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ABSTRACT 

 

Metal-insulator-metal (MIM) plasmonic waveguides have been proposed for 

highly integrated subwavelength structures. In this work, waveguiding and coupling of 

surface plasmon polaritons (SPPs) within finite planar MIM plasmonic waveguides are 

examined both theoretically and experimentally. Gain (dye-doped polymer)-assisted MIM 

waveguides and terahertz quantum cascade laser MIM waveguides are numerically 

analyzed. 

The numerical analysis of finite planar MIM waveguides using the transfer matrix 

formalism reveals both bound and leaky SP modes: three lowest energy bound modes and 

the highest energy mode consisting of non-radiative (bound) and radiative (leaky) 

portions separated by a spectral gap at the light line. The leaky regime is further divided 
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into antenna and reactive mode regions. Spatial dispersion effect on the SH mode yields a 

reduced wave vector in its dispersion curve and an increased propagation loss. 

The MIM radiative SPPs are probed using attenuated total reflection in the 

Kretschmann configuration and using free space coupling. Both single- and double-sided 

leaky waves are analyzed. The leaky wave dispersion relation and its antenna mode 

radiation pattern are determined through both angle- and wavelength-dependent 

reflectance of TM polarized free space incident light. 

The inclusion of a dye-doped polymer into realistic finite MIM plasmonic 

waveguides is analyzed. The propagation of three bound SP modes, each within 

respective optimized symmetric glass-Ag-Rh6G/PMMA-Ag-glass waveguides, is 

calculated for core material exhibiting optical gain at 594 nm. The critical gain 

coefficients for lossless propagation of these three bound SP modes are determined. Only 

lossless propagation of the SH mode is predicted. For MIM structure with gain in adjacent 

medium in ATR geometry, the reflectance and energy flux distribution at resonance 

conditions versus gain coefficients are examined. 

The waveguide loss, confinement factor and threshold gain for terahertz quantum 

cascade laser SP waveguides are modeled from 2 - 7 THz. The effects of plasma layer 

thickness, plasma doping and substrate thickness and the effects of active region 

thickness are investigated for semi-insulating surface-plasmon and metal-metal 

waveguides, respectively. A surface emitting quantum cascade laser SP leaky waveguide 

are proposed, with emission properties controlled by varying plasma layer thickness. 
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Chapter 1 Introduction 

1.1 Introduction 

Surface plasmon polaritons (SPPs), or surface plasmons (SPs) in short, are the 

transverse magnetic (TM) waves propagating along metal-dielectric interfaces with fields 

exponentially decaying in both media. The studies of surface electromagnetic (EM) 

waves started in the early 1900’s. Zenneck [1] in 1907 firstly theoretically analyzed the 

surface wave property of the so-called “Zenneck wave” at a planar boundary between 

free space and a half space with a finite conductivity. Sommerfield [2] in 1909 realized 

the possibility of radio waves propagating around the earth by treating the upper half 

space as a pure dielectric and the lower one as a conductor. Fano [3] in 1941 proposed 

that surface EM wave resulted in the Wood’s anomalies [4] in metal diffraction gratings. 

After that, Ritchie [5], Ferrell [6,7] and Powell [8-10] had theoretically and 

experimentally confirmed the existence of surface plasmons at a metal surface. SPPs 

were observed optically in the attenuated total reflection (ATR) experiments by Otto [11] 

and Kretschmann and Raether [12] in 1968. Since then SPPs have been extensively 

explored for several decades for their potentials in nanophotonics [13, 14], metamaterials 

[15] and biosensing [16-19].  

The surface localization property of SPs, confining the optical mode to 

subwavelength scale and minimizing the optical mode size, makes plasmonic waveguides 

an intriguing alternative to conventional dielectric-based waveguides. Long-range SP 

waveguides based on thin metal films or strips (referred to as insulator-metal-insulator 

(IMI) waveguides) have been studied previously [20, 21], but metal-insulator-metal 
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(MIM) SP waveguides [22, 23], offering higher confinement factors and closer spacing to 

adjacent waveguides or structures [24], have been proposed for this and other potential 

applications [25-29]. Study also suggests that MIM subwavelength plasmonic waveguide 

bends and splitters have low loss over a wide frequency range [30]. Gain-induced 

switching in MIM plasmonic waveguides has been also proposed [31]. 

1.2 Outline of the Dissertation  

The objective of this work is to investigate characteristics of finite planar MIM 

plasmonic waveguides. This document is organized as follows: 

Chapter 2 outlines the requisite background theories underlying this dissertation. 

The concept of improper leaky wave, its role in waveguide mode expansion, and the 

physical origin of spectral gap when a mode changes from bound to leaky upon crossing 

the light line are introduced. The theoretical models and empirical data parameterization 

for metal dielectric constants are presented. The fundamentals of SPPs at a single metal-

dielectric interface and in multilayer systems, including IMI and semi-infinite MIM 

waveguides, as well as SPPs optical excitation schemes are reviewed.  

In Chapter 3, numerical analysis of finite planar MIM waveguides using the 

transfer-matrix formalism reveals both bound and leaky SP modes. The dispersion 

relations, propagation lengths and confinement factors for these SP modes are presented. 

The highest energy SP mode is revealed consisting of non-radiative (bound) and radiative 

(leaky) portions separated by a spectral gap. The leaky regime is further divided into two 

distinct regions and its wave-front tilt and radiation pattern are discussed. The spatial 

dispersion effects on dispersion, propagation loss and confinement factor of the lowest 
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energy SPP mode of MIM structures with a thin core layer at large wave vectors are 

examined. 

In Chapter 4, the radiative MIM SPPs are investigated theoretically and 

experimentally. Leaky waves are probed using ATR Kretschmann configuration and 

using free space coupling. Both single- and double-sided leaky waves are analyzed. Free-

space coupling to the antenna leaky wave is experimentally demonstrated. The leaky 

wave dispersion relation and its antenna mode radiation pattern are determined through 

both angle- and wavelength-dependent reflectance of TM polarized free space incident 

light.  

Chapter 5 numerically analyzes realistic finite MIM plasmonic waveguides with 

the inclusion of dye-doped polymer. The propagation of three bound SP modes within 

each respective optimized MIM waveguide is analyzed numerically for a core material 

exhibiting optical gain. For MIM structure in ATR geometry, the reflectance and energy 

flux distribution at resonance conditions versus gain coefficients in adjacent dielectric 

medium are discussed.  

Chapter 6 provides modeling of finite MIM waveguides for terahertz quantum 

cascade lasers. The waveguide loss, confinement factor and threshold gain are 

characterized. The influences of plasma layer doping, plasma layer thickness as well as 

substrate thickness are analyzed for the semi-insulating surface-plasmon waveguide, and 

the effects of active region thickness are discussed for the metal-metal waveguide. The 

leaky waveguide characterization is also discussed.  

Chapter 7 summarizes the work presented in this dissertation and gives an outlook 

on future works of MIM plasmonic waveguides.    
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Chapter 2 Theoretical Background 

2.1 Introduction 

This chapter presents a brief review of the requisite background theories 

underlying this dissertation.  

In chapter 2.2, the various types and corresponding mathematic representations of 

electromagnetic complex waves are presented. The improper waves with exponential 

growing field profiles are pointed out. In chapter 2.3.1, three types of waveguide mode, 

i.e. bound, radiation and leaky modes, are reviewed. The role of discrete improper leaky 

mode, characterized by exponential growing field profile in one or both outermost media, 

in modal expansion is discussed. In chapter 2.3.2, as an example, the evolution of 

dispersion behavior for TM-even mode of a symmetric slab waveguide clearly shows the 

proper and improper mode branches and the physical origin of spectral gap separating the 

physical bound and leaky modes. In chapter 2.4, the theoretical models and empirical 

data parameterization for metal dielectric constants are presented. The characteristic 

properties of SPPs sustained at a single metal-dielectric interface and in multilayer 

systems, including IMI and semi-infinite MIM waveguides, as well as SPPs optical 

excitation schemes are reviewed in chapter 2.5. 

 

2.2 Electromagnetic Complex Waves 

There are various EM wave types such as surface wave, leaky wave and other 

guided waves. It is very important to recognize these various types and their 
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corresponding mathematical representations. An EM wave in general form is usually 

called complex waves. As presented in Fig. 2.1, the ݖݕ-plane is the interface plane 

between two semi-infinite media and a plane wave ࡱሺݔ, ,ݖ  ሻ propagating in the upperݐ

half-space (ݔ ൐ 0), which is filled with a homogeneous lossless medium with a relative 

permittivity ߝ௥, is examined. The wave is assumed containing a time dependence of the 

form expሺെ݅߱ݐሻ, where ߱ is the radian frequency and ݐ is the time variable. This time 

dependence convention is used throughout the whole dissertation. 

The wave satisfies a wave equation (see Appendix A: equation (A.6a)) and leads 

to a two-dimensional Helmholtz equation, 

ሺ׏ଶ ൅ ݇ଶሻࡱሺݔ, ሻݖ ൌ ቆ
߲ଶ

ଶݔ߲ ൅
߲ଶ

ଶݖ߲ ൅ ݇ଶቇࡱሺݔ, ሻݖ ൌ 0                              ሺ2.1ሻ 

where ݇ ൌ  ௥݇଴, ݇଴ is the vacuum wave vector. The above equation has solution of theߝ√

form ࡱሺݔ, ሻݖ ൌ  ଴ is a constant vector transverse to theࡱ  ଴݁௜ሺ௞ೣ௫ା௞೥௭ሻ, whereࡱ

propagation vector ࢑ ,࢑ ൌ ݇௫ݔො ൅ ݇௭̂ݖ ൌ ݇ ෠݇, with  

݇௫ଶ ൅ ݇௭ଶ ൌ ݇ଶ                                                                                                    ሺ2.2ሻ 

Rewrite (2.2) as ݇௫ ൌ േඥ݇ଶ െ ݇௭ଶ , this indicates that the plane wave function has 

branch points of order 2 at േ݇ in the complex ݇௭-plane. The complex ݇௭-plane is divided 

into two Riemann sheets: a proper sheet (or top sheet) on which Imሼ݇௫ሽ ൐ 0, and an 

improper sheet (or bottom sheet) on which Imሼ݇௫ሽ ൏ 0 . These two sheets are connected 

on the curve Imሼ݇௫ሽ ൌ 0. In the proper Riemann sheet, ࡱሺݔ,  ሻ represents a physicalݖ

proper wave with exponentially decaying amplitude at the ݔ ൐ 0 half-space. In contrast, 

in the improper Riemann sheet, ࡱሺݔ,  ሻ is an improper wave with exponentially growingݖ
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amplitude at the ݔ ൐ 0 half-space. In many problems it is convenient to use branch cuts 

that separate a proper wave from an improper wave. 

Without losing generality, we write ݇௫ ൌ ݇௫
′ ൅ ݅݇௫

′′ , ݇௭ ൌ ݇௭
′ ൅ ݅݇௭

′′, ࢘ ൌ ොݔݔ ൅  ,ݖ̂ݖ

࢑′ ൌ ݇௫
′ ොݔ ൅ ݇௭

′ ′′࢑ and ,ݖ̂ ൌ ݇௫
ොݔ′′ ൅ ݇௭

′′  Here and after, single ['] and double ["] primes . ݖ̂

stand for real and imaginary parts of complex numbers, and the italic bold letter denotes a 

vector. Then the plane wave can be re-written as  

,ݔሺࡱ ሻݖ ൌ ଴expሾ݅࢑ᇱࡱ · ࢘ሿexpሾെ࢑ᇱᇱ · ࢘ሿ                                                        ሺ2.3ሻ 

The phase and attenuation of the plane wave are governed respectively by the real part 

(࢑′) and imaginary part (࢑′′) of the propagation vector. From (2.2a), we get  

݇௫
′ଶ ൅ ݇௭

′ଶ െ ሺ݇௫
′′ଶ ൅ ݇௭

′′ଶሻ ൌ ݇ଶ                                                                      ሺ2.4aሻ 

݇௫
′ ݇௫

′′ ൅ ݇௭
′ ݇௭

′′ ൌ ࢑Ԣ · ࢑ԢԢ ൌ 0                                                                          ሺ2.4bሻ 

 

According to (2.3), the constant-phase surfaces and constant-amplitude surfaces are given 

respectively by 

࢑′ · ࢘ ൌ Constant A                                                                                       ሺ2.5aሻ   

࢑ᇱᇱ · ࢘ ൌ Constant B                                                                                      ሺ2.5bሻ  

Fig. 2.1 Constant amplitude (solid lines) and constant phase (dash lines) 
surfaces of a plane wave propagating in the upper half ݖݔ-plane. 

࢑ᇱ

ݖ

ݔ

ݔ ൐ 0 ௥ߝ

࢑ᇱᇱ 
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Equation (2.5) indicates that the constant-phase surfaces (dash lines in Fig. (2.1)) are 

perpendicular to ࢑′ and the constant-amplitude surfaces (solid lines in Fig. (2.1)) are 

perpendicular to ࢑′′. Given ࢑′ · ࢑′′ ൌ 0 in (2.4b), the constant-phase surfaces and the 

constant-amplitude surfaces are perpendicular to each other.  

In the complex ݇௭ plane, a curve defined by equation ݇௭ ൌ ݇ ൅ ܴexpሺ݅ߠሻ with 

ܴ ൏ ݇ is considered. The ݇௭ curve and corresponding ݇௫ curve in the complex ݇௫-plane 

are shown in Fig. 2.2. Several ݇௭ points (A through H), determined by various values of 

 ,and lying on the top (proper) and bottom (improper) sheets of the complex ݇௭-plane ߠ

are chosen. The solid (dash) circle lies on the top (bottom) sheet. The circle on the bottom 

sheet is shown larger for clarity [1]. Points B-D and F-H lie respectively on the top and 

bottom sheet, and points A and E lie on the branch cut. Points B, C and D represent 

proper waves whereas points F, G and H represent improper waves. A variety of wave 

types, identified by various ݇௫ and ݇௭ values, and their corresponding terminologies are 

summarized in Table 2.1 [1]. The real and imaginary parts of these complex wave 

propagation vectors (࢑ ൌ ࢑′ ൅  ሻ in space are shown in Fig. 2.3 [1, 2]. More details′′࢑࢏

about these wave types can be found in Ref. [2].  

Among the wave types list in Table 2.1, only the forward propagating waves are 

considered here and after. The trapped surface wave, Zenneck wave and forward leaky 

wave will appear in the rest part of this dissertation. Surface waves are waves that 

propagate along the interface between two different mediums without radiation. Trapped 

surface waves are surface waves with exponentially decaying field profiles in the 

transverse direction. The Zenneck wave is a TM  polarized surface wave exists at the 

interface between a dielectric and a media with a finite conductivity. The amplitude of 
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this wave decays exponentially in the directions both parallel and perpendicular to the 

boundary (with differing decay constants). 

 

 
Table 2.1 ݇௫ and ݇௭ for various complex waves: proper and improper waves [1] 

Point ݇௭′  ݇௭′′  ݇௫′  ݇௫′′  Complex wave 

A ൏ ݇ 0 ൐ 0 0 Outward plane wave 

B ൐ 0 ൏ 0 ൐ 0 ൐ 0 Backward leaky wave 

C ൐ ݇ 0 0 ൐ 0 Trapped surface wave 

D ൐ 0 ൐ 0 ൏ 0 ൐ 0 Zenneck wave 

E ൏ ݇ 0 ൏ 0 0 Incoming plane wave 

F ൐ 0 ൏ 0 ൏ 0 ൐ 0 Improper plane wave 

G ൐ ݇ 0 0 ൏ 0 Untrapped surface wave 

H ൐ 0 ൐ 0 ൐ 0 ൏ 0 Forward leaky wave 
 
 
 
 
 
 

Fig. 2.2 Complex waves in the complex ݇௫ and ݇௭ planes [1]. 

݇௭-plane 

Imሺ݇௭ሻ 

 ݇௫-plane 

Imሺ݇௫ሻ 
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2.3 Waveguide Theory 

Determination of modes of one-dimensional (1-D) multilayer planar waveguide 

plays a crucial role in modeling of photonic devices. The waveguide modes can be 

classified into three categories: guided (bound) modes, radiation modes and leaky modes. 

It is shown in this section that the leaky modes, with forward leaky wave (characterized 

by point F in Table 2.1 and Fig. 2.3, possessing exponentially increasing improper field 

profiles away from the waveguide structure) in one or both of the bounding media, are 

mathematically valid but “improper” solutions of the same eigenvalue problem 

describing the guided modes, with trapped surface waves (characterized by point C in 

Table 2.1 and Fig. 2.3, possessing exponentially decaying proper field profiles away 

from the waveguide structure) in both outermost media. The role of improper leaky 

modes in modal expansion is also discussed. The evolution of dispersion behavior for the 

TM-even mode of a symmetric slab waveguide is presented in Chapter 2.3.2 as an 

example to show how the character of the eigenmode changes between proper and 

 ݖ

 ݔ

࢑ᇱ 
࢑ᇱ࢑ᇱᇱ

࢑ᇱ  ࢑ᇱᇱ ࢑ᇱ

࢑ᇱ

࢑ᇱ
࢑ᇱ

A  B C D 

E  F G H 

࢑ᇱᇱ
࢑ᇱᇱ

࢑ᇱᇱ
࢑ᇱᇱ

Fig. 2.3 The real and imaginary parts of the complex wave propagation 
vector in the upper half ݖݔ-plane [1, 2].The ݖݕ-plane is the interface plane. 
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improper and the existence of spectral gap when a mode changes from physical proper 

bound to physical improper leaky mode upon crossing the light line.  

 

2.3.1 Waveguide Eigenmode 

Let’s consider an asymmetric planar slab waveguide. The waveguide structure 

and the coordinate system are depicted in Fig. 2.5. It consists of a dielectric layer with 

refractive index ݊଴ sandwiched between two semi-infinite open media with refractive 

indexes ݊௖ and ݊௦, which are referred as the upper (cover) and lower (substrate) regions, 

respectively. All materials are assumed to be homogeneous, isotropic and lossless. Their 

refractive indices satisfy the inequalities ݊଴ ൐ ݊௦ ൐ ݊௖.  

Throughout the rest of this dissertation, only the forward-propagating (along the 

positive-ݖ direction) modes will be considered. Thus the mode fields vary longitudinally 

as expሾെ݅݇௭ݖሿ, where ݇௭ is the longitudinal propagation constant. The transverse 

complex modal amplitude ߮ሺݔሻ satisfies 1-D Helmholtz equation (See equation (C.3)) 

and has solution of the form ߮ሺݔሻ ൌ ሿݔexpሾ݅݇௫ܣ ൅  ሿ, where A and B areݔexpሾെ݅݇௫ܤ

constants determined by the boundary conditions, the transverse propagation constants ݇௫ 

are given by ݇௫௝ ൌ ට൫ ௝݊݇଴൯
ଶ െ ݇௭ଶ, ݆ ൌ 1, 2, 3. In principle, planar structures with layer 

numbers larger than three can be treated in the same way. 

The most popular method for finding the modes of a planar waveguide is the thin-

film transfer matrix method [3], which is described in Appendix C. This method provides 

implicit waveguide eigenvalue equations, also called dispersion equations, formulated by 

letting the elements of the transfer matrix T (See appendix C: equation (C.7)), say T11, 
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equal to zero. The zeros of this dispersion equation correspond to the mode propagation 

constant ݇௭. Then the effective index ݊௘௙௙, also called modal index, is defined via 

݊௘௙௙ ൌ ݇௭ ݇଴⁄ . 

The waveguide modes can be classified into three categories: guided (bound) 

modes, radiation modes and leaky modes, which are expressed in terms of the closed, 

continuum and improper expansions, respectively [4]. The locations of the guided modes, 

radiation modes and leaky modes in the complex longitudinal propagation constant plane 

are shown schematically in Fig. 2.4. The modal field profiles and schematic ray pictures 

of the four mode types found in the continuum modal expansion basis are plotted in Fig. 

2.5.  

(i) Guided (Bound) Modes 

For guided, or bound modes, the discrete values of ݇௭, labeled by “כ” in Fig.2.4, 

are determined from an eigenvalue equation. This equation is a consistency condition, or 

transverse resonance condition derived from the source-free Maxwell equations, subject 

to the requirements that the mode fields (i) go to zero at infinity, and (ii) satisfy boundary 

conditions at the layer interfaces. Among all discrete eigenvalues, only the values that 

correspond to proper waves are guided modes. The proper wave is characterized by 

exponentially decaying field amplitude and is therefore square integrable. All other 

solutions that associate with field amplitudes diverging at infinity are not included in this 

category. 

For guided modes, the bounding media, i.e. the cover and the substrate, have only 

outgoing field components with amplitudes exponentially decaying away from the 

core/cladding interfaces, as that shown in Fig. C.1(a) in Appendix C. The guided modes 
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Fig. 2.4 Schematic representation of eigenvalues of the (a) continuum, and (b) 
improper expansion in the complex longitudinal propagation constant ݇௭-plane. 
*’s, discrete bound modes; ז’s, discrete leaky modes; bold solid black and gray 
lines, continuum radiation modes. 

(a) 

(b) 

  Reሺ݇௭ሻ * * *

  Propagating 

Substrate (single-
sided) radiation 

Bound 

  Imሺ݇௭ሻ 

Non-propagating 
Evanescent radiation Continuum  Discrete 

Bound 
ז     

     ז

   ݊௦݇଴݊௖݇଴    0 

ז     
ז     

Leaky 

Guiding cutoff 

  Imሺ݇௭ሻ 

  Reሺ݇௭ሻ 

Full (double- 
sided) radiation 

* * *

(a) 

(c) 

(d) 

(b) 

(e) 

݊௦ ൏ Re൫݊௘௙௙൯ ൏ ݊଴  Bound mode

݊௖ (cover) ݊௦ (substrate) 

݊௖ ൏ Re൫݊௘௙௙൯ ൏ ݊௦ 

0 ൏ Re൫݊௘௙௙൯ ൏ ݊௖  Full radiation mode 

Non-propagating mode Re൫݊௘௙௙൯ ൌ 0, Im൫݊௘௙௙൯ ൏ 0 

Double-sided leaky mode 0 ൏ Re൫݊௘௙௙൯ ൏ ݊௖ 

݊଴ 
x 

z

*

Substrate radiation mode 

݊௖  ݊௦
 ߠ
݊଴ 

Fig. 2.5 Field profiles (left) and ray pictures (right) of the four types of 
mode in the continuum modal basis (panels (a)-(d)) and double-sided 
leaky mode (panel (e)). 
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posses trapped surface waves (characterized by point C in Table 2.1 and Fig. 2.3) in both 

outermost media. In ray picture, the bound mode energy is confined inside the core layer 

by total internal reflection (TIR) principle (See Fig. 2.5(a)) and flows along the guiding 

direction, which we have taken as the ൅ݖ direction. For the current lossless dielectric 

system, ݇௭ is real and satisfies the condition ݊଴݇଴ ൐ ݇௭ ൐ ݊௦݇଴, and no power is lost 

from the waveguide. However, in a general lossy system, ݇௭ is complex and the field 

amplitudes decay exponentially along the propagation direction.  

 (ii) Radiation Modes 

Beyond the cutoff condition, values of Reሺ݇௭ሻ smaller than ݊௦݇଴ correspond to 

the continuum non-bound radiation modes, which are labeled by bold black and gray 

lines in Fig. 2.4(a). When the condition ݊௖݇଴ ൏ Reሺ݇௭ሻ ൏ ݊௦݇଴ holds, TIR no longer 

occurs (as in the case of bound modes) at the core/substrate interface. Both the inward- 

and outward-traveling field components in the substrate region are required to form 

standing wave to assure that there is no power flow along the lateral direction since the 

modes propagation constants are real. These single-sided radiation modes are called 

substrate radiation modes (or substrate modes in short) exhibiting standing sinusoids in 

the substrate region and exponentially decaying fields in the cover region (See Fig 

2.5(b)). Similarly, the double-sided radiation modes, called full radiation modes, 

satisfying the condition 0 ൏ Reሺ݇௭ሻ ൏ ݊௖݇଴, exhibit standing sinusoids in both outermost 

regions (See Fig. 2.5(c) and Fig. C.1(b) in Appendix C). With these additional inward-

going components in at least one of the bounding media, the number of unknown 

variables is larger than that of boundary conditions, therefore, no eigenvalue equation can 

be established and a continuum of propagation constants can be chosen (See Fig. 2.4(a) 
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bold black and gray solid lines). The substrate and full radiation modes in ray picture are 

depicted respectively in the right panels of Fig. 2.5(b) and (c), where the rays, coming 

from the regions outside the core, are partially reflected and partially pass through the 

waveguide core.   

In the case that Reሺ݇௭ሻ ൌ 0 and Imሺ݇௭ሻ ൏ 0 , the modes are associated with 

longitudinal exponentially decaying fields. Therefore, these special radiation modes are 

called non-propagating or evanescent modes [5] (labeled by the bold gray solid line in 

Fig. 2.4(a)). They also exhibit standing waves in both outermost regions and are 

represented with ray direction perpendicular to the waveguide material-interface planes 

See Fig. 2.5(d)). 

The discrete guided and continuum radiation modes form a complete orthogonal 

modal basis of planar waveguides, which is capable of expressing any field, either bound 

or non-bound, in an open waveguide structure [6]. In spite of the completeness and 

exactness of this modal basis, the modal expansion with the inclusion of continuum 

radiation modes is very complicated because a large number of sampled radiation modes 

are needed owning to their continuous spectrum. 

 (iii) Leaky Modes 

The continuum radiation modes occur beyond cutoff. Although they satisfy the 

substrate-to-cover transfer equations (See appendix C: Equation (C.7)), they are not 

solutions of the eigenvalue equation. However, in addition to the discrete real-valued 

proper bound mode solutions, discrete complex solutions (denoted by “ ז ” in Fig. 2.4(b)) 

of the eigenvalue equation can be found below cutoff  if assuming the substrate and/or 

cover layers only have outward-traveling wave with exponentially growing field profiles 
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(See Fig. C.1(c) in Appendix C).These complex solutions are termed as improper leaky 

modes [6-10]. The improper leaky modes have forward leaky wave (characterized by 

point F in Table 2.1 and Fig. 2.3) in one or both of the bounding media. The leaky modes 

on slab waveguides are caused by frustrated total internal reflection. (See Fig. 2.5(e) for 

double-sided leaky modes). 

The discrete leaky modes along with the discrete bound modes do not form a 

complete basis. The inclusion of leaky modes in modal expansion encounters the power 

normalization and modal orthogonality problems because the leaky modes unbounded 

field shapes make them not square integrable in the transverse plane. In spite of these 

mathematical difficulties, extensive research on leaky modes has been conducted [11-17]. 

On the other hand, the usage of leak modes in modal expansion is attractive because, in 

many applications, a summation of discrete leaky modes can be used to replace the 

contribution from the continuous spectrum of the radiation modes [6, 17-20].  In addition, 

in some leaky waveguides, the mode shape of the leaky modes resembles the actual 

waveguide field distribution within a limited range, especially within the waveguide 

region [18, 21]. Furthermore, the real part of the complex propagation constants of a 

leaky mode can replace that of a continuous spectrum of radiation modes in the sense of 

modal expansion [17], and its imaginary part represents accurately the radiative decay of 

power temporarily confined to the guide [22]. We will further discuss the leaky modes of 

multilayer planar open waveguides in Chapter 2.3.2.  

