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ABSTRACT 

 

Cerium-doped bulk lanthanum halide compounds are attractive in the field of 

high-energy radiation detection due to their interesting properties that include efficient 

radiation absorption, highly luminescent activator (cerium) emission through atomic 

transitions, host lattice protecting activators to prevent luminescence quenching, and fast 

decay-time radiative transitions between cerium levels. Cerium-doped bulk lanthanum 

bromide is reported to have a light yield of 60,000 photons/MeV, 2.5% full-width-to-

half-maximum energy resolution (variation in emission light yield to absorbed gamma 

energy) for 662 keV gamma rays, 25 ns short decay time, and a density of 5.3 g/cm
3
 with 

22 mm attenuation length for 511 keV gamma rays. However, the crystals are 

hygroscopic and hence have to be protected from external environment both during 

growth and use.  

Deriving the motivation from this material, this work strives at successful 

synthesis of stable cerium-doped lanthanum bromide/undoped lanthanum fluoride 

core/shell nanocrystals through inexpensive and repeatable colloidal routes. Following a 

systematic approach, cerium-doped lanthanum fluoride colloidal nanocrystals were 

synthesized through water-based and water-free (anhydrous) routes. Furthermore, 

core/shell synthesis of cerium-doped lanthanum fluoride/undoped lanthanum fluoride 

nanocrystals was achieved through the anhydrous route.  

The optimum cerium concentration (x) was empirically identified in the CexLa1-

xF3 nanocrystal system in terms of light output from the activator levels of cerium. The 

persistence to high energy ionizing radiation was tested with a monoenergetic 
137

Cs 

gamma source. Cerium-doped lanthanum fluoride nanocrystals were tested in comparison 

with CdSe/ZnS nanocrystals.  

Then, using the indigenously developed anhydrous synthesis procedure in 

methanol, core/shell nanocrystals of cerium-doped lanthanum bromide/undoped 

lanthanum fluoride were successfully synthesized. All samples were subject to basic 

structural and optical characterization that included imaging using transmission electron 

microscope, energy dispersive spectroscopy, absorption measurements, excitation and 

emission photoluminescence spectroscopy, and photoluminescence lifetime 

measurements. 
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Chapter 1 

Introduction 

1.1. Nanocrystals: Properties and advantages 

A nanocrystal is a material whose size is on the order of nanometers. The idea 

behind realizing particles of nanometer size is to achieve quantum confinement. Quantum 

confinement occurs when electron and hole wavefunctions in a material are restricted in 

one or more dimensions. That is, quantum confinement occurs when one or more of the 

dimensions of nanocrystals are made very small so that they approach the size of an 

exciton in a bulk semiconductor crystal, called the Bohr exciton radius.  

A quantum well is a structure whose height is approximately the Bohr exciton 

radius while the length and width can be large. A quantum wire is a structure where the 

height and width are made small while the length can be long. A quantum dot is a 

structure where all dimensions are near the Bohr exciton radius, typically a small sphere. 

Specifically, as the size of the crystal reaches quantum confinement levels, the energy 

levels in the valence and conduction bands of the material become discrete, as opposed to 

being continuous in the bulk material. This means that the energy levels are separated by 

enough energy that the addition or subtraction of few atoms or electrons to the crystal 

will measurably change the energy of the bandgap. It is when a crystal has discrete 

energy states that it can be defined as a nanocrystal, and this is when it takes on useful 

and interesting properties (Blasse and Grabmaier 1994). This means that nanocrystals can 

emit at different (and specifiable, to within limits) wavelengths. This predictability of 
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emission and tunability would be impossible with a traditional semiconductor with 

continuous energy levels.  

Due to the similarity between the discrete energy levels of quantum dots and the 

discrete energy levels of atoms, nanocrystals are often thought of as artificial atoms. 

Since the energy levels are determined by the size of the nanocrystal, they can be tuned in 

a controlled way by synthesizing nanocrystals of different diameters. For semiconductor 

nanocrystals, this involves a size-dependent bandgap. Analogous to atoms, charge 

carriers are excited to upper energy levels if nanocrystals are excited optically. If, as is 

the case for many semiconductors, the bandgap of the bulk semiconductor is in the near 

infrared, the wavelength of the fluorescence light emitted when excited charge carriers 

fall back to the ground state will be in the visible spectral range. The smaller the 

nanocrystal is, the larger the spacing between the energy levels and therefore the larger 

the energy gap and, thus, the shorter the wavelength of the fluorescence. One other major 

advantage of producing nano-scaled crystals is the significant reduction in crystal defects. 

Since the probability of crystal/lattice defects is proportional to the size of the crystal, 

nanocrystals are by far less susceptible to defects in comparison with bulk crystals. This 

enables facile production of high-quality luminescent nanosized crystals. 

1.2. Inorganic luminescent nanocrystals and their applications 

Inorganic nanocrystals exhibit many interesting size and shape dependent 

properties based on which many new potential applications can be explored (Parak et al. 

2003). One of the most important properties of semiconductor nanocrystals is the 

variation of bandgap as a function of size. As explained above, according to quantum 

confinement theory, higher energy photons are required to excite electrons from the 
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valence band to the conduction band at smaller volumes of the crystal. Therefore, by 

varying size and composition of nanocrystals, the luminescent emission can be tuned 

from red at 6 nm to blue at 5 nm size of the same semiconductor nanocrystal (Figure 1.1). 

The unique photophysical properties of fluorescent nanocrystals make them very 

attractive as biological probes for molecular recognition, fluorescent labeling of 

biological cells, DNA sorting, etc. (Parak et al. 2003). Other potential applications 

include nanophosphors for solid-state lighting and display, and ionizing radiation 

detection. 

 

Figure 1.1: CdSe NCs of different sizes, synthesized at CHTM, fluorescing with different 

colors under UV excitation  

1.2.1. Current application: Biological fluorescent labeling 

One of the most powerful tools available to the biologist is fluorescent labeling. A 

molecule that emits light can be attached to a specific bio-molecule, and then the 

fluorescence can be used to image the location of the molecule or to probe its 

environment. Quantum dots potentially offer significant advantages over conventional 

light-emitting biological probes (Han et al. 2001), (Rosenthal 2001). Unlike molecular 

bio-labels, the colloidal quantum dots can all be excited with a single excitation source. 

For example, the “actin” protein fibers of a mouse fibroblast cell can be labeled with 
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larger size, red emitting dots, while the cell nuclei can be labeled with smaller, green 

emitting dots so that the cell structure can be observed with clear distinction using the 

same fluorescent labeling material (Parak et al. 2003). Furthermore, a major need in 

biological analysis is the ability to detect multiple optical signals simultaneously. For 

instance, cell biologists sort populations of cells according to which combination of 

several antibodies will bind to them.  

Molecular biologists would like to screen for the presence of numerous DNA 

sequences simultaneously. Combinations of conventional fluorescent tags are not well 

suited to these tasks, since they are molecules with discrete energy levels, and each one 

must be excited at resonance. Semiconductor quantum dots emit light at a specific energy 

determined by size and composition; however, like in a bulk semiconductor, when tuned 

above the threshold for absorption, more and more channels for absorption of photons 

open up, so that the excitation spectrum is essentially continuous. Thus, combinations of 

emitting colors can readily be excited with a single excitation source. The colloidal 

nanocrystal emission is narrower and more symmetric than that of the organic dyes, 

potentially allowing a larger number of probes within a detectable spectral region. The 

efficacy of using water-soluble core/shell colloidal nanocrystals for two-color fluorescent 

biological labeling has been demonstrated, and many related applications are now 

actively under investigation (Parak et al. 2003).  

An interesting biotechnology application of nanophosphors is molecular bio-

imaging through up-conversion. In general terms, up-conversion refers to the conversion 

of longer wavelength light to shorter wavelength light (Rosenthal 2001). Bio-molecules 

and cells are tagged to compounds that luminesce when exposed to either visible or 



 5 

ultraviolet light. Such shorter wavelengths can potentially destroy the sample material 

quickly. Using the up-converting nanophosphors to tag and visualize the DNA, for 

example, may provide an advantage because the nanophosphors can be activated by 

infrared light, which is less harmful than ultraviolet or visible light. 

 

1.2.2. Potential application: Nanophosphors for solid-state lighting 

It is established that, for nanocrystals confined in three dimensions, absorbance 

and emission spectra are defined by the size and surface chemistry of the crystal. For 

sufficiently small crystals, the effect of size-dependent quantum confinement on 

absorption and the large role that the surface molecules play in the emission allows the 

decoupling of the two optical properties. Due to this property of tunability, quantum dots 

have almost negligible self-absorbance of their emitted light (Chander 2005). Since for 

small nanocrystals, almost 70 percent of the atoms are at the surface, specific emission 

can be obtained by making simple changes in the interface passivation of the crystals. 

Furthermore, by growing the crystals to a specific size, the absorbance edge can be 

adjusted to match with the wavelength of the UV or blue LED used in solid-state lighting. 

Therefore, it is possible to synthesize quantum dots of very high quantum efficiency 

suitable for use as nanophosphors for solid-state lighting.  

The main requirements for a material to be good for solid-state lighting are 

emission efficiency, negligible emission quenching, and absence of defects and surface 

trap sites. For this reason, a new class of nanocrystals where luminescent ions are doped 

in a wide-bandgap host material proves to be attractive for solid-state lighting. Ideally, 

when high-efficiency photoluminescent ions are doped in low vibrational energy lattice 
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host material and coated with an undoped wide-bandgap material, the luminescence 

efficiency is at its best. Yet another major advantage of nanophosphors is their small 

particle size, which significantly reduces internal scattering effects in comparison to bulk 

phosphors, and improves the performance when nanophosphors are coated on LEDs used 

for solid-state lighting (Chander 2005).   

 

1.2.3. Potential application: High-energy ionizing radiation detection 

One of the emerging and high-potential applications of nanocrystals is in the field 

of high-energy-ionizing radiation detection. Substances that absorb high-energy ionizing 

electromagnetic or charged-particle radiation and in response release the absorbed energy 

by fluorescing at a characteristic emission wavelength, known as scintillators, are 

important materials for radiation detection applications. Chief characteristic requirements 

of scintillators are high conversion efficiency, meaning number of photons emitted per 

electronvolt of energy absorbed, short luminescence decay time, good energy resolution, 

and transparency at the wavelength of emission. Among many varieties such as organic, 

plastic, and inorganic scintillators, the latter are usually known for their high stopping 

power, since high atomic weight inorganic compounds are available that also have high 

light yield. A new species of nanocrystals, where a highly luminescent ion is doped into a 

wide-bandgap host matrix is attractive for high-energy ionizing radiation detection. Since 

lanthanides are excellent luminescent ions, and lanthanide halides are good wide-bandgap 

host materials, they are popular known as lanthanide-doped lanthanum halide 

nanocrystals, which are very good candidates for radiation detection applications.  For 

detection of high-energy particles such as alpha and beta particles, the radiation must be 
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sufficiently slowed down so as to facilitate its interaction with the scintillator atoms and 

eventually resulting in absorption of the energy. Therefore, high density is a key 

characteristic of high-energy radiation scintillators. Over the years, one of the key 

inadequacies of inorganic scintillators is their relatively poor energy resolution.  

 

1.2.3.1. Process of gamma-ray scintillation detection 

As described by Chen and Belbot, the process of detecting a gamma ray photon 

can be elaborated in the following steps (Chen and Belbot 2005). A gamma-ray photon 

interacts with the scintillator and transfers part or all of its energy to one or more atomic 

electrons. The fast electron travels on, ionizing and exciting the scintillation material. 

Some molecules or crystal lattices go to excited states and when returning to lower-

energy states (such as ground state) they may emit a light photon. Positrons may also be 

involved, with similar final effect. Depending on whether the crystal is pure or doped, the 

light yield may vary. Most of the ionization/ excitation results in no light being produced. 

Usually only one surface of the scintillator is designed to allow light out, while others are 

coated with diffusive reflector material, as shown in Figure 1.2. Scintillation light is 

isotropic. The diffusive reflector increases a chance that the photons will be redirected 

towards the photoelectric detector, usually a vacuum tube with multiple cathodes and an 

anode called the photomultiplier tube (PMT). At the exit surface of the scintillator, light 

has only a partial chance to come out, because the refractive indices do not match. A 

fraction of the photons will eventually travel into the PMT glass window. The emerged 

light photons hit the PMT cathode and some will generate photoelectrons. Cathode is 
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usually a thin layer of bi-alkali material coated on the vacuum-side surface of the 

entrance window. The quantum efficiency is generally 20%-30%. 

 

Figure 1.2: Structure of a typical spectroscopic scintillation detector (Chen and Belbot 

2005) 

Subsequently, the photoelectrons are amplified by the PMT, which usually has 8 

or 10 stages, with each stage operating at 3-4 times amplification. In PMTs with 

focusing, the first dynode catches most of the cathode electrons. The anode (last stage) 

electrons are collected, forming an electronic pulse. The signal amplitude (total area) is 

proportional to the energy deposited into the scintillator. From ionization to excitation, to 

light emission, to light collection, and to cathode electron, it is a cascade of binomial 

processes. Since the probability that ionization leads to a light photon and eventually 

leads to a cathode electron is small, the cathode electron number has a Poisson 

distribution. Further, the average cathode electron number is statistically large enough to 

be considered a Gaussian distribution, whose variance equals its mean value and its 

standard deviation equals the square root of its mean (Chen and Belbot 2005).  
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1.2.3.2. Requirements of a good scintillator material 

Optimal requirements of a good scintillator material are: (i) fast response time 

(10-100 ns or faster) and fast signal rise time for good time resolution and handling of 

high counting rates, (ii) high light yield (>50,000 photons per MeV of absorbed gamma 

ray energy) for good energy, time, and position resolution, (iii) proportional response for 

good energy resolution, (iv) high density, ρ, high atomic number, Z, for high gamma ray 

detection efficiency, (v) emission wavelength matching the detector response, and (vi) 

last but not least, low cost and ease of large-scale manufacturability. This work will be 

discussing the synthesis and characterization of nanomaterials that have primary potential 

as high-energy scintillation detectors, focusing on characteristics such as high stopping 

power, high-energy resolution, and fast decay times. 

 

1.3. Background and motivation 

The recent interest and motivation to study lanthanide or rare-earth-doped heavy-

metal halide compounds has been primarily due to the new material requirements of 

applications such as improved LEDs, biological markers, nuclear medical imaging such 

as positron emission tomography (PET), and ionizing radiation detectors or scintillators. 

These applications require materials that have significantly higher light yield and fewer 

material defects to yield high-performance. The high-energy ionizing radiation detection 

is of particular interest and relevance to this work. Scintillation is the process of 

absorption of ionizing radiation by the material and subsequent emission of photons in a 

pulse whose total energy is directly related to the energy of the absorbed photon. Since, 

the emission and absorption processes are temporally separated at the order of 
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nanoseconds, the light emission occurs in burst-like events that appear as light pulses, 

and hence the name scintillation.  

