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ABSTRACT 

 

Impulse Radiating Antennas (IRAs) are designed to radiate very fast pulses in a 

narrow beam with low dispersion and high field amplitude. For this reason they have 

been used in a variety of applications. 

IRAs have been developed for the transient far-field region using paraboloidal 

reflectors. However, in this dissertation we focus on the near field region and develop the 

field waveform at the second focus of a prolate-spheroidal IRA. Recent research has 

shown that it is possible to kill certain skin cancers by the application of fast, high-

amplitude electric-field pulses. This has been accomplished by the insertion of electrodes 

near the tumor, with direct contact from a high-voltage pulse generator. It has been 

suggested that it would be desirable to be able to apply fast, high-electric-field pulses 

without direct contact for this biological application, i.e., to irradiate them using an 

antenna from a distance.  



 

 viii

Analytical, numerical and experimental behaviors for the focal waveforms of two 

and four-feed arm prolate-spheroidal IRAs are explored. With appropriate choice of the 

driving waveform we maximize the impulse field at the second focus. The focal 

waveform of a prolate-spheroidal IRA has been explained theoretically, verified 

experimentally and simulated using the CST-MWS (Microwave Studio) software. 

Finally, different lens design procedures are discussed for a prolate-spheroidal IRA for 

better concentrating the energy from an impulse. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 



 

 ix

TABLE OF CONTENTS 

LIST OF FIGURES ......................................................................................................... xiv 

LIST OF TABLES......................................................................................................... xviii 

1 INTRODUCTION ........................................................................................................ 1 

1.1 History of IRA ........................................................................................................ 2 

1.2 Motivation for IRAs and Applications ................................................................... 3 

1.3 Overview................................................................................................................. 3 

2 BASICS OF IRAs......................................................................................................... 5 

2.1 Introduction............................................................................................................. 5 

2.2 Components and Waveform of a Reflector IRA..................................................... 5 

2.3 Stereographic Projection......................................................................................... 7 

3 PARAMETER STUDY FOR A PROLATE-SPHEROIDAL IRA ............................ 11 

3.1 Introduction........................................................................................................... 11 

3.2 Normalized Parameters......................................................................................... 13 

 3.2.1 Normalized Geometric Parameters  llll /,/z,/b,/a pΨ0 ................ 15 

 3.2.2 Normalized Electromagnetic Parameters.................................................. 17 

3.3 Example Case........................................................................................................ 22 

 3.3.1 Feed-Point Lens ........................................................................................ 22 

 3.3.2 Spherical Example: ................................................................................... 23 

 3.3.3 Example Case Parameters......................................................................... 23 

4 EXTENSION OF ANALYTICAL CALCULATIONS FOR THE FOCAL 

WAVEFORM OF A PROLATE-SPHEROIDAL IRA .............................................. 26 

4.1 Introduction........................................................................................................... 26 



 

 x

4.2 Description of Geometry....................................................................................... 27 

4.3 The Actual Analytical Focal Waveform............................................................... 32 

 4.3.1 Calculating  )/tan( c 2θ .......................................................................... 32 

 4.3.2 Prepulse Term 2pE After the Impulse...................................................... 33 

 4.3.3 The Graphical Illustration of the Actual Analytical Focal Waveform ..... 38 

4.4 Electric Field Variation Near Second Focus......................................................... 40 

 4.4.1 Introduction............................................................................................... 40 

4.4.2 Exact Solution of  the Impulse Term for 0zz <  up to Aperture       

Truncation ................................................................................................. 41 

      4.4.3 Approximate Solution for 0zz <  by Aperture Integration for Early Time 

with z  Near 0z ........................................................................................ 45 

      4.4.4 Approximate Solution  for 0zz > by Aperture Integration for Early time 

with z Near 0z ........................................................................................... 48 

       4.4.5 Graphical Illustration ................................................................................ 52 

4.5 Analytical Focal Waveforms for Various Source Waveforms Driving a ............. 53 

 Prolate- Spheroidal IRA........................................................................................ 53 

 4.5.1 Double Exponential Excitation (DEE)...................................................... 53 

 4.5.2 Analytical Focal Waveforms .................................................................... 55 

 4.5.3 Conclusion for Ramp-Rising Excitation and DEE ................................... 59 

4.6 Analytical Errors................................................................................................... 60 

5 NUMERICAL SIMULATIONS................................................................................. 61 

5.1   Introduction......................................................................................................... 61 



 

 xi

5.2  Comparison of Analytical and Numerical Focal Waveforms for a Prolate-       

Spheroidal IRA ..................................................................................................... 62 

5.3  Numerical Focal Waveforms for Various Source Waveforms Driving a Prolate-

Spheroidal IRA ..................................................................................................... 67 

 5.3.1 Numerical Focal Waveform with Smoother Rise for Excitation.............. 67 

5.3.2 Numerical Focal Waveforms for Double-Exponential Excitation    

Waveforms Driving a Prolate-Spheroidal IRA......................................... 69 

5.4  Numerical Calculation for the Waveforms Near the Second Focus of a ............. 72 

      Prolate-Spheroidal IRA......................................................................................... 72 

 5.4.1 Numerical Waveforms for Two-Feed Arms ............................................. 73 

5.5  Replacing Prolate-Spheroidal Reflector by Equivalent Source ........................... 78 

 5.5.1 Introduction............................................................................................... 78 

 5.5.2 Design Considerations .............................................................................. 79 

6 EXPERIMENTS......................................................................................................... 81 

6.1 Introduction........................................................................................................... 81 

6.2 Experiments .......................................................................................................... 81 

 6.2.1  Experimental Setups and Data Analysis Technique ................................. 82 

 6.2.2 Experimental Results Normalized to 1 Volt Differential Input ................ 88 

 6.2.3 Conclusion ................................................................................................ 94 

7 LENS DESIGN FOR A PROLATE-SPHEROIDAL IRA ....................................... 109 

7.1 Introduction......................................................................................................... 109 

7.2 Calculating the Optimum Number of Layers for a Lens .................................... 112 

7.3 Three Different Types of Graded Lens Design for a Prolate-Spheroidal IRA ... 115 



 

 xii

      7.3.1 Exponential Variation of rε ................................................................... 116 

      7.3.2    Compensated Incremental Speed (CIS) form of rε ............................... 117 

 7.3.3 Linear form of rε ................................................................................... 120 

 7.3.4 Conclusion .............................................................................................. 121 

7.4 Spatially Limited Exponential Lens Design for Better Concentrating an       

Impulse................................................................................................................ 123 

 7.4.1  Equivalent Transmission-Line Model (One Dimensional) of Lens....... 125 

 7.4.2. Solution of the Transmission-Line Equations......................................... 127 

 7.4.3 Example .................................................................................................. 129 

 7.4.4 Conclusion .............................................................................................. 130 

7.5  Lens Design for Incoming Spherical Wave ....................................................... 133 

 7.5.1 Design Considerations ............................................................................ 133 

      7.5.2 Concluding Remarks for the Lens Design for Incoming Spherical       

Wave ....................................................................................................... 139 

      7.5.3 Lens Design for Incoming Spherical Wave for Different Biological     

Dielectric Tissues.................................................................................... 142 

8 CONCLUSIONS....................................................................................................... 145 

APPENDIX..................................................................................................................... 148 

A ANALYTICAL CALCULATIONS FOR THE FOCAL WAVEFORM OF A 

PROLATE-SPHEROIDAL IRA .............................................................................. 148 

A.1  Introduction...................................................................................................... 148 

A.2    Description of Geometry.................................................................................. 149 

A.3    Matching Spherical TEM Waves..................................................................... 151 



 

 xiii

A.4  Prepulse............................................................................................................ 154 

A.5  Fields at Second Focus..................................................................................... 155 

A.6  Spot Size Analysis ........................................................................................... 158 

References....................................................................................................................... 160 

 



 

 xiv

LIST OF FIGURES 

Figure 1.1:   The 12-foot diameter reflector IRA built by D.V. Giri [6]. ........................... 2 
Figure 2.1:   a) Paraboloidal reflector IRA b)idealized IRA waveform [6]........................ 6 
Figure 2.2:   3-D view of the stereographic projection can be used to decrease the 

dimensionality of the problem [6].................................................................. 9 
Figure 2.3:  2-D a) the stereographic projection; b)reverse stereographic projection [6]. 10 
Figure 3.1:   IRA and cylindrical geometry representation in which the IRA fits to get the 

maximum performance. ............................................................................... 12 
Figure 3.2:   The normalized geometric parameters of prolate-spheroidal IRA for 

different l/0Ψ  a) l/a  with respect to l/z p b) l/b                               

with respect  to l/z p .................................................................................. 15 
Figure 3.3:   The normalized geometric parameters of prolate-spheroidal IRA for 

different l/0Ψ  a) l/z0  with respect to l/z p  b) l/pΨ                       

with respect to l/z p ................................................................................... 16 
Figure 3.4:   Normalized electromagnetic parameters of prolate-spheroidal IRA for 

different l/0Ψ   a) δe  with respect to l/z p  b) pae                                  

with respect to l/z p ................................................................................... 17 
Figure 3.5:   Normalized electromagnetic parameters of prolate-spheroidal IRA for 

different l/0Ψ   a) se  with respect to l/z p  b) pe  with respect to l/z p . 18 
Figure 3.6:   Normalized electromagnetic parameters of prolate-spheroidal IRA; 

paeandeδ  with respect to l/z p  for different l/0Ψ . ....................... 19 
Figure 3.7:   Normalized electromagnetic parameters of prolate-spheroidal IRA 

ps eande  with respect to l/z p  for different l/0Ψ . ......................... 20 
Figure 3.8:   Feed-point lens geometry which can be used to increase the field. ............. 22 
Figure 3.9:   Geometrical dimensions for the example case given in (3.14). ................... 24 
Figure 4.1:   Schematic diagram of a prolate-spheroidal IRA with special geometric 

parameters defined in (4.1). ......................................................................... 27 
Figure 4.2:   Prolate-spheroidal IRA feed arm geometry for four-arm case..................... 29 
Figure 4.3:  Analytic focal waveform at the second focus for a two-arm ........................ 39 
 prolate-spheroidal IRA................................................................................. 39 
Figure 4.4:   Analytic focal waveforms at the second focus a) o45  b) o60  four feed-arm 

prolate-spheroidal IRA................................................................................. 39 
Figure 4.5:   Graphical illustration of z values for 0zz <  used to calculate the retarded 

time for the field from pΨΨ = ................................................................... 41 

Figure 4.6:   Graphical illustration of z values for 0zz <  used to calculate the retarded 
time for the field from eΨΨ = .................................................................... 45 

Figure 4.7:   Graphical illustration of z values for 0zz >  used to calculate the retarded 
time for the field from eΨΨ = .................................................................... 48 



 

 xv

Figure 4.8:   Normalized pulse shape for various
l

0zz −
to demonstrate the compression 

and expansion of the pulse........................................................................... 52 
Figure 4.9:   Double exponential excitation for maxf/)t(f  for different βα and . ....... 54 
Figure 4.10: Ramp rising step excitation u(t). .................................................................. 55 
Figure 4.11: Analytical focal waveforms for ramp rising step excitation a) two-arm Ω400  

b) o45  four-arm Ω200  c) o60  four-arm Ω200 . .......................................... 55 
Figure 4.12: Step response of a prolate-spheroidal IRA at the second focal point........... 56 
Figure 4.13: Decomposition of step response of Figure 4.12 a)prepulse,  b)impulse, 

c)postpulse. .................................................................................................. 56 
Figure 4.14: Decomposition of  DEE response a)prepulse,  b)impulse, c)postpulse........ 57 
Figure 4.15: Double exponential excitation  responses for different βα and . ................ 58 
Figure 5.1:    Focal waveforms for the two-arm case: a)analytical and numerical, 

b)expanding the impulse. ............................................................................. 63 
Figure 5.2:   Focal waveforms for o45 four-arm case: a)analytical and numerical,            

b) expanding the impulse. ............................................................................ 64 
Figure 5.3:   Focal waveforms for o60 four-arm case: a)analytical and numerical,            

b) expanding the impulse. ............................................................................ 65 
Figure 5.4:   Ramp-rising (normal) and smoother excitation functions............................ 67 
Figure 5.5:  Analytical and numerical waveform for a)smoother,b)ramp step excitation.68 
Figure 5.6:   DEE analytical responses for 100=δt  ps,  nstd 1= a) two arm b) o45  four 

arm c) o60  four arm. ................................................................................... 70 
Figure 5.7:   DEE numerical responses for 100=δt ps, nstd 1= a) two arm.................. 71 

 b) o45  four arms c) o60  four arms. ............................................................. 71 
Figure 5.8:   Numerical waveforms for various x-axis variations. ................................... 74 
Figure 5.9:   Numerical waveforms for various y-axis variations for 2-TEM-feed-arms. 75 
Figure 5.10: Depiction of electric field vectors for different rays. ................................... 76 
Figure 5.11:  Numerical waveforms for o45 four-TEM-feed-arm for various x-axis 

variation. ...................................................................................................... 77 
Figure 5.12: IRA and equivalent geometry....................................................................... 79 
Figure 5.13:  Coordinates used in Figure 5.12.................................................................. 80 
Figure 6.1:   Analytical focal waveforms a) two-arms b) o60 four-arms. ........................ 81 
Figure 6.2:   Experimental setup for a two-feed arm prolate-spheroidal IRA. ................. 82 

Figure 6.3:   Experimental setup for a o60 four-feed arm prolate-spheroidal IRA. ......... 83 
Figure 6.4:   Sampling-oscilloscope and pulse generator. ................................................ 84 

Figure 6.5:   Two-feed arms and o60 four-feed arms dimensions and angles.................. 84 
Figure 6.6:   o60  four-feed arms used in one of the IRAs. .............................................. 85 
Figure 6.7:   Fast D-Dot, slow D-Dot and B-Dot probes (from left to right) used for 

measurements............................................................................................... 86 



 

 xvi

Figure 6.8:   B-Dot probe focal waveforms, eqE , a) two-arms  and                              

b) o60  four-feed arms................................................................................... 89 
Figure 6.9:   Slow D-Dot probe focal waveforms a) two-arms and                              

b) o60  four-feed arms................................................................................... 90 
Figure 6.10: Fast D-Dot probe focal waveforms and a) two b) o60  four-feed arms. ....... 91 
Figure 6.11: Focal waveform from the B-Dot and normalized focal waveform from the 

fast D-Dot measured of the two-arm IRA.................................................... 92 
Figure 6.12: Reflection coefficient ( Γ ) measurements : The B-Dot probe directly 

connected to the oscilloscope....................................................................... 93 
Figure 6.13: The focal waveform data: a) the normalized data from the pulser, b) with 2 

nano-second, c) with 3 nano-second long cable. ......................................... 97 
Figure 6.14: The derivative of the normalized prepulse term and the focal waveform.... 98 
Figure 6.15: Reflection coefficient ( Γ ) measurements of the reflector with feed arms for 

impulse impedance calculation. ................................................................. 100 
Figure 6.16: Reflection coefficient (Γ ) measurement a) with feed arms,                          

b) open circuit. ........................................................................................... 101 
Figure 6.17: Normalized derivative of Γ and focal waveform a) with feed arms .......... 102 
 b) open circuit. ........................................................................................... 102 
Figure 6.18: o60  four-feed arms a) with a piece of metal on the foam, b) with a piece of 

metal under the foam. ................................................................................ 104 
Figure 6.19: Focal waveforms from B-Dot probe for o60  four-feed arms: F (focal 

waveform), F1 (focal waveform with a piece of metal on the foam), F2 
(focal waveform with a piece of metal under the foam). ........................... 105 

