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Abstract 

 

With dynamically and partially reconfigurable designs, it is necessary that the speed of 

the reconfiguration be accomplished in a time that is sufficiently small such that the 

operation of reconfiguration is not the limiting factor in the process. Therefore, the 

communication between the source of configuration and the configurable unit must be 

made as fast as possible. The aim of this work is to use an embedded controller internal to 

the FPGA to control the reconfiguration process and obtain the maximum speed at which 

reconfiguration can occur, with current FPGA technology. 

The use of Direct Memory Access (DMA) driven operations instead of the current 

arbitrated bus architectures yielded a 30% increase in the speed of reconfiguration 
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compared to other methods such as OPB_HWICAP and PLB_HWICAP [1]. The use of 

interrupt driven partial reconfiguration was also introduced, allowing the processor to 

switch to other tasks during the reconfiguration operation. All of these contributions lead 

to significant performance improvements over current partial reconfiguration subsystems. 

The configuration controller was tested using four partially reconfigurable system 

implementations: (i) one targeting the Hard IP PowerPC405 on Virtex-4, (ii) a second 

targeting the Soft IP MicroBlaze on Virtex-5, (iii) a third targeting the Hard IP 

PowerPC440 on Virtex-5, and (iv) a fourth system targets the Hard IP PowerPC440 on 

Virtex-5 capable of adaptive feedback. The adaptive feedback Virtex-5 system can use 

internal voltage and temperature measurements from the Xilinx System Monitor IP to 

dynamically increase or decrease the speed of reconfiguration and/or change other 

reconfigurable aspects of the system to better match the environment. 

  



ix 
 

 
 

 

Table of Contents 
 

Introduction ......................................................................................................................... 1 

1.0  Overview .............................................................................................................. 1 

1.1.  Thesis goals .......................................................................................................... 3 

1.2.  Innovations and Contributions ............................................................................. 4 

1.3.  Thesis Outline ...................................................................................................... 5 

 

Background ......................................................................................................................... 6 

2.0  FPGA Architecture ............................................................................................... 6 

2.1.  Common FPGA Features ..................................................................................... 6 

2.1.1.  Configurable Logic Block (CLBs) ................................................................... 7 

2.1.2.  Interconnect ...................................................................................................... 7 

2.1.3.  IO (IOBs) .......................................................................................................... 8 

2.1.4.  Memory ............................................................................................................ 8 

2.1.5.  Clock Resources ............................................................................................... 8 

2.1.6.  Hard IP vs. Soft IP ............................................................................................ 9 

2.1.7.  System On a Programmable Chip (SoPC) ...................................................... 10 

2.1.8.  FPGA Packaging ............................................................................................ 10 

2.2.  Standard FPGA Design Flow ............................................................................. 11 

2.3.  Configuration of FPGAs .................................................................................... 11 

2.4.  Full and Partial Configuration ............................................................................ 12 

2.5.  Xilinx FPGA Configuration ............................................................................... 12 

2.5.1.  Configuration Memory ................................................................................... 13 

2.5.2.  FPGA Addressing ........................................................................................... 13 

2.6.  Xilinx IP ............................................................................................................. 13 



x 
 

 
 

2.6.1.  Embedded Processor Cores ............................................................................ 14 

2.6.1.1.  PowerPC 405 Hard IP Core ........................................................................ 14 

2.6.1.2.  PowerPC 440 Hard IP Core ........................................................................ 15 

2.6.1.3.  MicroBlaze Soft IP Core ............................................................................. 16 

2.6.2.  LocalLink DMA ............................................................................................. 16 

2.6.3.  DDR Memory Controller IP ........................................................................... 17 

2.6.4.  PLB Memory Controller ................................................................................. 18 

2.6.5.  Multi Port Memory Controller (MPMC) ........................................................ 19 

2.6.6.  Power PC 440 Memory Controller (PPC440MC) .......................................... 20 

2.6.7.  ICAP ............................................................................................................... 21 

2.6.8.  System Monitor .............................................................................................. 21 

2.7.  Xilinx Virtex-4 and Virtex-5 FPGAs ................................................................. 23 

2.8.  Xilinx Software .................................................................................................. 24 

2.8.1.  ISE .................................................................................................................. 24 

2.8.2.  Embedded Development Kit (EDK) ............................................................... 25 

2.8.3.  PlanAhead Software ....................................................................................... 25 

2.9.  Xilinx Partial Reconfiguration Design Flow ...................................................... 26 

2.10.  Non Xilinx Software ....................................................................................... 27 

2.10.1.  ModelSim SE .............................................................................................. 27 

2.10.2.  Synplify Premier ......................................................................................... 27 

2.10.3.  Graph-based physical synthesis .................................................................. 28 

2.10.4.  Synplify Identify ......................................................................................... 28 

2.11.  Xilinx Development Boards ........................................................................... 29 

2.11.1.  ML410 Evaluation Board ........................................................................... 29 

2.11.2.  ML507 Evaluation Board ........................................................................... 29 

 

Related Work and Motivation ........................................................................................... 31 

3.0  FPGAs and Partial Reconfiguration ................................................................... 32 

3.1.  Current Dynamic Reconfiguration Solutions ..................................................... 35 

3.2.  Xilinx XPS HWICAP Controller ....................................................................... 35 



xi 
 

 
 

3.3.  PLB DMA ICAP Controller ............................................................................... 36 

3.4.  Other Proposed solutions ................................................................................... 37 

 

Implementation Methodology ........................................................................................... 38 

4.0  Overview ............................................................................................................ 38 

4.1.  HSDPRC Core Design ....................................................................................... 39 

4.1.1.  HSPR Development ........................................................................................ 40 

4.1.2.  ModelSim Simulation ..................................................................................... 42 

4.1.3.  ModelSim DMA Simulation .......................................................................... 43 

4.1.4.  ModelSim Register Simulation ...................................................................... 45 

4.1.5.  Identify Hardware in the Loop Development ................................................. 46 

4.1.6.  Merging the EDK Simulation with the Identify Project ................................. 47 

4.1.7.  Software Driver .............................................................................................. 48 

 

Implementation Results .................................................................................................... 49 

5.0  Test Platform Overview ..................................................................................... 49 

5.1.  IDPR Controller Design ..................................................................................... 50 

5.2.  Hardware Architecture ....................................................................................... 50 

5.2.1.  Common Architecture Components ............................................................... 51 

5.2.1.1.  Processor Local Bus (PLB) ......................................................................... 52 

5.2.1.2.  Block RAM (BRAM) ................................................................................. 52 

5.2.1.3.  DDR ............................................................................................................ 52 

5.2.1.4.  FLASH ........................................................................................................ 53 

5.2.1.5.  Interrupt Controller ..................................................................................... 54 

5.2.1.6.  UART .......................................................................................................... 54 

5.2.1.7.  Performance DMA core .............................................................................. 54 

5.2.2.  Differences in IDPR Controller Hardware Architecture ................................ 56 

5.2.2.1.  DDR Memory ............................................................................................. 57 

5.2.2.2.  V5-PPC- 266MHz ....................................................................................... 58 



xii 
 

 
 

5.3.  Multimode AES Crypto PRM ............................................................................ 59 

5.4.  Partitioning the IDPR Designs ........................................................................... 60 

5.5.  Partitioning the Virtex-4 Design ........................................................................ 62 

5.6.  Partitioning the Virtex-5 Designs ....................................................................... 65 

5.7.  Test Procedure .................................................................................................... 67 

5.8.  Software Test Application .................................................................................. 68 

5.9.  Reconfiguration Speed Measurements ............................................................... 69 

5.10.  Device Utilization Summary .......................................................................... 72 

 

Conclusion ........................................................................................................................ 73 

References ......................................................................................................................... 74 

 

 

  



xiii 
 

 
 

List of Figures 
 
Figure 1.1: LocalLink V5 PPC440 ICAP Controller Block Diagram ................................ 2 

Figure 2.2: FPGA Packaging. ........................................................................................... 10 

Figure 2.3: FPGA Design Flow. ....................................................................................... 11 

Figure 2.4: PowerPC 440 Block Diagram [11]. ................................................................ 16 

Figure 2.5: LocalLink Block Diagram. ............................................................................. 17 

Figure 2.6: PLB Memory Controller Block Digram. ........................................................ 18 

Figure 2.7: LocalLink MPMC Block Digram................................................................... 19 

Figure 2.8: LocalLink PPC440MC Block Digram ........................................................... 20 

Figure 2.9: System Monitor Block Diagram..................................................................... 22 

Figure 2.10: Comparison of Virtex-4 and Virtex-5. ......................................................... 24 

Figure 3.1: FPGA Configuration Process. ........................................................................ 33 

Figure 4.1: HSDPRC Development Flow. ........................................................................ 41 

Figure 4.2: Virtex-4FX ModelSim Simulation Model. .................................................... 42 

Figure 4.3: ModelSim Simulation Stateflow Diagram. .................................................... 43 

Figure 5.1: HSDPRC Test desings.................................................................................... 50 

Figure 5.2: Common Architecture Components. .............................................................. 51 

Figure 5.3: Virtex-4 PlanAhead Screen Capture 1. .......................................................... 61 

Figure 5.4: Virtex-4 FPGA Editior Screen Capture 1. ...................................................... 62 

Figure 5.5: Virtex-5 PlanAhead Screen Capture 2. .......................................................... 64 

Figure 5.6: Virtex-5 FPGA Editor Screen Capture 2. ....................................................... 65 

Figure 5.7: Test Procedure Stat Flow Diagram ................................................................ 67 

Figure 5.8: Software Test Application State Flow Diagram............................................. 68 



xiv 
 

 
 

Figure 5.9: Clock Speed Comparison ............................................................................... 71 

  



1 
 

 
 

Chapter 1  
 

Introduction 
 

1.0 Overview 
 

As the speed and size of FPGA reconfigurable fabric has grown the ability to 

perform multiple complex parallel applications on a single device has become a reality. 