In an effort to design a material suitable for detection of ionizing radiation, certain 

conditions have to be satisfied. Since ionizing radiation is usually of the order of high-

energy, firstly, the material must be capable of absorbing high-energy radiation. 

Photoelectrons or secondary electrons created in the process travel at high velocities. 

And, for energy transfer to take place between these particles and the atoms of the 

scintillating material, they must be slowed down sufficiently to allow the interaction to 

occur. Therefore, high atomic weight and high density material capable of attenuating the 

radiation is required. Most importantly, a material that characteristically emits in the near 

UV or visible wavelength with high efficiency is required to be intrinsically situated or 

doped within a wider bandgap material/host. Ideally, this material, known as activator, 

traps the excited carriers from the host and emits light after carrier relaxation in its 

internal energy levels. Furthermore, the time to emission or the carrier relaxation time is 

important since materials that emit faster after absorption can provide higher rates of 

detection and therefore better accuracy. For this specific purpose, mainly of interest in 

PET scanning application, a material that has a fast decay time will be useful. Essentially, 

a fast, single emission line, high light output activator species embedded in a high 

density, high molecular weight, and wide bandgap host should prove to be an ideal 

scintillator material for ionizing radiation detection applications.  

The requirements of other applications such as phosphors in light emitting devices 

and markers in biological imaging also overlap with such properties. As already 

mentioned, for a material to be a good phosphor would require it to be a highly efficient 



 11

light emitter mostly free from crystal defects. Therefore, it will be useful to have the 

luminescent center in a wide bandgap material that will significantly improve the 

quantum yield by providing a rigid crystal host environment (Kompe et al. 2003). 

In summary, the optimal requirements for a good scintillator material are: (i) fast 

response time (10-100 ns) and fast signal rise time for good time resolution and handling 

of high counting rates, (ii) high light yield (>50,000 photons per MeV of absorbed 

gamma ray energy) for good energy, time, and position resolution, (iii) proportional 

response for good energy resolution, (iv) high density, ρ, atomic weight, Z, for high 

gamma ray absorption efficiency, (v) emission wavelength matching the detector 

response, and (vi) last but not least, low cost and ease of large-scale manufacturability  

(Krämer et al. 2006). 

1.3.1. Limitations of early radiation detectors 

Radiation detectors developed initially suffered from marked limitations as 

illustrated in the table below: 

Table 1.1: Properties of common radiation detector materials (Derenzo 2005) 

Semiconductor 

material 
Density 

Att. length (for 511 

keV) (mm) 

Light yield (for 

511 keV) 

Bandgap 

(eV) 

Silicon 2.33 44.6 0.0016 1.12 (I) 

LN-cooled germanium 5.35 23.7 0.043 0.67 (I) 

Cadmium zinc telluride 5.76 20.1 0.18 1.7 (I) 

LN-cooled lead iodide 6.16 14.1 0.4 2.4 (D) 

Aluminum antimonide 4.22 27.2 0.16 1.6 (I) 

 

Although liquid-nitrogen (LN)-cooled germanium, cadmium zinc telluride, and LN-

cooled lead iodide have good density and reasonable attenuation length, the light yield is 
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considerably low and they also have a narrow bandgap. Inorganic scintillating materials 

were developed subsequently. 

1.3.2. Inorganic scintillator materials 

Since 1990, many new bulk crystals of various inorganic scintillator materials 

have been discovered, manufactured, and studied, as shown in Figure 1.3, courtesy of 

Marv Weber (Derenzo 2005): 

 

Figure 1.3: History of scintillator material discovery (Derenzo 2005) 

 

Scintillating crystals developed between 1940-1990, such as Bi4Ge3O12(BGO), NaI(Tl), 

BaF2, Lu2SiO5:Ce (LSO) were better than semiconductor materials, but suffered from 
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various limitations like poor light yield, long decay lifetime, low energy resolution, 

and/or high cost.  

1.3.3. Cerium-doped scintillator materials 

Cerium-doped bulk lanthanum halide compounds are attractive due to their 

interesting properties that include efficient radiation absorption, highly luminescent 

activator (cerium), emission through molecular transitions, host to protect activators from 

luminescence quenching, and fast decay time of radiative transitions between cerium 

levels (20-40 ns). A notable fact is that the cerium ion (among few lanthanide ions), has 

the wavelength of its first excited state higher than the 180 nm (55000 cm
-1

) transmission 

cut off of air (Heaps et al. 1976). Among a variety of cerium-doped bulk crystals that 

possessed good scintillation detection properties. Cerium doping of bulk lanthanum 

bromide was reported to have a light yield of 60,000 photons/MeV, 2.5% full-width-to-

half-maximum energy resolution (variation in emission light yield to absorbed gamma 

energy) for 662 keV gamma rays, 25 ns short decay time, and a density of 5.3 g/cm
3
 with 

22 mm attenuation length for 511 keV gamma rays (Derenzo et al.). However, the 

crystals are hygroscopic and very fragile, and hence have to be protected from external 

environment both during growth and use.  

In spite of being the ideal material for ionizing radiation detection, cerium-doped 

lanthanum bromide bulk crystals are expensive and difficult to manufacture and use. 

Therefore, the underlying motivation of this work is to develop cerium-doped lanthanum 

bromide colloidal nanocrystals coated with a stable lanthanum fluoride shell. Lanthanum 

fluoride, a stable material, having a higher bandgap (10.2 eV) compared to lanthanum 

bromide (5.15 eV), and also being very similar to lanthanum bromide from a 
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crystallographic point of view, is the most logical choice for the shell material to coat the 

highly hygroscopic lanthanum bromide nanocrystals.  

 

1.4. Objective and scope of thesis 

As the first step, cerium-doped lanthanum fluoride core-only colloidal NCs were 

synthesized using two different synthesis routes, in water and in anhydrous methanol 

(water-free), respectively. The optimum cerium concentration and radiation hardness of 

these NCs were determined. Then, using the water-free route, cerium-doped lanthanum 

fluoride/undoped lanthanum fluoride core/shell NCs were synthesized. Using a similar 

water-free procedure cerium-doped lanthanum bromide core-only NCs were synthesized 

in argon environment. Finally, core/shell colloidal NCs of cerium-doped lanthanum 

bromide/undoped lanthanum fluoride NCs were synthesized. 

The first chapter of this thesis provides introduction on colloidal nanocrystals, the 

background, and motivation to pursue cerium-doped lanthanum halide nanocrystals. The 

second chapter deals with the description of the approach to wet chemical synthesis 

routes and to the structural and optical characterization methods used in this work. The 

third chapter details the aqueous synthesis and characterization of cerium-doped 

lanthanum fluoride core colloidal nanocrystals in water, while the fourth chapter details 

the indigenously developed anhydrous synthesis and characterization of cerium-doped 

lanthanum fluoride/undoped lanthanum fluoride core/shell colloidal NCs. The fifth and 

sixth subsequent chapters describe the optimization of cerium concentration in cerium-

doped lanthanum fluoride NCs, and radiation hardness testing experiments, respectively. 

The seventh chapter deals with the synthesis and characterization of cerium-doped 



 15

lanthanum bromide core and cerium-doped lanthanum bromide/undoped lanthanum 

fluoride core/shell colloidal NCs. The last chapter concludes this work and also provides 

some insights on potential future work. 
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Chapter 2 

Approach to synthesis, structural, and optical characterization of 

colloidal nanocrystals 

2.1. Introduction to colloidal nanoscale synthesis 

Some of the major techniques to manufacture quantum-confined nanosized 

crystals are molecular beam epitaxy and metal organic chemical vapor deposition, 

combustion synthesis, sol-gel approach, high-temperature solvent-based wet chemical 

approach, and low-temperature aqueous precipitation method. The latter three techniques 

can be classified under bottom-up colloidal synthesis routes. High-temperature solution-

grown approach has been used extensively for synthesizing highly crystalline and 

monodisperse II-VI nanocrystals, such as CdSe and CdS over a wide size range. This has 

been quite successfully extended to III-V materials to produce high quality ZnO, InP, 

InN, and InAs nanocrystals. Generally, coordinating or non-coordinating solvents that 

have high boiling point are used to carry out the reaction at elevated temperatures. The 

precursors are injected rapidly at the reaction temperature, and the nanoparticles are 

formed, allowed to grow, collected, and dispersed in appropriate media. In cases where 

high temperature is not required for the reaction, direct aqueous synthesis can be carried 

out at low temperatures using precipitation technique. Wang et al. have reported a 

successful low-temperature aqueous synthesis of europium-doped lanthanum fluoride 

nanocrystals (Wang et al. 2006).  
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2.1.1. Colloidal synthesis setup and general procedures 

For synthesis of colloidal nanocrystals using wet chemical bottom-up approach, the 

entire reaction needs to be conducted in an inert atmosphere, which will enable handling 

of air-sensitive precursors, remove any possibility of contamination and/or oxidation of 

the produced nanocrystals, and also provide for the removal of any gas byproducts from 

the reaction. For this purpose, a specialized laboratory glassware system known as 

Schlenk line is used, which provides a controlled pressure, and pure argon (inert) 

atmosphere for the reaction. The Schlenk line contains two independent lines for vacuum 

and inert gas as shown in Figure 2.1. 

 

Figure 2.1: Photograph of the Schlenk line apparatus 

Three-way valves facilitate online switching between the lines during the reaction, if 

needed. The reaction flask is a three-neck round-bottom flask with the center neck 

usually connected to one of the lines on the Schlenk line. The other two necks are sealed 

using rubber septa, with one septum used for inserting a thermocouple. The thermocouple 

is in turn connected to a closed-loop p-i-d ramping temperature controller. For continuous 

stirring of the solution in the flask, the flask contains a small cylindrical teflon-coated stir 

Vacuum line 

Inert gas (Ar) line 

Three-way valve 

Connection to flask 
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bar, which is spun using a rotating magnetic field generated by a stirring controller placed 

beneath the heating mantle. The round-bottom flask is placed firmly on top of the heating 

mantle, ensuring a good thermal contact. A schematic of the above mentioned setup is 

shown in Figure 2.2.  

 

Figure 2.2: Schematic representation of colloidal synthesis setup 

To enable handling of air-sensitive chemicals and processes, the MBraun UNILab
TM

 

glovebox pressurized with ultra-pure argon at 4-8 bar was used. Gloves are provided for 

handling chemicals and equipment, while antechamber ports are used to transfer 

chemicals and equipment from/into the box.  

All glassware was cleaned using a typical laboratory glassware cleaning 

procedure, according to which it was first treated with dilute base, rinsed with water, 

placed in an acid bath, and then rinsed with water again. Typical chemical laboratory 

safety standards, such as wearing safety goggles or face shield, lab coats, appropriate 

gloves, full pants, and toe-covered shoes were adhered to while carrying out synthesis 

procedures. The colloidal synthesis lab was fully equipped with air-quality sensor, gas 

alarm, eyewash, and chemical spill-kits readily available in case of accidents or 

emergencies.  
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2.1.2. Introduction to colloids and advantages of colloidal approach 

Colloid or colloidal dispersion is a heterogeneous mixture that visually appears to 

be a homogeneous solution. A heterogeneous mixture is a mixture of two phases, such as 

a solid and a liquid phase. In a colloid, the dispersed phase is made of tiny particles that 

are distributed evenly throughout the continuous liquid phase. In nature, colloids are 

present in various forms around us but are rarely recognized. Some examples of popular 

colloids are milk, dust particles in air, smoke, paint, cheese, jelly, whipped cream, 

styrofoam, fog, clouds, etc. Among many types of colloids such as aerosols, gels, foams, 

emulsions, and sols or colloidal dispersions, there are several facile methods to synthesize 

and characterize colloidal nanocrystal dispersions. Colloidal nanocrystals are nanometer-

sized, solution-grown inorganic particles stabilized by a layer of surfactants attached to 

their surface. Basically, there are two methods to produce nanosized crystals. First is to 

manufacture a large crystal and break it up into pieces as small as few nanometers. The 

major disadvantage of this approach is the inability to produce a good size distribution, 

which in turn produces a broad emission line due to size dependent emission that defeats 

the purpose of nanocrystals, which are expected to have a narrow emission line at a 

characteristic wavelength. The second method is to produce the crystals chemically, 

using the bottom-up approach. This involves precisely controlling a chemical reaction 

that will enable to control and stop a reaction at the time of the product formation, so that 

crystal growth can be interrupted at the very initial phases and nano-sized crystals can be 

thus produced.  

Compared to other techniques, the chemically grown colloidal nanocrystals 

present several advantages. Just the simplicity of performing chemical reactions at 
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controlled conditions makes the entire process easy, cheap and repeatable, which is a 

major advantage in light of large-scale manufacturing potential of the nanoparticles. 

Furthermore, the preparation of nanocrystalline samples that are uniform in size, 

composition, shape, internal structure, and surface chemistry enables mapping of their 

size-dependent material properties. The high-temperature solution phase synthesis of 

colloidal nanocrystal dispersions provides a method to prepare such uniform 

nanocrystalline samples for a variety of metals and semiconductors (Murray et al. 2001). 

 

2.1.3. Mechanism of chemical reaction and size control 

Chemical reactions convert reactants possessing well defined properties into 

materials with different properties that are known as products. The change in 

concentration of reactants or products per unit time is called reaction rate. In general, the 

factors affecting reaction rate are physical state of the reactants, concentration of 

reactants, temperature, and catalysts (Brown et al. 2006). At the molecular level, the rate 

of reaction depends on the frequency of collisions between molecules with sufficient 

energy, which is the case in the synthesis of nanocrystals. 

Nanocrystals consist of an inorganic core (<100 atoms) and may contain organic 

surfactants that stabilize the core, passivate against oxidation, and prevent agglomeration. 

The syntheses of colloidal nanocrystals occur in three stages; nucleation, growth, and 

Ostwald ripening. The factors controlling these stages are concentration and chemistry of 

reagents and surfactants, temperature, growth time, and surfactant to reagent ratio. 

Monodisperse nanocrystals can be obtained by rapid injections of reagents into a reaction 

vessel containing a hot, coordinating solvent (Murray et al. 1993).  This high-temperature 
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solvent decomposes the reagents, forming a supersaturation of these molecules in 

solution. After subsequent nucleation of products, the concentration of the reactant 

species drops below the critical concentration for nucleation. Therefore, further addition 

of material will only add to the existing nuclei, resulting in the growth of the 

nanocrystals, as shown by the flowchart in Figure 2.3.  