Figure 6.20: Focal waveforms from the slow D-Dot probe for o60  four-feed arms: F 
(focal waveform), F1 (focal waveform with a piece of metal on the foam) , 
F2 (focal waveform with a piece of metal under the foam)....................... 107 

Figure 6.21: Analytical (slow D-Dot probe), numerical and experimental focal 
waveforms of a two-arm prolate-spheroidal IRA for tmr =119ps. ............ 108 

Figure 7.1:    N layers of lens, dielectric constants and transmission coefficients. ........ 112 
Figure 7.2:    Addition of lens with prolate-spheroidal IRA geometry........................... 115 
Figure 7.3:    maxlens r/ct  for linear, exponential and CIS forms of rε ......................... 122 
Figure 7.4:   rε Values for linear, exponential and CIS forms of rε for different maxrε  

with respect to maxr/r .............................................................................. 122 
Figure 7.5:   Lens geometry and  incoming spherical wave. .......................................... 124 
Figure 7.6:   Equivalent plane wave geometry. .............................................................. 124 
Figure 7.7:   )(r ζε  values for different dielectric tissues. ............................................. 131 
Figure 7.8:   )z(rε  values for different dielectric tissues. .............................................. 131 
Figure 7.9:   Compression of the coordinates for 81 andns1t maxrd =ε= ................. 132 
Figure 7.10:   Lens for incoming spherical wave [26]. ................................................... 134 
Figure 7.11:   IRA and lens geometry............................................................................. 137 
Figure 7.12:   max2max1 andθθ values. ........................................................................ 138 



 

 xvii

Figure 7.13: h/zvsh/ 'Ψ for 2/10max1 π=θ . ........................................................... 140 

Figure 7.14: h/zandh/ 'Ψ  for o
max 85101 =θ . ........................................................ 141 

Figure 7.15: h/zvsh/ 'Ψ for o
max 90101 =θ and different maxrε . ............................. 143 

Figure 7.16: h/zvsh/ 'Ψ for o
max 85101 =θ and different maxrε . ............................ 144 

Figure A.1:   Schematic diagram of IRA [3]. ................................................................. 149 
Figure A.2:   Spot size of focal waveform [3]. ............................................................... 158 



 

 xviii

LIST OF TABLES 

Table 4.1: Upper feed arm’s corner locations for two feed-arm case (cm). ..................... 29 
Table 4.2: Upper feed arms’ corner locations for o60 four-TEM-feed-arm (cm). ........... 30 
Table 4.3: maxf  and maxt values for different βα and ................................................... 54 
Table 4.4: The prepulse, δpE , values for different βα and . ........................................... 59 
Table 6.1: Maximum values of the Eeq variation along the y and z -axis from the B-Dot 

sensor. ............................................................................................................. 94 
Table 6.2: Analytical, experimental results, oscillation amplitude, mrt and difference in 

experimental results compared to analytical results. ...................................... 95 
Table 6.3: Maximum values of  F, F1 and F2................................................................. 105 
Table 6.4: Maximum values of  F, F1 and F2................................................................. 107 
Table 7.1: Transmission coefficients for different N and maxrε . .................................. 114 
Table 7.2:. Design parameter values for different biological tissues[24,25]. ................. 130 

Table 7.3: maxmaxnnn ,,h/z,h/z,h/h ''
21 and θθΔ  values for 2101 /max πθ = . ... 140 

Table 7.4: maxmaxn
'

nn ,,h/z,h/z,h/h '
21 and θθΔ  values for o

max 85101 =θ ...... 141 

Table 7.5: maxrratio and εε values for different human tissues [24,25]. ........................ 142 
 
 



 

 1

1 INTRODUCTION 

The Impulse Radiating Antenna (IRA) is a special kind of focused aperture 

antenna suited for radiating very fast pulses in a narrow beam. A fast-rising step-like 

signal into the antenna gives an approximate delta-function response. IRAs are composed 

of two main parts, a conical TEM transmission line and a focusing optic which is usually 

either a reflector or a lens. There are two types of IRAs according to the focusing optics 

used. Reflector IRAs use a paraboloidal reflector and lens IRAs use lenses for focusing 

the fields in the aperture.  

For large antenna apertures fed by a single source (pulser) an efficient design uses 

a conical transmission line which feeds a paraboloidal reflector. An alternate design has a 

conical transmission line (TEM horn) feeding a lens with a special resistive termination 

in the rear of the antenna; for large antennas the lens can be quite massive, but for small 

antennas this type of design is quite practical. A third approach is a transient array 

involving many sources feeding an aperture. 

In this dissertation we design a reflector IRA in which a prolate spheroid is used 

as a reflector for a biological application [1,2]. We feed our prolate-spheroidal IRA from 

the first focal point and concentrate the impulse at the second focal point [3,4]. 

IRAs have application as high-power pulse radiators, transient radars, and 

antennas capable of operating across many frequencies simultaneously. Several studies 

have been performed to improve the performance of IRAs. The basic development and 

research on IRAs has been carried out at the Air Force Research Laboratory (AFRL) at 

Kirtland Air Force Base. At first IRAs were designed for military applications. Now, they 

are finding applications in the civilian sector.  
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1.1 History of IRA  

The wideband properties of the 2-N port Electron Scanning Radar (ESR) was 

observed at Lincoln Laboratory in the early 1960’s, thus giving birth to Ultra-Wide-Band 

(UWB) technology. Several new theories have been proposed for UWB transmitters and 

receivers. UWB theory was improved to be used in communications, radar applications 

and coding schemes. In the early 1980’s, UWB technology was used in ground 

penetrating radars, which was an initial step for other subsurface antennas. Finally, UWB 

technology has been implemented in military and civilian applications and a new antenna 

called the IRA was proposed by Baum [5]. The first IRA was built by Giri [6] and is 

presented in Figure 1.1. 

 
 

Figure 1.1: The 12-foot diameter reflector IRA built by Giri [6]. 
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1.2 Motivation for IRAs and Applications 

The basic motivation for developing IRA systems is to radiate large amplitude, 

large-band-ratio, undispersed pulses. In the remote-sensing arena such antennas are 

appropriate for transient radars, including for buried target recognition. Some 

consideration has also been given to their possible use in ionospheric research. The UWB 

technology can also be used in communication systems. The necessity of wider frequency 

bandwidth increases rapidly, so for high-quality data transfer and fast communication, the 

importance of UWB technology in communication systems increases. 

Fast high-amplitude electric-field pulses can be used to kill skin cancer. This has 

been demonstrated by the insertion of electrodes near the tumor, with direct contact from 

a high-voltage pulse generator. Our motivation in this dissertation is to apply fast, high-

electric-field pulses without direct contact for killing skin cancer, i.e., to irradiate them 

using a prolate-spheroidal IRA. This technique is much more convenient than inserting 

electrodes near the tumor [1]. 

 

1.3 Overview 

In this dissertation, a new manifestation of an IRA, in which we use a prolate 

spheroid as a reflector instead of a paraboloid reflector and focus in the near-field region 

instead of the far-field region, was investigated. The focal waveform of the prolate-

spheroidal IRA has been compared analytically, numerically and experimentally. 

In Chapters 2-4, we present the theoretical background of IRAs that should be 

considered in the design and analysis of IRAs with their TEM feed sections. We use  

CST Microwave Studio to simulate our prolate-spheroidal IRA, and the numerical results 
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are presented in Chapter 5. Chapter 6 is devoted to experiments which we performed at 

the University of New Mexico (UNM) Transient Antenna Laboratory in order to compare 

our experimental results with our analytical and numerical results. In Chapter 7, different 

lens design strategies are discussed for improved concentration of energy at the focal 

point. Finally, a brief summary of what has been explained in this dissertation and what 

should be done in future work is discussed. 
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2 BASICS OF IRAs  

 

2.1 Introduction 

In this chapter the IRA structure and components are discussed and the 

stereographic projection of aperture fields for TEM conical transmission lines is 

presented. Then, we illustrate the IRA waveform and the constituents of this waveform. 

The most important problem for broadband systems is creating a non-dispersive antenna 

so that the shape of the pulse is preserved. IRAs are an appropriate choice to accomplish 

this. 

The theory of transformation from spherical wave to plane wave will be covered 

in the following sections. In order to obtain a planar phase front, the length of the antenna 

should be sufficiently large compared to the dimension of the aperture. This requires 

larger horns which are impractical to use. The idea of focusing the waves using a prolate 

spheroid is introduced, which provides a planar phase front without requiring large horn 

antennas. 

 

2.2 Components and Waveform from a Reflector IRA 

 The reflector IRA is ideally composed of a conical-nondispersive TEM feed and a 

paraboloidal reflector which is a prolate spheroid in our case. IRAs can be better 

characterized as dispersionless, high band-ratio antennas. An IRA with a reflector and the 

idealized IRA waveform are depicted in Figure 2.1, where F is the focal length, D is the 

diameter of the reflector and c is the speed of light. The number of feed arms of reflector 
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IRAs are typically either two or four. Arms above the symmetry plane are at voltage 

20 /V+  and arms below the symmetry plane are at voltage 20 /V− . 

 

Figure 2.1: a) Paraboloidal reflector IRA; b)idealized IRA waveform [6]. 

 

The idealized IRA waveform on boresight has three main parts as depicted in 

Figure 2.1 b). The first of these is the prepulse, the direct radiation from the feed, which 

has a low magnitude and lasts a long duration (2F/c). When the apex of the TEM feed is 

first excited by the step-like function, the input wave travels a distance F towards the 

reflector and then another distance F backwards from the reflector, totaling a distance 2F 

in time t at the speed of light c in free space. Then we have an impulse which lasts for a 

short time and has a large amplitude. Finally, we have a postpulse expected after the 

impulse. Since radiating an impulse is the purpose of an IRA, we concentrate on the 

impulse part of the waveform. However, we also want to understand the behavior of the 
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prepulse, since the areas under the prepulse and impulse are comparable. Under the 

assumption that the area under the postpulse curve is zero, the area of the prepulse and 

the area of the approximate delta function should be equal in order to satisfy the 

requirement that the total area under the step-response curve with the time axis should be 

zero because a finite antenna cannot radiate DC power.  

The prepulse and impulse will dominate the early-time behavior of the IRAs, and 

the postpulse will inform us about the late-time behavior of the IRAs. Because of 

diffraction effects and the fields outside the aperture, the behavior of the postpulse will 

change according to the specifics of the design. Therefore, the behavior of the postpulse 

is as important as the behavior of the prepulse portion of the radiation, especially to find 

the exact matching circuits between the TEM feeds and the reflector.  

We transform spherical geometry into cylindrical geometry to simplify the feed 

calculations and magnitude of the prepulse a calculation that is termed a stereographic 

projection in the literature [2,7]. Then the 2-D problem will be solved using conformal 

mapping. 

 

2.3 Stereographic Projection 

We can write Laplace’s equation 02 =∇ V , in 3D spherical coordinates as  

 

0111
2
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θ
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. (2.1) 

 
Letting V be independent of r we have [7] 
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02

2
=+⎥

⎦

⎤
⎢
⎣

⎡
),(V

d
d),(V

d
dsin

d
dsin φθ

φ
φθ

θ
θ

θ
θ . (2.2) 

 
We can decrease the dimensionality of the problem and simplify the calculations 

from 3-D to 2-D using a stereographic projection. The process of stereographic projection 

is basically representing every point on a spherical surface on an infinite plane while 

preserving angles. A tangent plane is taken at one end of the diameter of the sphere. 

Inhomogeneous TEM waves in a uniform, isotropic medium are exactly transformed by 

stereographic projection into a second set of such waves in the case of paraboloidal and 

hyperboloidal scatterers, provided the incident wave is centered on an appropriate focal 

point (including infinity) of these quadric surfaces [8,9]. In our case, we consider the 

prolate spheroid, which is a special case of an ellipsoid, as another quadric surface. One 

spherical or planar TEM wave can be transformed into another with an exact matching of 

the boundary conditions on the reflector. This gives exact solutions of the Maxwell 

equations, valid up until some time related to a signal arriving at the observer from some 

truncation of the reflector or the presence of the feed arms.  

 The stereographic transformation takes the form as 

 

)x/yarctan(,
r

yx
arctan =

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡ +
= φθ

2
2

22
. (2.3) 

 
(2.3) is the inverse of 

 
φθφθ sin)/tan(ry,cos)/tan(rx 2222 == . (2.4) 
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We can simplify our problem by substituting (2.3) in (2.2) to obtain the 2-D 

Laplace’s equation as 

 

0
2

2

2

2
=+ )y,x(V

dy

d)y,x(V
dx

d . (2.5) 

 
Equation (2.5) is just the 2-D Laplace’s equation in cylindrical coordinates. One 

can convert 3-D conical symmetry (conical plates) to longitudinal symmetry by 

stereographic projection. The 3-D geometrical demonstration of the stereographic 

projection is shown in Figure 2.2. 

 
 

Figure 2.2: 3-D view of the stereographic projection can be used to decrease the 
dimensionality of the problem [6]. 
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We have a little difficulty when one wants to know the fields at πθ = . At that 

angle )/tan( 2π  approaches infinity and the transformation cannot be used for 

simplification. If we rotate the structure 180° about the y axis, then the angle that was 

formerly πθ =  becomes 0=θ . By carrying out the same transformation on the rotated 

structure, we can simply eliminate the singularity. A diagram of this is shown in Figure 

2.2. In looking at the diagram, it is obvious that the field in the backward direction is 

much smaller than it is in the forward direction since the conductors in the projected 

plane are much further apart. 

The procedure where we include the 180° rotation is called a reverse 

stereographic transformation. The net effect of the reverse stereographic transformation is 

to replace θ  with πθ − . Thus, after one has found the projection for the forward 

direction, it is straightforward to replace θ  with πθ −  to obtain the reverse 

transformation. This is illustrated in Figure 2.3. 
 

 

Figure 2.3: 2-D a) the stereographic projection; b)reverse stereographic projection [6]. 
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3 PARAMETER STUDY FOR A PROLATE-SPHEROIDAL IRA  

3.1 Introduction 

This chapter presents the results from a parametric study of the focal waveform 

produced at the second focus of a prolate-spheroidal reflector due to a TEM wave 

launched from the first focus (Appendix A). We find the optimal dimensions and the z-

coordinate of the truncation plane pz  for the reflector. 