The BMW WilliamsF1 team is running its fifth generation vehicle control and monitoring 

(VCM) unit with a Texas Instruments DSP and a Xilinx Virtex family of FPGA devices 

to control mission critical operations [2].  Today, FPGAs have increased product features, 

decreased product time to market and given system designers abilities unavailable 

without the use of custom ASIC’s. 

An area of particular recent interest is dynamic partial reconfiguration. This 

feature allows the FPGA programmable fabric to change its mode of operation during run 

time. Effectively, Dynamic Partial Reconfiguration (DPR) allows for time division 

multiplexing portions of the FPGA fabric while the system is operating.  For example, 

when a satellite is deployed, it may need to perform in a mode that requires 100% of the 

power available only 25% of the time. During the satellite real-time operation, it may also 

become necessary to perform an update to take advantage of new algorithms. If the 

system is developed using FPGAs with the capability to perform partial reconfiguration, 
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the system can take advantage of operating in a mode requiring 100% of the power when 

needed and 25% at other times, reducing the power supply needs of the system.  

Currently, when considering partial reconfiguration in a high performance system 

the largest bottleneck is the time which it takes to switch hardware resources for these 

applications. When a device is partially reconfiguring an area of the fabric, the fabric 

resource is not available to the system. Therefore, increasing the speed at which the 

device is reconfigured increases the availability of the reconfigurable resource [3].  

In this thesis, a custom High Speed Dynamic Partial Reconfiguration Controller 

(HSDPRC) core is implemented using Xilinx Virtex-4FX and Virtex-5FX devices. 

Figure 1.1 shows the major components of the proposed scheme. When implemented on 

a Virtex-5FX device, using LocalLink DMA and a System Monitor feedback to the  

DDR2 

HSDPRC 
Core 

Interrupt 
Controller 

UART 

BRAM 

Flash 

PPC440Figure 1.1LocalLink V5 
PPC440 ICAP Controller Block 

Diagram 
PPC440 

PPC440MC 

SPLB0 

SPLB1 

MPLB 

LocalLink 

MDCR 

System 
Monitor 

Figure 1.1: LocalLink V5 PPC440 ICAP Controller Block Diagram. 
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HSDPRC the system has been tested to perform Partial Reconfiguration at over 

3.2 Gb/s.  

The HSDPRC core was tested with: 

 The PowerPC (PPC440) system with a Xilinx ML507 evaluation board,  

 The soft core MicroBlaze  system with a Xilinx ML507 evaluation board, and 

 The PowerPC (PPC405) system with a Xilinx ML410 evaluation board.  

The architecture presented can be implemented on all of the Xilinx Virtex-4, Virtex-5 and 

Virtex-6 family of devices. The design can also easily be ported to Spartan devices that 

have Partial Reconfiguration software support. 

 

1.1. Thesis goals 
 

The primary objective of this thesis is to maximize the speed of internally directed partial 

reconfiguration of Field Programmable Gate Arrays, and reduce the processor overhead 

associated with the process. This is done by designing and implementing a partial 

reconfigurable system, comprised of a new dedicated DMA driven reconfiguration soft IP 

core, and several systems with multiple reconfigurable blocks. 

In the process, a set of new techniques, modified design flows and hardware cores 

must be created for designs that incorporate run-time reconfiguration. The effectiveness 

of the solution is tested by benchmarking the performance of the system using the 

Advanced Encryption Standard (AES), implemented in the FPGA reconfigurable matrix. 

The performance of the solution is compared to alternative solutions. The results are 



4 
 

 
 

presented in a form that allows us to predict the benefits of this technique in different 

applications, as well as in the context of future; improved devices. 

 

1.2. Innovations and Contributions 
 

A summary of the primary innovations and contributions includes: 

 Obtained the current maximum theoretical performance of the ICAP port 

(3.2Gb/s) 

 New IP Development Flow  

 Ability to merge PR regions 

 Abstract basic FPGA ICAP function from the user 

 Ability to move a bitstream from static storage to FPGA fabric 

 Ability to efficiently store and implement multiple partial bitstreams for a single 

PR region.  

 Ability to manipulate partial bitstreams from within the FPGA fabric via the 

embedded processor. 

 Ability to perform interrupt driven partial reconfiguration. 
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1.3. Thesis Outline 

 

This thesis is organized as follows:  

 Chapter 2 presents a Background of FPGAs, Virtex-4 and Virtex-5 platform 

FPGAs, Dynamic Partial Reconfiguration, Xilinx tools, Xilinx Partial 

Reconfiguration Flow and Xilinx ML507 and ML410 evaluation boards. 

 Chapter 3 presents the related work and motivation.  

 Chapter 4 explains the hard and soft-core processor architectures of the 

implemented Dynamic Partial Reconfiguration systems. This chapter will also 

cover the software for the embedded processors.  

 Chapter 5 presents the methodology of the experiment.  

 Chapter 6 presents the results, a discussion of the results and Design 

considerations, and 

 Chapter 7 provides the conclusion for this thesis and future work. 
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Chapter 2  
 

Basic FPGA Background on Partial 
Reconfiguration 
 

This section presents basic FPGA architecture, the process used to configure an FPGA 

and the Xilinx IP used in this thesis.  

 

2.0 FPGA Architecture 
 

 Field Programmable Gate Arrays (FPGAs) are programmable semiconductor devices 

that are based around a matrix of configurable logic blocks (CLBs) connected via 

programmable interconnects. As opposed to Application Specific Integrated Circuits 

(ASICs) where the device is custom built for the particular design, FPGAs can be 

programmed for the desired application or functionality requirements. Fundamentally, an 

FPGA’s CLBs can be configured to implement complex binary / Boolean logic, 

arithmetic and memory storage functions. FPGAs are SRAM based which can be 

reprogrammed as the design evolves [4]. 

 

2.1. Common FPGA Features 
 

FPGAs use reconfigurable logic and interconnect, as well as incorporate hard IP (ASIC 

type) blocks of commonly used functionality such as RAM, clock management, DSP and 
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microprocessors.  In what follows, brief descriptions of the basic FPGA components are 

given. Figure 2.1 shows how the blocks can be distributed in the configurable matrix. 

 

2.1.1. Configurable Logic Block (CLBs)  
 

The CLB is the basic logic unit in an FPGA. The Virtex IV devices are made up of CLBs 

consisting of a configurable switch matrix with 4-6 inputs, some selection circuitry 

(MUX, etc), and flip-flops. The switch matrix is highly flexible and can be configured to 

handle combinatorial logic, shift registers, or RAM.  

 

2.1.2. Interconnect  
 

While the CLB provides the logic capability, flexible interconnect routing routes the 

signals between CLBs, hard IP blocks, and to and from I/Os. Routing comes in several 

flavors, from that designed to interconnect between CLBs to fast horizontal and vertical 

long lines spanning the device to global low-skew routing for Clocking and other global 

signals.  
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2.1.3. IO (IOBs)  
 

FPGAs provide support for many I/O standards, thus providing the ideal system interface 

bridge. I/O in FPGA devices is grouped in banks with each bank independently able to 

support different I/O standards.  

 

2.1.4. Memory 
 

Embedded Block RAM memory is available in most FPGAs, which allows for on-chip 

memory in a design.  The memory allows for a low latency path for other on chip 

resources. 

 

2.1.5. Clock Resources 
 

FPGAs provide support for complex clocking. The Digital Clock Managers (DCMs) and 

global-clock multiplexer buffers provide a complete solution for designing high-speed 

clock networks. Up to twenty DCM blocks are available. To generate deskewed internal 

or external clocks, each DCM can be used to eliminate clock distribution delay. The 

DCM also provides 90°, 180°, and 270° phase-shifted versions of the output clocks. Fine-

grained phase shifting offers higher resolution phase adjustment with fraction of the clock 

period increments. Flexible frequency synthesis provides a clock output frequency equal 

to a fractional or integer multiple of the input clock frequency. Virtex-4 devices can have 

up to 32 global-clock MUX buffers. The clock tree is designed to be differential. 

Differential clocking helps reduce jitter and duty cycle distortion.  
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2.1.6. Hard IP vs. Soft IP 
 

FPGA designs are described using a high level design language (VHDL, Verilog, or C). 

Typically, a large FPGA design is a composite of custom user logic, pre designed & 

verified Commercial off the Shelf (COTS) soft and hard IP macro functions. Soft IP can 

be placed inside the FPGA at many different locations.  Hard IP are system functions 

which have been optimized for lowest power, fastest throughput and smallest footprint on 

the die. Hard IP functions within a Xilinx FPGA are embedded 405 or 440 Power PC 

processors, Ethernet Media Access Control (MAC) cores, Block RAM, DSP Blocks, 

Clock managers, etc. Hard IP blocks are always present on the FPGA silicon die 

regardless if the user is using them in implementing specific functions. 

 

DSP

CLB

CLB

DSP

DCM BRAM

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IO
B

IO
B

IO
B

IO
B

IO
B

IO
B

IO
B

IO
B

IO
B

IO
B

IO
B

IO
B

IO
B

IO
B

IO
B

IO
B

Processor

CLB

CLB

Figure 2.1: Basic FPGA Elements. 
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2.1.7. System On a Programmable Chip (SoPC) 
 

Tying all of these elements together, using an FPGA, one can realize an entire system on 

a single programmable device where previous systems required many discrete devices 

and required more board space, cost and power. 

