486 Cell division protein b0924 RCD 

102 murA N 419 UDP-N-acetylglucosamine 1-carboxyvinyltransferase (EC 
2.5.1.7) b3189 LPC 

103 murC E 491 UDP-N-acetylmuramate--alanine ligase (EC 6.3.2.8) b0091 LPC 

104 murE E 495 UDP-N-acetylmuramoylalanyl-D-glutamate--2,6-
diaminopimelate ligase (EC 6.3.2.13) b0085 LPC 

105 nagB N 266 Glucosamine-6-phosphate isomerase (EC 3.5.99.6) b0678 CHM 
106 nagD N 250 NagD protein b0675 UNC 
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107 narL N 216 Nitrate/nitrite response regulator protein narL b1221 SMC 
108 nikR N 133 Nickel responsive regulator b3481 RCD 

109 nrdA E 761 Ribonucleoside-diphosphate reductase 1 alpha chain (EC 
1.17.4.1) b2234 NCM 

110 nrdD N 712 Anaerobic ribonucleoside-triphosphate reductase (EC 1.17.4.2) b4238 NCM 
111 nudC N 257 NADH pyrophosphatase (EC 3.6.1.-) b3996 MSM 
112 nuoG N 910 NADH dehydrogenase I chain G (EC 1.6.5.3) b2283 BEN 
113 nusG N 181 Transcription antitermination protein nusG b3982 RCD 
114 ompA N 346 Outer membrane protein A precursor b0957 SMC 
115 ompF N 362 Outer membrane protein F precursor b0929 SMC 
116 ompR N 239 Transcriptional regulatory protein ompR b3405 SMC 
117 pdxB N 378 Erythronate-4-phosphate dehydrogenase (EC 1.1.1.-) b2320 NCM 
118 pdxH N 218 Pyridoxamine 5'-phosphate oxidase (EC 1.4.3.5) b1638 NCM 
119 pflA N 246 Pyruvate formate-lyase 1 activating enzyme (EC 1.97.1.4) b0902 CHM 
120 pflB N 760 Formate acetyltransferase 1 (EC 2.3.1.54) b0903 CHM 
121 phoB N 229 Phosphate regulon transcriptional regulatory protein phoB b0399 RCD 
122 phoP N 223 Transcriptional regulatory protein phoP b1130 SMC 
123 ppiA N 190 Peptidyl-prolyl cis-trans isomerase A precursor (EC 5.2.1.8) b3363 PMS 
124 prfA X 360 Peptide chain release factor 1 b1211 PMS 
125 prfB ? 365 Peptide chain release factor 2 b2891 PMS 
126 prfC N 529 Peptide chain release factor 3 b4375 PMS 
127 proB N 367 Glutamate 5-kinase (EC 2.7.2.11) b0242 AAM 
128 prsA E 315 Ribose-phosphate pyrophosphokinase (EC 2.7.6.1) b1207 CHM 
129 pta N 714 Phosphate acetyltransferase (EC 2.3.1.8) b2297 MSM 
130 purB N 456 Adenylosuccinate lyase (EC 4.3.2.2) b1131 NCM 
131 purL N 1295 Phosphoribosylformylglycinamidine synthase (EC 6.3.5.3) b2557 NCM 
132 purU E 280 Formyltetrahydrofolate deformylase (EC 3.5.1.10) b1232 NCM 
133 putA N 1320 Bifunctional putA protein b1014 AAM 
134 pykA N 480 Pyruvate kinase II (EC 2.7.1.40) b1854 CHM 
135 pyrB N 311 Aspartate carbamoyltransferase catalytic chain (EC 2.1.3.2) b4245 NCM 
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136 pyrG E 545 CTP synthase (EC 6.3.4.2) b2780 NCM 
137 pyrI N 153 Aspartate carbamoyltransferase regulatory chain b4244 RCD 
138 relA N 744 GTP pyrophosphokinase (EC 2.7.6.5) b2784 MSM 
139 rho ? 419 Transcription termination factor rho b3783 RCD 
140 ribD E 367 Riboflavin biosynthesis protein ribD b0414 NCM 
141 ribE E 213 Riboflavin synthase alpha chain (EC 2.5.1.9) b1662 NCM 
142 rimM E 185 16S rRNA processing protein rimM b2608 NAM 
143 rnb N 644 Exoribonuclease II (EC 3.1.13.1) b1286 NAM 
144 rnc E 226 Ribonuclease III (EC 3.1.26.3) b2567 NAM 
145 rnd N 375 Ribonuclease D (EC 3.1.26.3) b1804 NAM 
146 rne E 1061 Ribonuclease E (EC 3.1.4.-) b1084 NAM 
147 rph N 228 Ribonuclease PH (EC 2.7.7.56) b3643 NAM 
148 rplC E 209 50S ribosomal protein L3 b3320 PMS 
149 rplF E 177 50S ribosomal protein L6 b3305 PMS 
150 rplN E 123 50S ribosomal protein L14 b3310 PMS 
151 rplS E 115 50S ribosomal protein L19 b2606 PMS 
152 rplY E 94 50S ribosomal protein L25 b2185 PMS 
153 rpoB E 1342 DNA-directed RNA polymerase beta chain (EC 2.7.7.6) b3987 NAM 
154 rpoC E 1407 DNA-directed RNA polymerase beta' chain (EC 2.7.7.6) b3988 NAM 
155 rpoD E 613 RNA polymerase sigma factor rpoD b3067 RCD 
156 rpsA N 557 30S ribosomal protein S1 b0911 PMS 
157 rpsB E 241 30S ribosomal protein S2 b0169 PMS 
158 rpsC N 233 30S ribosomal protein S3 b3314 PMS 
159 rpsF E 131 30S ribosomal protein S6 b4200 PMS 
160 rpsJ E 103 30S ribosomal protein S10 b3321 PMS 
161 rstA N 242 Transcriptional regulatory protein rstA b1608 RCD 
162 sdhA N 588 Succinate dehydrogenase flavoprotein subunit (EC 1.3.99.1) b0723 SMC 

163 slyD E 196 FKBP-type peptidyl-prolyl cis-trans isomerase slyD (EC 
5.2.1.8) b3349 PMS 

164 speA N 658 Biosynthetic arginine decarboxylase (EC 4.1.1.19) b2938 AAM 
165 speD N 264 S-adenosylmethionine decarboxylase proenzyme (EC 4.1.1.50) b0120 MSM 
166 speG N 186 Spermidine N(1)-acetyltransferase (EC 2.3.1.57) b1584 AAM 
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167 sucA E 933 2-oxoglutarate dehydrogenase E1 component (EC 1.2.4.2) b0726 CHM 
168 suhB E 267 Inositol-1-monophosphatase (EC 3.1.3.25) b2533 LPC 
169 tdk E 205 Thymidine kinase (EC 2.7.1.21) b1238 NCM 
170 thrA N 820 Bifunctional aspartokinase/homoserine dehydrogenase I b0002 AAM 
171 thrS E 642 Threonyl-tRNA synthetase (EC 6.1.1.3) b1719 PMS 
172 tpiA X 255 Triosephosphate isomerase (EC 5.3.1.1) b3919 CHM 
173 treC N 551 Trehalose-6-phosphate hydrolase (EC 3.2.1.93) b4239 CHM 
174 trpS E 334 Tryptophanyl-tRNA synthetase (EC 6.1.1.2) b3384 PMS 
175 tufA E 394 Elongation factor Tu b3339 PMS 
176 tufB E 394 Elongation factor Tu b3980 PMS 
177 ugd N 388 UDP-glucose 6-dehydrogenase (EC 1.1.1.22) b2028 SMC 
178 uhpA N 196 Transcriptional regulatory protein uhpA b3669 SMC 
179 uup N 635 ABC transporter ATP-binding protein uup b0949 MTR 
180 yacF N 247 Hypothetical protein yacF b0102 UNC 

181 yahK N 349 Hypothetical zinc-type alcohol dehydrogenase-like protein 
yahK b0325 UNC 

