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ABSTRACT 

 This study investigates how a mechanistic foam modeling approach based on 

bubble population balance is applied to a series of laboratory experimental data of a 

supercritical CO2 foam in reservoir conditions to extract model parameters (topic 1). The 

model with model parameters determined from the fit is then used to estimate how far 

fine-textured strong foam can propagate into the reservoir, before turning into coarse-

textured weak foam and before being segregated by gravity (topic 2). With the help of 

mechanistic model, a possible range of gas mobility for supercritical CO2 foam is 

calculated and the resulting gas-phase mobility reduction factor (MRF) are applied to the 

field-scale EOR reservoir simulations (topic 3).   

A mechanistic foam model that honors three different foam states and two steady-

state strong-foam flow regimes is used to fit coreflood experimental data from Yin (2007). 

The results show why supercritical CO2 foams are fundamentally different compared to 

other gaseous foams. The role of mobilization pressure gradient is shown to be the key 

to this difference – the pressure gradient required for supercritical CO2 foam is much 

lower, and thus the attainment of strong foam in the reservoir is easier.  

This study shows how far strong foams injected into the injection well can 

propagate at different injection foam qualities and velocities, which is one of the most 

important questions in actual field applications.  Two main mechanisms that limit field 

foam propagation, such as “conversion from strong foam to weak foam” and “gravity 

segregation”, are examined. The results show that foam propagation distance increases 

with increasing injection pressure or rate and increases with decreasing foam quality 
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down to a certain threshold foam quality below which the distance is not sensitive to foam 

quality any longer.  

CMG STARS simulations for a sector with an inverted 5-spot pattern are performed 

to evaluate how oil recovery changes at different injection foam qualities and velocities. 

The pre-determined values of gas mobility required for the simulation are guided by the 

mechanistic model. The use of sweep-efficiency contour plots is shown to be a convenient 

graphical method to determine the optimum injection foam quality that changes at 

different injection rates.
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CHAPTER 1. OVERVIEW OF THIS STUDY 

1.1. Introduction of CO2 foam EOR 

Enhanced oil recovery (EOR) is considered a vital option to increase ultimate 

hydrocarbon recovery from both conventional and unconventional reservoirs depleted by 

primary and secondary processes. EOR processes are classified into three major 

categories; thermal process, gas injection, and chemical process. Gas injection is the 

most widely used method, together with thermal process, and the gas phase is injected 

either as miscible or immiscible with reservoir fluids.  

CO2 injection, especially with supercritical CO2, is very popular among various gas 

types (eg. N2, hydrocarbon gas, flue gas, etc.) due to easier attainment of supercritical 

condition, better miscibility with reservoir fluids, higher density and viscosity, and higher 

societal need in conjunction with carbon capture and storage. CO2 sequestration into the 

petroleum reservoirs is indeed considered one of the most efficient means for the disposal 

of a large quantity of CO2, ultimately reducing greenhouse carbon emission. However, 

irrespective of gas types, gas injection inevitably encounters limitations such as fingering, 

channeling, and gravity segregation in the field.  

Foaming the gas phase either in-situ or pre-generated prior to injection is a proven 

technology to improve sweep efficiency in the laboratory and field for more than 50 years. 

Foam is created by injecting gas with surfactant solutions. There are many successful 

field pilot tests reported in the literature including recent project such as CO2 foam field 

test conducted in Salt Creek, WY (Mukherjee et al. 2016), and SAG treatment for 

conformance control in Lower Mirador formation, Cusiana Field, Columbia (Ocampo et al. 

2013; Rossen et al. 2017).  
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Before applying foam injection in the field, several coreflood experiments are 

typically conducted to understand foam properties and flow characteristics. Then a 

modeling study is performed to obtain model parameters and to determine how much 

foam can reduce gas mobility. Modeling of foam rheology, especially in reservoir scale, 

is challenging because the model must replicate experimental data collected from small 

lab scale and must be able to predict how foam propagates in the large field scale. This 

study investigates multiple aspects of such supercritical CO2 foams, from a fit of 

mechanistic foam model to laboratory coreflood data to field-scale evaluation of foam 

EOR applications.  

 

1.2. Chapter description 
 

The content of each chapter is summarized as follows: chapter 1 gives a brief 

introduction of the problem solved in this study. Chapter 2 provides detailed descriptions 

about the mechanistic foam modeling approach used in this study. This chapter shows (i) 

how to use the model to make a fit to coreflood data extracted from the literature, and 

then (ii) what makes supercritical CO2 foams special compared to other gaseous foams 

by investigating the effect of mobilization pressure gradient. Chapter 3 shows how to use 

the mechanistic model to estimate foam propagation distance in large-scale applications. 

This chapter deals with two major events that limit foam propagation - “conversion from 

strong foam to weak foam (csw)” and “gravity segregation (gs)”. Chapter 4 presents an 

example of field-scale supercritical CO2 foam EOR (Lisama field, Colombia) by using 

CMG STARS simulator. The selection of required gas-phase mobility reduction factors 
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(MRF) is guided by the mechanistic model. This chapter provides details about how to 

optimize the injection strategies (injection rate, injection foam quality) in the field. Chapter 

5 concludes this study with recommendations.  
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CHAPTER 2. BUBBLE POPULATION BALANCE MODELING FOR 
SUPERCRITICAL CO2 FOAM EOR PROCESSES: FROM PORE-SCALE TO 

CORE-SCALE AND FIELD-SCALE EVENTS 

2.1. Introduction 

Although less severe due to higher density and viscosity, dense or supercritical 

CO2 EOR processes encounter essentially the same fates such as fingering, gravity 

segregation, and channeling, just like any other gas injection methods. Foaming the 

injected CO2 by using surface-active agents (or, surfactants), the first attempt dated back 

to Bond and Holbrook (1958), has long been a promising candidate in the field to delay 

the breakthrough of injected gas and hence improve the overall sweep efficiency. Lee 

and Kam (2013) reviews several successful foam field projects, cited often in the literature. 

Foams in porous media can be created and destroyed in-situ as foam films (or 

lamellae) travel along the complicated pore structures. The number of liquid films in unit 

pore volume, referred to as foam texture (n୤), is an outcome of dynamic mechanisms of 

in-situ lamellae creation and coalescence, which is a key parameter to understand non-

Newtonian foam rheology through the changes in gas relative permeability, gas viscosity, 

trapped gas saturation, and so on.  

Three main mechanisms identified for in-situ lamellae creation are leave-behind, 

snap-off, and lamellae mobilization and division, while there is a major lamella-

coalescence mechanism identified, that is, a sudden rupture of foam films above limiting 

capillary pressure Pୡ
∗  (or, below limiting water saturation,  S୵

∗ , equivalently), as fully 

described by earlier studies (Ransohoff and Radke, 1988; Khatib et al., 1988; Rossen, 

1996; Hirasaki et al., 1997). 
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Once present, foam exhibits a hysteretic behavior represented by three different 

states as shown in Figure 2.1(a) from Gauglitz et al. (2002) such as weak-foam state, 

strong-foam state, and intermediate state in between. The coarse-textured foam showing 

a relatively moderate decrease in gas mobility (or, the lower surface at lower ∇P) is called 

weak foam, while the fine-textured foam showing a drastic decrease in gas mobility (the 

upper surface at higher ∇P) is called strong foam. Once the strong-foam state is obtained, 

foam rheology can be represented by two distinct rheological behaviors in a contour plot 

of the steady-state pressure gradient as a function of gas (y axis) and liquid (x axis) 

velocities, as first shown by Osterloh and Jante (1992). Alvarez et al. (2001) confirmed 

the same behavior in a wide range of experimental conditions putting them into the high-

quality and low-quality regimes. The two flow regimes are separated by a threshold foam 

quality (f୥
∗). For example, the f୥

∗ is shown to be 0.73 in Figure 2.1(b).   
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(a) 

 

(b) 

 
Figure 2.1. Key features of core-scale events to be honored in this study: (a) three 
different foam states (weak-foam (or coarse-foam) state, strong-foam state, and 

intermediate state (between weak-foam and strong-foam states curving back); Gauglitz 
et al., 2002) and (b) two steady-state strong-foam flow regimes (Alvarez et al., 2001). 

 
        

 There are largely two types of foam modeling techniques available in the literature, 

namely, local steady-state (or, local equilibrium) modeling and bubble population balance 

modeling. The population balance model, to be applied in this study, is designed to 

capture foam texture and its relationship with other properties such as effective gas 
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viscosity, relative permeability, and trapped gas saturation and so on to capture non-

Newtonian foam rheology. This technique is more complicated than the local steady-state 

modeling that uses a pre-specified mobility reduction factor (MRF) but produces more 

physically sound results based on robust mathematical framework.  Different versions of 

population-balance models exist in the literature depending upon how to handle foam flow 

in porous media mathematically (Friedmann et al., 1991; Kovscek and Radke, 1994; 

Kovscek et al., 1995; Myers and Radke, 2000; Kam and Rossen, 2003; Kam, 2008; 

Farajzadeh et al., 2015). Recent modeling studies introduce a new type of foam 

simulation technique, so-called implicit-texture foam model (Farajzadeh et al, 2015; 

Lotfollahi et al., 2016). Although it does not calculate bubble population by solving 

population-balance partial differential equations per se, this technique employs model 

parameters to capture foam fundamentals near limiting capillary pressure and water-/oil-

sensitive foam stability, and thus improves simulation capability significantly in large field-

scale events adding computational efficiency. 

 

2.2. Motivations and Objectives 

An earlier study from Gauglitz et al. (2002), showing foam generation experiments 

with N2 foams and supercritical CO2 foams, presented interesting results as shown by 

Figure 2.2 (a). That is, the critical pressure gradient (or, the mobilization pressure 

gradient,∇P୭) for supercritical CO2 foams is a couple of orders of magnitude lower than 

that for N2 foams, decreasing with increasing permeability (k). Because of ∇P୭ = 4 (σ R୲
ൗ ), 

smaller ∇P୭ is caused by lower interfacial tension (σ ) at given pore throat sizes (R୲)). 

Figure 2.2 (b) shows another example from Aarra et al. (2014), that is, gaseous CO2 
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foams (backpressure 30 bar) exhibit higher steady-state pressure drop ( ∆P ) than 

supercritical CO2 foams (backpressures 120 and 280 bar). This is, again, because of a 

reduction in σ and, therefore, a reduction in ∇P୭. (Note that the pressure drop (∆P) is 

measured in individual coreflood experiments, while the mobilization pressure gradient 

(∇P୭) is a parameter dependent upon rock and fluid properties.) 

Reaching a strong-foam state at lower pressure gradient due to lower ∇P୭ means easier 

formation of piston-like displacement, which results in higher oil recovery and more 

efficient sweep in the field conditions, as demonstrated by Lee and Kam (2014) by using 

three-phase Method of Characteristics solutions. For example, when the absolute 

permeability is about 1 µm2 for Boise sandstone in Figure 2.2, supercritical CO2 foam 

forms strong foams at 1x104 Pa/m (or, 0.442 psi/ft), but N2 foam still does not form strong 

foams until 1x106 Pa/m (or, 44.2 psi/ft), clearly showing the benefit of supercritical CO2 

foams conceptually.   
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                                     (a)                                                                                  (b) 

Figure 2.2. Experimental data showing the difference between supercritical CO2 foams 
and other gaseous foams: (a) mobilization pressure gradient required for foam 

generation for supercritical CO2 foams and N2 foams (Gauglitz et al., 2002) and (b) 
pressure-drop comparison for supercritical CO2 foams and gaseous CO2 foams in 

Berea sandstone (Aarra et al., 2014).  
 

 The objective of this study is to investigate (i) how to fit a population-balance foam 

model (based on pore-scale events) to supercritical CO2 foam experimental data (core-

scale events) and extract model parameters, and (ii) apply the modeling technique to 

field-scale events to understand the fundamental mechanisms of CO2 foams propagation 

into the reservoir. This study must be distinguished from previous studies of Kam and 

Rossen (2003), Kam (2008),  Afsharpoor et al. (2010) and Lee et al. (2016) - the previous 

studies deal with gaseous foams (eg., N2 foams) showing three distinct foam states (i.e., 

foam rheology surface curving back and forth (Figure 2.1(a)), while this study, for the first 

time, deals with supercritical CO2 foams (at extremely low ∇P୭) showing a smooth change 

from weak-foam to strong-foam state (without intermediate state), revealed as one of the 

major conclusions. Such a characteristic of supercritical CO2 foams, compared to 
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gaseous foams, is endowed by much lower (more than a couple of orders of magnitude 

difference) interfacial tension between emulsion-like supercritical CO2 and surfactant 

solutions. Throughout this study, the focus is made to show why supercritical CO2 foam 

should be looked at differently, and how much difference it causes when the propagation 

in the field-scale event is taken into consideration. In this study, it is believed that CO2 in 

its supercritical condition to form foams is fundamentally different from other gaseous 

foams (i.e., gaseous hydrocarbon foams, flue-gas foams, nitrogen foams, carbon-dioxide 

foam, etc.). It is because it behaves more like emulsions with much higher density and 

much lower interfacial tension. In field applications, supercritical CO2 exhibits more 

complicated phase interactions with reservoir fluids (solubility, swelling effect, acidity and 

resulting chemistry).  The effect of oil is not included in this study yet. It is because the 

primary goal of this study is to examine foam propagation distance based on unique 

properties of supercritical state of CO2 once the steady state is obtained, rather than 

dynamic interactions between foams and reservoir fluids during the transient state. The 

finding of this study can be combined with dynamics foam simulations (Kam, 2008) and 

the interaction with foams and reservoir oils as a next step (Ashoori et al., 2010; Conn et 

al., 2014), however. The heart of this study touches the issue of how to upscale lab-scale 

data to field-scale applications during which the nature of flow typically changes from 

linear to radial or spherical, which has long been questioned in this research area 

(Kovscek et al., 1997; Li et al., 2006). The field-scale foam propagation shown in this 

study covers the issue by using pressure-gradient-dependent (and thus velocity-

dependent) foam flow characteristics. 
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2.3. Methodology 

Population balance modeling used in this study is considered a mechanistic model, 

because the model keeps track of a wide range of foam mechanisms independently and 

puts them together. Falls et al. (1988) and Patzek (1988) are the examples of early days 

of mechanistic foam modeling effort. They are followed by numerous studies afterwards 

such as Friedmann et al. (1991), Kovscek and Radke (1994) and Kam and Rossen (2003), 

among many.  

The mechanistic foam model in this study defines lamellae creation function as 

shown below, by incorporating the concept of mobilization pressure gradient ( ∇P୭ ) 

(Rossen and Gauglitz, 1990) into the equation (Kam, 2008; Afsharpoor et al., 2010):  

 

R୥ =
C୥

2
൜erf ൬

∇P − ∇P୭

√2
൰ − erf ൬

−∇P୭

√2
൰ൠ                                                                                            (2.1) 

 

In Equation 2.1,   R୥ is the rate of lamella creation (i.e., change in bubble population within 

unit space over time), C୥ is the model parameter, ∇P is the pressure gradient, and erf is 

the error function. Note that  ∇P୭ is the pressure gradient to mobilize existing foam films 

to create a population of bubbles subsequently in the downstream of porous media (Kam 

and Rossen, 2003). The two parameters (C୥ and ∇P୭) handle foamability of surfactant 

solutions (including formulation and concentration) with a specific type of gas (e.g., N2, 

CO2, supercritical CO2) in a pore network with a certain pore size distribution and 

wettability. As shown in Figure 2.3, at given ∇P୭, the rate   R୥  remains low if local ∇P is 
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lower than ∇P୭.   R୥  increases rapidly as ∇P  approaches ∇P୭, and finally levels off if ∇P  

becomes higher than  ∇P୭.  

 

 

 
Figure 2.3. The rate of in-situ lamellae creation as a function of pressure gradient at 

various mobilization pressure gradient (∇P୭) values.   
 

Gauglitz et al. (2002) derived an explicit relationship between ∇P୭ and the absolute 

permeability (k) of bead-packs. They combined the Ransohoff and Radke (1988) capillary 

number and Darcy law, and then utilized it with the Blake-Kozeny correlation for 

permeability to solve for the mobilization pressure gradient as 

 

∇P୭ =
8f୬୵σ

L
ඨ

4∅ଷ

150k(1 − ∅)ଶ
                                                                                                               (2.2) 

where, f୬୵  is the fractional flow of gas (non-wetting phase), σ is gas-liquid interfacial 

tension, L is the length of individual pore, and ∅ and k are the porosity and permeability of 

the sample.  Because L ~ R୲~ k -1/2,  ∇P୭ scales like ~ k-1 which is consistent with Figure 
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2.2 (a) for N2 foams in unconsolidated porous media (bead-packs and sand-packs in 

Figure 2.2 (a), for example). In addition, because of lower  σ , supercritical CO2 foam 

shows lower  ∇P୭ , compared to the gaseous foams (e.g., N2 or CO2 foams). 

 

  On the other hand, the lamellae coalescence function is given by 

 

Rୡ = Cୡn୤ ൬
S୵

S୵ − S୵
∗

൰
୬

                                                                                                                            (2.3) 

 

where,   Rୡ  is the rate of lamella coalescence(i.e., change in bubble population within unit 

space over time), Cୡ is the model parameter, n is the coalescence rate exponent, and 

n୤ , S୵  and  S୵
∗  represent foam texture, aqueous phase (water) saturation, and limiting 

water saturation, respectively. The rate   Rୡ  stays low when S୵   is relatively high and 

increases rapidly as S୵  approaches S୵
∗ . In the steady-state mechanistic foam modeling, 

the rate of lamella creation and the rate of lamella coalescence are balanced. Therefore, 

the steady-state foam texture (n୤), that is, the number of lamellae (or bubble population) 

within unit space, can be explicitly calculated as follows, by making Equations 2.1 and 2.3 

equal: 

 

n୤ =
C୥

2Cୡ
൬

S୵ − S୵
∗

S୵
൰

୬

൜erf ൬
∇P − ∇P୭

√2
൰ − erf ൬

−∇P୭

√2
൰ൠ                                                                   (2.4) 

 

Note that for any situations with S୵ <  S୵
∗  , there is no foam (n୤ = 0 ). If calculated n୤ is 

greater than n୤ ୫ୟ୶, it is set to be n୤ ୫ୟ୶  which is a typical behavior of strong foams in the 
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low-quality regime because diffusion within a pore does not allow bubbles to be smaller 

than the pore size (Alvarez et al., 2001). Therefore, n୤ ୫ୟ୶ corresponds to the minimum 

bubble size, that is, roughly the average pore size. 

