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ABSTRACT

Impulse Radiating Antennas (IRAs) are designed to radiate very fast pulses in a
narrow beam with low dispersion and high field amplitude. For this reason they have
been used in a variety of applications.

IRAs have been developed for the transient far-field region using paraboloidal
reflectors. However, in this dissertation we focus on the near field region and develop the
field waveform at the second focus of a prolate-spheroidal IRA. Recent research has
shown that it is possible to kill certain skin cancers by the application of fast, high-
amplitude electric-field pulses. This has been accomplished by the insertion of electrodes
near the tumor, with direct contact from a high-voltage pulse generator. It has been
suggested that it would be desirable to be able to apply fast, high-electric-field pulses
without direct contact for this biological application, i.e., to irradiate them using an

antenna from a distance.
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Analytical, numerical and experimental behaviors for the focal waveforms of two
and four-feed arm prolate-spheroidal IRAs are explored. With appropriate choice of the
driving waveform we maximize the impulse field at the second focus. The focal
waveform of a prolate-spheroidal IRA has been explained theoretically, verified
experimentally and simulated using the CST-MWS (Microwave Studio) software.
Finally, different lens design procedures are discussed for a prolate-spheroidal IRA for

better concentrating the energy from an impulse.
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1 INTRODUCTION

The Impulse Radiating Antenna (IRA) is a special kind of focused aperture
antenna suited for radiating very fast pulses in a narrow beam. A fast-rising step-like
signal into the antenna gives an approximate delta-function response. IRAs are composed
of two main parts, a conical TEM transmission line and a focusing optic which is usually
either a reflector or a lens. There are two types of IRAs according to the focusing optics
used. Reflector IRAs use a paraboloidal reflector and lens IRAs use lenses for focusing
the fields in the aperture.

For large antenna apertures fed by a single source (pulser) an efficient design uses
a conical transmission line which feeds a paraboloidal reflector. An alternate design has a
conical transmission line (TEM horn) feeding a lens with a special resistive termination
in the rear of the antenna; for large antennas the lens can be quite massive, but for small
antennas this type of design is quite practical. A third approach is a transient array
involving many sources feeding an aperture.

In this dissertation we design a reflector IRA in which a prolate spheroid is used
as a reflector for a biological application [1,2]. We feed our prolate-spheroidal IRA from
the first focal point and concentrate the impulse at the second focal point [3,4].

IRAs have application as high-power pulse radiators, transient radars, and
antennas capable of operating across many frequencies simultaneously. Several studies
have been performed to improve the performance of IRAs. The basic development and
research on IRAs has been carried out at the Air Force Research Laboratory (AFRL) at
Kirtland Air Force Base. At first IRAs were designed for military applications. Now, they

are finding applications in the civilian sector.



1.1 History of IRA

The wideband properties of the 2-N port Electron Scanning Radar (ESR) was
observed at Lincoln Laboratory in the early 1960’s, thus giving birth to Ultra-Wide-Band
(UWB) technology. Several new theories have been proposed for UWB transmitters and
receivers. UWB theory was improved to be used in communications, radar applications
and coding schemes. In the early 1980’s, UWB technology was used in ground
penetrating radars, which was an initial step for other subsurface antennas. Finally, UWB
technology has been implemented in military and civilian applications and a new antenna
called the IRA was proposed by Baum [5]. The first IRA was built by Giri [6] and is

presented in Figure 1.1.

Figure 1.1: The 12-foot diameter reflector IRA built by Giri [6].



1.2 Motivation for IRAs and Applications

The basic motivation for developing IRA systems is to radiate large amplitude,
large-band-ratio, undispersed pulses. In the remote-sensing arena such antennas are
appropriate for transient radars, including for buried target recognition. Some
consideration has also been given to their possible use in ionospheric research. The UWB
technology can also be used in communication systems. The necessity of wider frequency
bandwidth increases rapidly, so for high-quality data transfer and fast communication, the
importance of UWB technology in communication systems increases.

Fast high-amplitude electric-field pulses can be used to kill skin cancer. This has
been demonstrated by the insertion of electrodes near the tumor, with direct contact from
a high-voltage pulse generator. Our motivation in this dissertation is to apply fast, high-
electric-field pulses without direct contact for killing skin cancer, i.e., to irradiate them
using a prolate-spheroidal IRA. This technique is much more convenient than inserting

electrodes near the tumor [1].

1.3 Overview

In this dissertation, a new manifestation of an IRA, in which we use a prolate
spheroid as a reflector instead of a paraboloid reflector and focus in the near-field region
instead of the far-field region, was investigated. The focal waveform of the prolate-
spheroidal IRA has been compared analytically, numerically and experimentally.

In Chapters 2-4, we present the theoretical background of IRAs that should be
considered in the design and analysis of IRAs with their TEM feed sections. We use

CST Microwave Studio to simulate our prolate-spheroidal IRA, and the numerical results



are presented in Chapter 5. Chapter 6 is devoted to experiments which we performed at
the University of New Mexico (UNM) Transient Antenna Laboratory in order to compare
our experimental results with our analytical and numerical results. In Chapter 7, different
lens design strategies are discussed for improved concentration of energy at the focal
point. Finally, a brief summary of what has been explained in this dissertation and what

should be done in future work is discussed.



2 BASICS OF IRAs

2.1 Introduction

In this chapter the IRA structure and components are discussed and the
stereographic projection of aperture fields for TEM conical transmission lines is
presented. Then, we illustrate the IRA waveform and the constituents of this waveform.
The most important problem for broadband systems is creating a non-dispersive antenna
so that the shape of the pulse is preserved. IRAs are an appropriate choice to accomplish
this.

The theory of transformation from spherical wave to plane wave will be covered
in the following sections. In order to obtain a planar phase front, the length of the antenna
should be sufficiently large compared to the dimension of the aperture. This requires
larger horns which are impractical to use. The idea of focusing the waves using a prolate
spheroid is introduced, which provides a planar phase front without requiring large horn

antennas.

2.2 Components and Waveform from a Reflector IRA

The reflector IRA is ideally composed of a conical-nondispersive TEM feed and a
paraboloidal reflector which is a prolate spheroid in our case. IRAs can be better
characterized as dispersionless, high band-ratio antennas. An IRA with a reflector and the
idealized IRA waveform are depicted in Figure 2.1, where F is the focal length, D is the

diameter of the reflector and c is the speed of light. The number of feed arms of reflector



IRAs are typically either two or four. Arms above the symmetry plane are at voltage

+Vy /2 and arms below the symmetry plane are at voltage — V) /2.

Matching Circuit

\
AN E N\
TEM Feed
Impulse

D

Stepped Postpulse

Voltage AL

Source Prepulse | F

—) Time
A 5 2F/c 7
a) b)

Figure 2.1: a) Paraboloidal reflector IRA; b)idealized IRA waveform [6].

The idealized IRA waveform on boresight has three main parts as depicted in
Figure 2.1 b). The first of these is the prepulse, the direct radiation from the feed, which
has a low magnitude and lasts a long duration (2F/c). When the apex of the TEM feed is
first excited by the step-like function, the input wave travels a distance F towards the
reflector and then another distance F backwards from the reflector, totaling a distance 2F
in time t at the speed of light ¢ in free space. Then we have an impulse which lasts for a
short time and has a large amplitude. Finally, we have a postpulse expected after the
impulse. Since radiating an impulse is the purpose of an IRA, we concentrate on the

impulse part of the waveform. However, we also want to understand the behavior of the



prepulse, since the areas under the prepulse and impulse are comparable. Under the
assumption that the area under the postpulse curve is zero, the area of the prepulse and
the area of the approximate delta function should be equal in order to satisfy the
requirement that the total area under the step-response curve with the time axis should be
zero because a finite antenna cannot radiate DC power.

The prepulse and impulse will dominate the early-time behavior of the IRAs, and
the postpulse will inform us about the late-time behavior of the IRAs. Because of
diffraction effects and the fields outside the aperture, the behavior of the postpulse will
change according to the specifics of the design. Therefore, the behavior of the postpulse
is as important as the behavior of the prepulse portion of the radiation, especially to find
the exact matching circuits between the TEM feeds and the reflector.

We transform spherical geometry into cylindrical geometry to simplify the feed
calculations and magnitude of the prepulse a calculation that is termed a stereographic

projection in the literature [2,7]. Then the 2-D problem will be solved using conformal

mapping.

2.3 Stereographic Projection

We can write Laplace’s equation V=0 , in 3D spherical coordinates as

2
v%/:ii{ﬂﬂ} ! i[sinﬁilf(ﬁﬁ)}+;d—V(9,¢)=O- 2.1)
p2dr dr| 2 singd0 do rzsin20d2¢

Letting V be independent of r we have [7]



d| . d d? ~
sznﬁﬁ{smﬁﬁlf(&qﬁ)}+d—2¢V(l9,¢)—0. (2.2)

We can decrease the dimensionality of the problem and simplify the calculations
from 3-D to 2-D using a stereographic projection. The process of stereographic projection
is basically representing every point on a spherical surface on an infinite plane while
preserving angles. A tangent plane is taken at one end of the diameter of the sphere.
Inhomogeneous TEM waves in a uniform, isotropic medium are exactly transformed by
stereographic projection into a second set of such waves in the case of paraboloidal and
hyperboloidal scatterers, provided the incident wave is centered on an appropriate focal
point (including infinity) of these quadric surfaces [8,9]. In our case, we consider the
prolate spheroid, which is a special case of an ellipsoid, as another quadric surface. One
spherical or planar TEM wave can be transformed into another with an exact matching of
the boundary conditions on the reflector. This gives exact solutions of the Maxwell
equations, valid up until some time related to a signal arriving at the observer from some
truncation of the reflector or the presence of the feed arms.

The stereographic transformation takes the form as

2 +y2
0 =2 arctan 5 , ¢=arctan(y/x). (2.3)
r
(2.3) is the inverse of
x=2rtan(0/2)cos¢ , y=2rtan(0/2)sing . (2.4)



We can simplify our problem by substituting (2.3) in (2.2) to obtain the 2-D

Laplace’s equation as

d2 d2
—ZV(x,y)+—2V(x,y):O. (2.5)
dx dy

Equation (2.5) is just the 2-D Laplace’s equation in cylindrical coordinates. One
can convert 3-D conical symmetry (conical plates) to longitudinal symmetry by

stereographic projection. The 3-D geometrical demonstration of the stereographic

projection is shown in Figure 2.2.

z= £ plane

”(‘\‘?____‘.-_ﬁ_ll_ -:_; A //
|‘/-¢,'" N, /

I A

Figure 2.2: 3-D view of the stereographic projection can be used to decrease the
dimensionality of the problem [6].



We have a little difficulty when one wants to know the fields at & = 7. At that

angle tan(m/2) approaches infinity and the transformation cannot be used for

simplification. If we rotate the structure 180° about the y axis, then the angle that was
formerly € = 7 becomes @ = 0. By carrying out the same transformation on the rotated
structure, we can simply eliminate the singularity. A diagram of this is shown in Figure
2.2. In looking at the diagram, it is obvious that the field in the backward direction is
much smaller than it is in the forward direction since the conductors in the projected
plane are much further apart.

The procedure where we include the 180° rotation is called a reverse
stereographic transformation. The net effect of the reverse stereographic transformation is
to replace @ with @ — . Thus, after one has found the projection for the forward
direction, it is straightforward to replace € with 6 -7 to obtain the reverse

transformation. This is illustrated in Figure 2.3.

a) b)

Figure 2.3: 2-D a) the stereographic projection; b)reverse stereographic projection [6].
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3 PARAMETER STUDY FOR A PROLATE-SPHEROIDAL IRA

3.1 Introduction

This chapter presents the results from a parametric study of the focal waveform
produced at the second focus of a prolate-spheroidal reflector due to a TEM wave
launched from the first focus (Appendix A). We find the optimal dimensions and the z-

coordinate of the truncation plane z, for the reflector.

In order to find an optimal design we need to compare various designs on a
common basis. For this purpose, we define a volume, based on a geometric shape that
fills in some sense, to get the maximum performance. Consider a circular cylinder as in

Figure 3.1 which has a length ¢ and radius of ¥, where

1/2
l=a+z :a+[a2 —b2] . (3.1)

This is the distance from the back of the reflector (z = -a) to the target (z = z()).
This still leaves the radius ¥, which we treat via the parameter ¥, / /. All distances are

normalized to /. The other parameters, a and b, are defined in Figure 3.1. Note that

for z, 20, % =b, (3.2)

for ZPSO,T():‘PP.
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Figure 3.1: IRA and cylindrical geometry representation in which the IRA fits to get the
maximum performance.
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3.2 Normalized Parameters

All the geometrical parameters are normalized to ¢ as

b zo ’TO ‘F_p,z_p. (3.3)
V2 / / V4

Normalized electromagnetic scaled parameters are:

7T f,C

es = Es If £~ impulse, (3.4)

0

27 fol )

e, =E, To prepulse (step, negative), (3.5)

27 fqc i

epa = Epat), 7 prepulse integral (area), and (3.6)
27 fql

e, =L v postpulse step. (3.7)

One can see that the impulse peak is the ratio of

E,=Es/tgs, (3.8)

where 5 is the “impulse width” or “rise time” of the source.

13



Es and E; are the impulse and step terms from the reflection in the prolate
sphere and E, is the magnitude of the prepulse, z, is the z-coordinate of the truncation
plane, a and b are the two radii for the prolate spheroid, z(is the focal distance,
At = 2[a—zg]/ ¢ is the length of the prepulse and fg =Z./Z is the transmission

line parameter. These parameters are discussed in detail in Appendix A. We can find the

ratio of impulse to prepulse as (should be large)

L Es_ 20

39
Ep ts Cts e ( )

The normalized geometric parameters a/(,b/(,zo/{, ¥, /( with respect to

z,, /{ are presented in Figure 3.2 and 3.3.

The normalized electromagnetic parameters are presented in Figures 3.4-3.7. We
want to obtain the largest impulse amplitude and the smallest prepulse and postpulse

amplitudes. The %, /(¢ term determines the “fatness” of the reflector and z, // term
determines the truncation plane for the reflector. At the focal point eg is the dominant
term and it is a constructive term for the impulse; however, e » is a destructive term for
the impulse. e is a constructive term for both the impulse and postpulse. Thus, we have
a tradeoff among these terms, but our basic concern is the es term. We should also

consider the geometrical construction problem.
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3.2.1 Normalized Geometric Parameters a/(, b/, zq/(, ¥, /{
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Figure 3.2: The normalized geometric parameters of prolate-spheroidal IRA for different
o /l;a)a/ L withrespectto z,, /£ b)b/{ withrespectto z, /(.
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3.2.2 Normalized Electromagnetic Parameters
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Figure 3.4: Normalized electromagnetic parameters of prolate-spheroidal IRA for
different ¥(//; a)es withrespectto z,, /£, b)e,, withrespectto z,, /(.
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One can see from Figure 3.4 a) that es has a maximum value for ¥ /¢ = 0.9 and

small z, /( values; for z,/( values greater then 0.4 all thees values approach unity.
From Figure 3.4 b) we can see that the e,, prepulse integral (area) has the minimum
value around z, /¢ =-0.25and for larger ¥ /¢ we have larger e, ; it is decreasing
the impulse amplitude. From Figure 3.5 the behavior of e and e, can be analyzed; for
Y9/0=09 both e, and e,have the largest values for smaller ¥, /(; e; and

values do not change that much. In Figure 3.7 we compare e and e, values we can

e < p

p

analyze the postpulse characteristics.

