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Abstract

Pressure transient analysis (PTA) is one of the most robust and commonly interpreta-
tion tools available for reservoir characterization. Common applications of PTA include
estimation of near-wellbore and reservoir properties, detection of reservoir limits and
identification of depletion mechanisms. In addition, PTA allows the identification of
sealing and leaky faults and the characterization of its properties, such as permeability

and transmissibility hence direction of leakage within the fault.

The purpose of this dissertation is to introduce the analytical solution for pressure-
transient behavior for three novel reservoir models. First, we develop the analytical
model of a multi-fracture horizontal well (MFHW) with pressure-dependent rock and
fluid properties to study the impact of stress-dependent rock properties in composite
unconventional systems. Second, we develop the analytical model for fluid-flow in
a multi-well pad with three MFHWSs in which wells can be interconnected through
fracture hits. Lastly, we develop an analytical model of a compartmentalized reservoir
with a segmenting fault in which fault permeability changes suddenly as a consequence

of fault reactivation.

Governing equations for fluid-flow are based on Darcy’s law. Pressure-dependent
properties for the MFHW model are assumed to vary exponentially with local pressure-
drawdown. Pressure-transient solution for each reservoir model is derived with the aid
of advanced mathematical solution techniques, such as Laplace-Fourier transform and
related numerical inversion, and iterative algorithms. Single-phase slightly compress-
ible fluid-flow is considered for all reservoir models. Neither turbulence nor non-Darcy
flow are considered in this work. Analytical solutions are presented as diagnostic plots

and type curves.

Analytical solutions were successfully validated against numerical simulation data.
The resulting diagnostic plots and type-curves for well-test interpretation are presented
and discussed for each case study. Various sensitivity analyses were carried out to ex-

amine the impact of several parameters of interest on pressure-transient behavior.

In particular, we find that the effects of pressure-dependent fracture conductivity and
stimulated reservoir properties, in conjunction, largely influence MFHW performance

in stress-sensitivity formations. Likewise, we are able to detect and assess fracture

Xvi



hits by means of types-curves matching. Finally, we observe that fault reactivation can
be detected on diagnostic plots as a sudden change in pressure-derivative response
followed by a trend to attain late-time equilibrium.

Xvii



1. Introduction

1.1. Pressure Transient Analysis (PTA)

Pressure-transient analysis (PTA), also known as well-test interpretation (Horner, 1951)
or pressure-transient testing, is a dynamic well and reservoir characterization technique
that focuses on interpreting the transient pressure response from a well flowing at con-
stant rate or that had been flowing a constant rate before being shut-in (e.g. Spivey and
Lee, 2013; Lee et al., 2003). The main purpose of a PTA study is to estimate reservoir
tfeatures that, depending on the type and objective of the well test, may range from
simple reservoir and well properties to complex reservoir features. There are two pri-
mary areas of application for PTA: productivity tests, that covers well deliverability,
completion efficiency, and descriptive reservoir tests, comprising evaluation of reser-
voir properties, assessment of reservoir extension, and detection and identification of
reservoir boundaries. The use of diagnostic plots and type-curve analysis are amongst

the most valuable applications of PTA in reservoir characterization.

Amongst the various types of PTA tests, pressure drawdown (PDD) and pressure build-
up (PBU) tests are the most common well tests applied in the field. In a PDD-type test,
the objective (or active) well is constrained to flow at constant volumetric flow rate
while wellbore pressure p,(t) is being recorded. Bottomhole pressure BHP or py;, can
be used interchangeably with p,; if wellbore storage effects (i.e. fluid compressibility
inside the wellbore) are negligible. In a PBU-type test, the well is set to flow at constant
volumetric flow rate g [STB/D] for a certain period and pressure would be recorded
after the well is shut-in. In this case, pressure is referred to as shut-in pressure pys.
Note that in both cases, g is constant, even g = 0 for the case of a PBU test is still
a constant rate. Figure 1.1 depicts the expected wellbore pressure response from each
PTA test assuming g is the same for both cases before shut-in time. The work presented
in this dissertation focuses on the application of PDD tests to different reservoir models

which will be discussed in the subsequent chapters.



O Drawdown

O Build-up

Figure 1.1: Two of the most common types of well tests in PTA: pressure-drawdown
and pressure build-up tests.

Notice that Figure 1.1 do not provide much information about either the well or reser-
voir. In contrast, PTA diagnostic plots allow to infer and extract valuable informa-
tion about wellbore, near-wellbore region and reservoir, depending on the duration
of the well test. Basically, a PTA diagnostic plot displays pressure-transient data in a
log-log chart. Typically, pressure-transient data are presented as pressure drawdown
Apws = Pi — Pwf(t) and log-pressure-drawdown derivative dAp,¢(t)/dInt (Bourdet
et al., 1989) versus time ¢ [days].

PTA diagnostic plots are a powerful tool that enables the use of well-test data to detect
damage or effectiveness of a stimulation job in the near-wellbore region (skin), infer
the presence of sealing and leaky boundaries in the reservoir, assess the degree of
interconnectivity between wells, detect the presence of natural fractures networks, infer
the existence of a composite system, among others (Lee et al., 2003).

In this work, we will generate diagnostic plots from analytical and numerical data
using the rate-normalized pressure (RNP [psi/STB/D]) and rate-normalized pressure-



derivative (RNP’ [psi/STB/D]) (Song and Ehlig-Economides, 2011; Palacio and Blasingame,
1993). The rate-normalized parameters are defined as follows:

Apy
RNP =% (1.1)
,_dA(Dpwr/q)
RNP =t 1.2)

Note that the definition of the rate-normalized parameters applies to injector wells
alike. Although both Ap,r and g would be negative in this case, the resulting RNP =
Apy/q will be positive. Figure 1.2 shows the PTA diagnostic plot, based on RNP and
RNP’, for infinite-acting radial flow with wellbore storage and skin damage (Bourdet
et al., 1989).

Figure 1.2: Diagnostic plot of rate-normalized pressure and pressure-derivative.

Diagnostic plots are often generated for analytical reservoir models alike. Basically,
a diagnostic plot can be considered as the graphical representation of the analytical
solution to the diffusivity equation (Dake, 1983) for a pre-established set of conditions
in a reservoir model, including reservoir geometry (radial, rectangular, irregular) and
extension (finite, semi-infinite, infinite), fluid type (slightly compressible, compressible)
and types of boundaries (impervious, semi-pervious).

One of the advantages of using analytical models to generate diagnostic plots is that
analytical solutions enables the analyst to examine and study the expected pressure
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response to a certain reservoir/wellbore parameters without the need to run the actual
well test. When one or more reservoir and/or wellbore parameters are evaluated within
a given range and the resulting curves are plotted together as a set of curves describing
transient pressure behavior for a particular reservoir model, the plot is called PTA type-
curves plot, or simply, type curves (Gringarten, 2008; Bourdet et al., 1983; Gringarten
et al., 1979).

Unlike diagnostic plots, type curves plots are based on dimensionless wellbore pres-
sure pyp (often times referred to as pp) and dimensionless log-pressure derivative
dpyp/dIntp. Dimensionless time tp is used when pressure data is gathered from
downhole gauges. Nonetheless, if pressure data is obtained from surface measure-
ments, wellbore storage (fluid expansion inside the wellbore) and skin (formation
damage/enhancement) effects must be included into the analysis, such that p,,p and
dpyp/dIntp are plotted against tp/Cp, where Cp is the wellbore storage coefficient
(Gringarten et al., 1979). In general, the definition of p,,p and tp depends on the reser-
voir model and setting under evaluation (Lee et al., 2003). Figure 1.3 illustrates a typical

set of type curves for an infinite radial reservoir with wellbore storage and skin.
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Figure 1.3: Type curves for a infinite radial reservoir with wellbore storage and skin
(from Bourdet et al., 1989).

Type-curves matching is a well-known and extensively technique used for reservoir
characterization purposes. The fundamental approach of type-curves matching con-
sists of overlapping diagnostic plots from well-tests onto the type-curves graph cor-
responding to the reservoir model under study (Spivey and Lee, 2013; Bourdet et al.,
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1989). Type-curves parameters of the reservoir model are typically dimensionless. For
example, pyp, tp and Cp represent dimensionless pressure-drawdown, time and well-
bore storage, respectively. Once measure transient data is fully matched against a
type-curve, a matching point is chosen and reservoir properties of interest are esti-
mated by using the analytical definitions of p,p, tp and Cp. In this dissertation, we
aim to develop analytical solutions from which type-curves plots can be generated and

used for reservoir characterization.

1.2. Proposed Applications for Pressure-Transient Analysis

The goal of the present work is to develop new analytical solutions for reservoir models,
of high relevance to the oil and gas industry, that can be interpreted and extended to
tield data by means of classic PTA techniques, specifically diagnostic plots and type-
curves matching. In donig so, we implement advanced mathematical techniques, like
Laplace-Fourier transform coupled with iterative algorithms. Furthermore, numerical
reservoir simulations are used for verification and validation purposes. In general, this

dissertation focuses on the following areas of reservoir engineering:

* Forecast of MFHW performance and estimation of ultimate recovery from stress-
sensitive, composite systems in which reservoir and fracture properties may vary
substantially with changes in pore pressure.

¢ Detection of well interference effects due to fracture hits, or frac hits, and assess-
ment of the degree of interference in a multi-well pad.

* Detection of fault reactivation and characterization of enhanced fault properties

in homogeneous and heterogeneous compartmentalized reservoirs.

Chapter 2 discusses the incorporation of pressure-dependent properties into the trilin-
ear flow model (TLF). This study assumes that the reservoir fluid is undersaturated oil
hence the analytical model considers single-phase, slightly compressible fluid-flow. We
discuss the origin of stress-dependency in unconventional composite systems and re-
view the exponential pressure-dependent rock and fluid properties commonly used in
the reservoir engineering literature. The governing equations as well as the boundary
conditions are derived for the nonlinear problem. We further introduce an iterative al-
gorithm to solve the nonlinear part of the model. The analytical constant-rate solution
is presented in the form of diagnostic plots. Numerical simulations are carried out for

validation purposes.



Chapter 3 focuses on the development of an analytical PTA model of a multi-well pad
in which frac hits are present thus allowing inter-well communication. The central hy-
pothesis of this study is that pressure across interfering wells would seek to attain a
late-time equilibrium condition. This hypothesis is drawn from the first law of ther-
modynamics which states that, no matter the initial conditions of a system, energy
will always attain a final equilibrium condition. Therefore, instead of pursuing PTA
analysis of individual wells, we study the entire pad as a whole and perform typical
pressure-transient techniques to transient data, which needs to be arranged in a special
manner. Derivation of governing equations and frac-hits boundary conditions are de-
tailed in this chapter. Synthetic pressure data is generated using numerical simulations

for validation purposes.

Chapter 4 revisits the initial pressure-transient model for across-fault leakage upon
fault reactivation proposed for this dissertation and adds two important features: si-
multaneous across-along-fault flow and composite reservoirs. As any analytical PTA
model, the fault permeability enhancement model discussed in this chapter is intended
for detection, not prediction, of fault reactivation and characterization of fault per-
meability enhancement. Governing equations are introduced along with the necessary
boundary conditions. Laplace-Fourier transform is presented along with analytical and
numerical inversion procedures. Diagnostic plots and type-curves are presented and
discussed in detail for a variety of fault permeability enhancement scenarios. Numer-
ical simulations are carried out to validate the proposed analytical model, including a
case where anisotropic fault permeability is pressure-dependent and self-healing.



2. Forecast of Multi-fractured Horizontal Well Performance in
Stress-sensitive Formations: Constant Rate Approach.

2.1. Background

Economic exploitation of hydrocarbons from tight and ultra-low permeability plays
across the United States, such as Spraberry, Wolfcamp Shale, Avalon Shale and Bone
Springs in the Permian Basin (West Texas and southeastern New Mexico), Niobrara
Shale (northern Colorado and eastern Wyoming), and Woodford Shale Plays in the
Anadarko Basin (Oklahoma), is nowadays a reality due to the low-cost application of
hydraulic fracturing (HF) in horizontal wells. The main objective of a HF job in uncon-
ventional plays is to increase the contacted surface area of the reservoir/source rock
accessed by a single horizontal well and, as such, HF is executed at various stages of
the horizontal section of the well. This type of well is commonly known as multistage-
fractured horizontal well or MFHW.

Several aspects should be taken into consideration to make a certain source rock or tight
formation (matrix) prospective. These include total organic content (TOC), thermal
maturity, reservoir pressure, brittleness, among others. Yet, the presence of natural
fractures (NF) in the targeted formation may be an influential factor. For 5 ud (=
0.005 md) matrix permeability, NF can be inconvenient due to fluid loss during the
HF job; however, for 50 nd (= 5 x 10 md) matrix permeability, NF can be critical for
hydrocarbons production (Smith and Montgomery, 2015).

The geometry of a hydraulic fracture depends on the mechanical properties of the
matrix and can be either planar or complex (Cipolla and Wallace, 2014) as shown in
Figure 2.1. Moreover, fracture branching induced during the HF job generates a frac-
ture network that may interconnect micro-fractures and NF networks present in the
matrix with the well, resulting in a complex fracture network that may boost well pro-
ductivity (Mayerhofer et al., 2010); however, such dense fracture networks can also lead
to interference between complex fractures thus hindering well productivity (Smith and
Montgomery, 2015; Cipolla and Wallace, 2014).
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Figure 2.1: Types of hydraulic fractures: (a) planar fracture and (b) complex fracture.

In any case, fracture branching, NF and micro-fracture networks create a stimulated
region around the hydraulic fracture, which is often referred to as the stimulated
reservoir (or rock) volume (SRV) (Mayerhofer et al., 2010). The size of the SRV is
usually estimated via microseismic mapping using observation wells located near the
MFHW (Cipolla and Wallace, 2014; Warpinski, 2009; Warpinski et al., 2005; Fisher et al.,
2004). Because the reservoir region around a fractured stage is composed of distinct
zones—hydraulic fracture (“propped” or filled with proppant), induced-fractures net-
work, micro-fractures and NF, and untouched matrix—rock properties are considered
heterogeneous in this region. Consequently, MFHW are composite systems. Figure 2.2
depicts an illustration of the associated regions in a hydraulically fractured stage in an
MFHW.

Furthermore, NF/induced-fractures networks in the SRV are generally unpropped
(Wilson, 2015) hence their capacity to transport fluid from the non-stimulated (i.e. un-
touched) matrix into the hydraulic fracture cannot be paired to that of the hydraulic
fracture itself. In addition, the flow capacity of the matrix is very low compared to that
of either the SRV of hydraulic fracture. This is an important observation that needs
to be accounted for in order to accurately forecast MFHW performance and estimated
ultimate recovery (EUR), which are the two most important indicators of economic

teasibility for developing a certain unconventional play.



Micro-fractures

Hydraulic fracture D Untouched matrix

Ej Stimulated region

Well ([

ropped region

D Unpropped region

Fracture branching {.,

Figure 2.2: Types of fractures present in a hydraulically fractured stage: hydraulic
fracture, fracture branching, natural fracture networks and micro-fractures.

In addition to the complexity posed by the uneven flow capacity in a fractured stage,
conductivity of both hydraulic fracture and fracture networks in the SRV will pro-
gressively diminish as reservoir pressure declines, leading to an increase in the effec-
tive minimum horizontal stress, also known as closure stress (Smith and Montgomery,
2015). Moreover, loss in fracture conductivity in the hydraulic fracture and SRV occurs
at different rates because the hydraulic fracture is propped while fracture networks in
the SRV are likely not. These observations suggest that MFHW performance can be
influenced by changes in stresses due to fluid withdrawal therefore they must also be
considered when projecting well performance and EUR in a given shale play or tight

reservoir.

Two of the most widely used analytical MFHW models are the trilinear flow (TLF)
model (Brown et al., 2011) and the five-region flow (FRF) model (Stalgorova and Mattar,
2013). These models are based on the following assumptions:

e constant-rate withdrawal;

e 3-D fluid-flow modeled as a combination of several linear flows (matrix to SRV,



SRV to fracture, fracture to wellbore);

¢ hydraulic fractures are planar and have equal dimensions;

* complex fracture network in the SRV represented by a region of permeability
orders-of-magnitude higher than matrix permeability;

¢ one hydraulic fracture per stage;

* hydraulic fractures have equal properties;

* fractured stages are symmetric; and,

* heterogeneous and constant rock properties.

Although similar, each analytical MFHW model is suitable for a specific field applica-
tion. The TLF model, for instance, is intended for MFHWs featuring narrow spacing
between fractured stages, which inherently considers that the SRV fully extends across
all fractured stages, as shown in Figure 2.3. Yet, TLF can be used if this condition does
not hold as long as fluid-flow in the SRV is linear transient. The FRF model, conversely,
accounts for the possibility of having unstimulated rock between fractured stages, as
shown in Figure 2.4, therefore is more suitable for modeling MFHWSs with stimulated

region with limited extent.
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Figure 2.3: Conceptualization of the trilinear flow model. Narrow spacing between
fractured stages and MFHW in a multi-well pad.
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Figure 2.4: Conceptualization of the five-region model. Fair spacing between fractured
stages and MFHW in a multi-well pad.

As mentioned earlier, both TLF and FRF models simplify fluid-flow from the matrix
into the wellbore as the combination of several linear flow regimes. In the TLF model,
for instane, fluid flows from the matrix into the SRV linearly along the y-axis. Then,
fluid flows from the SRV into the fracture linearly along the x-axis. Influx from the
matrix into the SRV, across the interface located at y = xy, is modeled using a flux-
source function. Finally, flow from the fracture towards the well occurs along the
y-axis. Similar to the SRV region, influx from the SRV into the fracture, across the in-
terface located at x = w/2, is modeled using another flux-source function Figure 2.5a
illustrates a schematic of the different linear flow regimes of the TLF model. The TLF
includes an additional pressure loss occurring near the wellbore due to flow conver-
gence, also known as choking skin effect (Brown et al., 2011; Stalgorova and Mattar,
2013). Similarly, the FRF model features the same linear flow regimes than the TLF
plus an additional fluid influx from the untouched matrix into the SRV, as shown in
Figure 2.5b.

The combined-linear-flow simplification makes both analytical MFHW model math-
ematically tractable. In fact, their corresponding analytical solution is found in a

straightforward manner in Laplace domain. However, these expressions are too dif-
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ficult to invert back into time domain analytically. Thus, numerical Laplace inversion
algorithms (e.g. Zakian, 1969; Stehfest, 1970) are used to invert these solutions, which
are typically derived for constant-rate production conditions. Yet, variable-rate versions
of the TLF and FRF models are typically found in production data analysis software
and are routinely used to estimate properties of interest, such as SRV permeability and

fracture conductivity, as well as to forecast well productivity.

(b) Five-region flow model

Figure 2.5: Fluid-flow in a MFHW modeled as a combination of various linear flow
regimes: (a) trilinear MFHW model; (b) five-region MFHW model.
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2.2. Statement of the Problem

Among the assumptions made in deriving the fluid-flow model for the TLF and FREF,
considering rock properties to be invariant with pressure may be unrealistic. Both
primary and secondary fractures created during a stimulation job are kept open by
fluid pressure p counteracting in-situ confining or closure stress ocy. The difference
between pore pressure and closure stress is called the pressure, denoted by p;.; (Smith
and Montgomery, 2015) (Figure 2.6).

Net pressure decreases as pore pressure declines with oil production. This indicates
that, over time, open fractures become more vulnerable to the action of the host rock
to close them up. As a result, fracture conductivity, defined as Cy = ksw, is expected
to decrease as pressure declines. Conductivity of propped fractures, on the one hand,
will likely decreases at a slower rate than unpropped fractures in the SRV, the reason
being that proppant resists the action of closure stress. Consequently, not only fracture
conductivity is expected to be sensitive to changes in pressure, but also propped and
unpropped fractures lose conductivity at distinct rates. Since it is difficult to infer
an average fracture width for the SRV, conductivity of unpropped fractures is often
lumped into the definition of pressure-dependent SRV permeability.

Closure
stress

Ocp,

Figure 2.6: Schematic of forces acting on the hydraulic fracture. Fluid pressure resists
the effect of closure stress trying to close up the fracture. The same scenario occurs
with unpropped fractures in the SRV.
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Productivity loss in stress-sensitive tight-oil reservoirs is therefore attributed to a grad-
ual loss of fracture conductivity in well pads. Laboratory experiments on samples from
Barnett and Haynesville shales (Cho et al., 2013; Wilson, 2015) and Huron and Marcel-
lus shales (Chen et al., 2015; El-sgher et al., 2018) demonstrate the adverse impact
of pressure depletion on fracture conductivity, particularly for unpropped fractures
(Suarez-Rivera et al., 2013) which are a major contributor to SRV permeability (Cipolla
et al., 2010; Guo et al., 2013; Sharma and Manchanda, 2015). A key conclusion from
these studies is that conductivity of unpropped fractures reduces at a faster rate with

pressure decline than propped fractures, as hypothesized earlier.

Nur and Yilmaz (1985) proposed one of the earliest exponential formulations for per-
meability as a function of pore pressure. Authors observed that their experimental
measurements for changes in permeability with pore pressure in fracture rocks were
accurately described by the following correlation:

ki = kjie_WAPf (2.1)

where the subscript j refers to a specific sample. k;j; is the initial fracture permeability of
the sample; 7; is the permeability modulus, and Ap; = p; — p;(t) is the change in initial
pressure, equivalent to pressure-drawdown. Nur and Yilmaz (1985) stated that 7; varies
depending on rock type and fracture properties. Almost two decades later, Raghavan
and Chin (2004) derived Equation 2.1 after solving the coupled geomechanics-fluid-
flow governing equations based on certain simplifications of the fluid-flow model.

The exponential pressure-dependent permeability model has been widely applied in
analytical modeling of unconventional wells. For instance, Cho et al. (2013) incorpo-
rated Equation 2.1 into the TLF model, via pseudo-pressure/pseudo-time, to account
for overall loss of permeability with pressure decline. Likewise, Tabatabaie et al. (2016)
followed the same approach to develop an analytical model to study transient linear
flow in stress-sensitive formations. Both models, however, rely on a single value of v
to describe loss of permeability in the entire system. As noted earlier, this assump-
tion may be inaccurate because propped fracture conductivity and SRV permeability

decrease with pressure-drawdown at distinct rates.

Figure 2.7 illustrates the expected fractional change of permeability of the matrix (re-
gion 2), SRV (region 1) and fracture (region f) for 72 = 5 x 107° psi_1 (matrix),
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1 =5x107* psi~! (SRV) and Yr=1x 1073 psi~! (fracture). Here, it can be seen that
more than 96% of initial matrix permeability is retained in despite the large pressure-
drawdown. Thus, reduction in matrix permeability is quite negligible in this case.
Contrariwise, reduction of both SRV and fracture permeability is significant. Real-
ize, however, that these properties tend to become zero under large confining stress,
which may be unrealistic. In Section 2.12, we utilize an improved exponential pressure-
dependent model that sets a lower bound, or critical value, to variation in permeability

with pressure decline.
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Figure 2.7: Fractional changes in SRV and fracture permeability with pore pressure.

Similar to changes in permeability with pressure, experimental results suggest that
fracture conductivity closely follows an exponential relationship of the same kind
(Zhang et al., 2014). As a result, the following exponential relationship for pressure-

dependent fracture conductivity was proposed (Yao et al., 2016):

Cy = Cpie 2P (2.2)

Cyi = kygjw; is the initial fracture conductivity; ky; and w; are the initial fracture perme-

ability and width, respectively; d is the stress-sensitive characteristic number.
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In this work, we introduce an analytical MFHW model for constant-rate withdrawal
that accounts for localized variations in rock properties with pressure-drawdown. Our
model enables the individual assessment of the impact of pressure-dependent prop-
erties in the matrix and stimulated reservoir volume (SRV) and pressure-dependent
fracture conductivity on MFHW performance, well life and expected ultimate recovery
(EUR). The proposed MFHW model is based on the TLF model into which pressure-
dependent properties are incorporated into each region as exponential functions of
pressure-drawdown. The nonlinear solution to the governing equations is achieved by
a combination of a linearizatio techniques, Laplace transform and an iterative nonlinear

solution algorithm.

2.3. Current Analytical Methods

Several analytical MFHW models have been proposed being the TLF and FRF mod-
els the most popular. While both models consider distinct rock properties for the
fracture, SRV and matrix these were originally assumed independent of changes in
pore pressure. To resolve this problem, Cho et al. (2013) utilized pseudo-functions
into the TLF model to study the impact of pressure-dependent permeability on pro-
ductivity of a shale gas well. Similarly, Stalgorova and Mattar (2016) used pseudo-
functions with the FRF model to account for permeability variations with pressure
in tight oil wells. Although the dependency of permeability on pressure is incorpo-
rated into pseudo-pressure in a straightforward manner, such approach inherently as-
sumes that permeability varies at equal rate across the composite system. Henceforth,
the pseudo-pressure method may not be a reliable tool to evaluate performance of
pressure-sensitive MFHWsS.

Aside from these models, Luo et al. (2017) introduced a semi-analytical reservoir/fracture
model for a vertical well considering pressure-dependent fracture conductivity and
constant SRV permeability; matrix is not included in this model. In addition, fluid
properties were assumed invari-ant with pressure depletion. Akin to the work of
Cho et al. (2013) (TLF model with pseudo-pressure/pseudo-time), Zhu et al. (2018)
introduced an exponential pressure-dependent permeability into the FRF model. Yet,
none of these analytical MFHW models are able to address the possibility of assigning
pressure-dependent properties individually to each region in the MFHW.
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2.4. Proposed Methodology

In contrast with existing analytical MFHW models with pressure-dependent properties,
we develop an analytical MFHW model for tight-oil reservoirs that allows to assign
separate pressure-dependent rock properties to the fracture, SRV and matrix while
ac-counting for changes in fluid properties with pressure. Rock and fluid properties
are assumed to vary exponentially with pore pressure with respect to the reference

pressure chosen to be initial reservoir pressure.

The proposed fluid-flow model is based on the TLF model for single-phase, slightly-
compressible fluid flowing at constant rate. However, the inclusion of exponential
pressure-dependent rock and fluid properties results in highly nonlinear partial dif-
ferential equations. We linearize the resulting governing equations by assuming that
certain nonlinear parameters can be approximated based on local average pressure-
drawdown of each region. Since average drawdowns are initially unknown, we further

implement an iterative algorithm to estimate the nonlinear parameters.

The linearized governing equations are transformed into Laplace domain and the an-
alytical solution is inverted into time domain numerically. We use the analytical so-
lution to the proposed MFHW model to investigate the effect of pressure dependency
of fracture conductivity and SRV permeability on well performance until bubble-point

pressure is reached.

Two main cases are studied in this section: (1) effect of pressure-dependent SRV per-
meability on well performance and (2) effect of combined pressure-dependent SRV
perme-ability and fracture conductivity on well performance. Rock and fluid prop-
erties are taken from the liquids-rich section of the lower Eagle Ford. The proposed
method is validated against synthetic data generated from a numerical MFHW model.

Typical rate-normalized diagnostic plots are constructed and examined herein.

2.5. Mathematical Modeling

2.5.1 Definition of Pressure-Dependent Properties

Similar to permeability and fracture conductivity, oil properties, such as density p,,
formation volume factor B, and viscosity p, (Chen, 2007), as well rock properties, such
as porosity ¢, also vary exponentially with pressure. These correlations are defined as:
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Po = poie” 2.3)

Ho = .uoie_C”APj (2.4)
B, = B,;er2Pi (2.5)
9j = gjie” A (2.6)

(2.7)

The coefficients ¢, and ¢, in Equation 2.3 and 2.4, respectively, are the isothermal fluid
compressibility and viscosity modulus. Note that, alike kj, ¢; carries the subscript j to
imply that porosity may vary at different rates across the composite system. In addi-
tion, the subscript i indicates properties measured at initial pressure. In this section,
we will use j = 2,1, f to denote the matrix, SRV and fracture, respectively.

Furthermore, dividing Equation 2.2 by kyxy, where k; is the SRV permeability (given
by Equation 2.1 for j = 1) and xf the fracture half-length. As a result, we obtain the
definition of pressure-dependent dimensionless fracture conductivity Fcp:

. kfiwi e’hAP1—dePf (28)

L =
D= X;

Unlike the definition of pressure-dependent F-p proposed by Berumen and Tiab (1996),
Equation 2.8 incorporates changes in SRV permeability with pressure decline.

2.5.2 Dimensionless Parameters Group

The following dimensionless parameters are introduced to normalize the linearized
diffusivity equations for each region of the MFHW:

 kyh(1 — e AP

PIP = 14120 1toiBoic et
X

Xp = = 2.10)
Xf
_Y

w=1 (2.11)
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kh’t

tp =2.637 x 1074+ —— (2.12)
b ,uoz'((PiCt)lszr
1 = 2.637 x 0t M (2.13)
= poi (9ict); |
.. ki (b,
no = i = i (@i (2.14)

mi ki (gicr);

The coefficient ¢, in Equation 2.9 is defined as the difference between 0il compressibility
and viscosity modulus, that is, c; = ¢, — ¢;,. As such, ¢; can be regarded as a corrected
fluid compressibility. Notice that 2.9 reduces to the commonly used linear definition of

dimensionless pressure shown below when c} is relatively small:

L1 - ety ~ 11— (1 ciap)] = Ap, (2.15)
CO CO

Molina and Zeidouni (2017a) proved that c; can be considered sufficiently small when
cy < 10 psi_l. In such cases, the linear approximation for Apj, shown above, holds.

Lastly, ¢’ in Equation 2.9 is the equivalent per-fracture rate of the MFHW. That is, total
tflow rate of the MFHW divided by the number of hydraulic fractures.

2.5.3 Fluid-flow Model for Matrix (Region 2)
2.5.3.1 Governing Equation

To derive the governing equation for fluid-flow in the matrix when rock and fluid
properties are sensitive to pressure, we take the differential control volume AV =

hL.Ay, shown in Figure 2.8, and apply the law of mass conservation, which gives:

d
Mass flux in the y-direction is given by 71, = p,v,A, where p, is the oil density, v, the

superficial fluid velocity and A, = hL, the cross-sectional area perpendicular to the
direction of flow. Replacing this condition into the material balance equation, leads to:

19



0
(PovyhLe)y — (PovyhLe)y—ny = 3 (Pop2hLeAy) (217)

Dividing both sides of the equation above by hL.Ay and letting Ay to be infinitesimally
small, results in:

Figure 2.8: Mass balance across a differential control volume in the matrix.

0 J
@(va) =5 (0o2) (2.18)

Realize that Ap, decreases with increasing y then the surface velocity v, is given, based
on Darcy’s law, as v, = —(ka/o)(0Ap2/dy). Thus, the governing equation for fluid-
flow in the matrix is defined in terms of Ap; as:

0 poApy\ _ 9
oy (%57 ) = dom @)

Replacing Equation 2.3, 2.4 and 2.4 into Equation 2.19, yields:

—cyAp
I (k e’ 23AP2> (471030233;92 (2.20)

@ 2 H0iBoi 3y B
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where cp = ¢, + ¢52 is the total compressibility factor of the matrix. Next, use Equa-
tion 2.1 to define k, as a pressure-dependent property on the left-hand side of the
equation above and multiply the right-hand side by %, yielding

i e—'yzApzﬂaAPZ :(Voi‘l’icf) e—(Cﬁca)MzﬂaAﬁ (2.21)
dy HoiBoi 9y ki /» MoiBoi Ot

Equation 2.21 can be further recast in the following convenient form:

—ckA —crA
9 e—VzApzi 1—e %™ — ie_(cy"i'ch)ApZi 1—e %™ (2.22)
a]/ 3y ,uoiBoiCj; M2i ot ]l/loiBong<

The diffusivity coefficient of region 2 evaluated at initial reservoir conditions 75; is
defined (in oilfield units) as:

ko;

. =2637 x 1074 —2
T2 Voi(4)ict)2

(2.23)

Recognize that the nonlinear terms e~722P2 and e~ (¢ t¢2)4P2 do not allow any further
linearization of the governing equation above. These are strong nonlinearities that
depend on both direction of flow (y) and time (t) given that Ap, = f(y, f).

However, if we consider approximating these functions by evaluating them at current
average pressure-drawdown Ap,(t), the directional dependency would be removed.
Consequently,

e*'YZAPZ ~ e*’)/zAﬁz (2.24:)

o~ (Cutcn)Apy o (cute2)Apa (2.25)

In this manner, e~72%72 can be taken out of the partial derivative on the left-hand side
of Equation 2.22 thus allowing for a partial linearization of the governing equation. As
a result:
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— e~ CAP2 — e
iile*zlile* (2.26)
a}/ 3}/ ,uoiBoz'Co )\2772iat HoiBoicy
Aj is a nonlinear scaling parameter, defined as

Ay = e~ (12me—cu) AR (2.27)

Even though Ap; is unknown at current time, we will consider A, to be a constant, so
that Equation 2.26 can be solved analytically. A, will be estimated iteratively, once the
analytical solution to the model has been found. TThe iterative algorithm is explained
in detail in Section 2.8.

Notice that setting A, = 1 and assuming ¢ < 10~° psi~! will result in the classic linear

diffusivity equation for the matrix in the TLF and FRF models.

Finally, Equation 2.26 can be normalized using Equation 2.9—2.14. As a result, we get:

Ppop _ 1 9pap
ay% A2772D dtp

(2.28)

Following the assumption that A, is constant, we can apply the Laplace transform upon
p2p(yp,tp) over tp on Equation 2.28, assuming that the initial pressure-drawdown in
the matrix is zero (i.e. Ap2(yp,tp = 0) = 0) thus p1p(yp,tp = 0) = 0. This results in

dz ﬁZD B S
dy3,  Aotap

p2p =0 (2.29)

where pop(yp,s) = L {p2p(yp,tp)} and s is the Laplace domain parameter.

2.5.3.2 Analytical Solution

Equation 2.29 is an ordinary differential equation in Laplace domain whose analytical
solution is straightforward to obtain using common solution methods, such as variation

of parameters. The canonical solution to Equation 2.29 is given as
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3 . 3
pap = Apcosh [(yD — yeD)1 / AZUZD] + B, sinh [(yD — VYeD) AzﬂzD} (2.30)

Figure 2.5a shows that there is a no-flux boundary at the external reservoir boundary

(yp = Yep)- This condition is mathematically expressed, in Laplace domain, as:

(Z’@) =0 (2.31)
yD YD=VYeD

Replacing this expression into Equation 2.30 yields B, = 0. Henceforth,

S
ﬁZD = A2 cosh [(]/D — yeD) )\2172D:| (232)

The other boundary conditions that apply to Equation 2.32 are the following:

(i) Pressure continuity. Pressure-drawdown in the matrix (Ap;) and SRV (Ap;) must
be continuous across the SRV/matrix interface located at y = x; equivalent to

yp = 1 (see Figure 2.5a). Thus,

(AP2)]/=xf - (Apl)y:xf (2.33)
This boundary condition can be further normalized using Equation 2.9 and 2.11

which results in (p1p)yp=1 = (p2p)yp=1. Transforming this expression into Laplace

domain, leads to:

(P1D)yp=1 = (P2D)yp=1 (2.34)
The integration constant A; is found after substituting Equation 2.34 into 2.32.

Consequently, we find the specific solution, in Laplace domain, to dimensionless
pressure-drawdown distribution in region 2:
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cosh {(yD - %D)\/%}
cosh {(1 - yeD)\/%]

(ii) Flux continuity. Mass must be conserved across the SRV /matrix interface (yp =

pap = (P1D)yp=1 (2.35)

1). Based on Darcy’s law,

(MaAiﬁ) _ (PO_’QM) (2.36)
Mo OYD /yp—1 Mo OYD /yp—1

Inserting the pressure-dependent functions for p, (Equation 2.3), y, (Equation 2.4)
and k (Equation 2.1) and further normalizing Ap; and Ap; based on Equation 2.9,
yields

(e—leplaP_lD) _ kai (e—vaPzapﬂ) (2.37)
YD /=1 ki YD / yp=1

Unlike mass flux and pressure-drawdown, permeability is discontinuous across
the boundary, because of the rock properties of the SRV and matrix. Therefore,
the flux-continuity condition poses a new difficulty in the analytical modeling
stage as the boundary condition itself is highly nonlinear. As a matter of fact,
the former is the reason why the pseudo-pressure approach may not suitable for
composite pressure-dependent systems.

To overcome this issue, let us assume that e~71471 and e~ 72272 are approximately
equal to the average permeability of their corresponding regions. Based on Equa-
tion 2.1, k1(Ap1)yp—1 = ki(Af1) = kyje” 871 and (kp)y,—1 & koie 72872, As a
result:

(aplD) _ ki 1 (3P2D> (238)
YD ) yp=1  kiida \9yp /4

where Jy; is a nonlinear scaling parameter, defined by
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5y = eT2AP2~ MM (2.39)

71 and 7, are the permeability modulus of regions 1 and 2, respectively. Similar

to Ay, d71 is assumed as a constant initially equal to 1 and will be later estimated
iteratively, as explained in Section 2.8.

Taking dp1 as constant and transforming Equation 2.38 into Laplace domain, gives:

(dﬁlD) _ ko <dﬁ2D> (2.40)
dyp )y =1 d2tkii \dyp ),

Finally, replacing Equation 2.35 into 2.40 results in:

dﬁlD) _ ko S { S :|
2Pip — _ Ny tanh | (1 = yop), | —— 241
(d]/D yp=1 (P1o)yo Yooikii \ Aamap anh | (1= yep) A212p @241)

Equation 2.41 is implemented as a flux-source term in the derivation of the gov-

erning equation for fluid-flow in the SRV (region 1). This approach is comparable
to that used for modeling unsteady simultaneous heat conduction and convection
in fins (Bergman et al., 2011).

2.5.4 Fluid-flow Model for SRV (Region 1)

2.54.1 Governing Equation

We perform a mass balance across the differential control volume AV; = hx¢Ax in the

SRV as illustrated by Figure 2.9. Aside to the mass flux along the x-axis, namely ri1;, at

x and i1yt at x — Ax, there is an additional mass flux, denoted by 1y, coming from the

matrix into the SRV across the SRV /matrix boundary located at y = x f-

The purpose of coupling fluid-flow from the matrix into the SRV through an influx

term is to model flow in the SRV as liner flow along the x-axis. Application of a mass

balance over AV; yields the following relation:

. . . d
Min + My — Mout = 9 (pO¢1hfox) (242)
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mass balance over AV; becomes

d
(Povxhxf)x — (PoVXMX ) x—px + (povyhAx)y:xf = (p0<p1hfox) (2.43)

Figure 2.9: Mass balance across a differential control volume inside the SRV.