 

2.1.8. FPGA Packaging 
 

The FPGA is realized as a silicon chip or “die” soldered to a small printed circuit board 

(PCB) rigid laminate also called a “carrier”. The IO ports of the silicon die are connected 

to solder balls under the carrier PCB which are used to make connections to the target 

application’s larger PWB. The composite carrier PWB and silicon die is lastly encased in 

a material such as plastic or ceramic. Riding on the top is a square piece of metal acting 

as the package top whose function is to act as a means to extract heat from the silicon die 

and transfer it to the ambient environment or to an additional mechanical heat sink. 

Finally, the FPGA is soldered to the target PWB [4] [5]. Figure 2.2 shows a side view of 

FPGA packaging. 

 

 

 

 

 

 

 
Solder Ball

Die Mold Cap

Rigid 
Laminate

Epoxy

Figure 2.2: FPGA Packaging. 
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2.2. Standard FPGA Design Flow  
 

To define the behavior of the FPGA, the designer utilizes a hardware description 

language such as VHDL and creates source code files. Then, using software tools such as 

Xilinx’s ISE or Synplicity, the VHDL code is interpreted (synthesized), logic functions 

are mapped to FPGA resources (CLBs, IOBs, DSP, memory, etc.), locations for these are 

selected on the die, and the interconnects to these resources are determined. Finally, the 

output file is converted into an executable Configuration bitstream file which is used to 

configure the FPGA. The designer can simulate, verify and validate the resulting output 

files before actually loading the FPGA on a target system [6]. The typical FPGA design 

flow can be seen in Figure 2.3. 

 

2.3.  Configuration of FPGAs 
 

FPGA devices are configured by loading application-specific configuration data, referred 

to as “the bitstream”, into internal memory referred to as “Configuration Memory”.  All 

programmable elements, including the routing resources, are controlled by values stored 

in the Configuration Memory cells. These values are loaded during configuration and can 

be reloaded to change the functions of the programmable elements. Because Xilinx 

Synthesis MAP
Place & 
Route

VHDL
Design files

NGD 
Build

Bitgen Bit file

Figure 2.3: FPGA Design Flow. 
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FPGA configuration memory is Static Random Access Memory (SRAM) based, it must 

be configured each time it is powered-up. The bitstream is loaded into the device through 

special configuration pins [6]. 

 

2.4. Full and Partial Configuration 
 

Unique to Xilinx FPGAs, loading of configuration memory can be performed across the 

entire device or in smaller partial blocks called Partial Reconfigurable Modules (PRMs). 

The ability to implement PRMs allows the FPGA to stay active and process an existing 

user application while another application is being loaded and configured [7]. This 

increases a systems availability and capability, because resources may not need to be 

reinitialized and the system has more resources available for time multiplexing. 

 

2.5. Xilinx FPGA Configuration 
 

The FPGA configuration logic consists of a packet processor, a set of registers, and 

global signals that are controlled by the configuration registers. The packet processor 

controls the flow of data from the configuration interface (SelectMAP, JTAG, or Serial) 

to the appropriate register. The registers control all other aspects of configuration. 
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2.5.1. Configuration Memory 
 

The Xilinx configuration memory is arranged in frames that are tiled about the device. 

Frames are the smallest addressable segment in the configuration memory. A frame 

consists of 41 32-bit words or 1312 bits.  

The Configuration array size equals the number of configuration frames times the 

number of words per frame. The Configuration overhead consists of commands in the 

bitstream that are needed to perform configuration, but do not themselves program any 

memory cells. Configuration overhead contributes to the overall bitstream size. 

 

2.5.2. FPGA Addressing 
 

The Frame Address Pointer (FAR) is a register that indicates the address the 

configuration controller will write or read from. The addressing in the FPGA is not 

linear; but rather (starting from the equator of the device) an address comprising of the 

top/bottom bit, block type, row address, column address, and minor address. A detailed 

explanation of the addressing for each device can be found in the device Configuration 

User Guide [8]. 

 

2.6. Xilinx IP  
 

Xilinx offers many built in cores that were used when developing and testing the 

HSDPRC. A list of the cores and there description follows. 

 



14 
 

 
 

2.6.1. Embedded Processor Cores 
 

This section outlines all of the Xilinx Embedded processor cores that are available in the 

Virtex-4 and Virtex-5 devices. The HSDPRC was developed to work with and was tested 

with all of the available processors from Xilinx. 

 

2.6.1.1. PowerPC 405 Hard IP Core 
 

The PowerPC405 is available in the Virtex-2 Pro Virtex-4 FX family of devices. The 

PowerPC 405D5 processor is embedded into the Virtex-2 Pro devices while the 405F6 

processor core is in the Virtex-4. This embedded processor is capable of 450 MHz clock 

frequency and over 684 Dhrystone MIPS in the fastest Virtex-4 FX speed grade device. 

The PowerPC 405 embedded processor includes a memory management unit (MMU), 

separate instruction and data cache units, JTAG, debug, and trace logic, and timer 

facilities [9]. The PowerPC405 does not have an integrated crossbar switch. To 

implement a cross bar switch the Soft Core Multi Port Memory controller can be used. 
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2.6.1.2. PowerPC 440 Hard IP Core 
 

The PowerPC 440 is only available in the Virtex-5 FX family of devices. This embedded 

processor is capable of 550 MHz clock frequency and 1000 Dhrystone MIPS in the 

fastest Virtex-5 FX speed grade device. The processor is a seven-stage pipelined 

PowerPC processor, which consists of a three-stage, dual-issue instruction fetch and 

decode unit with attached branch unit, together with three independent, four-stage 

pipelines for complex integer, simple integer, and load/store operations, respectively. 

Also included is a memory management unit (MMU), separate instruction and data cache 

units, JTAG, debug, and trace logic, and timer facilities [10].  

The PowerPC 440 processor block includes a crossbar switch that acts as a central 

arbitration module accepting master requests from up to five groups of master devices 

and redirects the transactions to and from one of two groups of slave devices. All data 

passing from any master device to any slave device within the embedded processor block 

in Virtex-5 FPGAs passes through the crossbar. Figure 2.4 shows how the PPC440 and 

crossbar are connected. 

The crossbar forms the main interface into or out of the CPU. The crossbar is also 

the main connection and switch point for any devices instantiated within the FPGA logic 

that need to communicate with the processor or external memory visible to the processor 

[10]. 
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Figure 2.4: PowerPC 440 Block Diagram [11]. 

 

2.6.1.3. MicroBlaze Soft IP Core 
 

The embedded MicroBlaze Soft IP Core is a flexible MicroBlaze 32-bit soft processing 

core. The MicroBlaze processor offers memory management and FPU configuration 

options enabling commercial grade RTOS support, unique for a soft processor. 

MicroBlaze is highly configurable.  The fixed feature set of the processor includes: thirty-

two 32-bit general purpose registers, 32-bit instruction word with three operands and two 

addressing modes, 32-bit address bus and a single issue pipeline [12].  

 

2.6.2. LocalLink DMA 
The LocalLink interface defines a high-performance, packet-oriented, synchronous and 

point-to-point interface. The LocalLink interface is full duplex in that, it has separate 

interfaces for receive and transmit that can operate simultaneously. In addition, the 
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LocalLink interface can be used for Scatter-Gather DMA (SGDMA) and both Hard DMA 

(HDMA) or Soft DMA (SDMA). The HDMA uses a 128 bit bus compared to the SDMA 

64 bit bus. The HDMA is typically much faster than SDMA and only available using 

devices with the HDMA crossbar located in the V5FX PPC 440 block. All other devices 

with PPC405 (V2P, V4FX) or MicroBlaze use SDMA [13]. Figure 2.5 shows how the 

SDMA and HDMA memory crossbars acts as switches, allowing multiple system 

resources to directly access the external Shared Access Memory (SAM).  

 

 

 

 

 

 

 

 

 

 

 

2.6.3. DDR Memory Controller IP 
 

Xilinx offers several Soft IP memory controller cores that allow a user to connect hard 

and soft IP internal to the FPGA to external memory. The memory controllers abstract 

the user from performing a device initialization sequence upon power-up and reset 

conditions, auto-refresh cycles, and single-beat and burst transactions. The memory 

Memory 
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Hard Core PowerPC 440

Figure 2.5: LocalLink Block Diagram. 
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interfaces currently offered for DDR are PLB Double Data Rate (DDR) Synchronous 

DRAM (SDRAM) Controller, Multi Port Memory Controller (MPMC) and Power PC 

440 Memory Controller (PPC440MC) is available only on Virtex-5FX devices. 

 

2.6.4. PLB Memory Controller 
 

The PLB DDR SDRAM controller is a Soft IP core that connects the PLB bus to DDR 

SDRAMs external to the FPGA. The benefit of this memory controller (excluding Virtex-

5FX) when compared to the MPMC, is a reduction in the amount of logic resources 

needed. The drawback to this controller is that in order for the processor to access DDR2 

memory it must communicate through the PLB bus, which may be heavily arbitrated. 

Additionally, if a DMA operation is requested it is also arbitrated through the PLB bus 

[14]. Figure 2.6 depicts the large number of peripherals that must be arbitrated on a PLB 

centric system. 

  

Interrupt UART BRAM 

DDR Flash 

 Processor 

Figure 2.6: PLB Memory Controller Block Digram. 
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2.6.5. Multi Port Memory Controller (MPMC) 
 

The Xilinx Multi Port Memory Controller (MPMC) is a Programmable memory 

controller that supports memory such as Synchronous Dynamic Random Access Memory 

(SDRAM), Double-Data-Rate Synchronous Dynamic Random Access Memory (DDR) 

and higher speed DDR memory (DDR2). In addition, the MPMC can support Error 

Correcting Code (ECC) and Performance Monitoring (PM). The MPMC connects to the 

external memory creating a Soft IP cross bar with up to eight Personality Interface 

Modules (PIMs) between the memory and user peripherals. The Xilinx MPMC core can 

be used in all Xilinx Virtex and Spartan FPGAs. The MPMC supports a Soft Direct 

Memory Access (SDMA) controller that provides a full-duplex, high-bandwidth, 

LocalLink interfaces into memory [15]. Figure 2.7 shows a typical MPMC system. 
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Figure 2.7: LocalLink MPMC Block Digram. 
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2.6.6. Power PC 440 Memory Controller (PPC440MC) 
 

The Xilinx Power PC 440 (PPC440MC) is a Programmable memory controller that 

supports Double-Data-Rate Synchronous Dynamic Random Access Memory (DDR2). 