  

  The transport of foam in porous media is expressed by Darcy’s equation as follows: 

 

u୵ =
kk୰୵(S୵)∇P

μ୵
                                                                                                                                   (2.5) 

 

and 

 

u୥ =
kk୰୥

୭ (S୵)∇P

μ୥
୭   or   u୥ =

kk୰୥
୤ (S୵)∇P

μ୥
୤

                                                                                          (2.6) 

 

for water and gas (superscripts “o” and “f” represent states without and with foams), 

respectively. Foam consists of a dispersed internal gas phase and a continuous external 

liquid phase stabilized by surfactants. The gas phase then divides into two parts: trapped 

gas and flowing gas. Because the trapped gas is stationary due to capillary pressure, 

Darcy’s equation for the gas phase is modified with a reduction in gas relative permeability 

(through the fraction of trapped gas saturation) (Kovscek, 1994). On the contrary, there is 

no change in Darcy’s equation for the liquid phase because it forms the external phase as 

suggested by experimental studies (Bernard et al. 1965; Holm, 1968; and Friedmann and 

Jensen, 1986).    
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The liquid relative permeability is given by 

 

k୰୵(S୵) = A ൬
ୗ౭ିୗ౭ౙ

ଵିୗ౭ౙିୗౝ౨
൰

୫భ

                                                                                                                  (2.7)  

 

where,  A and mଵ  are the parameters for Corey-type liquid relative permeability, S୵ୡ is the 

connate water saturation, and  S୥୰  is the residual gas saturation. The gas relative 

permeability is given by 

 

k୰୥
୭ (S୵) = B ቆ

1 − S୵ − S୥୰

1 − S୵ୡ − S୥୰
ቇ

୫మ

                                                                                                          (2.8) 

 

in the absence of foams and 

 

k୰୥
୤ (S୵) = B ቆX୤

1 − S୵ − S୥୰

1 − S୵ୡ − S୥୰
ቇ

୫మ

                                                                                                     (2.9) 

 

in the presence of foams, where B and mଶ  are the parameters for Corey-type gas relative 

permeability, and X୤  is the fraction of flowing gas phase. Of course, the sum of flowing 

gas fraction and trapped gas saturation is one (X୤ + X୲ = 1). The trapped gas fraction is 

calculated by 

 

X୲ = X୲ ୫ୟ୶ ൬
βn୤

1 + βn୤
൰                                                                                                                           (2.10) 
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following Kovscek and Radke (1994). Note that X୲ ୫ୟ୶ is the maximum trapped gas fraction 

that can be estimated using tracer tests, commonly ranging 0.5 – 0.9 (Kovscek and Radke, 

1994; Kovscek et al., 1995; Chen at al., 2010; Lotfollahi et al., 2016), and β is a model 

parameter relating gas trapping to foam texture. 

 

  Following Hirasaki and Lawson (1985), gas viscosity in the presence of foam is 

 

μ୥
୤ = μ୥

୭ +
C୤n୤

൬
u୥

∅S୥X୤
൰

ଵ
ଷ

                                                                                                                              (2.11) 

 

where, μ୥
୭ is  gas viscosity in the absence of foam, S୥ is  gas saturation, C୤ is the model 

parameter, ∅ is the porosity of the medium, and X୤ is the fraction of flowing gas phase. 

Once strong-foam state is achieved, the upper surface of foam-rheology surface (i.e., 

Figure 2.1(a)) can be reasonably captured by the power-law model, for example, 

 

∇P = u୥
஢ై                                                                                                                                                     (2.12) 

 

and 

 

∇P = u୵
஢ౄ                                                                                                                                                   (2.13) 
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for the low-quality regime and high-quality regime, respectively. The exponents (σ୐ and σୌ) 

are one if Newtonian, greater than one if shear-thickening, and less than one if shear-

thinning. 

  The ability for foams to reduce gas mobility is expressed by mobility reduction 

factor (MRF) which is defined by 

MRF =
୩౨ౝ

౥ ஜౝ
౜

୩౨ౝ
౜ ஜౝ

౥                                                                                                                                              (2.14)   

                                                                                           

which allows the fractional flow of water (f୵) in the presence of foams to be written as 

follows: 

 

f୵ =
u୵

u୵ + u୥
 =

Q୵

Q୵ + Q୥
 =

k୰୵

μ୵

k୰୵

μ୵
+

k୰୥
୤

μ୥
୤

=

k୰୵

μ୵

k୰୵

μ୵
+

k୰୥
୭

μ୥
୭MRF

= 1 − f୥                                        (2.15) 

 

where Darcy’s velocity is defined by flow rate (Q) divided by cross-sectional area (A) (i.e., 

u୵ =
Q୵

Aൗ , u୥ =
Q୥

A
ൗ  , and u୲ = u୵ + u୥ =

Q୵
Aൗ +

Q୥

A
ൗ =

Q୲
Aൗ ). 

 

  Table 2.1 lists the properties and parameters involved in this model, grouped into 

the basic rock and fluid properties, basic foam parameters, and mechanistic foam 

modeling parameters for this study. Note that the first group is what is needed for 

conventional gas-liquid two-phase flow (no foam), the second group is what can be either 

directly read from experimental data (n୤ ୫ୟ୶ from the average pore size,  σୌ  and  σ୐ from 

foam coreflood experiments) or estimated from the literature (X୲ ୫ୟ୶ and β ), and the third 



 
18 

 
 

group is what makes the fit to the  three foam states (i.e., S-shaped curve) and  the 

reference pressure contour for strong foams (showing both high-quality and low-quality 

regimes) possible. The limiting water saturation, S୵
∗ , is somewhat special in that it first 

needs to be determined experimentally (just like the ones in the second group), then fine-

tuned with other model parameters in the third group. More details on this issue are shown 

in the Result section below. 

 

Table 2.1. Properties and parameters required for mechanistic foam modeling in this 
study. 

Basic Rock and Fluid Properties Basic Foam Parameters Foam Modeling Parameters 

Permeability (k) 

Porosity (∅) 

Brine viscosity (μ୵) 

Gas viscosity (μ୥) 

Connate water saturation (S୵ୡ) 

Residual gas saturation (S୥୰) 

Corey-type relative permeability   

parameters (A, B, mଵ, mଶ) 

Maximum foam texture 

(n୤୫ୟ୶) 

Maximum trapped gas 

fraction (X୲୫ୟ୶) 

Trapping parameter (β) 

Low-quality regime power-

law exponent (σ୐) 

High-quality regime power-

law exponent (σୌ) 

Lamellae mobilization pressure 

(∇P୭) 

Lamellae coalescence exponent 

(n) 

Limiting water saturation (S୵
∗ ) 

Coefficient for lamellae creation 

function (
େౝ

େౙ
) 

Coefficient for foam viscosity 

function (C୤) 

 

        

  Among many in the literature, the experimental study of Yin (2007) for supercritical 

CO2 foam in Berea sandstone is selected because it offers much of the data required for 

model fit in a series of core-scale experiments. A companion study, Liu et al. (2010), 

provides relevant rock properties including relative permeability data at the same 
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experimental conditions. Their original data points are shown in Figure 2.4 (filled squares 

and open/filled circles) modified in the format required for this study. Briefly, Yin (2007) 

conducted two types of supercritical CO2 foam coreflood experiments, one by varying 

liquid velocity (u୵ = 0.042 – 1.256 ft/day) at fixed gas velocity (u୥ = 1.51 ft/day), and the 

other by varying foam quality (f୥= 50% - 90%) at fixed total velocity (u୲ = 3.778 ft/day).  

Other experimental conditions are summarized in Table 2.2.  Note that the brine viscosity 

is estimated from McCain (1991) and supercritical CO2 viscosity from Fenghour and 

Wakeham (1997). The approach applied in this study does not deal with capillary pressure 

directly but takes care of its effect implicitly through water saturation (e.g., limiting water 

saturation, relative permeability a function of saturation). This helps reducing the number 

of model input parameters. 

 

Table 2.2. Conditions for coreflood experiments.    

Experimental Conditions Berea Core Rock Properties Gas and Liquid Properties 

Pressure:  1540 psig Core length: 0.5 ft  Brine Viscosity: 0.65 cp 

(McCain,1991) Temperature: 110 oF Core diameter: 0.169 ft 

Gas Phase: CO2 Pore Volume: 0.00241 ft3 Gas Viscosity: 

0.07 cp 

(Fenghour and Wakeham, 1998) 

Aqueous Phase: 3 wt % NaCl 

brine  

Porosity: 22.29 % 

Surfactant: Chaser CD1045TM 

0.05 wt% concentration 

Liquid Permeability: 

450 md 
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(a) 

 

(b) 

Figure 2.4. Original coreflood data points from Yin (2007) and Liu et al. (2010) in a 
format required for this study with expected model fits (dashed lines): (a) onto the S-

shaped curve and (b) onto the two foam-flow regime pressure contours. 
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2.4. Results 

This section consists of three parts: Part 1 shows how to determine the basic model 

parameters (i.e., first and second groups in Table 2.1), Part 2 presents how to make a fit 

to the S-shaped curve (i.e., hysteresis with three foam states) as well as two flow-regime 

pressure contours (i.e., high-quality and low-quality regimes) by determining foam model 

parameters (i.e., third group in Table 2.1), and Part 3 covers how foam propagates in a 

large system. For clarification, “a successful fit ” in this study means that the model (based 

on pore-scale events) captures the trend shown by one representative S-shaped curve 

(showing the path from weak-foam to strong-foam state) and two representative pressure 

contours (showing both high-quality and low-quality regimes) of strong foam state (shown 

in core-scale events). For example, Figure 2.4(a) shows coreflood data points, with strong 

foams as the upper surface and no foams as the lower limit for weak-foam surface, and 

Figure 2.4(b) shows the pressure responses of strong foams collected experimentally at 

different gas and liquid velocities (keeping the total velocity the same). The trend traced 

by dashed lines are what the population balance model aims to match in this study.  

 

2.4.1. Part 1: How to determine basic model parameters 

Each of these parameters are determined as follows.    

  CO2-Brine Relative Permeability Curve: The Corey-type relative permeability 

functions are used for supercritical CO2 and brine two-phase flow. Figure 2.5 shows how 

4 parameters (mଵ,mଶ, A and B; see Equations 2.7 and 2.8) are determined to fit the 

experimental data from Liu et al. (2010) by performing curve fitting. 
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  Maximum Foam Texture ( n୤ ୫ୟ୶): The maximum foam texture (n୤ ୫ୟ୶)  can be 

determined directly from the average pore size, i.e., n୤ ୫ୟ୶  = 1/ (volume of individual pore).   

Beard and Weyl (1973) provided correlations between porosity, permeability, and grain 

size of different sandstone rocks, and in relatively homogeneous unconsolidated rocks, 

the average pore size is approximately 25 - 30% of the grain size. For a 450 md Berea 

sandstone sample in this study, the correlations provide the average grain size about 

0.044 mm and thus the average pore size about 1.12 × 10ିଵସ mଷ.  Therefore,  n୤ ୫ୟ୶  is 

approximately  8.0 × 10ଵସ  
ଵ

୫య
  which is used as a model parameter (Table 2.3). 

 

 

 
Figure 2.5. Determination of supercritical CO2-Brine two-phase relative permeability 

curves by using Corey-type functions. 
 

 

  Mobility Reduction Factor (MRF) and Limiting Water Saturation ( S୵
∗ ): The 

magnitude of MRF (Equation 2.14 and Equation 2.15) can be determined by plotting 

fractional flow curves (i.e., f୵ vs. S୵ ) at various MRF values and choosing the one that 
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fits the experimental data appropriately. Figure 2.6 shows an example. The curve with 

MRF = 1 is for the case of conventional gas-water (i.e., supercritical CO2 and brine) two-

phase flow with no foams. With foams present in the media, the fractional flow curve shifts 

to the left (cf. Equation 2.15).  Overall, the data points from Yin (2007) suggest the MRF 

in this experiment falls between 100 and 1000. In addition, no matter what MRF values 

are, the fractional flow curves steeply fall to join no-foam fractional flow curve (MRF=1) as 

S୵  approaches S୵
∗  . It is because the rate of lamellae coalescence increases dramatically 

near S୵
∗  (cf. Equation 2.3).  The figure suggests that the range of limiting water saturation 

is around 0.42 - 0.43, slightly above the connate water saturation (S୵ୡ = 0.42). 

 
 
 
 
 

 
 
 
Figure 2.6. Construction of fractional flow curves at various MRF values to capture the 

range of MRF and S୵
∗  (experimental data from Yin (2007)). 
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  Shear thinning/thickening parameters: The gap between pressure contour lines in 

the two flow-regime map in Figure 2.4(b) can be used to determine if foams in the high-

quality and low-quality regimes are shear-thinning, shear-thickening, or near-Newtonian. 

The data points for f୥ = 0.7 through f୥ = 1.0 in Figure 2.4(b) are used to calculate the 

power-law exponent in the high-quality regime (σୌ ), while the data points for f୥= 0.5 

through f୥= 0.7 in Figure 2.4(b) are used to calculate the power-law exponent in the low-

quality regime (σ୐). The original data at foam quality less than 50% (f୥ < 0.5) is neglected 

because they are too wet to call foam. Figure 2.7 illustrates how to determine σୌ  (σୌ= 

0.2984) and σ୐ (σ୐= 0.5744) plotting the pressure gradient as a function of gas and liquid 

velocities, respectively. 

 

Mobilization Pressure Gradient: When Figure 2.2(a) from Gauglitz et al. (2002) is 

used for the permeability of sandstone used in this study (200-500 md), ∇P୭ ranges from 

7 to 30 psi/ft (or, about 158,000-678,000 Pa/m) for N2 foams and 0.4 to 6 psi/ft (or, about 

9,000-135,000 Pa/m) for supercritical CO2 foams. 

 

  Lamellae Coalescence Exponent: The lamellae coalescence exponent ( n ) in 

Equation 2.3 describes the rate of kinetics of lamella coalescence mechanism, i.e., how 

quickly lamella coalescence occurs when S୵ approaches (decreases) to  S୵
∗  . There are 

no experimental studies reported in the literature to measure n value within the porous 

media, to our knowledge. Most of the previous studies use n  value of either 1 (Friedmann 

et al., 1991; Kovscek and Bertin, 2002; Kam, 2008) or 2 (Kovscek et al. (1995)) as a 
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reasonable approximation. These previous studies show that n   does not affect the 

steady-state model fit significantly except for foams in very high f୥ (or, S୵  very close to S୵
∗ )  

but does impact the stability and convergence of dynamic foam simulation. 

 

                                                

(a)                                                                                    (b) 

Figure 2.7. Determination of power-law exponents: (a) for the high-quality regime (σୌ) 
from ∇P vs. uw plot and (b) for the low-quality regime (σ୐) from ∇P  vs. ug plot. 

 
 

Maximum Trapped Gas Fraction and Trapping Parameter: The trapped gas 

fraction, X୲ , is calculated by using an equation similar to Langmuir isotherm (Equation 

2.10) that has the maximum trapped gas fraction(  X୲ ୫ୟ୶ ) and trapping parameter 

(β) .There are some studies that measured X୲ ୫ୟ୶  experimentally by using tracer tests or 

numerically calculated from  pressure response, while there are no experimental studies 

that reported β values- once again it is because of difficulties measuring the dynamics of 

lamella movement within the porous media.  Kovscek and Radke (1994) reported the 

value of 0.9 for X୲ ୫ୟ୶ and 10-9 m3 for β in their model fit to experimental data. Kam (2008), 
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Afsharpoor et al. (2010), and Lee et al. (2016) used 0.8 and 10-11 m3 for X୲ ୫ୟ୶ and β 

respectively. Chen et al. (2010) had the maximum trapped gas fraction of 0.78 for the N2 

foam in Berea sandstone. Lotfollahi et al. (2016) estimated values of X୲ ୫ୟ୶ and  β for the 

CO2 foam in South Cowden Unit Cores 0.5 and 10-9 m3 respectively. This study assumes 

X୲ ୫ୟ୶  to be 0.7 and β  to be 5 × 10ିଵସ mଷ. 

 

 
Table 2.3. Basic model parameters and their values. 

Parameter Name Parameter Value Parameter Name Parameter Value 

Corey-type coefficient for 

water relative permeability (A) 

 

0.893 

 Mobilization pressure 

gradient (∇P୭,
୮ୱ୧

୤୲
)  

 

0.4 ≤ ∇P୭ ≤ 6.0 

Corey-type exponent for 

water relative permeability 

(mଵ) 

 

1.41 

Maximum trapped gas 

fraction (X୲୫ୟ୶) 

 

0.7 

Corey-type coefficient for gas 

relative permeability (B) 

 

0.222 

High quality regime Power-

law exponent (σୌ) 

 

0.2984 

Corey-type exponent for gas 

relative permeability (mଶ) 

 

4.45 

Low quality regime Power-

law exponent (σ୐) 

 

0.5744 

Connate water saturation 

(S୵ୡ) 

0.42 Limiting water saturation 

(S୵
∗ ) 

0.42 < S୵
∗ ≤ 0.43 

 

Residual gas saturation (S୥୰) 

 

0.0 

Lamellae coalescence 

exponent (n) 

 

1.0 

Maximum foam texture 

(n୤ ୫ୟ୶,
ଵ

୫య) 

 

8.0 x 1014 

 

Trapping parameter (β,  mଷ) 

 

5.0 x 10-14 
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2.4.2. Part 2: How to determine mechanistic model parameters    

With the basic parameter values as discussed and summarized in Table 2.3, there 

are five more model parameters required ( ∇P୭, S୵
∗ , n,  

େౝ

େౙ
, and C୤  (see the third column of 

Table 2.1)) in order to fit the experimentally measured S-shaped curve and two flow-

regime contours. Note that ∇P୭ and S୵
∗   values are not determined yet (the ranges are 

estimated in Part 1, 0.4-6 psi/ft and 0.42-0.43 respectively, however). Also note that   
େౝ

େౙ
 , 

as a single parameter, plays a role in steady-state modeling, although they split into two 

different parameters playing different roles in dynamic simulations (Kam, 2008). This 

study selects ∇P୭ of 5 psi/ft as a base case first and investigate how the fit changes at 

different ∇P୭values. 