 

Figure 2.3: Flowchart describing the nucleation and growth steps in a chemical reaction 

An alternative synthetic approach involves mixing the reagents in the vessel at a 

temperature low enough to prevent any possible reaction from occurring. A controlled 

ramp of solution temperature accelerates the chemical reaction and produces the requisite 

supersaturation, which is then relieved by a burst of nucleation (Murray et al. 2001). 

Later on, a uniform surface regularity in core structure can be achieved through slow 

growth and annealing of these nanoparticles in the coordinating solvent. Many systems 

also exhibit a second, distinct, growth stage known as Ostwald ripening, in which the 

high surface energy of the smaller nanocrystals promotes their dissolution and the 

materials redeposit on the larger nanocrystals. Ostwald ripening is an observed 

phenomenon in solid (or liquid) solutions, which describes the evolution of an 
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inhomogeneous structure over time. This thermodynamically driven spontaneous process 

occurs because larger particles are more energetically favored than smaller particles 

(Vengrenovich et al. 2001). This stems from the fact that molecules on the surface of a 

particle are energetically less stable than the ones already well ordered and packed in the 

interior. Larger particles, with their lower surface to volume ratio, are in a lower energy 

state (and have a lower surface energy). As the system tries to lower its overall energy, 

molecules on the surface of a small (energetically unfavorable) particle will tend to 

diffuse through solution and add to the surface of larger particles (Ratke and Voorhees 

2002). A critical size exists for a given initial concentration of the reactant species. 

Nanocrystals, that are smaller than the critical size start dissolving, while the larger ones 

keep growing. In the process, many smaller crystals formed initially slowly disappear, 

except for a few that grow larger, at the expense of the smaller crystals. The smaller 

crystals act as fuel for the growth of bigger crystals. The rate of growth depends on the 

size of the crystals. This phenomenon narrows or “focuses” the size distribution of the 

NCs (Peng et al. 1998). When the reagents get used up in the reaction, the critical size 

becomes larger than the average size of NCs. Therefore, the distribution broadens, 

because some smaller NCs start dissolving and larger ones keep growing. This is Ostwald 

ripening, or defocusing of size distribution. Refocusing can occur by injecting additional 

reagents at the growth temperature, which brings back the critical size to a smaller value. 

Therefore, critical size is directly proportional to the concentration of reagents. Higher 

solution temperatures can also enhance Ostwald ripening, leading to larger average NC 

size with a compensating decrease in nanocrystal number (Ratke and Voorhees 2002). 

This process is represented as a flowchart in Figure 2.4. 
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Size of NCs also depends on the ratio of the concentration of reagents to that of 

surfactants. Lower ratio can produce smaller nuclei and thus smaller size NCs (Sun et al. 

1999). The chemistry of surfactants also plays a role in controlling the NC size. If a 

surfactant binds tightly to the NC, then it can hinder the growth and vice versa. 

Alternatively, the size of NCs may also be increased by adding more reagents, as long as 

the rate of material addition and temperature is controlled.  

 

Figure 2.4: Flowchart describing the Ostwald ripening process in a chemical reaction 

When the NC sample reaches the desired size, quenching can arrest further growth. The 

NC dispersion is stable if the interaction between the capping groups and the solvent is 

favorable, providing an energetic barrier to counteract the van der Waal’s attractions 

between NCs. 

The synthesis of NCs is primarily based on collisions between molecules, which is 

the case with all the chemical reactions. These collisions occur soon after decomposition 

of the reagents, resulting in nucleation. The growth, size, and properties of NCs can be 

controlled by adjusting temperature, growth time, concentration of reactants and 

surfactants, and the concentration ratio of reagents to surfactants. NC size increases with 
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increasing reaction time, as more material adds to NC surfaces, and with increasing 

temperature, as the rate of addition of material to the existing nuclei increases.  

 

2.2. Role of shell in core/shell nanocrystals 

The trap sites present in the crystal that can acquire carriers from the activator levels 

considerably affect the efficiency of the radiative transitions between the energy levels of 

the luminescent ions. If the luminescent centers are close to the surface, the excited 

carriers in their energy levels may get trapped by the trap levels created due to the 

organic layer or the surface defect. This can lead to a non-radiative recombination, 

thereby reducing the luminescence efficiency. An effective strategy to improve the 

efficiency is to make core/shell structures (Stouwdam and van Veggel 2002). As shown 

in Figure 2.5, the shell tends to passivate the surface traps. Recently, Stouwdam et al. 

reported the synthesis of lanthanum fluoride core/shell nanoparticles doped with 

luminescent lanthanide ions emitting in the visible or near infrared with a significantly 

higher PL intensity than the core sample (van Veggel and Stouwdam 2004).  
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Figure 2.5: Core/shell structure passivates surface traps 

 Core/shell structures are also needed when the core material is unstable, as is the 

case for the hygroscopic lanthanum bromide. The shell serves as a protective coating, 

thereby making the core/shell nanocrystals stable. 

 

2.3 Structural and compositional characterization 

Transmission electron spectroscopy and energy dispersion spectroscopy were used to 

structurally and compositionally characterize various synthesized NCs. TEM images are 

extremely valuable in the structural characterization of nanocrystals, due to their high 

resolving capacity and magnification power.  
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2.3.1 The TEM microscope 

A transmission electron microscope uses electrons to create an image. It has much 

higher magnification than the optical microscope (about 2 million times) and can reach 

atomic level resolution. A major limitation of visible light microscopy is that the 

resolution is limited by the wavelength of light. For example, no object smaller than 500 

nm in size can be resolved using a green (500 nm) light source. Ultraviolet light can be 

used, but it soon runs into the problem of absorption. Like all matter, electrons have both 

wave and particle properties. As described by Heisenberg’s principle, an electron beam 

can in some circumstances be made to behave like a beam of electromagnetic radiation. 

The wavelength of this radiation is dependent on the energy of the electron, according to 

de Broglie’s principle. Therefore, by adjusting the accelerating fields of the electron 

emission gun, the wavelength can be tuned to the order of angstroms, which is much 

lower than the wavelength of optical radiation. These electrons interact with the sample 

by electrical charge, which results in an image from the interactions. In simple terms, a 

TEM microscope uses beams of high-energy electrons that have extremely small 

wavelengths and therefore can achieve much higher spatial resolution.  

Transmission electron microscopy (TEM) is an imaging technique in which a beam of 

high energy electrons are transmitted through a specimen, an image is formed, magnified, 

and directed to appear on a fluorescent screen or detected by a sensor such as a CCD 

camera. TEM is widely used in bio-medical and material sciences fields for structural 

characterization of extremely small particles. The specimen or the sample must be very 

thin and must be capable of withstanding the high vacuum in the system. An electron 

source emits a beam of high-energy electrons. Instead of glass lenses focusing the light in 
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the light microscope, the TEM uses electromagnetic lenses to focus the electrons into a 

narrow beam. The electron beam then travels through the specimen under study. 

Depending on the density of the material present, some of the electrons are scattered and 

disappear from the beam. At the bottom of the microscope the unscattered electrons hit a 

fluorescent screen, which gives rise to a "shadow image" of the specimen with its 

different parts displayed in varied shades of grey according to their density.  In contrast to 

light imaging, a crystalline material interacts with an electron by diffraction and not by 

absorption. The intensity of this diffraction depends upon the orientation of the atomic 

planes in the crystal relative to the electron beam. From the diffraction pattern obtained, 

the crystal structure can be studied.  

In this work, the JEOL 2010 High-Resolution TEM microscope system was used in 

conjunction with a sensitive Oxford Instruments X-Ray detector and an energy loss 

spectrometer for energy dispersive spectroscopy. The microscope could achieve at most 

0.14 nm spatial resolution with about 1 million times magnification capability. The 

system operated at an accelerating voltage of 200 kV and about 6 picoamps of operating 

current could be achieved.  

2.3.2 Sample preparation and measurement setup 

The TEM sample grid is a unique device in itself that helps to create thin layers of 

samples from colloidal dispersions. The grid is made up of a copper mesh supported by a 

thin carbon film. The mesh forms roughly about 200 square grid slots (Figure 2.6) backed 

by the film. In general, the TEM sample was prepared by placing a small drop of the 

nanocrystal colloidal dispersion on the grid, allowing the continuous medium to 

evaporate and the nanoparticles to settle down on the carbon film into the grid slots. 
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Figure 2.6: Typical TEM grid: 200 mesh copper grid on carbon film 

However, this conventional method produced highly disordered and non-uniform 

distributions on the grid, which was unfavorable for high-resolution imaging. Therefore, 

an improved sample preparation method was adopted from (Murray et al. 2001), in 

which, a combination of solvent and non-solvents is used to prepare uniform nanocrystal 

superlattices.  In this method, first a drop of non-solvent to the nanoparticles was placed 

on the grid followed by a drop of the NC dispersion in its solvent. This allows the 

nanoparticles to separate from each other while settling down on the grid thereby 

producing uniformly spaced particle arrangements (Murray et al. 2001). Due to shape 

constraints of the cerium-doped lanthanum halide nanoparticles, a perfect superlattice 

arrangement could not be obtained. However a better, more uniform distribution was 

obtained compared to the conventional sample preparation technique. 

2.4 Optical characterization 

Optical characterization basically refers to the determination of optical characteristics 

of the sample both quantitatively and qualitatively, and identification with a material or 

material system of known characteristics. In this case, optical characteristics include 

photoluminescence emission and excitation spectra, absorption spectrum, luminescence 

decay lifetime measurement and quantum efficiency measurement. All samples were 

characterized within a period of a week from the time of synthesis. One of the most 
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important and standard optical characterizations needed for an optically active sample is 

the determination of photoluminescence spectra. When a sample is subject to an 

electromagnetic radiation of energy sufficient to excite an electron from the valence band 

(ground state) of the atom of the material, the electron is excited from a lower energy 

level to a higher energy level. In simple terms, an electron is excited and an electron-hole 

pair is said to be formed when an electron acquires enough energy to leave the 

electrostatic hold of the nucleus but still lives in the vicinity of the atom controlled by the 

periodic potential or wave function of the crystal. The vacancy created in the atom is 

known as a hole in the virtual sense. Therefore, eventually when the excited electron 

loses energy in one of the many available mechanisms, it relaxes back into the vacancy 

(hole) present in the atom. Now, when the release of energy occurs in the form of photons 

(light) instead of phonons (heat), it is considered as a useful relaxation process (radiative 

recombination) known as photoluminescence. Fluorescence and phosphorescence are the 

two major light emission mechanisms classified under photoluminescence. Fluorescence 

is the property of some atoms and molecules to absorb light at a particular wavelength 

and to subsequently emit light (usually at a longer wavelength) after a brief interval 

known as fluorescence lifetime (on the order of nanoseconds). The process of 

phosphorescence occurs in a manner similar to fluorescence, but with a much longer 

excited state lifetime (on the order of microseconds).  

Born in Ukraine in 1898, Alexander Jablonski is best known as the father of 

fluorescence spectroscopy. Jablonski's primary scientific interest was the polarization of 

photoluminescence in solutions, and in order to explain experimental evidence gained in 

the field, he differentiated the transition moments between absorption and emission. His 
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work resulted in his introduction of what is now known as a Jablonski Energy Diagram, 

shown in Figure 2.7 (Davidson 2003). 

 

Figure 2.7: Jablonski energy diagram (Davidson 2003) 

Inferring from this diagram, it is expected to observe a Gaussian-like distribution in 

both the photoluminescence and absorption spectra, since there is a band of states in the 

ground state and the excited state between which any possible transition can occur, as 

long as enough energy is provided for the transition.   

From the absorption spectrum of a sample it is possible to determine the bandgap of 

the material and also discrete excited state energy level positions. It is possible to 

accurately determine the most favorable emission transition from the photoluminescence 

emission spectrum that can be eventually used to characterize an unknown material from 

the known values of characteristic emission wavelength of materials. In addition to this, 

change in the position of the quantized energy states, as an effect of certain treatments on 
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the sample (like shell growth, annealing, etc.) can be determined from observing the 

variation in intensity and/or wavelength of the photoluminescence spectra of the material 

that can again be used to indirectly evaluate such treatments on the sample. Further, 

luminescence decay time or lifetime measurements can provide data to discern between 

various components of emission in terms of lifetimes. From such knowledge it is possible 

to determine the fraction of radiative and non-radiate emission components.  

2.4.1 Absorption measurement setup 

Most absorption measurements were performed using the Thermo Scientific 

NanoDrop
TM

 1000 UV-vis spectrophotometer, except for the absorption measurements of 

the chitosan-capped lanthanum fluoride NCs, which were performed using the Cary
TM

 

300 UV-vis spectrophotometer. In general, a UV-vis spectrophotometer consists of a 

light source emitting both in the UV and visible spectral range, an excitation 

monochromator, and a photodetector connected to a data acquisition (DAQ) system, as 

shown schematically in Figure 2.8. In this case, the detector is placed right behind the 

sample, such that the light from the excitation source traverses a path length through the 

sample and the unabsorbed (transmitted) light is detected by the photodetector. 

 

 

In a dual-beam spectrophotometer such as Cary
TM

 300, the inverse of the detected 

spectrum subtracted from the baseline (a cuvette filled with solvent) gives the absorbance 
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spectrum of the dispersed NCs in the sample. For short-wavelength UV excitation, 

quantitative absorbance measurements become increasingly difficult due to the fact that 

most of the solvents start absorbing strongly in the UV. Therefore, careful calibration is 

essential when measuring absorbance of UV-excited samples. Since the NCs absorb in 

UV wavelengths, special 5 mL cuvettes, made of a UV-transparent quartz-based material, 

marketed as Spectrosil
®

, were used to hold the samples and the solvents.  

 

2.4.2 Photoluminescence excitation, emission, and lifetime measurement setup 

A typical setup for photoluminescence measurement (shown in Figure 2.9) includes a 

light source, which is usually a lamp source or a laser source in some cases. A 

monochromator is required in order to selectively allow only a narrow band of the 

excitation spectrum through to the sample and emission spectrum through to the detector. 

This is important to be able to scan a range of wavelengths for emission with a particular 

resolution while the sample is excited at a specific excitation wavelength. 

Figure 2.9: Photoluminescence spectra measurement setup (front facet detection) 
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A detector that can usually detect both ultraviolet and visible wavelengths (200-800 nm) 

with a fairly flat response is required in conjunction with a data acquisition (DAQ) 

system that can record and print the spectra.  

The PLE (photoluminescence excitation) and PL emission measurement setup used in 

this work was Horiba Jobin Yvon Fluorolog-3 Spectrofluorometer
®

, with a broadband 

450-W ozone-free Xe source, double Czerny Turner excitation spectrometer, single 

Czerny Turner emission spectrometer, and reflective optics. The instrument was equipped 

with a room-temperature multialkali PMT emission detector R928P (180 nm - 850 nm 

range), TE cooled NIR-PMT module H9170-75 (950 nm - 1700 nm range) for steady-

state measurements, and a data acquisition system connected to the computer. Emission 

detector electronics employing photon-counting for low-light-level detection was capable 

of detecting 50-femtomolar fluorescein.  