Dividing the former equation by AV; and allowing Ax to approach zero, yields

Jd 1 0
a(ﬂovx) + E(Povy)y:x}c =5 (poth1) (2.44)

vy and vy are defined as vy = —(k1/ o) (0Ap1/9x) and v, = —(k1/ o) (0Ap1/9y). The
negative sign is because Ap; and Ap, increases with x > 0 and y > 0, respectively.
Replacing these expression into Equation 2.44 gives

i <p0k1 aAp1> _ 1 (Pokl aAp1

C ox Mo OX Xf Ho Oy

0
- )y:xf = 5, (bop) (245)

Substituting Equation 2.3, 2.4 and 2.1 into Equation 2.45, yields:
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1
I

— *A
i e~ Mip i ﬂ
dx dx UoiBoich Xf

oy O [Tt _
a]/ ,l’loiBoicz)< B
Y=x5

—ciA
ie—(cyﬂn)Am 9 # (2.46)
Mi ot HoiBoiCh

where 71; is the diffusivity coefficient of region 1, evaluated at initial reservoir condi-

tions, and defined (in oilfield units) as:

k1

F=2637x 107+ —
i ,uoi((PiCt)l

(2.47)

where ¢y = ¢, + ¢, is the total compressibility of the SRV. Similar to the governing
equation for the matrix (Equation 2.28), we can relax the strong nonlinearity posed by
the exponential pressure-dependent terms onto the governing equation by assuming
that these term can be evaluated at current average pressure-drawdown Ay, such that
the directional dependency of these nonlinearities can be removed. In this sense, we

will consider that

e~ NAP o AR (2.48)

e—(Cy'f'Crl)Apl ~ e—(C;t"‘Crl)Aﬁl (249)

Replacing these approximations into Equation 2.46 and normalizing the resulting equa-
tion using Equation 2.9—2.14, yields

%p1p (3P1D) 1 Jpip
ax% 8yD yp=1 /\11/]11) atD ( )

The nonlinear scaling parameter A; is defined as

A = e~ (m—cn—cu)Apy (2.51)
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Similar to A, (Equation 2.27), A; is initially assumed to be equal to 1 and will be later
computed iteratively. This procedure is discussed in detail in Section 2.8. If A; is
assumed to be constant, then Equation 2.50 can be transformed into Laplace domain,

resulting in:

d*p1p <dﬁ1D) s
+ — pip =0 2.52
dx% dyD yp=1 /\11’]1D Pip ( )

where pip(xp,s) = L{pip(xp,tp)}. Finally, let us substitute (dp1p/dyp)y,-1 from
Equation 2.52 by the influx term defined in Equation 2.40, assuming that (p1p)y,-1 =
p1p because p1p # f(yp). Consequently,

d*p1p
dx?,

—c1(s)pip =0 (2.53)

where ¢ (s) is a flux-source function in Laplace domain, defined by:

s ko, s [ S }
c1(s) = — tanh | (1 — v, 2.54
1(5) M(mi)ip  Onkii \| A2map anh | (1 -y D)\/ A22p @54)

Recognize that, although not explicitly stated, ci(s) also depends on A1, Ay and dy;.

Another relevant observation about c(s) is that setting Ay = Ay = Jp; = 1 yields the
original function c; (s) proposed by Brown et al. (2011) for the trilinear flow model with
constant rock properties. This conclusion suggests that A and J serve as a measurement
of the degree of nonlinearity of the MFHW model when rock and fluid properties are
exponentially pressure-dependent.

2.5.4.2 Analytical Solution

The canonical solution to Equation 2.53 in Laplace domain can be given as

pap = Aj cosh [(xD — Xep)y/ €1 (s)] + B; sinh [(xD — XeD) cl(s)} (2.55)

According to Figure 2.5a, there is a no-flow boundary at the external boundary of the
SRV (i.e. xp = x,p) due to symmetry, hence:
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(@) =0 (2.56)
de XD=XeD

Replacing this boundary condition into Equation 2.55 yields B; = 0. Consequently,

pPip = Aq cosh {(XD — xeD) C1 (S)} (2.57)

Similar to the governing equation for fluid-flow in the matrix, additional boundary

conditions apply to Equation 2.57. These conditions are:

(i) Fracture skin damage. We incorporate formation damage on the fracture surface in
the form of fracture skin by considering fluid-flow across a region with ks < k;
[md] near the SRV /fracture interface. The depth of penetration of formation
damage is denoted as w; [ft]. Figure 2.10 illustrates the fracture skin model.

Given that ws is orders-of-magnitude smaller that x, we can safely assume that
fluid-flow through the damage zone is steady-state. Therefore,

k1 8Ap1> ks
— = ————(Ap1 — Apf) = 2.58

(VB X Jy—wso  HoiBoits (A1 Pf)x w2 (2.58)
Realize that fracture skin only influences early-time pressure behavior. Moreover,
the across-skin pressure differential (Ap; — Aps)y—w/2 is relatively small at early

time. Hence, we make the following approximation based on Equation 2.15:

1 —e GBP 1 e CApy
¢ ¢ ) (2.59)
x=w/2

(Ap1 — Apf)x—w/2 = ( -

* *
ck ck

Furthermore, assume that k; ~ ky;e~ 71271 and k, ~ kse~ 71271, This allows both
ki and ks to change at the same rate with Ap; at xp = wp /2. Substitution of this
assumption and further normalization of Equation 2.58 yields:
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p) 1— —cyApq kox 1— —cyApq 1 — —coApy
p) ( .eB ok ) - kSZ. ! ( .eB P .eB ok (2.60)
XD HoiDoiCy Yp—twp/2 1iWs HoiboiCy HoiDoiCy xp=0p/2

Normalization and subsequent Laplace transformation of Equation 2.60 gives:

A
(ﬁlD)xD:wD/Z = (ﬁfD)xD:wD/Z + Sf < dplD) (2.61)
XD /) xp=wp/2

where s is the fracture skin damage, defined as:

_ klids
= x (2.62)

‘\,\

where d; [ft] is the depth of penetration of the formation damage.
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Figure 2.10: Skin damage across the SRV /interface located at x = w/2.

To determine the value of the integration constant Aj, let us evaluate Equa-
tion 2.57 and its derivative with respect to xp at xp = wp/2, which results in:
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(P1D)xp=wp/2 = A1 cosh {(WD /2 — xep) 61(5)] (2.63)

(ili—ls)%:%/z = A \/@sinh [(ZUD/Z — Xep)y/C1 (s)] (2.64)

Combining Equation 2.63 and 2.64 with Equation 2.60 yields

(ﬁfD)xD:wD/Z

Al =
: cosh |(wp/2 — xeD)\/cl(s)} —spy/c1(s) sinh [(wD/Z — XeD) cl(s)}
(2.65)
Therefore,
o (PfD)xp=wp/2 cosh [(xD — XeD) Cl(S)}
P cosh [(wD/Z — xeD)\/cl(s)] —spy/c1(s) sinh [(wD/Z — XeD) cl(s)}
(2.66)
dpip _ (r_’fD)xD:wD/Z V €1 (S) sinh [(xD — xeD) 61(5)]
dXp  cosh [(wD/Z - xeD)\/cl(s)] —s¢y/c1(s) sinh [(wD/2 — XeD) cl(s)}
(2.67)

(ii) Flux continuity. Mass must be conserved across the SRV /fracture interface. There-
fore, based on Darcy’s law, the flux-continuity boundary condition at xp = wp /2
is expressed as:

(%‘Mﬁ) _ (%%) (2.68)
l/lO a.XD Xp=wp/2 .uO ayD Xp=wp/2

Using the pressure-dependent relationships for p (Equation 2.3), u (Equation 2.4)
and k (Equation 2.1), in addition to normalizing Ap; and Apy via Equation 2.9,
leads to
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<e—vapfa’£) _ ki <e—lema’£> (2.69)
axD Xp=wp /2 kfl axD Xp=wWp /2

Assume that (kf)y,—wp/2 ~ kfie_"YfAﬁf and (k1) yp—wp 2 & kije” 71471, In addition,
use Equation 2.9 to normalize Ap; and Apy and transform the resulting equation
into Laplace domain. The final result is given as follows:

(d?fD) et 1 (dﬁm) (2.70)
dxp p=twp /2 kfi eNAPI=70Pf \ dxp Xp=twp/2

For simplification purposes, we assume that oil flows linearly in the fracture
along the y-axis. Thus, to eliminate the two-dimensional dependency near the
SRV /fracture interface, we model flux across the interface based on a source-flux

term. This flux-source term is found after replacing Equation 2.67 into 2.70:

(dﬁfD)  kai/kyi (PfD)xp=wp/2V/€1(s) 2.71)
xD:wD/Z

dxp MBI o [(wD/Z — xeD)\/cl(s)] —sfy/c1(s)

Equation 2.71 will be implemented in the derivation of the governing equation
for fluid-flow in the fracture, as discussed in the next subsection.

2.5.5 Fluid-flow Model for Fracture (Region f)
2.5.5.1 Governing Equation

The original TLF model considers a planar bi-wing fracture shaped as a rectangular slot
tilled with proppant. Fracture properties are assumed constant hence the geometry of
the fracture is originally fixed. In reality, however, fracture width reduces over time

as effective closure stress increases with pressure depletion (Smith and Montgomery,
2015).

In addition, fracture flow is considered linear along the y-axis, from the fracture tip
toward the wellbore. Influx from the SRV is modeled using flux-source term approach.

Based on these conditions, we carried out a mass balance over the differential control
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volume AVf = hAyw/2 located within the fracture. There are three mass fluxes asso-
ciated with this control volume: i, at y, it at y — Ay and i1y at x = w/2, as shown
by Figure 2.11. The mass balance over AV yields:

0 w
Min + 111 — Tilout = g (pgbthyE) (2.72)

Be aware that the fracture width w is a function of Aps. Therefore, it cannot be taken
out of any derivative without any prior assumption.

Figure 2.11: Mass balance across a differential control volume within the fracture.

Now, let us substitute rity, = (0,0yhw/2)y, fitout = (Povyhw/2)ypy and 1ty = (00xhAY) x—w /2
into the mass balance equation. This results in:

(povy%h)y — (povy%h> sy + (000xhAY) oy /0 = % (pogbthy%) (2.73)

Dividing the equation above by hAy while allowing Ay — 0, leads to

d d
@(povyw) +2(000x)x=w/2 = 5; (Podpyw) (2.74)

Furthermore, vy = —(k¢/po)(0Aps/0x) and vy = —(ks/po)(dApf/9dy). Substituting
these expressions into the preceding equation, gives:
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dy

o (pksw aApf> <pokf aApf> )
— ] =2 = = 2.75
( 1o ay 1o ox w2 ot ((prow) ( )

Let us assume that w can be evaluated at current average drawdown such that w ~ .
Also, @ can be taken out of any derivative if considered constant. In addition, inserting
Equation 2.3, 2.6, and 2.1 into Equation 2.75, while simplifying the resulting expression,
yields:

_ »—CAp
. .k
X HoiBoic) =w/2

(crp—cu)Aps _ o CoApy
¢ 9 (l=e — ) (@7
Neio Ot \ MoiBoich

As mentioned previously, @ is the average fracture width at current time. The diffusiv-
ity coefficient 77y; is defined (in oilfield units) as:

k .
N = 2.637 x 1074 —L_ 2.77)
,uoi((PiCt)f

where ¢;r = ¢, + ¢, is the total compressibility of the hydraulic fracture. Next, we
proceed with relaxing the exponential terms inside the governing equation by assuming
that they can be evaluated at current average pressure-drawdown Ap;. Consequently,

e~ UBPf g oA APS (2.78)
e~ VP g o VAP (2.79)
eerf ~ewAPs oy p(ery—cu)APf (2.80)

Replacing these approximations into Equation 2.75 and normalizing the resulting equa-
tion using Equation 2.9—2.14, yields
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0° 2 0 0
p§D+ Jff( PfD) _ 1 9dpsp (2.81)
ayD w axD xp=wp/2 )\fﬂfD 8tD

The nonlinear scaling parameter Ay is defined as:

Ap = e~ (Tr=err o) Ps (2.82)

Similar to A; (Equation 2.51) and A, (Equation 2.27), Ay is initially assumed equal
to 1 and will be later estimated iteratively, as discussed in Section 2.8. Furthermore,
Equation 2.81 can be transformed into Laplace domain, under the assumption that A,
is a constant, such that:

dzﬁfD ZXf dﬁfD S
+ = — brny =0 2.83
dyp, @ ( dxp )xD—wD/Z Asipp 1P (289

where psp(yp,s) = L{psp(yp,tp)}. Finally, substitute (dpsp/dxp)yy—wp/2 by the
influx term defined in Equation 2.71 while considering (ﬁfD) xp=wp/2 = Pfp since

Psp # f(xp). Hence,

— ca(s)pyp =0 (2.84)

The Laplace-domain function ¢;(s) accounts for the influx from the SRV into the frac-

ture. This function is defined as:

s 2y/als)
Afiifp  O17Fcpi

c2(s) tanh [(wD/Z — XeD) cl(s)l (2.85)

where Fop; = C fi /kqix  is the initial dimensionless fracture conductivity. Moreover, J; f
is a nonlinear scaling parameter arising at the SRV /fracture boundary, defined as:

b1 = eMAPArAPy (2.86)
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Initially, 1y = 1 and its actual value will be estimated iteratively. Also, be aware that

c2(s) also depends on Ay, 01, A1, A2 and dy;.

Lastly, note that setting Ay = A1 = Ay = 41y = J1 = 1 leads to the original flux-source
function ¢, (s) proposed by Brown et al. (2011) for constant rock and fluid properties.

2.5.5.2 Analytical Solution
The canonical solution to Equation 2.84 in Laplace domain can be given as

pio = Agcosh | (v~ 1y/ea(9)| + Bysinh (o - Dy/eas)] @97

Because the fracture tip is assumed to be sealing, there is a no-flow boundary condition
at yp = 1, as shown in Figure 2.5a. Therefore,

"
(ﬂ) —0. (2.88)

Substitution of this boundary condition into Equation 2.84 yields By = 0 thus

prp = Ay cosh {(yD -1) cz(s)} (2.89)

Furthermore, Ay depends on the production scenario under study. The next section
discusses the case for constant-rate production (Section 2.6).

2.6. Pressure Transient Analysis for Constant-rate Production

The constant-rate well boundary condition for a quarter-fractured stage of the MFHW,

as depicted in Figure 2.5a, is given as follows (in oilfield units):

CroA
7= (1415 - pf) (2.90)
2B x¢ dyp
yp=0

q’ is the equivalent per-fracture rate of the well, defined as:
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/_ Gwell
q = "y (2.91)

where gyen and ny are the actual production rate and number of fractured stages,
respectively. Notice that a rather significant assumption made in the definition of ¢4’
is that all fractures are active and contribute equally to the total production of the
well. Nonetheless, it may occur that well productivity is being sustained by only a few
fractures. In such cases, a more accurate definition for q' would be as follows:

r_ qwell
7= 0, (2.92)

where 6, = n,/ny is the ratio of active fractures (n,) to total fractures (1¢). Thence,
by definition, 0 < 6, < 1. The implementation of 4’ as in Equation 2.92 would enable
the detection of underperforming wells and actual fraction of active fractures. For the
purpose of the subsequent analyses, we will assume 6, = 1.

Inserting the pressure-dependent definitions of p, (Equation 2.4), B, (Equation 2.5)
and Cy (Equation 2.2) into Equation 2.90, multiplying the right-hand side by ky;/ky;,

normalizing Ap using Equation 2.9, and rearranging terms, gives:

)
L (e_dePf—pr> (2.93)
Fepi YD / yp—0

Let us assume that (e ~%/7/) yp=0 ~ e PIrAPf  This approximation leads to the definition

of the nonlinear scaling parameter d;:

5 = e 4PAPs (2.94)

B is a correction factor that accounts for actual changes in e Ur8%f near the wellbore.
Similar to the other nonlinear parameters, J,, is assumed equal to 1 initially and is
subsequently calculated iteratively (see Section 2.8). Replacing Equation 2.94 into 2.93,
yields:
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anD) T
= — 2.95
( YD /yp—0  Swkcpi (299)

Taking the Laplace transform of Equation 2.95 gives the constant-rate well boundary

condition that allows to determine Ay from Equation 2.89:

df’fD) T
— = — 2.96
( dyD yp=0 sowFcpi ( )

Replacing the result above into the derivative of psp with respect to yp in Equation 2.89,
yields the dimensionless pressure-drawdown distribution in the fracture:

- cosh[(yp—l) Cz(s)]

Pfp = dwFcpi s+/ca(s) sinh y/ca(s)

(2.97)

2.6.1 Bottomhole Pressure (BHP)

As illustrated by Figure 2.12, fluid pressure at the wellbore of a fractured stage py, [psi]
is equal to the fracture pressure at the origin (i.e. y = 0) minus the sum of all pressure
drops occurring within the fracture as fluid flows into the well. This condition can be
mathematically expressed as

Poh = Pi — Apws — Aps (2.98)

where Apy s is the pressure drop due to linear flow along the fracture and Ap; is the
additional pressure drop due to flow convergence towards the wellbore (Economides

et al., 2013). To derive Apyy, first evaluate Equation 2.97 at the wellbore (yp = 0) to get

_ m coth \/ca(s) (2.99)

PwD = 5wPCDi S C2(S)

Then, let us invert Equation 2.99 back into time domain and use Equation 2.9 to convert
the dimensionless result into units of pressure. This procedure gives
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'y B
1 ( | 141270 oiBoi { coth y/ca(s) }) (2.100)

A = ——1In
Pwf cx °  SwFcpikiih S/ C2(5)

On the other hand, Ap; is defined (in oilfield units) as (e.g. Economides et al., 2013)

. 141.26]/‘1/10,'301' h 7T

where 1y, [ft] is the wellbore radius. Combining Equation 2.100 and 2.101 with Equa-
tion 2.98, leads to

., R . ' R ..
Por = pi + 1 n(1-c 141.2mtq ymBmﬁ_l coth \/c2(s) ~ 141.29" i Boi [ln (L) B z]
o dwkepikiih s\/ca(s) Csi 2ry) 2

(2.102)

Figure 2.12: Combined pressure drop near the wellbore.

Equation 2.102 suggests that choking skin effects may be neglected when x; > h. Con-
trariwise, this effect is significant when h > x;. Nonetheless, the effect of flow conver-
gence will only influence transient pressure response at early time. Additionally, Ap;
does not influence transient pressure-derivative behavior because Aps is approximately

constant.

When fluid density and viscosity changes with pressure are negligible (i.e. ¢} < 107°
psi~!) and/or fractional changes in fracture conductivity with pressure-drawdown are
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considerably large (i.e. d; > c¢;), Equation 2.102 can be linearized as

/ . .
Pon = Pi — 18129 HoiBoi ) 7T coth v/¢5(s) + n [ln (L) — 7—1 (2.103)
Fepikyih Ow sy/c2(s) Xf 2ry 2

The above expression can be verified by means of the following limit:

lim {l*ln(l o f(t))} T (2.104)

cs—0 L Cp

In practice, ¢} < 107 psi~! is sufficient to comply with the condition ¢} — 0. Further-
more, we define the rate-normalized pressure (RNP) as follows:

RNP(t) = ’”_q—p}’h(t) (2.105)

It is noteworthy to highlight that the actual definition of RNP’ (Equation 1.2) is not so
straightforward because all nonlinear scaling parameters A and J are time-dependent.
The formal definition of RNP” is:

dRNP _ 9(Appn/gGwen) |, ¢ [aAth oA dApyr | dApp, dAy dAP,
dint dint Jwell a)tl aAﬁl dt a)tz aAﬁz dt
OApyy OAp AAPr  OApws 35, dAPy
a)\f aAﬁf dt Ay aAﬁf dt
+8Apbh <851f dAﬁf n a51f dAﬁ1> " 0Apyy, (8(521 dApq 0071 dAﬁz)
851f aAﬁf dt 0Ap, dt 001 \OAp; dt 0Ap, dt

(2.106)

This equation is very intricate and impractical for well-test analysis purposes. In Sec-
tion 2.8 we propose a more practical approach to estimate RNP” using converged values
of RNP.
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2.6.2 Well Flowing Pressure (FWP)

Bottomhole pressure (BHP) typically refers to pressure-transient data gathered at the
sandface of the well. Conversely, well flowing pressure, or simply flowing pressure
(FWP), refers to pressure-transient data collected at any location of the well. The reason
why BHP data is preferred over FWP data in conventional wells is that BHP eliminates
the effect of fluid expansion in the wellbore, known as wellbore storage (WBS) (e.g.
Agarwal et al., 1970; Chen and Brigham, 1978).

Even if downhole pressure gauges are used to collect data from MFHWsS, chances are
that pressure-transient response will be distorted by fluid expansion along the lateral
length of the well (heel to toe). In fact, it may be challenging to determine the best
possible location for placing downhole gauges for well testing purposes. Therefore, it

is imperative to account for WBS effects into the proposed analytical MFHW.

The normalized FWP p,,p can be determined analytically using the following relation-
ship in Laplace domain (e.g Spivey and Lee, 2013):

=1 ﬁwD + ﬁsD
pwp = L {1 T+ 92Co (up + Pob) } (2.107)

Pwp is given by Equation 2.99. Cp is the dimensionless wellbore storage coefficient,
defined as (oilfield units) (Brown, 2009):

5.615C

B 27T(<pict)1hx]%

D (2.108)

The definition of Cp is based on a per-fracture rate normalization of pressure. If pres-
sure is normalized using total well rate (i.e. gwen) then Equation 2.108 must be divided
by njz,. The reason for this modification is g’ « x ¢ consequently gyen o n¢xs. Moreover,
the normalized pressure drop due to choking skin effects is defined in Laplace domain

as:

kiih e M e (o)~ 4]
_ 1 ey U2 2.109
PsD = 14124/ 1y Boic: ( ¢ (2.109)

Since p;p is usually small, it can be approximated as:
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h h T
PsD =~ foCDi In {(E) — E:| (2110)

Note that rock and fluid properties are still pressure-dependent thus WBS should take
this into account. Nonetheless, pressure-drawdown is quite small at early time so that
variations in p, are negligible. Therefore, Equation 2.107 must hold valid during the
period dominated by WBS effects.

Substitution of Equation 2.99 and 2.110 into Equation 2.107 yields:

sFcpi | dw co(s) Xy 2ry

Bup + Fop = 1 {lcoth Vea(s) +£1n {(L) _ E}} (2.111)

Combining Equation 2.107 with 2.9, results in:

1 141.2¢' 10iBoi .1 { PwD + PsD }>
t)=p,+—1In (1—c*—£ - _ 2.112
ow( ) pi Cz; © klih 1+ CDSZ(PwD + psD) ( )

If ¢ < 107° psi~!, then

141.29"110;Boi ~_1 { PwD + PsD }
£y = . 22120 Hoiboi 2.113
pwf( ) pi klih 14+ CDsz(ﬁwD + ﬁsD) ( )

2.7. Estimation of Average Pressure-Drawdown

We implement an integral-average approach to estimate the normalized average pressure-
drawdown in region j. The mathematical definition of L{p;p} is given in Laplace

domain as follows:

62

1

pipt = 5,4 /ﬁjp(B,S) do (2.114)
61

where 6, 6; and 6, are the direction of flow and boundaries of region j, respectively.

42



2.7.1 Fracture

Let us replace j = f, 0 = yp, 6 = 0 and 6, = 1 in Equation 2.114. Moreover, we must
include the dimensionless pressure loss due to choking skin at the wellbore. In this
manner, L{pp} is defined as:

0,=1

o m cosh[(0 —1)\/ca(s)] | sc
Llpin} = / {5wFCDiS\/C2(S) sinh 1/cs(s) - 55(9)}d9 @115)

6, =0

where 6(0) indicates that the choking skin only exists at the wellbore (6 = 0). Integra-
tion of the equation above yields:

1 7T+ SctswPCD,'Cz(S)

L{p = 2.116
{pr} SwFcps SCz(S) ( )
Combining this result with Equation 2.9
N 1 141-201/%1‘301' 1 { 7T+ sc0wFepica(s) })
Ape(t) =——=In(1—c;—7F——-L 2117
pf( ) Cz)k ( ¢ 5wFCDik1ih SCz(S) ( )

2.7.2 SRV

Normalized pressure in the SRV is given, in Laplace domain, by Equation 2.66 in
Laplace domain. Yet, the term (p fD) xp=wp/2 on the right-hand side of the equation
cannot be analytically determined because of the assumption of linear flow along the
y-axis. To resolve this issue, we assume that pressure at the SRV /fracture interface is

approximately equal to the average pressure in the fracture. Thus, (Pfp)xp=wp/2 =

L{p¢p}- Replacing (P¢p)xp—wp,/2 by L{Psp} in Equation 2.66, yields:

+sc0wFcpica(s)
o (“Eear™) cosh [ (xp — xep) Var 5] (2.118)

Pib = cosh [(wD/Z — xeD)\/Cl(S)] + Sf\/Cl(S) sinh [(ZUD/Z — ng)\/Cl(S)]

Substitution of Equation 2.118 into Equation 2.114 with j =1, § = xp, 6; = wp/2 and
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> = x.p, while recognizing that x,p — wp/2 =~ x,p, gives

- Fi(s)
L = — 2.119
{7} dwFcpiXeD ( )
where
Pl (S) _ T+ ScéwFCDiCZ(S) (2120)
sca(s)v/c1(s) {coth (xeD\/cl(s)) - sf\/cl(s)}
Finally, the average pressure-drawdown in the SRV is given by:
_ 1 141.29'4oiBoi_ 1 )
Api(t) =——=In{1—c; L7 {F (s 2121
rle) =~ In (1= ci gt o £ (5 () e.121)

2.7.3 Matrix

Similar to the SRV region, (f1p)y,—1 cannot be explicitly determined because of the
linear flow assumption made when deriving p1p. Yet, we can make the approximation
(ﬁlD)ypzl ~ L{p1p}. Replacing Equation 2.119 into 2.35 yields:

1 Fl (S) COSh |:(y€D - yD) )\21572D:|

P2D

(2.122)

dwFcpiXeD cosh {(}/eD -1) )\27572D:|

Replacing Equation 2.122 into Equation 2.114 with j = 2,60 = yp, 0; = 1 and 0, = y.p

yields:
i F(s)
= 2.12
L‘{Pw} dwFcpiXeD (yeD - 1) ( )
where
_ Fi(s)\/A2m2p s
F(s) = — G tanh | (y.p — 1) porm (2.124)



Finally,

- 1 141-2q/,uoiBoi
Apa(t) = ——1In (1
pa(t) " ( o dwFcpikiihxep(yep — 1

),c—l {Fz(s)}) (2.125)

2.8. Iterative Solution Algorithm

In this section, we introduce the successive substitution iterative algorithm which en-
ables the estimation of the nonlinear scaling parameters A and J at current time ¢. Here,
we use " and "1 = t + At to represent previous and current time steps, respectively.
The iterative procedure explained next is based on current-time estimations, hence the
superscript n + 1 will be dropped. The superscripts v and v + 1 denote current and
previous iteration level, respectively.

The iterative algorithm is initialized by setting /\;’f = A = A5 =6y, = 6] ;= (52’21) =1,
at iteration level v = 0. This results in Ap} = APy = ApS = 0. Next, Aﬁ;’fﬂ, ApPt! and
Aﬁg“ are estimated using Equation 2.117, 2.121 and 2.125, respectively. This result is
subsequently used to A;“ (Equation 2.82), AY*! (Equation 2.51), A5*! (Equation 2.27),
AR (Equation 2.94), 5;’;1 (Equation 2.86) and 5;’1+ ! (Equation 2.39). Finally, we estimate
the relative error ¢ at current iteration level v + 1, using the following equation:

v+1 v
s — 50
o1

(5(7)*1) _ (5( )

(4
21 21
(
3

v+1) ]

8( = maxX

4

(2.126)

where j = f,1,2. The iterative algorithm would have achieved convergence when

e?T1 < tol where tol is a certain tolerance level, which we set to 10~°.

Once the iterative algorithm has converged for current time step calculations, we use
converged values of A]Z-’H, 5%+1 and (5;.’;“1 to estimate either BHP"*! (Equation 2.102) or

FWP"*+1 (Equation 2.112). Rate-normalized pressure-derivative is estimated as:

RNP7+ = L (

q/

(2.127)

Aplrt = Apl,
Intt1l —Intr-1
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The main drawback of this method is that A pZJ}‘l must be computed for fairly small time
steps in order to get representative values for RNP’ that would allow the identification
of flow regimes and other features by means of PTA diagnostic plots. Furthermore,
average properties in the composite system can be estimated as follows:

]2], _ kjie*WjAﬁj(f) (2.128)
B = gy P (2.129)
Cr = Cre s (2.130)
Eop — I:_if (2.131)

The pseudo-code of the iteration algorithm is presented in Figure 2.13. For efficiency

purposes, we suggest using /\;’H, 5o+ and 5]7.’,{“ as the initial guesses for the subsequent

time step. That is, /\;””Jrl — A;’H’”, suntl — gotln gontl _ sotln 44 5;’1"“ = 5;’1“’”.

1f 1f
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Apy. ApY, APy

v+l v+l qv+1
Af ’Al ,12

v+1 v+l v+l
621, 615 6w

ALy, gUL_gY,
£ = max {L—, L0 < tol
Aj ik

d(Apwy/a)

T AF : A
BHP, ¢, k j, Wr, Cr, Fep Estimate ~2L and T

Max. time reached?

Figure 2.13: Iterative algorithm to solve the nonlinear flow problem.
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2.9. Validation Cases

We setup a numerical simulation model of a MFHW with 20 fractured stages flowing
at gyen = 400 STB/D or ¢ = 20 STB/D/fracture. Wellbore radius is r,, = 0.25 ft. We
make the following assumptions about the MFHW model: (1) single-phase oil flow,
(2) constant and uniform initial reservoir pressure, (3) reservoir rock volume between
fractures is fully stimulated, (4) WBS effects are ignored (Cp = 0), and (5) stress-
dependent rock properties are accurately represented by exponential functions of local

pressure-drawdown.

The 3-D simulation model was built on CMG IMEX. The numerical model features a
mesh refinement near the SRV /fracture interface to avoid potential numerical conver-
gence issues due to sudden changes in flow direction and highly contrasting perme-
ability values varying with pressure decline.

Reservoir properties are adapted from the lower Eagle Ford shale (Orangi et al., 2011;
Ceron et al., 2013). Fracture width is considered constant. Table 2.1 summarizes reser-
voir (matrix), SRV and fracture properties used in this section. These properties are
given at initial reservoir conditions (p; = 6500 psi). Given that ky w? then we can
safely assume that vy ~ d.

We examine two validation case studies in which we examine the effect of rock com-
pressibility, permeability modulus and stress-dependent characteristic number on MFHW
performance. Pressure-dependent properties of the MFHW are given in Table 2.2. In
addition, we neglect fracture skin damage in the aforementioned case studies. We
benchmark the analytical solution to synthetic pressure data and discuss the following

comparison plots:

¢ Bottomhole pressure (BHP)
* Rate-normalized pressure (RNP) and pressure-derivative (RPN’)

* Evolution of fractional reduction in permeability and fracture conductivity

Analysis of results show that the proposed analytical solution is in excellent agreement
with numerical data (see Figure 2.14). Likewise, RNP and RNP’ responses are in excel-
lent agreement with simulation results. The maximum number of iterations per time

step was 4.
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Table 2.1: Composite system properties used in the validation cases.

Reservoir properties
Matrix permeability, kp; [md] 0.00073
Matrix porosity, ¢p; [—] 0.049
SRV permeability, k1; [md] 1
SRV porosity, ¢1; [—] 0.1
Net pay thickness, h [ft] 100
Reservoir width, 2y, [ft] 2000
Initial reservoir pressure, p; [psi] 6500
Oil properties
API density 42
Formation volume factor, B,; [rb/STB] 1.3534
Viscosity, p,; [cP] 0.58
Compressibility, ¢, [psi~!] 4.8 x107°
Bubble-point pressure, py;, [psi] 1000
Hydraulic fracture properties
Fracture conductivity, Cy; [md-ft] 500
Proppant pack porosity, ¢r; [—] 0.35
Distance between fractured stages, 2x, [ft] 500
Fracture half-length, x [ft] 200

Table 2.2: Pressure-dependent properties used in the numerical validation study.

Fracture

Property Matrix SRV
Case Study 1 | Case Study 2

Rock compressibility, ¢, [psi~] 5x1077 | 1x107¢| 1x107* 1x1074
Permeability modulus, v [psi_l] 2x107% | 5x10°° — —

Stress-sensitive number, dy [psi™] — — 8x 104 1x10°3

PTA diagnostic plots for Case Studies 1 and 2 are presented in Figure 2.15 and 2.16,

respectively. For both cases, we observe the typical transient response from a MFHW:

* Bilinear flow (fracture + SRV). Characterized by a 1/4-slope in the RNP”.

¢ Linear flow (SRV). A 1/2-slope in RNP’ indicates the occurrence of this regime.

¢ Transitional flow (SRV + matrix). Often called boundary-dominated flow (BDF).
Identified by the ~unit slope and matching RNP and RNP".
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Figure 2.14: Transient BHP response for Case Studies 1 and 2.

In addition to the flow regimes typically encountered in the analysis of MFHW perfor-
mance, we found a fourth flow regime marked by a rapid nonlinear separation between
the RNP and RNP’ taking place at late time (¢ ~ 160 days), which indicates the onset of
severe loss of fracture conductivity and SRV permeability with pressure decline. This
means that, up to that time, and even though initial fracture conductivity had been
considerably lost, it would still be enough to produce oil at the prescribed constant

per-fracture rate.

The onset of pressure-dependent effect is seen in Figure 2.14 as the kick-off point where
the BHP curves depart from each other. In essence, we conclude that stress-dependent
effects due to 1 and d £, given the values from Table 2.2, are negligible for t < 160
days; however, they strongly dominate pressure-transient response when t > 160 days.
In other words, if the MFHW was set to produce at constant rate for 160 days then
stress-dependency effects on fracture conductivity would not be relevant.
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Figure 2.15: Rate-normalized diagnostic plot for Case Study 1.
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Figure 2.16: Rate-normalized diagnostic plot for Case Study 2.
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An important matter due to pressure-dependent fracture conductivity and SRV perme-
ability is how to accurately forecast well productivity and estimate oil recovery until
reaching bubble-point pressure conditions.

To illustrate this point, suppose that well-test data for 50 days of constant-rate produc-
tion from the MFHW in discussion is available. Based on this data, we are required to
forecast well performance and EUR until abandonment pressure is reached at which

point production scheme switches to constant pressure or artificial lift is installed.

Figure 2.17 presents MFHW performance forecast for various values of dy. The ultimate
recovery for constant-rate production is calculated as EUR = gyep X tfinal [STB] where
tiinal [days] is the time at which bottomhole pressure reaches abandonment pressure,
in this case, BHP = 1000 psi. This plot allows to conclude that uniqueness of both well
performance forecast and EUR largely depend upon completion performance. Notice
that the less well-test data is available data the less accurate the well performance

forecast hence EUR. Analysis of results are summarized in Table 2.3.

7000 T T T T | T T T T | T T T T l T T T T I T T T T | T T T |
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Figure 2.17: Well performance forecast and EUR as a function of dy.

Given the results from Table 2.3, reservoir engineers should consider accounting for

variations in fracture conductivity with pressure decline as to make better decisions in
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Table 2.3: EUR analysis for gy = 400 STB/D as a function of dy.

d [psi!] O“esfeftegtfﬁ(c’l‘;;l;‘]ear tinal [days] | EUR [MSTB] | Error [%]
<1x10°* — 496 198.4 —
8.0 x 10~* 160 440 176 12.7
1.0x 1073 155 395 158 25.6
1.5 %1073 47 295 118 68.1
2.0x 1073 43 230 92 115.6

regard well life, anticipate well stimulation (e.g. re-fracturing), installation of artificial

lift technology, or well abandonment.

Figure 2.18 compares the fractional reduction in matrix, SRV and fracture permeabil-
ity for Case Studies 1 and 2. It is evident that reduction in fracture conductivity is
the fastest, dropping by 50% of its initial value after 80 and 60 days of constant-rate
withdrawal for dy = 8 X 107* and 1 x 1073 psi~!, respectively. Also, note that SRV
permeability decline almost linearly with time whereas matrix permeability remains

essentially constant throughout.
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Figure 2.18: Fractional changes in fracture conductivity, SRV and matrix permeability

as a function of time.
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2.10. Sensitivity Analysis

2.10.1 Impact of Initial Fracture Conductivity on Well Performance

As pointed out by Smith and Montgomery (2015), SRV conductivity kqx is the ability of
the formation to feed hydrocarbons into the fracture whereas the fracture conductivity
is the ability of fracture to carry that fluid into the wellbore. Therefore, both ky;xf
and Cy; should be taken into consideration during the design of a hydraulic fracturing
job to avoid unnecessarily large initial fracture conductivity, which may significantly

increase the overall cost of the treatment.

In this section, we study the impact of C i =on well performance, considering C i = 50,
500, 2000, 5000 and 10000 md-ft for the case studies analyzed in the previous section.
The values of Cy; chosen for the study in this section are aligned with typical values
for different types of proppant commonly used in hydraulic fracturing jobs (e.g. Zhang
et al., 2014). Given that ky; = 1 md and x¢ = 200 ft then Fcp; = 0.25, 2.5, 10, 25 and 50.

Figure 2.19 shows that the analytical model is in good agreement with numerical data
for bottomhole pressure response. Note that the impact of initial fracture conductivity
on MFHW performance when fracture conductivity is pressure-dependent is notorious
when Fcp; < 10 whereas it is almost imperceptible when Fcp; > 10. In other words,
the effect of a pressure-dependent fracture conductivity will not influence MFHW per-
formance if Fcp; > 10. Figure 2.20 shows that the analytical model is in excellent
agreement with numerical simulation data. Likewise, the RNP plot shows an excellent

early-to-mid time match for all values of F-p; (Figure 2.21).

Similarly, Figure 2.21 shows that the RNP for an initially low fracture conductivity
translates into a higher convergence skin which may mask early-time bi-linear flow
regime, particularly when Fcp; < 10. This pressure-transient response can also be
observed in Figure 2.22 exhibits a similar behavior.

RNP’ exhibits an early-time mismatch when Fcp; = 0.25 in Case Study 1, as depicted
by (Figure 2.23). This misfit may be due to the occurrence of a long transitional flow be-
tween the SRV /fracture bilinear and SRV linear regimes. Interestingly, all drawdown-
derivative curves converge to ~ 0.4 psi/STB/D at t = 1 day regardless of the value of
Fcpi. Other than that, the analytical model is in excellent agreement with numerical
data. Moreover, similar to Figure 2.21, nonlinear effects due to a pressure-dependent
fracture conductivity can be detected at late-time only when Fc-p; < 10.
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RNP’ in Case Study 2 also exhibits early-time mismatch when Fc-p; = 0.25 (Figure 2.24).
This mismatch may be due to the transitional flow regime discussed earlier, which
cannot be capture by a combined linear flow model. Finally, similar to the previous
case study, all pressure drawdown-derivative curves converge to ~ 0.4 psi/STB/D at
t =1 day when Fcp; > 2.5. Values of B for various dimensionless fracture conductivity

values are summarized in Table 2.4.

Table 2.4: Correction factor § as a function of Fcp;.

B vs Fcpi
0.25 2.5 10 25 50

Case study 1 | 1.025 | 1.005 | 1.000 | 0.997 | 0.995
Case study 2 | 1.030 | 1.007 | 1.002 | 1.000 | 0.998
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Figure 2.19: BHP response as a function of Cy; for Case Study 1.
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Figure 2.20: BHP response as a function of Cy; for Case Study 2.
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Figure 2.21: RNP response as a function of Cy; for Case Study 1.
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Figure 2.22: RNP’ response as a function of Cy; for Case Study 2.

