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Abstract

In large z-pinch drivers, it is ideal to minimize the electron flow near the load while

maintaining a low inductance as to not suffer a decrease in system efficiency. While

inductance and electron flow are normally competing requirements, transmission

lines with a spatially varying gap in the direction of power flow allow for an inductive

profile to be built directly into the geometry of the electrodes. If the transit time of

the transmission line is small compared to the pulse width of the forward wave, then

the spatially varying electric and magnetic fields associated with the power pulse

are capable of altering the distribution of the electron current in the direction of

power flow. Some previous designs assumed that the field emitted electrons within

the vacuum line were incapable of returning to the cathode surface, unable to reduce

the electron flow, and thus determined an optimally uniform radial current. Recent
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experiments and simulations, however, suggest that the re-trapping of electrons is

possible and could result in even lower inductive machines.

An experimental study was devised to determine the feasibility of tailoring the

radial profile of the electron current within a magnetically insulated transmission

line with the intent of further reducing the overall inductance of the system. This

was approached through the development of a theoretical model which exploits the

possibility that electrons are capable of returning to the cathode surface through

a continual gain in their total energy. The inductive profile was derived from the

theoretical model’s prediction of a radially reducing electron flow and built directly

into the curvature of the transmission line’s electrodes. This model was validated for

strongly insulated electron flows, V > 5 MV, using particle-in-cell simulations which

had been used extensively on the large z-pinch driver located at Sandia National

Laboratories. Low voltage tests, V < 1 MV, were experimentally tested and provided

a benchmark for the use of the PIC simulations to model marginally insulated

electron flows. Experiments also allowed the development of a new diagnostic for

measuring the electron current directly at the load. This would provide a unique

method for studying strongly insulated flows which have historically been difficult to

measure.

viii



Contents

List of Figures xii

List of Tables xxvii

1 Introduction 1

2 Theory of Self-Magnetically Insulated Transmission Lines 9

2.1 Evolution of self-magnetic insulation . . . . . . . . . . . . . . . . . . 10

2.2 Single Electron Dynamics . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Relativistic Electron Flows . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.1 Quasi-laminar Flow . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.2 Parapotential Electron Flow . . . . . . . . . . . . . . . . . . . 21

2.4 Pressure Balance Theory . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4.1 Line Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.2 Average Electron Drift . . . . . . . . . . . . . . . . . . . . . . 26

2.5 Precision Electron Flow Measurements . . . . . . . . . . . . . . . . . 28

ix



Contents

2.5.1 Theoretical Model . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5.2 Geometry Calculations . . . . . . . . . . . . . . . . . . . . . . 35

2.6 Flow Impedance Modeling . . . . . . . . . . . . . . . . . . . . . . . . 41

3 Experimental Setup 47

3.1 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2 Pulsed-Power Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3 Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4 PIC Simulation 68

4.1 QUICKSILVER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.1.1 Particle Creation . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.1.2 Killed Particles . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.1.3 Field Solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.1.4 Energy Deposition . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2 Simulation Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2.1 Inductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.2.2 Field Measurements . . . . . . . . . . . . . . . . . . . . . . . 85

4.2.3 Electron Flow Current . . . . . . . . . . . . . . . . . . . . . . 88

5 Simulation Results 91

5.1 Radial Electron Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

x



Contents

5.1.1 Constant Electron Flow, β = 0 . . . . . . . . . . . . . . . . . 95

5.1.2 Reducing Electron Flow, β = 1 . . . . . . . . . . . . . . . . . 108

5.1.3 Reducing Electron Flow, β ' 3.7 . . . . . . . . . . . . . . . . 118

5.2 Re-trapping Parameter Comparison . . . . . . . . . . . . . . . . . . . 123

5.3 Anode Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.4 Cathode Diagnostic Grooves . . . . . . . . . . . . . . . . . . . . . . . 138

5.5 Collector Can . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6 Experimental Results 143

6.1 Constant electron flow (shot 559) . . . . . . . . . . . . . . . . . . . . 144

6.2 Reducing electron flow (shot 562) . . . . . . . . . . . . . . . . . . . . 150

6.3 Flow Impedance Model with Electric Field Reversal at the Cathode . 155

7 Conclusion 166

References 169

xi



List of Figures

1.1 The ZR accelerator located at Sandia National Laboratories. It

utilizes four conical MITLs to channel the pulsed power distributed

between its 36 modules into a z-pinch load which is located at the

epicenter of the vacuum section. . . . . . . . . . . . . . . . . . . . . 2

1.2 General parallel plate MITL structure. The crossed electric and

magnetic fields result in a sheath of electrons along the cathode which

possess an average drift velocity, vd, in the direction of power flow,

(i.e. toward the load). This collection of drifting electrons defines

the electron flow present in the MITL. . . . . . . . . . . . . . . . . . 3

1.3 Vacuum section of PBFA-Z. Excerpted with permission [1]. . . . . . 5

1.4 Disk MITL hardware. . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Azimuthal cross-section of radial disk MITL and load profile. . . . . 7

2.1 Evolution of self-magnetic insulation. Dashed lines represent displacement

current while solid lines represent electron current. . . . . . . . . . . 11

2.2 Pulse broadening at a time of significant magnetic insulation. . . . . 12

2.3 Motion of electron in crossed electric and magnetic fields under a

stationary frame of reference. . . . . . . . . . . . . . . . . . . . . . . 15

xii



List of Figures

2.4 Bcritg vs. Vo for a planar MITL. . . . . . . . . . . . . . . . . . . . . 17

2.5 Ratio of critical impedance to vacuum characteristic impedance in an

infinite MITL under single particle analysis. The critical impedance

was defined as the ratio of the line voltage and the critical current.

The critical current was approximated using Ampere’s Law. This

analysis does not take into account the electron space charge present

on the cathode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.6 (a) Quasi-laminar relativistic electron flow model. (b) Parapotential

relativistic electron flow model. . . . . . . . . . . . . . . . . . . . . . 20

2.7 Section of magnetically insulated transmission line used to define the

anode, cathode, and electron sheath currents respectively. . . . . . . 23

2.8 Voltage contours in the (ZoIa-ZoIc) plane for 1-D, planar, self-

magnetically insulated equilibrium. Each contour, from bottom to

top, represents the line voltages: 4 MV, 8 MV, 12 MV, 16 MV, and

20 MV respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.9 Schematic of the magnetically insulated transmission line and load

profile. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.10 MITL gap spacing vs. radius (β = 0). . . . . . . . . . . . . . . . . . 37

2.11 Electron flow current vs. radius (β = 0). . . . . . . . . . . . . . . . . 38

2.12 Impedance profile for constant electron flow, β = 0. . . . . . . . . . 39

2.13 MITL gap spacing vs. radius (β = 1). . . . . . . . . . . . . . . . . . 39

2.14 Electron flow current vs. radius (β = 1). . . . . . . . . . . . . . . . . 40

2.15 Impedance profile for reducing electron flow, β = 1. . . . . . . . . . 40

xiii



List of Figures

2.16 MITL charge density prior to full insulation. The centroid of the

charge distribution is shown. At rf ' 0.33 the total gap spacing,

gf , is partitioned into two segments, g1 and g2. The electric flow

impedance is defined as the vacuum line impedance with the gap

spacing equivalent of g2. . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.17 Voltage profile across the A-K gap of a typical radial disk line at high

insulation. Space-charge-limited emission has driven the electric field

at the cathode to zero. . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.18 MITL charge density prior to full insulation. The centroids of the

charge distribution and current distribution are both shown. The

centroid of the current distribution is closer to the anode than that

of the charge distribution. . . . . . . . . . . . . . . . . . . . . . . . . 45

3.1 Side profile of MITL hardware. . . . . . . . . . . . . . . . . . . . . . 48

3.2 Azimuthal cross-section of MITL hardware. . . . . . . . . . . . . . . 50

3.3 Cross-section of load inductance. Center spool is shown and defines

the inner radius of the coaxial geometry. In order to calculate the

total inductance the load has been divided into three pieces: 1 -

Collector Region, 2 - Throat, 3 - Base. . . . . . . . . . . . . . . . . . 52

3.4 Cross-sectional cut-away of the load region. The collector can is the

inner cavity and maintains a 0.09 inch gap separation from the wall

of the outer housing. The collector can is attached to a center spool

which defines its inner diameter. The center rod which attaches the

outer housing directly to the cathode is insulated from the center

spool by a 0.09 inch gap. . . . . . . . . . . . . . . . . . . . . . . . . 53

xiv



List of Figures

3.5 Cross-sectional cut-away of the revised load. The inner collector

consists of the center rod, the inner collector can lid, and the base

plate which supports the CVR diagnostics. . . . . . . . . . . . . . . 54

3.6 Load section of Tesla pulser. MITL hardware is contained within

the vacuum section which is at the center of the insulator stack disk.

Four pulse-forming water lines supply the power pulse to the MITL. 55

3.7 Load section of Tesla pulser. MITL hardware is contained within

the vacuum section which is at the center of the insulator stack disk.

Four pulse-forming water lines supply the power pulse to the MITL. 56

3.8 Cut-away section of Tesla’s insulator stack. Center pipe not shown. . 56

3.9 Quarter cross-section of MITL setup. . . . . . . . . . . . . . . . . . 57

3.10 Shielded enclosure for data acquisition. Consists of seven 1 GHz

digitizers and a time domain reflectometer (TDR) cable tester for

measuring cable transit times. . . . . . . . . . . . . . . . . . . . . . 59

3.11 Cathode plate. B-dot diagnostics are distributed along four concentric

circles. Within each circle there are three probes separated by a 120

degrees. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.12 Cathode surface of A-K gap. B-dots located in grooves and holes. . . 61

3.13 Polyamide tape used to cover B-dots on field emitting cathode. . . . 61

3.14 A single CVR threaded through the base plate for the calibration

setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.15 B-dot probe diagnostics. Large-signal loop current monitors measure

magnetic flux along the anode and cathode. . . . . . . . . . . . . . . 63

xv



List of Figures

3.16 RC passive integrators. There is a single calibrated integrator for

each of the 24 B-dot signals. . . . . . . . . . . . . . . . . . . . . . . 64

3.17 Cross-section of calibration assembly. A single current-viewing

resistor is connected to the outer housing through a calibration rod

which measures the total current. . . . . . . . . . . . . . . . . . . . 66

3.18 Comparison between the time integration of the CVR reference signal

and twice integrated B-dot signal. For this example the calibration

factor is approximately -5.41e+10 after a time shift of 3.86 ns.

The negative scaling factor is a result of this particular probe’s

orientation along the cathode with respect to the power flow. With

a relative standard deviation of roughly 0.2% the signals are nearly

indistinguishable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.1 2-D field emission cell. The normal electric field, Eo, is located

at ”half-grid” points which coincides with the upper corners of the

emission cell. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2 Creation of particle within a simulation cell. The momentum vector

is shown in spherical coordinates. The particle’s height as well as the

transverse coordinates are set to a fraction of the cell size. . . . . . . 72

4.3 Killed Particle Flux at 50 ns. . . . . . . . . . . . . . . . . . . . . . . 74

4.4 Location of the field components within a unit cell of the Yee’s lattice.

The electric field components are on the edges and the magnetic flux

components are in the center of the faces. . . . . . . . . . . . . . . . 76

4.5 Temperature contours in ◦C along the anode conductor at t = 89.5

ns. The baseline was set to 20 ◦C for room temperature. . . . . . . . 80

xvi



List of Figures

4.6 Lumped inductance at the entrance to the load cavity and each of

the four B-dot probe radial locations. . . . . . . . . . . . . . . . . . 83

4.7 Lumped inductance at the entrance to the load cavity and each of

the four B-dot probe radial locations. . . . . . . . . . . . . . . . . . 84

4.8 MITL electric field [V/m] in the ẑ direction. The electric field
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Chapter 1

Introduction

The efficient transport of significant electrical power densities originating from large

pulsed-power drivers is a critical requirement in operating high power particle

accelerators and intense radiation sources. Typically, these devices must operate

in vacuum, while the initial pulse is developed externally within transformer oil

and de-ionized water sections. As a result, an insulating interface is essential in

separating the vacuum transmission line, directly feeding the load, from that of

the liquid dielectric section of line emanating from the pulse generator. The vacuum

section of line is thus contained between the insulator stack and the load as illustrated

in figure 1.1. The electric field generated between the conductors of the transmission

line in these applications can easily approach field strengths on the order of 20-100

MV/m, which reduces the effectiveness of material insulation. Although the cathode

in a vacuum line will freely emit electrons when subjected to such electric stress,

the self-magnetic field of the transmission line current is capable of inhibiting the

electrons from reaching the anode within the duration of the power pulse under

appropriate conditions. This device, known as a magnetically insulated transmission

line (MITL), is crucial for the efficient delivery of power densities in excess of 1014

W/m2 [2].

1
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Figure 1.1: The ZR accelerator located at Sandia National Laboratories. It utilizes
four conical MITLs to channel the pulsed power distributed between its 36 modules
into a z-pinch load which is located at the epicenter of the vacuum section.

For a sufficiently large power pulse being transferred to the load, the associated

electrical field strength across the gap of the transmission line will initiate a plasma

which covers the negatively charged electrode. This surface plasma provides a source

of electron emission with virtually no electric field present at the cathode, which is

characteristic of a space-charge-limited-emitter [3]. Efficiency of the line is reduced

when electrons emitted from the cathode are capable of streaming to the anode,

shunting the transmission line. The MITL’s ability to provide an insulated path

for the energy flow stems from the interaction between the magnetic flux density,

produced by the current pulse, and the electrons which are accelerated across the
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gap due to the electric field.1 During this period of insulation, the vast majority of

the electrons are unable to reach the anode and are held in a close trajectory along

the cathode allowing for TEM wave propagation. Because the electron pressure is

much less than the electric field pressure [4], the electrons experience an average

velocity that is dominated by an ~E × ~B drift. The orthogonal relationship between

the electric field and the magnetic flux density guides the electrons toward the load

in the direction of power flow as shown in figure 1.2. The total current flowing in

the anode, Ia, is thus divided in the return path between the current flowing in the

cathode, Ic, and the current flowing in the vacuum electron flow, Ie. This electron

flow creates a current-carrying electron sheath, which resides within the vacuum

between the anode and cathode.

Figure 1.2: General parallel plate MITL structure. The crossed electric and magnetic
fields result in a sheath of electrons along the cathode which possess an average drift
velocity, vd, in the direction of power flow, (i.e. toward the load). This collection of
drifting electrons defines the electron flow present in the MITL.

1The physics of magnetic insulation will be discussed in greater detail in Chapter 2.
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The gap spacing between the anode and cathode, A-K gap, of a MITL is an

important design parameter which directly impacts the energy efficiency of the line.

It is optimized through a delicate balance between the self-inductance of the line

and the amount of electron energy deposited into the anode [5]. While the MITL’s

efficiency is improved by minimizing the spacing of the A-K gap, the potential for

gap closure due to energy deposition into the anode by field-emitted electrons and

the expansion of the MITL-cathode-plasma [6, 7] is increased. Prior to magnetic

insulation, field-emitted electrons from the cathode are free to transit the gap and

heat the anode. Substantial electron energy deposition can occur near the load

resulting in the formation of an anode plasma. The ions produced by this plasma

tend to accelerate the closure of the A-K gap by means of an avalanche breakdown.

As a result, in an ideal system, the electron flow at the load is minimized while

maintaining a low inductance as to not suffer a decrease in system efficiency. While

this trade-off is difficult to realize in a transmission line of constant gap spacing, a

tapered line or conical disk configuration allows for an inductive profile to be built

directly into the geometry of the electrodes while limiting the concentration of the

electron flow along the cathode. The characterization of the electron flow in low-

impedance driven loads, utilizing radially decreasing gaps, is useful in the design

of z-pinch driven high energy density physics experiments and is one of the key

motivations for this work.

The methods and design criterion established for the construction of the MITLs

used in previous z-pinch drivers at Sandia National Laboratories have been developed

through iterative computer modeling [8]. The gap profiles for these designs consist

of three separate sections for merging the power flow of multiple lines into a single

load. These sections consist of a “flared” portion of line which attaches to a vacuum

insulator stack, an outer MITL which employees a radially decreasing gap, and an

inner MITL of constant gap spacing, figure 1.3. The earliest designs, PROTO-II

and SATURN, required that the radial section be of a constant impedance that

4



Chapter 1. Introduction

Figure 1.3: Vacuum section of PBFA-Z. Excerpted with permission [1].

contributed to the establishment of magnetic insulation at 2/3 of the peak current.

Later designs, PBFA-Z and ZR, were designed to produce a nearly constant loss of

electron flow between the time that the load current had risen to 2/3 of its peak

amplitude to when it had returned to 2/3 of its peak during the fall-time. This was

accomplished through the adjustment of several computer simulated models which

assumed that the electrons emitted from the cathode surface were not re-trapped

and that the MITL experienced cathode-plasma-expansion at a rate of 2.5 µs/cm

[1]. Under these assumptions the optimal profile of the electron current would be

radially uniform, consistent with a zero re-trapping rate. Recent particle-in-cell

(PIC) simulations of the PBFA-Z vacuum section, however, suggest that re-trapping

of the electron flow near the MITL’s post-hole convolute does exist and results in

less electron current than predicted from the original design [9].
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The purpose of this dissertation is to develop and test a particularly ambitious

design methodology centered round the geometrical encoding of non-zero re-trapping

rates within radial MITL gaps. This will allow for the reduction of the electron flow

near the load while lowering the line inductance with a decrease in the gap spacing

at large radius. For the MITL lengths considered in this study, r = 50 cm, closure

of the A-K gap due to cathode plasma expansion is not a concern. The re-trapping

rate is defined by the fractional change in the radial electron flow; it is determined

through the inductive profile of the gap and thus can be set by the curvature of the

MITL’s electrodes. PIC calculation, which have been very successful in predicting

the electron flow within the vacuum section of the PBFA-Z and ZR accelerators

[10, 11], will be used extensively in the investigation of this proposed model. High

voltage PIC simulations, (i.e., > 512 kV), will determine the validity of the model

while lower voltage tests will be verified through experiment. The self-insulated,

low-impedance disk transmission line used in these experiments is shown in figure

1.4. The azimuthal cross-section for this design is illustrated in figure 1.5.

Figure 1.4: Disk MITL hardware.
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Figure 1.5: Azimuthal cross-section of radial disk MITL and load profile.

The electron flow will be monitored within the line through the subtraction of

current monitor signals which are distributed along the anode and cathode as is

typically done in practice. To facilitate in the resolution of strongly-insulated flows,

which are often found in z-pinch drivers, an additional diagnostic has been developed

[12], which will allow for the direct measurement of the electron current at the load.

By dramatically expanding the gap size in the load region (collector can), the vacuum

impedance of the load is increased, resulting in an instability in the electron flow [13].

Exploiting this turbulence allows for current viewing resistors (CVRs) to be placed

through the cathode just inside the base of the collector can to directly measure the

electron current, figure 1.5. This not only provides data with which to better gauge

the validity of the computer simulated results, but provides an additional diagnostic

to be directly implemented on large pulsed power drivers like ZR.2

2Refurbished PBFA-Z, z-pinch driver, located at Sandia National Laboratories.
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Initial experiments were conducted at lower voltages, V ' 500 kV, so that typical

MITL diagnostics3 could be used to supplement the data recorded by the CVRs in

the load. Once the total current in the MITL was determined for a 10 kV reference

signal, large signal B-dot probes were calibrated for several positions varying radially

outward to determine local current densities and potential locations for energy loss

in the transmission line. The position of these diagnostics coincide with a portion of

the several hundred local diagnostics placed throughout the simulation geometry for

data comparison.