182 yajD N 115 Hypothetical protein yajD b0410 UNC 
183 ybeD N 87 Hypothetical protein ybeD b0631 UNC 
184 ybfF N 254 Putative esterase/lipase ybfF (EC 3.1.-.-) b0686 UNC 
185 ybgJ N 218 Hypothetical protein ybgJ b0711 UNC 
186 ybiB N 320 Hypothetical protein ybiB b0800 UNC 
187 ybiV N 271 Hypothetical protein ybiV b0822 UNC 
188 ycbY N 702 Hypothetical protein ycbY b0948 UNC 
189 yccX N 92 Putative acylphosphatase (EC 3.6.1.7) b0968 UNC 
190 ycdW E 325 Putative 2-hydroxyacid dehydrogenase ycdW b1033 UNC 
191 ycfP E 199 Hypothetical protein ycfP b1108 UNC 
192 ycgK N 133 Protein ycgK precursor b1178 UNC 
193 yciK E 252 Hypothetical oxidoreductase yciK (EC 1.-.-.-) b1271 UNC 
194 ydcF N 266 Protein ydcF b1414 UNC 
195 ydcY N 77 Hypothetical protein ydcY b1446 UNC 
196 ydfG N 248 Probable oxidoreductase ydfG (EC 1.-.-.-) b1539 UNC 
197 ydhF N 298 Hypothetical oxidoreductase ydhF (EC 1.-.-.-) b1647 UNC 
198 ydiI E 136 Hypothetical protein ydiI b1686 UNC 
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199 yebU N 481 Hypothetical protein yebU b1835 UNC 
200 yecP E 323 Hypothetical protein yecP b1871 UNC 
201 yegQ N 453 Putative protease yegQ (EC 3.4.-.-) b2081 UNC 
202 yeiE N 293 Hypothetical transcriptional regulator yeiE b2157 UNC 
203 yfbG N 660 Hypothetical protein yfbG b2255 UNC 
204 yfbU N 170 Protein yfbU b2294 UNC 
205 yfcG N 215 Hypothetical GST-like protein yccG b2302 UNC 
206 yffB E 118 Protein yffB b2471 UNC 
207 yfgD N 119 Protein yfgD b2495 UNC 
208 yfgM N 206 Hypothetical protein yfgM b2513 UNC 
209 yfiA N 113 Protein yfiA b2597 UNC 
210 ygdH N 454 Hypothetical protein ygdH b2795 UNC 
211 ygiN N 104 Protein ygiN b3029 UNC 
212 yhaJ N 298 Hypothetical transcriptional regulator yhaJ b3105 UNC 
213 yhbG E 241 Probable ABC transporter ATP-binding protein yhbG b3201 UNC 
214 yhbH N 95 Probable sigma(54) modulation protein b3203 UNC 
215 yhbW N 335 Hypothetical protein yhbW b3160 UNC 
216 yhfT X 434 Hypothetical protein yhfT b3377 UNC 
217 yhhX N 345 Putative oxidoreductase yhhX (EC 1.-.-.-) b3440 UNC 
218 yhiR N 280 Hypothetical protein yhiR b3499 UNC 
219 yieN N 506 Hypothetical protein yieN b3746 UNC 
220 yifE N 112 Protein yifE b3764 UNC 
221 yjbR N 118 Protein yjbR b4057 UNC 
222 yjjK N 555 ABC transporter ATP-binding protein yjjK b4391 MTR 
223 yliG E 441 Hypothetical protein yliG b0835 UNC 
224 yncB N 376 Putative NADP-dependent oxidoreductase yncB (EC 1.-.-.-) b1449 UNC 
225 yncE E 353 Hypothetical protein yncE precursor b1452 UNC 
226 yneH N 308 Probable glutaminase yneH (EC 3.5.1.2) b1524 UNC 
227 yqcD N 282 Hypothetical protein yqcD b2794 UNC 
228 yraL N 286 Hypothetical protein yraL b3146 UNC 
229 yrdA N 256 Protein yrdA b3279 UNC 
230 ytfP N 113 Hypothetical protein ytfP b4222 UNC 
231 zwf E 491 Glucose-6-phosphate 1-dehydrogenase (EC 1.1.1.49) b1852 CHM 
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IMAC Co(II) Contaminant Essentiality  

# gene E/N Alt. Gene 
Symbol 

Protein Description & 
E.C. # Pathway length MW  pI 

(calc.) 
Transcription 

Start 
Blattner 

ID 

1 aroH E -- 

Phospho-2-dehydro-3-
deoxyheptonate 
aldolase, Trp-sensitive 
(EC 4.1.2.15) 

AAM 348 38,735 6.42 1786459 b1704 

2 chbR ? celD Unknown Protein -- 280 32,968 8.41 -- -- 

3 coaA E panK, rts, ts-
9 

Pantothenate kinase (EC 
2.7.1.33) NCM 316 36,360 6.32 4172605 b3974 

4 crp X cap, csm 
Catabolite gene 
activator, cAMP 
receptor protein 

RCD 210 23,640 8.38 3483757 b3357 

5 folX N -- 

D-erythro-7,8-
dihydroneopterin 
triphosphate epimerase 
(EC 5.-.-.-) 

NCM 120 14,082 6.51 2419345 b2303 

6 glk N -- Glucokinase (EC 
2.7.1.2) CHM 321 34,723 6.06 2507446 b2388 

7 hemD E -- Uroporphyrinogen-III 
synthase (EC 4.2.1.75) NCM 246 27,798 5.98 3987441 b3804 

8 hslR N yrfH Heat shock protein 15 SMC 133 15,496 9.94 3526986 b3400 

9 mdoB X yjjO 
Phosphoglycerol 
transferase I (EC 
2.7.8.20) 

LPC 750 85,494 6.10 4596971 b4359 

10 prfA X sueB, uar, 
ups? 

Peptide chain release 
factor 1 PMS 360 40,517 5.15 1264235 b1211 

11 prkB E prk?, yhfF Putative 
phosphoribulokinase -- 289 32,344 6.18 3482512 -- 

12 qseB N ygiX Quorum sensing E.coli -- 219 2,468 6.54 -- -- 

13 rimM E yfiA 16S rRNA processing 
protein rimM NAM 185 20,605 4.61 2743947 b2608 



 

 

116 

14 rpoD E -- 
RNA polymerase sigma 
factor rpoD, Sigma 70, 
initiates transcription 

RCD 613 70,263 4.69 3210688 b3067 

15 rpsJ E nusE 30S ribosomal protein 
S10 PMS 103 11,736 9.68 3450907 b3321 

16 yacF N -- Hypothetical protein 
yacF UNC 247 28,292 6.31 112599 b0102 

17 yajD N -- Hypothetical protein 
yajD UNC 115 13,364 6.14 429829 b0410 

18 ybfF N -- Putative esterase/lipase 
ybfF (EC 3.1.-.-) UNC 254 28,437 5.86 712025 b0686 

19 ycbY N rlmL Hypothetical protein 
ycbY UNC 702 78,854 8.96 1007067 b0948 

20 yeiE N -- 

Hypothetical 
transcriptional regulator; 
probable positive 
regulator of lysP 
transcription 

UNC 293 32,724 6.07 2247638 b2157 

21 yfgM N -- Hypothetical protein 
yfgM UNC 206 22,176 5.07 2637303 b2513 

22 ygjF X mug, dug 

Uracil DNA-
glycosylase, G:U 
mismatch-specific, 
dsDNA-specific; excises 
uracil from DNA by 
base flipping 
mechanism; required for 
mutation avoidance in 
stationary phase; up-
regulated in stationary 
phase 

NAM 168 18,673 9.17 -- -- 

23 yhfT X -- Hypothetical protein 
yhfT UNC 434 46,516 6.53 3504974 b3377 
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24 yhiQ ? -- 

Function unknown; in 
Salmonella, yhiQ is the 
second gene in prlC 
operon and in the heat 
shock regulon; putative 
SAM-dependent 
methyltransferase 

 250 26,949 6.60  -- 

25 yraL N -- 
Putative 
methyltransferase, 
function unknown 

UNC 286 31,348 5.83 3290976 b3146 
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Common to Co(II) & Zn(II) 

# gene E/N 
Alt. 

Gene 
Symbol 

Protein Description & E.C. # Pathway AA 
length 

MW 
(calc.) 

pI 
(calc.) 