We have different parameters to determine the fatness of the reflector ¥ /¢ and
the truncation plane z-coordinate z, /(. Our basic concern is the impulse term. We

have analyzed the electromagnetic parameters and we decide to have

¥ /0 =0.5

1
z,/1=0. G-19)

For this case (3.10) the reflector can be easily constructed and we can use the symmetry

of our geometry.
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33 Example Case

3.3.1 Feed-Point Lens
We can use the feed-point lens to increase (bump up) the field as illustrated in

Figure 3.8.

Figure 3.8: Feed-point lens geometry which can be used to increase the field.
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3.3.2 Spherical Example

£
Let &, =— , &,5(0)2&,5(rs )21 (air).
€0

(3.11)

A typical value of the relative dielectric constant of transformer oil for the feed-point lens

is €,3 = 2.25 (transformer oil) .

For uniform transmission in air we have

2

1+5rs_1/2

T= 1.2.

This requires a graded lens like a transmission-line transformer

T = grsl/ 4( 0)=1.22 (for example not much improvement).

3.3.3 Example Case Parameters

We use a special case, (3.10) and (3.14), for our reflector:

b_os , %065 , 0_0375
] ] ]

b_4 zo _
a 5

Z0 _3
a5

This parameters are illustrated in Figure 3.9.
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Figure 3.9: Geometrical dimensions for the example case given in (3.14).

Let us assume we have a source voltage (pulse rising in time 75 ) that may be used

as a source for later experiments:

Vo =10° V' (2x10° differential). (3.15)

The other parameters can be assumed as
ts =100 ps , fo =1.06. (3.16)

One can find the normalized impulse and prepulse terms from Figure 3.4 and 3.5 for

¥ /¢=05and z,/(=0 as

24



es=08,¢,=54. (3.17)

Thus, for this specific example we have an impulse term at the second focal point as

E v,
E==07="0% 1_096MV/m.
ts iy‘gctg

The ratio of impulse peak to prepulse amplitude can be found as

E
L_5=%e_5=9,9g_ (3.18)

Ep ts cts ep

If we use /=1 meter as the normalization length, we will have a 9.9 ratio of impulse

peak to prepulse amplitude.

This modest study has found some curves useful for estimating the focal
waveforms and focal spot size for the two-arm prolate-spheroidal IRA. Considering the
sophisticated design papers which followed the introduction of the IRA concept, there is
much yet to be done for the prolate-spheroidal version. This is adequate for designing

experiments to demonstrate and validate the design concept.
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4 EXTENSION OF ANALYTICAL CALCULATIONS FOR THE

FOCAL WAVEFORM OF A PROLATE-SPHEROIDAL IRA

4.1 Introduction

This chapter presents the development of the field waveform at the second focus
of a prolate-spheroidal reflector and it is an extension of Appendix A [3]. We explore the
analytic behavior of the waveforms near the second focal region. With appropriate choice
of the driving waveform we can maximize the impulse field at the second focus. IRAs
have been developed for the transient far-field region [6] and are recognized as a
significant advance in antenna technology [10]. Related experimental and numerical
aspects of this problem can be found in [11,12]. In this chapter we focus mainly on the
near fields that can be used in some biological applications [1].

First of all, we calculate the focal waveform analytically. We analyze the behavior
of the waveform near the second focus and show that the impulse part of the waveform at

the second focus can be described by a delta-like pulse forming for z <z, and in the
limit as z — z( gives the required true delta function. This is a physical example of the

formation of a delta function. Then, the aperture integral gives the same result (at early
time) as the exact incident wave before truncation. This gives confidence in the aperture
integration. We can see that the area of the o —like pulse is the same for both before and

after z;. We illustrate these results with a graphical example. We continue the analytical
evaluation of the prepulse term FE P after the impulse, when the aperture integral is

truncated by the aperture edge. From previous and present results, the actual analytical

waveform is illustrated, including all the terms. These analytical calculations are for a
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two-arm prolate-spheroidal IRA; however, we can easily extend these calculations to four

[0
45°and 60 TEM feed arm cases.

Finally, the time domain characteristics of some analytic source waveforms used

for determining the waveform characteristic of a prolate- spheroidal IRA at the second

focus are discussed.

4.2  Description of Geometry

Using the prolate-spheroidal IRA given in Appendix A and [3], we choose a

special case with the following geometric parameters (see Figure 4.1):

z,=0,b=¥y=.5ma=.625m,zy =.375m,l =1m, 4.1)

z, =0[ ¥ =D a=.625m
i b=.5m
o zg=.375m
=a+zg
iy L £=1m
ZD |IIJ Z
aperture | :
plane
stereographic
projection
plane

Figure 4.1: Schematic diagram of a prolate-spheroidal IRA with special geometric
parameters defined in (4.1).
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where z, is the z-coordinate of the truncation plane, a and b are the two radii for the

prolate spheroid, z; is the focal distance and ¢ is the distance that can be used for
normalization.
For our later example calculations, our design has two TEM feed arms and the

dimensions of these arms are determined by a 400 Q pulse impedance (¢ =90°). This

design considers the two-arm case, but analytical results can be simply extended to the
four-arm case [13,14].
The feed-arm parameters have been previously calculated in the stereographic

projection plane as [15]

bo? =by by

(4.2)
(b —by )/ by =0.275.

by .b and b, are the stereographic projections of the feed arms, from which we find the

angles for the two-feed arms as

Bo = arctan(.5/.375) = 53.1°

S =2arctan|\|by / by tan( By /2 )|=47° (4.3)
1 1792 0

B = 2arctan|\[by /by tan( B /2)]=59.6°

Bo. B, B are the angles from the z-axis to the electrical center, the first edge and the

second edge of the feed arms as in Figure 4.2.
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Figure 4.2: Prolate-spheroidal IRA feed arm geometry for four-arm case.

From equations (4.1)-(4.3) and [15], one can find the locations and dimensions of
the feed arms. The feed arms are symmetric and the upper feed arm has three corners,
whose locations are summarized in Table 4.1

Table 4.1: Upper feed arm’s corner locations for two feed-arm case (cm).

X y z

0 0 -37.5
50 0 -8.2

50 0 8.99

For our later example calculations, our design has four TEM feed arms and the
dimensions of these arms are determined by a 200 Q pulse impedance (g = 45°, 60°).

The feed-arm parameters,bg,bj,by, have been previously -calculated in the

stereographic projection plane for ¢y = 60° [15] as
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bo> =by by . (b —by)/by=0.521, (4.4)

from which we find the angles for the four-feed arms as

Bo = arctan(.5/.375)=53.1° , B = 2arctan[,/b1 / by tan( B /2)]: 42.23°

(4.5)
B = 2arctan[1/b2 /by tan( By /2)]: 65.77° .

From (4.4), (4.5) and Table 1 [15], we can find the locations and dimensions of
the feed arms. The feed arms are symmetric and the upper fed arms have three corners,

whose locations are summarized in Table 4.2.

Table 4.2: Upper feed arms’ corner locations for 60° four-TEM-feed-arm (cm).

Right Left
X1 M Z] X2 Y2 %)
0 0 -37.5 0 0 -37.5
43.3 25 |15 43.3 -25 -15
43.3 25 18 43.3 -25 18

In this chapter, we concentrate on three different types of feed-arm geometry

based on the choice of ¢ (, the feed arm angle. The first feed design has two 90° TEM

feed arms and the dimensions of these arms are determined by a 400 Q pulse
impedance. The second and third designs use 45° and 60° TEM feed arms and the

dimensions of these arms are determined by a 200 Q pulse impedance. The 45 case

has the same dimensions as the two-arm case, by symmetry.
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Farr introduced the voltage normalized gain as G, =h, / f, [16,17], and this

can be used to compare with the radiation from two different antennas that have the same

input voltage. Here A, is the aperture height and f, =Z. /Z is the impedance factor

which relates the transmission-line impedance to the free space impedance. From Table 1

of [15] we can easily define

G, =10 _|387
1 200/377

648
G, =———> 1.
Y2 200/377

(4.6)
221.

Gy, and G,, are the voltage gain for four 60° feed-armand 45 (times .707 for the two-

arm,400 Q, case by symmetry) TEM-feed-arm case. If we divide Gy, by G,.,, we can

V)
determine the increase in the field if we use the 60¢ feed-arm instead of 45° feed-arm.

Thus, we have G, /G,, =1.135. We know that we will have a V2 increase in the field

values if we have four 45° TEM feed arms instead of two arms, due to symmetry. We

should have a [GV1 / sz] V2 =1.606 increase in the fields using the 60° TEM-feed-

arm case as compared with the two-arm case. In our design we used 60° feed-arm
because the voltage gain is nearly maximum [15] and it was easy to construct this

geometrically.
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4.3 The Actual Analytical Focal Waveform

The analytical focal fields in Appendix A and [3] are

B -1/2

Es= % a+ccot& 1-]1+ i
Tfgca—c 2 20—z,

2
Vi + 0 zp—z
=0 L a2 o f % || 20 2p , and
2nfg z0—zp a—zg 2

Vi 0
E,= 0 tan| 2¢|.
27 fg 20 2

4.3.1 Calculating fan(6./2)

(4.7)

We have a simpler form for fan(6,. /2 )than in [3]. 6. is boundedas 0<6,. <.

By the geometric construction from Figure 4.1 we have

tan(6,./2)= Sin_l(ﬁc)[l—COS(Hc )l

-1/2
sin(6.) =¥, [Tp2+[zp+zo]2] ,

cos(6.) =z, +Zo][¥’p2 +[Zp +zo]2]_1/2.

We have

2|z, + 2]
ks

0 1 2
tan—cz—[SV +|z, +z
=yt 2, :

L find |72+, +2, )27 f
et us try to fin o Hzp + 2, in terms of 4, z¢,z .
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[ [ ]2]1/2
¥, =bll-|z,/z, . (4.12)
Substituting (4.12) in (4.11) we have

1/2
2 4, 22 :éa2+zozp]. (4.13)

Substituting this in (4.8) we obtain

1/2
+
tan(%):{a Zp} a+ZO, (414)

which is a simpler result compared with the result in [3].

4.3.2 Prepulse Term £ 2 After the Impulse

What happens to the prepulse term after the impulse, i.e., after the truncation at

the aperture boundary (¥ =%, or b for special case)? Before the aperture truncation the

prepulse is given by (4.7).

Let £, = tangential E field (x component ) on S, due to the prepulse wave.

Then we have [3,18]

zZoy — Z

= L 0 “p E, dS=0 after wavepasses

2me ot g py?

a
1 zZg — Zp
E 5 =— E , dS = step wave left after the wave (4.15)

p2 2 pt

2T,

passes the aperture plane.
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These are both integrals of the r~! fields from the first focus on the aperture

plane. After we see the edge of S, , neglecting diffraction terms from this edge and
approximating E ,, by the negative of the TEM prepulse wave out to this edge (for a

positive parameter as in [3]) we have, for step-function excitation, a time-independent

prepulse fieldon S,

E, =0 the derivative being zero after the aperture edge is seen (4.16)
E, = [22P g g5 - i
=5 3 pt = constant, i.e. a step term.

)

Next we require the static £ ;. As before, since we are confining ourselves to the
z-axis we can use a uniform field on the projection plane to give £, in the above

integral. From (2.11) of [3] at 1} =z, (aperture plane center)

% 6
Epu0 = 7; tan(jc). (4.17)

We need this extended over S, since, as we have seen before, for the z axis only

the uniform field terms (on the projection plane) need be considered (by symmetry).

On the projection plane at z =—a (2.7) in [3]
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2
¥ v
( 00] +2- cos(6, )+1

w0 w0

V. 1l ¥,
V(xg.v0)=—2arccosh 1[ Cojln
2 w0

w0 w0

) »
(YJCOJ _2yjc0 COS(Hl)"‘l (418)

¥y = 2[a -z ]tan(%).

On the projection plane at ¥, = 0 we need the uniform field component (x-directed)

x
14 @ 2y Ty @
v =9 arccosh _1( <0 jln <0 =9 grccosh™ (LOJZL
2 W) _n X Ly 2 "wo ) Feo @.18)
SZICO .
2V [ 2V,
Eqo = Z70 arecosh 1[ <0 J -0 (taken as positive in ourconvention[1]) .
o rwo ) He Feo

Choose a potential (uniform)

2V, 1 %
V=E40x= ~ =20 arccos h I(LO)Y’O cos(@y )=—E 4 ¥y cos(P ) . (4.19)
o w0
%

Map this back onto the 7y system

V= EOZ[a A tan( jcos

1/2
+Zz
w0 =2[a—z tan( ] oa—z] —2 | “4FE0 (4.20)
2 —zp b
6,
V= E402[a ZO tan ? ¢)
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Now on S, we have

E4—lvgl 4V =—Ey 2[ FIZO] ( j cosl) Loy - m’:(:l)j sinld) 1 (4.21)

The tangential part and cos(6; ) are

6
5 a-z0]l  of6)1 > M) o
E 4= E4,0 0 Secz(?lJECOS(Hl)COS(ﬁ) ly -2 Sii’l(e ) Sin(¢) 1 9
1

(4.22)

=FE490

[a—2z0]( 2cos(6) )cos(¢) > ~ sin(g) 7
) L 1+ cos(6)) v 21+cos(<91)1¢1]’

n

nll+cos(6,)]=n +zy +zp,

1/2
Vlz[yj02+|:20+2p]2] B

ZO+Zp

cos(0) =

n

The x component is

— zg t+ 2z
Bgp = Ego =200 122020 0200 ) a0,
n+zo +Zp n
(4.23)

'Pp

Ep2_E40[ZO_Z Ia ) I

1”2 7’1

To solve this integral consider the special case z, =0,%), =b,r =rp. Then

from (4.2) and (4.3) of [3]
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-1
2
E, . = Yo 1 [a_ZO] 1+{Z—0} and
p2
e Yoo Zo b (4.24)

.0 =2[a—20]tan be. = Z[a—zo][a+20].
2 b
In the end we obtain
Vo 1 b 2]
E, =—r— 1+ 20 . (4.25)
27fq zg a+zg b
The normalized e, is
21f ! 27!
epy =g, =t P [1{2—0} ] . (4.26)
VO Zg a+zg b

Note that this is actually the negative of the prepulse (to give a positive parameter) by

€p2
from (4.5) and (4.26)

convention in [3]. Let us find the ratio of

-1
€ b 2 20 2 a-z, 1/2
ep a+z b a+z,

For our case (4.1)
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-1
€p2 b Y 20 ?
= 1+ — =0.16 <1, (4.28)
ep a+z b

as expected, we have almost an 85% decrease in the prepulse.

4.3.3 The Graphical Illustration of the Actual Analytical Focal Waveform

We take the simple example case in (4.1) to illustrate the analytical waveform.

The excitation is a 1 Volt (¥, =.5 Volt) step, rising as a ramp function lasting 100 ps.

One can calculate the analytical focal fields of a two-arm prolate-spheroidal IRA from

(4.7) and (4.25) as

E, =0.4V /m (negative prepulse),

E
Ei :—5:4V/m,

15 (4.29)
E, =026V /m,

Ep2 =0.06V / m (negative prepulse).