The PPC440MC can support Error Correcting Code (ECC) and Performance Monitoring 

(PM). The PPC440MC Connects directly to the hard Crossbar Switch, Memory 

Controller Interface (MCI), located on the PPC440. The PPC440MC supports a Hard 

Direct Memory Access (HDMA) controller that provides a full-duplex, high-bandwidth, 

LocalLink interfaces into memory. Power PC440 and PPC440MC are only available on 

Virtex 5FX devices [16]. Figure 2.8 shows a system utilizing the PPC440MC memory 

core with an HDMA crossbar switch. 
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Figure 2.8: LocalLink PPC440MC Block Digram 
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2.6.7. ICAP 
 

The Internal Configuration Access Port (ICAP) is an FPGA primitive that provides 

access via the FPGA fabric to the configuration control logic. The Fabric can perform 

readback and reconfiguration via the ICAP interface. The ICAP port can be used as a 32b 

or 8b interface and is tested to operate with the device voltage and temperature spec for 

writes 100MHz and reads 80MHz for Virtex-2pro, Virtex-4, and Virtex-5. 

 

2.6.8. System Monitor 
 

V5 and V6 devices all have a System Monitor. The System Monitor is a 10-bit, 200-kSPS 

(kilo samples per second) Analog-to-Digital Converter (ADC).  The System Monitor is 

used with sensors embedded in the device that measure FPGA physical operating 

parameters such as Power (voltage) and Temperature across the entire FPGA die. In 

addition, the System Monitor incorporates dedicated analog-input pair (VP/VN) and 16 

that are user selectable analog inputs. The additional inputs can be used to measure 

FPGA external analog sources.  

Additionally, the System Monitor can be configured to signal alarms when an 

Over-Temperature (OT) condition occurs (> 125°C) or under voltage, (device specific). 

The over-temperature alarm signal will then deactivated when the device temperature 

falls below a user-specified lower limit. If the FPGA power down feature is enabled, the 

FPGA enters power down when the OT signal becomes active. All of the System Monitor 

user configurable settings can be set when the System Monitor is instantiated in the users 
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design or changed during operation using the Dynamic Reconfiguration Port (DRP) and 

the System Monitor control registers.  

A System Monitor IP core is currently available from Xilinx, XPS SYSMON ADC 

(v1.00b). The XPS SYSMON ADC core connects to both the PPC440 and MicroBlaze 

processor cores using the Processor Local Bus (PLB) V4.6.  The XPS SYSMON ADC 

core also supports user configurable interrupts that can be set to inform the user if the 

device is out of a predefined range. Figure 2.9 shows a high level block diagram of the 

System Monitor hard IP block. 

 

The System Monitor is a great tool that can be used as a feed back to the system 

to dynamically change the device behavior such as to speed, reduced power consumption 

and total device environment monitoring capabilities. With the System Monitors 

advanced device physical environment monitoring capabilities and dynamic 

reconfiguration, the system has the ability to dynamically tailor its operation to match the 

environment it is in [17]. 

Figure 2.9: System Monitor Block Diagram 
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2.7. Xilinx Virtex-4 and Virtex-5 FPGAs  
 

The Xilinx Virtex-4 and Virtex-5 FPGAs are both comprised of three platform families 

LX, FX, and SX offering multiple feature choices and combinations to address complex 

applications. LX devices are target at logic intensive applications including more CLB 

resources that the other device families. SX devices are targeted at DSP applications that 

need more resources such as DSP hard IP and Block RAM memory. The FX family has a 

plethora of resources targeted at platform SoC designs; these devices have Embedded 

PowerPC and Multi gigabit transceiver (MGT) Hard IP Cores. Virtex-4 devices are the 

predecessors to Virtex-5. Many enhancements including the PowerPC, CLBs, Block 

RAM memory, DSPs and interconnect have been improved in the Virtex-5.  

The main differences between the Virtex-4 and Virtex-5 families that are important when 

considering a design for PR are given in Figure 2.10 [6][15]. 

 

 Virtex-4 Virtex-5

Embedded CPU PowerPC 405 IBM 

(uses MPMC for DMA) 

Operating up to 450 MHz 

PowerPC 440 IBM 

Integrated crossbar - (used for 
LocalLink DMA) 

Operating up to 550 MHz 

CLBs 1 type 2 types 

LUTs 4 input 6 input 

Clocking DCM DCM and PLL 

Block RAM 18 Kb that is programmable 
from 16K x 1 to 512 x 36 

36-Kbit that is programmable 
from 32K x 1 to 512 x 72 
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Frame 
Addressing 

See: Virtex-4 FPGA 

Configuration 

User Guide [8] 

See: Virtex-5 FPGA 

Configuration 

User Guide [18] 

System Monitor Unsupported Supported 

 

Figure 2.10: Comparison of Virtex-4 and Virtex-5. 

 

2.8. Xilinx Software 
 

2.8.1. ISE 
 

The ISE Design Suite comprises of all the tools needed to design, test and implement a 

Xilinx FPGA. ISE is offered with many licensing options such as Logic, Embedded and 

DSP. In order to implement a Partial Reconfiguration design a separate PR license must 

be obtained. The standard ISE design flow is: 

 Design Entry – Creating the source files for the project. 

 Design Synthesis – synthesizing a design is the process of creating a netlist files from 

the various source files. The netlist files can serve as input to the implementation 

module.  

 Design Verification (simulation) – functional simulation is accomplished using a 

simulator to verify the functionality of a design. Timing simulation is run after the 

design is implemented, it  must have context of the actual placement and routing in 

order to obtain the exact speed and timing of the circuit.  

 Design Implementation – After synthesis, implementation will convert the logical 

netlist into a physical netlist that can be converted to a bitstream and downloaded to 



25 
 

 
 

the target device Design implementation involves three steps: Translating the netlist, 

Mapping and Place&Route.  

 Device Configuration – This refers to the actual programming of the target FPGA by 

downloading the programming file to the Xilinx FPGA. 

 

2.8.2. Embedded Development Kit (EDK) 
 

The Xilinx Embedded Development Kit (EDK) provides an integrated development 

environment for connecting to and integrating Xilinx MicroBlaze and PowerPC 

processors. EDK includes Xilinx Platform Studio (XPS) and the Software Development 

kit (SDK). 

 XPS includes a Graphical IDE and command line interface for 

developing hardware platforms for embedded applications. Including a Processing 

IP catalog, including a wide variety of processing peripheral cores for 

customizing embedded systems.  

 SDK includes a GNU C/C++ compiler and debugger. 

 

2.8.3. PlanAhead Software 

 

The PlanAhead software is a Xilinx FPGA graphical constraints entry and 

implementation interface. The software can be used for simplified pin planning, 

implementation management and incremental design flows. Included with the software 

are tools such as signal integrity analysis, and timing analysis.  
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For Partial Reconfiguration designs the software will automatically setup the 

directory structure and scripting environment, estimate the ratio of logic needed in a 

region compared to the resources available and perform Design Rule Checking (DRC). 

Due to long runtimes associated with PR designs these features can greatly decrease the 

time needed to implement a design.  

The software uses many of the sub-module programs that are integrated into the 

ISE environment. To use PlanAhead for Partial Reconfiguration designs a PR license 

must be obtained from Xilinx. 

 

2.9. Xilinx Partial Reconfiguration Design Flow 
 

The Xilinx Partial Reconfiguration design flow is a module based design process where 

the design is broken into hierarchy with sub-modules. The modules can be static or 

dynamic. Additionally, a complex User Constraint File (.ucf) must be created to constrain 

the Xilinx implementation tools. 

Once the design is broken into sub-modules the Top design and the modules are 

separately synthesized, translated and mapped. The result of the Map process is a native 

circuit description (.ncd) file that physically represents the design mapped to the 

components available in the target Xilinx FPGA. 

The next stage in the process is to run place and route, using the <design>.ucf, 

top.ncd and the sub-module (.ncd) files. First, the top.ncd file is placed and routed; the 

output is a placed and routed top level netlist (.ncd) and a static.used file. The static.used 



27 
 

 
 

file is a list of all the logic resources now used by the top level design. The next step is to 

place and route each of the sub-module (.ncd) files. Using the static.used and 

<design>.ucf file the modules are separately placed and routed creating individual (.ncd) 

files. 

The final process is to perform a merge of the individual (.ncd) files and create all 

of the bitstreams for the design. 

 

2.10. Non Xilinx Software 
 

2.10.1. ModelSim SE 
 

ModelSim SE is a verification and debug environment for ASIC and FPGA designs. The 

simulators provide support for VHDL, Verilog, SystemC and SystemVerilog IEEE 

Standards. The simulation environment includes a complex wave form viewer for 

analyzing complex digital systems. 

 

2.10.2. Synplify Premier 
 

Synplify Premier Software is an advanced synthesis tool from Synplicity. The synthesis 

engine is technology independent in that a user can target multiple FPGA vendors and 

device families. Advanced synthesis tools are available such as graph-based physical 

synthesis, DSP Optimization, Timing Closure and an advanced RTL debug tool Identify. 
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2.10.3. Graph-based physical synthesis 
 

Graph-based physical synthesis is used to give more accurate timing estimation by back 

annotating physical aspects of the FPGA into the synthesis process. This allows for 

accurate estimation of routing delays prior to actual placement and routing. To perform 

physical synthesis the synthesis engine must have context of the pre-existing wires, 

switches and placement sites for the specific FPGA architecture. Therefore, a massive 

database, represented as a detailed routing resource graph is used. The graph provides the 

information necessary to estimate timing based on actual delay and availability of 

resources as opposed to just proximity. 