Transcription 
start 

Blattner 
ID 

1 asnB N -- 
Asparagine synthetase B 
[glutamine-hydrolyzing] (EC 
6.3.5.4) 

AAM 554 62,659.01 5.55 698400 b0674 

2 dapB E -- Dihydrodipicolinate reductase 
(EC 1.3.1.26) AAM 273 28,756.61 5.45 28374 b0031 

3 fur N -- Ferric uptake regulation protein RCD 148 16,794.85 5.68 709869 b0683 
4 fusA E far, fus Elongation Factor G PMS 704 77,581.31 5.24 3471151 b3340 

5 hemE E hemC Uroporphyrinogen 
decarboxylase (EC 4.1.1.37) NCM 354 39,248.12 5.88 4195294 b3997 

6 hepA N rapA, 
yabA 

RNA polymerase associated 
protein UNC 968 109,769.06 5.04 63264 b0059 

7 hinT  ycfF 
Purine nucleoside 
phosphoramidase; 
physiological role unknown 

NAM 119 13,241.28 5.73 -- -- 

8 kdsA N* -- 
2-dehydro-3-
deoxyphosphooctonate aldolase 
(EC 4.1.2.16) 

CHM 284 30,832.69 6.32 1267388 b1215 

9 leuC N -- 3-isopropylmalate dehydratase 
large subunit (EC 4.2.1.33) AAM 466 49,881.83 5.90 80864 b0072 

10 map E pepM 
(S.t.) 

Methionine aminopeptidase 
(EC 3.4.11.18) PMS 264 29,330.80 5.64 189506 b0168 

11 nagB N glmD Glucosamine-6-phosphate 
isomerase (EC 3.5.99.6) CHM 266 29,774.20 6.41 702834 b0678 

12 prsA E prs,dnaR 
Ribose-phosphate 
pyrophosphokinase (EC 
2.7.6.1) 

CHM 315 34,218.27 5.23 1261098 b1207 
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13 purU E tgs, ychI Formyltetrahydrofolate 
deformylase (EC 3.5.1.10) NCM 280 31,934.72 6.50 1287847 b1232 

14 rplN E -- 50S ribosomal protein L14 PMS 123 13,541.02 10.43 3445786 b3310 

15 slyD E -- FKBP-type peptidyl-prolyl cis-
trans isomerase(EC 5.2.1.8) PMS 196 20,852.83 4.86 3476134 b3349 

16 speG N -- Spermidine N(1)-
acetyltransferase (EC 2.3.1.57) AAM 186 21,887.01 6.20 1654208 b1584 

17 tiaE  -- Unknown Protein tiaE -- -- -- -- -- -- 

18 ydfG N -- Probable oxidoreductase ydfG 
(EC 1.-.-.-) UNC 248 27,248.93 5.65 1625541 b1539 

19 yfbG N 

arnA, 
pbgP3 
(S.t.), 
pmrI, 
SAF 

Hypothetical protein yfbG UNC 660 74,288.89 6.39 2366059 b2255 

21 yfcG N -- Hypothetical GST-like protein 
yccG UNC 215 24,515.90 6.45 2418641 b2302 

22 yfgD N -- Protein YfgD UNC 119 13,398.58 5.89 2615598 b2495 

23 yjtD N lasT Predicted methyltransferase, 
function unknown UNC 228 25,259.04 5.58 -- -- 
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Common to Co(II) & Ni(II) 

# gene E/N 
Alt. 

Gene 
Symbol 

Protein Description & E.C. # Pathway AA 
Length 

MW 
(calc.) 

pI 
(calc.) 

Transcription 
Start 

Blattner 
ID 

1 accC X fabG 
Biotin carboxylase (EC 6.3.4.14) 
(A subunit of acetyl-CoA 
carboxylase (EC 6.4.1.2)) 

LPC 449 49,321 6.65 3403554 b3256 

2 alaS E 
act, 

ala-act, 
lovB 

Alanyl-tRNA synthetase (EC 
6.1.1.7) PMS 876 96,032 5.53 2820033 b2697 

3 atpC E papG, 
uncC 

ATP synthase epsilon chain (EC 
3.6.3.14) BEN 139 15,068 5.46 3913600 b3731 

4 atpG N papC, 
uncG 

ATP synthase gamma chain (EC 
3.6.3.14) BEN 287 31,577 8.84 3915893 b3733 

5 cbpA N -- Curved DNA-binding protein UNC 306 34,455 6.33 1062998 b1000 

6 cueO N 
yacK, 
cuiD 
(S.t.) 

Blue copper oxidase  UNC 516 56,556 6.28 137083 b0123 

7 dnaE E polC, 
sdgC 

DNA polymerase III alpha subunit 
(EC 2.7.7.7) NAM 1160 129,905 5.16 205126 b0184 

8 dnaN X -- DNA polymerase III, beta chain 
(EC 2.7.7.7) NAM 366 40,587 5.25 3879949 b3701 

9 glgB N -- 1,4-alpha-glucan branching enzyme 
(EC 2.4.1.18) CHM 728 84,337 5.91 3571135 b3432 

10 glnD E -- [Protein-PII] uridylyltransferase 
(EC 2.7.7.59) SMC 890 102,390 6.22 188650 b0167 

11 lpdA E lpd, dhl Dihydrolipoamide dehydrogenase 
(EC 1.8.1.4) CHM 474 50,688 5.79 127912 b0116 

12 minC N minB Septum site-determining protein 
minC RCD 231 24,776 6.38 1225303 b1176 

13 mrp N apbC 
(S.t.) Mrp protein UNC 379 39,938 5.85 2192218 b2113 
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14 murC E -- UDP-N-acetylmuramate--alanine 
ligase (EC 6.3.2.8) LPC 491 53,626 5.53 100765 b0091 

15 murE E -- 
UDP-N-acetylmuramoylalanyl-D-
glutamate--2,6-diaminopimelate 
ligase (EC 6.3.2.13) 

LPC 495 53,344 5.42 93166 b0085 

16 nrdD N -- 
Anaerobic ribonucleoside-
triphosphate reductase (EC 
1.17.4.2) 

NCM 712 80,023 6.38 4460234 b4238 

17 pdxB N -- Erythronate-4-phosphate 
dehydrogenase (EC 1.1.1.-) NCM 378 41,368 6.23 2435871 b2320 

18 rph N -- Ribonuclease PH (EC 2.7.7.56) NAM 228 25,352 5.54 3814176 b3643 
19 rpsB E -- 30S ribosomal protein S2 PMS 241 26,744 6.61 189874 b0169 
20 yebU N rsmF Hypothetical protein yebU UNC 481 53,228 5.44 1918241 b1835 
21 yecP E cmoB Hypothetical protein yecP UNC 323 37,007 6.13 1951466 b1871 
22 yegQ N -- Putative protease yegQ (EC 3.4.-.-) UNC 453 51,193 5.80 2163690 b2081 

23 yfhQ  trmJ 
tRNA Cm32/Um32 
methyltransferase, SAM-
dependent; low abundance protein 

PMS 246 27,048 5.69 -- -- 

24 ygiN N -- Protein ygiN UNC 104 11,532 5.79 3171158 b3029 

25 yhaJ N -- Hypothetical transcriptional 
regulator yhaJ UNC 298 33,256 6.05 3251854 b3105 

26 yhhX N -- Putative oxidoreductase yhhX (EC 
1.-.-.-) UNC 345 38,765 6.07 3578436 b3440 

27 ytfP N -- Hypothetical protein ytfP UNC 113 12,866 6.39 4445471 b4222 
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Elution Contaminants Common to Co(II), Zn(II), & Ni(II) 

All 
Genes 

#  

Co(II) 
Only 

# 
Gene E/N 

Alt. 
Gene 

Symbol 
Enzyme Discription Pathway MW Length  pI Blattner # 

2 26 aceE N -- Pyruvate dehydrogenase E1 component (EC 
1.2.4.1) UNC 99,668.49 887 5.46 b0884 

3 3 aceF E -- 
Dihydrolipoamide acetyltransferase 
component of pyruvate dehydrogenase 
complex (EC 2.3.1.12) 

RCD 66,096.07 630 5.09 b3783 

5 27 adhE N adhC, 
ana Aldehyde-alcohol dehydrogenase NCM 96,127.24 891 6.32 b0115 

6 28 ahpF N -- Alkyl hydroperoxide reductase subunit F 
(EC 1.6.4.-) BEN 56,177.11 531 5.47 b0733 

