
University of New Mexico
UNM Digital Repository

Electrical and Computer Engineering ETDs Engineering ETDs

9-9-2007

Microscopy study of extreme lattice mismatched
heteroepitaxy using interfacial misfit arrays
Shenghong Huang

Follow this and additional works at: https://digitalrepository.unm.edu/ece_etds

This Dissertation is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in
Electrical and Computer Engineering ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact
disc@unm.edu.

Recommended Citation
Huang, Shenghong. "Microscopy study of extreme lattice mismatched heteroepitaxy using interfacial misfit arrays." (2007).
https://digitalrepository.unm.edu/ece_etds/121

https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fece_etds%2F121&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F121&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/eng_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F121&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F121&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds/121?utm_source=digitalrepository.unm.edu%2Fece_etds%2F121&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu


 i



 ii

     
  
  
  
  
  

 
MICROSCOPY STUDY OF EXTREME LATTICE 

MISMATCHED HETEROEPITAXY USING INTERFACIAL 
MISFIT ARRAYS 

 
 

BY 
 
 

SHENGHONG HUANG 
 

B.S., Material Science, Southern Institute of Metallurgy, 1991 
M.S., Material Science, Northeastern University, 1994 

M.S., Electrical Engineering, University of New Mexico, 2003 
 
 

COMMITTEE CHAIR: DIANA HUFFAKER 
 
 
 

 
 
 
 

DISSERTATION 
 

Submitted in Partial Fulfillment of the 
Requirements for the Degree of 

 
Doctor of Philosophy 

Engineering 
 

The University of New Mexico 
Albuquerque, New Mexico 

 
 

July 2007 
 
 



 iii

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2007, Shenghong Huang 
 

All rights Reserved 



 iv

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Dedicated to my wife, Jing, my sons, David and Kevin,  

and my parents. 
 



 v

 
 

 
ACKNOWLEDGMENTS 

 
 
 

  I would like to extend my deepest thanks to my advisor, Prof. Diana Huffaker, for 

encouragement, guidance, insight and support throughout the duration of my Ph.D 

program. She has always kept giving me warm and helpful guidance and encouragements 

on my research. Her preciseness, sagacity, acuity and endless enthusiasm on research 

make a good example to me to be a great scientist. 

 I would also thank my committee members, Prof. Sanjay Krishna, Prof. Ralph 

Dawson, Dr. Peng Li and Dr. Andreas Stintz for reading and commenting on my 

dissertation. 

I would like to thank Dr. Peng Li for his help with the TEM experiment and analysis. 

His patience and input in my research are greatly appreciated. 

I would like to thank my group members for their support. I am extremely grateful for 

their friendship and spirit of teamwork. 

I would like to thank my wife, Jing, my parents for their affectionate support and 

encouragement during this period.  

     Finally, I would like to thank all of my friends at Center for High Technology 

Materials of University of New Mexico because all of you enriched my life and made my 

experience here extraordinary. 

 



 vi

     
  
  
  
  
  

 
MICROSCOPY STUDY OF EXTREME LATTICE 

MISMATCHED HETEROEPITAXY USING INTERFACIAL 
MISFIT ARRAYS 

 
 

BY 
 
 

SHENGHONG HUANG 
 

B.S., Material Science, Southern Institute of Metallurgy, 1991 
M.S., Material Science, Northeastern University, 1994 

M.S., Electrical Engineering, University of New Mexico, 2003 
 
 
 
 
 
 
 
 
 
 

ABSTRACT OF DISSERTATION 
 

Submitted in Partial Fulfillment of the 
Requirements for the Degree of 

 
Doctor of Philosophy 

Engineering 
 

The University of New Mexico 
Albuquerque, New Mexico 

 
 

July 2007 
 

 



 vii

MICROSCOPY STUDY OF EXTREME LATTICE MISMATCHED 

HETEROEPITAXY USING INTERFACIAL MISFIT ARRAYS 

by 

Shenghong Huang 

 

B.S., Material Science, Southern Institute of Metallurgy, 1991 

M.S., Material Science, Northeastern University, 1994 

M.S., Electrical Engineering, University of New Mexico, 2003 

Ph.D., Engineering, University of New Mexico, 2007 

 

 

ABSTRACT 
 
 

The Sb-bearing compounds offer a wide range of electronic bandgaps, bandgap 

offsets and electronic barriers along with the extremely high electron mobility and 

therefore enable a variety of high speed, low power electronic devices and infrared light 

sources. Therefore, lattice-mismatched epitaxy of Sb-based materials on GaAs and Si 

substrates has attracted considerable attention. However, due to material growth issues 

such as large lattice mismatch, anti-phase domains and thermal expansion coefficient 

mismatch, the material relieves strain energy through misfit dislocations, defects and 

often threading dislocations, which vertically propagate to active regions of devices, thus 

leads to non-radiative recombination and damages device performance. 



 viii

The majority of the work done in this field has been focused on the interfacial 

misfit (IMF) array based growth mode between GaAs and GaSb, and AlSb on Si 

substrate. Since the formation of an IMF array does not proceed through the critical 

thickness method, but instead makes use of atomic arrangements on the surface of 

substrate to spontaneously relieve the high strain energy between the epi-layer and 

substrate. Thus this growth mode allows us to grow highly mismatched and low defect 

density epi-layer material.  

In this research, not only have we demonstrated that an IMF array can be formed 

to fully relieve strain energy at the compressive GaSb/GaAs interface, but also verified 

that an IMF array can be obtained in the tensile GaAs/GaSb interface once the reaction of 

the As2 with GaSb surface is suppressed. Meanwhile, the IMF growth mode has also been 

applied for obtaining high quality AlSb epilayers monolithically on 5° miscut Si (100) 

substrate. We attribute the success of AlSb growth on 5° miscut Si (100) surface to both 

the step doubling-atom mechanism in combination with the strong Al-Sb atomic bond. 

The AlSb bulk materials with low dislocation density and strain-relieved properties 

generated by the growth conditions can provide a promising technology for the 

monolithic integration of III-V devices on Si substrate. Finally, We have demonstrated 

the ability to control either an IMF or a Stranski-Krastanov (SK) growth mode to grow 

GaSb QDs on GaAs substrates by varying V/III ratio. A high V/III ratio such as 10:1 

produces IMF growth mode, while a low V/III ratio of 1:1 favors SK growth mode. 
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Chapter 1  

Overview of III-V materials on GaAs and Si technology 
 

 

 1.1 The issues for large mismatched III-Sb material growth 

 

The Sb-bearing compounds offer a wide range of electronic bandgaps, bandgap 

offsets and electronic barriers along with extremely high electron mobility1,2 and 

therefore enable a variety of extremely fast, low power electronic devices and infrared 

light sources.3,4 Lattice-mismatched epitaxy of Sb-based materials on GaAs and Si 

substrates has attracted considerable attention due to the numerous advances in 

optoelectronic devices that can be enabled including monolithically integrated lasers, 

detectors, solar cells and transistors.5  Due to high lattice mismatch between the epilayer 

and substrate, the material relieves strain energy through misfit dislocations and often 

threading dislocations,6 which vertically propagate to active regions of devices. It leads to 

non-radiative recombination and damages device performance.7   

 

To date, exploiting lattice-mismatched GaSb/GaAs and GaAs/GaSb 

heterojunctions is of considerable interest for III-Sb electronic and optoelectronic devices 

on GaAs substrates such as mid-wave infrared lasers, and transistors.3,8 The ability to 

embed GaSb layers in a GaAs/AlGaAs could lead to the development of a new class of 

mid infrared vertical cavity lasers and the growth of GaSb on GaAs substrates would help 

realize detectors on transparent and semi-insulating GaAs substrates. The development of 
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mismatched growth techniques, such as metamorphic buffers, has helped in the growth of 

compressive GaSb/GaAs heterojunctions.9 However, the tensile GaAs/GaSb interface 

leads to the usual threading dislocations and also material defects such as microcracks 

that are associated with tensile strain. If we can realize GaAs grown on GaSb with low 

defect density, it may be useful for embedded GaSb layers in a GaAs matrix.  

 

Under compressive growth conditions, researchers have attempted to mitigate 

these detrimental effects by bending the vertically propagating defects along strained 

interfaces using compositionally graded-layers or selective area growth.9,10 Another 

approach to developing low defect or defect-free bulk material is to design a lattice-

mismatched interface in which strain energy is solely relieved by laterally-propagating 

(90˚) misfit dislocations confined to the epi-substrate interface.11,12 If the same interfacial 

misfit (IMF) dislocations can be applied to the tensile GaAs/GaSb heteoepitaxy, it could 

help realize high quality GaAs growth on GaSb. 

 

Similarly, the heteoepitaxial growth of compound semiconductors on Si has 

received much attention. Most of these works are concentrated on the growth of GaAs on 

Si.13,14 Since large-area, high-quality Si substrates are available, heteroepitaxy of 

compound semiconductors on Si is attractive. Meanwhile, it also affords the possibility of 

monolithic integration of compound semiconductor optical and electronic devices with 

complex Si integrated circuits. However, mismatch in lattice constant, thermal expansion 

coefficient and process temperature prevents the establishment of a stable and repeatable 

production process. Therefore, monolithic device characteristics have been marginal due 
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to micro-cracks and high dislocation density in the GaAs buffer.15 As we know, the 

interfacial misfit (IMF) array based growth method can be applied to grow highly 

mismatched materials and yield low defect density of epilayer. Therefore, the application 

of IMF array on the monolithic integration of III-Vs with Si substrate using a special III-

Sb nucleation layer will be one of tasks in this dissertation.   

 

 

 1.2 The concept of interfacial misfit array 

 

 The interfacial misfit (IMF) array based growth mode allows us to grow highly 

mismatched and low defect density epi-layer material. Under optimized growth 

conditions, a wide variety of materials can be realized the heteroepitaxy through IMF. 