In order to find an optimal design we need to compare various designs on a 

common basis. For this purpose, we define a volume, based on a geometric shape that 

fills in some sense, to get the maximum performance. Consider a circular cylinder as in 

Figure 3.1 which has a length l  and radius of 0Ψ , where 

 

[ ] 2122
0

/
baaza −+=+=l . (3.1) 

 
This is the distance from the back of the reflector (z = -a) to the target ( 0zz = ). 

This still leaves the radius 0Ψ  which we treat via the parameter l/0Ψ . All distances are 

normalized to l . The other parameters, a and b, are defined in Figure 3.1. Note that  

 
for b,z p =≥ 00 Ψ , (3.2) 

for pp ,z ΨΨ =≤ 00 . 
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Figure 3.1: IRA and cylindrical geometry representation in which the IRA fits to get the 
maximum performance. 
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3.2 Normalized Parameters 

All the geometrical parameters are normalized to l  as 

 

llllll

pp z
,,,

z
,b,a ΨΨ00 . (3.3) 

 
Normalized electromagnetic scaled parameters are: 

 

0V
cf

Ee gπ
δδ =  impulse, (3.4) 

0

2
V

f
Ee g

pp
lπ

=  prepulse (step, negative), (3.5) 

0

2
V

cf
tEe g
pppa

π
Δ=  prepulse integral (area), and (3.6) 

0

2
V

f
Ee g

ss
lπ

=  postpulse step. (3.7) 

 
One can see that the impulse peak is the ratio of 

 
δδ t/EEi = , (3.8) 

 
where δt  is the “impulse width” or “rise time” of the source.  
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δE  and sE  are the impulse and step terms from the reflection in the prolate 

sphere and pE  is the magnitude of the prepulse, pz  is the z-coordinate of the truncation 

plane, a and b are the two radii for the prolate spheroid, 0z is the focal distance, 

[ ] c/zat p 02 −=Δ  is the length of the prepulse and 0Z/Zf cg =  is the transmission 

line parameter. These parameters are discussed in detail in Appendix A. We can find the 

ratio of impulse to prepulse as (should be large) 

 

e
e

ctt
E

E
s

p δδ

δ l21
= . (3.9) 

 
 The normalized geometric parameters  llll /,/z,/b,/a pΨ0  with respect to 

l/z p  are presented in Figure 3.2 and 3.3. 

 The normalized electromagnetic parameters are presented in Figures 3.4-3.7. We 

want to obtain the largest impulse amplitude and the smallest prepulse and postpulse 

amplitudes. The l/0Ψ  term determines the “fatness” of the reflector and l/z p term 

determines the truncation plane for the reflector. At the focal point δe  is the dominant 

term and it is a constructive term for the impulse; however, pe is a destructive term for 

the impulse. se is a constructive term for both the impulse and postpulse. Thus, we have 

a tradeoff among these terms, but our basic concern is the δe  term. We should also 

consider the geometrical construction problem. 
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3.2.1 Normalized Geometric Parameters  llll /,/z,/b,/a pΨ0  

 
 
 

Figure 3.2: The normalized geometric parameters of prolate-spheroidal IRA for different 
l/0Ψ ; a) l/a  with respect to l/z p ;  b) l/b  with respect to l/z p . 

 
a) 

 
                                                                    b) 
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Figure 3.3: The normalized geometric parameters of prolate-spheroidal IRA for different 
l/0Ψ ; a) l/z0  with respect to l/z p ;  b) l/pΨ  with respect to l/z p . 

 

 

 
a) 

 
b)
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3.2.2 Normalized Electromagnetic Parameters 

 

 

Figure 3.4: Normalized electromagnetic parameters of prolate-spheroidal IRA for 
different l/0Ψ ;  a) δe  with respect to l/z p ;  b) pae  with respect to l/z p . 

 
a) 

 
b) 
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Figure 3.5: Normalized electromagnetic parameters of prolate-spheroidal IRA for 
different l/0Ψ ;  a) se  with respect to l/z p ;  b) pe  with respect to l/z p . 
 

 
a) 

 
b) 
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Figure 3.6: Normalized electromagnetic parameters of prolate-spheroidal IRA; 
paeandeδ  with respect to l/z p  for different l/0Ψ . 
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Figure 3.7: Normalized electromagnetic parameters of prolate-spheroidal IRA; 
ps eande  with respect to l/z p  for different l/0Ψ . 
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One can see from Figure 3.4 a) that δe  has a maximum value for 900 ./ =lΨ and 

small l/z p  values; for l/z p  values greater then 0.4 all the δe  values approach unity. 

From Figure 3.4 b) we can see that the pae  prepulse integral (area) has the minimum 

value around 250./z p −=l and for larger l/0Ψ  we have larger pae ; it is decreasing 

the impulse amplitude. From Figure 3.5 the behavior of se  and pe can be analyzed; for 

900 ./ =lΨ  both se  and pe have the largest values for smaller l/0Ψ ; se  and 

pe values do not change that much. In Figure 3.7 we compare peandse values we can 

analyze the postpulse characteristics. 

We have different parameters to determine the fatness of the reflector l/0Ψ  and 

the truncation plane z-coordinate l/z p . Our basic concern is the impulse term. We 

have analyzed the electromagnetic parameters and we decide to have 

 

./z

./

p 0
500

=
=

l

lΨ
 (3.10) 

 
For this case (3.10) the reflector can be easily constructed and we can use the symmetry 

of our geometry. 
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3.3 Example Case 

3.3.1 Feed-Point Lens 

We can use the feed-point lens to increase (bump up) the field as illustrated in  

Figure 3.8.  

 

Figure 3.8: Feed-point lens geometry which can be used to increase the field. 
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3.3.2 Spherical Example 

 Let  )air()r()(, srsrs
s

rs 10
0

≥≥= εε
ε
ε

ε . (3.11) 

A typical value of the relative dielectric constant of transformer oil for the feed-point lens 

is oil)er(transform252.rs =ε . 

 For uniform transmission in air we have  

 

21
1

2
21 .T /

rs
=

+
=

−ε
. (3.12) 

 
This requires a graded lens like a transmission-line transformer 

 
221041 .)(T /

rs == ε  (for example not much improvement). (3.13) 

 

3.3.3 Example Case Parameters 

 We use a special case, (3.10) and (3.14), for our reflector: 

 

5
3

5
43750625050 00 =====

a
z

,
a
b,.

z
,.a,.b

lll
. (3.14) 

 
This parameters are illustrated in Figure 3.9. 
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Figure 3.9: Geometrical dimensions for the example case given in (3.14). 

 

 Let us assume we have a source voltage (pulse rising in time δt ) that may be used 

as a source for later experiments: 

 
VV 5

0 10= (2x105 differential). (3.15) 

The other parameters can be assumed as 

 
061100 .f,pst g ==δ . (3.16) 

 
One can find the normalized impulse and prepulse terms from Figure 3.4 and 3.5 for  

 
500 ./ =lΨ and 0=l/z p  as 
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4580 .e,.e p ==δ . (3.17) 

 
Thus, for this specific example we have an impulse term at the second focal point as 

 

m/MV.T
ctf
eV

T
t
E

E
g

i 9600 ===
δ

δ

δ

δ
π

. 

 
 The ratio of impulse peak to prepulse amplitude can be found as 

 

l
l 9921 .

e
e

ctt
E

E pp
== δ

δδ

δ . (3.18) 

 
If we use meter1=l as the normalization length, we will have a 9.9 ratio of impulse 

peak to prepulse amplitude. 

This modest study has found some curves useful for estimating the focal 

waveforms and focal spot size for the two-arm prolate-spheroidal IRA. Considering the 

sophisticated design papers which followed the introduction of the IRA concept, there is 

much yet to be done for the prolate-spheroidal version. This is adequate for designing 

experiments to demonstrate and validate the design concept. 
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4 EXTENSION OF ANALYTICAL CALCULATIONS FOR THE 

FOCAL WAVEFORM OF A PROLATE-SPHEROIDAL IRA 

4.1 Introduction 

This chapter presents the development of the field waveform at the second focus 

of a prolate-spheroidal reflector and it is an extension of Appendix A [3]. We explore the 

analytic behavior of the waveforms near the second focal region. With appropriate choice 

of the driving waveform we can maximize the impulse field at the second focus. IRAs 

have been developed for the transient far-field region [6] and are recognized as a 

significant advance in antenna technology [10]. Related experimental and numerical 

aspects of this problem can be found in [11,12]. In this chapter we focus mainly on the 

near fields that can be used in some biological applications [1]. 

First of all, we calculate the focal waveform analytically. We analyze the behavior 

of the waveform near the second focus and show that the impulse part of the waveform at 

the second focus can be described by a delta-like pulse forming for 0zz <  and in the 

limit as 0zz →  gives the required true delta function. This is a physical example of the 

formation of a delta function. Then, the aperture integral gives the same result (at early 

time) as the exact incident wave before truncation. This gives confidence in the aperture 

integration. We can see that the area of the like−δ  pulse is the same for both before and 

after 0z . We illustrate these results with a graphical example. We continue the analytical 

evaluation of the prepulse term 2pE  after the impulse, when the aperture integral is 

truncated by the aperture edge. From previous and present results, the actual analytical 

waveform is illustrated, including all the terms. These analytical calculations are for a 
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two-arm prolate-spheroidal IRA; however, we can easily extend these calculations to four 

o45 and 
o

60 TEM feed arm cases. 

Finally, the time domain characteristics of some analytic source waveforms used 

for determining the waveform characteristic of a prolate- spheroidal IRA at the second 

focus are discussed. 

 

4.2 Description of Geometry 

Using the prolate-spheroidal IRA given in Appendix A and [3], we choose a 

special case with the following geometric parameters (see Figure 4.1): 

 

m,m.z,m.a,m.b,z p 137562550 00 ====== lΨ , (4.1) 

 

Figure 4.1: Schematic diagram of a prolate-spheroidal IRA with special geometric 
parameters defined in (4.1). 
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where pz  is the z-coordinate of the truncation plane, a and b are the two radii for the 

prolate spheroid,  0z  is the focal distance and l  is the distance that can be used for 

normalization. 

For our later example calculations, our design has two TEM feed arms and the 

dimensions of these arms are determined by a Ω400  pulse impedance ( o900 =φ ). This 

design considers the two-arm case, but analytical results can be simply extended to the 

four-arm case [13,14]. 

 The feed-arm parameters have been previously calculated in the stereographic 

projection plane as [15] 

 

..b/)bb(
bbb

2750021

21
2

0
=−

=  (4.2) 

 
210 and bb,b  are the stereographic projections of the feed arms, from which we find the 

angles for the two-feed arms as 
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 (4.3) 

 
210 βββ ,,  are the angles from the z-axis to the electrical center, the first edge and the 

second edge of the feed arms as in Figure 4.2. 
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Figure 4.2: Prolate-spheroidal IRA feed arm geometry for four-arm case. 

 

From equations (4.1)-(4.3) and [15], one can find the locations and dimensions of  

the feed arms. The feed arms are symmetric and the upper feed arm has three corners, 

whose locations are summarized in Table 4.1 

Table 4.1: Upper feed arm’s corner locations for two feed-arm case (cm). 
 

 

 
For our later example calculations, our design has four TEM feed arms and the 

dimensions of these arms are determined by a Ω200  pulse impedance ( oo , 60450 =φ ). 

The feed-arm parameters, 210 b,b,b , have been previously calculated in the 

stereographic projection plane for o600 =φ  [15] as 

 

x y z 
0 0 -37.5
50 0 -8.2 
50 0 8.99
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521002121
2

0 .b/)bb(,bbb =−= , (4.4) 

 
from which we find the angles for the four-feed arms as 

[ ]
[ ] ..)/tan(b/barctan

.)/tan(b/barctan,.)./arctan(.
o

oo

776522

2342221533755

0122

02110

==

==≅=

ββ

βββ
 (4.5) 

 
From (4.4), (4.5) and Table 1 [15], we can find the locations and dimensions of  

the feed arms. The feed arms are symmetric and the upper fed arms have three corners, 

whose locations are summarized in Table 4.2. 

 

Table 4.2: Upper feed arms’ corner locations for o60 four-TEM-feed-arm (cm). 
 

 

In this chapter, we concentrate on three different types of feed-arm geometry 

based on the choice of 0φ , the feed arm angle. The first feed design has two o90  TEM 

feed arms and the dimensions of these arms are determined  by a Ω400  pulse 

impedance. The second and third designs use oo and 6045  TEM feed arms and the 

dimensions of these arms are determined by a Ω200  pulse impedance. The o45 case 

has the same dimensions as the two-arm case, by symmetry. 

Right Left 
x1 y1 z1 x2 y2 z2 
0 0 -37.5 0 0 -37.5 
43.3 25 -15 43.3 -25 -15 
43.3 25 18 43.3 -25 18 
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 Farr introduced the voltage normalized gain as  ga f/hG =ν  [16,17], and this 

can be used to compare with the radiation from two  different antennas that have the same 

input voltage. Here ah  is the aperture height and 0Z/Zf cg =  is the impedance factor 

which relates the transmission-line impedance to the free space impedance. From Table 1 

of [15] we can easily define  

 

..
/

.G

.
/

.G

2211
377200

648

3871
377200

736

2

1

==

==

ν

ν
 (4.6)  

 

1νG and 2νG are the voltage gain for four o60  feed-arm and o45  (times .707 for the two- 

arm, Ω400 , case by symmetry) TEM-feed-arm case. If we divide 1νG  by 2νG , we can 

determine the increase in the field if we use the o60 feed-arm instead of o45  feed-arm. 

Thus, we have  135121 .G/G =νν . We know that we will have a 2  increase in the field 

values  if we have four o45  TEM feed arms instead of two arms, due to symmetry. We 

should have a [ ] 6061221 .G/G =νν  increase in the fields using the o60  TEM-feed-

arm case as compared with the two-arm case. In our design we used o60  feed-arm 

because the voltage gain is nearly maximum [15] and it was easy to construct this 

geometrically. 
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4.3  The Actual Analytical Focal Waveform 

 The analytical focal fields in Appendix A and [3] are 
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4.3.1 Calculating  )/tan( c 2θ  

 We have a simpler form for )/tan( c 2θ than in [3]. cθ  is bounded as πθ ≤≤ c0 . 

By the geometric construction from Figure 4.1 we have 

 
[ ])cos()(sin)/tan( ccc θθθ −= − 12 1 , (4.8) 

[ ][ ] 2122 /
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[ ] [ ][ ] 2122 /
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+++−= Ψθ . (4.10) 

 
We have 
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Let us try to find  [ ][ ] 2122 /
opp zz ++Ψ  in terms of  pz,z,a 0 . 
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[ ][ ] 2121
/

opp z/zb −=Ψ . (4.12) 

 
Substituting (4.12) in (4.11) we have 
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Substituting this in  (4.8) we obtain 
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which is a simpler result compared with the result in [3]. 