With the help of an integrating sphere coated with a special reflective material, it was 

also possible to determine quantum efficiency of samples using this system. However, 

since the material used for coating had poor reflectance below 300 nm wavelengths, the 

system was incapable of measuring quantum efficiency of samples that required less than 

300 nm excitation, which was the case for the NCs studied in this thesis. 

Since both excitation and emission wavelengths for all the NCs fall in the UV spectral 

range, the UV-transparent Spectrosil
®

 cuvettes were used to prepare samples for PL 

measurements. The cuvette was filled at least up to the 3/4
th

 level with the NC dispersion. 

To the best possible extent, the concentration of the sample, sample-level in cuvette, and 
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the temperature of the sample compartment were maintained constant to reduce 

systematic measurement errors. 

2.4.3. Photoluminescence lifetime measurement setup 

PL lifetimes were measured using a time-correlated single-photon counting (TCSPC) 

accessory on the Horiba Jobin Yvon Fluorolog-3 Spectrofluorometer
®

. A variety of 

pulsed diode lasers and LEDs (repetition rate up to 1 MHz) were available, emitting 

between 250 nm and 560 nm. Fluorescence lifetimes as short as ~100 ps could be 

measured by R928P detector assembly in the 300 nm to 850 nm spectral range. The fall-

time (time to reach 10% of the peak PL emission intensity after the excitation was 

removed) was measured and a histogram was plotted. The data points in the histogram 

were fitted using a multi-exponential fit that provided the weighted decay-time 

components of the PL emission from the sample.  
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Chapter 3 

Synthesis and characterization of chitosan-capped cerium-doped 

lanthanum fluoride colloidal nanocrystals 

3.1. Synthesis of chitosan-capped cerium-doped lanthanum fluoride 

colloidal nanocrystals in aqueous medium 

As early as in 1990, Moses and Derenzo first reported the scintillating properties of 

bulk cerium-doped lanthanum fluoride heavy atom scintillator (Moses and Derenzo 

1990). The colorless, odorless, non-hygroscopic crystals were grown using vertical 

Bridgeman technique, cut and polished subsequently. Since then, there have been several 

publications on bulk lanthanide-doped lanthanum fluoride (Rodnyi et al. 1995), 

(Dorenbos 2000), (Derenzo 2005). This section reports on the synthesis of highly-

luminescent chitosan-capped cerium-doped lanthanum fluoride colloidal NCs. The 

optical and structural properties of cerium-doped lanthanum fluoride synthesized as 

colloidal nanocrystals have not been reported prior to this work. 

In addition to being a prospective good scintillator material, lanthanide-doped 

nanocrystals have also shown high promise recently as biological fluorophores based on 

some of the arguments given by Wang and coworkers (Wang et al. 2006). They usually 

possess good chemical stability and resist photobleaching. Their toxicity is mostly low 

and, therefore, they can be used in vivo for biomedical applications. Importantly, the 

optical properties of such lanthanide-doped nanocrystals are independent of particle size 

and can be tuned by doping with suitable lanthanide ions that emit at their own 
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characteristic wavelengths (Wang et al. 2006). However, for the fluorophores to be 

usable in vivo, the nanocrystals need to be hydrophilic. The surface molecules or the end 

ligands must be hydrophilic in nature. Furthermore, for conjugation with bio-molecules, 

the surface usually needs to be modified to contain specific functional groups. Therefore, 

for the lanthanide-doped nanocrystals to be best suitable for biological applications, the 

surface of the nanocrystals must be hydrophilic and bio-functional. Chitosan has been 

reported as a naturally occurring hydrophilic and bio-functional biopolymer (Miyazaki et 

al. 1981), (Gupta and Kumar 2000). It contains amino and hydroxyl groups that can be 

used to attach bio-molecules.  

Adapted from the method described by Wang et al., the following section details a 

straightforward one-pot colloidal approach to synthesize water-soluble cerium-doped 

lanthanum fluoride nanocrystals. 

3.1.1. Basic chemical reaction 

The following gives the balanced chemical reaction that is expected to occur at the 

nucleation phase of chitosan-capped LaF3:Ce
3+

 NCs: 

 

3.1.2. Preparation of precursors 

Lanthanum chloride hexahydrate 99.99%, cerium chloride heptahydrate 99.999%, 

ammonium fluoride 99.9%, medium molecular weight chitosan, and 2 M ammonia 

solution in methanol were purchased from Sigma Aldrich and used as such. 0.2 M stock 

solutions of lanthanum chloride and cerium chloride in DI water were prepared 

separately. A stock solution of 1 weight percentage chitosan in DI water at pH 2.0 was 

1 wt% chitosan solution (aq) + 2 mmol (LaCl3 + CeCl3) (aq) + 6 mmol NH4F (aq) 

2 mmol chitosan/LaF3:Ce
3+

   + 6 mmol NH4Cl (aq) 
75○C 
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prepared by addition of few drops of 37% hydrochloric acid. Also, a 0.6 M ammonium 

fluoride solution in DI water was prepared. All stock solutions were prepared in 

quantities approximately equal to the requirement and used in the subsequent synthesis. 

3.1.3. Synthesis procedure 

For the synthesis, the Schlenk-line setup was used so that the entire reaction could 

take place in an inert argon atmosphere, as explained in Section 2.1.1. Lanthanum 

fluoride nanocrystals were synthesized through a simple co-preciptation method 

following Wang et al. with slight modifications. In order to synthesize lanthanum 

fluoride NCs doped with 5% cerium, 9.5 mL of 0.2 M lanthanum chloride solution and 

0.5 ml (5% of 10 mL) of 0.2 M cerium chloride solution were added to a three-neck 

round-bottom borosilicate flask containing 25 mL of 1 wt% chitosan solution. The 

lanthanide precursor solution in chitosan was stirred at 600 rpm under argon atmosphere. 

Then, 10 mL of 0.6 M ammonium fluoride solution was added to the flask using a 

syringe, under constant stirring (600 rpm). As nucleation started to occur, the 

precipitation of lanthanum fluoride was observed, with the solution turning milky. In 

order to precipitate the excess chitosan and to neutralize the pH of the solution to 6.5, 

dilute ammonia solution was added drop-wise to the flask. Subsequently, the mixture in 

the flask was heated to 75 
○
C and kept at that temperature for 2 hours, while stirring 

under argon atmosphere. The precipitated nanocrystals were collected by centrifugation 

and washed several times with DI water and 0.5% acetic acid solution in order to remove 

the un-reacted reagents and by-products. The final precipitate was dispersed and stored in 

DI-water at room temperature. Multiple syntheses were performed using the same 

procedure and a high degree of repeatability was observed with the sample 
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characteristics. When stored at normal concentrations, the sample was viscous and milky 

in appearance.  

3.2. Structural characterization  

The low-resolution and high-resolution TEM images of chitosan-capped, cerium-

doped lanthanum fluoride colloidal NCs are given in Figure 3.1 in increasing order of 

magnification. 

      

     

Figure 3.1: (a) and (b) Low-resolution TEM images of chitosan- capped 5% cerium-

doped lanthanum fluoride NCs with 90 and 40 nm scale bars, respectively, (c) and  (d) 

High-resolution TEM images of the NCs with 10 and 7 nm scale bars, respectively 

(a) (b) 

(c) (d) 
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The TEM images show hexagonal platelets oriented both flat and side-on. The mean 

size of the particles was 16.5 nm with a standard deviation of 25% (measured from a 

sample of 50 particles from different images). Since there were more rod-like shapes 

when the particles were closely packed, as seen in image 3.3(b), and more disc-like 

shapes when the particles were loosely packed, as seen in image 3.3(a), it was inferred 

that both shapes corresponded to the same hexagonal platelet-like nanoparticles, some 

oriented side-on and some flat. High-resolution image 3.3(d) shows the hexagonal 

structure of the nanocrystal, which confirms to the reported crystal structure of bulk 

lanthanum fluoride (Stubicar et al. 2005). The image also shows the crystal lattice planes 

clearly. The fringe separation measured from this image is about 3.5 angstroms, which is 

believed to be one of the three lattice constants of the hexagonal crystal structure. This 

value agrees closely with the reported lattice constant of 3.23 angstroms derived from X-

ray diffraction (XRD) data obtained from lanthanum fluoride nanocrystals (Yanesa et al. 

2007). This leads to a conclusion that the nanocrystals are hexagonal single crystals of 

lanthanum fluoride.  

To get the energy dispersion spectrum (EDS) data, the electron beam was focused on 

a single NC and the peaks were identified using the Oxford Instruments ISIS software. 

Data obtained from multiple single-NC measurements showed good repeatability. 
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Figure 3.2: Energy dispersion spectrum of chitosan-capped lanthanum fluoride NCs 

doped with 5% cerium 

The EDS spectrum in Figure 3.2 confirms the presence of cerium, lanthanum, and 

fluorine in the nanoparticles. The spectrum also shows the presence of chlorine, which 

may be due to the residue of some ammonium chloride or lanthanum chloride in the 

sample. Quantitative elemental analysis could not be performed due to software 

limitations. 

 

3.3. Optical characterization 

The cerium-doped lanthanum fluoride/chitosan water-soluble nanocrystals were 

synthesized and stored as a colloidal dispersion in DI water. In appearance, the sample 

was viscous in nature and white, milky, and translucent in appearance (Figure 3.3).  
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Figure 3.3: Appearance of chitosan-capped LaF3: Ce3
+
 NCs immediately after synthesis 

As the first step in optical characterization, absorption spectra of the samples were 

determined using the spectrophotometer. A sample of the NC colloidal dispersion was 

taken in a UV-transparent cuvette along with another sample of the solvent itself (which 

is DI-water in this case) in a similar cuvette for subtracting the background absorption. 
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Figure 3.4: The multiple peaks in 10% cerium-doped lanthanum fluoride absorption 

spectra agrees exactly with the internal energy level configuration of cerium ion doped 

into a lanthanum fluoride host lattice (Dorenbos 2000) 
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The absorption spectra for chitosan-capped lanthanum fluoride nanocrystals doped 

with 5% and 10% cerium are shown in Figure 3.4. The spectrum from LaF3 NCs doped 

with 10% cerium shows four distinct, clearly resolved peaks. Since the absorption 

coefficient depends on the unknown concentration of the sample, it could not be extracted 

from these data. 

The excitation spectrum was recorded for the 5% cerium-doped LaF3 NCs sample by 

scanning the excitation wavelength from 200 nm to 290 nm, while the emission 

monochromator was fixed at 312 nm. The excitation PL curve was corrected for the 

nonuniformity of the lamp intensity spectrum.  
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Figure 3.5: PL excitation spectra of lanthanum fluoride/ chitosan colloidal NCs doped 

with 5% cerium 

The optimum excitation was determined to be 247 nm from the corrected PL excitation 

spectrum shown in Figure 3.5. This closely agrees with the position of lower energy 

levels in the 5d to 4f configuration of cerium, confirming excitation of the cerium ions.  
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For PL emission measurements, the excitation monochromator was configured to 

pass 247 nm light with a 1 nm spectral resolution and the emission monochromator was 

set to scan from 280 nm to 540 nm with a similar spectral resolution of 1 nm. The 

emission was detected from the front facet of the cuvette, which minimized absorption 

and scattering effects. The NC emission spectrum was compared with the emission 

obtained from the cerium chloride precursor solution prepared at the synthesis 

concentration to eliminate the possibility of free cerium ion emission. The emission 

spectra of LaF3: 5% Ce
3+

 NCs and cerium chloride precursor solution in water are shown 

in Figure 3.6. The analysis of cerium emission in lanthanum fluoride is given in more 

detail in Section 3.4. 
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Figure 3.6: PL emission spectrum of lanthanum fluoride/chitosan colloidal NCs doped 

with 5% cerium in comparison with that of the cerium chloride precursor solution at 250 

nm excitation  

The PL emission spectrum in Figure 3.6 shows a clearly defined emission peak at 312 

nm. The curve is fairly narrow with a full-width-at-half-maximum (FWHM) of 48 nm. 
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The rising edge is steeper than the falling edge. The emission was highly intense with 

about 1.5 million counts per second recorded at the peak wavelength, clearly 

distinguished and red shifted from the broad low intensity peak of the cerium precursor 

solution (free cerium ions). This leads to the preliminary inference that the emission is 

originating from the cerium ions incorporated in the lanthanum fluoride lattice. Although 

it is expected that increase in cerium concentration must lead to increase in PL emission 

intensity, it is suspected that an optimum exists in the cerium doping concentration due to 

possibility of emission quenching at high cerium concentrations. This determination of 

optimum cerium concentration is dealt with in detail in Chapter 5 of this thesis.  
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Figure 3.7: PL decay plot for lanthanum fluoride/chitosan NCs doped with 5% cerium 

The PL emission lifetime or the decay time was measured using a fast sub-

nanosecond pulse source included with the spectrofluorometer system. The obtained PL 

decay data shown in Figure 3.7 were fitted using a multi exponential fit to separate out 

the different lifetimes. The PL decay plot shows 20 percent of 10 ns short component and 
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80 percent of the 27.3 ns long component. Moses and Derenzo reported 3 ns (10%) and 

26.5 ns (86%) decay components for bulk lanthanum fluoride crystals doped with 10% 

cerium (Moses and Derenzo 1990).  

 

3.4. Analysis of cerium emission 

The luminescence of the trivalent lanthanide ions arises either from 

intraconfigurational 4f
n
 → 4f

n
 transitions within the 4f shell (Eu

3+
, Er

3+
), or from 

interconfigurational 5d
1
4f

n-1
 → 4f

n
 transitions (Ce

3+
, Pr

3+
) between 5d and 4f shells. 

These excited states can be very efficiently quenched in the presence of the high-energy 

vibrations of organic solvents, polymers, or ligands. Doping of the lanthanide ion into 

LaX3 (X = Cl, F, Br, I) materials provides strong shielding of the 4f and 5d electrons 

from the environment. The 5d electron states, however, turn out to be very sensitive to 

the local environment of the host material. In particular, a profound influence of the 

halide anions on the energy of the 5d levels of Ce
3+

 in LaX3 (X = Cl, Br, I) has been 

reported (van Loef et al. 2003). As a result, emission from the lowest-energy state 

deriving from the 5d
1
 electron configuration in Ce

3+
 is observed as a broad peak, ranging 

from 535 nm in YAG: Ce3
+
 to 286 nm in LaF3: Ce3

+
 (Dorenbos 2000). 