10°

E T l|lll|l| T IIIIIII| T IIIIIII| T l|lllll| T IIIIIII| T IIIIIII| T IlIIIIE
10° 3
A 10FE E
~ - 3
aa] r ]
; - mismatch due to low Cﬁ -
“hes,

‘% 10° E|
N E
9 ]
Z 9 O  Numerical B
10 —— C,=50md-ft  (f =1.025) 3
C,=500md-ft (B = 1.005) ]
s C,=2000 md-ft (8 = 1.000) ]
10 & C,=5000md-ft (§=0.997)
C —— C, = 10000 md-ft (8 = 0.995) ]
1 —3 1 LlllllLl 1 lJlllllJ 11 lllllll 1 LlllLlLl 1 lJllLllJ 11 llLLILl 11 1111l

107 1073 1072 107! 10° 10! 10° 103

t (days)

Figure 2.23: RNP’ response as a function of Cy; for Case Study 1.
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Figure 2.24: RNP’ response as a function of Cy; for Case Study 2.

2.10.2 Impact of Pressure-Dependent Fracture Conductivity on Well Performance

This section examines the impact of pressure dependency of fracture conductivity on

pressure-transient behavior. The sensitivity analysis is performed for typical values of

the stress-sensitive characteristic number of common proppant agents (e.g. Yao et al,,

2016) (see Table 2.5). Matrix and SRV properties are considered constant in this analysis
therefore C;/Cy; = Fcp/Fcp;. Furthermore, f = 0.995 for dy < 4 x 1074 psi’1 and
p = 1.005 for dy > 4 x 10~* psi—!. Reservoir, fluid and MFHW properties are taken

from Table 2.1.

Table 2.5: Stress-sensitive characteristic numbers used in this analysis.

Modulus [psi”] Scenario 1 Scenario 2 Scenario 3 Scenario4 Scenario5 Scenario 6
ds 6 x107° 1x1074 4x1074 1x1073 2x1073 3x1073
Well life [days] 496 495 495 400 238 165
EUR [MSTB] 198.4 198 198 160 95.2 66

Figure 2.25 illustrates well performance forecast for various dy. The baseline for this

analysis is the constant properties case which sets the expected life of the well to 594
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days. Interestingly, almost the same performance forecast is yielded for d; < 4 x
10~* psi~!, which suggests that reduction of initial fracture conductivity with pressure
decline would not significantly affect well performance. This observation is supported
by the predicted well lives from Table 2.5 (up to Scenario 3) as compared to the baseline
forecast.

Yet, the baseline forecast could be overly optimistic if the dependency of fracture con-
ductivity on average fracture pressure-drawdown is ignored when d; > 4 x 10~* psi—1.
It is evident from Table 2.5 that well life can be largely affected by a decreasing frac-
ture conductivity. Likewise, EUR for these cases would be substantially lower than the
baseline EUR hence potentially resulting in misguiding reservoir economic analysis of

the shale oil prospect.

In summary, the present analysis demonstrated that a pressure-sensitive fracture con-
ductivity would affect well performance and future production estimates only if its
stress-dependent characteristic value is considerably large. In this study, we find that
df > 4 X 10~* psi~! is sufficiently large to adversely affect production forecast and
EUR. Therefore, engineers should be aware that variations in initial fracture conductiv-

ity under high confining stress may negatively impact expected well performance.
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Figure 2.25: BHP response as a function of d.
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Figure 2.26: Fractional change in Fcp with time as a function of dy.

Another interesting conclusion drawn from Figure 2.26 is, even though fracture conduc-
tivity would reduce rapidly with increasing pressure-drawdown, fracture conductivity
is still enough to deliver 20 STB/D per fractured stage. Nonetheless, fracture conduc-
tivity loss is substantially higher when dy > 4 X 10~* psi~! thus the well is no longer
able to maintain a constant per-fracture flow rate. This explains why well life reduces

drastically in such cases.

2.10.3 Impact of Pressure-Dependent SRV Permeability on Well Performance

We discussed in Section 2.1 that SRV permeability is primarily due to fracture branch-
ing and induced /reactivated natural fractures and micro-fractures networks. Unfortu-
nately, these fractures are often too narrow to get propped during the stimulation job
(Sharma and Manchanda, 2015) (Figure 2.1). Therefore, an increasing confining stress
can lead to an orders-of-magnitude reduction in SRV permeability (Guo et al., 2013).
As such, it is necessary to consider the impact of loss of SRV permeability with pres-
sure decline on MFHW performance. Here we consider constant rock properties in the
matrix and fracture, and examine pressure-transient behavior to various values of ;.
Reservoir, fluid and system properties are taken from Table 2.2.
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Forecast of well life and EUR until reaching bubble-point pressure are summarized in
Table 2.6. Notice that these results are similar to those inTable 2.5. This indicates that
the impact of pressure-dependent fracture and SRV are comparable when vy ~ dy.
Figure 2.27 illustrates BHP response as a function of ;. On the one hand, MFHW
performance and EUR would not be substantially affected if y; < 5 x 10~* psi—!. On
the other hand, they may be largely affected when y; < 5 x 10~% psi~!, leading to a
sensible overestimation of well performance and EUR if pressure-dependency of SRV
permeability is neglected.

Table 2.6: SRV permeability modulus values used for the sensitivity analysis.

Scenario1 Scenario 2 Scenario 3 Scenario4 Scenario5 Scenario 6
v1 [psi~!] 6x107° 1x107* 4x107*% 1x10%® 2x10% 3x1073
Well life [days] 496 490 485 388 230 160
EUR [MSTB] 198.4 196 194 155.2 92 64
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Figure 2.27: BHP response as a function of 7.
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Figure 2.28: Fractional change in SRV permeability as a function of 7.

Unlike hydraulic fracture conductivity, which is designed and controlled by proppant
type and concentration, SRV permeability cannot be prescribed and/or estimated solely
based on proppant properties. Therefore, if transient BHP response exhibits nonlinear
behavior, even though d; is relatively low by design (< 4 x 10~* psi~1), then sensitivity
of SRV permeability to pressure decline may potentially be the cause of such behavior.

Another case of interest is that when both SRV permeability and fracture conductivity
are both highly sensitive to pressure decline. Table 2.7 summarizes the forecast and
EUR results for constant rock properties (baseline case), pressure-dependent SRV per-
meability only (y; =1 x 107% psi~! and dy < 4 x 10~* psi~! & 0), pressure-dependent
fracture conductivity only (dy = 1 X 1073 psi~! and 717 < 4 x 107* psi~! ~ 0) and
simultaneous pressure-dependent fracture conductivity and SRV permeability (y; =
de=1x 1073 psi_l).

Figure 2.28 shows expected BHP response for all scenarios of pressure-sensitive SRV
permeability. Notice that BHP response for the case of when pressure-dependent SRV
is dominant over pressure-sensitive fracture conductivity yields similar results as the

case of fracture conductivity being more sensitive to pressure decline than SRV perme-
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ability. However, well performance is largely impacted when both SRV permeability

and fracture conductivity are largely sensitive to pressure decline.

Table 2.7: Comparison of well life and EUR for different pressure-dependent SRV per-

meability and fracture conductivity.

Scenario 1 Scenario 2  Scenario 3 Scenario 4
71 [psi—!] <4x107* 1x10° <4x107* 1x107°
ds [psi~!] <4x107* <4x10* 1x107° 1x107°?
Well life [days] 496 388 397 331
EUR [MSTB] 198.4 155.2 158.8 132.4
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Figure 2.29: BHP response as a function of 7y and dj.

2.11. Effect of Wellbore Storage and Fracture Skin on Pressure Response

So far we have studied the impact of changes in rock properties with pressure decline
on BHP. In this section, we examine pressure-transient response considering WBS ef-
fects and fracture skin damage (s > 0). In particular, we focus on the use of diagnostic

plots to investigate the signature transient response to the presence of fracture skin
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in conjunction with WBS. Rock, fluid and system properties are taken from Table 2.1

assuming dy = vy = 8 X 10~* psi—L.

Figure 2.30 shows the rate-normalized diagnostic plot for 0.005 < s < 5 neglecting
WABS effects. Note that RNP’ is more sensitive than RNP to s Iz however, fracture skin
influences RNP response when sy > 0.5. As seen in this diagnostic plot, the transient
signature of fracture skin occurs at early time; its duration depends on the value of s 1z

such that the higher the skin the longer the signature response.

In general, transient response of rate-normalized parameters is similar to that of a well
with WBS and skin damage, with the exception that RNP and RNP do not coincide at
early time. Additionally, the slope of RNP’ at early time is 1/2, indicative of linear flow

in the fracture.

Figure 2.31 shows the effect of WBS on pressure-transient response for sy = 0.5. Type-
curves were generated for various Cp. Numerical data correspond to BHP. RNP” ex-
hibits two humps due to choking skin and fracture skin, when Cp is relatively small;
yet, high Cp would mask fracture skin effects.
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Figure 2.30: RNP and RNP” as a function of sy (without wellbore storage effects).

64



10°

T IIIIIII| T IIIlIIll T IIIIIII‘ T III|I|T| T IIIII|T| T IIIIIHl T IIIIIlll T IIIIIIIl T TTTIT

o Numerical data

C,=0

——-- C,=1E-7

—— €, =5E-7

——- C,=1E-6

—==— €, =5E-6

""" No WBS | No fracture skin

T T T 111
L1 1 1111H

10?

T T T

1 IIIIIIII

10!

T T

1 lIIIIlII

10°

T

RNP, RNP' (psi/STB/D)

LR (|
1 IIlIIIlI

107!

Mt

T T T TTT

/ 5
o A e
bzl vl vl vl el v vl vl v vl 3y

0°® 10° 10* 103 102 10! 10° 10! 10? 10°
t (days)

Figure 2.31: Effect of wellbore storage on RNP and RNP” for sy = 0.5.

2.12. Adding Lower Limit to Reduction in Permeability and Fracture Conductivity
with Pressure Decline

In Equation 2.1 we introduced an exponential function correlating reduction in perme-
ability with increasing pressure decline. This exponential formulation, however, can be
troublesome in situations where 7 is sufficiently large to induce a rapid drop in per-
meability at low-to-moderate pressure-drawdown. As such, initial permeability will
rapidly approach zero. For instance, SRV permeability may drop to a value lower than
the intact matrix permeability. Evidently, this may not be physically sound.

To overcome this potential pitfall, we introduce in this section an improved exponen-
tial formulation for pressure-sensitive permeability (Luo et al., 2017). This formulation
features a critical value, or lower bound, denoted by k;,;, beyond which initial perme-
ability kj; cannot decrease with pressure any more and behaves steady state. This lower
bound can be regarded as the retained permeability under high confining stress. In this
approach, pressure-dependent permeability is defined as:
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ki = ki |1 (1= K/ ) (1 — 70| (2132)

Similarly, fracture conductivity has been observed to reduced from its initial value, C Fis
to a critical value beyond which it behaves steady state (Abass et al., 2009; Palisch et al.,
2007; Weaver et al., 2010). Henceforth, we adopt the following formulation for changes
in fracture conductivity with pressure-drawdown in the fracture:

Cr=Cyi |[1— (1= Cpy/Cpi)(1 — e—dePf)] (2.133)

Inserting Equation 2.132 and 2.133 into the analytical model previously developed in
Section 2.5 leads to new definitions of the nonlinear scaling parameter A, as follows:

Ar=[1—(1=Cpn/Cp)(1 - e_deﬁf)} elersten APy (2.134)
A= [1— (1= ke /ky) (1 — e—%Aﬁl)] e(er1en) AP (2.135)
Ao = 1= (1~ o /hay) (1 — &7 12802 eleraen)de (2.136)

Similarly, the nonlinear scaling parameters arising at the SRV /fracture and SRV /matrix

interfaces are redefined as:

P (1= Cpm/Cpi) (1 — e r2Pr) (2.137)
YT T2 (1 = ky /) (1 — e ) '

1— (1 =k /ky;) (1 — e~ 118P1)
o = 5 2.138
21— (1 — ko / ko) (1 — e~ 128P2) ( )

Lastly, the nonlinear scaling factor J,, in the constant-rate boundary condition is rede-

fined as:

6o = B[1— (1= Cpu/Cpi) (1 — &™) (2.139)
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where B is a correction factor that accounts for the fact that near-wellbore properties
change at a faster rate than overall fracture properties with pressure decline. We have
observed that = 1.03 gives accurate results for 20 < Cf; < 1000 md-ft.
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Figure 2.32: Fractional changes in SRV and fracture permeability with pore pressure.

To validate the analytical MFHW model with exponential pressure-dependent prop-
erties, we use the numerical model from the previous section. Two simulation case
studies are examined. Initial and retained fracture conductivity are 500 and 100 md-ft,
respectively. For Case Study 1, we consider that SRV permeability is more sensitive to
pressure decline than fracture conductivity thus we assign 7 = 2 x 1072 psi~! and
de = 1X% 10~* psi—!. Conversely, we consider in Case Study 2 that fracture conduc-
tivity is more sensitive to pressure decline than SRV permeability, hence we define
1 =1x10"* psi~! and df =2 X 1073 psi— L.

First, we compare BHP response given by our analytical model against the original
TLF model (constant properties) and numerical BHP data. Next, we compare the rate-
normalized pressure and pressure-derivative response given by our analytical model
against the TLF model and numerical data. Finally, we examine the evolution of frac-

tional reduction of SRV permeability and fracture conductivity for each case study.
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Figure 2.33 shows the comparison between BHP responses for both numerical case
studies. To begin with, our model is in excellent agreement with numerical data re-
gardless of whether fracture conductivity or SRV permeability is most sensitive pa-
rameter to pressure decline. Second, the TLF model fails to accurately capture the
expected BHP response from either case study. Also note that neglecting the effect of
pressure on rock properties will result in an accurate forecast of well performance until
bubble-point pressure conditions are reached. For instance, the TLF model predicts
that bubble-point pressure will be reached after more than 800 days of constant rate
production. Nonetheless, we observe that the onset time of two-phase flow (i.e. oil
and gas) actually depends on variations in SRV permeability and fracture conductivity
with time. Our model predicts that bubble-point pressure conditions will be reached
in the MFHW after 640 and 730 days for Case Study 1 and 2, respectively, which are

aligned with numerical data.

Lastly, note that the late-time BHP decline rate for Case Study 2 is almost equal to
that given by the TLF model, indicating that variation in rock properties with pressure
decline is quite negligible and does not influence late-time behavior of the system.
Conversely, BHP decline rate for Case Study 2 is higher than the other cases. This
difference may be due to the presence of non-negligible changes in rock properties
with pressure decline at late time which, at the same time, points out to a slow rate of

stabilization in those properties.

Figure 2.34 shows the rate-normalized pressure and pressure-derivative responses given
by our analytical model compared to the original TLF model and numerical data
for Case Study 1. The diagnostic plot shows that the three approaches give essen-
tially the same pressure-transient response at early times. In fact, 1/4-slope (bilinear,
SRV /fracture) and 1/2-slope (linear, SRV) flow regimes can be easily identified. Yet,
nonlinear effects, due to pressure-dependent properties, begin to influence pressure-
transient response after only 1 day of constant rate withdrawal; thereon, the TLF model
departs from the transient response expected from either case study. Moreover, note
that boundary-dominated flow (BDF) behavior is apparent between 70 and 250 days.
Then, RNP and RNP’ depart again from each other, which may be indicative of SRV
permeability being close to reaching steady-state conditions. This presumption is also
confirmed by Figure 2.36 where it can be seen that fractional reduction in SRV perme-
ability would become nearly flat after 260 days.
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Figure 2.33: Analytical and numerical BHP responses for Case Studies 1 and 2.
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Figure 2.34: Analytical and numerical RNP and RNP’ for Case Study 1.
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Figure 2.35 shows the rate-normalized diagnostic plot corresponding to Case Study 2.
Realize that, even though SRV permeability and fracture conductivity are both sensitive
to pressure decline, it is hard to detect their impact on pressure-transient behavior
solely based on this plot, primarily because of the log-scale. However, notice that
the TLF model deviates from our analytical model and numerical data after around
20 days of constant-rate withdrawal. From that point onward, RNP and RNP’ of the
TLF exhibit a unit-slope behavior whereas RNP and RNP’ of the pressure-dependent
MFHW model form a slope slightly higher than 1, indicative of higher BHP decline

rate, as shown in Figure 2.33.
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Figure 2.35: Analytical and numerical RNP and RNP’ responses for Case Study 2.

The fact that early-time pressure response is not affected by the pressure-sensitive frac-
ture conductivity suggests that, although conductivity is being lost rapidly with time,
it is still enough for the well to flow at the prescribed constant rate. In this view, initial
fracture conductivity may play a significant role in forecasting well productivity. This
issue will be explored in more detail later in this section.

Figure 2.36 shows the evolution of fractional reduction in average fracture conductivity

(C¢/Cyi), SRV permeability (ki /k1;) and matrix permeability (k2 /ky;). Fracture conduc-
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tivity and SRV permeability for Case Study 1 would have respectively been reduced
by roughly 50% and 70% after 100 days of constant-rate withdrawal. Moreover, SRV
permeability will fully reach steady-state after 300 days. Fracture conductivity, on the
other hand, will plateau toward its critical value after 400 days. Evolution of fractional
changes in fracture conductivity and SRV permeability is reversed in Case Study 2,
where it can be seen that fracture conductivity has been reduced by 50% after 100
days of constant-rate production whereas SRV permeability still retains 70% of its ini-
tial value. While fracture conductivity reaches steady-state 400 days, SRV permeability
does not exhibit any trend towards steady-state response; however, loss of initial SRV
permeability is quite significant (50%) after 220 days.
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Figure 2.36: Evolution of fractional reduction of average fracture conductivity, SRV and
matrix permeability for Case Studies 1 and 2.

2121 Impact of Pressure-Dependent SRV Permeability on Well Performance

In this case study, we assume that matrix permeability and fracture conductivity are
constant while SRV permeability vary with pressure decline. We aim to examine
pressure-transient response to the cases y; = 1 x 1074, 4x 1074 1x1073, 2 x 1074,
3x107*and 5 x 1074 psi~!. Reservoir, fluid and MFHW properties are taken from the
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previous case studies. Figure 2.37 shows the transient BHP response given by our ana-
lytical model as a function of the SRV permeability modulus and time. BHP response
given by the TLF model is also included in Figure 2.37. Note that the BHP response
given by our analytical model is close to the TLF model when the dependency of SRV
permeability on pressure is quite small (y; = 1 x 10~* psi~!). In this case, both ap-
proaches estimate the onset of two-phase flow effects, due to reaching bubble-point
pressure, to be > 800 days. However, the TLF model fails to capture expected BHP re-
sponse as the dependency of SRV permeability on pressure decline becomes stronger.
Recognize that BHP follows two distinct depletion paths when 7 > 2 x 1073 psi~!.
In the first stage, BHP exhibits a steep decline with time followed by a late-time trend
towards achieving a stabilized decline rate, which is presumably dominated by the
steady state, or critical, SRV permeability. This transient BHP behavior is evident for
the case 77 =5 x 1073 psi~ 1.
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Figure 2.37: BHP response as a function of SRV permeability modulus and time.

In order to determine whether such change in decline rate is dominated by the critical
SRV permeability, we draw a straight line with a slope equal to that of the mid-times
decline rate. Similarly, we draw another line with a slope equal to that of the late-times
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decline rate. Both straight lines are extended until they intersect and the time at which
the intersection occurs is read from the x-axis, which is around 140 days for vy; =
5 x 1072 psi~!. Interestingly, Figure 2.39 shows that SRV permeability achieves steady
state roughly after 140 days of constant-rate production for this case, which coincides
with the time at which the change in slope in BHP decline is seen on Figure 2.37.
In addition, realize that an increasing permeability modulus results in early reaching
of bubble-point pressure under constant-rate production. Although the onset of two-
phase flow effects dramatically reduces with increasing <1, it does not seem to vary
sensibly when 1 is relatively large (e.g. > 2 x 1073 psi~—1).

Figure 2.38 compares RNP and RNP’ given by our analytical model for 7y; = 1 x 107*
and 5 x 1073 psi~! against the TLF model. We see that pressure-dependent SRV perme-
ability does not influence early-time pressure response of the MFHW. This conclusion is
quite understandable as early-time behavior is dominated by fracture conductivity. As
such, we are able to easily identify the 1/4-slope (bilinear, SRV /fracture) and 1/2-slope
(linear, SRV) flow regimes in the plot. Our analytical model and the TLF model coin-
cide when y; = 1 x 107* psi~}, indicating that loss of SRV permeability with pressure
decline is negligible.
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Figure 2.38: RNP and RNP”’ for 7 =1 x 10~% and 5 x 103 psi 1.
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This conclusion was previously drawn after comparing BHP responses from Figure 2.37.
Yet, pressure-dependent SRV permeability largely influences pressure-transient response
of the MFHW only after 1 day of constant-rate production when y; =5 x 1073 psi~1.
Note that RNP sharply increases until joining RNP’ response, forming a unit-slope
trend, or apparent boundary-dominated flow (BDF) regime, between 40 and 80 days.
The apparent BDF gradually dissipates until RNP joins the response of the TLF model,
indicating the reach of an actual stabilized rate of decline.
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Figure 2.39: Fractional reduction of average k; for 13 =1 x 107% to 5 x 1073 psi~ L.

2.12.2 Impact of Pressure-Dependent Fracture Conductivity on Well Performance

The objective of this section is to study the influence of initial fracture conductivity and
stress-sensitive characteristic number of pressure-transient response and well perfor-
mance. Here, SRV and matrix permeability are considered constant. Two case studies
are designed for pressure-transient analysis in this section. The first case study as-
sumes an initial and critical fracture conductivity of 500 and 100 md-ft, respectively;
this means that 20% of the in-place conductivity is retained under high confining stress
conditions. The second scenario studies the effect of low initial and critical fracture
conductivity, 100 and 20 md-ft, respectively. Similar to SRV permeability in the previ-
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ous section, we study low-to-high stress-sensitive characteristic numbers in both case
studies (dy =1x107%,5x107%,1x1073,2x 10733 x 10~* and

Figure 2.40 shows the expected BHP response as a function of d; and time for C¢; = 500
md-ft and Cy;,, = 100 md-ft. BHP response of the TLF model is included in this plot.
Remarkably, even though fracture conductivity can largely decrease with pressure de-
cline, as illustrated by Figure 2.41, expected BHP response does not vary consider-
ably with respect to that given by the TLF model for constant properties. This de-
duction indicates that critical fracture conductivity, equal to the conductivity retained
under high confining stress conditions, plays a major role in maximizing the long-term
yield of a MFHW. This means that an initial fracture conductivity of 100 md-ft would
have been sufficient to produce the MFHW under study at preset constant rate of 20
STB/D/fracture if dependency of both fracture conductivity and SRV permeability on
pressure decline is negligible.
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Figure 2.40: BHP response as a function of stress-sensitive characteristic number; Cr; =
500 md-ft and Cg;, = 100 md-ft.
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Figure 2.41: Evolution of fractional reduction of fracture conductivity for dy =1 x 10~*
to 5 x 1073 psi~!. Cf; = 500 md-ft and Cg,, = 100 md-ft.

Figure 2.42 shows the transient BHP response as a function of dy and time for C¢; = 100
md-ft and Cy,,, = 20 md-ft. Unlike the previous scenario, in which initial fracture con-
ductivity was relatively high, BHP seems to be negatively affected by increasing d;
when initial fracture conductivity is relatively low. Note the similarity in BHP re-
sponses between Figure 2.37 and Figure 2.42. In particular, recognize that BHP stems
tend to attain late-time stabilized pressure decline rate, as clearly seen for dy > 1 X 103
psi!. Additionally, the onset of bubble-point pressure effects is reached earlier as sen-
sitivity of fracture conductivity to pressure decline increases.
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Figure 2.42: BHP response as a function of stress-sensitive characteristic number; C i =
100 md-ft and Cy,, = 20 md-ft.

Figure 2.43 shows the RNP and RNP’ responses for dy =1 x 10~*and 5 x 1073 psi !,
as well as the TLF model. To begin with, observe that pressure-dependent and TLF
models are in close agreement when dy = 1 x 10~* psi~!. This result indicates that,
in this case, sensitivity of fracture conductivity to pressure-drawdown is negligible.
On the contrary, there is an evident mismatch between models when d F= 1x 10
psi—!. Therefore, fracture conductivity is highly sensitive to pressure decline in this
case. Notably, both RNP and RNP’ responses are higher than the TLF model. In
addition, RNP’ response does not exhibit the bilinear SRV /fracture flow regime (1/4-
slope behavior) expected at early time. Moreover, linear flow in the SRV (1/2-slope
behavior) occurs between 0.4 and 14 days (earlier than expected) and is followed by a
transitional flow regime toward attaining late-time equilibrium. This late-time behavior
is too displayed by the RNP.
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Figure 2.43: RNP and RNP’ responses for df = 1 x 107* and 5 x 1072 psi~*; C¢; = 500
md-ft and Cy,,, = 100 md-ft.

Figure Figure 2.44 shows the evolution of fractional reduction of fracture conductivity
ford; =1x 107* to 5 x 1072 psi~! as a function of time. Realize that initial fracture
conductivity drops by 50% after 10, 30 and 100 days of constant-rate withdrawal when
df =3 X 1073,2 x 1073 and 1 x 1073 psi~!, respectively. Nonetheless, note that fracture
conductivity drop to almost its critical value within 50 days when df = 5 x 1073 psi—L.
The latter result may be the cause of the higher RNP and RNP’ responses, observed in
Figure 2.43.
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Figure 2.44: Evolution of fractional reduction of fracture conductivity for dy =1 x 10~*
to 5 x 1073 psi~!; Cy; = 100 md-ft and Cf,, = 20 md-ft.

2.12.3 Impact of Simultaneous Pressure-Dependent SRV Permeability and Fracture
Conductivity on Well Performance

In this section, we examine pressure-transient behavior for the following scenarios:

e Casel: 11 =5x10*psi ' and dy =5 x 10 * psi~!
e Case2: 91 =1x10 2 psi-tand dy =5 x 107 * psi~!
e Case3: 77 =1x 1073 psi~! and df =1x 1073 psi~!
o Case4: 11 =3x10 % psi-tand dy =1 x107? psi~!

We assume 7, = 5 x 1070 psi~!. Initial and retained fracture conductivities are 100 and
20 md-ft, respectively. In case 1 fracture conductivity is more sensitive to pressure de-
cline than SRV permeability. Case 2 is the opposite version of case 1. In Case 3 fracture
conductivity and SRV permeability vary at equal rate with pressure-drawdown, resem-
bling the pseudo-pressure approach. Lastly, Case 4 relates to the more realistic situa-
tion where, although rock properties are pressure-dependent, SRV permeability drops
faster with pressure decline than fracture conductivity (Suarez-Rivera et al., 2013).
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Figure 2.45 illustrates the expected BHP responses for the four cases along with the TLF
model response. As in previous cases, the TLF model fails to capture actual pressure
behavior due to the assumption of constant properties. Notice that BHP response for
cases 2 and 3 are substantially different; however, BHP response of cases 2 and 3 is
somewhat similar. However, BHP response from Case 4 is intricate and involves the
equilibration of SRV permeability and fracture conductivity at different times.
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Figure 2.45: BHP response as a function of stress-sensitive characteristic number, SRV
permeability modulus and time.

Figure 2.46 shows RNP and RNP’ responses for cases 3 and 4. Note that the TLF model
seems again off from the expected pressure-transient response. Actually, RNP and
RNP” for cases 3 and 4 are slightly higher than that of the TLF, which indicates early
loss of fracture conductivity, as discussed in the previous section. Moreover, the lin-
ear flow regime in the SRV for the pressure-dependent cases is shorter than expected.
Specifically, RNP’ of case 4 promptly increases to join its RNP counterpart, both ex-
hibiting a unit-slope during a short period, which may be indicative of an apparent
BDF regime. Finally, RNP and RNP’ split up. This also occurs with RNP and RNP’
responses for case 3; however, the apparent BDF slowly dissipates.
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Figure 2.46: Comparison of RNP and RNP’ responses for cases 3 and 4.

Finally, prediction of the onset of two-phase flow effects due to reaching bubble-point
pressure in the MFHW is not sensibly different between cases 1, 2 and 3. Nevertheless,
as discussed earlier, highly pressure-sensitive SRV permeability can lead to a steep

drop in BHP until it reaches its final equilibrium, or critical, permeability value.

2.13. Discussion

We propose an analytical model that incorporates localized variations in rock and fluid
properties with pressure depletion to examine their impact on expected performance of
multi-fractured horizontal wells. Pressure-dependent properties are modeled as expo-
nential functions of local pressure-drawdown, which allows assigning unique pressure-
dependent rock properties to the different regions of the MFHW (i.e. matrix, SRV and
fracture). In this manner, we are able to model the more realistic case where SRV
and fracture properties vary with pressure at different rates. Such behavior cannot be
captured with the application of pseudo-functions which unfortunately are common

ground for most of the analytical MFHW models available in the literature.
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One interesting observation made in this study is that pressure-dependent proper-
ties do not affect pressure-transient behavior or well performance during early-to-mid-
times production when initial fracture conductivity is relatively large (> 500 md-ft),
even if it is highly sensitive to pressure decline. On the other hand, we observe that
dependency of SRV permeability on pressure decline can largely affect both pressure
response and performance of the MFHW. We observe that the characteristic BHP re-
sponse to this case is complex and involves changes in the rate at which BHP declines
with time. We further proposed a simple straight-line method to determine the time at
which SRV permeability had reached is critical value. Furthermore, effect of pressure
decline on SRV permeability may induce a unit-slope response of RNP and RNF’, or
apparent BDF regime, during mid to late times while SRV permeability reach-es steady
state. Likewise, we observe that low initial fracture conductivity causes a positive shift
in RNP and RNP’ responses with respect to the TLF model, indicative of high-rate
loss of fracture conductivity at very early times which continues until it reaches its
steady state, or critical, value. This value is often referred to as the retained fracture

conductivity under high confining stress.

Note that our analytical model does not apply to single-phase compressible flow and
multi-phase flow. Nevertheless, as the proposed analytical solution method involves
an iterative algorithm, it may be feasible to develop a more generalized governing
equation in which rock and fluid properties do not necessarily exhibit exponential
behavior with pressure-drawdown. In such case, instead of defining nonlinear scaling
parameters, the (normalized) diffusivity coefficient would become pressure-dependent
and will be up-dated iteratively as pressure depletion progresses.

In addition, wellbore storage (WBS) effects can be quite significant in MFHWSs par-
ticularly when the lateral length is considerably large (e.g. > 5000 ft). Fortunately,
WBS effects can be readily incorporated into the analytical solution derived in this
paper by following the method proposed by Brown (2009). Constant-rate produc-
tion may itself be a limitation to the application of our analytical MFHW model for
production forecast. Long-term yield and EUR of a MFHW are typically estimated
by means of rate-transient analysis (RTA) which implies the use of constant-pressure

and/or variable-rate/variable-pressure conditions.
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2.14. Conclusions

We developed an analytical MFHW model, based on the TLF model, where rock
and fluid properties vary exponentially with pressure decline. Unlike existing ana-
lytical MFHW models that use pseudo-pressure/pseudo-time to account for pressure-
dependent properties, our model allows assigning individual rock properties to each
of the regions of the MFHW. That is, matrix, SRV and fracture are assigned a unique
set of pressure-dependent properties. In this manner, we model the more realistic sce-
nario where SRV permeability, mainly due to the presence of unpropped fractures,
declines faster with pressure-drawdown than fracture conductivity. As such, our ana-
lytical model enables assessing the impact of simultaneous decline in SRV permeability
and fracture conductivity with pressure depletion on well performance forecast and es-

timation of onset of two-phase flow effects due to reaching bubble-point pressure.

Our model uses the assumption of single-phase, slightly-compressible fluid-flow in the
MFHW hence it is not able to handle multi-phase flow due to either pressure drop-
ping below bubble-point pressure of co-produced water flowing along with oil. Given
this limitation, we rather focused on examining pressure-transient behavior and well
performance up to reaching bubble-point pressure conditions. The introduction of the
exponential definition for normalized pressure, in conjunction with the definition of
nonlinear scaling parameters, enabled the linearization of the governing equations for
the composite system. The analytical pressure-transient solution is found in Laplace
domain and it is inverted back into time domain numerically. We introduce an iter-
ative algorithm to estimate the nonlinear scaling parameters, local average pressure-

drawdowns and BHP, simultaneously.

Our pressure-dependent MFHW model was successfully validated against numerical
simulations. We observed that the sensitivity of SRV permeability to pressure decline
can largely affect well performance, leading to an early reaching of bubble-point pres-
sure in the MFHW. Foremost, simultaneous reduction in fracture conductivity and SRV
permeability with pressure decline, the latter exhibiting a faster decline trend, signifi-
cantly reduce the expected yield of a MFHW. Therefore, it is necessary to account for
the fact that fracture conductivity and SRV permeability vary at different rates with
pressure-drawdown in order to make more realistic estimation of well productivity
and performance forecast, at least, until the composite system reaches bubble-point

pressure.
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In general, our analytical MFHW model with pressure-dependent rock and fluid prop-
erties delivers accurate prediction of pres-sure- transient behavior and well life when
constant-rate production and single-phase flow conditions are ensued in the MFHW.
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3. Analytical Model to Estimate the Fraction of Frachits in a
Multi-Well Pad

3.1. Background

Tightening well spacing while pumping larger hydraulic fracturing jobs was deemed
as the most practical solution to maximize recovery and boost revenue from shale plays
in North America. However, drilling infill (or child) wells too close to depleted offset
(or parent) wells may actually have an adverse impact on long-term productivity and
safety of the multi-well pad. The pressure-depleted region surrounding the parent
well acts as a pressure sink that "attracts” hydraulic fractures from the infill well, thus
allowing pressure communication between infill and offset wells. This process is known
as fracture-driven interactions (FDI), more commonly referred to as fracture hits or "frac
hits" (Jacobs, 2017a).

Frac hits relate to the propagation of hydraulic fractures from child wells into other
existing fractures, either primary or secondary, from neighboring wells (Lawal et al.,
2013). This mode of well interference may result in temporary or permanent loss of
productivity (King et al., 2017; Garza et al., 2019). In addition, because of the potentially
high-pressure difference between offset and infill wells, frac hits may induce blow-outs
from offset wells (Jacobs, 2017b). In general, frac hits can occur through either primary
(hydraulic) or secondary fractures (natural/induced fracture network) (Jia et al., 2017;
Frohne and Mercer, 1984). Figure 3.1 shows a schematic of the two types of frac hits
between infill and offset wells.

The degree of severity of the pressure connectivity is directly related to the number of
fractured stages in communication. The key physical mechanisms responsible for the
generation of frac hits are stress shadowing (Peirce and Bunger, 2015; Daneshy, 2014)
and poroelastic effects (Seth et al., 2019), both due to substantial differences in zonal
reservoir pressure across wells. The difference in pressure between wells is due to the
offset wells being depleted, typically 6 to 12 months, before infill wells are drilled and

completed.
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Figure 3.1: Frac hits through primary and secondary fractures allowing pressure com-
munication between the parent well (A) and child well (B).

Frac hits not only happen between MFHWs landed in the same low-perm formation
but also across stacked pay zones. When treatment pressure in the infill well overcomes
the stress barrier segmenting a stacked formation play, primary fractures are allowed
to grow along and across the path of least resistance. In this case, this path is the
pressure-depleted region surrounding the parent wells (Minkoff et al., 2003; Roussel
and Sharma, 2010; Huang et al., 2019). Figure 3.2 shows the gunbarrel view, or wine-
rack configuration, of a multi-well pad with frac hits covering two stacked pay zones.

As mentioned earlier, frac hits are a major concern for two reasons. First, they are a
serious safety risk to field operations. Second, frac hits have a negative impact on infill
well performance and ultimate recovery in multi-well pads. For these reasons, shale
oil and gas operators, service companies and regulatory agencies have been working
closely to develop methods and procedures aimed at predicting or, at least, mitigating
the occurrence of frac hits when MFHWs are tightly spaced.

Recently, several techniques aimed at mitigating frac hits during the completion of infill
wells have delivered positive results. One of such techniques is pressure recharge of
offset wells (e.g. Gala et al., 2018; Jacobs, 2018). The working principle of this method
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is the repressurization of the parent well to compensate for the increase in effective
stresses. Bommer et al. (2017) reported the successful application of offset-well repres-
surization in a six-well zipper project in the Bakken Formation.

Stacked shale play

B AC
: Well B ~ Lowp Well C
Formation 1 O ; 1 O ;
X _ ) £ A . ,—-’/
‘ess barrier. S, '\ﬁachlt ____________ S Frachlt/ ____d

Formation 2 \ @) ! High p

Figure 3.2: Gunbarrel view of a multi-well pad with frac hits across different target
formations. In spite of being spatially separated, wells A, B and C are interconnected
through frac hits.

Preventive refracturing of parent wells is another method for protection against frac
hits (King et al., 2017). Garza et al. (2019) discuss the application of refrac treatments
pumped into offset wells before drilling and completing infill wells. Authors assert
that preventive refracs reduce the chances of getting loss of productivity in offset wells
and improves the performance of the child well.

Far-field diversion is another frac hits prevention method in which diverters are de-
ployed into the child well during the hydraulic fracturing job. The objective of is to
prevent uncontrolled length growth of the newly-created hydraulic fractures toward
depleted zones around offset wells. Zhang et al. (2019) presented a statistical analysis
in which wells impacted by far-field diverters exhibit an increment in EUR compared
to offset wells. Other similar studies have also reported positive results for the imple-
mentation of far-field diversion (Vidma et al., 2018,0; Rodionov et al., 2017).

Aside from these preventive techniques, there have been other methods trialed in the
field, including leaving the offset well open to flow during the fracturing job, shutting
in the well (short or long term) and monitoring pressure response while the infill well
is fractured (King et al., 2017). In despite of these techniques, reports of the occurrence
of frac hits continue to grow across US basins.
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3.2. Statement of the Problem

Several methods for detection and assessment of impact of frac hits on well perfor-
mance and estimated ultimate recovery (EUR) have been proposed in the literature.
Ajani and Kelkar (2012) examined fracture data and production data from 179 wells in
the Arkoma basin and estimated the loss of gas production due to frac hits. Authors
concluded that offset wells were impacted by child wells. Lawal et al. (2013) and Yadav
and Motealleh (2017) implemented rate-transient analysis (RTA) specialized plots com-
bined with straight-line analysis, to study the impact of frac hits on well productivity
and EUR. However, none of these studies quantify the actual number of frac hits.

Sardinha et al. (2014) used pre-flowback pressure data from 10 MFHWSs in the Horn
River basin to assess the overall connectivity in the pad. Authors estimated the ratio of
total number of recorded pressure hits to the total number of possible pressure hits be-
tween two wells. Awada et al. (2016) proposed a workflow for the identification of well
interference mechanism and subsequent numerical simulation modeling to accurately
estimate the impact of frac hits on well productivity. In their work, authors assert that
MFHWSs must be isolated from their pads or “gathering systems” to be able to diagnose
interference effects accurately. Authors recommend well shut-ins to examine pressure

behavior in offset wells in response to operational changes in the active MFHW.