 

A critical thickness has to be achieved prior to the onset of misfit dislocations, in 

some materials systems such as GaSb on GaAs, where a two-dimensional (2D) array of 

misfit dislocations forms at the GaSb/GaAs interface.11 This is a fundamentally different 

growth mode that results in high quality bulk material with very low defect density in 

which strain energy is solely relieved by laterally-propagating (90˚) misfit dislocations 

confined to the epi-substrate interface.12  

 

However, the formation of an interfacial misfit array (IMF) does not proceed 

through the critical thickness way, but instead makes use of atomic arrangements on the 

surface of substrate to spontaneously relieve the high strain energy between the epi-layer 
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and substrate. When the growth conditions are not conducive to forming this atomic 

arrangement on the substrate, however, the growth then turns to a psedudomorphic 

growth process. The highly periodic nature of the IMF array, its long-range order and the 

fact that this arrangement can be picked up by in-situ measurements such as reflective 

high energy electron beam (RHEED) pattern indicate that the growth process may occur 

by self-assembly.  

 

 

 1.3 Objective for the work 

 

 The concept of IMF arrays is applied to highly lattice mismatched III-Sb epilayers 

grown monolithically on GaAs and Si substrates, and GaAs on GaSb substrate. 

According to theoretical calculations and material properties, we design special growth 

processes and optimize growth conditions to obtain high quality heteroepitaxial epi-layers 

through IMF growth mode.  

 

The growth of III-Sb materials on GaAs and Si substrates and GaAs on GaSb 

substrate are characterized using a variety of tools such as – transmission electron 

microscopy (TEM), scanning transmission electron microscopy (STEM), atomic force 

microscopy (AFM), scanning electron microscopy (SEM), x-ray diffraction (XRD), and 

photoluminescence (PL). 
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Chapter 2 

Self-Assembled Interfacial Misfit Dislocation Arrays  

between GaAs and GaSb 

 

      2.1 Formation of compressive GaSb/GaAs IMF interface  

 

          2.1.1 Introduction 

The growth of large mismatched materials on GaAs, GaSb and Si has attracted 

considerable attention due to the advancements that they would provide for devices.  

Examples of such systems include the growth of GaAs on Si and growth of metamorphic 

buffers such as InGaAs, AlInAs and AlGaAsSb on GaAs and the growth of AlInSb 

metamorphic buffers on GaSb substrates.1,2 The quality of growth of mismatched 

materials is governed by the degree of the mismatch and the thickness of the epi-layer. 

During the initial stages of growth, the mismatched epi-layer tetragonally distorts itself to 

fit on a smaller lattice. However, with the introduction of mismatch, the epilayer is 

limited to a critical thickness, beyond which the material relieves strain energy through 

misfit dislocations and often threading dislocations.3 These threading dislocations are 

highly unfavourable to the devices. In particular, vertically propagating threading 

dislocations are highly detrimental to device performance and in materials with defect 

densities > 105/cm2, excessive carrier loss is caused through non-radiative 

recombination.4 To overcome this problem, we propose the growth of mismatched 

materials that can relieve strain through an alternate mechanism – a periodic array of 90° 
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misfit dislocations at the epi-substrate interface.5  We explore the growth of bulk layers 

of GaSb grown on GaAs substrates that relieve strain by the special method proposed 

above.  While we have been able to demonstrate certain material systems that can 

effectively relieve strain through the generation of interfacial periodic 90° misfit 

dislocation array, the parameters of growth are highly critical to the formation of such 

arrays and it is only in a small window that the material nucleates as desired.  

 

          In these previous demonstrations, both 90 ° and 60 ° misfit dislocations were 

present.6  While the predominant strain relief mechanism was believed to be the 90° 

misfits, the minority 60 ° misfits were shown to cause threading dislocations in the GaSb. 

However, it has been established that there exist 60° misfits as well in the material that 

result from the interaction of the {111} planes of the coalescing islands and also that 

these exist at the boundaries of the islands. The presence of these 60° misfits is highly 

detrimental to the fabrication of devices, due to the fact they can use the (111) plane as 

the glide plane to propagate threading dislocations. The source of the 60 ° misfits is still 

unclear but attributed to the following aspects: a) island coalescence, b) growth 

temperature, and c) the degree of the material mismatch. Firstly, the island coalescence 

process, in which the {111} planes of adjacent islands merge, has been shown to cause 

60° misfits. It is obvious that we can find a strong correlation between island coalescence 

and the location of the 60 ° misfits.  As for the growth temperature, researchers indicated 

that there is a strong factor in determining which type of misfit is produced, with GaSb 

grown at ~ 520 ºC favoring 90 ˚ misfits and 560 ºC favoring 60 ˚ misfits.7,8  However, 

560 °C may be too close to the melting temperature. Finally, the experimental results 
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have shown that the lattice mismatch has also been shown to be of critical importance in 

the formation of 90 ˚ misfits.  Low strain systems (< 2 %) have resulted in 60 ˚ misfits, 

moderate strain (3 - 4 %) systems in mixed 90 ˚ and 60 ˚ misfits, and high strain (> 6 %) 

systems in pure 90 ˚ misfits.9 

 

          According to our research work, the formation of 90 ° rather than 60 ° misfits 

seems to require balancing strain energy with adatom migration and is therefore a 

function of lattice mismatch, Sb overpressure and growth temperature. And if indeed the 

nucleation could be planar then we could grow layers of GaSb with 90° misfit 

dislocations alone, and this would result in defect free epitaxial growth of GaSb on GaAs.  

Therefore, we try to achieve this by using lower growth temperature during the 

deposition of GaSb to reduce the surface mobility, by using a higher growth rate of GaSb 

so as to proceed directly to a planar nucleation and by reducing the As-Sb intermixing to 

provide for a uniform lattice mismatch at the interface.5    

 

          2.1.2 Experimental processes 

          The growth of the GaSb bulk on GaAs is done in a VG 80 MBE reactor. The 

valved crackers are used for the As and the Sb sources. Substrate temperature is 

measured with a pyrometer. Growth is initiated with the deoxidation of the GaAs 

substrate at 600˚C. This is followed by the reduction of the substrate temperature to 

560˚C and the growth of 1000 Å of GaAs to obtain a smooth surface. The surface 

reconstruction is constantly monitored by RHEED pattern and at this point is noted to be 

an expected (2 x 4) pattern indicating an As-rich surface. After completion of the 
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homoepitaxy, the substrate temperature is brought down to 510˚C with a constant As 

overpressure. At this point we close the As valve and the GaAs surface starts losing the 

surface As. This is confirmed by RHEED pattern that switches to a (4 x 2) Ga-rich 

surface.  Once the (4 x 2) reconstruction is confirmed, Sb is introduced and soaked by 

opening the Sb valved cracker. The RHEED pattern shows traces of a clear 1 x 3 pattern 

indicating that a thin film of GaSb has formed on the surface. After that, we start the 

growth of GaSb at a growth rate of 0.6 ML/sec. The choice of a fast growth rate is to 

prevent the formation of islands and nucleate a planar 2-dimensional material. The 

RHEED pattern is unclear for the first three monolayers (MLs) and then switches over to 

a very clean 1 x 3 pattern. We find that the films grown extremely thin such as 3 – 9 MLs 

appear to be planar from the RHEED pattern, however as they were cooled to room 

temperature (with Sb overpressure till 300˚C), there is a severe reorganization of the 

surface between 510 ˚C and 400˚C and ultimately the surface RHEED pattern clearly 

shows chevrons confirming the presence {111} planes from islands on the surface.  

 

          2.1.3 TEM characterization techniques 

 

            2.1.3.1 Introduction 

Transmission electron microscopy (TEM) is perhaps the most powerful analytical 

tool available to material analysis. It has the ability to give us information about the 

microstructure, crystallography, and chemistry on a fine scale and sensitivity. This 

section presents a short review of the instrument, imaging modes and analytical 

procedures in conventional transmission electron microscopy. 
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For this work, TEM is performed on JOEL 2010 and JOEL 2010F operated at 200 

kV using a thermionic lanthanum hexaboride (LaB6) source. The JEOL 2010 is a high 

resolution TEM with a spatial resolution of 0.194 nm. This instrument has a high 

brightness electron source, digital image recording, a computer-controlled sample 

goniometer, and a geometrically optimized x-ray detector. 

 

Figure 2.1 is the ray diagram for a TEM. Briefly, a TEM operates by exciting 

electrons from a source, where the electrons are focused and collimated along the optic 

axis of the microscope and passed through a thin specimen (normally less than 1 µm). 

The transmitted electrons are then used to form an image, diffraction pattern, or chemical 

spectrum of the specimen. 

 

The imaging system of a TEM consists of at least three lenses, as shown in Figure 

2.1, the objective lens, the intermediate lens and the projector lens. The objective lens is 

the electromagnetic lens that is responsible for focusing the electrons after they passed 

through the specimen. The intermediate lens can magnify the first intermediate image, 

which is formed just in front of this lens, or the first diffraction pattern, which is formed 

in the focal plane of the objective lens, by decreasing the excitation. The projector lens is 

used predominately to control the final magnification of the image or diffraction pattern 

on the viewing screen. 
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Figure 2.1: The ray diagram for a TEM in (a) the bright-field mode and (b) selected-area electron 
diffraction (SAED) mode.10 
 

 

           2.1.3.2 Imaging modes 

The bright-field mode (BF) with a centered objective diaphragm is the typical 

TEM mode, as shown in Figure 2.1 (a), by selecting the primary beam and a cone of 

scattered electron. The dynamical theory of electron diffraction indicates that bright-field 

images will show the dependence of primary beam intensity on specimen thickness and 

tilt resulting in thickness fringes and bend contours.11  

 

Dark-field (DF) images can be generated by tilting the illuminating beam so that 

the spot of the primary beam is intercepted by the objective diaphragm and only scattered 
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electrons pass through the diaphragm.11 If we select Bragg reflections, the contrast of 

dislocations and other crystal defects can be improved. 