 

4.3.2 Prepulse Term 2pE After the Impulse  

What happens to the prepulse term after the impulse, i.e., after the truncation at 

the aperture boundary ( pΨΨ = , or b for special case)? Before the aperture truncation the 

prepulse is given by (4.7). 

Let ptE  = tangential E field (x component ) on aS due to the prepulse wave.  

Then we have [3,18] 
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These are both integrals of the 1−r fields from the first focus on the aperture 

plane. After we see the edge of aS , neglecting diffraction terms from this edge and 

approximating ptE  by the negative of the TEM prepulse wave out to this edge (for a 

positive parameter as in [3]) we have, for step-function excitation, a time-independent 

prepulse field on aS ,   

 
01 =pE  the derivative being zero after the aperture edge is seen (4.16) 
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π

 = constant, i.e. a step term. 

 
 Next we require the static ptE . As before, since we are confining ourselves to the 

z-axis we can use a uniform field on the projection plane to give ptE  in the above 

integral. From (2.11) of  [3] at 01 zr =  (aperture plane center) 
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We need this extended over aS  since, as we have seen before, for the z axis only 

the uniform field terms (on the projection plane) need be considered (by symmetry). 

On the projection plane at az −=  (2.7) in [3] 
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On the projection plane at 00 =Ψ we need the uniform field component (x-directed) 
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Choose a potential (uniform) 
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Map this back onto the
→
1r system 
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Now on aS  we have 
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The tangential part and )cos( 1θ  are 
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The x  component is 
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To solve this integral consider the special case 21pp rr,b,0z ==Ψ= . Then 

from (4.2) and (4.3) of [3] 
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 In the end we obtain  
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The normalized 2pe  is 
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Note that this is actually the negative of the prepulse (to give a positive parameter) by 

convention in [3]. Let us find the ratio of 
p

p

e

e 2
 from (4.5) and (4.26)   
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For our case (4.1) 
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as expected, we have almost an 85% decrease in the prepulse. 

 

4.3.3 The Graphical Illustration of the Actual Analytical Focal Waveform 

 
We take the simple example case in (4.1) to illustrate the analytical waveform. 

The excitation is a 1 Volt ( 50 .V =  Volt) step, rising as a ramp function lasting 100 ps. 

One can calculate the analytical focal fields of a two-arm prolate-spheroidal IRA  from 

(4.7) and (4.25) as 
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We present this graphical illustration in Figure 4.3. We can easily extend this 

result for the four o45  and o60  TEM feed arms by multiplying all the values with 

6061and2 . . We present these results in Figure 4.4. 
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Figure 4.3: Analytic focal waveform at the second focus for a two-arm  
prolate-spheroidal IRA. 
 

 

Figure 4.4: Analytic focal waveforms at the second focus a) o45  b) o60  four feed-arm 
prolate-spheroidal IRA. 
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4.4 Electric Field Variation Near Second Focus 

4.4.1 Introduction 

The electric field variation near the second focus is analyzed and with this 

analysis we prove that the impulse part of the waveform at the second focus can be 

described by a delta-like pulse forming for 0zz <  and in the limit as 0zz →  gives the 

required true delta function. Then, the aperture integral gives the same result (at early 

time) as the exact incident wave before truncation. This gives confidence in the aperture 

integration. We can see that the area of the δ -like pulse is the same for both before and 

after 0z .  
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4.4.2 Exact Solution of the Impulse Term for 0zz <  up to Aperture Truncation of 

Signal 

 First, we will find the exact electric field 3E  for 0zz <  (as in Figure 4.5) for 

times after the pulse arrival when the solution no longer goes to 0. 

 
 

 

Figure 4.5: Graphical illustration of z values for 0zz <  used to calculate the retarded 
time for the field from pΨΨ = . 

 

We can write (3.13) and (3.10) in [3] as  
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which is the tangential electric field on the aperture aS  from the reflection due to the 

prolate sphere.  

 On the z-axis 22 0 φθ ,=  is arbitrary, let us take 02 =φ , giving 
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Substitute )/cot(andE c 20 θ  in 3E  to obtain  
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We can normalize 3E  as  
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This result applies for the time up until the signal from the truncation of the aperture is 

observed. 

For convenience we define a retarded time rt  such that 0=rt  is the time of 

arrival of the direct ray along the z-axis. The field from pΨ , the aperture truncation, then 
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arrives at the observer on the z-axis in a retarded time  
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where 3end2 randr  are illustrated in Figure 4.5. For z near 0z  this is approximately  
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end2r  is the 2r  value where pΨΨ = .  We can find 
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 We notice that 3e is proportional to [ ] 1

0
−− zz  and rct is proportional to [ ]0zz − . 

The product gives the “area” under the pulse as 
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This is like an impulse going to zero width as 0zz → . Let us compare this with (5.1) in 
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[3].  They are exactly the same! This shows that the impulse part of the waveform at the 

second focus can be described by a delta-like pulse forming for 0zz <  and in the limit as 

0zz →  gives the required true delta function.  

We can  find the normalized value of  the “area” in  (4.39) from (4.33) and (4.38) as 
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4.4.3 Approximate Solution for 0zz <  by Aperture Integration for Early Time 

with z  Near 0z  

 

Figure 4.6: Graphical illustration of z values for 0zz <  used to calculate the retarded 
time for the field from eΨΨ = . 

 

An observer at zz
→
1  can see the field from eΨΨ = on the aperture at a later 

retarded time, as illustrated in Figure 4.6  
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For small eΨ  we have 
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If   zz −0  is small we have 
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Thus, we have 
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 We want to take the surface integral  (4.2 in [3]) to find a new form for δE . It 

does not involve a step-function from aS . It is now dispersed such that the integration 

limits can be functions of time, giving 
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Let us take the time derivative of the integral 
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We can find dt/d eΨ  from (4.44)  
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Thus, (4.45) becomes 
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As we can see it is the same as 3E  in (4.32). This shows that the aperture integral gives 

the same result (at early time) as the exact incident wave before truncation. This gives 

confidence in the aperture integration. The reader can note that, since the above gives a 

pulse width greater than zero, one can add a correction term (zero at zero retarded time) 

from sE , also dispersed as δE . 
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4.4.4 Approximate Solution  for 0zz > by Aperture Integration for Early time 

with z Near 0z  

 

 
Figure 4.7: Graphical illustration of z values for 0zz >  used to calculate the retarded 
time for the field from eΨΨ = . 
 

Let eΨ be close to pΨ  as shown in Figure 4.7 for which 
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The fields arrive on aS  at time 
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which sets arct = 0  on the aperture center. Fields arrive at z in the retarded time 
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The first fields at z are from pΨΨ = , in the retarded  time 
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The last fields come along the z axis in 
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 Define a new retarded time by subtracting pzz − ; the pulse stops at zero but 
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From an arbitrary point on aS  
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 We can take the derivative of  this retarded time, giving  
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δE  can be found as, 
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δE  can be normalized as, 
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We need to expand 23 rr −  for small  0zz − , yielding 
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as pe ΨΨ →  and 
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The normalized field is 
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This is the same as (4.34). The asymptotic form of beginrct  for small  0zz −  is 
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The integral (or area) of the pulse is  
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One can see by comparing (4.67) and  (4.38), the area of δE is the same for both z  

before and after 0z . 
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4.4.5 Graphical Illustration 

In order to illustrate what our results show, let us plot the normalized pulse 

shape for various 0zz − as one goes from negative values through the second focal point 

to positive values. For negative values the pulse follows after zero retarded time. For 

positive values the pulse precedes the zero retarded time. For our example we take the 

simple case from (4.1), which is related to a 3,4,5 right triangle.  

One can see from Figure 4.8 the compression of the pulse as 0zz →  and the 

expansion of the pulse for 0zz > as z increases away from 0z . 

 

Figure 4.8: Normalized pulse shape for various
l

0zz −
to demonstrate the compression 

and expansion of the pulse. 
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4.5 Analytical Focal Waveforms for Various Source Waveforms Driving a  

 Prolate- Spheroidal IRA 

 

This section considers the time domain characteristics of some analytic source 

waveforms used for determining the waveform characteristic of a prolate-spheroidal IRA 

at the second focus. This is an analytical calculation of a prolate-spheroidal IRA  that is 

based on [3,5,17,19]. The analytical waveforms for 2-TEM-feed-arm, o45 4-TEM-feed-

arm and o60 4-TEM-feed-arm cases at the second focus are calculated. We analyze the 

analytical focal waveform behavior for two different source waveforms. 

 

4.5.1 Double Exponential Excitation (DEE) 

Let us use the commonly used waveform which is the difference between two 

exponentials times a unit step function instead of a unit step function. Our excitation is 
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where δt  is the rise and dt  is the decay time constant.  The peak of the waveform  is 

given by (2.14) in [20] as 
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where maxt  is the time when the maximum occurs and can be found by taking the 

derivative of (4.68)   
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 We present the maxf/)t(f  values for different βα and in Figure 4.9. maxf  and 

the maxt values for different βα and are presented in Table 4.3 

 

Figure 4.9: Double exponential excitation for maxf/)t(f  for different βα and . 

 
Table 4.3: maxf  and maxt values for different βα and . 
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4.5.2 Analytical Focal Waveforms 

The analytical focal waveforms for ramp rising step excitation are from [16]. The 

excitation is a 1 Volt )Volt5.0V( =  step, rising as a ramp function lasting 100 ps. One 

can see the ramp rising step excitation in Figure 4.10 and the focal waveforms for this 

excitation in Figure 4.11. 

 

Figure 4.10: Ramp rising step excitation u(t). 

 

 

Figure 4.11: Analytical focal waveforms for ramp rising step excitation  
a) two-arm Ω400  b) o45  four-arm Ω200  c) o60  four-arm Ω200 . 
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 From a step excitation  u(t) we obtain a focal waveform as in Figure 4.12.  

 

Figure 4.12: Step response of a prolate-spheroidal IRA at the second focal point. 

 

 Considering the decomposition of the focal waveform, the prepulse, impulse and 

postpulse can be presented separately as in Figure 4.13. 

 

 

Figure 4.13: Decomposition of step response of Figure 4.12 a)prepulse,  b)impulse, 
c)postpulse. 
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If we use the double exponential excitation function (4.67) instead of a step 

function, we will have a response  as in Figure 4.14. 

 

 

Figure 4.14: Decomposition of  DEE response a)prepulse,  b)impulse, c)postpulse. 

 

 One can see from Figures 4.13 and 4.14 that if we use a DEE instead of a step 

excitation we have a decrease in the amplitude of the prepulse, an increase in the 

amplitude of the impulse and postpulse goes to zero. 

The impulse part of the double exponential excitation can be defined as 
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and the peak value is )(E βαδ − , where ns.t 242 =  is the time when the impulse arrives 

at the second focus. Finally, we obtain response waveforms from (4.68) in Figure 4.15,  
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where δpE is the value of pE at the time the impulse starts 

 

[ ])tt()tt(
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p
p ee

f
E

E 1212 −−−− −= αβ
δ  (4.72) 

 

where ns.t 521 =  is the time that prepulse arrives at the second focus. The 

calculated δpE values for different βα and  are presented in Table 4.4. o45  four-arm 

Ω200  and o60 four-arm Ω200  case are just 60612 .and  times these waveforms, 

as discussed in Chapter 3.  

 

Figure 4.15: Double exponential excitation  responses for different βα and . 
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Table 4.4: The prepulse, δpE , values for different βα and . 
 

 

 

4.5.3 Conclusion for Ramp-Rising Excitation and DEE 

We obtain higher impulse values for the double exponential excitation because 

the prepulse value δpE is less than the regular pE  value that we have from the step 

excitation at the time that the impulse arrives. One can see in Figure 4.11b) that we have 

a decrease from m/V57.0−  to m/V1.0− , an %82 decrease. If we compare δpE with 

the pE  value for step excitation with Figure 4.11a), we have a decrease from m/V4.0−  

to m/V1.0− , a %75 decrease. If we look at the impulse for step and double 

exponential excitation and compare Figure 4.11a) with Figure 4.15a), one can see that we 

have an increase from m/V2.4 to m/V1.5 , a %22  increase in the peak focal field. The 

postpulse also decays toward zero. This type of waveform is convenient because of its 

simplicity and it may better model the pulser output. 
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4.6  Analytical Errors 

Analytical errors can be classified into two groups. First of all, the analytical 

calculation does not account for feed arm width, and it is a little different from [5]. 

Secondly, when calculating the aperture integrals, we have used the uniform-field part all 

the way to pΨΨ =  but the feed arms intersect partly into aS  for pΨΨ < . The aperture 

integrals are correct up to some radius less than pΨ . Note that the 060  arms are much 

wider than the 045 arms for the same Ω200  impedance. The analytical waveform, while 

simple, is still good, but not perfect. 
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5 NUMERICAL SIMULATIONS 

5.1 Introduction 

This chapter presents computational electromagnetics results to compare with  the 

analytical results for the waveform from a prolate-spheroidal IRA. The numerical results 

for the waveforms near the second focus are discussed for spot size analysis. 

We use CST MICROWAVE STUDIO (CST MWS) for the 3D Electromagnetic 

simulation. CST MWS is based on the finite integration technique (FIT). This numerical 

method provides a universal spatial discretization scheme, applicable to various 

electromagnetic problems ranging from static field calculations to high frequency 

applications in time or frequency domain. CST MWS applications include the expanding 

areas of: Mobile Communication, Wireless Design, Signal Integrity, and EMC. The 

broadly applicable time domain solver and the frequency domain solver simulate on 

hexahedral as well as on tetrahedral grids [21]. 

We are dealing with a computationally difficult problem that causes inaccurate 

results in our numerical simulations. We want greater concentration of energy at the 

second focus; for this reason we plan to use a medium that has a higher relative dielectric 

constant rε  placed nearby the target. This also increases the complexity of our problem; 

however, our experimental results show that the wave propagation medium which has the 

highest rε (in our case it is water with 81=rε  [1]) is dispersive. 

In this chapter we describe simulation results of two-arm Ω400 , o45  four-arm 

Ω200 , and o60 four-arm Ω200  prolate-spheroidal IRAs to obtain the focal 

waveforms. The spot size is analyzed for the two-arm case, along the x-, y- and z-axis. 
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We compare our numerical results with analytical results. For future work, we present an 

equivalent geometry that can be used as an equivalent source to simplify the problem. 

 

5.2 Comparison of Analytical and Numerical Focal Waveforms for a Prolate-

Spheroidal IRA 

This section presents the numerical and analytical results for the focal waveform 

from a prolate-spheroidal IRA. Both numerical and analytical calculations are discussed 

for IRAs with different feed arms. In both cases the comparisons between the numerical 

and analytical results are presented and discussed. 