Molina and Zeidouni (2017b) introduced an analytical pressure-transient analysis (PTA)
model to detect and assess the fraction of frac hits between two MFHWs without the
need for any shut-ins; however, wells must be flowing at constant rate. Authors in-
troduced the degree of well interference coefficient &, defined as the ratio of frac hits
to the total number of possible frac hits, as a history-matching parameter. The main
drawback from this approach is that another interference coefficient should be known

beforehand; this coefficient is strongly dependent on wells” dimensions and properties.

Numerical models have also been proposed. These models often add more layers of
complexity to the problem, like non-planar or complex fractures in stacked plays (e.g.,
Cao et al., 2017; Marongiu-Porcu et al., 2015; Tang et al., 2017; Yu et al., 2018). The
application of such models, however, is restricted to proprietary software and requires
the numerical model to be fed with specialized information from the multi-well pad

(well profile, fracture network/density, direction and magnitude of in-situ stresses, etc.)

The objective of this chapter is to develop an analytical model that can be used to
detect well interference effects due to frac hits and estimate the fraction of frac hits be-
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tween MFHWs based on the application of PTA to a generalized MFHW model, where
fluid-flow is approximated by a combination of several linear-flow regimes. In such
model, frac hits are modeled as a boundary condition that allows inter-well pressure
communication through primary fractures. Pressure connectivity is governed by the
fraction of frac hits in the infill well (6;,45) and the bottomhole-pressure differential
Apwas = |Apwa — Apws|, where Apwj = pi — pwj(t) is the pressure-drawdown of well
j=A,B.

dwaB is used as the history-matching parameter between the analytical solution and
synthetic pressure data, generated via numerical simulations. The proposed model
considers single-phase, slightly compressible fluid-flow in a multi-well pad in which
fractures are planar and wells are perfectly parallel to each other. Moreover, MFHWSs
are landed in the same pay. The analytical solution to the frac hits model is derived in
Laplace domain and inverted into time domain numerically (Stehfest, 1970). Different
sensitivity analyses are performed and history-matched rate-normalized type-curves

are presented and discussed for each case study.

3.3. Conceptualization of the Frac Hits Model

Pressure communication through the matrix in ultra-low perm formations is negligible
when primary fracture and frac hits conductivity is relatively high (e.g. >100 md-ft)
(Yu et al., 2016). Therefore, if MFHWs are fairly spaced in a multi-well pad, each well
would function as an isolated “vessel” that operates independent from others. From
this perspective, and in the absence of frac hits, multi-well pads can be deemed as
gathering systems for several isolated vessels. The concept of independent vessels for
two multi-fractured wells is depicted in Figure 3.3.

If frac hits are present, on the other hand, MFHW performance becomes inter-well-
dependent. Since pressure communication takes place through the frac hits, interfering
wells eventually become branches of a unitized well pad. In this case, the assumption
of wells operating as independent vessels does not hold anymore. More importantly,

changes in the operating conditions of a well influence interconnected wells.
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Figure 3.3: A two-MFHW pad represented as two individual vessels. Operating condi-
tions from well A (child well) do not influence performance of well B (parent well).

From a thermodynamics perspective, total energy in a multi-well pad will tend reach
an equilibrium condition with its surroundings. Under the presumption of interfering
wells becoming branches of a unitized pad, we hypothesize that pressure, as a form of
energy density (i.e. energy per unit volume), will ultimately equilibrate across interfer-
ing wells. Hence, in the presence of frac hits, Apyap(t) = |Apwa(t) — Apywp(t)| should
exhibit a tendency to plateau toward its final equilibrium condition. On the contrary,

Apyap(t) will continue to grow in the absence of any form of pressure communication.

Figure 3.4 conceptualizes frac hits as a “valve” connecting vessels A and B. The "aper-
ture" of this valve, defined as 0 < Jy,4p < 1, is directly proportional to the frac-
tion of frac hits. J,4p = 0 indicates no frac hits; 0 < dyap < 1 indicates partial
pressure communication; and, 6,45 = 1 indicates full frac hits (i.e. all fractures be-
tween wells A and B are in communication). Furthermore, we define Ap,p(t) =
eap(pwB(t) — pwa(t)) while assuming that the leakage rate across interfering wells is
proportional to Apy,ap(t). eap sets the direction of flow as follows: e = 1if g4 > gp;
otherwise, € 45 = 0.

Realize that the speed at which pressure stabilizes across wells A and B in Figure 3.4
depends on the aperture of the valve. Hence, the rate of stabilization must be a function
of d,,4p because the higher 6,45 the faster Apy,4p(t) will reach equilibrium. Therefore,
dwaB makes possible to both detect frac hits and assess the fraction of frac hits between
wells A and B. This is the fundamental hypothesis of the analytical frac hits model
developed in this chapter.
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Here, we assume that wells have equal number of fractured stages, with one hydraulic
fracture per stage (frac-sleeve-type completion). Moreover, fractures are planar. We too
consider that frac hits conductivity is equal to the average fracture conductivity of well
A. Furthermore, we assume that wells are landed in the same formation (Figure 3.5a).

Lastly, transience effects within frac hits are assumed negligible.

Pws (t) = f (Pwa(t), Suwap)

ds e T T e e e e s |
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Figure 3.4: Frac hits between two MFHWs interpreted as a “valve” connecting two
vessels. Valve "aperture" is controlled by d,,4p € [0, 1] while leakage rate across vessels

is proportional to Ap,ap = EAB(PwB — PwA)-

In reality, MFHWSs can have different number of primary fractures. Consequently, it
is both sound and convenient to define J,, on a per-well basis rather than on a global
basis. In this sense, let us define J,,4; as the ratio of total frac hits between wells A and
j, (ngn) aj, where well j is located immediately next to well A (Figure 3.5b), to the total

number of primary fractures in well A, nsx:

(nfn) aj
TZfA

bwaj = (3.1)

The former definition can be readily extended to wells j = B and C using well A as the

reference point:

(nem)aj  (mm)aj  nsa nea
5ij = f J = f J X f = 5wA] L (32)
ngj nfa ngj nfj

As an example, consider the two-MFHW system discussed earlier and further suppose
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that nyy = 50 and n¢p = 65. According to Equation 3.2, 6,54 = 0.7695,, 4. This result
is sound as, although the number of frac hits is equal in both wells, the degree of well

interference of well B must be smaller as it has more fractures than well A.

Equation 3.1 and 3.2 will be used in the derivation of the frac hits boundary condition
for the fluid-flow model, described in Section 3.6.

3.4. Proposed Methodology

We develop an analytical single-phase, fluid-flow model for a three-MFHW pad in an
oil-rich low-perm formation. Since MFHWs are landed in the same pay, frac hits are
only allowed between wells A and B and wells A and C (Figure 3.5b). As such, well A
is defined as the reference MFHW in the pad. Rock and fluid properties are considered
constant and independent of changes in pressure.

We introduce the quad-linear flow (QLF) model for each MFHW as the basis of the
fluid-flow model of the multi-well pad. Unlike the trilinear flow (TLF) model (Brown
et al., 2011) or five-region flow (FRF) model (Stalgorova and Mattar, 2013), in which
well dimensions must be symmetric, QLF model can easily handle asymmetric well
dimensions. Moreover, QLF accounts for two different fluxes coming from the matrix
into the SRV of each well (Figure 3.6). Another novelty introduced with the QLF model
is the availability of two boundary conditions, each located at the inner and outer
fracture tip. In this manner, we can assign to each fracture tip either a frac-hit-type or

a no-flux boundary condition. This procedure is discussed in detail in Section 3.5.

Earlier we discussed that a stabilization trend in Ap,,45(f) would be a clear indication
of inter-well communication due to frac hits. Consequently, we define Ap,ac(f) =
eac(pwc(t) — puwa(t)), with eac = 1if g4 > gc and 0 otherwise, as the parameter that
allows the detection frac hits between wells A and C. The goal is to find analytical
expressions for pya = f(t,04aB,0wac), Pws = f(t,0wap) and pyc = f(t, dpac) for
which classical PTA techniques, such as diagnostic plots and type-curves analysis, can
be applied to detect and estimate the fraction of frac hits in a multi-well pad. We define

the following rate-normalized parameters that will be used for PTA analysis:

APwA(t) - prj(t) _ APwA]'(t)
- =

q q;

RNPA]' = EA]' (3.3)
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l dprAj (t)

/o
RNPA; = o i

(3.4)

In the equations above, g; is the total equivalent per-fracture production rate of the

multi-well pad, as defined in Equation 3.6.

Frac hits are artificially created in the numerical model by interconnecting primary
fractures between wells A-B and A-C. We denote the actual fraction of frac hits by ¢,
and ¢, ,~. Validation of the model is carried out by history-matching the analytical
solution with numerical data. Since the fractions of frac hits of the numerical model
are known, we compare the history-matched values of 6,4 and ,,4c against 6, ,  and
0., 4c and compare how accurate would the estimation of frac hits be by means of the
analytical model.

Subsequently, we evaluate the sensitivity of é,,4p and J,4c to relevant reservoir and
well properties, such as distance between MFHWsS, fracture half-length, fracture con-
ductivity, SRV permeability and distance between fractured stages.
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Figure 3.5: Conceptualization of the frac hits model for a three-MFHW pad system. (a)
Wells A, B and C were drilled and completed in the same target zone, (b) Frac hits can
be present at several fractured stages.
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3.5. Mathematical Modeling—Part I: The Fluid-flow Model

3.5.1 General Remarks

Alike the TLF and FRF fluid-flow models for MFHWSs, the proposed analytical ap-
proach is based on modeling MFHW as a well with a single primary fracture using the
equivalent per-rate approach. This simplification assumes that all primary fractures of
a MFHW can be represented by a single fracture with equivalent per-fracture flow rate,
defined as q;- = (qwen);/nysj [STB/D/fracture]. The most significant assumption behind
this definition of q;- is that all primary fractures in well j are active and flowing at the

same rate.

Now, suppose that, due to some operational issue constaint, some stages were shut-
in during the collection of pressure-transient data from the pad. Although current
analytical MFHW models (i.e. TLF and FRF) cannot accommodate for such scenario,
we introduce a more accurate definition for q;- that enables accounting for isolated

stages in our model, as follows:

Jwell
g=|5 (3.5)
] <5Pnf ) i

where 0 < 6, < 1 is the fraction of fractures in well j that were active during the
gathering of pressure data. Following this definition, we define the total equivalent

per-fracture flow rate from the three-MFHW pad under discussion:

! Jwell Jwell well
g = o s I (3.6)
t <5v”f>A (5P”f>s <5p"f>c

We setup the analytical fluid-flow model based on the single-fracture and per-fracture

equivalent rate approached using the definition of q;. given by Equation 3.5. A schematic

of the multi-MFHW pad under analysis is presented in Figure 3.6.

Note from Figure 3.6 that fluid-flow across each single-fracture well is modeled as the
combination of four separate linear flows. We call this flow modeling approach the
quad-linear flow model or QLF. The four combined-linear flow regimes are:
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Matrix to SRV (outer matrix, Oj)
Matrix to SRV (inner martrix I7)
SRV to fracture (1j)
Fracture to well (f7)

j = A, B and C. In general, we can say that the fluid-flow model for the three-MFHW
scenario is simply the result of assembling three QLF wells together. The distance from
well j to the outermost boundary in the x-axis is dictated by the average half-distance
between fractured stages on each MFHW. The outermost boundary with respect to
the y-axis on wells B and C are given by the well site configuration of the pad in the
formation.

Because wells B and C are placed at different locations with respect to well A, we con-
veniently define a coordinate system to simplify the process of deriving the governing
equations and boundary conditions for each well. To begin with, we align all wells at
x = 0 thus we can use the x-axis to define horizontal coordinates for all wells. With
respect to the y-axis, we provide each well with its own y-axis relative to the original
y-axis in well A. In summary:

X4 =Xp=2XCc=X (3.7)
ya=y (3.8)
yg =Y — Las (3.9)
Yyc =Y+ Lac (3.10)

L 4p is the distance between wells A and B and L 4 between wells A and C. Note that
wells B and C are conveniently located at yg = 0 and yc = 0, respectively. Normalized
Cartesian coordinates are presented in Section A.3.1 and Section A.3.2.

An important issue arises when defining which portion of the inner matrix between
wells A and B, also between wells A and B, would be drained by each well. The depth
of investigation into this region depends on several parameters, including fracture half-

length (xf;), SRV permeability (kij), and per-fracture flow rate (q;).

However, assigning a dynamic inner matrix boundary to each well would introduced

undesired nonlinearities that largely jeopardize the practicality of the model. Instead,
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we assume that the maximum depth of investigation accessed by well j into the inner
matrix region between wells A and j is proportional to the half-fracture length of each
well. A no-flux boundary condition will be assigned at each of these boundaries.

Figure 3.6: The three-MFHW-pad frac hits model based on the QLF model. Each well is
modeled based on the single-fracture approach along with its corresponding equivalent
per-fracture rate.

For instance, the outer matrix (y,04) and inner matrix (y,;4) boundaries of well A are,
respectively, defined as:
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fo LAB
p =x + L — (x + x —_ =X _— 311
Yeor = Xfa+ [Lap — (xa + Xxgp)] TEET FA ( XAt xfB> (3.11)
Yela = Xpa + [Lac — (xra +x )]xf—A:x _ Lac (3.12)
elA = XfA AC fAT XfC Xra T xrc fC X+ 2 :

Similar expressions for normalized dimensions and distances for wells A, B and C are

given in Section A.4.1, Section A.4.2 and Section A.4.3, respectively.

3.5.2 General Assumptions

The following assumptions were made in the development of the QLF model: (1)
single-phase, slightly-compressible flow, (2) constant rock and fluid properties, (3) ho-
mogeneous initial pressure across the multi-well pad, (4) planar hydraulic fractures,
(5) MFHW can be modeled as a single-fracture well with an equivalent per-rate flow,
defined as total flow rate divided by number of fractured stages, (6) flow from the un-
touched matrix into the wellbore can be approximated as a combination of four linear-
flow regimes, (7) SRV is modeled as a rectangular region with permeability orders-of-
magnitude higher than matrix permeability, (8) frac hits only occur between hydraulic
fractures, and (9) all hydraulic fractures contribute equally (i.e. 6,4 = 5 = dpc = 1).

Additionally, we assume frac hits can only happen between primary fractures of neigh-
boring wells. As such, we do not consider the case of well interference effects due to
the interaction between primary fractures and SRV of neighboring wells. Similarly, we
ignore fluid-flow from the inner matrix region between wells into the fracture segment

that connects primary fractures.

3.5.3 Derivation of Governing Equations

The general governing equation for 2-D porous flow of slightly-compressible fluid with
constant rock and fluid properties is given by (Dake, 1983):

0?Ap,;i  9*Ap 1 0Ap
axzr] : 21’] + Qr],u . o r] (313)
j ]
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where Q; is a general flux-sink term. We use Q; to model the constant-rate well bound-
ary condition in the fracture, in this manner freeing up two boundary conditions to
be used when solving the governing equation for each fracture region. Additionally,
r refers to the specific region in well j, i.e. matrix (j = I,0), SRV (j = 1) and fracture
(j = f). Equation 3.13 can be written in dimensionless form as:

1 9o
77jD atD

azper
ay]ZD

azper

+
ox3,

(3.14)

+Qrip =

Assuming initial pressure is initially equal and constant throughout the system (p,jp =

0 at tp = 0), Equation 3.14 can be transformed into Laplace domain, which gives

9 f)er azﬁer
dxp, ayjz'D

S
+ Qb — meﬁer =0 (3.15)

The normalized quantities p,jp, Xp, ¥jp, tp and #7;p in Equation 3.14 are described in
Appendix A.

3.5.3.1 Matrix (Regions I and O)

Fluid-flow in the matrix regions, both inner our outer, is assumed to be one-dimensional
(i-e. linear) with respect to the y;-axis. Therefore, the xp component of Equation 3.15
can be neglected. This simplification leads to

pip s
— —prip =0 (3.16)
dyip  fmD 7
where ¥ = I and O refers to the inner and outer matrix regions, respectively (see

Figure 3.6). The subscript m in the dimensionless diffusivity coefficient indicates it is

defined based on matrix properties.

3.5.3.2 SRV (Region 1)

The dimensionless governing equation for fluid-flow in the SRV region is given in
Laplace domain as:
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9*p1jp a2751]'D_ s
dxp, dWip  MyD

Flow is assumed linear with respect to the x-axis in this region hence pijp # f(yp)-
However, notice from Figure 3.6 that there are two external influxes coming into the
SRV through the SRV/matrix interfaces. These boundaries are located at yjp = x¢jp

and yjp = —Xfjp-

The assumption pyjp # f(yjp) enables the integration of Equation 3.17 with respect to
yjp within the interval y;p € [~xf;p, xfjp]:

Xfip 2 Xfip 2 Xfip
1jD 1jD s )

dy; ————dyip — — »dyin =0 3.18

o Yip + ay]ZD Yip - / P1jp 4Y;p (3.18)

—Xfjp —XfjD

—Xfjp

As a result,

9*Pj1p 1 9p1ip 3p1iD s
asz TP ay.] B ay.]D - EﬁljD =0 (319
D fib jD [ P/ yin=—xsip j

Mass must be conserved across SRV /matrix boundaries. Therefore, assuming that both
matrix and SRV properties are isotropic and homogeneous across regions, we derive

the following flux-continuity relationships:

opq; opo;
( a”fﬂ?) _ I’z_m ( ap?fD) (320)
D yip=sgp NPy
(apljD> _ knm (aPIjD> (3.21)
ay; ki \ oy '
IS oo NP o

Transforming Equation 3.20 and 3.21 into Laplace domain and replacing the resulting
expressions into Equation 3.19 yields
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d*pijip  km/kj | (dPojp dpiip s
dpzj n 2m i ;.J - (= { ———pp=0 (322
Xp XfiD YiD Yip=%5ip Yo ) Mjp

d dpo;
The flux-source terms ( S ) and ( dp o D)
Yio ) yip=xgp YiD J yip==x5jp

mined based on the analytical solution for the inner and outer matrix regions for each

will be ultimately deter-

individual well in the multi-well pad.

3.5.3.3 Fracture (Region f)

Fluid flow in the fracture is assumed one-dimensional along the y-axis. Well is modeled
as a infinitesimal sink located at y;p = 0. The governing equation for the fracture region
in well j is given (in oilfield units) by

82A79f]~ . azAPfj . 27T X 141.2q;-yB y) = LaAPff

(3.23)

where q; [STB/D/fracture] is the per-fracture rate of well j (see Equation 2.92). Normal-

ization, and subsequent transformation, of Equation 3.23 into Laplace domain, yields

ZNQ;‘D
s(Fep)j

P sip
a]/]ZD

o%p £iD
ox3,

+ +

S
S(yin) — ——Bsin =0 (3.24)
(yip) - Pfip

Integration of Equation 3.23 with respect to xp for xp € [0, w;p/2], leads to:

Z()]D/Za2 w]D/Za w]D/Z 2 ,
PfiD / Pfip / ip s _
dxp + —>—dxp + ——~—6(yip) — —pfip p dxp =0
I e A R R

Performing the integration with respect to xp above, yields
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Pprp | 2 (dﬁfm) <de1£>> 27y, s
+ - D sy = 2 po =0 (3.26)
dy]zD Wjip dxp XD=Wjp/2 dxp xp=0 S(FéD)] (y]D) 1fiD Prip

There are two boundary conditions within the range of integration: (1) axisymmet-
ric condition (i.e. no-flow boundary) at xp = 0, and (2) flux continuity across the
SRV /fracture interface located at xp = w;p/2. These conditions are:

a .
( pf]D) =0 (3.27)
axD xD:0
(apf_fD> _ Ky (_ap 1]'D) (3.28)
9xp Xp=wjp/2 kgj \ dxp Xp=wjp/2

Transforming these boundary conditions into Laplace domain and inserting them into
Equation 3.27, results in:

2nq’,
iD 5 _
dxp )xD:w]-D/Z S(FéD)j ! fip 7

@psip  2kijp (dﬁup
dyip  (Fep)j

0
The flux-source term (

T ) is later determined for each well in the pad.
D XD :ZU]'D /2

3.5.4 Analytical Solution for Fluid-flow in Well A
3.5.4.1 Outer Matrix (Region OA)

The dimensionless pressure distribution in Laplace domain for Region OA (r = O, j =
A), denoted by ppap, is determined after finding the general solution to Equation 3.16:

S , S
pPoap = Apa cosh [(]/D — Ye0AD) W_D] + Boa sinh [(]/D —Ye0AD) W_D] (3.30)

As discussed in Section 3.5.1, we assume that y,04p (Equation A.17) is the deepest
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normalized distance the pressure disturbance from well A would reach into the matrix
region between wells A and B (see Figure 3.6). Therefore, we prescribe a no-flow

boundary condition at yp = y.04p, given by

(d’;’loi) =0 (3.31)
YD/ yp=yeonn
Replacing Equation 3.31 into 3.30, leads to:
_ s
Poap = Aopa cosh [(VD — Ye0AD) —} (3.32)
TmD

dﬁOAD S . [ S }
=A ——sinh — _ 3.33
o 0A4/ - (YD — Ye0aD)/ — (3.33)

There are two additional boundary conditions that allows connecting the outer matrix

region with the SRV in well A. These boundary conditions are:

(i) Pressure continuity. Pressure hence must be continuous across the matrix/SRV
interface located at yp = 1. This condition must also hold true in Laplace domain.

Thus, in dimensionless form, we get:

(PoAD)yp=1 = (P14D)yp=1 (3.34)

We derive the following relationships by substituting Equation 3.34 into 3.32:

NmD

cosh {(yD — Ye0AD) L}

Poap = (P14AD)yp=1 (3.35)
cosh {(1 - yeOAD)\/UmLD)}

dpoap o) 7o sinh [(]/D — YeOAD) WLD} 636

dyp P1AD )yp=1 .36)

cosh [(1 — yeOAD)\/ﬁ)}
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(ii) Flux continuity. Mass must be conserved across the matrix/SRV interface located

at yp = 1. This condition is mathematically defined, in Laplace domain, as:

<_dﬁOAD) _kia (_dﬁlAD) (3.37)
4yp yp=1 im 4yp yp=1

Replacing Equation 3.36 into 3.37, yields

dp1aD o km [ 5 - 5
( dyp )yD_l = (P1aD)yp=1 klj\/ D tanh {(1 YeAOD) / WD] (3.38)

Equation 3.38 will be implemented as a flux-source function during the derivation
of the analytical solution for fluid-flow in the SRV of well A.

3.5.4.2 Inner Matrix (Region IA)

The analytical solution to Equation 3.16 for Region IA (r = O, j = A) is given by

3 _ S
piap = Ara cosh [(]/D + }/eIAD)\ / U_D} + Bjg sinh [(]/D + Ye1AD) 1/ ”—D] (3.39)

Similar to Region IA, we consider that y,;4p (Equation A.18) is the deepest dimen-
sionless distance the pressure disturbance from well B would reach into the matrix
region between wells A and C (see Figure 3.6). The corresponding no-flow boundary
condition at yp = y,.14p is defined as:

(dgmp) ~0 (3.40)
Yo YD=—"YelAD

Replacing Equation 3.40 into 3.39 gives:

S
prap = Ara cosh {(VD + ]/eIAD)\/ —} (3.41)
NmD
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dpiap s . { B ]
APIAD _ g0 /5 sinh | (yp + Yerap) () —— 3.42
o 1A b inh | (yp + YeraD) - (3.42)

Alike Region OA, the following two boundary conditions allow pressure communica-

tion hence fluid-flow across the inner matrix region and SRV in well A:

(i) Pressure continuity. Pressure must be continuous across the matrix/SRV interface
so that dimensionless pressure in the matrix and SRV are equal at yp = —1. This

boundary condition is given in Laplace domain as:

(ﬁIAD)yD:—l = (ﬁlAD)yD:—1 (3.43)

Replacing Equation 3.43 into 3.41, and solving for A4, yields:

cosh {(yD +Ye1aD) /75 }

NmD
P1ap = (P1AD)yp=-1 (3.44)
cosh [(—1 + Ye14D) /WLD]
_ —S_ginh + L]
dpiap — (h10) 7 S {(yD Ye1AD) D 6.45)
4y P1AD)yp=-1 .

NmD

cosh {(—1 +yeIAD)\/T]

(ii) Flux continuity. Flux leaving the inner matrix region must be equal to the flux

entering the SRV through the interface located at yp = —1. Therefore,
(dPIAD) _kia (dplAD> (3.46)
dyp yp=-1 km dyp yp=-1

Replacing Equation 3.46 into Equation 3.45 gives:

dﬁ14D> _ km S |: S }
raY = 2/ —tanh |(—1+ ) — 3.47
( dy — (P1AD)yD— 1k1 P a ( YeAID) - ( )
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Equation 3.47 will be used as a flux-source during the derivation of the analytical
solution for fluid-flow in the SRV of well A.

3.5.4.3 SRV (Region 1A)

The derivation of the governing equation for fluid-flow in the SRV was discussed in Sec-

tion 3.5.3.2 and its one-dimensional form in Laplace domain is given by Equation 3.22.

Realize that the two flux-source functions required for finding the desired specific so-
lution to Equation 3.22 were found in the previous section. Therefore, we proceed
with replacing Equation 3.38 and 3.47 into Equation 3.22 while operating under the
assumption that (p14p) # f(yp). In this manner, we arrive at the following governing
equation for the SRV region:

d*prap _

122 ClA(S)PlAD =0 (3.48)
D

The flux-source function c1 4(s) describing total influx from the matrix (inner and outer
regions) into the SRV is defined as:

c1a(s) = — tanh | (1 — v, —— | +tanh [ (1 —v, —_—
14() MAD 2\ wp (1= yeonp) \ TmD (1= yerap) mD

(3.49)

The general solution to Equation 3.48 is given by

p1ap = A14 cosh {(XD — XeAD) ClA(S)} + By4sinh {(XD — XeAD) ClA(S)} (3.50)

Notice from Figure 3.6 that there is a no-flow boundary at xp = x,4p due to symmetry
conditions due to the assumption that all stages are identical. This boundary condition

is defined as:

<—dp “‘D) —0 (3.51)
de XD=XeD
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Further substitution of Equation 3.51 into 3.50 leads to:

p1ap = A4 cosh {(XD — XeAD) ClA(S)} (3.52)
dZ;I;D = Aqay/c1(s) sinh {(xD — XeAD) ClA(S)} (3.53)

Two additional boundary conditions apply to the SRV region. These are related to the
pressure discontinuity due to the presence of fracture skin damage at the SRV /fracture

interface and flux continuity across that interface. These are described next.

(i) Fracture skin damage. Pressure is discontinuous across the SRV /fracture interface
(xp = wap/2) due to the presence of a low-conductivity region (i.e. fracture
skin damage). The derivation of such boundary condition was introduced in
Section 2.5.4.2 thus we herein adapt that result into the model in discussion. The

pressure-discontinuity boundary condition is given by (see Equation 2.61)

_ _ dp
(pfAD)xD:wAD/Z = (plAD)xD:wAD/Z _SfA ( slAD) (354:)
D/ xp=wsp/2

where the fracture skin damage s¢4 (Equation 2.62) is defined as:

klAds
ksfo

Sfa = (3.55)

Here, ds and ks refer to the depth of penetration of formation damage into the
SRV and permeability of the damage zone, respectively.

We are able to fully determine the integration constant A4 by replacing Equa-
tion 3.54 into Equation 3.52 and 3.53 and solving the resulting system of equa-
tions. This yields:
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(ii)

(ﬁfAD)xD:wAD/z cosh [(XD - xeAD) ClA(S)}

PiaD = :
cosh [(ZUAD/z — XeAD) ClA(S)} —S¢ay/c1a(s) sinh [(wAD/2 — XeaD) ClA(S)}
(3.56)
dprap (Prap)xp=wap/2V/ c14(s) sinh [(xD — XeAD) ClA(S)}
de o

cosh [(wAD/Z — XeAD) clA(s)} —sfay/c14(s) sinh [(wAD/2 — XeAD) clA(s)}
(3.57)

Recognize that pressure continuity would be recovered simply by setting ss4 = 0.

In this manner, Equation 3.54 becomes (P£Ap)xp=wap/2 = (P1AD)xp=wap/2-

Flux continuity. Mass influx coming into the fracture must be equal to the mass
influx leaving the SRV. Thus, mass must be conserved across the matrix/SRV

interface, located at yp = 1. This statement is mathematically expressed as:

(fpue) () 659
de xD:wAD/Z klA d'xD xD:ZUAD/Z
Substitution of Equation 3.58 into 3.57 gives
(dﬁfAD> _ (k1a/kfa)(Prap)xp=wap/2V/ €1A(8) (3.59)
4XD ) xp=wap/2  coth [(wAD/Z — XeAD) ClA(S)] —srav/c1a(s)

Analogous to the matrix flux-source functions, Equation 3.59 will be used for
the derivation of the governing equation for one-dimensional fluid-flow in the
fracture.

3.5.4.4 Fracture (Region fA)

The governing equation for 1-D flow in the fracture was derived in Section 3.5.3.3;

however, the influx term was yet to be determined. This flux-source function was just

derived in the previous section. Therefore, we can proceed with substituting Equa-

tion 3.59 into 3.29 under the assumption that (prap) # f(xp). As a result,
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dzﬁfAD 27“1141)

—c24(8)Prap = _S(FéD)A(S(yD) (3.60)

where ¢4 (s) is a flux-source function, defined in Laplace domain as:

eonls) = 2y/c1a(s)/ (Fep)a (3.61)

1fAD coth [(wAD/Z — XeAD) ClA(S)} —srav/c14(s)

Because the constant-rate well condition has been embedded into the governing equa-
tion in the form of a line-source term, two boundary conditions are available for tailor-
ing the specific solution to Equation 3.60.

Given the nature of the problem in discussion, both boundary conditions should relate
to pressure communication between well A and wells B and C due to frac hits. The
derivation of the "leaky" boundary condition that represents frac hits is detailed in
Section 3.6. At this point, though, let us simply define the following set of "dummy"

flux boundary conditions at the fracture tips:

dﬁfAD)
= Fap(s) (3.62)
dﬁfAD)
= Fyc(s 3.63
( S Ac(s) (3.63)

Using Equation 3.62 and 3.63 to find the analytical solution to Equation 3.60, and eval-

uating the resulting expression at yp = 0 (i.e. wellbore), yields

_ _ 7qup cothy/coa(s) | 1 N S csch y/coa(s)
(PfaD)yp=0 = Foo)a v () + 5 [Fa(s) = Fac(s)] VYO (3.64)

Recognize that operating conditions of well A would be fully independent from other
wells if Fgp(s) = Fac(s) = 0; however, if Fqp(s) # 0 then interference between wells
A and C is taking place. Likewise, Faoc(s) # 0 may indicate pressure communication
between wells A and C.

108



3.5.5 Analytical Solution for Fluid-flow in Well B

The derivation of the analytical solution for fluid-flow in all regions of well B is anal-
ogous to those in well A. Thus, we will provide the analytical expressions for the final
solutions and flux-source functions whenever needed. Also, we will explain any differ-

ence related to boundary conditions with respect to those in well A.

3.5.5.1 Outer Matrix (Region OB)

According to Figure 3.6, well B is bounded by well A and the reservoir limit. As such,
the size of the outer matrix region is given by the distance from well B to the outer ma-

trix boundary. In dimensionless form, this distance is defined as y.opp (Equation A.23).
dposp —0

Also, there is a no-flow boundary at ypp = y.opp thus (W Jer—teonn

Application of the former boundary condition while realizing that Region OB only
exists for xsgp < Ypp < YeoBD, leads to the analytical solution to Equation 3.16 for
r=0andj=B:

cosh [(yBD - yeOBD)\/ 77:,1)]
cosh [(xfBD — Ye0BD) y/ WLD:|

The flux-source function later used to model influx from the outer matrix into the SRV

PoBD = (ﬁlBD)yBD:xfBD (3.65)

is defined as:

dﬁlBD) _ km S |: S :|
= - —,/——tanh | (x — e 3.66
(dyBD P (P1BD)ysp xfBDle,/an (xfBD yeOBD)\/UmD (3.66)

3.5.5.2 Region IB (Inner Matrix)

There exists a no-flow boundary between wells A and B located at ypp = —V.18D

(Equation A.24) henceforth <—’if IBD>
YBD / ygp=—VerpD

tind the desired solution to Equation 3.16 for j = B and r = I, and recognizing that
—YeiBD < YBD < —Xfpp, leads to:

= 0. Using this boundary condition to
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NmD
cosh [(—xfBD + YeIBD) |/ MLD}

The flux-source term associated with influx from this region into the SRV is given by

dﬁlBD) ) ko, \/T { i }
- ——xppp—4/ —— tanh | (=x¢pp + Ve /5
( dysp Ysp=—%13D (P1BD)ysp 180 k1p \ b (=XfBD + Ye1BD) D

(3.68)

cosh [(yBD + YeIBD) L]
(3.67)

ﬁIBD = (ﬁlBD)]/BD:_xfBD

3.5.5.3 SRV (Region 1B)

We substitute Equation 3.68 and 3.66 into 3.16 to find the 1-D governing equation for
fluid-flow in the SRV. Assuming that p13p # f(yp), Equation 3.16 becomes

d*p1ep

g2 B (s)pip =0 (3.69)
D

where c15(s) is the matrix-to-SRV flux-source function, defined in Laplace domain as:

s kim/kip S { [ S } { S }}
cig(s) = - tanh | (x - —— | +tanh | (x — 1Y, —
18(8) o 2xm0 \ (xfBD yeOBD)HﬂmD (xfBD yIBD),/UmD

(3.70)

The analytical solution to dimensionless pressure distribution in the SRV of well B is

given by

(ﬁfBD)xpzzuBD/z cosh [(XD — X¢BD) ClB(S>]

B cosh [(wBD/Z — XeBD) c1B(s)} — sppy/c18(s) sinh [(wBD/2 — XeBD) clB(s)]

(3.71)

where syp is the fracture skin damage of well B. The following expression will be used

to determine the flux-source function corresponding to the SRV /fracture interface:
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(dﬁfBD) B (le/ka)(ﬁfBD)xpszD/zm (3.72)
de .X'D:wBD/Z

B coth [(wBD/Z — xeBD) C13(S)} — SfB ClB(S)

3.5.5.4 Fracture (Region fB)

To derive the 1-D governing equation for fluid-flow in the fracture along the ypp-axis,
we replace Equation 3.72 into 3.29 operating under the assumption that (pspp) #
f(xp). This yields

d*p B
dy%D

—c25(8)Psep =0 (3.73)

where the flux-source function ¢;5(s) is defined as

s 2xsppy/c18(8)/ (Fép)s

= - (3.74)
NfBD  coth [(wBD/z—xeBD) clB(s)} —sfpy/c1B(s)

c2B(s)

Because the constant-rate well condition is embedded into the governing equation as a
line-source function, we have two boundary conditions available to fully determine the
specific analytical solution to Equation 3.73 for well B.

One of such boundary conditions must be a no-flow boundary located at the outer
fracture tip located at ygp = x¢pp. The other one must allow pressure communication
between wells A and wells B, due to frac hits at ypp = —x¢pp (see Figure 3.6). The
derivation of this "leaky" boundary conditions is detailed in Section 3.6. At this point,
nonetheless, let us simply define a "dummy" flux boundary condition for the inner
fracture tip. Henceforth, the two flux boundary conditions associated with the fracture

region are:

i5
( PfBD ) —0 (3.75)
dyBD YD=XfBD
5
( g BD) — Fpals) (376)
YBD YD=—XfBD
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The analytical solution to Equation 3.60 evaluated at the wellbore (yp = 0), based on
the former boundary conditions, is given as

qp COth(xfBD cp(s)) 1 CSCh(XfBD c2B(s))

Pk = s svem® 2T V)

(3.77)

Fga(s) # 0 indicates pressure communication between wells A and B due to frac hits.

Conversely, Fg4(s) = 0 indicates that production from well B is not affected by well A.

3.5.6 Analytical Solution for Fluid-flow in Well C
3.5.6.1 Outer Matrix (Region OC)

The outer matrix region of well C is bounded by the reservoir at ycp = —vy.ocp (see
Figure 3.6) therefore a no-flux boundary condition must be imposed there. The analyt-
ical solution to Equation 3.16 for r = O and j = C is found to be

cosh {(yCD + yeOCD)\/ n,ip}
cosh {(—xfcp + Yeocn) %LD}

The flux associated with flow continuity between the outer matrix and SRV is based on

PoBD = (f’lBD)yBD:fxfBD (3.78)

the pressure gradient evaluated at ycp = —x fcp, given by
dpicp ) _ ki, S { \/T]

- =- AT tanh | (—x 4+
( dycp Yep=—xfcp (p1CD)]/CD XfcD k1 \ D ( fCD yeOCD) o

(3.79)

3.5.6.2 Inner Matrix (Region IC)

The analytical solution for dimensionless pressure in Region IB is denoted as
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S

cosh l(]/CD — YeICD) —]

TmD
cosh {(xfcp —YeICD) 1/ MLD}

Similar to the outer matrix region, the flux associated with flow continuity between the

pPicp = (ﬁlCD)yCD:xfCD (3.80)

inner matrix and SRV is based on the pressure gradient evaluated at ycp = x¢cp, given
by

dﬁlCD) _ km [s { B }
- = —x;epi—1/ — tanh | (xrcp — — 3.81
( dyco . (P1cD)yen S0 ke \ T (Xfcp = Yercp) D (3.81)

3.5.6.3 SRV (Region 1C)

The 1-D governing equation for fluid-flow in the SRV is yielded from Equation 3.22
under the assumption that p1gp # f(ysp):

—c1c(s)picp =0 (3.82)

where the flux-source function c1¢(s) is defined as

s ki /kic 3 { [ S ] [ S }}
cic(s) = — tanh | (xsgp — —— | +tanh |(xrgp — —
1c(s) meo . 2%en \/ i 1L (xfBD ]/eOCD)q/UmD anh | (Xfpp — Yercp) y / -

(3.83)

The analytical solution to Equation 3.82 is given by:

(PfcD)xp=wcp/2 cosh [(XD — XecD) C1C(S)}

" cosh [(wCD/Z — XeCD) ClC(S)} —sfpy/c1c(s) sinh {(WCD/2 — XecD)V/ ClC(S)}

(3.84)

where s¢c is the fracture skin damage of well C. Derivative of Equation 3.84 with

respect to xp, evaluated at xp = wcp/2, yields the flux-source function describing
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mass conservation across the SRV /fracture interface:

(dﬁfcn) __ (kic/kpe) (Prep)xp=ucp/2 v 1c(s) (3.85)
dxp xp=wcp/2 coth [(wCD /2 — xeCD) Clc(S)] —SfcvVCic (S)

3.5.6.4 Fracture (Region fC)

The derivation of the 1-D governing equation for fluid-flow in the fracture of well C
is accomplished by replacing Equation 3.85 into 3.29 under the assumption that that

(Pfep) # f(xp). This results in

d*Pscp

dy%jD

—cac(8)Prep =0 (3.86)

The flux-source function c,c is defined in Laplace domain as:

s 2x¢cpy/c1c(s)/ (Fep)ce

IfeD coth [(wCD/Z — XeCD) ClC(S)] —sfcy/c1c(s)

cac(s) (3.87)

There are two boundary conditions associated with the fracture. One condition is a
no-flow boundary located at the outer fracture tip (ycp = —xfcp)- The other one
must allow pressure communication between wells A and wells C, due to frac hits
at ycp = Xycp (see Figure 3.6). The derivation of this "leaky" boundary conditions is
detailed in Section 3.6. Similar to well B, we define a "dummy" flux boundary condition

for the inner fracture tip. The resulting boundary conditions are given as:

s

(dprD> — Cals) (3.88)
YBD YD=XfCD

i

( dp fBD ) —0 (3.89)
YBD YD=—XfcD

The analytical solution to Equation 3.60 evaluated at the wellbore (yp = 0), based on
the dummy flux boundary conditions, is found to be:
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(Pren)or o = e COth(xfCDm)_'_lc (S)CSCh(xfCDVC2C(S))
felieo= = e T svecs) 27 cac(s)

(3.90)

Similar to wells A and B, Cf4(s) # 0 indicates pressure communication between wells
A and B due to frac hits. Conversely, Csa(s) = 0 indicates that production from well B
is not being influenced by well A.