We present this graphical illustration in Figure 4.3. We can easily extend this

result for the four 45° and 60° TEM feed arms by multiplying all the values with

V2 and 1.606. We present these results in Figure 4.4.
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E-field (Vim)

A
FO ||| e e A L R e S YRR T LT TV B
/] *
Al | em———— — T S P
% _x
by P
—- -ty =100 ps
E-B"_ EF‘?
Bea|i= ==amaa8iie 00— —— —— o
2308 4% ng o
\ Time (ns)
e T ~Ey

Figure 4.3: Analytic focal waveform at the second focus for a two-arm
prolate-spheroidal IRA.

E —Field (V /m) E= E —Field (V/m
——Epy +E; 4 ) E*Ep” kg
ts ts )
59 e S T Tt e R R VT 67 = PR =] =gt
L || o i sl i e 5.7 ——= TS =
Es g B g
t t ¢
& || g o |
ts =100ps ts =100ps
"38 S e o e S el e ES_Epz 3 M 2=y % ==
sl 2w\ A Tme@s) f 25ne\ 420 Time(a)
- a) -Ep ' b) ~Ep

Figure 4.4: Analytic focal waveforms at the second focus a) 45° b) 60° four feed-arm
prolate-spheroidal IRA.
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4.4 Electric Field Variation Near Second Focus
4.4.1 Introduction

The electric field variation near the second focus is analyzed and with this
analysis we prove that the impulse part of the waveform at the second focus can be
described by a delta-like pulse forming for z < z; and in the limit as z — z; gives the
required true delta function. Then, the aperture integral gives the same result (at early
time) as the exact incident wave before truncation. This gives confidence in the aperture
integration. We can see that the area of the ¢ -like pulse is the same for both before and

after zj.
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4.4.2 Exact Solution of the Impulse Term for z < z; up to Aperture Truncation of
Signal
First, we will find the exact electric field E5 for z < z( (as in Figure 4.5) for

times after the pulse arrival when the solution no longer goes to 0.

o3

T2 end
3

Figure 4.5: Graphical illustration of z values for z < z(, used to calculate the retarded
time for the field from ¥ =%, .

We can write (3.13) and (3.10) in [3] as

_)

2 - 2 si -
r | 1+cos(6,) 1+cos(6, )

(4.30)
C C
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which is the tangential electric field on the aperture S, from the reflection due to the

prolate sphere.

On the z-axis €, =0, ¢, is arbitrary, let us take ¢, =0, giving

rnh=zg—2,
+ 4.31
Ey=E 7720 u(t +r_2_2£) (oriented in the x - direction). ( )
zZp —Z C

Substitute £y and cot(6./2) in E5 to obtain

y 1 V2 b

a-z _

E=—L p u(t+0"2 79 (4.32)

Mo z0—z|a+z, a-—z c c
We can normalize Ej as

1/2

7t a-z —
o= p ! P b ui+30 7 54,

"o zg—z|a+z, a—z c c (4.33)

=esu(t+ 0= -29),
c c
, ’ 1/2 b
a—z

es = [ ”} . 4.34)

Zg—z|a+z, a—z

This result applies for the time up until the signal from the truncation of the aperture is
observed.

For convenience we define a retarded time ¢, such that ¢z, =0 is the time of

arrival of the direct ray along the z-axis. The field from ¥#),, the aperture truncation, then
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arrives at the observer on the z-axis in a retarded time

Clyend =2 end t73 t [Zo - Z]

:_[yfpz +[ZO _Zp]z]l/z +[gjp2 +[Z_Zp]2]l/2 g2, (4.35)

where 1y o,q and ry are illustrated in Figure 4.5. For z near z( this is approximately

73 =72 end :[Bypz +[Z_Zp]2]l/2 _[sz +[ZO _Zp]2]1/2

_ _ 4.36
_ 10 zp][z 20]1/2 +O([z—zo]2), where (339)
[IPPZ +1%0 _Zp]z]
1) end 18 the rp value where ¥ =%),. We can find
3 =" end = [[ZO —zplz—zo]]/[‘]fpz + [ZO —zp]ZJl/2 (4.37)
/2

cty ond = [ZO —Z]{l—[ZO —Zp]/[ﬁyp2 +[ZO —Zp]2]] }

(4.38)

En —Z][(Fz end ~ 20 +Zp)/V2 end]-

We notice that ey is proportional to [z — z ] ! and ct, is proportional to [z —z,] .

The product gives the “area” under the pulse as

v a 1/2 b W 2

0o [%%p p

E3magts end = [ ] 1- 1+( . (4.39)
Afgc a-—z

This is like an impulse going to zero width as z — z(. Let us compare this with (5.1) in
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[3]. They are exactly the same! This shows that the impulse part of the waveform at the

second focus can be described by a delta-like pulse forming for z < z; and in the limit as
z — z( gives the required true delta function.

We can find the normalized value of the “area” in (4.39) from (4.33) and (4.38) as

1/2

bl a—z np—zgtz

€3mag Ir end = P 2. (4.40)
cla-zg)|a+z, r
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4.4.3 Approximate Solution for z < z; by Aperture Integration for Early Time

with z Near Z(

T
¥
Sa Iy Ia
W
il i
F T zq -

Figure 4.6: Graphical illustration of z values for z < z(, used to calculate the retarded
time for the field from ¥ =%,.

%
An observer at z 1 ; can see the field from ¥ =%, on the aperture at a later

retarded time, as illustrated in Figure 4.6

o<l —f==,] ~b o5,

R T P L P T P (4.41)
ct, :[[5”62 +[Z—Zp]2 V2 —[Z—Zp]:| —{5"62 +[ZO —Zp]z V2 —[ZO —Zpﬂ.
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For small ¥, we have

ct, =%Yfez[1/(z—zp)—l/(zo ~z,)] and

(4.42)
1/2
¥, = et /(z=2,)~1/(z0-2,))] "
If |ZO - z| is small we have
ct, :[r3 —r2]+ zZp— 2z,
ct, —[z9 —z]=r3 —r,, and
ry—n :[T2+22]1/2—[¥/62+202]1/2 (443)
[Zo +2] [z9-7] .
2 '1” +Z()2
Thus, we have
ct, —[ZO —Z]z + [ZO +Z] [ZO _Z] and
2 ?/62 +Z()2
(4.44)

Tez = ZO2 -l-l((ZO -l-Z)/( Ctr —1]}
2 AN

We want to take the surface integral (4.2 in [3]) to find a new form for Eg. It
does not involve a step-function from S, . It is now dispersed such that the integration

limits can be functions of time, giving

27zZ

=

=—°—j P“”(’yfdsv
0

Eo d
e dt

zZny — Z
Y20 \20TTP 02 (4)+sin(4) | dOdW

S '—:(;G

I’ %) + Zo + Zp %)
(4.45)

c r @)
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Let us take the time derivative of the integral

:dY’e&Z—Zp a+205y_

E
o dt c

1”32 1”2
We can find d ¥, /dt from (4.44)

¥ _ ‘Pe_l(l/(z—zp)—l/(zo —zp)yl.

cdt,

Thus, (4.45) becomes

ks = l11‘3_1[1/(2_219)_1/(20 _Zp)]_l%

v 1/2 b
a—z

_7?7[g zg—z|a+z,

zZ—Zz

a+zy
—y/e’

(4.46)

(4.47)

(4.48)

(4.49)

As we can see it is the same as E5 in (4.32). This shows that the aperture integral gives

the same result (at early time) as the exact incident wave before truncation. This gives

confidence in the aperture integration. The reader can note that, since the above gives a

pulse width greater than zero, one can add a correction term (zero at zero retarded time)

from E, also dispersed as Ej.
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4.4.4 Approximate Solution for z >z;by Aperture Integration for Early time

with z Near z,

13

I3

Figure 4.7: Graphical illustration of z values for z > z(, used to calculate the retarded
time for the field from ¥ =%,.

Let ¥, be close to ¥, as shown in Figure 4.7 for which

1/2
73 =[Y/ez+[z—zp]2]
(4.50)
k-2, 12
rn =¥," +|zg -z,
The fields arrive on S, at time
1/2
ctyy :[zo—zp]—[yfez+[zo—zp]2] (4.51)
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which sets ct,,= 0 on the aperture center. Fields arrive at z in the retarded time
ct.,+r;. (4.52)

The first fields at z are from ¥ = Yfp , in the retarded time

) ,1172 [ 5 2]1/2
ctrﬁrstz[zo—zp]—[ﬁl’p +[ZO—Zp] ] +17) +[Z—Zp] . (4.53)
The last fields come along the z axis in

Ctrlast:[ZO_ZpJ_I_ZO_ZpJ+Z_Zp:Z_Zp' (4.54)

Define a new retarded time by subtracting z -z, ; the pulse stops at zero but

begins at

¢ty begin = [Z_Zp]_[yjpz +[ZO _Zp]z]l/z +[yjp2 +[Z_Zp]2] <0. (4.55)

From an arbitrary point on S,

ct, =[z9 - z]- w2y [ZO —Zp]2 2 + [?’2 +[Z—Zp]2]1/2 : (4.56)

We can take the derivative of this retarded time, giving

diy 7o 7o 4.57)

= — + ,
Cdy/e [Tez+[zo—zp]2]l/2 [S”ez+[z—zp]2]l/2
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¥p ¥p
@, =y

- + :
’ [Yjszr[ZO_Zp]z]l/z ['Pp2+z_zp]2]1/2

dt,
d¥,

c

Es can be found as,

Z—Zp

zZ—Z
L P LI V. BT
c dt!'P 7 » Aol a—zg 2) dt 1"P 7 »

Es can be normalized as,

4 14 a—-z, |z—z
es =7zf—gE5 - £ Lly-nl'.
VO a—zp a+zp r3

We need to expand 3 —7, for small z -z, yielding

73 =[Yfp2 +[[Z—ZO]+[ZO —zp]]z]l/z
1/2

172 2[2__20][20_ZP]+[Z._ZO]+0([Z—Z()])2

[Sypz + [ZO ~Zp FJ

z[‘l’pz +[ZO —Zp]2

=l o2, 11,

=y = [Z_ZO][Z_ZpJ ’

n

as ¥,—> ¥, and

r—2=1+0([z—20])§1.
k]
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p

(4.58)

(4.59)

(4.60)

(4.61)

(4.62)

(4.63)

(4.64)



The normalized field is

' 0b 2 1

a—2z

e5 = { p} . (4.65)
a—2z a+zp Z—2Z

This is the same as (4.34). The asymptotic form of ¢z, peg;, for small z -z is

I —2zp+ Zp .
ct o =zg — 2 (negative)
r begin [ 0 ]|: " } (4.66)
=—Clyend.
The integral (or area) of the pulse is
1 ¢b |a—z 172 rm+zyg—z
_ —ry 429 —
Es t) begin = — l: P :l [—p } (4.67)
ca—zg|a+z, )

One can see by comparing (4.67) and (4.38), the area of E sis the same for both z

before and after z(y.
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4.4.5 Graphical Illustration

In order to illustrate what our results show, let us plot the normalized pulse
shape for various z —zas one goes from negative values through the second focal point
to positive values. For negative values the pulse follows after zero retarded time. For
positive values the pulse precedes the zero retarded time. For our example we take the
simple case from (4.1), which is related to a 3,4,5 right triangle.

One can see from Figure 4.8 the compression of the pulse as z — z; and the

expansion of the pulse for z > z(as z increases away from z.

45
== ZO 48 T ZO
=0.05 =—0.05
¢ 35 {
30 4
y 254
€s -
0.1 ; -0.1
15
02 —-0.2
0.3 - —-0.3
5 .
014012 -01 -003-0.06 -004-002 0 002004 005 008 01 0120014
ct, /f
z — ZO

Figure 4.8: Normalized pulse shape for various to demonstrate the compression

and expansion of the pulse.
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4.5 Analytical Focal Waveforms for Various Source Waveforms Driving a

Prolate- Spheroidal IRA

This section considers the time domain characteristics of some analytic source
waveforms used for determining the waveform characteristic of a prolate-spheroidal IRA

at the second focus. This is an analytical calculation of a prolate-spheroidal IRA that is
based on [3,5,17,19]. The analytical waveforms for 2-TEM-feed-arm, 45°4-TEM-feed-

arm and 60°4-TEM-feed-arm cases at the second focus are calculated. We analyze the

analytical focal waveform behavior for two different source waveforms.

4.5.1 Double Exponential Excitation (DEE)
Let us use the commonly used waveform which is the difference between two

exponentials times a unit step function instead of a unit step function. Our excitation is

_ _|,=p _ —at]
V=Vo f(0) . 1= -] ), 4.6
a=t5_1, ts =100 ps , 50 ps, ﬂ:td_l,td =lns, 2ns,

where tg is the rise and 7; is the decay time constant. The peak of the waveform is

given by (2.14) in [20] as

1

(fﬁ»=§“{{é—q=fﬁmmh (4.69)

max
fmax = P

¢=p/a,
where ., 1s the time when the maximum occurs and can be found by taking the

derivative of (4.68)
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1 o

We present the f(¢)/ fax Vvalues for different o and fin Figure 4.9. f.x and

the ¢, values for different o and [ are presented in Table 4.3

. Excitation (V) , Excitation (V)

0 2 4 6 g 0 2 4 3 8
; s Time (ns) i Time (ns
a) a=10101/5 . p=10"1/z by =101/ . p=05x10"1/¢ (ws)

; Exeitation (V) , Excitation (V)

0 3 4 6 g 2 4 6 8
1 o Time (ns) Time (ns)
Go=2x10"1/s . p=10"1/s Qo=2x101/5. p=05x10"1/g

Figure 4.9: Double exponential excitation for f(t)/ fax for different o andf.

Table 4.3: f,ax and ¢, values for different oo and 3.

Fiae Prmage (5) et {1is) g(lle)
0671 26 (o 1?
0.81 3% 1ol Sl
0.81 16 P Sl 1?
0.887 18 2100 510
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4.5.2 Analytical Focal Waveforms
The analytical focal waveforms for ramp rising step excitation are from [16]. The

excitation is a 1 Volt (V(y =.5 Volt) step, rising as a ramp function lasting 100 ps. One

can see the ramp rising step excitation in Figure 4.10 and the focal waveforms for this

excitation in Figure 4.11.

Htep Exoitat on ult)

100 ps

1V

Time

Figure 4.10: Ramp rising step excitation u(t).

E-Field(V/m o E—Field (V/m) E. E-Field(V/m) Ee
o f_o_EpH'Es =By +Es ' ro‘Epz‘fEs
&Y oz S s G 6 5.0k = =i s .._._..6 6.7 o = e e ..____6
36|~—= — 31 57 —
< E; E;
f‘_opr 2., 28,
ts =100ps t5=100ps tg =100ps
2 R Estpl APl e e e ES _Ep2 | I Es _Ep2

iy 2508\ 4.2ns ije(an) cpll 25ng\  4lms Tﬁl]e(l{s) 6l 23ms A0S Time (ns)

P P p

a) b) ¢)

Figure 4.11: Analytical focal waveforms for ramp rising step excitation
a) two-arm 400 Q b)45° four-arm 200 Q c¢) 60° four-arm 200 Q.
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From a step excitation u(t) we obtain a focal waveform as in Figure 4.12.

E — Field (V/m)

Eg _EpZ

Time (ns)
2

=IE

Figure 4.12: Step response of a prolate-spheroidal IRA at the second focal point.

Considering the decomposition of the focal waveform, the prepulse, impulse and

postpulse can be presented separately as in Figure 4.13.