 

Figure 2.8 shows a model fit to both S-shaped curve and two flow-regime pressure 

contours. In the two flow regime contours, the point of (uw, ug) = (1.133 ft/day, 2.645 ft/day), 

giving f୥
∗= 70% and ∇P = 73.5 psi/ft, is selected as the reference point (i.e., the boundary 

between the high-quality regime and low-quality regime). With given values of n  and ∇P୭, 

a selection of S୵
∗   allows two other parameters (

େౝ

େౙ
 and  C୤) to be determined automatically. 

Three sets of plots, Figures 2.8(a) through 2.8(c), are created at S୵
∗  = 0.421, 0.422, and 

0.426 respectively, and those corresponding sets of five parameters are tabulated in 

Table 2.4. Although all three pairs of figures look equally nice, a couple of differences are 

observed: (i) the match to the upper surface of the S-shaped curve deviates further and 

further as S୵
∗  increases; (ii) the turning point from the weak-foam to intermediate state 

occurs at lower liquid velocity as S୵
∗  increases; and (iii) the pressure contours in the high-
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quality regime tend to be more vertical with a sharper transition between the two flow 

regimes (the pressure contours in the low-quality regime tends to remain almost the same, 

however). With further lab-measured information (for example, the onset of foam 

generation (i.e., the turning point from weak-foam to intermediate state), pressure data 

for weak-foam state, or additional steady-state pressure-gradient data in the two flow-

regime map (especially in the upper left corner of the plot)), one can further narrow down 

the set of input parameters. It must be re-emphasized that the changes shown in Figures 

2.8(a) through 2.8(c) happen within the range of S୵
∗ = 0.421 through 0.426 (about 1.5%). 

Such a precision is often very difficult to obtain even in the sophisticated coreflood tests, 

but causes a considerable difference in terms of model fit. This again proves the validity 

of the approach in this study – determine the range of S୵
∗  from lab tests and then pinpoint 

exactly what value to be used in numerical simulations from mechanistic foam model. As 

described earlier, ∇P୭  ranges from 0.4 to 6.0 psi/ft for supercritical CO2 foams for the 

permeability range of 200 to 500 md. In addition to the base-case  ∇P୭ value of 5 psi/ft, 

the calculations are extended to  ∇P୭= 1 and 30 psi/ft for sensitivity study, as shown in 

Figures 2.9 and 2.10 respectively, still at the same three S୵
∗  values of 0.421, 0.422, and 

0.426. Both  ∇P୭  values capture the trend reasonably well, showing the same symptoms 

presented in the base case (i.e., the upper surface of the S-shaped curve shifting to the 

right, the transition from the weak-foam to intermediate state happens at lower liquid 

velocity, and the contours in the high-quality regime more vertical as S୵
∗   increases). It is 

interesting to find that  ∇P୭ = 1 psi/ft provides almost no intermediate state, while ∇P௢ = 30 

psi/ft provides much more elongated weak-foam state as well as intermediate state. This 

explains why placing supercritical CO2 foams further into the reservoir is much easier than 
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gaseous foams – with a lower  ∇P୭ as an input parameter, foams can be created and 

mobilized at lower pressure-gradient conditions, allowing the placement further into the 

reservoir. The input parameters for Figures 2.9 and 2.10 are shown in Tables 2.5 and 2.6, 

respectively. 
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                    (a)                                                 (b)                                                 (c)                                   

Figure 2.8. Model fit to three foam states as well as two foam-flow regime pressure contours at ∇P୭ = 5 psi/ft at three 
different sets of parameters represented by (a) S୵

∗  = 0.421, (b) S୵
∗  = 0.422, and (c) S୵

∗  = 0.426 (See Table 2.4 for more 
details).   
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Table 2.4. Summary of base-case model parameters (∇P୭ = 5 psi/ft) to fit three foam 
states (S-shaped curve) and two flow regimes (see Figure 2.8). 

Foam Model Parameters  @ S୵
∗ = 0.421 @ S୵

∗ = 0.422 @ S୵
∗ = 0.426 

∇P୭, (psi/ft) 5.0 5.0 5.0 

n, (dimensionless) 1.0 1.0 1.0 

  

େౝ

େౙ
, (s2/(kg.m2)) 

 

3.30743 x 1016 

 

3.65796 x 1016 

 

6.34985 x 1016 

C୤, (m7/3.kg/s4/3) 2.07342 x 10-21 2.07342 x 10-21 2.07342 x 10-21 

 

 

Table 2.5. Summary of base-case model parameters (∇P୭= 1 psi/ft) to fit three foam 
states and two flow regimes (see Figure 2.9).  

Foam Model Parameters  @ S୵
∗ = 0.421 @ S୵

∗ = 0.422 @ S୵
∗ = 0.426 

∇P୭, (psi/ft) 1.0 1.0 1.0 

n, (dimensionless) 1.0 1.0 1.0 

 

 
େౝ

େౙ
, ( s2/(kg.m2)) 

 

3.93113 x 1016 

 

4.34776 x 1016 

  

7.54726 x 1016 

 

C୤, (m7/3.kg/s4/3) 

 

2.07342 x 10-21 

 

2.07342 x 10-21 

 

2.07342 x 10-21 

 

 

Table 2.6. Summary of base-case model parameters (∇P୭ = 30 psi/ft) to fit three foam 
states and two flow regimes (see Figure 2.10). 

Foam Model Parameters  @ S୵
∗ = 0.421 @ S୵

∗ = 0.422 @ S୵
∗ = 0.426 

∇P୭, (psi/ft) 30.0 30.0 30.0 

n, (dimensionless) 1.0 1.0 1.0 

 

 
େౝ

େౙ
, ( s2/(kg.m2)) 

 

3.30743 x 1016 

 

3.65796 x 1016 

 

6.34985 x 1016 

C୤, (m7/3.kg/s4/3) 2.07342 x 10-21 2.07342 x 10-21 2.07342 x 10-21 
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        (a)                                                     (b)                                                     (c) 

Figure 2.9. Model fit to three foam states as well as two foam-flow regime pressure contours at ∇P୭  = 1 psi/ft at three 
different sets of parameters represented by (a) S୵

∗  = 0.421, (b) S୵
∗  = 0.422, and (c) S୵

∗  = 0.426 (See Table 2.5 for more 
details). 
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                                       (a)                                                        (b)                                                      (c) 

Figure 2.10. Model fit to three foam states as well as two foam-flow regime pressure contours at ∇P୭   = 30 psi/ft at three 
different sets of parameters represented by (a) S୵

∗  = 0.421, (b) S୵
∗  = 0.422, and (c) S୵

∗  = 0.426 (See Table 2.6 for more 
details). 
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The sensitivity of model fit to other model parameters is also conducted, but not 

included, due to the limited space. Briefly summarizing, for example, larger n  (foam 

coalescence exponent; Equation 2.3), let’s say, n = 2 rather than 1, does not make any 

noticeable changes except where foam rheology is governed by S୵
∗   (or, strong foams in 

the high-quality regime). Because bubble instability, as S୵  approaches S୵
∗ , occurs more 

rapidly with larger n, the top of the S-shaped curve tends to be flattened out and the 

contours in the high-quality regime become more vertical. Another example is the trapped 

gas fraction (X୲୫ୟ୶) and related kinetic parameter (β) (Equation (2.10)), where the former 

is estimated from similar experiments in the literature while the latter has never been 

measured from the lab (but only estimated in some previous modeling studies). Lower 

X୲୫ୟ୶  tends to cause the the transition from the weak-foam to intermediate state at lower 

pressure gradient (meaning a shift of S-shaped curve to the lower-left), because foam 

approaches the finer-texture condition more easily. On the contrary, lower β tends to 

delay reaching the strong foam state and thus stretches out the transition from the 

intermediate to strong foam state vertically. In fact, a better fit to the S-shaped curve can 

be made, but with a sacrifice in two-flow regime contours. The interplay between X୲୫ୟ୶ 

and β to data fit is more complicated, however. 

 

2.4.3. Part 3: How to determine foam propagation in the field scale 

The model fit to core-scale experimental data can be used to understand how far 

from the wellbore foam propagates in field-scale applications (note that the propagation 

distance coincides with the radial region in which MRF values are relatively high, 

representing the top surface of the S-shaped curve). As an example, this study assumes 
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a hypothetical cylindrical reservoir (wellbore radius = 0.42 ft and height = 275 ft, from a 

supercritical CO2 foam pilot test of the Weber Sand Unit of Rangely field, Colorado (1990)) 

with total injection rate (Q୲ ) of 17,970 ft3/day (3,200 bbl/day or 0.01797 MMscf/day, 

equivalently). Both gas and liquid can be viewed incompressible in this test, which is 

believed to be a reasonable assumption at high reservoir pressure and supercritical CO2 

phase. Two injection conditions are considered such as injection foam quality of 90% (i.e., 

Q୵ = 320 bbl/day and Q୥ = 0.016173 MMscf/day) and 60% (i.e., Q୵ = 1280 bbl/day and 

Q୥ = 0.010782 MMscf/day). They represent strong foams in the high-quality regime and 

low-quality regime, respectively, as shown in Figures 2.11 and 2.12, at three different ∇P௢  

values (see Tables 2.4, 2.5, and 2.6 for input parameters). 

 

A few interesting observations are made. First, the plots show that the MRF (y axis) 

folds back and forth for  ∇P୭ = 5 and 30 psi/ft, presenting multi-valued solutions to the 

radial distance, while MRF changes rather smoothly for  ∇P୭ = 1 psi/ft, presenting a single-

valued solution. This behavior is consistent with Figures 2.8 through 2.10. Second, in both 

high-quality-regime and low-quality-regime foams, foams with lower ∇P௢ propagate much 

further into the reservoir. Such results demonstrate the advantage of supercritical CO2 

foams over other gaseous foams (for example, Figure 2.11 shows only “4 and 25 ft for 

 ∇P୭  = 30 and 5 psi/ft respectively” vs. as much as “136 ft (MRF = 100) and 418 ft (MRF 

= 10) for  ∇P୭  = 1 psi/ft”. Similarly, Figure 2.12 shows only “5 and 35 ft for ∇P୭  = 30 and 

5 psi/ft, respectively” vs. “362 ft (MRF = 100) and 1077 ft (MRF = 10) for ∇P୭  = 1 psi/ft”. 

Third, the propagation distance for low-quality-regime foams is more than that for high-

quality-regime foams. It is because the former has more stable foams (away from S୵
∗  ) 
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with fine foam texture (n୤ = n୤ ୫ୟ୶), while the latter has less stable foams (near S୵
∗ ) with 

coarse foam texture (n୤ <<  n୤ ୫ୟ୶). Last, the MRF values for the low-quality-regime foams 

are higher compared to those for the high-quality-regime foams. Note that the change in 

MRF in Figures 2.11 and 2.12 in fact reflects the change in apparent foam viscosity (cf. 

Equations 2.11 and 2.14) that accommodates foam stability at different capillary pressure 

environments as well as resulting non-Newtonian foam rheology and bubble population 

balance. 

 

It must be emphasized that the propagation radial distance (x axis in Figures 2.11 

and 2.12) is inversely proportional to reservoir thickness. Therefore, if the thickness were 

10 times less (27.5 ft rather than 275 ft), the propagation distance in Figures 2.11 and 

2.12 would be 10 times more at the same injection rate. How far foam travels in a large 

field-scale system during EOR processes depends on foam rheology, mobility as well as 

segregation by gravity in a multi-dimensional space. The next chapter investigates such 

issues relying on the population-balance model presented in this chapter.  

 

 



 
37 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.11. Foam propagation in a 275-ft thick cylindrical reservoir at three different 
values of mobilization pressure gradient (1.0, 5.0, and 30.0 psi/ft) by using high-quality-
regime foams (foam quality = 90%) (See Tables 2.4, 2.5, and 2.6 for input parameters). 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.12. Foam propagation in a 275-ft thick cylindrical reservoir at three different 
values of mobilization pressure gradient (1.0, 5.0, and 30.0 psi/ft) by using low-quality-
regime foams (foam quality = 60%) (See Tables 2.4, 2.5, and 2.6 for input parameters). 
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2.5. Discussions  

The model fit to experimental data of three foam states and two strong-foam flow 

regimes (Figures 2.8, 2.9, and 2.10) helps determine many of model parameters but, in 

its current form, this study cannot pinpoint the sets of input parameters further 

unfortunately (for example, Figures 2.8(a) vs. 2.8(b) vs. 2.8(c)). It is because the 

experimental data available to this study have the properties of strong foams, just like the 

way foams are injected in the field tests; the prediction of foam propagation using bubble 

population model requires properties of weak-foam and intermediate states as well, 

however, in addition to strong-foam state. Such a gap suggests that design and 

implementation of field-scale EOR treatments have both of numerical 

modeling/simulation and lab experiment components aligned together cohesively. 

 

The following chapter compares this population-balance model with implicit-texture 

foam model, when supercritical CO2 foams are injected into a cylindrical reservoir in EOR 

processes. When the reduction in gas-phase mobility is determined from the mechanistic 

model (cf. Figures 2.11 and 2.12) and the resulting distance-averaged MRF values are 

carefully selected, the two modeling techniques predict comparable foam propagation 

distances. The study demonstrates how the two modeling techniques – one 

computationally more intensive but based on detailed mechanistic mechanisms, while the 

other more user-friendly and simpler but still capturing key mechanisms - help each other 

to improve the quality of reservoir simulations. 
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This study demonstrates another interesting point on why supercritical CO2 foams 

are better than gaseous foams to improve oil recovery in the field. Typical justifications 

behind the use of supercritical CO2 foams include a favorable miscibility condition with 

oleic components, a swelling behavior when in contact with reservoir oil, and high-density 

and high-viscosity property of a supercritical phase of CO2. The results from this study 

show another important reason, that is, supercritical CO2 foams can propagate more 

easily, being placed deeper into the reservoir much further than gaseous foams (even a 

few orders of magnitude more), because of much lower mobilization pressure gradient 

(∇P୭), and thus improve sweep efficiency greatly. 

There are many physical and chemical properties that obviously affect foam 

rheology in lab experiments but do not show up explicitly in the model used in this study. 

The model, however, is equipped with capabilities dealing with those properties indirectly. 

For example, a better foamer (e.g. by changing surfactant formulation and concentration 

endowing foams improved stability) can be represented by higher yield stress of lamellae, 

higher foam viscosity, higher fg*, and higher trapped gas saturation. More oil-wet media 

can be represented by properties similar to a poorer foamer (i.e., opposite to the previous 

example) as well as changes in relative permeability curves. A change in interfacial 

tension can be incorporated by foam stability and lamella creation and coalescence 

mechanisms (through mobilization pressure and limiting water saturation).     

 

 It must be commented that the experimental results for continuous foam rheology 

surface as shown in Figures 2.1(a) and 2.1(b), exhibiting the data points for both “three 

different foam states” and “two strong foam regimes”, are very rare in the literature. In 



 
40 

 
 

fact, even though there is sufficient experimental evidence in pieces, the only complete 

data set available in the literature is for N2 gaseous foams (Gauglitz et al., 2002; Kam and 

Rossen, 2003). As a result, the fact that the model fit in this study is made for supercritical 

CO2 foams without data points in the intermediate state (cf. Figures 2.4(a) and 2.4(b)) 

adds some uncertainty to this study, and this in turn emphasizes the importance of 

experimental studies for modeling purpose. See Yu et al. (2018) for more discussions on 

this aspect. 
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2.6. Conclusions 

This chapter investigates the mechanisms of supercritical CO2 foam propagation 

by using a mechanistic foam model. The procedure to fit to the coreflood experimental 

data is presented in detail, together with the uniqueness of the input parameters and 

implication of the model in large field-scale applications. The major findings can be 

summarized as follows: 

 

 This study investigates the mechanisms of supercritical CO2 foam propagation by 

using a bubble-population-balance foam model based on pore-scale events. How 

to fit the model to lab coreflood data, which is core-scale events, is presented in a 

step-by-step manner, including three foam states and two foam-flow regimes for 

supercritical CO2 foams. This is the first attempt of mechanistic foam modeling, in 

its kind, focusing on supercritical CO2 foams with much lower mobilization pressure 

gradient (∇P୭) than other gaseous foams, which has not been studies earlier.  

 

 The results also provide a theoretical reasoning why supercritical CO2 foam can 

propagate further into the reservoir, as much as a few orders of magnitude, than 

other gaseous foams, and how much quantitatively. It is primarily because of lower 

mobilization pressure gradient ( ∇P୭) of supercritical CO2 foams, which leads to 

smooth and monotonic changes from weak-foam to strong-foam state directly with 

no intermediate state in between. As a result, it seems very realistic that 

supercritical CO2 foams with the mobilization pressure gradient less than 1 psi/ft 

can propagate a few hundreds or thousands of feet easily.  
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 With model parameters determined, the mechanistic model is applied to field-scale 

CO2 foam EOR events, showing key concepts of foam propagation in large-scale 

applications. The results based on foam fundamentals and theoretical grounds 

demonstrate why the propagation distance is greater when wetter foams are used 

than drier foams. It is because of improved foam stability in the low-quality regime 

than in the high-quality regime. 
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CHAPTER 3. INVESTIGATING SUPERCRITICAL CO2 FOAM PROPAGATION 
DISTANCE: CONVERSION FROM STRONG FOAM TO WEAK FOAM VS. 