The remainder of this dissertation is outlined as follows: In chapter 2, an overview

of the self-magnetic insulation process will be examined from the outset. To simplify

matters, the physics of a single electron emitted into the transmission line gap

will be considered, providing a clear picture of charged particle dynamics within

perpendicular electric and magnetic fields. Extending the scope to many charged

particles, a brief summary of popular analytical models will be given. The equations

needed for our analysis will be developed using pressure balance theory and finally,

the geometry of the experimental setup will be determined by studying the rate

of change in electron flow and its effects on the impedance profile of the system.

Chapter 3 will provide the details of the experimental setup for the lower voltage

testing. This will include the MITL hardware, the diagnostics being used, as well

as the pulse power driver. The PIC code simulation used in this experiment will

be QUICKSILVER4 and will be covered in chapter 4. The simulation results will

be provided in chapter 5 and will compare several different re-trapping rates of the

electron flow for high and low voltage pulses. The experimental results are covered

in chapter 6 and provide a comparison with the low voltage simulations. Conclusions

are drawn from the experimental and simulated results in chapter 7.

3These diagnostics will be discussed in further detail in Chapter 3.
4Developed at Sandia National Laboratories [14].
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Chapter 2

Theory of Self-Magnetically

Insulated Transmission Lines

Within a vacuum transmission line, explosive electron emission (EEE) from the

cathode will initiate amid sufficiently large electric field strengths. It has been

experimentally observed that these electric field stresses result in the formation of a

plasma layer along the cathode within a few nanoseconds, subsequently defining a

space-charge-limited electron emitter [15]. The threshold for this electronic emission

has been found to be material dependent and sensitive to the pulse width of the

applied line voltage. While plasma formation has been detected for field strengths

below 100 kV/cm for velvet covered electrodes [16, 17], untreated metallic surfaces

have been found to typically emit above 200 kV/cm.

The mechanism driving EEE is still not completely understood. At the field

strengths mentioned above, it is clear that the potential barrier width of the cathode

is diminished accounting for the introduction of electrons into the transmission line

gap due to the quantum mechanical tunneling effect. In general, and in agreement

with the Fowler-Norheim equation [18], the fields considered here are not substantial

enough for this to account for the electron emission observed. It has been proposed,

however, that this emission is capable of initiating a complex process resulting in the
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local heating and vaporization of surrounding material due to local field enhancement

and microscopic protrusions [19] along the cathode and dielectric inclusions [20]

within its surface. This rapid ionization of localized surface material could lead to

an explosive thermionic emission of electrons distributed along the cathode.

The dynamics of an electron after emission is strongly influenced by the crossed

electric and magnetic fields present within the line due to the voltage waveform from

the power pulse. Once electrons have been liberated from the cathode surface, they

are driven across the anode-cathode gap due to the electric field. For sufficiently high

current, electrons are turned away from reaching the anode surface and are said to be

insulated. The average height of the insulated electrons’ orbits define the boundary

of the MITL’s electron space charge. The electrons confined to this electronic sheath

experience a net drift velocity in the direction of power flow due to the crossed fields.

This average electron drift defines the MITL’s electron flow current, which along with

losses in the line, make up the measured difference between the anode and cathode

currents.

2.1 Evolution of self-magnetic insulation

Generally, the evolution of self-magnetic insulation in an infinite length transmission

line proceeds as follows [21]: Prior to electron emission, the MITL will only draw

a vacuum displacement current from the power pulse, which is initially traveling

at the speed of light through the vacuum medium. As the amplitude of the pulse

rises appreciably, the cathode will begin freely emitting electrons. The electric field

between the anode and cathode (A-K gap) causes these electrons to “drift” toward

the anode. If the electrons are capable of bridging the A-K gap to recombine with

the anode, the transmission line is effectively shunted by the transverse electron flow,

as shown in figure 2.1a. This conducting channel is referred to as the “loss front”
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and propagates down the line at velocities much less than the speed of light due to

the inertia of the electrons crossing the gap [2]. The fraction of the pulse traveling

ahead of the loss front is known as the precursor and continues propagating at the

speed of light. The discrepancy between the velocities of the precursor and the main

portion of the pulse, which is restrained by the loss front, results in a broadening of

the power pulse over time as shown in figure 2.2.

Figure 2.1: Evolution of self-magnetic insulation. Dashed lines represent
displacement current while solid lines represent electron current.

As electrons are conducted through the loss front they increase the amount of

current drawn by the MITL, subsequently strengthening the amount of magnetic flux

density upstream of the loss front. When the current is large enough, the magnetic
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force will start to deflect the electrons away from the anode and toward the direction

of power flow, decreasing the width of the loss front as in figure 2.1b. As more loss

current is conducted across the gap, larger sections of the line become insulated and

the impedance of the line decreases until it reaches its self-limiting value, figure 2.1c,

which is the operational vacuum impedance of the line due to the presence of electron

space charge [22].

Figure 2.2: Pulse broadening at a time of significant magnetic insulation.

The current drawn by a finite length MITL will consist of the load current in

addition to the current conducted through the loss front. Prior to the loss front

reaching the load, insulated sections of the MITL operate at a self-limited impedance.

Once the pulse has reached the load the MITL will continue to run at this impedance

as long as the load impedance is sufficiently larger than the self-limited impedance.
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If the load impedance is smaller, then a re-trapping wave propagates against the

direction of power flow, pulling a portion of the electrons from the space charge layer

and returning them to the cathode. This re-trapping wave consequently compresses

the space charge layer closer to the cathode thus raising the operational impedance

of the MITL to a value much closer to the vacuum line impedance [23].

2.2 Single Electron Dynamics

The motion of electrons within the crossed electric and magnetic fields associated

with the power pulse is the central mechanism behind self-insulating lines. It is

therefore instructive to first consider the dynamics of a single electron within the

MITL’s A-K gap during this interval of time. Because the electron’s cyclotron

frequency is inversely proportional to its mass, it can complete hundreds of orbits

before there is any appreciable change in the voltage and line current.1 Thus to

simplify matters, it is a good approximation to carry out the following analysis with

static fields.

To start with, let us consider an infinite planar geometry as illustrated by figure

2.3. The application of a large electric potential across this gap defines an electric

field, ~E, in the -x̂ direction. The current on the line has an associated magnetic

flux density, ~B, directed into the page toward the -ŷ direction, perpendicular to the

electric field. Neglecting the contributions of free electrons to the fields, assume that

the electron is initialized on the negatively charged conductor and is at rest, i.e.

zero kinetic energy. The electric field, which is normal to the conductor, begins to

accelerate the electron toward the anode. Soon after, the magnetic field acts on the

relative motion of the electron at right angles, deflecting it away from the anode

1Within a magnetic flux density of 1T, the electron’s orbital frequency is roughly 28
GHz. For the simulations and experimental work presented here, dIa/dt ' 1013 A/s.
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according to the relativistic2 Lorentz force,

d

dt
(γme~v) = −e( ~E + ~v × ~B), (2.1)

where me is the electron rest mass, ~v is the electron velocity, and γ = (1− v2/c2)−1/2

is the relativistic factor. We say that the electron is insulated when enough magnetic

force is applied to bend its trajectory back toward the cathode before striking the

anode. This causes the electron to adhere to a cycloidal path and experience an

average drift towards the load of the transmission line as illustrated in figure 2.3.

In the absence of an electric field the electron will experience a stationary circular

orbit defined by the Larmor radius, rL = v⊥/ωc, where ωc = eB/me is the cyclotron

frequency. The average drift experienced by the electron can be determined by

setting the left hand side of equation 2.1 equal to zero and solving for the velocity

[24],

~vd =
~E × ~B

B2
. (2.2)

When ~E and ~B are perpendicular to each other, the electron drift velocity is just

simply given by, vd = E/B.

We can define the critical magnetic field, Bcrit, as the necessary field strength

required such that the electron’s orbit is equal to the length of the A-K gap. If

viewed from a frame of reference that is equal to the electron drift velocity, v = E/B,

this is equivalent to stating that self-insulation restricts the Larmor radius to be less

than half the distance across the gap [15]. Utilizing d’Alembert’s principle of least

2The relativistic term becomes significant for Vo ≥ mec
2/e = 0.511 MV.
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Figure 2.3: Motion of electron in crossed electric and magnetic fields under a
stationary frame of reference.

action we can determine the Lagrangian for a single electron in an electromagnetic

field [24],

ÃL = −mec
2

√
1− v2

c2
− e~v · ~A + eVo, (2.3)

where c is the speed of light in vacuum. The angular canonical momentum is defined

as pc,i = δL/δvi, and for this particular case is given by

pc,z = γmevz − eAz, (2.4)

where ~A is the magnetic potential. If we assume that equilibrium has been achieved

in the gap, then the total energy of the electrons is conserved. Furthermore, because

15



Chapter 2. Theory of Self-Magnetically Insulated Transmission Lines

all the forces in the direction of the electron drift are uniform, the angular canonical

momentum in this direction is conserved as well. Thus, the conservation of energy

and canonical momentum in the ẑ direction can be expressed by the following

equations,

Conservation of energy:

γ = 1 +
eVo

mec2
, (2.5)

Conservation of momentum:

vz =
eAz

meγ
. (2.6)

Applying the appropriate boundary conditions, i.e. zero magnetic potential and

kinetic energy at the cathode, a critical magnetic field can be established [15],

Bcrit =
1

g

√
Vome

e
(γ + 1), (2.7)

where g is the gap spacing between the anode and cathode. Figure 2.4 illustrates the

relationship between the applied voltage across the gap and the minimum magnetic

flux density that is necessary for insulation. It is apparent that the magnetic

fields required are quite modest for high-voltage allowing for self-insulation in the

applications mentioned above.

We can express the critical magnetic flux density another way,

Bcrit = Bo

√
γ + 1

γ − 1
. (2.8)

16



Chapter 2. Theory of Self-Magnetically Insulated Transmission Lines

Figure 2.4: Bcritg vs. Vo for a planar MITL.

Here Bo = Vo/cg is the magnetic flux density generated by the displacement current

in an infinite length MITL. The minimum current that a MITL needs to draw in

order to achieve Bcrit is known as the critical current. The critical impedance of the

line can be defined as the potential across the line divided by the critical current.

The critical impedance in the single particle case is analogous to the concept of self-

limited impedance discussed above [25]. For an infinite planar transmission line, the

characteristic impedance is approximately [26]

Zo ≈
√

µo

εo

g

w
, (2.9)

where w is the width of the line and µo and εo are the permeability and permittivity

of free space, respectively. The ratio of the critical impedance to the characteristic

impedance is a function of the applied voltage and is plotted in figure 2.5. Because

the relativistic factor in equation 2.8 is never less than unity means that the magnetic

flux density generated by the displacement current in an infinite length MITL will

always be less than the critical value. Therefore, the characteristic impedance of the
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vacuum line will never reach the critical impedance in an infinite line. Insulation can

only occur when electrons flow across a loss front, supplementing the current drawn

by the MITL.
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Figure 2.5: Ratio of critical impedance to vacuum characteristic impedance in an
infinite MITL under single particle analysis. The critical impedance was defined
as the ratio of the line voltage and the critical current. The critical current was
approximated using Ampere’s Law. This analysis does not take into account the
electron space charge present on the cathode.
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2.3 Relativistic Electron Flows

While the dynamics of a single particle in crossed electric and magnetic fields

is helpful in visualizing the individual trajectories of the electrons emitted from

the cathode, a complete theory must account for the collective effects of multiple

charged particles in the gap. In order to extract a precise description of self-

magnetic insulation, a closed set of three-dimensional, time-dependent, partial

differential equations is required. These equations are necessary to couple the effects

of the electromagnetic forces on the charged particles with the dynamics of the

electromagnetic fields involved and the distribution of charge density which describes

the formation of the plasma sheath along the conductor during electron emission.

This formulation quickly becomes intractable and generally can only be solved using

numerical simulations.

Several analytical models of relativistic electron flows have been developed [3,

4, 13, 27, 28, 29, 30, 31, 32, 33, 34, 35] in an attempt to produce equations of

practical value. Fortunately, several characteristics of magnetically insulated flow

can be examined by employing appropriate simplifying assumptions.

2.3.1 Quasi-laminar Flow

In the quasi-laminar model [28, 29, 30], the single electron case is extended to several

electrons traveling in identical cycloidal orbits distributed along the cathode as

illustrated in figure 2.6a. Due to the relatively small velocities that the electrons

experience during emission compared to when they are accelerated through the A-K

gap, these flows can be approximated using the same conservation of energy and

canonical momentum arguments [29] used above in equations 2.5 - 2.6. Ion emission

from the anode is ignored and the relativistic form of the Child-Langmuir law [36] is

invoked to account for the space-charge limited nature of the cathode. The potential
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between the conductors can be derived using Poisson’s equation, thus defining a self-

consistent set of equations for the electron motion.

Figure 2.6: (a) Quasi-laminar relativistic electron flow model. (b) Parapotential
relativistic electron flow model.
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2.3.2 Parapotential Electron Flow

Even though single particle dynamics suggest there are cycloidal orbits within the

electron flows, numerical simulations show that the trajectories begin moving in

straight lines further and further away from the beginning of the MITL. Because

the electric and magnetic forces are dominant in relativistic electron flow, the

electrons move along equipotential surfaces. The parapotential model, therefore,

generates a self-consistent equilibrium solution for electron flow which exhibit the

simplest particle orbits: straight and traveling parallel to the electrodes, Figure

2.6b. Several authors have investigated laminar flows [3, 27], and have showed them

to be characterized by a conservation of the total electron energy and canonical

momentum as was the case in the quasi-laminar model. The analytical solutions of

the flow of electron beams along equipotential surfaces are relativistic generalizations

of the Brillouin flow [3].

The previous models all greatly depend on the relative trajectories of the electrons

within the sheath. Several valuable attributes of electron flow can be investigated,

independent of the electron orbits, through experimentally supported assumptions

and simple electric/magnetic pressure balance arguments [4, 32, 33]. The conclusions

drawn from these papers will be summarized in the following section.

2.4 Pressure Balance Theory

It has been experimentally observed that MITLs are an efficient conduit of electrical

power [37]. Furthermore, experiments support the supposition that the cathode

of a magnetically insulated line is a space-charge-limited (SCL) electron emitter,

allowing us to treat the entire cathode as a single equipotential surface [33]. It has
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been demonstrated that a fundamental understanding of the electron flow in a MITL

can be derived under these two assumptions and simple pressure-balance arguments

arising from electrodynamics and the conservation of momentum [4].

2.4.1 Line Voltage

To facilitate the development of a pressure-balance theory, the following additional

assumptions have been proposed as a result of the above experimental observations

[4]: (1) the anode current density is much less than that predicted for SCL ion

emission, (2) the electron pressure is negligible compared to the magnetic pressure

at the anode, and (3) electrons are emitted from the cathode surface with zero kinetic

energy. This would suggest that the height of the electron flow across the A-K gap is

regulated through a pressure balance attributable to the electric and magnetic fields.

If we assume that an equilibrium in the line has been achieved such that the electron

flow is confined to a sheath adjacent to the cathode and traveling parallel to the

electrodes without being accelerated in the direction of either, the field pressures at

the anode and cathode will be equal,

B2
a

2µo

− εoE
2
a

2
=

B2
c

2µo

. (2.10)

Here Bc is the magnetic field at the cathode, Ba and Ea are the magnetic and

electric fields at the anode, respectively, and SCL emission from the cathode has

been assumed (i.e. Ec = 0). By solving the pressure-balance relation in terms of the

electric field at the anode and integrating across the A-K gap, an equation for the

line voltage is readily obtained,

Eag =
g√
µoεo

√
B2

a −B2
c , (2.11)
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Figure 2.7: Section of magnetically insulated transmission line used to define the
anode, cathode, and electron sheath currents respectively.

where g is the distance of the vacuum gap spacing.

For a planar MITL, figure 2.7, Ampere’s law allows us to express the magnetic

flux at the anode and cathode in terms of their respective line current. If we assume

that the ratio of the line width, w, to the gap spacing is small enough to neglect

fringing effects at the edges of the transmission line then the magnetic fields at the

anode and cathode are given by

|Ba| = µoIa

w
,

|Bc| = µoIc

w
, (2.12)

where Ia and Ic are the anode and cathode currents, respectively. Substituting

expressions 2.12 into equation 2.11 gives the line voltage in terms of the line currents,
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Eag = Zo

√
I2
a − I2

c . (2.13)

Here Zo is the vacuum line impedance given in equation 2.9. This expression

continues to hold for a uniform planar disk transmission line where the width, w, is

expressed as a circumference in cylindrical coordinates.

If we set the potential at the cathode equal to zero, expression 2.13 gives the

voltage across the entire A-K gap. In reality, however, the accumulation of space

charge along the cathode will diminish the effective gap length, thus decreasing the

line voltage by an amount Vs, such that,

V = Eag − Vs, (2.14)

where Vs is the potential at the edge of the electron sheath. This quantity is

sometimes referred to as the space charge correction. For highly insulated MITLs this

space charge term is rather small and is negligible for first order approximations of

the line voltage. When the space charge layer is of appreciable size, the distribution

of the electron density across the gap becomes an important factor.

If the space charge density is assumed to be uniform across the electron layer, a

specific expression for the line voltage, including the space charge correction, can be

obtained as follows [23]: Solving Poisson’s equation across the A-K gap in terms of

a constant charge density, ρc, gives the following expression for the electric field as a

function of the gap spacing,

E(g) = −ρcg/εo. (2.15)
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The energy associated with the acceleration of an electron across the A-K gap by

the electric field is a conserved quantity and is equal to the electron’s total kinetic

energy. If the electron’s radial velocity is approximated3 by vr(g) = eBcg/me, where

Bc = ZoIc/(cg) from equation 2.10, the following equation for the transverse velocity

is obtained,

vz(g) = g

√
eρc

meεo

− eεoZoIc

mecg

2

. (2.16)

For a real solution to exist, the charge density must be restricted to the following

inequality,

ρc ≥ eεoZ
2
oI

2
c

mec2g2
. (2.17)

Miller and Mendel [32] use the lower limit of this inequality to derive the following

voltage at the edge of the electron sheath

Vs =
mec

2

2e

(
I2
a

I2
c

− 1

)
, (2.18)

where the potential at the edge of sheath is assumed to be of the form Vs = εoE
2
a/(2ρc)

for a constant charge density along with a substitution of equations 2.13 and 2.17.

Finally, combining equations 2.13, 2.14, and 2.18 gives the line voltage in terms of

Ia and Ic,

V = Zo

√
I2
a − I2

c −
mec

2

2e

(
I2
a

I2
c

− 1

)
. (2.19)

3The Lorentz force equation under the assumption of space-charge-emission, i.e. Ec = 0.
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Contours of the voltage calculated in the above expression appear in figure 2.8.

This plot can be extremely useful in approximating the electron flow when the line

impedance, electric potential, and total current are known. Each point along a

contour gives a possible, however, not necessarily unique combination of anode and

cathode currents which satisfy equation 2.19. The asymptotic limits bounding the

voltage contours from the left and right represents the two possible extremes for

magnetically insulated flow. The left asymptote is known as the saturated flow

solution and corresponds to the minimum cathode current necessary for insulation.