Analytical focal waveforms for ramp rising step excitation for two-arm Ω400 , 

o45  four-arm Ω200  and o60  four-arm Ω200  were presented in Figure 4.10. We 

want to compare the numerical focal waveforms with analytical focal waveforms for each 

case. One can see the comparison of the focal waveforms and zoom in on the impulse for 

analytical and numerical focal waveforms in Figures 5.1-5.3. 
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Figure 5.1: Focal waveforms for the two-arm case: a)analytical and numerical, 
b)expanding the impulse. 

 
a) 

 

b) 
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Figure 5.2: Focal waveforms for o45 four-arm case: a)analytical and numerical,              
b) expanding the impulse. 
 

 

a) 

 

b) 
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Figure 5.3: Focal waveforms for o60 four-arm case: a)analytical and numerical,              
b)expanding the impulse. 

 
a) 

 
b) 
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The excitation is a 1 Volt )Volt5.0V( =  step, rising as a ramp function lasting 

100 ps. Comparing the analytical results with the numerical results, one can see the 

differences in the postpulse. The prepulse comparison is rather good and the impulse is 

trying to approach the analytical shape and value, but the postpulse has no relation to the 

analytical result. 

For the two-arm and o45  four-arm cases the prepulse of –0.4 V/m and -0.6 V/m 

agree very closely between the analytical and numerical cases. For the o60  four-arm case 

the analytic prepulse is -0.6 while the numerical case is -0.7 (some error). The impulse 

part shows great agreement between analytical and numerical, approaching the analytical 

value from below, likely due to the high-frequencies which are truncated from the 

numerical solutions. 

We have ringing in the postpulse and a detailed discussion on the postpulse 

ringing for the experimental results is presented in Chapter 6. The analytical waveform, 

while simple, is still good, but not perfect. The analytical errors that were discussed in 

section 4.7 may cause this inconsistency. In our analytical calculations we assume we 

have infinitely thin feed arms and reflector, but CST MWS does not allow this. One 

source of this ringing is the feed. In CST MWS a voltage source was used for excitation 

and we have a 0.5 cm distance between the feed arms; however, in our analytical 

calculations we do not account for this. The numerical computations may be inadequate, 

perhaps due to mesh size and frequency limitation.  
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5.3 Numerical Focal Waveforms for Various Source Waveforms Driving a 

Prolate-Spheroidal IRA 

 

5.3.1 Numerical Focal Waveform with Smoother Rise for Excitation 

The discontinuity in the ramp-rising step excitation can cause oscillations in the 

postpulse and a smoother waveform can be used to check this. The smoother waveform 

has the same mrt (based on maximum rate of rise) with the ramp-rising step (normal) 

waveform. For a step like )t(f , the mrt is 

 

maxdt
df
f

t max
mr = . (5.1) 

 

We have the same mrt  but no discontinuities in the slope (derivative) to reduce 

the required high frequencies. We use an arbitrary waveform that is smoother and is 

presented in Figure 5.4 and can be defined as 

( ) 221 /)t/tcos()t(f δ−= . (5.2) 

 

Figure 5.4: Ramp-rising (normal) and smoother excitation functions. 

 



 

 68

 

Figure 5.5: Analytical and numerical waveform for a)smoother, b)ramp step excitation.  

 

 
a) 

 
b) 
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One can see by comparing Figure 5.5 a and b that we still have oscillations in the 

prepulse, but we have smaller late-time oscillation amplitude. 

 

5.3.2 Numerical Focal Waveforms for Double-Exponential Excitation Waveforms 

Driving a Prolate-Spheroidal IRA 

 The detailed analytical calculations for the DEE were discussed in section 4.6. 

This subsection considers the time domain characteristics of the numerical waveform of a 

prolate-spheroidal IRA near the second focus when it is driven by a double-exponential 

excitation. 

 We use double-exponential excitation waveforms to drive our prolate-spheroidal 

IRA where nst,pst d 1100 ==δ , δt  is the rise, and dt  is the decay time. DEE analytical 

responses for ,pst 100=δ  nstd 1=  two arm, o45  four arm and o60  four arm are 

presented in Figure 5.6. 
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Figure 5.6: DEE analytical responses for 100=δt  ps,  nstd 1= a) two arm, b) o45  four 

arm, c) o60  four arm. 
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Figure 5.7: DEE numerical responses for 100=δt ps, nstd 1= a) two arm,  

b) o45  four arms, c) o60  four arms. 
 

 
a) 

 
b) 

 
c) 
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DEE numerical focal waveforms are presented in Figure 5.7. If we compare 

Figures 5.6 and 5.7 we obtain numerical waveforms which are really close to the 

analytical waveforms. However, we have lower prepulse and impulse amplitude, and 

these inconsistencies are based on the limitations of the idealized analytical assumptions 

and numerical errors. 

 

5.4 Numerical Calculation for the Waveforms Near the Second Focus of a  

Prolate-Spheroidal IRA 

This section discusses the numerical results for the waveforms near the second 

focus of a prolate-spheroidal IRA. Both numerical and analytical calculations are for 

IRAs with different feed arms. Variations of the waveforms for x, y and z-axis variations 

near the second focus are found for two-TEM-feed-arm IRAs. 

Given that the impulse has some small pulse  width 100=δt ps, the maximum 

fields will exist in some small region around 0z . We can make a rough estimate of spot 

size [3] as follows. The pulse width is used to define the spot boundary with respect to Ψ  

and z : 

 
psttt z 2002 === δΨ . (5.3) 

 
Therefore, the spot size from (A.23) are 
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5.4.1 Numerical Waveforms for Two-Feed Arms 

0=x  is one of  the symmetry planes of  our design.  One can see from Figure 5.8 

that at cmx 4±=  the waveform begins to disperse as expected from (5.4), 0=y  is also 

one of the symmetry planes of our design. The dispersion starts at cmy 4±= from Figure 

5.9. If we compare the waveform for cmx 4±=  and cmy 4±= , we can see that we have 

a larger amplitude for x- axis variation. This is expected because if we move along the y-

axis we are moving away from the feed arms. But for the x-axis we are getting closer to 

one of the feed arms while we are getting farther away from the other one. 
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Figure 5.8: Numerical waveforms for various x-axis variations. 
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Figure 5.9: Numerical waveforms for various y-axis variations for 2-TEM-feed-arms. 
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 Figure 5.10 presents the electric field vectors for different rays. One can see from 

Figure 5.11 the waveforms are not symmetric with respect to the 0zz =  plane (which is 

not a symmetry plane). We have competing factors. As we move away from aS this gives 

lower fields due to the inverse distance scaling in the integrals. However, the wave from 

aS  is not oriented in the x-direction, but is tilted, this being more evident the closer you 

are to aS . 

 
 

Figure 5.10: Depiction of electric field vectors for different rays. 
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Figure 5.11: Numerical waveforms for o45 four-TEM-feed-arm for various x-axis 
variations. 
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5.5 Replacing the Prolate-Spheroidal Reflector by an Equivalent Source 

 
 In this section, we use an equivalent source on a sphere for separating the target-

focusing-lens problem from that of the prolate-spheroidal reflector in order to simplify 

our problem numerically. Two different electric field variations are imposed on this 

spherical surface. 

 
5.5.1 Introduction 

We have to deal with two different problems to find the focal waveform 

characteristics of our spheroidal IRA’s geometry. First of all our geometry is large 

compared to the wavelength, and we want to use large dielectric constant materials to 

obtain better focusing. For numerical simulation we use shells to implement the increase 

in permittivity. This leads us to simplify the antenna geometry. We use two approaches 

for simplification. We use a spherical array as an equivalent geometry which is presented 

in Figure 5.12. Then we impose two different types of  electric field variation.  

 22 φθθ ,,  angles range from 

 
202020 22 /,/,/ πφπθπθ <<<<<< . (5.5) 

 
One can see that, for fixed 2φ  and constant 2θ , if we let fields vary along 2r toward 0, the 

beam edge is around '
cθ . 
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Figure 5.12: IRA and equivalent geometry. 

 
5.5.2 Design Considerations 

 We impose two different kinds of electric field variation on the aS  surface. These 

imposed electric field variations are based on (3.13) in [3] and (2.2) in [4]. Thus the 

imposed field is 
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This is replaced by the leading term in an expansion around the z-axis, giving the same 

field there. The higher order terms ( 1>)msin(),mcos( φφ ) integrate to zero on (and 

sufficiently near) the z-axis, including the focal point. 
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 Let us write (5.7) in the same coordinate system of (5.6), to obtain (see Figure 5.13) 
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Figure 5.13: Coordinates used in Figure 5.12. 

 
 An equivalent source on a sphere is proposed and two different types of electric 

field variations on this array surface array are imposed. This technique can be used for 

numerical design; however, it is difficult to impose electric field variation on the surface 

of a sphere numerically. 
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6 EXPERIMENTS 

6.1 Introduction 

Experimental setups using two-arm and o60  four-arm prolate-spheroidal IRAs 

are used to obtain better focusing for a prolate-spheroidal IRA and these results are 

compared with analytical results from Appendix A and Chapter 4 for comparison. This 

chapter presents a summary of the experimental setup and the dimensions of these 

experiments are based on [3, 16]. These setups were motivated by a biological 

application [1]. 

 

6.2 Experiments 

We feed our IRA using a V .0V 50 = (peak-peak 1 V) and pst 100=δ , rise time 

ramp-rising step. The analytical focal waveforms are presented in Figure 6.1 for this 

excitation. 

 

 
 

Figure 6.1: Analytical focal waveforms a) two-arms, b) o60 four-arms. 
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We use maximum mrt (based on maximum rate of rise) as δt  to compare our 

experimental results with analytical results.  

 
6.2.1  Experimental Setup and Data Analysis Technique 

 
The experimental setup basically includes three components. These are a prolate-

spheroidal reflector with feed arms, a sampling-oscilloscope, and a pulse generator. They 

are presented in Figures 6.2 and 6.3. 

 
 

Figure 6.2: Experimental setup for a two-feed arm prolate-spheroidal IRA. 
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Figure 6.3: Experimental setup for a o60 four-feed arm prolate-spheroidal IRA. 

 
 

As seen from Figure 6.4, we use a Tektronix TDS 8000B Digital Sampling-

Oscilloscope to measure the waveform at the second focal point. A Picosecond Pulse 

Labs pulser with a PSPL 4050 RPH fast pulser head generator is used for excitation. The 

output of the step generator is a 45-ps rise time, 10 V amplitude. We have also used a 10 

dB attenuator to decrease the voltage level for safety reasons. Two nano-second and three 

nano-second long cables are used to connect the pulser to the feed arms and sensors to the 

sampling oscilloscope. 

 



 

 84

 
Figure 6.4: Sampling-oscilloscope and pulse generator. 

 

The feed arms’ dimensions are calculated in Chapter 4 (Table 4.1 and 4.2) and 

they are presented in Figure 6.5. The feed arms are 0.8 cm thick. 

 
Figure 6.5: Two-feed arms and o60 four-feed arms dimensions and angles. 

 

One can see the o60  four-feed arms IRA in Figure 6.6 and how it is inserted in the 

reflector. We use foam with a relative dielectric constant 0131.r =ε  to maintain the feed 

arms angle at o60 . 
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 Figure 6.6: o60  four-feed arms used in one of the IRAs. 
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Fast D-Dot, slow D-Dot and B-Dot probes are used for field measurements and 

are presented in Figure 6.7. We use the B-Dot probe to obtain the magnetic field and also 

use the prepulse data of the B-Dot probe to calibrate the slow D-Dot probe data. We use 

the data from the B-dot probe which has an equivalent area 21 cmAeq =  and analyze the 

data as follows: 
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Figure 6.7: Fast D-Dot, slow D-Dot and B-Dot probes (from left to right) used for 
measurements. 
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We can find the equivalent electric field as 

'
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This equivalent electric field, eqE , gives the exact result for the prepulse because we 

have a TEM wave and Ωη 3770 ≈=H/E  for free space. We calibrate our D-Dot data 

by comparing the prepulse term. We obtain the data from the D-Dot probe and analyze it 

as follows: 
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 Our pulse generator has a V 10V =0 excitation we feed our IRA with 

,VTV 0=   (6.4) 

where T is the transmission coefficient 

0

2
ZZ

Z
T

L

L
+

= . (6.5) 

The pulse impedances for the two-arm and o60  four-feed arm cases are Ω400  

and Ω200 , respectively. Since we are using a ground plane Ω100Ω200 andZ L = , 

respectively. The transmission coefficients are 1.6 and 1.33. In our analytical calculation 

we use V .0V 50 = and then normalize the data to obtain the electric field as 
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6.2.2 Experimental Results Normalized to 1 Volt Differential Input 

Figures 6.8 and 6.9 shows that the results for the focal waveforms are close to 

each other but for the slow D-Dot sensor we do not have much oscillation in the 

postpulse since it has a slower frequency response. Although we do not have TEM waves 

for impulse, we calculate H/E=η . For the two-arm case η  is 384, for the four-arm 

case η is 408.  However in free space Ωη 3770 = . This proves that we do not have a 

purely TEM wave for the impulse. 
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Figure 6.8: B-Dot probe focal waveforms, eqE  for  a) two-arms, and b) o60  four-feed 
arms. 
 

 
a) 

 
b)
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Figure 6.9: Slow D-Dot probe focal waveforms, for a) two-arms, and b) o60  four-feed 
arms. 

 

   

 
a) 

 
b) 
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 We can see from Figure 6.10 that if we use the fast D-Dot sensor we have this 

oscillation the oscillation may not be due to the different type of sensors we are using. 

 

 
Figure 6.10: Fast D-Dot probe focal waveforms for a) two, b) o60  four-feed arms. 

 
a) 

 
b) 
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Figure 6.11 presents a comparison of the focal waveform from the B-Dot and the 

normalized focal waveform from the fast D-dot. They oscillate at different frequencies. 

The fast D-Dot sensor response is very fast; this can cause differences in the postpulse. 

We do not have that much ringing in the slow D-Dot postpulse. The B-Dot sensor causes 

a 3 GHz ringing.  

 
 

Figure 6.11: Focal waveform from the B-Dot and normalized focal waveform from the 
fast D-Dot measured of the two-arm IRA. 
 

We connect the B-Dot probe directly to the oscilloscope. Figure 6.12 shows the 

measured reflection coefficient and arrows show the ringing that can cause the postpulse 

oscillations.  

 



 

 93

 
 

Figure 6.12: Reflection coefficient ( Γ ) measurements: The B-Dot probe directly 
connected to the oscilloscope. 

 

 There will always be causes for oscillations and aberrations at the levels observed 

in the fast D-dot trace. There are cable and connection non uniformities, nonlinear effects 

in the sampler, sampling time errors, digitizing errors, etc. Most importantly, the 

generator signal is not pure and has lots of aberrations following the step.  