15 29 basR N pmrA Transcriptional regulatory protein 
basR/pmrA PMS 25,030.81 222 5.66 b0014 

16 30 bcp N -- Bacterioferritin co-migratory protein NCM 17,633.94 156 5.03 b2153 

 67 can N -- -- CHM -- -- -- b1779 

18 31 carB N cap, 
pyrA 

Carbamoyl-phosphate synthase large chain 
(EC 6.3.5.5) CHM 117,841.72 1073 5.22 b3729 

20 32 clpA N lopD ATP-dependent clp protease ATP-binding 
subunit clpA PMS 84,206.93 758 5.91 b2400 

21 33 clpB N htpM ClpB protein AAM 95,585.02 857 5.37 b2551 

34 68 cusF N 

cusX, 
silF 

(S.t.), 
ylcC 

Silver and copper efflux, periplasmic 
binding protein; confers copper and silver 
resistance; CusF binds both Cu(I) and Ag(I) 
with high affinity, but does not bind Cu(II) 

PMS 12,251.16 110 6.97 b4143 

30 4 cydA E -- Cytochrome D ubiquinol oxidase subunit I 
(EC 1.10.3.-) RCD 58,205.08 523 6.35 b0924 

35 5 dnaK E 

groPAB, 
groPC, 
groPF, 
grpC, 

Chaperone protein  NCM 69,114.96 638 4.83 b2234 
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grpF, 
seg 

42 6 folE E -- GTP cyclohydrolase I (EC 3.5.4.16) NAM 24,830.62 222 6.80 b1084 

48 7 gapA E -- Glyceraldehyde 3-phosphate dehydrogenase 
A (EC 1.2.1.12) PMS 35,532.49 331 6.61 b3320 

54 34 gidB N -- Glucose inhibited division protein B PMS 23,431.12 207 6.06 b2185 

57 8 glmS E -- 
Glucosamine--fructose-6-phosphate 
aminotransferase [isomerizing] (EC 
2.6.1.16) 

NAM 66,894.34 609 5.56 b3987 

59 35 gltB N 
aspB, 
ossB, 
psiQ 

Glutamate synthase [NADPH] large chain 
precursor (EC 1.4.1.13) NAM 166,709.87 1517 6.27 b3988 

60 9 gltX E -- Glutamyl-tRNA synthetase (EC 6.1.1.17) NCM 53,815.73 471 5.59 b1238 

61 10 glyA E -- Serine hydroxymethyltransferase (EC 
2.1.2.1) PMS 45,316.59 417 6.03 b1719 

62 11 groL E groEL, 
mopA 60 kDa chaperonin PMS 57,328.85 548 4.85 b3339 

 69 guaA E -- GMP synthase PMS 58,679.22 525 5.24 b3980 

65 36 guaB N guaR Inosine-5'-monophosphate dehydrogenase 
(EC 1.1.1.205) UNC 52,022.45 488 6.02 b1108 

 70 gyrA E 

hisW, 
nalA, 
nfxA, 
norA, 
parD 

DNA gyrase, subunit A; nalidixic acid 
resistance; cold shock regulon UNC 96,963.51 875 5.09 b1271 

67 65 gyrB E 

acrB, 
Cou, 
himB, 
hisU, 
hopA, 
nalC, 
parA, 
pcbA, 

DNA gyrase subunit B (EC 5.99.1.3) UNC 89,949.91 804 5.72 b3201 
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pcpA 

79 1 infA X bypA1 Translation initiation factor IF-1 CHM 8,249.58 72 9.22 b0114 

89 37 malP N blu, 
malA Maltodextrin phosphorylase (EC 2.4.1.1) MSM 90,522.40 797 6.94 b1241 

 71 mdoD  
ydcG, 
yzzZ Glucans biosynthesis protein, periplasmic MSM 62,757.95 551 5.89 b0606 

93 38 metH N -- 5-methyltetrahydrofolate--homocysteine 
methyltransferase (EC 2.1.1.13) SMC 135,997.04 1227 4.97 b4113 

94 39 metL N metM Bifunctional aspartokinase/homoserine 
dehydrogenase II UNC 88,887.69 810 5.34 b2480 

95 40 mfd N -- Transcription-repair coupling factor AAM 129,982.73 1148 5.79 b0033 

96 41 mgtA N corB, 
mgt 

Mg(2+) transport ATPase, P-type 1 (EC 
3.6.3.2) PMS 99,466.49 898 5.64 b0882 

 72 miaB X yleA 

Required for methylthiolation step of the 
modified tRNA nucleoside N6-(4-
hydroxyisopentenyl)-2-
methylthioadenosine; contains an iron-
sulfur center, SAM-dependent 

UNC 53,662.96 474 5.20 b2592 

101 12 mukB E -- Cell division protein mukB UNC 170,230.18 1486 5.24 b3740 

107 42 narL N frdR Nitrate/nitrite response regulator protein 
narL MSM 23,926.79 216 5.73 b3212 

109 13 nrdA E dnaF Ribonucleoside-diphosphate reductase 1 
alpha chain (EC 1.17.4.1) NCM 85,775.28 761 5.79 b2508 

112 43 nuoG N -- NADH dehydrogenase I chain G (EC 
1.6.5.3) CHM 100,299.20 910 5.85 b3417 

113 44 nusG N -- Transcription antitermination protein nusG AAM 20,531.51 181 6.34 b4019 

119 45 pflA N act Pyruvate formate-lyase 1 activating enzyme 
(EC 1.97.1.4) AAM 28,204.29 246 6.00 b3940 

120 46 pflB N pfl Formate acetyltransferase 1 (EC 2.3.1.54) NAM 85,357.21 760 5.69 b1114 
122 47 phoP N -- Transcriptional regulatory protein phoP MTR 25,535.22 223 5.10 b4242 
126 48 prfC N tos Peptide chain release factor 3 SMC 59,574.08 529 5.65 b1221 
127 49 proB N pro(2) Glutamate 5-kinase (EC 2.7.2.11) BEN 39,056.52 367 6.07 b2283 
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129 50 pta N -- Phosphate acetyltransferase (EC 2.3.1.8) RCD 77,172.09 714 5.28 b3982 
130 51 purB N ade(h) Adenylosuccinate lyase (EC 4.3.2.2) CHM 51,542.81 456 5.68 b0902 

 73 purH X -- Phosphoribosylaminoimidazolecarboxamide 
formyltransferase; purine synthesis CHM 57,329.21 529 5.53 b0903 

133 52 putA N poaA, 
putC Bifunctional putA protein SMC 143,815.16 1320 5.69 b1130 

135 53 pyrB N -- Aspartate carbamoyltransferase catalytic 
chain (EC 2.1.3.2) PMS 34,427.36 311 6.12 b4375 

137 54 pyrI N -- Aspartate carbamoyltransferase regulatory 
chain AAM 17,120.63 153 6.90 b0242 

139 2 rho E 

nitA, 
nusD, 
psuA, 
rnsC, 
sbaA, 

sun, tsu 

Transcription termination factor rho MSM 47,004.21 419 6.75 b2297 

146 14 rne E 
ams, 

hmp1, 
smbB 

Ribonuclease E (EC 3.1.4.-) NCM 118,196.73 1061 5.48 b1131 

148 15 rplC E -- 50S ribosomal protein L3 AAM 22,243.52 209 9.90 b1014 
152 16 rplY E -- 50S ribosomal protein L25 NCM 10,693.44 94 9.60 b4245 

153 17 rpoB E 

ftsR, 
groN, 

nitB, rif, 
ron, 

sdgB, 
stl, stv, 
tabD 

DNA-directed RNA polymerase beta chain 
(EC 2.7.7.6) RCD 150,632.35 1342 5.15 b4244 

154 18 rpoC E tabB DNA-directed RNA polymerase beta' chain 
(EC 2.7.7.6) RCD 155,160.25 1407 6.67 b1608 

161 55 rstA N urpT Transcriptional regulatory protein rstA SMC 26,703.82 242 5.42 b0723 

162 56 sdhA N -- Succinate dehydrogenase flavoprotein 
subunit (EC 1.3.99.1) CHM 64,421.84 588 5.85 b4239 
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169 19 tdk E -- Thymidine kinase (EC 2.7.1.21) UNC 23,456.58 205 5.98 b1178 
171 20 thrS E -- Threonyl-tRNA synthetase (EC 6.1.1.3) UNC 74,014.30 642 5.80 b2294 
172 66 tpiA X tpi Triosephosphate isomerase (EC 5.3.1.1) UNC 26,971.81 255 5.64 b2597 