In general multilayer planar open waveguides, the propagation constant ݇௭ is real 

or complex depending on the type of solution of the eigenvalue equation and whether the 

waveguide material system is lossless or lossy. The refractive indexes of the substrate (S) 
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and the cover (C) are labeled as ݊௦ and ݊௖, respectively. Without losing generality, we 

assume that ݊௦ ൒ ݊௖. The transverse propagation constants in the S and C regions are 

labeled as  ݇௦ and ݇௖, respectively. To summarize: (i) for bound modes ( Re൫݊௘௙௙൯ ൐ ݊௦), 

݇௭ and thus ݊௘௙௙ are discrete real in the waveguide composed of lossless materials and 

discrete complex in the lossy material case; (ii) for radiation modes (Re൫݊௘௙௙൯  ൏ ݊௦),  ݇௭ 

and ݊௘௙௙ are always continuum real (or continuum pure imaginary for the evanescent 

radiation modes); (iii) for leaky waves (Re൫݊௘௙௙൯  ൏ ݊௦ ), ݇௭ and ݊௘௙௙ are always 

discrete complex. The properties of forward propagating modes in a lossless multilayer 

planar waveguide are summarized in Table 2.2.  

 
 
 

Table 2.2 Properties of forward propagating modes in a lossless planar waveguide. 

Mode ݊௘௙௙ 
 

݇௫ሺ௖,௦ሻ 

 
Field exponential 

components in 
the S and C 

regions 
 

Field 
transverse 

distribution 
߮ሺݔሻ in the S 
and C regions 

Forward 
propagating 

field 
longitudinal 
distribution 

߮ሺݖሻ 
 

Discrete guided 
 

real 
݊௦ ൏ Re൫݊௘௙௙൯ 

imaginary outward-going 
exponential 

decaying 
(proper) 

 
sinusoid 

 
 
 
 
 
 
Continuum  

 
Radiation 

 
 
 
 

Substrate 
radiation 

 

real 
݊௖ ൏ Re൫݊௘௙௙൯ ൏ ݊௦

 
S: real 

 
C: imaginary 

 

S: inward- and 
outward-going 

 
C: outward-going

S: sinusoid 
 

C: exponential 
decaying 
(proper) 

 
sinusoid 

 

Full 
radiation 

 

real 
0 ൏ Re൫݊௘௙௙൯ ൏ ݊௖ 

 
real 

 
inward- and 

outward-going 
 

sinusoid 
 

sinusoid 
 

Evanescent 
 
 

imaginary 
Re൫݊௘௙௙൯ ൌ 0
Im൫݊௘௙௙൯ ൏ 0

 

 

real 
inward- and 

outward-going 
 

sinusoid exponential 
decaying 

Discrete leaky 
 

 
complex 

0 ൏ Re൫݊௘௙௙൯ ൏ ݊௦ 
Im൫݊௘௙௙൯ ൏ 0 

complex outward-going 
exponential 

growing 
(improper) 

sinusoid with 
exponential 

decaying 
envelope 

 
 



20 
 

2.3.2 Dispersions of Lossless Dielectric Slab Waveguide 

As discussed in previous section, both the discrete proper bound and improper 

leaky solutions are obtained from the same waveguide eigenvalue function. The 

dispersion behaviors of the waveguide proper and improper modes are examined in this 

section. The dispersion relations for TM-even modes of a symmetric slab waveguide are 

presented as an example.   

Before analyzing the symmetric slab waveguide, some general dispersion 

properties of the longitudinal homogeneous waveguide are presented following the 

notation given in Ref. [23]. Let’s consider a waveguide structure which is invariant along 

the waveguiding direction ൅ݖ axis. We write the waveguide dispersion equation in 

general form as 

,ሺ݇௭ܪ  ߱ሻ ൌ 0                                                                                                   ሺ2.6ሻ  

where ܪ is a smooth analytic function of the two complex variables ሺ݇௭, ߱ሻ, ݇௭ is the 

modal propagation constant and ߱ is the radian frequency. The solutions of (2.6) 

correspond to discrete mode dispersion functions ݇௭௠ሺ߱ሻ,݉ ൌ  .ڮ,0,1,2

For any longitudinal homogeneous waveguides composed of reciprocal media, the 

following condition is satisfied: 

,ሺെ݇௭ܪ ߱ሻ ൌ 0                                                                                                 ሺ2.7ሻ 

Further, for lossless media and ߱ ൌ Reሼ߱ሽ or ߱ ൌ Imሼ߱ሽ, complex roots occur in 

conjugate pairs for multilayer slab waveguide [24], which is mathematically expressed as 

,ሺേ݇௭ܪ ߱ሻ ൌ ,כሺേ݇௭ܪ ߱ሻ ൌ 0                                                                      ሺ2.8ሻ 

where േ݇௭כ are complex conjugates of േ݇௭. The conditions defined in (2.7) and (2.8) hold 

for our considered problems.  



21 
 

Assuming at a frequency point ൌ ߱௙, the branches ሺ݇௭, ݇௭כሻ meet in the complex 

݇௭-plane. This represents that the two first-order zeros of (2.6) coalesce to form a second-

order zero of (2.6). It leads to 

,൫݇௭௙ܪ ߱௙൯ ൌ ,ᇱ൫݇௭௙ܪ ߱௙൯ ൌ 0                                                                    ሺ2.9ሻ 

The frequency point ߱௙ determined from (2.9) can be guaranteed to be a branch point to 

separate the conjugated mode pair ሺ݇௭, ݇௭כሻ if it also satisfies the following nonzero 

condition 

ߜ  ൌ ′ఠܪ ൫݇௭௙, ߱௙൯ܪ௞೥௞೥
′′ ൫݇௭௙, ߱௙൯ ് 0                                                      ሺ2.10ሻ 

The frequency point defined by (2.9) and (2.10) is a first-order branch point for the 

conjugated mode pair ሺ݇௭, ݇௭כሻ and denoted as ௙߱
ሺଵሻ. The first-order branch point means 

that one complete rotation about ௙߱
ሺଵሻ results in an interchange of mode in the conjugate 

pair [25]. The equations (2.9) and (2.10), which define the branch point ߱௙ in the ߱ 

plane, are also used as the definition of the critical fold (turning) point in the ሺ݇௭, ߱ሻ 

plane [26, 27]. The occurrence of fold (turning) point is associated with the transition 

from a pair of real (proper-improper or improper-improper) modes to a complex-

conjugate improper mode pair in the “spectral gap” region [28]. It should be noted that in 

the event of material loss, complex conjugate solutions no longer exist, but two complex 

modes (those which become conjugate modes when loss is removed) still coalesce at a 

complex fold point, given by (2.9) and (2.10) [29]. These above-mentioned basic 

dispersion properties of the longitudinal homogeneous waveguide will be used in the 

following simple case, a symmetric lossless dielectric slab waveguide. 
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The waveguide structure parameters and its TM modal variation with real 

frequency are depicted in Fig. 2.6 [23]. The transverse propagation constant along the  

axis is given by , where  is the light velocity in free space. 

Therefore the branch points of order 2 occur in the complex -plane at . 

The points  and  are special points for the mth mode.   is the cutoff frequency. 

Below , the mode pair both reside on the improper -plane Riemann sheet, while 

above , one mode of the mode pair goes above cutoff and changes from the improper 

to the proper -plane Riemann sheet. The point  is the first-order branch point 

Fig. 2.6 Dispersion behaviors for the first two TM-even modes of a symmetric slab 

waveguide [23]. For the TM2 mode, the proper real mode and the improper real mode 

are respectively highlighted by blue and red lines. The waveguide consists of a 2 cm 

thick dielectric layer with refractive index of  = 1.5 sandwiched between two semi-

infinite open media with refractive indexes of . The imaginary 

propagation constant is not shown. 

 

X

X

proper real 

improper complex 

improper real 

fold point 

  

Spectral 

Gap 

0 5 10 15 20 25 30 
0.0 

0.5 

1.0 

1.5 

2.0 

2.5 

TM0 TM2 

Frequency (GHz) 

 

n0=1.5 

nc=1.0 

ns=1.0 

2 cm 



23 
 

where the conjugate branches ሺ݇௭௠, ݇௭௠כ ሻ  join together. It is also called the leaky-wave 

cutoff frequency, below which one mode of the conjugate ሺ݇௭௠, ݇௭௠כ ሻ pair is the 

traditional below-cutoff leaky mode. As frequency is increased from ߱ ൌ 0 along the real 

frequency axis, the mode pair ሺ݇௭௠, ݇௭௠כ ሻ  for ݉ ൐ 0 follow a trajectory maintaining 

conjugate symmetry (the imaginary part of ሺ݇௭௠, ݇௭௠כ ሻ not shown in Fig. 2.6) until 

meeting on the real ݇௭ axis (which is a second-order root of (2.6)) at the fold point ߱௠
ሺଵሻ. 

Between ߱௠
ሺଵሻ and ߱௠௖ , the modes separate and move in different directions along the real 

݇௭ axis. One mode, moving away from the origin, remains on the improper ݇௭-plane 

Riemann sheet throughout real frequencies larger than ߱௠
ሺଵሻ, whereas the other mode, 

moving initially toward the origin, passes through the ݇௭-plane branch point ݇௭ ൌ

േ݊ଵ ߱ ܿ⁄  at ߱ ൌ ߱௠௖  onto the proper ݇௭ Riemann sheet, becoming an ordinary, proper, 

surface-wave mode. More detail descriptions about Fig. 2.6 can be found in Ref. [23]. 

Now let’s focus on the dispersion curves of the TM2 mode.  For this mode, the 

color-highlighted regions have no physical meaning since here, the real part of the 

effective index of the leaky mode (improper solutions) are larger than the index of 

outmost region. Therefore, the unphysical green high-lighted region is labeled as a 

“spectral gap” separating the physical bound (proper real) and leaky (improper complex) 

modes. There exists a fold point (labeled by ‘x’ in Fig. 2.6) in the “spectral gap” region 

where several dispersion curves join together. As mentioned above, the complex-valued 

modes occur in conjugate pairs. This fold point is associated with the transition from a 

real improper–improper mode pair to a complex-conjugate improper mode pair.  
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2.4 Dielectric Function of Metals  

The dielectric constant, also called permittivity, characterizes the macroscopic 

response of a homogeneous material to applied electric fields. In this section, we will first 

briefly review the classical theoretical Lorentz-Drude (LD) model for calculating the 

frequency dependent complex dielectric constants of metals. In this model, the electrons 

are modeled as classical damped dipole oscillators. Then the parameterization of the 

optical constants of silver by LD model fit to empirical data will be present.   

 

2.4.1 Lorentz Model 

The classical Lorentz dipole oscillator model [30] is used to describe how the 

bound electrons within the atoms interact with an external EM wave at frequency ߱. The 

oscillating electric field of the EM wave exerts forces on the electrons and nucleus and 

drives them into harmonic motion. If ߱ coincides with one of the natural resonant 

frequencies of the atom, the resonance phenomenon occurs. The atoms can therefore 

absorb energy from the external wave and the medium exhibits absorption. Oppositely, if 

߱ does not coincide with any natural resonant frequencies, the atoms will not show 

absorption and the medium will be optically transparent.   

Let’s consider the interaction between an EM wave and an atom with a single 

natural resonant frequency ߱଴. The damping factor will be included owing to the fact that 

the oscillating dipoles can lose their energy by various collisional processes (such as 

electron-electron interaction, electron-phonon interaction, and etc.). The damping effect 

is modeled as a frictional force to impede the motion.  
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The time dependence of the electric field is given by ܧሺݐሻ ൌ  ଴݁ି௜ఠ௧, and theܧ

electron displacement is denoted as ݔ. Various forces acting on the oscillator are written 

as: 

Driving force:  െ݁ܧሺݐሻ ൌ െ݁ܧ଴݁ି௜ఠ௧ 

Spring (restoring) force: െܭ௦ݔ 

Damping force: െݒߛ ൌ െߛ ݔ݀ ⁄ݐ݀  

where ݁ is the magnitude of the electric charge of the electron,  ߛ is the damping (or 

relaxation) rate, and ܭ௦ is the spring constant satisfying the condition ߱଴ ൌ ඥܭ௦ ݉௘⁄  , 

݉௘ is the electron mass.  

Following the Newton’s second law, the motion equation is given as 

݉௘
݀ଶݔ
ଶݐ݀ ൅ ݉௘ߛ

ݔ݀
ݐ݀ ൅ ݉௘߱଴

ଶݔ ൌ െ݁ܧ଴݁ି௜ఠ௧                                           ሺ2.11ሻ  

It is obviously that (2.11) has solutions of the following form  

ሻݐሺݔ ൌ  ௜ఠ௧                                                                                              ሺ2.12ሻି݁ܣ

where A is undetermined constant. Substituting (2.12) into (2.11), we get 

ܣ ൌ െ
଴ܧ݁
݉௘

1
߱଴ଶ െ ߱ଶ െ ߱ߛ݅

                                                                         ሺ2.13ሻ 

The displacement of the electrons from their equilibrium position results in a time 

varying dipole moment ݌ሺݐሻ ൌ െ݁ݔሺݐሻ. The resonant macroscopic polarization (dipole 

moment per unit volume) of the medium is given by 

୰ܲୣୱ୭୬ୟ୬୲ ൌ ܰܲ ൌ െܰ݁ݔ ൌ
ܰ݁ଶ

݉௘

1
߱଴ଶ െ ߱ଶ െ ߱ߛ݅

 ሺ2.14ሻ                              ܧ

where ܰ is the electron density.  The electric displacement D is related to the electric 

field and polarization through (See appendix A: equation (A.2a)) 
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ࡰ ൌ ࡱ଴ߝ ൅  ሺ2.15ሻ                                                                                                   ࡼ

For isotropic material, the relative permittivity is defined by 

ࡰ  ൌ  ሺ2.16ሻ                                                                                                      ࡱ௥ߝ଴ߝ

We combine (2.14), (2.15) and (2.16) to obtain: 

௥ሺ߱ሻߝ ൌ 1 ൅
ܰ݁ଶ

݉௘

1
߱଴ଶ െ ߱ଶ െ ߱ߛ݅

ൌ 1 ൅
߱௣ଶ

߱଴ଶ െ ߱ଶ െ ߱ߛ݅
 

           ൌ ′௥ߝ ൅  ௥′′                                                                                            ሺ2.17ሻߝ݅

where ߱௣ ൌ ඥܰ݁ଶ ݉௘ߝ଴⁄  is the plasma frequency, and the real and imaginary parts of 

the dielectric constant are given as 

′௥ߝ ൌ 1 ൅
߱௣ଶሺ߱଴

ଶ െ ߱ଶሻ
ሺ߱଴ଶ െ ߱ଶሻଶ ൅  ଶ߱ଶߛ

′′௥ߝ ൌ
߱௣ଶ߱ߛ

ሺ߱଴ଶ െ ߱ଶሻଶ ൅  ଶ߱ଶߛ

The complex refractive index is obtained as ݊ ൌ ௥ߝ√ ൌ ݊′ ൅ ݅݊′′, where ݊′ଶ െ ݊′′ଶ ൌ ′௥ߝ  

and 2݊′݊′′ ൌ  .′′௥ߝ

For system with multiple oscillators, the Lorentz model is expressed as 

௥ሺ߱ሻߝ ൌ 1 ൅෍ ௝݂߱௣௝
ଶ

௝߱
ଶ െ ߱ଶ െ ௝߱ߛ݅

௠

௝ୀଵ

 

where  ௝݂ is the oscillator strength.  

 

2.4.2 Drude Model 

Metals contain significant numbers of free electrons. These electrons are not 

bound to any atoms and can move freely without experiencing any restoring force. This 
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implies that the spring constant is zero, and hence the natural resonant frequency ߱଴ 

equals zero.  Therefore we get the relative complex permittivity of metals  

௥ߝ ൌ 1 െ
߱௣ଶ

߱ଶ ൅ ߱ߛ݅ ൌ ௥ᇱߝ ൅  ௥ᇱᇱ                                                                  ሺ2.18ሻߝ݅

with 

௥ᇱߝ ൌ 1 െ
߱௣ଶ

߱ଶ ൅  ଶߛ

௥ᇱᇱߝ ൌ
߱௣ଶߛ

߱ሺ߱ଶ ൅  ଶሻߛ

This is called free electron Drude model. Typically, ߱௣ ൐  This dissertation work is .ߛ

limited to frequencies below ߱௣, where metals retain their metallic character (ߝ௥ᇱ ൏ 0). 

For large frequencies close to ߱௣,  ߱ ب  ௥  isߝ leading to negligible damping. Thus ,ߛ

predominant real and (2.18) simplifies to  

௥ሺ߱ሻߝ ൌ 1 െ ቀ
߱௣
߱ ቁ

ଶ
,                                                                                     ሺ2.19ሻ 

which defines the dielectric function of an undamped free electron plasma. At 

frequencies ߱ ൏ ߱௣, the relative permittivity of metal exhibits negative value. 

Free electron Drude model, given in (2.19), is commonly quoted as an adequate 

optical dielectric function of metals. However, a more accurate optical characterization of 

metals throughout the electromagnetic spectrum requires using metal empirical optical 

constants. 
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2.4.3 Metal Empirical Optical Constants 

Silver and gold are two most used metals in SP applications. The widely quoted 

empirical optical constants of these two metals are taken from the data sets of Johnson 

and Christy [31] and Palik [32]. In addition, the experimental data of other metals (such 

as Al, Fe, and etc.) are given in Ref. [33]. The optical dielectric constants of silver 

obtained from Ref. [31] and [32] have been compared [34]. The observed differences are 

caused by their different measurement methods. The optical constants of Johnson and 

Christy were determined through measurements of reflection and transmission at normal 

incidence and transmission of TM-polarized light at 60°. The optical constants compiled 

by Palik, composed of the works of Dold and Mecke [35] between 0.125 and 0.98 eV, 

Winsemius et al. [36] between 0.65 and 3.3 eV, and Leveque et al. [37] from 3.3 to 26.5 

eV, were obtained via polarimetric measurements and reflectance measurements using 

synchrotron radiation. 

In this dissertation, the dielectric constant of silver is fit to the Palik data sets over 

a wide spectral range (0.1 to 6 eV) by a Lorentz–Drude model, which explicitly including 

both the intraband Drude free-electron effects and interband Lorentz bound-electron 

effects [38]. The LD model is expressed as  

௥ሺ߱ሻߝ ൌ 1 െ ଴݂߱௣ଶ

߱ሺ߱ െ ݅Γ଴ሻ
൅෍ ௝݂߱௣ଶ

௝߱
ଶ െ ߱ଶ െ ݅Γ௝߱

                                ሺ2.20ሻ 
௠

௝ୀଵ

 

The LD model dielectric function agrees well in slope and magnitude with the Palik data 

sets, as depicted in Fig. 2.7. Also shown in this figure is the Brendel–Bormann (BB) 

model, which replaces a Lorentz oscillator with a superposition of an infinite number of  
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oscillators with Gaussian line shape. The details can be found in Ref. [38] and will not be 

discussed here. The optimal parameterization of the optical constants of silver by LD 

model is highlighted in Table 2.3.  

 

 

 
 
 
 
 
 
 
 
 

Fig. 2.7 ( Taken from Ref. [38] ) Real and imaginary parts of the optical 
dielectric constant of Ag using the Brendel–Bormann (BB) (solid curves) and LD 
(dashed curves) models. Also shown are the selected experimental data points 
from Dold and Mecke [35], Winsemius et al. [36], and Leveque et al. [37]. 
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2.5 Surface Plasmon Polaritons Basics 

Surface plasmon polaritons are the TM waves propagating along an interface 

between a dielectric and a conductor (usually metal) materials possessing opposite signs 

of the real part of their dielectric permittivities, evanescently confined in the 

perpendicular direction. The term ―surface plasmon polariton‖ reflects the hybrid nature 

of this particular surface wave: it involves the resonant coupling between a light wave 

(photon) and a collective surface electron charge density oscillation (plasmon), which is 

schematically shown in Fig. 2.8. 

 

 

 

Table 2.3 Values of the LD Model Parameters [38] 
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In this section, the fundamentals of TM polarized SPPs in various geometries 

such as single metal-dielectric interface, multilayer structures (IMI and semi-infinite 

MIM waveguides) are reviewed. The TM polarized SP mode is uniquely characterized by 

its magnetic field lying in the plane of the metal-insulator surface and perpendicular to 

the wave propagation direction. The modal symmetry properties (either symmetric-S or 

antisymmetric- A) used to label the modes in this dissertation are therefore defined by the 

symmetry of the tangential magnetic field with respect to the waveguide median plane. 

This description differs from other literature definitions for IMI and infinite MIM 

structures, based on the tangential electric field in propagation direction.  

 

2.5.1 SPPs at a Single Metal-Dielectric Interface 

The dispersion relation ߱ሺ݇௭ሻ of SPPs, sustained at a single flat interface between 

semi-infinite metal and dielectric and propagating along the positive ݖ direction (See Fig. 

2.8), is given by (See appendix B: equation (B.4)) [40]: 

1ε

2ε

x

z
 

Fig. 2.8 SPs at the interface between a metal and a dielectric material arise via the 
coupling between the TM EM wave and the collective surface charge oscillation [39].  
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݇௭ ൌ
߱
ܿ ඨ

߳ଵ߳ଶ
߳ଵ ൅ ߳ଶ

                                                                                         ሺ2.20aሻ 

݇௫ଵ,ଶଶ ൌ ߳ଵ,ଶ ቀ
߱
ܿ ቁ

ଶ
െ ݇௭ଶ                                                                               ሺ2.20bሻ 

Here and throughout Chapter 2.5.4, the complex dielectric functions of metal and 

dielectric are denoted as ߳ଵ and ߳ଶ, respectively.  

Figure 2.9, taken from Ref. [41], shows the SPPs dispersion relation, using 

equation (2.20), for a Ag-SiO2 interface. A cross section of the geometry is shown as an 

inset. Significant dispersion differences are revealed between panel (a) where the metal 

silver is described by a free electron gas model and panel (b) by the empirical optical 

constants of Johnson and Christy [31].  

Panel (a), plotted with metal silver described by Drude model without damping, 

߳ଵሺ߱ሻ ൌ 1 െ ߱௣ଶ ߱ଶ⁄  with ߱௣ ൌ 8.85 ൈ 10ଵହsିଵ, shows the existence of a “plasmon 

bandgap” between the surface plasmon frequency ߱௦௣ and the plasma frequency ߱௣. The 

surface plasmon frequency ߱௦௣ is defined as the wavelength where ߳ଵ′ ൌ െ߳ଶ, thus 

߱௦௣ ൌ ߱௣ ඥ1 ൅ ⁄ଶߝ . For energies inside this bandgap, the plasmon modes are forbidden 

with purely imaginary wave vectors (dotted line). Outside this plasmon bandgap, the 

allowed plasmon modes (solid lines) consist of the radiative plasmon-polariton (RPP) 

mode at higher energies (߱ ൐ ߱௣) and the typical bound SPP mode at lower energies 

(߱ ൏ ߱௦௣). At small wave vectors corresponding to low frequencies, the bound SPP 

dispersion is asymptotically close to the light line, and the waves extend over many 

wavelengths into the dielectric region while negligible penetration into the conductor 

leading to highly delocalized fields. Thus SPPS at this regime are known as Sommerfeld- 
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Zenneck waves. Its characteristics are described by point D in Table 2.1. and Fig. 2.3.  

 

 

 

 

At large wave vectors, the SPP dispersion is asymptotically close to . The 

longitudinal wave vector  approaches infinity and the group velocity  (

Fig. 2.9 (Take from Ref. [41]) Dispersion relations of SPPs at a single, flat Ag-

SiO2 interface computed using: (a) a free electron gas dispersion model, (b) the 

empirical optical constants of Johnson and Christy. The SiO2 light line (gray) is 

included for reference.  

 

 

Sommerfeld-Zenneck waves 

Surface plasmon 

  

 

 

Radiative Mode (RPP) 
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݀߱ ݀݇௭⁄ ) as the frequency approaches ߱௦௣. SPPs at this regime are electro static in 

character, and are thus known as the surface plasmon [42].  

In contrast to panel (a), panel (b), plotted using the real metal including both free-

electron and interband damping, shows that plamson modes are allowed throughout the 

entire frequency range shown. RPP mode is observed at energies satisfying the relation 

߳ଵ′′ ൐ ห߳ଵ′ห . The SPP wave vector approaches the light line at low energies and 

terminates at a finite limit at ߱௦௣. For energies between the SPP and RPP modes, a mode 

with negative phase velocities is observed. This mode is labeled as a transition mode 

between the SPP and RPP modes.    

The bound nature of SPP modes result in their dispersion curves lying to the right 

of the light line of dielectric. Thus, the momentum-mismatching between light and SPPs 

of the same frequency must be bridged by special techniques such as prism coupling or 

grating, and etc., which will be discussed in Chapter 2.5.4. The trade-off between the 

localization and loss is observed. The better the confinement, the lower the propagation 

length. More details can be found in Ref. [41]. 

 

2.5.2 SPPs in Insulator-Metal-Insulator Waveguide 

In a multilayer waveguide structures consisting of alternating conducting and 

dielectric thin films, the bound SPPs sustained at each interface may interact with others 

forming coupled SP modes when the separation between adjacent interfaces is 

comparable to or smaller than the penetration depth of the single interface mode. As a 

block to understand the basic properties of coupled SPPs, two specific three-layer 

structures, an insulator-metal-insulator (IMI) waveguide as depicted in Fig. 2.10 and a 
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2.10 (b), exhibiting symmetric ܪ௬ field distribution (S mode). Their dispersion relations 

take the following forms, respectively, [41]: 

Low-energy, antisymmetric mode (A): 

ଵ݇௫ଶߝ ൅ ଶ݇௫ଵcothߝ ൬
െ݅݇௫ଵ݀

2 ൰ ൌ 0                                                             ሺ2.21ሻ 

High-energy, symmetric mode (S): 

ଵ݇௫ଶߝ   ൅ ଶ݇௫ଵtanhߝ ቀ
ି௜௞ೣభௗ

ଶ
ቁ ൌ 0                                                             ሺ2.22ሻ   

where  ݇௫ଵ and ݇௫ଶ are defined by Eq. (2.20b). 

 

 
 
 

Using (2.21) and (2.22) as well as the empirical Ag optical constants of Johnson 

and Christy, the dispersion curves for SiO2-Ag-SiO2 IMI structure with various metal 

݇௭ሺ݊݉ିଵሻ

Fig. 2.11 Dispersion for the SiO2-Ag-SiO2 geometry for various Ag thicknesses (12, 
20, 35, and 50 nm) using silver optical constants of Johnson and Christy. (a) Low-
energy, antisymmetric mode (A); (b) High-energy, symmetric mode(S) [41]. 
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film thicknesses [41] are shown in Fig. 2.11. Similar to SPPs sustained at single metal-

dielectric interface, the IMI dispersion relations also consists of SPP mode, RPP  mode, 

and a transition mode with negative phase velocities lying between the SPP and RPP 

modes. For the A mode in panel (a), at a given frequency, the bound SPP mode is pushed 

toward larger wave vectors as film thickness decreases. A maximum finite wave vector is 

reached at the frequency ߱௦௣. A forbidden band exists between SPP and RPP branches. 