 

           2.1.3.3 Electron diffraction modes 

Electron diffraction pattern can be used to extract additional information and 

obtain a better understanding of electron scattering in crystals. The first diffraction 

pattern in the focal plane of the objective lens can be imaged onto the screen either by 

exciting an additional diffraction lens or by reducing the strength of the intermediate lens. 

By inserting a selector diaphragm at the first image, the specimen area contributing to the 

diffraction pattern can be limited, i.e. selected area electron diffraction (SAED). 

Normally, a diffraction pattern consists of the primary beam of small aperture, the Bragg 

diffraction spots. 

 

           2.1.3.4 STEM modes 

Unlike the conventional transmission mode of a TEM, where the whole imaged 

specimen area is illuminated simultaneously, the specimen is scanned in a raster point-to-

point with a small electron probe in the scanning transmission mode.10 The schematic of 

STEM system is shown in Figure 2.2.  
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Figure 2.2: The schematic of STEM system. 10 
 

The virtual source of a field-emission gun is demagnified by an objective lens to 

an electron probe of about 0.1 – 0.2 nm.10 A spectrometer is used to create the electron 

energy-loss spectroscopy (EELS) of the transmitted electrons. Simultaneously, we can 

also collect the signals related to unscattered, inelastically scattered and elastically 

scattered electrons. 

 

By recording the ratio signal of elastically and inelastically scattetred electrons, 

the STEM can optimize the contrast for imaging single atoms.11 Such a ratio signal can 

also be used to generated Z-ratio contrast image. 
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           2.1.3.5 High-resolution TEM images 

When the information about the lattice structure, i.e., the primary and the Bragg 

reflected beam, pass through the objective diaphragm and that the contrast is not 

destroyed by insufficient spatial and temporal coherence, the crystal lattice planes can be 

imaged and resolved.12 The imaging of lattice planes only requires coherent superposition 

of the primary beam and a reflected beam in the image plane. 

 

For the imaging of crystal structure, it is necessary to ensure that as many Bragg 

reflections as possible contribute to the image. The ideal image will be a projection of 

atomic rows, which appear as black dots when the irradiation is exactly parallel to a low-

indexed zone axis.10,13,14 

 

           2.1.3.6 Burgers vectors 

The Burgers vector of a dislocation is a crystal vector, specified by Miller indices, 

that quantifies the difference between the distorted lattice around the dislocation and the 

perfect lattice. Meanwhile, the Burgers vector denotes the direction and magnitude of the 

atomic displacement that occurs when a dislocation moves. There are two primary types 

of dislocations: edge dislocations and screw dislocations. Mixed dislocations are 

intermediate between these. 

In a two-dimensional primitive square lattice, the Burgers vector of a dislocation 

can be determined as follows: 
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        1) Draw a closed circuit that encloses the dislocation from lattice to lattice point, 

shown in Figure 2.3 (a);  

        2) Draw exactly the same chain of base vectors in a perfect reference lattice, shown 

in Figure 2.3 (b);  

        3) The special vector needed for closing the circuit in the reference crystal is by 

definition the Burgers vector b. shown in Figure 2.3 (b). 

 

 

 

 

 

 

 

 

Figure 2.3: Schematic of determining the Burgers vector for an edge-dislocation. 
 

           2.1.3.7 Sample preparation 

 Transmission electron microscopy (TEM) specimens are prepared by 

mechanically polishing samples using diamond-lapping films ranged from 0.1 µm – 30 

µm. The thickness of polished samples should be, usually, less than 10 µm. The samples 

were then ion-milled (Gatan model 600 dual ion mill) with Ar as the incident species at 

an angle of 10° – 12° to the sample surface until electron transparency. This process 

occurred at 4.0 - 4.5 kV voltage and ~ 1 mA of current. The ion-milled process of cross 

(a) (b)
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sectional TEM (XTEM) samples occurred at both sides, while plan-view TEM images 

are ion-milled only from substrate side. 

 

          2.1.4 Results and discussions 

          The resulting bulk materials and misfit array have been analyzed carefully using 

low-resolution and high-resolution TEM images, shown in Figure 2.4. Figure 2.4 (a) 

shows a cross-sectional TEM (XTEM) image of a strain-relaxed, defect-free 100nm 

GaSb buffer grown on GaAs substrate and the GaSb/GaAs interface along the [1-10] 

direction.  

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.4: Cross sectional TEM image of 100 nm of GaSb on GaAs. Part a) shows a highly periodic 
array of misfit dislocations at the interface between the GaSb epilayer and the GaAs substrate.  Part 
b) shows its selected area electron diffraction (SAED) pattern. 

a) GaSb bulk on GaAs

GaSb

GaAs

[001]

[110]- 

50 nm

b) SAED pattern

- 
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The misfits are arranged in highly periodic array. There are no misfit dislocations 

in any other part of the image except the GaSb/GaAs interface and there is a complete 

absence of any features that would suggest a growth mode involving islands. More 

specifically we do not see the presence of misfit dislocations in the material at any other 

location except for the interface that would be associated with the coalescence of large 

islands. This is further verified by the complete absence of threading dislocations in this 

section of the material. Selected area electron diffraction (SAED) pattern has been taken 

along the GaSb/GaAs interface, shown in Figure 2.4 (b), which indicates that the two sets 

of cubic diffraction spots are initially overlapped, and gradually separated with the 

increase of the plane indexes. The higher order spots are split into two spots, 

corresponding to each of the two materials. It reveals that GaSb epilayer has the same 

crystal growth orientation as that of GaAs layer, and the GaSb deposit is virtually fully 

relaxed in respect to the GaAs substrate. 

 

          Careful examination of the atomic lattice surrounding the interfacial misfits using 

cross-sectional HRTEM image, as shown in Figure 2.5 (a), can identify these misfits. 

Using the Burger’s circuit theory around a misfit dislocation, shown in Figure 2.5(b), 

indicates that the Burger’s vector, i.e., 110
2
a − 
  

, lies along the interface and identifies this 

misfit as 90° pure edge type. The misfit separation, measured to be 5.6 nm, corresponds 

to exactly 13 GaSb lattice sites grown on 14 GaAs lattice sites. The identical misfit arrays 

have been observed along both [110] and [1-10] directions, which shows that there is a 

2D 90° pure edge dislocation array at the compressive GaSb/GaAs interface. The 

schematic Figure 2.5 (c) shows that the GaAs to GaSb ratio is precisely 14:13. It can be 
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verified with very simple arithmetic that the lattice space occupied by 14 atoms of GaAs 

along the [110] direction is about the same as that occupied by 13 atomic spaces of GaSb. 

This is shown as follows: 

For GaAs, (14 x d110) = 14 x (5.65/1.414) = 55.94 Å 

For GaSb, (13 x d110) = 13 x (6.09/1.414) = 55.99 Å 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5: (a) Cross sectional high resolution TEM (HRTEM) image of 100 nm of GaSb epilayer 
grown on GaAs substrate, (b) Schematic of determining Burger’s vector and (c) Schematic of the 
atomic arrangement indicating the IMF interface15. 
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          We have attempted further studies of the interface growth mode using AFM images 

and RHEED pattern. As noted above, the RHEED pattern transforms from a 4 x 2 to a 1 x 

3 reconstruction within the first 3 MLs of GaSb deposition on GaAs as the Ga-terminated 

surface yields to the Sb-terminated surface. However, if the growth is terminated and the 

substrate temperature reduced after only a few monolayers, i.e. at 3 or 9 MLs, the 1 x 3 

reconstruction transforms into a spotty RHEED pattern indicating an island ensemble 

forms. Figure 2.6 shows AFM images of the growth of GaSb on GaAs after (a) 3 ML 

deposition and (b) 9 ML deposition. As mentioned before, both these runs had planar 

RHEED signatures to begin with and during the cooling process proceeded to give a 

spotty RHEED pattern. There is a clear elongation of the islands along the (1-10) 

direction. The 3 ML deposition results in slightly elongated [1-10] islands that are 6 nm 

in height, 120 nm length, and 80 nm width with fairly uniform size distribution. The 9 

ML deposition leads to larger highly elongated islands with a large variation in island 

size. Average dimensions are 10 nm in height, 450 nm length, and 120 nm width.  

 

           In order to verify if the formation of IMF occurs in both [110] and [1-10] 

directions, we analyze the interface features of the growth mode using cross-sectional 

TEM (XTEM) images and high-resolution scanning electron microscope (HRSEM) 

images. Figure 2.7 (a) and (b) show the cross-sectional TEM images after 9 ML GaSb 

deposition on GaAs surface, cleaved along the [110] and [1-10] directions, respectively. 

These images clearly show the presence of periodic interfacial misfit (IMF) dislocation 

array at the compressive GaSb/GaAs interfaces along both [110] and [1-10] directions. 

The dislocation separation is measured to be ~ 50-60 Å. 9 ML GaSb deposition leads to 
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larger elongation along [1-10] direction than [110] direction, which have the similar 

results as AFM images. The average heights are ~ 10 nm in both directions. No threading 

dislocations are observed in these particular islands or in numerous other islands. 

Defective islands are also visible on this surface and have no misfit dislocations at the 

interface.  Therefore, it indicates the importance of the misfits in enabling this high 

quality growth mode.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6: AFM images of the growth of GaSb on GaAs after (a) 3 ML deposition and (b) 9 ML 
deposition, showing formation of islands that are elongated along the [1-10] direction.  
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Figure 2.7: The growth of GaSb on GaAs after 9 ML deposition (a) Cross sectional TEM along [110], 
(b) Cross sectional TEM along [1-10], and (c) plan view HRSEM, showing formation of planar 
growth of islands that are elongated along the [1-10] direction. 
 