 

2.10.4. Synplify Identify 
 

Synplify Identify gives a developer the ability to directly debug RTL source code. Acting 

as an In Circuit Emulator (ICE) for FPGAs the Identify tool allows a developer to quickly 

add probes and trigger conditions to source code prior to implementation.  

Once the design is implemented the probes and triggers can be accessed vis-à-vis 

the FPGA JTAG interface. After a trigger condition is set and a trigger condition occurs 

the user can then down load the captured data. Using a built in viewer or a viewer such as 

Mentor Graphics ModelSim the data can be read in a graphical format. 

The advantage over traditional FPGA simulation is due to the fact that many of 

today’s FPGAs do not provide complete simulation models for all of the primitive’s 

(Hard IP) available to the user. A debugger that has the ability to capture signals and 
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displays them to the user for review allows for quick and accurately debugging of a 

design.  

 

2.11. Xilinx Development Boards 
 

Xilinx offers a wide variety of evaluation platforms to accelerate the design process. The 

evaluation platforms include software, reference designs, cables, and programming 

hardware. The evaluation system listed below were chosen for the available Virtex FX 

device, memory architecture, user interface and System ACE CompactFlash (CF) 

controller available to store multiple Partial Reconfiguration bitstreams. 

 

2.11.1. ML410 Evaluation Board 
 

The ML410 Evaluation platform is designed for experimenting with the architectural 

features of Virtex-4 FPGAs and as a platform to create user designs. The ML410 is 

populated with the Virtex-4 XC4VFX60 device that incorporates two PowerPC 405 

processor blocks. A list of all the features available on the ML410 can be found in the 

ML410 Evaluation Platform User Guide [19]. 

 

2.11.2. ML507 Evaluation Board 
 
The ML507 Evaluation platform is designed to for experimenting with the architectural 

features of Virtex-5 FPGAs and as a platform to create user designs. The ML507 is 
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populated with the Virtex-5 XC5VFX70T device that incorporates a PowerPC 440 

processor block with integrated DMA engines and a multi-port crossbar switch. A list of 

all the features available on the ML507 can be found in the ML505/ML506/ ML507 

Evaluation Platform User Guide [20].  
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Chapter 3  
 

Related Work and Motivation 
 

Historically, Field Programmable Gate Arrays (FPGAs) were comprised of a small 

number of lookup tables connected with a programmable interconnect array. The 

programmable arrays could then be configured to do tasks such as Glue Logical 

Application Specific Integrated Circuit (ASICs) devices together “Glue Logic” and 

simple logic processes.  

As physical semiconductor device structures shrunk, the number and speed of the 

programmable lookup tables has increased. It has also allowed for the addition of hard 

logic blocks, such as Multi-Gigabit Transceivers, block of dedicated memory, and 

processor blocks to name a few. The added capabilities have moved the FPGA from 

being the “Glue Logic” of the system, to one of the main system blocks. In many cases 

FPGAs are replacing the ASICs they once connected together. 

As the amount of programmable logic has scaled, creating more system 

functionality, so has the need for dynamically controlling power, cooling and system 

resources. The one solution that can solve the need for dynamic control of power, cooling 

and system resources is the use of Dynamic Partial Reconfiguration (DPR). DPR is the 

process of changing the operation of a portion of an FPGA during operation. The 

partially reconfigured portion of the device can then be timeshared to do multiple 

operations.  
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One of the main issues when developing a system that incorporates DPR is the 

availability of the resource. If a resource is system critical, and used 100% of the time, it 

does not make sense to partially reconfigure the resource. In addition, when considering 

time sharing a resource, it is imperative to consider not only the time the resource is in 

use, but also the time it takes to reconfigure the resource. 

In this Thesis, using advanced techniques available with current FPGA 

architectures’, the speed at which Dynamic Partial Reconfiguration can be accomplished 

is optimized. Thus, the proposed approach further reduces the time a resource is offline 

due to the reconfiguration process. 

 

3.0 FPGAs and Partial Reconfiguration 
 

FPGAs are fast becoming the platform of choice for many of today’s System On a Chip 

(SoC) deigns. With advanced hard IP blocks such as Block Memory, Multi Gigabit 

Transceivers (MGTs), embedded processors and DSP cores (Digital signal Processing) 

the logic applications that FPGAs can be used for are only limited to the size of the 

FPGA and the power available.  

Historically, the FPGA fabric has been configured statically, in that during the board 

manufacturing process the FPGA’s configuration is loaded on a configuration prom and 

the PCB is shipped. Then when the FPGA is powered by the user, the configuration is 

loaded by the configuration prom and the device is functional. This approach works well 

for systems that do not need the FPGA to perform multiple operations or do not need the 

system to dynamically change operation.  Figure 3.1 shows a typical non PR flow where 
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the configuration prom is programmed during the manufacturing process and does not 

change for the life of the product. 

 

 

Current Xilinx FPGAs have the ability to be Partially Reconfigured. This feature allows 

the FPGA to adapt to environment conditions, and take advantage of advanced design 

techniques that were not available before. Examples include: 

 Dynamic Power control – With Dynamic power control the FPGA can 

dynamically reduce the power consumption by reducing the clock speed of 

system resources or changing the output driver current to minimize power. This 

approach has also been successfully implemented in Laptop Computers. When the 

Laptop is connected to an external power source the processor is clocked at its full 

clock speed. However, when on battery power the clock speed is reduced to save 

power. This same technique is available with FPGAs, but with much higher 

granularity of control than the two states available with the laptop application. 

Figure 3.1: FPGA Configuration Process. 
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 Dynamic Temperature control – Like dynamic Power control, many systems need 

the ability to change with the environment. With Dynamic Temperature control 

the system can reduce resources to adapt to the system environment. 

 Dynamic Performance – Dynamic hardware resources coupled with an embedded 

processor, provide for a capability to assign resources at run time. This allows the 

system to actively maintain the optimal balance between applications preformed 

in software or hardware, depending on the demand on the system at a particular 

time. 

 High Performance Reconfigurable Computing (HPRC) – Using Dynamic High 

Speed algorithm acceleration, FPGAs coupled with High-end Processors or DSP’s 

take advantage of an FPGAs parallel algorithm acceleration, and the ability of 

High-end Processors operating systems to process large amounts of data quickly. 

These systems have been proven effective with many applications, such as 

financial modeling and other large problems with parallel data structures. 

 High Performance Embedded Reconfigurable Computing (HEPRC) – With high 

performance embedded computing the system needs to perform high end 

functions at a fraction of the size weight and power of HPRC. Some applications 

are automotive control systems [21], Software Defined Radios [22] and video 

processing [1]. 

 DISC: The Dynamic Instruction Set Computer (DISC), first proposed by Wirthlin 

and Hutchings [32], used a medium grain, Configurable Logic ArraY (CLAY) 

device from National semiconductors. This computer had an instruction set made 
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up of independent hardware units configured into the device as needed. The 

architecture’s performance was limited by the reconfiguration time overhead. 

From a hardware perspective, the main issue with dynamic reconfiguration is the 

availability of the fabric to the system. This is due in part to the bottleneck imposed 

on the data path to the fabric. 

  

3.1. Current Dynamic Reconfiguration Solutions 
 

Currently, there are two FPGA-based solutions to run-time reconfiguration: Partial 

Reconfiguration (PR) employed by Xilinx and Software Programmable Reconfiguration 

(SPR) used by Altera. The more ambitious PR approach necessitates an FPGA 

architecture designed to support reconfiguration zones. With the SPR approach, FPGA 

components are created as highly flexible building blocks controlled and manipulated 

through embedded software code running on an embedded processor or even through 

host software running on a general-purpose processor (GPP) [23]. 

 

3.2. Xilinx XPS HWICAP Controller 
 

Xilinx currently offers a Processor core XPS HWICAP (v1.00.a) that enables Partial 

reconfiguration of the FPGA with an embedded processor. The core connects to the 

Processor Local Bus V46 (PLBV46) giving burst mode access to and from the FPGAs 

Internal Configuration Access Port (ICAP). 
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With the XPS HWICAP, the FPGAs partial bitstream must be stored in main 

memory before accessed to reconfigure the FPGA. This creates a requirement that the 

system have enough external memory to store all of the partial bitstream needed to 

perform a partial reconfiguration operation. The system also needs to have static storage 

area to store partial bitstreams when the system power is removed. 

In addition to writing to the ICAP, the XPS HWICAP also provides the ability to 

read back the FPGA configuration bits. During an ICAP read the data frames are read 

back and stored in a Read FIFO buffer in the FPGA fabric. After the read operation is 

compete, the CPU can read the frame data directly from the Read FIFO. The read 

function is a very useful feature of the XPS HWICAP. When coupled with the FRAM 

ECC primitive, it can be used to detect Single Event Upsets (SEUs). 

The XPS HWICAP core provides a bust mode interface to the ICAP port. The 

interface has a bottle neck created by the arbitration of the PLBV46. It is also processor 

intensive in that it needs to have a significant amount of processor cycles to initialize and 

perform a reconfiguration process [24]. 

 

3.3. PLB DMA ICAP Controller 
 

A method of partial reconfiguration proposed by [1], targets the Xilinx Virtex-2P 

and Virtex-4 family of devices. By creating a custom logic core that instantiates the ICAP 

and connects it to the Processor Local Bus (PLB), the authors were able to improve data 

throughput over the existing XPS HWICAP controller by a factor of 58%. Additionally, a 

method to calculate the expected reconfiguration throughput and reconfiguration time 
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was introduced, which enables the user to decide if DPR is fast enough for a certain 

application. 