For the S mode in panel (b), the bound SPPS mode, in contrast to the flattening of A 

mode, is getting stiffer with smaller wave vector at the same frequency with decreasing 

film thickness. The SPP doesn’t asymptote to ߱௦௣. Before bending back to the transition 

mode, the maximum finite wave vector is reached at energy higher than ߱௦௣ as the film 

thickness decreases.  

The longitudinal electric field component ܧ௭, given by ߲ܪ௬ ⁄ݔ߲ , is the dominant 

electric field of SPs and has opposite symmetry to that of field Hy. In contrast to the low-

energy A mode, the high-energy S mode exhibits a longitudinal electric field node in the 

IMI waveguide median plane and significantly lower energy density magnitudes at the 

metal-dielectric interface. Thus the S mode has propagation loss one to two orders 

magnitude lower than the A mode and has been named as long-range surface plasmon 

(LRSP) [44]. 

The comprehensive behaviors, including dispersion, propagation, field skin depth 

and energy density, of mode A and S with various film thickness have been investigated 

in Ref. [41]. With decreasing film thickness, the A and S modes exhibit opposite 

behaviors with respect to the propagation constant (this has been described above), the 

attenuation and the skin depth into the dielectric (defined as the 1/e decay length of the 
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SP electric field into the dielectric) — the bound S mode shows increasing propagation 

length, because of less and less penetration of the ܧ௭ field component into the metal, 

decreasing wave vector and increasing skin depth into the dielectric. Conversely, the 

bound A mode exhibits decreasing propagation length, because of more and more field 

confinement in the metal, increasing wave vector and decreasing skin depth into the 

dielectric. For both the A and S modes, the propagation distances generally decrease with 

increasing SP momentum and the dielectric energy density generally decreases with 

decreasing film thickness. The energy density extends well into the dielectric for the 

symmetric mode while fall fairly quickly for the antisymmetric mode.  

 In a symmetric IMI geometry, both bound S and A modes do not show a cutoff 

thickness. While for a thin metal film embedded in an asymmetric environment, much 

more complicated situation occurs and will not be described here. The detailed results can 

be found in Ref. [43]. 

 

2.5.3 SPP Gap Modes in Semi-infinite Metal-Insulator-Metal Waveguide 

In IMI waveguides, there exists a trade-off between localization and loss of 

plasmon modes — the long-range waveguiding based on the LRSP mode sustained by 

thin IMI waveguides (corresponding to ݀ ൏ 20nm) is accompanied by weak confinement 

with the field evanescent tail extending over multiple wavelengths into the dielectric 

region. For example, for LRSP mode of a thin Ag film (~10nm) excited at 

telecommunications frequencies (~1.5µm), the electric field skin depths can exceed 5μm 

[41, 43]. Thus subwavelength confinement cannot be achieved. The low confinement of 

IMI geometry fundamentally limits the packing density of IMI waveguides [45] and 
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therefore makes IMI structures unsuitable for designing subwavelength photonic and 

plasmonic structures.  

In contrast, for metal-insulator-metal (MIM) geometry, the SPP mode 

confinement is determined by field decay length into the metallic regions. For Ag-SiO2 

interface, the SPP skin depth into the metal remains roughly constant at ~20nm for 

wavelengths beyond the plasmon resonance [41]. Therefore, subwavelength confinement 

and potential high packing density of MIM waveguides can be achieved with 

subwavelength-sized dielectric core. In terms of creating highly integrated subwavelength 

plasmonic structures, MIM geometry has been proposed as an alternative to the low-

confined IMI waveguide structure from two points of view െ (i) MIM SPs waveguides 

offer higher confinement factors and smaller pitch size between adjacent waveguides 

[45]. For example, at working wavelength ߣ ൌ 1.5 µm, Al-based MIM structures meet 

the requirements of 700nm pitch between adjacent waveguide cores and a 50 µm-

propagation length; (ii) MIM 90◦ bends and splitters can potentially be realized with no 

additional losses over a wide frequency range [46]. 

A schematic of semi-infinite MIM waveguide geometry [47], an insulator core 

layer of thickness d centered at ݔ ൌ 0 surrounded by two metallic half-spaces, is shown 

in Fig. 2.12. The waves propagate along the positive ݖ direction. The propagating EM 

modes are confined in the subwavelength dielectric core in the form of a coupled SP 

modes supported by the metal-insulator boundaries. As the plasmon mode splitting in 

IMI waveguides, MIM can also support two SPP modes — a high-energy, antisymmetric 

field mode shown in panel (a) and a low-energy, symmetric field mode shown in  panel 

(b) [47-49]. 
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plasmon frequency ߱௦௣, and then cycle through the higher energy modes [41]. However, 

unlike IMI structures whose SP momentum always exceed photon momentum, the MIM 

A mode dispersion curves cross the single-interface (thick insulator film) limit with the 

low-energy portions lying above the limit. In addition, the low-energy asymptotic 

behavior of the A mode dispersion curve indicates low effective index of this mode, with 

thick films (݀~50 nm) achieving effective indices as low as ݊=0.15. 

 

 

݇௭ሺ݊݉ିଵሻ 

݇௭ሺ݊݉ିଵሻ 

Fig. 2.13 TM dispersion relations of MIM (Ag-SiO2-Ag) structures for various 
oxide thicknesses (12, 20, 35, and 50 nm) using silver optical constants of Johnson 
and Christy. Dispersion for a Ag-SiO2 interface is plotted in black as reference. (a) 
High-energy antisymmetric (A) mode; (b) Low-energy symmetric (S) mode.  
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In contrast to IMI high-energy symmetric mode whose dispersion gets stiffened to 

approach the light line for thinner films, the MIM low-energy symmetric (S) mode 

dispersion, shown in panel (b), behaving like that of the low-energy IMI antisymmetric 

mode, gets flattened away from the single-interface limiting case, i.e. with larger wave 

vectors achieved at lower energies for thinner films. Unlike MIM antisymmetric mode 

which does not have a cut-off gap size, the MIM symmetric mode exhibits a cut-off for 

core films thinner than 20 nm, terminating on energies below ωୱ୮.  

 

 

2.5.4 Optical Excitation of Surface Plasmon Polaritons  

To excite a SPPs propagating along a flat metal-dielectric interface by a TM-

polarized incident light beam from the adjacent dielectric medium, the incident light 

parallel wave vector component must equal the SPP wave vector, which is defined by 

݇௭ ൌ ሺ߱ ܿ⁄ ሻඥ߳ଵ߳ଶ ሺ߳ଵ ൅ ߳ଶሻ⁄  (See equation (2.20a)). As seen from the dispersion relation 

shown in Fig. 2.9(b), the bound nature of SPP mode results in its dispersion curve lying 

to the right of the light line of the dielectric medium. Thus, SPPs can’t be excited directly 

by light beam unless special phase-matching techniques, such as prism coupling or 

grating, and etc., are employed [40]. While the SPPs can also be excited by end-fire 

coupling technique, which is based on spatial-mode matching instead of phase-matching. 

This coupling scheme will not be discussed. The phase mismatch between the photon and 

SPPs can be bridged by using photon tunneling in the total internal reflection (TIR) 

geometry (Kretschmann and Otto configurations), or diffraction effects, or near-field 

effect, which are schematically shown in Fig. 2.14. 
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Fig. 2.14 SPPs excitation configurations: (a) Kretschmann geometry, (b) two-
layer Kretschmann geometry, (c) Otto geometry, (d) excitation with a near-field 
scanning optical microscopy (NSOM) probe, (e) diffraction on a grating, (f) 
diffraction on surface features, and (g) excitation with highly focused optical 
beams. Note: subplots (a)-(e) are taken from Ref. [50] and subplot (f) is gotten 
from Ref. [51]. 

 

(i) Prism Coupling 

The prism coupling technique for SPPs excitation is also known as ATR. It 

involves photon tunneling to the metal-dielectric interface where SPP excitation occurs. 

Three different geometries for prism coupling are depicted in subplots (a)-(c). 

The most common approach is the Kretschmann configuration (Fig. 2.14a) [52], 

in which a thin metal film is sandwiched between a higher-index insulator, normally in 

z
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(g) 



44 
 

the form of prism ൫݊௣௥௜௦௠൯, and a lower-index insulator ሺ݊௖ሻ. For simplicity, we assume 

the lower-index insulator to be free space ሺ݊௖ ൌ 1ሻ. The metal film is illuminated 

through the prim at an incidence angle of ߠ greater than the critical angle for TIR. The 

photon momentum is increased in the optically denser medium. Thus the in-plane 

momentum ݇௭ ൌ ݇଴݊௣௥௜௦௠sinߠ  is sufficient to excite SPPs at the lower-index dielectric-

metal interface, in current case at the air-metal interface. Therefore the dashed portion of 

the SPPs dispersion at the air-metal interface, possessing wave vectors between the 

respective light lines of air and the prism, can be excited (See Fig. 2.15). At the phase-

matching incidence angle ߠௌ௉ at which the photon in-plane wave vector equals the wave 

vector of SPP at the air-metal interface, resonant light tunnels through the metal film to 

excite SPP at the air-metal interface. The excitation of SPPs is accompanied with a 

minimum in the reflected beam intensity. The SPP at the prism-metal interface, however, 

can’t be excited since its SPP dispersion lies outside the prism light cone (See Fig. 2.15). 

 In a two-layer Kretschmann geometry (Fig. 2.14b), we still assume ݊௖ ൌ 1, and 

an additional dielectric layer with a refractive index ሺ݊௅ሻ smaller than ݊௣௥௜௦௠ is inserted 

between the prism and the metal film, the photon tunnels through this additional 

dielectric layer to excite SPP at the inner metal interface. Therefore, both SPPs at the 

metal film interface pair can be excited at different angles.  

In the Otto configuration (Fig. 2.14c) [53], in which the prism and the metal film 

are separated by a thin air gap, TIR takes place at the prism-air interface and the 

evanescent field tunnels through the air gap to provide resonant excitation of SPP at the 

inner air-metal interface. The Otto configuration is preferable in two cases െ (i) When 
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the Kretschmann geometry is not suitable for thick metal films; (ii) When direct contact 

with the metal surface is undesirable.  

The prism coupling technique can also be used for exciting thin metal film 

coupled SPP mode pair. Its usage for finite MIM SPP excitation will be discussed in 

Chapter 4. In the two-layer Kretschmann geometry, by using an appropriate index-

matching fluid (its index matchs to ), as the layer between the prism and metal, both 

the long-ranging low-energy symmetric mode and the high-energy antisymmetric mode 

of higher attenuation have been excited [54].    

 

prismp   1

21 pcp  

Metal/air interface

Metal/prism interface

Leaky Modes

 

Fig. 2.15 Prism coupling and SPP dispersions at the interfaces of a thin metal film 

bounded with a vacuum ( ) and a prism ( ). Also plotted are 

the vacuum and prism light lines (dashed lines) and the corresponding surface 

plasmon frequencies (dotted lines). The dashed portion of SPP at the metal-air 

interface, lying to the right of the vacuum light line while inside the prism light 

cone, is accessible. This excited SPP localizes at the metal-air interface and leaks 

energy into the prism. The metal used for plots is silver with 

 and a thickness of 30 nm. Note: this figure is modified from Fig. 4 in 

Ref. [50]. 
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In all above mentioned prism coupling geometries, the excited SPPs, with wave 

vectors lying within the prism light cone (Fig. 2.15), are inherently leaky waves. The 

light is coupled into the SPP mode through the prism, and at the same time light from the 

SPP mode is also coupled out through the prism. Therefore, in addition to the inherent 

metal energy dissipation, the leaky waves also lose their energy by leakage of radiation 

into the prism. The minimum reflected beam intensity is resulted from the destructive 

interference between the SPP leaky radiation and the reflected part of the excitation 

beam.   

 

(ii) Near Field Excitation 

In contrast to the macroscopic SPPs exciation schemes such as prsim or grating 

coupling, near-field optical microscopy acts as a point source to provide local excitation 

of SPPs over an subwavelength area [55]. In the typical near-field SPPs excitation 

configuration sketched in Fig. 2.14(d), the illumination light from a small probe tip of 

aperture size ܽ (ܽ ػ ௦௣௣ߣ ػ ݇ ଴) has wave vectorsߣ ؼ ݇௦௣௣ ؼ ݇଴, thus allowing a near-

field coupling of the phase-matched subwavelength aperture diffracted light into SPPs. 

Using such probes in NSOM, SPPs at different positions of the metal surface can be 

locally excited.  

 

(iii)  Grating Coupling 

Grating coupling, formed by patterning the metal surface with periodic grooves or 

holes, uses the diffraction effects to overcome the phase-mismatching problem in SPP 
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excitation. For the simple 1D grating of grooves depicted in Fig. 2.15 (e), the diffracted 

light components satisfying the phase-matching condition  

݇௦௣௣ ൌ ݇଴݊௖ߠ݊݅ݏ േ ݉Λ                                                                               ሺ2.23ሻ 

will be coupled to SPPs, while at the same time the reverse out-coupling process also 

occurs: the propagating SPPs along a surface with grating modulation couple back to 

light and then radiate. In (2.23), ݇଴is the vacuum wave number, ݊௖ is the refractive index 

of the medium through which the metal film is illuminated, ߠ is the illumination beam 

incidence angle with respect to the normal direction, ݉ ൌ 1, 2, Λ , ڮ3 ൌ 2π ܾ⁄  is the 

reciprocal vector of the grating, and ܾ is the grating period. Similar to prism coupling, the 

excitation of SPP is also associated with a minimum reflected light intensity. 

 

(iv) Excitation Using Surface Features Diffraction  

On a randomly rough surface, in the near-field region the diffracted light 

components possess all wave vectors and thus SPPs can be excited by conventional 

illumination without any special arrangements. Unlike using the diffraction grating, this 

is a non-resonant excitation. Similarly, SPPs can also be optically excited through light 

diffraction from surface features (Fig. 2.14 (f)) [56]. 

 

(v) Excitation Using Highly Focused Optical Beams  

Figure 2.14 (g) sketches a typical setup of using highly focused optical beams for 

SPP excitation [57] in a similar manner to the Kretschmann configuration. Instead of 

using prism to satisfy the TIR and SPP resonance condition, a high-numerical index-

matched oil-immersion microscope objective is brought into contact with the glass 
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substrate, on which deposited a thin metal film. Owing to the high numerical aperture of 

the lens, the broad angular spread of the focused illumination beam is large enough to 

have the resonance wave vector for SPP excitation at the metal-air interface. The highly 

focused illumination beam provides localized SPPs excitation over a diffraction–limited 

area. 
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Chapter 3 Bound and Leaky Modes of Planar Finite Metal-Insulator-

Metal Plasmonic Waveguides 

3.1 Numerical Method  

The complex propagation constants as solutions of multilayer planar waveguide 

eigenvalue equation cannot be solved analytically. The TM modal solutions of finite 

planar MIM geometry are obtained numerically by using the standard thin film transfer 

matrix formalism (See Appendix C) with Newton-Raphson root searching algorithm (See 

Appendix D) in the complex wave vector plane. 

 

3.2 Code Validation  

Implementation of the above mentioned numerical method, combining the 

transfer matrix formalism with Newton-Raphson root searching algorithm, has been 

validated to an accuracy of 10-9 against previously published results for lossless and lossy 

bound and leaky waveguides as well as plasmonic waveguides [1-6]. In addition, its 

validation for planar waveguides with incorporation of active medium will be presented 

in Chapter 5.  

 

3.3 SPPs in Finite Planar MIM Plasmonic Waveguides 

The basics of SPPs sustained at a single interface between semi-infinite metal and 

dielectric media, and in IMI and infinite MIM waveguides, have been reviewed in 

Chapter 2.5. In terms of subwavelength confinement and creating highly integrated 
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plasmonic structures, MIM geometry has been proposed as an alternative to the low-

confined IMI structure. However, previous studies on MIM structures examined either 

the MIM gap mode in the presence of semi-infinite metal half-spaces [5], a subset of the 

modes of the finite MIM structure [7, 8] or dealt with full dispersion relation for multiple-

film geometries only under the assumption of free-electron metals [9]. Four SP modes 

exist for the finite thickness MIM structure due to splitting of the coupled plasmon modes 

for two interacting thin metal films. The complete SP mode set for finite planar MIM 

waveguides with real metals will be presented in this chapter, revealing both bound and 

leaky modes. For the leaky mode, a spectral gap forms at the light line and the mode 

becomes an “antenna” mode in the radiation region. This antenna mode allows angle-

dependent free-space interaction with plasmonic devices and suggests steerable input and 

output coupling functions. The trade-offs posed by propagation lengths and confinement 

factors and their optimization for three bound SP modes are also described. 

Due to the nature of SP modes excited on planar metal-insulator structures, only 

TM modes are discussed here. As described in Chapter 2.5, the modal symmetry 

properties (either symmetric-S or antisymmetric- A) used to label the modes are defined 

by the symmetry of the tangential magnetic field with respect to the waveguide median 

plane. 

 

3.3.1 Dispersion and Spatial Mode Profiles  

For simplicity, the symmetric MIM Ag-air-Ag waveguide embedded in free space 

was numerically analyzed. The waveguide is centered at ݔ ൌ 0 with the ݔ-axis normal to 
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the interfaces and wave propagation is in the positive ݖ direction. The dielectric constant 

of silver is fit to experimental data over a wide spectral range (0.1 to 6 eV) by a Lorentz–

Drude model, including both the intraband Drude free-electron effects and interband 

Lorentz bound-electron effects [10]. The details have been explicitly described in chapter 

2.4. The wavelength range showing anomalous dispersion behavior, where ݇ሺ߱ሻ 

decreases with increasing frequency, will not be covered here. The real part of 

longitudinal propagation constants, Reሼ݇௭ሽ, and field profiles of supported modes in 

MIM structure with insulator air core thickness ݀ூ ൌ 300 nm and metal Ag thickness 

݀ெ ൌ 50 nm are illustrated in Fig. 3.1. The corresponding modal loss (the imaginary part 

of the propagation constant) and propagation length will be discussed in chapter 3.3.2. 

As reviewed in chapter 2.5.2, the dispersion relation for thin metal film surface 

plasmons has an antisymmetric (A) low-energy (L) branch and a symmetric (S) high-

energy (H) branch. When two identical metal films interact in the MIM structure, the thin 

metal film SP modes undergo mode splitting, lifting their degeneracy. Therefore, two 

mode pairs giving a total of four non-degenerate SP modes should be observed for two 

interacting metal films separated by a thin insulator layer. 

As shown in Fig. 3.1(A), transition modes with negative phase velocities [11] 

exist between 3.55 - 3.84 eV and above that the radiative-coupled plasmon modes are 

observed. The transition modes originate from deviations in the metal from free-electron 

dielectric functions and will not be discussed further.  
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Fig. 3.1 TM dispersion relations (A) and characteristic tangential field profiles (B) for a 
symmetric Ag-air-Ag planar MIM structure bounded by free space with insulator 
thickness ݀ூ ൌ 300 nm and metal thickness ݀ெ ൌ 50 nm. (B) illustrates fields at vacuum 
wavelengths of 400 nm (black) and 600 nm (gray). Panels (a)-(e) plot the tangential 
magnetic field (ܪ௬) for the conventional metal-clad waveguide mode, and modes SL, AL, 
SH, and AH respectively. Panel (f) shows the tangential electric fields (ܧ௭) of mode AH. 
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Along with conventional metal-clad waveguide mode(s) at higher frequencies, 

four SP modes are observed for finite MIM structures, and are labeled SL, AL, SH and AH 

according to their field profiles shown in panels (b) - (e) in Fig. 3.1(B). Labels S/A 

denote the symmetric/antisymmetric field distribution and subscript letter L/H associate 

the mode as originating from the low/high energy branch of the single metal film SPs. 

The first conventional metal-clad waveguide mode (solid light gray in Fig. 

3.1(A)) only exists above a cut-off energy around 2.45 eV (~ 500 nm), where the photon 

wavelength is shorter than the round-trip optical path inside MIM structure. In each SP 

mode pair, the symmetric mode always has lower energy comparing to the antisymmetric 

mode with the same wave vector. The three lowest energy modes (SL, AL and SH) always 

lie to the right side of the light line and remain nonradiative SP modes throughout the 

whole wavelength range below 3.55 eV. The highest energy mode AH is of particular 

interest since its dispersion relation crosses the light line and a significant portion at 

longer wavelengths lies above the free space light line, which normally separates 

nonradiative (bound) and radiative (leaky) regions. Consequently, the MIM waveguide 

will interact with free space without prism and grating via AH mode leaky waves. 

Detailed properties of the AH mode leaky wave as well as the spectral gap [12] (Fig. 

3.1(a) inset) that exists between the bound and leaky regions will be presented in Chapter 

3.3.3. 

The magnitude of the fields inside the insulator is of interest for possible 

nonlinear applications of MIM SP waveguides. It is observed that the lowest (SL) and 

highest (AH) energy mode both have field maxima associated with the largest amount of 

charge located on the internal interface pair while in contrast, the AL and SH modes have 
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the most charge localized on the two external interfaces. Furthermore, panel (f) of Fig. 

3.1(B) shows the peak localization of the ܧ௭ longitudinal electric field component 

associated with the collective electron oscillations transitioning from the external 

interfaces to the insulator as the AH mode transitions from bound to leaky. For all modes, 

field amplitudes inside the metal films exponentially decay away from interfacial 

maximums, with more rapid decay in metal field values occurring at longer wavelengths 

owing to shorter skin depths. Consequently, the field strength inside the insulator 

decreases with increasing wavelength for the AL and SH modes where the field peaks are 

localized on the external metal-insulator interfaces. 

Derived from Maxwell’s equations, the transverse electric field ܧ௫, given by 

݇௭ܪ௬, has the same symmetry as that of ܪ௬, while in contrast the longitudinal electric 

field ܧ௭, given by ߲ܪ௬ ⁄ݔ߲  , has the opposite symmetry to that of ܪ௬. The ܧ௫ component 

is the dominant electric field. Thus the transverse electric field ܧ௫ inside the insulator is 

of particular interest if nonlinear optical effects are to occur in the MIM waveguides. The 

surface charge at the metal surfaces has the following symmetry properties as ܧ௫. The 

charge distribution of the MIM coupled SP modes are sketched in Fig. 3.2. For the low-

frequency mode pair SL and AL, the individual metal films have the same signed charge 

on their inner and outer interfaces while the high-frequency mode pair SH and AH have 

oppositely signed charges. The symmetric mode pair SL and SH have oppositely signed 

charges on their internal interfaces while for modes AL and AH, the reverse occurs. The 

largest amount of oppositely signed charge on the internal interfaces and hence the 

largest internal insulator fields, occurs for mode SL, making it the best candidate for 

nonlinear applications. 



60 
 

 

 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 3.3 shows the dispersion behavior for MIM structures as a function of 

insulator thickness (Fig. 3.3(a)) and metal film thickness (Fig. 3.3(b)). The separation 

between the symmetric and antisymmetric modes for both the low energy and high 

energy mode pair increases with decreasing spacing between the two metal films. The SH 

and SL modes flatten away from the limiting IMI (݀ெ= 50 nm) SH and AL modes, 

respectively as the insulator thickness is reduced, in contrast to the stiffening of the AL 

mode. As the metal thickness decreases, the SL and AL modes flatten away from the 

limiting case semi-infinite MIM (݀ூ=300 nm) SL and AH modes, respectively, while the 

SH mode stiffens with respect to the limiting case semi-infinite MIM SL mode. The AH 

mode exhibits more complicated variation with metal and insulator thickness that 

depends on considering the bound and leaky regions. The spectral gap, which will be 

discussed in Chapter 3.3.3, decreases with increasing metal and insulator thicknesses. 

The leaky regions move to lower energy with increasing insulator thickness. 
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Fig. 3.2 Surface charge distributions associated with the four coupled 
SP modes in a finite planar MIM waveguide.  
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Fig. 3.3 MIM dispersion as a function of insulator thickness (a) and metal film thickness 
(b). The arrow indicates increasing thickness. (a): MIM geometry with metal thickness 
݀ெ= 50 nm and insulator thickness ݀ூ=20, 50, 100 and 200 nm (for modes SL, AL and SH) 
and ݀ூ=100, 200 and 300 nm (for mode AH). Dispersion relations for air-Ag (50 nm)-air 
IMI waveguide, low energy antisymmetric modes (top two panels) and high energy 
symmetric modes (bottom two panels), are plotted in solid black lines as reference. (b): 
MIM geometry with insulator thickness ݀ூ=300 nm and metal thickness ݀ெ=20, 35, and 
50 nm. Dispersion relations for semi-infinite MIM waveguide, low energy symmetric 
modes (left two panels) and high energy antisymmetric modes (right two panels) are also 
plotted in solid black lines as reference. 
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3.3.2 Propagation and Confinement Factor 

The propagation length  ܮ and the confinement factor  ߁ are two important 

parameters describing waveguide performance. The propagation length is governed by 

the modal loss and is defined as the distance where the traveling wave power magnitude 

decays by 1 ݁⁄ . It is given by ܮ ൌ 1 ሾ2Imሼ݇௭ሽሿ⁄ , where ݇௭ is the longitudinal propagation 

constant. Following the definition of confinement factor in dielectric waveguides, the 

confinement factor ߁  represents the ratio of power propagating in the central insulator 

layer to the total power in the MIM waveguide [13] and is defined as follows:  

߁ ൌ
׬ Re൫࢞ࡱ ൈ ࢟ࡴ

ூ௡௦௨௟௔௧௢௥ ௅௔௬௘௥ݔ൯݀כ

׬ Re൫࢞ࡱ ൈ ࢟ࡴ
ஶݔ൯݀כ

ିஶ

                                                          ሺ3.1ሻ 

The wavelength-dependent propagation length and confinement factor of the 

MIM waveguide SP modes plotted in Fig. 3.1 are shown in Fig. 3.4. For the bound 

modes, longer propagation lengths occur at longer wavelengths where the dispersion is 

close to linear. Mode SH possesses the longest and mode SL the shortest propagation 

length. The long propagation length of modes AL and SH come at the expense of a low 

confinement factor. For modes AL and SH, the confinement factor decreases at longer 

wavelengths in contrast to mode SL. Figure 3.1(B) shows the reason for this as at longer 

wavelengths, the fields of these two modes are localized on external interfaces and 

exponentially decay more rapidly inside the metal film owing to shorter skin depths, 

giving lower modal loss but also smaller fields inside the insulator. Since the confinement 

factors for the AL and SH modes are so low, the SL mode, with both moderate propagation 

lengths and large confinement factors, becomes attractive for applications at long 

wavelength. Not shown in Fig. 3.4 are the characteristics of the 1st dielectric-core, 
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metallic-cladding waveguide mode with relatively lower modal loss than the SL/AL SP 

mode pair but with a high-energy mode cut-off and high modal dispersion. For mode AH, 

the leaky portion has a shorter propagation length compared to any of the bound modes 

due to radiation loss and the material losses inside the metal. Upon closer scrutiny, the 

sharp decrease in propagation length occurring around 700 nm, is a transition from the 

shorter wavelength, antenna region to the longer wavelength, reactive region, and will be 

discussed in Chapter 3.3.3. 
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Fig. 3.4 Wavelength-dependent propagation length and confinement factor 
for a MIM structure of dI = 300 nm and dM = 50 nm. It has the same 
waveguide structure and mode color assignment as that in Fig. 3.1. 
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Fig. 3.5 Propagation length ܮ (black lines and symbols) and confinement factor  ߁
(gray lines and symbols) for the MIM plasmonic waveguide at a free-space 
wavelength of 500 nm as a function of (a) metal ((b) insulator) thickness with 
fixed (a) insulator thickness ݀ூ=100 nm ((b) metal thickness, ݀ெ=20 nm). 
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The behaviors of ܮ and Γ in MIM plasmonic waveguides as a function of metal 

and insulator thickness are summarized in Fig. 3.5. Thicker metal-insulator layers favor 

the SL/SH modes, respectively, with longer propagation distances as well as higher 

confinement factors. Maximum sub-wavelength confinement, far beyond that achievable 

in an IMI structure, is obtained in mode SL at the cost of moderately higher loss. Mode SH 

is characterized by longer propagation distances but only moderate confinement factors. 