The combination of the multiple absorption peaks between 200 nm to 250 nm, the 

excitation peak at 253 nm, and the emission peak at 312 nm clearly are characteristic of 

the 5d � 4f emission expected from the cerium ions (Coutts and McGonigle 2004). The 

free-ion configuration of cerium consists of xenon like core with 54 electrons and a 

valence shell containing one 4f electron. This is further split into two 
2
F7/2 and 

2
F5/2 spin 

levels. The excited 5d levels are also split into the 
2
D3/2 and 

2
D5/2 energy levels due to 
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spin-orbit interactions. However when the cerium ions are embedded in a host matrix, the 

energy level configuration changes considerably. The three distinct absorption peaks are 

believed to be due to the quantum confined Stark effect that tends to split the excited 5d 

levels in cerium into 4 to 5 separate energy levels (Dorenbos 2000), (Henderson and 

Bartram 2000). The decay scatter can be described as the sum of two exponentials, a 

short lifetime component at 10 ns and another one at 27 ns. The measured short lifetime 

of the sample is due to the fact that the 5d � 4f transition in cerium is electrical dipole 

allowed (Aull and Jenssen 1986), (Coutts and McGonigle 2004). The presence of the fast 

component in the lifetime confirms the presence of chitosan capping that effectively 

prevents the quenching of the fast emission. The incorporation of cerium ions in the 

lanthanum fluoride lattice is established by the multiple absorption peaks between 200-

250 nm and the narrow 312 nm emission peak characteristic of the 5d � 4f cerium 

emission. For Ce
3+

 in an octahedral complex, two parameters are of interest in 

determining the absorption spectra. First, the center of gravity in a 5d configuration is 

lower in a polarizable matrix than in the free-ion configuration. Second, the 5d level is 

split into multiple levels due to the crystal field (Aull and Jenssen 1986). 

 

3.5. Summary 

The excitation PL and the multiple peaks in the absorption spectra confirm the 

excitation of carriers from the lowest 4f level to the multiple 5d levels split by the electric 

field of the lanthanum fluoride crystal. The NCs also have a characteristic short PL 

lifetime similar to bulk LaF3:Ce
3+

 crystals. Additionally, the water solubility of the 

nanocrystal dispersion confirms the successful capping of the hydrophilic chitosan 
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molecules on the nanocrystals. In summary, inferring from the TEM, EDS, absorption, 

and PL results, the synthesis of chitosan-capped cerium-doped lanthanum fluoride 

colloidal NCs was successful. 
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Chapter 4 

Synthesis and characterization of anhydrously synthesized cerium-

doped lanthanum fluoride core and core/shell colloidal 

nanocrystals 

4.1. Anhydrous synthesis of cerium-doped lanthanum fluoride colloidal 

nanocrystals in methanol 

The objective of creating a water-free synthesis route that would be compatible with 

the synthesis of cerium-doped lanthanum bromide NCs formed the motivation for the 

anhydrous synthesis of cerium-doped lanthanum fluoride colloidal nanocrystals. Adapted 

from Wang et al., a completely water-free synthesis route was developed to synthesize 

cerium-doped lanthanum fluoride colloidal nanocrystals as described below (Wang et al. 

2007). 

 

4.1.1. Basic chemical reaction 

The following gives the balanced chemical reaction that is expected to occur at 

the nucleation phase of cerium-doped lanthanum fluoride NCs anhydrously synthesized 

in methanol. 

 

4.1.2. Preparation of precursors 

Lanthanum nitrate hexahydrate 99.99%, cerium nitrate heptahydrate 99.999%, 

ammonium fluoride 99.9%, and anhydrous absolute methanol 99.9% were purchased 

CH3OH + 1 mmol (La(NO3)3 + Ce(NO3)3 ) + 3 mmol NH4F  �  3 mmol NH4NO3 + 1 mmol LaF3:Ce
3+

/OH  
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from Sigma Aldrich Co. and used as such. A 0.65 M lanthanide precursor solution was 

prepared by dissolving 1.3 mmol total (excessive amount) of lanthanum nitrate 

hexahydrate and cerium nitrate heptahydrate in 2 mL anhydrous methanol. The fluorine 

precursor solution was prepared by dissolving 3 mmol of ammonium fluoride in 35 mL 

anhydrous methanol in a three-neck round-bottom borosilicate flask. Ammonium 

fluoride, the fluorine precursor, was the limiting precursor in the reaction. In this 

reaction, methanol acts as a coordinating solvent that helps in hydrophilizing the NC 

surface by surface conjugation of hydroxyl groups. 

 

4.1.3. Synthesis procedure 

Due to the highly hygroscopic nature of anhydrous methanol and ammonium 

bromide, the entire precursor preparation process needed to be conducted in a controlled 

air-free environment. For this purpose, the argon-filled glovebox system was used, which 

provided an inert atmosphere to a high degree of purity (< 0.1 ppm H2O and O2) and 

controlled pressure.  

For the synthesis, the sealed flask containing the fluoride precursor solution in 

anhydrous absolute methanol was attached to the Schlenk line to provide for a flowing 

argon atmosphere. The temperature of the flask was gradually raised to 60 
○
C at the rate 

of 7 
○
C / min. While the solution was stirring at 1000 rpm, the lanthanide precursor 

solution containing lanthanum nitrate and cerium nitrate at proportions corresponding to 

the required doping percentage was added to the flask with a single rapid injection, which 

instigated the nucleation process, as indicated by the appearance of white precipitate in 

the flask. To allow for the subsequent growth and ripening processes, the mixture in the 
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flask was stirred vigorously for two hours in argon atmosphere to produce the cerium-

doped lanthanum fluoride core NCs.  

The product was then purified by centrifugation at 5000 rpm with methanol. The final 

precipitate of cerium-doped lanthanum fluoride nanocrystals attached to hydroxyl groups 

was easily dispersible in DI water (due to the non-hygroscopic nature of lanthanum 

fluoride) to form a clear, transparent colloidal dispersion of nanocrystals, which was also 

observed to be stable without signs of flocculation or aggregation. Therefore, this 

synthesis proved to be far superior to the aqueous one, in terms of stability and optical 

transparency. 

 

4.2. Anhydrous synthesis of cerium-doped lanthanum fluoride/undoped 

lanthanum fluoride core/shell colloidal nanocrystals 

In an effort to produce core/shell nanocrystals of cerium-doped lanthanum fluoride, 

the similar anhydrous synthesis method adapted from (Wang et al. 2007) was combined 

with the core/shell method adapted from  (van Veggel and Stouwdam 2004) and (DiMaio 

et al. 2008). The main motivation behind realizing core/shell nanocrystals was to prove 

the improvement in optical properties in a core/shell structure compared to the core and 

to prove the ability to successfully develop a stable undoped lanthanum fluoride shell.  

More specifically, a reduction in the quenching of the luminescence from the doped 

lanthanide ions (due to surface defects) and therefore higher PL intensity was expected as 

a result of adding the shell. The following synthesis procedure in anhydrous methanol 

presents a facile method to realize ligand-free hydrophilic core/shell nanocrystals. 
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4.2.1. Basic chemical reactions 

The following gives the balanced chemical reactions that are expected to occur during 

the synthesis cerium-doped lanthanum fluoride/undoped lanthanum fluoride core shell 

NCs.  

 

 

4.2.2. Preparation of precursors 

Lanthanum nitrate hexahydrate 99.99%, cerium nitrate heptahydrate 99.999%, 

ammonium fluoride 99.9%, and anhydrous absolute methanol 99.9% were purchased 

from Sigma Aldrich Co. and used as such. A 0.65 M lanthanide precursor solution was 

prepared by dissolving 1.3 mmol total (excess) of lanthanum nitrate hexahydrate and 

cerium nitrate heptahydrate in 2 mL anhydrous methanol. The fluoride precursor solution 

was prepared by dissolving 3 mmol of ammonium fluoride in 35 mL anhydrous methanol 

in a three neck round bottom borosilicate flask. The lanthanum precursor for the shell 

was prepared by dissolving 5.2 mmol lanthanum nitrate hexahydrate in 8 mL anhydrous 

methanol and the fluoride precursor for the shell was prepared similarly by dissolving 12 

mmol ammonium fluoride in 8 mL anhydrous methanol. 

 

4.2.3. Synthesis procedure 

Due to the highly hygroscopic nature of anhydrous methanol and ammonium 

bromide, the entire precursor preparation process needed to be conducted in a controlled 

air free environment. For this purpose, a glovebox system was used that provides an inert 

atmosphere to a high degree of purity (< 0.1 ppm H2O and O2) and controlled pressure.  

1 mmol LaF3:Ce
3+

/OH + 4 mmol La(NO3)3 + 12 mmol NH4F  �  1 mmol LaF3:Ce
3+

/ LaF3/OH + 12 mmol   

                                                                                                                                                              NH4NO3  

CH3OH + 1 mmol (La(NO3)3 + Ce(NO3)3 ) + 3 mmol NH4F  �  3 mmol NH4NO3 + 1 mmol LaF3:Ce
3+

/OH  
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For the synthesis, the sealed flask containing the fluoride precursor solution in 

methanol was attached to the Schlenk-line to provide for a flowing argon atmosphere. 

The temperature of the flask was gradually raised to 60 
○
C at the rate of 7 

○
C / min. 

While the solution was stirring at 1000 rpm, the lanthanide precursor solution containing 

lanthanum nitrate and cerium nitrate at proportions corresponding to the required doping 

percentage was injected into the flask at one go which instigates the nucleation process 

indicated by the appearance of white precipitate in the flask. The mixture in the flask was 

stirred for 10 minutes followed by a drop wise alternating addition of the lanthanide and 

fluoride shell precursor solution. The gradual addition of shell precursors is believed to 

coat the existing cores as opposed to forming new nucleates as given by the growth 

conditions in the second chapter. After the shell injections, the mixture was allowed to 

stir for two hours while stirring at 800 rpm under flowing argon atmosphere.  

The product was then washed by centrifugation at 5000 rpm with methanol. The final 

precipitate of cerium-doped lanthanum fluoride/undoped lanthanum fluoride core/shell 

NCs were again easily dispersible in DI water to form a clear, transparent colloidal 

dispersion of nanocrystals which was also observed to be stable without signs of 

flocculation or aggregation.  
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4.3. Structural characterization of anhydrously synthesized cerium-doped 

lanthanum fluoride and cerium-doped lanthanum fluoride/undoped 

lanthanum fluoride core/shell colloidal nanocrystals 

TEM images of the cerium-doped lanthanum fluoride core-only NCs synthesized 

in anhydrous methanol were obtained. Figure 4.1 shows a series of low- and high-

resolution bright-field TEM images of the core-only nanocrystals. 

 

 

 

 

(a) 

(b) 
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Figure 4.1: (a) Bright-field low-resolution TEM image (b), (c), (d) High-resolution 

images of anhydrously synthesized cerium-doped lanthanum fluoride colloidal NCs 

The low-resolution image 4.1(a) confirms the presence of hexagonal platelets oriented 

both flat and side-on, exactly similar to the structure observed with the samples 

synthesized with chitosan. Image 4.1(b) shows that the nanocrystals have a significant 

size distribution, with various changing dimensions of the hexagonal sides. The mean 

size of the nanoparticles was found to be 13 nm, with a 4.5 nm (34%) standard deviation 

(from a statistical sample size of 50 nanocrystals from different images). Hence, a 

decrease in mean size and an appreciable increase in size distribution were observed 

(c) 

(d) 
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compared to the NCs synthesized with chitosan. This may be attributed to the absence of 

a thick coating layer, as was the case with the chitosan-capped samples. The high-

resolution image 4.1(d) shows the atomic lattice planes on one of the flat-oriented 

nanocrystals. The fringe separation was measured to be 3.45 angstroms, which agreed 

with the value obtained for the chitosan-capped LaF3:Ce
3+

 NCs.  

 

 

Figure 4.2: EDS spectrum of anhydrously synthesized cerium-doped lanthanum fluoride 

nanocrystals 

The elemental presence of lanthanum, cerium, and fluorine was verified from the EDS 

spectrum, shown in Figure 4.2. 

To verify the success of core/shell synthesis, the anhydrously synthesized 

core/shell nanocrystals were characterized using the transmission electron microscope. 

The images in ascending order of magnification are shown in Figure 4.3. 
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(a) 

(c) 

(b) 
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Figure 4.3: (a), (b) Bright-field low-resolution TEM images (c), (d) High-resolution 

images of anhydrously synthesized cerium-doped lanthanum fluoride/undoped lanthanum 

fluoride core/shell colloidal NCs with 50 nm, 10 nm, 5 nm, and 2 nm scale-bars 

respectively 

The low-resolution images 4.3(a) and (b) show clear hexagonal platelets that are 

consistent with the structure of lanthanum fluoride core nanocrystals. The measured mean 

size of the core/shell NCs was 16 nm, with a standard deviation of 5.5 nm (34%) (from a 

statistical sample size of 50 nanocrystals from different images). Therefore, a 3 nm (23%) 

increase in size was observed in the core/shell NCs compared to the core-only NCs, while 

the size distribution remained constant at 34%. The measured fringe separation of 3.45 

angstroms from the high-resolution image 4.3(d) also confirms the consistency of the 

values obtained from previous samples. There is no change in the fringe separation, the 

shell being the same material as the core. 

(d) 
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Figure 4.4: EDS spectrum of anhydrously synthesized cerium-doped lanthanum 

fluoride/undoped lanthanum fluoride core/shell nanocrystals 

The elemental presence of lanthanum, cerium, and fluorine was verified from the EDS 

spectrum, shown in Figure 4.4. In conclusion, these results clearly indicate that the 

anhydrous core/shell synthesis in methanol was successful. 

 

4.4. Optical characterization of anhydrously synthesized cerium-doped 

lanthanum fluoride core and core/shell colloidal nanocrystals 

The optically translucent and viscous nature of the chitosan-capped nanocrystals was 

detrimental to the optical characteristic of the sample due to internal scattering and 

agglomeration over time. The main disadvantages of the samples synthesized through this 

method were their instability over time and internal scattering due to non-transparency of 

the sample. In contrast, the anhydrous synthesis produced optically transparent, non-

viscous, and stable nanocrystal dispersion, as shown in Figure 4.5.  
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Figure 4.5: Anhydrous synthesis (right) produced a more stable and optically transparent 

colloidal dispersion compared to the aqueous synthesis (left) 

Both core and core/shell nanocrystals were synthesized using the anhydrous route 

described in Section 4.1. The measured absorption spectra for the core and core shell 

samples are shown below in Figure 4.6. 
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Figure 4.6: Absorption spectra of (a) core and (b) core/shell cerium-doped lanthanum 

fluoride NCs anhydrously synthesized in methanol 

Absorption spectrum of the core sample shows absorption features around 250 nm 

while the spectrum of the core shell sample shows very weak features at about 225 nm, 

235 nm, 242 nm, and 248 nm. The results confirm absorption in the internal energy levels 

of the cerium ions doped in the lanthanum fluoride core and core/shell nanocrystals. 