As the cathode current approaches this limit, the electron flow approaches the

width of the MITL’s A-K gap. The asymptote bounding the contour from the

right represents the other extreme where the electron flow is tightly bounded to the

cathode. This solution is often referred to as super-insulated flow. The minimum of

each voltage contour is unique and corresponds to the electron flow which minimizes

the total current during insulation. It was originally postulated that MITLs tend

to operate at this minimum-current flow because this solution tends to occur within

a very close proximity to the flow calculated using minimum energy considerations

[4, 22]. Thus, it was thought that the dashed line for minimum-current flow in

figure 2.8 represented the self-limited flow at which a MITL operates behind the loss

front. This was later brought into question with the study of electron flow impedance

[13, 34]. Recently, PIC simulations have shown that self-limited flow actually occurs

just to the left of the minimum-current flow in the saturated region [23].

2.4.2 Average Electron Drift

In addition to the line voltage, the mean drift velocity of the electrons within the

plasma sheath can be derived in terms of the anode and cathode current. Using

Poisson’s equation to write the electric field strength at the anode, equation 2.13, in
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Figure 2.8: Voltage contours in the (ZoIa-ZoIc) plane for 1-D, planar, self-
magnetically insulated equilibrium. Each contour, from bottom to top, represents
the line voltages: 4 MV, 8 MV, 12 MV, 16 MV, and 20 MV respectively.

terms of charge per unit area, σ,

Ea =
σ

εo

=
Zo

g

√
I2
a − I2

c . (2.20)

The average electron drift velocity, v̄, multiplied by the charge per unit area and the

width, w, gives an expression for the electron flow,

Ie = σwv̄ = Ia − Ic. (2.21)

Substituting equation 2.20 into equation 2.21 yields an equation for the electron

mean drift velocity,
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v̄ = c
√

(Ia − Ic)/(Ia + Ic). (2.22)

2.5 Precision Electron Flow Measurements

Typically, the electron flow in pulsed power systems with low impedance loads is

measured as the difference between the anode and cathode current. For strongly-

insulated systems where the difference between the anode and cathode current can

be minimal,

Ia − Ic

Ia

≤ 0.01,

resolving the electron current through the use of typical diagnostics becomes

problematic. A new method for extracting precise electron flow measurements has

been proposed [12], which allows for the direct measurement of the electron current

flow providing a better gauge for the validity of the computer simulated results.

The proposed measurements are being conducted on a radial disk MITL whose

general cross-section is illustrated in figure 2.9. This geometry differs from previous

examples, in that the gap spacing is no longer uniform but varies with radial position.

It has been shown in previous works, utilizing flow impedance modeling4 [13, 34, 35],

that the electron sheath can become unstable as it travels into sections of the MITL

where the line impedance is increasing appreciably. In a region of increasing line

impedance, a reduction in the electric field strength leads to a decrease in the mean

drift velocity of the electrons. The resulting build up of excess charge introduces

an axial electric field component which pushes against the electrons flowing into the

4This will be covered in section 2.6
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Figure 2.9: Schematic of the magnetically insulated transmission line and load profile.

region. This electric force reduces the electrons’ canonical momentum until they

are no longer insulated. This allows the electrons to be trapped in the collector can

region upon passing through the smallest part of the gap located at ro. The reduction

in the electric field strength means that there will be more electrons drifting into the

collector can than are required to shield the cathode. The excess electrons in this

region can only reach the anode by creating a sufficiently large electric field, due to

space charge, to overcome the magnetic flux in the load region.

The cross-sectional geometry shown in figure 2.9 allows for the direct measurement

of the electron current. The smallest part of the gap, go, occurs at the radial distance

ro. As power flows into the MITL from the right it is experiencing constant decreasing

line impedance which causes a steady increase in the electron mean drift velocity as
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the electrons flow across the cathode toward the left.5 At the load, however, there

is a cavity (electron collector) which rapidly increases the line impedance at that

point. As the electrons flow into the cavity they become unstable and are trapped

inside the can. A current viewing resistor is placed on the cathode near the entrance

to the can to effectively “count” the electrons passing by. The electron collector

is designed to take advantage of the electron turbulence created by the enlarged

vacuum impedance of the load region. A separate electrode surrounds the collector

and carries the anode current. The electron collector encloses 97% of the magnetic

flux in the load region. When the flowing electrons enter the collector, this separate

electrode acts like the anode surface and subsequently captures the electrons when

they transition this gap. Because of the reduced electric field in the enlarged region

of the load, the mean electron drift velocity decreases. This causes a build-up of

space charge until enough electric field is created to allow the electrons to transit the

magnetic flux and reach the anode.

2.5.1 Theoretical Model

In order to design a MITL whose electron flow is radially variant requires that

electrons are capable of being re-trapped by the field-emitting surface. It has been

shown that electrons which continually gain total energy will be returned to the

cathode [38]. This is possible if the betatron acceleration, a gain in energy due

to an increasing magnetic field6 [39], is greater than the energy lost. The electron

can lose energy through synchrotron radiation, which for a particle orbiting within

crossed electric and magnetic fields scales as the square of the electric field strength.7

5This velocity is due to the ~E × ~B drift. As the radius decreases, | ~E| increases with a
reduction in the gap spacing and | ~B| falls off as 1/r.

6At r = 0.2 m, an electron 1 mm above the cathode will experience an increase of 100
eV/cm as it drifts toward the load.

7At E = 1 MV/cm this is approximately 420 · 10−6 eV per electron over a 40 ns power
pulse
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By utilizing a MITL with a radially changing A-K gap, an inductive profile can be

established which determines how the magnetic flux is distributed along the line and

the rate at which the electric field strength will be modified due to a change in the

gap spacing. It is therefore advantageous to examine the rate of the electron flow

with regard to the line inductance.

Consider a MITL possessing an inductive load geometry. The lumped inductance

at any radial position, r, can be defined as the lumped inductance at the load and

an integral of the distributed transmission line inductance,

L(r) = Lo +
1

c

∫ r

ro

Zdr′. (2.23)

The voltage at any radial position, r, is proportional to the rate of change in the

anode current by the lumped inductance in 2.23,

V = L(r)
dIa

dt
. (2.24)

The MITL line voltage in terms of the anode and cathode currents was developed

above in equation 2.19,

V = Z
√

I2
a − I2

c −
mec

2

2e

(
I2
a

I2
c

− 1

)
.
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If the anode current is considered to be much greater than the electron current then

the above expression can be simplified,

V = Z
√

I2
a − (Ia − Ie)2 − mec

2

2e

(
I2
a

(Ia − Ie)2
− 1

)
,

V ≈ Z
√

2IaIe,

Ie ≈ V 2

2IaZ2
. (2.25)

This expression for the electron current can then be related to the total inductance

by substituting 2.24 into 2.25,

Ie ≈ L(r)2(İa)
2

2IaZ2
=

(İa)
2

2c2Ia

(
L

L̇

)2

, (2.26)

where the distributed vacuum line impedance was expressed in terms of the lumped

inductance given in equation 2.23. Here “ ˙ ” and “¨” denote the first and second

time derivatives, respectively.

The radial change in electron flow is then given by

δIe

δr
=

(İa)
2

c2Ia

[
L

L̇
− L2L̈

L̇3

]
. (2.27)

Dividing expression 2.27 by the total electron flow yields the fractional change in

electron current or “re-trapping parameter”, which will be defined as,

β =
1

Ie

δIe

δr
= 2

L̇2 − L̈L

LL̇
. (2.28)
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The general solution of this differential equation is given by

L(r) = C2 exp

[
−2C1

β
exp

[
−β

2
(r − ro)

]]
, (2.29)

where C1 and C2 are constants of integration, and the inductance can be expressed

as a function of the re-trapping parameter.

Constant Electron Flow:

For constant electron flow, β = 0, the singularity in equation 2.29 can be avoided

by substituting this value directly into the differential equation above, 2.28. This

produces the following expression for the inductance,

L̇2 = L̈L,

L(r) = C2 exp[C1(r − ro)]. (2.30)

The inductance at r = ro is the lumped load inductance, C2 = Lo, and the derivative

at r = ro results in C1 =
Z(ro)

Loc
. The numerator of C1 is just the vacuum line

impedance for a radial disk transmission line, Z(ro) =
60go

ro

. The impedance profile

for a constant radial electron flow is given by,

Z(r) = c ˙L(r)

= c(C2C1 exp[C1(r − ro)]). (2.31)
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Substituting the constants of integration back into expression 2.31 generates an

equation for the vacuum line impedance as a function of r,

Z(r) =
60go

ro

exp

[
60go(r − ro)

Loroc

]
, (2.32)

where go is the minimum gap distance and c is the speed of light in vacuum.

Reducing Electron Flow:

When there is appreciable change in the electron flow versus radius, i.e. β = 1, the

general solution must be used. Utilizing the same boundary conditions as in the

constant electron flow case, the constants of integration are as follows:

C1 =
Z(ro)

Loc
,

C2 = Lo exp
2Z(ro)

Loc
. (2.33)

The vacuum line impedance for reducing electron flow, β=1, with the above constants

of integration results in the following expression,

Z(r) =
60go

ro

exp

[
120go

cLoro

− 120go

cLoro

exp

[
−1

2
(r − ro)

]
− 1

2
(r − ro)

]
. (2.34)
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2.5.2 Geometry Calculations

The equations in section 2.5.1 provide an excellent approximation for the geometrical

profiles in an over-insulated system.8 For the radial disk transmission line

experiment, an under insulated system would be more advantageous. This would

allow the difference between the anode and cathode currents to be accurately

measured, providing further comparison for the electron flow current directly

recorded by the CVR. In order to design an exact geometrical profile for a particular

flow rate, the gap spacing vs. radius must be extracted from equation 2.19 using

computational methods.9 To provide an initialization for the root-solvers, which are

needed in the computational analysis of the non-linear equations, the over-insulated

approximation will be used in the initial design of the gap profiles below.

Using voltage and current calculations from an experimentally measured power

pulse driving the system generates the radial gap spacing profile for a particular

re-trapping rate. Several other parameters, such as maximum gap spacing and load

inductance, were chosen to satisfy structural constraints due to the existing pulsed-

power hardware while maintaining a resolvable difference between the electrode

currents.

In general, the gap spacing is related to the vacuum line impedance in a disk

transmission line by the following expression,

g(r) =
Z(r)r

60
. (2.35)

8Over-insulated MITLs, as found in the Saturn and the ZR experiments at Sandia
National Laboratories, are characterized by a sheath thicknesses which constitutes a very
small fraction of the gap spacing

9This will be discussed further in Chapter 3 along with the hardware specifications used
in this experiment.
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Constant Electron Flow:

For the case of constant electron flow, β = 0, the vacuum line impedance given

in 2.32 is substituted into equation 2.35 to yield an expression for the radial gap

spacing,

gconst(r) =
gor

ro

exp
60go(r − ro)

Loroc
. (2.36)

This calculated geometric profile is constrained by three main variables: the

minimum gap spacing, the radial position at which this minimum occurs, and the

load inductance. The maximum gap spacing for this experiment was constrained

to 32.6 mm. The minimum gap was set at a radial distance of 50 mm and is fixed

by the chosen β and the maximum gap spacing. Two different collector cans were

designed to provide load inductances of 50 nH and 33.9 nH. The geometric profile

for the constant electron flow with Lo = 50 nH is shown in figure 2.10.

The equations in section 2.5.1 are set by the approximation of electron flow

current given in 2.25. It can be shown experimentally that the time change in

anode current is approximately constant during insulation [12]. Using data supplied

by an experimentally measured forward wave from the pulsed power driver, the

anode current was approximately 290 kA over an interval of 20 ns. This data was

substituted back into the voltage waveform equation, 2.25, along with the profile

constraints from above yielding,

V (r) = Lo exp
60go(r − ro)

Locro

(2.37)

= 7.68× 105 exp 0.25(r − 0.05).

Using the anode current data supplied by an experimentally measured forward
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Constant Flow Profile
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Figure 2.10: MITL gap spacing vs. radius (β = 0).

wave from the pulsed power driver, an expression for the voltage waveform can be

substituted back into 2.25 to determine the electron flow in the MITL. The plot

of the radial electron flow is given in figure 2.11. As expected, the electron flow is

constant and independent of radial location. The impedance profile for this flow rate

is illustrated in figure 2.12. Because the feed voltage is approximately constant over

the 20ns pulse, the vacuum impedance remains nearly level only rising marginally

with increasing radius.

Reducing Electron Flow:

For a reducing electron flow, β = 1, the geometric profile must be determined from

the general solution of equation 2.28. Just as in the case of constant electron flow,

the gap spacing can be determined from equation 2.35,

greducing(r) =
gor

ro

exp

[
120go

cLoro

− 120go

cLoro

exp

[
−1

2
(r − ro)

]
− 1

2
(r − ro)

]
. (2.38)
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Radial Electron Flow (Beta = 0)
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Figure 2.11: Electron flow current vs. radius (β = 0).

Using the same experimental data, profile constraints, and equation 2.25, the gap

profile and reducing electron flow current can be plotted as shown in figures 2.13

and 2.14 respectively. The concave curvature of the gap spacing in this case is

more pronounced than the constant flow profile. The electron current is shown to

increase with radius and therefore is decreasing in the direction of power flow. The

corresponding impedance profile for the reducing electron flow is shown in figure 2.15.

Once again, the voltage is approximately constant over the pulse duration leading

to a steady radial impedance that slightly decreases with radius. As β continues to

increase, the vacuum line impedance will continue to decrease over the radial span

of the transmission line to where these systems are not physically realizable.
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Vacuum Line Impedance (Beta = 0)
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Figure 2.12: Impedance profile for constant electron flow, β = 0.

Reducing Flow Profile (Beta = 1)

0.0 0.1 0.2 0.3 0.4 0.5
Radius (m)

0.00

0.01

0.02

0.03

0.04

G
ap

 S
pa

ci
ng

 (
m

)

Figure 2.13: MITL gap spacing vs. radius (β = 1).
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Radial Electron Flow (Beta = 1)
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Figure 2.14: Electron flow current vs. radius (β = 1).
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Figure 2.15: Impedance profile for reducing electron flow, β = 1.
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2.6 Flow Impedance Modeling

Due to electron space-charge throughout an insulated transmission line, an operational

line impedance is difficult to define. While an impedance profile can be calculated

under certain assumptions10, a useful generalization for studying the dynamics of

the radial electron flow would be more informative. A parameter based upon the

centroid positions of the space-charge distribution and current density relative to

the anode allows for a dynamic representation of the insulation process. These “flow

impedances” offer a direct comparison with the vacuum impedance of the line in the

absence of space-charge.

The electric flow impedance, Zf , represents the operational line impedance of the

MITL. It is defined as the separation between the anode and the mean position of

the cathode space-charge in terms of the vacuum line impedance. For the radial disk

MITL shown in figure 2.16, the A-K gap has been divided into two segments g1 and

g2 at a radius of rf ' 0.33 m. The vacuum line impedance at this radius is defined

across the entire gap, gf = g1 + g2, according to Zv(rf ) =
60gf

rf

. The electric flow

impedance is defined by the separation between the charge centroid and the anode,

g2, and is given by

Zf (rf ) =
60(gf − g1)

rf

. (2.39)

In general, the electric flow impedance in a radial disk MITL is a function of

the anode current and the total azimuthal charge per meter for a given gap spacing,

g. If Qa and Qc are taken to be the total enclosed charge density on the anode

and cathode respectively, then the anode potential is expressed in terms of the flow

impedance [13],

10In section 2.5.1 this is done for a MITL assuming over-insulated flow such that Ia À Ie.
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Figure 2.16: MITL charge density prior to full insulation. The centroid of the charge
distribution is shown. At rf ' 0.33 the total gap spacing, gf , is partitioned into
two segments, g1 and g2. The electric flow impedance is defined as the vacuum line
impedance with the gap spacing equivalent of g2.

Va = ZfcQa + (Zv − Zf )cQc. (2.40)

In the case of space-charge-limited-emission, figure 2.16, the charge along the cathode

can be represented by a thin charge layer existing at the centroid of the charge

distribution in the gap such that Qc = 0. This contributes to a simplified form 11 for

the electric flow impedance, which can be expressed in terms of anode potential and

the line currents [13, 40],

Zf =
V

cQa

=
V√

I2
a − I2

c

. (2.41)

11Low-pressure relativistic electron flows where I2
a − c2Q2

a ' I2
c − c2Q2

c .
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At a particular radius, rn, the vacuum impedance of a radial disk is given by,

Zv(rn) =
60gn

rn

, where gn is the distance between the anode and cathode at that

position. We can therefore develop a change of variable to relate a given gap distance

across the transmission line to the corresponding impedance,

G =
1

2π

√
µo

εo

g

r
≈ 60

g

r
. (2.42)

The centroid of the space-charge across the transmission line is defined by ratio of

the first moment of its distribution to that of the zeroth moment,

∫ Qa

Qc
gdQ

∫ Qa

Qc
dQ

= go − gc, (2.43)

where g is the spacing in the ẑ direction, gc is the distance between the charge

centroid and the anode, and Q is the charge per unit length across the gap. If g is

replaced with G, to incorporate the change in variable, the centroid would be located

at Zv − Zf where distance is now in units of impedance.

A typical voltage profile in terms of the variable G is given in figure 2.17. The

slope of the line voltage is equal to cQ(G) and is tangent to lines representing the

charge on the anode, Qa, and cathode, Qc. In this example, the slope of cQc = 0

because of the space-charge-limited-emission. At the intersection of the two tangent

lines, the potential is equal to the difference between the vacuum line impedance and

the electric flow impedance.
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Figure 2.17: Voltage profile across the A-K gap of a typical radial disk line at high
insulation. Space-charge-limited emission has driven the electric field at the cathode
to zero.

A second flow impedance can be defined from the centroid of the current density

within the transmission line gap. This impedance is known as the magnetic flow

impedance, Zm, and is determined by the separation between the anode and the

mean position of the current density of the electron flow [13],

cAa = ZmIa + (Zv − Zm)Ic, (2.44)

where Aa is the magnetic vector potential at the anode. Because the average electron

velocity is much higher near the anode the current will be larger near the top edge

of the sheath. Thus, the location of the current density centroid will typically be

closer to the anode than the centroid of the charge density, as shown in figure 2.18,
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such that

0 < Zm ≤ Zf < Zv. (2.45)

Usually, the values of the two flow impedances are relatively close and equality holds

when the charge distribution can be approximated by a single layer of zero thickness.
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Figure 2.18: MITL charge density prior to full insulation. The centroids of the charge
distribution and current distribution are both shown. The centroid of the current
distribution is closer to the anode than that of the charge distribution.
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If we consider the electron charge density and the magnitude of the magnetic

field to be constant in a narrow region near the cathode, the same arguments for the

uniform density which were derived in section 2.4.1 hold, where ρc = −eεoB
2
c /me.

Assuming azimuthal symmetry, the change in the total charge profile across the gap

can be expressed as,

c(
dQ

dg
)cathode = 2πrgcρc

= 2πrgc
−eεoB

2
c

me

=

√
µo

εo

g

2πr

−eI2
c

mec2
. (2.46)

Using the change in variables defined in equation 2.42,

c

(
dQ

dG

)

G=0

=
I2
c

mec2/e
. (2.47)

This is valid for all G such that 0 < G < Gs, where Gs is the impedance at the edge of

the electron sheath. For G > Gs the change in the charge with respect to impedance

is equal to zero. If we substitute expression 2.47 into the centroid distribution and

incorporate the appropriate change in variables, then the electric flow impedance can

be expressed as,

Zf =
Zv + [Z2

v − 2(mec
2/e)(Va/I

2
c )]1/2

2
. (2.48)

When the equation for electric flow impedance given in 2.41 is substituted into

this expression, the line voltage is shown to be equivalent to the pressure-balance

formulation above (i.e. equation 2.19).
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Experimental Setup

The radial dependence of the MITL gap spacing is directly related to the inductance

profile of the transmission line and subsequently the electron re-trapping rate, β.