3.6. Mathematical Model—Part II: The Frac Hits Boundary Condition

3.6.1 Frac Hits between Wells A and B
3.6.1.1 Per-fracture Flow from/into Well A due to Frac Hits with Well B

The maximum influx, or leakage, rate into, or from, well A due to pressure connectivity

with well B through primary fractures is defined as:

CfAh aApfA
qLAB(t) = _sAanfA ( ay )y_fo (3.91)

where Crg = krpwy is the fracture conductivity of well A and €45 is given by:

1 if (gy, > (G leak
. _{ if (Gwen)A > (Gwell)B (leakage) (3.92)

—1 if (qwen)a < (qwen)p  (influx)

Recognize that g} 45 is actually time-dependent, therefore q} o5 = g7 45(f). In light of
the result in Equation 3.91, we find the equivalent maximum per-fracture influx/leakage

rate of well A:

) _ quas(t) _ Crah dApPfa
(7LaB)max = nea = T€AB5 141248 3y . (3.93)

It is likely, however, that not all but only several fractures are interacting with their
counterparts from well B. Thus, a more accurate way to express the actual per-fracture
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influx/leakage rate q; would be:

Cyah

/ o (q/LAB)max _ aAPfA
qrap(t) = oons PR 1H120,550B \ 0y . (3.94)

where J,4p is the frac hits coefficient, defined as the ratio of frac hits between wells
A and B (ng,4p = nygppa) to the total number of primary fractures in well A (154).
Thence,

Nfn,AB
an

5wAB = (0 < 5wAB < 1) (3-95)

We can further normalize Equation 3.94 using Equation A.4 and A.11, so that:

apfAD) 2710, AB (q/LAB(t)> 276w AB
( ayD I AB (PéD)A q; AB (PéD)A qLABD( )

In Laplace domain,

27T5wAB

>yD—1 = —SABmﬁ{q/LABD(t)} (3.97)

<dﬁfAD
dyp

For convenience, we define the dimensionless group By, (s) as follows:

o 27T5wAB

Bu(s) = T~ L{qp 4pp(t)} (3.98)
(FCD)A
Consequently,
J5
( Ps AD) — e agBuls) (3.99)
dyD yp=1

By (s) is the dimensionless ratio, in Laplace domain, of actual per-fracture influx/leakage
rate to combined (total) production of wells A and B. Comparison of Equation 3.99 and
Equation 3.62 shows that
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FAB(S) = —SABBw(S) (3.100)

3.6.1.2 Per-fracture Flow Rate into/from Well B

Similar to the derivation of per-fracture influx/leakage rate for well A due to frac hits
with well B, discussed in the previous section, we derive the per-fracture influx/leakage

rate into/from well B due to frac hits, which results in

Csgh JdA
/ . fB PrB

where Crp = kypwp is the fracture conductivity of well B and d,54 is given by

Nfn,AB
nfB

OwBA = (0 < dypa <1) (3.102)

Because flux across wells must be conserved, then it must be true that Equation 3.94 and

3.101 are equal once pressure had reached equilibrium across the frac hits. Therefore,

C oA Crp (0
P < PfA) — I8 < pr) (3.103)
SwAB ay y=xf4 dwBA ayB Yp=—Xsp

In the subsequent derivations, we assume that storativity effects are negligible hence

Equation 3.103 is valid at all times.

From Equation 3.95 and 3.102) we get 6,54/ 0wap = nya/nsp. Further normalization
of Equation 3.103, and subsequent transformation into Laplace domain, yields

dp F!
( deBD> — e an(FgD)ABw(S) (3.104)
yBD YBD=—XfBD nfB( CD)B
As a result,
nga(F
Fpa(s) = —€ABL(,:D)ABw(S) (3.105)
nep(Fep)s
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3.6.1.3 Coupling Boundary Condition

In short, modeling frac hits between wells A and B implies the development of a bound-
ary condition that enables coupling these wells via influx/leakage occurring through
primary fractures. There are, however, two assumptions that are necessary for de-
veloping such a boundary condition. Firstly, we assume that the equivalent fracture
conductivity along the intersecting primary fractures is large enough such that inter-
fracture storativity is negligible. This is a reasonable assumption, moreover, given
that frac hits would not appear at early time when storativity effects may influence

pressure-transient response.

The second assumption is flux across intersecting primary fractures is controlled by the
difference in bottomhole pressure of each well. That is, flux along frac hits is governed
by steady-state Darcy’s law, expressed as:

Crh
q/LAB(t) = T x 141f.2,uBLAB€AB [(APfA)yZO - (APfB)yB:O] (3.106)

where C_f is the equivalent fracture conductivity between wells A and B. Recognize
that, if we utilize the assumption of negligible transience along the frac hits then C_f
can be estimated as the equivalent fracture conductivity of three regions in series, as

shown in Figure 3.7. As a result, we obtain:

C. — Lag
= XAy Lap=(xatxrs) | xpp (3.107)
CfA CfA CfB

Dividing through the expression above by kj4L 4p, gives:

G : (3.108)
leAB o klefA kl[LAB—(XfA—i-XfB)} + kleB .
CfA CfA CfB
Now, let us define the equivalent dimensionless fracture conductivity Fcp as:
Fep = 5 (3.109)
P~ kiaLas ‘
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Furthermore, Equation 3.106 can be normalized as follows:

F
qrapp(t) = %EAB [(PfaD)yp=0 — (P¢BD)ysp=0]

SRV (A)

SRV (B)

(3.110)

Figure 3.7: Definition of equivalent fracture conductivity Cs to model fluid-flow be-

tween wells A and B through primary fractures and the frac hit.

Transformation of Equation 3.110 into Laplace domain yields

E _ _
E{q/LABD(t)} = %*?AB [(PfAD)ypzo - (PfBD)szFO]

From Equation 3.98, we find that

Ll (t)) = Fep)ag

o 27T5wAB

Substituting Equation 3.112 into 3.111 gives:

eapBuw(s) = (FC—D)A(SwAB [(PfAD)ypzo - (prD)]/BDZO}

/
FCD
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Moreover, let us assume that Fcp is proportional to (Fep)a = (F-p) 4, such that:

Fep = awap(Fep)a (3.114)

where w45 is the proportionality constant. Substitution of Equation 3.114 into 3.113,
and further transformation into Laplace domain leads to:

e4BBw(s) = awaBdwaB [(Prap)yp=0 — (PfBD)ysp=0) (3.115)
By definition, Fcp = m and ayap = Fcp/ (Fep) a- Therefore, Equation 3.108 can be
recast as follows:
1
XwAB = Lap—(xra+2rp) ] (3116)
fatXsp (Fep)a
I+ XfA + xfBD (F(’:D)B
Substitution of Equation 3.116 into 3.115 yields
dwAB _ _
eaBu(s) = ——F————z - [(Prap)yp=0 — (PBD)ys=0] (3.117)
14 =48 + XfBD SHARAE
XfA (Fep)s

Furthermore, let us define the frac hits skin factor between wells A and B as follows:

1 Lap — (xfa + xfB) (Fep)a
S = 1+ + XfBD 3.118
JAB = §uns XfA fBD (Fép)B ( )

To prove that Equation 3.118 corresponds to a skin factor, consider two extreme cases.
On the one hand, assume that there are no frac hits in the system therefore é,,45 = 0.
This assumption leads to s;4p — 0. On the other hand, if primary fractures are fully

interfering then d,,4p = 1 and sy 4 reaches a minimum value, given by

. Lap—(xpa+xsp) (Fep)a
(SfAB)mm— 1+ Xfa + XfBD (FéD)B

(3.119)
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As a result, we get (s fA B)min < S faB < 00, which proves that Equation 3.118 is indeed

the definition of a skin factor.

Finally, the coupling boundary condition between wells A and B is derived after sub-
stituting Equation 3.98 and 3.118 into Equation 3.117:

€ABSfABBw(S) = (PraD)yp=0 — (PfBD)ysp=0 (3.120)

3.6.2 Frac Hits between Wells A and C
3.6.2.1 Per-fracture Flow from/into Well A due to Frac Hits with Well C

The derivation of the frac hits boundary condition between wells A and C is analogous
to the derivation detailed in Section 3.6.1. As such, the influx/leakage rate into/from
well A due to frac hits with well C is given by:

(dﬁfAD

=e40Cy(s 3.121
o >yD:1 AcCu(s) ( )

The boundary condition above is equivalent to:

Fac(s) = eacCu(s) (3.122)

where the conditional parameter ¢ 4 is defined as:

(3.123)

c . 1 if (QWell)A > (qwell)C (leakage)
AC —
-1 if (qwell>A < (qwell)C (inﬂux)

Similar to Equation 3.98, Cy(s) refers to the dimensionless ratio of actual per-fracture
influx/leakage rate to combined (total) production of wells A and B, given in Laplace

domain as:

_ 21byac q/LAC(t)} _ 270wAC pp
Culs) = (Fep)a E{ gl G L{qracp(t)} (3.124)
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In addition, J,,4c is defined as the ratio of the number of frac hits between wells A and

C to the total number of primary fractures in well A:

n
Swac = —AC (3.125)
an

3.6.2.2 Per-fracture Flow Rate into/from Well C

Similar to the derivation discussed in the previous section, we find the per-fracture

influx/leakage rate into/from well C due to frac hits with well A to be:

CfCh aApr

o ( ) 3.126
Trac(t) ACH % 141.25,capB \  9dyc Yc=Xfc | )

where Crc = kgcwy is the fracture conductivity of well C and ;¢4 is the fraction of
frac hits between wells A and C, defined as:

Nn,AC
n fC

dwca = (0 <dypa <1) (3.127)

Note that nj, o.c = 1y, c4 (i.e. number of frac hits is the same in both wells). Flux across

wells A and C must be conserved, therefore

C dA C oA
e ( PfA) _ Sye ( pr) (3.128)
OwAC ay y=—x4 dwca ayC y=xsc

Notice that, by definition, d,ca/dwac = nga/ngc. Normalization of Equation 3.128

and further transformation into Laplace domain yields

F/
e alfen)ac (3.129)

(deCD
nec(Fep)ce

dyCD ) Yyco=Xfcp

Consequently,
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an(F(/:D)A

CfA(S) = ‘C’AC nfC(FéD)C Cw(s) (3130)

3.6.2.3 Coupling Boundary Condition

We derive the frac hits boundary condition in Laplace domain, for interference be-
tween wells A and C while considering the following assumptions: (1) flux across
interconnected primary fractures between wells A and C is controlled by the difference
in bottomhole pressure of each well, and (2) negligible transience effects within the

interconnected primary fractures. This leads to

eacCu(s) = awacdwac [(Prap)yp=0 — (PrcD)yep=0] (3.131)

As discussed in the previous section, a,4c is the proportionality constant between
the dimensionless fracture conductivity of well A and the equivalent dimensionless
fracture conductivity of the frac hits between wells A and C.

Following an analogous derivation to that presented in Section 3.6.1.3, we arrive at the

frac hits boundary condition for wells A and C:

SwAC
D
1+V‘Lf+xfcp

eacCu(s) = G%DL4[(ﬁfAD)yD:O‘_(ﬁfCD)yaf:d (3.132)

(FéD)C

Alike, we define the frac hits skin factor between wells A and C as

1 Lac — (xfa + xfc) (Fip)a
S = 1+ +Xx 3.133
fAC 5wAC fo fCD (PéD)C ( )
Because 0 < d,4c < 1 then (sfac)min < sfac < oo, where
Lac — (xfa +xfc) (Fep)a
(SfAC)min = 1+ +Xfcp (3.134)
! Xfa TP (Fp)e

Finally, the coupling boundary condition for wells A and C is recast as
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eacsfacCu(s) = (Prap)yp=0 — (PfcD)ycp=0 (3.135)

3.6.3 Determination of B, (s) and Cy(s)

We combine the analytical solution to normalized pressure-drawdowns (Equation 3.64,
3.77 and 3.90) with their respective coupling boundary condition (Equation 3.120 and

3.135). We consider the following three cases of well interference due to frachits:

Case 1. Interference between wells A and B only. Frac hits allow pressure communication
between wells A and B but not well C, thus Cy(s) = 0 as sfac — 0. In this case, By(s)

is given as:
nqyp cothy/caa(s)  mqpp coth(xpppy/c2p(s))
(Fep)
Bu(s) = ean Woal) Tk svent) (3.136)

cschy/caa(s) | nra(Fep)a esch(xspp)y/c2p(s)

1
SFAB T 5 Jezn(s) n55(Ep)B V25(5)

Case 1I. Interference between wells A and C only. Frac hits allow pressure communication
between wells A and C but not well B, hence By(s) = 0 because sfap — 0. In this

case, Cy(s) is given as:

nq;‘D cothy/cr4(s) - rcq’CD Coth(xfcp coc(s))
sv/c24(s) (Feple sv/cac(s)

c _ 3.137
w(8) = eac eschy/ea4(s) | nya(Eep)a esch(xpep)y/eac(s) o

1
SfaC t 3 /2 (5) nc(Fep)e Veac(s)

Case I11. Interference between wells A, B and C. This is the worst-case scenario because frac
hits are affecting all wells in the pad (Figure 3.5). In this case, By (s) # 0 and Cy(s) # 0.

In this case, Cy(s) and By (s) are given as:

A1 <S)A2(S) — Ag(S)

By(s) = ¢ 3.138
w( ) ABA4<S)A2(S) —A5(S) ( )
gy cothy/caa(s) _ Tqep coth(xscpy/c2c(s)) _1B (S)csch c24(s)
Cols) = epcctt sveunl)  UFeole  s/eacts) 2 224(6) (3.139)

csch CZA(S) + an( CD A CSCh xfCD)\/CZC S)

Sfact 3 2 (®) npc(Fep)c cac(s)
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The auxiliary functions A1 (s)-As(s) in Equation 3.138 are defined as follows:

il <o yElE) _ Tdhp <o Vel
Ad(s) — _ 3.140
1(6) (Fep)a cra(s) (F(':D) coB(s) ( :
_ 1 |cschy/coa(s)  nga(Fop ACSCh(xfCD) coc(s)
Ax(s) = sgac + 5 [ o) + nre(Ey)c — (3.141)
As(s) = 1S5hV c24(s) [ Tqp coth \/CzA(S) _ mqep coth(xsep CZC(S))] (3.142)
2 c24(8) (FéD) c24(8) (F¢p)e s+/cac(s) '
B csch y/co4(s 7\ FCD)A CSCh(xfBD) coB(s)
As(s) =spap+ 5 [ 0 ) 4 ns(Fo)s O (3.143)
2
csch y/c24(S)
As(s) = 411( — (2;)1 ) (3.144)
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Figure 3.8: Case I (wells A and B) and Case II (wells A and B).

3.7. Analytical Solution

3.7.1 Transient BHP Solution for Well A

Normalized pressure-drawdown of well A is given, in Laplace domain, as:
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/ /
Poap = n:yAD cothy/coa(s) 1 (e Ba(s) + £4cCa(5)] csch y/c24(s) n q'ApSca (3.145)
(FCD)A sv/C24(s) 2 c24(s) §

where s.4 is the choking skin of well A (see Equation 2.101). The definition of both
By (s) and Cy(s) depend on the interference case under study. Laplace inversion of
Equation 3.145 gives:

oal Fooda syfem(s) 2Pl Feacll =027

141.24',uB h U’
T, (5) 3]

Apaa(t) 141.2quB£71 { nqyp coth/coa(s) 1 csch \/c24(s)
wA =0 =
(

(3.146)

Apya = pi —BHP4(t) and 7,4 are the pressure-drawdown and wellbore radius of well

A, respectively. Wellbore storage (WBS) can incorporated into the analytical model via:

prA(t) =

141.2qiuB _1{ PwaD(S) }
_— 3.147
kiah 1+ CADSZﬁwAD(S) ( )

where C4p is the dimensionless wellbore storage coefficient of well A by (Equation 2.107).

This approach also applies for wells B and C.

3.7.2 Transient BHP Solution for Well B

Normalized pressure-drawdown of well B is given, in Laplace domain, as:

ﬁq%D COth(XfBD CzB(S)) 1 TlfA(PéD)ABw(S)CSCh(XfBD CZB(S)) q;gDscB

Dw = + -€
PoBD = F )8 sy/can(s) 2 g (FLp)s C25(5) s
(3.148)

where s.p is the convergence or choking skin (Equation 2.101). The definition of By (s)
depends on the interference case under study. Inversion of Equation 3.148 into time

domain, yields:
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141.2¢1uB .1 | mqhp coth(xgppy/c2p(s)) 1 npa(Fop)a csch(xspv/c28(5))
Apup(t) = ———L i T €48 7 Bul(s)
kiah (Flp)B 5/c25(s) 2 " ngp(Fop)s c2B(s)

141.2q,uB h s
1 _n
* Crp [n (2%3) 2]

(3.149)

3.7.3 Transient BHP Solution for Well C

Normalized pressure-drawdown of well C is given, in Laplace domain, as:

TI(J[/CD COth(XfCD Czc(S)) 1 an(F(/jD)A ( )CSCh(XfCD Cgc(S)) i q/CDSCC

D = + —¢ S
Pecb = Fip)e sy/eac(s) 2 e (Fep)c e (5) s
(3.150)

Once again, the functional form of both By (s) and Cy(s) is given by the interference
case under study. Inversion of Equation 3.150 into time domain, yields:

141.24uB ., H%D coth(XfCD coc(s)) 1 an(F(’:D)A csch(xfCD cac(s))
Apyc(t) = ——F—L T afacy T e vl
pr( ) kyah (FéD)C Sm 2 AC nfC(FéD)C w( ) C2C<S)
141.2q-uB h T
+ CfC |:ln <2er> - 2:|

(3.151)

3.8. Analytical Functions for Pressure-Transient Analysis of Frac Hits

The analytical expressions used for pressure-transient analysis in rate-normalized form
RNP 4;(t) (Equation 3.3) and RNP’4;() (Equation 3.4) are the following:

141.2q,uB

Apuap(t) = o eapL ™ {Pwap(s) — Pusp(s)} (3.152)
14124/uB . . )
Apwac(t) = Tq;fSAcﬁ "{Pwap(s) = Pwcn(s)} (3.153)
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3.9. Validation Cases

Four simulation case studies are explored in this section. Case Study 1 is the scenario
with no frac hits in the pad. Our interest here is to determine whether the analytical
solution is able to capture interference through the matrix. Case Study 2 through 4 ex-
amine various degrees of interference due to frac hits. Wells are producing at constant
rate. Frac hits are artificially imposed onto the simulation model by interconnecting
one or more hydraulic fractures between wells A, B and C. Further, we consider frac
hits to have equal conductivity of primary fractures from well A. The multi-well pad is
initially at constant pressure throughout. Fractured stages have equal dimensions and
properties in all MFHWs.

Frac hits are randomly placed in the multi-well pad. Molina and Zeidouni (2017b)
found that, for equal values of &, 45, location of the frac hits will not influence expected
pressure response. For example, consider two MFHWSs with 5 fractured stages. Frac
hits across stages 2, 3 and 5 ([—][x][x][—][x]) will produce the same transient response
when frac hits are located across stages 1, 3, and 4 ([x][—][x][x][—]) because é,a5 =
3/10 = 0.3 in both cases. This eliminates the need for running simulations for all

possible scenarios for a given 6, 45.

Reservoir and fluid properties are taken from Table 2.1. Initial pressure as well as total
compressibility (c; = 107 psi—!) and completion properties, summarized in Table 3.1,
are assumed equal in all MFHWs .

Table 3.1: Completion and multi-well pad properties.

Hydraulic fractures properties

Fracture conductivity, Cry = Cyp = Cyc [md-ft] 500
Proppant pack porosity, ¢ [—] 0.35
Distance between fractured stages, 2x,4 = 2x,p = 2x,c [ft] | 500
Fracture half-length, xr4 = x5 = xc [ft] 200
Multi-well pad configuration

Fractured stages (all MFHW?s) 10

Distance between wells A and B, L4p [ft] 600
Distance between wells A and C, L 4¢ [ft] 600
Flow rate of well A, (gwen)a [STB/D] 200
Flow rate of well B, (qwen)s [STB/D] 100
Flow rate of well C, (gwen)c [STB/D] 80
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3.9.1 Validation Case Study 1: No Frac Hits.

In this case, we consider no frac hits between offset wells (B and C) and infill well (A)
thus d ., = d, .- = 0. Figure 3.9 shows a snapshot of pressure distribution in the
multi-well pad after 67 days of constant-rate withdrawal. Notice that, in the absence of

frac hits, pressure behaves symmetrically across fractured stages.

LA B L Pressure(psi)
0 1,000 2,000 3,000 4,000 5,000 1

000}~

0002

000°¢
-3,000
IR TSR

0.00 600.00 1200.00 feet

———
0.00 185.00 370.00 meters
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1,000 2,000 3.000 4,000 5,0‘00
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—o

Figure 3.9: Pressure distribution after 67 days (no frac hits) (4, ,5 = d;, 4 = 0).

Figure 3.10 shows that analytical and numerical BHP data are in good agreement for
the case oyap = dwac = 0. Figure 3.11 shows that analytical RNP4; and RNP’ 4; (j =
B, C) match with numerical early-time data. Yet, even though there are no frac hits in
the multi-well pad, analytical rate-normalized parameters depart from numerical rate-
normalized data after 30 days. One plausible explanation for the mismatch observed
during mid to late times is that pressure interference would take place through the
matrix after 30 days. We obtained better history-matching results, both at early and
late times, by assigning d,ap = dypac = 8.9 X 1074, Figure 3.12 shows analytical and
numerical BHP data. In particular, note that the late-time mismatch from Figure 3.10
was fixed by setting 6,43 = 6yac = 8.9 x 107%. Similarly, Figure 3.13 shows that
analytical and numerical data are in good agreement. Thus, the analytical model can
handle interference through the matrix in the form of a small frac hit that would result

in the same degree of interference.
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Figure 3.10: Analytical and numerical BHP data for d,45 = dyac = 0.
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Figure 3.11: Rate-normalized plot for dy,45 = dyac = 0.
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Figure 3.12: Analytical and numerical BHP data for d,45 = dyyac = 8.9 X 1074
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Figure 3.13: Rate-normalized plot for dyap = 6yac = 8.9 x 107* (0545 = 02 ac = 0).
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3.9.2 Validation Case Study 2

In this case, we impose three frac hits between wells A and B and two frac hits between
wells A and C. This gives 47 ,; =3/10 = 0.3 and ¢, ,~ = 2/10 = 0.2. Figure 3.14 illus-
trates pressure distribution in the multi-well pad after 68 days of production. Location
of frac hits are indicated in this figure. Furthermore, recognize from the pressure dis-
tribution snapshot that fluid-flow around the frac hits is presumably two-dimensional.
This may be a source of error for the estimation of d,4p and dyac . Yet, pressure

distribution remains fairly symmetric across other regions in the pad.

LA L L L L L L L L Y L O = Pressure(psi)
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Figure 3.14: Pressure distribution after after 68 days for §; ,; = 0.3 and J;, ,~ = 0.2.

A good match between analytical and numerical data is obtained for ;45 = 0.28 and
dwac = 0.18. Compared to the actual fraction of frac hits, we see that the estimation of
frac hits given by the analytical model is fairly accurate, with only 2% absolute error
with respect to the actual fraction of frac hits.

Figure 3.15 compares analytical and numerical BHP data. An excellent match between
models is observed. Likewise, the corresponding rate-normalized plot, shown by Fig-
ure 3.16, confirms the excellent match between analytical and numerical data when
dwap = 0.28 and dyac = 0.18. RNP 4; and RNP’4; exhibit a trend toward stabilization
which confirms the pressure equilibration hypothesis initially proposed.
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Figure 3.15: Analytical and numerical BHP data for 6,45 = 0.28 and ,,4¢c = 0.18.
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Figure 3.16: Rate-normalized plot for J; ,; = 0.3 and J; ,~ = 0.2.
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3.9.3 Validation Case Study 3

We impose two frac hits between wells A and B and four frac hits between wells A
and C hence 4} 4,5 = 2/10 = 0.2 and ¢, = 4/10 = 0.4. Figure 3.17 illustrates
the numerical estimation of pressure distribution in the pad after 70 days. Notice
that, in addition to the 2-D flow occurring near the frac hits, and compared to the
overall pressure behavior across fractured stages, pressure behaves asymmetrically in
the stages of well B located near the frac hits and approximately half-way between
frac hits in well C. This may be a source of error in the estimation of §,4; given that
the analytical model was derived on the ground of symmetry pressure conditions and

communication between frac hits and matrix.
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Figure 3.17: Pressure distribution after 70 days for the case 4} ,; = 0.2 and J; ,~ = 0.4.

An excellent match between analytical solution and numerical data is obtained when
owaB = 0.176 and dy4c = 0.36. Figure 3.18 presents the benchmark between analytical
and numerical BHP data while Figure 3.19 shows the resulting rate-normalized plot.
An excellent match between analytical and numerical data is observed in both figures.
Similar to the previous case study, both RNP,4; and RNP"4; show a marked trend
toward stabilization; however, this plateau-type response is attained earlier than the

previous case (i.e. compare Figure 3.16 and Figure 3.19).
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Figure 3.18: Analytical and numerical BHP data for d,,45 = 0.176 and 6,,4c = 0.36.
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Figure 3.19: Rate-normalized plot for §,,45 = 0.176 and é,,4c = 0.36.
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3.9.4 Validation Case Study 4

In this case study, we create one frac hit between wells A and B, and eight frac hits
between wells A and C, resulting in 6, ,, = 0.1 and ¢, ,~ = 0.8. Given the highly
contrasted degree of interference, we would expect RNP 4¢ and RNP’ 4¢ to attain equi-
librium quicker than RNP 45 and RNP’ 4. Figure 3.20 illustrates the location of the frac
hits and the current pressure distribution in the multi-well pad at t = 70 days. Similar
to previous case studies, 2-D fluid-flow seems to appear near the frac hits at late time,

thus potentially leading to some degree of error in the estimation of J;4;.
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Figure 3.20: Pressure distribution after 70 days for the scenario 47 ,5 = 0.1 and &7, ,~ =
0.8.

Figure 3.21 shows the history-matching between analytical and numerical BHP data for
dwap = 0.089 and dyac = 0.76, resulting in 1.1% and 4% absolute error, respectively.
Notice the slight mismatch in the analytical estimation of BHP of well A. Nonetheless,
we conclude that the overall history-match of numerical pressure-transient data is ex-
cellent. The agreement between analytical and numerical data is further confirmed by
the rate-normalized plot in Figure 3.22. Recognize that RNP 4c and RNP’ 4¢ reach sta-
bilization faster than RNP 45 and RNP’ 4, as expected. Also, be aware that RNP 4¢ and
RNP’ 4c exhibit a slightly better match with numerical data than RNP 45 and RNP’ 4p.
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Figure 3.21: Comparison of analytical and numerical BHP data for J,45 = 0.089 and

Swac = 0.76.
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Figure 3.22: Rate-normalized plot for 6,45 = 0.089 and é,,4c = 0.76.
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3.10. Sensitivity Analysis

In this section, we design several flow scenarios to test the sensitivity of the estimation

of 5;A].

to several parameters, such as distance between MFHWSs (Ly;), fracture half-
length (xy;), fracture conductivity (Cf; = kgjw;), SRV permeability (k1;) and distance
between fractured stages (2x,;) for j = B, C. Here, we consider the baseline case L4; =
600 ft, xfj =200 ft, klj = 0.1 md, Cf]- = 500 md-ft and 2x,; = 500 ft. The main objective
of this study is to history-match analytical and numerical RNP4p and RNP’4p data,

rather than individual BHPs, to estimate 47 ,; using type-curves.

We assume that frac hits only occur between wells A and B; however, pressure commu-
nication through the matrix between wells A and C is still possible. We assign well C
the same properties from well A for all cases. Figure 3.23 illustrates the schematic of the
well pad used in this section. Fractures are assumed planar and perpendicular to their
host MFHW. Each MFHW has 10 hydraulic fractures, equally spaced with respect to
their counterparts (i.e. x,4 = x,p = x,c). Moreover, all fractured stages are assume to
have equal properties per well. Reservoir and fluid properties are taken from Table 3.1.

Xgg + 800 ft
2Xep
|__ i b e s i e I i R i
kel | Well B
| T
xa] | :
2X,
L s |200ft
' Well A

Well C
R T
— Fracture 2Xec
T3 SRV X + 800 ft
1 Matrix

Figure 3.23: Three-MFHW pad model used for sensitivity analyses.

For pressure-transient analysis purposes, we consider that well A is flowing at constant

rate while wells B and C are shut-in, this way modeling the more realistic well interfer-
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ence test setup (Awada et al., 2016). Furthermore, we define (qwei)s = (qwen)c = 107
STB/D in the numerical simulator to ensure that fracture stages of wells B and C are
active/open even though wells are shut-in.

We carry out numerical simulations for 0 < é,45 < 1 with a step of 0.1 for each case
study. Results are tabulated in the form of &7, ,; versus J,,4p correlations. Correlation
results will be presented graphically. Lastly, we introduce the history-matched rate-
normalized type-curves corresponding to each sensitivity study. BHP data will not be

discussed in this section.

3.10.1 Impact of Distance between Wells

MFHW properties are the same for all wells (x; = 200 ft, k; = 0.1 md and C; = 500
md-ft). In this case study, 500 < L,p < 1000 ft while L4c = 600 ft is assumed fixed.
Table 3.2 summarizes the correlation between ¢, ,, and d,4p as a function of Lyg.
Additionally, we found that J,,4c # 0 indicating that pressure communication between

wells A and C took place through the inner matrix region.

Table 3.2: Correlation between ¢, ., and d,,4p as a function of L4p.

5+ OwAB VS. Lap [ft]
wAB 1 500 600* 700 800 900 1000
0.1 0.088 0.087 0.087 0.088 0.09 0.091
0.2 0.172 0.175 0.18 0.18 0.18 0.184
0.3 0.269 0.268 0.27 0.275 0.278 0.28
04 | 0.366 0.365 0.365 0.367 0.372 0.375
0.5 0.465 0.46 0.47 0.47 0.475 0.478
0.6 0.562 0.56 0.57 0.57 0.575 0.578
0.7 | 0.672 0.67 0.678 0.68 0.682 0.686
0.8 0.781 0.78 0.785 0.785 0.79 0.794
0.9 0.91 0.9 0.9 0.9 0.9 0.9
1.0 1.02 1.015 1.02 1.02 1.02 1.02

Spac | 7x1074 | 6x107% | 6x1074|8x107% | 7x107%| 6 x 107*

* = baseline scenario.

The case Lap = Lac = 600 ft will be the baseline scenario for the subsequent sen-
sitivity analyses. The results for this case are shown under the 600* column in Ta-

139



ble 3.2. It is important to emphasize that values for é,,4p and J,4c were obtained
by history-matching analytical and numerical RNP 45 and RNP’ 4p data not individual
BHPs. Type-curves matching for RNP4p and RNP’ 4 will be discussed later in this

section.

Figure 3.24 illustrates the numerical pressure distribution of the multi-well pad under
analysis for the case Log = 1000 ft and ¢ ,, = 0.4 at t = 80 days. The most salient
feature from this figure is the occurrence of 2-D flow in the inner matrix region between
wells A and B. As such, pressure may equilibrate at a slower rate than that predicted
by the analytical solution because of the pressure support due to frac-hit-matrix com-

munication.

Furthermore, note that pressure communication between wells A and C is apparently
weak. Nonetheless, we found that d,4c = 6 x 107% in this scenario. It is noteworthy
to mention that neglecting pressure communication between wells A and C through
the matrix may lead to erroneous results or make it challenging when estimating the
fraction of frac hits between wells A and B via history-matching d,,4p.
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Figure 3.24: Pressure distribution in the multi-well pad under study for the case L4p =
1000 ft and 47, 45 = 0.4.

Figure 3.25 compares the history-matched values of 6,4 and 67, . to the ideal correla-
tion 0,48 = 0}, 45 (i.e. identity line with a unit slope crossing by the origin). Variations
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in L4p do not have a significant impact on the analytical estimation of the fraction of
frac hits. Notice that values of d,,4p lie close to the identity line, thus confirming the
goodness of the analytical estimation of §; , 5.
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1 _
0 L,=500f
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0.8 - A L, =800t
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*

wAB

Figure 3.25: Graphical correlation between 6, ., and 45 for 500 < L 4p < 1000 ft and
Lac = 600 ft.

History-matching results show that the accuracy of the analytical estimation of BHP
decreases with increasing L4p particularly at late times when 2-D flow becomes dom-
inant near the frac hits. To illustrate this point, let us consider two cases for which
or 1p = 0.4. Figure 3.26 and Figure 3.27 show the history-matched BHP for L p = 600
and 1000 ft, respectively. While BHP forecast is accurate for the former case, late-time
mismatch is observed for the latter case. Therefore, we recommend using the proposed
analytical model for well performance forecast only when L4 < 800 ft.
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Figure 3.26: History-matching of BHP for L4 = 600 ft and J; ,; = 0.4.
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Figure 3.27: History-matching of BHP for L4p = 1000 ft and J; ,5; = 0.4.
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Figure 3.28 through Figure 3.33 show the history-matched type-curves, based on RNP 45
and RNP’ 43, for the present sensitivity case study. There are a number of relevant facts
worth highlighting hereby.

To begin with, note that, in the absence of well interference effects, RNP 45 and RNP’ 4
curves exhibit the behavior of SRV-matrix flow, characterized by the 1/2-slope (SRV
linear-flow regime) and ~ 1-slope ("boundary-dominated" flow regime) lines resulting
from ¢ ,, = 0. However, transient pressure response starts deviating from the ideal

. .
SRV-matrix response as ¢, ,p increases.

Second, RNP 4p curves exhibit a clear trend toward stabilization. The higher § ,, the
faster the stabilization and the smaller the variation in RNP 4 over time. Numerical
data can be easily history-matched against RNP 45 type-curves regardless of the time
(early or late-time data).

Conversely, RNP’ 4 curves exhibit a skin-factor-like bump at mid-times, followed by a
rebound towards their final stabilized value. Unlike RNP 45, numerical data can only
be history-matched with RNP’ 45 type-curves up to a certain time, which depends on
0 45, beyond which data departs from the type-curves. This time window is approxi-

mately given by the dashed line on each type-curve plot.

The fact that numerical RNP’ 45 data continue to decline without the late rebound trend
exhibited by the analytical solution may indicate the onset of pressure equilibration
within the inner matrix region, which is not accounted for the analytical model. In
other words, while numerical data suggest equilibration would take place across the
entire pad, the analytical model only allows for equilibration to occur through frac hits

hence extending the time to reach final equilibrium across interfering wells.

Third, recognize that frac hits can be detected at early times and its characterization can
be achieved via history-matching of RNP4p and/or RNP’ 45 (up to the time window
limit). According to data from the type-curves in discussion, one would need 10 days
or less worth of pressure-transient data to detect and estimate the fraction of frac hits
between wells A and B. Notably, even a 24-hour well test should suffice for that matter.

Finally, the fact that RNP 45 and RNP’ 4g match numerical data regardless of J; ,; may
be explained as follows. Suppose that (Apy;)true = (APwj)analytical + €wj(t) where €,(f)
is the error due to late-time 2-D flow in the pad. Assuming that €, 4(t) ~ €,p(t), then

(APwAB)true = (prA)analytical + ewA(t) - (prB)analytical - €wB(t) ~ (prAB)analytical-
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Figure 3.28: Frac-hits type-curves for L4p = 500 ft.
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Figure 3.29: Frac-hits type-curves for L4 = 600 ft (base case).
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Figure 3.30: Frac-hits type-curves for L,p = 700 ft.
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Figure 3.31: Frac-hits type-curves for L4 = 800 ft.
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Figure 3.32: Frac-hits type-curves for L, = 900 ft.
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Figure 3.33: Frac-hits type-curves for L4 = 1000 ft.
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3.10.2 Impact of Fracture Half-length
3.10.2.1 Equal Fracture Half-length for all Wells

The scenario under evaluation relates to the case of equal completion design for all
stages in the pad. The objective is to examine the influence of producing equally longer
fractures in the pad on detecting frac hits. Thus, we assign equal fracture half-length to
all fractures in the model, so that xy4 = xsp = x¢c and evaluate 200 < x¢ < 600 ft. We
calculate the distance between wells and to external boundaries (wells B and C) using
the relationships described in Figure 3.23, Lap = Lac = 2xy + 200 [ft], y.oB = yeOC =
x¢ + 800 [ft]. The numerical simulation model was systematically adjusted with these
relationships. In addition, SRV permeability (k; = 0.1 md) and fracture conductivity
(Cs = 500 md-ft) is assumed equal for all wells.

Table 3.3 summarizes the resulting correlation between & , 5, 0y 4 and 6, ac. Similar to
the previous case study, d,,4c # 0 as an indication of pressure communication between
wells A and C through the inner matrix region. In general, the analytical estimation
of the fraction of frac hits is in good agreement with the actual degree of interference.

The baseline scenario is shown in the column for x = 200 ft.

Table 3.3: Correlation between J,, 45, dwap and oy ac for 200 < xr < 600 ft.

5 OwAB VS. Xf [ft]
wAB 1 00 300 400 500 600
0.1 0.087 0.092 0.096 0.1 0.103
02 | 0175 0.185 0.194 0.203 0.21
03 | 0.268 0.28 0.29 0.3 0.306
04 | 0.365 0.378 0.39 0.407 0.412
0.5 0.46 0.477 0.49 0.5 0.51
0.6 0.56 0.58 0.6 0.605 0.61
0.7 0.67 0.688 0.71 0.71 0.72
0.8 0.78 0.795 0.83 0.83 0.84
0.9 0.9 0.905 0.93 0.94 0.95
1.0 1.015 1.02 1.04 1.05 1.06

SwAC 9x 104

* = baseline scenario.
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Figure 3.34 illustrates the graphical correlation between 4,,4p and J;, ,5 obtained for
200 < xf < 600 ft compared to the ideal correlation 645 = J,, 5. Alike the previous
sensitivity case study, variations in x; do not have a significant impact on the analytical
estimation of the fraction of frac hits when x is equal in all MFHWs in the pad. This is
confirmed graphically as all the history-matched values of §,,4p are lying close to the
identity line.
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Figure 3.34: Graphical correlation between ¢, 4 and 6,45 for 200 < x; < 600 ft.