GRAVITY SEGREGATION 

3.1. Introduction 

3.1.1. EOR using gas and water injection 

Gas injection is one of the most widely used methods in enhanced oil recovery 

(EOR) processes, because of its economic advantages.  The gas phase (commonly CO2, 

N2, produced natural gas, flue gas, or a combination of these) is injected into the reservoir 

either as miscible or immiscible with reservoir oil. Since these gas phases generally have 

lower viscosity and density compared to the reservoir fluids, an early breakthrough of the 

injected gas into the production well typically occurs resulting in poor sweep efficiency.  

The main underlying mechanism behind it is the instability at the interface between the 

displacing and displaced phases caused by poor mobility ratio (leading to fingering or 

channeling) and density contrast (leading to gravity segregation). 

  

Extensive research efforts have been made to predict the volume fraction of a 

reservoir that can be swept by gas injection at different reservoir and fluid conditions.  For 

example, many laboratory studies in early days (Dyes et al. 1954; Offeringa and Van Der 

Poel 1954; Blackwell et al. 1959) found out that the low-viscosity and low-density gas 

tends to channel through and bypass oil in sands with no dip angles. Therefore, in 

horizontal sands, gas flooding is less efficient as the oil viscosity increases, and the 

desired oil recovery can be achieved only by injecting a large volume of gas. For dipping 

sands, there is a competition between gravity segregation and channeling (Lacey et al. 

1958). There exists a critical rate (Hill and Inst 1952; Dietz 1953) below which gravity 
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segregation prevails and no channeling occurs, and above which channeling plays a more 

significant role.  

 

Caudle and Dyes (1957) first suggested the simultaneous injection of water and 

gas as a method to improve sweep efficiency over gas injection. It was based on the fact 

that water, if flowing together with gas, decreases gas relative permeability. They 

attempted to determine the optimal gas-water injection ratio, by using relative permeability 

curves and fluid viscosities, resulting in the conditions at which gas and water flow at the 

same velocity.  

 

It is sometimes more convenient in the field tests to inject water alternatively with 

gas, rather than water and gas co-injection, and this process is called water alternating 

gas (WAG). Christensen et al. (2001) provide a thorough review of WAG field experiences. 

The initial design of a WAG process is usually constructed by reservoir simulation studies 

and then the design is optimized, as the field process matures, with recommended gas 

slug size (i.e., volume of gas to be injected) and WAG ratio (Attanucci et al. 1993). 

Blackwell et al. (1959) investigated the effect of gravity on WAG process to find that the 

mobility of gas-water region becomes less of an issue as gas and water segregate more 

rapidly.  

 

Stone (1982) first investigated the gravity segregation of gas from liquid for water 

and gas co-injections in a homogenous reservoir once water fractional flow (f୵) or gas 

fractional flow (f୥) is given (note f୵ + f୥ = 1). He developed an analytical equation by 
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applying the Buckley-Leverett (1942) theory to predict the size of the region around the 

injection well where vertical conformance was good before complete segregation.  

Jenkins (1984) extended Stone’s equations to obtain a closed-form solution to the 

equations for estimation of incremental recovery beyond waterflooding for homogenous 

reservoirs.  Combining these two together, so-called Stone and Jenkins model is shown 

to be also valid in the presence of surfactants (Rossen and Shen 2007), even though it 

was originally designed for gas-water co-injection. Figure 3.1 shows three constant 

regions at the steady state which represent a gas override region (i.e., only gas flowing 

(f୥ = 1 and f୵ = 0) at residual water saturation (S୵୰)), a water underride region (i.e., only 

water flowing (f୥ = 0 and f୵ = 1) at residual gas saturation (S୥୰)), and a mixed region in 

between (i.e., both gas and water flowing at constant water saturation (S୵)). Note that the 

prediction of “travelling distance before complete segregation by gravity (R୥ୱ)” is key to 

successful field implementation during gas-liquid co-injection EOR processes.    
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Figure 3.1. Three constant-state regions observed at the steady-state gas-liquid co-
injection in 2D space predicted by earlier studies (Stone (1982), Jenkins (1984), and 

Rossen and Shen (2007)) (gas and liquid phases are assumed to be incompressible). 
 

3.1.2. Gravity segregation during foam EOR process 

Foaming gas with surfactant solutions has been suggested to mitigate gravity 

segregation and improve the mobility ratio within the mixed region (Shi and Rossen 1998).  

From a series of two-dimensional laboratory experiments, Holt and Vassenden (1997) 

found reasonably good agreement between the Stone and Jenkins model and their 

experimental results for the complete gravity segregation distance (i.e., R୥ୱ in Figure 3.1) 

in gas and water co-injection tests. They observed, however, that when foam is injected, 

the segregation into gas and liquid is difficult to measure in small-scale experiments 

because of kinetics involved in foam decay.   Rossen and van Duijn (2004) showed that 
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the Stone and Jenkins model is rigorously correct to use for foam if several assumptions 

are met. Those assumptions include (a) homogenous reservoir, although anisotropic, (b) 

cylindrical reservoir with open outer boundary, (c) injection well penetrates full reservoir 

height, (d) steady-state conditions reached during the injection, (e) incompressible 

phases, (f) no dispersion, and (g) Newtonian rheology for all phases. Analytical modeling 

(Stone 1982; Jenkins 1984), simulation studies (Shi and Rossen 1998) and experimental 

results (Holt and Vassenden 1997) indicate that gravity override in foam depends on 

dimensionless gravity number that is the ratio of gravity force to viscous force.  

 

Shi and Rossen (1998) performed several numerical simulations with 

homogeneous and anisotropic rectangular and radial reservoirs using UTCOMP 

(University of Texas Compositional Flood Simulation). They found that the Stone and 

Jenkins model matches remarkably well with simulation results over a wide range of 

reservoir properties, geometries, flow rates, foam qualities (or, gas fractions ( f୥ ), 

equivalently), foam strengths, foam collapse mechanisms, and coarseness of simulation 

grids.  The results also confirmed that a successful gas injection EOR to overcome gravity 

segregation, with and without foams, requires horizontal pressure gradient outweigh 

vertical pressure gradient. Performing N2 foam numerical simulation using CMG-STARS, 

Rossen and Shen (2007) observed that at fixed injection rate, the length of injection 

interval does not affect the distance for gravity segregation. They proposed a first guess 

in required injection pressure by providing an explicit relationship between the injection 

well pressure and distance to the point of segregation.   
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3.1.3. Conversion of strong foam to weak foam 

In addition to gravity segregation, there is another mechanism that limits foam 

propagation in field applications, that is, the conversion of strong foam into weak foam, 

as demonstrated in Figure 3.2. There is a threshold distance (Rୡୱ୵) beyond which fine-

textured strong foam created near the well (often caused by the turbulence in the well) 

turns into coarsely-textured weak foam, as foam moves away from the injection well. Such 

a concept of three different states of foam when the pressure gradient (∇P) is controlled 

was first suggested by the experimental study of Gauglitz et al. (2002) and incorporated 

into the mechanistic foam modeling later (Kam and Rossen 2003; Lee et al. 2016). 

 

 

 

 
 
 

Figure 3.2. Three different foam states and its implication in field-scale applications 
(Gauglitz et al. (2002), Kam and Rossen (2003), and Lee et al. (2016)). 

 
 

Figure 3.2 shows more details about what happens when strong foam is injected 

into a cylindrical reservoir at the total injection flow rate q୲ = q୲
୧୬ that corresponds to the 
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total injection velocity u୲ = u୲
୧୬. Note that q୲ remains the same at any radial distance (r) 

between the wellbore radius (rw) and the radius to the external boundary (re), if gas and 

liquid are incompressible, while u୲  decreases with r  (i.e., u୲ =
୯౪

ଶ஠୰ୌ
 at any  r , for a 

cylindrical reservoir with the uniform thickness of H). It is the pressure gradient (∇P) that 

governs which state of foam is to be formed at given radial distance, because foam texture 

(n୤) increases with the pressure gradient (∇P) monotonically (Kam and Rossen 2003). For 

example, starting from the injection well (r = r୵), the reservoir is occupied by strong foam 

up to the distance where the conversion from strong foam to weak foam takes place (r =

Rୡୱ୵), and then by weak foam for the radial distance beyond (r > Rୡୱ୵). Once strong foam 

is formed, the rheology follows the two flow regimes of strong-foam state as discovered 

by Osterloh and Jante (1992) and Alvarez et al. (2001). Foam rheology in the high-quality 

regime of strong-foam state is governed by bubble stability near the limiting capillary 

pressure (Pୡ
∗) (or limiting water saturation (S୵

∗ )). On the contrary, foam rheology in the low-

quality regime of strong-foam state is governed by the transport of bubbles at or near the 

maximum foam texture (n୤ = n୤୫ୟ୶ ). Bubble population balance modeling, which this 

study is based on, is a modeling technique that deals with physical phenomena of bubble 

creation and coalescence, gas trapping, non-Newtonian rheology, and fluid transports in 

porous medium. It has been widely used in mechanistic foam modeling in the literature 

(Kovscek et al. 1995; Friedmann et al. 1991; Kam and Rossen 2003; Lee et al. 2016). 

Nearly all experimental foam studies have been conducted in linear system assuming the 

velocity remains constant as foam propagates into the system. In field scale, however, as 

foam moves away from the wellbore, the velocity decreases because of its radial 
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geometry. Due to the difficulty of conducting radial foam flow experiments in the lab, a 

mechanistic foam model is essential to translate foam rheology from linear to radial 

system.  

 

3.2.  Motivations and Objectives 

The objective of this chapter is to predict how far supercritical CO2 foam can 

propagate based on two different mechanisms, (i) the conversion of strong foam to weak 

foam (Rୡୱ୵) and (ii) gravity segregation (R୥ୱ), in a wide range of injection conditions. This 

study can be distinguished from other previous studies on similar topics as follows. 

 

 First, how strong foam would propagate into the reservoir (before turning into weak 

foam) where the velocity monotonically decreases with radial distance has not 

been investigated before, especially when supercritical CO2 foam with very low 

mobilization pressure gradient (∇P୭) is applied;  

 Second, gravity segregation simulations with commercial software have been 

performed by many previous studies, but none of them employed gas-phase 

mobility reduction factors actually calibrated from mechanistic foam model (based 

on true foam physics and whose model parameters determined from actual model 

fit to lab data);  

 Third, none of the previous studies in the literature have put the above two 

mechanisms together to demonstrate which of the two becomes more influential 

under what circumstances; and  
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 Finally, this study makes a unique contribution by presenting contour maps to show 

how far foam can travel, before converting to weak foam or gravity segregation, as 

a function of injection foam quality (f୥
୧୬) and total injection rate (q୲

୧୬), (or injection 

pressure (P୧୬), equivalently). This is especially important to fill the current gap 

present for the field implementation of supercritical CO2 foams. 

 

Note that a mechanistic model from Izadi and Kam (2018) (previous chapter) is used to 

provide mobility reduction factors (MRF) as an input parameter for gravity segregation 

simulations by CMG STARS. This study deals with a relatively ideal reservoir (i.e., large 

homogeneous cylindrical reservoir) in the absence of oil, as a first step, prior to the 

application in the real situations. 

 

3.3. Methodology 

3.3.1. Population balance modeling  

A mechanistic modeling approach based on bubble population balance makes it 

possible to keep track of the population of bubbles (i.e., foam films or lamellae, 

equivalently), as foam propagates further into the reservoir. The mechanistic modeling 

approach captures not only the number of bubbles in unit volume of space (i.e., foam 

texture (n୤)) but also the relationship between foam texture and other variables such as 

effective gas viscosity (μ୥
୤ ), changes in gas relative permeability (k୰୥

୤ ), trapped and flowing 

gas saturations (S୥୲,S୥୤), non-Newtonian flow behavior and so on. Because this chapter 

investigates supercritical CO2 foam placement in a homogeneous reservoir, a population 
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balance model based on the mobilization and division mechanism is applied. More details 

of such a model are available in the literature (Kam and Rossen 2003; Kam 2008; Lee at 

al. 2016; Ortiz Maestre, 2017), and all relevant equations are tabulated in Table 3.1 

following the study of Izadi and Kam (2018). Note that the minimum mobilization pressure 

gradient (∇P୭) is defined as  

 

∇P୭  =  4 ቀσ
R୲

ൗ ቁ,                                                                                                                                     (3.1) 

 

for a foam film to be mobilized out of pore throat with its radius R୲, if the interfacial tension 

between gas and liquid is given by σ. The minimum mobilization pressure gradient (∇P୭) 

for supercritical CO2 foam can range less than 1.0 psi/ft easily (i.e., 0.05 – 5 psi/ft) with 

effective foamers, while it ranges around 10 – 30 psi/ft at a typical reservoir permeability 

(50 – 500 md) (Gauglitz et al., 2002; Georgiadis et al., 2010). The coefficient in Equation 

3.1 is 4, rather than 2 (typically shown in Laplace equation), because a foam film consists 

of two gas-liquid interfaces with almost identical curvatures.
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Table 3.1. A summary of bubble population balance model used in this study (see Izadi and Kam (2018) for more 
information). 

 
Definition Equation Definition Equation 

 

Lamella creation rate 

  R୥ =
C୥

2
൜erf ൬

∇P − ∇P୭

√2
൰ − erf ൬

−∇P୭

√2
൰ൠ 

Gas relative permeability  

(no foam) 

k୰୥
୭ (S୵) = B ቆ

1 − S୵ − S୥୰

1 − S୵ୡ − S୥୰

ቇ

୫మ

 

 

Lamella coalescence rate 

  Rୡ = Cୡn୤ ൬
S୵

S୵ − S୵
∗

൰
୬

 
Gas relative permeability 

with foam 

k୰୥
୤ (S୵) = B ቆX୤

1 − S୵ − S୥୰

1 − S୵ୡ − S୥୰

ቇ

୫మ

 

 

Foam texture 

  n୤ =
C୥

2Cୡ

൬
S୵ − S୵

∗

S୵

൰
୬

൜erf ൬
∇P − ∇P୭

√2
൰

− erf ൬
−∇P୭

√2
൰ൠ 

 

Trapped gas fraction 

 

X୲ = X୲ ୫ୟ୶ ൬
βn୤

1 + βn୤

൰ 

 

Gas transport 

 

    u୥ =
kk୰୥

୭ (S୵)∇P

μ୥

   ,   u୥ =
kk୰୥

୤ (S୵)∇P

μ୥
୤

 

 

Flowing and trapped gas 

saturation 

S୥୤ = S୥(1 − X୲) 

S୥୲ = S୥X୲ 

S୥ = S୥୤ + S୥୲ 

 

(table cont’d.) 
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Definition Equation Definition Equation 

 

Liquid transport 

 

  u୵ =
kk୰୵(S୵)∇P

μ୵

 

 

Gas viscosity with foam 

 

μ୥
୤ = μ୥

୭ + C୤n୤ ቆ
u୥

∅S୥X୤

ቇ

ି 
ଵ
ଷ

 

 

Liquid relative permeability 

 

k୰୵(S୵) = A ቆ
S୵ − S୵ୡ

1 − S୵ୡ − S୥୰

ቇ

୫భ

 

 

Mobility reduction factor 

 

MRF =
k୰୥

୭ μ୥
୤

k୰୥
୤ μ୥

୭
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3.3.2. Conversion from strong-foam to weak-foam states 

Details on the model fit to CO2 foam coreflood experiments are shown in Izadi and 

Kam (2018) (previous chapter). An example of foam model parameters from the study to 

match three different foam states (weak-foam, intermediate, and strong-foam states) and 

two flow regimes of strong foam state (high-quality regime and low-quality regime) is 

presented in Table 3.2. These input parameters are used as a basis for the prediction of 

foam propagation distance before strong foam turns into weak foam (Rୡୱ୵) in this chapter, 

which is demonstrated in Figure 3.2 above.  

 

Table 3.2. Mechanistic model parameters for supercritical CO2 foam at different 
mobilization pressure values (∇P୭) fitting three different foam states and two flow 

regimes of strong foam state (see Table 3.1 for equations). 
 

Foam Model Parameters 

 ∇P୭ (Pa/m; psi/ft) 

= 

22620.6;1.0 

∇P୭ (Pa/m; psi/ft) = 

113103; 5.0 

∇P୭ (Pa/m; psi/ft) = 

678618; 30.0 

n (dimensionless) 1.0 1.0 1.0 

େౝ

େౙ
 (1/m3) 4.35 x 1016 3.66 x 1016 3.66 x 1016 

 

C୤ (m7/3.kg/s4/3) 2.07 x 10-21 2.07 x 10-21 2.07 x 10-21 

 
(In all cases, S୵

∗  = 0.422; X୲୫ୟ୶= 0.7 and β =5x10-14; f୥
∗ = 70 % at u୥ = 9.331x10-6 m/s and u୵ = 4.0 x 10-6 

m/s. see Izadi and Kam (2018) for other petrophysical and fluid properties.) 
 
 
 

In the case of gas-liquid co-injection EOR (at fixed f୥ condition), the pre-specified 

total injection rate (q୲) corresponds to the total superficial velocity (u୲) that changes as a 

function of radial distance (Note that gas and liquid compressibility can be reasonably 

assumed negligible at the field pressure condition). For a homogeneous reservoir with 

constant thickness (H), the total velocity (u୲) at any given radial distance (r) is given by 
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u୲ =
୯౪

౟౤

ଶ஠୰ୌ
   for r୵ ≤ r ≤ rୣ                                                                                                                     (3.2) 

 

As described earlier, the region with u୲ > u୲
ୡୱ୵ (or r < Rୡୱ୵) is occupied by strong foam, 

while the region beyond with  u୲ < u୲
ୡୱ୵  (or  r > Rୡୱ୵ ) is occupied by weak foam as 

depicted in Figure 3.2. Note that u୲ decreases monotonically with r, even though the total 

rate (q୲) remains the same (i.e.,q୲ = q୲
୧୬୨) at any r. Therefore r = r୵ corresponds to the 

highest u୲, and r = rୣ corresponds to the lowest u୲. The mechanistic foam model allows 

velocity-dependent foam rheology to be calculated at three different foam states.  