E -Field (V/m) E —Field (V/m) E - Field (V/m)
Es
Ey-Ep +E,
- * L
Time (ns) Time (ns) Time (ng)
a) = Ep b) c) h EP

Figure 4.13: Decomposition of step response of Figure 4.12 a)prepulse, b)impulse,
c)postpulse.
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If we use the double exponential excitation function (4.67) instead of a step

function, we will have a response as in Figure 4.14.

E —Field (V/m) E - Field (V /m) Es (ap) E - Field (V/m)

Es - E112+EIJ

Time (ns) Time (ng) /\
\/—E \‘ Time (ns)

a) P b) c)

Figure 4.14: Decomposition of DEE response a)prepulse, b)impulse, c)postpulse.

One can see from Figures 4.13 and 4.14 that if we use a DEE instead of a step
excitation we have a decrease in the amplitude of the prepulse, an increase in the
amplitude of the impulse and postpulse goes to zero.

The impulse part of the double exponential excitation can be defined as

Eé‘ dV(l‘—tz)_ Eé‘
fmax dt fmaX

- Be P2 L g e y iy ) (4.71)

and the peak value is E5 (a — ), where ¢, =4.2ns is the time when the impulse arrives

at the second focus. Finally, we obtain response waveforms from (4.68) in Figure 4.15,
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where E, s is the value of E , at the time the impulse starts

E,; = Ep [ pi-1) _ ja(i-1) (4.72)

max
where ¢ =25ns is the time that prepulse arrives at the second focus. The

calculated £, s values for different o andB are presented in Table 4.4. 45° four-arm

200 Q and 60° four-arm 200 Q case are just V2 and 1.606 times these waveforms,

as discussed in Chapter 3.

. E -Field(V'/m) E-Field(V/m)
Bl et B e
25108 4.2ns 2.5ns 4 Ins
I — \/Ep/Epa Time(ns)_ <7/ . 5, Eps Tune (s
)e=10"1/s, p=101/s ba=10"1/s, B=0.5x10%1/s
E - Field(V /m) E-FeldVim)
2518 4.2ns )
—.l v —— e E - . » _23 — ] '
_57 F, 0 Time(ns) _ 57 Time(ns
o)a=2x10"1/5, p=10°1/s do=2x10"1/s, B=0.5x10%1/s

Figure 4.15: Double exponential excitation responses for different c.and f3.
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Table 4.4: The prepulse, E values for different oo andf3.

Ps

Epg ot (1/g) glls)
01 10 it
(.25 gotd 05107
01 2i1ptl 1o*
(.25 2z1010 0. 5x10°

4.5.3 Conclusion for Ramp-Rising Excitation and DEE
We obtain higher impulse values for the double exponential excitation because

the prepulse value £, s is less than the regular £, value that we have from the step

excitation at the time that the impulse arrives. One can see in Figure 4.11b) that we have

a decrease from —0.57V/m to —0.1V/m, an 82% decrease. If we compare Eps with
the £, value for step excitation with Figure 4.11a), we have a decrease from —0.4V/m

to —0.1V/m, a 75% decrease. If we look at the impulse for step and double

exponential excitation and compare Figure 4.11a) with Figure 4.15a), one can see that we

have an increase from 4.2V /mto 5.1V/m,a 22% increase in the peak focal field. The

postpulse also decays toward zero. This type of waveform is convenient because of its

simplicity and it may better model the pulser output.
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4.6 Analytical Errors

Analytical errors can be classified into two groups. First of all, the analytical
calculation does not account for feed arm width, and it is a little different from [5].
Secondly, when calculating the aperture integrals, we have used the uniform-field part all

the way to # =%, but the feed arms intersect partly into S, for ¥ <¥,. The aperture
integrals are correct up to some radius less than ¥,,. Note that the 60° arms are much

wider than the 45%arms for the same 200 Q impedance. The analytical waveform, while

simple, is still good, but not perfect.
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5 NUMERICAL SIMULATIONS

5.1 Introduction

This chapter presents computational electromagnetics results to compare with the
analytical results for the waveform from a prolate-spheroidal IRA. The numerical results
for the waveforms near the second focus are discussed for spot size analysis.

We use CST MICROWAVE STUDIO (CST MWS) for the 3D Electromagnetic
simulation. CST MWS is based on the finite integration technique (FIT). This numerical
method provides a universal spatial discretization scheme, applicable to various
electromagnetic problems ranging from static field calculations to high frequency
applications in time or frequency domain. CST MWS applications include the expanding
areas of: Mobile Communication, Wireless Design, Signal Integrity, and EMC. The
broadly applicable time domain solver and the frequency domain solver simulate on
hexahedral as well as on tetrahedral grids [21].

We are dealing with a computationally difficult problem that causes inaccurate
results in our numerical simulations. We want greater concentration of energy at the
second focus; for this reason we plan to use a medium that has a higher relative dielectric
constant &, placed nearby the target. This also increases the complexity of our problem;
however, our experimental results show that the wave propagation medium which has the

highest ¢, (in our case it is water with &, =81 [1]) is dispersive.
In this chapter we describe simulation results of two-arm 400 Q, 45° four-arm

200 Q, and 60°four-arm 200 Q prolate-spheroidal IRAs to obtain the focal

waveforms. The spot size is analyzed for the two-arm case, along the x-, y- and z-axis.
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We compare our numerical results with analytical results. For future work, we present an

equivalent geometry that can be used as an equivalent source to simplify the problem.

5.2 Comparison of Analytical and Numerical Focal Waveforms for a Prolate-

Spheroidal IRA

This section presents the numerical and analytical results for the focal waveform
from a prolate-spheroidal IRA. Both numerical and analytical calculations are discussed
for IRAs with different feed arms. In both cases the comparisons between the numerical
and analytical results are presented and discussed.

Analytical focal waveforms for ramp rising step excitation for two-arm 400 Q,

45° four-arm 200 Q and 60° four-arm 200 Q were presented in Figure 4.10. We

want to compare the numerical focal waveforms with analytical focal waveforms for each
case. One can see the comparison of the focal waveforms and zoom in on the impulse for

analytical and numerical focal waveforms in Figures 5.1-5.3.
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Figure 5.1: Focal waveforms for the two-arm case: a)analytical and numerical,
b)expanding the impulse.
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Figure 5.2: Focal waveforms for 45° four-arm case: a)analytical and numerical,

b) expanding the impulse.
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b)expanding the impulse.
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The excitation is a 1 Volt (Vg =.5 Volt) step, rising as a ramp function lasting

100 ps. Comparing the analytical results with the numerical results, one can see the
differences in the postpulse. The prepulse comparison is rather good and the impulse is
trying to approach the analytical shape and value, but the postpulse has no relation to the

analytical result.
For the two-arm and 45° four-arm cases the prepulse of —0.4 V/m and -0.6 V/m

agree very closely between the analytical and numerical cases. For the 60° four-arm case
the analytic prepulse is -0.6 while the numerical case is -0.7 (some error). The impulse
part shows great agreement between analytical and numerical, approaching the analytical
value from below, likely due to the high-frequencies which are truncated from the
numerical solutions.

We have ringing in the postpulse and a detailed discussion on the postpulse
ringing for the experimental results is presented in Chapter 6. The analytical waveform,
while simple, is still good, but not perfect. The analytical errors that were discussed in
section 4.7 may cause this inconsistency. In our analytical calculations we assume we
have infinitely thin feed arms and reflector, but CST MWS does not allow this. One
source of this ringing is the feed. In CST MWS a voltage source was used for excitation
and we have a 0.5 cm distance between the feed arms; however, in our analytical
calculations we do not account for this. The numerical computations may be inadequate,

perhaps due to mesh size and frequency limitation.
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53 Numerical Focal Waveforms for Various Source Waveforms Driving a

Prolate-Spheroidal IRA

5.3.1 Numerical Focal Waveform with Smoother Rise for Excitation
The discontinuity in the ramp-rising step excitation can cause oscillations in the
postpulse and a smoother waveform can be used to check this. The smoother waveform

has the same ¢,, (based on maximum rate of rise) with the ramp-rising step (normal)

waveform. For a step like f(¢), the ¢,,,.1s

J;
tmr :dfm¢. (51)
dt ilmax

We have the same ¢,,,. but no discontinuities in the slope (derivative) to reduce

the required high frequencies. We use an arbitrary waveform that is smoother and is

presented in Figure 5.4 and can be defined as

f(t)=(1—-cos(2t/t5))/2. (5.2)

. __Nérr_l}al_ il

02 023
Time (ng)

Figure 5.4: Ramp-rising (normal) and smoother excitation functions.
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Figure 5.5: Analytical and numerical waveform for a)smoother, b)ramp step excitation.
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One can see by comparing Figure 5.5 a and b that we still have oscillations in the

prepulse, but we have smaller late-time oscillation amplitude.

5.3.2 Numerical Focal Waveforms for Double-Exponential Excitation Waveforms

Driving a Prolate-Spheroidal IRA

The detailed analytical calculations for the DEE were discussed in section 4.6.
This subsection considers the time domain characteristics of the numerical waveform of a
prolate-spheroidal IRA near the second focus when it is driven by a double-exponential
excitation.

We use double-exponential excitation waveforms to drive our prolate-spheroidal

IRA where t5 =100 ps, t; =lns, tg is the rise, and ¢4 is the decay time. DEE analytical

responses for t5 =100 ps, t; =1ns two arm, 45° four arm and 60° four arm are

presented in Figure 5.6.
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DEE numerical focal waveforms are presented in Figure 5.7. If we compare
Figures 5.6 and 5.7 we obtain numerical waveforms which are really close to the
analytical waveforms. However, we have lower prepulse and impulse amplitude, and
these inconsistencies are based on the limitations of the idealized analytical assumptions

and numerical errors.

54 Numerical Calculation for the Waveforms Near the Second Focus of a

Prolate-Spheroidal IRA

This section discusses the numerical results for the waveforms near the second
focus of a prolate-spheroidal IRA. Both numerical and analytical calculations are for
IRAs with different feed arms. Variations of the waveforms for x, y and z-axis variations
near the second focus are found for two-TEM-feed-arm IRAs.

Given that the impulse has some small pulse width 75 =100ps, the maximum
fields will exist in some small region around zy. We can make a rough estimate of spot

size [3] as follows. The pulse width is used to define the spot boundary with respect to ¥

and z:
ty =t, =2ts =200 ps. (5.3)
Therefore, the spot size from (A.23) are

|Az| =2 [1-z /a]_lct5 =15cm,
(5.4
A¥Y :%ctg =3.75cm.
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5.4.1 Numerical Waveforms for Two-Feed Arms
x =0 1s one of the symmetry planes of our design. One can see from Figure 5.8

that at x = +4cm the waveform begins to disperse as expected from (5.4), y =0 is also
one of the symmetry planes of our design. The dispersion starts at y = =4 cm from Figure
5.9. If we compare the waveform for x =+4cm and y =+4cm, we can see that we have

a larger amplitude for x- axis variation. This is expected because if we move along the y-
axis we are moving away from the feed arms. But for the x-axis we are getting closer to

one of the feed arms while we are getting farther away from the other one.
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Figure 5.8: Numerical waveforms for various x-axis variations.
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Figure 5.10 presents the electric field vectors for different rays. One can see from

Figure 5.11 the waveforms are not symmetric with respect to the z = z(y plane (which is
not a symmetry plane). We have competing factors. As we move away from S, this gives

lower fields due to the inverse distance scaling in the integrals. However, the wave from

S, 1s not oriented in the x-direction, but is tilted, this being more evident the closer you

areto S, .

Figure 5.10: Depiction of electric field vectors for different rays.
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variations.
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5.5 Replacing the Prolate-Spheroidal Reflector by an Equivalent Source

In this section, we use an equivalent source on a sphere for separating the target-
focusing-lens problem from that of the prolate-spheroidal reflector in order to simplify
our problem numerically. Two different electric field variations are imposed on this

spherical surface.

5.5.1 Introduction

We have to deal with two different problems to find the focal waveform
characteristics of our spheroidal IRA’s geometry. First of all our geometry is large
compared to the wavelength, and we want to use large dielectric constant materials to
obtain better focusing. For numerical simulation we use shells to implement the increase
in permittivity. This leads us to simplify the antenna geometry. We use two approaches
for simplification. We use a spherical array as an equivalent geometry which is presented
in Figure 5.12. Then we impose two different types of electric field variation.

0,0, , ¢, angles range from
0<O0<7m/2 ,0<0,<7/2 ,0<¢p<m/2. (5.5)

One can see that, for fixed ¢, and constant &, , if we let fields vary along r, toward 0, the

beam edge is around HC’.
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Figure 5.12: IRA and equivalent geometry.

5.5.2 Design Considerations
We impose two different kinds of electric field variation on the S, surface. These

imposed electric field variations are based on (3.13) in [3] and (2.2) in [4]. Thus the

imposed field is

Wb 2cos@) T 2sin() T Hu(t) arrive center at t=a/c (5.6)

o :ﬂfga(a—zo) l4+cos®) l4+cos®)

w(t+a/c) arrive center at t=0

This is replaced by the leading term in an expansion around the z-axis, giving the same

field there. The higher order terms (cos(m¢ ), sin(m¢@) >1) integrate to zero on (and

sufficiently near) the z-axis, including the focal point.
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Ez = —2Sli’l(93) 1 03 (57)

dg aZ—ZO

Vo b > lu(t) arrivecenteratt =a/c
u(t+a/c) arrivecenteratt=0

Let us write (5.7) in the same coordinate system of (5.6), to obtain (see Figure 5.13)

I - - -
Ey=— 5 5 cos(th ) — 16, cos(©, )cos(py)— 1 ¢ sin(@ )+ 1 cos(©, )sin(¢, )
dg a —z
(5.8)
u(t) arrive center at t=a/c
u(t+a/c) arrive center at t=0

N
g, ¥
Lo 2. 4 f&“-.
¥3 & & N
X3 Yo

Figure 5.13: Coordinates used in Figure 5.12.

An equivalent source on a sphere is proposed and two different types of electric
field variations on this array surface array are imposed. This technique can be used for
numerical design; however, it is difficult to impose electric field variation on the surface

of a sphere numerically.
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6 EXPERIMENTS

6.1 Introduction

Experimental setups using two-arm and 60° four-arm prolate-spheroidal IRAs

are used to obtain better focusing for a prolate-spheroidal IRA and these results are

compared with analytical results from Appendix A and Chapter 4 for comparison. This

chapter presents a summary of the experimental setup and the dimensions of these

experiments are based on [3, 16]. These setups were motivated by a biological

application [1].

6.2 Experiments

We feed our IRA using a V; =0.5V (peak-peak 1 V) and ¢5 =100 ps, rise time

ramp-rising step. The analytical focal waveforms are presented in Figure 6.1 for this

excitation.
E - Field (V/m) By
| T Epa +Eg
36 oA
Es E,
t 5 L
ty = 100ps
2 N
-4 2 .::.'lls \_ﬂ__ o T_i_'[ne (IIS)

P

Figure 6.1: Analytical focal waveforms a) two-arms, b) 60° four-arms.
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We use maximum ¢,,,. (based on maximum rate of rise) as #5 to compare our

experimental results with analytical results.

6.2.1 Experimental Setup and Data Analysis Technique

The experimental setup basically includes three components. These are a prolate-
spheroidal reflector with feed arms, a sampling-oscilloscope, and a pulse generator. They

are presented in Figures 6.2 and 6.3.