          Figure 2.7 (c) shows a plan-view SEM image of GaSb surface after 9 ML GaSb 

deposition on (100) GaAs surface. It also indicates that there is larger elongation along 

[1-10] direction than [110] direction. The plan-view SEM image shows that these GaSb 

islands have even merged over 1 µm in length. The image contrast of the merged GaSb is 
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exactly the same, which indicates the growth of GaSb epilayer exists the same crystal 

plan, i.e. planar growth. 

 

          2.1.5 Summary 

 

         In conclusion we have demonstrated that a periodic array of 90° misfit dislocations 

can be formed under specific growth parameters to fully relieve strain energy for growing 

bulk layers of threading dislocation free GaSb on GaAs. Furthermore, we see that under 

the growth conditions the growth of the GaSb is highly planar and proceeds directly to a 

2D growth mode. We conclude that island formation that can be seen during the analysis 

of extremely thin films  (~ 10 MLs) of GaSb on GaAs by AFM, SEM and TEM is due to 

surface reorganization during the sample cooling. 
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      2.2 Formation of tensile GaAs/GaSb IMF interface 

 

          2.2.1 Introduction 

Exploiting lattice-mismatched GaSb/GaAs and GaAs/GaSb heterojunctions are of 

considerable interest for III-Sb electronic and optoelectronic devices on a GaAs substrate 

such as mid-wave infrared lasers, detectors and transistors.16,17,18 The ability to embed 

GaSb layers in an GaAs/AlGaAs could lead to the development of a new class of mid 

infrared vertical cavity lasers and the growth of GaSb on GaAs substrates would help 

realize detectors on transparent and semi-insulating GaAs substrates. The development of 

mismatched growth techniques such as metamorphic buffers have helped in the growth of 

GaSb/GaAs heterojunctions, with the dislocation densities reduced sufficiently to realize 

lasers, detectors and transistors.1,19 The GaAs/GaSb interface, which is tensile with a 

7.78% mismatch, leads to threading dislocations and also material defects such as 

microcracks that are associated with tensile strain. If we can realize GaAs grown on 

GaSb with low defect density, it may be useful for embedded GaSb layers in a GaAs 

matrix. The use of IMF dislocation array has been shown to reduce the threading 

dislocations in the growth of GaSb on GaAs significantly.20,21 The use of the tensile IMF 

growth mode could help realize high quality GaAs growth on GaSb. In this section we 

investigate the tensile interfacial features in the growth of GaAs on GaSb.  

 

 The growth of GaSb on GaAs through an interfacial array of misfit dislocations is 

due to the antimony atoms forming a 2-dimensional reconstruction on the GaAs surface.5 

Before the Sb soak is initiated, the As valve is closed allowing As adatoms to be 
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desorbed leaving a Ga-rich surface. Once the GaSb growth begins, the RHEED pattern 

resembles a 1×3 indicating that a thin film of GaSb forms on the surface. The subsequent 

growth of GaSb on GaAs results in IMF array which is a completely relaxed growth 

mode with low defect density. This effect occurs due to the fact that the Sb atom forms 

one bond with the underlying Ga atoms but does not react with the GaAs substrate to 

displace the As atoms. This effect has been noted by Losurdo et. al.22 where they 

document a positive enthalpy of reaction for the anion exchange reaction (2GaAs + Sb2 

→ 2GaSb +As2, ∆H° = 47.6 kJ/mol) and a reaction with an isoelectronic compound 

formation (GaAs + Sb2 → GaSb +AsSb, ∆H° = 13.7 kJ/mol). However, no Sb soak 

before GaSb growth yield a spotty RHEED pattern with continued deposition that 

indicates a defective growth mode. It indicates that the Sb soak process is very important 

to form interfacial misfit array at the GaSb/GaAs interface. 

 

When a similar reconstruction is tried with the growth of GaAs on GaSb, the As2 

specie reacts with the GaSb surface very aggressively due to a negative enthalpy of 

reaction for both the anion exchange reaction and the isoelectronic AsSb compound 

formation reaction (GaSb + As2 → 2GaAs +Sb2, ∆H° = -47.6 kJ/mol; GaSb + As2 → 

GaAs +AsSb, ∆H° = -33.9 kJ/mol).22,23 This makes it very difficult to establish a 

reconstructed As layer on the GaSb surface. The growth of GaAs on GaSb also results in 

the formation of interfacial features such as highly faceted nano-scaled pits.24 

Furthermore TEM analysis of these pits indicates that while some pits are formed during 

a pregrowth As soak of the GaSb surface, this etch results in a series of voids at the 

GaAs/GaSb interface. And the following deposition of GaAs nucleates on the unetched 
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GaSb surface and proceeds to coalesce over the etched voids. With the decreasing of the 

arsenic soak time prior to the growth of GaAs layer, the reaction between the As2 specie 

and GaSb surface is suppressed, which leads to high quality GaAs epilayer. The purpose 

of this study is to quantify the interface quality with various soak times. 

 

          2.2.2 Experimental processes 

 

 The samples used in this interfacial analysis are grown on a V80H reactor with 

valved crackers for both the As and the Sb source. The crackers are operated at 900°C 

and 950°C respectively so that the molecular species from the sources are As2 and Sb2. 

The growth is initiated on a GaSb substrate with a thermal oxide desorption process. This 

is followed by a GaSb smoothing layer grown at 510 ºC at a growth rate of 0.5 µm/hr 

with an Ga/Sb flux ratio of 1:10. The RHEED pattern is used to verify a 1 x 3 pattern 

indicative of extremely smooth GaSb. At this point the growth is paused and excess Sb is 

allowed to desorb from the GaSb surface. The surface is then subjected to an As2 

overpressure with an approximate beam equivalent pressure of1 x 10-6 mTorr. This 

overpressure is maintained for 0 sec, 10 sec or 60 sec, respectively.  Before the As 

growth is initiated, the Sb valve is closed allowing Sb atoms to desorb leaving a Ga-rich 

surface. This process, which is confirmed by RHEED indicating Ga-rich (4×2) pattern, 

reduces Sb/As intermixing. Following the soak, the GaAs growth is initiated without any 

changes in the growth temperature resulting in a smoothing of the surface with continued 

growth. 
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          2.2.3 Results and discussions 

Figure 2.8 shows the SEM images of the GaSb surface after 60 sec of exposure to 

the As overpressure ((a) plan-view, (b) side-view). The pits vary in both size and shape 

with average dimensions ~ 25 nm wide and 50 - 80 nm long and 10 - 70 nm deep, and a 

pit density of ~1 x 109/cm2. There appears to be no significant directionality to the pits. 

The side view (b) shows the image of the (110) cleaved facet with a 30 nm wide pit 

intercepted by the cleaving plane. While the resolution available using the HR-SEM is 

not sufficient to resolve the faceting in the pits, this study clearly establishes the pit 

formation as a result of the reaction of the As2 with the GaSb substrate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8: HRSEM images of the etched GaSb surface after 60 s As2 soak (a) plan-view, (b) side-
view. 
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          Figures 2.9 shows TEM images that elucidate the evolution of the GaAs 

overgrowth on the etched GaSb surface.  Figure 2.9 (a) shows the AFM image after 10 Å 

(~3 MLs) of GaAs deposition on a GaSb surface exposed to As2 for 60 sec. The AFM 

image shows surface remnants of the etched pits as dark areas and indicates only partial 

GaAs coalescence over the pit after the 3 ML deposition. The image shows a pit density 

of 1 x 109/cm2, which is consistent with that observed in Fig. 2.8 (a) using HRSEM. 

Figure 2.9 (b) shows, a cross-section TEM image of the same sample. The GaAs 

nucleates on the unetched GaSb surface and then proceeds to coalesce over the pits 

forming encapsulated nano-scale voids at the interface.  There is no indication from this 

image that any GaAs growth occurs inside the etch-pits.  

 

          Figure 2.10 shows a TEM analysis of a completely coalesced GaAs layer, 100 nm 

thick grown on GaSb. Figure 2.10 (a) shows the GaAs/GaSb interface featuring several 

nano-scaled voids. The voids have dimensions consistent with those observed in SEM 

analysis in Fig. 2.8 (a). This image shows the different shapes of the voids formed at the 

GaAs/GaSb interface. The smaller voids are v-shaped defined by two enclosing {111} 

planes on each side. The larger voids have a truncated v-shape enclosed by {111} planes 

on the sides and a {100} plane in the bottom. The formation of these shapes is attributed 

to an anisotropic etch rate along the (111) and the (100) directions. The image also shows 

a significant threading dislocation density in the GaAs layer.  Figure 2.10 (b) shows a 

high-resolution image of one of the v-shaped triangular voids. The image indicates the 

presence of amorphous material in the interior of the void, which appears as a thick 

coating on the {111} planes and does not produce any TEM diffraction pattern. The 
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amorphous material could either be excess Sb as a result of the anion exchange reaction 

or the isoelectronic AsSb compound as a result of the alternate reaction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.9:  10 Å GaAs grown on GaSb surface, (a) AFM image, (b) Cross-sectional TEM image 
showing partial GaAs coalescence. 
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Figure 2.10: (a) Cross-sectional TEM image of GaAs/GaSb interface featuring nano-voids, (b) 
HRTEM image of a void at the GaAs/GaSb interface. 
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on the GaSb surfaces under different As soak times (60 sec, 10 sec and 0 sec, 

respectively) prior to the growth of GaAs layer. At 60 s, as Figure 2.11 (a), the nano-scale 

etch-pits form at the GaAs/GaSb interface. These pits vary in both size and shape with 

average dimensions ~ 25 nm wide and 10 - 40 nm high. This image also shows a 

significant threading dislocation density in the GaAs epilayer (>109/cm2). Using a 10 s 

As2 soak time, the tensile GaAs/GaSb IMF array of moderate quality forms, shown in 

Figure 2.11 (b). Some etch-pits also appear along the GaAs/GaSb interface (not shown).  