 

 

3.3.3. Gravity segregation of foam into gas and liquid 

The models presented by Stone (1982) and Jenkins (1984) can be combined 

together and formulated for foam flow by introducing mobility reduction factor (MRF) for 

gas mobility. Then, the distance for foam to travel before gravity segregation ( R୥ୱ ) 

becomes   

 

R୥ୱ =
ඩ

𝑞௧

πk୸(ρ୵ − ρ୥)g(
k୰୥

μ୥
×

1
𝑀𝑅𝐹

+
k୰୵

μ୵
)

                                                                                     (3.3) 

 
or, 

R୥ୱ

=
ඩ

𝑞௧

πk୸(ρ୵ − ρ୥)g ቈB ൬
1 − S୵ − S୥୰

1 − S୵ୡ − S୥୰
൰

୫మ

×
1

MRF × μ୥
+ A ൬

S୵ − S୵ୡ

1 − S୵ୡ − S୥୰
൰

୫భ

×
1

μ୵
቉

   (3.4) 



 
57 

 
 

 

in full equation. Note that 𝑞௧ is total injection rate, k୸ vertical absolute permeability, ρ୵ 

and ρ୥ water and gas densities, g gravitational acceleration, S୵ average water saturation 

in the mixed foam region,  S୵ୡ   and S୥୰  connate water saturation and  residual gas 

saturation respectively, MRF  is mobility reduction factor, μ୵ and μ୥  water and gas 

viscosities, A and mଵ coefficient and exponent for Corey-type water relative permeability, 

and B and mଶ  coefficient and exponent for Corey-type gas relative permeability. If rock 

and fluid properties are available at given total injection rate, calculation of R୥ୱ requires 

two main input parameters such as S୵  and MRF in the mixed region where foam is 

present (see in Figure 3.1). These two parameters are constant values in the original 

studies of Stone’s and Jenkins’s for gas-water co-injection, while they are variables for 

foam applications as shown by the mechanistic foam model. Because multi-dimensional 

foam simulation in CMG-STARS also assumes constant S୵and MRF values, the space-

averaged S୵ and MRF values calculated from mechanistic foam model are used as input 

parameters for CMG-STARS simulations. More details on this follow below. How CMG-

STARS performs foam simulation can be found in the manual (CMG 2016). 
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3.4.  Results 

For field-scale supercritical CO2 foam propagation prediction, this study uses a 

hypothetical cylindrical reservoir with an injection well at the center, penetrating the entire 

reservoir thickness. Reservoir and operational conditions are selected similar to the 

Rangely Weber Sand Unit, CO (Jonas et al. 1990) where supercritical CO2 and surfactant 

solutions are co-injected during field EOR tests (as shown in Table 3.3). This particular 

field is chosen because it is relatively homogeneous with a good reservoir thickness (H = 

275 ft). Table 3.4 shows a brief summary of operational conditions in foam field EOR 

applications available in the literature. 

 

 

Table 3.3. Rock and fluid properties of a cylindrical reservoir of interest to be tested in 
this study. 

Reservoir Parameter Parameter Value 

Absolute permeability (md; m2) 450; 450 x10-15 

Porosity (%) 22 

Reservoir thickness (ft; m) 275; 83.8 

Reservoir temperature (oF; oC) 110; 43.3 

Reservoir pressure (psia; Pa) 1555; 1.07x107 

Brine density (lb/ft3; kg/m3) 62.6;1002.76 

Gas density (lb/ft3; kg/m3) 36.5;584.67 

Brine viscosity (cp;Pa s)  0.65; 0.00065 

Gas viscosity (cp;Pa s) 0.07;0.00007 

Brine relative permeability 0.893[(Sw - 0.42)/0.58]1.41 

Gas relative permeability 0.222[(1.0-Sw)/0.58]4.45 

Total injection rate (ft3/day;m3/s) 17970;0.00589 
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Table 3.4. Examples of foam field EOR tests in the literature with operation conditions. 

 

Field 

 

Foam 

Type 

Injection 

Pressure 

(psia; Pa) 

Foam Quality 

(%) 

Pattern 

Spacing  

(acre; m2) 

Injection 

Intervals (ft; 

m) 

 

Siggins, IL 

 

N2 

 

430; 2.97x106 

 

99 

 

2.5; 10117 

 

44;13.4 

 

Wilmington, CA 

 

N2,CO2 

1300; 

8.96 x106 

 

90 

 

- 

 

70;21.3 

 

Rock Creek, VA 

 

CO2 

 

1000; 

6.90 x106  

 

80 

 

19.65; 79520 

 

24.6;7.5 

 

Rangely, CO 

 

CO2 

 

3942; 

2.72 x107 

 

78 

 

20; 

80937 

 

275;83.8 

 

North Ward Estes, TX 

 

 

CO2 

 

1600-1800; 

1.1-1.24x107 

-  

20;  

80937 

 

60;18.3 

 

EVGSAU, NM 

 

CO2 

-  

80 

38, 80; 

153781,323749 

20-50; 

6.1,15.2 

 

East Mallet, TX 

 

CO2 

-  

60 - 80 

20, 40; 

80937,161874 

- 

McElmo Creek, UT CO2 - - 160;647497 - 

 

Salt Creek, WY 

 

CO2 

1600; 

1.1x107 

(THP)* 

 

80 - 85 

 

15.3;61916  

 

70-80; 

21.3,24.4 

 

Delhi, LA 

 

CO2 

1800; 

1.24x107 

(THP)* 

 

70 - 94 

 

40;161874 

 

100;30.5 

* THP: tubing head pressure 
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3.4.1. Propagation distance based on conversion from strong-foam to weak-foam 
state (𝐑𝐜𝐬𝐰) 

How far the fine-textured strong foam injected at the center propagates into the 

reservoir before it converts into weak foam is evaluated at three different values of 

mobilization pressure gradient (∇P୭=1.0, 5.0, and 30.0 psi/ft).  

The first step is to make a fit to experimental data showing three foam states and 

two flow regimes of strong-foam state (not shown; see Izadi and Kam (2018) for more). 

Figure 3.3 shows the results of pressure gradient (∇P) as a function of total velocity (u୲) 

at ∇P୭=1.0, 5.0, and 30.0 psi/ft at f୥
୧୬ = 70%. For ∇P୭= 5.0, and 30.0 psi/ft, the S-shaped 

curve folding back and forth showing three foam states are shown clearly (eg. ∇P < 25.0 

psi/ft for weak foam state, 25.0 psi/ft < ∇P < 30.0 psi/ft for intermediate state, and ∇P > 

30.0 psi/ft for strong foam state for ∇P୭= 30.0 psi/ft). The fact that the curve does not fold 

back and forth at low ∇P୭  looks interesting. In such a case, there is a smooth transition 

from weak-foam to strong-foam state without intermediate state as shown in the case of 

∇P୭= 1.0 psi/ft. By using the results in Figure 3.3 and reservoir properties in Table 3.3 for 

a hypothetical cylindrical reservoir, Figures 3.4 through 3.6 show how MRF and S୵ values 

are distributed as a function of radial distance (r) for ∇P୭ =30.0, 5.0, and 1.0 psi/ft, 

respectively.  These figures show the steady-state results when foam is injected into the 

cylindrical reservoir at q୲
୧୬ = 17,970 ft3/day at a pre-specified f୥

୧୬, ranging from 60% (i.e., 

wet foam) to 99 % (i.e., dry foam). Note that q୲ is identical at any r (i.e.,q୲ = q୲
୧୬୨) due to 

incompressible gas and liquid phases, and thus f୥ is assumed to be identical at any radial 
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and vertical locations (i.e. f୥ = f୥
୧୬). The threshold foam quality separating the high-quality 

regime from the low-quality regime (f୥
∗) is slightly greater than 70%.    

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

Figure 3.3. Foam flow characteristics showing three foam states (strong-foam, weak-
foam, and intermediate state) at the mobilization pressure gradient (∇P୭) of 1.0, 5.0, and 

30.0 psi/ft (injection foam quality ( f୥
୧୬) = 70%). 

 
 

Figures 3.4(a) and 3.4(b) show the steady-state response of mobility reduction factor 

(MRF) and water saturation (S୵) as a function of radial distance (r) when ∇P୭= 30.0 psi/ft. 

The results show folding curves that are consistent with three foam states. Strong foam 

that is injected at the center of the cylindrical reservoir propagates further out up to the 
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point where the curves fold back, beyond which the strong foam turns into weak foam. 

This point, as described in Figure 3.2, is called Rୡୱ୵. For example, for f୥ = 60 %, MRF 

remains high (between 200 and 300) and S୵  remains low (between 43 and 44 %), which 

is a typical response for strong foam, until r = Rୡୱ୵ (about 5.5 ft). For r > Rୡୱ୵ , MRF 

remains low and S୵ remains high, which is a typical response for weak foam. The portion 

of the curves folding back (representing the intermediate state) and the weak-foam 

portion of the curves for r < Rୡୱ୵  do not appear explicitly, because they are hidden 

solutions (Gauglitz et al. 2002). Similar aspects are shown in Figures. 3.5(a) and 3.5(b) 

when ∇P୭= 5.0 psi/ft with Rୡୱ୵ about 39.7 ft.  
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(a) 

 

 

 

 

 

 

 

 

 

 

(b) 

Figure 3.4. Results showing foam propagation distance for strong foam to convert into 
weak foam (Rୡୱ୵) (q୲

୧୬ = 17,970 ft3/day in a range of  f୥
୧୬) at the mobilization pressure 

gradient (∇P୭) of 30.0 psi/ft: (a) MRF vs. radial distance and (b) Sw vs. radial distance.  
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(b) 

Figure 3.5. Results showing foam propagation distance for strong foam to convert into 
weak foam (Rୡୱ୵) (q୲

୧୬ = 17,970 ft3/day in a range of  f୥
୧୬) at the mobilization pressure 

gradient (∇P୭) of 5.0 psi/ft: (a) MRF vs. radial distance and (b) Sw vs. radial distance.  
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A couple of interesting observations can be made in Figures 3.4 and 3.5 that 

investigate a range of f୥  at q୲
୧୬ = 17,970 ft3/day and H = 275 ft. First, the cases of  ∇P୭= 

30.0 and 5 psi/ft allow foam propagation distance of only about 5.5 and 39.7 ft, 

respectively, which seems to be unacceptable in most EOR field applications. Second, 

thinking of the fact that q୲
୧୬ is proportional to “H x Rୡୱ୵”, this could be translated into 55 

and 397 ft (or, Rୡୱ୵ 10 times higher) if the reservoir thickness were 27.5 ft (or, H 10 times 

lower), which then becomes quite acceptable. Last, for strong foams in the low-quality 

regime ( f୥ = 60 and 70%) at r < Rୡୱ୵, MRF values are comparable and Rୡୱ୵ values are 

almost the same. On the contrary, for strong foams in the high-quality regime ( f୥  = 80, 

90, 95 and 99%) at r < Rୡୱ୵, both MRF and Rୡୱ୵ values decrease sensitively as foam 

becomes drier. This demonstrates the importance of injection foam quality: (i) propagation 

of dry foam becomes increasingly more difficult with increasing foam quality and (ii) even 

when relatively wet foam is required for propagation of stable foams, there is not much 

benefit of going below f୥
∗. The former is because of foam instability at high foam quality, 

and the latter is because of foam texture near its maximum if the condition falls in the low-

quality regime. Figures 3.6(a) and 3.6(b) show the steady-state response of mobility 

reduction factor (MRF) and water saturation (S୵) as a function of radial distance (r) when 

∇P୭= 1.0 psi/ft. The results do not show the intermediate state in this case; rather, in both 

MRF  and S୵  plots, the transition from the strong foam to weak foam takes place 

progressively with radial distance. 

 



 
66 

 
 

One complication with low ∇P୭ is that there is no clear cut for Rୡୱ୵ because the 

curve does not fold back. Thus, Rୡୱ୵ is evaluated in two different ways in such a case: (i) 

Rୡୱ୵ determined based on the maximum MRF and (ii) Rୡୱ୵ determined based on a pre-

specified MRF value that is still meaningful in the field applications (MRF = 10 seems to 

serve as a reasonable target as chosen by this study). Of course, the former (cut-off 

based on maximum MRF) provides much more conservative Rୡୱ୵ values than the latter 

(cut-off based on MRF=10). Note that the former (cut-off based on maximum MRF) is in 

some sense consistent with the earlier examples with folding-back curves (Figures 3.4 

and 3.5), but the latter (cut-off based on MRF=10) seems more reasonable way to 

account for the benefits of lower ∇P୭ (One may choose MRF value other than 10 such as 

20 or 50, but the major findings remain the same).  
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(b) 

Figure 3.6. Results showing foam propagation distance for strong foam to convert into 
weak foam (Rୡୱ୵) (q୲

୧୬= 17,970 ft3/day in a range of f୥
୧୬) at the mobilization pressure 

gradient (∇P୭) of 1.0 psi/ft: (a) MRF vs. radial distance and (b) Sw vs. radial distance.  
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An example is shown in Figure 3.6(a) where two horizontal lines determine two different 

cut-off points, and therefore two different Rୡୱ୵ values. For  f୥ = 60%, the cut-off based on 

maximum MRF gives Rୡୱ୵ = 92.3 ft, while the cut-off based on MRF=10 gives Rୡୱ୵ = 

1079.0 ft. This proves the benefit of injecting CO2 with low  ∇P୭  values – that way, 

supercritical CO2 foam can travel a quite significant distance before turning into weak 

foam. Except  f୥ = 99%, all other foam qualities ranging from 60 to 90% allow stable foam 

to propagate as much as hundreds or thousands of feet easily, if MRF=10 is used as a 

cut-off line. Once the results similar to Figures 3.4 through 3.6 are constructed, the use 

of contour plot offers a convenient means to predict how far strong foam propagates 

before turning into weak foam ( Rୡୱ୵) as a function of total injection rate and injection 

foam quality. Such a contour plot, shown in Figures 3.7 through 3.10, is especially helpful 

to guide field implementation of foam EOR processes (These contours are constructed 

based on the calculated values at the positions specified by blue open circles (Figures 

3.7 through 3.10)). Note that  Rୡୱ୵ values in these plots are for the reservoir thickness (H) 

of 275 ft – for other reservoir thickness, the new propagation distance then becomes (H 

x  Rୡୱ୵)/h, h being the new thickness of interest, at given q୲
୧୬ and f୥

୧୬.   

 

Figures 3.7 and 3.8 show the contours of propagation distance ( Rୡୱ୵) at ∇P୭= 30.0 

and 5.0 psi/ft, respectively. The contour plots show the values of  Rୡୱ୵ in [ft] at different 

combinations of q୲
୧୬ and f୥

୧୬ (H = 275 ft). The results show that one can make strong foam 

propagate more, by using higher q୲
୧୬ if f୥

୧୬ is fixed, or lower f୥
୧୬ if q୲

୧୬ is fixed. The sensitivity 

of  Rୡୱ୵ to f୥
୧୬  at given q୲

୧୬ becomes more significant as foam becomes drier in general, 



 
69 

 
 

while such a tendency is negligible when foam is wet enough, especially f୥
୧୬  <  f୥

∗ (i.e., 

foams in the low-quality regime ( f୥
∗=70%)). Figures 3.9 and 3.10 show the contours of 

propagation distance ( Rୡୱ୵) at ∇P୭= 1.0 psi/ft, using the cut-off based on maximum MRF 

and MRF = 10, respectively. The same trend as shown in Figures 3.7 and 3.8 is observed. 

As discussed earlier, the use of CO2 foams with lower ∇P୭ (see Equation 3.1) seems much 

more advantageous when it comes to foam placement deep in the reservoir. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7. Contour plot of strong-foam propagation distance (ft) before turning into 
weak foam (Rୡୱ୵) based on bubble population balance model at the mobilization 

pressure gradient (∇P୭) of 30.0 psi/ft (reservoir thickness (H) = 275 ft). 
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Figure 3.8. Contour plot of strong-foam propagation distance (ft) before turning into 
weak foam (Rୡୱ୵) based on bubble population balance model at the mobilization 

pressure gradient (∇P୭) of 5.0 psi/ft (reservoir thickness (H) = 275 ft).  
 
 

 

 

 

 

 

 

 

 

 

 
 

Figure 3.9. Contour plot of strong-foam propagation distance (ft) before turning into 
weak foam (Rୡୱ୵) based on bubble population balance model at the mobilization 

pressure gradient (∇P୭) of 1.0 psi/ft (reservoir thickness (H) = 275 ft): cut-off based on 
maximum MRF.  
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Figure 3.10. Contour plot of strong-foam propagation distance (ft) before turning into 
weak foam (Rୡୱ୵) based on bubble population balance model at the mobilization 

pressure gradient (∇P୭) of 1.0 psi/ft (reservoir thickness (H) = 275 ft): cut-off based on 
MRF = 10.  

 

3.4.2. Propagation distance based on gravity segregation ( 𝐑𝐠𝐬) 

In addition to the conversion to weak foam, foam propagation is also limited by 

gravity segregation. This section deals with how to determine the distance before foam 

segregates into gas and liquid ( R୥ୱ) in two different methods: Stone and Jenkins model 

and CMG-STARS simulation. The former is a simplified approach assuming fixed values 

of reservoir and fluid properties, and the latter is more realistic, but complicated, approach 

accounting for those properties as a function of pressure, temperature, and radial and 

vertical locations. To evaluate R୥ୱ, the same cylindrical reservoir is selected as shown in 

the previous section (Table 3.3). Because both methods assume a fixed and constant 

value of MRF in the mixed region (even though it is not true physically as shown in Figures 



 
72 

 
 

3.4 through 3.6), the results from the mechanistic foam modelling in the previous section 

are used as input parameters. More specifically, for the mixed region properties, the 

Stone and Jenkins model uses the maximum MRF value (see Figures 3.4(a) through 

3.6(a)) and its corresponding S୵  value (see Figures 3.4(b) through 3.6(b)) to 

determine R୥ୱ. This means, for example, MRF = 240 for ∇P୭= 30.0 psi/ft, MRF = 278 for 

∇P୭= 5.0 psi/ft, and MRF = 303 for ∇P୭= 1.0 psi/ft, when f୥
୧୬ = 70%, while MRF = 149 for 

∇P୭= 30.0 psi/ft, MRF = 158 for ∇P୭= 5.0 psi/ft, and MRF = 165 for ∇P୭= 1.0 psi/ft, when 

f୥
୧୬ = 90% (q୲

୧୬ remains the same at 17,970 ft3/day). In CMG-STARS simulations,  R୥ୱ is 

determined by using these MRF values but letting S୵  values be calculated by the 

simulator. These S୵ values calculated by the simulator are essentially the same as those 

S୵ values used for input in the Stone and Jenkins model in Figures 3.4(b) through 3.6(b). 