3 . Prolate-Spheroidal

Tekronix TDS 8000B
Digital Sampling-Oscilloscope

IPicosecond Pulse Labs
Pulse Generator

Figure 6.2: Experimental setup for a two-feed arm prolate-spheroidal IRA.
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Figure 6.3: Experimental setup for a 60° four-feed arm prolate-spheroidal IRA.

As seen from Figure 6.4, we use a Tektronix TDS 8000B Digital Sampling-
Oscilloscope to measure the waveform at the second focal point. A Picosecond Pulse
Labs pulser with a PSPL 4050 RPH fast pulser head generator is used for excitation. The
output of the step generator is a 45-ps rise time, 10 V amplitude. We have also used a 10
dB attenuator to decrease the voltage level for safety reasons. Two nano-second and three
nano-second long cables are used to connect the pulser to the feed arms and sensors to the

sampling oscilloscope.
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Figure 6.4: Sampling-oscilloscope and pulse generator.

The feed arms’ dimensions are calculated in Chapter 4 (Table 4.1 and 4.2) and

they are presented in Figure 6.5. The feed arms are 0.8 cm thick.

b=172¢cm b=3258cm
3.2 r:m..- | 89 cm . 15 cm 17.58 ¢cm

A
©=114.237 o
- <" 4=4223

T e=74.39 cm

a=5795cm

i = 5967
p bo= 53.1'-"’\
Bi=47° _
a) 2-Arm b) 4-Arm 60°

Figure 6.5: Two-feed arms and 60 four-feed arms dimensions and angles.

One can see the 60° four-feed arms IRA in Figure 6.6 and how it is inserted in the

reflector. We use foam with a relative dielectric constant €, =1.013 to maintain the feed

arms angle at 60° .
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Figure 6.6: 60° four-feed arms used in one of the IRAs.
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Fast D-Dot, slow D-Dot and B-Dot probes are used for field measurements and
are presented in Figure 6.7. We use the B-Dot probe to obtain the magnetic field and also

use the prepulse data of the B-Dot probe to calibrate the slow D-Dot probe data. We use
the data from the B-dot probe which has an equivalent area 4,, =1 em? and analyze the

data as follows:

dB

V=4, o and

(6.1)

1L,
B=——|V(t )dt .
—— Jr)

€qd —xo

Figure 6.7: Fast D-Dot, slow D-Dot and B-Dot probes (from left to right) used for
measurements.
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We can find the equivalent electric field as

t
E, =cB =AL [ved yar'. (6.2)

eq
€qd —o

This equivalent electric field, E,,, gives the exact result for the prepulse because we

eq’
have a TEM wave and E/ H =1, =377 (2 for free space. We calibrate our D-Dot data

by comparing the prepulse term. We obtain the data from the D-Dot probe and analyze it

as follows:
I:L:Aeqd—D, and
Z dt
. J{ o (6.3)
E=———7|V(t )dt .
€0 Zy Aeq _o
Our pulse generator has a ¥y = 10V excitation we feed our IRA with
V=TV, (6.4)
where T is the transmission coefficient
27
T=—-=L (6.5)
ZL + ZO

The pulse impedances for the two-arm and 60° four-feed arm cases are 400 Q
and 200 €, respectively. Since we are using a ground plane Z; =200 Q and 100 Q,

respectively. The transmission coefficients are 1.6 and 1.33. In our analytical calculation

we use Vy = 0.5V and then normalize the data to obtain the electric field as

t
! vt )ar. (6.6)

Er =
N 20T 60 2 Ay
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6.2.2 Experimental Results Normalized to 1 Volt Differential Input

Figures 6.8 and 6.9 shows that the results for the focal waveforms are close to
each other but for the slow D-Dot sensor we do not have much oscillation in the
postpulse since it has a slower frequency response. Although we do not have TEM waves

for impulse, we calculate 7 =E/H . For the two-arm case 77 is 384, for the four-arm
case 771s 408. However in free space 7y =377 (2. This proves that we do not have a

purely TEM wave for the impulse.

88



: |

- I
£ |
: 1”1
BRI IR IAYATAR

2
-0.5 e e =8 —

a)
h
|
£’ \
a 15 ]
g . i
i —
0.5 L \'l e 2 215 \ [ /\ 3{5\/ 4
| \W\J \/ VY

b)

Figure 6.8: B-Dot probe focal waveforms, E ., for a) two-arms, and b) 60° four-feed

arms.
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We can see from Figure 6.10 that if we use the fast D-Dot sensor we have this

oscillation the oscillation may not be due to the different type of sensors we are using.
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Figure 6.10: Fast D-Dot probe focal waveforms for a) two, b) 60° four-feed arms.

91




Figure 6.11 presents a comparison of the focal waveform from the B-Dot and the
normalized focal waveform from the fast D-dot. They oscillate at different frequencies.
The fast D-Dot sensor response is very fast; this can cause differences in the postpulse.
We do not have that much ringing in the slow D-Dot postpulse. The B-Dot sensor causes

a 3 GHz ringing.

3
28
2
T 15
S

Foca Waveform for B-Daot
ns - |
£ Ha | 14 2 25

0.5 [

3 Ao

»
Narmalized Focal Waveform t {I'IS}

for Fast D-Diat

Figure 6.11: Focal waveform from the B-Dot and normalized focal waveform from the
fast D-Dot measured of the two-arm IRA.

We connect the B-Dot probe directly to the oscilloscope. Figure 6.12 shows the
measured reflection coefficient and arrows show the ringing that can cause the postpulse

oscillations.
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Figure 6.12: Reflection coefficient ( I' ) measurements: The B-Dot probe directly
connected to the oscilloscope.

There will always be causes for oscillations and aberrations at the levels observed
in the fast D-dot trace. There are cable and connection non uniformities, nonlinear effects
in the sampler, sampling time errors, digitizing errors, etc. Most importantly, the

generator signal is not pure and has lots of aberrations following the step.
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6.2.3 Conclusion

Table 6.1: Maximum values of the Eeq variation along the y and z -axis from the B-Dot
Sensor.

Focal E{Vim}|y<0. z=0|E [Vim}{y>0, z=0|E [Vim}ly=0, 2<0|E [Vim}|y=0. z»>0|E [Vim])
2 Arm 245 y=_dcom | 227 [ y=Zom ] 201 Jz=-1cm | 246 | z=1cm | 241
y=-dcm | 227 | y=dcm | 144 | z=-2cm | 2.47 | z=2cm | 240
y=-6cm | 115 | y=6om | 087 | z=-dcm | 2.35 | z=dcm | 2.28
y=-8cm | 079 | y=8cm | 066 | z=-6cm | 2.21 | z=6cm | 218
z=-8cm | 203 | z=8cm | 207
7=-10cm| 1.80 | z=10cm | 195
z=-12cm| 157 |z=12cm| 169
z=-1dcm| 1.30 |z=14cm | 148
z=-16cm| 1.12 | z=16cm | 1.38
4 Arm 336 y=-dom | 295 | y=Zom | 256 | z=-1cm | 341 | z=1cm | 332
y=-dcm | 294 | y=dcm | 150 | z=-2cm | 3.42 | z=2cm | 3.2V
y=-Hcm | 102 | y=Bcm | 084 | z=-dcm | 325 | z=dcm | 313
y=-8cm | 086 [ y=8cm | 089 | z=—6cm | 290 | z=6cm [ 301
z=-5cm | 265 | z=8cm [ 285
z=-10cm| 235 | z=10cm| 269
=12cm| 226 | z=12cm | 2.35
z=1dcm| 1.85 | z=14cm | 2.09
7z=-16cm| 1.52 | z=16cm | 1.93

As seen in Table 6.1, our focal point is about 2 cm closer to the reflector because
we do not have sufficient high frequency components and we also have a step

term E affecting of the amplitude of impulse. Figure 4.3 shows that the amplitude of the
impulse is proportional to E5 and E, but Es is the dominant term. The E g value is
larger for high frequencies and E; is larger at the aperture plane. £ decreases more than
Es toward the focal point. Thus we have two computing parameters, E5 and E.

Because of these two terms, our peak point is 2 cm closer to the reflector. At the focal
point our prolate-spheroidal IRA works like a differentiator or high-pass filter, high

frequencies contribute more than low frequencies.
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Although the amplitudes of the electric fields should be symmetric along the x-
axis with respect to x=0, they are different. We believe this is because of errors in the
geometric shape or alignment of the prolate-spheroidal reflector.

The slow sensors are more sensitive than the fast D-Dot sensor, but they are not
values which result in a

fast enough to obtain the actual 7, values. We obtain larger 7,

r r
decrease in the amplitude of the impulse part of the focal waveform. If we use the fast D-
Dot sensor, it is not sensitive enough. We obtain higher amplitudes in the impulse part,

whereas we obtain more differences in the amplitude of the impulse part of the focal

waveform. The analytical, experimental results, oscillation amplitude, ¢,,. and differences

in experimental results compared to the analytical results are summarized in Table 6.2.

Table 6.2: Analytical, experimental results, oscillation amplitude, 7,,,. and difference in
experimental results compared to analytical results.

Analytical peaks{V/m)| Exp results{V/m) |Oscillation[V/m)| tmr[ps] | Difference|%)
B-Dot 2 Arm 2.96-3.55 2.5 0.4 119 21.4
B-Dot4 Arm 4.4-53 3.5 0.97 127 32.7
D-Dot 2 Arm slow 2.96-3.55 .5 0.38 119 21.4
D-Dot 4 Arm slow 4,3-5.2 3.5 (.92 130 32.7
D-Dot 2 Arm fast 14.7-15.3 9.6 1.58 16.5 36.0
D-Dot 4 Arm fast 28.4-29.4 19.8 3.3 22 315

There are several factors that can lead to differences in the analytical expressions

and experiments. When the focal fields are calculated in Chapter 4 and [3], the aperture
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integral did not consider the feed arms and feed-arms’ thicknesses. This can cause an
error in the calculation of the impulse amplitude of the focal waveform.

There are errors in the experiments that need to be accounted for. We are in the
limit of our instrumentation, we have less accuracy because of the limitation of the
probes.

We have checked the pulser and the connection cables to find the reason for the
postpulse oscillations. These results are presented in Figure 6.13. One can see from
Figure 6.13 that the postpulse oscillations are not related to the pulser or the 2 nano-
second and 3 nano-second long cables that we use to connect the pulser to the feed arms
and sensors to the sampling oscilloscope. They are not oscillating at the same frequencies
and they do not have the same amplitudes. We do not have any problem with the pulser

and connection cables.
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Figure 6.13: The focal waveform data: a) the normalized data from the pulser, b) with 2
nano-second, ¢) with 3 nano-second long cables.

97



We next checked the prepulse term and took its derivative, shown in Figure 6.14.
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Figure 6.14: The derivative of the normalized prepulse term and the focal waveform.
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In Figure 6.14 we compare the derivative of the normalized prepulse term and the
focal waveform. They are oscillating at similar frequencies. This proves that the ripples
in the prepulse cannot be associated with the feed arms near the reflector, by causality
(speed of light). The ripples come from the prepulse not from the reflected waves; we do
not have any problem with the reflector and the feed arms. These ripples come either
from the feed point or from the sensor. We considered the feed point first and measured
the reflection coefficient (I") to check for problems with it.

One can see the reflection coefficient (I") values from Figure 6.15. It starts from

-1 at short circuit, it goes to 0 when the current reaches the 50 €2 cable, it goes to 0.3

when it reaches the feed arms. Finally, it goes to -1 because the reflector feed arms are
shorted. We can calculate the feed arms pulse impedance as

FZM_ (6.7)
ZL +ZO

I'=03 and Z; =93 Q, which is close to the our analytical value of

Z; =100 Q we do not have any problem in the feed arms geometry.
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Figure 6.15: Reflection coefficient ( I" ) measurements of the reflector with feed arms for

impulse impedance calculation.

Figure 6.16 shows the ripples in the I" with feed arm and open circuit case. If we
compare the normalized derivative of the I with the focal waveform for feed arms and
open circuit case as presented in Figure 6.17, they do not oscillate at the same
frequencies, the transition between barrels may not cause these oscillations. Even if we
have perfect connection between the feed arms and excitation point, it is difficult to

obtain the actual focal waveform because of geometric restrictions. This can cause some

differences but it should not be that significant.
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Figure 6.16: Reflection coefficient (I" ) measurement a) with feed arms, b) open circuit.
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Figure 6.17: Normalized derivative of I" and focal waveform a) with feed arms,

b) open circuit.

We can see from Figure 6.12 that the B-Dot sensor causes the ringing in the

postpulse. For the D-Dot probe we cannot obtain the expected analytical postpulse. There

should also be another factor causing the ringing and the decrease in the amplitude. When

the focal fields are calculated in [3] and Appendix A, the aperture integral does not

consider the feed arms and feed-arms’ thicknesses. This can cause an error in the
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calculation of the impulse amplitude of the focal waveform; we believe this can cause the
inconsistency between the analytical and experimental results. We want to see the effect

of the feed arms on the aperture plane S, , we performed another experiment. Assume we
have an arbitrary piece of metal (13cmX18cmX0.8cm) on the aperture plane S, . Figure

6.18 shows the experiments that are presented in Figure 6.19.
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Figure 6.18: 60° four-feed arms a) with a piece of metal on the foam, b) with a piece of

metal under the foam.
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In Figure 6.18 metal conductors are on the aperture plane S, where we integrate

the fields to find the focal field at the second focal point. We try to see the effect of the

feed arms on the aperture integral by inserting a piece of metal.
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Figure 6.19: Focal waveforms from B-Dot probe for 60° four-feed arms: F (focal
waveform), F1 (focal waveform with a piece of metal on the foam), F2 (focal waveform
with a piece of metal under the foam).

Table 6.3: Maximum values of F, F1 and F2.

WlaxE )] as(F 10 b asE 204 m))
3.32 3.23 2.86

Figure 6.19 presents the values of F (focal waveform), F1 (focal waveform with a
piece of metal on the foam), and F2 (focal waveform with a piece of metal under the
foam). The peak value of these waveforms are given in Table 6.3. In Figure 6.19, the
behaviors of F and F1 are almost the identical. However, as seen from Table 6.3, FI<F

but as expected this difference is not significant. This is because we have a null point

105



right between the feed arms at the top of the reflector. We have a significant difference
between the behavior of F and F2.

One can easily see that, although inserting a metal on the top of the S, does not

disturb the field that much because of the null point, inserting a metal under the foam
disturbs the focal field. If we insert a piece of metal under the foam, we have aperture
scattering. Significant destructive interference occurs because of the feed arm itself and it
blocks the reflected fields. The reflected fields are scattered through diffraction.

We can easily find the difference by comparing F and F2 from Table 6.3

F_F2*100=%*100=14%. (6.8)

Difference(%) =

A 14% difference is a significant difference. If we compare F and F1, we have a
difference of about 3%. The feed arm itself does not affect the prepulse because the
prepulse is the direct radiated field from the feed arms we obtain almost the exact
prepulse value in our experiments; however, any other metal scatters the prepulse field.

The geometric shape or alignment of the prolate-spheroidal reflector may also
causes some errors. The misshape of the reflector will lead to a broader focus and smaller
amplitude.