It is also observed that the ܮ and ߁ of the MIM configuration asymptotically approaches 

that of the limiting IMI/semi-infinite MIM structure with increasing insulator-metal 

thickness, respectively, as expected. 

Compared with the AL and SL mode pair, the SH mode deviates from IMI 

characteristics over a larger range of insulator thicknesses. This reflects the fact that in 

the IMI high-energy mode branch, the SP field penetrates further into the adjacent 

dielectric. Waveguide mode AL has extremely small confinement factors for MIM 

structures with metals thicker than about 50 nm and hence is probably not suitable in any 

application requiring confinement. 

 

3.3.3 Leaky Wave Analysis 

Figure 3.1 reveals that the highest energy MIM SP mode AH consists of non-

radiative (bound) and radiative (leaky) portions separated by a spectral gap at the light 

line. Detailed properties of the AH mode leaky wave as well as the spectral gap (See Fig. 

3.1(a) inset) will be discussed in this section.  
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The eigenmodes of 1D planar waveguide were discussed in Chapter 2.3.1 and 

their properties are summarized in Table 2.2. It is shown that the discrete leaky modes, 

possessing exponentially increasing fields (referred to as improper field profiles) in one 

or both of the bounding media (as opposed to bound modes with exponentially decaying 

proper field profiles away from the structure), are mathematically valid but “improper” 

solutions of the same eigenvalue problem used to find the guided modes. However 

improper solutions may be physically and experimentally real since we can describe 

leaky modes as a linear combination of radiation modes over a finite space adjacent to the 

waveguide and the leaky wave propagation constant can replace a continuous spectrum of 

radiation mode propagation constants [14-18].  

As discussed in Chapter 2.3.2, the character of the eigenmode changes between 

proper and improper to make every “mode” analytically continuous in the complex 

frequency plane with every other “mode” [12].  Whether a proper/improper solution is 

physically real is determined by the requirement that the real part of effective modal 

index is greater/less than the index of outmost bounding media. Spectral gaps in the 

dispersion curve occur when a mode changes from bound to leaky upon crossing the light 

line.  

The above mentioned dispersion behavior of proper and improper solutions and 

the occurrence of spectral gap were clearly shown in Fig. 2.6 and explained in Chapter 

2.3.2.   

Similarly, the MIM AH mode crosses the light line thus changing in character 

from proper bound mode to improper leaky mode and the transition at the light line is 

characterized by a spectral gap.  The occurence of the spectral gap is explained as 
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follows: In the MIM structure, there are mathematically two complex solutions for the AH 

mode – one proper and one improper. Individually, these complex solutions are 

continuously upon crossing the light line. While the bound mode (proper solution) 

becomes unphysical above the light line because the modal index is less than the 

outermost media index, and the leaky mode (improper solution) becomes unphysical 

below the light line because the modal index is greater than that of the outermost media. 

Consequently, there exists a spectral gap in the dispersion curve as the mode changes 

from bound to leaky upon crossing the light line. 

 

(i) Leaky Mode Regimes: Antenna and Reactive  

For MIM AH mode, there is a significant portion at longer wavelengths lying 

above the light line. Above the light line, the mode is a physically leaky mode composed 

of two distinct regions: an antenna mode region defined by Reሼ݇௭ሽ ൐ Imሼ݇௭ሽ, and 

characterized by the propagation of mode energy out of the waveguide, and a reactive 

mode region defined by Reሼ݇௭ሽ ൏ Imሼ݇௭ሽ [19]. The imaginary part of the transverse 

wave vector results in field growth outside the waveguide, but because the propagation 

constant is predominantly imaginary, radiation loss is limited. 

 

(ii) Leaky Wave Radiation Pattern  

Following the analysis of radiative modes in thin metal films presented in Ref. 

[6], the schematic of a radiative MIM SP wave, which decays along the propagation 

direction ൅ݖ axis with an exponentially increasing field in a plane normal to the surface, 

is shown in Fig. 3.6. For any plane ݔ ൏ 0 where leakage occurs, the leaky wave radiates 
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at angle θ into the outermost medium and the field amplitude in the outermost media 

grows exponentially for only a finite distance , which is a function of   and  [6]. The 

leaky wave may be interpreted to have the characteristics of spatial transients [20]. This 

interpretation requires the wave-front tilt, , away from parallel to the MIM structure 

satisfying the following condition [6] 

 

where  is the longitudinal propagation constant, 

 is the complex transverse propagation constant in the outermost media, n denotes the 

refractive index of the outermost media where the leaky wave exists (for current case 

n=1), and  is the free space wave number.  

 

To find the radiated power, the exponentially increasing local field is replaced by 

an effective appropriately phased equivalent current sheet [6]. The angular dependence of 

the radiated power is expressed as: 

Fig. 3.6 Schematic of a radiative MIM SP wave which exponentially 

decays along the  axis with an exponentially growing field along the  

axis. Only one side radiation in  is shown here.    
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|ܲሺߠሻ|ଶ ൌ
sinଶሺߠሻ

൫݇௭′ െ ݊݇଴cosሺߠሻ൯
ଶ ൅ ሺ݇௭′′ሻଶ

                                                     ሺ3.3ሻ 

For this mode, there is a well-defined peak in |ܲሺߠሻ|ଶ at ߠ ൌ cosିଵሺ݇௭′ ݊݇଴⁄ ሻ, with an 

angular spread proportional to ݇௭′′ . The actual radiation pattern as a function of insulator 

and metal thickness are plotted in Fig. 3.7(b). 

As shown in Fig. 3.7(a), the radiation angle increases with increasing wavelength 

until becoming perpendicular to the waveguide interface. The antenna region, always 

occurring at shorter wavelengths relative to the reactive region, shifts to longer 

wavelength with smaller peak radiation tilt as insulator thickness increases. Both the 

insulator and metal thickness have an influence on the antenna mode’s well-defined 

radiation pattern, but practical considerations suggest that better control over the radiation 

pattern is achieved by varying insulator thickness. Narrower radiation lobes are found for 

thicker metal films. This variation of radiation angle with wavelength and insulator 

thickness can be understood in terms of the real part of the propagation constant (݇௭′ ) and 

the imaginary part of the transverse wave vector (݇௭′′) in the free space regions bounding 

the waveguide. Increasing wavelength and decreasing insulator thickness both result in a 

decrease in ݇௭′ , implying an increase of ݇௫′′  and leading to an increase in radiation angle. 

Numerical modeling of one-sided Au-SiO2-Au (30 nm/190 nm/semi-infinite) 

MIM leaky structures shows the presence of the antenna mode in the near-infrared at 

about 750 to 825 nm. 
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Fig. 3.7 MIM leaky wave-front tilt θ (a) and radiation free-space coupling pattern 
at a free-space wavelength of 633nm (b) as a function of insulator and metal 
thickness (݀ூ,ெ). In (a), the transition from purple to black in the plot curves occurs 
at the wavelength where the MIM waveguide modal propagation constant has 
equal real and imaginary values. 
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3.4 Spatial Dispersion Effects on MIM SPPs  

As is known in solid state physics, the dielectric permittivity is not only a function 

of frequency, but also a function of wave-vector. Spatial dispersion, also known as non-

local permittivity, is the dependence of the dielectric permittivity tensor on the wave-

vector. Until now, all former results for SPPs, derived either for single metal-dielectric 

interface, IMI waveguide, or an infinite or finite MIM waveguide structures, are derived 

using local, bulk dielectric functions which only possess temporal dispersion and 

neglecting any effects of spatial dispersion. In principle, only an infinitely extended 

(“bulk”) medium is spatially homogeneous. When optical wave-vectors are comparable 

to optical media characteristic lengths (e.g., lattice spacing, electron mean-free path, and 

Debye radius, etc), non-local effects such as spatial dispersion, surface scattering and 

anomalous skin effect need to be considered. These nonlocal effects cause decreases in 

propagation length and wave vector for infinite MIM structure [21]. Spatial dispersion 

results in a suppression of the bend-back branch above ߱௦௣ (i.e. the transition mode in 

Fig. 2.9(b)) [22].  

In the case of finite MIM structures, as is shown in Chapter 3.3.1, the SL mode 

posses the largest wave-vector among four MIM SPP modes and increases with 

decreasing insulator-metal thickness. When it becomes so large that the plasmonic 

wavelength reduces to comparable or below the mean free path or layer geometric sizes, 

the above mentioned non-local effects will affect its propagation characteristics.  

In this section, a bulk metal dielectric function ߝሺ߱, ࢑ሻ, possessing both the 

temporal and spatial dispersion, is used for deriving the MIM dispersion relations. Other 

non-local effects are not included. In the following numerical simulation, the spatial 
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dispersion effects on dispersion, propagation loss and confinement factor of the SL mode 

of MIM structure with a thin core layer at large wave vectors are examined. 

 For simplicity, a Ag-air-Ag MIM in vacuum is considered. The two metal layers 

are both 20 nm thick. Following equation (E.37) (See Appendix E.4.3), the dielectric 

permittivity of Ag taking account of spatial dispersion effect is given by  

,ሺ߱ߝ ݇ሻ ൌ ∞ߝ െ
߱௣ଶ

߱ሺ߱ ൅ ሻߛ݅ െ 3݇ଶ ிଶߥ 5⁄
                                                     ሺ3.4ሻ 

where 5 =∞ߝ, ߱௣ ൌ ߨ2 · 2.175 ൈ 10ଵହ Hz,  ߛ ൌ 4.35 ൈ 10ଵଶ Hz [23], and ߥி ൌ 1.40 ൈ

10଺ m/s [24].   

When spatial dispersion is taken into account, finding the mode solution turns out 

to be a self-consistent problem. The self-consistent results are once again obtained with 

Newton-Ralphson method.  

The comparison of TM dispersion relation, propagation loss and confinement 

factor for SL mode between using dielectric constant without (dashed lines) and with 

(solid lines) spatial dispersion are illustrated in Fig. 3.8. The results are simulated for core 

layer thickness of 2 nm (blue lines) and 5 nm (red lines).  

It is observed that the spatial dispersion effect yields a reduced wave-vector in 

dispersion curve, an increased propagation loss and confinement factor comparing to 

those using bulk dielectric permittivity without wave-vector dependence. The increase of 

confinement factor is almost negligible. Beyond wavelength 500 nm, the differences in 

dispersion and propagation loss are also negligible.  
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Fig. 3.8 TM dispersion relation (a), propagation loss (b) and confinement factor (c) for 
SL mode by using dielectric constant without (dashed lines) and with (solid lines) 
spatial dispersion. The simulated Ag-air-Ag MIM structures in free space have the 
metal thickness of 20 nm and core layer thickness of 2 nm (blue lines) and 5 nm (red 
lines).  

400 500 600 700 800

0.7

0.8

0.9

 
 

C
on

fin
em

en
t f

ac
to

r 

Wavelength (nm)
 

(b) 

(c) 



74 
 

References 

[1] J. Chilwell and I. Hodgkinson, “Thin-films field-transfer matrix theory of planar 
multilayer waveguides and reflection from prism-loaded waveguides,” J. Opt. 
Soc. Am. A 1, 742 (1984). 
 

[2] E. Anemogiannis and E. N. Glytsis, “Multilayer waveguides: Efficient numerical 
analysis of general structures”, J. Light. Tech. 10, 1344 (1992). 
 

[3] E. Anemogiannis, E. N. Glytsis and T. K. Gaylord, “Determination of guided and 
leaky modes in lossless and lossy planar multilayer optical waveguides: 
Reflection pole method and wavevector density method,” J. Light. Tech. 17, 929 
(1999). 
 

[4] J. Petráček and K. Singh, “Determination of leaky modes in planar mulitlayer 
waveguides,” IEEE Photon. Tech. Lett. 14, 810 (2002). 
 

[5] J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, “Plasmon slot waveguides: 
Towards chip-scale propagation with subwavelength-scale localization,” Phys. 
Rev. B 73, 035407 (2006). 
 

[6] J. J. Burke and G. I. Stegeman, “Surface-polariton-like waves guided by thin, 
lossy metal films,” Phys. Rev. B 33, 5186 (1986). 
 

[7] R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, “Geometries and 
materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. A. 21, 
2442 (2004). 
 

[8] F. Villa, T. Lopez-Rios, and L. E. Regalado, “Electromagnetic modes in metal-
insulator-metal structures,” Phys. Rev. B 63, 165103 (2001). 
 

[9] E. N. Economou, ‘‘Surface plasmons in thin films,’’ Phys. Rev. 182, 539 (1969). 
 

[10] A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, “Optical properties 
of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37, 5271 
(1998). 
 

[11] J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal 
plasmon waveguides: frequency-dependent dispersion, propagation, localization, 
and loss beyond the free electron model,” Phys. Rev. B 72, 075405 (2005). 
 

[12] G. W. Hanson and A. B. Yakovlev, “Investigation of mode interaction on planar 
dielectric waveguides with loss and gain,” Radio Sci. 34, 1349 (1999). 
 



75 
 

[13] P. Berini, ‘‘Plasmon-polariton waves guided by thin lossy metal films of finite 
width: bound modes of asymmetric structures,’’ Phys. Rev. B 63, 125417 (2001). 
 

[14] D. Marcuse, Theory of Dielectric Optical Waveguides, Academic Press, New 
York, (1974). 
 

[15] S. L. Lee, Y. Chung, L. A. Coldren, and N. Dagli, “On leaky mode 
approximations for modal expansion in multilayer open waveguides,” IEEE J. 
Quantum Electron. 31, 1790 (1995). 
 

[16] A. W. Snyder and J. D. Love, Optical Waveguide Theory, London, Chapman and 
Hall, (1983). 
 

[17] C. Vassallo, Optical Waveguide Concepts, Elsevier, (1991). 
 

[18] P. Benech and D. Khalil, “Rigorous spectral analysis of leaky structures: 
Application to the prism coupling problem,” Opt. Commun. 118, 220 (1995). 
 

[19] Y. D. Lin and J. W. Sheen, “Mode distinction and radiation-efficiency analysis of 
planar leaky-wave line source,” IEEE Trans. Microwave Theory Tech. 45, 1672 
(1997). 
 

[20] J. J. Burke and N. S. Kapany, Optical Waveguides, Academic, New York, (1972). 
 

[21] J. Conway dissertation, “Efficient Optical Coupling to the Nanoscale,” Electrical 
Engineering Department, University of California, Los Angeles (2006). 
 

[22] A. D. Boardman and P. Egan, “The influence of collisional damping on surface 
plasmon-polariton dispersion,” J. Phys. Colloque 45, C5-179 (1984). 
 

[23] I. El-Kady, M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, “Metallic 
photonic crystals at optical wavelengths,” Phys. Rev. B 62, 15299 (2000). 
 

[24] N. W. Ashcroft and N. D. Mermin, Solid State Physics, Saunders, (1976). 
 
 

  



76 
 

Chapter 4 Leaky Modes in Finite Planar Metal-Insulator-Metal 

Plasmonic Waveguides 

Surface plasmons may be either non-radiative (bound) or radiative (leaky). Non-

radiative SPs possess larger wave momentum than that of light at the same frequency, 

prohibiting direct coupling to free-space. Radiative SPs have smaller wave momentum 

than that of light, allowing free-space coupling without use of a prism, grating coupler or 

scattering center. 

Previous works on leaky SPs primarily focused on metallic slab and strip 

waveguides [1-5]. There is a growing interest in the radiative SPs of MIM structures [6-

10]. In finite planar MIM structures, the TM dispersion relations, as shown in Fig. 3.1, 

are characterized by two mode pairs each labeled with L/H respectively. Labels L/H 

reflect the origin of the mode from the low/high energy branch of the single metal film 

SP. Due to mode splitting, a total of four non-degenerate SP modes are observed for two 

interacting metal films separated by a thin insulator layer[10].  In this section, finite MIM 

radiative (leaky) waves, i.e. the dispersion region of the highest energy MIM SP mode 

(labeled as AH in Fig. 3.1) lying above the light line, are investigated theoretically and 

experimentally. Theoretically, the TM modal solutions of the planar MIM geometry are 

obtained numerically by using the transfer matrix formalism. Details have been described 

in Chapter 3.1. Experimentally, in Chapter 4.1 and 4.2, finite planar MIM waveguide 

leaky waves are investigated using the ATR Kretschmann configuration and free space 

coupling, respectively. For the ATR Kretschmann configuration, both single- and double-

sided leaky waves are analyzed. The leaky wave dispersion relation and its antenna mode 
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radiation pattern are determined through both angle- and wavelength-dependent 

reflectance of free space incident light. 

 Two MIM structures, Au-MgF2-Au (sample A, with thicknesses 32 nm-190 nm-

32 nm, respectively) and Au-Al2O3-Au (sample B, with thicknesses 40 nm-190 nm-140 

nm, respectively), were fabricated for ATR and free-space coupling experiments, 

respectively. For both samples, a thoroughly cleaned microscope glass slide substrate is 

first coated with a 0.5 nm thick chromium layer as an adhesive layer, followed by the 

required MIM layer material deposited sequentially by high vacuum (<10-6 Torr) electron 

beam evaporation (Al2O3 needs extra O2 gas during evaporation). The evaporation rate is 

controlled at < 0.1 nm s-1. The thickness and refractive indices of these two insulators 

were measured on a control sample by ellipsometry at 633 nm. 

 

4.1 ATR Kretschmann Coupling 

The ATR geometry in the Kretschmann configuration [See Fig. 2.14(a)] is widely 

used for the excitation of SPPs. It couples evanescent incident light to SPs by satisfying 

the surface plasmon resonance (SPR) condition via momentum matching. As shown in 

Fig. 2.15, this configuration allows excitation of leaky SPs modes (i.e. those between the 

air and prism light lines) [2] while can never excite purely bound modes (i.e. those to the 

right of the prism light line). The excited leaky SPs modes lose their energy through the 

metal inherent absorption as well as leakage radiation into the prism.  

In the ATR Kretschmann configuration, the experiments may be performed in two 

distinct variations. One is to fix the excitation frequency and scan the angle of incidence; 

this is called the angular (or ߠ) scan. The other way is to scan excitation frequency with a 
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fixed angle of incidence; this is the frequency (or ) scan. Here, the first one, scanning 

angle SPR was used. The excitation of SPs results in a sharp dip in the ATR angular 

reflectance curve which is caused by destructive interference between the leakage 

radiation and the reflected part of the excitation beam.    

Sample A was mounted to a BK7 prism by index matching fluid. Symmetric 

(glass-Au-MgF2-Au-glass) and asymmetric (air-Au-MgF2-Au-glass) MIM geometries 

were formed by mounting the top Au surface (as shown in Fig. 4.1 (a)) or the glass 

substrate (as shown in Fig. 4.1 (b)) to the ATR prism, respectively. The reflectance was 

measured with a TM-polarized laser beam at 633 nm.  

 

 

 

 

 

 

 

 

 

 

 

The experimental and calculated angle-dependent ATR SPR curves for the 

symmetric and asymmetric MIM structures are plotted in Fig.4.2. The incidence angle 

associated with the minimum ATR reflectance is denoted as θ0. The calculated 

normalized Poynting vector fields (defined as Poynting vector divided by incident 

parallel energy flux-Si//) are illustrated in Fig.4.3. The modeled results were calculated 

Fig. 4.1 Symmetric (a) and asymmetric (b) MIM ATR Kretschmann configurations. 
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with dielectric constants of ߝ஺௨ ൌ -10.9824+1.3280i, ߝெ௚ிమ ൌ 1.891, and ߝ஻௄଻ ൌ 2.295 at 

633nm.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2(a) shows the symmetric MIM structure has one resonance dip with 

଴ߠ ൌ 33.4o. This resonance condition corresponds to excitation of a double-sided leaky 

(DSL) mode in the MIM waveguide having an effective modal index smaller than that of 

glass. As plotted in Fig. 4.3(a), the incident power is coupled through the bottom prism-

Au interface into the DSL mode and most of the internal energy flux is located at the 

interior Au-MgF2 interfaces. A small amount of energy leaks out of the MIM structure 

through the top Au-glass substrate interface. The internal energy flux distribution is 

nearly symmetric at ߠ଴. The energy flux localization shifts from the incident interior 

metal-insulator interface to the exiting interior metal-insulator interface with increasing 

angle of incidence. 
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Fig. 4.2 ATR reflectance curves at 633nm for (a) symmetric glass-Au-MgF2-Au-
glass and (b) asymmetric air-Au-MgF2-Au-glass MIM geometries. See the text 
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R
ef

le
ct

an
ce

 %
 

Angle of incidence (degree) (b) 
20 30 40 50 60

0.0

0.2

0.4

0.6

0.8

 

 

   Experiment
  Model

଴ߠ  

஽ߠ  

஼ߠ    



80 
 

Figure 4.2(b) shows the asymmetric MIM geometry has two resonance dips at 

଴ߠ ൌ 33.3o and 50.5o. Modeling reveals that a DSL mode is excited at 33.3°. Its 

characteristics are similar to that of symmetric MIM DSL mode. The resonance condition 

at the larger incidence angle around 50.5° denotes the excitation of a single–sided leaky 

(SSL) SP mode with effective mode index larger than that of air but smaller than that of 

glass. Figure 4.3(b), as expected, shows this single (glass)-sided leaky SP mode has no 

energy flowing out of the waveguide through the top Au-Air interface. The peak energy 

flux localization shifts from the exiting exterior air-Au interface to the incident Au-MgF2 

interface with increasing angle of incidence. The amount of energy flux propagated on 

the incident Au-MgF2 interface is larger than that on the exiting Au-MgF2 interface 

throughout the resonance condition. The spatial uncertainty principle is expressed as   

∆ݖ∆ ௭ܲ ൒ ԰ 2⁄                                                                                                    ሺ4.1ሻ  

We also get  

∆ ௭ܲ ൌ ԰∆݇௭ ൌ ԰∆൫݊஻௄଻݇଴sinሺߠሻ൯ ൌ ԰݊஻௄଻݇଴cosሺߠሻ∆ߠ                      ሺ4.2ሻ 

ݖ∆ ൌ
1

2Imሼ݇௭ሽ
                                                                                                  ሺ4.3ሻ 

Combining (4.1), (4.2) and (4.3), the resonance full width of half maximum (FWHM) is 

given as 

ிௐுெߠ∆ ൒ 2Imሼ݇௭ሽ/ሼ݊஻௄଻݇଴cosሺߠሻሽ                                                        ሺ4.4ሻ 

In above equations, ݇௭ is the SPs mode longitudinal propagation constant, ݊஻௄଻ is the 

refractive index of the prism, and ݇଴ is the vacuum wave vector. Therefore, the narrower 

resonance observed for the SSL mode compared to excitation of a DSL mode indicates 

smaller amount of loss. 
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Note that for both symmetric and asymmetric DSL modes as well as for the 

asymmetric SSL mode, enhancement of the incident energy flux occurs at the interior 

metal-insulator interfaces when on resonance.  

A closer examination of mode coupling reveal distinct differences between the 

experimental minimum, θ0, the plasmon phase matching condition defined by the 

dispersion curve of Fig. 3.1, θP,  and the angle where maximum energy flux is carried in 

the insulator layer, θR. The ATR angle θ0 occurs for maximal loss, which is composed of 

metal material absorption loss and leakage radiation loss. Careful numerical evaluation 

reveals that θ0, θP and θR of MIM structure are slightly different. For the examples studied 

here, the symmetric and asymmetric DSL modes have θR < θ0 < θp, (32°<33.4°<34.9°) 

while the asymmetric SSL mode has θP < θR < θ0, (48.3°<50°<50.5°). Therefore, the 

incidence angle needs to be carefully determined to optimize mode coupling. 

 

4.2 Free Space Coupling 

External incident light can also directly couple to the MIM leaky-mode SPs. The 

angle-dependent reflectance of a TM-polarized free-space incidence beam on top surface 

of sample B is shown in Fig. 4.4(a). The reflectance was recorded with a Fourier-

transform infrared (FTIR) spectrometer with respect to a gold mirror. For sample B, the 

leaky wave only exists on top side owning to the optically thick bottom gold film. The 

calculated and experimental dispersion relations ω(k//) are plotted in Fig. 4.4(b). The 

experimental results, derived from the position of the reflectance minima at each incident 

angle, agree with the dispersion curve calculated using the transfer matrix method, 

reported dispersive Au dielectric constant [11] and a dielectric constant for Al2O3 of 2.56 
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as measured by ellipsometry. Coupling from free space in the energy range of 1.6 to 1.8 

eV has been observed for this MIM structure.   
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The radiation pattern for the radiated or coupled leaky wave power in sample B is 

illustrated in Fig. 4.4(c) at wavelengths 720 nm, 750 nm and 780 nm. The theoretical 

calculation follows the relation [3] 

|ܲሺߠሻ|ଶ ൌ
sinଶߠ

ሺ݇௭′ െ ݊݇଴cosߠሻଶ ൅ ሺ݇௭′′ሻଶ
                                                         ሺ4.5ሻ 

where ݇௭ ൌ ݇௭′ ൅ ݅݇௭′′   is the longitudinal complex propagation constant, ݇଴ is the free 

space wave vector, n denotes refractive index of the outermost media where the leaky 

wave exists, and ߠ ൌ 90௢ െ ߮ is the leaky wave-front tilt relative to the surface and 

defined as 

tanߠ ൌ ݇௫′′ ݇௭′ ൌ ݇௭′′ ݇௫′⁄⁄                                                                                 ሺ4.6ሻ 

with the complex transverse propagation constant in the media where leaky wave exists  

݇௫ ൌ ඥ݇௭ଶ െ ݊ଶ݇଴ଶ ൌ ݇௫′ ൅ ݅݇௫′′  . A well-defined radiation peak is observed at tilt angle at 

ߠ ൌ cosିଵሺ݇௭′ ݊݇଴⁄ ሻ with an angular breadth proportional to ݇௭′′ . 