For fractional flow rates that are approximately constant this parameter is nearly

zero. For β > 0, the fractional flow rate describes a reduction in the electron flow

as the radius decreases. A sufficiently large discrepancy in this fractional change of

equilibrium flow is necessary to obtain an empirical indication of which operating

regime provides greater stability. The experiments supporting this dissertation were

conducted using three separate anode geometries. The gap spacing profiles were

set for the case of near constant electron flow, β = 0, and two separate cases of

significant electron flow reduction, β > 1. In addition to studying variations in

anode geometry, additives to the cathode surface were incorporated to examine the

line voltage threshold necessary for explosive electron emission. This allowed for an

increase in electron density at a lower power threshold subsequently decreasing the

time required for magnetic insulation to occur.
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3.1 Hardware

The MITL hardware consists of two metallic, radial disk electrodes, each containing

twelve large signal B-dot probe diagnostics and centered round an electron can as

illustrated in figure 3.1. Because the electron current flow is constrained along

the cathode, the simulation data from this surface is of critical importance. To

avoid stair-stepping in the PIC code MITL simulation1, a flat cathode disk was

incorporated into the gap spacing profile. The anode is shown to have a slightly

curved surface which fully characterizes the radial dependence of the gap2 used to

set the MITL vacuum impedance for a particular electron flow rate. The collector

can is situated in the middle of the anode and provides the inductive load cavity

Figure 3.1: Side profile of MITL hardware.

1This is covered in greater detail in Chapter 4.
2Chapter 2, section 2.5.2
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necessary to trap the electrons below the minimal radius. A section of copper piping

is shown connected to the cathode providing a shielded conduit to run the signal

cables from the cathode’s current monitors out to the data acquisition system.

Anode Profiles:

Due to the physical constraints imposed by the pre-existing pulsed-driver

hardware the radius of the anode and cathode plates are fixed as well as the maximum

distance between them. Since the maximum gap spacing between the electrodes is

constant, the minimum gap for each anode profile will vary. The curvature for each

profile was determined from the exact pressure-balance formulation of MITL line

voltage, equation 2.19. Because of the nonlinear relationship between the gap spacing

and the anode current, points along the curved surface had to be extracted using a

root-solving algorithm which was based on Newton’s Method.3 The computational

analysis developed previously, in section 2.5.2, provided the initial approximation

needed for the root-solvers to converge. An azimuthal cross-section illustrating the

anode curvature is given in figure 3.2. Each profile has a maximum gap spacing of

approximately 0.033 m located at a radius of 0.45 m. The gap spacing minimum is

located 0.05 m from the center of the load which defines the inner edge of the electron

collector’s base. The curvature of the anode for smaller radii is defined by an anode

insert plate positioned underneath the electron can which sets the minimum height

of the gap. Because the load inductance is held constant for each experiment, the

minimum gap distance along with the curvature in the anode plate sets the profile

for a particular electron flow rate. A summary of the anode profiles computed for

this experiment are given on the following page in table 3.1.

3An iterative algorithm where an initial estimate is chosen that is reasonably close to
the function’s root and then updated with the x-intercept of the function’s tangent.
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Figure 3.2: Azimuthal cross-section of MITL hardware.

Table 3.1: Anode gap profiles used in experiment. In each case the minimum gap
spacing occurs at ro = 0.05 m and the maximum gap spacing is approximately 0.0326
m at a radial distance of 0.45 m. A reduction in load inductance results in an increase
in β. For the 33.9 nH load each β is increased by approximately 0.2.

Anode Profile Lo(nH) go(m) Comments

β = 0 50 0.0032 Constant electron flow

β = 1 50 0.0039 Reducing electron flow

β = 3.7 50 0.006 Reducing electron flow
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Collector Can:

The lumped inductance of the load, Lo, is a key component in determining the

curvature of the anode’s gap spacing profile. For this experiment two separate

inductive loads of 50 nH and 33.9 nH were utilized. Each load was designed to

maintain the physical constraints imposed by the hardware of the pulsed-power driver

and to provide the necessary inductance relative to the diagnostic shielding conduit.4

The change in inductance was set by the length of the outer housing of the load cavity,

which resulted in a larger electron re-trapping rate, β, for lower inductive loads. This

allowed for slight modifications of the electron flow in the disk. Each geometry of

the electron can was set by the distributed coaxial load inductance,

Ldist =
µo

2π
ln

rout

rin

, (3.1)

where rout and rin are the outer and inner radii of the coaxial geometry respectively

and µo is the permeability of free space. The height of the can is set by the sum of

each section’s distributed inductance. Figure 3.3 shows the cross-section of the 50

nH load geometry whose general dimensions are given in table 3.2.

In order to trap the electrons within the load region, the inner-collector can must

be held at a ”floating potential” such that the electrons are not immediately returned

to the anode. Figure 3.4 provides a cut-away cross section of the entire load region.

The inner collector, which encloses the vast majority of the load volume, is connected

directly to the current-viewing resistor contained at the base by a center spool which

supports the can by connecting to the inner collector lid. A gap of 0.09 inches is

maintained around the collector to insulate it from the anode. A center rod provides

the return path from the cathode to the outer housing of the load which is directly

connected to the anode plate.

4Discussed in section 3.2
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Figure 3.3: Cross-section of load inductance. Center spool is shown and defines the
inner radius of the coaxial geometry. In order to calculate the total inductance the
load has been divided into three pieces: 1 - Collector Region, 2 - Throat, 3 - Base.

Table 3.2: Dimensions of electron collector can as calculated from a lumped coaxial
load inductance model. The dimensions of the throat region include the bottom
cavity which houses the CVR diagnostics.

Load Section rin(m) rout(m) Length(m) Inductance(nH)

Collector 0.008 0.095 0.071 34.74

Throat 0.008 0.051 0.037 11.81

Base 0.008 0.038 0.007 5.49

Total 49.5
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Figure 3.4: Cross-sectional cut-away of the load region. The collector can is the inner
cavity and maintains a 0.09 inch gap separation from the wall of the outer housing.
The collector can is attached to a center spool which defines its inner diameter. The
center rod which attaches the outer housing directly to the cathode is insulated from
the center spool by a 0.09 inch gap.

Initial shots demonstrated problems with shorting between the inner and outer can

as a result of alignment issues with the pulsed-power driver hardware and flexing of

the collector parts. To alleviate this problem, later shots were conducted with only

a partial can, consisting of just the center rod and inner collector lid, as shown in

figure 3.5. This increased the amount of time before the shorting of the load but

decreased the amount of electron flow the CVR could record. Simulations were used

to predict the distribution of charge within the load cavity, section 5.5. Knowing

how much charge is collected on each surface of the load provides a gauge for the

percentage of the total electron current that could be registered by the CVR.
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Figure 3.5: Cross-sectional cut-away of the revised load. The inner collector consists
of the center rod, the inner collector can lid, and the base plate which supports the
CVR diagnostics.

3.2 Pulsed-Power Driver

The radial disk MITL was installed on Sandia National Laboratories’ Tesla machine5,

figure 3.6, and driven by its plasma switch triggering section known as T2. Tesla’s

triggering section is capable of supplying an 800 kV forward wave to a 2 Ω line. This

will provide the MITL with 500 kA within a 50 ns pulse width FWHM. The pulsed

power driver is connected to the cathode, which resides within vacuum, via four

coaxial de-ionized water lines through an insulator stack. The location of the MITL

hardware within the system is illustrated in figures 3.7, 3.8, and 3.9. The cathode

5Pulsed-power driver for the Triggered Plasma Opening Switch (TPOS) located in Tech
Area IV
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is negatively charged by the four water lines. The cathode completes the circuit

through a connector rod that runs from the top of the electron collector can to the

base. A parallel branch of the circuit runs from the bottom of the cathode down the

conduit pipe which houses the diagnostic signal cables. Prior to magnetic insulation,

early in the power pulse, less than ∼ 3ns, all of the current is conducted down

the conduit shielding which is connected to the negatively charged cathode. Later,

the comparatively small lumped inductance of the electron collector can drives the

current through the connector rod and back through the anode. This setup allows for

the placement of B-dot probes along the cathode. Neglecting losses that are not due

to electron emission the anode current will be equal to the cathode current during

this time interval just prior to insulation.

Figure 3.6: Load section of Tesla pulser. MITL hardware is contained within the
vacuum section which is at the center of the insulator stack disk. Four pulse-forming
water lines supply the power pulse to the MITL.
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Figure 3.7: Load section of Tesla pulser. MITL hardware is contained within the
vacuum section which is at the center of the insulator stack disk. Four pulse-forming
water lines supply the power pulse to the MITL.

Figure 3.8: Cut-away section of Tesla’s insulator stack. Center pipe not shown.
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Figure 3.9: Quarter cross-section of MITL setup.

3.3 Diagnostics

Initial electron current measurements for the constant and reducing flow geometries,

covered in section 2.5.2, demonstrated the need to resolve a ten percent difference

in the anode and cathode disk currents. With this in mind, the data acquisition

system was carefully designed for the greatest possible accuracy. To reduce electrical

noise, the signals from the current monitors were transmitted through high-quality

Heliax 50 Ω foam-flex cables. Foam-flex cables are designed with a solid corrugated

outer Cu conductor and a low-loss polyethylene foam dielectric core to drastically

reduce attenuation along the line. The Cu jacket provided protection from radio

frequency interference as the signals were transmitted to the data acquisition system
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which was housed in a separate shielded enclosure as shown in figure 3.10. The

shielded enclosure has 30 input signal ports, a RF filter for the incoming power, and

provides ample air circulation to prevent overheating of the equipment. The data

acquisition system consisted of seven 1 GHz bandwidth digitizers each possessing four

channels and capable of 5 gigasamples/sec. This allowed for 28 diagnostic signals to

be recorded during the experiment.

The current monitors utilized in this experiment consist of current-viewing

resistors (CVRs) and large signal B-dot (magnetic induction) probes. The CVRs

were located near the center of the disk, within the base of the electron collector

can, and recorded the electron current at the entrance to the load cavity. The B-dot

probes were distributed along the radial extent of the MITL and characterized the

localized current densities along the disk. Figure 3.11 illustrates the distribution of

diagnostics along the bottom of the cathode plate. An identical distribution of B-dot

probes were installed along the anode plate but slightly rotated with respect to the

cathode monitors. This was done to smooth out any azimuthal variations that might

occur along the MITL. The specific locations of the current monitors used in this

experiment are summarized in table 3.3.

Early experiments revealed the potential for field emission from the current

monitors along the cathode due to non-uniformities in the surface plasma. The

emitted electrons resulted in current monitor signals which were higher than the

cathode current and thus underestimated the electron flow. As a result, additional

current monitors were placed in circular holes and distributed between the concentric

grooves of the cathode as shown in figure 3.12. To reduce the field enhancement at

the edge of the current monitors these holes were constructed with rounded edges

and covered in polyamide tape, figure 3.13.
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Figure 3.10: Shielded enclosure for data acquisition. Consists of seven 1 GHz
digitizers and a time domain reflectometer (TDR) cable tester for measuring cable
transit times.
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Figure 3.11: Cathode plate. B-dot diagnostics are distributed along four concentric
circles. Within each circle there are three probes separated by a 120 degrees.

Table 3.3: B-dot locations for each electrode. Each location is measured r meters
from the center of the disk and θ degrees from the top of the plate shown in figure
3.11. The inductance is the lumped line inductance at each radial location.

Diagnostic radii(m) Inductance(nH) Angles(deg)

Anode B-dot 0.186, 0.240, 0.297, 0.354 53.0, 53.7, 54.5, 55.2 110, 230, 350

Cathode B-dot 0.186, 0.240, 0.297, 0.354 53.0, 53.7, 54.5, 55.2 100, 220, 340
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Figure 3.12: Cathode surface of A-K gap. B-dots located in grooves and holes.

Figure 3.13: Polyamide tape used to cover B-dots on field emitting cathode.
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Current-Viewing Resistors:

Local current can be inferred by measuring the voltage drop across a series resistor

of known value. This current-viewing resistor is characterized by a small series

resistance, Rs, and very low series inductance, Ls. If the inductance of the path to

ground is large compared to Ls then the majority of the current will flow through

the CVR for times scales on the order of τ ¿ L/Rs. Figure 3.14 shows the single

CVR setup used for calibration. During an experimental shot, three CVRs were used

through a similar base plate with resistances of 9.81 mΩ, 9.74 mΩ, and 9.89 mΩ.

Figure 3.14: A single CVR threaded through the base plate for the calibration setup.

B-dot Probes:

The B-dot probe is an inductive sensor which measures the magnetic flux

associated with current flow. It consists of a conducting loop of N turns oriented

such that the cross-sectional area, A, of the loop is normal to the magnetic flux

density. Current is induced in the loop by the time-varying magnetic field associated

with the pulsed current. When the signal from the inductive loop is passed through

62



Chapter 3. Experimental Setup

a passive integrator the output voltage can be expressed in terms of the magnetic

field,

Vs =
NAB

RC
, (3.2)

where B is the magnitude of the normal magnetic flux and RC is the time constant of

the passive integrator circuit. If the geometry is known, the current can be extracted

from the magnitude of the magnetic flux density.

For a disk transmission line, the anode and cathode currents induce a magnetic

field in the azimuthal direction. In this experiment, B-dot probes are positioned

within concentric grooves along the disks such that the cross-sectional area of the

pick-up loop is parallel to the radial direction and perpendicular to the field. These

probes consist of a single conducting loop traced on printed circuit board that is

soldered to a N connector as shown in figure 3.15. The response time for the probe

is determined by the ratio of its inductance to its load resistance. Utilizing a single

turn increases the overall time response of the monitor.

Figure 3.15: B-dot probe diagnostics. Large-signal loop current monitors measure
magnetic flux along the anode and cathode.
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The B-dot signals are integrated using passive components6 once they have

entered the screen box as illustrated in figure 3.16. While these integrators are

fast and resilient to noise, they generate a droop in the output signal [41]. This

droop must be numerically corrected through the use of software that is incorporated

into the data acquisition system. Once the integrated signal is obtained, the local

current at each probe position can be calculated using the radial position of the

current monitor and its calibration factor determined below.

Figure 3.16: RC passive integrators. There is a single calibrated integrator for each
of the 24 B-dot signals.

6This is a variant of the RC circuit. When the signal duration is very small compared
with the RC time constant, the voltage drop is mainly across the resistor. The output
voltage is effectively the integration of the input signal divided by the time constant.
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Calibration:

At voltages well below the threshold for electron emission, a single current-viewing

resistor in the base of the load will register the total current in the MITL. Comparison

between the B-dot current monitors and the CVR reference signal provides a general

scaling factor for each waveform. These calibration factors multiplied by the RC time

constant of the passive integrators used in the screen box gives the overall gauge for

each local current monitor.

The hardware assembly used for the calibration of the B-dots is given in figure

3.17. For low voltages the inner can is no longer necessary due to the absence of

free electrons in the system. The center spool is thus removed and the CVR is

connected directly to a calibration rod which attaches to the anode. The MITL was

calibrated in situ (figure 3.9) and was pulsed through the existing water lines using

a 10kV pulser. This particular pulser possessed a 16 channel output which allowed

' 10kV to be distributed through four channels per water line. The integrator

circuits shown in figure 3.16 were removed and the B-dot signals were sent directly

to the digitizers and integrated using numerical techniques. In order to smooth out

erroneous effects, this integrated signal was integrated a second time and compared

with the numerically integrated CVR signal which was used as a reference. Using

a comparison algorithm, the B-dot signal was scaled and time shifted in order to

minimize its difference (least squares) with the reference signal (figure 3.18). During

full operation, this calibration factor along with the time constant of each of the

passive integrators scales the local EMF signal generated by each B-dot probe into a

local current measurement along the MITL electrodes. Subtraction of corresponding

anode and cathode signals results in the local electron flow at that radial location.
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Figure 3.17: Cross-section of calibration assembly. A single current-viewing resistor
is connected to the outer housing through a calibration rod which measures the total
current.
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Figure 3.18: Comparison between the time integration of the CVR reference signal
and twice integrated B-dot signal. For this example the calibration factor is
approximately -5.41e+10 after a time shift of 3.86 ns. The negative scaling factor
is a result of this particular probe’s orientation along the cathode with respect to
the power flow. With a relative standard deviation of roughly 0.2% the signals are
nearly indistinguishable.
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PIC Simulation

Prior to the advent of modern high-speed digital computers, only a narrow range

of practical scientific problems could be investigated due to the complexity of their

geometries. From the 1920’s through the mid 1960’s, several numerical methods were

developed which allowed for the approximation of problems that were intractable or

for which closed form solutions did not exist. With the dramatic rise in computational

power over the last twenty years these methods have gained immense popularity for

their ability to model a variety of complex physical systems. Of these numerical

methods, those utilizing finite difference approximations are more frequently used

and are applicable to a broader range of applications than any other [42]. It is this

finite difference method (FDM) which will provide the basis for the particle-in-cell

code used in this work.

First proposed in 1955, the particle-in-cell (PIC) method [43] was developed

to solve a certain class of partial differential equations which modeled nonlinear

hydrodynamic phenomena. This method involved tracking several individual

elements through a phase space continuum1, while simultaneously calculating the

1For a collection of particles or fluid elements the 2-D phase space consists of the
particle’s position and velocity.
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moments of the distribution on a stationary grid. The first four of these moments,

where the lowest moment is numbered zero, can be interpreted as the particle density,

flux density, pressure tensor, and energy flux density respectively [44].

In plasma physics applications the PIC method essentially follows the trajectories

of charged particles within self-consistent electromagnetic fields computed on a fixed

mesh. The electric fields in the simulation exist as a superposition of externally

applied fields and internal fields arising from charge distributions. The internal

field is calculated through the introduction of a non-physical grid across the area

of interest which assigns a particular charge density at each grid position due to

the local particle distribution. Poisson’s equation is used to calculate the potentials

along the grid due to this charge density which also determines the electric fields.

The particle locations are then updated via the Lorentz force which depends upon

the simulation particles’ charge and momentum relative to the magnetic flux density.

4.1 QUICKSILVER

QUICKSILVER is a finite difference-time domain (FDTD), three-dimensional,

electromagnetic PIC code developed at Sandia National Laboratories [14]. It is

capable of utilizing numerous parallel processors to simulate an extensive set of

charged particle interactions. It has been used to study a variety of physical

processes, such as electron beams, high-current plasmas, microwave devices, ion and

electron diodes, as well as MITLs [45]. It is currently the simulation tool of choice

for studying and characterizing the MITLs in Sandia’s ZR experiment.

In addition to the QUICKSILVER, several support codes which handle the

preprocessing and postprocessing graphical output are utilized. An interactive

preprocessor, known as MERCURY, utilizes a graphical platform to define the

simulation boundaries, conductor geometries, and meshing. MERCURY combines
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this information into an ASCII text file which acts as an input deck for QUICKSILVER.

The simulation output is partitioned into several files using a compact machine-

portable format known as Portable File Format (PFF). These PFF files are then

plotted using the PFIDL post-processor [46]. Various plots of the time history

data from the simulation record are possible. These include, particle snapshots

containing local momentum and charge densities, field snapshots of the electric and

magnetic fields within the geometry, and localized voltage and current diagnostics

placed throughout the simulation.

4.1.1 Particle Creation

Within the disk transmission line, particles are introduced into the simulation near

the cathode of the MITL based on a space-charge-limited (SCL) emission model

[47]. As discussed in Chapter 2, the electron emission from a “cold” cathode is a

complicated process that is not completely understood. The detailed physics begin

at a quantum level and are too small to be resolved by the simulation. In order to

reproduce the desired macroscopic behavior of the system, the SCL emission model

has several adjustable parameters.