The density of threading dislocations in GaAs epilayer decreases 2-3 orders of magnitude 

compared to Figure 2.11 (a), but remains high (107 /cm2). If no As soak is used on the 

GaSb surface prior to the growth of GaAs layer, only tensile GaAs/GaSb IMF array 

forms at the interface, and produce good quality GaAs epilayer, as shown in Figure 2.11 

(c). The limited cross-sectional area sampled by the TEM image indicates no threading 

dislocations, dark-line defects, or misfit dislocation except the tensile GaAs/GaSb 

interface. The bright spots in Figure 2.11 (c) correspond to misfit dislocation sites.11 The 

misfits are arranged in a highly periodic array and localized at the tensile GaAs/GaSb 

interface. There is a strong indication that the interfacial misfit dislocation array can be 

realized if strong reaction between the As2 and GaSb surface is suppressed. While the 

single As atomic layer seems to form on the Ga atomic layer by ambient As overpressure, 

it appears to lack long-range uniformity.  This leads to a higher defect density than what 

can be realized in the compressive growth mode as indicated in plan-view TEM analysis 

shown below. 
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Figure 2.11: Cross-sectional TEM images of the tensile GaAs/GaSb interface, GaAs grown on GaSb 
after GaSb surface (a) 60 s, (b) 10 s, and (c) 0 s As2 soak. 
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          Careful examination of the atomic lattice surrounding the interfacial misfits using 

cross sectional HRTEM image, as shown in Figure 2.12 (a), can identify these misfits. 

Figure 2.12 (b) shows the atomic arrangement of the tensile GaAs/GaSb interface 

indicating the IMF. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.12: (a) HRTEM image of the tensile GaAs/GaSb interface, featuring 90° IMF array. (b) 
Schematic of the atomic arrangement indicating the IMF interface. 
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Using the Burger’s circuit theory around a misfit dislocation shows that the 

Burger’s vector, i.e., 110
2
a − 
  

, lies along the interface and identifies this misfit as 90° 

pure edge type. The misfit separation, measured to be 5.6 nm, corresponds to exactly 14 

GaAs lattice sites grown on 13 GaSb lattice sites. The identical misfit arrays have been 

observed along both [110] and [1-10] directions, which shows that there is a 2D 90° pure 

edge dislocation array at the tensile GaAs/GaSb interface. 

 

 

          2.2.4 Summary 

            In conclusion, we have demonstrated that a periodic 90° misfit dislocation array 

can be formed under optimized growth conditions to relieve the high strain energy in the 

tensile lattice mismatch materials such as GaAs on GaSb once the reaction of the As2 

with GaSb surface is suppressed. The misfit separation, measured to be 5.6 nm, 

corresponds to exactly 14 GaAs lattice sites grown on 13 GaSb lattice sites.  The IMF 

formation requires the As (001) atomic layer to self-assemble and bond to the underlying 

Ga (001) atomic layer.  Bulk GaAs material with low dislocation density and strain-

relieved properties is generated on GaSb layers by these growth conditions.   Control of 

both tensile (GaAs on GaSb) and compressive (GaSb on GaAs) can lead to new devices 

based upon the novel integration schemes. 
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      2.3 Defect analysis and measurement by TEM 

 

In order to verify the quality of GaSb epilayer grown on GaAs, we first use the 

KOH etch-pit method to measure the density of dislocations.  GaSb epilayers were grown 

on GaAs at different growth temperatures with GaSb thickness of 200nm, 1100nm and 

3100nm, respectively, for each growth temperature. These wafers were then etched in 

20% KOH solution for 10 minutes and roughly 100nm of the epi-layer was removed in 

each case. The measured results of etch-pit density are shown in Table 2.1, which clearly 

shows that the optimal growth temperature is ~510°C. At this temperature, the GaSb 

epilayer has the lowest etch-pit density compared to the GaSb epilayers grown at other 

growth temperatures.   

 
 
 
Table 2.1: Defect density of different thickness of GaSb epilayers grown on GaAs at various growth 
temperatures. 
 
 
 

           GaSb thickness 

Growth 
Temperature 

 

100 nm 

 

1000 nm 

 

3000 nm 

  (/cm2) (/cm2) (/cm2) 

480 °C 5 × 10 9 2 × 10 9 2 × 10 9 

510 °C 8.5 × 10 5 7.4 × 10 5 5 × 10 5 

540 °C 9 × 10 7 3 × 10 7 2.8 × 10 7 
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      2.3.1 Compressive IMF GaSb/GaAs interface 

As we pointed out in section 2.1, the growth parameters are very critical to the 

formation of IMF arrays and it is only in a small window that the material nucleates as 

desired. It is very important for the formation of 90° rather than 60 ° misfits to require 

balancing strain energy with adatom migration, thus the growth process has related to 

lattice mismatch, Sb overpressure and growth temperature. Under optimized conditions, 

the ideal compressive GaSb/GaAs IMF array can be formed, as shown in Figure 2.13 (a).  

We do not see the presence of misfit dislocations in the GaSb bulk layer at any other 

location except the interface. Obviously, there are no threading dislocations propagating 

to the epilayers along the growth direction. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.13:  Cross-sectional TEM images of GaSb/GaAs interface, (a) IMF growth mode, (b) non-
IMF growth mode. 
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We grow the same epi-structure at the same temperature, however, no Sb soak 

before GaSb growth with continued deposition yields a defective growth mode. The large 

mismatch between GaSb and GaAs is relieved by lots of misfit dislocations and threading 

dislocations, shown in Figure 2.13 (b). Thus, a non-IMF epilayer instead of an IMF 

epilayer forms at the compressive GaSb/GaAs interface. This non-IMF growth structure 

indicates that the Sb soak process is very important to form an interfacial misfit array at 

the compressive GaSb/GaAs interface. 

 

          Cross sectional TEM images have shown that IMF array do exist in the 

GaSb/GaAs interface. However, we know that IMFs only appear at either [110] or [1-10] 

direction, respectively. In order to directly demonstrate the formation of IMF at the 

interface, observing plan-view TEM images is only way available. We grew very thin (54 

ML) GaSb bulk layer on GaAs substrate under optimized conditions so that it is 

convenient to be analyzed by TEM. Figure 2.14 shows a [001] bright field plan-view 

TEM image of 54 ML GaSb on GaAs grown at 510 °C where one can observe the misfit 

dislocations along both (110) and (1-10) simultaneously. It indicates that the IMF array 

exists obviously at the compressive GaSb/GaAs interface. If the misfit dislocation array 

consists of purely edge dislocations, the network is elastically stable since the 

dislocations have no tendency to attract or to repel each other.6 Therefore, it is expected 

that there should be no threading dislocations in the bulk layer once the interface exists 

only a perfect 90° dislocation net. To further analyze the IMF array and measure the 

misfit separation, we take plan-view TEM images along diffraction vectors both g(220) 

and g(2-20) at the same sample. 
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Figure 2.14: Plan-view TEM images of 54 ML GaSb on GaAs grown at 510 °C, [001] bright field 
image showing the misfit dislocations along both [110] and [1-10] directions, indicating IMF array at 
the compressive GaSb/GaAs interface. 
 

 

          Figure 2.15 (a) and (b) show (220) and (2-20) plan-view TEM image of the same 

sample shown in Figure 2.14, respectively. It reveals an array of Moiré fringes, which 

indicates that the IMF array consists mainly of 90° misfit dislocations at the compressive 

GaSb/GaAs interface along both [110] and [1-10] directions, which agrees with the 

results of cross-sectional TEM images, shown in Figure 2.7.Since the Moiré pattern can 

be used to locate and give information on dislocations which are present in one 

material.11 When a 60° misfit dislocation segment “cut” through the [110] 90° misfit 

dislocation array, it can cause them to shift by half a period. Furthermore, the 60° 

 

[110] 

[1-10]
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dislocations can easily glide on the close packed {111} planes to form threading 

segments in the GaSb bulk epilayer. As reported by Zhu and Carter,25 this type of shift 

results from the interaction with a 60° dislocation. From plan-view TEM images of 

Figure 2.15, obviously, there are no half-period-shift of 90° dislocations at both 

directions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.15: Plan-view TEM images of 54 ML GaSb grown on GaAs, a) (220) b) (2-20) images 
indicating IMF array at the compressive GaSb/GaAs interface. 
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 The theoretical parallel Moiré fringes spacing for an epitaxial system, Dm, is 

given by the general equation:11 

1

1
m

ddD
d d

=
−

 

where d and d1 are the interplanar spacings of parallel sets of planes in the substrate and 

the epilayer, respectively. 

 

 Assuming the lattice constant of GaSb aGaSb = 6.096 Å, and the lattice constant of 

GaAs aGaAs = 5.653 Å, the Moiré fringes spacing Dm for diffraction vector g = {220} 

reflections is 2.75 nm. While the measured value of ~ 2.83 nm is good agreement with 

the theoretical spacing, which indicates that the GaSb epilayer is almost fully relaxed. 