The resulting history-matching of BHPs is in good agreement with numerical data for
all the evaluated values of x;. Nevertheless, BHP matching is slightly better for larger
values of xy, the reason being that larger fracture half-lengths would ensue and sustain
linear flow for longer. Figure 3.35 illustrates the resulting history-match of BHP for
xy = 300 ft while Figure 3.36 for x; = 600 ft. J;, 4,5 = 0.5 for both cases. As mentioned
earlier, notice that BHP match is slightly better for the case xy = 600 ft. In general,
we conclude that the accuracy of the analytical frac hits model would not be affected if
200 < xy < 600 ft.
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Figure 3.35: History-matching of BHP for x; = 300 ft and 47,5 = 0.5.
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Type-curves for this case study are shown in Figure 3.37 through Figure 3.40. Similar to
the previous case study, 47 ,5 = 0 will result in the RNP 43 and RNP’ 4p corresponding
to the case of SRV-matrix flow. However, this behavior changes when 67 ,; > 0.

Transient RNP 45 data exhibits a marked trend towards stabilization that increases with
increasing J; , 5. Both analytical and numerical data are in excellent agreement, regard-
less of time and/or degree of interference. This means that J ,; can be characterized

using either early or late-time data, regardless of the degree of interference.

Numerical RNP’ 4p data, on the other hand, only matches analytical type-curves up to
a point where pressure support from the inner matrix region in seen by both wells.
The approximate limiting time margin up to which RNP’ 4p can be history-matched is
shown in dashed lines on each type-curves plot. In this case, frac hits can be detected
and characterized using early to mid-time data only (<10 day), the minimum time
window for the estimation of fraction of frac hits being 0 < t < 3 days.

Finally, recognize that the range of RNP 45 and RNP’ 45 for 0 < §; , < 1 shrinks with
increasing xy when x¢4 = x¢p. Although this does not represent any restriction for
using the analytical mode, this is worth mentioning given that these type-curves could
double as diagnostic plots.
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Figure 3.37: Frac-hits type-curves for x;4 = xgp = 300 ft.
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Figure 3.39: Frac-hits type-curves for xr4 = x¢p = 500 ft.
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Figure 3.40: Frac-hits type-curves for xr4 = x¢p = 600 ft.

3.10.2.2 Different Fracture Half-length

This case is related to different fracturing job sizes in a multi-well pad. We assume
equal fracture half-length for wells A and C (xs4 = xyc = 200 ft) while 200 < x5 < 600
ft. SRV permeability (k1 = 0.1 md) and fracture conductivity (Cy = 500 md-ft) are equal
for all wells. Distance between wells A and C (L4c = 600 ft) and distance from well C
to the reservoir boundary (y.oc = 1000 ft) are fixed.

This case study may be considered a special case study of variability in Fcp for which
(Fcp)a = 25 and 16.67 > (Fcp)p > 8.34. Because x(p is variable, distance from well
B to the reservoir boundary was updated in both analytical and numerical models via
YeOB = Xfp + 800 [ft].

Table 3.4 summarizes the history-matching results for d,,4p and dy4c. In contrast with
the previous case, variability in xsp alone leads to an overestimation of J; ,, when
history-matching the analytical type-curves. This phenomenon is particularly out-
standing when 47 ,; > 0.5. In addition, &7, ,- is relatively small for this case because
Xfp > X4 inhibits a stronger interference between wells A and B.

152



In general, highly-contrasting values of x¢4 and x¢p would result in the overestimation
of 6} 45, which can be as high as 22% for the case under study.

Table 3.4: Correlation between 0, 55, daB, dwac and xyp for x4 = 200 ft.

5 dwAB VS. Xfp [£t]
wAB 200* 300 400 500 600
0.1 0.087 0.092 0.096 0.1 0.104
0.2 0.175 0.183 0.19 0.2 0.202
0.3 0.268 0.278 0.29 0.3 0.31
0.4 0.365 0.375 0.395 0.403 0.415
0.5 0.46 0.49 0.505 0.52 0.53
0.6 0.56 0.6 0.615 0.64 0.65
0.7 0.67 0.71 0.725 0.76 0.77
0.8 0.78 0.82 0.85 0.89 0.9
0.9 0.9 0.95 0.99 1.03 1.05
1.0 1.015 1.07 1.15 1.17 1.2

OwAC 6 x 1074

* = baseline scenario.
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Figure 3.41: Graphical correlation between 6, 5, d,4p and x¢p for xg4 = 200 ft.
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Similar to the case for equal but increasing fracture half-length, history-matching of
BHP seems to be in good agreement with numerical data for all x¢p. Figure 3.42 shows
the history-matched BHP for all wells when x5 = 400 ft and Figure 3.43 for xsp = 600
ft. 6 45 = 0.6 in both scenarios. However, note that there is a slight mismatch with
numerical BHP data in both figures at late times. But overall, the accuracy of the
estimation of fraction of frac hits would not be compromised when xsp > x¢4 and the

analytical model may be used for well pad performance forecast.

History-matched type-curves for the present sensitivity analysis are presented in Fig-
ure 3.44 through Figure 3.47. Transient RNP4p data can be history-matched with ana-
lytical type-curves during all time periods (early, mid and late time). RNP’ 45, however,
can only be history-matched up to a certain time upon which 2-D flow becomes increas-
ingly dominant in the multi-well pad due to simultaneous inner-matrix-to-frac hit and

inner-matrix-to-SRV flow.

Notice that numerical data exhibit a rapid trend towards stabilization after surpassing
the skin-like hump in RNP’ 4, which likely indicates additional pressure support from
the inner matrix region. In general, analytical and numerical data can be history-

matched up to 12 days for the worst-case scenario of 6% ; = 1 (full frac hits).

The time window within which frac hits can be characterized using pressure-derivative
data is delineated with dashed lines on each type-curves plot. Similar to the previous
cases, frac hits can be detected and characterized within a relative short period of
time, regardless of x B and/or 6% 5. In all cases, a one-day interference test would be

sufficient to produce an accurate estimation of &, ,  based on type-curves matching.

Additionally, note that the type-curves for this case exhibit a different response than
those for the case of equal fracture half-length in all wells. The most significant of such
differences is the steeper downward trend, followed by a rapid upward trend with
increasing x¢p and J;, 4 in the analytical RNP’ 5. This feature is made evident when
comparing Figure 3.44 and Figure 3.47.
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Figure 3.42: History-matching of BHP for x;p = 400 ft and ¢;, 4,5 = 0.6.
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Figure 3.43: History-matching of BHP for x¢p = 600 ft and ¢;, 4,5 = 0.6.
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Figure 3.45: Frac-hits type-curves for x¢p = 400 ft.
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3.10.3 Impact of Fracture Conductivity
3.10.3.1 Equal Fracture Conductivity for all Wells

This scenario relates to the case of using equal hydraulic fracture design for all stages
in the pad. Here, we consider equal fracture conductivity for all MFHWs with 50 <
Cr < 2500 md-ft. SRV permeability (k; = 0.1 md) and fracture half-length (x; = 200
ft) is assumed equal. This sensitivity analysis may be considered as special case of Fcp
sensitivity with 2.5 < Fcp < 125. Distance from wells B and C to well A is 600 ft.

The resulting correlation between 47 ,5, 0w ap and &, ac is summarized in Table 3.5. The
estimated degree of interference is fairly close to the actual fraction of frac hits except
when fracture conductivity is relatively small (i.e. Cy < 50 md-ft). The maximum
absolute error in the estimation of &7 .5 is +17% (overestimation).

Figure 3.48 shows the graphic correlation between 67, . and J,45. It is evident from
this figure that 6y, 4c rapidly deviates upward off the identity line when ¢ ,, > 0.4.
Aside from this result, we observe that the analytical estimation of the fraction of frac
hits delivers fairly accurate results that would not get sensibly affected by an increasing

fracture conductivity if Cr4 = Cyp.

Table 3.5: Correlation between 07, 4, dap and dyac for Crg = Cyp.

5+ OwAB VS. Cf [md-ft]
wAB 50 250 500* 1000 2500
0.1 0.105 0.09 0.087 0.085 0.084
0.2 0.21 0.18 0.175 0.172 0.17
0.3 0.31 0.275 0.268 0.26 0.258
04 | 0415 0.37 0.365 0.355 0.35
0.5 0.53 0.47 0.46 0.45 0.445
0.6 | 0.645 0.57 0.56 0.55 0.545
0.7 0.77 0.68 0.67 0.66 0.65
0.8 0.89 0.79 0.78 0.77 0.76
0.9 1.03 0.92 0.9 0.88 0.87
1.0 1.17 1.03 1.015 1 0.99

Spac | 5x1073 | 1x1073 | 6x107% |5x107% | 3x 1074

* = baseline scenario.
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Figure 3.48: Graphical correlation between 7 ,, and ;45 for C ra = Cyp.

Analytical and numerical BHP responses are in good agreement for all wells and values
of fracture conductivity. Nonetheless, there is a slight misfit at late times when Cy = 50
md-ft. Be aware that Cy = 50 md-ft is equivalent to Fcp = 2.5 md-ft in this scenario,
arguably a low dimensionless fracture conductivity, which may introduce some error
into the analytical estimation of BHP.

Figure 3.49 illustrates the resulting history-match of BHP for Cy = 50 md-ft and Fig-
ure 3.50 for Cy = 1000 md-ft; &;, ,5 = 0.5 for both cases. Notice the negligible late-time
mismatch in the latter figure. Also, realize that in despite ¢ ,, = 0.5 for both sce-
narios, BHP from wells A and B seem closer to each other for C £ = 1000 md-ft. This
observation is physically tied to higher fracture conductivity enabling better pressure
communication through frac hits between wells A and B.

In general, the analytical frac hits model gives a fairly accurate estimation of the degree
of interference when C¢ > 50 md-ft and all MFHWSs have equal fracture conductivity.
Given that late-time estimation of BHP is in good agreement with numerical data for all
wells in the pad, we conclude that the analytical frac hits model may be implemented
to forecast well performance if Cy > 50 md-ft.
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Figure 3.49: History-matching of BHP for C; = 50 md-ft and 6}, ,5 = 0.5.
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Figure 3.50: History-matching of BHP for C; = 1000 md-ft and ¢;, 4,5 = 0.5.
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History-matched type-curves for the present case study are presented in Figure 3.51
through Figure 3.54. Numerical RNP 45 is smooth for all values of fracture conductiv-
ity; yet, numerical RNP’ 45 data becomes considerably noisy for Cy > 1000 md-ft once
it overcomes the skin-like hump in the type-curves.

This effect may be attributable to numerical issues due to a sudden appearance of 2-D.
The reason is that a higher fracture conductivity would favor linear flow from the SRV
into the fractures and, at the same time, enhancing flux from the inner matrix region
into the frac hits. Implementation of smaller time steps for t > 10 days should improve
the convergence of the numerical solution. Nonetheless, type-curves matching suggests
pressure-transient data for ¢+ < 10 days would be sufficient to extract and interpret the
required information about frac hits.

Figure 3.51 portrays an interesting case in which the range of both RNP 45 and RNP’ 45
becomes narrow for ¢ < 0.1 days (~ 2.5 hours). In fact, it may be challenging to detect
frac hits within this period of time if fracture conductivity is sensibly low. In such
case, frac hits can only be detected and assessed within 1 and 10 days. This temporal
restriction should be taken into consideration when designing an interference test for

low fracture conductivity multi-well pads.

On the contrary, relatively large and equal fracture conductivity in all wells would
allow for early detection and estimation of the fraction of frac hits between wells A
and B. Resulting type-curves for C; > 250 md-ft suggest that frac hits characterization
could be accomplished within 0.4 days (~ 10 hours), which further enables the design
and implement short interference tests. The recommended time window for frac hits
characterization based on RNP’ 43 as a function of §; ,5 is delimited on each type-
curves plot using dashed lines.

Lastly, observe that RNP’4p type-curves do not exhibit the rapid downward-upward
behavior, occurring after the skin-like hump, when C; = 50 md-ft (Figure 3.51). Yet,
this behavior heightens with increasing fracture conductivity. This effect is particularly
noticeable for Cy = 2500 md-ft given that RNP’ 4 becomes negative for ;45 > 0.8
(Figure 3.54).
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3.10.3.2 Different Fracture Conductivity

This case study considers equal fracture design for all wells in the pad; however, prop-
pant type and concentration may be different between wells. Here, fracture conduc-
tivity of wells A and C is equal while that of well B is subject to variations. Hence,
Cra = 500 md-ft and 50 < Csp < 2500 md-ft. SRV permeability (k; = 0.1 md) and
fracture half-length (x; = 200 ft) are assumed equal in all MFHWSs. We may consider
this case a sensitivity testing of Fcp for which (Fcp)a = 25 and 2.5 < (Fcp)p < 125.

Table 3.6 summarizes the values of J7 ,5, dwap and J,ac. The analytical estimation of
the fraction of frac hits is fairly accurate for medium-to-high fracture conductivity in
well B (i.e. Crp > 250 md-ft). Note that values of dy,4p for Csp = 25 md-ft result in a
considerable overestimation of J; , 5, yielding up to 57% absolute error for the scenario
of full frac hits.

Figure 3.55 shows that history-matched values of 6,45 for Csp = 25 md-ft deviate from
the identity line as soon as 6 ,5 > 0.2. Aside from that scenario, we see that J, 43 is
a fairly accurate estimator of 4; ,5 when Cgp > 250 md-ft in the multi-well pad under

analysis.

Table 3.6: Correlation between 07, 4, 648, Swac and Cyp for Cry = 500 md-ft.

5+ OwAB VS. CfB [md-ft]
wAB 50 250 500* 1000 2500
0.1 0.105 0.088 0.087 0.087 0.088
02 | 0225 0.178 0.175 0.174 0.175
0.3 0.32 0.273 0.268 0.267 0.267
0.4 0.45 0.37 0.365 0.362 0.355
0.5 0.59 0.48 0.46 0.45 0.445
0.6 0.74 0.585 0.56 0.545 0.54
0.7 0.91 0.71 0.67 0.64 0.63
0.8 1.1 0.835 0.78 0.75 0.72
0.9 1.33 0.965 0.9 0.85 0.81
1.0 1.57 1.1 1.015 0.96 0.91

SwAC 6 x 1074

* = baseline scenario.
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Figure 3.55: Graphical correlation between ¢, 4, 0,45 and Cyp for C ra = 500 md-ft.

With respect to individual bottomhole pressure matching, the analytical solution seems
in excellent agreement with numerical data. A slight late-time mismatch is observed
for all cases, nonetheless negligible. Hence, we conclude that the frac hits model can
be used for well performance forecasting when fracture conductivity of wells A and B
are different in the scenario under discussion.

Figure 3.56 shows the history-matched values of BHP for C;p = 50 md-ft and Fig-
ure 3.57 for CfB = 2500 md-ft. In both cases ¢} ,, = 0.8. Notice that, in despite
difference in fracture conductivity can be highly contrasting (i.e. Cyp = 50 and 2500
md-ft versus Cry = 250 md-ft), the analytical model is able capture transient BHP
behavior for all wells accurately.

Alike the scenario in which fracture conductivity is equal for all MFHWSs, BHP of
wells A and B seem closer to each other when Crp = 1000 md-ft. The reason is that,
although Cry4 < Cyp, fracture conductivity of interfering wells is sufficiently high to
enable sufficient pressure communication thus allowing pressure to equilibrate faster
across wells A and B.
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Figure 3.56: History-matching of BHP for C¢p = 50 md-ft and 4; ,5 = 0.8.
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Figure 3.57: History-matching of BHP for Csp = 1000 md-ft and J;, ,5 = 0.8.
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History-matched type-curves for this case study are shown in Figure 3.58 to Figure 3.61.
Analytical and numerical RNP 45 and RNP’ 45 data are in good agreement. Analytical
RNP 4p matches numerical data for all values C rp and 0, 4. Note that RNP 45 do not
vary largely for Cyp > 250 md-ft. Yet, RNP’4p can only be history-matched up to the
time window for frac hits characterization, shown in dashed lines on each plot.

Based on Figure 3.58, we conclude that the range of RNP 45 is quite small for ¢t < 0.1
days; however, it expands after 12 hours, enabling the use of early-time RNP 4p data
for frac hits characterization. Furthermore, RNP’ 45 data can be used for frac hits
characterization as early as 0.1 days (~ 2.5 hours). Realize that the minimum time
required for frac hits characterization is 9 days for RNP4p and 3 days for RNP' 45
when Cr4 = Cyp = 25 md-ft (see Figure 3.51).

In general, detection and assessment of frac hits can be accomplished within 12 hours of
pressure-transient test via RNP’ 4, regardless of the difference in fracture conductivity.
Therefore, we can design and implement short interference tests for frac hits detection
and characterization for the scenario under study.
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Figure 3.58: Frac-hits type-curves for Cp = 50 md-ft.
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Figure 3.60: Frac-hits type-curves for Csp = 1000 md-ft.
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Figure 3.61: Frac-hits type-curves for Csp = 2500 md-ft.

3.10.4 Impact of SRV Permeability
3.10.4.1 Equal SRV Permeability for all MFHWs

This case study relates to the quality of the stimulation job in the reservoir rock near
the well, assuming that the same job is executed on each stage of the multi-well pad.
In this case study, k14 = kip = k1 with 0.001 < k; < 1 md. Fracture conductivity and
half-length are both assumed equal in all MFHWSs. The present sensitivity analysis can
be deemed as a sensitivity test of Fcp for which 2500 > F-p > 2.5.

Table 3.7 summarizes the correlation between &, ,5, dyap and d,yac. In general, the
analytical estimation of fraction of frac hits is in close agreement with the actual values.
The least accurate estimation of &, ,  is obtained for the case k1 = 1 md, which yields a
maximum absolute error of +16% (overestimation). Also, d,,4c 7# 0 indicates pressure
interference between wells A and C taking place through the matrix.

Figure 3.62 shows the history-matching results for this case. A good correlation be-
tween estimated and actual fraction of frac hits is observed. Though the scenario k; = 1
md appears to be the least accurate, it still gives a fair estimation of J ;5.
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Table 3.7: Correlation between 67 15, dyap and dyac for k14 = kip.

5 SwAB VS. k1 [md]

wAB | 0.001 0.01 0.1* 1
0.1 0.082 0.084 0.087 0.102
02 | 0.168 0.172 0.175 0.203
03 | 0257 0.262 0.268 0.31
0.4 0.35 0.358 0.365 0.415

0.5 0.45 0.455 0.46 0.53
0.6 0.54 0.55 0.56 0.65
0.7 0.64 0.655 0.67 0.77
0.8 0.75 0.765 0.78 0.89
0.9 0.86 0.88 0.9 1.02
1.0 0.97 1 1.015 1.16

Swac | 2x107° | 2x107% | 6x107% | 8§ x 107*

* = baseline scenario.
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Figure 3.62: Graphical correlation between ¢, ., and 6y, 4p for k14 = kip.
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In general, we found that analytical and numerical data are in good agreement when
SRV permeability is orders-of-magnitude higher than matrix permeability. For instance,
consider the BHP results shown in Figure 3.63 for k; = 0.001 md and ¢}, ;5 = 0.7. Real-
ize that, in this case, k; = 1 ud and k;;, = 0.73 pud. This means that both permeabilities
are comparable in magnitude. As such, we should expect 2-D flow to prevail over

linear flow thus leading to an erroneous prediction of BHP for this case.

However, (ApuyAB)analytical ~ (APwAB)data, @s explained in Section 3.10.1. Henceforth,
we eXpeCt that (RNPAB)analytical ~ (RNPAB)data and (RNP’AB)analytical ~~ (RNP’AB)data/
as shown in Figure 3.65. Type-curves will be discussed next.

Conversely, analytical and numerical BHP data seems to be in good agreement for
ki1 =1md and ¢}, .5 = 0.3, as depicted on Figure 3.63. In this case, k1 > ky, therefore
combined linear fracture/SRV /matrix flow regimes are likely to occur in the well pad.
This explains the excellent forecast of BHP response given by the analytical model.
Overall, the analytical frac hits model may be used for well performance forecast when
SRV permeability is orders-of-magnitude higher that matrix permeability for the multi-

well pad configuration in discussion.
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Figure 3.63: History-matching of BHP for k; = 0.001 md and ¢, ,5 = 0.7.
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Figure 3.64: History-matching of BHP for ky = 1 md and 4}, ,; = 0.3.

History-matched frac-hits type-curves are shown in Figure 3.65 through Figure 3.62.
The shape and range of both RNP 45 and RNP’4p type-curves change considerably
with SRV permeability.

For instance, consider the case when k; = 0.001 md (Figure 3.65). Note that frac
hits can be detected and assessed using early-time data that could be as early as ~ 1
hour, because the range of the type-curves is sufficiently wide as to make an unbiased
estimation of 4 ,5. Furthermore, note that RN’ 45 behavior is smooth and lacks of
sudden changes in direction. Moreover, RNP 45 can be history-matched at all times
henceforth allowing the use of this parameter for estimation of J; ,; when numerical

RNP’ 4p data depart from type-curves.

In summary, the range of both RNP 45 and RNP”’ 4 type-curves shrinks with increasing
SRV permeability. In addition, lower SRV permeability permits the use of early-time
data for detection and assessment of frac hits thus allowing the implementation of short

interference tests (~2-3-hour well testing) for the well pad under study.
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Figure 3.65: Frac-hits type-curves for k14 = kip = 0.001 md.
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Figure 3.66: Frac-hits type-curves for k14 = k1p = 0.01 md.
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Figure 3.67: Frac-hits type-curves for k14 = kjp = 1 md.

3.10.4.2 Different SRV Permeability

This case study examines the scenario of different quality stimulation jobs in wells
A and B. To assess the sensitivity of frac hits detection and assessment to kip =, we
consider k14 = 0.1 md and 0.001 < kg < 1 md. In addition, fracture conductiv-
ity (Cy = 500 md-ft) and fracture half-length (x; = 200 ft) are assumed equal in all
MFHWs. Alike previous sensitivity case studies, this analysis may be regarded as a
sensitivity test of (Fcp)p in which (Fep)a = 25 and 2500 > (Fep)p > 2.5.

A summary of history-matched values for §,,4p and J,, ¢ is shown in Table 3.8. Overall,
the analytical estimation of fraction of frac hits is fairly accurate for k;p > 0.01 md,
kip > 0.001 md being the least accurate case, yielding a maximum absolute error of
—45% (underestimation).

Figure 3.68 shows the graphic correlation between 67 . and J,45. It is evident from
this plot that J,,4p for k1 = 0.001 md delivers a sensibly inaccurate estimation of the
actual fraction of frac hits. Apart from this case, the analytical model delivers a close
estimation of 4} ,; when kip > 0.01 md.
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Table 3.8: Correlation between 67 15, dwaB, dwac and kip for k14 = 0.1 md.

(5wAB VS. le [md]

.

SwaB [0 001 0.01 0.1* 1
0.1 0.083 0.085 0.087 0.093
0.2 0.155 0.172 0.175 0.187
0.3 0.21 0.265 0.268 0.283
0.4 0.265 0.36 0.365 0.38
0.5 0.31 0.45 0.46 0.485
0.6 0.36 0.545 0.56 0.59
0.7 0.41 0.645 0.67 0.705
0.8 0.46 0.74 0.78 0.82
0.9 0.51 0.83 0.9 0.94
1.0 0.55 0.92 1.015 1.07

Swac | 5x1074 | 6x107% | 6x107% | 7x 1074

* = baseline scenario.
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Figure 3.68: Graphical correlation between ¢, 5, dwap and kqp for k14 = 0.1 md.
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Figure 3.69 shows the resulting analytical BHP estimation resulting from history-matching
045 = 0.7 for the case k1p = 0.001 md. It can be seen from this plot that analytical and
numerical BHP data are in good agreement, compared to the case k14 = kip = 0.001
md (Figure 3.63). Though the late-time mismatch may be noticeable, we consider that
the analytical model still delivers a fairly accurate estimation of BHP responses for this
case study. Moreover, acknowledging that k15 ~ k;;, then we may attribute the late-
time mismatch, observed for the predicted BHP responses, to the influence of 2-D flow
effects on pressure-transient response of well B.

Similarly, Figure 3.70 compares BHP data for the case k13 = 1 md and ¢ ,; = 0.7,
where analytical and numerical pressure-transient data seem to be in good agreement.
The late-time misfit in this case is negligible hence the analytical model may be used

for well performance forecasting.

History-matched type-curves for this case study are presented in Figure 3.71 to Fig-
ure 3.73. Contrary to previous sensitivity studies in this section, the shape of the ana-
lytical RNP 45 and RNP’ 45 type-curves is substantially influenced by k;p. Figure 3.71
suggests that frac hits may be detected and assessed using transient RNP 45 data up
to 9 days; however, the recommended time window for frac hits characterization is
narrow for higher degrees of interference (e.g. J; ,5 > 0.5). Moreover, recognize that
RNP,4p type-curves can no longer be history-matched with late-time data. In light
of this analysis, we consider that the estimation of the fraction of frac hits should be

carried out based on early-to-mid-time RNP 45 data for this case study.

Type-curves from Figure 3.72 display a similar transient response to those correspond-
ing to the baseline case (Figure 3.29). Numerical simulation data, however, suggest
that frac hits characterization can be achieved by matching late-time RNP 4p; contrari-
wise, t > 2.5 hours before using RNP’4p for characterization purposes. Unlike the
previous scenario, type-curves allow assessing the full range of fraction of frac hits
(0 <6, 45 < 1) using both RNP 45 and RNP’ 4p. The recommended interference testing
time for this case would be up to 3 days.

Lastly, history-matched type-curves for the case kg = 1 md are presented in Fig-
ure 3.72. Notice that the skin-like hump in the type-curves vanishes in favor of a
steepest descent of RNP’4p as J; ,5 increases, which may be indicative of a sudden
pressure support during the equilibration equilibration process. This phenomenon is

clearly seen when the degree of interference is medium to high (e.g. 4 45 > 0.4).
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Figure 3.69: History-matching of BHP for kip = 0.001 md and 4 ,; = 0.7.
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Figure 3.70: History-matching of BHP for kip = 1 md and 4, ,; = 0.7.
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Figure 3.72: Frac-hits type-curves for k14 = 0.1 md, k1p = 0.01 md.
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Figure 3.73: Frac-hits type-curves for k14 = 0.1 md, kjp = 1 md.

3.10.5 Impact of Distance between Fractured Stages

The advent of multi-stage completion technologies, such like ball-activated and coiled-
tubing-activated frac sleeves, has made it possible to increase the number of fractured
stages per lateral length (e.g. Stegent et al., 2011; Algadi et al., 2014). In light of this,
the present case study studies the impact of average distance between fractured stages
on the assessment of frac hits.

We assume equal spacing between stages for all wells, thus 2x,4 = 2x,p5 = 2x, (see
Figure 3.23) and evaluate 25 < 2x, < 500 ft. Completion design is identical for all
stages, with SRV permeability k; = 0.1 md, fracture conductivity Cy = 500 md-ft and
fracture half-length x; = 200 ft. Also, we assume one fracture per stage. Flow rate of
well A is adjusted per case using (qwen)a = 200 x (2x,/500) [STB/D].

Table 3.9 summarizes the history-matched values of 6,,4p and J,,4c versus ¢ ,5. The
estimated and actual fraction of frac hits are in excellent agreement; the highest abso-
lute error is —4%. The accuracy of the estimation is evident from Figure 3.74, because
all estimated values of J,,4p lie close to the identity line.
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Table 3.9: Correlation between 67 5, dyap and dyac for 25 < 2x, < 500 ft.

SwAB VS. 2x, [ft]

dwas 25 50 75 100 250 500*
0.1 0.094 0.09 0.089 0.089 0.088 0.087
0.2 0.182 0.177 0.175 0.176 0.176 0.175
0.3 0.273 0.268 0.266 0.266 0.267 0.268
0.4 0.365 0.363 0.36 0.36 0.362 0.365
0.5 0.465 0.458 0.456 0.457 0.46 0.46
0.6 0.565 0.558 0.557 0.558 0.56 0.56
0.7 0.67 0.665 0.664 0.666 0.668 0.67
0.8 0.78 0.77 0.77 0.772 0.776 0.78
0.9 0.89 0.886 0.885 0.887 0.895 0.9
1.0 0.995 0.992 0.994 0.996 1.01 1.015

g4 [STB/D] 10 20 30 40 100 200
SwAC 1x107° | 1x1074|[1x107%|1x107%|[2x107%| 6x 107

* = baseline scenario.
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I To 2x,=25ft (g,=10STB/D) R
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Figure 3.74: Graphical correlation between ¢ , and J,,4p as a function of 2x,.
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We observe from history-matching results that relatively low spacing between stages
lead to inaccurate estimation of BHP. In particular, we see that analytical and numerical
BHP data are in good agreement when 2x, > 200 ft.

To illustrate this point, we show analytical and numerical BHP data for the case 2x, =
25 ftand o7, .5 = 0.4 in Figure 3.75. The mismatch between approaches is evident in this
plot; however, we were still able to history-match RNP 45 and RNP’ 4 data using type-
curves. The reason is that, even so the analytical model is unable to capture the actual
fluid-flow behavior when x, is small, (ApwAB)analytical & (APwAB)data, s explained in
Section 3.10.1. Therefore, (RNP 4p)anatytical = (RNPAB)data hence (RNP5) analytical ~

(RNP/AB)data-

Figure 3.76 illustrates a comparison of BHP given by analytical and numerical data for
the case 2x, = 100 ft and J; ,; = 0.4. Notice that the misfit between approaches is lesser
compared to the former case. The mismatch between analytical and numerical BHP
vanishes with increasing 2x,. We recommend using the analytical for well performance
forecasting for wide spacing between fractured stages (e.g. 2x, > 200).
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Figure 3.75: History-matching of BHP for 2x, = 25 ft and 47 ,; = 0.4.
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Figure 3.76: History-matching of BHP for 2x, = 100 ft and ¢ ,; = 0.4.

History-matched type-curves for this case study are presented in Figure 3.77 through
Figure 3.81. As it can be seen in these plots, frac hits can be detected and characterized
within ~ 2.5 hours for 2x, = 25 ft and ~ 1 day for 2x, > 50 ft.

Realize that numerical RNP’ 45 data become noisy after passing over the skin-like hump
in the type-curves. However, RNP 45 would still give an unbiased estimation of the
fraction of frac hits irrespective of time. In fact, notice that RNP4p seems to attain
equilibrium across wells faster with decreasing spacing between fractured stages. Also,
note that the downward-upward trend on the RNP’ 45 type-curves is more severe, and

last for longer, when spacing between stages is narrower.

Based on the analysis of results for the present sensitivity study, we conclude that the
analytical frac hits model may be used for frac hits detection and assessment regard-
less of the spacing between fractured stages; however, it may not be used for well

performance forecast purposes if stages are tightly spaced.
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Figure 3.77: Frac-hits type-curves for 2x,4 = 2x,p = 25 ft.
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Figure 3.78: Frac-hits type-curves for 2x,4 = 2x.p = 50 ft.
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Figure 3.79: Frac-hits type-curves for 2x,4 = 2x,p = 75 ft.

100: T T T Illlll T T T ll|||| T T T lll]] G T T T TTTTT {;*n:{b‘

E e & 0.1
| © Numerical RNP, e

Th - ° Numerical RNP', . / : =

<

E 10k

a :

m C

= B

m o

> o

%) 2 B

& 1 — (O) . o Z

% o

Q_‘% 0.1

0 01 1 1 11 1 111 l 1 1 11 1131 I A Vo I
0.01 0.1 1 10 100

t (days)

Figure 3.80: Frac-hits type-curves for 2x,4 = 2x,p = 100 ft.
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Figure 3.81: Frac-hits type-curves for 2x,4 = 2x,p = 250 ft.

3.11. Type-Curves Analysis

The objective of this section is use the analytical solutions derived in the previous
section to generate type-curves that would allow to assess the degree of interference,
due to frac hits, between two MFHWSs. In this analysis, we will assume that frac hits
only exist between wells A and B such that C(s) = 0. In addition, well A is flowing at
constant rate while wells B and C are shut-in, thus ¢, , = 1 and g3, = q-p = 0. The
matrix region is not considered in this study hence the application of the subsequent
type-curves matching method is limited to early to mid-time pressure-transient data.
The following assumptions are also made herein:

e Equal SRV permeability: k14 = kip = kg
* Equal fracture half-length: x4 = xpp = xf
e Equal dimensionless fracture conductivity: (Fcp)a = (Fep)s = Fep

Because properties of both wells are assumed equal then cy4(s) = c25(s) = c(s). The
dimensionless pressure differential between wells A and B is defined as:
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Apwap = L™ {Pwap — Puwsp } (3.154)

Replacing Equation 3.145 and 3.148 into Equation 3.154, while incorporating all of the
assumptions initially made, leads to:

P coth 1/c(s) B csch /c(s)
Apwap =L { Fop svel) Bw(s)—c o } (3.155)
(7 coth \/c(s)
Buls) = (SFCD) spaB/C(s) 4 csch y/c(s) (3.156)

For convenience, we have made the definition Ap! ,, = Apyap — s.. Combining the
two equations above yields:

Apupap = L7 { coth v/e(s) }
Fep s [M—FS}AB csch \/@]

(3.157)

Now that Ap,,ap is defined for the scenario under study, let us analyze the flux-source
function c(s). If matrix is ignored in the model, c(s) becomes:

c(s) = 2 + 2vs tanh(x,p+/s) (3.158)
fp  Fep

For the present analysis, the dimensionless fracture diffusivity coefficient is defined as
Nfp = kgp1/k1¢s. Since fracture permeability is orders-of-magnitude larger than SRV
permeability (i.e. ky > ki) then we can safely assume that s/7¢p ~ 0. As a result,

s

coth |/ 2~ /s tanh(x,p+/5)
Apyap = =—L \/ =

-1
Fep {s [\/FCLD\/Etanh(xeD\/E) —1—5;1%3 csch \/FCLD\/Etanh(xeD\/E)J
(3.159)

Given that frac hits can be characterized using mid-to-late time transient data, we apply
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the initial value theorem in Laplace domain to derive the following late-time asymptotic

approximations for the hyperbolic functions in Equation 3.159:

hms coth \/—\/—tanh(xep\/_) ~ s/ FCTD coth \/\/Etanh(xeD\/E) (3.160)

11ms csch \/—\/—tanh(xep\/_) ~ sy FCTD csch \/\/Etanh(xep\/g) (3.161)

Therefore, Equation 3.159 becomes

A Piﬁ_l coth \/+/s tanh(x,p+/5) (3.162)
D [“Wﬂs‘” csch /+/s tanh( xeD\/_)]

Further application of the initial value theorem in Laplace domain for late-time re-

sponse of Equation 3.162, yields:

s
li h ~ h 1
Slgésx/tan (xepV/3) \/%\/tan NG (3.163)
lin%scsch \/51/2 tanh(x.pv/s) & s\/X.p csch 1/s1/2 tanh /s (3.164)
S—r

lin% s coth \/51/2 tanh(x.pv/s) ~ s\/X.p coth 1/s1/2 tanh /s (3.165)
S—

Replacing these approximations into Equation 3.162, while simplifying the resulting

expression, leads to:

XeD 2

Aphoap T coth y/s!/2 tanh /s (3.166)
[ 1/4, /tanh /s + FCDXED csch y/s1/2 tanh \/_}

For the case of identical MFHWsS, the definition of s¢4p (Equation 3.118) reduces to:
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Las
Xf0wAB

SfAB = (3.167)

where L4p and 6,45 are the distance and fraction of frac hits between MFHW s, respec-
tively. Furthermore, let us use Equation 3.167 to define the lumped frac-hits skin factor
Sr as:

2L 4B

Sp =
i FepXepX 0uaB

(3.168)

Finally, we arrive at the dimensionless pressure differential between wells A and B and

its logarithmic derivative:

ApwaD T coth y/+/stanh /s L S (3.169)
XeD = s [51/4\/tanh Vs + % csch y/+/s tanh \/E} YeD

d (prAD) B ntD£_1 coth y/+/stanh /s
dintp \ xp 2 s1/4\/tanh \/s + - csch \/y/s tanh /s

} (3.170)

At very early times, pressure-transient response in well A is dominated by the choking
skin and fracture properties. Additionally, the choking skin does not affect transient
response of the log-derivative. Therefore, we can drop the second term in the denomi-

nator of Equation 3.169 to plot type-curves at early times using

ApwaD T coth y/+/stanh /s L S (3.171)
XeD 2 s5/4\/tanh /s XeD .

Using Equation 3.169, 3.170 and 3.171, we generate the following type-curves chart:
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Figure 3.82: Dimensionless frac-hits type-curves as a function of the lumped frac-hits
skin factor Sr.

3.11.1 Interference Diagnostics Workflow

The workflow of the interference diagnostics test described next is intended to be a
post-treatment assessment of well interference caused by frac hits between the infill

well and an offset well.
» Prior to starting the interference test:

1. Select the infill/ offset pair to be analyzed.

2. Shut-in and repressurize offset well.

3. Install downhole pressure gauges in the target wells.
» During the well test:

4. Start flowing the infill well.

5. Record pressure from both wells.
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6.

Hold production at constant rate once only oil is flowing from the MFHW. High
rates will shorten the required duration of the test; however, minimum BHP at
the end of the test should be above the bubble-point pressure.

» After the well test:

8.

9.

10.

Perform production data quality control check.
Estimate RNP 4p from well-test data (Equation 3.3). Filter noisy data, if necessary.

Estimate RNP’ 45 using data from previous step. Filter noisy data, if necessary.

» Type-curves matching and estimation of average parameters:

11.

12.

13.

14.

15.

Plot pressure-transient data from Steps 9 and 10 in a log-log plot with equal log-
cycles as in Figure 3.82.

If interference effects are detected (i.e. deviation of RNP’ 45 from Sp = o0), find
the best matching-curves and read the values of choking skin s, and lumped
frac-hits skin Sg.

Choose a matching point. We recommend reading the values of (tp)mp and
(Apwp)mp corresponding to typ = 1 and (RNPyg)mp = 1 (both in actual di-

mensions) from well-test data.

If the storativity of the SRV (¢c;); is uncertain but its probable range can be
deduced from neighboring wells in the same formation, use Pip, P59 and Pgg
values of (¢c;)1 to perform the calculations required in Step 15.

Estimate average well properties and fraction of frac hits using both Interpretation
Method 1 (Section 3.11.2) and Interpretation Methods 2 (Section 3.11.3). Note:
estimations made with both methods should be comparable.

» Conclusion

16.