 

Figures 3.11 through 3.13 show the results of CMG-STARS simulations to evaluate 

the cases of ∇P୭ = 30.0, 5.0, and 1.0 psi/ft, respectively, at f୥
୧୬ = 70 and 90% (q୲

୧୬ = 17,970 

ft3/day). In all cases, the reservoir has wellbore radius (r୵) of 0.42 ft, radial distance to 

the reservoir boundary (rୣ) of 1000.0 ft, and reservoir thickness of 275.0 ft. Gas and 

surfactant solutions, which create strong foam inside the well, are co-injected at the total 

injection rate (q୲
୧୬) of 17,970 ft3/day into the reservoir initially saturated with water. The 

two injection foam qualities (f୥
୧୬), 70% and 90%, are chosen to represent wet-foam and 

dry-foam scenarios (or, foams in the low-quality regime and in the high-quality regime) 

respectively. These results are based on 4,000 days of foam injection, which is shown to 

be (near) steady-state results after some trial-and-error simulations. Additional input 
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parameters specific to CMG-STARS for this simulation task are shown in Table 3.5 (See 

CMG (2016) for more details on these parameters). 

 

Table 3.4. Additional foam simulation parameters required by CMG-STARS for gravity-
segregation simulation (See CMG (2016) for more details). 

Parameter Value Parameter Value 

FMSURF 1.4389 X 10-5 EPOIL 0 

FMCAP 0 EPGCP 0 

 

FMOIL 

 

0 

 

SFDRY* 

0.425-

0.441 

FLOIL 0 SFBET 600 

FMGCP 0 SFSURF 0 

FMMOB* 174 EFSURF 0 

EPSURF 4 SFCAP 0 

EPCAP 0 EFCAP 0 

                                  * Values from mechanistic modelling in the previous section 
(Figures 3.4 through 3.6) 

 
 

 

(a)                                                                          (b) 

Figure 3.11. Simulation results showing foam propagation distance before gravity 
segregation ( R୥ୱ) when the mobilization pressure gradient (∇P୭) is 30.0 psi/ft: (a) f୥

୧୬ = 
70% at MRF=240 and (b) f୥

୧୬ = 90% at MRF=149 (Stone and Jenkins model predicts R୥ୱ 
= 801 and 701 ft respectively).  
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(a)                                                                                        (b) 

Figure 3.12. Simulation results showing foam propagation distance before gravity 
segregation ( R୥ୱ) when the mobilization pressure gradient (∇P୭) is 5.0 psi/ft: (a) f୥

୧୬ = 
70% at MRF=278 and (b) f୥

୧୬ = 90% at MRF=158 (Stone and Jenkins model predicts 
 R୥ୱ  = 858 and 720 ft, respectively). 

 
 

 
(a)                                                                                      (b) 

Figure 3.13. Simulation results showing foam propagation distance before gravity 
segregation ( R୥ୱ) when the mobilization pressure gradient (∇P୭) is 1.0 psi/ft (cut-off 

based on maximum MRF): (a) f୥
୧୬ = 70% at MRF=303 and (b) f୥

୧୬  = 90% at MRF=165 
(Stone and Jenkins model predicts R୥ୱ = 884 and 734 ft, respectively). 
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Figure 3.11 shows simulation results in terms of the steady-state water saturation 

for ∇P୭ = 30.0 psi/ft. When the injection foam qualities (f୥
୧୬) are 70% (Figure 3.11(a)) and 

90% (Figure 3.11(b)), the corresponding MRF values are about 240 and 149 (see Figure 

3.4(a)), with  R୥ୱ  from simulations leading to 700 and 530 ft, respectively. Drawing 

horizontal lines from the injection well to the contact point of the three regions, the water 

saturations in the mixed region are 0.430 and 0.426 in Figure 3.11(a) and 3.11(b), 

respectively. For the same case, the Stone and Jenkins model predicts  R୥ୱ  values of 

801 and 701 ft for f୥
୧୬ = 70% and 90%, respectively. Although there is some difference, 

the results are comparable showing the same trend. It is believed that the difference is 

caused by multiple aspects including changes in fluid properties (density, viscosity, 

compressibility, etc.) as well as simulation artifacts at the injection and production wells 

(fluid redistribution at the inlet face, capillary end effect, etc.), and as a result the 

simulation slightly underpredicts  R୥ୱ compared to the Stone and Jenkins model. Figure 

3.12 shows similar simulation results for ∇P୭ = 5.0 psi/ft. For the injection foam qualities 

(f୥
୧୬) of 70% (Figure 3.12(a)) and 90% (Figure 3.12(b)), the corresponding MRF values 

are 278 and 158 (see Figure 3.5(a)), the S୵ values are 0.430 and 0.426, and the  R୥ୱ 

values are 720 and 540 ft, respectively. The Stone and Jenkin’s model predicts  R୥ୱ of 

858 and 720 ft. Once again, the trend is well captured, and the simulation predicts 

somewhat lower  R୥ୱ values compared to the Stone and Jenkin’s model. 

 

Figure 3.13 shows the steady-state simulation results for ∇P୭ = 1.0 psi/ft with the 

cut-off based on maximum MRF. For the injection foam qualities (f୥
୧୬) of 70% (Figure 
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3.13(a)) and 90% (Figure 3.13(b)), the corresponding MRF values are 303 and 165 (see 

Figure 3.6(a)), the S୵  values are 0.429 and 0.426, and the  R୥ୱ  values are 780 and 540 

ft, respectively. The Stone and Jenkin’s model predicts  R୥ୱ  of 884 and 734 ft. The results 

are consistent with other cases. Figure 3.14 shows simulation results for ∇P୭ = 1.0 psi/ft 

with the cut-off based on MRF=10. This situation is somewhat tricky, because the 

mechanistic modeling results in Figure 3.6(a) show that the MRF values are mostly much 

greater than 10 for the region occupied by strong foams. Even so, it is believed to provide 

a useful insight when compared with Figure 3.13. For the injection foam qualities (f୥
୧୬) of 

70% (Figure 3.14(a)) and 90% (Figure 3.14(b)) both with MRF = 10, the simulation shows 

the S୵  values of 0.494 and 0.456, and the  R୥ୱ  values of 185 and 175 ft, respectively. 

The Stone and Jenkin’s model predicts  R୥ୱ  of 211 and 204 ft. These R୥ୱ values in Figure 

3.14 are less than those in Figure 3.13, because the use of smaller MRF (i.e., MRF = 10 

in Figure 3.14) provides lower pressure gradient (∇P), resulting in lower  R୥ୱ. 
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(a)                                                                                     (b) 

Figure 3.14. Simulation results showing foam propagation distance before gravity 
segregation ( R୥ୱ) when the mobilization pressure gradient (∇P୭) is 1.0 psi/ft (cut-off 

based on MRF=10): (a) f୥
୧୬ = 70% at MRF=10 and (b) f୥

୧୬  = 90% at MRF=10 (Stone and 
Jenkins model predicts R୥ୱ = 211 and 204 ft, respectively). 

 

In order to verify the assumption of constant water saturation in the three constant 

regions in the Stone and Jenkins model, scanning the saturation map in vertical and 

horizontal directions works as a convenient means. As shown in each of Figures 3.13(a) 

and 3.13(b), one horizontal line through the contact point of three regions (not shown, but 

the same as the horizontal arrows shown) and the other vertical line somewhat before the 

contact point, where r <  R୥ୱ, are selected as an example.  Figure 3.15 shows the change 

in water saturation along the vertical and horizontal scanning lines (shown in Figure 3.13) 

from the simulations. It clearly shows three different constant state regions – the gas 

override region where S୵ is near S୵ୡ, the water underride region where S୵ is near 1 − S୥୰, 

and the mixed region in between with foams at its steady-state S୵ that matches with MRF 

values from mechanistic model.  
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                                                                    (a) 

 

 

 

 

 

 

 

 

 

 

 

(b) 

Figure 3.15. Steady-state water saturation profiles along the scanning lines (horizontal 
(a), vertical (b)) in Figure 3.13 from gravity-segregation simulations showing three 

constant regions as approximated by Stone and Jenkins model (1982,1984).   
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Figure 3.16 shows the pressure profiles for the same scanning lines as shown in 

Figure 3.13.  The pressure decreases sharply along the horizontal scanning line up to r = 

 R୥ୱ because of high MRF value in the presence of foams, followed by mild change to the 

outlet because of single-phase flow of water. The pressure profile along the vertical 

direction follows hydrostatic pressure gradient concept (higher hydrostatic pressure 

gradient in the underride region, and lower hydrostatic pressure gradient in the override 

and mixed foam regions). Figure 3.17 shows how the bottomhole injection pressure 

changes for those examples shown in Figures. 3.15 and 3.16, until it reaches 4,000 days 

of foam injection that is believed to be at, or close to, the steady state after some trial-

and-error simulations. In both cases, the Injection pressure rapidly increases with time in 

the beginning as strong foam enters, and then levels off gradually as the system 

approaches the steady state. The cases with higher MRF have higher injection pressures. 

Note that the outlet back pressure is 1555.0 psia. Similar to  Rୡୱ୵ contours in Figures 3.7 

through 3.10, the results from the Stone and Jenkins model for  R୥ୱ can be plotted as a 

function q୲
୧୬ and f୥

୧୬ as well. Figures 3.18 through 3.21 show how far foam propagates 

before gravity segregation ( R୥ୱ) when the MRF values are borrowed from the mechanistic 

foam model for ∇P୭ = 30.0, 5.0, and 1.0 (cut-off based on maximum MRF and cut-off 

based on MRF = 10) psi/ft (Figures 3.7 through 3.10), respectively. It is interesting to find 

that  R୥ୱ is also very sensitive to f୥
୧୬, i.e., it is becoming increasingly difficult to make drier 

foams propagate deep into the reservoir, while such a sensitivity is much less for relatively 

wet foams. Similar to  Rୡୱ୵ contours,  R୥ୱ contours also show longer propagation distance 

at high injection rate (or higher injection pressure, equivalently).  
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(a) 

 

  

 

 

 

 

 

 

 

 

(b) 

Figure 3.16. Steady-state pressure profiles along the scanning lines (horizontal (a), 
vertical (b)) in Figure 3.13 from gravity-segregation simulations showing three constant 

regions as approximated by Stone and Jenkins model (1982,1984). 
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Figure 3.17. Change in bottomhole injection pressure with time simulated by CMG-
STARS to reach (close to) the steady state at 4000 days of foam injection.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.18. Contour plot of foam propagation distance (ft) before gravity segregation 
( R୥ୱ) based on Stone and Jenkins model (MRF taken from mechanistic foam model at 

the mobilization pressure gradient (∇P୭) of 30.0 psi/ft). 
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Figure 3.19. Contour plot of foam propagation distance (ft) before gravity segregation 
( R୥ୱ) based on Stone and Jenkins model (MRF taken from mechanistic foam model at 

the mobilization pressure gradient (∇P୭) of 5.0 psi/ft). 
 

 
 

 

 

 

 

 

 

 

 

 

Figure 3.20. Contour plot of foam propagation distance (ft) before gravity segregation 
( R୥ୱ) based on Stone and Jenkins model (MRF taken from mechanistic foam model at 
the mobilization pressure gradient (∇P୭) of 1.0 psi/ft (cut-off based on maximum MRF)). 
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Figure 3.21. Contour plot of foam propagation distance (ft) before gravity segregation 
( R୥ୱ) based on Stone and Jenkins model (MRF taken from mechanistic foam model at 

the mobilization pressure gradient (∇P୭) of 1.0 psi/ft (cut-off based on MRF = 10).  
 

 

3.4.3. Combined results and discussions 

The two mechanisms that limit foam propagation in the field-scale foam EOR can 

be analyzed together based on the results given in the previous sections. Figures 3.22 

and 3.23 show such results at the injection foam qualities ( f୥
୧୬ ) of 70% and 90%, 

respectively, for ∇P୭ = 30.0, 5.0, and 1.0 as well as ∇P୭ = 0.1 psi/ft. Note that when ∇P୭ is 

low (1.0 and 0.1 psi/ft), both results from the cut-off line based on maximum MRF as well 

as MRF = 10 are used.  Note in such cases that the results at MRF = 10 overpredicts 

 Rୡୱ୵  compared to maximum MRF (see Figure 3.6), while the results at MRF = 10 

underpredicts  R୥ୱ  compared to maximum MRF because of lower lateral pressure 

gradient (see Figures 3.20 and 3.21). Both figures show that there is a threshold value 
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(or, range) of ∇P୭, below which foam propagation is limited by gravity segregation ( R୥ୱ) 

and above which foam propagation is limited by the conversion of strong foam to weak 

foam ( Rୡୱ୵). Because of relatively steep slope in Rୡୱ୵ curve, foam injection conditions at 

lower ∇P୭ (i.e., left-hand side of the figure) have advantages in placing foams deep into 

the reservoir. Foam propagation distance is less sensitive to ∇P୭ at lower ∇P୭, while foam 

propagation distance can still be improved significantly by making ∇P୭ lower at higher ∇P୭. 

Comparing Figures 3.22 and 3.23, it also shows foams in the high-quality regime is more 

difficult to be placed deep in the reservoir than foams in the low-quality regime. Note from 

Equation 3.1 that lower ∇P୭ translates lower interfacial tension and higher pore throat size, 

which can be achieved more easily at higher pressure, with better foamer, and at higher 

absolute permeability. 
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Figure 3.22. Prediction of propagation distance (ft) of 70% quality foams by combining 

both mechanisms (conversion to weak foam vs. gravity segregation). 
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Figure 3.23. Prediction of propagation distance (ft) of 90% quality foams by combining 

both mechanisms (conversion to weak foam vs. gravity segregation). 
 

 

This study greatly improves the prediction of   R୥ୱ , by using representative MRF 

values from mechanistic foam model. At the same time, it should be pointed out that, 

there still is room to improve the prediction further, because both Stone and Jenkins 

model and CMG simulation assume constant values of MRF as an input parameter (see 

Equations 3.3 and 3.4). When it comes to possible errors associated with a constant-MRF 

assumption, the case with lower ∇P୭ (Figure 3.6) would show more errors than the case 

with higher ∇P୭ (Figures 3.4 or 3.5), because it presents a continuous and progressive 

change from strong-foam to weak-foam state without showing hysteretic behaviors (i.e., 

multi-valued foam rheology surface that folds back and forth). A three-dimensional 

reservoir simulation with mechanistic modeling capability is believed to reduce the gap 
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essentially. Even though this study shows how foam propagates in a large system, the 

results are limited to homogeneous cylindrical reservoirs at the moment. In order to take 

the results to the real-world field cases, there are challenges to overcome, including (but 

not limited to) heterogeneity of the system and interaction between foams and reservoir 

oils. The major finding of this study, however, still holds true – foams with lower ∇P୭  (e.g. 

supercritical CO2 foams) are more advantageous over other gaseous foams with higher 

∇P୭  (e.g. foams with gas CO2, gas N2, hydrocarbon gas, flue gas, etc.). It should be noted 

that the importance of small lab-scale coreflood experiments based on the field rock and 

fluid samples and selected foaming agents cannot be underestimated, because they 

allow mechanistic model fits to recommend appropriate MRF values at different injection 

scenarios.  
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3.5.  Conclusions 

Foam propagation is limited in field EOR processes by two main mechanisms as 

investigated in this study – the first, conversion from strong-foam to weak-foam state, and 

the second, gravity segregation of foam into gas and liquid. Dealing with an ideal (large 

homogeneous cylindrical) reservoir, the results of this study can be summarized as 

follows: 

 

 The population-balance foam model shows that the propagation distance before 

strong foam converts to weak foam ( Rୡୱ୵) primarily depends on the mobilization 

pressure gradient (∇P୭ ). This explains why foams with lower ∇P୭ (e.g. supercritical 

CO2 foams) can propagate much further than other gaseous foams with higher ∇P୭.  

The results also show theoretically why wetter foams can propagate further than 

drier foams, and why higher injection rates help longer propagation distance. 

   

 CMG STARS simulation and the Stone and Jenkins model confirm that gravity 

segregation also limits foam propagation distance. Foam propagation distance 

before gravity segregation ( R୥ୱ) primarily depends on the mobility reduction factor 

(MRF) that is calibrated by mechanistic model based on fundamental foam physics 

in this study.   

   

 Combining both mechanisms together, the results show that foams with lower ∇P୭ 

tends to have gravity segregation more dominating factor for foam propagation. 

On the contrary, foams with higher ∇P୭ tends to have the conversion to weak foam 

more dominating factor. 
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CHAPTER 4. A FIELD CASE STUDY ON THE OPTIMIZATION OF 
SUPERCRITICAL CO2 FOAM EOR PROCESSES  

4.1. Introduction  

Enhanced oil recovery (EOR) is defined as a series of processes in which a fluid 

is injected into the reservoir to change either rock or fluid properties to eventually produce 

more oil and gas from the reservoir that otherwise would not have been produced any 

longer with primary depletion mechanisms (van Poollen 1980). EOR methods are 

considered as a useful and efficient means to produce more hydrocarbons from depleted 

reservoirs worldwide, by using gas injection, thermal process, and chemical flooding 

typically. In addition to secondary water injection, gas injection (such as N2, CO2, 

produced hydrocarbon gas, flue gas, etc., either at miscible or immiscible condition) is a 

common EOR method because of abundance and easy operation in the field. Water and 

gas injections, however, share similar limitations, that is, relatively low sweep efficiency 

caused by gravity segregation (either underride or override) as well as unfavorable 

mobility compared to reservoir oil. Such limitations result in relatively high remaining oil 

saturation after the treatments. 