173 57 treC N olgH, 
treE 

Trehalose-6-phosphate hydrolase (EC 
3.2.1.93) UNC 63,837.67 551 5.51 b3203 

175 21 tufA E kirT, 
pulT Elongation factor Tu UNC 43,283.55 394 5.30 b3499 

176 22 tufB E kirT, 
pulT Elongation factor Tu UNC 43,313.58 394 5.30 b3764 

191 23 ycfP E -- Hypothetical protein ycfP MTR 21,226.18 199 6.13 b4391 
192 58 ycgK N -- Protein ycgK precursor NAM 14,905.82 133 9.50 b3699 

193 24 yciK E -- Hypothetical oxidoreductase yciK (EC 1.-.-
.-) CHM 27,932.91 252 7.67 b3919 

204 59 yfbU N -- Protein yfbU -- 19,536.20 170 6.07 -- 
209 60 yfiA N raiA Protein yfiA -- 12,784.59 113 6.20 -- 

213 25 yhbG E lptA Probable ABC transporter ATP-binding 
protein yhbG -- 26,800.65 241 5.64 -- 

214 61 yhbH N hpf Probable sigma(54) modulation protein -- 10,750.25 95 6.50 -- 

 74 yhbW N -- -- -- 37,129.34 335 5.99 -- 
218 62 yhiR N -- Hypothetical protein yhiR -- 31,941.71 280 8.59 -- 
220 63 yifE N -- Protein yifE -- 13,133.58 112 6.10 -- 
222 64 yjjK N -- ABC transporter ATP-binding protein yjjK -- 62,442.88 555 5.43 -- 

 

 

  



 

 

130 
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Elution Contaminant Pool:  All Gene Products Shown to Bind IMAC Columns if Co(II), Zn(II), or Ni(II) are used: 

# Gene E/N 
Alt. 

Gene 
Symbol 

Protein Description & E.C. # Pathway length MW 
(calc) 

pI 
(calc) 

Transcription 
Start 

Blattner 
ID 

1 accC X fabG 
Biotin carboxylase (EC 6.3.4.14) (A 
subunit of acetyl-CoA carboxylase 
(EC 6.4.1.2)) 

LPC 449 49,321 6.65 3403554 b3256 

2 aceE N -- Pyruvate dehydrogenase E1 
component (EC 1.2.4.1) CHM 887 99,668 5.46 123017 b0114 

3 aceF E -- 

Dihydrolipoamide acetyltransferase 
component of pyruvate 
dehydrogenase complex (EC 
2.3.1.12) 

NCM 630 66,096 5.09 125695 b0115 

4 acnB N yacI, 
yacJ Aconitate hydratase 2 (EC 4.2.1.3) CHM 865 93,498 5.24 131615 b0118 

5 adhE N adhC, 
ana Aldehyde-alcohol dehydrogenase MSM 891 96,127 6.32 1297344 b1241 

6 ahpF N -- Alkyl hydroperoxide reductase 
subunit F (EC 1.6.4.-) MSM 531 56,177 5.47 638946 b0606 

7 alaS E 
act, ala-

act, 
lovB 

Alanyl-tRNA synthetase (EC 
6.1.1.7) PMS 876 96,032 5.53 2820033 b2697 

8 arcA  

cpxC, 
dye, 
fexA, 
msp, 
seg, 
sfrA 

Aerobic respiration control protein  SMC 238 27,292 5.21 -- b4401 

9 argE X -- 
Acetylornithine deacetylase (EC 
3.5.1.16), MULTIPLE COPIES ON 
THE C'SOME 

AAM 383 -- -- 4152426 b3957 
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10 aroH E -- 
Phospho-2-dehydro-3-
deoxyheptonate aldolase, Trp-
sensitive (EC 4.1.2.15) 

AAM 348 38,735 6.42 1786459 b1704 

11 artP N -- Arginine transport ATP-binding 
protein artP MTR 242 27,022 6.17 902957 b0864 

12 asnA N -- Aspartate--ammonia ligase (EC 
6.3.1.1) AAM 330 36,651 5.45 3924783 b3744 

13 asnB N -- 
Asparagine synthetase B 
[glutamine-hydrolyzing] (EC 
6.3.5.4) 

AAM 554 62,659 5.55 698400 b0674 

14 atpC E papG, 
uncC 

ATP synthase epsilon chain (EC 
3.6.3.14) BEN 139 15,068 5.46 3913600 b3731 

15 atpG N papC, 
uncG 

ATP synthase gamma chain (EC 
3.6.3.14) BEN 287 31,577 8.84 3915893 b3733 

16 basR N pmrA Transcriptional regulatory protein 
basR/pmrA SMC 222 25,031 5.66 4331528 b4113 

17 bcp N -- Bacterioferritin comigratory protein UNC 156 17,634 5.03 2598498 b2480 

18 can  -- MULTIPLE COPIES ON THE 
C'SOME       

19 carA N 
arg, 
cap, 
pyrA 

Carbamoyl-phosphate synthase 
small chain (EC 6.3.5.5) AAM 382 41,431 5.91 29651 b0032 

20 carB N cap, 
pyrA 

Carbamoyl-phosphate synthase 
large chain (EC 6.3.5.5) AAM 1073 117,842 5.22 30817 b0033 

21 cbpA N -- DnaK co-chaperone; also binds 
curved DNA UNC 306 34,455 6.33 1062998 b1000 

22 cbpM  yccD Modulator of CbpA co-chaperone 
activity -- 101 11,512 5.23 -- -- 

23 chbR  celD -- -- 280 32,968 8.41 -- -- 

24 clpA N lopD ATP-dependent clp protease ATP-
binding subunit clpA PMS 758 84,207 5.91 922487 b0882 

25 clpB N htpM ATP-dependent protease and 
chaperone; protein disaggregation UNC 857 95,585 5.37 2732193 b2592 
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chaperone; role in de novo protein 
folding under mild stress conditions 

26 clpP N lopP, 
wseA 

ATP-dependent Clp protease 
proteolytic subunit (EC 3.4.21.92) PMS 207 23,187 5.52 455901 b0437 

27 coaA E panK, 
rts, ts-9 Pantothenate kinase (EC 2.7.1.33) NCM 316 36,360 6.32 4172605 b3974 

28 corA E -- Magnesium and cobalt uptake 
transporter protein corA MTR 316 36,590 4.64 3999038 b3816 

29 cpxR N yiiA Transcriptional regulatory protein 
cpxR SMC 232 26,312 5.39 4103251 b3912 

30 crp X cap, 
csm 

Catabolite gene activator, cAMP 
receptor protein RCD 210 23,640 8.38 3483757 -- 

31 crr N 
gsr, iex 

tgs, 
treD 

PTS system, glucose-specific IIA 
component (EC 2.7.1.69) MTR 169 18,251 4.73 2533854 b2417 

32 csrA X zfiA Carbon storage regulator RCD 61 6,856 8.16 2817168 b2696 

33 cueO N 
yacK, 
cuiD 
(S.t.) 