For leaky modes, any light energy coupled into SPs is re-radiated. The 

experimental radiation patterns are derived from FTIR reflectance spectra by measuring 

the angle-dependence of the resonance dip. The maximum value is normalized to one.  

Adopting concepts from microwave technology, leaky waves can be divided into 

two distinct regions: an antenna mode region defined by ݇௭′ ൐ ݇௭′′   and characterized by 

the propagation of mode energy out of the waveguide, and a reactive mode region 

defined by ݇௭′ ൏ ݇௭′′  [10, 12]. Modal analysis of sample B predicts the transition where 

݇௭′ ൌ ݇௭′′   to occur around 774 nm.  

As shown in Fig.4.4(c), the antenna region occurring at shorter wavelengths than 

the reactive region, has a smaller peak radiation angle relative to the surface. The 
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radiation angle increases with increasing wavelength due to a monochromatically 

decreasing ݇௭′  and increasing ݇௭′′ .  

The transition from antenna to reactive leaky modes is experimentally associated 

with an end to the shift of the resonance dip, since as the reactive mode dominates, 

coupling from free space is significantly reduced. The result is that the near normal 

incidence reflectance shows a dip associated with the strong coupling of the residual 

antenna mode radiation pattern instead of the reactive mode suggested by the dispersion 

curve. Modeled normal incidence reflectance predicts a resonance dip around 775 nm, 

while the dispersion relation shows the mode for zero ݇௭ considerably longer than 850 

nm. This is indicative of the weak free-space coupling in the leaky wave reactive region.  

The antenna leaky mode radiation angle is steerable by varying the insulator and 

metal thicknesses [10]. This suggests that MIM plasmonic waveguides with active 

insulator layers have potential applications in beam steering devices. 
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Chapter 5 Gain-Assisted Propagation of SPPs in Finite MIM Plasmonic 

Waveguides  

Surface plasmons have been widely exploited in photonic and optoelectronic 

devices. However many applications of surface plasmons suffer from the losses resulting 

from energy damping in metals. For example, the metal energy dissipation process limits 

SPPs typical effective propagation lengths to values in the micrometer to millimeter 

range. Active plasmonics, which describes the interaction between an active or gain 

medium and surface plasmons, could be one way of eliminating losses in plasmonic 

devices to enable their numerous potential applications [1-22]. Compensating losses by 

inclusion of gain could be achieved by spin coating a solution of laser dye molecules or 

 ,conjugated polymers on top of the structures, or applying semiconductor nanocrystals-ߨ

all for use as a gain material.  

Influence of a gain medium on SPPs has been receiving recent attention. At early 

stage, gain-assisted propagation of SPPs on planar metal waveguides has been 

investigated using Fresnel reflection coefficients. Enhanced TIR structure consisting of a 

gain medium in contact with a thin silver film is resulted from the increased effective 

gain of the amplifying medium mediated by the excited surface plasmon on metal surface 

[23]. It is shown that for any value of gain above threshold there exists a metal thickness 

for which a reflection singularity exists. This work has been extended to study surface 

EM waves propagation on the interface between a metal and gain medium for 

transversally bound and unbound excitation laser beams. The possibility of creating a 

surface plasmon based laser has been pointed out [24]. Recent studies have focused 

extensively on transferring energy from gain material to propagating SPPs [25-31] and to 
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localized SPs in metal nanostructures [32-34] by using stimulated emission. The gain 

media surrounding the metal, including quantum cascade (QC) active material [25, 26], 

quantum well heterostructures [27, 30], quantum dot [32] and dye molecules [29, 31, 34], 

provide the energy to compensate for the SPP loss. 

In this section, the inclusion of a dye-doped polymer into realistic finite MIM 

structures is modeled. 

 

5.1 Numerical Method and Validation with Gain Inclusion 

Throughout the dissertation, the phase factor is assumed in the form of 

expሾെ݅߱ݐ ൅ ݅݇௭ݖሿ with ݇௭ ൌ ݇௭ᇱ ൅ ݅݇௭ᇱᇱ ( here we take the wave propagates along the൅ݖ 

axis), thus loss and gain in media is handled by setting the imaginary part of the dielectric 

constant to be positive and negative, respectively.  

By introducing negative imaginary part of dielectric constant, the transfer matrix 

formalism with a Newton-Raphson root searching algorithm in the complex wavevector 

plane are used to obtain the TM modal solutions of the finite planar MIM geometry in the 

presence of gain. The details of this numerical method have been described in Chapter 

3.1 and appendix C and D. The classical Fresnel formalism for reflection is used to 

investigate gain-assisted propagation of SPPs in MIM waveguides in the ATR 

configuration. The incorporation of finite thick gain medium is treated as above by 

setting dielectric constant imaginary part to be negative. However, using this formalism 

in the presence of an infinitely thick gain material requires additional attention when 

incident angles are beyond the critical angle. It will be explained in the following part.  
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Let us start with a simple case considering reflection of a plane wave at a planar 

interface between two half-spaced isotropic media. The geometry and coordinates are 

shown in Fig. 5.1. These two media have relative permittivities ߝଵ and ߝଶ ൌ ′ଶߝ ൅  ,′′ଶߝ݅

respectively, and ߝଵ ൐ ′ଶߝ .  

The medium 2, labeled with dielectric constant ߝଶ, can be either lossless (ߝଶ′′ ൌ 0),  

lossy (ߝଶ′′ ൐ 0) or active (ߝଶ′′ ൏ 0). Its complex refractive index is expressed as ݊ଶ ൌ ݊ଶ′ ൅

݅݊ଶ′′ , then we get ߝଶ ൌ ′ଶߝ ൅ ′′ଶߝ݅ ൌ ൫݊ଶ′ ൅ ݅݊ଶ′′൯
ଶ ൌ ൫݊ଶ′ ൯

ଶ െ ൫݊ଶ′′൯
ଶ ൅ ݅2݊ଶ′ ݊ଶ′′ . Since the 

power of the EM field propagating along the ݖ-direction is proportion to expൣ݅2൫݊ଶ′ ൅

݅݊ଶ′′ ሻ݇଴ݖ൧ , where ݇଴ is the free-space wave vector, thus the real part of the exponent 

defines the wave attenuation or growth, therefore, the absorption (gain) coefficient is 

defined as 

ߛ ൌ 2݊ଶ′′݇଴ ൌ
߳ଶ′′݇଴
݊ଶ′

                                                                                          ሺ5.1ሻ 

with ݊ଶ′′ ൌ ߳ଶᇱᇱ 2݊ଶᇱ⁄ . In the numerical results presented later, gain coefficient, instead of 

dielectric constant imaginary part, is used.  

 

incident  reflected 
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ࣕ૚

ࣕ૛ ൌ ࣕ૛ᇱ ൅ ૛ᇱᇱࣕ࢏

ࣕ૛ᇱᇱ ൐ ܛܛܗܔ   :0
  ࣕ૛ᇱᇱ ൏ ܖܑ܉܏  :0

 

Fig. 5.1 The geometry and coordinates of the reflection of a plane wave on a 
planar interface between two different media. 
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When light is incident from a medium of higher refractive index onto a medium 

of lower refractive index, the TIR occurs at incident angles ߠ greater than or equal to the 

critical angle ߠ௖. When TIR occurs, for lossless media case the incident beam is 

completely reflected with no attenuation. The reflection of a incident light beam by a 

lower-index medium, either active (any isotropic optically active gain medium, such as 

optically pumped dye solutions or inverted atomic systems, and etc.) or absorptive (any 

isotropic loss medium), has been studied often owing to its interesting physics as well as 

wide applications[23, 31, 35-47]. At incident angles below the critical angle (ߠ ൏  ,( ௖ߠ

there is a real propagating electromagnetic field inside the lower-index media with either 

gain or loss, and the energy flux across the interface for a plane wave incident on an 

active medium is the same as that of a plane wave incident on a conjugate absorptive 

media [47]. At incident angles beyond the critical angle ( ߠ ൐  ௖ ), attenuated totalߠ

internal reflection (ATIR), where the reflectivity is less than unity and the transmitted 

beam propagates inhomogeneously with attenuation [48], occurs with a lower-index 

absorptive medium, and in contrast, enhanced total internal reflection effect (ETIR), 

where the reflected beam is more intense compared to the incident beam, occurs with a 

lower-index active medium [47]. ETIR is caused by the fact that the electromagnetic field 

excited in the active medium has to propagate back toward the interface with gain to be a 

physical wave.  

Our implementation of Fresnel formalism with either finite or infinite thick gain 

medium incorporation has been validated against previously published results [23, 24, 

47]. The duplicated results from Ref. [23] are plotted in Fig. 5.2. The gain parameter ߙ is 
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defined as ߙ ൌ ൫߳ଷ" ߳ଶ"⁄ ൯൫߳ଶ′ ߳ଷ′⁄ ൯ଶ, where ߳௜" (݅ ൌ 1, 2, 3) is the imaginary part of the 

material dielectric constant.  

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 

 

 

5.2 Mode Analysis of Gain-Assisted Symmetric Finite MIM Plasmonic 

Waveguides 

The influence of the gain medium on the four SP modes within finite MIM 

waveguides is discussed here. This section will examine the feasibility of realistic 

lossless propagation of SPPs in MIM geometry with active medium incorporation and 

also provide optimum MIM design for gain-assisted MIM SPPs propagation in the ATR 

geometry.  

        

                              (a) 
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Fig. 5.2 (a): Geometry for enhanced reflectance using SP excitation. Thickness of 
gain medium is assumed to be infinite. (b): Reflectance vs angle of incidence near 
surface plasmon angle for several values of the gain parameter α.   
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For simplicity, only the symmetric finite planar MIM plasmonic waveguide with a 

core material exhibiting optical gain is considered. Two metals, silver and gold, are 

commonly used in plasmonic applications. Silver has a smaller absorption loss and gold 

has more stable optical and chemical properties. For the symmetric MIM structure, the 

lower the refraction index of the dielectric, the lower the waveguide modal loss. 

Therefore, an MIM structure, which is composed of silver with low-index passive and 

active dielectric materials constructed with a silver-compatible fabrication process steps 

is preferred. Given these considerations, a proposed realistic symmetric MIM structure 

depicted in Fig. 5.3.  

 

 

 

 

 

 

 

 

 

The active layer, Rhodamine 590 (Rhodamine 6G, or Rh6G in short) doped 

Polymethyl- methacrylate (PMMA), is sandwiched between two thin silver films and this 

MIM structure is embedded in glasses. Rhodamine 6G, one of the best known laser dyes, 

has been frequently used in solid-state dye lasers. PMMA, the most frequently used 

Rh 6G/PMMAAg Ag Glass 

 ࡵࢊࡹࢊ

Glass 

z

x

Fig. 5.3 Schematic of a symmetric glass-silver-Rh6G/PMMA-silver-glass planar MIM 
structure. The silver and Rh6G/PMMA thickness are labeled as ݀ெ, ݀ூ, respectively.  
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polymer host for dye molecule, has refractive index ~1.5 which is close to that of silica 

glass, and shows the best optical transparency in the visible spectral range.  

The dielectric constant of silver follows the empirical data fitted Lorentz-Drude 

model described in Chapter 2.3. The active core Rh6G/PMMA layer, formed from 

Rhodamine 6G doped PMMA anisole solution, has refractive index about 1.46 [49], 

which is close that of glass.  It exhibits optical gain at wavelength  =594nm. 

 

   

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.4 Propagation length and confinement factor of SP modes in a symmetric 
glass-silver-Rh6G/PMMA-silver-glass planar MIM structure at free-space 
wavelength 594 nm as a function of metal (dM) and insulator (dI) thickness.  
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Figure 5.4 illustrates the evolution of the propagation length ܮ and confinement 

factor Γ of the coupled SP modes of the MIM waveguide, depicted in Fig. 5.3, as a 

function of metal and insulator thickness. The subplot (d) is plotted for the bound portion 

of AH mode. The behaviors of ܮ and Γ of the SP modes in this realistic symmetric MIM 

waveguides as a function of metal and insulator thickness are similar to that summarized 

in Fig. 3.5, and will not be discussed further. It is observed, as expected, that mode SH 

(AL) offers the best (worst) opportunity for using the gain materials to fully compensate 

for the MIM waveguide losses.  

For each of the four MIM SP modes, there exists an optimized structure design to 

minimize its modal loss while at the same time maintain acceptable mode confinement, 

and thus consequently minimize the required gain value to enable a reduced-loss or even 

lossless MIM plasmonic waveguides. The respective optimum MIM structures for SL, SH 

and AH modes are determined from Fig. 5.4 and listed in Table 5.1. These optimum MIM 

structures will be investigated to figure out whether the minimum required gain value for 

MIM lossless propagation lying in the realistic gain range of Rh6G/PMMA. 

     

Table 5.1 Optimum symmetric glass-Ag-Rh6G/PMMA-Ag-glass MIM structure  

MIM SP modes Ag-Rh6G/PMMA-Ag thickness 

(nm) 

SL 120 - 250 - 120 

SH 

AH 

20 - 500 - 20 

25 - 600 - 25 
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Fig. 5.5 The normalized propagation constant imaginary part v.s. Rh6G/PMMA 
gain coefficient. The red dots label gain coefficient value where ݇௭′′ ൌ 0. 
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Figure 5.5 shows the evolution of the imaginary part of the normalized 

propagation constant, ݇௭′′ ݇଴⁄  (݇଴is free-space wave number), as a function of the active 

core, Rh6G/PMMA, gain coefficient. The gain coefficient is defined in equation (5.1). 

The red dots label the critical gain coefficient values that make ݇௭′′ ൌ 0, corresponding to 

the lossless propagation.  Given the optimum MIM structures listed in Table 5.1, the 

lossless propagation of MIM SP mode SL, SH and AH are achieved with core gain 

coefficient ߛ around 2300 cm-1,  350 cm-1 and 750cm-1, respectively. The critical gain 

coefficient of 350 cm-1 for lossless propagation of mode SH is below the literature 

available gain coefficient of 420cm-1 for Rh6G/PMMA [31]. For mode SH in the 

optimized glass-MIM-glass structure, i.e. Ag-Rh6G/PMMA-Ag with thickness of 20 nm- 

500 nm - 20 nm, respectively, when the core gain coefficient ߛ ൐350 cm-1, the amplitude 

of the propagating SH mode will keep increasing (corresponding to negative ݇௭′′) till 

reaching the limitation posed by gain saturation.  

Numerical results (data not shown) show that the influence of reasonable gain 

coefficients ߛ in the active core material on both the real part of the propagation constant 

݇௭′  and the confinement factor are negligible. Note that for each MIM SP mode, the effect 

of gain-induced loss compensation effect depends on the location of the active medium. 

Numerical results (data not shown) also verify that more effective loss compensation 

occurs when the gain media are co-located with field maxima. Therefore, for the 

symmetric MIM structure, an active core layer is preferred for compensating propagation 

loss in the SL and AH modes while placing the gain in the bounding media is more 

effective for the SH and AL modes.   
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The propagation lengths of MIM SH mode without gain (black dash lines) and 

with reported Rh6G/PMMA gain coefficient of 420cm-1 (red solid lines) are plotted in Fig 

5.6. For mode SH, as core thickness increase, the modal loss decreases and thus the 

critical gain for lossless propagation decreases. The sharp increase in propagation length 

of mode SH is observed for MIM structure with thickness 20nm -320nm-20nm where the 

critical gain value for lossless propagation is reduced to approach 420 cm-1. Given a 

realistic Rh6G/PMMA gain coefficient of 420 cm-1, the amplitude of the propagating SH 

mode for MIM structure with Ag films both 20nm thick and core material Rh6G/PMMA 

thicker than 320nm will keep increasing (corresponding to negative ݇௭ᇱᇱ) till reaching the 

limitation posed by gain saturation. With the literature reported Rh6G/PMMA gain 

coefficient of 420 cm-1, the maximum attainable propagation length for mode AH is 

around 100um and for mode SL and AL less than 10um. 
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5.3 Gain-Assisted Finite MIM SPPs Propagation in ATR Geometry 

In this section, SPPs propagating in MIM waveguides with adjacent gain media in 

the ATR geometry, as sketched in Fig. 5.7, is studied. The MIM waveguide consists of 

Ag-PMMA-Ag with thickness of 20nm-500nm-20nm, respectively. An extra 300 nm-

thick MgF2 layer is sandwiched between the prism and the MIM structure to reduce the 

index asymmetry caused by high-indexed SF11 prism. On the other side of this MIM 

structure is several microns of Rh6G/PMMA. Compared to structures without the MgF2 
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Fig. 5.6 Propagation length of SH mode versus metal (dM) and insulator (dI) 
thickness at free-space wavelength 594 nm for a symmetric glass-silver-
Rh6G/PMMA-silver-glass planar MIM structure with zero core gain (black dash 
lines) and core gain coefficient  420 cm-1 (red solid lines).  
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layer, this structure has relative lower modal loss owning to its less deviation from the 

symmetric MIM geometry. In the following numerical calculation, we adopt the 

experiment design given in Ref [31]: The Rh6G/PMMA is around 10μm thick and 

exhibits optical gain at wavelength 594= ߣnm with an achievable gain coefficient of 420 

cm-1. The gain medium is assumed to be infinite thick since its thickness is far beyond the 

penetration of SPP field. The reflectance R was probed with p polarized He-Ne laser 

beam at ߣ ൌ 594 nm.  
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Fig. 5.7 Schematic of SPP excitation in an ATR geometry. 
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Figure 5.8 shows that the prism(SF11)-MgF2-Ag-PMMA-Ag-Rh6G/PMMA 

structure in the ATR geometry, as sketched in Fig. 5.7, has three resonance dips at ߠ = 

56.1o, 52.3 o and 38.75o. These three resonance conditions respectively correspond to 

excitation of a SSL, DSL and higher order SP modes in the MIM waveguide. As 

discussed in Chapter 4.1, narrower resonance indicates smaller amount of loss, therefore, 

the SSL mode with narrowest resonance width is considered.  

The calculated reflectance on a logarithmic scale versus incidence angles around 

56.1o with various gain values are plotted in Fig. 5.9. The labeled gain values are given in 

terms of ݊ୖ୦଺G/୔MMAᇱᇱ  i.e. the imaginary part of refractive index of Rh6G/PMMA. At 

wavelength 594= ߣ nm, ݊ୖ୦଺G/୔MMAᇱᇱ ൌ0, 1.0x10-3, 1.5x10-3 and 2.0x10-3 correspond to 
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Fig. 5.8 ATR reflectance curve at 594nm for SF11 prism-MgF2-Ag-PMMA-Ag-Rh6G/PMMA 
geometry, sketched in Fig. 5.7, as a function of incidence angle ߠ with zero Rh6G gain.  
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gain coefficients ߛ ൌ 0, 212, 317 and 420 cm-1, respectively. For the red curve labeled 

double gain layer, the central PMMA layer is replaced by Rh6G/PMMA, which is also 

pumped to act as an active media having the same gain coefficient as external one. 

Experimentally, strong emission signal from Rh6G/PMMA film, which is blocked by 

40nm thick silver, has been observed [31]. Therefore, the central Rh6G/PMMA layer 

covered by top 20nm thick Ag film can be fully pumped and exhibiting gain, thus the 

double gain layer case is feasible.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.9 Reflectance of the MIM structure in ATR geometry (depicted in Fig.5.7) as a 
function of incidence angle ߠ for various gain values. The gain values are given by 
݊ୖ୦଺G/୔MMAᇱᇱ  the imaginary part of refractive index of Rh6G/PMMA. For the red 
curve labeled double gain layer, the central PMMA layer is replaced by 
Rh6G/PMMA.  
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Figure 5.9 shows that the minimal reflectance initially reduced at small gain 

values till passing the zero reflectance, and then increased at larger gain values. Without 

gain inclusion, the normal ATR resonance dip (black curve) associated with the 

excitation of SPPs is observed. In the curve for ݊ୖ୦଺G/୔MMAᇱᇱ ൌ1.0x10-3 (or ߛ ൌ 212 cm-1), 

we see a narrower and deeper resonance dip. In the curve for ݊ୖ୦଺G/୔MMAᇱᇱ ൌ1.5x10-3 

(or ߛ ൌ 317 cm-1), we see a reduced ATR, which means the gain is still not sufficient to 

completely compensate the loss. Between these two values, there exists one gain value 

that lets ATR reflectance equal 0.  Enhanced reflectance with value larger than 1 around 

the SPR angle is observed in the curves (purple and red) for ݊ୖ୦଺G/୔MMAᇱᇱ ൌ2.0x10-3 (or 

ߛ ൌ 420 cm-1), indicating the effective gain effect exceeding the metal absorption [23].  

In addition to the angular reflectance versus gain, the corresponding normalized 

Poynting vector fields (defined as Poynting vector ࡿ divided by incident parallel energy 

flux - ௜ܵ௭) at SPR angle 56.1o are illustrated in Fig. 5.10. Figure 5.10(A), corresponding to 

the excitation of a single (prism)-sided leaky SP mode in the MIM waveguide without 

gain, shows no energy flowing into or out of the waveguide through the top Au-

Rh6G/PMMA interface. The incident power is coupled through the bottom prism-MgF2 

interface into the SSL mode and the peak energy flux, about 80 times incident parallel 

energy flux is localized on the exiting Ag interfaces. This normalized peak energy flux 

magnitude is about 3 times bigger than that of a single metal layer waveguide, 

investigated in Ref. [31]. When ݊ୖ୦଺G/୔MMA′′ ൌ1.0 x10-3, 1.5 x10-3 and 2.0 x10-3 (external 

gain only), the peak energy flux remains localized on the exiting Ag interfaces and the 

respective normalized magnitude is around 220, 460 and 1500. The tilted energy flux, 

flowing from the gain medium into the waveguide to compensate the waveguide loss also 
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increases with increasing gain values. Figure 5.10(D) inset (c) and Fig. 5.10(E) reveal net 

energy flux out of the MIM waveguide through the bottom MgF2-prism interface into the 

prism. This indicates the reflected wave possessing larger energy flow comparing with 

incident wave, thus confirming the occurrence of enhanced reflectance. Comparing 

subplots (D) and (E), it is interesting to note that the normalized peak energy flux 

localized on exiting Ag interfaces is reduced from 1500 (when only external gain applies) 

to around 400 (when double gain layer applies). The additional central gain layer actually 

reduces the peak energy magnitude.  
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Fig. 5.10 Normalized Poynting vector fields versus gain value.at the incidence 
angle of 56.1o. The gain values are given in terms of the imaginary part of 
refractive index of Rh6G/PMMA (ܐ܀࢔૟۵/ۯۻۻ۾ᇱᇱ ). Subplots (A) - (D) correspond 
to gain values of 0, 1.0 x10-3, 1.5 x10-3 and 2.0 x10-3, respectively. Subplot (E) 
corresponds to the double gain layer case with both gain values of 2.0 x10-3.  
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Chapter 6 MIM Plasmonic Waveguides in Terahertz  

Quantum Cascade Laser 

6.1 Introduction 

The terahertz (THz) frequency range, as shown in Fig. 6.1, is defined as the 

frequencies from 300GHz to 10 THz (1 GHz =109 Hz, 1THz =1012 Hz) , or the 

wavelengths from 30 μm to 1000 μm. However, the THz region has remained one of the 

least developed spectral regions largely due to a relative lack of compact and convenient 

radiation sources, detectors and transmission technology. This underexplored terahertz 

portion of the electromagnetic spectrum is sometimes called as the “terahertz gap”. 

 

 

 

Fig. 6.1 Road map of electromagnetic spectrum [1]. 
 

 

Terahertz waves have wide potential applications including but not limited to: 

astrophysics and atmospheric science, the chemical and biological materials 

identification, biomedical imaging, security screening, non-destructive evaluation, 

communications and ultrafast spectroscopy. These wide-ranging terahertz waves 

proposed applications generally required a compact, coherent, high-power, continuous 

wave (c.w.) solid-state source. However, the high frequency power generated by solid-
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state electronic devices, such as transistors, Gunn oscillators and Schottky diode 

multipliers, is limited by power rolling off phenomena owing to both transit-time and 

resistance–capacitance effects [2, 3], and the best available power generated above 1THz 

is well below the milliwatt level [4].  Direct THz generation through photonic approaches 

is limited by the lack of appropriate interband materials with sufficiently small bandgaps. 

Despite various photonic techniques have been developed to generate radiation above 

1THz, these techniques (for example, nonlinear or photoconductive effects induced 

down-conversion from the visible regime, or multiplication up from the millimeter-wave 

regime, or direct generation with optically pumped molecular gas lasers or free-electron 

lasers) are either mainly limited by output power or extensive cryogenic cooling 

requirement, or by pulsed operation, or by their size, cost or complexity. Extensive 

reviews on terahertz sources can be found in Refs (1, 5-6).   

Given successful and ubiquitous implementation of semiconductor laser 

throughout the visible and near-infrared frequency range, the semiconductor THz laser is 

an appealing device. Conventional semiconductor lasers, bipolar type lasers, working by 

radiative recombination of conduction band electrons with valence band holes, are 

limited to radiation frequency range inherently determined by the bandgaps of the 

constituent active materials. The lack of appropriate interband materials, large free-carrier 

absorption losses and practical limitations on the thickness of epilayer growth make 

conventional laser waveguides unsuitable for the THz range.  

A new class of laser known as quantum cascade laser (QCL) is based on a 

fundamentally different principle from conventional semiconductor lasers. QCLs are 

unipolar lasers using only one type of charge carrier (usually electrons). The molecular-
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beam epitaxy grown multiple-quantum-well (MQW) active region based on the 

GaAs/AlxGa1–xAs material system is the core of any QC laser. Typically100–200 

repetitions of the MQW module are grown to form active regions between the bottom 

contact and top metal layer. The repeated MQW module (also known as a stage) is 

formed by alternating layers of GaAs and AlxGa1–xAs with each layer just a few 

nanometers thick. Each module is consisted of injector and superlattice active region. 

Injector/collector structures connect these superlattice active regions, allowing electrical 

transport through injection of carriers into the upper laser level and extraction of carriers 

from the lower laser level. The conduction band across each identical repeat stage is split 

into a series of discrete energy levels called subbands [7] owing to the quantization of 

electron motion perpendicular to the layers.  

By applying a voltage bias across the QCL device, the electron energy drops in 

successive stages to form potential staircase. When an electron in the higher energy 

subband drops to a lower energy level within that stage, it can be ‘recycled’ to the higher 

energy subband of the successive stage. This “recycling” process is repeated in identical 

successive stages, causing the electrons to cascade down a series of identical energy steps 

like an electronic waterfall, emitting a photon at each step and consequently emitting 

many photons on its way. This is in contrast to diode lasers which emit only single 

photon over the similar cycle. A revolutionary aspect of QCL is that in principle QCL can 

operate at arbitrarily long wavelengths over an extremely wide range by precisely 

engineering the MQW active region band structures using the same material combination. 