The emission process proceeds as follows: Initially, the voltage pulse traveling

down the line introduces an externally applied electric field, En, which is normal

to the cathode. This value is averaged over the four values at the upper corners

of a simulation cell and forces the field emission cell to “turn-on” upon reaching a

predetermined threshold, ebreakdown. Charge is then created at the cathode surface

to force the normal electric field at that point to approximately zero. A typical 2-D

field emission cell along the cathode is given in figure 4.1. At each emission time

step, the charge to be introduced into the cell is computed by applying Gauss’ law
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around the circumference of the cell. The created charge is computed by,

∆Qcreated = εo∆AEn − ρ∆A
∆xn

2
, (4.1)

where ρ is the averaged charge density at the four values of the lower corners, xn is

the unit normal vector, and ∆A is the area of the cell on the cathode. The emission

threshold parameters used in these simulations were determined by the electron flow

data collected from the actual MITL experiment.2

Figure 4.1: 2-D field emission cell. The normal electric field, Eo, is located at ”half-
grid” points which coincides with the upper corners of the emission cell.

2The experimental data for this dissertation is given in Chapter 6. The field emission
parameter is set to the voltage level which corresponds to a sustained measurable difference
between the anode and cathode currents.
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The number of simulation particles created within a cell along the cathode is

determined by a weighting scheme. The weights are chosen such that the number

of real charged particles that the simulation particle represents adds up to the total

charge computed within that cell. Each particle that is created is introduced directly

on the surface of the cathode and then translated up to a height h above the surface

within a time δt as in figure 4.2. The coordinates δx1 and δx2 as well as the height

can be set for a random or uniform distribution within the cell compared with other

particles introduced into the cell. As the particle is moved upward, the current

associated with this motion is added to the accumulated current density for that

cell. An incremental change in the normal electric field results from the loss of charge

from the cathode and is directed toward the anode as to oppose further introduction

of charge.

Figure 4.2: Creation of particle within a simulation cell. The momentum vector
is shown in spherical coordinates. The particle’s height as well as the transverse
coordinates are set to a fraction of the cell size.
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4.1.2 Killed Particles

The term “killed particles” refers to the flux of simulation particles passing through

a surface which has been designated as a conducting region [48]. QUICKSILVER is

capable of storing each particle’s information as it is removed from the simulation.

This data is stored within the particle snapshot file using the KPSAVE model and

allows the information to be accessed as a simulation diagnostic. Furthermore, several

parameters of the simulated particles can be used as a source for more detailed

physical models of the particle interactions with the conducting surfaces. These

parameters include: physical particle current, mean/standard deviation of particle

energy and momentum in each direction, and mean angle with respect to the principle

coordinate directions.

In addition to cataloging several physical quantities of the removed particles,

QUICKSILVER also captures the spatial distribution of the electron-conductor

collisions as a time-history, field-snapshot. Figure 4.3 shows the killed particle flux

in the transmission line at 50 ns, just before magnetic insulation has taken place.

As expected, the center section of the electron collector and the anode at inner

radius possess the majority of the killed particle flux. The cathode contains much

of the visible flux during the simulation; however, this is due to the return of the

free electrons following there scalloped orbits.3 Upon returning to the cathode, the

electron energy is relatively low. This is confirmed through the recorded momentum

and particle energy through this conductor.

The physical particle current is calculated as the total physical charge accumulated

over the history time step and is very useful in determining which sections of

conductor endure the largest portion of the electron collisions. This proved useful in

the design of the inner electron collector, aiding in designing the lengths necessary to

3See section 2.2
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enclose the majority of the recombining electrons. The mean/standard deviation of

the particle energy and momentum were calculated from the charge-weighted sums

of the simulation particles collected by the conductor.

Once the killed particles have been recorded the interactions of the electrons with

the conducting boundary can be modeled. A series of coupled electron transport

codes, known as ITS, utilizes the killed particle parameters to accurately model

heating of electrode surfaces, back-scattering from bulk conductors, and electron

emission through thin foils [49]. This will be covered in more detail in section

4.1.4 on energy deposition. This diagnostic was used to determine the rise in

anode temperature due to electron bombardment and whether ions and neutrals

are introduced into the system and play a significant role.

Figure 4.3: Killed Particle Flux at 50 ns.
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4.1.3 Field Solvers

The finite difference method (FDM) was developed in the 1920’s by A. Thom [50]

and has become a very popular, albeit straightforward, method for approximating

several different field problems. The FDM technique is based on the approximation

of differential equations using finite difference equations. The QUICKSILVER field

solver utilizes explicit and implicit leap-frogging algorithms that are based on Yee’s

finite difference algorithm [51]. In an isotropic medium, such as vacuum, Maxwell’s

curl equations, in rectangular coordinates, can be expanded into the following six

scalar equations:

δBx

δt
=

(
δEy

δz
− δEz

δy

)
,

δBy

δt
=

(
δEz

δx
− δEx

δz

)
,

δBz

δt
=

(
δEx

δy
− δEy

δx

)
,

δEx

δt
=

1

µoεo

(
δBz

δy
− δBy

δz
− σEx

)
,

δEy

δt
=

1

µoεo

(
δBx

δz
− δBz

δx
− σEy

)
,

δEz

δt
=

1

µoεo

(
δBy

δx
− δBx

δy
− σEz

)
, (4.2)

where the conductivity, σ, is zero in vacuum. The space and time derivatives in

equations 4.2 are converted via a central finite difference approximation which is

second-order accurate,

δF n(i, j, k)

δx
=

F n(i + 1/2, j, k)− F n(i− 1/2, j, k)

δ
+ O(δ2) (4.3)

δF n(i, j, k)

δt
=

F n+1/2(i, j, k)− F n−1/2(i, j, k)

∆t
+ O(∆t2) (4.4)
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This generates an explicit finite difference equation for each of the six scalar electric

and magnetic induction field components. These spacial components of the fields are

distributed about a unit cell of the Yee lattice as shown in figure 4.4 where ~E and

~B are half cells widths apart and are evaluated at alternate half-time steps.

Figure 4.4: Location of the field components within a unit cell of the Yee’s lattice.
The electric field components are on the edges and the magnetic flux components
are in the center of the faces.
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For simulation cells adjacent to a conductor, boundary conditions must be applied

which are appropriate for the vacuum-material interface. In this work, the anode

and cathode are simulated as perfect electric conductors. The boundary conditions

are applied along the boundary of a cell such that the tangential components of the

electric field as well as the normal components of the magnetic field vanish at each

conducting surface.

The mesh used to define the fields across the volume, must be spaced appropriately.

The grid size must not allow a significant change in the electromagnetic field from

one point to the next. In order to generate meaningful results, the grid spacing

in any particular direction must be a fraction of the electromagnetic wavelength.

Furthermore, to obtain a computational stability requires that the spatial increments

must be greater than the distance traveled by light in a vacuum over that increment

of time. This sets the time step for the particular grid spacing used. When charged

particles are introduced into the simulation this time step also becomes dependent

on the relative magnitude of the magnetic field. For very large magnetic fields the

particle orbits become very small due to a reduction in the cyclotron period. This

requires a reduction in the simulation time step and a potential refinement in the

grid meshing.

The finite difference method is easily adapted to cylindrical or spherical coordinates

by applying the appropriate coordinate changes to equations 4.2. Cylindrical

coordinates were used for the study of the transmission line disk geometry. In this

case the diagnostic grooves can be considered infinite in extent, in the φ̂ direction,

so as to reduce the problem to two dimensions. Assuming an approximate uniform

current distribution, the three dimensional fields can be easily generated from the

model while obtaining faster computational turn around.
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4.1.4 Energy Deposition

In order to develop an accurate computational model for the transmission line gap,

the effect of cathode field emission on the anode surface must be considered. Early

in the pulse, electrons are free to transit the smaller gap sections of the disk and

bombard the anode. This increase in electron energy deposition into the anode, leads

to a rapid nonuniform increase in temperature along the surface. Several experiments

have demonstrated a correlation between the formation of an anode plasma with the

specific heat of the anode material [52, 53]. This suggests that electron heating can

lead to an avalanche breakdown of adsorbed gases from the anode due to thermal

desorption. Sanford et al. measured the electron energy deposition in tantalum,

titanium, and carbon anodes and found that, independent of the anode material,

anode plasma formation required surface temperatures of 400 ◦C ± 60 ◦C.

The surface of the anode considered in the experimental setup is composed of

two separate material sections. At inner radius, r ≤ 0.34 m, the anode surface is

defined by a stainless steel insert plate which connects with the steel outer housing

of the load cavity. The remaining 86.34% of the anode surface consists of aluminum

to reduce the overall weight of the plate. Because the aluminum section of the radial

MITL is further away from the load it posses a larger gap spacing, greatly reducing

its susceptibility to significant energy deposition. On the other hand, the stainless

steel section of anode at inner gap becomes a critical design parameter due to the

excessive electron bombardment early in the pulse.

Studies of the electron-anode interactions of applied-B ion diodes using PIC

simulations [54] led to the further development of temperature and scattering

diagnostics within QUICKSILVER. ITS coupling models allow for a more detailed

modeling of electron-conductor interactions (ECI) using the stored killed particle

diagnostics from the simulation. Using a data table, defining the specific ECI for
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a particular conductor material, the energy deposition, Q(Ei, Θj) in Mev/cm, for

incident electron energies and angles can be obtained. The temperature increment

due to a single incident particle of charge, q, passing through a conducting surface

of area ∆A is calculated as,

∆Tp =
100qQ(Ep, Θp)

ρCp(T )∆A
(4.5)

where q is the charge in Coulombs, ∆A is the area in m2, ρ is the density in

gcm−3, Cp is the specific heat in J ◦C−1 g−1, and Q is the energy deposition in

MeV cm−1/electron (Q/e = 10−6 J cm−1/C).

The conductor temperature is recorded as an auxiliary snapshot field and stored

at discrete time steps throughout the simulation. Since the temperature of the

anode surface is a cumulative effect, later field snapshots will result in the highest

temperatures recorded on the anode surface. Initial simulation runs utilizing actual

voltage waves from previous experimental shots revealed that the largest anode

temperatures found were located at the radius of minimum gap spacing as shown in

figure 4.5. This geometry for this particular simulation was designed for a substantial

reduction in inner radial electron flow and possessed a minimum gap spacing of 6

mm. In this particular case, it was found that the rise in anode temperature never

exceeded ≈ 200 ◦ C which is well below the threshold for anode plasma formation

[55].
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Figure 4.5: Temperature contours in ◦C along the anode conductor at t = 89.5 ns.
The baseline was set to 20 ◦C for room temperature.

4.2 Simulation Diagnostics

There are two main time history diagnostics provided by QUICKSILVER that will

be utilized in this study. The HISTORY command specifies parameters for field

and particle time history diagnostics. Measurements based upon the field snapshots

are listed in table 4.1. These “virtual” diagnostics can be placed anywhere within

the simulation to record local voltages, current, energy flux, etc. Within the disk

transmission line geometry, these current probes will be placed at each of the physical

B-dot locations as well as in between the grooves for generating radial electron flow

plots. The current and localized voltage measured at each of the B-dot positions

provides confirmation that the probes are at the same potential as the simulation.
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Similarly, the inductance at these positions can be verified when the particle emission

model is turned-off to ensure that the current rise-times are comparable.

Table 4.1: Time history field diagnostics.

Type Components Comment

field ei, ej, ek components of electric field at a point

bi, bj, bk components of magnetic induction at a point

ji, jj, jk components of current density at a point

rho charge density at a point

dl e, b voltage (E · dl), current (B · dl)

da e, b surface integral of normal electric/magnetic field

j, s surface integral of normal current density/Poynting vector

dv rho/energy total charge/field energy

eenergy/benergy electric/magnetic field energy
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The initial voltage pulse is introduced to the system through an inlet section of

transmission line which is matched to the outer radius of the disk. This open-circuit

voltage pulse is created from actual shot data recorded from the experiment and

is equal to twice the amplitude of the forward voltage wave in the system. This

waveform is digitized and entered into the simulation using a voltage include file and

provides the forward voltage wave for the excitation of the simulated structure.

In addition to the simulation field diagnostics, QUICKSILVER provides time

history particle snap shots. The total number of simulation particles as well as their

energy and charge are recorded at several time intervals. The software categorizes

each recorded particle as either created, killed, or as a particle that remains in the

simulation. Several particle parameters are recorded with each snap shot such as

directional momentum, charge, position, etc.

4.2.1 Inductance

The radial dependent self-inductance of the transmission line is an important

parameter which determines the amount of magnetic flux induced across the line by

the current pulse. At any particular distance from the load the lumped inductance

is the scaling factor between the localized voltage at that point and the time change

in current measured along the anode. Due to the relatively large size of the load

collector region to the rest of the transmission line, the majority of the line inductance

is located at the minimum radius of the anode profile. This leads to a measured

difference of about 2 nH between the inner most current monitors and those located

at the furthest radial extent. Therefore, the measured voltages at each B-dot location

are rather close and decrease with smaller radii. The lumped inductance at each B-

dot location was calculated using the Quicksilver diagnostics4 for the anode current

4This was done in the absence of charged particle emission from the cathode.
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and the electric field distribution across the transmission line,

L = (Ia)
−1

∫
V dt. (4.6)

Here V is the local electric potential at the location of the current monitor and was

derived from the line integral of the electric field across the gap. The inductances of

the B-dot probes along with that of the load are included in the radial profile given

in figure 4.6. This profile represents the total inductance of the MITL, including

the load cavity, for a given radius, r ≥ ro. At the minimum gap spacing, ro, the

inductance is just that of the load cavity, L = 50 nH.
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Figure 4.6: Lumped inductance at the entrance to the load cavity and each of the
four B-dot probe radial locations.
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Figure 4.7 compares the radial inductance profiles of two separate re-trapping

parameters, β. These profiles do not include the load cavity and therefore only

represent the lumped inductance between the anode and cathode within the A-K

gap at a particular radius. Because the gap spacing of each geometry must be equal

at outer radius, the minimum gap must change the fractional electron flow at the

load. The minimum gap must be raised in order to increase the re-trapping rate of

the radial MITL. The minimum gap of the β = 3.7 geometry was about 2.22 mm

higher than the constant flow geometry. This lead to the increase in self-inductance

shown in figure 4.7.
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Figure 4.7: Lumped inductance at the entrance to the load cavity and each of the
four B-dot probe radial locations.
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4.2.2 Field Measurements

The collective behavior of the electron flow is greatly affected by the electric and

magnetic fields in the A-K gap of the transmission line.5 Using the field snap-shot

diagnostics, QUICKSILVER is capable of constructing contour plots of these fields

on any of the principle axes at a variety of time intervals throughout the power pulse.

The voltage input pulse generated at the power inlet of the simulation defines the

initial electric field profile across the A-K gap. As electrons are emitted from the

surface of the cathode, this field is altered by the existence of space charge along the

negatively charged electrode as shown in figure 4.8. The current associated with the

power pulse establishes a magnetic inductance within the line which is perpendicular

to the electric field. A contour of the magnetic flux density in the θ̂ direction at peak

voltage during a standard simulated pulse is given in figure 4.9.
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Figure 4.8: MITL electric field [V/m] in the ẑ direction. The electric field strength
is diminishing throughout the space charge and is zero along the cathode.

5Chapter 2
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Figure 4.9: Magnetic flux density [T] within the MITL. The field is negative
indicating that it is in the −θ̂ direction.

The recorded fields within the simulation allow for the development of voltage

and current diagnostics. Voltages are obtained by simple line integrals of the electric

field,

V =

∫
~E · d~l, (4.7)

where dl is an infinitesimal line segment of a path running across the A-K gap which is

perpendicular to both the anode and cathode. A contour of the voltage is illustrated

in figure 4.10. Similarly, the current is obtained by line integrals of the magnetic flux

divided by the permeability of free space (i.e. Ampere’s Law in vacuum).
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Figure 4.10: Voltage contours, in Volts, within the A-K gap. The potential is between
the anode and the top of the space charge layer.

The electron charge density can be determined through the application of an

inverse weighting scheme on the simulation particles that are currently in the system.

The weights which correlate the amount of charge to the density of simulation

particles was introduced upon the particles creation as covered in section 4.1.1. This

spatial density is stored as a field-snapshot at discrete moments of time as shown in

figure 4.11. These field snap-shots are useful in the construction of movies which can

be used to illustrate the collective dynamics of the electrons during insulation.
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Figure 4.11: MITL charge density [C/m3] prior to full magnetic insulation.

4.2.3 Electron Flow Current

Assuming that losses in the disk transmission line are negligible, the current

attributed to the average free electron drift along the cathode is equal to the difference

measured between the anode and cathode currents. These currents are initially equal

prior to the formation of space charge until the insulation process results in a drop in

the cathode current through electron emission. The localized voltage at a particular

position in the MITL is dependent on the self-inductive scaling of the time change in

anode current. As this potential decreases along with the falling edge of the current

pulse, the electric field diminishes across the A-K gap. This allows the cathode

current to once again rise up to the anode level. During voltage reversal the average

electron drift, which was originally in the direction of power flow, approaches zero and

shifts directions to flow radially outward from the center of the MITL. If the negative

cycle of the potential is sufficiently large then the anode and cathode experience a
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role reversal.

In the PIC simulations, the local voltage and current are obtained through

line integrals of the calculated fields. This is done at several locations distributed

throughout the MITL as well as those corresponding to the physical B-dot locations

themselves. A typical measurement of the local voltage and line currents at the

inner B-dot diagnostic is shown in figure 4.12. There is good separation between the

currents between 35 ns and 70 ns which correlates to the time interval for magnetic

insulation. By subtracting Ia and Ic in figure 4.12, the time dependent electron flow

current at the inner B-dot location is determined, figure 4.13.
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Figure 4.12: Simulated voltage across the A-K gap located at the outer most B-dot
probe.
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MITL Electron Current (Beta = 0)
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Figure 4.13: Simulated electron flow current measured by the inner B-dot diagnostic.
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Simulation Results

Two dimensional particle-in-cell simulations were performed for several different

electron flow profiles ranging from constant flow, β ' 0, to greatly reducing flow,

β > 3. Several aspects of the disk MITL’s performance were investigated in order to

attain a fundamental understanding of the limitations inherit to the design of gap

profiles from fractional electron flow considerations. Charge density contour plots,

combined with the localized voltage and line currents, facilitated in the establishment

of a time window for the magnetic insulation. The radial electron flow could then be

examined throughout the evolution of the insulation process along with the electric

and magnetic flow impedances. Further investigation into electron energy deposition

along the surface of the anode offered insight into the design of the inductive load

cavity and possible plasma closure considerations. Finally, magnetic flux and charge

density contours provided a clear picture on the effects of perturbations within the

electron sheath due to the diagnostic grooves along the cathode.

The radial electron flow model derived in section 2.5.1 was developed under the

assumption that the electron layer was confined closely to the cathode during

magnetic insulation and therefore the anode current was substantially greater than
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the electron flow. In order to verify this model each profile was simulated at very

high voltage in order to reduce the effect of space charge. With a relatively low

load impedance, compared with the vacuum line impedance, the resulting current

driving the line is capable of creating the would necessary magnetic insulation to

meet this criteria. Radial electron flow plots from these simulations were compared

against theoretical model predictions at several times during the insulation process,

providing a region of validity for the model. Later simulations were driven at a

much lower voltage pulse which was constructed from a previous shot by the pulse

power driver used on the experimental setup. While the radial profiles from the

experimental hardware are useful in studying the space charge effects at lower electric

field strengths, the high voltage simulations become invaluable in developing design

techniques for large z-pinch drivers which operate at voltages well over a megavolt.1

5.1 Radial Electron Flow

The conductor geometries for the following simulations are assumed to be symmetrical

in the azimuthal direction and extend radially outward from the load to the inlet of

the transmission line feed, as shown in figure 5.1. The MITL region of the simulation

consists of the A-K gap between the curved anode and flat cathode conductor

boundaries and their grooves which represent the current monitoring diagnostics

of the experiment. The load cavity consists of the entire volumetric region of the

electron can inside the outer housing. Due to the CVR diagnostics, the inner can

could not be represented in a two dimensional geometry and therefore was not

included. The entire cavity, however, represents the lumped load inductance and

is the only load structure necessary for defining the electron flow in the MITL.