 

 94

6.2.3 Conclusion  

Table 6.1: Maximum values of the Eeq variation along the y and z -axis from the B-Dot 
sensor. 

 

 
 

As seen in Table 6.1, our focal point is about 2 cm closer to the reflector because 

we do not have sufficient high frequency components and we also have a step 

term sE affecting of the amplitude of impulse. Figure 4.3 shows that the amplitude of the 

impulse is proportional to δE  and sE , but δE  is the dominant term. The δE value is 

larger for high frequencies and sE  is larger at the aperture plane. sE  decreases more than 

δE  toward the focal point. Thus we have two computing parameters, δE  and sE . 

Because of these two terms, our peak point is 2 cm closer to the reflector. At the focal 

point our prolate-spheroidal IRA works like a differentiator or high-pass filter, high 

frequencies contribute more than low frequencies. 
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Although the amplitudes of the electric fields should be symmetric along the x-

axis with respect to x=0, they are different. We believe this is because of errors in the 

geometric shape or alignment of the prolate-spheroidal reflector. 

The slow sensors are more sensitive than the fast D-Dot sensor, but they are not 

fast enough to obtain the actual mrt  values. We obtain larger mrt  values which result in a 

decrease in the amplitude of the impulse part of the focal waveform. If we use the fast D-

Dot sensor, it is not sensitive enough. We obtain higher amplitudes in the impulse part, 

whereas we obtain more differences in the amplitude of the impulse part of the focal 

waveform. The analytical, experimental results, oscillation amplitude, mrt and differences 

in experimental results compared to the analytical results are summarized in Table 6.2. 

 

Table 6.2: Analytical, experimental results, oscillation amplitude, mrt and difference in 
experimental results compared to analytical results. 
 
 

 
 

 

There are several factors that can lead to differences in the analytical expressions 

and experiments. When the focal fields are calculated in Chapter 4 and [3], the aperture 
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integral did not consider the feed arms and feed-arms’ thicknesses. This can cause an 

error in the calculation of the impulse amplitude of the focal waveform.  

There are errors in the experiments that need to be accounted for. We are in the 

limit of our instrumentation, we have less accuracy because of the limitation of the 

probes.  

We have checked the pulser and the connection cables to find the reason for the 

postpulse oscillations. These results are presented in Figure 6.13. One can see from 

Figure 6.13 that the postpulse oscillations are not related to the pulser or the 2 nano-

second and 3 nano-second long cables that we use to connect the pulser to the feed arms 

and sensors to the sampling oscilloscope. They are not oscillating at the same frequencies 

and they do not have the same amplitudes. We do not have any problem with the pulser 

and connection cables.
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Figure 6.13: The focal waveform data: a) the normalized data from the pulser, b) with 2 
nano-second, c) with 3 nano-second long cables. 
 

 
a) 

 
b) 

 
c) 
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We next checked the prepulse term and took its derivative, shown in Figure 6.14. 

 

Figure 6.14: The derivative of the normalized prepulse term and the focal waveform. 
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In Figure 6.14 we compare the derivative of the normalized prepulse term and the 

focal waveform. They are oscillating at similar frequencies. This proves that the ripples 

in the prepulse cannot be associated with the feed arms near the reflector, by causality 

(speed of light). The ripples come from the prepulse not from the reflected waves; we do 

not have any problem with the reflector and the feed arms. These ripples come either 

from the feed point or from the sensor. We considered the feed point first and measured 

the reflection coefficient (Γ ) to check for problems with it. 

One can see the reflection coefficient (Γ ) values from Figure 6.15.  It starts from 

-1 at short circuit, it goes to 0 when the current reaches the Ω50  cable, it goes to 0.3 

when it reaches the feed arms. Finally, it goes to -1 because the reflector feed arms are 

shorted. We can calculate the feed arms pulse impedance as 

0

0Γ
ZZ
ZZ

L

L
+
−

= . (6.7) 

30Γ .=  and Ω93=LZ , which is close to the our analytical value of 

Ω100=LZ  we do not have any problem in the feed arms geometry. 
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Figure 6.15: Reflection coefficient ( Γ ) measurements of the reflector with feed arms for 
impulse impedance calculation. 
  

Figure 6.16 shows the ripples in the Γ  with feed arm and open circuit case. If we 

compare the normalized derivative of the Γ  with the focal waveform for feed arms and 

open circuit case as presented in Figure 6.17, they do not oscillate at the same 

frequencies, the transition between barrels may not cause these oscillations. Even if we 

have perfect connection between the feed arms and excitation point, it is difficult to 

obtain the actual focal waveform because of geometric restrictions. This can cause some 

differences but it should not be that significant. 
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Figure 6.16: Reflection coefficient (Γ ) measurement a) with feed arms, b) open circuit. 

 
a) 
 

 
b) 
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Figure 6.17: Normalized derivative of Γ and focal waveform a) with feed arms,  
b) open circuit. 
 

We can see from Figure 6.12 that the B-Dot sensor causes the ringing in the 

postpulse. For the D-Dot probe we cannot obtain the expected analytical postpulse. There 

should also be another factor causing the ringing and the decrease in the amplitude. When 

the focal fields are calculated in [3] and Appendix A, the aperture integral does not 

consider the feed arms and feed-arms’ thicknesses. This can cause an error in the 

a) 

b) 
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calculation of the impulse amplitude of the focal waveform; we believe this can cause the 

inconsistency between the analytical and experimental results. We want to see the effect 

of the feed arms on the aperture plane aS , we performed another experiment. Assume we 

have an arbitrary piece of metal (13cmX18cmX0.8cm) on the aperture plane aS . Figure 

6.18 shows the experiments that are presented in Figure 6.19. 
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Figure 6.18: o60  four-feed arms a) with a piece of metal on the foam, b) with a piece of 

metal under the foam. 

 

 
a) 

 
b) 
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In Figure 6.18 metal conductors are on the aperture plane aS  where we integrate 

the fields to find the focal field at the second focal point. We try to see the effect of the 

feed arms on the aperture integral by inserting a piece of metal. 

  
 

Figure 6.19: Focal waveforms from B-Dot probe for o60  four-feed arms: F (focal 
waveform), F1 (focal waveform with a piece of metal on the foam), F2 (focal waveform 
with a piece of metal under the foam). 
 

Table 6.3: Maximum values of  F, F1 and F2. 
 

  

Figure 6.19 presents the values of F (focal waveform), F1 (focal waveform with a 

piece of metal on the foam), and F2 (focal waveform with a piece of metal under the 

foam). The peak value of these waveforms are given in Table 6.3. In Figure 6.19, the 

behaviors of F and F1 are almost the identical. However, as seen from Table 6.3, F1<F 

but as expected this difference is not significant. This is because we have a null point 
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right between the feed arms at the top of the reflector. We have a significant difference 

between the behavior of F and F2.  

One can easily see that, although inserting a metal on the top of the aS  does not 

disturb the field that much because of the null point, inserting a metal under the foam 

disturbs the focal field. If we insert a piece of metal under the foam, we have aperture 

scattering. Significant destructive interference occurs because of the feed arm itself and it 

blocks the reflected fields. The reflected fields are scattered through diffraction. 

 We can easily find the difference by comparing F and F2 from Table 6.3 

 

%*
.

..*
F

FF(%)Difference 14100
323

8623231002
=

−
=

−
= . (6.8) 

 
A 14% difference is a significant difference. If we compare F and F1, we have a 

difference of about 3%. The feed arm itself does not affect the prepulse because the 

prepulse is the direct radiated field from the feed arms we obtain almost the exact 

prepulse value in our experiments; however, any other metal scatters the prepulse field.  

 The geometric shape or alignment of the prolate-spheroidal reflector may also 

causes some errors. The misshape of the reflector will lead to a broader focus and smaller 

amplitude.  

The prolate-spheroidal reflector was manufactured from fiber and the inside of the 

reflector is painted with copper conductive paint. The surface resistivity of the paint is 

<0.3 ohm/square at 1 mil dry film thickness; <0.10 ohm/square at 2 mil dry film 

thickness. We checked the reflection from the conductive paint on the reflector and 

measured about 99% reflection; however, there might be some hot spots that do not 

reflect very well and this can cause some errors. 
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We are consistent with Table 6.2 regarding the analysis of the differences. Focal 

waveforms from the slow D-Dot probe for o60  four-feed arms: F, F1 and F2 are 

presented in Figure 6.20 and one can see the peak values for these focal waveforms in 

Table 6.4. 

 
Figure 6.20: Focal waveforms from the slow D-Dot probe for o60  four-feed arms: F 
(focal waveform), F1 (focal waveform with a piece of metal on the foam) , F2 (focal 
waveform with a piece of metal under the foam). 

 

We can easily calculate the difference by comparing F and F2 from Table 6.4 and 

the resulting difference is 8%.  

Table 6.4: Maximum values of  F, F1 and F2. 
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We compare our analytical, numerical and experimental focal waveforms for a 
two-arm prolate-spheroidal IRA in Figure 6.21. 

 

 
 

Figure 6.21: Analytical (slow D-Dot probe), numerical and experimental focal 
waveforms of a two-arm prolate-spheroidal IRA for tmr =119 ps. 
 

 One can see by comparing analytical, numerical and experimental focal 

waveforms that the prepulses agree very well. The analytical and numerical impulses’ 

amplitudes agree as well. However, the experimental impulse amplitude is smaller than 

the others. It is also broader near the base. As discussed before, any misshape of the 

reflector may lead to this in the experiment. We have also a feed arm blockage effect that 

decreases the amplitude of the experimental impulse; however we did not see this effect 

in our numerical results. Our analytical result is based on an idealized assumption and it 

does not account for the feed arms. Finally, for all cases, the postpulse behaviors are 

different.
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7 LENS DESIGN FOR A PROLATE-SPHEROIDAL IRA 

 

7.1 Introduction 

 In this chapter, we discuss the design procedure for different types of  dielectric 

lenses for better concentrating the fields at the second focus of a prolate-spheroidal IRA 

to increase the fields and decrease the spot size. We have a very fast and intense 

electromagnetic pulse to illuminate the target [3] which is located at the second focal 

point. One of the most important problems with concentrating the fields on the target is 

reflection. We have to deal with this reflection because the dielectric property of the 

target medium and the medium through which the incident wave propagates are different. 

The reflection of the pulse leads to a smaller field at the second focus where our target is 

buried. We discuss the addition of a lens to better match the wave to the target. We can 

obtain larger fields and smaller spot size [22]. 

 To obtain better concentration at the target we can use different types of lenses. 

The transmission coefficient from one medium to the another one can be defined as 

 
12/1

rt12T
−

⎥
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⎦

⎤

⎢
⎢
⎣

⎡
ε+= , (7.1) 

 
where rtε  is the relative permittivity of the target medium.  

 Suppose now that we have a lens in front of the target with relative permittivity  

 
rtεε =l . (7.2) 

 
The fields from the reflector are transmitted with transmission coefficient given by 



 

 110

12/1
0 rt12T

−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
ε+= . (7.3) 

 
We will have a slower wave speed and an enhancement factor which is an increase in the 

impulse portion of the focal waveform from [22] as 
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Thus, for the impulse part of the field we will have a net increase of 

 
1

rt
2/1

120T0F
−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
ε
−

+= . (7.5) 

 Suppose now that we have a lens in front of the target with relative permittivity  

 
rtr εε << l1 . (7.6) 

 
We will have then two transmission coefficients and the total transmission coefficient can 

be defined as 
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 Finally, suppose we have a lens with a graded relative permittivity given by 
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The wave propagating through this takes the same form as that of a wave in a 

transmission-line transformer. The high frequency early-time transfer function can be 

defined as [22] 
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We still have the enhancement factor  the transmission enhancement 

 

rt
4/1

rt
4/1

rt
2/1

T0F ε
+

=ε
−

ε
+

= . (7.11) 

 
 The transmission enhancement of the lens, as discussed in [23] for an exponential 

variation of the characteristic impedance of the transmission line (for constant wave 

speed) along the line, is somewhat optimal. In this chapter we present different types of 

graded lenses for stronger focusing at the target.  

 The focal point is 5370 .z = cm and the other parameters of the prolate-

spheroidal IRA are defined in (4.1). 
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7.2 Calculating the Optimum Number of Layers for a Lens  

 In this section we calculate the optimum number of layers to obtain the required 

field at the focal point of a prolate-spheroidal IRA based on a plane-wave approximation. 

N layers of increasing dielectric constant lenses which have the same ratio of dielectric 

constant are considered for a prolate-spheroidal IRA  that is based on Appendix A and 

[22]. The geometrical illustration of this design is presented in Figure 7.1. 

 

 
 

Figure 7.1: N layers of lens, dielectric constants and transmission coefficients. 
  

The total transmission coefficient can be defined as 

 

∏=
N

ntotal TT
1

, (7.1) 

 
where nT  is the transmission coefficient between nth and nth+1st layer and it can be 

defined as 
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The ratio of dielectric constant between subsequent layers are constrained to be the same,  

 

nr1nrratio / εε=ε + . (7.3) 

 
For N layers 
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Substituting (7.4) in (7.2), we have 
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For N layers from (7.1) 
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 If we have a continuously increasing dielectric lens we have a total transmission 

coefficient defined in (7.10) as 
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. 

4/1
maxrtotalT

−
ε= . (7.7) 

 

 If we have an infinite number of layers, (7.6) approaches (7.7).  We should decide 

how many layers will be acceptable to obtain the closest transmission coefficient to the 

continuously increasing dielectric lens case.  

 

Table 7.1: Transmission coefficients for different N and maxrε . 

 
 

 The number of layers depends on the sensitivity of the application accuracy. In 

general using more than 10 layers is not practical for manufacturing and we try to obtain 

the closest transmission coefficient to the continuously increasing case. From Table 7.1 

one can see that, for 10 layers, N=10, totalT  approaches close to the continuously 

increasing dielectric lens case. Even though 10 layers does not give us that much 

improvement if we compare it with N=2 layers, we took N=10 layers for our later 

calculations.  One can easily decrease or increase the number of layers for specific 

applications. We took the maximum number of layers, which is N=10, that can be 

manufactured for later calculations. 
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7.3 Three Different Types of Graded Lens Design for a Prolate-Spheroidal IRA 

 The basic design considerations for the physical concept of three different types 

of increasing permittivity dielectric lens are considered. The focal point is 5370 .z = cm 

and the other parameters of the prolate-spheroidal IRA are defined in (4.1). The lens is a 

half sphere (or half ball in mathematicians terms) and its radius is maxr , as shown in  

Figure 7.2. 

 

Figure 7.2: Addition of lens with prolate-spheroidal IRA geometry. 
 