 

          Figure 2.16 shows the bright field plan-view TEM images of 5 µm GaSb grown on 

GaAs by IMF and non-IMF growth modes. Figure 2.16 (a) shows the center surface area 

with no defects. Figure 2.16 (b) features visible defects at the surface.  This image, 

captured from an edge region where growth conditions are perhaps not optimum. Based 

on scanning different areas of the center of the wafer we estimate our defect density to be 

~ 5.4 ×105 defects/cm2, which has similar results as Table 2.1. However, the dislocation 

density for the non-IMF growth sample with same epi-structure, shown in Figure 2.16 

(c), is up to 4.8 × 109 /cm2. It demonstrates absolutely that the IMF array can reduce 

greatly the propagation of threading dislocation to the epilayer, and thus improving the 

quality of bulk materials. 
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Figure 2.16: Plan-view TEM images of 5 µm GaSb grown on GaAs, (a) IMF growth mode with 
perfect surface, (b) IMF growth mode with few dislocations, (c) non-IMF growth mode. 
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      2.3.2 Tensile IMF GaAs/GaSb interface 

 Figure 2.17 shows plan-view TEM images of the GaAs surface after GaSb surface 

(a) 60 s, (b) 0 s As2 soak, respectively, prior to the growth of GaAs epilayer. These 

images indicate threading dislocations that appear as dark, squiggly lines on the shiny 

GaAs surface and enable the density of threading dislocations to be calculated.  The 60 

sec As2 soak condition yields a threading dislocation density ~ 1×109 defects/cm2.  With 

no As2 soak, the density of threading dislocation reduces ~ 3 ×106 defects/cm2. This result 

is consistent with those observed in Figure 2.11 with cross sectional TEM analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.17: Plan-view TEM images of the GaAs surface grown on GaSb after GaSb surface (a) 60 s, 
and (b) 0 s As2 soak, indicating the defect density. 26 
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          Compared to the formation of compressive IMF array, the tensile IMF array seems 

to produce more misfit dislocations. As what pointed out at previous sections, the Sb 

atoms have good surface mobility, thus, the single Sb atomic layer can easily form on the 

Ga atomic layer. While the single As atomic layer seems to form on the Ga atomic layer 

by ambient As overpressure, it appears to lack long-range uniformity. It is the reason why 

the tensile IMF array has higher density of misfit dislocation than that of compressive 

IMF array as indicated in plan-view TEM analysis. 

 

However, to realize high performance electronic devices using the tensile IMF, 

the defect density of the GaAs on GaSb needs to be reduced <105/cm2.  To achieve the 

higher quality GaAs on GaSb, a non-reactive atom can be used either as a surfactant or 

catalyst.  A thin buffer of AlSb, with greater bond strength compared to GaSb, may also 

reduce the As/surface reactivity enabling long-range uniform IMF formation. 
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      2.4 The application of IMF interfaces 

 

We have developed a hybrid, monolithic growth method to the mid-wave infrared 

(MWIR) emitters to apply both III-Sb bandgap for MWIR access and the advanced 

device design and processing advantages of the GaAs matrix in a monolithic vertical-

cavity structure. We apply a 2-D array of 90˚ IMF, which produces strain-free, low-defect 

Sb-bearing bulk layers on GaAs.  The large strain energy due to lattice mismatch is 

relieved immediately at the GaSb/GaAs interface. Meanwhile, we have also extended the 

IMF growth mode to tensile conditions that allows high quality bulk GaAs to be formed 

on GaSb.  The ability to realize IMF arrays at both compressive and tensile interfaces, 

along with the buffer-free quality of the growth mode, allows a GaSb active layer to be 

monolithically embedded in a GaAs matrix.   

 

The vertical cavity light emitting diode (VLED) incorporates a GaSb active 

region embedded within GaAs/AlGaAs DBR layers using both a compressive and tensile 

IMF array interfaces. Figures 2.18 illustrate the schematic of two interfacial misfits array 

in the VLED device grown by MBE method.  It includes a 6.5 period 

GaAs/Al0.92Ga0.08As bottom n-type DBR, five 100 Å GaSb QW separated by 

unintentionally doped Al0.3Ga0.7Sb barriers and Al0.3Ga0.7Sb n-type and p-type cladding 

layers, and a 1.5 period GaAs/Al0.92Ga0.08As top p-type DBR.  The electronic band 

structure surrounding both compressive and tensile interfacial misfit array has been 

modeled and analyzed, which indicates the IMF array presents a barrier to carrier flow at 

the interface due to Fermi level pinning.27 
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Figure 2.18:  Schematic of double-IMF VLED, illustrating an embedded GaSb active region between 
GaAs/AlGaAs layers. 27 
 

 

           Figure 2.19 shows room temperature (RT) continuous-wave (CW) 

electroluminescence (EL) and light-current-voltage (LIV) VLED characteristics. The RT 

EL spectrum of Figure 2.19 (a) shows a center wavelength of 1600 nm as expected from 

the GaSb QWs and spectral full-width at half-maximum (FWHM) of 78 meV at a current 

density of 100 mA/cm2.  The LIV VLED characteristics, as shown in Figure 2.19 (b), 

indicate a maximum output power, I=3.5 µW and an external efficiency, ηex=0.007 %.  

Since this device has not current confinement, the geometry introduces a compulsory 15 

times loss in external efficiency.  We expect marked efficiency improvement (>10%) 

once current confinement is provided and doping/contact design is revised.  
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Figure 2.19:  RT, CW characteristics of the VLED showing (a) EL spectrum centered at 1600 nm, 
and (b) forward bias LIV characteristics. 
 

 

Figure 2.20 shows forward and reverse bias I-V characteristics. The reverse bias 

characteristics demonstrate low reverse bias leakage current densities of 0.01 A/cm2 at -4 

V, 0.1 A/cm2 at -6 V and 2 A/cm2 at –10 V, respectively, indicative of low defect density 

in the material.  The non-optimized forward bias characteristics show a turn-on voltage of 

(a)

 

(b)
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~ 3 V and a differential resistance of ~ 30 Ω at 8 V.  The rather high voltage is due in part 

to a large p-type specific contact resistance of 1x10-5 Ω-cm2 caused by unoptimized 

doping and partially due to a ~1 V drop per IMF.  The voltage drop associated with the 

IMF is confirmed in a controlled study that compares diodes without an IMF, with one 

IMF and two IMFs.  This additional voltage drop at the IMF interface is caused by spikes 

in the bandstructure resulting from Fermi level pinning by the IMF-related dangling 

bonds. 

 

 

 

 

 

 

 

 
 
Figure 2.20:  RT, CW characteristics of the VLED showing the forward and reverse bias I-V 
characteristic curve. 
 

            In summary, a hybrid, yet monolithic GaSb QW-based VCSEL that utilizes 

GaAs/AlAs DBRs for the resonant cavity has the potential to overcome many of the 

material difficulties in extending VCSEL operation into MWIR.  The monolithic and 

bufferless IMF growth technique demonstrated in the VLED may be a precursor to 

realizing such a device once the challenges of current confinement and IMF barriers can 

be solved. 
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Chapter 3 

Formation of Interfacial Misfit Dislocation Arrays  

for AlSb bulk on Si substrate 

 

      3.1 Issues of IMF growth mode on Si substrate  

 

          The monolithic growth of III-V materials on Si offers several desirable features 

such as efficient use of the integrating platform and reduced processing complexity. For 

over two decades, significant research and development efforts have focused on 

monolithic approach through a variety of methods.1-9 The monolithic approach utilizing 

GaAs/AlGaAs has led to room-temperature edge-emitting laser and even vertical cavity 

lasers (VCSELs) on Si (100).2,3 However, mismatch in lattice constant, thermal 

expansion coefficient and process temperature prevents the establishment of a stable and 

repeatable production process. Therefore, monolithic device characteristics have been 

marginal due to micro-cracks and high dislocation density in the GaAs buffer.4 Recently, 

some of the prominent results are using SiGe metamorphic buffers,5,6 and using GaAs 

metamorphic buffers on Si7 that achieve dislocation bending through InAs quantum dot 

based strain fields.8 Although these results are very encouraging, these devices suffer 

from reliability issues related to the growth on metamorphic buffers, GaAs/Si thermal 

mismatch, and high dislocation density in the GaAs buffer.9,10,11 Meanwhile, there may 

be some industry application issues in which the thick buffer may be incompatible with 

the design for actual chip dimension and the manufacturing. 
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 As shown, the IMF array based growth method can be applied to grow highly 

mismatched materials and yield an epilayer with low defect density.12,13 In this chapter, 

we will focus the application of IMF array on the monolithic integration of III-Vs with Si 

substrate using a special AlSb nucleation layer. Use of AlSb circumvents these mismatch 

issues since thermal expansion coefficients are well matched (αSi = 2.05 × 10-6 / K, αAlSb 

= 2.55 × 10-6 / K) 14, the growth temperature is low and the material system 

spontaneously produce period 90º misfit array for strain relief. This growth mode is 

rather different from that of GaAs grown on Si, which mainly forms 60° dislocations and 

results in lots of threading dislocations propagating vertically into the material. The 

growth of AlSb on Si was first explored in the mid-1980s by Van der Ziel and co-

workers. Most of the studies of AlSb on Si reported have been limited to X-ray 

diffraction studies and basic PL characterization.15,16 Thus, the growth mechanisms of the 

highly mismatched epitaxy have not been identified. In this chapter we investigate the 

interfacial features and the mechanism of formation of IMF array in the growth of AlSb 

grown on Si (001) substrate. 

 

     3.2 Anti-phase domains and boundaries 17,18 

 

          Besides the above material issues, a key element for the growth of group III-V 

materials on Si is the preparation of a surface that prevents antiphase domains (APD). 

Antiphase domains are commonly observed in the growth of compound semiconductors 

on elemental semiconductors. The problem is due to the fact that both the diamond cubic 

(Si) and zincblende (eg. AlSb) structures are composed of two interpenetrating face-
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centered cubic (FCC) sublattices. The two sublattices differ from each other only in the 

spatial orientation of the four tetrahedral bonds that connect each atom to its four nearest 

neighbors, which are on the other sub-lattice. 

 

 

 

 

 

 

 

 

Figure 3.1: Two sublattices in Si substrate 17 

 

As shown in Figure 3.1, the atoms with bond orientations indicated as “A” and 

“B” belong to sublattices “A” and “B”, which are occupied by the same atomic species. 