Therefore, the QC scheme has long been the preferred choice in fabricating a THz 

semiconductor laser. 
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QCL was invented and first demonstrated at wavelength of 4 μm (75 THz) in 

1994 [7]. Since then, QC lasers have successfully spanned the mid-infrared frequency 

range 3~24 μm [8-11] and become the dominant mid-infrared semiconductor laser 

sources. Many QCLs have been demonstrated working at room-temperature and c.w. 

operation with hundreds of milliwatts power from 3.8–10.6 μm [12, 13]. In 2001, the first 

QC laser with a photon energy less than the semiconductor optical phonon energy 

(~8THz) was demonstrated at 4.4 THz (equivalent to a wavelength of 67 μm). This THz 

QC laser employed a chirped superlattice active region combined with a semi-insulating 

surface-plasmon (SI-SP) waveguide [14]. Recent developments have demonstrated QCL 

spectral coverage over 0.84 – 5.0 THz [15-17] and c.w. operation at 117K [18], and 130 

mW C.W output power [19]. Therefore THz QCLs are the most promising candidates for 

bridging the “terahertz gap”.  

 

6.2 Basics of Quantum Cascade Laser 

6.2.1 Quantum Casecade Laser Active Region  

The heart of QC laser, i.e. the MQW active region is usually grown by using 

MBE in the GaAs/AlxGa1–xAs material system. There exits four major design classes of 

QCL active regions: the chirped superlattice, bound-to-continuum, resonant-phonon and 

hybrid ‘interlaced’ design combining the bound-to-continuum design with phonon-

assisted depopulation [20, 21]. These four major QCL active region design schemes have 

been excellently reviewed in Ref. [22]. 
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6.2.2 Quantum Casecade Laser Waveguides 

When extending QCLs from the mid-infrared regime to longer wavelengths, 

QCLs waveguide design becomes a very important aspect due to two reasons: 

(i) Conventional laser dielectric waveguides are unsuitable for the THz range due 

to the difficulty in scaling their dimensions up with increasing wavelength. This is cause 

by the practical epitaxy layer thickness limitation (~10um) of the MBE growth.  

(ii) Free carrier absorption (ߙ௙௖) increases strongly at longer wavelengths 

௙௖ߙ) ן  ଶ). Therefore, unique waveguides are needed to have minimum free-carrier lossߣ

in the cladding layers by minimizing the mode overlap with any doped cladding layers.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(Plasma layer) 

Fig. 6.2 Schematic diagrams of THz QC-laser waveguides for (a) SI-SP and 
(b) MM waveguides. n+ indicates heavily doped semiconductor and Re{ε}<0 
indicates the real part of the dielectric permittivity is less than zero [22]. 
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SP modes at one interface has been exploited in the mid-infrared QCLs to achieve 

tight optical confinement as well as low absorption losses [11, 23]. However, at THz 

frequencies, double-SP structures have to be applied since the simple single-SP 

waveguides only have a small overlap of the optical mode with the active region of 

reasonable thickness. To date, two types of waveguides, as shown in Fig. 6.2, have been 

used for THz QC lasers: the semi-insulating surface-plasmon (SI-SP) waveguide and the 

metal-metal (MM) waveguide. They both use the double-sided SP as the confinement 

mechanism. Instead of using two metal layers in MM waveguide, SI-SP replaces one 

metal layer with a plasma layer formed by a heavily doped semiconductor layer. 

Currently, MM waveguides tend to have the best high-temperature performance, and SI-

SP waveguides have higher output powers and better beam patterns (More details can be 

found in Ref. [22]). They both have similar lasing thresholds.  

 

(i) Semi-insulating Surface Plasmon Waveguide  

The SI-SP waveguide, as depicted in Fig. 6.2 (a), consists of an active region 

sandwiched between an upper thin GaAs contact layer with Au contact on top, and a 

bottom thin (0.2−0.8 μm thick) heavily n-doped (n+) GaAs layer, which is on top of a 

semi-insulating GaAs substrate [8, 14, 24, 25]. This bottom n+ layer is called plasma 

layer since its dielectric constant can be made negative by appropriate high doping level 

and acts as a ‘‘metal’’(Reሼߝሽ ൏ 0). The free-electron plasmas in heavily doped GaAs 

layer is used to create a low loss TM mode bounded to that layer. Consequently a coupled 

SP mode is bound to the top metal contact and the lower plasma layer. This lower plasma 
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layer also serves as an electrical path between the side metal contacts and the active 

region.  

Even with the largest attainable doping level (~5x1018 cm-3 in GaAs), the mode 

extends substantially into the substrate. However, the overlap with doped regions is small 

so that the free-carrier loss is small. The confinement factor ߁ of SI-SP waveguide is far 

below unity and typically lies in the range of 0.1−0.5 for reported lasers. Γ will become 

even smaller at longer wavelengths (൐  because of the inherent reduced (݉ߤ 100

geometric overlap at longer wavelengths, and because as frequency ߱ approaches the 

active region plasma frequency (߱௣), the dielectric constant in lightly doped active region 

is reduced by a factor of ൫1 െ ߱௣ଶ ߱ଶ⁄ ൯ compared to the dielectric constant in the SI 

substrate. The relative loosely confined mode in SI-SP waveguide, on one hand,  enables 

employing relative wide ridges without supporting multiple lateral modes, while on the 

other hand, it limits the minimum device area owning to the tendency of  squeezing mode 

into the substrate with narrow ridges (൏  .[29 ,22] (݉ߤ100~

 

(ii) Metal-Metal Double Surface Plasmon Waveguide  

As an alternative to the SI-SP waveguide, the MM waveguide consists of an 

active region sandwiched between a thin metal contact and a metal substrate, as depicted 

in Fig. 6.2(b). It utilizes SPs at both metal surfaces to obtain a guided mode which is 

almost completely contained between two metal cladding layers [18, 26 - 28, 30, 31]. 

 MM waveguide is an appealing solution due to two reasons െ the metal–

semiconductor–metal geometry is compatible with the TM polarization of intersubband 

transitions; and a relatively low loss and a high confinement factor (nearly unity), owing 
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to shallow skin depth in metals, have been achieved. However, compared with the SI-SP 

waveguide, the MM waveguide involves more complicated fabrication process, including 

metallic wafer-bonding and substrate removal with polishing and selective etching [27]. 

As the doped contact layers are very thin, the MM waveguide losses are primarily caused 

from the metal dissipation and the usually non-negligible active region re-absorption.  

 

6.3 Electromagnetic Modeling of THz QCL Waveguides  

There are three important parameters to characterize a laser waveguide: 

waveguide loss coefficient ߙ௪, accounting for scattering and absorption inside the 

waveguide, confinement factor ߁, describing the overlap of the mode with the active 

region, and mirror loss coefficient ߙ௠, indicating facet reflectivity induced optical 

coupling losses. These three parameters, ߙ௪, ߙ௠ and ߁, which are associated only with 

the passive waveguide structure, determine the threshold material gain ݃௧௛(threshold gain 

in short hereafter). The threshold gain is the required minimum gain to reach the lasing 

threshold, where the modal gain ( ݃߁௧௛ ) equals the total losses (ߙ ൌ ௪ߙ ൅  .(௠ߙ

Therefore, the threshold gain ݃௧௛ is expressed as  

݃௧௛ ൌ ߙ Γ⁄ ൌ ሺߙ௪ ൅ ௠ሻߙ Γ⁄                                                                          ሺ6.1ሻ 

Waveguide with minimized threshold gain results in reduced threshold current densities 

and increased operating temperatures. Therefore, in the following simulation, ݃௧௛ is used 

as the criteria for judging waveguide performance.  

The following numerical modeling presents a one-dimensional analysis of 

terahertz QCL waveguides. Propagation constant (݇) and confinement factor (Γ) of  both 

SI surface-plasmon and metal-metal waveguides are obtained by using the transfer matrix 
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formalism (see Appendix C) along with Newton-Raphson root searching algorithm (See 

Appendix D) in the complex wave vector plane. For SI-SP waveguide, the effects of the 

plasma layer doping level and thickness and the substrate thickness are analyzed. For 

metal-metal waveguides, the effects of active region thickness are analyzed.  

Waveguide loss is given by ߙ௪ ൌ 2Imሼ݇ሽ. The major THz waveguide losses 

originate from two parts: (i) free-carrier absorption loss in the metal and doped 

semiconductors; (ii) phonon absorption in semiconductors which is only significant for 

frequencies near the Reststrahlen band (்߱ை ߨ2 ൎ 8THz⁄ ) in GaAs at elevated 

temperatures [29]. The former loss was taken into account by using an effective complex 

permittivity following the Drude–Lorentz model approximation, which has been 

described in Chapter 2.3. This model is rewritten here as:   

ሺ߱ሻߝ ൌ ሺ߱ሻ∞ߝ െ
ே௘మ

௠כ ·
ଵ

ఠሺఠା௜ఠఊሻ
                                                               (6.2) 

where ܰ is the carrier density, ݉כ is the electron effective mass, ߱ is the angular 

frequency, and ߬ is the relaxation time (the damping rate is given by ߛ ൌ 1 ߬⁄   ) which is 

carrier density dependent. The latter phonon loss, for simplicity, is not included in the 

simulation over frequency range 2–7 THz where phonon losses are not prohibitively high 

for the operation of THz QCLs.  

Mirror loss is calculated by using the effective index method (effective modal 

index ݊௘௙௙ ൌ ݇ ݇଴⁄ , ݇଴ is the free space wave number), the same method widely used in 

optical and mid-infrared waveguide designs. This method has also been successfully used 

for mid-infrared QCL design [7] and over lower frequencies beyond mid-infrared [29]. 

Therefore, the mirror loss is expressed as ߙ௠ ൌ െlnܴ/ܮ, where ܮ is the laser cavity 

length, and ܴ is the facet reflectivity. The facet reflectivity ܴ equals to square of the 
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Fresnel reflection coefficient, which is related with the effective material refractive index 

(i.e. ݊௘௙௙) through ൫݊௘௙௙ െ 1൯ ൫݊௘௙௙ ൅ 1൯ൗ . Note that this effective index method is no 

longer valid in the microwave regime, where waveguides design follows the transmission 

line theory and the reflectivities are determined from the impedance mismatch theory.  

For all following simulated structures, ߝ∞ሺ߱ሻ ൌ   ଴ is the vacuumߝ) ଴ߝ12.96

permittivity) for GaAs without including phonon effects, GaAs electron effective mass 

כ݉ ൌ 0.0632݉଴ (݉଴is free-electron mass), the Drude relaxation time are 0.5ps for the 

lightly doped GaAs layers (active region), 0.1ps for the heavily doped GaAs layers (݊ା 

plasma layer) and 0.05 ps for the Au contacts [29]. The carrier density for the active 

region and metal layers are set at 2x1015cm-3 and 5.9x1022cm-3, respectively. In addition, 

for all calculations, the laser cavity length is 3 mm and the Au contacts are infinite thick.   

 

6.3.1 Semi-infinite Surface Plamson Waveguide Design  

The SI-SP waveguide (Fig. 6.2(a)) consists of an active region layer sandwiched 

between a thin upper n+ doped contact layer with a Au contact above it, and a thin n+ 

doped GaAs layer (referred to as the plasma layer) with a semi-insulating GaAs substrate 

underneath. This structure results in coupled SP modes bound to the top metal contact 

and the lower plasma layer. 

The parameters used in simulation for SI-SP waveguide performance are listed in 

Table 6.1.  
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Table 6.1 List of the parameters used for SI-SP waveguide simulation  

Frequency ݂ (THz) 2.0, 3.0, 4.0, 5.0, 7.0 

Upper n+ GaAs contact layer thickness 

Upper n+ GaAs contact layer doping 

Active region thickness  

Active region doping  

Bottom n+ GaAs plasma layer thickness (݀௣௟)

Bottom n+ GaAs plasma layer doping ( ݊௣௟ ) 

SI-GaAs substrate thickness 

100 nm (fixed) 

5.0 x 1018 cm-3 (fixed) 

10 μm (fixed) 

2.0 x 1015 cm-3 (fixed) 

300 – 800 nm 

(1.0 – 5.0) x 1018 cm-3 

25 – 250 μm 

 

 

The influences of plasma layer doping on waveguide loss, confinement factor and 

݃௧௛ are illustrated in Fig. 6.3. Free-carrier absorption in active region decreases as 

frequency increases.  Therefore, the increasing of waveguide loss ߙ௪ with increasing 

frequency at fixed plasma doping (or decreasing plasma doping at fixed frequency 

(except at 2 THz)), as shown in Fig. 6.3(a), is caused by increased free-carrier absorption 

in the plasma layer as the frequency approaches the bulk plasma frequency. The 

refractive index of active region (metal and plasma layer) increases (decreases) with 

increasing frequency and the refractive index of plasma layer increases with increasing 

plasma doping. Numerical results reveal that the effective modal index increases with 

both increasing frequency and plasma doping. However the changes of mirror loss caused 

by the changes of modal index are negligible, especially at lower frequencies. 
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Larger confinement factors are obtained at higher frequencies and lower plasma 

doping (See Fig. 6.3(b)). At frequencies lower than 2 THz where confinement factors are 

lower than 0.1, a thicker active region is required.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.3 SI-SP waveguide simulated results for (a) waveguide loss (ߙ௪), (b) 
confinement factor (߁), and (c) threshold gain (݃௧௛) versus plasma doping (݊௣௟) for 
plasma layer thickness of 400 nm at frequencies 2.0, 3.0, 4.0, 5.0 and 7.0 THz.    
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As plotted in Fig. 6.3(c), at a fixed plasma doping level, as the lasing frequency 

increases to 5 THz, smaller ݃௧௛ is observed owing to the increased confinement factor in 

spite of the increased waveguide loss. This indicates that ݃௧௛ is more sensitive to any 

changes in ߁ below 0.5 than the increases in ߙ௪. At high frequencies and the lower end 

of plasma doping level, the lasing frequency is close to the bulk plasma frequency, thus 

the waveguide loss is reduced quite sensitively with increasing plasma doping, and ݃௧௛ 

behaves similarly for similar reasons.  

Figure 6.4 shows that the plasma layer thickness also influences the waveguide 

performance. As plotted in Fig. 6.4 (a), a thicker plasma layer with fixed doping results in 

a larger ߙ௪ as the mode overlaps more extensively with the lossy material. On the other 

hand, the mode is prevented from extending into the substrate, resulting in a higher 

confinement factor (see Fig. 6.4(b)). Using ݃௧௛ as the criteria for judging waveguide 

performance, optimum plasma doping levels can be found from Fig. 6.4(c), where 

݃௧௛versus plasma doping at various plasma layer thicknesses are plotted,  and exhibiting 

a clear minima. Repeating this process at other frequencies, optimum plasma doping 

levels at different frequencies for various plasma layer thicknesses are summarized in 

Table 6.2.  
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Fig. 6.4 SI-SP waveguide simulated results for (a) waveguide loss (ߙ௪), (b) 
confinement factor (߁), and (c) threshold gain (݃௧௛) versus plasma doping for 
plasma layer thickness (ݐ௣௟) of 200, 400, 600 and 800 nm at 4 THz. 
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Table 6.2 Optimum plasma layer doping range (ൈ 10ଵ଼cm-3) and respective ݃௧௛(cm-1)* 

 200 400 600 800 

7.0 

5.0 

4.0 

3.0 

2.0 

1.0-5.0 (~19) 

1.0-5.0(~14) 

1.0-5.0(~19) 

1.0-5.0(~32) 

1.0-5.0(~57) 

4.0-5.0 (~15) 

2.0-5.0 (~19) 

1.0-5.0(~17) 

1.0-5.0(~23) 

1.0-5.0(~45) 

4.0-5.0(~22) 

2.0-5.0(~18) 

1.5-4.0(~18) 

1.0-3.5(~21) 

1.0-4.0(~38) 

4.5-5.0(~32) 

2.0-4.0(~24) 

1.5-3.0(~22) 

1.0-2.5(~23) 

1.0-2.5(~34) 

*the number of respective ݃௧௛ is written in italic inside“( )”. 

 

For the thinnest plasma layer modeled, 200 nm, changes in plasma doping do not 

affect ݃௧௛ over the whole investigated frequency range. A similar case occurs for a 400 

nm-thick plasma layer over frequencies 2-4 THz. Beyond this region where ݃௧௛ is 

insensitive to any changes of plasma doping, the optimum doping range shrinks as the 

frequency and/or the plasma layer thickness increases, the higher frequency and/or the 

thicker plasma layer, the narrower optimum doping range. To minimize ݃௧௛, a thin 

plasma layer with high doping is preferred at ݂ ൒ 5 THz while thick layer with low 

doping at ݂ ൑ 3 THz. At frequencies around 4 THz, given optimum doping, the plasma 

layer thickness is not critical.  

Figure 6.5 shows the influence of substrate thickness for various plasma doping at 

different frequencies. The variations in ߙ௪,  ߁ and ݃௧௛ with substrate thickness are not 

sensitive to the plasma doping level. At low frequencies, as shown in the left panel at 3.0 

THz, ߁ increases and ݃௧௛ decreases with decreasing substrate thickness. At high 

frequencies, as shown in the right panel at 5.0 THz, the increase in ߁ and decrease in ݃௧௛ 

only occur for extremely thin substrates, when the wavelength in the semiconductor 

݀௣௟(nm) 
݂(THz) 
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comparable to the thickness of the substrate.  Therefore, at low frequencies, the substrate 

should be thinned as much as possible to optimize the waveguide design by decreasing  

݃௧௛ and increasing the confinement factor.  

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

6.3.2 Metal-Metal Waveguide Design 

Numerical results show that the modal indexes for MM waveguides are larger 

than those for SI-SP waveguides. Like the SI-SP waveguide, the MM waveguide modal 

 

Fig. 6.5 SI-SP waveguide simulated results for waveguide loss (ߙ௪), 
confinement factor (߁), and threshold gain (݃௧௛) versus substrate 
thickness at 3 THz (left) and 5 THz (right). The plasma layer is 400 nm 
thick at plasma doping (݊௣௟) of 1.0x1018, 3.0x1018 and 5.0 x1018cm-3.  
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index also depends on the frequency and waveguide geometry. Larger modal index is 

obtained with increasing frequency and decreasing active region thickness. The changes 

of mirror loss induced by modal index variations are also negligible as that in SI-SP 

waveguide.  

Figure 6.6 presents the effect of changing active region thickness at various 

frequencies for MM waveguides. The SI-SP waveguide results are included for 

comparison. For MM waveguides, the waveguide loss  ߙ௪ decreases as the active region 

thickness increases, due to a decreasing relative modal overlap with the lossy materials 

including the metal and contact layers. At low frequencies, ߙ௪ increases and the 

sensitivity of  ߙ௪ to the active region thickness decreases as frequency decreases, while 

at high frequencies ߙ௪ and its sensitivity both increase with increasing frequency. This 

can be explained in this way: At low frequencies, as the frequency approaches the bulk 

plasma frequency of the active region (0.443 THz), the metal contacts induced losses 

become less important and the waveguide loss is more dominated by the increased active 

region free-carrier absorption, which is not sensitive to the active region thickness; At 

high frequencies approaching the bulk plasma frequency of metal contact layer 

(22.17THz), waveguide loss is dominated by losses associated with the SPs at the metal 

contacts, which is more sensitive to the active region thickness. Comparing to SI-SP 

waveguide, larger waveguide loss in MM waveguide is observed due to the absorption 

loss in the additional metal layer. 

The confinement factors for MM waveguide are nearly unity, which are far 

beyond that of SI-SP waveguide. For MM waveguides, the variations of ݃௧௛ can be well 
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approximated by that of waveguide loss ߙ௪, owing to the nearly unity confinement 

factors and negligible changes of mirror loss.  
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Fig. 6.6 Waveguide loss (ߙ௪), confinement factor (߁), and threshold gain (݃௧௛) for 
MM waveguide with active region thicknesses of 5 and 10 μm at frequencies ݂ = 2.0, 
3.0, 5.0 and 7.0 THz. Between the top/bottom Au contacts, the active region is 
sandwiched between two contact layers (one is 100nm thick and another one is 400 
nm thick) both doped at 5x1018cm-3. The results for a SI-SP waveguide with 10 μm 
thick active region are included as reference. Its upper contact layer (100 nm) and 
bottom plasma layer (400 nm) are both doped the same as that in MM waveguide.  
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6.3.3 THz QCL SP Leaky Waveguide Design  

The MIM leaky mode can be applied in THz QCLs to extract their power out of 

the structures. But one metal layer within MIM has to be replaced by a plasma layer due 

to extra thin skin depth of metal at this frequency range. We still called it MIM 

waveguide because indeed it has similar underlying physics as MIM. This section 

presents simulated results for this purpose. The simulated waveguide structure, as 

sketched in Fig. 6.7, is the same as the MM waveguide except the top metal contact layer 

on the ridge. Instead of solid top metal contact layer used in the MM waveguide, 

patterned top metal contact has to be applied here. The leaky waves will come out 

through the parts without metal coverage. As shown in Fig. 6.7, the two n
+
 GaAs layers 

sandwiching the active region are labeled as plasma layer and bottom contact layer, 

respectively. For the following numerical simulations, the bottom contact layer is 100 nm 

thick and doped at 5x10
18

cm
-3

.   

  

.  

 

 

 

 

 

 

 

 

Fig. 6.7 Schematic for THz QCL MIM Leaky Waveguide 
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Repeating leaky wave analysis described in Chapter 3.3.3, the leaky wave-front 

tilt ߠ and radiation patterns are plotted in Fig. 6.8. The leaky wave-front tilt ߠ is defined 

as before, i.e. the angle relative to the surface. As active region thickness (݀ୟୡ୲୧୴ୣ) 
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Fig. 6.8 Leaky wave-front tilt ߠ (a) for waveguides with active region thicknesses 
(݀௔௖௧௜௩௘) of 10 and 15 μm and with plasma layer thicknesses (݀௣௟) of 400 and 800 
nm; Radiation patterns at wavelength 112 μm (b) for waveguides with ݀௔௖௧௜௩௘ ൌ 15 
μm and ݀௣௟ ൌ  400 nm, 800 nm. The plasma layer is doped at 5x1018cm-3. 
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increases, the leaky wave shifts to longer wavelength, however the leaky wave-front tilt 

and radiation pattern are not sensitive to this change. As plasma layer thickness (݀௣௟) 

increases, the antenna region shifts to longer wavelength with smaller peak radiation tilt.  

Narrower antenna spectra and radiation lobes are found for thicker plasma layer. 

Numerical results (data not shown) reveal that the plasma layer doping level doesn’t 

significantly influence the leaky wave properties.   
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Chapter 7 Conclusions and Future Works 

7.1 Conclusions 

In this work, the finite planar MIM plasmonic waveguides have been analyzed 

theoretically and experimentally.  

The complete SP mode set for finite MIM waveguides with real metals is solved 

using the transfer-matrix formalism. Two SP mode pairs originating from the well-known 

low/high energy branches of single metal film SPs are revealed. The three lowest energy 

modes remain as bound modes while the highest energy branch exhibits non-radiative 

(bound) and radiative (leaky) portions separated by a spectral gap. The leaky regime is 

further divided into antenna and reactive mode regions. The antenna mode, characterized 

by the propagation of mode energy out of the waveguide, possesses well-defined 

radiation pattern and is technologically important because it enables direct coupling to 

free space and novel beam steering devices. Taking into account of spatial dispersion 

effect, the SL mode is observed with reduced wave-vector in dispersion curve and 

increased propagation loss.  

The radiative SP modes were investigated theoretically and experimentally by 

ATR method in Kretschmann configuration and by free space coupling. The single- and 

double-sided leaky waves excited with prism coupling show differences in energy flux 

properties when on or off resonance. There exist differences between the minimum ATR 

reflectance, the phase-matching condition and optimum excitation of leaky modes. Free-

space coupling to the antenna leaky wave has been experimentally demonstrated. The 

leaky wave dispersion relation and its antenna mode radiation pattern are determined 
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through both angle- and wavelength-dependent reflectance of TM polarized free space 

incident light.  

Realistic finite MIM structures with the inclusion of dye-doped polymer were 

considered. The propagation of three bound SP modes, each mode within its respective 

optimized symmetric glass-Ag-Rh6G/PMMA-Ag-glass waveguides, is numerically 

analyzed for core material exhibiting optical gain at 594 nm. The lossless propagation of 

SH mode is predicted for a gain coefficient lower than the reported gain coefficient of 420 

cm-1 for Rh6G/PMMA. The MIM propagating SPPs in the ATR Kretschmann setup with 

gain in adjacent medium are simulated. The reflectance and energy flux for various gain 

values are presented. The addition of core gain actually downgrades its performance.   

The waveguide loss, confinement factor and threshold gain for THz QCL SP 

waveguides are modeled over frequency range 2 - 7 THz. For SI-SP waveguide, the 

plasma layer thickness, plasma doping and substrate thickness will affect its performance, 

and the optimum plasma layer thickness and doping at different frequencies are 

determined in terms of obtaining minimum threshold gain. For MM waveguide, the 

confinement factor is nearly unity, and the trend of threshold gain can be approximated 

by that of waveguide loss. For these two waveguides, the variation of mirror coupling 

loss is not sensitive to structure parameters. The SP leaky waveguide has been proposed. 

The leak properties can be adjusted by varying plasma layer thickness. 

  

7.2 Suggestions for Future Works  

This dissertation has demonstrated, through both numerical simulation and 

experimental analysis, free space coupling via finite planar MIM leaky mode. Here an 
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actuator modulator based on the free-space coupling technique is proposed. The designed 

actuator modulator is illustrated in Fig. 7.1. A thin piezoelectric layer is sandwiched 

between two Au layers, which also serve as the electrodes. The bottom Au layer is 

optically thick enough such that leaky wave only exists on the top side. This device 

operates in this way: when fixing the incidence angle, at a specific incidence frequency, 

i.e. at the resonance frequency, phase-matching between the ݌-polarized incident and 

MIM leaky wave occurs, the free space incident laser beam is coupled into the MIM 

waveguide. Applying an electric field across the piezoelectric core layer will change the 

core layer thickness via the inverse piezoelectric effect, shifting the resonance frequency, 

and changing the coupling efficiency of the incident light into the waveguide, and thus 

modulating the reflected light intensity.  

One easy and feasible choice for the thin piezoelectric layer is lead-zirconate-

titanate (PZT), which has high piezoelectricity and can easily be formed by RF sputtering 

or sol-gel process. Zr/Ti ~0.52/0.48 is known as the morphotropic phase boundary, and at 

this composition, i.e. Pb(Zr0.52Ti0.48)O3 has the best piezoelectric properties. PZT has 

high breakdown field strength (> 1MV/cm). The displacement ∆ܮ is proportion to the 

applied actuation voltage. It is expressed by ∆ܮ ൌ ݀ଷଷܸ, where ݀ଷଷ is the piezoelectric 

strain coefficient in unit pm/V in direction parallel to the direction of the applied field. 

The sputtered or sol-gel derived PZT thin film doesn’t show piezoelectric properties 

automatically. It needs to be annealed at temperature higher than 450oC to result in the 

crystallization of the perovskite PZT (111) phase. After that an electric poling process is 

required.  
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For PZT (52, 48), ݀ଷଷ is normally much larger than 100 pm/V. When applying a 

10 V voltage across the MIM structure, the displacement along the applied field direction 

is larger than 1nm. As shown in Fig.7.1 (b), a 1nm variation in the core layer thickness 

shifts the resonance wavelength 6nm away and causes around 15% difference in the 

reflected beam intensity, which is detectable.    