The prolate-spheroidal reflector was manufactured from fiber and the inside of the
reflector is painted with copper conductive paint. The surface resistivity of the paint is
<0.3 ohm/square at 1 mil dry film thickness; <0.10 ohm/square at 2 mil dry film
thickness. We checked the reflection from the conductive paint on the reflector and
measured about 99% reflection; however, there might be some hot spots that do not

reflect very well and this can cause some errors.
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We are consistent with Table 6.2 regarding the analysis of the differences. Focal

waveforms from the slow D-Dot probe for 60° four-feed arms: F, F1 and F2 are

presented in Figure 6.20 and one can see the peak values for these focal waveforms in

Table 6.4.
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Figure 6.20: Focal waveforms from the slow D-Dot probe for 60° four-feed arms: F
(focal waveform), F1 (focal waveform with a piece of metal on the foam) , F2 (focal
waveform with a piece of metal under the foam).

We can easily calculate the difference by comparing F and F2 from Table 6.4 and

the resulting difference is 8%.

Table 6.4: Maximum values of F, F1 and F2.

hlaxiF &imd

M ax(F 1 (v irm))

Max(F 207 7m))

3.67

3.62

3.40
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We compare our analytical, numerical and experimental focal waveforms for a
two-arm prolate-spheroidal IRA in Figure 6.21.

4
3.5 /,f;\\/_" Arahtical
5 3 |\ Numericd
"E ,V \‘T—" Experimental
E 15 [
= R
o 0.5 } 1\\.
D j‘y III \xﬂ'h'\ s
-0.5 2 : .
-1 ¥,
-1.5
tins)

Figure 6.21: Analytical (slow D-Dot probe), numerical and experimental focal
waveforms of a two-arm prolate-spheroidal IRA for tmr =119 ps.

One can see by comparing analytical, numerical and experimental focal
waveforms that the prepulses agree very well. The analytical and numerical impulses’
amplitudes agree as well. However, the experimental impulse amplitude is smaller than
the others. It is also broader near the base. As discussed before, any misshape of the
reflector may lead to this in the experiment. We have also a feed arm blockage effect that
decreases the amplitude of the experimental impulse; however we did not see this effect
in our numerical results. Our analytical result is based on an idealized assumption and it
does not account for the feed arms. Finally, for all cases, the postpulse behaviors are

different.
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7 LENS DESIGN FOR A PROLATE-SPHEROIDAL IRA

7.1 Introduction

In this chapter, we discuss the design procedure for different types of dielectric
lenses for better concentrating the fields at the second focus of a prolate-spheroidal IRA
to increase the fields and decrease the spot size. We have a very fast and intense
electromagnetic pulse to illuminate the target [3] which is located at the second focal
point. One of the most important problems with concentrating the fields on the target is
reflection. We have to deal with this reflection because the dielectric property of the
target medium and the medium through which the incident wave propagates are different.
The reflection of the pulse leads to a smaller field at the second focus where our target is
buried. We discuss the addition of a lens to better match the wave to the target. We can
obtain larger fields and smaller spot size [22].

To obtain better concentration at the target we can use different types of lenses.

The transmission coefficient from one medium to the another one can be defined as

17277}
T=2{1+8,| . (7.1)

where ¢,, is the relative permittivity of the target medium.

Suppose now that we have a lens in front of the target with relative permittivity
Ep =& (7.2)
The fields from the reflector are transmitted with transmission coefficient given by
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1/27°!
To=2|1+e | . (1.3)

We will have a slower wave speed and an enhancement factor which is an increase in the

impulse portion of the focal waveform from [22] as

-1/2
—1/2
VZ[SI,EEOIU()] =cC grﬁ ,
(7.4)
172 1/2
Fo=¢&p =&y -
Thus, for the impulse part of the field we will have a net increase of
—1/2]7!

Suppose now that we have a lens in front of the target with relative permittivity
<&,y <&py. (7.6)

We will have then two transmission coefficients and the total transmission coefficient can

be defined as

_ -1
/27! . /2 .
T=TTy=2|1+&, | 2|1+|-L = . (7.7)

Epg 1/2 /2
1+&,, |1+ Zrt
Epp

Finally, suppose we have a lens with a graded relative permittivity given by
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1’121’5 21’2,

g(n)=1, (7.9)
Epp(1) =&y .

The wave propagating through this takes the same form as that of a wave in a
transmission-line transformer. The high frequency early-time transfer function can be

defined as [22]

(20]1/2 ~1/4
T={20| =g, . (7.10)
Zy

We still have the enhancement factor the transmission enhancement

+1/2-1/4 +1/4
FoT= ey & = &y - (7.11)
The transmission enhancement of the lens, as discussed in [23] for an exponential
variation of the characteristic impedance of the transmission line (for constant wave
speed) along the line, is somewhat optimal. In this chapter we present different types of
graded lenses for stronger focusing at the target.

The focal point is zy =37.5 cm and the other parameters of the prolate-

spheroidal IRA are defined in (4.1).
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7.2 Calculating the Optimum Number of Layers for a Lens

In this section we calculate the optimum number of layers to obtain the required
field at the focal point of a prolate-spheroidal IRA based on a plane-wave approximation.
N layers of increasing dielectric constant lenses which have the same ratio of dielectric
constant are considered for a prolate-spheroidal IRA that is based on Appendix A and

[22]. The geometrical illustration of this design is presented in Figure 7.1.

Epmaz| Tty &ry ery &g
- - =
Ty T T

Figure 7.1: N layers of lens, dielectric constants and transmission coefficients.

The total transmission coefficient can be defined as

N
Tyotal :HTn ) (7.1)
1

h

where T, is the transmission coefficient between n™ and n™+1% layer and it can be

defined as
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-1/2
_ 2Zn+1 _ 2‘97’n+1
n - - _ _ .
Z,+Z, 1/2+ 1/2
Ern TE€rnv

(7.2)

The ratio of dielectric constant between subsequent layers are constrained to be the same,

Eratio = 1,41 / €1y -
For N layers

N
(grnﬂ /Srn ) = €ratio = &rmax -

Substituting (7.4) in (7.2), we have

For N layers from (7.1)

1/N -1/2
2 &1 max

/N -1/2
1+] € max

Tiotal =

(7.3)

(7.4)

(7.5)

(7.6)

If we have a continuously increasing dielectric lens we have a total transmission

coefficient defined in (7.10) as



-1/4
Tiotal = €rmax - (7.7)

If we have an infinite number of layers, (7.6) approaches (7.7). We should decide
how many layers will be acceptable to obtain the closest transmission coefficient to the

continuously increasing dielectric lens case.

Table 7.1: Transmission coefficients for different N and &, ),y -

Tmta] Erma}:
N 16] 25| 36 49| 64| 81
2| 0 4424| 0 352| 0336| D.3009| 0273] 0.5
3|0.4818| 0.a02| 0358| 0.3237| 0296| 0.274
4] 0471 0a13] 0.37| 0.3362| 0.303] 0267
5|0 47e6| 0 415] 0377 0.344] 0318| 0298
10| 0. 4881| 0433] 0.352| 0.3605) 0.335] 0.314
20| 0454 oa44] 04| 03591 0244 0323
40| 0.457| 0 444] 0.404| 0.3735| 0.345] 0 325
50| 0 4975 0 444] 0.405] 0.3744] 0.35] 0.329
100] 0.4568| 0 446] 0.407] 03762 0.952] 0.331
—1/5<
o e 0.5| 0.447] 0.408] 0.378| 0.354] 0.333

The number of layers depends on the sensitivity of the application accuracy. In
general using more than 10 layers is not practical for manufacturing and we try to obtain
the closest transmission coefficient to the continuously increasing case. From Table 7.1

one can see that, for 10 layers, N=10, T;,, approaches close to the continuously

increasing dielectric lens case. Even though 10 layers does not give us that much
improvement if we compare it with N=2 layers, we took N=10 layers for our later
calculations. One can easily decrease or increase the number of layers for specific
applications. We took the maximum number of layers, which is N=10, that can be

manufactured for later calculations.
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7.3 Three Different Types of Graded Lens Design for a Prolate-Spheroidal IRA

The basic design considerations for the physical concept of three different types

of increasing permittivity dielectric lens are considered. The focal point is zj =37.5 cm

and the other parameters of the prolate-spheroidal IRA are defined in (4.1). The lens is a

half sphere (or half ball in mathematicians terms) and its radius is 7,,,,, as shown in

Figure 7.2.

+ 3

/ n Zn
» Lens o

"
\ \\“
S
X Dielectric

Figure 7.2: Addition of lens with prolate-spheroidal IRA geometry.

As discussed in [20] before, the exponential variation of the characteristic
impedance of a transmission line along the line is optimal, provided that the speed of
propagation is constant along the line. Some modification may be useful here since the

speed varies inversely with the square root of the dielectric constant.

115



The lens relative permittivity is

at r=1rp,¢

1
gr(r)= . 7.8
() {srmax atr=0 (7.8)

7.3.1 Exponential Variation of ¢,

One suitable form for ¢, is an exponential function as
g,(r)=el(Mmax=r) (7.9)

As we know at 7 = 0 the relative permittivity iS &,_&; 4 SO

Ep max = ecl (Tmax ) ,
1 (7.10)
C = (e, max )-
rmax
If we substitute (7.10) in (7.9), €, can be found as
In( &p max (1= : )
e (r)=e "max (7.11)

The rise time is estimated as 75 =100 ps the distance corresponding to this rise time is

ls=cts=3cm (7.12)

1n air.

The propagation distance of the wave from r =r,,,, to r =0 is
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7

Tmax Tmax 1/2 Tmax %Z”(grmax)(l_ )
Cligns =€ | —dr = [ er(rydr=1| e fmax
0 0 0 (7.13)
—(31/2 Y 2rmax
rma In(e, max)'

The normalized cty,,, 1s

1/2 2

= (‘9r max_l)

Clions
Fmax In(&p max)

(7.14)
The distance between the source and lens is (0.375m + 1y, ) -

After this design procedure we designed a lens that is matched to the target

dielectric &, ,,,, - The thickness of the target dielectric material should be

n>2, (7.15)

in order to minimize the effect of the reflected wave on the impulse term.

7.3.2 Compensated Incremental Speed (CIS) form of ¢,

As we mentioned before the exponential form assumes that the propagation speed
is constant. However, it is not constant we need to compensate for this assumption. Let us

assume we have a plane wave problem in an inhomogeneous (isotropic) slab with ¢,.(z)

and set the relative change in wave impedance over a transit time A7
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-1/2
Aln( &, )

C 7.16
Az 2 (7.16)

with the wave impedance Z,. proportional to gr_l/ 2 The distance based on the transit

time can be written as

1/2
cdr= ¢, dz. (7.17)

-1/2

For a given Ar the Az decreases as ¢, . For a given Ar the change in

In( gr_l /2 )is independent of z and if we substitute (7.17) in (7.16) we obtain

-1/2
_1/2 dl
g, 1/2M:c2, (7.18)
dz
Integrating (7.18)
~1/2 172 -1/2
Igr_l/z‘””( £, ):Ieln( & Jdin( e, )=[Cyrdz (7.19)

-1/2
&, :C22+C3.

We can define ¢, from (7.19) as

1 at z = Zy,.

e, =(Crz+C3) 7% = { , (7.20)

Ermax atz=0

such that from (7.20)

118



-1/2

1_‘9rmax -1/2
C2 = > C3 = & max - (7.21)

Zmax

Then, if we substitute (7.21) in (7.20) we have

-1/2 0 -1/2)7?
& = (1=&pmax ) ——+ €rmax : (7.22)

Zmax

How much time does the propagation of the wave take from 7,,,, to the focal

point in the lens? Substituting (7.22) in (7.14)

Tmax 1/2 Tmax 1/2 , /27!
Clieps = _[ & dr= I (1= &rmax ) ——+ Ermax dr. (7.23)
0 0 max

Changing the variable of the integral as & =r/r,,,,, we obtain

1 -1/2 _1/2\71
Cliens = rmaxJ. (1= & max JS + € max dg . (7.24)
0

-1/2 -1/2
Let us change the variable of the integral as ¢ =(1- &, ;00 ) + €1 max

-1/2
d¢=(1-¢&, 4 )d¢ and we will have normalized

1

r 1 I
Cliens :m—ﬁc/z I(é/) a¢g :Em—ilx/z In(&rmax) - (7.25)
-1/2
1_‘C"rmax Er max 1_‘C"rmax
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Then, we can find the normalized ct,,,,; is

Clions _ l 1
e = 77 (e max ). (7.26)
1- €1 max

7.3.3 Linear form of ¢,

The exponential variation and CIS form of ¢, are two different approaches

having some advantages and disadvantages in terms of focusing. After these approaches

we tried to use another approach, a linearly increasing form of &, . Let us assume we

have a linear ¢, variation as

Er(r) =7/ Tar + ErmaxU=7/ Timax ) (7.27)

which satisfies (2.2), we can find the normalized propagation time of the wave from
r=Tpactor=>0 as

"Tmax 1/2 Tmax

Plens _ 1 .[ &p(r)dr = ,[ (r/rmax+5rmax(1_r/rmax))l/2dr' (7.28)
Fmax Tmax 0 0

Let us change the variable of this integral as ¢ =r/r,,,, to obtain

1
Liens _ ¢ + &y max(1- )] 2d . (7.29)
Tmax

We can also change this variable ¢ as
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é::é,"'grmax[l_gj

(7.30)
d‘}::dé,[l_grmax]
Using (7.29),
1 3/2
ct 1 2 -
lens _ Ifl/zdf = _(grmax -1) 1(8rmax_1)' (7.31)
Pmax 1= €rmax &1 max 3

7.3.4 Conclusion
A dielectric exponentially increasing dielectric constant, CIS, and linear
increasing lens designs were discussed. One can see from Figure 7.3 that the wave

propagates faster for the CIS form of &,. We can see from Figure 7.4 a-d) that if &, .
increases, the wave propagates slower as expected. ¢, ,,,, varies from 1 to 81 (with 81

corresponding to water, which is the highest ¢, that is used in biological applications). If
we increase &, ,,,c from 36 to 81, the CIS design of ¢, has the deepest curvature. The

focusing property of the lens increases from the CIS to the linear design because for the

same r/1,,, We have an increase in ¢, , we expect the lens to become more effective.

Also from [22] if we increase &, the spot size decreases while the wave impedance

1/4
decreases and the amplitude of the waveform increases by a factor of ¢, . This rough

calculation has to extend out some distance from the target for effective focusing to occur

and thus requires more detailed calculations.
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7.4 Spatially Limited Exponential Lens Design for Better Focusing an Impulse

A spatial limited exponential lens design is discussed and an analytical
formulation has been used to examine the pulse droop in order to minimize it.

A formulation in [23] has been used to examine the pulse droop for a transmission
line with an exponentially tapered impedance profile. We wish to minimize this droop, or
ask how long the transmission line should be for a given droop. The exponentially
tapered transmission line has an optimal transfer function in terms of early time voltage
gain and improved droop characteristics. We apply this result to an exponentially tapered
dielectric constant of a focusing lens. We find the required lens dimensions for a given
droop. The lens geometry and incoming spherical wave are presented in Figure 7.5. Our
calculations are based on a one-dimensional plane-wave approximation (Figure 7.6). This
will not directly give an estimate of spot size, only the transmission/reflection by the lens.

Other considerations also apply [22].
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Figure 7.5: Lens geometry and incoming spherical wave.
_}
E

Lans

propagation

e
Target
P edium

Figure 7.6: Equivalent plane wave geometry.
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7.4.1 Equivalent Transmission-Line Model (One Dimensional) of Lens

As discussed in [23], the exponentially tapered lens has a minimized droop and
the optimal transfer function for the case of uniform propagation speed. Here we adapt
this solution to a dielectric lens, noting that the propagation speed slows as the wave
propagates in higher-permittivity media. This model does not include any information
about spot size.