(a) (b) 
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However, the dilute nature of the samples was responsible for the weak absorption 

spectra.  

The optimum excitation wavelength for both core and core/shell samples was 248 

nm and 247 nm, respectively, as shown in the corrected PL excitation spectra, obtained 

with 1 nm excitation and emission slit widths (Figure 4.7). 
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Figure 4.7:  PL excitation spectra of (a) core and (b) core/shell cerium-doped lanthanum 

fluoride NCs anhydrously synthesized in methanol 
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Figure 4.8:  PL emission spectra of (a) core and (b) core/shell cerium-doped lanthanum 

fluoride NCs anhydrously synthesized in methanol 
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The PL emission spectra of the core and core/shell samples at 247 nm and 248 nm 

excitation wavelengths, respectively, with 1 nm excitation and emission slit widths, are 

given in Figure 4.8. The PL emission spectrum from the core NCs shows a peak at 319 

nm with a full-width-to-half-maximum (FWHM) of 58 nm. The PL emission spectrum of 

core/shell NCs shows a similar spectrum with a slightly larger FWHM of 62 nm with 

about two-fold increase in intensity compared to the core.  This clearly confirms the 

successful formation of the shell around the core since the higher PL intensity is expected 

to be due to the passivation of the surface defects that existed at the core-solvent 

interface, and the separation of the cerium activation centers from the high-vibrational 

solvent environment.  

 The PL lifetime is calculated by exponential curve fitting of the PL decay data, 

shown in Figure 4.9. 
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Figure 4.9: PL lifetime plots of (a) core and (b) core/shell cerium-doped lanthanum 

fluoride NCs anhydrously synthesized in methanol 

As observed from the lifetime plots, there is no appreciable difference in lifetime between 

core and core/shell samples which is expected, since it is expected that there will be no 

change in the mechanism of emission in the cerium activation centers.  

(a) (b) 
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4.5. Summary 

In summary, the structural characterization results verify that the anhydrous 

synthesis of 10% cerium-doped lanthanum fluoride core and core/shell NCs were both 

successful. The syntheses produced easily water-dispersible, stable, and optically 

transparent nanocrystals. Increase in size seen from TEM images and increase in PL 

emission intensity demonstrates the successful growth of undoped lanthanum fluoride 

shell through this anhydrous synthesis method, which is the underlying motive of this 

chapter. 
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Chapter 5 

Determination of optimum cerium content 

5.1. Need for optimization 

Bulk cerium fluoride has been discovered as a fast and high-density inorganic 

scintillator around 1990 (Anderson 1989), (Moses and Derenzo 1989), (Anderson 1990). 

When excited with 511 keV, the emission spectrum shows a double peak structure, with 

one peak near the material transmission cut-off at 300 nm (Moses and Derenzo 1990). 

The lifetime of this cerium emission peak was measured at about 2 to 10 ns, much shorter 

than the regular 27 ns component. For this reason, Moses et al. hypothesized that 

reducing the transmission cut-off by replacing some cerium ions with a similar material, 

(that has a higher bandgap) the faster short wavelength line of the cerium emission could 

be transmitted without being occluded. Further, the material should be 

crystallographically similar to cerium fluoride in order to maintain the crystal 

environment for the cerium ions. Lanthanum fluoride was an ideal material for this 

purpose since it has a low transmission cut-off at 125 nm (Mooney 1966) and it is also 

crystallographically very similar to cerium fluoride. This led to the idea of cerium-doped 

lanthanum fluoride as a source of the fast 300 nm emission (Moses and Derenzo 1990).  

Therefore, according to this hypothesis, a high proportion of cerium may lead to self-

absorption of the short emission line.  

Another consideration is the coupling of the electronic transitions between the 

molecular energy levels of the activation center with the vibrational modes of the host 

crystal. Since it is believed that the 5d � 4f electronic transition in cerium is protected 

from being quenched by the low vibrational energy of the lanthanum fluoride host lattice 
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(Dorenbos 2000A), (Dorenbos 2000B), (Dorenbos 2000C), a higher proportion of cerium 

to lanthanum in the crystal lattice may lead to increased quenching of the cerium 

emission in spite of more activations centers available for emission. Considering this 

trade-off, evidently, there is an optimum cerium concentration in the LaxCe1-xF3 material 

system, which needs to be determined experimentally. 

This chapter presents the experiments performed to determine the optimum cerium 

content in lanthanum fluoride NCs (with the experimental considerations) and their 

respective observations. 

 

5.2. Cerium-content optimization experiments using aqueous synthesis 

method 

Chitosan-capped, cerium-doped lanthanum fluoride NCs were synthesized as given in 

Chapter 3. While maintaining all other synthesis parameters constant, seven different 

syntheses were performed with the cerium content (x) at 0.5%, 5%, 10%, 15%, 20%, 

25%, 75%, and 100% with respect to the total lanthanide (cerium + lanthanum) content 

(CexLa1-xF3). The PL emission spectra were measured for all the samples with 250 nm 

excitation using characterization methods described in Chapter 2.  
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Figure 5.1: PL emission spectra of chitosan-capped lanthanum fluoride NCs at various 

cerium contents 

PL spectra (Figure 5.1), obtained with 0.5 nm excitation and emission 

monochromator slit widths, show similar spectra in terms of shape and full-width-at-half-

maximum for all cerium concentrations. When, the spectra were re-plotted as a function 

of photon energy rather than the wavelength, the observed spectral shape was close to a 

gaussian distribution, which is expected for 5d � 4f atomic-level transitions in cerium.  
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Figure 5.2: Variation of peak emission intensity and wavelength in chitosan-capped 

lanthanum fluoride CexLa1-xFe NCs with increasing cerium content (x) 
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The peak emission intensity and wavelength are plotted for increasing cerium content in 

Figure 5.2. An optimum is observed at 10% cerium concentration. A sharp fall off in 

intensity is observed for the 5% and 1% samples, whereas the emission intensity for 

higher concentration samples decreased only slightly. The peak emission wavelength red 

shifted with increasing cerium concentration while an almost constant peak was observed 

in the excitation spectra for all the samples.   

In spite of maintaining all synthesis parameters, it was very difficult to maintain the 

concentration of the samples at the same level due to evaporation and sample loss during 

characterization. It was noticed that the intensity of emission significantly depended on 

the concentration of the sample and therefore it was imperative to normalize the 

concentration of all samples at high concentration by drying out the samples and re-

dispersing the NCs to the exact same concentration in DI-water. The right-angle PL was 

measured and the sufficiency of concentration was determined by ensuring that almost no 

right-angle PL signal was observed.  

 

5.3. Cerium-content optimization experiments using anhydrous synthesis 

method 

In order to ensure reliability and repeatability of results, the optimization experiments 

were conducted on the samples synthesized using the anhydrous synthesis route. As 

mentioned in Chapter 4, these samples were more stable over time and optically clear in 

nature. This made it much easier to normalize concentration (concentration does not 

change if the NC dispersion is stable while doing measurements) and perform lossless 
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measurements. Both the excitation and emission monochromator slit widths were set to 

0.5 nm. The results of PL measurements are given in Figure 5.3. 
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Figure 5.3: PL emission spectra of anhydrously synthesized lanthanum fluoride NCs 

at various cerium contents  
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Figure 5.4: Variation of peak emission intensity and wavelength in anhydrously 

synthesized CexLa1-xF3 NCs with increasing cerium content (x) 

The results obtained from the anhydrously synthesized samples were very similar to those 

from the samples synthesized through the aqueous route. The peak excitation stayed 
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constant at 247 nm, again corresponding to the 4f � 5d excitation of cerium ions. The 

results also confirmed the optimum cerium concentration as 10% and the red shift of the 

peak emission wavelength with increasing cerium content was also repeatable (Figure 

5.4). A possible explanation for the optimum cerium content and the red shift in PL 

emission is given in Section 5.4, inferred from the analysis of cerium concentration in 

bulk crystals. 

 

5.4. Discussion   

In 1994, Wojtowicz et al. provided a rigorous analysis of cerium emission in bulk 

lanthanum fluoride crystals. According to them, the emission from CexLa1-xF3 crystals 

can be described through three processes: direct excitation of Ce
3+

 ions by UV excitation, 

ionization of Ce by high-energy radiation, formation of Ce bound excitons and 

subsequent transfer of carriers to Ce activator levels, and by the transfer of the lattice 

excitons of the host to the activator levels that leads to cerium ion emission (Wojtowicz 

et al. 1994).  It is significant to note that in all the three processes, the final emission 

occurs from the Ce activator levels, although the excitation can be through different 

routes. In this case, it is evident from the excitation peak of 10% cerium-doped sample 

(given in Chapter 4) that the cerium ion inter-configurational f � d level is directly 

excited.  While studying Nd
3+

, Er
3+

, and Tm
3+

 ions in trifluorides, Yang and DeLuca 

reported again the expectation that under ionizing excitation, the parity forbidden f � f 

transitions prevail over the parity allowed d � f transitions (Yang and DeLuca 1978), 

(Dorenbos et al. 1990). However, the excitation spectra of Ce
3+

 in lutetium fluoride 

confirmed that the lattice to activator transferred d � f emission is predominant owing to 
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the lower lying d level of cerium ion compared to other lanthanides (Heaps et al. 1976). 

Furthermore, while studying pure cerium fluoride, the fast (2-5 ns) emission was 

attributed to perturbed cerium ions (Ceper) (Wojtowicz et al. 1992). Studies also 

suggested that the Ceper channel competed with the activator emission by non-radiatively 

acquiring the carriers from the 5d levels (Pedrini et al. 1992).  

This is consistent with the observed PL emission spectrum of the methanol based, 1% 

cerium-doped lanthanum fluoride NCs which is believed to be a superposition of three 

peaks corresponding to different emission routes. The shorter-wavelength ~285 nm peak 

is expected to be due to transitions terminating on the spin-orbit split 
2
F5/2 and 

2
F7/2 states 

of the f orbital as described in literature (Kroger and Bakker 1941), the ~ 303 nm 

emission is attributed to the 5d � 4f cerium ion activator levels, and the longer-

wavelength ~340 nm broad line arises from the perturbed cerium ion levels. This also 

explains the red-shift in the spectra with increasing cerium content, since at higher 

concentrations more lattice-perturbed cerium ions are expected, which then can acquire 

carriers from the activator levels and therefore tend to shift the emission more towards 

the longer wavelength component as described above. This information is therefore 

useful in characterizing the synthesized cerium-doped NCs through the observation of 

already understood emission mechanism of cerium in bulk lanthanum halide crystals and 

to determine the optimum cerium concentration that produces the fast and efficient 

emission from cerium activator levels. 
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Chapter 6 

Radiation hardness testing 

6.1. Significance of radiation hardness 

A necessary requirement for a material to be a good scintillator that can be used in 

radiation detection applications is its ability to absorb the high-energy radiation. Further 

while encountering this radiation, the fast moving ionizing particles of the radiation can 

damage the crystalline lattice of the absorbing material. Therefore, prolonged exposure to 

high-energy radiation is can easily degrade most crystalline material by knocking out 

atoms from the lattice thereby creating vacancies and defects. The property of a material 

to resist degradation in structural and optical properties when exposed to high-energy 

radiation is known as radiation hardness. 

Since one of the major applications of cerium-doped lanthanum halide NCs is 

radiation detection, it is important to test the radiation hardness of the material and 

compare with a standard material. For the purpose of comparison, cadmium selenide NCs 

were used since they are proven to be one of the highly luminescent fluorescent NCs. 

CdSe/ZnS QDs have also been suggested as scintillators for detection of alpha particles 

and gamma rays (Létant and Wang 2006A), (Létant and Wang 2006B). In this chapter, 

the effects of gamma-irradiation on photoluminescent properties of cerium-doped 

lanthanum fluoride NCs and CdSe/ZnS QDs are reported and compared. 
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6.2. Sample preparation 

Chitosan-capped lanthanum fluoride NCs doped with 5% cerium were synthesized as 

described in Chapter 3. CdSe cores were synthesized according to a modified procedure 

given by (Aldana et al. 2001). First, the cadmium precursor (cadmium acetate) was 

dissolved in a coordinating solvent, trioctylphosphine oxide (TOPO). The solution was 

heated in a flask under controlled argon atmosphere to 325 °C, while a solution of 

selenium in trioctylphosphine (TOP) and toluene was prepared in an argon-filled 

glovebox with < 0.1 ppm of water vapor and oxygen. When the temperature of the 

solution in the flask reached 325 °C, the selenium precursor solution was rapidly injected 

into the flask. When the contents of the flask reached red color, the solution was cooled 

to room temperature by removing the heat source. CdSe cores were precipitated in a 

centrifuge using acetone and methanol, and collected in hexanes. For ZnS coating, the 

zinc precursor was prepared by dissolving the zinc alkyl alkoxide (ZnONEP) with oleic 

acid and octadecene, while the sulfur precursor was prepared by dissolving sulfur in 

octadecene. Both precursors were heated to 200-250 °C and the zinc precursor was 

cooled to 60-80 °C, while the sulfur precursor was cooled to room temperature. The 

CdSe nanocrystals in hexanes were mixed with octadecene and octadecylamine in a flask 

and heated to 100 °C under vacuum for 30 minutes and then under argon to 240 °C. At 

that point, three alternating injections of calculated amounts of zinc and sulfur precursors 

were made at 10-minute intervals. Finally the solution was cooled to room-temperature; 

QDs were precipitated with acetone and methanol, and collected in hexanes. 

 

 



 76

6.3. Experimental setup for gamma-radiation exposure 

An Eberline 1000B multiple-source gamma calibrator was used. In order to accelerate 

the degradation process, the strongest of the available sources was used, namely a 
137

Cs 

source with the activity of 39.7 Ci (calibrated with Canberra RADIACMETER
®

), 

emitting 662 keV γ rays. Using the most powerful source available on the calibrator, a 

flux rate of 97.3 roentgens/hr was measured at the original test position of seven inches 

above the floor of the exposure chamber.  At certain point, samples were moved to the 

floor of the exposure chamber shown in Figure 6.1, which raised the gamma flux to 330.8 

roentgens/hr. 