In addition, continuous work on experimental verification of the results and 

predictions presented in Chapter 4, 5 and 6 are interesting, especially the QCL with MIM 

leaky waveguide for extracting power out of the structure.  
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Fig. 7.1 (a) The configuration of actuator modulator based on free-space 

coupling.  (b) Schematic of intensity modulation of the reflected light induced 

by a periodically varying PZT thickness. The curves (red and green) are 

modeled with PZT index of 2.5, incidence angle of 30
o
 with respect to the 

normal direction. 
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Appendix A General Electromagnetics Theory 

A.1 Maxwell’s Equations 

Maxwell’s equations are the set of four fundamental partial differential equations 

governing all electromagnetic behaviors. Maxwell’s macroscopic differential equations 

for a wave propagating through a non-magnetic medium are: 

׏ ൈ ࡱ ൌ െ
࡮߲
߲࢚                                                                                                ሺA. 1aሻ 

׏ · ࡰ ൌ .ሺA                                                                                                        ߩ 1bሻ 

׏ ൈ ࡴ ൌ ࡶ ൅
ࡰ߲
߲࢚                                                                                            ሺA. 1cሻ 

׏ · ࡮ ൌ 0                                                                                                         ሺA. 1dሻ 

The vector quantities are the electric field vector ࡱ in volts/meter[V/m], the 

magnetic field vector ࡴ in ampere/meter[A/m], the electric displacement (or electric flux 

density) vector ࡰ in coulombs/meter2 [C/m2], the magnetic induction (or magnetic flux 

density) vector ࡮ in webers/meter2 or Tesla[T], the electric current density vector ࡶ in 

ampere/meter2[A/m2], and ߩ is the free charge density in coulombs/meter3[C/m3].  

Implicit in Maxwell’s equations is the continuity equation for the charge and 

current density, showing the conservation of electric charges. It is expressed as  

׏ · ࡶ ൅
ߩ߲
ݐ߲ ൌ 0                                                                                                ሺA. 1eሻ 
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A.2 Constitutive Relations 

In a linear isotropic nonmagnetic homogeneous material, the four vectors, ࡮ ,ࡴ ,ࡱ 

and ࡰ, involved in the Maxwell’s equations (A.1) are related to each other through the 

constitutive relations 

ࡰ ൌ ࡱ଴ߝ ൅ ࡼ ൌ ଴ሺ1ߝ ൅ ࣲሻࡱ ൌ  ࡱ௥ߝ଴ߝ ൌ .ሺA                                        ࡱߝ 2aሻ 

࡮ ൌ .ሺA                                                                                                         ࡴ଴ߤ 2bሻ 

where ߝ଴ is the vacuum permittivity equal to 8.854x10-12 m-3 kg-1 s4 A2,  ߤ଴ is the vacuum 

permeability equal to 4πx10-7 Hm-1, ߝ௥ denotes the relative dielectric permittivity, ࡼ is 

the polarization density which is aligned with and proportion to the electric field E 

through the electric susceptibility ࣲ. ࡼ is zero for free space.  

The current density ࡶ and the electric field E are related through the ohm’s law  

ࡶ ൌ  where σ is the conductivity. In a dielectric material, there is no free charges and , ࡱߪ

current, thus ߪ ൌ ߩ ൌ |ࡶ| ൌ 0.  

 

A.3 Boundary Conditions 

The Maxwell’s equations (A.1) are valid in regions where material physical 

properties change continuously. In the presence of an abrupt change of the material 

properties, such as the interface between two media (labeled with sub-index 1 and 2), ࡱ, 

 have to satisfy the boundary conditions derived from the integral form of ࡰ and ࡮ ,ࡴ

Maxwell’s equations. 

ଵଶ࢔ ൈ ሺࡱଶ െ ଵሻࡱ ൌ 0                                                                                   ሺA. 3aሻ 

ଵଶ࢔ · ሺࡰଶ െ ଵሻࡰ ൌ 0                                                                                    ሺA. 3bሻ 
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ଵଶ࢔ ൈ ሺࡴଶ െ ଵሻࡴ ൌ 0                                                                                  ሺA. 3cሻ 

ଵଶ࢔ · ሺ࡮ଶ െ ଵሻ࡮ ൌ 0                                                                                    ሺA. 3dሻ 

where ࢔ଵଶ is the unit normal vector pointing from medium 1 into medium 2. The 

vectorial equations (A.3a) and (A.3c) indicate that the tangential components of the 

electric field ࡱ and the magnetic field ࡴ are continuous. The scalar equations (A.3b) and 

(A.3d) state that the normal components of the electric displacement ࡰ and the magnetic 

induction ࡮ are continuous.  

 

A.4 The Wave Equation 

The electromagnetic wave equation is a second-order partial differential equation 

that describes the propagation of EM waves through a medium. The wave equations are 

derived from the Maxwell’s equations. In the case that external charge and current are 

absent, taking the curl of (A.1a) and combined with (A.1c), we get  

׏ ൈ ׏ ൈ ࡱ ൌ െߤ଴
߲ଶࡰ
ଶݐ߲                                                                                   ሺA. 4ሻ 

Applying the basic vector analysis  

׏ ൈ ׏ ൈ ࡱ ൌ ׏ሺ׏ · ሻࡱ െ  ࡱଶ׏

׏ · ࡰ ൌ ׏ · ሺࡱߝሻ ൌ ׏ߝ · ࡱ ൅ ࡱ ·  ߝ׏

as well as  ׏ · ࡰ ൌ 0 which is due to the absence of external source, (A.4) can be written 

as 

ࡱଶ׏ ൅ ׏ ൤
ߝ׏ · ࡱ
ߝ ൨ െ ݎߝ0ߝ0ߤ

ࡱ2߲
2ݐ߲

ൌ 0                                                          ሺA. 5aሻ 

This is the wave equation for the electric field.  
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In a manner similar to those leading to (A.5a), we start with (A.1c) to find the 

wave equation for the magnetic field. The curl of (A.1c) along with ׏ · ࡮ ൌ 0 lead to   

׏ ൈ ׏ ൈ ࡴ ൌ ׏ሺ׏ · ሻࡴ െ ࡴଶ׏ ൌ െ׏ଶࡴ ൌ ׏ ൈ
ࡰ߲
ݐ߲

 

Using the identity 

߲
ݐ߲
ሺ׏ ൈ ሻࡰ ൌ

߲
ݐ߲ ൫׏ ൈ

ሺࡱߝሻ൯ ൌ
߲
ݐ߲
ሺ׏ߝ ൈ ࡱ ൅ ߝ׏ ൈ  ሻࡱ

ൌ െߤ଴ߝ
߲ଶࡴ
ଶݐ߲ ൅

ߝ׏
ߝ ൈ

ࡰ߲
ݐ߲  

ൌ െߤ଴ߝ
߲ଶࡴ
ଶݐ߲ ൅

ߝ׏
ߝ ൈ ሺ׏ ൈ  ሻࡴ

then the wave equation for the magnetic field is expressed as 

െࡴଶ׏
ε׏
ߝ ൈ ሾ׏ ൈࡴሿ െ ݎߝ0ߝ0ߤ

ࡴ2߲
2ݐ߲

ൌ 0                                                 ሺA. 5bሻ 

For homogeneous medium, ߝ is not space dependent, thus ߝ׏ ൌ 0, then the wave 

equations (A.5) simplify to the core equations of EM wave theory, 

ࡱଶ׏ െ
௥ߝ
ܿଶ
߲ଶࡱ
ଶݐ߲ ൌ 0                                                                                        ሺA. 6aሻ 

ࡴଶ׏ െ
௥ߝ
ܿଶ
߲ଶࡴ
ଶݐ߲ ൌ 0                                                                                       ሺA. 6bሻ 

where ܿ ൌ 1 ඥߤ଴ߝ଴⁄  is the speed of light at free space.  

The Helmholtz equations can be derived from the wave equations with time 

harmonic fields. Given the field time dependence expሺെ݅߱ݐሻ, the time-varying electric 

and magnetic fields ࡱሺ࢘, ,ሺ࢘ࡴ ሻ andݐ  ሻ, with ࢘ a space vector , are expressed asݐ

,ሺ࢘ࡱ ሻݐ ൌ .ሻ                                                                           ሺAݐሺ࢘ሻexpሺെ݅߱ࡱ 7aሻ 

,ሺ࢘ࡴ ሻݐ ൌ .ሻ                                                                         ሺAݐሺ࢘ሻexpሺെ݅߱ࡴ 7bሻ 
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Substituting the time harmonic fields (A.7) into the wave equations (A.6), we get 

ሺ࢘ሻࡱଶ׏ ൅ 0݇ݎߝ
ሺ࢘ሻࡱ2 ൌ 0                                                                               ሺA. 8aሻ 

ሺ࢘ሻࡴଶ׏ ൅ 0݇ݎߝ
ሺ࢘ሻࡴ2 ൌ 0                                                                             ሺA. 8bሻ 

where  ݇଴ ൌ ߱ඥߤ଴ߝ଴ ൌ ߱ ܿ⁄   is the vacuum wave vector. Equations (A.8) are known as 

the Helmholtz equations.  

For simplicity, here we consider a one-dimensional (1D) problem. We assume 

the waveguide exhibit no spatial variation in the ݕ-direction ( డ
డ௬
ൌ 0) and the waves 

propagate along the ݖ-direction. Therefore, the propagating waves are described as 

ሺ࢘ሻࡱ ൌ ,ݔሺࡱ ,ݕ ሻݖ ൌ  ሿ, where ݇௭ is called the propagation constant of theݖሻexpሾ݅݇௭ݔሺࡱ

traveling waves and corresponds to the wave vector component in the propagation 

direction. Plugging this field expression into (A.8a), we get the wave equation 

formulation for 1D problem as 

߲ଶࡱሺݔሻ
ଶݔ߲ ൅ ሺߝ௥݇଴ଶ െ ݇௭ଶሻࡱሺݔሻ ൌ 0                                                              ሺA. 9aሻ 

Similarly the 1D wave equation for the magnetic field ࡴ is given as 

߲ଶࡴሺݔሻ
ଶݔ߲ ൅ ሺߝ௥݇଴ଶ െ ݇௭ଶሻࡴሺݔሻ ൌ 0                                                            ሺA. 9bሻ 

Given the assumption of time dependence ( డ
డ௧
ൌ െ݅߱), the explicit relations 

between the field components of ࡱ and ࡴ obtained directly by the curl equations (A.1a) 

and (A.1c) are expressed as    

௭ܧ߲
ݕ߲ െ

௬ܧ߲
ݖ߲ ൌ .௫                                                                                ሺAܪ଴ߤ߱݅ 10aሻ 

௫ܧ߲
ݖ߲ െ

௭ܧ߲
ݔ߲ ൌ .௬                                                                               ሺAܪ଴ߤ߱݅ 10bሻ 
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௬ܧ߲
ݔ߲ െ

௫ܧ߲
ݕ߲ ൌ .௭                                                                               ሺAܪ଴ߤ߱݅ 10cሻ 

௭ܪ߲
ݕ߲ െ

௬ܪ߲
ݖ߲ ൌ െ݅߱ߝ଴ߝ௥ܧ௫                                                                        ሺA. 10eሻ 

௫ܪ߲
ݖ߲ െ

௭ܪ߲
ݔ߲ ൌ െ݅߱ߝ଴ߝ௥ܧ௬                                                                        ሺA. 10fሻ 

௬ܪ߲
ݔ߲ െ

௫ܪ߲
ݕ߲ ൌ െ݅߱ߝ଴ߝ௥ܧ௭                                                                        ሺA. 10gሻ 

The 1D waveguide structure allows two sets of propagating wave solutions with 

different polarization. One set are the transverse magnetic (TM or ݌) modes, where the 

field components ܪ௫ ൌ ௭ܪ ൌ ௬ܧ ൌ 0. Another set are the transverse electric (TE or ݏ) 

modes, where the field components  ܧ௫ ൌ ௭ܧ ൌ ௬ܪ ൌ 0.  

For TM modes, remembering that the 1D waveguide is invariant in the ݕ-

direction ( డ
డ௬
ൌ 0) and waves propagate along the ݖ-direction ( డ

డ௭
ൌ ݅݇௭), the equations 

(A.10) simplifies to 

௫ܧ ൌ
݇௭

௥ߝ଴ߝ߱
.௬                                                                                           ሺAܪ 11aሻ 

௭ܧ ൌ
݅

௥ߝ଴ߝ߱
௬ܪ߲
ݔ߲                                                                                         ሺA. 11bሻ 

The ܪ௬ satisfies the TE wave equation, which reduces to  

߲ଶܪ௬
ଶݔ߲ ൅ ሺߝ௥݇଴ଶ െ ݇௭ଶሻܪ௬ ൌ 0                                                                   ሺA. 11cሻ 

The equations (A.11) are the governing equations to solve the 1D TM modes.  

For 1D TE modes, the analogous governing equations is  

௫ܪ ൌ
െ݇௭
଴ߤ߱

.௬                                                                                             ሺAܧ 12aሻ 
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௭ܪ ൌ
െ݅
଴ߤ߱

௬ܧ߲
ݔ߲                                                                                           ሺA. 12bሻ 

with the TE wave equation 

߲ଶܧ௬
ଶݔ߲ ൅ ሺߝ௥݇଴ଶ െ ݇௭ଶሻܧ௬ ൌ 0                                                                 ሺA. 12cሻ 
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Appendix B Surface Plasmon Polaritons at a Single Interface 

As depicted in Fig. B.1, the single planar interface between a metal, lying in 

ݔ ൏ 0 half space with dielectric permittivity ߝଵ, and a dielectric, lying in ݔ ൐ 0 half space 

with dielectric permittivity ߝଶ, is the most simple geometry sustaining SPPs. We assume 

the waves propagate along the ݖ-direction. 

 

 

 

 

Fig. B.1 Geometry for SPPs propagation at a single planar interface between  
semi-infinite dielectric and metal. 
 

Let’s first check the TM solutions. The fields are described by 

ݔ ൒ 0             

ە
ۖ
۔

ۖ
ۓ

ሻݔ௬ାሺܪ ൌ ݖାexpሾ݅݇௭ܣ െ ݇ଶ௫ݔሿ

ሻݔ௫ାሺܧ ൌ
݇௭

ଶߝ଴ߝ߱
ሻݔ௬ାሺܪ

ሻݔ௭ାሺܧ ൌ
݅

ଶߝ଴ߝ߱
ሻݔ௬ାሺܪ߲
ݔ߲ ൌ

െ݅݇ଶ௫
ଶߝ଴ߝ߱

ሻݔ௬ାሺܪ

                   ሺB. 1aሻ 

ݔ ൑ 0             

ە
ۖ
۔

ۖ
ۓ

ሻݔ௬ିሺܪ ൌ ݖexpሾ݅݇௭ିܣ ൅ ݇ଵ௫ݔሿ

ሻݔ௫ିሺܧ ൌ
݇௭

ଵߝ଴ߝ߱
ሻݔ௬ିሺܪ

ሻݔ௭ିሺܧ ൌ
݅

ଶߝ଴ߝ߱
ሻݔ௬ିሺܪ߲
ݔ߲ ൌ

݅݇ଵ௫
ଵߝ଴ߝ߱

ሻݔ௬ିሺܪ

                   ሺB. 1bሻ 

where ݇௜௫ሺ݅ ൌ 1, 2ሻ are the transverse wave vectors along the ݔ-axis in these two media. 

Note that ݇௜௫ᇱ ൌ Reሾ݇௜௫ሿ ൐ 0 ሺ ݅ ൌ 1, 2) assure surface waves with fields confined to the 

interface. Derived from (A.8b), we get the relations 

 ݇௜௫ଶ ൌ ݇௭ଶ െ ௜݇଴ ଶߝ , ݅ ൌ 1, 2                                                                           ሺB. 2ሻ  

ݖ
ݔ

    Metal     ߝଵ ൌ ଵᇱߝ ൅  ଵᇱᇱߝ݅

Dielectric  ߝଶ 
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The boundary conditions (A.3a) and (A.3c) require the continuity of the tangential 

electric and magnetic fields at the interface ݔ ൌ 0, thus  

௬ାሺ0ሻܪ ൌ ௬ିሺ0ሻܪ     ֜ ାܣ ൌ .ሺB                                                          ିܣ 3aሻ

௭ାሺ0ሻܧ ൌ   ֜      ௭ିሺ0ሻܧ   
െ݇ଶ௫
ଶߝ

ൌ
݇ଵ௫
ଵߝ
                                                  ሺB. 3bሻ

 

Since ߝଶ ൐ 0 and ݇௜௫ᇱ ൐ 0 ሺ݅ ൌ 1, 2), equation (B.3b) states that ߝଵᇱ ൏ 0 which can be 

fulfilled in metals and doped semiconductors at frequencies lower than their bulk plasma 

frequencies. Therefore the TM surface waves exist only at interfaces between materials 

possessing opposite signs of the real part of their dielectric permittivities. 

Combining (B.2) and (B.3b), we obtain the dispersion relation of SPPs 

propagating at the single planar interface between two semi-infinite media 

݇௭ ൌ ݇଴ඨ
ଶߝଵߝ
ଵߝ ൅ ଶߝ

                                                                                            ሺB. 4ሻ 

Similarly, we can check the possibility of TE surface mode. The fields are 

described by 

ݔ ൒ 0             

ە
ۖ
۔

ۖ
ۓ

ሻݔ௬ାሺܧ ൌ ݖାexpሾ݅݇௭ܣ െ ݇ଶ௫ݔሿ

ሻݔ௫ାሺܪ ൌ
െ݇௭
଴ߤ߱

ሻݔ௬ାሺܧ

ሻݔ௭ାሺܪ ൌ
െ݅
଴ߤ߱

ሻݔ௬ାሺܧ߲
ݔ߲ ൌ

݅݇ଶ௫
଴ߤ߱

ሻݔ௬ାሺܧ

                        ሺB. 5aሻ 

ݔ ൑ 0             

ە
ۖ
۔

ۖ
ۓ

ሻݔ௬ିሺܧ ൌ ݖexpሾ݅݇௭ିܣ ൅ ݇ଵ௫ݔሿ

ሻݔ௫ିሺܪ ൌ
െ݇௭
଴ߤ߱

ሻݔ௬ିሺܧ

ሻݔ௭ିሺܪ ൌ
െ݅
଴ߤ߱

ሻݔ௬ିሺܧ߲
ݔ߲ ൌ

െ݅݇ଵ௫
଴ߤ߱

ሻݔ௬ିሺܧ

                   ሺB. 5bሻ 

Matching the tangential electric and magnetic fields at the interface ݔ ൌ 0, we obtain 
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௬ାሺ0ሻܧ ൌ ௬ିሺ0ሻܧ     ֜ ାܣ ൌ .ሺB                                              ିܣ 6aሻ

௭ାሺ0ሻܪ ൌ   ֜      ௭ିሺ0ሻܪ ା݇ଶ௫ܣ ൅ ଵ௫݇ିܣ ൌ 0                          ሺB. 6bሻ
 

For surface waves, ݇௜௫ᇱ ൐ 0 ሺ ݅ ൌ 1, 2), (B.6b) can only be satisfied with ܣା ൌ ିܣ ൌ 0. 

This means that no surface modes exist for TE polarization. Therefore, surface plasmon 

polaritons only exist for TM polarization. 
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Appendix C Thin Film Transfer Matrix Method 

C.1 Transfer Matrix Formulation  

The transfer matrix analysis provides an easy formulation to study the physical 

properties of a multilayer planar waveguide structure, such as the one shown in Fig.C.1. 

All materials are assumed to be non-magnetic (ߤ ൌ  ଴), isotropic and homogeneous. Thisߤ

waveguide consists of ܰ layers labeled with sub-index ݆, ݆ ൌ 1, ܰڮ2 െ 1; each layer 

has refractive index ௝݊ and thickness ௝݀; The cover and substrate have refractive index ݊଴ 

and ݊ே , respectively. The interfaces between adjacent ݆th and ሺ݆ ൅ 1ሻth layers locate at 

ݔ ൌ   .direction ݖ௝. The mode is assumed to propagate along the ൅ݔ

 

 

 

 

 

 

 

Fig. C.1 Geometry of a multilayer planar waveguide 
 

The electric field of a TE mode and the magnetic field of a TM mode are express 

as 

TE:    ܧሬԦሺݔ, ሻݖ ൌ ݐሻexpሾെ݅ሺ߱ݔሺܧොݕ ൅ ሻሿݖߚ ൌ ݐሻexpሾെ݅ሺ߱ݔ଴߮ሺܧොݕ ൅ .ሻሿ                  ሺCݖߚ 1ሻ 

TM:   ܪሬሬԦሺݔ, ሻݖ ൌ ݐሻexpሾെ݅ሺ߱ݔሺܪොݕ ൅ ሻሿݖߚ ൌ ݐሻexpሾെ݅ሺ߱ݔ଴߮ሺܪොݕ ൅ .ሻሿ                ሺCݖߚ 2ሻ 

M
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where ߚ is the complex propagation constant, ݕො is the unit vector in the ݕ dirction, ߱ is 

the radian frequency, ߮ሺݔሻ is the complex amplitude, and ܧ଴ and ܪ଴ are scalar constants.  

Substituting (C.1) and (C.2) into the wave equations (A.6a) and (A.6b) respectively, we 

obtain the 1D Helmholtz equation regarding the field transverse dependence ߮ሺݔሻ in the 

݆th layer, 

߲ଶ߮ሺݔሻ
ଶݔ߲ ൅ ሻݔ௝ଶ߮ሺߙ ൌ 0                                                                                   ሺC. 3ሻ 

where ߙ௝ ൌ ටߚଶ െ ௝݇
ଶ,    ௝݇ ൌ ௝݊߱ ܿ⁄ , ܿ is the vacuum light speed.  

Equation (C.3) has a simple solution composed of a forward and a backward 

propagating component and is expressed as 

߮ሺݔሻ ൌ ݔ௝൫ߙ௝expൣܣ െ ௝൯൧ݔ ൅ ݔ௝൫ߙ௝expൣെܤ െ .௝൯൧                              ሺCݔ 4ሻ 

where ܣ௝ and ܤ௝  are un-determined complex amplitude coefficients. 

By satisfying the continuity conditions of the electric and magnetic tangential 

field components at each layer interface, the field amplitude coefficients in adjacent 

layers can be determined as  

൬
௝ܣ
௝ܤ
൰ ൌ ௝ܯ ൬

௝ିଵܣ
௝ିଵܤ

൰                                                                                      ሺC. 5ሻ 

where 

௝ܯ  ൌ
1
௝ߩ2

ۏ
ێ
ێ
ێ
ۍ ቆߩ௝ ൅

௝ିଵߙ
௝ߙ

ቇ exp൫ߜ௝൯ ቆߩ௝ െ
௝ିଵߙ
௝ߙ

ቇ exp൫ߜ௝൯

ቆߩ௝ െ
௝ିଵߙ
௝ߙ

ቇ exp൫െߜ௝൯   ቆߩ௝ ൅
௝ିଵߙ
௝ߙ

ቇ exp൫െߜ௝൯ے
ۑ
ۑ
ۑ
ې
      ሺC. 6ሻ

 

௝ߜ ൌ ௝ߙ ௝݀   

௝ߩ ൌ ൜
1 TE

௝݇ିଵ
ଶ

௝݇
ଶൗ   TM 
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By repeating (C.6) at each layer interface, amplitude coefficients in the cover and 

substrate layer can be related via the matrix product   

൬ܣேܤே
൰ ൌ ேିଵܯேܯ ଵܯଶܯڮ ൬

଴ܣ
଴ܤ
൰ 

           ൌ ൬ ଵܶଵ ଵܶଶ
ଶܶଵ ଶܶଶ

൰ ൬ܣ଴ܤ଴
൰                                                                          ሺC. 7ሻ 

           ൌ ܶ ൬ܣ଴ܤ଴
൰                       

C.2 Application of Transfer Matrix Method in Multilayer Waveguide  

As described in Chapter 2.2.1, the modes in a multilayer waveguide structure can 

be classified into three categories: guided modes, radiation modes and leaky modes. 

Figure C.2 schematically illustrates the corresponding field distribution (dash lines) and 

inward- or outward-going exponential components (arrows) in the outermost regions 

when applying the transfer matrix method to handle these three categories of modes. 

Only lateral components of the mode field are indicated.  

For guided modes, the two bounding media have only outgoing components with 

exponentially decaying field profile. For double-sided radiation modes, as shown in Fig. 

C.2(b), both the bounding media have counter-propagating components leading to 

sinusoidal field distribution. For substrate or cover radiation modes, only the substrate or 

cover region has two exponential components. For leaky modes, the two outermost media 

have only outgoing components with exponentially growing field profiles.     
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Fig. C.2 The propagating exponential components (arrow) and the field distribution 
profile (dash) in a multilayer waveguide outermost regions of (a) guided mode, (b) 
radiation mode, and (c) leaky mode. Note: Only double-sided radiation mode is shown 
in (b).   
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݂ ′ሺݔ௜ሻ ൌ െ
݂ሺݔ௜ሻ

௜ାଵݔ െ ௜ݔ
ൌ െ

݂ሺݔ௜ሻ
ᇞ ௜ݔ

                                                                ሺD. 2ሻ 

where ∆ݔ௜ ൌ ௜ାଵݔ െ ௜ is the ݅th correction term between the ሺ݅ݔ ൅ 1ሻth and ݅th 

approximations.  

The Newton-Raphson method might fail for bad-behaved functions or when root 

initial guess is far from the true root. For instance, too small value of ݂ ′ሺݔ௜ሻ might cause 

the ݅th correction term to diverge. The initial guess for the root might be so far from the 

true root as to let the search interval include a local maximum or minimum of the 

function, this will also makes Newton-Raphson method fail. 

Newton-Raphson method is not restricted to one dimension. The method is 

generalizes to multiple dimensions as below. 

The multidimensional vector function ࢌሬԦ is given as ࢌሬԦሺݔԦሻ ൌ 0, where ݔԦ is a ݊ ൈ 1 

vector of variables ሾݔଵ  ݔଶ  ௡ሿ். This vector function represents the followingݔ  ڮ  

simultaneous equation set 

ଵ݂ሺݔԦሻ ൌ ଵ݂ሺݔଵ, ڮ,ଶݔ , ௡ሻݔ ൌ 0
ڭ

௡݂ሺݔԦሻ ൌ ௡݂ሺݔଵ, ڮ,ଶݔ , ௡ሻݔ ൌ 0
 

The iteration for ݔԦ is given by 

Ԧ௜ାଵݔ ൌ Ԧ௜ݔ െ ൤డࢌ
ሬԦ

డ௫Ԧ
ሺݔԦ௜ሻ൨

ିଵ
Ԧ௜ሻݔሬԦሺࢌ ൌ Ԧ௜ݔ െ ሾࡶሺݔԦ௜ሻሿିଵࢌሬԦሺݔԦ௜ሻ                            ሺD. 3ሻ   

where ࡶ is the ݊ ൈ ݊ Jacobian matrix expressed as 

ࡶ ൌ
ሬԦࢌ߲
Ԧݔ߲ ൌ

ۏ
ێ
ێ
ێ
ۍ
߲ ଵ݂

ଵݔ߲
ڮ

߲ ଵ݂

௡ݔ߲
ڭ ڰ ڭ
߲ ௡݂

ଵݔ߲
ڮ

߲ ௡݂

ے௡ݔ߲
ۑ
ۑ
ۑ
ې

                                                                         ሺD. 4ሻ 
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Newton-Raphson method converges quadratically. This means near a root, the 

number of significant digits approximately doubles with each step. The very strong 

convergence property makes Newton-Raphson a powerful tool. 
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Appendix E Fundamentals of Plasma Physics  

The concepts and principles of plasma physics described in Chapters 1-4 of Ref. 