We can define the lens wave impedance as follows: z =spatial coordinate,

¢ = modified space coordinate, we have a new coordinate where the wave propagates
with a constant v, speed and has an exponential wave impedance variation through the

lens. We use a plane wave approximation and this approximation is valid up to the case

when the wavelength is still small compared to the cross section of the beam

4 = transit time to zand hence( . (7.32)
c

Let

2(¢)=21e¢7%0, (7.33)

where Z; is the wave impedance at the beginning of the lens; which is Zy =377 £21in our

case.
Zy =27 e omax/¢0 (7.34)

where Z, is the wave impedance at the end of the lens.
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172 -1/2
Z(:){ﬂ} =Z1,().

(7.35)
£(¢)
The propagation speed can be defined as
1 -1/2
Ve =i (L), (7.36)
1o (¢ )]
where vy is the propagation speed before the lens, which is typically c.
The transit time through the lens can be defined as
= / .8 I
tr=t,=[vl(z)d = [vylds == (7.37)
0 0 Vi
Taking the derivative of both sides of (7.37), we have
dt - _ dz
- = V1 ! - I(Z)_ s
dg dg
fﬁc:v‘sz (7.38)
dz

2 = :gr(é’):eé’max/éwO.

Using (7.38) to solve for the spatial coordinate z in terms of modified space coordinate

¢ can be find as

I -1/2

z= e (¢ )¢ . (7.39)
0

From (7.33) and (7.35) we can write (7.39) as
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& /
z=[e /%0 a¢ =§0[1—e‘?/40]. (7.40)
0

We can see from (7.40) as £ > oo, z—> {, and this does not continue to grow. This

gives us a spatially limited lens. This is convenient for purposes of implementation.
The wave propagation can be described by the source-free telegrapher equations

((2.3) in [23]). We can transform the 1D wave equation to an equivalent ¢ space

coordinate as

dE(S.s) __H0 g e=6/%0 g

d Z
ng 0 (7.41)
Cgé/:s):_grgozoe—g/go E:_E_OZOeJ/éo E.
g Zy Zy

7.4.2. Solution of the Transmission-Line Equations

We solve an equivalent problem of [23], but instead of an increase in the
transmission-line impedance we have a decrease in wave impedance, but the equations in
[23] still apply.

One can define the transmission coefficient for high 7}, and low frequency 7, as follows

1/2

Z 2Z

T, =| =2 , Ty =—"2 (7.42)
Zl+22

Calculate the difference between these two coefficients as
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2
221/2[21+Zz]—222211/2 ~ 221/2 le/2 _221/2

>0 . (7.43)
Zl +ZZ Zl+ZZ

T, -T, =

This is always positive except at Z; =Z,. Thus, there is a droop (positive, i.e. a

decrease) from initial to final value for both increasing and decreasing impedances. The
impedance is decreasing but there is still a droop.

We can use the exact solution of the transfer function in (3.8) of [23],

-1

~ /2 1/2
T=e5%0 cosh((S2 + Gz)l J+;/2sinh[(52 + Gz) j ) (7.44)
(52 +G2)l

where S is the normalized complex frequency
S=5ty max =(2+ jO)ts pay - (7.45)
The high-frequency gain is defined in (3.4) of [23] as

g=e9=2,/7,=¢7"*. (7.46)

One can define the transit, normalized and droop time ((3.11) of [23]) parameters as

follows
¢ max = Cmax /' V1 transit time through lens,
T=t/ tr normalized time,
5 (7.47)
Tg=2In"(g) normalized droop time
=14 /'t ¢ max -
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ty 1s the droop time, the step-response form is defined as (3.13) of [23]

R(t)=g[1+1:/td +O(’E2)] as 1—0. (7.48)

7.4.3 Example

Now we can calculate the lens thickness for a given dielectric target permittivity

Ermax - Setting ¢t /t; =0.05 and 0.1, and using a ¢ =100 ps pulse width (maximum time

of interest) from (7.45)

ty =2ns and lns,

2ty (7.49)
Cmax = Ty
In“(g)
From (7.34) and (7.47)
-1/2
i_?:grmax —e Cmax /60
In2 (7.50)
o= clgln”(g) (meters)
ln(gl” max)

Substituting (7.49) in (7.40) we have

2 -1/2
= Coll—e ~Cmax /S0 :M{l—ermm{} (meters). (7.51)

z
e ln(gl" max )
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7.4.4 Conclusion
We might design a spatially limited exponential lens based on [23]. This lens is

designed for a biological application [1]. From (7.51) we can find the z,,,, values for

different biological tissues, which are summarized in Table 7.2.

Table 7.2 Design parameter values for different biological tissues [24,25].

Water Muscle Tumor Skin Fat

Ermaz &l 70 50.74 47 9.8

g (133 0.34 037 0,41 0.56

T L.65 L7 207 25 6.

Ly =1nd L max(ns)| 0.6 0.56 0.48 0.39 0.16
Copr fem) | 18:1 16.9 145 118 4.9

Co fem) 8.2 8 74 6.7 13

Zmaxitm) 73 7 f.3 5.5 19

tp=2m fepmns)| 12 L1 0.96 0.79 0.33
Coariem)| 362 134 289 836 9.9

Colem) | 165 15.9 147 133 8.6

Zmaricm) | 146 14 127 11 5.8

One can see from Table 7.2 that, if we have lower dielectric constant for target
biological tissue, we need a smaller lens. This is not the only consideration. A larger
dielectric constant in the lens exit results in a smaller spot size and higher fields. The
smaller spot size concentrates the energy in the vicinity of the skin cancer.

One can find how ¢, changes as a function of  and z from (7.40) and (7.50)

e (§)=e* 40,
o jZ‘ (7.52)
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Let us consider ¢; =1 nsand find &,(¢{ ) and €, (z) with respect to ¢ and z for

different dielectric tissues. These are presented in Figures 7.7 and 7.8.

a1 EJ'?:"E_H =&l

70 /
ﬁﬁ Epmay = 10 //
/4

ﬁr: Crm =0 S S
30 ¥ 4 ///
//

o 2 3 6 ] 10 12 14 16 191
= lem)

Figure 7.7: €,(C) values for different dielectric tissues.

Figure 7.8: €,.(z) values for different dielectric tissues.
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The compression of the coordinates for 7, =1 ns and ¢, ,,, =81 is presented in

Figure 7.9.
81 7
60 //
£-(5) 40 o
20 —
/
0 _ -
0 1.(])6 23 3,.7 5 /5.5 }.7 10_ 10.8 15 18.1

Q-axis(cm]
Z-axis{cm)

o 1 2 3 4 5 € 73
81 I
|
£.(z) °° //
40 /
20 g
0 =

Figure 7.9: Compression of the coordinates for ty =1 ns and &, ), =81.
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7.5 Lens Design for Incoming Spherical Wave

In this section an alternate lens design procedure is discussed to obtain better
focusing from a prolate-spheroidal in which the lens is not a sphere. This is an extension
of Section 7.2 and the lens design considerations are based on [26]. N layers of an
increasing dielectric lens, which have the same ratio of dielectric constants between
adjacent layers, are considered for a prolate-spheroidal IRA. Instead of using a half-
spherical lens, a new approach is proposed for incoming spherical waves to obtain better

focusing for a prolate-spheroidal IRA.

7.5.1 Design Considerations
10 layers of increasing-dielectric-constant lens are used based on the calculations

in Section 7.2. We use the same ratio of dielectric constant between subsequent layers as

N
Eratio = €ry 4 /grn ’ (grn+1 /grn )N = &ratio = Ermax

7.53
1/N ( )
Eratio = €rmax -
We use N=10 layers and €, ,,, =81 for the worst case scenario for biological
applications. We start from free space €, =1 and our target dielectric is €,,,, =81 and

€ratioc = 1.55 between subsequent layers. The first shell of the lens for incoming spherical

ratio

wave is illustrated in Figure 7.10.
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boundary

£,-¢, A
Figure 7.10: Lens for incoming spherical wave [26].
In Figure 7.10
02 max = arctan(b/zy) , 0560y <605 00+ (7.54)

Equation (7.54) represents the range of interest of angles for the incoming wave from the

prolate-spheroidal IRA which has the dimensions as given in [16]. From (7.54) and (7.55)

for the first shell 65 ,,,, =53.13°. Inside the lens the rays change their direction to the

angle of @, with respect to thez -axis and O max <7 /2 for geometrical design

purposes. /and (, are the distances on the z -axis, h is the height of the lens. The

normalized /| and (, parameters are defined from (4.7) in [26] as
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1/2
Uy sin( O max = O max )+ € SOy gy ) — Sin( O yax )

n 1/2
(& =1)sin(O) 0 )SIN( 2 oy )

7.55
1/2 ( )

P _ &y [Sin(‘gl max — 02 max )+ Sin( 0 1y )]_Sin(elmax)

h 1/2
(& =1)sin(0) pax ) Sin( 0 may )

To find 6, as a function of @ja quadratic equation in either

cos(0, ) or sin( @, )can be solved from (4.8-5.10) in [26] as

1/ 1/2
ABsirt (6] )+|{Bcos@; )-A grz‘\/ [Bz —24Be, cosO )+Ag,l — A% sirf(6;)

cosf2)= 12 ’
2
B”-2A4B¢, cos@; )+ As,

1/2 1/2
A(Ag.~Bcos@)))+|Bsin@, )\/ {BZ —24Be¢, cos@ )+Agr} —A sit(6))

sin@, )= (7.56)

1/2 ’
B%—24Be, cos@; )+ As,

1/2
A=(62/fl)—1 , B=(62/fl)—€r.

'
A lens boundary curve can be defined by the coordinates of z and ¥as a

function of 4, and 6, from (4.11) and (4.12) in [26] as

_ (Ez —Eﬁ/htan(&l)
tan( 6 )—tan(6, ) (7.57)
(52 —fl)/htan(ﬁl)tan(ﬁz)
tan( 6, ) —tan(6, ) '

z

=—tan(6, ) =
P (05)

= =|v.
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This approach is just for the first shell, but we can expand it to the other shells.

& = Ergtio =1.55 and we will have different ¢ ,05 ,0,,,,c and 6, ,,, for each layer.

We can define a new coordinate system which is centered at z = z;. We will call

1
this system z and it can be defined as

!

z /h=—(z—z¢)/h. (7.58)

The IRA and lens geometry are presented in Figure 7.11. The angles of

01 max and0,,.. are in given Figure 7.12
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Figure 7.11: IRA and lens geometry.
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Mew Coordinate
X

Figure 7.12: 01 and 0y .« values.

We use N=10 layers and ABO1is the change in the angle as one goes from one layer

to the next. This is constant and is given by

Ag:(elmaxN _‘92max1 )/ N. (7.59)

We design the lens for two different 6y,,4y, , angles as:

90°(n/2)
elmaxlo = 950 : (7.60)

!
For the 7 /2 case A0 =3.7%and for the 85°case 460 =3.2°.4z, /h is the normalized

' !
distance between each layer-beginning point on the z -axis. z,, /his the sum of the n

distances on the z -axis which is shown in F igure 7.12.
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7.5.2 Concluding Remarks for the Lens Design for Incoming Spherical Wave

We have designed a lens for incoming spherical waves to obtain better focusing
from a prolate-spheroidal IRA. This design is based on the same procedure as in [26].In
this design, however, just a single layer was used. We extended this design to N=10
layers. In this case we have different ¢ /h 0,/ h .0 0c, @2 max » hn /1, and zn' /h .
We calculated these values for the first layer. Then we correct the values for the other

layers.

'
First we calculate the W /h and z /hvalues for the first layer, then for the
'
second layer we calculate W/h and z /h. We correct them by multiplying with

heorrected =My / h value, then we add Az,, /h for each layer to find the corrected z, /h

values at that layer.
As one can see from Figures 7.13 and 7.14, for 6,4y, = 85° case we obtain

better focusing. We call ~ the radius of the shell, it is a universal normalization
parameter. But this calculation is not determining h because it is an optical calculation
(infinite frequency). To determine how large 4 should be is a difficult problem. Clearly
h/c must be much greater than the focus pulse width at the focus, and the rise-time of the

incoming wave, otherwise it does not focus, A << other dimensions of the lens. /# should

be smaller than the radius of the reflector as well

cts =3cm<<h<b=50cm. (7.61)
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Figure 7.13: W/h vs z /h for 6;myax,, =7/2.

Table 7.3: hy, /'h, Az, /h,z, /h, 0 payx, and 03 4, values for Oy g =7/2.

Layer | h/h |dz, /h | 2z, /b | Bl | P2mex
1 1.0 0.056 0.0o0) 0592 0527
2 0.9 0.074 0.096] 1.056 0.5
3 0.8 0.06G 0.175] 1120 1.056
i 0.7 0.054 02411 1.185 1.120
3 0.5 0.044 0.295] 1.249 1.184
b 0.5 0.035 0.339] 1.313 1.249
[ 0.4 0.027 0.374] 1.378 1.313
8 0.3 0.020 o401 1.442 1.378
9 0.2 0.013 0.421] 1.506 1.4432
10 0.1 0.006 0.434] 1.571 1.506
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Figure 7.14: ¥ / h and z / h for 6} 4y, =85°.

, '
Table 7.4: hy, /'h, Az, /h,zy [/}, Oy, and 03 g, values for 04 = 85°.

Layer | hy/h |dz, /h | 2z, /b | Blpe | P2mex
1 1.0 0.05k 0.000) 0.933 0.527
2 0.9 0.074 0.035) 1.039 0.583
3 0.8 0.06k 0.175] 1.094 1.034
4 u.7 0.054 02411 1.150 1.054
3 0.5 0.044 0.235) 1.205 1.1a0
b 0.5 0.035 0.333] 1.261 1.205
[ 0.4 0.027 0.374) 1.317 1261
) 0.3 0.020 0401 1.372 1.317
) 0.2 0.013 0.421] 1.425 1.372
10 0.1 0.006 0.434] 1.454 1.428
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7.5.3 Lens Design for Incoming Spherical Wave for Different Biological Dielectric

Tissues

Five different biological dielectric tissues are used as different target dielectrics
and we try to obtain better focusing from a prolate-spheroidal IRA for an incoming
spherical wave from the reflector for these tissues. This subsection is an extension of the
previous one. We use 5 different target dielectric tissues comprising water, muscle,
tumor, skin and fat. Ten layers of an increasing dielectric constant lens that have the same
ratio of dielectric constants between adjacent layers are considered for a prolate-

spheroidal IRA.We use the same ratio of dielectric constant between subsequent layers as

1/N
Eratio = €rmax » (7.62)
where €., and €, values for different human tissues are presented in Table 7.5.
Table 7.5: €4, and &, ., values for different human tissues [24,25].

Water [Muscle [Tumer|Skin |Fat

I toi 51 70| sn74| 37| 98
“mho | 155|153 148| 143 178

by

A lens is designed for incoming spherical waves to obtain better focusing from a

prolate-spheroidal IRA for different dielectric human tissues. We obtain better focusing

!

for the higher dielectric lens. ¥ /hvs z /h values for 6., =7/2 and 85° for

different €., are presented in Figure 3.1 and Figure 3.2. One can see from Figure 7.15

and Figure 7.16 that for smaller ¢ the first shell moves left. We have fixed the

rmax»
vertical (¥ /h) axis values to increment by a uniform value of 0.1, leaving some

variation (small) in the location along the horizontal coordinate.
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8 CONCLUSIONS

In this dissertation we have designed, constructed and tested a prolate-spheroidal
IRA that was designed to be used to kill skin cancer in the near field region. This
technique is much more convenient than inserting electrodes near the tumor [1]. This
work used analytical calculations, numerical simulations, experiments as well as different
lens designs to obtain improved electromagnetic-field concentration at the second focus
of a prolate-spheroidal IRA.