There is no any distinction between the sublattices. In the zinc-blende structure in which 

such as AlSb crystallize, one of the sublattices is occupied by the group III elements (Al), 

and the other by the group V elements (Sb). In a crystal without anti-phase disorder, the 

sublattice arrangement is the same throughout the whole crystal. However, if this 

arrangement changes somewhere inside the crystal, the interface between the domains 

with opposing sublattice arrangement forms a two-dimensional structural defect called 

anti phase boundary (APB) and the domains themselves are called anti-phase domains 

(APD),18 shown in Figure 3.2. 
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Figure 3.2: The antiphase boundary (APB) in III-V materials 

 

Figure 3.2: An anti-phase boundary (APB) in III-V materials. 17 

 

As we know, the (100) plane contains only one of the two FCC sublattices. But 

the real (100) surface contains steps, and if these steps are an odd number of atomic 

layers in height, then the surface is composed of atoms from both sublattices. Thus, when 

III-V materials are grown on such a Si surface, the problem of APBs and APDs will exist. 

Especially, the problem is further accentuated by lack of Si homoepitaxy, which results in 

rougher surfaces. The extensive domain formation is observed in the growth of all III-Vs 

materials (polar) on Si substrate (non-polar). For example, the polar AlSb material is 

grown on the non-polar silicon substrates. When growth of AlSb is initiated on the Si 

substrate, there are regions where aluminum and other regions where antimony nucleate 

first. When the regions coalesce, this difference in nucleation process results in Al-to-Al 

and Sb-to-Sb bonds. The Al-to-Al and Sb-to-Sb provide an excess positive and excess 

negative charge, respectively. These regions, termed anti-phase domains (APDs), 

continue from the growth front into the active regions of the device. This effect is shown 

in Figure 3.3. However, high quality compound semiconductor layers are prevented by 

the presence of the interfaces between the APDs. 
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Figure 3.3: The formation of antiphase boundarys (APBs) in III-V materials on a (100) surface with 
steps. 17 

 

For the typical Si (100) wafer, the most common step height is one atomic layer 

and then the growth of III-V materials such as GaP or GaAs, on (100) Si or Ge substrates 

usually exhibits lots of APBs. Figure 3.4 shows a high resolution AFM image of AlSb 

grown on (100) Si substrate. This image clearly indicates that the APD defects exist on 

the surface of the epilayer. 

 

 

 

 

 

 

 

 

Figure 3.4: The APBs in AlSb on (100) Si substrate 
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 When the steps on a Si(100) surface happen to be an even number of atomic 

layers in height, the two sublattices on the III-V material side are in registry again, thus 

APDs will not appear. Therefore, in order to realize the growth of free APDs, it is very 

important that all steps should be two atoms in height. So far, there are at least three 

methods towards the essentially complete suppression of APDs. Firstly, high temperature 

annealing greatly can improve the initial surface condition problem for APD free growth. 

Sakamoto and Hashiguchi19 indicated that odd atomic layer steps have disappeared and 

atoms on the corresponding terraces have diffused on the surface to leave only even 

atomic layer steps. Secondly, switching to a different crystallographic orientation, such as 

(211), will lead to the absence of APDs.20 Finally, one involves enforcing a perfect 

doubling of the height of essentially all surface steps. Figure 3.5 shows that there are two 

types of double steps on Si (100) surface. In the presence of double-height steps the 

surface layers on all terraces belong to the same Si sublattice, thus there must be a 

preference for one of the two Si sublattices over the other. 

 

 

 

 

 

 

 

Figure 3.5: Two types of double steps on a Si (100) surface 17 
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     3.3 Growth and characterization of AlSb on Si substrate 

 

        3.3.1 Preparation of Si substrate and growth 

         The samples used in this interfacial analysis are grown on a V80H molecular 

beam epitaxy reactor. Prior to growth, the Si substrate surface is hydrogen-passivated by 

immersing the wafer in an HF solution bath. The HF solution is usually diluted to 1:10. 

Due to the reaction between surface SiO2 and diluted HF solution, a clean Si surface with 

the dangling bonds passivated by hydrogen atoms is left behind. Heating the substrate to 

500 °C in vacuum removes the loosely bonded hydrogen. A thermal cycle at 800 °C 

ensures the removal of the oxide remnants. The removal of the hydrogen is verified by 

RHEED pattern, which shows a 2 x 2 surface reconstruction.  

 

 The substrate temperature is reduced and stabilized at 510 °C followed by ~ 25 s 

Al soak and then 15 s soak in an Sb overpressure.  Following the soak, the AlSb growth 

is initiated without any changes in the growth temperature resulting in a smoothing of the 

surface with continued growth.  

 

The RHEED pattern proceeds through two distinct phases during the initial 

growth. The deposition of AlSb on Si results in an interconnected chevron pattern. 

Meanwhile, a 3 x 3 pattern is superimposed on this pattern. This implies that the initial 

growth of AlSb results in the formation of islands with {111} facets and truncated on top 

of (100) plane. After deposition of ~15 nm AlSb, the RHEED pattern becomes a pure 3 x 

3 pattern, which indicates the start of a planar growth mode. 
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        3.3.2 AlSb on (100) Si 

 

 For the growth of AlSb on Si substrate, we first analyze the initial growth process. 

Figure 3.6 shows that atomic force microscope (AFM) after 3 ML, 9 ML, 18 ML, and 54 

ML of AlSb deposition, respectively. At 3 MLs of AlSb deposition, the QD density is 

1011 /cm2 with dot height and diameter of 1-3 nm and 20 nm, respectively.  Continued 

deposition of 9 ML AlSb, shown in Figure 3.6 (b), causes the individual islands to 

coalesce but remain crystallographic. At 18 MLs, shown in Figure 3.6 (c), indicates a 

crystallographic preference of the coalescence along the [110] direction. Figure 3.6 (d) 

shows continued coalescence towards planar growth with 54 MLs of AlSb deposition on 

Si surface.   

 

In addition, the insets show the corresponding RHEED patterns at each stage of 

the nucleation layer growth. At 3 MLs AlSb deposition, the RHEED pattern is spotty 

with overlaid chevrons characteristic of the QD growth, as shown in the insert of Figure 

3.6 (a).  After 54 ML deposition, the spotty/chevron character has transformed to a 3 x 1 

pattern, indicating the initial of a planar growth, shown in the insert of Figure 3.6 (d). 

 

 The resulting bulk material has been carefully analyzed by low-resolution and 

high-resolution cross-sectional TEM (XTEM) images. Figure 3.7 (a) shows the XTEM 

image of AlSb (0.5 µm) grown on Si, indicating very low defect density. Figure 3.7 (b) 

shows the HETEM image of the strain-relaxed, defect-free GaSb (10 nm) on an AlSb 
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buffer (5 nm) nucleated on Si and the AlSb/Si interface. The misfits are arranged in a 

highly periodic array and localized at the AlSb/Si interface. The limited cross-sectional 

area sampled by the TEM image indicates no threading dislocations, dark-line defects, or 

misfit dislocation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6: AFM images show surface morphology after (a) 3 ML, (b) 9 MLs (c) 18 ML and (d) 54 
MLs of AlSb deposition on Si substrate. The inserts of (a) and (d) also show the RHEED patterns 
during the corresponding growth process.  
 

 Careful examination of the atomic lattice surrounding the misfits using cross 

sectional HRTEM image, as in Figure 3.7 (b), allows the identification of these misfits. 

Using the Burger’s circuit theory around one misfit dislocation indicates that the Burger’s 

(a) 3 MLs AlSb on Si

(c) 18 MLs AlSb on Si (d) 54 MLs AlSb on Si

(b) 9 MLs AlSb on Si

300 nm 
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vector lies along the interface and this misfit as 90° pure edge type. The misfit separation, 

measured to be ~3.46 nm, corresponds to exactly 8 AlSb lattice sites and 9 Si lattice sites. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7: (a) Cross sectional TEM image of AlSb on Si, showing defect-free buffer layer.  (b) 
HRTEM image of high quality GaSb grown on AlSb/Si, with periodic misfit dislocations along the 
AlSb/Si interface.   
 

 We further verify the quality of the epilayer and the nucleation layer of AlSb. 

Figures 3.8 (a), and (b) show the cross sectional TEM (XTEM) images of a bulk GaSb 

layers (100 nm) grown on AlSb (10 nm) on Si substrate. These XTEM images indicate 

that there are lots of APDs propagating vertically.  HRTEM analysis indicates that the 

types of dislocations at the AlSb/Si interface include isolated 60° dislocations, pairs of 
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60° dislocations, and 90° dislocations. Therefore, the presence of APDs remains a critical 

problem. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8: TEM images show the structure of 100 nm GaSb / 10 nm AlSb / Si surface (a) low-
resolution, (b) high-resolution, indicating the formation of lots of APDs and defects after AlSb 
deposition on (100) Si substrate. 
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It is well known that Sb atoms can interdiffuse with Si atoms, especially at high 

temperature, through point defect diffusion mechanisms. To realize III-Sb growth on Si 

for the use of device integration, we should study whether Sb atoms diffuse into Si 

substrate.  

 

We have carefully analyzed the atomic interdiffusion between the epilayers and Si 

substrate by Scanning Transmission Electron Microscope (STEM) images along the 

AlSb/Si interface. As we know, Z-contrast imaging is an atomic number sensitive 

technique with atomic resolution. These Z-contrast images were formed by the annular 

dark field (ADF) detector collecting low-angle elastically scattered electrons only.21 

Single atoms scatter incoherently and the image intensity is the total sum of the 

individual atomic scattering contributions. The local intensity of Z-contrast is normally 

proportional to the square of the average atomic number Z, i.e., which is related to 

chemical composition of samples.22,23 Better image contrast can be obtained where a 

significant difference exits between the various epilayers. The average atomic number of 

Si, AlSb, and GaSb are 14, 32, and 41, respectively. Therefore, it is expected that GaSb 

have the highest Z-contrast intensity while Si has the lowest intensity for the same sample 

thickness.  