1The refurbished Z driver at Sandia National Laboratories is designed to have an
insulator stack voltage of about 4.5 MV.
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The simulations were conducted on the “Koopa” computer cluster at Sandia

National Laboratories in Albuquerque, NM. The simulations typically ran on 16-32

processors and incorporated a maximum of one million simulation particles. The

highest cell concentration in the simulation grid is positioned along the cathode and

throughout the grooves of both electrodes. A finer mesh along the emitting surface

provides a higher resolution of the electron sheath which contains the largest density

of simulation particles. This meshing was extended up to the anode diagnostic

grooves to obtain the most accurate results possible at those locations. Because there

were no direct measurements recorded from the load cavity during the simulation,

this region consisted of a sparser mesh for reduced computing time. The cell sizes

near the surface of the cathode and within the grooves were set to 200 µm.

Figure 5.1: Conductor geometry for radial disk MITL simulation.

The boundary conditions at the inlet feed were generated from an experimentally

derived forward-traveling waveform (shot 500) which had a peak voltage around 500

kV. For the high-voltage simulation this waveform was amplified by a factor of 10
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to obtain an open-circuit voltage waveform of about 10 MV.2 In order to satisfy

the Courant-Friedrichs-Levy condition3, the time steps for the 10 MV and shot 500

simulations were set to 208.3 fs and 625 fs respectively. The decreased time step

for the high voltage simulation was also necessary to obtain the proper resolution of

the cyclotron period within the load cavity region due to its extremely large local

magnetic flux density which was calculated to be roughly 40 T.

The following subsections provide a detailed record of three separate profile

simulations. These simulations include the constant flow profile, β = 0, a reducing

flow profile, β = 1, and a very large radially increasing electron flow profile,

β ' 3.7. This wide range in re-trapping parameters, β, was necessary to construct a

comprehensive picture of the radial electron flow near different operating regimes. To

facilitate in the validation of the electron flow model used, each simulation profile was

performed for each voltage feed, (i.e. 10 MV and shot 500). Snapshots are included of

the charge density inside the MITL section at a time prior to full insulation and later

at peak insulation. The centroid of the charge and current densities are overlayed

onto the early snapshot. During peak insulation these centroids tend to converge for

well insulated transmission lines. The flow impedances defined by these centroids are

given as fractions of the vacuum impedance and illustrate the amount of insulation

achieved in the line and the amount of relative space charge along the cathode at

peak insulation. Finally, the radial electron flow is given along with a theoretical

comparison which utilizes the local anode voltage and line currents directly from

the simulation. The theoretical comparison is derived from the full space charge

pressure-balance model given in equation 2.19. The voltage and currents from each

simulation are plotted separately.

2Quicksilver uses an open-circuit voltage waveform as the input to the transmission line
inlet. This waveform is obtained by doubling the forward-traveling pulse.

3This is a restriction on the maximum time step to ensure convergence in the algorithms
for solving discrete partial differential equations. The time step must allow sufficient time
for the particle information to propagate through the space discretization.
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5.1.1 Constant Electron Flow, β = 0

Simulation Setup (Beta=0)
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Figure 5.2: Simulation setup for constant electron flow profile. The transmission
line feed inlet is positioned at r = 0.45 m. The minimum cell size is 200 µm and is
located along the cathode.

The simulation setup for the constant flow profile, β = 0, is given in figure 5.2. At

high voltage the MITL was at peak insulation around t = 53 ns. A charge density

snapshot prior to insulation, t = 35 ns, is given in figure 5.3. The spread in the

electric and magnetic flow impedances, figure 5.4, illustrates the distance the electron

sheath extends into the A-K gap. Because electrons travel faster as they approach

the anode, the centroid of the current density is further away from the cathode

than that of the charge density. This results in a magnetic flow impedance which

is noticeably less than the electric flow impedance. The electron flow versus radius

is plotted in figure 5.5. The simulation appears to be very close to the theoretical

value. It should be noted that the profile is not quite level because insulation, and

thus a constant electron flow, has still not yet been achieved. The radial line voltage

and corresponding line currents at this time are given in figure 5.6.
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Figure 5.3: Charge density [C/m3] at t = 35 ns for the constant radial flow MITL
with 5 MV forward voltage wave. The centroid for the charge density is shown below
the centroid of the current density.
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Figure 5.4: Electric and magnetic flow impedances at t = 35 ns, high-voltage.
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Radial Electron Flow (10MV, Beta=0), t=35ns
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Figure 5.5: Radial electron flow at t = 35 ns for the constant radial flow MITL with
5 MV forward voltage wave. Prior to insulation the profile has not yet leveled out.
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Figure 5.6: Line voltage, anode current, and cathode current plotted versus radius
at t = 35 ns, high-voltage.
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At 53 ns the majority of the charge density, figure 5.7, is confined to a small

sheath along the cathode surface. The electric and magnetic flow impedance are

now converging and are collectively moving toward the overall vacuum impedance

of the line as shown in figure 5.8. The electron flow, given in figure 5.9, is now

characterized by a constant radial profile at a magnitude of approximately 270 kA.

This value represents the average separation between the anode and cathode currents

which are illustrated in figure 5.10.
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Figure 5.7: Charge density [C/m3] at t = 53 ns for the constant radial flow MITL
with 5 MV forward voltage wave. The centroids for the charge and current densities
approximately overlay.
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Flow Impedances (10MV, Beta=0), t=53ns
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Figure 5.8: Electric and magnetic flow impedances at t = 53 ns, high-voltage.

Radial Electron Flow (10MV, Beta=0), t=53ns
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Figure 5.9: Radial electron flow at t = 53 ns for the constant radial flow MITL with
5 MV forward voltage wave. During insulation this profile is approximately constant
with respect to radius.
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Va, Ia, Ic (10MV, Beta=0), t=53ns
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Figure 5.10: Line voltage, anode current, and cathode current plotted versus radius
at t = 53 ns, high-voltage.

At lower voltage the simulated results and the electron flow model begin to

diverge. The voltage forward wave fed into the transmission line inlet was around

500 kV and possessed the same exact shape, and therefore timing, of the high voltage

waveform used. Figure 5.11 gives the MITL charge density at 50 ns which is roughly

10 ns before the time of peak insulation. Because the line voltage is significantly lower

than in the previous case, emission from the cathode becomes more localized. The

sharp diagnostic grooves along the cathode possess a much lower emission threshold

due to their field enhancement. As the voltage level rises these are the first regions

to begin freely emitting electrons into the A-K gap. As these charged particles are

driven back to the cathode due to the magnetic flux in the line, their orbits are

fairly large due to the line current operating at a level close to saturated flow. These

electrons are capable of shielding other parts of the electron surface, further delaying

their emission. Because the line is fairly under-insulated, it is never able to overcome

this feature of the cathode surface. This results in the noticeable curvature present
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in the radial flow impedance profiles given in figure 5.12.

The radial electron flow is shown in figure 5.13. While the simulation is in close

agreement with the theoretical values throughout the middle of the MITL, at larger

radius the voltage is still too low to insulate the line. Below r = 0.1 m the theoretical

value cannot be resolved due to inadequate insulation which violates the pressure-

balance assumption used in the model. The line voltage and electrode currents used

in the theoretical model are given in figure 5.14.
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Figure 5.11: Charge density [C/m3] at t = 50 ns for the constant radial flow MITL
with 500 kV forward voltage wave. The centroid for the charge density is shown
below the centroid of the current density.
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Flow Impedances (shot500, Beta=0), t=50ns
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Figure 5.12: Electric and magnetic flow impedances at t = 50 ns, low-voltage.

Radial Electron Flow (shot500, Beta=0), t=50ns
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Figure 5.13: Radial electron flow at t = 50 ns for the constant radial flow MITL with
500 kV forward voltage wave. Prior to insulation, the theoretical value predicted by
the pressure-balance model cannot resolve the electron flow below a radius of 10 cm.
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Va, Ia, Ic (shot500, Beta=0), t=50ns
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Figure 5.14: Line voltage, anode current, and cathode current plotted versus radius
at t = 50 ns, low-voltage.

At peak insulation, t = 60 ns, the charge density, figure 5.15, reveals that the

electron sheath still extends far into the A-K gap. The current drawn by the MITL

is incapable of heavily insulating the line and the space charge along the cathode

accounts for a much greater fraction of the entire line voltage, which is apparent when

comparing figures 5.16 and 5.17. The space charge correction for these simulations

were calculated using pressure-balance theory, section 2.4,

VSCC =
mec

2

2e

((
Ia

Ic

)2

− 1

)
, (5.1)

where mec2

2e
≈ 255×103, Ia

Ic
is determined from simulation diagnostics, and the charge

density near the cathode is assumed to be uniform in the axial direction. At t =60 ns

the space charge in the 500 kV simulation constitutes 37.9% of the total line voltage

across the A-K gap. In contrast, the space charge in the high voltage simulation at

peak insulation, t = 50 ns, only contributes to 2.27% of the total potential.
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Figure 5.15: Charge density [C/m3] at t = 60 ns for the constant radial flow MITL
with 500 kV forward voltage wave. The centroid for the charge density is shown.
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Figure 5.16: Comparison between the full line voltage and the space charge correction
term predicted from pressure-balance theory, high-voltage.
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Space Charge Correction, shot500
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Figure 5.17: Comparison between the full line voltage and the space charge correction
term predicted from pressure-balance theory, low-voltage.

The flow impedances, figure 5.18, are more level during peak insulation, however,

their ratio to the vacuum line impedance is still much less than unity. Due to the

amount of space charge in the A-K gap, the electric and magnetic flow impedances

never converge as they do in the high voltage case. The radial electron flow, figure

5.19, has become closer to the constant theoretical curve. Because the theoretical

model assumes a substantially larger line voltage, the curves tend to disagree at

larger radii where the gap spacing is largest and thus the electric field strength on

the cathode surface is weakest. This results in an nonuniform emission near the power

inlet of the transmission line. The line voltages and currents for this simulation are

displayed in figure 5.20.
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Flow Impedances (shot500, Beta=0), t=60ns
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Figure 5.18: Electric and magnetic flow impedances at t = 60 ns, low-voltage.

Radial Electron Flow (shot500, Beta=0), t=60ns
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Figure 5.19: Radial electron flow at t = 60 ns for the constant radial flow MITL
with 500 kV forward voltage wave. During insulation the radial electron profile is
approximately constant with respect to radius.
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Va, Ia, Ic (shot500, Beta=0), t=60ns
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Figure 5.20: Line voltage, anode current, and cathode current plotted versus radius
at t = 60 ns, low-voltage.
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5.1.2 Reducing Electron Flow, β = 1

Simulation Setup (Beta=1)
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Figure 5.21: Simulation setup for the β = 1 reducing electron flow profile. The
transmission line feed inlet is positioned at r = 0.45 m. The minimum cell size is
200 µm and is located along the cathode.

The simulation setup for the reducing flow profile, β = 1, is given in figure

5.21. At high voltage the peak insulation time was around t = 50 ns. Charge

density snapshots within the MITL at t = 40 ns and t = 50 ns are given in figures

5.22 and 5.23, respectively. Just as the case was for the constant profile at high-

voltage, the centroids of the charge and current density converge as peak insulation

is achieved. The flow impedances are shown in figures 5.24 and 5.25, respectively. As

the transmission line becomes magnetically insulated the magnetic flow impedance

advances toward the electric flow impedance and their ratio to the vacuum line

impedance approaches unity. As the space charge is driven in the direction of

the cathode, the diagnostic grooves are filled with more electrons. This drives the

centroid of the current density downward toward the grooves resulting in the lowered

spikes seen in the plot of magnetic flow impedance given in figure 5.25.
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The theoretical value derived from the electron flow model is not well defined

beyond the period of magnetic insulation. Figure 5.26 shows a good correspondence

between this value and the simulated waveform out to about a radius of 23 cm where

the increase in radial flow cannot be resolved. During insulation, figure 5.27, the

model and the simulation appear to be in good agreement and are characterized by

a reducing radial electron flow. The voltage and line currents at these times are given

in figure 5.28 and 5.29, respectively.
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Figure 5.22: Charge density [C/m3] at t = 40 ns for the constant radial flow MITL
with 5 MV forward voltage wave. The centroid for the charge density is shown below
the centroid of the current density.
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Figure 5.23: Charge density [C/m3] at t = 50 ns for the constant radial flow MITL
with 5MV forward voltage wave. The centroids for the charge and current densities
approximately overlay.
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Figure 5.24: Electric and magnetic flow impedances at t = 40 ns, high-voltage.
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Flow Impedances (10MV, Beta=1), t=50ns

0.0 0.1 0.2 0.3 0.4 0.5
Radius (m)

0.0

0.5

1.0

1.5

F
ra

ct
io

n 
of

 V
ac

uu
m

 Im
pe

da
nc

e Zf/Zv
Zm/Zv

Figure 5.25: Electric and magnetic flow impedances at t = 50 ns, high-voltage.
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Figure 5.26: Radial electron flow at t = 40 ns for the β = 1 MITL profile with 5 MV
forward voltage wave.
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Radial Electron Flow (10MV, Beta=1), t=50ns
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Figure 5.27: Radial electron flow at t = 50 ns for the β = 1 MITL profile with 5 MV
forward voltage wave.
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Figure 5.28: Line voltage, anode current, and cathode current plotted versus radius
at t = 40 ns, high-voltage.
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Va, Ia, Ic (10MV, Beta=1), t=50ns
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Figure 5.29: Line voltage, anode current, and cathode current plotted versus radius
at t = 50 ns, high-voltage.

The results of the low voltage simulation for the β = 1 profile are summarized in

figure 5.30 through figure 5.37. The charge density contours, flow impedances, and

radial electron flows are overlaid to illustrate differences in the simulation during, and

just prior to, magnetic insulation. At t = 50 ns the anode line current is just below

the saturated insulation level resulting in the familiar separation between the charge

and current density centorids, figure 5.30. Due to the low voltage and inadequate

pressure balance, the theoretical model for the radial flow is unable to converge at

large radius, figure 5.34. During insulation, t = 65 ns, the electron charge density

is held near the cathode, yet the electric and magnetic flow impedances are still

characterized by a noticeable separation due to large amounts of space charge, 5.33.

The radial electron flow during insulation, figure 5.35, is very close to the values

predicted by the theoretical model, however, at large radius they begin to diverge

due to the larger gap spacing and weaker electric field strength present from the

marginal voltage levels.

113



Chapter 5. Simulation Results

0.0 0.1 0.2 0.3 0.4 0.5
Radius (m)

-0.01

0.00

0.01

0.02

0.03

0.04

A
xi

al
 H

ei
gh

t (
m

)

MITL Charge Density (shot500, Beta=1), t=50ns

      

      

 

 

 

 

 

 

 

 

 

 

 

 

  
0.0

0.5

1.0

1.5

2.0

  
0.0

0.5

1.0

1.5

2.0

Figure 5.30: Charge density [C/m3] at t = 50 ns for the β = 1 MITL profile with
500 kV forward voltage wave.
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Figure 5.31: Charge density [C/m3] at t = 65 ns for the β = 1 MITL profile with
500 kV forward voltage wave.
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Flow Impedances (shot500, Beta=1), t=50ns
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Figure 5.32: Electric and magnetic flow impedances at t = 50 ns, low-voltage.
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Figure 5.33: Electric and magnetic flow impedances at t = 65 ns, low-voltage.
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Radial Electron Flow (shot500, Beta=1), t=50ns
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Figure 5.34: Radial electron flow at t = 50 ns for the β = 1 MITL profile with 500
kV forward voltage wave.
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Figure 5.35: Radial electron flow at t = 65 ns for the β = 1 MITL profile with 500
kV forward voltage wave.
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Va, Ia, Ic (shot500, Beta=1), t=50ns
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Figure 5.36: Line voltage, anode current, and cathode current plotted versus radius
at t = 50 ns, low-voltage.
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Figure 5.37: Line voltage, anode current, and cathode current plotted versus radius
at t = 65 ns, low-voltage.
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5.1.3 Reducing Electron Flow, β ' 3.7

Simulation Setup (Beta=3.7)
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Figure 5.38: Simulation setup for the β = 3.7 reducing electron flow profile. The
transmission line feed inlet is positioned at r = 0.45 m. The minimum cell size is
200 µm and covers the entire middle portion of the MITL.

The simulation setup for the reducing flow profile, β > 3, is given in figure 5.38.

This was one of the earliest simulations and is characterized by a more extensive

finer mesh. Later it was discovered that smaller cell sizes in the middle of the A-K

gap didn’t improve the accuracy of the simulation and just resulted in increased

computation time. Future simulations were constructed in order to limit the finer

meshing to just the cathode surface and the diagnostic grooves in the A-K gap.

The results of the high voltage simulation for the β > 3 profile are summarized

in figure 5.39 through figure 5.46. Although lower electron current at small radius is

beneficial in the reduction of potential electron energy being deposited into the anode,

larger re-trapping parameters usually result in a more unstable electron flow. These

vortices tend to be most prevalent at smaller radius near the minimum gap. Unstable

flow within small A-K gaps often provides a mechanism for electron transmission to
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the anode as will be shown in section 5.3.
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Figure 5.39: Charge density [C/m3] at t = 40 ns for the β = 3.7 MITL profile with
5 MV forward voltage wave.
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Figure 5.40: Charge density [C/m3] at t = 50 ns for the β = 3.7 MITL profile with
5 MV forward voltage wave.
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Flow Impedances (10MV, Beta=3.7), t=40ns
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Figure 5.41: Electric and magnetic flow impedances at t = 40 ns, high-voltage.
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Figure 5.42: Electric and magnetic flow impedances at t = 50 ns, high-voltage.
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Radial Electron Flow (10MV, Beta=3.7), t=40ns
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Figure 5.43: Radial electron flow at t = 40 ns for the β = 3.7 MITL profile with 5
MV forward voltage wave.
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Figure 5.44: Radial electron flow at t = 50 ns for the β = 3.7 MITL profile with 5
MV forward voltage wave.
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Va, Ia, Ic (10MV, Beta=3.7), t=40ns

0.0 0.1 0.2 0.3 0.4
Radius (m)

0

2

4

6

8

Li
ne

 V
ol

ta
ge

 (
M

V
)

line voltage

0

1000

2000

3000

4000

Li
ne

 C
ur

re
nt

 (
kA

)

anode current
cathode current

Figure 5.45: Line voltage, anode current, and cathode current plotted versus radius
at t = 40 ns, high-voltage.
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Figure 5.46: Line voltage, anode current, and cathode current plotted versus radius
at t = 50 ns, high-voltage.
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5.2 Re-trapping Parameter Comparison

Comparisons between the re-trapping rate of several radial electron flow profiles are

given below. These simulation profiles ranged from nearly constant flow, β ' 0, to a

greatly reducing flow, β > 3. Additional re-trapping rates were obtained by changing

the height of the simulated load cavity. The lumped inductance at the load, Lo, is

one of the three main design parameters for the re-trapping rate of electron flow. By

increasing the height of the load cavity for a particular radial profile, the re-trapping

parameter will decrease. Alternatively, if the can height is decreased, this lowered

inductance causes β to increase. This was done experimentally by designing two

separate load cavities of 33.9 nH and 50 nH. The original anode geometries were

designed for β = 0 and β = 1 assuming a 50 nH load inductance. The additional

load provides twice the number of radial profiles for the anode hardware used; each

lower inductive load resulting in a slightly higher reduction in inner radial electron

flow. These re-trapping parameters, as well as those resulting from purely simulated

load geometries, were included in the plots below.