The main drawback of using the PLB bus is the latency due to the arbitration of 

the bus.  There is also a reduction in the processor performance during reconfiguration. 

 

 

3.4. Other Proposed solutions 
 

In a solution proposed by [25], using a Xilinx Virtex-2P FPGA the configuration is 

controlled with a “configuration controller”. The controller is used to partial reconfigure 

a device while at the same time perform authentication and encryption or decryption of 

the partial bitstream. 

This method of reconfiguration is not a high speed approach of performing 

reconfiguration. However, the ability to perform reconfiguration on secure systems will 

become increasingly important as the technology is adopted in the future. 
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Chapter 4  
 

Implementation Methodology 

4.0 Overview 
 

In order to obtain the current maximum theoretical performance for Internally Directed 

Partial Reconfiguration (IDPR), it is necessary to provide non-interrupted data to the 

ICAP port at the maximum speed at which data can be written. With current Virtex-4, 

Virtex-5 and Virtex-6 devices, the maximum ICAP data path is 32 bits and the frequency 

is defended as 100MHz across the voltage and temperature spec. Therefore, the 

maximum achievable bandwidth of the ICAP is at 3.2Gb/s. To obtain this speed, it is 

necessary to create an interface between a device storing the partial bit stream and the 

ICAP port with at least such a bandwidth. While such an interface is the simplest, it lacks 

the requirement to perform IDPR. Recent implementations of IDPR systems were 

reported in [38, 39, 40, 41, 42]. 

A simple point to point interface also does not have the ability to move bit 

streams from one location in the system to another. For example, a point to point 

interface cannot move information from a slower access storage device to a faster device. 

This would be the case for most static storage devices that could be used to store the bit 

stream when the system is powered down. Therefore, to create a system that is more 

robust than a simple point to point interface, with the ability to move bitstreams stored in 

static storage to high speed storage, an embedded processor is necessary.  
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The embedded processor approach also has the ability to control the switching of 

the partial bit streams. Using the embedded processor to actively control the use of the 

fabric abstracts many of the mundane tasks associated when reconfiguring the FPGA 

fabric. This allows the user / designer of the system to have a more abstracted view of 

system interactions and resources. 

In Xilinx V4, V5 and V6 FPGAs, the fastest method to move data to and from 

processor memory space, is by using a LocalLink DMA interface. The next sections 

describe the design and development of a custom HSDPRC soft IP core capable of 

performing IDPR of a target FPGA with an embedded processor. 

 

4.1. HSDPRC Core Design 
 

The HSDPRC is a custom soft IP core specifically developed for LocalLink DMA to and 

from the Virtex-4, Virtex-5 and Virtex-6 32b-ICAP primitives. The core was developed 

to interface between both the HDMA or SDMA memory controllers and the FPGA ICAP. 

To allow for ease of use, the controller was designed with a set of internal ICAP 

functions. The functions allow the user to perform useful tasks such as reading a specific 

address in the FPGA and setting internal read and write masks. The following section 

will present the approach used to develop the HSDPRC. 
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4.1.1. HSPR Development 
 

The development of the HSDPRC soft IP core required an advanced two part 

development flow, splitting the development into a traditional cycle accurate RTL 

simulation and the “hardware in the loop” simulation flow. The purpose for the flow was 

necessary since the Xilinx ICAP simulation model does not provide a complete 

behavioral model, in that it does not allow writing or reading internal FPGA registers or 

configuration address. Therefore, it is not possible without actual hardware testing to see 

how the device ICAP will behave with a core. The following sections outline the 

development flow and embedded processor driver description. Figure 4.1 shows the steps 

used to implement this flow. 
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Figure 4.1: HSDPRC Development Flow. 
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Figure 4.2: Virtex-4FX ModelSim Simulation Model. 

 

4.1.2. ModelSim Simulation 
 

The ModelSim simulation model developed for the LocalLink core consists of a complete 

ML410 PR subsystem simulation model. The model included the software and driver 

used to implement the system, DDR memory and a loopback core. This allowed for 

development and testing of the behavioral VHDL model as well as testing the driver used 

to configure the LocalLink core. Two ModelSim simulations were run, a DMA test to 

verify the full function of the LocalLink DMA and a Register test to verify the ability of 

the processor to access the registers internal to the HSDPRC core. 
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Figure 4.3 depicts the model developed for the ModelSim simulation. The 

external DDR model consists of a 64 bit wide data bus running at 200MHz connected to 

the MPMC memory controller core. The data path between the MPMC and the Transmit 

and Receive FIFOs are 32-bits wide running at 100MHz. Controlling the system is the 

Virtex-4 PowerPC 405 simulation model. The PowerPC 405 simulation model is running 

300MHz and is used to initialize the external memory, and setup and initiate the DMA 

transfer. 

 

 

Figure 4.3: ModelSim Simulation Stateflow Diagram. 

 

4.1.3. ModelSim DMA Simulation  
 

Figure 4.3 shows the ModelSim Simulation Stateflow Diagram. The DMA simulation 

starts by initializing the external DDR memory. After initialization, the DDR is loaded 

with the software and drivers needed to perform the DMA. Once the software is loaded, 

the simulation model takes the PowerPC subsystem out of reset and the application code 

starts running. 
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The application code used in the simulation is a basic data compare test. First, a known 

data pattern is generated in the external DDR memory model. Then the application sets 

up the transmit and receive DMA vectors.  

The transmit vector is used to instruct the DMA controller to move data from the 

external memory models base address, where the known data starts, to the HSDPRCs 

receive FIFO address. The receive DMA vector instructs the DMA controller to move 

data from the HSDPRCs Transmit FIFO to a predefined address in the external memory 

model. The vectors are then sent to the DMA controller and the DMA operation is 

started.  

The data pattern is now sent to the HSDPRC core via a LocalLink DMA. The data 

is then received in the HSDPRC cores receive FIFO. Once the data is received it is then 

transmitted back to the DDR memory by writing to the HSDPRC Transmit FIFO. 

Once the DMA operation has finished, the known transmit data and the receive 

data are compared. If the data matches the DMA, the test is successful; else the system 

needs further analysis. 

  



45 
 

 
 

4.1.4. ModelSim Register Simulation  
 

 The HSDPRC internal register simulation is used to ensure the processor has the 

intended access to the appropriate registers. Table 1 below lists all of the HSDPRC 

internal registers.   

Register 
Name 

(offset from 
C_BASEADDR) 

Access 
Size 
in 

Bits 
Description 

Control 
Register 

0x0 Read/Write 32 Bit 31 - Invert Payload Data Bit 

Status 
Register 

0x2 Read 32 Bit 31 - Done Bit 30 - Busy Bit 

Total Tx 
Frames Sent 

0x4 Read 32 32-bit counter value. 

Total Rx 
Frames 

Received 
0x8 Read 32 32-bit counter value. 

Total Tx 
Bytes Sent 

0x10 Read 32 32-bit counter value. 

Total Rx 
Bytes 

Received 
0x20 Read 32 

32-bit counter 
value. 

ICAP 
Control 
Register 

0x40 Read/Write 32 

Bit - 31       ICAP_RST          
Bit - 30       ICAP_EN            
Bit - 29       ICAP_RW            
Bit - 28       Disable_loopback   
Bit - 27 - 24 HW ICAP  
FUNCTIONS  
Bit - 23 - 2  Currently Unused  
Bit - 1         START_PROCESS      
Bit - 0         PROCESS_DONE   

 ICAP Single 
Word Read 

Register 
0x80 Read 32 32-bit value 

ICAP 
TYPE2 

WRITE REG 
0x100 Read/Write 32 32-bit value 

ICAP FAR 
ADDRESS 

REG 
0x200 Read/Write 32 32-bit value 

Table 1: HSDPRC Internal Registers. 
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This simulation is a simple write followed by read and compare. Here, a known 32 bit 

data word is written to the target register and then read back and compared to the written 

value. This simulation can only be performed on Read/Write registers. All of the other 

registers were simulated by reading the target register and comparing the value to the 

expected value. If the data matches the expected value the test passes. Otherwise, further 

system analysis is necessary. 

 

4.1.5. Identify Hardware in the Loop Development 
 

The Identify Hardware in the loop development flow ensures the HSDPRCs ICAP 

interface operates as expected. The flow required a test fixtures used to stimulate the core 

and an Identify project used to readback the results and display them for analysis. The 

Identify test procedure ensures that both ICAP read and write functionality work as 

expected. The Hardware-in-the-loop simulation was run at both 80MHz and 133MHz. 

The individual states are listed below. The NOOP commands are needed to push data 

through the internal ICAP data pipeline.  

1. Write the Synchronization word 

2. Write one NOP command 

3. Write the RCFG command to the CMD register 

4. Write one NOP command 

5. Write the Starting Frame Address to the FAR (0x00000000) 

6. Write the read FDRO register packet header 

7. Read the FDRO register count times. See Formula below 
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8. Write one NOP instruction. 

9. Write the DESYNCH command. 

The Frame Data Register (FDRO) is a read-only internal FPGA register The FRDO 

provides readback data for configuration frames starting at the address specified in the 

Frame Address Register (FAR) register. The read length of the FDRO is: 

FDRO Read Length = 41 x (frames to read + 1) + 1 

 

The extra one in the formula above is used to read and write additional frame. This is to 

account for the frame buffer. The 41 is the number of words in a frame. 