 

Figure 6.1: NC samples placed inside the Eberline 1000B multiple source γ calibrator (A 

137
Cs 662 keV γ ray source was used for the experiment) 

Using a Horiba Jobin Yvon Fluorolog-3 spectrofluorometer, PL measurements were 

performed after certain periods of irradiation to check if the nanocrystals exhibited any 

signs of degradation in their optical characteristics. In order to exclude the effect of 

natural degradation due to oxidative processes on PL properties of the nanocrystals, two 

identical samples were prepared for each material under test, cerium-doped lanthanum 

fluoride and cadmium selenide/zinc sulfide NCs. Their PL spectra were measured prior to 
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irradiation experiments, thus establishing the base line for monitoring PL dynamics under 

irradiation. One of the samples was then irradiated, while the other one, called the 

“control” sample, was stored under RT conditions to be used for comparison purposes. 

Assuming that both irradiated and control samples undergo the same aging process and 

react to environmental changes in the same way, the results of PL degradation 

measurement of the irradiated sample were corrected for any changes in PL intensity of 

the control sample with respect to its base line measurement. 

The total exposure of the nanocrystals needs to be converted to absorbed dose for 

comparison to other scintillation materials. Converting roentgens for a monoenergetic 

source into rads for a particular material x can be done using energy absorption 

coefficients (Cattaneo 1991) as follows: 
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where D is the dose in rads, E is the exposure in roentgens, hν is the γ photon energy, ρ is 

the density of the material x, and µen(hν)/ρ is the energy absorption coefficient for the 

subscripted material. 

 

6.4. Results and discussion 

The effect of gamma irradiation on the lanthanum fluoride and cadmium 

selenide/zinc sulfide samples in terms on PL emission intensity is given in Figure 6.2. 

(6.1) 
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Figure 6.2: Variation of PL emission intensity with exposure dose to gamma-radiation 

for lanthanum fluoride NCs doped with 5% cerium and cadmium selenide/zinc sulfide 

NCs 

As observed in Figure 6.2, CdSe/ZnS QDs, initially very bright, showed a rapid loss 

of light output when exposed to 662 keV γ rays, and were removed from the experiment 

after 133.2 kR cumulative exposure. In terms of the absorbed dose, the CdSe/ZnS NCs 

turned out to be of very poor radiation hardness, having lost 50% of their light output 

after only ~11.5 krad of absorbed dose [equivalent to ~11.3 krad(Si)], rendering them 

unsuitable for aerospace and terrestrial applications where radiation hardness up to total 

γ-ray doses of 250 Mrad is a prerequisite. This should be contrasted with excellent 

radiation hardness of GaN/InGaN multiple-quantum-well LEDs, that can sustain 250 

Mrad(Si) from 
60

Co source with ~45% loss in their PL intensity (Khanna et al.). 

In contrast to CdSe/ZnS NCs, cerium-doped lanthanum fluoride NCs exhibited 

excellent radiation hardness after an extended exposure dose of about 2400 krads, as 

shown in Figure 6.2. PL intensity loss was about 45% of the original intensity of non-
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irradiated sample after 2400 krads of absorbed dose for cerium-doped lanthanum fluoride 

NCs. In direct comparison, the CdSe/ZnS NCs lost almost 50% of their light output just 

after ~11.5 krad of absorbed dose whereas the lanthanum fluoride NCs doped with 5% 

cerium lost only ~20.5% of their light output even after 722 krad of absorbed dose. 
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Figure 6.3: Effects of γ irradiation on PL lifetime for (a) CdSe/ZnS NCs and (b) chitosan-

capped lanthanum fluoride NCs doped with 5% cerium 

An average PL lifetime of 21.9 ns was measured for the control sample of CdSe/ZnS 

NCs, reducing to 18.6 ns after 120 krad irradiation (Figure 6.3), with accompanying 

dramatic reduction of quantum yield from 23.4% to 0.2%. The same tendency of the PL 

lifetime becoming shorter after irradiation was observed in cerium-doped lanthanum 

fluoride NCs, although to a much lesser extent and after a much larger dose, which is 

consistent with the less significant radiation damage incurred in these nanocrystals, as 

inferred from the PL light output results. A PL lifetime of 23 ns was observed for the 

control sample of LaF3:Ce
3+ 

NCs and a shorter lifetime of 21.7 ns was measured for the 

irradiated sample after 722 krad of dose. These observations can be explained as the 

influence of nonradiative recombination centers created in the irradiated materials. 

(a) (b) 
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Therefore, the cerium-doped lanthanum fluoride NCs are proved to possess excellent 

radiation hardness to gamma irradiation and can be reliably used as gamma radiation 

detectors.  
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Chapter 7 

Synthesis and characterization of anhydrously synthesized cerium-

doped lanthanum bromide core and core/shell colloidal 

nanocrystals 

7.1. Anhydrous synthesis of cerium-doped lanthanum bromide colloidal 

nanocrystals 

Bulk cerium-doped lanthanum bromide crystals possess unique excellent scintillation 

properties that excite the gamma ray detection community. The possibility to discern 

between gamma rays of slightly different energies is of great importance to a sensitive 

scintillation detector. This characteristic of a scintillating material is known as energy 

resolution. It is reported in literature that among all the available scintillating materials, 

cerium-doped lanthanum bromide has the highest energy resolution with the least full 

width to half maximum (3.2%) when excited with 662 keV gamma rays (Shah et al. 

2003). In conjunction with this unique advantage, cerium-doped lanthanum bromide 

crystals have also been reported to possess a very high light yield (about 63,000 

photons/MeV) and a fast decay time of less than 30 ns (Liu et al. 2007). Therefore, it is 

of particular interest to demonstrate the successful synthesis of nanoscale colloidal 

nanocrystals of cerium-doped lanthanum bromide. Since lanthanum bromide is highly 

hygroscopic and it needs to be synthesized anhydrously, methanol was used as the 

synthesis medium, as described in this chapter. A successful synthesis of cerium-doped 
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lanthanum bromide nanocrystals through an anhydrous synthesis route was carried out, as 

detailed in the following sections. 

   

7.1.1. Synthesis 

Cerium-doped lanthanum bromide nanocrystals were synthesized using a procedure 

directly adapted from the synthesis technique for hydrophilic cerium-doped lanthanum 

fluoride nanocrystals (Wang et al. 2007) by replacing fluorine with bromine. A major 

difference between lanthanum fluoride and lanthanum bromide is the highly hygroscopic 

property of the latter. Therefore, the material could not be synthesized using any of the 

usual hydrothermal processes performed in an aqueous solution. However, this synthesis 

was possible since the anhydrous method (Section 4.1) was designed to be performed 

entirely under a controlled water-free atmosphere using the Schlenk line and glovebox.  

 

7.1.2. Basic chemical reaction 

The following is the basic chemical reaction that is expected to occur during the 

nucleation phase of the anhydrous synthesis of cerium-doped lanthanum bromide NCs. 

 

7.1.3. Preparation of precursors 

All precursors were prepared inside the glovebox. Lanthanum nitrate hexahydrate 

99.99%, cerium nitrate heptahydrate 99.999%, ammonium bromide 99.9%, and 

anhydrous absolute methanol 99.9% were purchased from Sigma Aldrich Co. and used as 

such. A 0.65 M lanthanide precursor solution was prepared by dissolving 1.3 mmol total 

of lanthanum nitrate hexahydrate and cerium nitrate heptahydrate in 2 mL of anhydrous 

CH3OH + 1 mmol (La(NO3)3 + Ce(NO3)3 ) + 3 mmol NH4Br  �  3 mmol NH4NO3 + 1 mmol  LaBr3:Ce
3+

/OH 
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methanol. The bromine precursor solution was prepared by dissolving 3 mmol of 

ammonium bromide in 35 mL of anhydrous methanol in a three-neck round-bottom 

borosilicate flask.  

 

7.1.4. Synthesis procedure 

A synthesis procedure similar to cerium-doped lanthanum fluoride core and core/shell 

NCs was used to synthesize cerium-doped lanthanum bromide core and core/shell NCs 

with the exception of replacing the fluorine precursor, ammonium fluoride in the earlier 

case with the bromine precursor, ammonium bromide in this case. The three-neck flask 

containing the bromide precursor in anhydrous methanol was taken out from the 

glovebox, connected to the Schlenk line, and heated to 60 °C at the rate of 5 °C/min. 

After the temperature reached 60 °C, the lanthanide (lanthanum + cerium) precursor was 

injected rapidly into the flask. The solution was allowed to stir at 1000 rpm for 2 hours 

under argon atmosphere after which the flask was cooled down, taken into the glovebox, 

and the solution was transferred to several 20 mL scintillation vials. All samples for 

characterization were prepared inside the glovebox, avoiding any exposure to water. 

 

7.2. Anhydrous synthesis of cerium-doped lanthanum bromide/undoped 

lanthanum fluoride core/shell colloidal NCs 

The shell procedure from Section 4.2 was further extended to the core/shell synthesis 

of cerium-doped lanthanum bromide/undoped lanthanum fluoride colloidal NCs. 

Lanthanum fluoride was selected as the shell material due to its stable nature and since its 

bandgap is almost two times larger than lanthanum bromide (Gao and Michael 2008). 
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The hydroxyl groups being efficient non-radiative recombination centers, they tend to 

effectively quench the light emission originating from cerium ions (van Veggel and 

Stouwdam 2004). Therefore, it is essential to have a thick shell coating to improve the 

photoluminescence intensity. Apart from the main role of shielding the highly 

hygroscopic lanthanum bromide core from moisture (and therefore making them usable 

in air), the undoped LaF3 shell also provides good quantum confinement.  

 

7.2.1. Synthesis 

Cerium-doped lanthanum bromide/undoped lanthanum fluoride core/shell 

nanocrystals were synthesized using the anhydrous core/shell synthesis procedure in 

methanol given in section 4.2 by replacing fluoride core precursor (ammonium fluoride) 

with bromide core precursor (ammonium bromide), while maintaining the same molar 

quantities. The entire synthesis was again performed under a controlled water-free 

atmosphere using the Schlenk line and glovebox. Both core and shell precursors were 

prepared inside the glovebox and taken out using syringes. In order to compare the core 

and core/shell, the core-only aliquot of cerium-doped lanthanum bromide NCs in 

anhydrous methanol was taken before injecting the shell precursors. 

 

7.2.2. Basic chemical reactions 

The following gives the balanced chemical reactions that are expected to occur 

during the anhydrous synthesis of cerium-doped lanthanum bromide/undoped lanthanum 

fluoride core shell NCs. 
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7.2.3. Preparation of precursors 

All precursors were prepared inside the glovebox. Lanthanum nitrate hexahydrate 

99.99%, cerium nitrate heptahydrate 99.999%, ammonium bromide 99.9%, ammonium 

fluoride 99.9%, and anhydrous absolute methanol 99.9% were purchased from Sigma 

Aldrich Co. and used as such. A 0.65 M lanthanide precursor solution was prepared by 

dissolving 1.3 mmol total of lanthanum nitrate hexahydrate and cerium nitrate 

heptahydrate in 2 mL of anhydrous methanol. The bromine precursor solution was 

prepared by dissolving 3 mmol of ammonium bromide in 35 mL anhydrous methanol in a 

three-neck round-bottom borosilicate flask. The lanthanum precursor for the shell was 

prepared by dissolving 5.2 mmol of lanthanum nitrate hexahydrate in 8 mL of anhydrous 

methanol and the fluorine precursor for the shell was prepared similarly by dissolving 12 

mmol of ammonium fluoride in 8 mL of anhydrous methanol. 

 

7.2.4. Synthesis procedure 

The three-neck flask containing the bromide precursor in anhydrous methanol was 

taken out from the glovebox, connected to the Schlenk line, and heated to 60 °C at the 

rate of 5 °C/min. After the temperature reached 60 °C, the lanthanide (lanthanum + 

cerium) precursor was injected rapidly into the flask. The solution was allowed to stir at 

600 rpm for 10 minutes under argon atmosphere, after which 5 mL of core aliquot was 

taken out from the flask using an aliquot syringe. Then, alternate drop wise injections of 

lanthanum and fluorine shell precursors were done at the rate of 5 drops/min. The 

LaBr3:Ce
3+

/OH+4 mmol La(NO3)3+12 mmol NH4F � 12 mmol NH4NO3 + 1 mmol LaBr3:Ce
3+

/LaF3/OH 

CH3OH + 1 mmol (La(NO3)3 + Ce(NO3)3 ) + 3 mmol NH4Br  �  3 mmol NH4NO3 + 1 mmol  LaBr3:Ce
3+

/OH 
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solution in the flask was subsequently allowed to stir at 1000 rpm for 2 hours under argon 

atmosphere. After 2 hours, the solution was purified and precipitated by centrifugation at 

5000 rpm using methanol, and dispersed in DI water. It was observed that the cerium-

doped lanthanum bromide/undoped lanthanum fluoride core/shell NCs were highly 

dispersible in water due to the hydrophilic hydroxyl groups attached to lanthanum 

fluoride shell, and were also very stable without any signs of aggregation or flocculation. 

In contrast with the ability to store the core/shell sample in DI water after centrifugation, 

the core aliquot sample was stored as synthesized in methanol at room temperature in an 

air tight vial inside the glovebox. All samples for characterization of the core aliquot 

were prepared inside the glovebox, avoiding any exposure to water vapor. 

 

7.3. Structural characterization of anhydrously synthesized cerium-doped 

lanthanum bromide and cerium-doped lanthanum bromide/undoped 

lanthanum fluoride core/shell NCs 

Structural and elemental characterization was performed on the cerium-doped 

lanthanum bromide core and core/shell samples using TEM and EDS. Due to the highly 

hygroscopic nature of the lanthanum bromide NCs, special care was taken in preparation 

and handling of the TEM samples. The TEM samples were prepared inside the glovebox 

and the sample boxes were transported to the TEM facility using tightly sealed grid 

holders. The only exposure to atmosphere happened briefly while the sample was loaded 

into the microscope. 
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(a) 

(b) 
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Figure 7.1: (a) and (b) High-resolution TEM images of anhydrously synthesized 

lanthanum bromide doped with 10% cerium NCs with 20 and 10 nm scale bars, 

respectively, (c) and (d) TEM images of anhydrously synthesized lanthanum bromide 

doped with 10% cerium core /undoped lanthanum fluoride shell NCs with 20 and 10 nm 

scale bars, respectively 

(d) 

(c) 
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The high-resolution TEM images in Figure 7.1(a) and (b) of the core sample 

confirm the presence of polydisperse single-crystal lanthanum bromide nanocrystals. The 

images of core NCs show an average size of 10.5 nm with a standard deviation of 2.8 nm 

(28%), while the images of core/shell NCs show a mean size of 14 nm with a standard 

deviation of 4 nm (28.5%) (from a statistical sample size of 50 NCs from different 

images for both core and core/shell samples). The core/shell NCs show hexagonal 

structures similar to the previously observed cerium-doped lanthanum fluoride structures, 

while the core images were limited to showing the high-resolution images of the side-on 

oriented NCs. However, the high-resolution images of the cerium-doped lanthanum 

bromide NCs enable the determination of the fringe-separation, which was measured to 

be 7.4 angstroms (from a statistical sample of 5 NCs from two different high-resolution 

images). The increased fringe-separation observed in cerium-doped lanthanum bromide 

NCs compared to that observed in cerium-doped lanthanum fluoride NCs is expected 

since the former has a lower bandgap compared to the latter, as summarized in Table 7.1. 