  

Literature review shows that significant efforts have been made to overcome poor 

sweep efficiency associated with water and gas injection. For example, an early study of 

Caudle and Dyes (1957) proposed a method that is, injecting water along with gas as a 

miscible slug. They found that the sweep was improved by the reduced mobility of gas 

phase in the presence of relatively high water saturation. Field tests of gas and water co-

injection by Stone (1983) proved that injecting water alternatively with gas (or, water-
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alternating gas, “WAG”) is more feasible if gas-to-water ratio and interval of each injection 

period are selected carefully. If achieved, the suitable injection ratio that is primarily a 

function of mobilities of existing fluids is shown to keep the gas zone at a constant volume 

between water and miscible front zones. There exist numerous WAG field tests reported 

in the literature (Sanchez 1999; Christensen et al. 2001; Barati Ghahfarokhi et al. 2016). 

Following Caudle and Dyes (1957), Blackwell et al. (1959) reported that gravity causes 

gas and water injected together to segregate rapidly within the reservoir. Therefore, the 

mobility of water or gas zone is not significantly improved. One way to mitigate gravity 

segregation is foaming the injected gas phase with surfactant solutions. Foam, which is 

a colloidal system in which gas phase is dispersed in surfactant-laden liquid phase, has 

liquid films (or, lamellae) that block the gas phase and thus reduce gas mobility. The 

mobility reduction factor (MRF) defines how much gas mobility is reduced when foam is 

present. Similar to water and gas injection, foam can be injected by introducing gas and 

surfactant solutions together (so called, “coinjection”) or surfactant solutions alternating 

with gas (so called “SAG”). There are numerous foam pilot tests available in the literature: 

CO2/N2 foam project consisting of eight cycles of SAG performed in Wilmington field, 

California (Holm and Garrison 1988); CO2 foam field test in Rangely Weber Sand Unit in 

northwestern Colorado (Jonas et al. 1990) to block high permeability thief zones and keep 

gas production low; CO2 foam field test conducted in Salt Creek, WY (Mukherjee et al. 

2016); and SAG treatment for conformance control in Lower Mirador formation, Cusiana 

Field, Columbia (Ocampo et al. 2013; Rossen et al. 2017), among many. For a given 

foam type (CO2, N2, etc. together with a certain surfactant formulation and concentration), 
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the effects of injection pressure or total injection rate, foam quality, pattern spacing, and 

injection interval length are typically investigated in the design stage. 

 

4.2. Objectives of this study  

The objective of this chapter is to show how to determine the optimum injection 

conditions for gas-water EOR at various injection gas fraction (or foam qualities (fg), 

equivalently) and total injection rates (Qt, that is, a sum of gas and liquid rate, i.e., Qt = 

Qg +Qw) with or without foams, in order to guide field development planning by using 

reservoir simulations performed by CMG-STARS. In addition, how such optimum 

conditions can shift depending on foam quality (fg) and mobility reduction factor (MRF) is 

examined by using a graphical method. The field of interest is a sector in Lisama field, 

Colombia, with an inverted 5-spot well pattern (i.e., one injection well near the center 

surrounded by four production wells). A mechanistic foam model in the literature (Izadi 

and Kam 2018) is extended to define foam flow characteristics.  It should be noted that 

the optimum conditions found in this study is field-specific; the systematic approaches 

and procedures to reach the optimum conditions are universal to any field developments, 

however. 

 

 

 

 

 

 

 



 
92 

 
 

4.3. Methodology 

4.3.1. Field of Interest 

 Lisama field is located in the eastern part of the Middle Magdalena Valley Basin in 

Colombia (Rodriguez 2009) (Figure 4.1). It was discovered in 1935, and estimated to hold 

approximately 0.25 billion STB of oil in place (Jaimes et al.  2014). Lisama reservoir 

mainly consists of two main sandstone formations, Mugrosa and Colorado interbedded 

with shale streaks (Gomez et al. 2009).  The fluvial system of Meandric Rivers is the 

environmental deposition of Lisama formations, and therefore it possesses complex 

channels of changing sandstone thickness and lateral and vertical changes of rock types 

(Sandoval et al. 2009). Production from Lisama field moves gradually from the primary to 

the secondary and tertiary recovery processes. Water and gas flooding techniques are 

expected to follow in the near future.  

 

The sector of interest in this study has an inverted 5-spot pattern with 

approximately 22 acres drainage area and reservoir gross thickness of 335 ft with similar 

structural, and petrophysical characteristics to those of the Mugrosa formation in Lisama 

field. As shown in Figure 4.2, four producers (L-8, L-44, L-52, and L-56) are located at the 

edge of the modeled sector with an injection well located approximately in the middle 

(slightly closer to L-8 and L-56 by about 130 ft, compared with L-44 and L-52). The 

injection well is located down-dip from L-8 and up-dip from L-44, L-52, and L-56. Table 

4.1 summarizes reservoir rock and fluid properties used in this study following Naranjo 

(2010). The pattern consists of four heterogeneous sandstone layers, each separated by 

thin impermeable shale streaks - the top layer (A) is 55 ft thick with a permeability 
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distribution ranging from 20 to 200 mD; the second layer (B), 60 ft thick from 20 to 30 md; 

the third layer (C), 35 ft thick from 80 to 100 md, and the fourth layer (D), 90 ft thick from 

20 to 100 md.  

 

 

  

  

 

Figure 4.1. Field map of Lisama field, Colombia, investigated in this study (Rodriguez 
2009). 
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Figure 4.2. Three-dimensional grid system of a sector to be investigated in this study 
(Mugrosa formation in Lisama field) with permeability distribution in sandstone layers A, 

B, C and D isolated by impermeable shale layers. 
 

 

Table 4.1. Reservoir rock and fluid properties of Mugrosa formation in Lisama field used 
in this study. 

Reservoir pressure (psia) 2500 

Reservoir temperature (oF) 140-160 

Bubble point pressure (psia) 2500 

Oil viscosity (cp) @ 2500 psia 1.7 

    

Water viscosity (cp) @ 2500 psia 

 

0.43 

Average initial oil saturation (%)  

right before gas-liquid injection 

 

45 

Connate water saturation (%) 25 

Average porosity (%) 18.5 

Permeability range (md) 20-200 
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4.3.2. Simulation Methods 

  There are two main simulation approaches for foam-associated EOR processes in 

the literature. The first is a mechanistic modeling approach that keeps track of the change 

in bubble population through bubble creation, bubble coalescence, trapped gas saturation 

and so on, often called bubble population balance modeling (Falls et al. 1988; Kovscek 

and Radke 1994; Kam and Rossen 2003), while the second is based on local steady-

state, or local equilibrium, foam behavior, typically incorporating a pre-determined level 

of mobility reduction for the gas phase (Cheng et al. 2000). The field-scale simulation in 

this study applies CMG STARS module by incorporating MRF (the second approach), 

while the selection of MRF at different fg and Qt is based on the mechanistic modelling 

(the first approach).  

 

Reservoir simulations are based on the conservation of mass and heat. The 

equation of continuity for a multi-component system takes the transport for each 

component in each phase into account. For an isothermal three-component system of oil, 

water, and gas, the equation of continuity is defined as follows for component i (Klins 

1984), if chemical reactions, dispersion, and adsorption on the rock surface are negligible: 

 

−∇ሬሬ⃗ . ෍ ൫ρ୭ω୧୭uሬ⃗ ୭ + ρ୥ω୧୥uሬ⃗ ୥ + ρ୵ω୧୵uሬ⃗ ୵൯
୒ౙ

୧ୀଵ
=

∂

∂t
൫∅S୭ρ୭ω୧୭ + ∅S୥ρ୥ω୧୥ + ∅S୵ρ୵ω୧୵൯ (4.1) 

 

Note that ρ୨  is the density of phase j (j = o, w, and g for oil, water and gas phases 

respectively), ω୧୨ the mass fraction of component i in phase j, uሬ⃗ ୨ the velocity of phase j, ∅ 
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the porosity of the medium, and S୨ the saturation of phase j. For fluid flow in porous media, 

the transport equation is represented by Darcy’s equation, i.e. 

 

uሬ⃗ ୨ = −
kk୰୨

μ୨
൫∇p୨ − 𝛾௝∇z൯                                                                                                                        (4.2) 

 

where, k is the absolute permeability of medium, k୰୨ the relative permeability to phase j, 

μ୨  the viscosity of phase j, ∇p୨  the pressure gradient of phase j, and 𝛾௝∇z the gravity 

potential for dipping strata for phase j. CMG STARS foam model modifies gas phase 

mobility by reducing gas relative permeability (k୰୥), the degree of which is specified by 

MRF (CMG 2016; CMG STARS uses the term FM to represent MRF). Therefore, the gas 

relative permeability in presence of foam (k୰୥
୤ ) is defined as 

 

k୰୥
୤ = k୰୥(S୵) × MRFିଵ                                                                                                                         (4.3) 

 

The 5-spot sector model of this study for Lisama field is discretized using Cartesian 

center-point variable-depth/variable-thickness gridding system (Figure 4.2). There are 30 

grid blocks in each of x and y directions, and 31 blocks in z direction. As a result, each 

grid block is about 66.7 ft wide in x and y directions and 7 to 11 ft thick in z direction. All 

wells are fully penetrating the sandstone layers, and shale streaks are not perforated, 

unless otherwise noted.This study considers three total injection rates (Qt) (Qt = 23,358, 

46,717, and 70,075 ft3/day for low, intermediate, and high Qt values, respectively), at 

various f୥ values (from f୥ = 100 % (meaning only gas injection) to f୥ = 0 % (meaning only 
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liquid injection)). The values of MRF=1, 10,100, and 1000 represent the cases with no 

foam (simply gas and water coinjection), low-strength, intermediate-strength and high-

strength foam, respectively.  

 

4.4. Results 

A total of 132 scenarios (i.e., 3Q୲, 11f୥, and 4 MRF values) are simulated at first 

assuming completely impermeable shales between layers, while additional follow-up 

scenarios are evaluated allowing a limited level of transmissibility through shales. The 

results are evaluated in terms of cumulative oil recovery and sweep efficiency after 20 

years of injection. Each scenario has the same initial condition, that is, the remaining oil 

saturation (So) of 0.45 at the end of the primary depletion, the detailed condition of which 

is shown in Table 4.1. Simulation details are in the following sections categorized in terms 

of total injection rate (Q୲). 

4.4.1. Intermediate injection rate (𝐐𝐭  = 46,717 ft3/day; base case) 

The simulation results are summarized in Tables 4.2 for MRF = 1, 10,100, and 1000 

respectively, showing the 20-year cumulative oil recovery and sweep efficiency in a wide 

range of injection gas fractions. 
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Table 4.2. Summary of simulation results for the base case (intermediate) injection rate 
(Q୲ = 46,717 ft3/day) after 20 years. 

 

fg (%) 

Cumulative recovery (Mstb) Sweep efficiency* (%) 

 

MRF=1 

 

MRF=10 

 

MRF=100 

 

MRF=1000 

 

MRF=1 

 

MRF=10 

 

MRF=100 

 

MRF=1000 

100 3,263 3,263 3,263 3,263 22.4 22.4 22.4 22.4 

90 4,277 4,323 4,783 4,961 29.3 29.6 32.7 33.9 

80 4,773 4,867 5,518 6,067 32.7 33.3 37.8 41.5 

70 5,015 5,125 5,789 6,767 34.4 35.1 39.6 46.3 

60 5,169 5,260 5,902 7,382 35.4 36.0 40.4 50.5 

50 5,287 5,359 5,970 7,811 36.2 36.7 40.9 53.5 

40 5,393 5,451 6,005 7,994 36.9 37.3 41.1 54.7 

30 54,95 5,536 5,994 7,851 37.6 37.9 41.0 53.7 

20 5,666 5,624 5,937 7,350 38.8 38.5 40.6 50.3 

10 5,697 5,711 5,837 6,627 39.0 39.1 39.9 45.4 

0 5,745 5,745 5,745 5,745 39.3 39.3 39.3 39.3 

 
(*Sweep efficiency is defined as ([the change in average oil saturation during gas and liquid injection (∆S୭)] 
/ [the average oil saturation at the beginning of gas-liquid injection (S୭)]) x 100 
 
 
 
  When MRF =1 and 1000, for example, Figures 4.3 and 4.4 show the distribution of oil 

saturation along multiple cross-sectional areas of the sector after 20-year injection at the 

injection gas fraction (fg) of 90% and 50%, respectively, which represent relatively dry and 

wet injection conditions. Figures 4.5 and 4.6 show the daily oil, gas, and water production 

rates at fg = 90% and 50% respectively.  
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(a) 

 

(b) 

Figure 4.3. Cross-sectional map showing oil saturation distribution after 20 years for 
base case (intermediate) total rate (Q୲ = 46,717 ft3/day) at dry injection condition 

(f୥ =90%): (a) no foam (MRF=1) and (b) high-strength foam (MRF=1000).  
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(a) 

 

(b) 

Figure 4.4. Cross-sectional map showing oil saturation distribution after 20 years for 
base case (intermediate) total rate (Q୲ = 46,717 ft3/day) at wet injection condition 

(f୥ =50%): (a) no foam (MRF=1) and (b) high-strength foam (MRF=1000).  
 

 

 

 

 

 



 
101 

 
 

 

 

(a) 

 

(b) 

 
Figure 4.5. Daily oil, gas, and water production rates at 4 producers (Q୲ = 46,717 ft3/day 

(base case), f୥ =90%): (a) MRF=1 and (b) MRF=1000. 
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(a) 

 

(b) 

Figure 4.6. Daily oil, gas, and water production rates at 4 producers (Q୲ = 46,717 ft3/day 
(base case), f୥ =50%): (a) MRF=1 and (b) MRF=1000. 
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In the case of dry injection condition (fg = 90%) with MRF=1, the injected gas 

predominantly follows either up-dip direction towards well L-8 or high-permeability 

direction towards well L-44 to show an early breakthrough (cf. Figure 4.2). Such an effect 

is reflected by the map of oil saturation (Figure 4.3(a)) as well as production history 

(Figure 4.5(a)). In the case with MRF=1000, however, the injected gas sweeps almost in 

a piston-like manner, especially around the injection well.   As a result, the average oil 

production rate for well L-8 is around 298 bbl/day when MRF=1, while the average oil 

production rates for this well goes up to 374 bbl/day when MRF=1000. In addition, the 

gas breakthrough occurs after 10 days in well L-44 when MRF=1, while the breakthrough 

is delayed until 18 days when MRF=1000. In the case of wet injection condition (fg = 50%), 

the dip angle plays an important role showing more variation in terms of oil saturation 

along the vertical direction (Figure 4.4). Because gravity is helping the process (i.e., water 

supporting from the bottom), the oil production is improved compared to fg = 90% (Figure 

4.6). As a result, the average oil production rate for well L-44 is around 239 bbl/day when 

MRF=1, while the average production for this well increases to 340 bbl/day when 

MRF=1000. In addition, the gas production is retarded and the water production is 

accelerated.  Figure 4.7 shows how cumulative oil recovery changes with time for MRF = 

1, 10,100, and 1000, respectively. There are two distinct features that can be learned 

from this example: (i) the cumulative oil production increases with MRF, and (ii) wetter 

injection condition (or, lower fg equivalently) generally improves the cumulative oil 

production when MRF is relatively low (meaning the bottom-support mechanism is more 

pronounced when MRF is low). As MRF increases, however, the maximum recovery 

occurs at an intermediate fg, implying the mobility control plays more important roles. The 
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first is what is expected because of more efficient mobility control at higher MRF, while 

the second is more field-specific indicating that the role of gravity in this sector of interest 

is not negligible.   

 

 

(a)                                                                         (b) 

 

                              (c)                                                                        (d) 

Figure 4.7. Comparison of cumulative oil production at base case (intermediate) 
injection rate (Q୲ =46,717 ft3/day): (a) MRF=1, (b) MRF=10, (c) MRF=100, and (d) 

MRF=1000. 
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4.4.2. Low injection rate (𝐐𝐭 = 23,358 ft3/day) 

  The same simulations are repeated at the lower injection rate (Qt = 23,358 ft3/day), 

as shown in Figures 4.8, 4.9, and 4.10. The results are also summarized in Table 4.3. In 

all cases, the average daily oil production rates for all 4 producing wells are reduced 

compared to those from the intermediate injection rate (Figures 4.3, 4.4, and 4.7). As a 

result, when fg = 90%, the average production rate for well L-44 is down from 239 bbl/day 

to 202 bbl/day when MRF =1, from 240 to 197 bbl/day when MRF = 10, from 252 to 207 

bbl/day when MRF = 100, and from 248 to 214 bbl/day when MRF = 1000. Such a result 

is primarily caused by the fact that a smaller pore volume is injected by moving from the 

intermediate Qt to low Qt. The cumulative oil recovery trend observed at low Qt is also 

consistent with intermediate rate – more oil produced with higher MRF. The injection fg at 

which the maximum oil recovery occurs slightly decreases at low Qt. 
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Table 4.3. Summary of simulation results for the case of low injection rate (Q୲ = 23,358 
ft3/day) after 20 years. 