Blue copper oxidase cueO precursor UNC 516 56,556 6.28 137083 b0123 

34 cusF  

cusX, 
silF 

(S.t.), 
ylcC 

Silver and copper efflux, 
periplasmic binding protein; confers 
copper and silver resistance; CusF 
binds both Cu(I) and Ag(I) with 
high affinity to, but does not bind 
Cu(II) 

-- 110 12,251 6.97 -- -- 

35 cydA E -- 

Cytochrome d (bd-I) terminal 
oxidase subunit I; up regulated in 
biofilms and microaerobic 
conditions; aerobically repressed by 
H-NS; anaerobically repressed by 
Fnr 

BEN 523 58,205 6.35 770678 b0733 

36 cysD N -- Sulfate adenylyltransferase subunit 
2 (EC 2.7.7.4) MSM 302 35,188 7.80 2874352 b2752 
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37 dapB E -- Dihydrodipicolinate reductase (EC 
1.3.1.26) AAM 273 28,757 5.45 28374 b0031 

38 dfp E coaBC DNA/pantothenate metabolism 
flavoprotein NCM 430 43,438 7.06 3810286 b3639 

39 dnaE E polC, 
sdgC 

DNA polymerase III alpha subunit 
(EC 2.7.7.7) NAM 1160 129,905 5.16 205126 b0184 

40 dnaK E 

groPAB, 
groPC, 
groPF, 
grpC, 
grpF, 
seg 

Chaperone protein dnaK PMS 638 69,115 4.83 12163 b0014 

41 dnaN X -- DNA polymerase III, beta chain 
(EC 2.7.7.7) NAM 366 40,587 5.25 3879949 b3701 

42 dps N pexB, 
vtm 

DNA protection during starvation 
protein UNC 167 18,695 5.72 848134 b0812 

43 edd N -- Phosphogluconate dehydratase (EC 
4.2.1.12) CHM 603 64,639 5.93 1932628 b1851 

44 elaB N yfbD ElaB protein, Function unknown UNC 101 11,306 5.35 2379047 b2266 

45 fabI E -- Enoyl-[acyl-carrier-protein] 
reductase [NADH] (EC 1.3.1.9) LPC 262 -- -- 1349063 b1288 

46 fbp N -- Fructose-1,6-bisphosphatase (EC 
3.1.3.11) CHM 332 -- -- 4453183 b4232 

47 folE E -- GTP cyclohydrolase I (EC 3.5.4.16) NCM 222 24,831 6.80 2241672 b2153 

48 folX N -- D-erythro-7,8-dihydroneopterin 
triphosphate epimerase (EC 5.-.-.-) NCM 120 14,082 6.51 2419345 b2303 

49 fur N -- Ferric uptake regulation protein RCD 148 16,795 5.68 709869 b0683 
50 fusA E far, fus Elongation factor G PMS 704 77,581 5.24 3471151 b3340 

51 galF E -- UTP--glucose-1-phosphate 
uridylyltransferase (EC 2.7.7.9) CHM 297 -- -- 2112349 b2042 

52 galU E -- UTP--glucose-1-phosphate 
uridylyltransferase (EC 2.7.7.9) CHM 302 -- -- 1290680 b1236 

53 gapA E -- Glyceraldehyde 3-phosphate CHM 331 35,532 6.61 1860795 b1779 
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dehydrogenase A (EC 1.2.1.12) 

54 gatA N -- PTS system, galactitol-specific IIA 
component (EC 2.7.1.69) MTR 150 -- -- 2173069 b2094 

55 gatD E -- Galactitol-1-phosphate 5-
dehydrogenase (EC 1.1.1.251) CHM 346 -- -- 2170895 b2091 

56 gcvP N -- Glycine dehydrogenase 
[decarboxylating] (EC 1.4.4.2) AAM 957 -- -- 3047061 b2903 

57 gdhA N -- NADP-specific glutamate 
dehydrogenase (EC 1.4.1.4) MSM 447 -- -- 1840395 b1761 

58 gidA N -- Glucose inhibited division protein A UNC 629 -- -- 3923261 b3741 
59 gidB N -- Glucose inhibited division protein B UNC 207 23,431 6.06 3921308 b3740 

60 glgB N -- 1,4-alpha-glucan branching enzyme 
(EC 2.4.1.18) CHM 728 84,337 5.91 3571135 b3432 

61 glk N -- Glucokinase (EC 2.7.1.2) CHM 321 34,723 6.06 2507446 b2388 

62 glmS E -- 
Glucosamine--fructose-6-phosphate 
aminotransferase [isomerizing] (EC 
2.6.1.16) 

CHM 609 66,894 5.56 3911296 b3729 

63 glnD E -- [Protein-PII] uridylyltransferase 
(EC 2.7.7.59) SMC 890 102,390 6.22 188650 b0167 

64 gltB N -- Glutamate synthase [NADPH] large 
chain precursor (EC 1.4.1.13) MSM 1517   3352267 b3212 

65 gltX E -- Glutamyl-tRNA synthetase (EC 
6.1.1.17) PMS 471   2518692 b2400 

66 glyA E -- Serine hydroxymethyltransferase 
(EC 2.1.2.1) AAM 417   2683527 b2551 

67 groL E -- 60 kDa chaperonin PMS 548   4368603 b4143 

68 gst N -- Glutathione S-transferase (EC 
2.5.1.18) BEN 201   1712401 b1635 

69 guaA N -- GMP synthase [glutamine-
hydrolyzing] (EC 6.3.5.2) NCM 525   2630555 b2507 

70 guaB N -- Inosine-5'-monophosphate 
dehydrogenase (EC 1.1.1.205) NCM 488   2632090 b2508 

71 gyrA E -- DNA gyrase subunit A (EC NAM 875   2337440 b2231 
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5.99.1.3) 

72 gyrB X -- DNA gyrase subunit B (EC 
5.99.1.3) NAM 804   3877747 b3699 

73 hemD E -- Uroporphyrinogen-III synthase (EC 
4.2.1.75) NCM 246   3987441 b3804 

74 hemE E -- Uroporphyrinogen decarboxylase 
(EC 4.1.1.37) NCM 354   4195294 b3997 

75 hemN N -- 
Oxygen-independent 
coproporphyrinogen III oxidase (EC 
1.-.-.-) 

NCM 459   4049619 b3867 

76 hepA N -- RNA polymerase associated protein UNC 968   63264 b0059 
77 hinT  -- -- -- -- -- -- -- -- 

78 hisB N -- Histidine biosynthesis bifunctional 
protein hisB AAM 356   2091487 b2022 

79 hisH N -- Imidazole glycerol phosphate 
synthase subunit hisH (EC 2.4.2.-) AAM 196   2092557 b2023 

80 hrpA N -- ATP-dependent helicase hrpA UNC 1281   1481142 b1413 
81 hslR N -- Heat shock protein 15 SMC 133   3526986 b3400 

82 hslV N -- ATP-dependent protease hslV (EC 
3.4.25.-) SMC 176   4119867 b3932 

83 htpG  -- Chaperone protein htpG SMC 624    b0473 

84 hybC N -- Hydrogenase-2 large chain 
precursor (EC 1.18.99.1) BEN 567   3141004 b2994 

85 ilvD N -- Dihydroxy-acid dehydratase (EC 
4.2.1.9) AAM 605   3951132 b3771 

86 infA ? -- Translation initiation factor IF-1 UNC 72   925666 b0884 
87 iscS E -- Cysteine desulfurase (EC 4.4.1.-) NCM 412   2659575 b2530 

88 ispD E -- 
2-C-methyl-D-erythritol 4-
phosphate cytidylyltransferase (EC 
2.7.7.60) 

LPC 236   2870513 b2747 

89 kdsA N* -- 2-dehydro-3-deoxyphosphooctonate 
aldolase (EC 4.1.2.16) CHM 284   1267388 b1215 

90 leuC N -- 3-isopropylmalate dehydratase large AAM 466   80864 b0072 
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subunit (EC 4.2.1.33) 

91 lexA X -- LexA repressor (EC 3.4.21.88) NAM 202   4254694 b4043 

92 lpdA E -- Dihydrolipoamide dehydrogenase 
(EC 1.8.1.4) CHM 474   127912 b0116 

93 lysS X -- Lysyl-tRNA synthetase (EC 6.1.1.6) NAM 505   3033194 b2890 

94 lysU N -- Lysyl-tRNA synthetase, heat 
inducible (EC 6.1.1.6) NAM 505   4352295 b4129 

95 maa N -- Maltose O-acetyltransferase (EC 
2.3.1.79) CHM 183   479142 b0459 

96 malP N -- Maltodextrin phosphorylase (EC 
2.4.1.1) CHM 797   3550106 b3417 

97 map E -- Methionine aminopeptidase (EC 
3.4.11.18) PMS 264   189506 b0168 

98 mdoB X -- Phosphoglycerol transferase I (EC 
2.7.8.20) LPC 750   4596971 b4359 

99 mdoH N -- Periplasmic glucans biosynthesis 
protein mdoH CHM 847   1110086 b1049 

100 metH N -- 
5-methyltetrahydrofolate--
homocysteine methyltransferase 
(EC 2.1.1.13) 