 

4.1.6. Merging the EDK Simulation with the Identify 
Project 

 

After the EDK simulation and the Identify hardware-in-the-loop worked independently as 

expected, the two systems were combined. This was accomplished by removing the 

transmit and receives FIFOs used in the EDK system and replacing them with the ICAP 

wrapper used in the Identify system. The final HSDPRC soft IP core was then integrated 

into an IDPR controller design. 
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4.1.7. Software Driver 
 

The software API developed for the HSDPRC soft IP core gives the user the 

ability to read and write all of the cores internal registers. A list of the registers is given in 

the HSDPRC control Register (see table 1).There is no API for directly initiating a PR 

DMA operation. The DMA operation is setup using the DMA controller and is 

application specific. Therefore, it is up to the user of the HSDPRC to set up the DMA 

operations in the user application code.  
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Chapter 5  
 

Implementation Results 
 

5.0 Test Platform Overview 
 

The HSDPRC core was designed to target Virtex-4, Virtex-5 and Virtex-6 FPGAs along 

with all of the Processors offered by Xilinx for these devices. To accomplish this, a cross 

platform verification approach was necessary. This included developing multiple 

embedded systems implemented on the target devices. The ML410 and ML507 

evaluation boards were the chosen platforms for the Virtex-4 and Virtex-5 devices they 

are populated with, their availability and extensive documentation. The new Virtex-6 

FPGA could not be tested because of its current limited availability. However, the ICAP 

interface for V5 is the same as for the Virtex-6 FPGA, so it should behave as such. Figure 

5.1 is a block diagram summarizing the four implementations.  

Techniques developed for testing this architecture have been presented in 

international conferences ([99], [40] [100], [101]). 
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Figure 5.1: HSDPRC Test desings. 

5.1. IDPR Controller Design  

The following four different implementations of IDPR controllers are configured using 

different types, speed and configurations of external memory, processors, and devices. 

All of the designs are configured so as to optimize the speed of IDPR using different 

types of embedded processors, devices and configuration algorithms. The different 

devices used (Virtex-4 and Virtex-5) offered different design resources such as hard and 

soft crossbar memory controllers, PowerPC and MicroBlaze processors, System Monitor 

and speed of operation. The designs are all implemented on readily available Xilinx 

ML410 and ML507 evaluation boards.  

 

5.2. Hardware Architecture 
 

The four processor subsystems consist of common IP used across the platforms and 

specific IP used in order to optimize the processor subsystem for the application. The 

following will outline the common architecture components and the differences.  
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5.2.1. Common Architecture Components 
 

External to the processor each of the four processor subsystems consist of several 

common soft IP blocks, these blocks are the universal asynchronous receiver/transmitter 

(UART), Block Memory (BRAM), interrupt controller, Processor Local Bus (PLB), 

external flash, DDR memory and HSDPRC core. Figure 5.2 shows how the blocks are 

connected via the PLB bus. 

While the HSDPRC core is common to all four platforms, it is configured 

differently. The differences are outlined in the Architectural Differences section.  

  

Interrupt 
Controller 

UART BRAM 

DDR Flash 

 Processor 

HSDPRC 

Performance 
DMA Core 

Figure 5.2: Common Architecture Components. 
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5.2.1.1. Processor Local Bus (PLB) 
 

The PLB is 128-bits wide and provides a bus infrastructure for connecting an optional 

number of PLB masters and slaves components. It consists of a bus control unit, a 

watchdog timer, and separate address, write, and read data path units, as well as an 

optional Device Control Register (DCR) slave interface to provide access to its bus error 

status registers [26]. The IDPR design uses the PLB bus to communicate with all of the 

processor peripherals. 

 

5.2.1.2. Block RAM (BRAM) 
 
BRAM is used by the IDPR system to store the reset vector for the processor or as a place 

to run the user application from. The reset vector is the default location the processor will 

go to find the first instruction it will execute after a reset (or startup). For all of the 

systems but the V5-PPC-266MHz system, BRAM was used to only store the reset vector. 

For the V5-PPC-266MHz system the entire user application was run out of the system 

BRAM. Table 2 shows the different IDPR systems that were implemented. 

 

5.2.1.3. DDR 
 

DDR is a volatile storage medium and one of the fastest external storage devices 

available. In the processor subsystem Double Data Rate memory (DDR) is used to store 

partial bit streams during runtime. The type of DDR used and the bus width are different 
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in the systems implemented on the ML410 and ML507. The differences in the DDR used 

for each system are outlined in the respective sections. When power is removed from a 

system, the DDR memory will not retain state. For this purpose, a non-volatile storage 

medium such as Flash or an external hard drive is necessary.  

The IDPR system uses the DDR memory to store the partial bitstreams used to 

reconfigure the device. In addition, the user application program can be run out of the 

DDR memory. 

 

5.2.1.4. FLASH 
 

The Flash in the system is a static storage medium used to store the partial bitstreams 

when the system is not powered. After the system is started the processor copies the 

statically stored partial reconfiguration bitstreams from the flash via the PLB into the 

much faster DDR memory. Compared to the DDR memory, the flash interface is 

significantly slower in both speed and access time.  

 A flash interface was implemented for the IDPR systems however the flash has 

not been tested for the system. The intent was to provide a static partial bitstream storage 

device when power was removed from the system. 
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5.2.1.5. Interrupt Controller 
 

The systems interrupt controller is used to interrupt the processor when a predefined 

programmable interrupt condition has occurred. For this application, the interrupt 

controller is configured to interrupt the process after the LocalLink DMA operation has 

completed and the status registers have valid data. 

 The interrupt controller was used by the IDPR system to indicate when a partial 

reconfiguration process completed. This allows the processor to do other tasks such as 

processing data and/or servicing other interrupt conditions. 

 

5.2.1.6. UART 
 

The UART in the IDPR system is used to connect a host computer to the Processor 

Subsystem. This allows the user to control the bit streams that are loaded in the partial 

reconfiguration regions, and to access configuration statistics. The UART can be taken 

out of systems that have other previsions for controlling the embedded processor. 

 

5.2.1.7. Performance DMA core 
 

The Performance DMA core is used by the IDPR controller to  measure the throughput of 

a single Hard Direct Memory Access (HDMA) using the PowerPC 440 crossbar or Soft 

Direct Memory Access (SDMA) using the Multi Port Memory Controller (MPMC) block 

for both the Rx and Tx channels on the LocalLink interface. The core is a slave PLB v4.6 
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interface with read/write registers used to setup and store the DMA performance 

calculations. To integrate the core into a design, several signals must be connected in the 

system. These include: LL_CLK, TX SOF, TX EOF, RX SOF, and RX EOF. 

The embedded processor driver for this core has several functions: 

 Setup_PERF_DMA - sets the control register to trigger on a transaction. 

 Poll_Done_PERF_DMA - Used to poll the status register until the DMA 

transaction is complete. 

 Tx_Transfer - reports the results of the Tx transaction in Mbps. 

 Poll_Done_PERF_DMA - reports the results of the Tx transaction in Mbps.  
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5.2.2. Differences in IDPR Controller Hardware 
Architecture 

 

The four implementations of IDPR controllers consisted of a Virtex-4 PowerPC design, 

Virtex-5 MicroBlaze design, Virtex-5 PowerPC design with 200MHz DDR2 and Virtex-

5 PowerPC design with 266MHz DDR2. Table 2 below outlines the architectural 

differences with the four implementations. 

IDPR 
Controller 

V4-PPC V5-
MicroBlaze 

V5-PPC- 
200MHz 

V5-PPC- 
266MHz 

Device Virtex-4 Virtex-5 Virtex-5 Virtex-5 

Development 
Platform 

ML410 ML507 ML507 ML507 

Processor PowerPC 405 MicroBlaze PowerPC 440 PowerPC 440 

Processor 
Speed 

300MHz 125MHz 400MHz 400MHz 

Memory DDR2 DDR2 DDR2 DDR2 

Memory Speed 200MHz 200MHz 200MHz 266MHz 

System 
Monitor 

NONE YES YES YES 

Number of PR 
Regions 

2 4 4 4 

ICAP Clock 100MHz 100MHz 100MHz 133MHz 

DDR Memory 
Controller 

MPMC MPMC PPC440MC PPC440MC 

LocalLink 
Type 

SDMA SDMA HDMA HDMA 

Table 2: Differences in IDPR Controller Hardware. 
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5.2.2.1. DDR Memory 
 

The DDR memory in the two systems is very different. The ML410 board uses a slower 

200MHz capable DDR2 memory while the ML507 uses a 266MHz capable DDR2 

memory. DDR2 SDRAM is a double data rate synchronous dynamic random access 

memory. DDR2 supersedes the original DDR SDRAM specification and the two are not 

compatible. The primary improvement that DDR2 brings over its predecessor is the 

operation of the external data bus at twice the clock rate. This is achieved by operating 

the memory cells at half the clock rate (one quarter of the data transfer rate), rather than 

at the clock rate as in DDR. Consequently, DDR2 memory operating at the same external 

data bus clock rate as DDR will provide the same bandwidth but with higher latency, 

resulting in inferior performance. Alternatively, DDR2 memory operating at twice the 

external data bus clock rate as DDR may provide twice the bandwidth with the same 

latency (in nanoseconds) [27]. 

The LocalLink interface SDMA and HDMA clock can be configured to be either 

a 1 to 1 or a 2 to 1 ratio of the memory clock. When deciding what speed to run the 

external memory a decision was made to maximize the speed of the HSDPRC connected 

to the LocalLink SDMA or HDMA clock. 

The DDR memory used on the ML410 Virtex-4 board is a standard DDR module 

with a 64 bit data bus. The speed at which the DDR interface on the ML410 board is 

configured to operate is 100MHz. using a 1 to 1 LocalLink Clock ratio provides a 

100MHz clock to the LocalLink SDMA interface and HSDPRC core. 
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The DDR on the ML507 is a DDR2 with a 64 bit bus width capable of speed up to 

266MHz. The speed at which the DDR2 interface on the ML507 board is configured to 

operate is 200MHz for the MicroBlaze processor system with a SDMA LocalLink to the 

HSDPRC core. With the PowerPC system, two clocking schemes were used: (i) a 

200MHz DDR2 clock providing a 100MHz LocalLink HDMA clock and (ii) a 266MHz 

DDR2 clock providing a 133MHz LocalLink HDMA clock. 