Give Pqp, P59 and Py values for the estimated fraction of frac hits d,,45.
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3.11.2 Interpretation Method # 1

This interpretation method considers x,p ~ 1 in Equation 3.163 through 3.165. As a
result, Apyap/xep =~ Apwap and s./x.p =~ sc. This method uses matching-point data
and best-matched parameters from the type-curves, more specifically choking skin s,
(early-time data) and lumped frac-hits skin factor Sy (mid-time data). The estimation

of average parameters between wells A and B is carried out as follows:

1. Use (Apwap)mp and (RNP4p)mp [psi/STB/D/fracture] to estimate average SRV
permeability (k; [md]):

 141.2uB [ Apwap
ki=— (RNPAB)MP (3.172)

2. Use ki [md] to estimate the average fracture half-length (x f [ft]) using (tp)mp and
tMP [days]:

ki t
_ + 3.173
Xy 007956\/y( o <t ) ) (3.173)

3. Estimate average dimensionless fracture conductivity (Fcp) using the best-matched

value of choking skin (sc) and xy [ft] from the previous step:

h h T
Fep = ” {m ( 2rwA) — 5] (3.174)

4. Estimate the fraction of frac hits between wells &, 45 using the best-matched value
of lumped frac-hits skin (Sr), distance between wells (L 45 [ft]) and Fcp calculated
in the previous step:

2L 4B

_T=Ab 3.175
xfFcpSF ( )

dwAB =

191



3.11.3 Interpretation Method # 2

In this method, x.p # 1. In consequence, (Apyap/Xep) 7 Apwap- Similar to Interpre-

tation Method 1, this methods uses matching-point data and best-matched values of

choking skin s. (early-time data) and lumped frac-hits skin factor Sp (mid-time data)

to estimate of average parameters between wells A and B as follows:

1.

Use (prAD)MP/ (RNPAB)MP [psi/STB/D/fracture], (tD)MP and tmp [days] to
estimate the dimensionless average half-distance between fractures (x,p [ft]):

2 1/3
x,p = 1.038 {(cpct)—lxeh (t_D) (%) 1 (3.176)
B t ) mp prAD/xeD MP

. Use the estimated value of x,p to estimate the average SRV permeability:

k1 (3.177)

_ 141.2uBx,p (APwAD/xeD)
h RNP 45 MP

. Estimate average fracture half-length (x; [ft]) using k; [md] from the previous

step:

_ ki [t
xp = 0.07956\/ oo (tD)MP (3.178)

. Estimate average dimensionless fracture conductivity (Fcp) using the best-matched

value of choking skin (sc) and xy [ft] from the previous step:

Fop = ¥eD {m( f ) - E} (3.179)

27’w A 2

. Estimate the fraction of frac hits between wells §,, 45 using the best-matched value

of SFI

2L 4B

==Ab 3.180
FepXepXfSF ( )

SwAB =
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3.11.4 Application Example 1

Pressure-transient data for a dual-MFHW system with 10 fractures per well is gener-
ated using numerical simulations. Fracture half-length is not uniform and varies from
stage to stage between 180 and 350 ft. Fracture conductivity varies between 275 and
575 md-ft. Average distance between fractured stages is 250 ft. Distance between wells
is 900 ft. Storativity of the SRV is assumed equal to 10~ psi~!. Pay thickness and
wellbore radius are 100 and 0.25 ft, respectively. Reservoir fluid properties correspond
to lower Eagle Ford oil (see Table 2.1).

The offset well (B) was shut-in and repressurized to initial reservoir pressure (6,500
psi) while the infill well (A) was completed. Fracking fluid is flowed back until single-
phase oil is produced at 10 STB/D/fracture for 80 days, after which BHP of wells A
and B are 5,022 and 6,201 psi, respectively. BHP of wel B is lower than initial pressure,
suggesting the existence of pressure communication. Pressure was recorded using
downhole gauges. Pressure-transient data is reported as RNP4p(t) and RNP’4p(f)
[psi/STB/D]. Figure 3.83 shows the resulting rate-normalized diagnostic plot. The
hump-like behavior of RNP’ 45(¢) may indicate frac hits between wells A and B.

Well Test Data
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Figure 3.83: Resulting RNP 45(t) and RNP’ 45(¢) for Example 1.
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The rate-normalized diagnostic plot of actual pressure-transient data is matched with
frac hits type-curves, as shown in Figure 3.84. We chose t\ip = 1 day and (RNP 45 )mp =
1 psi/STB/D. The best matching parameters are:

d (tD)Mp =0.1

* (Apwap/xep)mp = 0.06
e 5.=05

b SF =7

We setup a spreadsheet containing the equations required to estimate average proper-
ties from the dual-MFHW system using Interpretation Methods # 1 and # 2. Table 3.10
summarizes the calculation results. Actual properties of the simulation model are sum-
marized in Table 3.11.

Table 3.10: Estimated average properties for wells A and B in Example 1.

Figure 3.84: Resulting type-curves matching for assessment of frac hits in Example 1.
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Table 3.11: Actual MFHW properties used in Example 1.

SRV permeability (per stage), k1 0.1 md
Fracture half-length, x 1 180 ft (Well A: stages # 2, 9-Well B: stages # 1, 10)
200 ft (Well A: stages #1, 5, 7, 10-Well B: stages # 2, 5, 9)
250 ft (Well A: stage # 8-Well B: stages # 7, 8)
350 ft (Wells A & B: stages # 3, 4, 6-frac hits)

True average fracture half-length 248.5 ft
Fracture conductivity, Cy Varies between 275 and 575 md-ft
Fraction of frac hits, 6} 5 0.3

Based on type-curves matching results, we conclude that frac hits are the cause of
pressure interference between wells A and B, initially detected as a drop in BHP of
well B during the test. Under current interference conditions, each well is expected to
perform as a MFHW with the average properties listed in Table 3.10. Note that both
methods give x,p < 1, which means that, on average, fracture half-length is larger than
distance between fractured stages. However, when compared to actual values, Method
# 1 gives a more accurate estimation of MFHW parameters, including the fraction of
frac hits. Yet, note that estimation given by both methods is comparable, which serves

as a consistency check for the type-curves analysis.

3.11.5 Application Example 2

This scenario deals with the pressure-transient testing of an individual MFHW with 20
fractures. The completion job was engineered to generate fractures of approximately
equal half-length. Yet, actual average fracture half-length is unknown. Distance be-
tween fractured stages is 250 ft. Storativity of the SRV is assumed equal to 107 psi~!.
Pay thickness and wellbore radius are 100 and 0.25 ft, respectively. Oil properties are

summarized in Table 2.1.

Once oil begins to flow, the MFHW is held at a constant rate of 400 STB/D (20 STB/D
per fracture) during 20 days, after which pressure had dropped from 6,500 to 6,208
psi. Pressure was recorded using downhole gauges. Figure 3.85 shows the rate-

normalized pressure-transient data resulting from this well test. We chose typ = 1
day and (RNP4p)mp = 1 psi/STB/D.
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Figure 3.85: Resulting RNP 45(t) and RNP’ 45(¢) for Example 2.

e (tp)wp = 04
* (Apwap/XeD
e 5.=07
e Sp =00

)mp = 0.9

The best matching parameters for this case are:

Table 3.12 enlists the MFHW parameters estimated with Methods # 1 and # 2. Actual
properties of the simulation model are summarized in Table 3.13.

Table 3.12: Estimated average properties for MFHW in Example 2.

Method #1 | Method # 2
Dimensionless half-distance, x.p 1.154 1.01
SRV permeability, kq 0.9975 md 1.0974 md
Fracture half-length, x¢ 216.62 ft 227.20 ft
Dimensionless fracture conductivity, Fcp 2.458 2.578
Fracture conductivity, C; = Fcpkyxy 531.12 md-ft | 642.77 md-ft
Fraction of frac hits, d,,4p 0 0
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Figure 3.86: Resultin type-curves matching for Example 2.

Table 3.13: Actual MFHW properties used in Example 2.

SRV permeability (per stage), k; 1 md
Fracture half-length, x¢ 200 ft
Fracture conductivity, Cy 500 md-ft
Fraction of frac hits, 6, , 5 0

Analysis of results allows to conclude that the proposed type-curves matching method
gives reliable estimation of average MFHW properties. As observed in the previous
example case, Method # 1 is more accurate than Method # 2; however, estimations
made with both methods are comparable.

3.12. Discussion

This chapter focuses on the development of an analytical model capable of detecting
well interference effects due to frac hits in a multi-well pad using diagnostic plots and
type-curves. Instead of analyzing transient data for each MFHW in the pad individ-
ually, we define the pressure differential parameter Ap,ap = |Apwa — Apws|, where
A is the infill well and B is the offset well. The initial hypothesis that energy tends
to attain late-time equilibrium across interfering wells is tested and confirmed by nu-
merical simulation data showing that Ap,,4p reaches a late-time plateau when frac hits
exist between wells A and B. The correlation between the degree of interference and
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the observed pressure equilibration behavior is simple: the higher the number of frac

hits the faster the plateau is reached.

Based on the equilibration hypothesis as an indicator of frac hits, we develop the fluid-
flow model for a three-MFHW pad. Frac hits are modeled as a boundary condition that
enables pressure communication between MFHWSs through the fractures. We validate
the analytical solution against numerical validations for four different scenarios where
all MFHWs are flowing at constant rate. To the best of our knowledge, no previous
study have been able to detect and estimate the number (or fraction) of frac hits without
the need for any shut-in (Awada et al., 2016).

As mentioned earlier, the present analytical model considers three MFHW in the pad.
Nonetheless, the proposed approach can be extended for as many wells as required.
However, the history-matching process may become challenging when dealing with
transient data for more than 3 wells. The script used to run the analytical frac hits
model takes around 30 seconds to generate the required analytical pressure-transient
data, hence making the three-MFHW model convenient for field application during
the flowback period (i.e. single-phase fluid-flow). Notice that the rate-normalized ap-
proach should also work for variable rate during the interference test; however, changes

in rate must be smooth and small compared to total flow rate.

Given the vast number of possible combinations of fracture properties, pad dimensions
and distance between infill and offset wells in a multi-well pad, we design several sen-
sitivity studies to narrow those down and try to cover realistic field configurations as to
understand how these would impact the detection and assessment of frac hits, based on
the analytical solution. In total, 330 simulations where carried out and history-matched
with the analytical model. These results are presented in the form of PTA type-curves
of rate-normalized data RNP 45 and RNP’ 45. We observe that, in the absence of frac
hits, transient RNP 45 and RNP’ 45 response corresponds to that of an isolated MFHW.
However, new type-curves develop as the number of frac hits increases. A total of 33
frac-hits type-curves are presented and discussed in this chapter.

In addition, we developed dimensionless type-curves for well characterization and as-
sessment of frac hits between two MFHWSs (wells A and B). We assume that perfor-
mance of wells in communication through frac hits is analogous to that of two identical
wells with certain average properties. Furthermore, we set well A to flow at constant

rate while well B is shut-in. The analytical solution to the forward problem is reduced
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to a more convenient dimensionless solution for pressure changes in well A, which
allows to generate type-curves for varying degrees of well interference. We discussed
two examples that demonstrate the applicability and usefulness of the proposed type-

curves.

Although the analytical frac hits model can history-match any of the scenarios dis-
cussed herein, accuracy of the prediction of individual BHP in the pad depends on the
geometric configuration of each MFHW as well as other properties, such as SRV per-
meability. Another shortcoming of the analytical frac hits model is that it performs best
before the onset of 2-D flow between the inner matrix region and interfering wells. A
2-D semi-analytical approach to this model may solve this issue; however, the practical
applicability of the such semi-analytical model may be overshadowed by its computa-

tional requirement.

Lastly, estimation of ultimate recovery as well as mass balance over individual well’s
productivity are the starting point for future work regarding the application of the
proposed frac hits model.

3.13. Conclusions

We introduce an analytical model for the detection of frac hits in a multi-well pad.
The well is represented as a source-line in the governing equation of each MFHW such
that two boundary conditions are available for modeling fluid-flow in the hydraulic
fractures. Therefore, we develop the frac hits boundary condition which connects two
or three MFHW through the hydraulic fracture interfaces.

Furthermore, we introduce the quad-linear flow model (QLF) to account for asym-
metric distribution of wells in the pad. The analytical solution for individual BHP is
derived in Laplace domain and are inverted into time domain numerically. The pro-
posed analytical PTA approach was validated against four numerical simulation cases
in which all wells were flowing at constant rate. Frac hits were successfully detected
and characterized in these cases. Moreover, even though interference effects through
the matrix was not considered in the analytical model, we observed that matrix interfer-
ence can actually be accounted for in the form of a small fraction of frac hits, commonly
smaller than 0.001 (equivalent to 1 frac hit out of 1000 fractured stages). Pressure inter-
ference effects through the matrix were detected at late times, as expected.
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We proved that individual BHP does not provide as much information about frac hits
as the combined pressure differential between wells, as the latter tends to attain equi-
librium in the presence of pressure interference effects; the higher the fraction of frac
hits the faster the equilibrium plateau is attained in both pressure differential and
pressure-differential derivative.

The use of typical rate-normalized PTA type-curves allows the estimation of the frac-
tion of frac hits across wells in the three-MFHW used as the basis for the analysis.
Type-curves for various well configurations, associated with realistic field completion
scenarios, were generated and history-matched against numerical simulation data. Di-
mensionless type-curves for frac hits characterization were generated and two applica-
tion examples were discussed, showing the potential benefit of the application of the
proposed type-curves.
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4. Effect of Anisotropic Fault Permeability Enhancement on
Pressure-Transient Behavior

4.1. Background

Faulted reservoirs feature a segmenting fault acting as the primary barrier to leakage of
hydrocarbons into neighboring permeable strata (Knipe et al., 1998; Jolley et al., 2010).
Yet, an initially sealing fault can abruptly become partially conductive in response to
changes in local stresses induced by rapid variations in pore pressure. Such rapid
alteration of fault permeability is often connected with (aseismic or seismic) fault slip
(Cappa and Rutqvist, 2011; Guglielmi et al., 2015; Jeanne et al.,, 2018). In general,
variation in fault permeability upon fault reactivation is a very complicated process
that depends on the hydro-mechanical interaction between pore pressure, in-situ stress
orientation and magnitudes, and fault properties (e.g. mineralogy, roughness, and
rock fabric). Yet, observations from coupled hydromechanical modeling (Cappa and
Rutqvist, 2011; Rutqvist et al., 2013) and field experiments of induced fault slip (Jeanne
et al.,, 2018) suggest that fault permeability gets suddenly enhanced upon fault slip.
Besides, the enhanced fault permeability resulting from fault reactivation is anisotropic,
pressure-dependent and may even be self-healing with time.

Hydrocarbon production operations may potentially lead to fault reactivation and re-
lated fault permeability enhancement when 1) cumulative volumes of produced fluids
are large enough to prompt a fast decline in reservoir pressure, 2) the fault is favorably
oriented with respect to current in-situ stresses, and 3) subsidence rates near producing
wells are substantially higher than geologic subsidence rates (Buijze et al., 2017; Chan
and Zoback, 2007; Morton and Purcell, 2001). Visund field offshore Norway (Wiprut
and Zoback, 2000) and South Marsh Island 36 field in the Gulf of Mexico (Davies et al.,
2003) are examples of initially sealing faults becoming conductive due to fast, differen-
tial pressure depletion across the fault. In a similar fashion, subsurface fluids injection
may induce fault reactivation due to differential pressure build-up across fault blocks
(Bourouis and Bernard, 2007; Jha and Juanes, 2014; Rutqvist et al., 2013).

Subsurface fluid injection is primarily utilized in oil and gas fields for disposal of
produced and wastewater, natural gas storage, CO, storage and enhanced oil/gas re-

covery. Research efforts made in recent years suggest the existence of a relationship
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between induced seismicity and injection of fluids in the subsurface (Ellsworth, 2013;
Keranen et al., 2013; Rubinstein et al., 2014; McGarr et al., 2015). For example, Kera-
nen et al. (2014) pointed out that fluid migration from the injection zone is potentially
responsible for the increase in seismic activity in Oklahoma since 2008.

Although it is commonly believed that induced seismicity can only occur near the injec-
tion point, field observations suggest that seismic events may actually be triggered far
away from the injection well (Healy et al., 1968; Hsieh and Bredehoeft, 1981; Rubinstein
and Mahani, 2015). Because man-made seismic activity is associated with fault slip,
caused by pressure changes in the subsurface, fluid leakage from the injection zone is
correlated with fault reactivation (Sibson, 1985; Wiprut and Zoback, 2000). Thus, prior
information about permeability of potentially conductive faults in the target formation
is key for assessing the suitability of a certain permeable formation for storage and

long-term containment of fluids.

There may be undetected non-conductive and/or slightly conductive faults in the un-
derground that could be reactivated thus becoming conduits for fluid leakage. Wiprut
and Zoback (2000) argue that gas leakage resulted from the reactivation of a previously
dormant fault in the Visund oil and gas field in Norway. Likewise, Davies et al. (2003)
reported that an initially sealing fault in the South Marsh Island 36 field in the US
Gulf of Mexico became conductive after the across-fault pressure differential, caused
by differential gas production, reached 3000 psi. Henceforth, the need for studying the

evolution of fault properties must be primordial for reservoir management purposes.

The potential risks associated with leakage of injected and /or native fluids, such as con-
tamination of ground water resources and induced seismicity, as well as other reservoir
management issues associated with oil and gas production operations, can be mitigated
if the evolution of fault characteristics is monitored properly. For such cases, pressure-
transient analysis would be a low-cost alternative to the more expensive permanent

active/passive seismic monitoring techniques.

4.2. Statement of the Problem

Several analytical models for faulted reservoirs have been developed over the years for
pressure transient analysis (PTA) purposes. In despite that reservoir pressure changes
over time during fluid withdrawal or injection, all of the analytical models assume that

fault properties remain constant.
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The earliest of such models is the method of image wells, developed for an isotropic
and homogeneous reservoir containing a sealing linear boundary (Horner, 1951). Diag-
nostic pressure-transient plots derived from this model are often used to detect and es-
timate the distance from the well to sealing boundaries. Figure 4.2a illustrates pressure-
drawdown distribution in Region 1, Ap1(x,y,t < t;), given by the image wells solution
while pressure-drawdown in Region 2, Apy(x,y,t < t5), is null due to the absence of
pressure communication. Bixel et al. (1963) introduced the analytical solution for fluid-
flow in a composite reservoir in which the fault is represented as a linear discontinuity
between formations; however, the fault itself has zero skin. Later, (Yaxley, 1987) intro-
duced the partially-communicating or linear leaky fault model for an infinite reservoir
to overcome the zero fault-skin limitation from Bixel et al. (1963) by assuming that fault
leakage rate is controlled by pressure differential across the fault. Figure 4.2b depicts
the evolution of pressure-drawdown occurring in Region 1 and 2 simultaneously as
the fault is partially communicating. Along the same lines, Ambastha et al. (1989) de-
rived pressure-transient solutions for a partially-communicating fault in a composite
striped reservoir. Nonetheless, (Yaxley, 1987) and Ambastha et al. (1989) considered
across-fault leakage only.

Abbaszadeh and Cinco-Ley (1995) introduced the linear-lateral leaky fault model with
finite skin and conductivity that accounts for flow transience within the fault as well
as simultaneous along-across-fault leakage. However, the mathematical complexity of
the proposed solution forfeited its applicability. Rahman et al. (2003) presented a more
practical version of the former model by modeling across-fault leakage simply as a
flux-source term, characterized by fault skin s s while accounting for transience effects
along the fault where fluid-flow is controlled by the dimensionless fault conducitiv-
ity Fcp (Figure 4.2c). Additionally, fault blocks may have different diffusivity 7; and
transmissibility Tj.

Due to its ease of implementation, Rahman et al. (2003) leaky fault model is the most
widely used leaky fault model. There exists, however, another possible scenario in
which the leaky fault exists in a bounded reservoir (Figure 4.2d). Although more
realistic, analytical expressions for Ap1(x,y,t < t;) and Apy(x,y,t < t;) may be difficult
to obtain for such scenario. Furthermore, information about reservoir limits, fault
properties, and reservoir size should be known a priori. Therefore, characterization of
fault properties is typically achieved during transient flow conditions when boundaries

are unseen by the pressure disturbance.
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Region 1

Figure 4.1: Different types of pressure-drawdown distribution in a compartmentalized
reservoir before the onset of fault reactivation.

4.3. Proposed Methodology

In departure from previous models, the analytical model presented in this work goes
beyond the assumption of constant fault properties by allowing fault permeability to
behave in a more geologically realistic manner, in this case step-wise, after the onset
of fault slip has been reached. We consider a faulted reservoir scenario in which the
fault is originally sealing during 0 < t < t;, where t; is the onset of fault reactivation.
The pressure distribution in Region 1 at ¢t = f; is given by the image wells solution.
Subsequently, we model fault reactivation at t = ¢; as a sudden change in anisotropic
fault permeability so that the initially sealing fault becomes partially conductive, both
perpendicular and laterally (Figure 4.2a), consistent with the typical structure of the
fault zone of a conductive fault (Caine et al., 1996). Since the fault is leaky for t > t;,
Rahman et al. (2003) model applies thereon. Therefore, given that pressure-drawdown
in Region 1 is non-null, we setup the leaky fault model for non-null initial pressure
distribution in Region 1, designated as Ap(l)(x, y,t' = 0) where ' = t — t, is the elapsed
time after the onset of fault reactivation.
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We solve the governing equations for Region 1 using the Laplace-Fourier transforma-
tion and use the analytical solution at the wellbore to extract the signature transient
response to fault reactivation. We introduce type curves for various dimensionless on-
set times (t;p), sy and Fcp. Moreover, we discuss fault permeability characterization
using late-time pressure response and benchmark the proposed model against numer-

ical simulations.

The primary application of our model is the interpretation of well-test data for ex-
tracting valuable information about the fault and reservoir after fault reactivation had
occurred. More specifically, the purpose of the analytical workflow hereby introduced
is threefold:

1. To identify pressure and pressure- derivative responses to a sudden enhancement
of fault permeability as an indicator of fault seal breakdown,
2. to estimate the onset time of fault slip from diagnostic plots, and

3. to characterize fault properties before and after fault reactivation.

4.4. Mathematical Modeling

We examine the scenario of a sealing fault before the onset of fault reactivation (t =
ts) and subsequent simultaneous linear-lateral leakage after fault reactivation. The
slightly compressible fluid flow assumption is followed herein. Fluid is the same in
both formations. Formation layers are isotropic and homogeneous with respect to
porosity and permeability and are semi-infinite in extension with constant thickness.
As mentioned earlier, fault blocks can have distinct transmissibility (T; = k;h;) and
diffusivity (17; = kj/p(¢ct);). Fault is assumed initially sealing thus fault skin is infinite

(sf — o0) thus the effect of Fcp on pressure-transient response becomes negligible.

We propose a fault permeability enhancement scenario based on a composite reser-
voir segmented by a planar fault represented as a linear interface between fault blocks
located at x = 0, as shown in Figure 4.2b. The interface is infinite along the y-axis.
The target reservoir is represented as Region 1 (x > 0) while the adjacent fault block
is referred to as Region 2 (x < 0). The constant-rate well in Region 1 is modeled as a
line-source located at a distance b away from the fault. Simultaneous across-along-fault

flow is modeled following the approach by Rahman et al. (2003).

Enhancement of anisotropic (directional) fault permeability is mathematically repre-
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Figure 4.2: Idealization of a segmenting fault as a linear interface in a composite reser-
voir (Ambastha et al., 1989). Flow direction in a typical fault zone, and idealization
of a compartmentalized reservoir in which the fault is modeled as a linear interface
between fault blocks.

sented as a sudden change from null fault permeability into finite directional fault
permeability occurring at t = t; or tp = t;p (see Equation B.7). In this view, across and
along-fault permeability changes are incorporated into the system as sudden changes
in sy (Equation B.11) and Fcp (Equation B.12), respectively. In this study, we examine
pressure-drawdown and pressure- derivative responses to 0 < sy < co and Fcp > 0
at various onset times. It is worthwhile to mention that, unlike other models, the
definition of sy proposed herein is based on the dimensionless fault transmissibility «
proposed by Yaxley (1987) such that & = s;l (Equation B.11). This definition enables

the use of sy for fault characterization purposes.

4.4.1 Governing Equations

The governing equation for Regions 1 and 2 (Ambastha et al., 1989) and fault (Rahman

et al., 2003) are, respectively, given as

’Ap;  3*Ap, 1 9Ap;

quB .. _ 1
s 52 + klhl(s(x b)s(y) = STt (4.1)
azApz azApz _ l 0Ap, (4.2)
dx2 Y2 172 d(t — t5) '
%A oA
9 7 kk1 Kagpl) - b (agpz) ] N la ; (43)
Yy fIWF X/ =0 X Jy—ol Mpo(t—ts)

206



The term %(5 (x —b)é(y) in Equation 4.1 is the line-source representation of the constant-
rate well located at x = b and y = 0. Also, we assume that pressure is initially constant
throughout the reservoir so that Ap;(x,y,t = 0) = 0.

Normalization of the governing equations is accomplished by using the corresponding
dimensionless parameters for Ap; (Equation B.1), x and y (Equation B.2— B.3),  — f;
(Equation B.6) and 7; (Equation B.9 and B.10. Replacing these normalized parameters
into the governing equations Equation 4.1—4.3 leads to:

*pip |, *pip 9p1D
2m6(xp — 1) = 4.4
2 2
J P2 J P _ L 9p2p (45)
9Xp dyp b 9tp
9 1 [(d d 19
P§D+ ( P1D) _TD( P2D> _ P{D (4.6)
ayD FCD BxD xp=0 axD xp=0 77fD atD
Next, we introduce a sudden change in fault permeability at t, = 0 so that the

initially-sealing fault becomes leaky some time after fluid withdrawal (or injection, if
g is negative) had started. This means that pressure had been depleting (or build-
ing up) in the reservoir during the period 0 < fp < f;p. On the one hand, the
dimensionless pressure distribution in Region 1 before fault reactivation, defined as
P25 (xp,yp,0 < tp < tsp), is given by the analytical solution to Equation 4.4 for t, = tp
and 0 < tp < t;p. On the other hand, given that the fault is assumed initially sealing,
p3p(xp,yp,0 < tp < tsp) = P?D(XD,]/D,O <tp <typ)=0.

Nonetheless, if the fault was initially conductive, pgD(xD,yD,O <tp < tsp) # 0 and
p?D(xD,yD,O < tp < tsp) # 0. In that case, initial dimensionless pressure in these
regions are given by the analytical solution to Equation 4.5 and 4.6, respectively, for
t/D = tD and 0 < tD < tsD-

4.4.2 Laplace-Fourier Transform

To simplify the analytical solution process for the governing equations of the fault
reactivation model, we conveniently apply Laplace transform over time and Fourier
transform along the y-axis because 0 < t}, < o0 and —oo < yp < co. The simultaneous
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Laplace-Fourier transform of p;p is mathematically defined as

FLA{pjp} = pjp(xp,w,s) = / / E_Stb_iwyDPjD(xD,yD, th) dyp dtp 4.7)
0 —o0

The inverse transform pair of Equation 4.7 is given by

s U [ iony ot g5
pip(xp,yp,tp) = F L7 {fip} 25/6 L pip(xp,w,s)dyp  (4.8)

Since p;p is symmetric with respect to the y-axis, Equation 4.8 may be rewritten as

1

pip(xp,yp,tp) = ;/cos (wyp) L {pjp(xp, w,s)} dyp (4.9)
0

For the case when p?D(xD,yD,O <tp <typ)#0,

ap; _
FL {%} = spip — F {plo (x0,y, th = 0) } (4.10)
D

Be reminded that p?D (xp,yp, tp = 0) is the current dimensionless pressure distribution
in Region j at the onset of fault reactivation (t, = 0 or tp = t;p). For simplicity, we

will refer to this initial condition as p?D (xp, YD)

4.4.3 Canonical Solutions in Laplace-Fourier Domain

Replacement of Equation 4.7 and 4.10 into Equation 4.4 to 4.5 yields the following set of
ordinary differential equations for Regions 1 and 2, respectively, in the Laplace-Fourier
domain:

— (s 4+ w?)pip = — ?5(9@ -1)-F {p(l)D(xD,yD)} (4.11)
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d*pop
dx3,

(WiD + wz) ﬁZD = — ]:{pgD(xD,yD)} (4.12)

In a similar fashion, we obtain the transformed governing equation for the fault region:

+ 7 {phpo)} @13)

s 2 = 1 (dﬁlD) (dﬁm)
<77fD > pr PCD [ de xp=0 b de xp=0

Notice that Equation 4.13 is the actual solution to the governing equation Equation 4.6

in the Laplace-Fourier domain. To simplify the expressions above, let us define ¢? =

2

2 - 5 2 — s 2
s + w*, o _11213+w andaf WfDer.

Utilization of the method of variation of parameters, along with the infinite-acting-
reservoir boundary conditions for Regions 1 and 2, i.e. p1p(xp,w,s) =0 as xp — o

and pop(xp,w,s) =0 as xp — —oo, leads to the solution to Equation 4.11 and 4.12:

XD
) rre—lxp—1| S|
= —0xp 4 —o(xp—¢) 0
PiD o= + Be + 20_/6 f{plD(xD,yD)}dC
0

(4.14)

(ee]

1 —o(f—x
+%/€ ¢ D)f{P(fD(XD/]/D)}dC

XD

|xp|
= —0olx 1 —02(|XD|—
5o = Ac |D+E/e 2 (|| e);{pgD(xD,yD)}dg
i 5 (4.15)

1 o (F—
_i_E e (72(5 |xDDF{p8D(xD’yD)} dg

lxp|

We use the following inversion pairs (Bateman, 1954) to invert Equation 4.38 and 4.39

into dimensionless time-space domain:
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—a/s _a?
-1]¢€ _e t
L { \/§ } = (4.16)

Vot
F-lp-1 f(s +w?) _ 1 t eﬁﬁl {f(s)} dt (4.17)
= Zﬁo/ Ve
FHf@)g@)} = [ fgly—v)dv (418)

Equation 4.18 is the Fourier convolution theorem. This transform pair is particularly
important to handle the inversion process when p?D(xD, yp) # 0.

Inversion of Equation 4.15 is not discussed herein because the focus of the this chapter
is to analyze transient pressure response at the well, located in Region 1. Yet, the
procedure that will be explained next also applies to Region 2.

4.5. Analytical Solution to the Fault Reactivation Model

In developing the analytical solution to the governing equations to along-across-fault
flow upon fault reactivation (Equation 4.11 to 4.13), we consider the general case in
which dimensionless pressure distribution in Regions 1 and 2 are not specific to any
of the fluid-flow cases discussed in Section 4.2 (Figure 4.2). Instead, we simply assume
that P?D(XD,]/D) # 0. This section is divided into two subsections. First, we find the
solution to the general problem of fault reactivation after the onset of fault slip (tp > t;p
or t, > 0). Additionally, we derive the late-time asymptotic pressure behavior of
Region 1 based on the work of Molina and Zeidouni (2018). Second, we derive the
analytical solution to the initially-sealing fault problem using the general solution. We
present and discuss the analytical model using typical PTA diagnostic plots and type-
curves for a variety of fluid-flow scenarios. Finally, the proposed analytical solution is

validated against numerical simulations.

4.5.1 Analytical Solution after Fault Reactivation (t > t;)

Figure 4.3 illustrates the material balance of across and along fault flux after the en-

hancement of anisotropic fault permeability occurring at t = t;. Pressure across the
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fault is discontinuous; however, total flux across and along the fault must be conserved.

Equation 4.13 is used to couple Regions 1 and 2 at the interface (x = 0).

Figure 4.3: Material balance in the fault: steady-state flux across the fault and transient
flux along the fault.

Fluxes across the fault interfaces are defined as follows:

" _klhl dAp1
ql - ;/lB ax —0 (419)
n  kohy (AP
keh
" f 1 o
" :lm — Ap) (4.22)
qf2 1B(w;/2) pr P2)x=0 .

Fluxes across the fault are defined in reference to the thickness of the reservoir (Region
1). Note that both Equation 4.19 and 4.20 assume that across-fault flux occurs in steady-
state and is controlled by the pressure differential across the fault interface. According

to Figure 4.3, the mass balance at Node 2 gives g} = q}’z henceforth
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kzhz (aApz) kfhl
22 — T (Aps—Apo), 423

Normalization of Equation 4.23 and subsequent transformation into Laplace-Fourier

domain leads to:

dpap 2,
' < dxp > —— g(pr Pap o 0

Likewise, the mass balance at Node 1 yields

dpip 2
( dxp >XD—0 N Sf(plD PfD)xDZO (4.25)

Summation of Equation 4.24 and 4.25 gives

dﬁlD) (dﬁzD) 2 _
+ 1 ., - = 4.26
( dxp xp=0 P dxp xp=0 Sf (PlD pZD)xD 0 ( )

We can further use this result to eliminate psp from Equation 4.6. After some mathe-

matical manipulation, we obtain

1 dﬁlD) (dflzD) 0
T W F =
UJ%FCD [( dxp xp=0 = dxp xp=0 {pr(yD)}

Using Equation 4.14 and 4.15, we obtain the following relationships:

- e’ L4

(P1p)xp=0 =——+ B+ 5 (4.28)
_ C

(P2D)xp=0 =A + ﬁ (4.29)
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= -0
(dpm) _T g S (4.30)
XD—O §

de 2
dpap B L
( o )XD_O —ph - 2 (4.31)
where
o= [ r (@)} it @.32)
0
Lo :/e—g‘fzf{pZD(g,yD)}dg (4.33)

0

Combining Equation 4.28—4.31 with Equation 4.26 and 4.27 yields the following sys-

tem of linear equations with the integration constants A and B as the unknowns:

- -0
L I ) Py - Ly (T S B S (4.34)
S 2 2 Sf o 1)

e v
15

c c
—0B+ 5+ Tp (azA - f) + F{pp(yp)} =

0 L, s 0 C
PCDUJ%[”:U +B+—1——f(ms —UB+71)] (4.35)

20 2

There are two important facts to take into account before solving the system of equa-
tions for A and B. First, recognize that £, = 0 in Region 1 in the same way that £; =0
in Region 2. Second, p?rD (yp) = 0 in both Regions 1 and 2 as fault flow only occurs at
the interface xp = 0. Keeping these conditions in hand, we obtain the solution to the
system of equations:

e’ 8o
s 4afao + Tpor (o +a)] + FCDO'J%(U' +2a)(Tpop + 2a)
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F{pdp}tdz (4.36)

1 /00(3@72 406[—06(7 + TDO'2(0' + 06)] + FCDO'J%((T + 20&)(TDO'2 - 206)
2

/) o do[ao + Tpor (o + )] + FCD(TJ%(U’ +2a)(Tpoy + 2a)

e~ 4alao + Tpoa (o — )] + FCDO']%(O' —2a)(Tpoy + 2a)
so 4alao + Tpop (o + a)] + FCDJJ%(U +2a)(Tpos + 2a)

F{pip}tdz (4.37)

. ]°ee:o— 4alao + Tpoa (o — a)] + Fepo (o — 2a) (Tpop +24)

1
2 / o 4afao + Tpor (o +a)] + FCD(TJ%(O’ +2a)(Tpoy + 2u)

K= 5;1 is the dimensionless fault transmissibility (Equation B.11). p{, = %, (¢, yp)
and p9y = P95 (&, yp). Replacing Equation 4.36 and 4.37 into 4.38 and 4.39, yields:

_ B ng*‘fol\m N ne*(xD+l)\/s+W2 TDR1(S,0J) + /777D [1 +FCDW1(s,w)
Pip = sv's + w? sv/s +w?2 TpRo(s,w)+ /np [1+ FcpWo (s, w)

]
]

1/003_(x1)+§)\/s+w2 TDRl(S/w) + \/%[1 + FCle(S/CU)]}.{ 0 (g )}dé’
2/ Vst ToRo(s,w) + i [1+ FepWo(s, )] Piple, YD
P oo e e (4.38)
+5 | —F——F{pip(& yp)}d¢
2 2
) Vs + w?
L e o)}
+5 | —F——/1Pip\& VYD
2 2
J Vs + w?
- emVsta? 7%‘\/%%]2 27t
pap = TpRo(s, @ >+Wvo 1+ FepWo(s, )]
+1/°°e (ko405 TR0 (5, 00) — /775 [1 — FepWals, @ )]f{ o (e de
2] m TpRo(s +W7D [1+ FcpWa(s,w)]” tF2pier¥D
, lxme‘('xf"_@m . (4.39)
+y [ Pl @ o)} e
0 - tw

f{PZD(C yp)}d¢
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where R(s,w) and W(s,w) are auxiliary functions in Laplace-Fourier domain, defined
as follows:

1
(4 Toram) Vo e (440
1
S e e R .

1 S 2 S
witsio) =3 (20 ) (s s ) (st tete2) e
Wi (s, ) == [ = 4 o2 (s —L) (5 T i+w2+2> (4.43)
e 4 \1fD e Vsrwr) TP '
1 S 2 3
Watsio) =3 (20 ) (s s ) (oot =2) e

Laplace-Fourier inversion of Equation 4.38 yields:

Fip {e—xn—llmﬂ}
Pip =T -

svV's + w?

+F- et e~ (o F)Vs+@? TRy (s, w) + /7ip[1 + FepWi (s, w)]
svs+w?2 TpRo(s,w)~+ /fp [1+ FepWo(s, w)]
1 oo | T e ot VST TpR (s, w) + /17D [1 + FepWa (s, w)
. Vil | F80(E yo)) de
27 Vs+w?2 TpRo(s,w)+ /b [1+ FcpWo(s, w)]

lrapa [eto-dvere?
_|_7 - - JE N —
2 ) Vstw?

1o | [eEmvsier
+§]: L F{prip(&,yp)}d

]:{P?D@J/D)} d@}

Vs +w?

XD

(4.45)

Moreover,
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F1p-1 { e~ +E)Vstw? ThRy (s, w) + /D[l + FepWi (s, w)]

Vs+w?  TpRo(s,w) + \/7p[1 + FepWo(s, w) FApio (& un)} dé} B

/ /flgl { e~ (0 OV TRy (s, w) + /1o [1 + FepWa (s, w)]
0

O J—
Vs+w?  TpRo(s,w)+ /iip[1+ FcpWo(s, w) } pip(&,yp —v)dvdg

0 —oo )
(4.46)
1./__.71‘671 XDe_(xD—é)\/WJ_E 0 ] me_(g_xD)\/mf . ,
il e pTeVETE ’ L[ Eone / )
2 o Vs 4+ w? {Pin(& yp)}de st o2 {rip(S,yp)}dS
XD
1 77 —beotpo?
[ [e % @i @)
D 0 oo

Additionally, we make use of the following Laplace-Fourier inverse transform pair
(Molina and Zeidouni, 2018):

—|xp—1|Vs+w? _1)2 2
nFlel {L} gy <—(xD D) +yD> (4.48)

svV's + w? 2 4t

Replacing Equation 4.47 and 4.48 into 4.45 while applying the inverse Laplace-Fourier
transform identity from Equation 4.9, gives

(xp — 1) +J/ZD>

1_.
pip = —5 Ei (—
2 at

+

\8

—(xp+1)Vs+w? THR , N/ 1+ FepWiq (s,
cos(wyD)C_1 ¢ pRi(s,w) + /D [1 + Fep (s, w)] dw
svs+w? TpRo(s,w)+ /7p [1 + FcpWo (s, w)]

0

[ce I e olNe o) 4.49
. cos(wv)ﬁ—l{e(m“w”wz TDR1<s,w)+rno[1+Fcpw1<s,w>]} @)
0 0 —

2 svs+w?2 TpRo(s,w)~+ /fp [1+ FecpWo(s, w)]
0 1 TR _(XD*§)247(3'D*1’)2 0
X pip(&,yp —v)dvddw + ey / / e *p pip(&,v)dvdg
D
0 —o©

The first term in the right-hand side of Equation 4.49 corresponds to the infinite-acting
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reservoir solution. The second term represents the additional pressure gain (or loss,
if the well is an injector) due to the presence of a leaky fault. The multi-dimensional
indefinite integrals arising during the inversion process are referred to as convolution
integrals. These integrals are estimated using a combination of the Stehfest algorithm
(Stehfest, 1970) for the inverse Laplace transform and a robust numerical integration
strategy built in Mathematica®. Nonetheless, recognize that the Laplace inversion al-
gorithm generates N summation terms, which will produce N — 1 additional indefinite
integrals, making the estimation of p;p computationally expensive, especially when
th, =~ 0.