 As discussed in [20] before, the exponential variation of the characteristic 

impedance of a transmission line along the line is optimal, provided that the speed of 

propagation is constant along  the line. Some modification may be useful here since the 

speed varies inversely with the square root of the dielectric constant. 
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 The lens relative permittivity is 
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7.3.1 Exponential Variation of rε   

 One suitable form for rε  is an exponential function as 
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As we know at 0=r  the relative permittivity is maxrr εε =  so 
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If we substitute (7.10) in (7.9), rε  can be found as 
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The rise time is estimated as pst 100=δ  the distance corresponding to this rise time is  

 
cmtc 3== δδl  (7.12) 

 
in air. 

The propagation distance of the wave from 0== rtorr max is 
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The normalized lensct is 
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The distance between the source and lens is )rm(0.375 max+ . 

 After this design procedure we designed a lens that is matched to the target 

dielectric maxrε . The thickness of the target dielectric material should be 
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n
maxrε

Δ δ , (7.15) 

 
in order to minimize the effect of the reflected wave on the impulse term. 

 

7.3.2 Compensated Incremental Speed (CIS) form of rε  

 As we mentioned before the exponential form assumes that the propagation speed 

is constant. However, it is not constant we need to compensate for this assumption. Let us 

assume we have a plane wave problem in an inhomogeneous (isotropic) slab with  )z(rε  

and set the relative change in wave impedance over a transit time τΔ  
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with the wave impedance cZ  proportional to 21/

r
−ε . The distance based on the transit 

time can be written as 
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For a given τΔ  the zΔ  decreases as 21 /

r
−ε . For a given τΔ  the change in 
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Integrating (7.18) 
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We can define rε  from (7.19) as 
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such that from (7.20) 

 



 

 119

21
3

21

2
1 /

maxr
max

/
maxr C,

z
C

−
−

=
−

= ε
ε

. (7.21) 

 
Then, if we substitute (7.21) in (7.20) we have  
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 How much time does the propagation of the wave take from maxr to the focal 

point in the lens? Substituting (7.22) in (7.14)  
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Changing the variable of the integral as maxr/r=ξ , we obtain 
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 Let us change the variable of the integral as 
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Then, we can find the normalized lensct is 
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7.3.3 Linear form of rε  

 The exponential variation and CIS form of rε  are two different approaches 

having some advantages and disadvantages in terms of focusing. After these approaches 

we tried to use another approach, a linearly increasing form of rε . Let us assume we 

have a linear rε  variation as 
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which satisfies (2.2), we can find the normalized propagation time of the wave from  

0== rtorr max as 
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Let us change the variable of this integral as maxr/r=ζ  to obtain 
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We can also change this variable ζ  as  
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Using (7.29), 
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7.3.4 Conclusion 

 A dielectric exponentially increasing dielectric constant, CIS, and linear 

increasing lens designs were discussed. One can see from Figure 7.3 that the wave 

propagates faster for the CIS form of rε . We can see from Figure 7.4 a-d) that if maxrε  

increases, the wave propagates slower as expected. maxrε  varies from 1 to 81 (with 81 

corresponding to water, which is the highest rε  that is used in biological applications). If 

we increase maxrε  from 36 to 81, the CIS design of rε  has the deepest curvature. The 

focusing property of the lens increases from the CIS to the linear design because for the 

same maxr/r  we have an increase in rε , we expect the lens to become more effective. 

Also from [22] if we increase rε  the spot size decreases while the wave impedance 

decreases and the amplitude of the waveform increases by a factor of
41 /

rε . This rough 

calculation has to extend out some distance from the target for effective focusing to occur 

and thus requires more detailed calculations. 
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Figure 7.3: maxlens r/ct  for linear, exponential and CIS forms of rε . 

 
Figure 7.4: rε values for linear, exponential and CIS forms of rε for different maxrε  with 

respect to maxr/r . 
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7.4 Spatially Limited Exponential Lens Design for Better Focusing an Impulse 

 A spatial limited exponential lens design is discussed and an analytical 

formulation has been used to examine the pulse droop in order to minimize it.  

 A formulation in [23] has been used to examine the pulse droop for a transmission 

line with an exponentially tapered impedance profile. We wish to minimize this droop, or 

ask how long the transmission line should be for a given droop. The exponentially 

tapered transmission line has an optimal transfer function in terms of early time voltage 

gain and improved droop characteristics. We apply this result to an exponentially tapered 

dielectric constant of a focusing lens. We find the required lens dimensions for a given 

droop. The lens geometry and incoming spherical wave are presented in Figure 7.5. Our 

calculations are based on a one-dimensional plane-wave approximation (Figure 7.6). This 

will not directly give an estimate of spot size, only the transmission/reflection by the lens. 

Other considerations also apply [22]. 
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Figure 7.5: Lens geometry and  incoming spherical wave. 
 

 

Figure 7.6: Equivalent plane wave geometry. 
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7.4.1  Equivalent Transmission-Line Model (One Dimensional) of Lens 

 As discussed in [23], the exponentially tapered lens has a minimized droop and 

the optimal transfer function for the case of uniform propagation speed. Here we adapt 

this solution to a dielectric lens, noting that the propagation speed slows as the wave 

propagates in higher-permittivity media. This model does not include any information 

about spot size. 

 We can define the lens wave impedance as follows: z =spatial coordinate,  

ζ = modified space coordinate, we have a new coordinate where the wave propagates 

with a constant 1v  speed and has an exponential wave impedance variation through the 

lens. We use a plane wave approximation and this approximation is valid up to the case 

when the wavelength is still small compared to the cross section of the beam 

 

ζζ henceandtotimetransit z
c
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Let 

 
01

ζζζ /eZ)(Z −= , (7.33) 

where 1Z  is the wave impedance at the beginning of the lens; which is Ω3770 =Z in our 

case. 
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where 2Z  is the wave impedance at the end of the lens. 
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The propagation speed can be defined as 
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where 1v  is the propagation speed before the lens, which is typically c. 

 The transit time through the lens can be defined as 
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Taking the derivative of both sides of (7.37), we have 
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Using (7.38) to solve for the spatial coordinate z in terms of modified space coordinate 

ζ can be find as 
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From (7.33) and (7.35) we can write (7.39) as 
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We can see from (7.40) as ∞→ζ , 0ζ→z  and this does not continue to grow. This 

gives us a spatially limited lens. This is convenient for purposes of implementation. 

 The wave propagation can be described by the source-free telegrapher equations 

((2.3) in [23]). We can transform the 1D wave equation to an equivalent  ζ  space 

coordinate as 
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7.4.2. Solution of the Transmission-Line Equations 

 We solve an equivalent problem of [23], but instead of an increase in the 

transmission-line impedance we have a decrease in wave impedance, but the equations in 

[23] still apply.  

One can define the transmission coefficient for high hT  and low frequency lT  as follows 
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Calculate the difference between these two coefficients as 
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This is always positive except at 21 ZZ = . Thus, there is a droop (positive, i.e. a 

decrease) from initial to final value for both increasing and decreasing impedances. The 

impedance is decreasing but there is still a droop. 

 We can use the exact solution of the transfer function in (3.8) of [23], 
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where S is the normalized complex frequency 
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 The high-frequency gain is defined in (3.4) of [23] as 
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One can define the transit, normalized and droop time ((3.11) of [23]) parameters as 

follows 
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dt  is the droop time, the step-response form is defined as (3.13) of [23] 
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7.4.3 Example 

 Now we can calculate the lens thickness for a given dielectric target permittivity 

maxrε . Setting 10050 .and.t/t d = , and using a ps100=t pulse width (maximum time 

of interest) from (7.45)   
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From (7.34) and (7.47) 
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Substituting (7.49) in (7.40) we have 
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7.4.4 Conclusion 

 We might design a spatially limited exponential lens based on [23]. This lens is 

designed for a biological application [1]. From (7.51) we can find the maxz values for 

different biological tissues, which are summarized in Table 7.2. 

Table 7.2 Design parameter values for different biological tissues [24,25]. 

 

  

 One can see from Table 7.2 that, if we have lower dielectric constant for target 

biological tissue, we need a smaller lens. This is not the only consideration. A larger 

dielectric constant in the lens exit results in a smaller spot size and higher fields. The 

smaller spot size concentrates the energy in the vicinity of the skin cancer.  

 One can find how rε  changes as a function of and zζ  from (7.40) and (7.50) 
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 Let us consider ns1=dt and find )z(and)( rr εζε  with respect to and zζ  for 

different dielectric tissues. These are presented in Figures 7.7 and 7.8. 

 

 

Figure 7.7: )(r ζε  values for different dielectric tissues. 

 

 

Figure 7.8: )z(rε  values for different dielectric tissues. 
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The compression of the coordinates for 81 andns1 maxr =ε=dt  is presented in  
Figure 7.9. 
 
 

 

Figure 7.9: Compression of the coordinates for 81 andns1t maxrd =ε= . 
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7.5 Lens Design for Incoming Spherical Wave 

 In this section an alternate lens design procedure is discussed to obtain better 

focusing from a prolate-spheroidal in which the lens is not a sphere. This is an extension 

of  Section 7.2 and the lens design considerations are based on [26]. N layers of an 

increasing dielectric lens, which have the same ratio of dielectric constants between 

adjacent layers, are considered for a prolate-spheroidal IRA. Instead of using a half-

spherical lens, a new approach is proposed for incoming spherical waves to obtain better 

focusing for a prolate-spheroidal IRA. 

 

7.5.1 Design Considerations 

 10 layers of increasing-dielectric-constant lens are used based on the calculations 

in Section 7.2. We use the same ratio of dielectric constant between subsequent layers as 
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We use N=10 layers and 81maxr =ε  for the worst case scenario for biological 

applications. We start from free space 1r =ε  and our target dielectric is 81maxr =ε  and 

55.1ratio =ε  between subsequent layers. The first shell of the lens for incoming spherical 

wave is illustrated in Figure 7.10. 
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Figure 7.10: Lens for incoming spherical wave [26]. 

 

In Figure 7.10 

maxmax ,)z/barctan( 2202 0 θθθ ≤≤= . (7.54) 

Equation (7.54) represents the range of interest of angles for the incoming wave from the 

prolate-spheroidal IRA which has the dimensions as given in [16]. From (7.54) and (7.55) 

for the first shell o
max .13532 =θ . Inside the lens the rays change their direction to the 

angle of  1θ  with respect to the 'z -axis  and 21 /max πθ ≤  for geometrical design 

purposes. 21 ll and  are the distances on the 'z -axis, h is the height of the lens. The 

normalized 21 ll and  parameters are defined from (4.7) in [26] as 
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 To find 2θ  as a function of 1θ a quadratic equation in either 

)sin(or)cos( 22 θθ can be solved from (4.8-5.10) in [26] as 
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 A lens boundary curve can be defined by the coordinates of  'z and Ψ as a 

function of 1θ  and 2θ  from (4.11) and (4.12) in [26] as 
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This approach is just for the first shell, but we can expand it to the other shells. 

551.ratior == εε  and we will have different maxmax and,, 2121 θθll for each layer. 

 We can define a new coordinate system which is centered at 0zz = . We will call 

this system 'z and it can be defined as 

 
h/)zz(h/z' 0−−= . (7.58) 

 
The IRA and lens geometry are presented in Figure 7.11. The angles of 

max2max1 andθθ are in given Figure 7.12  

 



 

 137

 

Figure 7.11: IRA and lens geometry. 
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Figure 7.12: max2max1 andθθ values. 
 

 We use N=10 layers and θΔ is the change in the angle as one goes from one layer 

to the next. This is constant and is given by 

 
N/)( maxNmax 121 θθθΔ −= . (7.59) 

 
 We design the lens for two different 101maxθ angles as: 
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For the 2/π case o.73=θΔ and for the o85 case o.23=θΔ . h/z '
nΔ  is the normalized 

distance between each layer-beginning point on the 'z -axis. h/z '
n is the sum of the n 

distances on the 'z -axis which is shown in Figure 7.12. 
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7.5.2 Concluding Remarks for the Lens Design for Incoming Spherical Wave 

 We have designed a lens for incoming spherical waves to obtain better focusing 

from a prolate-spheroidal IRA. This design is based on the same procedure as in [26].In 

this design, however, just a single layer was used. We extended this design to N=10 

layers. In this case we have different h/z,h/h,,,h/,h/ '
nnmaxmax and2121 θθll . 

We calculated these values for the first layer. Then we correct the values for the other 

layers.  

 First we calculate the h/zandh/ 'Ψ values for the first layer, then for the  

second layer we calculate h/zandh/ 'Ψ . We correct them by multiplying with 

correctedh h/hn= value, then we add h/z '
nΔ  for each layer to find the corrected  h/z '

n  

values at that layer. 

 As one can see from Figures 7.13 and 7.14, for o
101 85=maxθ  case we obtain 

better focusing. We call h the radius of the shell, it is a universal normalization 

parameter. But this calculation is not determining h because it is an optical calculation 

(infinite frequency). To determine how large h should be is a difficult problem. Clearly 

h/c must be much greater than the focus pulse width at the focus, and the rise-time of the 

incoming wave, otherwise it does not focus, <<λ other dimensions of the lens. h should 

be smaller than the radius of the reflector as well 

 
cmbhcmct 503 =<<<=δ . (7.61) 
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Figure 7.13: h/zvsh/ 'Ψ for 2/10max1 π=θ . 

 
 

Table 7.3: maxmaxnnn ,,h/z,h/z,h/h ''
21 and θθΔ  values for 2101 /max πθ = . 
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Figure 7.14: h/zandh/ 'Ψ  for o

max 85101 =θ . 

 
 

Table 7.4: maxmaxn
'

nn ,,h/z,h/z,h/h '
21 and θθΔ  values for o

max 85101 =θ . 
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7.5.3 Lens Design for Incoming Spherical Wave for Different Biological Dielectric 

Tissues 

 Five different biological dielectric  tissues are used as different target dielectrics 

and we try  to obtain better focusing from a prolate-spheroidal IRA for an incoming 

spherical wave from the reflector for these tissues. This subsection is an extension of the 

previous one. We use 5 different target dielectric tissues comprising water, muscle, 

tumor, skin and fat. Ten layers of an increasing dielectric constant lens that have the same 

ratio of dielectric constants between adjacent layers are considered for a prolate-

spheroidal IRA.We use the same ratio of dielectric constant between subsequent layers as 

 

N/
maxrratio

1
εε = , (7.62) 

 

where ratiomaxr and εε  values for different human tissues are presented in Table 7.5. 

 

Table 7.5: maxrratio and εε values for different human tissues [24,25]. 
 