Table 7.1: Bandgap and measured fringe-separation of lanthanum bromide and 

lanthanum fluoride 

Material 
Bandgap  

(Gao and Michael 2008) 

Fringe-separation measured 

from HR-TEM images 

Lanthanum fluoride 10.10 eV 3.45 angstroms 

Lanthanum bromide 5.15 eV 7.4 angstroms 

 

Therefore, it can be inferred from the table that there is a compressive strain on the 

active region (core) in the cerium-doped lanthanum bromide/lanthanum fluoride 

core/shell material system. 
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Figure 7.2: EDS spectrum of (a) lanthanum bromide doped with 10% cerium core NCs 

and (b) lanthanum bromide doped with 10% cerium core /undoped lanthanum fluoride 

shell NCs 

The EDS spectrum shown in Figure 7.2 confirms the elemental presence of 

cerium, lanthanum, and bromine in the core sample and fluorine in addition to the above 

elements in the core/shell sample. 

 

 

 

 

 

(a) 

(b) 



 91

7.4. Optical characterization of anhydrously synthesized cerium-doped 

lanthanum bromide and cerium-doped lanthanum bromide/undoped 

lanthanum fluoride core/shell colloidal NCs 

The results of absorption measurements for the core lanthanum bromide 

nanocrystals doped with cerium and core/shell with undoped lanthanum fluoride shell are 

shown in Figure 7.3. 
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Figure 7.3: Absorption spectra of (a) anhydrously synthesized cerium-doped 

lanthanum bromide colloidal NCs and (b) anhydrously synthesized cerium-doped 

lanthanum bromide/undoped lanthanum fluoride core shell colloidal NCs 

The measured absorption in Figure 7.3(a) was again very weak due to the dilute 

nature of the core sample. However, the figure shows an absorption feature at 280 nm 

and the absorption spectrum in Figure 7.3(b) shows a faint shoulder at 250 nm for the 

core/shell NCs. This confirms a change in effective absorption edge from the core NCs to 

core/shell NCs possibly due to lattice strain. 

The PL excitation spectra of the core and core/shell samples are shown in Figures 

7.4 (a) and (b) respectively, observed at 314 nm and 300 nm emission wavelengths, 

(a) (b) 



 92

respectively. The optimum excitation for the core NCs was 280 nm and that for the 

core/shell NCs was 247 nm. The PL emission spectra for core and core/shell NCs are 

given in Figures 7.5(a) and (b), respectively. 

260 270 280 290 300
5.0x10

2

1.0x10
3

1.5x10
3

2.0x10
3

2.5x10
3

3.0x10
3

Wavelength [nm]

R
a
w

 P
L

 i
n

te
n

s
it
y
 [
C

P
S

]

4.0x10
4

8.0x10
4

1.2x10
5

 

C
o

rr
e

c
te

d
 P

L
 i
n

te
n

s
it
y
 [

a
. 
u

.]
 

                                                         

    

240 250 260 270 280 290

0.0

5.0x10
3

1.0x10
4

1.5x10
4

2.0x10
4

2.5x10
4

3.0x10
4

Wavelength [nm]
R

a
w

 P
L
 i
n

te
n

s
it
y
 [

C
P

S
]

0

1x10
6

2x10
6

3x10
6

4x10
6

5x10
6

 

C
o

rr
e
c
te

d
 P

L
 i
n

te
n
s
it
y
 [
a
. 
u

.]
                                                         

 

Figure 7.4: PL excitation spectra of (a) anhydrously synthesized cerium-doped 

lanthanum bromide NCs and (b) anhydrously synthesized cerium-doped lanthanum 

bromide/undoped lanthanum fluoride core/shell NCs 
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Figure 7.5: PL emission spectra of (a) anhydrously synthesized cerium-doped lanthanum 

bromide NCs and (b) anhydrously synthesized cerium-doped lanthanum 

bromide/undoped lanthanum fluoride core/shell NCs  

(a) (b) 

(a) (b) 
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The PL peak intensity of the core/shell NCs increased about 4 times and blue-shifted 

14 nm compared to that of core NCs. The lower PL emission intensity of the core NCs 

can be explained due to the fact that the NCs were dispersed in methanol, which has, as 

already stated, efficient luminescence quenching property by providing non-radiative 

recombination centers. Furthermore, the blue-shift can be attributed to the compressive 

strain on the active core region due to the smaller effective lattice parameters of the shell 

material (reported lattice parameters of lanthanum fluoride: a = b = 7.185 angstroms, c = 

7.351 angstroms) (Kruk et al. 2006) compared to that of the core material (reported 

lattice parameters of lanthanum bromide: a = b = 7.951 angstroms, c = 4.501 angstroms) 

(Liu et al. 2007). Another possible explanation of the significant change in spectra 

between the core and core/shell NCs is that the shell injections could lead to the 

formation of new lanthanum fluoride NCs, incorporating the unreacted cerium ions from 

the core synthesis reaction and effectively forming low cerium-doped lanthanum fluoride 

NCs. However, the validity of the latter explanation suffers from the fact that the PL 

emission spectrum of the core NCs is fairly narrow, as opposed to being broad which 

would be expected if there were remaining unreacted cerium ions in the solution (refer to 

free Ce ion emission shown in Figure 3.6). Therefore the former explanation bears more 

validity; however, beyond such experimental evidence, the theoretical proof of the same 

is beyond the scope of this work. 

The lifetimes for the core and core/shell NCs are calculated similarly from the 

decay time scatter plots shown in Figure 7.6. 
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Figure 7.6: PL lifetime measurement plots of (a) anhydrously synthesized cerium-

doped lanthanum bromide core colloidal NCs and (b) anhydrously synthesized cerium-

doped lanthanum bromide/undoped lanthanum fluoride colloidal NCs 

 The cerium-doped lanthanum bromide core NCs show a very fast PL decay time 

of 0.7 ns (81%) and 1.9 ns (19%), as shown in Figure 7.6(a). The sub-nanosecond 

component was suspected to be arising from the excitation source decay due to the 

proximity of the excitation (280 nm) and the observation position on the PL emission 

spectrum (316 nm). 
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Figure 7.7: Shorter lifetime component diminishes as the lifetime is measured farther 

away from the excitation 
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In order to verify this, lifetime was measured at different points on the spectrum on 

the higher wavelength side of the PL emission peak. As observed in Figure 7.7, the 

weight of the longer lifetime component increases as the observation wavelength moves 

away from the excitation wavelength. This verifies the notion that the shorter component 

should be attributed to the excitation source. The core/shell NCs show an increased but 

still fairly short lifetime of 19.4 ns (75%) and 6.4 ns (25%), as shown in Figure 7.6(b).  
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Figure 7.8: The shorter lifetime component is more pronounced at the shoulder (345 nm) 

 

However, the lifetime measured at the shoulder at 345 nm showed a considerable 

increase in the shorter lifetime component, as shown in Figure 7.8, which can be 

tentatively associated with surface/defect related transitions. 

 

7.5. Summary 

The TEM, EDS, and PL results confirm that the novel anhydrous synthesis of the 

cerium-doped lanthanum bromide core colloidal NCs was successful. The corresponding 

anhydrously synthesized cerium-doped lanthanum bromide/undoped lanthanum fluoride 

core/shell colloidal NCs showed larger size in TEM images, an increased and blue-
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shifted PL intensity, and a longer PL lifetime, hence that synthesis is also deemed 

successful. The increased PL intensity and lifetimes are expected due to the separation of 

the active luminesce centers from the emission quenching hydroxyl groups by the shell, 

whereas the blue-shift is possibly attributed to the compressive strain on the active core 

region of the nanocrystals.  
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Chapter 8 

Conclusions and future work 

8.1. Conclusions 

Cerium-doped lanthanum fluoride nanocrystals have been synthesized successfully 

through two different synthesis routes, their optical characteristics confirmed by 

absorption, PL excitation, and emission spectroscopy, and their structural and 

compositional characteristics determined through transmission electron microscopy and 

electron dispersive spectroscopy, respectively. These nanocrystals can be lucratively used 

as highly efficient size independent down-conversion biological markers, and as 

scintillation detectors for high-energy ionizing radiation spectroscopy. The characteristics 

of cerium-doped lanthanum halide bulk crystal systems have been studied extensively 

(Moses and Derenzo 1990), (Wojtowicz et al. 1994). Inorganic nanocrystals have been 

found to be advantageous for various applications (Parak et al. 2003), (Chen and Belbot 

2005). Cerium-doped lanthanum bromide has been identified as a unique system that can 

provide fast (25 ns) emission at the short-UV wavelengths along with other key 

properties necessary for realizing high-efficiency scintillation detectors, such as high 

light yield, and high energy resolution for high-energy 662 keV gamma rays (Kramer et 

al. 2006), (Stouwdam and van Veggel 2002). However, the crystals suffered from severe 

limitations such as high cost, fragility, and the highly hygroscopic property. To overcome 

these limitations, core/shell structure of cerium-doped lanthanum bromide/stable 

lanthanum fluoride was synthesized through facile and inexpensive colloidal routes. As 

the first step in the systematic approach, core and core/shell NCs of cerium-doped 
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lanthanum fluoride were synthesized using the water-based (aqueous) and water-free 

(anhydrous) synthesis routes, among which the latter was developed indigenously. From 

the characterization results of cerium-doped lanthanum fluoride NCs, the signature intra-

configurational cerium-ion emission characteristics could be verified using 250 nm UV 

excitation of the internal cerium levels.  

Using the indigenously developed anhydrous synthesis route in methanol, cerium-

doped lanthanum fluoride/undoped lanthanum fluoride core/shell NCs were synthesized 

successfully as indicated by structural and optical characterization results. 

Furthermore, 10% cerium concentration was empirically identified as the optimum 

cerium concentration (x) in the CexLa1-xF3 NC system in terms of light output from the 

activator levels of cerium.  The results were repeatable, since they were independent of 

the synthesis route. It has been inferred from the analysis of bulk crystals that the 

emission starts decreasing at cerium concentrations higher than 10% due to the increased 

presence of perturbed cerium ions that compete with the activator emission channel 

(Wojtowicz et al. 1994).  

The persistence to high energy ionizing radiation was tested with a monoenergetic 

137
Cs 662 keV gamma source. Cerium-doped lanthanum fluoride NCs were tested in 

comparison with CdSe/ZnS NCs. The former showed excellent radiation hardness with 

only 20% reduction in PL light output after extensive exposure to gamma radiation (2400 

krads) whereas the latter lost almost 50% of light output after just 11.5 krads of gamma 

exposure. A reduction in PL lifetime was also observed with the irradiated sample, which 

may be due to creation of nonradiative recombination centers in the material.   
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Finally, following this systematic approach, cerium-doped lanthanum bromide core 

NCs were synthesized anhydrously in methanol, though due to the sample’s hygroscopic 

nature, it had to be stored and handled hermetically. The TEM images provided evidence 

for good crystallinity of the nanocrystals and EDS confirmed the elemental composition. 

The idea of coating the hygroscopic NCs with the stable lanthanum fluoride shell to 

form stable core/shell NCs was successful. The spectral shift is tentatively interpreted as 

the effect of compressive strain on the active core due to difference in lattice constants 

between core and shell crystals. In conclusion, the systematic approach with the 

development of indigenous anhydrous synthesis method lead to the first ever synthesis of 

cerium-doped lanthanum bromide with stable lanthanum fluoride shell as colloidal 

nanocrystals. 

 

8.2. Future work 

This thesis work presents the first step or the initiative taken in identifying the right 

material for a long term goal of designing a portable, low-cost, and high-performance 

gamma ray scintillation detector, thereby providing ample scope for future work. A terse 

description of the proposed scintillation detector system is provided in Figure 8.1. 

 

Figure 8.1: Basic schematic of the proposed pulse-height analysis system for cerium-

doped lanthanum-halide-based scintillation detection system 
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Two events are possible when gamma radiation encounters a scintillating material: photo-

electric photon to electron conversion and/or Compton scattering. The electrons excited 

as a result of photo-electric effect relax back, emitting photons characteristic to the 

material. As a result, the response curve of the scintillator shows photo-electric peaks 

superimposed over a continuous Compton background. The absolute pulse height of the 

photo-peaks corresponds to the energy of the gamma radiation. Then, the photodetector 

will convert the photo-peaks into current pulses which will be sufficiently amplified into 

voltage signal by the pre-amplifier. The mV signal obtained from the pre-amplifier will 

be amplified to a linear range of 0-10V using an inverting amplifier along with a 

pole/zero compensation network and an offset adjustment circuit. Subsequently, the 

pulse-shaping circuit will generate a semi-gaussian pulse of the same height as the 

incoming pulse to satisfy the shape requirements of the following electronics. The signal 

from the gain stage will be fed both to a fast-shaping (30 ns) second-order inverting low-

pass filter and a cascade of two non-inverting low-pass filters (150 ns) with a gain higher 

than the one in the middle frequency range. The fast-shaping filter will be used to detect 

more than one peak occurring in the sampling time interval (pile-up rejection). The peak 

stretching circuit will then stretch the semi-gaussian peak to nearly a square wave, which 

is required to compare steady voltage levels with reference voltage for pulse height 

analysis. The discriminator will allow only the signals above a certain threshold to be 

sent to the analog to digital convertor (ADC). This improves signal-to-noise ratio. The 

ADC will help converts the flat peak voltage level normalized between 0-10 V into a 12-

bit data word. The FPGA will perform functions such as data acquisition, issuing trigger 

and reset signals, pile-up removal logic, read/write to on-chip block RAM, and 
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input/output interfacing. The output will be a histogram of pulse heights corresponding to 

detected gamma radiation energies spread over a range of channels. The basic skeleton of 

this system is usually called a multi-channel analyzer (MCA) that is used extensively for 

pulse-height analysis in radiation detection field. Here, it is proposed to use a customized 

MCA that can be tuned to be specific to the material system.  

Further scope exists for better understanding of the newly synthesized cerium-doped 

lanthanum bromide/undoped lanthanum fluoride core/shell nanocrystals. This includes 

optimization of Ce content in LaBr3 NCs for maximum quantum efficiency, optimization 

of LaF3 shell thickness for best protection of LaBr3 core without introducing defects due 

to excessive strain, demonstration of scintillation of LaBr3:Ce/LaF3 NCs under gamma 

irradiation, and determination of optimal host material for LaBr3:Ce/LaF3 

nanoscintillators. This concludes this thesis work. 
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