First, a parameteric study of the focal waveform produced at the second focus of a
prolate-spheroidal reflector was discussed. The optimal dimensions and the z-coordinate

of the truncation plane, z ,, for the reflector were found. Then, the analytical behaviors of

the focal waveforms of two and four-feed arm prolate-spheroidal IRAs were calculated.
We explored the analytic behavior of the waveform near the second focal region
and showed that the impulse part of the waveform at the second focus can be described

by a delta-like pulse forming for z < z; and in the limit as z — z; gives the required

true delta function. Then, the aperture integral gives the same result (at early time) as the
exact incident wave before truncation. We observed that the area of the & —like pulse

was the same for both before and after z;. We illustrated these results with a graphical

example. We continued the analytical evaluation of the prepulse term, £ after the

p2°
impulse, when the aperture integral is truncated by the aperture edge. The actual
analytical waveform was illustrated, including all the terms. These analytical calculations

were for a two-arm prolate-spheroidal IRA. However, we have shown that these
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calculations can be easily extended for 45°and 60° four TEM feed arm cases by just
multiplying the analytical values by 1.404 and 1.606, respectively.

Finally, the time domain characteristics of some analytic source waveforms, used
for determining the waveform characteristic of a prolate- spheroidal IRA at the second
focus, were discussed. By appropriate choice at the driving waveform, we maximize the
impulse field at the second focus.

CST MWS computer simulations were used for verification of our analytical
results. This was a numerical attempt to reproduce the analytical results for the focal
waveform of a prolate-spheroidal IRA. We discussed the numerical results for the
waveforms near the second focus for spot size analysis. Since we want better
concentrating at the second focus, we plan to use a medium that has a higher relative

dielectric constant &,. This also increases the complexity of our problem; however,

experimental results showed that the wave propagation medium with the highest &, (in
our case it is water &, =81 [1]) is dispersive. We simulated two-arm 400 Q, 45° four-

arm 200 Q and 60° four-arm 200 Q prolate-spheroidal IRAs to obtain the focal

waveforms. The spot sizes were analyzed for the two-arm case along the x-, y- and z-axis.
We compared our numerical results with analytical results for verification. For future
work, we present an equivalent geometry that can be used as an equivalent source to
simplify our problem computationally.

We performed several experiments at the UNM Transient Antenna Laboratory in

order to compare our experimental results with our analytical and numerical results.

Experiments with two-arm and 60° four-arm prolate-spheroidal IRA were performed.
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Experimental setup and problems related with measurements or devices were discussed.
Experimental and analytical results were compared. Differences between these results
were discussed and the differences were analyzed.

Analytical, numerical and experimental prepulses’ amplitude agree very well. The
analytical and numerical impulses’ amplitudes agree. However, the experimental impulse
amplitude was smaller than the others. It was also broader near the base. We have also a
feed arm blockage effect that decreases the amplitude of the experimental impulse,
however we did not see this effect in our numerical results. Our analytical result was an
based on idealized assumption and it did not account for the feed arms. Finally, for all
cases the postpulse behaviors were different. However, this part of the pulse was less
important for our biological application. Our concern was obtaining the largest possible
impulse amplitudes at the focal point to kill skin cancer. The analytical waveform, while
simple, is still good, albeit not perfect.

Different lens design procedures were discussed theoretically for better focusing
the fields at the second focus of a prolate-spheroidal IRA and having lower spot size. We
have a very fast and intense electromagnetic pulse to illuminate the target which is
located at the second focal point. For future work, these lens designs can be built and they

can be simulated numerically.
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APPENDIX
A ANALYTICAL CALCULATIONS FOR THE FOCAL

WAVEFORM OF A PROLATE-SPHEROIDAL IRA

Al Introduction

This appendix is a summary of [3]. The analytical calculations in [3] were
extended in Chapter 4.

Some analytical approximations for the transient focal waveform produced at the
second focus of a prolate-spheroidal reflector due to a pulse TEM wave launched from
the first focus are developed. This is extended to consider the spot size of the peak field
near the second focus.

An inhomogeneous spherical TEM wave launched on guiding conical conductors
from one focus is converted by a double stereographic transformation to a second
(reflected) inhomogeneous spherical TEM wave propagating toward the second focus [3].
Both waves have the same temporal waveforms before other scattered waves (from feed
arms, etc.) can reach the observer.

Inhomogeneous TEM waves in a uniform, isotropic medium (e.g., free space) are
exactly transformed by stereographic projection into second such waves in the case of
paraboloidal and hyperboloidal scatterers, provided the incident wave is centered on an
appropriate focal point (including infinity) of these quadric surfaces [2]. One spherical or
planar TEM wave is then transformed into another with an exact matching of the

boundary conditions on the (perfectly conducting) reflector. This provides exact solutions

148



of the Maxwell equations, valid up until some time related to a signal arriving at the
observer from some truncation of the reflector, or from some structure used to guide the
incident wave (i.e., conical or cylindrical perfectly conducting transmission lines).
Keeping with bodies of revolution, which give focal points, another quadric surface to
consider is the prolate spheroid, a special case of an ellipsoid. In this case both focal

points are inside the volume enclosed by the surface S, . Thus, our consideration is to

launch an inhomogeneous spherical wave from one focus, and reflect it toward the

second.

A.2  Description of Geometry

We are concerned with analytical calculations of the waveform at the second

focus in this section. The geometry of the IRA is presented in Figure A.1.

|
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I | \
| I \
J‘ — }a Z
:aperrure =0 /"
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/
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Stereographic NP =5
projection Zp :
plane

Figure A.1: Schematic diagram of IRA [3].
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We have two thin perfectly conducting cone wave launchers with electrical

centers lying in the xz plane. In the wave-launching spherical system (7} , 0 , ¢;) they
are oriented at (with respect to the negative z axis)@; =6,.. One can relate the

(r, 6, ¢ ) system to the cylindrical (¥; , ¢ , z;) and cartesian (X ,y,z) coordinates as

5”1=7‘1Sil’l(91), ¢1=—¢ , Z] =—Z+Zp,

Al
x=%cos(6)) , y=¥sin(60,) , z=-zo—1cos(6;). (A-D
We can describe the prolate spheroid as
2 2
{Z} +[5} =1 0<¢<2n
b a (A.2)
2 2|12 g
zop=|a” -b focii at *+ z.
We can describe the thin-cone electrical centers by the angle 6, with
Y. =r.sin(6.),
¢ =Tesin(be) (A3)
z, =—zg—1cos(6,.).
At the reflector we have (subscript p)
zp=—zo =¥, col(6.). (A.4)
If we substitute (A.4) in (A.2), then we have
b ? z, "
tan® (6, ) = { } 1—[—’7} . (A.5)
zZ0+zp a
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For given 6. one can solve for z, and ¥, and we can also specify z, and compute

p
¥, and 6.

!

We truncate the reflector at the z =z, plane. The portion used is S, , to the left.

This is consistent with the traditional truncation of a paraboloidal reflector in impulse
radiating antennas (IRAs). More sophisticated truncation contours can be considered, but
are beyond the scope of this dissertation. For later use the truncation plane will be taken

as an aperture plane. The portion of this plane inside the prolate sphere is designated S, .

It is this surface which will be used for integrating over the reflected TEM wave to find

%
the fields at the second focus, 7 .

A.3  Matching Spherical TEM Waves

We launch an inhomogeneous plane wave from one focus, and reflect it toward

%
the second. In spherical coordinates centered on —7, with ) =0 pointing along the

negative z axis (toward the stereo graphic-projection plane), we have an outward

_)
propagating (from —r( ) inhomogeneous transient TEM wave as
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e g n
El :—}’0 Vgl ,¢1Vl(91 ,@)f(l—?],

Via.a (6 .41)=0,

g d 7 d d (A.6)
\% =1lg, —+1 —,
.91 ! dgl /1 Sinl91 dHl
2
Vzel | = sin 6 d + ; d2 .
sinby dg, ' dg,  sin® 6, d 2,

The stereographic transformation relating spherical TEM waves to cylindrical

TEM waves takes the form as

Yo =2ala—zo|tan(8,/2) , ¢y =y =—¢. (A7)

In this projection #; satisfies the Laplace equation in cylindrical (¥, ¢ ) coordinates.

!

Here we are imagining a wave launched to the “left” to be reflected on S, . The

portion to the “right”, around the target location, is assumed not used for the reflector,
allowing access to the target vicinity. However, the symmetry of the geometry allows
one to interchange the roles of source and target. Let us consider a second spherical TEM

%
wave centered (incoming) on 7 of the form

- > )
Ey==r,Vg, 4V2(6 ,¢z)f(f+r2 - aj. (A.8)

The projection formula for this wave is

Yo =2[a+zqltan(0,/2) , dy=—dy =—0. (A.9)
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The formulas in (A.6) also apply, substituting subscripts 2 for 1.

Now let

Voo, $o)=-"TV1(¥o . do) (A.10)

on the projection plane. Since V| satisfies the Laplace equation there, so does V,. Here
we have a diverging wave reflected into a converging wave. Note that the waveforms are
the same f(#) for these two waves. We merely need to know that V; +V, =0 (or its

tangential derivative, i.e., tangential electric field) on the reflector. On the reflector we

have, due to the stereographic transforms

Va0 ,92)==V1(01.91). (A.11)

The two waves match in time as well on the reflector. Differentiating the potential (net
zero) on the reflection gives zero tangential electric field, the required boundary

condition. This gives an exact solution of the Maxwell equations for times (clear times)

! !

before scattering from feed arms and S, truncation to S, is seen by the observer.

Such a clear time is observer-position dependent. For analytical convenience we can take

the time-domain waveform as a step function

S(t)=u(t), (A.12)

applying to both transmitted and reflected waves. The feed arms also fit into the spherical
Laplace equation. Their electrical “centers” have been considered in the case of impulse-

radiating antennas (IRAs) [27], allowing for placement which in some sense is optimal.
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!

Consider that these intersect S, at some z,. The double stereographic transform then

p-

_)

has “image” feed arms pointing to 7y from the intersection at z This leads to an

p-

interesting symmetry concept by setting

z,=0. (A.13)

This makes z = 0 a symmetry plane between the wave launching side (z < 0) and the
wave receiving side (z > 0). In practice (inverse) feed arms are not included on the

_)
receiving side (at least not down to the focal point at ) ).

A.4  Prepulse

The stereographic projections in the previous section can be used to calculate the

fields. Let E; have the form

- -
Ey=—ry Vo 4Vi(0) ,¢1)f[t—%lj. (A.14)

Let V; =2V, on the two cones. The stereographic projection of this wave is

5”0=2[a—20]tan(¢91/2) , Qo =09 =—9. (A.15)

The electrical center of the thin wire on this projection plane is

.o =2la—zyltan(6,./2) , $.0=0, 7. (A.16)
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If we use the well-known solution in [28,29] for the two thin wires, we get the prepulse

in [3] as

v, 0
E,=—"%—tan =< |. (A.17)
27 fq 29 2

A5 Fields at Second Focus

We consider the wave heading from the reflector toward the second focus. There
is no set of conical conductors guiding the wave there. Thus, we consider this second

%
spherical TEM wave E, on the aperture plane, which we can use in turn to find the

_)
fields at 7y (and other positions as well). For present purposes we take the aperture

plane as z=z,, the reflected wave illuminates S, a disk of radius ¥, . Note that the

P
reflector is truncated at the aperture plane. This is because the field from the
wavelauncher reverses sign for the wave on the “other side” of the launching conductors.

The reflected wave is related to the first wave by a double stereographic transformation.

They are equal (except for a minus sign) on the stereographic projection plane for which

Va(¥o, d0)=-V1(¥o, d0 ),

(A.18)
Yy = 2[61—20]16171(91 /2)=2la+zyltan(6,/2) , ¢y =—d =—¢,.
- -
E, is focused on ry.  Without guiding conductors a double stereographic

transformation cannot hold all the way as r, — 0. We are therefore considering the

fields on S, for later integration. On the center of S, we have the electric field E,
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%
polarized in the 1, direction. In previous papers [29,30] it has been seen that, for circular

apertures, the field at the center is an important parameter. The boresight radiated field
can be found by integrating the TEM field over the aperture, or by integrating a uniform
field of the center value (including polarization) over the same circular aperture. Seen
another way, one can expand the field in cylindrical coordinates and note that terms with

cos(mg) and sin(m¢@) for m>2 integrate to zero (for observation field points on the z
axis) (there is no m= 0 term). This is basically a symmetry result. for a uniform field E

is polarized in the x direction. We can match this field to the second wave at the center of

the projection plane and find the x component of the tangential electric field as

a+20 zg —<Z

Ey, =2E, 2 cos?(4)+sin(§) lu(t+ 2222, (A.19)
C

n +Zo—Zp %)

%
After we evaluate the tangential fields on S, we can evaluate the fields at ry by

integrating over the fields on §,. The formulations for the fields at the second focus

from a circular aperture that has uniform distribution of electric field were evaluated in

(3.3) of [18] and for step excitation we have
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Es= dl aJr—ZOco & -1+ i
T fgca—zg

2
Vi + o, Zp—z
Eg= 0 L a+z col < || 1+ 0 _“p ,
2nfg zog—zp a—zg 2 ¥
Vi o,
E,=—70—taf < |, (A.20)
272'ng0 2

E. —E At =0 477
pa- PP 2w foc 2

W 1 6
Eg=—0" cot(—c}
T fg a—zg 2

where E5 and E are the impulse and step terms from the reflection from the prolate

o,
tan(?cj Area of prepulse and

sphere and £, is the magnitude of the prepulse wave from first focus (valid up to the
time of aperture truncation), z,, is the z-coordinate of the truncation plane, a and b are
the two radii for the prolate spheroid, z(is the focal distance, and A7, is the length of

the prepulse and can be defined as

At, =2a-zg]/c. (A.21)
S 1s the transmission line parameter and can be described as

fe=2.12y, (A.22)

where Z . and Z are the pulse and medium wave impedance.
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One can see from (A.20) that £ has units V/m, while Eg has units Vs/m corresponding
to the time integral (or area) of the  function. Assuming that the prepulse is a negative
E ., corresponding to a positive potential on the upper feed arms, the reflected pulse

%
reaching toward r, has a positive sign. In [18] the case of the guiding arms is considered

%
by use of an aperture integral. The field at », has a delta-function part and a step-

function part. The detailed calculation was presented in Chapter 4.

A.6  Spot Size Analysis

Figure A.2 indicates the maximum differences from the edges and center of S, to the
observer.

T e
P e T
54 TN AT
z()
“p LY HL 2

Figure A.2: Spot size of focal waveform [3].

If we have small impulse width 75, we will have a really small spot size around

%
ro - For the ¢ -function pulse we have the wave from every position on S, arriving at
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- -
exactly the same time at r;. We can then estimate a pulse width near 7, by the

dispersion in the arrival times from all parts of S, at the observation point.

For z,, =0 the spot sizes in # and z directions are calculated in [3] as

AY = %a5 ,

L (A.23)
Az = 2[1——0} cts

a
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