The theoretical model developed in section 2.5.1 predicts that the electron current

for any given re-trapping parameter, β, will be of the form:

Ie(r) = Ie:rmax exp(β(r − rmax)), (5.2)

where Ie:rmax is the maximum electron current for a reducing flow profile and rmax is

the maximum radial length of the disk MITL. The three high voltage radial profiles

covered in section 5.1 are plotted together in figure 5.47. Each curve has been shifted

vertically such that the their values coincide at maximum radius. This plot includes

the simulation data for each re-trapping parameter, the theoretical solution utilizing

pressure-balance, and the general current model from equation 5.2.
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Figure 5.47: Simulation electron flow for the β = 0, 1, and 3.7 radial profiles at
high voltage. β = 0 represents constant electron flow. β = 1 represents a reduction
of electron flow which decreases as 1/e for every meter towards the load. β = 3.7
represents the highest re-trapping rate.

The simulation values appear to corroborate the theoretical predictions to a great

extent. The change in re-trapping rates partitions figure 5.47 into three distinct

sections. The ‘top’ curve represents the constant electron flow design, β = 0, while

the β = 1 curve is shown to decrease by 1/e for every reducing meter. The ‘bottom’

curve represents an aggressive re-trapping rate that is characterized by a large drop in

electron flow near the load. The separation between the group of curves illustrates

the relative decrease in electron flow at inner radius for higher re-trapping rates.

Additional high-voltage simulations with varying re-trapping rates are shown in
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figure 5.48. These re-trapping rates were constructed by altering the load inductance

of the MITL profiles given in figure 5.47. This change in the MITL inductance affects

the line voltage in each simulation resulting in a time shift for the magnetic insulation.

For comparison, each curve had to be recorded within its own respected window of

magnetic insulation. It is only for this window of time that the re-trapping parameter

is defined. This can be illustrated for the case of constant electron flow in figure

5.49. Radial profiles were constructed periodically over a relatively long simulated

time interval. For each profile an IDL4, curve fitting, routine was incorporated to

determine the relative re-trapping rate in each case. These re-trapping parameters

were then plotted versus time to determine their range of convergence.
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Figure 5.48: Comparison between four different simulated re-trapping rates. Each
simulation was characterized by a different MITL inductance resulting in different
times for magnetic insulation to occur. Each curve was recorded during its respective
insulation window.

4IDL (Interactive Data Language) is a programming language used for data analysis
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Figure 5.49: Re-trapping parameter, β, versus time for a high-voltage constant
electron flow profile. The plateau region of the curve represents the time period
of magnetic insulation.

For each simulation the following always appears to hold: For a particular load

inductance, an increase in the re-trapping rate leads to a decrease of electron current

at the load, figure 5.50. If the load inductance is held constant and the change in

re-trapping rate is only due to a modification in the anode curvature, this reduction

appears to follow a nearly linear regression. If the local voltage level significantly

changes from one re-trapping rate to the next, due to inductive load alterations, then

the electron flow at the load can rise. When the inductance is increased, the ratio of

the electron current at the load to the current at the feed continues to decline as in

the constant load case, however, the voltage along the entire line is raised.
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Electron Flow at Load
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Figure 5.50: Simulated electron flow at the entrance to the load cavity. The top
curve represents a reduction in flow with a increase in the re-trapping parameter for
a constant load inductance. The bottom curve is a collection of all the simulated
re-trapping rates based on various load inductances. The curve droops away from
the top line because the additional re-trapping rates were obtained with a lower load
inductance.

Similar comparisons can be made for the above simulated profiles operating at

low-voltage. Figure 5.51 combines the low-voltage simulation data with theoretical

predictions for the same re-trapping rates plotted in figure 5.47. The theoretical

model appears to be more accurate for more stable re-trapping rates (i.e. β ≤ 1).

While these curves cannot be characterized by a monotonically radially increasing

function, their decreasing electron flow at inner radius for increasing β is still

consistent with the higher voltage simulations. The variations displayed here are

not surprising because the low voltage does not specifically meet the assumptions of

the original model.
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Figure 5.51: Simulation electron flow for the β = 0, 1, and 3.7 radial profiles at low
voltage. These curves display a larger fluxuation from the theoretical model than
the high-voltage case. This is not surprising, however, since low voltage does not
specifically meet the assumptions of the model.
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5.3 Anode Temperature

The heating of the anode surface by electron energy deposition for each of the

simulations above was calculated using the QUICKSILVER/ITS coupling model.5

The incident angle, momentum, and total charge of each simulation particle passing

through the anode surface was recorded. The temperature along the conductor

surfaces was initialized to 20 ◦C and the temperature differential was calculated

using equation 4.5. The local energy deposition and specific heat capacity were

found using a “lookup” data table that was formulated for stainless steel 304a.6

This is consistent with the inner radial material of the MITL which consists of a steel

anode and cathode insert. For outer Aluminum sections, the temperature increase,

∆T , is approximately 18.7% higher as a result of the difference between the density

and specific heat capacities of the materials. While the density of steel is almost

three times that of Aluminum, the specific heat capacity is almost half, where the

average specific heat capacity of Aluminum over a temperature interval of 25-500 ◦C

is roughly 990 (J kg−1K−1) [56].

The electron energy deposition into the conductors of each of the radial disk

profiles all shared similar characteristics. For high voltage simulations (i.e. 5 MV

forward wave), the maximum heating was found to occur within the load region of the

transmission line while the only significant anode temperature change within the A-

K gap occurred at the entrance to the load cavity. For lower voltage simulations (i.e.

500 kV forward wave), the largest accumulation of electron energy deposition was

located at the entrance to the load cavity and was on the same order of magnitude

as the high voltage simulations. The maximum recorded surface temperature for

each profile and each boundary condition feed is provided in table 5.1. The location

of the maximum surface is given as well as the total measured inductance at the

5This was covered in section 4.1.2
6SS304a is the material of the radial MITLs used in the Z machine at Sandia Labs.
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transmission line feed. It is important to note that although the minimum gap

is almost doubled from β = 0 to β ' 3.7, the inductance of the line and thus

the efficiency of the MITL has not been significantly compromised. Plots of the

maximum temperature and line inductance versus β for the low voltage and high

voltage case are given in figures 5.52 and 5.53 respectively.

Table 5.1: Maximum anode temperature for each simulation setup.

Simulation Tmax(
◦C) Location (r, z) L(nH)

β = 0, shot500 1034.16 (0.502, 0.0033) 55.71

β = 0, 10MV 9423.56 (0.0381, 0.0096) 55.71

β = 1, shot500 541.796 (0.502, 0.0033) 56.2

β = 1, 10MV 7599.81 (0.0381, 0.0096) 56.2

β = 3.7, shot500 222.669 (0.502, 0.0033) 58.32

β = 3.7, 10MV 3167.51 (0.0381, 0.0096) 58.32
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Figure 5.52: Peak anode surface temperature and line inductance versus β for the
low voltage (500 kV) QUICKSILVER simulations. Electron emission thresholds for
the low voltage case are assumed to be zero. Temperature measurements are made
at the end of the pulse, t = 89 ns.
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Figure 5.53: Peak anode surface temperature and line inductance versue β for the
high voltage (5 MV) QUICKSILVER simulations. Electron emission thresholds for
the high voltage case are assumed to be 200 kV/cm. Temperature measurements are
made at the end of the pulse, t = 89 ns.
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The anode temperature snapshots for the high voltage constant flow profile are

given in figures 5.54 and 5.55. Figure 5.54 shows all of the temperature surface

contours within the MITL above an the ambient temperature, T = 20◦C. For large

voltages, the greatest rise in anode temperature was recorded inside the load region

at the top of the throat, just inside the upper cavity. An enlarged snapshot of the

heated anode region at the minimum gap is given in figure 5.55. The temperature

threshold along the anode surface was set for 400 ◦C to coincide with the approximate

threshold for anode plasma formation [55].
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Figure 5.54: Electrode heating due to electron deposition for the high voltage
simulation. The maximum surface temperature is located in the upper throat of
the load cavity. The only significant anode heating occurs at the minimum gap
spacing.
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Figure 5.55: Enlarged contour temperature plot of the anode minimum gap region.
Temperatures in excess of 400 ◦C are shown along the anode surface.

The anode temperature snapshots for the constant flow profile fed with the 500

kV forward traveling wave are given in figures 5.56 and 5.57. For lower voltage

levels the largest anode temperature coincides with the minimum gap spacing at the

entrance to the load. The enlarged contour temperature plot at the minimum gap is

given in figure 5.57. Once again the minimum threshold has been set to 400 ◦C to

show the location of possible anode plasma formation.
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Figure 5.56: Electrode heating due to electron deposition for the low voltage
simulation. The maximum surface temperature occurs at the minimum gap spacing.
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Figure 5.57: Enlarged contour temperature plot of the anode minimum gap region.
Temperatures in excess of 400 ◦C are shown along the anode surface.
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From the onset of the power pulse the inductive load appears as a shunt between

the anode and cathode of negligible resistance. For t = L/Zcav, where Zcav is the

transmission line vacuum impedance at the entrance to the load cavity, electrons

stream to the anode at the minimum gap. For the constant electron flow profile,

β = 0, the load impedance is shown in figure 5.58. For this case, the minimum gap,

go, was 0.0036 m and the load inductance, Lo, was around 50 nH resulting in a time

constant of t ' 12.4 ns. For t > 12.4 ns, the electrons begin traveling into the load

cavity and establish a current along the inner collector can. If the minimum gap was

doubled, in this case, the time for electron energy deposition would be cut in half.

Consequently, the minimum gap becomes an important design parameter. In the

situation where the maximum gap of the disk line is a constraint, the anode profile

only has two degrees of freedom. When heating of the anode is considered, there

will be a further constraint on the gap size at the load that will limit the possible

fractional radial electron flow that can be implemented.
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Figure 5.58: Load impedance for the constant radial electron flow profile.
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Table 5.2 provides a summary of the time required for the anode surface at the

minimum gap to be heated to 400 ◦C. Due to poor insulation, the lower voltage

simulations reach the threshold anode temperature much faster even though the

higher voltage simulations initiate electron emission from the cathode earlier. For

minimum gap sizes around 6 mm, the effect of the gap size was dominant over

the under-insulated space charge and the low voltage simulation never achieved a

surface temperature higher that 222 ◦C. Additionally the large voltage simulation at

this gap spacing suffered from a more unstable electron flow due to having such a

large re-trapping rate. This lead to a decrease in the time necessary for the anode

temperature to reach 400 ◦C.

Table 5.2: Time required for minimum gap anode surface to reach 400 ◦C. Maximum
temperature for β = 3.7, shot 500, is 222.7◦C.

Simulation Time for Tanode(go) > 400◦C

β = 0, shot500 18.01 ns

β = 1, shot500 18.51 ns

β = 0, 10MV 45.51 ns

β = 1, 10MV 49.01 ns

β = 3.7, 10MV 36.01 ns
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5.4 Cathode Diagnostic Grooves

The simulation region of the electron sheath near a cathode groove is shown in

figures 5.59 and 5.60. These grooves house the large-signal current monitors used in

the experiment. After the electron sheath is formed along the cathode, electrons are

free to enter the cathode grooves and tend to circulate forming “eddie” currents. If

the direction of the electron flow is assumed to only be in the direction of the power

flow, then the electrons will fill the groove on the same time scale as the magnetic

field. This time can be estimated by the ratio of the inductance of the groove to the

resistance seen by the electron current across the groove. The resistance across the

groove is given by

R =
Vgroove

Ie

, (5.3)

where the potential across the groove is directly proportional to the time derivative

of the MITL’s cathode current, İc. This scaling factor is the groove inductance, Lg,

which determines the time scale for the electrons to fill the groove,

τ =
Lg

R
=

Ie

İc

. (5.4)

For a typical low voltage simulation, τ ' 2.7 ns. Since the grooves are filled with

electrons so quickly, there is no significant effect on the measured current registered

by the current monitors and the grooves become negligible.
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Figure 5.59: Charge density in C/m3 within a cathode diagnostic groove at 50 ns for
a 500 kV simulation.
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Figure 5.60: Magnetic flux density in Tesla within a cathode diagnostic groove at 50
ns for a 500 kV simulation. The flux is negative denoting that the field is oriented
out of the page in the −θ̂ direction.
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5.5 Collector Can

In the experimental setup the inductive load cavity houses the inner collector can

and CVR diagnostics. Early in the pulse, emitted electrons stream from the cathode

to the anode at the load on a time scale of roughly τ = L/Zcav. For t > τ the

electrons enter the outer housing of the load cavity and begin to contribute to the

surface current density along the inner collector can. The current is measured by

a CVR at the base of the can which records the electron flow at the MITL load.

Any electrons that are not captured by the inner collector do not contribute to the

electron flow measurement. It is important to determine the distribution of charge

density inside the load and to quantify the portion of the charge on each face of the

cavity. The length of the inner collector should then be long enough to trap the

majority of this charge. If a percentage of the load charge density can be associated

with a particular can length then a gauge factor can be determined that would be

useful in scaling experimental CVR measurements.

A QUICKSILVER contour plot of the charge density within the load region from

the low voltage simulation at peak voltage is shown in figure 5.61. The centroid of

the charge density is shown overlaying the contour plot. This centroid extends into

approximately 23.4% of the throat region and 13.8% of the upper cavity. Because

the dimensions of the load cavity are small in comparison with the ratio of the pulse

width to the average electron drift velocity, the effect of the electron space charge

in the load region can be approximated through an electrostatic simulation.7 The

simulation results, based upon the centroid charge position, are given in figure 5.62.

The original electron collector design would account for slightly more than 97% of the

distributed charge within the load cavity. If the inner can is simplified to encompass

only the center rod and the lid, only 69% of the charge is accounted for.

7The IES ELECTRO software package was used for the electrostatic simulations.
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Figure 5.61: Charge density [C/m3] inside the load cavity. The centroid is shown
to increase as it crosses from the throat of the can into the upper cavity. The load
region is oriented such that center rod running along the axis of revolution is along
the x-axis. The entrance to the load is located in the upper left.
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Figure 5.62: Electrostatic simulation of charge distribution within the load. The
charge was integrated along the boundaries of the outer can and are displayed as
percentages of the total distribution.
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Experimental Results

The experimental data for this dissertation was collected over several shots where

the forward voltage waveform, which was used to drive the MITL, was varied over

a range of 500 kV to 800 kV. The input power was provided by four pulse forming

water lines which connected to the cathode inside the oil side of the insulator stack.

The timing between these four lines determined the uniformity of the surface current

along the cathode. Individual measurements from the current monitors inside the

MITL demonstrated a reasonable uniformity between 120◦ sections of the plate. This

allowed the current monitors along the anode and cathode to be averaged azimuthally

for comparison with the 2-D PIC simulations. Because low voltage simulations,

V < 1 MV, produced large amounts of space charge, it was difficult to distinguish

between the general behavior of the electron flow for each designed re-trapping rate

within the range of the current monitors. As a result, only the constant flow profile,

β = 0, and the largest reduction in flow were examined in the hopes that such a large

disparity between re-trapping rates would be evident. The original design for the

constant flow profile dictated the use of a 50 nH inductive load in the experiment.

In order to maintain comparable voltages between the profiles, the 50 nH load was

used along with the other anode hardware, as well, which defined a re-trapping rate
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of β ' 3.7. The experimental shots used for the comparison were chosen based on

the similarity of the forward voltage wave used to feed each experiment as shown in

figure 6.1.
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Figure 6.1: Experimental forward voltage waveforms averaged from voltage
measurements on the four pulse-forming water lines feeding the MITL. The error
in these measurements is 5%. The relative error between the four lines is less than
3%. The PIC simulations were driven with these exact waveforms.

6.1 Constant electron flow (shot 559)

The constant electron flow profile was designed to eliminate any radial dependence

on the magnitude of the electron current at a given time. This is equivalent to the

optimal case of uniform flow when designing the gap spacing under the assumption

that emitted electrons are incapable of returning to the cathode. The simulations for

this profile, which were presented in chapter 5, were in excellent agreement with the
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Anode & Cathode Current (shot559)
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Figure 6.2: Shot 559: Anode and cathode currents. The error in these measurements
is 5%. The relative error is less than 3%.

theoretical model at high voltage, V ' 5 MV. The simulation results began to deviate

from the theoretical predictions, however, in the lower voltage simulations. Within

the radial range of the experiment’s current monitors, the low voltage simulation

results were within approximately 5% of the theoretical values, figure 6.6. The

biggest discrepancy was at large radius, where the electric field strength along the

cathode was minimal. Experimental shot 559 was driven with a slightly larger voltage

pulse, V = 800 kV, than the initial simulations but is still considered within the low

voltage regime. Additional simulations were conducted with the new forward voltage

wave in order to provide a direct comparison.

A typical anode and cathode measurement from shot 559 is given in figure 6.2.

The two curves separate shortly after the electron emission threshold has been

reached and electrons begin accelerating into the A-K gap from the cathode surface.

When electrons begin flowing along the cathode, this results in a decrease in the

cathode current. The elapsed time between the separation of the line currents

and when they come back together, shortly after peak, defines the time window
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for the electron flow. The maximum electron current occurs near the midpoint of

this separation and corresponds to t ' 45 ns.

The radial profile of the anode and cathode currents is illustrated in figure 6.3.

Comparisons between the simulation and the time dependent anode and cathode

currents are given in figures 6.4 and 6.5 respectively. In this case, the measured

anode current compared rather well with the simulation data. The rise-times

were in excellent agreement, which demonstrated a close correlation between the

inductance used in the PIC simulation and that present within the experiment. The

cathode currents displayed a similar correlation in rise-time, however, they deviated

significantly while electrons were present within the MITL’s A-K gap. The cathode

current measured on shot 559 exceeded the simulated value by more than 100 kA at

minimum insulation. This difference led to a dramatic increase in the electron flow

predicted by the PIC simulation as shown in figure 6.6.
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Figure 6.3: Shot 559: Radial profile of anode and cathode currents near the time of
peak electron flow. The relative error in these measurements is less than 3%.
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Anode Current (shot559 Beta = 0)
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Figure 6.4: Shot 559: Comparison between the experimental and simulated anode
currents. Both currents were recorded from the inner radial B-dot probe. The error
in the experimental measurement is 5%.
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Figure 6.5: Shot 559: Comparison between the experimental and simulated cathode
currents. Both currents were recorded from the outer radial B-dot probe. The error
in the experimental measurement is 5%.
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Radial Electron Flow (shot559 t=45ns)
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Figure 6.6: Shot 559: Comparison between the experimental and simulated radial
electron flow profiles. The relative error in these measurements is less than 3%.

Further investigation into the discrepancy between the experimental and simulated

cathode currents is quite revealing. The cathode current is equal to the difference

between the anode current and the electron drift inside the A-K gap of the MITL.

Because the anode currents from the simulation appear to be in close agreement

with the experimental data, figure 6.4, this would suggest that the disparity in the

electron flow primarily depends upon the behavior of the electrons at the cathode

surface. This could either be a result of inadequate modeling of the field emission or

the re-trapping of additional electrons that were not accounted for along the cathode

surface.