Equation 4.49 shows that fluid transport capacity of the fault upon fault reactivation
is simultaneously controlled by sy and Fcp, which would individually set the amount
of flux flowing across and along the fault and finally into the reservoir. Note that the
across-fault flux solution for a composite reservoir is yielded from Equation 4.49 if

along-fault permeability enhancement is neglected (i.e. Fcp = 0).

In this regard, Molina and Zeidouni (2018) proved that, for an initially-sealing fault in
an infinite reservoir with M = hp = yp = 1 and Fcp = 0, Equation 4.49 reduces to

1o (p—12+yp\ 1. [ (p+1)?+y}
— _Ei(- ~ CEi(-
Pib =75 1( at 27 at,
t/
i 1 dt
_ 2a(xp+1) 40220 £ Xp + )
Vtae /e erc<2ﬁ+rx\/? NG

(p-8%+yp—v)? f; “wpv?  _(p+ePip-v)? 1 —1)2 42
: // P 4t {—Ei <_(§)+V>
47TtD , 2 4tsD
1 1)2 412 T P ,
—~Fi <_(C+)+V>} dydg— Ij //e‘”DJrg 4’D efc D +/§—|—21x\/%
2 4tsp 2./mtth, ) ) 2V'tp

1. (E=1)24+v?\ 1_ [ (E+1)2+v
o IR ELEL ST P

(4.50)

In general, p{,(xp,yp) in Equation 4.49 refers to any kind of dimensionless pressure
distribution present in Region 1 at the onset of fault reactivation, as discussed in Sec-
tion 4.2 (see Figure 4.2). This enables the use of other production scenarios before fault
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reactivation with the analytical model so long as pressure distributions for Regions 1
and 2 are explicitly given at tp = tsp.

4.5.2 Late-time Asymptotic Pressure Behavior in Region 1

Molina and Zeidouni (2018) used their infinite-acting compartmentalized reservoir
model to prove that, while convolution integrals strongly influence pressure behav-
ior shortly after the onset of fault reactivation, their effect on late-time behavior (i.e.,
t}, ~ tp) is negligible. Based on this observation, we may infer that the dominance of
the convolution integrals in Equation 4.49 will alike vanish as tp > t;p, so that late-
time behavior will be exclusively dominated by the first two terms on the right-hand

side of Equation 4.49. This observation allows us to conclude that:

1_.( (xp—1)2+y}

+ ]ocos(wyp)ﬁ_l e~ 0DVt Tp Ry (s, w) + /7 [1 + FepWi (s, w)] o
) svs+w? TpRo(s,w)+ /1D |1+ FepWo(s, w)]

(4.51)

The expression above is the same analytical solution given by Rahman et al. (2003) to
the problem of an initially across-along leaky fault. This result indicates that the fault
will reach a late-time equilibrium state with the response of an initially along-lateral

leaky fault. Therefore, we can use Equation 4.51 to history-match late time data.

4.5.3 Analytical Solution Before Fault Reactivation (0 <t < t;)

There are two possible scenarios for fluid flow near the fault before fault reactivation:
(1) fault is initially sealing and (2) fault is initially across-along leaky.

On the one hand, the fault acts as a barrier to flow since the beginning of production
until the onset of fault permeability enhancement (0 < tp < t;p) when it is initially
sealing. During this period, the image wells solution applies (cf. Stewart, 2011; Spivey
and Lee, 2013). Because the fault is impermeable, « = 0 or s F— o, thus p(l)D is given
by
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1 (p-12+v3\ 1_ [ (p+1)2+y}
mD(xD,yD):—EEl(—(D 4% yD>—§E1<—(D 4% /D (4.52)

for 0 < tp < t;p. At the onset of fault slip tp = t;p, the current dimensionless pressure
distribution in Region 1 is given by

1_.( (xp—1)+y; 1 . ( (xp+1)*+yz
0 _ 1 _ p| ! . D
pip(xp,¥p) = > Ei < T 5 Ei T (4.53)

This result can be analytically derived from Equation 4.49 as well. Let us set t;p = 0,
pY, =0and Tp = Fcp = 0, equivalent to s § — 9, so that Equation 4.49 becomes

_1)2 2 —(xp+1)Vs+w?
ip = — L Fi | — (o= 17+yp) | po1p1)e (4.54)
2 4tp svV/s + w?

Replacing Equation 4.16 and 4.17 into the expression above yields

v (xp+1)2

1_.( (p—12+43 T /tD e I e~
= —ZFEi|- =4 455
PiD 21< At +2\/E0 NG VT T @

Moreover,

(XD+1)2+y2D

1. ( (xp—-1)+yp 1 [(foem— @
By L 456
Pip = =55 ( 4t *3 /0 - T (4.56)

The integral on the right-hand side is the definition of the exponential integral function
(see Equation 4.48). Evaluating the resulting expression at the dimensionless onset of
fault slip tp = t;p yields

1_.( (xp—1)2+y? 1_.[ (xp+1)2+y2
o _ - . D - o D
Pip = > Ei ( i 5 Ei T (4.57)

which coincides with the result in Equation 4.53.

219



We will consider in this work that the fault is initially sealing and infinite-acting
reservoir conditions are ensued before fault reactivation. Therefore, we replace Equa-
tion 4.53 into 4.49 to examine the pressure response in the reservoir to fault reactivation

under the assumption that the fault was initially sealing.

On the other hand, if the fault was across-lateral leaky before fault reactivation, dimen-

sionless pressure response in Region 1 is given by:

1 (xp—1)2+4v5
Pip = §E< 4t

sv/s +w?2 TpRoi(s,w)+ /1p [1 + FepWoi(s, w)]
(4.58)

i —(xp+1)Vs+@? TRy, (s, S5 11+ FepWyi(s,
+/Cos(wyD)£_1 {e D pRute,w) + i7b L + Feo Wils, ) dw
0

where the definitions of R;(s, w) and W;(s, w) are the same as R(s,w) and W(s,w), the
difference being that the R; and W; use sy; (initial fault skin) instead of s.

4.6. Pressure Transient Analysis of Fault Reactivation

Analytical solutions derived in this study are compared against analytical faulted reser-
voir models from the literature. The objective of this section is to observe dimension-
less pressure and pressure-derivative responses to sudden changes in anisotropic fault
permeability for an initially sealing fault. We investigate the transitional flow regime
originating at the onset of fault reactivation and that lasts until pressure reaches the
late-time equilibrium condition dictated by the pressure behavior of an initially-leaky
fault. This transitional flow regime is mathematically governed by convolution inte-
grals and its influence on transient pressure response depends on the magnitude of
anisotropic fault permeability enhancement. Late-time pressure behavior is examined
herein to check the validity of the proposed late-time asymptotic solutions. Results are
presented as type-curves for identification of sudden fault permeability changes and
associated transitional flow regime.

To examine dimensionless pressure behavior at the wellbore p,,p before and after fault
reactivation, we substitute xp = x,p = 1 — 1, /b and yp = 0 into Equation 4.53 for

220



0 < tp < tsp and Equation 4.49 for tp > tsp or t, > 0. Wellbore radius and distance
to the fault are r, = 0.25 ft and b = 500 ft, respectively, resulting in x,,p = 0.9995. In
addition, ky = 10 md, wy =1 ft, ¢y = ¢ = ¢2. The storativity ratio is equal in both
reservoirs hence F; = 1 and yp = M and 7 fp = 500Fcp. Initial pressure is constant,
isotropic and homogeneous across the entire flow domain.

Before fault reactivation, the log pressure-derivative dp,,p/dIntp = p. , is given by:

/ 1 _ <wa*1)2 _ (wa+1)2
Pop =7 "0 +e %D (4.59)

After fault reactivation, dp,,p/dIntp must be approximated numerically using Equa-
tion 4.49 along with a finite centered difference scheme:

t

Atp is a small dimensionless timestep (Atp < tp). Estimation of p,,p and dp,p/dIntp
is computationally expensive, especially when tp = t;p or t;, ~ 0. This is primarily
due to the number of computations required to calculate the value of the convolution
integrals. Nonetheless, late-time asymptotic solutions can be used at the end of the

transitional flow between sealing and conductive fault regimes.

4.6.1 Across-Fault Leakage in an Infinite Reservoir with an Initially Sealing Fault

Figure 4.4 shows the dimensionless pressure response to a sudden enhancement in
across-fault permeability in an infinite, isotropic and homogeneous reservoir (hp =
np = Fs = M = 1) with an initially-sealing fault and no along-fault flow capacity
(Fcp = 0). Fault becomes linear leaky at t;p = 1, 10 and 100 with Sf = 0.1, 1, 10, 100
and 1000. Figure 4.6 presents the resulting type curves for this case. Transient response
to an initially linear leaky fault in an infinite reservoir (Yaxley, 1987) is also shown in
Figure 4.4 to 4.6.

According to Figure 4.4, it would be problematic to diagnose whether the fault was
initially dormant or linear leaky if t;p < 1. This is because the difference in pressure
response between a sealing and linear leaky fault is virtually indiscernible if t;p < 1. Be
aware that f;p < 1 not only relates to early-time onset of fault permeability alteration

221



but also to low reservoir diffusivity and/or large separation between the well and
sealing boundary. Nevertheless, dimensionless pressure response clearly departs from
the sealing fault solution when t;p = 10 and s ¥ < 10 and tsp = 100 and s J < 100,

exhibiting a drop in dimensionless pressure.
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Figure 4.4: Dimensionless pressure response to a sudden change in across-fault per-
meability for sf = 0.1, 1, 10, 100 and 1000, hp = yp = M =1, and t;p = 1, 10 and
100.

In contrast, Figure 4.5 suggests that pressure-derivative response is more sensitive to
changes in fault permeability and its signature response depends on the magnitude
of the permeability enhancement. Note that the pressure-derivative sharply drops at
tp = tsp becoming negative when s s small and tsp > 1, then it rebounds towards the
response of an initially leaky fault with finite fault skin. All pressure-derivative stems
undergo such transitional flow regime which last for about one log-cycle before at-
taining late-time equilibrium. At late time, pressure-derivative stems reach the second

infinite-acting radial flow regime (tpp.,, = 0.5).
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In general, late-time pressure and pressure-derivative response from Figure 4.5 co-
incides with Figure 8 from Yaxley (1987) and Figure 6 from Ambastha et al. (1989).
Pressure-derivative behavior from Figure 4.5 coincides with Figure 9 from Yaxley (1987).
Type-curves for the compartmentalized reservoir configuration under discussion are

presented in Figure 4.6.

4.6.2 Across-Fault Leakage in a Composite Reservoir with an Initially Sealing Fault

Dimensionless pressure response to across-fault permeability enhancement in a com-
posite reservoir is presented in Figure 4.7. In this case, a segmenting fault sepa-
rates two semi-infinite isotropic and homogeneous reservoirs with equal thickness,
porosity and total compressibility (ip = Fs = 1) but different permeability, so that
M = np = ka/ky = 0.01, 0.1, 1 and 10. Figure 4.7 presents the type curves corre-
sponding to this Case Study. Transient response for a linear leaky fault in a composite
reservoir with negligible fault skin (Bixel et al., 1963) is added to Figure 4.7 to 4.9.

On the one hand, alike the previous Case Study, the effect of across-fault permeability
enhancement on dimensionless pressure response, represented as a sudden removal
of across-fault skin (s; — 0), is trivial when f;p < 1. This is because the difference
in pressure response between a sealing and leaky fault is nearly equal during that
period. On the contrary, pressure derivative exhibits a strong response to anisotropic
fault permeability alteration for t;p < 1 when M > 0.01 (Figure 4.7). Dimensionless
pressure behavior, on the other hand, notably departs from the sealing fault solution
when t;p > 10 and M > 0.01.

According to Figure 4.8, the signature dimensionless pressure-derivative response to a
sudden enhancement in across-fault permeability is unambiguous for t;p > 10, regard-
less of the permeability contrast between reservoirs. Intriguingly, a surge in pressure-
derivative response occurs when t;p = 100 and M < 0.01, which may indicate that the
pressure front "hits a wall" once it sees a low-mobility barrier after the fault, much like
pressure-drawdown can no longer travel at the same speed across Region 2 due to the

marked contrast in permeability.
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Overall, the stabilization process observed previously in Figure 4.5, i.e. transitional
flow regime which begins at tp = t;p and lasts for nearly one log-cycle, followed by
a late-time trend to achieve equilibrium with the response of a linear leaky fault in a
composite reservoir, also takes place in this Case Study. It is worthwhile to mention
that pressure-derivative stems tend to attain radial flow stabilization at 1/(M + 1).
Figure 4.8 exhibits a similar behavior to Figure 5 from Ambastha et al. (1989) and
Figure 7.35 from Spivey and Lee (2013). Type-curves for this fault reactivation scenario

are presented in Figure 4.9.
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Figure 4.9: Dimensionless type-curves for across-fault permeability enhancement for
hp =1, M =np = 0.01, 0.1, 1, 10 and 100 for t;p = 1, 10 and 100.

4.6.3 Simultaneous Across-Along Fault Leakage in an Infinite Reservoir with an
Initially Sealing Fault

Figure 4.10 depicts the dimensionless pressure response to a sudden across-along-fault
permeability enhancement in an infinite, isotropic and homogeneous reservoir with
an initially dormant fault. Anisotropic fault permeability enhancement is modeled
as a sudden, simultaneous change in dimensionless fault conductivity (Fcp = 1, 10,
100, 1000 and 10000) and across-fault skin, which is assumed negligible after fault
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reactivation (sy = 0), occurring at different dimensionless onset times (t;p = 1, 10 and
100). Figure 4.11 presents the type curves corresponding to this flow scenario. Rahman
et al. (2003) solution is included for reference in Figure 4.10 and 4.11. Type curves for

this fault reactivation scenario are presented in Figure 4.12.
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Figure 4.10: Dimensionless type curves for along-across-fault permeability enhance-
ment for hp =1, sy = 0 and M = yp = 0.01, 0.1, 1, 10 and 100 for £{;p = 1, 10 and
100.

Similar to previous case studies, the signature dimensionless pressure response to
a step-wise change in anisotropic fault permeability would be hardly discernible if
tsp < 1. Again, a relatively low value of t;p may be related to early-time occurrence
of fault permeability alteration, low diffusivity in the reservoir and/or large separation
between the well and sealing fault. Reduction in dimensionless pressure at tp = tsp
for tsp = 10 and 100 is more drastic than in the previous case studies, even for a rela-
tively low along-fault permeability enhancement (Fcp = 1), because fault permeability
alteration occurs in two directions, enabling a faster pressure relief across the fault and
reservoir. In fact, under certain conditions, well-test response when a sufficient large
Fcp is present can be interpreted as pressure support (i.e. constant-pressure bound-
ary). This is also the case for a composite reservoir with M > 100 (Spivey and Lee,
2013).
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Figure 4.11: Dimensionless pressure-derivative response to along-across-fault perme-
ability enhancement for hp =1, sy =0 and M = yp =1 for t;p = 1, 10 and 100.
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Figure 4.12: Dimensionless type curves for simultaneous along-across-fault permeabil-
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All pressure-derivative stems in Figure 4.11 exhibit a strong response to anisotropic
fault permeability enhancement and follow the same stabilization process discussed
earlier, i.e. rapid drop in pressure-derivative at tp = t;p followed by a transitional flow
regime that lasts for about one log-cycle until it matches the initially linear-lateral leaky
fault behavior. As an important remark, Figure 4.10 and 4.11 are in excellent agreement
with Figures 7 and 8 from Rahman et al. (2003).

4.7. Fault Permeability Characterization after Fault Reactivation

Figure 4.13 illustrates type curves for simultaneous effect of across and along-fault
permeability alteration for x,p = 0.9995, yyp = 0, k1 = ko = 10 md, wy = 1 ft,
Ppr=¢1=¢2and [ =1 for various combinations of s ¢ and Fcp occurring at t;p = 10.
Type curves were generated by fixing sy = 1, 100 and 10000 while varying Fcp from 1 to
10000. The objective of this analysis is to characterize sy and Fcp for an initially-sealing
fault that becomes leaky upon fault reactivation. Analytical solutions for a purely linear
leaky fault with no along-fault flow (Fcp = 0 and 1 < sy < 10000) (dashed gray lines)
and a lateral leaky fault without fault skin (s; = 0 and 1 < Fcp < 10000) (solid gray

lines) are presented along the type-curves.

Nonetheless, notice from Figure 4.13 that there may be instances where sy and Fcp
cannot be uniquely determined. Realize that the lower s; and the higher Fcp the more
difficult to estimate sy. Conversely, the estimation of Fcp is straightforward in this case.

As an example, consider the type-curves corresponding to sy = 1. There, one can
see that sy cannot be uniquely determined regardless of the value of Fcp. On the
contrary, the higher sy and the lower Fcp the easier to characterize sy however the
more difficult to estimate Fcp. For instance, consider the type-curves for sy = 10000
and realize that sy can be uniquely estimated regardless of Fcp whereas Fcp itself

cannot be determined.
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ment. Gray dashed lines correspond to the partially-communicating fault solution for
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correspond to along-fault flow with no fault skin for 1 < F-p < 10000.

4.8. Numerical Validation Examples

We study pressure and pressure-derivative responses to fault reactivation using a nu-
merical model of a compartmentalized reservoir with an initially sealing fault under-
going permeability enhancement at some point after production had started (t = t;).
Formation layers are homogeneous and isotropic. Initial reservoir pressure is p; = 2000
psia. Areal extension of the simulation domain is sufficient to sustain infinite-acting
flow for approximately 150 days beyond which boundary effects would influence pres-
sure and pressure-derivative responses. Fault width is wy = 1 ft and ¢y = ¢; and
(ct)f = (ct)1- Reservoir fluid is slightly compressible fluid with B = 1 rb/STB and
p =1 cP. Well is located 500 ft away from the fault and flows at a constant rate of 100
STB/D. We examine pressure-transient behavior to t; = 5, 10, 30 and 60 days. Reservoir

properties are k; = 10 md, ¢; = 0.1, and (c;); = 107® psi—.

For this analysis, sy = 0.02/kf, which suggests that small changes in across-fault per-
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meability would lead to large changes in across-fault skin. Moreover, across-fault per-
meability changes from ky = 0 md to 0.002 md, resulting in sy = 10 at t = ¢, at the
onset of fault reactivation. Likewise, Frp = kﬂ/ 5000. Recognize that, contrary to s 1z
relatively large along-fault permeability values are necessary to obtain representative
values for FcD (e.g. Fcp > 0.1). Henceforth, we use kg as a sensitivity parameter
ranging from 500 md to 500 D thus Fcp = 0.1, 1, 10 and 100.

4.8.1 Case Study 1: Fault Reactivation in an Infinite Reservoir

This case study relates to an infinite isotropic and homogeneous reservoir segmented
by a sealing fault. Fault blocks (i.e. Regions 1 and 2) have equal porosity (¢; = ¢p =
0.1), permeability (k; = k» = 10 md) and formation thickness (h; = hy = 20 ft). Thus,
M = hp = 1 and F; = 1. Figure 4.14 and 4.15 present the rate-normalized diagnostic
plots resulting from the analytical and numerical modeling. It is made evident from
the diagnostic plots that both solutions are in excellent agreement. More importantly,
numerical results confirm that bottomhole pressure will drop in response to a sud-
den change in across-along fault permeability. Boundary-dominated flow effects are
detected from Figure 4.15 after 150 days. In despite of boundary effects, enhanced
fault properties can still be characterized using data corresponding to the transitional
flow period between the onset of fault reactivation and final equilibrium state (i.e.
ts <t < 100 days). Finally, numerical simulation results show that the transitional flow
regime lasts between 1 and 1-1/2 log cycles, just as predicted by the analytical model.

4.8.2 Case Study 2: Fault Reactivation in a Composite Reservoir

In this case, ko, = 50 md, h, = 10 ft while k; = 10 md and h; = 20 ft, hence M = 5
and hp = 0.5. ¢1 = ¢ = 0.1 thus F; = 1. Figure 4.16 shows a comparison of RNP
given by the analytical and numerical models. From this result, we conclude that the
analytical model is in excellent agreement with numerical data. Similarly, RNP” plot in
Figure 4.17 shows that the analytical and numerical models are essentially the same.
Unlike the previous case study, boundary effects are less evident. Still, characterization
of the fault can be accomplished by history-matching transient pressure data occurring
during the transitional flow regime (t; < t < 100 days).
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Figure 4.14: Comparison of RNP between analytical and numerical reservoir models
for M = hp =1 and sy = 10.
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for M = hp =1 and sy = 10. Boundary effects can be seen after 150 days.
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Figure 4.16: Comparison of RNP response between analytical and numerical models
for M =5, hp =05 and sy =10.
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Figure 4.17: RNP’ response for M = 5, hp = 0.5 and sy = 10. Influence of boundary
effects on normalized drawdown-derivative response are less evident.

233



4.8.3 Case Study 3: Fault Reactivation in an Infinite Reservoir with Pressure-Dependent
Anisotropic Fault Permeability

This synthetic scenario is based on the compartmentalized reservoir setting used for
Case Study 1. The segmenting fault, however, is initially leaky with initial fault skin and
dimensionless conductivity of s;; = 10 and Fcp; = 1, respectively. Additionally, direc-
tional fault permeability is pressure-dependent. Figure 15 illustrates the permeability
multipliers (i.e., fractional change in permeability) as a function of pore pressure. No-
tice that permeability multipliers suddenly increase by ~4 orders of magnitude when
pore pressure is ~1500 psi. Pressure-dependent permeability multipliers are assigned
to fault grid blocks in the numerical reservoir model.
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Figure 4.18: Pressure-dependent multipliers for across and along-fault permeability for
Case Study 3.

Three major observations arise in this case study. First, the fault is leaky from the begin-
ning of pressure depletion and the onset of fault reactivation is unknown beforehand.
Therefore, we cannot simply adjust the analytical solution to "match" numerical data
from this case. Second, unlike in the previous case studies, directional fault permeabil-
ity is also a function of space because pressure would evolve across regions differently
than for a constant-permeability type setting. And third, along-fault leakage is domi-
nant over across-fault leakage as pressure depletes. Overall, this is a very complex fault
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reactivation case that involves multiple processes once the onset of fault reactivation is

reached.

Our strategy to tackle this case study is three-fold: (1) estimate the onset of fault reacti-
vation, (2) study early and late-time RNP and RNP’ responses, and (3) characterize the
evolution of fault properties. Figure 4.19 presents the numerical results in the form of
transient RNP data. Firstly, we can immediately observe the signature of fault reactiva-
tion occurring close to 220 days. Second, realize that numerical RNP data departs since
early times; yet, we are able to match this data with using the early-time asymptotic
solution for a linear-lateral leaky fault with sy; = 10 and Fcp; = 10. This result indi-
cates that, even though fault permeability is changing with pressure-drawdown, such
changes are not as significant as to largely influence transient RNP response. Third, we
obtain a reasonable match with numerical data at late-time using the late-time asymp-
totic solution for a linear-lateral leaky fault with sy = 16.7 and Fcp = 2200. Realize
that the history-matched values of sy and Fcp are actually average values given that

directional fault permeability is pressure and space-dependent.
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Figure 4.19: RNP response of analytical solution and numerical model for Numerical
Case Study 3.

Figure 4.20 shows the RNP’ diagnostic plot for the numerical simulation results as well
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as early and late-time leaky fault models. In addition, we use full analytical solution
for fault reactivation (Equation 5) for t; = 220 days to generate RNP’ responses for
various values of sy and Fcp. Unlike the RNP diagnostic plot, Figure 4.20 makes it
straightforward to conclude that enhanced fault properties evolved from sy = 1 and
Fcp = 5, right after the onset of fault reactivation, to sy = 5 and Fcp = 50; this change
occurred between 250 and 300 days. Then, fault properties again change to sy = 11.1
and Fcp = 220 and maintain these values during the period of 300 to 500 days. Finally,
fault properties reach late-time behavior with sy = 16.7 and Fcp = 2200. This analysis
is consistent with Figure 4.19 which suggests that along-fault leakage would become

dominant as pressure depletion progresses.
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Figure 4.20: RNP’ response of analytical solution and numerical model for Numerical
Case Study 3. The proposed analytical model is able to capture the signature of fault
reactivation and subsequent transitional fault properties until late-time equilibrium is
reached in the compartmentalized system.

In summary, we conclude that the proposed workflow that utilizes the proposed an-
alytical model, along with early and late-time asymptotic solutions, to detect fault
reactivation and characterize the evolution of fault properties when directional fault

permeability is pressure-dependent, has been successfully validated.
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4.9. Discussion

The analytical solution introduced in this study was derived on the ground of infinite-
acting flow conditions. Results from numerical simulation case 2, however, suggest
that, if the reservoir is relatively small, pressure-transient response would rapidly shift
from the initial transitional flow regime, caused by the sudden enhancement in direc-
tional fault permeability at the onset of fault reactivation, to another transitional flow
regime induced by boundary effects. In despite of the assumption of infinite-acting
reservoir being violated after the end of the first transitional flow regime, anisotropic
fault permeability can still be characterized using pressure data from the aforemen-

tioned flow regime (see Figure 4.15).

Similar scenarios would be an initially leaky fault undergoing reactivation and boundary-
dominated flow regime being achieved before fault reactivation occurs. In either case,
fault properties can still be characterized during the transitional flow period induced
by fault reactivation. In fact, we have proved through Numerical Case 3 that, even in
fault properties are pressure-dependent (i.e., fault is self-healing), the proposed ana-
lytical model can readily capture the transitional nature of fault properties, from their
initial enhanced value to late-time (stabilized) properties.

Although the analytical fault reactivation model discussed herein is based on constant-
rate fluid withdrawal, it can be readily extended to an injection well simply by reversing
the sign of q in the definition of dimensionless pressure (Equation A-1). Given that
analytical solutions introduced in this work are dimensionless, the full analytical as

well as early and late-time asymptotic solutions apply for the injection well scenario.

Lastly, be aware that numerical Laplace inversion of Equation 5 generates N — 1 ad-
ditional convolution integrals, making the estimation of p1p and p,p (if needed) com-
putationally expensive, particularly at early times after the onset of fault reactivation
when convolution integrals dominate the transitional flow regime (i.e., t, ~ 0T). Nev-
ertheless, if infinite-acting flow conditions are held for roughly 1 to 1-1/2 log-cycles
after the onset of fault reactivation, we can use the late-time asymptotic solution to
estimate enhanced fault properties.
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4.10. Conclusions

We introduce a new analytical model that enables the detection of fault reactivation,
estimation of the onset time of fault slip and estimation of enhanced fault permeability
using typical PTA techniques such as diagnostic plots and type-curves matching. The
proposed model is based on the hypothesis that fault reactivation can be represented
as a sudden change in anisotropic fault permeability occurring at the onset of fault slip.

For the development of the analytical model we assume that the well is producing at
constant rate and the fault is initially sealing and becomes linear-lateral leaky when the
onset of fault reactivation is reached. Furthermore, we consider the onset time to be
a history-matching parameter hence it must be estimated from either diagnostic PTA
plots or type-curves matching methods.

We prove that fault reactivation induces a new transient flow regime in which the reser-
voir undergoes infinite-acting flowing conditions and pressure communication between
fault blocks and along the fault is governed by the convolution between reservoir con-
ditions before and after the onset of fault reactivation. This flow regime is analytically
governed by convolution integrals arising during the inversion of the proposed model
from Laplace-Fourier domain into time-space domain. We verified our analytical solu-

tion against the most relevant leaky fault models from the literature.

Furthermore, we were able to unveil the characteristic or signature transient response
of bottomhole pressure and pressure-derivative to a sudden change in directional fault
permeability. In the former case, fault reactivation is seen as a sudden drop in di-
mensionless pressure occurring at the onset of fault slip, whereas it is detected as a
rapid, abrupt drop and rebound in dimensionless pressure-derivative in the latter. The
transient pressure-derivative behavior undergoes a transitional flow regime which lasts
for about 1 to 1-1/2 log-cycles to finally reach late-time equilibrium with the transient
response of a leaky fault.

We setup several numerical simulation cases to demonstrate the applicability of the
proposed analytical solution. The analytical workflow followed in each simulation case
was: 1) estimation of the onset of fault reactivation, 2) examination of early and late-
time pressure behavior, and 3) characterization of fault properties, either during the
transitional flow regime or at late times. In all simulation cases, our analytical approach

proved accurate and was in close agreement with the synthetic pressure data.
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5. Discussion

Analytical models for pressure-transient analysis of three impactful reservoir models—
MFHW performance in stress-sensitive composite formations, detection and assess-
ment of frac hits in multi-well pads, and detection of fault reactivation and characteri-
zation of enhanced fault properties—were developed and studied in this dissertation.
Single-phase fluid-flow and the absence of gravitational effects were considered in all
models.

The development of the definition and subsequent inclusion of fracture skin into the
MFHW model enables the detection and characterization of damage over the fracture
face through the application of diagnostic plots and type-curves to well-test data. In
a similar fashion, modeling frac hits as a valve connecting two wells enables the ap-
plication of type-curves for detection and assessment of frac hits in a multi-well pad.
Furthermore, the proposed fault reactivation model, originally devised as a low-cost
alternative to seismic monitoring in compartmentalized reservoirs, allows the use of
the well-testing interpretation techniques previously mentioned to characterize fault

properties before, during, and after a fault reactivation event.

The combined application of advanced mathematical techniques, such as Laplace-
Fourier transform, numerical integration of multidimensional convolution integrals
and use of an iterative algorithm, facilitated the implementation of efficient compu-
tational scripts that allowed run most of the calculations for MFHW performance anal-
ysis within seconds. However, numerical evaluation of the convolution integrals in the
fault reactivation model would often take up to ~ 5 minutes per time step, thus making
the evaluation of pressure-transient response shortly after fault reactivation the most

computationally expensive.

Shortcomings of each model are discussed in Section 2.13, Section 3.12 and Section 4.9.

Similarly, future work related to each work is discussed in Chapter 7.

239



6. Conclusions

This dissertation focuses on the development of analytical reservoir models related
to MFHW performance forecast in stress-sensitive composite systems, detection and
assessment of frac hits in multi-well pads, and detection of fault reactivation and char-
acterization of enhanced fault properties in compartmentalized reservoirs. Analytical
solution for these models were successfully validated against synthetic pressure data.
These results are presented in the form of pressure-transient diagnostic plots and type-

curves that can be readily utilized for well-test interpretation.

To begin with, we have demonstrated that pressure-dependent rock and fluid prop-
erties can be incorporated into MFHW models without the need for using pseudo-
functions. In fact, the analytical approach proposed in this dissertation allows for each
region in the MFHW to have its own pressure-dependent rock properties. This is a
more realistic scenario than merely assume that porosity and permeability vary with
pressure at the same rate throughout the MFHW, as dictated by the pseudo-pressure
approach. In addition, the proposed MFHW model accounts for damage over the frac-
ture surface. From the validation cases, we conclude that the proposed MFHW model
is accurate, computationally efficient and can be easily implemented in well-testing
software.

In addition, we confirmed the hypothesis that pressure tends to reach equilibrium
across MFHWSs when frac hits are present. In this sense, we observe that detection and
estimation of the fraction of frac hits between MFHWSs can be achieved by analyzing
pressure data in the form of pressure differential rather than individual bottomhole
pressure. Based on this observation, we developed an analytical approach to model
frac hits as a boundary condition that can partially connect two or three wells through
hydraulic fractures. As a result, we obtained the analytical definition of the frac hits
skin factor which enables the estimation of the fraction of frac hits. The final analytical
solution to pressure-transient response of the multi-well pad was successfully validated
against numerical simulations. Type-curves for various well configurations were gen-
erated and history-matched against numerical data. From the history-matching results,
we observed that the required well-test time for the assessment of frac hits is typically
less than 3 days therefore the proposed model can be used with transient data from
the flowback period. Furthermore, the resulting analytical solution is computationally

efficient thus can be readily extended to field applications.
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Finally, we have proved that fault reactivation can be detected from diagnostic plots
as a sudden, sharp drop in pressure-derivative occurring at the onset of fault reacti-
vation. This is followed by a rapid rebound in the pressure-derivative response with
a final trend to reach late-time equilibrium with the transient response expected from
an initially-leaky fault with the same directional permeability than that corresponding
to the enhanced fault properties resulting from fault reactivation. This new transient
flow period, induced by fault reactivation, lasts for roughly 1 to 1 — 1/2 log-time cy-
cles. Therefore, we conclude that late-time asymptotic solution can be used for fault
characterization purposes. The proposed analytical solution was compared against
common leaky fault models from the literature. Furthermore, the fault reactivation
model was validated against numerical simulations for various scenarios, including
a scenario where fault permeability is pressure-dependent and self-healing after the
onset of fault reactivation. In all cases, the proposed analytical model seems in good
agreement with synthetic pressure data. Unlike the proposed analytical models for
unconventional reservoirs previously discussed, the analytical solution for the fault re-
activation problem is computationally expensive, particularly when analyzing pressure
data shortly after the onset of fault reactivation. Nonetheless, the implementation of
early and late-time asymptotic solutions improves the process of fault characterization
dramatically.
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7. Future Work

7.1. Pressure-Dependent MFHW model

The natural extension to the nonlinear MFHW model is the examination of rate-transient
behavior for the case of constant-pressure production. Because neither the fluid-flow
model nor the analytical solution procedure should change in this case, the mathemat-
ical development discussed in Chapter 2 still holds valid, except for the definitions of
normalized pressure and the constant-pressure boundary condition. Additionally, the
use of material balance time will be necessary for rate-normalized pressure-transient

analysis using diagnostic plots and type-curves.

This scenario is precursory to the more general case of variable-rate/variable-pressure
history. The complexity associated with this production scenario lies in the mandatory
use of the convolution integral as the analytical solution to rate-transient behavior (Lee
et al., 2003). Nonetheless, since the integration would likely be performed numerically,
one may utilize the same time step for both the iterative algorithm and integration
scheme to determine the evolution of pressure and rate in the MFHW.

Another possible extension to the current nonlinear MFHW model is to develop a gen-
eral fluid-flow model that enables the incorporation of pressure-dependent properties
that are not necessarily exponential. Given that the iterative algorithm proposed in
Chapter 2 is not limited to exponential functions, it is feasible to implement a pressure-
dependent diffusivity constant as the nonlinear scaling parameter. In this way, any kind
of pressure-dependent function for rock and fluid properties could be inserted into the
governing equations. However, this would require a fresh derivation of the governing
equations and boundary conditions. Moreover, one must be aware that pressure should
be normalized is such a way that it will produce a null initial condition.

7.2. Frac Hits Model

There are three main extensions to the current constant-rate frac hits model. First, to
develop the constant-pressure solution to the model. Second, we acknowledge that the
assumption of equal initial pressure in the multi-well pad may be inaccurate because

typically offset wells had been producing for some time before infill wells are drilled
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and completed. Therefore, initial pressure may actually vary from well to well (see
Figure 3.1). Thus, another plausible extension to the present model is the incorporation
of initial pressure on a per-MFHW basis.

Another potential extension to the present frac hits model is the incorporation of
MFHWs landed in stacked plays (see Figure 3.2). Modeling vertical connectivity MFHWSs
through hydraulic fractures may be achieved in the same manner proposed Chapter 3.
However, contrary to fully-overlapping fractures, which are interconnected via high-
conductivity frac hits, partially-intersecting fractures may be modeled as being inter-
connected via low-conductivity frac hits. The validity of fracture and SRV linear flow
assumptions should be verified, though.

Lastly, pressure connectivity due to frac hits may decrease with time as pressure de-
clines. Therefore, it would be useful to incorporate this time-dependent process into
the frac hits model by assigning pressure or time-dependent conductivity to the frac
hits. An iterative scheme, as the one discussed in Chapter 2, may be required for this
case. Furthermore, since the purpose of this model would be production forecast, SRV
dimensions should lie within the recommended limits to avoid producing inaccurate

predictions, specially at late times.

7.3. Fault Reactivation Model

A significant addition to the fault permeability enhancement model would be the in-
corporation of up-fault, or vertical, leakage into the fluid-flow model. This is a relevant
feature to examine as pressure communication between the target zone and neigh-
boring reservoirs can also take place across multiple over and underlying formations
(Zeidouni, 2012). To keep the fluid-flow model simple and mathematically tractable,
one can assume that up-fault flow is not influenced by transience effects hence ver-
tical leakage is solely controlled by the pressure differential between formations and
vertical-fault transmissibility (Shan et al., 1995).

Since transience effects on up-fault leakage are negligible, vertical-fault flow may be
added into the governing equation following the flux-source approach. In this manner,
fluid-flow along the fault will be the only component that would experience transience
effects, just as proposed by Rahman et al. (2003). Consequently, the application of
Laplace-Fourier transform onto the resulting governing equation would yield a time-

independent, linear expression for pressure at the fault interface.
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Another significant addition to the current model would be accounting for pressure or
time-dependent effects directional fault properties. From the mathematical perspective,
this objective would be challenging to accomplish because fault permeability would
automatically become spatio-temporal dependent. This implies the development of
averaging and/or nonlinear techniques that were not discussed in this dissertation.

Finally, extension of the current constant-rate method to constant-pressure fluid with-
drawal/injection would enable the use of rate-transient analysis techniques to detect

fault reactivation and characterize enhanced fault properties.
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A. Analytical Frac Hits Model

A.1. General Definitions

k.
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A.2. Dimensionless Parameters Group
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A.3. Normalized Coordinates
A.3.1 Normalized Coordinates for Well A
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A.3.2 Normalized Coordinates for Wells B and C
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A.4. Normalized Dimensions

A.4.1 Normalized Dimensions for Well A
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A.4.2 Normalized Dimensions for Well B
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A.4.3 Normalized Dimensions for Well C
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B. Analytical Fault Reactivation Model

B.1. Dimensionless Parameters Group

We use the following normalized parameters with rock and fluid properties as well as
distances and time being given in oil field units:
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