 

fg (%) 

Cumulative recovery (Mstb) Sweep efficiency (%) 

 

MRF=1 

 

MRF=10 

 

MRF=100 

 

MRF=1000 

 

MRF=1 

 

MRF=10 

 

MRF=100 

 

MRF=1000 

100 2,307   2,307 2,307 2,307 15.8 15.8 15.8 15.8 

90 2,549 2,744 2,896 3,111 17.4 18.8 19.8 21.3 

80 3,835 3,927 4,308 4,916 26.2 26.9 29.5 33.6 

70 4,518 4,589 4,954 5,596 30.9 31.4 33.9 38.3 

60 4,858 4,910 5,220 6,029 33.2 33.6 35.7 41.3 

50 5,049 5,087 5,371 6,309 34.6 34.8 36.8 43.2 

40 5,179 5,208 5,475 6,456 35.4 35.6 37.5 44.2 

30 5,286 5,308 5,542 6,444 36.2 36.3 37.9 44.1 

20 5,381 5,396 5,573 6,254 36.8 36.9 38.1 42.8 

10 5,425 5,444 5,526 5,928 37.1 37.3 37.8 40.6 

0 5,511 5,511 5,511 5,511 37.7 37.7 37.7 37.7 
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(a) 

 

(b) 

Figure 4.8. Cross-sectional map showing oil saturation distribution after 20 years for low 
total rate ( Q୲ = 23,358 ft3/day) at dry injection condition (f𝐠 = 90%): (a) no foam (MRF = 

1) and (b) high-strength foam (MRF = 1000). 
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(a) 

 

(b) 

Figure 4.9. Cross-sectional map showing oil saturation distribution after 20 years for low 
total rate (Q୲ = 23,358 ft3/day) at wet injection condition (f୥ = 50%): (a) no foam (MRF = 

1) and (b) high-strength foam (MRF = 1000). 
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(a)                                                                                     (b) 

 

(c)                                                                                    (d) 

Figure 4.10. Comparison of cumulative oil production at low injection rate (Q୲ = 23,358 
ft3/day): (a) MRF = 1, (b) MRF = 10, (c) MRF = 100, and (d) MRF = 1000. 

 

 

4.4.3.  High injection rate (𝐐𝐭 = 70,075 ft3/day)  

The same simulations are repeated at the higher injection rate (Qt = 70,075 ft3/day), 

as shown in Figures 4.11, 4.12, and 4.13. The results are also summarized in Table 4.4. 

In all cases, the average daily oil production rates for all 4 producing wells are improved 

compared to those from the low and intermediate Qt values. As a result, for fg = 90%, the 
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average production rate for well L-8 is 352 bbl/day when MRF =1, 365 bbl/day when MRF 

=10, 415 bbl/day when MRF = 100, and 446 bbl/day when MRF = 1000. Such a result is 

caused by the fact that a larger pore volume is injected by moving from the low to high Qt 

values.   

 

Table 4.4. Summary of simulation results for the case of high injection rate (Q୲ = 70,075 
ft3/day) after 20 years. 

 

fg (%) 

Cumulative recovery (Mstb) Sweep efficiency (%) 

 

MRF=1 

 

MRF=10 

 

MRF=100 

 

MRF=1000 

 

MRF=1 

 

MRF=10 

 

MRF=100 

 

MRF=1000 

100 3,991 3,991 3,991 3,991 27.3 27.3 27.3 27.3 

90 4,691 4,798 5,380 5,587 32.1 32.8 36.8 38.2 

80 4,929 5,067 6,040 6,745 33.7 34.7 41.3 46.2 

70 5,091 5,249 6,284 7,716 34.8 35.9 43.0 52.8 

60 5,216 5,341 6,333 8,408 35.7 36.5 43.4 57.6 

50 5,322 5,417 6,321 8,819 36.4 37.1 43.3 60.4 

40 5,423 5,497 6,259 8,826 37.1 37.6 42.8 60.5 

30 5,537 5,582 6,137 8,498 37.9 38.2 42.0 58.2 

20 5,652 5,679 5,990 7,753 38.7 38.9 41.0 53.1 

10 5,781 5,792 5,885 7,008 39.6 39.6 40.3 48.0 

0 5,848 5,848 5,848 5,848 40.0 40.0 40.0 40.0 
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(a) 

 

(b) 

Figure 4.11. Cross-sectional map showing oil saturation distribution after 20 years for 
high total rate ( Q୲ = 70,075 ft3/day) at dry injection condition (𝐟𝐠 = 90%): (a) no foam 

(MRF=1) and (b) high-strength foam (MRF = 1000).  
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(a) 

 

(b) 

Figure 4.12. Cross-sectional map showing oil saturation distribution after 20 years for 
high total rate ( Q୲ = 70,075 ft3/day) at wet injection condition (f୥ = 50%): (a) no foam 

(MRF = 1) and (b) high-strength foam (MRF = 1000). 
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(a)                                                                                      (b) 

 

                              (c)                                                                                        (d) 

Figure 4.13. Comparison of cumulative oil production at high injection rate (Q୲ = 70,075 
ft3/day): (a) MRF = 1, (b) MRF = 10, (c) MRF = 100, and (d) MRF = 1000. 

 

 

 

4.4.4. Determination of optimum injection condition 

 Determination of the optimum injection condition requires lab coreflood 

experimental data on how MRF changes at different Qt and fg values, which of course 

depends on many field-specific conditions. To name a few, they include rock and fluid 
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properties, chemical formulations and concentrations (such as surfactants and additives), 

and interactions between foam films with reservoir fluids (especially reservoir oils) within 

the pores with certain surface properties. Because there are no coreflood experimental 

studies available from Lisama field, this study borrows the mobilities of gas and liquid, 

with and without foams, from Yin (2007). The mechanistic modeling technique from Izadi 

and Kam (2018) can be used to fit the coreflood data and further calculate the MRF values 

at different injection conditions.  

 Figure 4.14 shows the steady-state two flow-regime map of strong foams at the 

three Qt values which correspond to the total injection velocity (ut) of 1.89, 3.78, and 5.67 

ft/day. The map clearly shows a regime with almost vertical pressure contours (called the 

high-quality regime) and the other with almost horizontal pressure contours (called the 

low-quality regime) separated by a threshold foam quality, fg*.  The population balance 

model of Izadi and Kam (2018) allows MRF values to be determined and plotted as a 

function of fg for each of ut values, as shown in Figure 4.15.  Figure 4.15 demonstrates 

the behavior of two strong-foam flow regimes well:  (i) in the low-quality regime (LQR) 

where foams are relatively wet and MRF is maintained within a narrow range due to 

bubble size staying near its minimum (around the average pore size), and (ii) in the high-

quality regime (HQR) where foam are relatively dry and MRF sharply decreases with fg 

due to bubble instability near the limiting capillary pressure. Such behaviors are 

consistent with existing studies (Kam and Rossen 2003; Lee et al. 2016). 
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Figure 4.14. Two flow regimes of strong foams constructed in this study by using the 
model of Izadi and Kam (2018): low, intermediate, and high superficial velocities (ut) 

correspond to total injection rates (Qt) of 23,358, 46,717, and 70,075 ft3/day. 
 

 

 

 
Figure 4.15. Results from mechanistic foam model (Izadi and Kam 2018) for Lisama 
field application showing how mobility reduction factor (MRF) changes with injection 

foam quality (fg): the corresponding paths shown in Figure 4.14.  
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The sweep efficiency from the simulations (as summarized in Tables 4.2, 4.3, and 

4.4) at various MRF and fg values can be used to construct sweep-efficiency contours. In 

addition, MRF as a function of fg from mechanistic model can be imposed on the top of 

contours. These results are shown in Figures 4.16 through 4.18 for Qt = 46,717, 23,358, 

and 70,075 ft3/day, respectively. Figure 4.16 shows the results of sweep efficiency (which 

is, in fact, equivalent to the cumulative oil production) at the intermediate Qt as a function 

of MRF and fg values. The MRF calculated in Figure 4.15 (i.e., the dashed curve in Figure 

4.16) is mapped out on the sweep-efficiency contours. The same can be performed for 

low and high Qt values, as shown in Figures 4.17 and 4.18.  

 

 

Figure 4.16. Mapping of MRF-fg path from mechanistic model on the sweep-efficiency 
contour map: base case (intermediate) injection rate (Q୲ = 46,717 ft3/day). 
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Figure 4.17. Mapping of MRF-fg path from mechanistic model on the sweep-efficiency 
contour map: low injection rate (Q୲ =23,358 ft3/day). 

 

 

Figure 4.18. Mapping of MRF-fg path from mechanistic model on the sweep-efficiency 
contour map: high injection rate (Q୲ = 70,075 ft3/day). 
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One may then notice from Figures 4.16 through 4.18 that any intersection point 

between a particular sweep-efficiency contour and the MRF-fg path allows a data set of 

(fg, MRF, sweep efficiency) to be determined. For example, in the base case (Figure 4.16), 

an intersection point of the two near fg = 80% provides (fg, MRF, sweep efficiency) = (80%, 

175, 38%) approximately, meaning that 38% of sweep efficiency can be obtained from fg 

= 80% that has an MRF value of 175 from mechanistic foam modeling (or, core flood 

experiments). Because the sweep-efficiency contours in Figure 4.16 are curved to the 

right, this implies that the sweep efficiency increases with decreasing fg (when fg > 40%), 

down to about fg = 40% where the sweep efficiency is about 43%, beyond which the 

sweep efficiency decreases with decreasing fg (when fg < 40%). That particular point 

providing the maximum sweep efficiency is defined as the optimum condition in this study, 

that is, (fg, MRF, sweep efficiency) = (40%, 250, 43%) approximately in Figure 4.16. 

Figures 4.17 and 4.18 also show similar behaviors. Figure 4.19 shows a summary of such 

an analysis, plotting the sweep efficiency as a function of fg for all three Qt values. The 

trend is consistent as expected from Figure 4.15 that there is a particular value of fg at 

which the sweep efficiency reaches the maximum, and those fg values change with Qt 

values. In general, higher Qt leads to higher sweep efficiency that occurs at higher 

optimum fg.  

 

 

 

 

 

 



 
119 

 
 

 

 

 

 

Figure 4.19. Summary of Figures 4.16 through 4.18 showing the effect of total injection 
rate on the sweep efficiency as well as optimum injection foam quality. 
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4.5. Discussions 

This new technique and resulting plots presented in Figures 4.16 through 4.19 are 

believed to be a simple but robust tool to help making technical and business decisions 

– not only showing how sweep efficiency changes at different foam qualities and 

strengths, but also how such an optimum condition may shift depending on different 

operation conditions (see Figures 4.16 through 4.19 as an example to demonstrate the 

use of this technique to predict the impact of total injection rates). This section shares a 

few more examples showing how this new technique can be applied.  

The first example is to evaluate the effect of transmissibility through shales, slightly 

permeable (i.e., shale permeability = 5 md, 0.1 md, 0.01 md, and 0.001 md in Figures 

4.20(a) through 4.20(d)) rather than impermeable. When the shale layers are allowed to 

communicate vertically with surrounding layers at the higher injection rate (Qt = 70,075 

ft3/day), the results construct contours as shown in Figure 4.20 (this can be compared 

with Figure 4.18 at the same Qt but zero shale permeability). Two main observations are 

made. First, the presence of shale permeability (Figures 4.20(a) through 4.20(d)) changes 

the optimum injection foam quality to around fg = 70% (from 55% when no shale 

permeability (Figure 4.18)), which is caused by more severe gravity segregation for a 

thicker reservoir. Second, the maximum sweep efficiency is about 37.5%, 40%, 41% and 

41% at the shale permeability = 5 md, 0.1 md, 0.01 md, and 0.001 md, respectively, which 

again shows difficulties in dealing with a thicker reservoir due to gravity segregation. 

These values are considerably lower than the maximum sweep efficiency (46%) when 

there is no shale permeability (Figure 4.18). This example emphasizes the importance of 

detailed and reliable reservoir description for better EOR design and implementation. 
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(a) 

 

(b) 

Figure 4.20. Contours showing the effect of shale permeability (Q୲ = 70,075 ft3/day) in 
comparison with no shale permeability (Figure 4.18): (a) shale permeability = 5 md; (b) 

0.1 md; (c) 0.01 md; and (d) 0.001 md. 
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(figure cont’d.) 

 

(c) 

 

(d) 
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 The second example is to take the effect of CO2 and surfactant costs into accounts. 

Suppose one barrel of oil produced from this process makes a net profit of $30. The 

sweep efficiency at Qt = 70,075 ft3/day (Figure 4.18) and the corresponding cumulative 

oil recovery (Table 4.4) allow the total profit contours (in million $) to be determined as 

shown in Figure 4.21(a). Note that these contours in Figure 4.21(a) are the same as those 

in Figure 4.18, but with total profits rather than sweep efficiency values, assuming that 

CO2 and surfactant chemicals do not make any price or economic advantages as raw 

materials to be injected. Using fg = 50% as a basis, suppose CO2 is advantaged over 

surfactant chemicals, economically, such that 10% increase in fg (meaning 10% reduction 

in fw) helps the net profit by $1.00 per barrel of oil produced at the same Qt. This means 

that one barrel of oil has $30 net profit when fg = 50%, but $35 and $25 net profits when 

fg = 100% and fg = 0%, respectively. This economic advantage of CO2 over surfactant, as 

shown in Figure 4.21(b), causes the change in contours, making drier injection condition 

more favored, shifting the optimum injection fg value for maximum net profit (from $200 

million at fg = 50% to $210 million at fg = 70%). It should be noted that there is no change 

in sweep efficiency in Figures 4.21(a) and 4.21(b), but the market and economic situations 

can distort such an analysis outcome. In addition to CO2 and surfactant costs, other 

factors can be incorporated similarly such as oil price, transportation cost, equipment cost, 

operation cost, and so on. 
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(a) 

 

(b) 

Figure 4.21. Contours showing total profits (million $) to find the optimum condition for 
business decision (Q୲ = 70,075 ft3/day, Figure 4.18) when the net profit is $30/bbl: (a) 

when CO2 and surfactant, as raw materials to be injected, make no economic 
advantages compared each other and (b) when CO2 makes economic advantages over 

surfactant. 
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 The third example is to consider the case when there is a limited supply of CO2 

that may happen, for example, due to geographical and geopolitical aspects. If Qt = 

70,075 ft3/day (Figure 4.18) is used as an example, Figures 4.22(a) and 4.22(b) show 

illustrations with horizontal lines when Qg is limited to 49,053 ft3/day (fg = 70%) and 28,030 

ft3/day (fg = 40%), respectively. Such a limitation does not affect the optimum condition if 

the injection fg is greater than the optimum fg (Figure 4.22(a)), while it reduces the 

maximum sweep efficiency if the injection fg is less than the optimum fg as much as the 

shift in fg due to the limited supply (Figure 4.22(b)). This example can also be used in the 

field when the quantity of overall CO2 supply is fixed but needs to be distributed into 

multiple sectors where each of which has its own optimum condition. Similar approaches 

can be used when additional constraints exist for other chemicals (e.g., limitation in terms 

of surfactant chemicals, water supply, etc.)      
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(a) 

 

(b) 

Figure 4.22. Effect of a limited CO2 supply on the optimum condition (Q୲ = 70,075 
ft3/day, Figure 4.18): (a) sweep efficiency contour lines with such constraints (b) 

Implication to determine the optimum fg. 
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4.6. Conclusions 

This study performs reservoir simulations for a sector with one injection well and 

four production wells in Lisama field, Columbia, in order to determine the optimum 

injection strategies for gas-water coinjection as well as foam treatments. A wide range of 

scenarios are evaluated including low, intermediate, and high injection rates (Qt = 23,358, 

46,717 and 70,075 ft3/day), various injection gas fractions (fg = 100 to 0%), and different 

foam strengths (no foam, low-strength foam, intermediate-strength foam and high-

strength foam with mobility reduction factor (MRF) of 1, 10, 100, 1000). Mechanistic foam 

model from Izadi and Kam (2018) is applied and calculates MRF values to reflect complex 

foam rheological properties with two strong-foam flow regimes. The following conclusions 

can be drawn from this study: 

 

 In all cases investigated at given Qt values, the sweep efficiency (or the cumulative 

oil production) increases with increasing MRF. This indicates the use of mobility-

control foam can be a promising solution to improve oil recovery from the field. 

 
 The optimum condition changes with Qt values such that the injection fg that 

provides the maximum sweep efficiency increases with increasing Qt. This means 

that at low Qt, gravity helps oil recovery for water to support from the bottom, while 

at high Qt, high MRF takes over and becomes a dominating factor making more 

piston-like displacement front.   
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 This study shows how the contours of sweep efficiency as a function of injection 

foam quality and MRF can be used together to come up with the optimum injection 

strategy graphically, resulting in the maximum oil recovery. How certain constraints 

present in the field can be applied to determine the optimum injection strategy (i.e., 

total injection rates and foam quality) is also demonstrated graphically by using 

examples. These examples also prove the versatility and robustness of this 

technique of combining sweep-efficiency contours and MRF-fg path. 
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CHAPTER 5. CONCLUSIONS AND RECOMMENDATIONS  

 The conclusions related to each topic are provided at the end of each chapter. 

After putting all results together, the followings summarize the findings of this study: 

 Model fit to laboratory experimental data is necessary to calibrate mechanistic 

foam models. Supercritical CO2 foam has very low mobilization pressure gradient 

(∇P୭), and therefore it has unique advantages compared to other gaseous foams 

(gas CO2, N2, hydrocarbon, flue gas etc.) to create stable foams at low pressure-

gradient environment and place foams deep into the reservoir. 

 Mechanistic foam modeling can help designing field foam EOR processes 

including reservoir-scale simulations. Such an example is shown with CMG 

STARS foam simulations (with gas mobility taken from mechanistic modeling) is 

demonstrating how to select optimum injection conditions in terms of injection foam 

quality and injection rate.  

 

 The following recommendations can be made based on this study: 

 

 When coreflood experiments are conducted, additional experiments to capture the 

transition from weak foam to strong foam are highly recommended. This onset of 

strong foam generation can greatly improve the quality of mechanistic foam 

modeling.  At a minimal level, a series of coreflood data is needed for model fit, 

such as steady-state pressure measurements varying total velocity at the same 

foam quality, varying gas velocity at the same liquid velocity, or varying liquid 

velocity at the same gas velocity, as shown in this study.  
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 Not many coreflood experimental studies in radial geometry are available in the 

literature.  Such experimental data would be very valuable to calibrate foam 

model, filling the gap between small lab-scale linear flow experiments and large-

scale radial flow field EOR processes.  

 

 This study only focuses on the steady-state responses. Dynamic transient 

simulations are required to investigate how the system changes with time. The 

presence of oil in the reservoir should be accounted for in realistic EOR 

applications to calculate oil recovery.  
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