AAM 1227   4221407 b4019 

101 metL N -- 
Bifunctional 
aspartokinase/homoserine 
dehydrogenase II 

AAM 810   4127415 b3940 

102 mfd N -- Transcription-repair coupling factor NAM 1148   1173187 b1114 

103 mgtA N -- Mg(2+) transport ATPase, P-type 1 
(EC 3.6.3.2) MTR 898   4465199 b4242 

104 miaB  -- -- -- -- -- -- -- -- 

105 minC N -- Septum site-determining protein 
minC RCD 231   1225303 b1176 

106 mpaA  -- -- -- -- -- -- -- -- 

107 mpl N -- 
UDP-N-acetylmuramate:L-alanyl-
gamma-D-glutamyl-meso-
diaminopimelate ligase (EC 6.3.2.-) 

LPC 457   4453359 b4233 
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108 mrp N -- Mrp protein UNC 379   2192218 b2113 

109 msrA N -- Peptide methionine sulphoxide 
reductase msrA (EC 1.8.4.6) PMS 212   4439753 b4219 

110 mukB E -- Cell division protein mukB RCD 1486   975549 b0924 

111 murA N -- 
UDP-N-acetylglucosamine 1-
carboxyvinyltransferase (EC 
2.5.1.7) 

LPC 419   3334135 b3189 

112 murC E -- UDP-N-acetylmuramate--alanine 
ligase (EC 6.3.2.8) LPC 491   100765 b0091 

113 murE E -- 
UDP-N-acetylmuramoylalanyl-D-
glutamate--2,6-diaminopimelate 
ligase (EC 6.3.2.13) 

LPC 495   93166 b0085 

114 nagB N -- Glucosamine-6-phosphate 
isomerase (EC 3.5.99.6) CHM 266   702834 b0678 

115 nagD N -- NagD protein UNC 250   699549 b0675 

116 narL N -- Nitrate/nitrite response regulator 
protein narL SMC 216   1275052 b1221 

117 nikR N -- Nickel responsive regulator RCD 133   3616219 b3481 

118 nrdA E -- 
Ribonucleoside-diphosphate 
reductase 1 alpha chain (EC 
1.17.4.1) 

NCM 761   2342885 b2234 

119 nrdD N -- Anaerobic ribonucleoside-
triphosphate reductase (EC 1.17.4.2) NCM 712   4460234 b4238 

120 nudC N -- NADH pyrophosphatase (EC 3.6.1.-
) MSM 257   4194481 b3996 

121 nuoG N -- NADH dehydrogenase I chain G 
(EC 1.6.5.3) BEN 910   2398191 b2283 

122 nusG N -- Transcription antitermination 
protein nusG RCD 181   4175322 b3982 

123 ompA N -- Outer membrane protein A 
precursor SMC 346   1019276 b0957 

124 ompF N -- Outer membrane protein F precursor SMC 362   986205 b0929 
125 ompR N -- Transcriptional regulatory protein SMC 239   3534222 b3405 
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ompR 

126 pdxB N -- Erythronate-4-phosphate 
dehydrogenase (EC 1.1.1.-) NCM 378   2435871 b2320 

127 pdxH N -- Pyridoxamine 5'-phosphate oxidase 
(EC 1.4.3.5) NCM 218   1716031 b1638 

128 pflA N -- Pyruvate formate-lyase 1 activating 
enzyme (EC 1.97.1.4) CHM 246   950303 b0902 

129 pflB N -- Formate acetyltransferase 1 (EC 
2.3.1.54) CHM 760   952777 b0903 

130 phoB N -- Phosphate regulon transcriptional 
regulatory protein phoB RCD 229   416366 b0399 

131 phoP N -- Transcriptional regulatory protein 
phoP SMC 223   1189670 b1130 

132 ppiA N -- Peptidyl-prolyl cis-trans isomerase 
A precursor (EC 5.2.1.8) PMS 190   3489934 b3363 

133 prfA X -- Peptide chain release factor 1 PMS 360   1264235 b1211 
134 prfB ? -- Peptide chain release factor 2 PMS 365   3034302 b2891 
135 prfC N -- Peptide chain release factor 3 PMS 529   4606983 b4375 

136 prkB  
prk?, 
yhfF Putative phosphoribulokinase  289 32,344 6.18 -- -- 

137 proB N -- Glutamate 5-kinase (EC 2.7.2.11) AAM 367   259612 b0242 

138 prsA E -- Ribose-phosphate 
pyrophosphokinase (EC 2.7.6.1) CHM 315   1261098 b1207 

139 pta N -- Phosphate acetyltransferase (EC 
2.3.1.8) MSM 714   2412767 b2297 

140 purB N -- Adenylosuccinate lyase (EC 4.3.2.2) NCM 456   1191209 b1131 
141 purH  -- -- -- -- -- -- -- -- 

142 purL N -- Phosphoribosylformylglycinamidine 
synthase (EC 6.3.5.3) NCM 1295   2693563 b2557 

143 purU E -- Formyltetrahydrofolate deformylase 
(EC 3.5.1.10) NCM 280   1287847 b1232 

144 putA N -- Bifunctional putA protein AAM 1320   1078105 b1014 
145 pykA N -- Pyruvate kinase II (EC 2.7.1.40) CHM 480   1935673 b1854 
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146 pyrB N -- Aspartate carbamoyltransferase 
catalytic chain (EC 2.1.3.2) NCM 311   4469969 b4245 

147 pyrG E -- CTP synthase (EC 6.3.4.2) NCM 545   2907688 b2780 

148 pyrI N -- Aspartate carbamoyltransferase 
regulatory chain RCD 153   4469021 b4244 

149 qseB  ygiX Quorum sensing E.coli  219 2,468 6.54 -- -- 

150 relA N -- GTP pyrophosphokinase (EC 
2.7.6.5) MSM 744   2911673 b2784 

151 rffE  -- -- -- -- -- -- -- -- 
152 rho ? -- Transcription termination factor rho RCD 419   3964032 b3783 
153 ribD E -- Riboflavin biosynthesis protein ribD NCM 367   432679 b0414 

154 ribE E -- Riboflavin synthase alpha chain (EC 
2.5.1.9) NCM 213   1741266 b1662 

155 rimM E yfiA 16S rRNA processing protein rimM NAM 185 20,605 4.61 2743947 b2608 
156 rnb N -- Exoribonuclease II (EC 3.1.13.1) NAM 644   1346936 b1286 
157 rnc E -- Ribonuclease III (EC 3.1.26.3) NAM 226   2702083 b2567 
158 rne E -- Ribonuclease E (EC 3.1.4.-) NAM 1061   1143590 b1084 
159 rph N -- Ribonuclease PH (EC 2.7.7.56) NAM 228   3814176 b3643 
160 rplC E -- 50S ribosomal protein L3 PMS 209   3450563 b3320 
161 rplF E -- 50S ribosomal protein L6 PMS 177   3443777 b3305 
162 rplN E -- 50S ribosomal protein L14 PMS 123   3445786 b3310 
163 rplS E -- 50S ribosomal protein L19 PMS 115   2742550 b2606 
164 rplY E -- 50S ribosomal protein L25 PMS 94   2280537 b2185 

165 rpoB E -- DNA-directed RNA polymerase 
beta chain (EC 2.7.7.6) NAM 1342   4178823 b3987 

166 rpoC E -- DNA-directed RNA polymerase 
beta' chain (EC 2.7.7.6) NAM 1407   4182928 b3988 

167 rpoD E -- RNA polymerase sigma factor rpoD RCD 613 70,263 4.69 3210688 b3067 
168 rpsA N* -- 30S ribosomal protein S1 PMS 557   961218 b0911 
169 rpsB E -- 30S ribosomal protein S2 PMS 241   189874 b0169 
170 rpsC N -- 30S ribosomal protein S3 PMS 233   3447520 b3314 
171 rpsF E -- 30S ribosomal protein S6 PMS 131   4422696 b4200 
172 rpsJ E nusE 30S ribosomal protein S10 PMS 103 11,736 9.68 3450907 b3321 
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173 rstA N -- Transcriptional regulatory protein 
rstA RCD 242   1680174 b1608 

174 sdhA N -- Succinate dehydrogenase 
flavoprotein subunit (EC 1.3.99.1) SMC 588   755130 b0723 

175 slyD E -- FKBP-type peptidyl-prolyl cis-trans 
isomerase slyD (EC 5.2.1.8) PMS 196   3476134 b3349 