 

5.2.2.2. V5-PPC- 266MHz 
 

The Virtex-5 PowerPC 440 system clocking the external DDR at 266 MHz is quite 

different from the other systems. This system uses feedback from the System Monitor IP 

to determine if the device voltage and temperature parameters are within nominal 

operating conditions. The reason this is needed is because the device specification for the 

Virtex-5 ICAP port is only 100MHz through Process Voltage and Temperature (PVT). 

However, most IC manufactures build in a tolerance when specifying the operating 

parameters. Taking this into account the ICAP port for this system was over clocked 33% 

when the device is in nominal operating conditions. 

 The over clocking technique can be used in fielded systems. However, the 

clocking for the system would need to be controlled with a BUFGMUX primitive [28]. 

This primitive would allow for glitchless clock switching when needed. A state flow 

diagram of the software used to perform this operation can be found in the Software test 

section. 
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5.3. Multimode AES Crypto PRM 
 

The Advanced Encryption Standard AES algorithm is used for testing the High Speed 

Partial Reconfiguration Controller. The AES Partial Reconfiguration Module (PRM) 

algorithm was designed and tested separately from the HSDPRC. This algorithm was 

tested and it passed all bit for bit test vectors provided by National Institutes of Standards 

and Technology (NIST), for the implementations of the algorithm used for testing.  The 

NIST test vectors are used to ensure the accuracy of implementation.  

This algorithm was chosen because of its ability to be easily scaled by changing 

the size and modes of operation. Therefore, when switching algorithms the integrity of 

the reconfiguration controller could be verified by running known complex test patterns 

through the AES algorithm once the reconfiguration was finished. A brief description of 

the algorithm follows. 

AES is an encryption standard adopted by the U.S. government. The standard 

comprises three block ciphers, AES-128, AES-192 and AES-256, adopted from a larger 

collection originally published as Rijndael. Each AES cipher has a 128-bit block size, 

with key sizes of 128, 192 and 256 bits, respectively. The AES ciphers have been 

analyzed extensively and are now used worldwide, as was the case with its predecessor, 

the Data Encryption Standard (DES) [29]. 
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5.4. Partitioning the IDPR Designs 
 

The next section will discuss how the IDPR designs were placed on the FPGA fabric. 

This step in the Partial Reconfiguration process is known as partitioning the design. This 

is true because the area of the die that will be used for the partial reconfiguration regions 

and the area used for the IDPR controller will be defined. In addition, the bus macro 

placement is locked between the regions that use the macros for communication. This 

process was done using the Xilinx PlanAhead tool.  
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Figure 5.3: Virtex-4 PlanAhead Screen Capture 1. 
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5.5. Partitioning the Virtex-4 Design 
 

The Virtex-4 IDPR design is partitioned into three regions. The design has two PR 

regions and the static region with the IDPR controller. The two PR regions are configured 

to have the same identical available FPGA resources. The PR regions containing the AES 

PRMs are pblock_CRYPTO_1_INST and pblock_CRYPTO_2_INST. The static region 

containing the IDPR controller is pblock_USER_INST. 

 

 

 

 

 

 

 

 

 

 

 

In Figure 5.4, we can see the implementation of the design after it has been placed and 

routed with identical AES hardware requirements in each of the PR regions. The static 

Figure 5.4: Virtex-4 FPGA Editior 
Screen Capture 1. 
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design is the PowerPC 405 100MHz system. Note: Only one of the PowerPC processors 

is used out of the 2 available in the xc4vfx60ff1152. 
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Figure 5.5: Virtex-5 PlanAhead Screen Capture 2. 
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5.6. Partitioning the Virtex-5 Designs 
 
 
The Virtex-5 IDPR designs are partitioned in to several PR regions. The PR regions are 

all configured to have the same identical available FPGA resources. In the image above 

the PR regions on the Virtex-5 xc5v70FXT, can be seen as CRYPTO_1_CORE, 

CRYPTO_2_CORE, CRYPTO_3_CORE and CRYPTO_4_CORE the IDPR controller is 

shown as USER_LOGIC. Each of the crypto core regions can be reconfigured with 

different implementations of the AES algorithm. The USER_LOGIC section is Static and 

does not change. 

  

Figure 5.6: Virtex-5 FPGA 
Editor Screen Capture 2. 
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In Figure 5.6, using identical AES hardware in each PR region, we can see the results for 

place and route on the Virtex-5 device. The static design uses the PowerPC 440 266MHz 

system.  
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5.7. Test Procedure 
 

The procedure used to test the HSDPRC can be seen in Figure 5.7. To test the system, 

first the IDPR controller bitstream was written to the FPGA development board. Once the 

system was loaded it was necessary to connect to the system using an EDK shell and up 

load the partial bitstreams to the external DDR memory. After each of the partial 

bitstreams was loaded, the Software test Application was loaded and started. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Figure 5.7: Test Procedure Stat Flow 
Diagram 
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5.8. Software Test Application 
 

The Software Test Application allows the user to actively monitor and test the IDPR 

controller in the FPGA. When the system first starts, it sends a message to the user 

indicating the controller is operational. At this point, the controller is in an idle state until 

the user issues a PR command. The PR command is a number from 1 to 4. The number 

indicates the region that is to be reconfigured. Once the user enters a number and sends 

the command by issuing the enter command the process starts. The process flow can be 

seen in the Software Test Application State Flow Diagram. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Other Software FlowsML507 266MHz Software Flow

Send Message to 
Terminal “System 

operational”

Wait For user 
Command

Setup Performance 
DMA Registers 

Setup HSDPR 
DMA Registers 
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Run BIST on PR 
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Report DMA 
Statistics to the 

Terminal

Report DMA 
Statistics to the 

Terminal
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Terminal “System 
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Command
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Temperature

Setup Performance 
DMA Registers 

Setup HSDPR 
DMA Registers 

Perform PR DMA

Run BIST on PR 
Region

Report DMA 
Statistics to the 

Terminal

Report DMA 
Statistics to the 

Terminal

Figure 5.8: Software Test Application State Flow Diagram. 
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5.9. Reconfiguration Speed Measurements 
 

Table 3 represents the previous maximum speed at which the FPGA could be configured 

using IDPR. 

Method of 
Configuration

Virtex-2P  Virtex-4

Frequency 100 MHz 100 MHz

Main Memory DDR DDR2

Measured  
PLB_ICAP 

89.9 Mbytes/s 295.4 Mbytes/s 

Measured 
OPB_HWICAP  

4.77 Mbytes/s 5.07 Mbytes/s 

 

Table 3: Previously reported state of the art Calculated and Measured Values [1]. 
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Table 4 represents the measured speed of ICAP writes and read throughput. The 

difference in the speed at which the different systems are capable of reconfiguring can be 

accounted for by the clock speed at which the systems external memory was ran at, the 

hard vs. soft memory cross bar and the width of the memory controller’s fabric side bus. 

 

Platform Processor System 
Frequency 

Memory 
Controller 

ICAP 
Frequency 

TX RX

ML410 PowerPC405 200MHz MPMC 100 MHz 177.4 
Mbytes/s 

180.0 
Mbytes/s

ML507 MicroBlaze 200MHz MPMC 100 MHz 178.6 
Mbytes/s 

181.0 
Mbytes/s

ML507 PowerPC440 200MHz PPC440MC 100 MHz 335.9 
Mbytes/s 

340.4 
Mbytes/s

ML507 PowerPC440 266MHz PPC440MC 133 MHz 418.5 
MBs 

424.6 
MBs

 

Table 4: HSDPRC Core measured Values. 
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 The width of the MPMC internal memory bus is set at 64-bits compared to the 

128-bit bus available with the PPC440MC. This alone accounts for the 2x speed increase 

over the systems that do not have PPC440MC. After taking this into account, the systems 

scales closely with respect to clock speed. Figure 5.10 shows this relation. 

 

 

Figure 5.9: Clock Speed Comparison 

 

  

0

50

100

150

200

250

M
b
yt
e
s/
s

IDPR System

Comparison of the DMA Efficency 

TX

RX



72 
 

 
 

5.10. Device Utilization Summary 
 

The HSDPRC cores device utilization for a Virtex-5 can be seen in Table 5. 

 

Number of ICAPs 1 
Number of RAMB18X2SDPs 1 
Number of Slice Registers 1085 
Number used as Flip Flops 1082 
Number used as Latches 3 
Number of Slice LUTS 923 
Number of Slice LUT-Flip Flop pairs 1530 

 

Table 5: Virtex-5 Device utilzation for HSDPRC. 

  



73 
 

 
 

Chapter 6  
 

Conclusion 
 

In this thesis, the objective of designing and implementing a High Speed Dynamic Partial 

Reconfiguration Controller (HSDPRC) core that maximized the bandwidth of the ICAP 

was attained. The design was evaluated in terms of reconfiguration performance, and 

logical resources. 

Additionally, the use of on chip temperature and voltage active feedback for Dynamic 

Partial Reconfiguration was introduced and tested. This approach created an IDPR 

controller that is tightly coupled with the FPGA silicon and the system behavior than 

previous work has accomplished. 

When the ICAP core was run at the Xilinx specification over PVT, the HSDPRC 

soft IP core increased the speed at which a partial bitstream could be loaded into the 

FPGA fabric, compared to the current maximum measured speed, by over 12%. When 

using System Monitor active feedback the system was approximately 30% faster than the 

current state-of-the-art.  

The HSDPRC core obtained the maximum theoretical ICAP performance 

achievable with Virtex-5 FXT devices. This technology and implementation is easily 

scalable to future generations of FPGAs. 
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