Within the A-K gap of a MITL, excessive electric field strengths result in explosive

electron emission from the cathode. As the electrons enter the gap, the vacuum

electric field is modified via this introduction of charge. Eventually, this charge

density is substantial enough to cancel out the electric field at the cathode surface

such that no additional electrons are emitted into the gap. This condition, known as
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space-charge-limited emission, is responsible for the regulation of the vacuum charge

density. During steady-state operation, electrons are emitted from the cathode to

replace charge that has either left the transmission line or has been collected at

the anode. If additional electrons are injected into the gap region the opposite

occurs; the electric field will be reversed such that electrons are driven back toward

the cathode [57]. Local field reversals could occur where the distribution of space-

charge becomes non-uniform due to the bunching of electrons or instabilities resulting

in vortices near the cathode surface. This realignment of charge could result in

electrons being recollected at the cathode thus increasing its current. While the

electric field along the cathode in the PIC simulation is allowed to vary through the

field emission algorithm, the electrodynamics, which occur within the MITL’s A-K

gap, are calculated under the assumption that there is never an electric field present

at the cathode. The simulation cannot account for any mechanism, present within

the experiment, which has the potential to drive additional electrons to the cathode

through an electric field reversal. In fact, any charge present along the cathode

will cause the simulation to over-predict the electron flow. Thus, the collection of

previously emitted electrons by the cathode surface due to electric field reversal does

provide an explanation for the larger cathode currents observed in experiment.

The current detected by the CVR in the base of the collector can for shot 559 is

given in figure 6.7. This signal was relatively close to the current measured by the

B-dot probes but would “turn-off” unexpectedly, early in the pulse, by a mechanism

which is not clearly understood. Typically, problems with hardware alignment would

result in the shorting of the inner collector can as illustrated in figure 6.13 for shot

562. When the inner can was not shorted it did provide useful information during

the initiation of the electron field emission. Using this diagnostic, electrons could

be detected slightly earlier than the resolution of the subtraction between the B-dot

signals would allow. Because electrons were detected very early in the pulse and

steps were taken to lower the field emission threshold by coating the cathode in
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Aerodag, we are led to believe that the threshold of the field emission is not a factor

in this regime. We thus assume that electric field reversal at the cathode is primarily

responsible for the over estimation of the electron flow by the simulation. A model

for testing this hypothesis will be developed in section 6.3.
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Figure 6.7: Shot 559: Electrons collected by the inner can as recorded by the CVR.

6.2 Reducing electron flow (shot 562)

The reducing electron flow profile used in this experiment defined a re-trapping

rate of β ' 3.7 for a load inductance of 50 nH. This was the most aggressive

design and provided the greatest possible variation between radially changing flows

at comparable voltages. The experimental data for the reducing electron flow profile,

shot 562, is given in figures 6.8-6.13. The anode and cathode measurements shown in

figure 6.8 are very similar to those recorded in shot 559. The rise-time in shot 562 is
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slightly longer due to the increased inductance in the line. Microwaves are now more

prevalent within the cathode signal, indicating a larger instability of flow resulting

in the bunching of electrons [58]. The radial profile of the currents is given in figure

6.9. The time dependent comparisons for the anode and cathode currents are given

in figures 6.10 and 6.11 respectively. The situation here is very similar to what was

witnessed in the constant flow experiment. The anode currents are in very close

agreement, figures 6.9 and 6.10, while the cathode currents clearly deviate. Unlike

shot 559, however, the disparity between the experimental and simulated cathode

currents appears to increase with radius. Because of the relationship between the

electron and cathode currents, this amplified separation is inherited by the radial

electron flow profile given in figure 6.12. The CVR signal for this particular shot is

given in figure 6.13. Unfortunately, the inner collector can was shorted for this shot

as seen from the dramatic negative shift in the CVR signal. This is a result of the

total current being carried by the CVR at the base of the can.
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Figure 6.8: Shot 562: Anode and cathode currents. The error in these measurements
is 5%. The relative error is less than 3%.
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The discrepancy between the experimental and simulated electron flow appears

to be more complicated in the case of a reducing flow profile. Because a radial

electron re-trapping rate is built into the hardware design, the cathode current will

increase with a decrease in radius, figure 6.9. If the MITL in the experiment was

experiencing field reversal along the cathode surface it would be more noticeable at

a larger radius; the larger re-trapping rate near the load reduces the effectiveness

of other mechanisms to drive additional electrons to the cathode through space-

charge-limited emission. When compared with shot 559 the effect of field reversal

would be more comparable at larger radius where the built in re-trapping rate is less

significant.
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Figure 6.9: Shot 562: Radial profile of anode and cathode currents near the time of
peak electron flow. The relative error in these measurements is less than 3%.

152



Chapter 6. Experimental Results

Anode Current (shot562 Beta = 3.7)
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Figure 6.10: Shot 562: Comparison between the experimental and simulated anode
currents. Both currents were recorded from the inner radial B-dot probe. The error
in the experimental measurement is 5%.
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Figure 6.11: Shot 562: Comparison between the experimental and simulated cathode
currents. Both currents were recorded from the inner radial B-dot probe. The error
in the experimental measurement is 5%.
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Radial Electron Flow (shot562 t=50ns)

0.0 0.1 0.2 0.3 0.4
Radius (m)

0

50

100

150

200

E
le

ct
ro

n 
C

ur
re

nt
 (

kA
)

experiment
simualtion
theoretical

Figure 6.12: Shot 562: Comparison between the experimental and simulated radial
electron flow profiles. The relative error in these measurements is less than 3%.
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Figure 6.13: Shot 562: Electron collection is positive. The shorting of the collector
can results in a negative signal from the CVR.
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6.3 Flow Impedance Model with Electric Field

Reversal at the Cathode

If there is an electric field present at the cathode surface, there will be a decrease in

the electron current within the MITL. The electric flow impedance, which is defined

by the centroid of the charge distribution, on the other hand, will not be significantly

influenced [59]. As electrons are being introduced or extracted from the A-K gap,

the centroid position of the remaining charge changes only marginally [13]. It is

therefore beneficial to study this situation in terms of the flow impedance which is

easily obtained from the simulations.

If we examine the distribution of the charge density [C/m] across the A-K gap

from the simulated data on shot 559, figure 6.14, we note two key observations: First

the charge density at the origin is zero signifying that there is no electric field present

at the cathode. The second thing we notice is that the charge density rises with a

nearly constant slope across the A-K gap up to the edge of the electron sheath and

levels out. This is consistent with the Miller-Mendel pressure-balance model that

was developed in section 2.4.1. This model assumed a constant charge density across

the gap which allowed electrons with zero transverse velocity to leave the cathode

on stable orbits. The axial charge density predicted by this model corresponds to

the slope of the dashed line in figure 6.14. We notice an excellent corroboration

between the slopes of the simulation curve and the theoretical model within the

electron sheath. This would suggest that the theoretical flow impedance predicted

by the curve in figure 6.14 should be relatively close to the flow impedance in the

presence of charge along the cathode. Using the flow impedance model from section

2.6 with Ec = 0, we find that,

Zf = Va/cQa. (6.1)
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The total charge density at the anode is given by the maximum value of the simulated

curve in figure 6.14. Using this value with the line voltage from the simulated data

yields an electric flow impedance of Zf ' 3.07 Ω. It would be expected that the

electric flow impedance for the space-charge-limited-emission case (i.e. Qc = 0)

would not deviate significantly in the presence of image charge along the cathode

(i.e. Qc < 0).
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Figure 6.14: Simulation of shot 559. Charge density profile across the A-K gap at
r = 0.18 m with Ic = 0.288 MA. The abscissa is the axial distance across the gap, in
meters, scaled by the vacuum line impedance.

In order to properly examine the situation of a non-zero electric field at the

cathode surface, the theoretical model must be modified to include the possibility

of charge existing along the cathode. If we generalize the procedure outline on page

1336 of reference [13], section 2.6, we can define a charge density profile which allows

for charge to be present along the cathode. Between the cathode and the edge of

the electron sheath we define a linear region where the slope is determined from the
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constant charge density assumed in the Miller-Mendel pressure-balance model where

the y-intercept is nonzero signifying that Qc 6= 0. Using the chage of variable, G,

from section 2.6, we define the charge density as a function of flow impedance across

the electron sheath and the insulated vacuum section of the gap.

For 0 < G < Gs,

Q(G) =
1

c

(
I2
c

mc2/e

)
G + Qc.

Within the insulated region between the edge of the electron sheath and the anode

the total enclosed charged density is the same as the anode surface.

For G > Gs,

Q(G) = Qa.

The charge along the edge of the electron sheath is found by equating the boundary

conditions of the two sections, Q(Gs) = Qa,

Gs =
c(Qa −Qc)mc2

eI2
c

.

If the charge density profile given above is substituted into the general definition of

electric flow impedance, equation 2.40, such that,

Zf = Zv −
ZvQa −

∫ Zv

0
Q(G)dG

Qa −Qc

, (6.2)
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then the flow impedance can be expressed as

Zf = Zv − mc2

2e

c(Qa −Qc)

I2
c

. (6.3)

The ratio of the electron pressure to the magnetic field pressure at the anode

is inversely proportional to the anode current and is approximately proportional to

voltage. It is estimated that this is no more than 1% at the anode and is less at the

cathode. Because the electron pressure is negligible compared with the field pressure,

equilibrium flow results from a balance between the magnetic pressure and the electric

tension acting on the electron sheath. If we consider the axial electromagnetic force

per unit volume on the electron sheath, Tz = ρEz − jrBθ, it can be shown that

pressure balance is achieved, Tz = 0, when I2 − c2Q2 at the cathode is the same as

that along the edge of the electron sheath [13],

c2(Q2
a −Q2

c) = I2
a − I2

c . (6.4)

This pressure-balance relation reveals that a zero electric field at the cathode will

always result in the largest amount of electron current. Because the charge at the

cathode is squared, positive or negative charge will result in lower electron flow.

If we use equation 6.4 in conjunction with equation 6.3, then the charge density

along the cathode, Qc, can be expressed only in terms of the line currents, vacuum

impedance, and flow impedance,

cQc =
c4m2

e(I
2
a − I2

c )− 4e2I4
c (Zv − Zf )

2

4emec2I2
c (Zv − Zf )

. (6.5)
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Similarly, the equation for the charge per unit length along the anode is given by,

cQa =
c4m2

e(I
2
a − I2

c ) + 4e2I4
c (Zv − Zf )

2

4emec2I2
c (Zv − Zf )

. (6.6)

The above formulations give the theoretical charge densities along the anode and

cathode in response to the anode and cathode line currents measured in the

experiment. Before, the theoretical model assumed that the charge along the cathode

was always zero in accordance with the PIC simulations. Now the charge density

along the cathode is allowed to fluctuate in response to the experimentally measured

parameters.
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Figure 6.15: Shot559 (r = 0.185 m): cQa and cQc versus flow impedance, Zf . The
experimental line currents are Ia = 0.421 MA and Ic = 0.388 MA. The vacuum
impedance is denoted by the vertically dashed line, Zv = 3.97 Ω.
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The graph of cQc and cQa with respect to the flow impedance, Zf , for shot 559

is given in figure 6.15. The vacuum impedance was calculated from Zv = 60g/r at

the location of the first current monitor and the line currents were taken from the

experimental data. The charge per unit length along the cathode surface is negative,

indicating an electric field reversal, for Zf ≤ 3.70 Ω. A flow impedance greater than

this cut-off would result in Zf/Zv > 94%, which would indicate a strongly insulated

system. Due to potential electron flow turbulence and low voltage space charge

effects it would seem unlikely that the experimental flow impedance would be this

large. The flow impedance calculated from the simulation data, Zf = 3.07 Ω, is well

within the range of field reversal. For the electric field to be completely canceled out

along the cathode, Qc = 0, there would have to be greater than a 20% change in flow

impedance between the simulation and the experiment. This would strongly suggest

that field reversal is possible along the cathode.
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Figure 6.16: Shot559 (r = 0.185 m): Line voltage versus flow impedance, Zf . For
this plot, Ia = 0.421 MV, Ic = 0.388 MA, and Zv = 3.97 Ω.
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At Zf = 3.07 Ω, c(Qa − Qc) = 0.53 MA. The drift velocity, vd, is found to be

roughly 20% of the speed of light in vacuum. Therefore, the electrons are quickly

evacuated from the line at peak electron flow. The electron drift decreases after the

peak flow until it finally reaches zero, around peak current, when the line voltage is

nearly zero as well. The line voltage as a function of the flow impedance is plotted in

figure 6.16. Below Zf = Zv/2 the voltage is negative. The flow impedance predicted

by the simulation corresponds with a line voltage of Va ' 0.67 MV.
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Figure 6.17: Simulation of shot 562. Charge density profile across the A-K gap at
r = 0.18 m with Ic = 0.337 MA. The abscissa is the axial distance across the gap, in
meters, scaled by the vacuum line impedance.

The above analysis also applies to the reducing flow profile used for shot 562. The

charge density profile across the MITL’s A-K gap is obtained from the simulation’s

electric field contours and is given in figure 6.17. The theoretically predicted change

in the charge per unit length is overlayed against the simulated curve. There appears

to be good agreement between the approximately constant change in the charge
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density across the gap out to a height of 1.5 mm above the cathode. Because of

the fine meshing used in the simulation, the slight deviation from the theoretical

line is most likely due to an increase of electron turbulence (i.e. vortices) along the

line. This increase in turbulence also affects the orbits of the marginally insulated

electrons, resulting in a greater number of transitions to the anode. This results

in a slightly increasing charge density in the normally insulated vacuum section of

the gap as opposed to the clearly defined electron sheath edge as seen in shot 559.

The electric flow impedance in this case is calculated to be Zf ' 5.12 Ω. Because

the electron sheath is not clearly defined, it is probably more accurate to determine

the flow impedance from the position of the charge centroid within the simulation

space. In this case the flow impedance is slightly larger and is given by, Zf ' 5.4

Ω. This corresponds to 88% of the vacuum impedance which is consistent with the

lower voltage simulations presented in chapter 5.

A plot of the anode and cathode charge density at the location of the inner B-dot

probe is given in figure 6.18. The cathode charge density, Qc, drops below zero for

Zf ≤ 5.83 Ω, which corresponds with 96% of the vacuum impedance. By plotting

the charge densities along the anode and cathode versus flow impedance at a larger

radius, figure 6.19, we find that the flow impedance model predicts that the amount

of negative charge along the cathode is greater towards the load. This makes sense

because this model does not account for the additional re-trapping of electrons due

to a change in the inductive profile. As these electrons are being returned to the

cathode, the model overestimates the amount of negative surface charge at lower

radius. The actual charge due to the field reversal is more accurately described at

larger radius.
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Figure 6.18: Shot562 (r = 0.185 m): cQa and cQc versus flow impedance, Zf . The
experimental line currents are Ia = 0.362 MA and Ic = 0.344 MA. The vacuum
impedance is denoted by the vertically dashed line, Zv = 6.08 Ω.
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Figure 6.19: Shot562 (r = 0.298 m): cQa and cQc versus flow impedance, Zf . The
experimental line currents are Ia = 0.365 MA and Ic = 0.345 MA. The vacuum
impedance is denoted by the vertically dashed line, Zv = 5.25 Ω.
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The theoretical line voltage as a function of the flow impedance for shot 562 is

plotted in figure 6.20. For Zf < Zv/2 the voltage is negative. The flow impedance

predicted by the simulation corresponds with a line voltage of Va ' 0.86 MV. This

is significantly higher than the line voltage predicted for shot 559 but is consistent

with the lower currents measured experimentally.
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Figure 6.20: Shot562 (r = 0.185 m): Line voltage versus flow impedance, Zf . For
this plot, Ia = 0.365 MV, Ic = 0.345 MA, and Zv = 6.08 Ω.

The electron currents measured from shots 559 and 562 are plotted versus radius

in figure 6.21. Each shot utilized a unique radial gap profile which resulted in separate

voltage and current characteristics. Because the average gap spacing was larger in

the reducing flow profile, the voltages were higher due to the increased inductance

of the line. It would be expected that this would result in more field emission and

thus larger electron currents being measured for shot 562. At larger radius, however,

measurements reveal that the differences between the anode and cathode currents
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were very comparable. This would suggest that a larger number of electrons were

being driven back to the cathode within the reducing flow profile. Whether the

mechanism for re-trapping the electrons was due to the inductive profile or electric

field reversal along the cathode, the radial electron flow for the reducing flow profile is

significantly less near the load than the constant flow profile, as was intended. This

confirms that the electron flow can be controlled generally, even though the large

amount of space charge in the low voltage experiment infringed upon the assumptions

used in the theoretical model, section 2.5.1.
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Figure 6.21: Comparison of radial electron flows from experimental shots 559 and
562.
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Conclusion

The study of the magnetically insulated electron flow within a radial disk transmission

line, with an inductive load, is fundamental to the understanding of z-pinch

drivers. The goal of this dissertation was to determine the feasibility of tailoring

the radial profile of the MITL’s electron current with the intent of reducing the

overall inductance of the system. This was approached through the development

of a theoretical model which exploited the possibility that electrons are capable of

returning to the cathode surface through a continual gain in their total energy. It is

demonstrated that the rate at which the amplitude of the electron current diminishes

with decreasing radius can be influenced through the profile of the MITL’s radially

distributed inductance. This was accomplished by designing the curvature of the

MITL’s anode such that the A-K gap spacing was decreasing toward the load while

the local re-trapping rate of the electron flow within that region was amplified. This

resulted in an increase in the MITL’s efficiency while reducing the potential for

additional electrons to be lost to the anode within the smaller sections of the gap.

Several different electron re-trapping rates were examined through the use of PIC

simulations. At high voltages, V > 1 MV, the simulation results were in excellent
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agreement with the theoretical model, further supporting the presupposition that

the local electron flow tends to operate at the local values calculated from pressure-

balance considerations. At lower voltages the theoretical and simulated values began

to deviate; which was due to the amount of electron space charge present within the

line. Near the load, however, the decrease in the electron flow with respect to the

increase in the re-trapping rate was similar to the high-voltage case.

Experimental results revealed that the PIC simulation’s assumption of space-

charge-limited emission was inadequate when a reversal of the electric field along the

cathode was present. At low voltage, there is a greater possibility of space-charge

related effects on the performance of the MITL. Electric field reversal along the

cathode could occur in locations where the distribution of the space-charge becomes

non-uniform due to the dynamics of the average electron drift. The electron dynamics

within the MITL’s A-K gap are currently calculated by the simulation under the

assumption that the electric field at the cathode surface is always zero. This could be

responsible for the discrepancies observed between the measured electron current and

that predicted through the simulation. Without electric field reversal, the electrons

are not returned to the cathode and the separation between the anode and cathode

signals could be overestimating the actual electron flow present in the line.

Future experiments could be conducted on a larger pulsed power driver to

experimentally test the tailoring of the electron flow at higher voltage. This would

also provide additional testing for the electron collector can. Measurements at low

voltage revealed that the CVRs within the load region did provide a potentially

useful diagnostic for measuring the electron flow at the load in strongly insulated

systems. These measurements were inconsistent due to problems with the mechanical

tolerances of the hardware used but worked well on some of the shots. The current

monitors used in the experiments revealed that the cathode grooves were mostly

unaffected by the electron flow due to how quickly they were filled with electrons.
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This could provide advantages in the mechanical design of large MITLs if this is

shown to be experimentally consistent at higher voltages. Finally, the PIC simulation

software should be updated to account for field fluctuations along the cathode in its

electrodynamic calculations and the introduction of ions from the anode surface

would provide a better resolution of the anode heating effects within the MITL.
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