176 speA N -- Biosynthetic arginine decarboxylase 
(EC 4.1.1.19) AAM 658   3083930 b2938 

177 speD N -- 
S-adenosylmethionine 
decarboxylase proenzyme (EC 
4.1.1.50) 

MSM 264   135582 b0120 

178 speG N -- Spermidine N(1)-acetyltransferase 
(EC 2.3.1.57) AAM 186   1654208 b1584 

179 sucA E -- 2-oxoglutarate dehydrogenase E1 
component (EC 1.2.4.2) CHM 933   757929 b0726 

180 suhB E -- Inositol-1-monophosphatase (EC 
3.1.3.25) LPC 267   2661462 b2533 

181 tdk E -- Thymidine kinase (EC 2.7.1.21) NCM 205   1292750 b1238 

182 thrA N -- 
Bifunctional 
aspartokinase/homoserine 
dehydrogenase I 

AAM 820   337 b0002 

183 thrS E -- Threonyl-tRNA synthetase (EC 
6.1.1.3) PMS 642   1800594 b1719 

184 tiaE  -- -- -- -- -- -- -- -- 

185 tpiA X -- Triosephosphate isomerase (EC 
5.3.1.1) CHM 255   4109087 b3919 

186 treC N -- Trehalose-6-phosphate hydrolase 
(EC 3.2.1.93) CHM 551   4462283 b4239 

187 trmC  -- -- -- -- -- -- -- -- 

188 trpS E -- Tryptophanyl-tRNA synthetase (EC 
6.1.1.2) PMS 334   3511276 b3384 

189 truD  -- -- -- -- -- -- -- -- 
190 tufA E -- Elongation factor Tu PMS 394   3468966 b3339 
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191 tufB E -- Elongation factor Tu PMS 394   4173523 b3980 

192 ugd N -- UDP-glucose 6-dehydrogenase (EC 
1.1.1.22) SMC 388   2097635 b2028 

193 uhpA N -- Transcriptional regulatory protein 
uhpA SMC 196   3848353 b3669 

194 uspG  -- -- -- -- -- -- -- -- 

195 uup N -- ABC transporter ATP-binding 
protein uup MTR 635   1009187 b0949 

196 yacF N -- Hypothetical protein yacF UNC 247 28,292 6.31 112599 b0102 

197 yahK N -- Hypothetical zinc-type alcohol 
dehydrogenase-like protein yahK UNC 349   342108 b0325 

198 yajD N -- Hypothetical protein yajD UNC 115 13,364 6.14 429829 b0410 
199 ybeD N -- Hypothetical protein ybeD UNC 87   661865 b0631 

200 ybfF N -- Putative esterase/lipase ybfF (EC 
3.1.-.-) UNC 254 28,437 5.86 712025 b0686 

201 ybgJ N -- Hypothetical protein ybgJ UNC 218   742816 b0711 
202 ybiB N -- Hypothetical protein ybiB UNC 320   834471 b0800 
203 ybiV N -- Hypothetical protein ybiV UNC 271   859251 b0822 
204 ycbY N rlmL Hypothetical protein ycbY UNC 702 78,854 8.96 1007067 b0948 

205 yccX N -- Putative acylphosphatase (EC 
3.6.1.7) UNC 92   1029287 b0968 

206 ycdW E -- Putative 2-hydroxyacid 
dehydrogenase ycdW UNC 325   1097070 b1033 

207 ycfP E -- Hypothetical protein ycfP UNC 199   1164309 b1108 
208 ycgK N -- Protein ycgK precursor UNC 133   1226695 b1178 

209 yciK E -- Hypothetical oxidoreductase yciK 
(EC 1.-.-.-) UNC 252   1327136 b1271 

210 ydcF N -- Protein ydcF UNC 266   1485259 b1414 
211 ydcY N -- Hypothetical protein ydcY UNC 77   1515672 b1446 
212 ydeA  -- -- -- -- -- -- -- -- 

213 ydfG N -- Probable oxidoreductase ydfG (EC 
1.-.-.-) UNC 248   1625541 b1539 

214 ydhF N -- Hypothetical oxidoreductase ydhF UNC 298   1723656 b1647 
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(EC 1.-.-.-) 
215 ydiI E -- Hypothetical protein ydiI UNC 136   1763656 b1686 
216 yebU N -- Hypothetical protein yebU UNC 481   1918241 b1835 
217 yecP E -- Hypothetical protein yecP UNC 323   1951466 b1871 
218 yegQ N -- Putative protease yegQ (EC 3.4.-.-) UNC 453   2163690 b2081 

219 yeiE N -- 
Hypothetical transcriptional 
regulator ; probable positive 
regulator of lysP transcription 

UNC 293 32,724 6.07 2247638 b2157 

220 yfaY  -- -- -- -- -- -- -- -- 
221 yfbG N -- Hypothetical protein yfbG UNC 660   2366059 b2255 
222 yfbU N -- Protein yfbU UNC 170   2410632 b2294 
223 yfcG N -- Hypothetical GST-like protein yccG UNC 215   2418641 b2302 
224 yffB E -- Protein yffB UNC 118   2589267 b2471 
225 yfgD N -- Protein yfgD UNC 119   2615598 b2495 
226 yfgM N -- Hypothetical protein yfgM UNC 206 22,176 5.07 2637303 b2513 
227 yfhQ  -- -- -- -- -- -- -- -- 
228 yfiA N -- Protein yfiA UNC 113   2735174 b2597 
229 ygdH N -- Hypothetical protein ygdH UNC 454   2924330 b2795 
230 ygiN N -- Protein ygiN UNC 104   3171158 b3029 

231 ygjF  
mug, 
dug 

Uracil DNA-glycosylase, G:U 
mismatch-specific, dsDNA-specific; 
excises uracil from DNA by base 
flipping mechanism; required for 
mutation avoidance in stationary 
phase; up-regulated in stationary 
phase 

-- 168 18,673 9.17 -- -- 

232 yhaJ N -- Hypothetical transcriptional 
regulator yhaJ UNC 298   3251854 b3105 

233 yhbG E -- Probable ABC transporter ATP-
binding protein yhbG UNC 241   3341585 b3201 

234 yhbH N -- Probable sigma(54) modulation 
protein UNC 95   3343814 b3203 

235 yhbW N -- Hypothetical protein yhbW UNC 335   3301089 b3160 
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236 yhfT X -- Hypothetical protein yhfT UNC 434 46,516 6.53 3504974 b3377 

237 yhhX N -- Putative oxidoreductase yhhX (EC 
1.-.-.-) UNC 345   3578436 b3440 

238 yhiQ  -- 

Function unknown; in Salmonella, 
yhiQ is the second gene in prlC 
operon and in the heat shock 
regulon; putative SAM-dependent 
methyltransferase 

-- 250 26,949 6.60 -- -- 

239 yhiR N -- Hypothetical protein yhiR UNC 280   3643015 b3499 
240 yieN N -- Hypothetical protein yieN UNC 506   3928744 b3746 
241 yifE N -- Protein yifE UNC 112   3945709 b3764 
242 yjbR N -- Protein yjbR UNC 118   4268237 b4057 

243 yjjK N -- ABC transporter ATP-binding 
protein yjjK MTR 555   4628091 b4391 

244 yjtD  -- -- -- -- -- -- -- -- 
245 yliG E -- Hypothetical protein yliG UNC 441   877258 b0835 

246 yncB N -- Putative NADP-dependent 
oxidoreductase yncB (EC 1.-.-.-) UNC 376   1516958 b1449 

247 yncE E -- Hypothetical protein yncE precursor UNC 353   1521331 b1452 

248 yneH N -- Probable glutaminase yneH (EC 
3.5.1.2) UNC 308   1611275 b1524 

249 yqcD N -- Hypothetical protein yqcD UNC 282   2923370 b2794 

250 yraL N -- Putative methyltransferase, function 
unknown UNC 286 31,348 5.83 3290976 b3146 

251 yrdA N -- Protein yrdA UNC 256   3426657 b3279 
252 ytfP N -- Hypothetical protein ytfP UNC 113   4445471 b4222 

253 zwf E -- Glucose-6-phosphate 1-
dehydrogenase (EC 1.1.1.49) CHM 491   1934338 b1852 

 

 
 