[2] are reiterated here. The phasor in the form of expሺെ݅߱ݐ ൅ ݅࢑ · ࢘ሻ is assumed. 

 

E.1 Basic Concepts of Plasma Physics  

E.1.1 Plasmas in Nature 

The plasma state exists as a 4th state of matter along with the gaseous, liquid, and 

solid states. A plasma can be composed of charged and neutral particles. Positively 

charged particles are ions (gaseous plasma) and holes (solid-state plasma); negatively 

charged particles are electrons and negative ions. Hereafter, all quantities for plasma 

electron (ions, neutrals) are marked by the index e (i, n) and in general by ߙ.  

The composition of the plasma can be described as partially ionized ሺݎ ൏ 1ሻ and 

completely ionized ሺݎ ൌ 1ሻ plasma, where the degree of ionization ݎ is defined as 

ݎ ൌ ௘ܰ ሺ ௡ܰ ൅ ∑ ௜ܰ௜ ሻ⁄   where ఈܰሺߙ ൌ ݁, ݊, ݅ሻ denotes particle density. 

 

E.1.2 Plasma Parameters  

(i) Plasmas in thermodynamic equilibrium and quasi-equilibrium:  

 The Maxwell and Fermi distribution functions  

The particles constituting a plasma are in random thermal motion. The thermal 

equilibrium distribution of plasma particles can be described by either the Maxwell–

Boltzmann distribution or the Fermi-Dirac distribution.  
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The Maxwell–Boltzmann distribution 

When the distribution functions of plasma particles of type ߙ with momentum  ݌ఈ 

(or velocities) is found to be maxwellian, the plasma temperature ఈܶ  is introduced to 

characterize the average kinetic energy of the random particle (type ߙ) thermal motion as 

3
2 ݇஻ ௔ܶ ൌ ቆ

݉௔ߥ௔ଶ

2 ቇ
തതതതതതതതതതത

                                                                                          ሺE. 1ሻ 

where ݇஻ ൌ 1.38 ൈ 10ିଶଷ J/K is the Boltzmann constant; ఈܶ is the temperature of the 

component ܽ [K]; ߥ௔ is the velocity of random thermal motion of particles of type ܽ. The 

upper line means averaging over all particles of type ܽ. A plasma is called isothermal if 

all particle types have the same temperature ( ఈܶ ؠ ܶ), otherwise is called nonisothermal.  

For a nonisothermal plasma the Maxwell–Boltzmann distribution of type ܽ is 

given as  

ெ݂௔ ൌ ௔ܰ ൬
݉௔

஻݇ߨ2 ௔ܶ
൰
ଷ ଶ⁄

exp ቆെ
௔ଶ݌

2݉௔݇஻ ௔ܶ
ቇ                                             ሺE. 2ሻ 

where ௔ܰ is the concentration (density) of particles of type ܽ. The Maxwellian 

distribution applies when the temperature is high enough and the density is low enough to 

render quantum effects negligible and the particles can be considered "distinguishable". 

 

The Fermi–Dirac distribution 

Fermi–Dirac statistics applies when quantum effects are important and the 

particles are "indistinguishable". The Fermi–Dirac distribution applies to fermions, i.e. 

particles (electrons, holes and hydrogen ions) with half-integer spin following from the 
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Pauli exclusion principle. Fermi–Dirac statistics become Maxwell–Boltzmann statistics at 

high temperature or at low concentration.  

For plasma at low temperatures and high concentration, the Fermi energy exceeds 

the thermal energy,  

ி௔ܧ ൌ
ி௔ଶ݌

2݉௔
ൌ
ሺ3ߨଶሻଶ ଷ⁄ ԰ଶ ௔ܰ

ଶ ଷ⁄

2݉௔
ب ݇஻ ௔ܶ                                                   ሺE. 3ሻ 

where ݌ி௔ ൌ ݉௔ߥி௔ ൌ ሺ3ߨଶሻଵ ଷ⁄ ԰ ௔ܰ
ଵ ଷ⁄  is the momentum at the Fermi boundary, 

԰ ൌ ݄ ⁄ߨ2  , and ݄ ൌ 6.63 ൈ 10ିଷସJs is the Planck’s constant.  The inequity (E.3) is 

satisfied at low temperatures and high concentrations ௔ܰ ب 5 ൈ 10ଵହ ௔ܶ
ଷ ଶ⁄ ڄ ሺ݉ఈ ݉⁄ ሻଷ ଶ⁄  

with ݉ denoting a free-electron mass. Thus this inequity is also called the degeneracy 

condition. W[hen (E.3) holds, in such a degenerated plasma, the concept of temperature 

as a measure of the energy of random particle thermal motion becomes sensless and is 

replaced by the Fermi energy ܧி௔, which is independent of the plasma temperature and 

grows with the particle concentration. Therefore the general equilibrium distribution of 

fermions of type ܽ over the momentum ݌ఈ is defined by the Fermi distribution as 

ி݂௔ ൌ 2 ൬
௔݇஻ܶ݉ߨ2

݄ଶ ൰
ଷ ଶ⁄

ቊ1 ൅ exp ቈቆ
௔ଶ݌

2݉௔
ଶ െ ி௔ቇܧ ݇஻ ௔ܶൗ ቉ቋ

ିଵ

             ሺE. 4ሻ 

 

(ii) Characteristic values of plasma parameters 

The characteristic values of the electron plasma in metals and solid-state plasmas 

in semiconductor are relevant to plasmons. The electron plasma in metals has 

concentrations ௘ܰ ൎ 10ଶଵ to 10ଶଶ cm-3, and the effective mass of a charge carrier is of 

the order of a free-electron mass (݉௘ ൌ ݉ ൌ 9.1 ൈ 10ିଶ଼g). Under these high 

concentrations, free electrons in metals appear degenerate and the condition of 
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degeneracy (E.3) is satisfied up to the temperature ܶ ൎ 10ସ Κ. The solid-state plasma in 

semiconductors, containing negative (electrons) and positive (holes) charge carriers, can 

be either degenerate or nondegenerate. In semiconductors with a large number of light 

carriers (electrons) ( ௘ܰ ذ 10ଵ଺ to 10ଵ଼ cm-3) and effective mass ݉௘
כ ൎ 10ିଶ݉௘, the 

degeneracy occurs at temperatures ௔ܶ ൏ 10ଶ Κ. The degeneracy of heavy charge carrier 

(holes) occurs at lower temperatures, while in semiconductors with a small number of 

carriers ( ௘ܰ د 10ଵସ to10ଵହ cm-3), the electron-hole plasma is usually nondegenerate. The 

above mentioned values of  ఈܰ and ఈܶ are approximate and describe only approximate 

magnitudes. 

 

E.1.3 Plasma Frequency and Debye Length   

Plasma must be quasi-neutral, i.e. on the average, it must remain neutral for 

sufficiently long time and over an region of space. Thus the time and space scale of 

charge separation need to be considered.  

The electron Langmuir frequency, electron plasma frequency, or simply plasma 

frequency, is a very important plasma characteristic parameter. It is defined as 

߱௣ ൌ ቆ
݁ଶ ௘ܰ

଴݉ߝ
ቇ
ଵ ଶ⁄

                                                                                             ሺE. 5ሻ 

The plasma frequency, being independent of temperature, is the same both for the 

degenerate and non-degenerate plasma and for the plasma in semiconductors ߱௣ ൌ

ඥ݁ଶ ௘ܰ כ݉ ⁄଴݉ߝ   , where ݉כ is the carrier effective mass. 
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The quantity reciprocal to the plasma frequency, ߬~1 ߱௣⁄ , is regarded as a time 

scale of charge separation. For time averages ݐ ب ߬,  the plasma as a whole behaves like 

a quasi-neutral system due to the particle oscillations.  

The space scale of charge separation, defined as the length on which density 

perturbations of charged particles may be shifted during the period of plasma oscillations 

as a result of the thermal motion of particles, is determined from another very important 

plasma characteristic parameterെ the electron Debye length (ݎ஽௘). 

 In the non-degenerate plasma,   

஽௘ݎ ൌ ௘்ߥ ߱௣⁄ ൌ ඥߝ଴݇஻ ௘ܶ ݁ଶ ௘ܰ⁄ ൎ 7ඥ ௘ܶሾΚሿ ௘ܰ⁄ ሾcmሿ                         ሺE. 6ሻ  

where ்ߥ௘ ൌ ሺ3݇஻ ௘ܶ ݉⁄ ሻଵ ଶ⁄  is the electron thermal velocity . 

In the degenerate plasma, the characteristic energy of the random electron motion 

is the Fermi energy, therefore, ݇஻ ௘ܶ in (E.6) is replaced by 6ܧி௘ 

஽௘ݎ ൌ ൬
଴ߝி௘ܧ6
݁ଶ ௘ܰ

൰
ଵ ଶ⁄

ൌ
ி௘ߥ3√
߱௣

                                                                       ሺE. 7ሻ 

For plasma quasi-neutrality, the characteristic dimensions must be much larger 

than the Debye length. Only under these conditions may a system of charged particles be 

regarded as a plasma developing the typical collective effects.  
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E.2 Principles of Electrodynamics of Media with Dispersion in Space and 

Time  

E.2.1 Dispersion in Time and Space  

The dependency of dielectric permittivity tensor (dielectric tensor in short) on ߱ 

(the wave vector ࢑) defines the frequency (spatial) dispersion of the electromagnetic field 

in the medium. Derived from Maxwell’s equations, the dielectric permittivity tensor can 

be expressed as  

,௜௝ሺ߱ߝ ࢑ሻ ൌ ௜௝ߜ ൅
݅
߱ ௜௝ߪ

ሺ߱, .ሻ                                                                       ሺEࣄ 8ሻ 

where ߜ௜௝ is the unit tensor and ߪ௜௝ሺ߱,  ሻ is the complex conductivity tensor of theࣄ

medium.  

For isotropic medium the dielectric tensor ߝ௜௝ሺ߱,  ሻ can be written asࣄ

,௜௝ሺ߱ߝ ࢑ሻ ൌ ቆߜ௜௝ െ
݇௜ ௝݇

݇ଶ ቇ ߝ
௧௥ሺ߱, ࢑ሻ ൅

݇௜ ௝݇

݇ଶ ,௟௢ሺ߱ߝ ࢑ሻ                              ሺE. 9ሻ 

and the complex conductivity tensor of the medium takes the similar form 

,௜௝ሺ߱ߪ ሻࣄ ൌ ቆߜ௜௝ െ
݇௜ ௝݇

݇ଶ ቇ ߪ
௧௥ሺ߱, ࢑ሻ ൅

݇௜ ௝݇

݇ଶ ,௟௢ሺ߱ߪ ࢑ሻ                          ሺE. 10ሻ 

The indices ݅ and ݆ refer to the three space dimensions.  The tensors ݇௜ ௝݇ ݇ଶ⁄   and 

௜௝ߜ െ ݇௜ ௝݇ ݇ଶ⁄  are projectors into the directions parallel and perpendicular to the wave 

vector ࢑ , thus ߝ௧௥ሺ߱, ݇ሻ and ߝ௟௢ሺ߱, ݇ሻ are called the transverse and longitudinal 

dielectric permittivity, respectively, and correspondingly characterize electromagnetic 

properties of the medium with respect to the transverse and longitudinal field. Equation 

(E.8) holds for both transverse and longitudinal components separately 
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,௧௥,௟௢ሺ߱ߝ ࢑ሻ ൌ 1 ൅
݅
߱ ߪ

௧௥,௟௢ሺ߱, .ሻ                                                              ሺEࣄ 11ሻ 

 

E.2.2 Electromagnetic Waves in the Medium  

With assumption of no external sources and a plane monochromatic wave in the 

form of expሺെ݅߱ݐ ൅ ݅࢑ · ࢘ሻ, three homogeneous wave equations for field ࡱ components 

are given as 

ቈ݇ଶߜ௜௝ െ ݇௜ ௝݇ െ
߱ଶ

ܿଶ ௜௝ߝ
ሺ߱, ࢑ሻ቉ ௝ܧ ൌ 0                                                       ሺE. 12ሻ 

Solutions of (E.12) exist only if the determinant of the coefficient tensor in (E.12) equals 

to zero,  

ቤ݇ଶߜ௜௝ െ ݇௜ ௝݇ െ
߱ଶ

ܿଶ ௜௝ߝ
ሺ߱, ࢑ሻቤ ൌ 0                                                            ሺE. 13ሻ 

Equation (E.13) is the dispersion equation connecting the frequency ߱ with the wave 

vector ࢑. 

For isotropic medium, given the dielectric tensor in equation (E.9), (E.13) 

decomposes into two equations 

,௟௢ሺ߱ߝ ࢑ሻࡱ௟௢ ൌ 0                                                                                           ሺE. 14ሻ 

ቈ݇ଶ െ
߱ଶ

ܿଶ ߝ
௧௥ሺ߱, ࢑ሻ቉ ௧௥ࡱ ൌ 0                                                                      ሺE. 15ሻ 

where ࡱ௧௥ሺࡱ௟௢ ൌ ࡱ െ  ௧௥ሻ is the transverse (longitudinal) electric field componentࡱ

perpendicular (parallel) to the wave vector ࢑. Consequently the dispersion equation for 

the isotropic medium consists of two separate equations  

,௟௢ሺ߱ߝ ࢑ሻ ൌ 0                                                                                                 ሺE. 16ሻ 
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݇ଶ െ
߱ଶ

ܿଶ ߝ
௧௥ሺ߱, ࢑ሻ ൌ 0                                                                                ሺE. 17ሻ 

These above two equations give the conditions of existence for longitudinal and 

transverse waves, respectively.  

 

E.3 Equations of Plasma Dynamics  

E.3.1 Kinetic Equation with a Field 

The particle distribution function is a function of the coordinates ࢖, ࢘ and ݐ. The 

quantity ఈ݂ሺ࢖, ࢘,  in the phase ݐ at time ߙ means the number of particles of type ࢘݀࢖ሻ݀ݐ

space interval ݀࢘݀࢖. Thus the density of particles at the point ࢘,  is given by ݐ

ఈܰሺ࢘, ሻݐ ൌ න݀࢖ ఈ݂ሺ࢖, ࢘, .ሻ                                                                         ሺEݐ 18ሻ 

With the simplest mode that particles are assumed to be completely independent, the 

variation of particle distribution in a phase space volume near the point ࢖, ࢘ is only due to 

particle inflow and outflow through the surface enclosing the volume. Since particles are 

neither created nor lost, we get 

݀ ఈ݂ሺ࢖, ࢘, ሻݐ
ݐ݀ ൌ

߲ ఈ݂

ݐ߲ ൅
߲ ఈ݂

࢖߲
࢖݀
ݐ݀ ൅

߲ ఈ݂

߲࢘
݀࢘
ݐ݀ ൌ 0                                            ሺE. 19ሻ 

According to motion equations, 

࢖݀
ݐ݀ ൌ ఈࡲ     

݀࢘
ݐ݀ ൌ .ሺE                                                                                        ࣇ 20ሻ 

where the Lorentz force acting on the particles of type ߙ is given as 

ఈࡲ ൌ ݁ఈ ൬ࡱ ൅
ࢻࣇ ڄ ࡮
ܿ ൰                                                                                 ሺE. 21ሻ 

Therefore, for charged particles of type ߙ, the kinetic equation is expressed as 
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߲ ఈ݂

ݐ߲ ൅ ࣇ
߲ ఈ݂

߲࢘ ൅ ݁ఈ ൬ࡱ ൅
ࣇ ڄ ࡮
ܿ ൰

߲ ఈ݂

࢖߲ ൌ 0                                                   ሺE. 22ሻ 

When deriving (E.21), the electric and magnetic fields,  ࡱሺ࢘, ,ሺ࢘࡮ ሻ andݐ  ሻ, are assumedݐ

to be given. However, inside Maxwell’s equations (See Appendix (A.1)), which can 

determine these two fields, the charge and current density depend on the distribution 

functions 

ߩ ൌ෍݁ఈ
ఈ

න݀࢖ ఈ݂ሺ࢖, ࢘, ࢐   , ሻݐ ൌ ෍݁ఈ
ఈ

නࣇ ఈ݂ሺ࢖, ࢘, .ሺE                 ࢖ሻ݀ݐ 23ሻ 

Therefore, equation (E.22), where the particle distributions ఈ݂ determine the sources of 

the EM field supporting the phase space flow, is called the kinetic equation with a self-

consistent field or Vlasov’s equation. This is only valid for cases neglecting particles 

interaction.   

E.3.2 Boltzmann Kinetic Equation 

The Vlasov equation derived in the previous section is valid only if the 

interactions of particles can be ignored. Taking account of particle collisions causes a 

nonzero right-hand side of (E.19) 

߲ ఈ݂

ݐ߲ ൅ ࣇ
߲ ఈ݂

߲࢘ ൅ ఈܨ
߲ ఈ݂

࢖߲ ൌ ൬
߲ ఈ݂

ݐ߲ ൰௖௢௟
                                                             ሺE. 24ሻ 

where ቀడ௙ഀ
డ௧
ቁ
௖௢௟

 describing the variation of distribution function due to particle collisions 

is called the collision integral. Considering only elastic collisions, which conserve energy 

and momentum, the expression of  ቀడ௙ഀ
డ௧
ቁ
௖௢௟

 is known to be the Boltzmann elastic 

collision integral.   
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For a completely ionized plasma, only collisions of charged particles are essential. 

Here, we only present the simple idea and omit the rather complex mathematical 

calculation of (E.24) to reach the well-known Landau equationെ the Vlasov kinetic 

equation for a completely ionized plasma taking account of two-particle coulomb 

collision. The Landau equation is solved to get the perturbed particle density function, 

then ࢐ and ߪ௜௝ are obtained according to (E.23) and (E.30), and finally the corresponding 

dielectric permittivity is obtained through (E.8). 

 

E.4 Dielectric Permittivity of a Homogeneous Isotropic Plasma 

Without the appliance of electromagnetic fields, the distribution function of type 

 particle in a nondegenerate plasma is Maxwellian (See (E.2)), and in a degenerate ߙ

plasma, when condition (E.3) holds, the Fermi distribution function (See (E.4)), is 

adopted.     

First we consider the dielectric permittivity of a collisionless spatially 

homogeneous isotropic plasma, which can be obtained by solving the kinetic equation 

with a self-consistent field, i.e. Vlasov’s equation. This approximation is valid for 

collisionless plasma with collision processes occurring on a time scale shorter than the 

mean free time or possessing a space scale smaller than the mean free path. 

The dielectric permittivity is determined by adding a small perturbation to the 

equilibrium distribution function  ଴݂௔ሺ݌ሻ. Such a deviation occurs due to small 

fluctuations of the electric and magnetic fields ࡱሺݐ, ࢘ሻ and ࡮ሺݐ, ࢘ሻ which in turn are 

caused by the perturbation of the equilibrium. The perturbed distribution function is 

written as: 
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௔݂ሺ࢖, ࢘, ሻݐ ൌ ଴݂௔ሺ࢖ሻ ൅ ߜ ௔݂ሺ࢖, ࢘, .ሻ                                                            ሺEݐ 25ሻ 

Suppose the perturbation ߜ ௔݂ሺ࢖, ࢘,  to be ࡮ and ࡱ ሻ and the values of the perturbed fieldsݐ

small. Substituting (E.25) into Vlasov’s equation (E.22) and neglecting the second order 

terms, the linearized Vlasov for the perturbed distribution function is obtained as 

ߜ߲ ఈ݂

ݐ߲ ൅ ࣇ
ߜ߲ ఈ݂

߲࢘ ൅ ݁ఈࡱ
߲ ଴݂ఈሺ࢖ሻ
࢖߲ ൌ 0                                                          ሺE. 26ሻ 

In unperturbed (equilibrium) state, the plasma is quasi-neutral with no current and charge.  

According to (E.23), the induced charges and currents owing to the perturbing fields ࡱ 

and ࡮ are given as  

ߩ ൌ෍ ݁ఈ න ௔݂݀࢖ ൌ
ࢻ

෍ ݁ఈ නߜ ௔݂݀࢖
ࢻ

                                                 ሺE. 27ሻ 

࢐ ൌ෍ ݁ఈ නࣇ ௔݂݀࢖ ൌ
ࢻ

෍ ݁ఈ නߜࣇ ௔݂݀࢖
ࢻ

                                             ሺE. 28ሻ 

The self-consistent fields ࡱ and ࡮ are determined by ߩ and ࢐ through the Maxwell’s 

equations. The summation extends over the species index of the charged particles except 

the neutrals in collisonless plasmas.  

Because of the linearity of (E.26) and of the field equations, there is no coupling 

between the Fourier expand perturbations. Thus the solution of (E.26) is written as 

ߜ ௔݂ ൌ െ݅݁ఈࡱ
߲ ଴݂ఈ

࢖߲
ሺ߱ െ ࢑ · .ሻିଵ                                                              ሺEࣇ 29ሻ 

Substituting this expression into (E.28), the induced current density is given as 

݆௜ ൌ െ݅෍ ݁ఈଶ න݀࢖
௝ܧ௜ߥ

߲ ଴݂ఈ
௝݌߲

߱ െ ࢑ · ࣇ ؠ ௜௝ߪ
ࢻ

ሺ߱, ࢑ሻܧ௝                                      ሺE. 30ሻ 

where ߪ௜௝ is the conductivity tensor.  

Following (E.8), the complex dielectric permittivity tensor is expressed as 
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,௜௝ሺ߱ߝ ࢑ሻ ൌ ௜௝ߜ ൅
݅
߱ ௜௝ߪ

ሺ߱, ࢑ሻ ൌ ௜௝ߜ ൅෍
݁ఈଶ

߱ න݀࢖
௜ߥ

߱ െ ࢑ · ࣇ
߲ ଴݂ఈ

ࢻ௝݌߲
                           ሺE. 31ሻ 

 

E.4.1 Dielectric Permittivity of a Collisionless Nondegenerate Plasma  

The longitudinal and transverse permittivities of a collisionless nondegenerate 

plasma obeying the Maxwellian distribution function are obtained from (E.11) and (E.31) 

and are expressed as 

,௟௢ሺ߱ߝ ݇ሻ ൌ 1 ൅෍
߱௣ఈଶ

݇ଶ்ߥఈଶఈ

൤1 െ ାܫ ൬
߱

ఈ்ߥ݇
൰൨                                          ሺE. 32ሻ 

,௧௥ሺ߱ߝ ݇ሻ ൌ 1 െ෍
߱௣ఈଶ

߱ଶ ାܫ ൬
߱

ఈ்ߥ݇
൰

ఈ

                                                         ሺE. 33ሻ 

with ܫାሺݔሻ ൌ ௫మି݁ݔ ଶ⁄ ׬ ݁ఛమ ଶ⁄ ݀߬௫
ି∞ ൌ െ݅ඥߨ 2⁄ ݔ൫ܹݔ √2⁄ ൯. 

 

E.4.2 Dielectric Permittivity of a Collisionless Degenerate Plasma 

In parallel, the longitudinal and transverse permittivities of the degenerate plasma 

obeying the Fermi distribution function at zero temperature are obtained as    

,௟௢ሺ߱ߝ ݇ሻ ൌ 1 ൅෍
3߱௣ఈଶ

݇ଶߥிఈଶఈ

൤1 െ
߱

ிఈߥ2݇
ln
߱ ൅ ிఈߥ݇
߱ െ ிఈߥ݇

൨                                                  ሺE. 34aሻ 

,௧௥ሺ߱ߝ ݇ሻ ൌ 1 ൅෍
3߱௣ఈଶ

2߱ଶ
ఈ

ቈ1 ൅ ቆ
߱ଶ

݇ଶߥிఈଶ
െ 1ቇ ൅ ൬െ

߱
ிఈߥ2݇

൰ ݈݊
߱ ൅ ிఈߥ݇
߱ െ ிఈߥ݇

቉            ሺE. 34bሻ 

where ߥிఈ ൌ ிఈ݌ ݉ఈ ൌ⁄ ሺ3ߨଶሻଵ ଷ⁄ ԰ ఈܰ
ଵ ଷ⁄ ݉ఈൗ  is the velocity of particles of type ߙ on the 

Fermi surface. 
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In the range of fast waves, where the phase velocity exceeds the Fermi velocities 

of the electrons and the ions (holes) 

߱
݇ ب ,ி௘ߥ .ி௜                                                                                                   ሺEߥ 35ሻ 

Then (E.34) takes form as  

,ሺ߱ߝ ݇ሻ ൌ 1 െ
߱௣௘ଶ

߱ଶ ቆ1 ൅
3
5
݇ଶߥி௘ଶ

߱ଶ ቇ ൌ 1 െ
߱௣௘ଶ

߱ଶ ൬1 ൅
1
5݇

ଶݎ஽௘ଶ ൰           ሺE. 36ሻ 

where electron Debye length ݎ஽௘ଶ ൌ ி௘ଶߥ3 ߱௣௘ଶൗ . This function is limited to condition 

݇ଶݎ஽௘ଶ ا 1.                 

The dielectric permittivity of the degenerate plasma in the limit ݇ଶݎ஽௘ଶ ب 1 and 

the range of intermediate phase velocities ߥி௜ ا ߱ ݇⁄ ا  ி௘ is beyond our interest andߥ

will not be described here.   

 

E.4.3 Dielectric Permittivity of a Degenerate Plasma Taking Account of Particle 

Collisons 

In fully ionized plasmas, the collision integral (See (E.24)) is used to describe 

charged particle collisions. To first order i.e. only consider the collision contribution from 

two particles (electrons and ions). The Landau kinetic equation is solved to obtain 

dielectric permittivity with inclusion of binary particle collisions. The details will not be 

presented here.  

For our interesting material, the metal degenerate electron plasma gas, taking 

account of energy dissipation becomes much simple. According to the classical damped 
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oscillator theory, the longitudinal dielectric permittivity with both temporal and spatial 

dispersion as well as energy damping factor is expressed as 

,ሺ߱ߝ ݇ሻ ൌ 1 െ
߱௣௘ଶ

߱ሺ߱ ൅ ሻߛ݅
1

1 ൬1 ൅ 3
5
݇ଶߥி௘ଶ
߱ ൅ ൰ൗߛ݅

 

ൎ 1 െ
߱௣௘ଶ

߱ሺ߱ ൅ ሻߛ݅
1

1 െ 3
5
݇ଶߥி௘ଶ
߱ ൅ ߛ݅

ൌ 1 െ
߱௣௘ଶ

߱ሺ߱ ൅ ሻߛ݅ െ 3
5݇

ଶߥி௘ଶ
                    ሺE. 37ሻ 

This formula is satisfied with condition ߱ ݇⁄ ب  .ி௘ߥ
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