 

  A lens is designed for incoming spherical waves to obtain better focusing from a  

prolate-spheroidal IRA for different dielectric human tissues. We obtain better focusing 

for the higher dielectric lens. h/zvsh/ 'Ψ values for o
max and/ 852101 πθ = for 

different maxrε are presented in Figure 3.1 and Figure 3.2. One can see from Figure 7.15 

and Figure 7.16 that for smaller maxrε , the first shell moves left. We have fixed the 

vertical ( h/Ψ ) axis values to increment by a uniform value of 0.1, leaving some 

variation (small) in the location along the horizontal coordinate. 
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Figure 7.15: h/zvsh/ 'Ψ for o
max 90101 =θ and different maxrε . 
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Figure 7.16: h/zvsh/ 'Ψ for o

max 85101 =θ and different maxrε . 
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8 CONCLUSIONS 

 
 In this dissertation we have designed, constructed and tested a prolate-spheroidal 

IRA that was designed to be used to kill skin cancer in the near field region. This 

technique is much more convenient than inserting electrodes near the tumor [1]. This 

work used analytical calculations, numerical simulations, experiments as well as different 

lens designs to obtain improved electromagnetic-field concentration at the second focus 

of a prolate-spheroidal IRA. 

 First, a parameteric study of the focal waveform produced at the second focus of a 

prolate-spheroidal reflector was discussed. The optimal dimensions and the z-coordinate 

of the truncation plane, pz , for the reflector were found. Then, the analytical behaviors of 

the focal waveforms of two and four-feed arm prolate-spheroidal IRAs were calculated. 

 We explored the analytic behavior of the waveform near the second focal region 

and showed that the impulse part of the waveform at the second focus can be described 

by a delta-like pulse forming for 0zz <  and in the limit as 0zz →  gives the required 

true delta function. Then, the aperture integral gives the same result (at early time) as the 

exact incident wave before truncation. We observed that the area of the −δ like pulse 

was the same for both before and after 0z . We illustrated these results with a graphical 

example. We continued the analytical evaluation of the prepulse term, 2pE , after the 

impulse, when the aperture integral is truncated by the aperture edge. The actual 

analytical waveform was illustrated, including all the terms. These analytical calculations 

were for a two-arm prolate-spheroidal IRA. However, we have shown that these 



 

 146

calculations can be easily extended for o45 and o60 four TEM feed arm cases by just 

multiplying the analytical values by 1.404 and 1.606, respectively. 

 Finally, the time domain characteristics of some analytic source waveforms, used 

for determining the waveform characteristic of a prolate- spheroidal IRA at the second 

focus, were discussed. By appropriate choice at the driving waveform, we maximize the 

impulse field at the second focus.  

 CST MWS computer simulations were used for verification of our analytical 

results. This was a numerical attempt to reproduce the analytical results for the focal 

waveform of a prolate-spheroidal IRA. We discussed the numerical results  for the 

waveforms near the second focus for spot size analysis. Since we want better 

concentrating at the second focus, we plan to use a medium that has a higher relative 

dielectric constant rε . This also increases the complexity of our problem; however, 

experimental results showed that the wave propagation medium with the highest rε (in 

our case it is water 81=rε  [1]) is dispersive. We simulated two-arm Ω400 , o45  four-

arm Ω200  and o60  four-arm Ω200  prolate-spheroidal IRAs to obtain the focal 

waveforms. The spot sizes were analyzed for the two-arm case along the x-, y- and z-axis. 

We compared our numerical results with analytical results for verification. For future 

work, we present an equivalent geometry that can be used as an equivalent source to 

simplify our problem computationally. 

 We performed several experiments at the UNM Transient Antenna Laboratory in 

order to compare our experimental results with our analytical and numerical results. 

Experiments with two-arm and o60  four-arm prolate-spheroidal IRA were performed. 
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Experimental setup and problems related with measurements or devices were discussed. 

Experimental and analytical results were compared. Differences between these results 

were discussed and the differences were analyzed. 

  Analytical, numerical and experimental prepulses’ amplitude agree very well. The 

analytical and numerical impulses’ amplitudes agree. However, the experimental impulse 

amplitude was smaller than the others. It was also broader near the base. We have also a 

feed arm blockage effect that decreases the amplitude of the experimental impulse, 

however we did not see this effect in our numerical results. Our analytical result was an 

based on idealized assumption and it did not account for the feed arms. Finally, for all 

cases the postpulse behaviors were different. However, this part of the pulse was less 

important for our biological application. Our concern was obtaining the largest possible 

impulse amplitudes at the focal point to kill skin cancer. The analytical waveform, while 

simple, is still good, albeit not perfect.  

 Different lens design procedures were discussed theoretically for better focusing 

the fields at the second focus of a prolate-spheroidal IRA and having lower spot size. We 

have a very fast and intense electromagnetic pulse to illuminate the target which is 

located at the second focal point. For future work, these lens designs can be built and they 

can be simulated numerically. 
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APPENDIX 

A ANALYTICAL CALCULATIONS FOR THE FOCAL 

WAVEFORM OF A PROLATE-SPHEROIDAL IRA 

 

A.1 Introduction 

This appendix is a summary of [3]. The analytical calculations in [3] were 

extended in Chapter 4.  

Some analytical approximations for the transient focal waveform produced at the 

second focus of a prolate-spheroidal reflector due to a pulse TEM wave launched from 

the first focus are developed. This is extended to consider the spot size of the peak field 

near the second focus. 

An inhomogeneous spherical TEM wave launched on guiding conical conductors 

from one focus is converted by a double stereographic transformation to a second 

(reflected) inhomogeneous spherical TEM wave propagating toward the second focus [3].  

Both waves have the same temporal waveforms before other scattered waves (from feed 

arms, etc.) can reach the observer. 

Inhomogeneous TEM waves in a uniform, isotropic medium (e.g., free space) are 

exactly transformed by stereographic projection into second such waves in the case of 

paraboloidal and hyperboloidal scatterers, provided the incident wave is centered on an 

appropriate focal point (including infinity) of these quadric surfaces [2].  One spherical or 

planar TEM wave is then transformed into another with an exact matching of the 

boundary conditions on the (perfectly conducting) reflector. This provides exact solutions 
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of the Maxwell equations, valid up until some time related to a signal arriving at the 

observer from some truncation of the reflector, or from some structure used to guide the 

incident wave (i.e., conical or cylindrical perfectly conducting transmission lines).  

Keeping with bodies of revolution, which give focal points, another quadric surface to 

consider is the prolate spheroid, a special case of an ellipsoid.  In this case both focal 

points are inside the volume enclosed by the surface pS . Thus, our consideration is to 

launch an inhomogeneous spherical wave from one focus, and reflect it toward the 

second. 

 

A.2 Description of Geometry 

We are concerned with analytical calculations of the waveform at the second 

focus in this section. The geometry of the IRA is presented in Figure A.1.  

 

Figure A.1: Schematic diagram of IRA [3]. 
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We have two thin perfectly conducting cone wave launchers with electrical 

centers lying in the xz plane. In the wave-launching spherical system  ( 111 φθ ,,r )  they 

are oriented at (with respect to the negative  z axis) cθθ =1 . One can relate the 

( 111 φθ ,,r ) system to the cylindrical ( 111 z,,φΨ ) and cartesian (x ,y,z) coordinates as 
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 We can describe the prolate spheroid as 
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 We can describe the thin-cone electrical centers by the angle cθ  with 
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 At the reflector we have (subscript p) 

 
)cot(zz cpp θΨ−−= 0 . (A.4) 

 
If we substitute (A.4) in (A.2), then we have 
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For given cθ  one can solve for pz  and pΨ  and  we can also specify pz  and compute 

pΨ  and cθ . 

We truncate the reflector at the pzz =  plane. The portion used is 
'
pS , to the left.  

This is consistent with the traditional truncation of a paraboloidal reflector in impulse 

radiating antennas (IRAs).  More sophisticated truncation contours can be considered, but 

are beyond the scope of this dissertation. For later use the truncation plane will be taken 

as an aperture plane.  The portion of this plane inside the prolate sphere is designated aS .  

It is this surface which will be used for integrating over the reflected TEM wave to find 

the fields at the second focus, 
→
0r . 

 

A.3 Matching Spherical TEM Waves 

We launch an inhomogeneous plane wave from one focus, and reflect it toward 

the second. In spherical coordinates centered on 
→
− 0r  with 01 =θ  pointing along the 

negative z axis (toward the stereo graphic-projection plane), we have an outward 

propagating (from 
→
− 0r ) inhomogeneous transient TEM wave as 
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 The stereographic transformation relating spherical TEM waves to cylindrical 

TEM waves takes the form as 

 
[ ] φφφθΨ −==−= 00100 22 ,)/tan(zaa . (A.7) 

 
In this projection 1V  satisfies the Laplace equation in cylindrical ),( 00 φΨ  coordinates. 

 Here we are imagining a wave launched to the “left” to be reflected on 
'
pS .  The 

portion to the “right”, around the target location, is assumed not used for the reflector, 

allowing access to the target vicinity.  However, the symmetry of the geometry allows 

one to interchange the roles of source and target. Let us consider a second spherical TEM 

wave centered (incoming) on 
→
0r  of the form 

 

⎟
⎠

⎞
⎜
⎝

⎛ −
+∇−=

→→

c
ar

tf),(VrE ,
22

2222222 φθφθ . (A.8) 

 
The projection formula for this wave is 

 
[ ] φφφθΨ −=−=+= 20200 22 ,)/tan(za . (A.9) 
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The formulas in (A.6) also apply, substituting subscripts 2 for 1. 

Now let 

 
),(V),(V 001002 φΨφΨ −=   (A.10) 

 
on the projection plane.  Since 1V  satisfies the Laplace equation there, so does 2V .  Here 

we have a diverging wave reflected into a converging wave.  Note that the waveforms are 

the same f(t) for these two waves. We merely need to know that 021 =+VV  (or its 

tangential derivative, i.e., tangential electric field) on the reflector.  On the reflector we 

have, due to the stereographic transforms 

 
),(V),(V 111222 φθφθ −= . (A.11) 

 
The two waves match in time as well on the reflector.  Differentiating the potential (net 

zero) on the reflection gives zero tangential electric field, the required boundary 

condition. This gives an exact solution of the Maxwell equations for times (clear times) 

before scattering from feed arms and 
'
pS  truncation to 

'
pS  is seen by the observer.  

Such a clear time is observer-position dependent. For analytical convenience we can take 

the time-domain waveform as a step function 

 
)t(u)t(f = , (A.12) 

 
applying to both transmitted and reflected waves. The feed arms also fit into the spherical 

Laplace equation.  Their electrical “centers” have been considered in the case of impulse-

radiating antennas (IRAs) [27], allowing for placement which in some sense is optimal.  
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Consider that these intersect 
'
pS  at some pz .  The double stereographic transform then 

has “image” feed arms pointing to 
→
0r  from the intersection at pz .  This leads to an 

interesting symmetry concept by setting 

 
0=pz . (A.13) 

 
This makes  z = 0 a symmetry plane between the wave launching side (z < 0) and the 

wave receiving side (z > 0).  In practice (inverse) feed arms are not included on the 

receiving side (at least not down to the focal point at  
→
0r ). 

 

A.4 Prepulse 

The stereographic projections in the previous section can be used to calculate the 

fields.  Let 1E  have the form 
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Let 01 VV ±=  on the two cones. The stereographic projection of this wave is 

 
[ ] φφφθΨ −==−= 00100 22 ,)/tan(za . (A.15)  

The electrical center of the thin wire on this projection plane is 

 
[ ] πφθΨ ,,)/tan(za ccc 022 000 =−= . (A.16) 
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If we use the well–known solution in [28,29] for the two thin wires, we get the prepulse 

in [3] as  
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A.5 Fields at Second Focus 

We consider the wave heading from the reflector toward the second focus.  There 

is no set of conical conductors guiding the wave there. Thus, we consider this second 

spherical TEM wave 
→

2E  on the aperture plane, which we can use in turn to find the 

fields at 
→
0r  (and other positions as well).  For present purposes we take the aperture 

plane as pzz = ,  the reflected wave illuminates aS , a disk of radius pΨ . Note that the 

reflector is truncated at the aperture plane.  This is because the field from the 

wavelauncher reverses sign for the wave on the “other side” of the launching conductors.   

The reflected wave is related to the first wave by a double stereographic transformation.  

They are equal (except for a minus sign) on the stereographic projection plane for which 

 

[ ] [ ] .,)/tan(za)/tan(za

,),(V),(V

2102000

001002

22212 φφφθθΨ

φΨφΨ

−=−=+=−=

−=
 (A.18) 

→
2E  is focused on 

→
0r .  Without guiding conductors a double stereographic 

transformation cannot hold all the way as 02 →r . We are therefore considering the 

fields on aS  for later integration.  On the center of aS  we have the electric field 0E  
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polarized in the 
→
x1  direction. In previous papers [29,30] it has been seen that, for circular 

apertures, the field at the center is an important parameter.  The boresight radiated field 

can be found by integrating the TEM field over the aperture, or by integrating a uniform 

field of the center value (including polarization) over the same circular aperture.  Seen 

another way, one can expand the field in cylindrical coordinates and note that terms with 

)mcos( φ  and )msin( φ  for 2m ≥  integrate to zero (for observation field points on the z 

axis) (there is no m= 0 term). This is basically a symmetry result. for a uniform field 0E  

is polarized in the x direction. We can  match this field to the second wave at the center of 

the projection plane and find the x component of the tangential electric field as  
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After we evaluate the tangential fields on aS  we can evaluate the fields at 
→
0r  by 

integrating over the fields on aS . The formulations for the fields at the second focus 

from a circular aperture that has uniform distribution of electric field were evaluated in 

(3.3) of [18] and for step excitation we have   
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 (A.20) 

 
where δE  and sE  are the impulse and  step terms from the reflection from the prolate 

sphere and pE  is the magnitude of the prepulse wave from first focus (valid up to the 

time of aperture truncation), pz  is the z-coordinate of the truncation plane, a and b are 

the two radii for the prolate spheroid,  0z is the focal distance, and ptΔ  is the length of 

the prepulse and can be defined as 

 
[ ] c/zat p 02 −=Δ . (A.21) 

 
gf  is the transmission line parameter and can be described as   

 
0Z/Zf cg = , (A.22) 

 
where 0ZandZc  are the pulse and medium wave impedance. 
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One can see from (A.20) that sE  has units V/m, while δE  has units Vs/m corresponding 

to the time integral (or area) of the δ  function. Assuming that the prepulse is a negative 

xE , corresponding to a positive potential on the upper feed arms, the reflected pulse 

reaching toward 
→
0r  has a positive sign. In [18] the case of the guiding arms is considered 

by use of an aperture integral. The field at 
→
0r  has a delta-function part and a step-

function part. The detailed calculation was presented in Chapter 4. 

 

A.6 Spot Size Analysis 

Figure A.2 indicates the maximum differences from the edges and center of aS  to the 
observer. 
 

 

Figure A.2: Spot size of focal waveform [3]. 

 

If we have small impulse width δt , we will have a really small spot size around 

→
0r . For the δ -function pulse we have the wave from every position on aS  arriving at 
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exactly the same time at 
→
0r . We can then estimate a pulse width near 

→
0r  by the 

dispersion in the arrival times from all parts of aS  at the observation point.  

For 0=pz  the spot sizes in Ψ  and z directions are calculated in [3] as 
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