 

Figure 3.9 shows the cross-sectional STEM image of the sample shown in Figure 

3.8. Figure 3.9 (a) clearly indicates that the sample structure is 10 nm AlSb layer 

nucleated on Si surface, followed by the capped layer of GaSb. Meanwhile, the limited 

cross-sectional area sampled by high-resolution STEM image, shown in Figure 3.9 (b), 



 61

shows no indication of any strong bright spots in the Si substrate. Therefore, we conclude 

that no Sb diffuses into Si substrate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9: STEM images show the structure of 100 nm GaSb / 10 nm AlSb / Si surface (a) low-
resolution, (b) high-resolution, indicating that there are no interdiffusion between the AlSb epilayer 
and (100) Si substrate. 
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        3.3.3 AlSb on 5° miscut (100) Si 

 

 To improve the quality of the AlSb buffer on Si substrate, growth of III-V 

materials on miscut Si is a well-known solution for APD annhilation.17,18 The use of 

misoriented substrates is essential for eliminating antiphase domains and stacking faults 

at the GaAs/Si interface.8 The major reason of material improvement is due to the 

shortened (100) terraces formed by the miscut towards the (011). When the miscut angle 

is 2.5º to 5º towards the [110], the double atomic steps can present in miscut Si.24 

Therefore, the surface misorientation results in a high density of (100) terraces with 

double atomic steps, which shows that the surface layers on all terraces belong to the 

same Si sublattice, i.e., there are the same atomic arrangement at all terrace surface. 

Therefore, the two sublattices on the AlSb side are in registry again, then leading to the 

suppression of the APDs. The reduction of the APD density has been attributed to the 

formation of the double atomic steps in conjunction with an Al prelayer and strong Al-Sb 

strong bond prior to AlSb growth.  

 

Under optimized growth conditions, we grow AlSb bulk layer on 5º miscut Si to 

simultaneously demonstrate low APD density and achieve a high quality IMF layer at the 

AlSb/Si interface. The growth is performed at a single temperature and has a very low 

defect density attributed to the IMF layer.  The specific geometry of the 5˚ surface step 

seems to be well suited for IMF formation. In contrast, our previous attempts to form 

IMF on 3˚ miscut Si substrate did not produce a well-formed IMF, indicating sensitivity 

of the formation conditions. 
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The misfit array and resulting bulk materials have been analyzed carefully using 

low-resolution and high-resolution TEM images. Figures 3.10 (a) - (c), show high and 

low-resolution images of the AlSb/Si interface with the Si substrate having a 5º miscut 

towards the [110].  Figure 3.10(a) features a low-resolution image of bulk AlSb material, 

the Si substrate and the IMF.  The bulk AlSb appears APD-free and defect-free. The IMF 

appears as periodic dark and light bands localized at the interface. The darker regions in 

this multi-beam image indicate a compressively strained atomic lattice relative to the 

surrounding material.  The strained, dark areas appear elongated suggesting an 

asymmetric distribution of the strain-field amongst several atoms.  This is different from 

our other studies involving AlSb on Si (001) and GaSb on GaAs, in which the dark 

strain-field images appear more circular and symmetric along the interface.6 In the 

higher-resolution image of Figure 3.10(b), the periodic IMF and associated strain field 

appear as a wave-like distribution of contrasting dark and light regions.  At even higher 

magnification, Figure 3.10(c), the atomic structure becomes clearer. Though the Si 

double steps are not discernable, the exact position of the misfit dislocations can be 

detected and marked with boxes.  Two dislocations are specifically labeled by “1” and 

“2” for discussion.  The Burger’s circuit theory performed on this image shows that the 

Burger’s vector, i.e., [ ]110
2
a , lies along the interface and identifies these misfit as 90° 

pure edge type. The misfit separation, S, is measured to be ~ 3.46 nm and corresponds to 

exactly 8 AlSb lattice sites grown on 9 Si lattice sites.  

 

 This image provides details relating the IMF and step-edge to the resulting strain 

field.  While misfit dislocation “1” is adjacent to a high strain region, misfit dislocation 
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“2” lies in a relatively low-strain region.  We therefore surmise that the dark regions are 

perhaps associated with the step–edge and result from the strained Al-Al or Al-Si bonds 

along the [001] direction.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10: Cross-sectional TEM images of AlSb grown on 5° miscut Si (001) substrate under (a) 
low-resolution, (b) high-resolution conditions, and (c) highlighted section of figure (b), featuring the 
periodic IMF array. 25 
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A schematic in Figure 3.11 illustrates a possible arrangement of step geometry 

and IMF location along with atomic alignment of the Al and Sb sublattices at the step 

edges forming the strain field. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11: Series of schematics to eluciate atomic arrangement and resulting strain involved in 
AlSb on miscut Si. Part (a) shows the step geometry on a 5º miscut Si substrate. Part (b) shows a 
“ball and stick” schematic of Al, Sb and Si sublattices. Part (c) indicates sources of strain at the step 
edge due to the h1, h2 mismatch. 
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 In Figure 3.11(a), the step length L is defined as L = h·cotθ where h is the step 

height and θ is the miscut angle.  The double atomic steps on 5 ˚ miscut Si (100) yields h 

= 2.72 Å, thus L = h·cotθ =2.72 × cot5° = 31.09 Å.   This value is fairly well matched to 

IMF spacing, S and results in a single IMF per step.  Figure 3.12(b) is a “ball and stick” 

schematic showing atomic arrangement of the AlSb and Si sublattices.  Strain, indicated 

in the TEMs of Fig.3.10, is generated at the step edge due to the height differential 

between the Si double step, h1 and the two-atom-layer height of AlSb, h2, in the [100] 

direction.  Using the following values of h1=2.72 Å and h2=3.06 Å, we calculate a height 

mismatch of 12.5% along the [100] direction.  This causes the AlSb layer growing on the 

lower step to be compressed along the [100] direction to facilitate registration, resulting 

in a compressive strain along the [110] direction. The effect of this strain at the Si 

double-step is depicted in Fig 3.11(c).  Since the miscut is 5º towards the [110] direction, 

we expect that this effect is only along [110] direction and is not repeated along the [1-

10] direction.  

 

The double step height, h, is obviously critical for achieving APD suppression on 

the miscut Si substrate.  The importance of L relative to S, for high quality IMF 

formation, is suggested by a comparison of AlSb grown on 5˚ and 3˚ miscut substrates 

grown under similar conditions.  Figure 3.12 (a) shows the AlSb bulk on 3° miscut Si 

(001) substrate along the [110] direction. The APDs and defects density are >107 /cm2. 

Figure 3.12(b) shows the corresponding interfacial misfits using HRTEM image.  For a 

3˚ miscut, the step height may be a single or double step or a mixture.  For a single step, 

h=1.35 Å, the step length, L = h·cotθ =1.35 × cot3° = 25.72 Å < S.  For a double step, 
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h=2.72 Å, the step length, L = h·cotθ =2.72 × cot3° = 51.90 Å >S.   While we can not 

substantiate any required relations between L and S, a step length L that is significantly 

shorter or longer than the IMF spacing will increase the number of interaction points 

between the step edge and the 90˚ misfit which may initiate 60˚ misfit formation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12: Cross-sectional TEM images of AlSb grown on 3° miscut Si (100) substrate under (a) 
low-resolution and (b) high-resolution conditions featuring defects and APDs. 25 
 

 

[110]
[001]

Si 

AlSb

(a) XTEM, AlSb on 3° miscut Si (100) 

 30  nm

AlSb

Si  5  nm

(b) HRTEM, AlSb / 3° miscut Si interface 

APDs 



 68

 In order to understand the formation of IMF at the AlSb/Si interface, it is 

necessary to analyze the growth process. After the removal of the oxide remnants, the 

substrate temperature is reduced and stabilized at 510 °C followed by ~ 25 s Al soak and 

then 15 s soak in an Sb overpressure condition.  As we know, compared to Si atom, Al 

atom has similar atomic size, which shows that it is possible for Al atom to replace the 

position of Si atom during the Al soak. It is worth mentioning that although Al-Si bond is 

larger (2.45 Å) than Si-Si (2.17 Å), but in AlSi2 cluster the Al-Si bond shrinks 

significantly and it becomes almost equal to that of Si-Si bonds (2.36 for Al-Si and 2.38 

for Si-Si).26 The Al atom substitutes one of the Si atoms from the host Si cluster, only 

causing a small local distortion. The following Sb soak results in the antimony atoms 

forming a 2D reconstruction on the surface through an interfacial array of misfit 

dislocations.12  This reconstruction involves the packing of the Sb atoms on the Si surface 

such that the Sb atoms skip every 9th Si atom in the substrate. The subsequent growth of 

AlSb on Si results in interfacial misfit (IMF) array which is a completely relaxed growth 

mode with extremely low defect density. This effect occurs due to the fact that the Sb 

atom forms a good bond with the underlying Al atoms but does not react with the Si 

substrate to displace the Si atoms.  

 

A schematic of the interfacial atoms at AlSb/Si interface in Figure 3.13 illustrates 

atomic arrangement and bonding in the (110) plane around the interfacial misfit. The 

characteristic and undistorted zinc-blende arrangement occurs exactly at 4th atom from 

the misfit. These bonds appear undistorted between misfits, but begin bending and 

stretching until some physical limit surpassed to necessitate a skipped bond, i.e., misfit. 
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Therefore, the misfit is formed when the bond length becomes so large that the energetics 

of the system cannot accommodate that bond any more. Thus, the formation for the misfit 

array is a self-assembled process driven by energy minimization. 

 

 

 

 

 

 

 

 

 

Figure 3.13:  Schematic of a 90° misfit array array at AlSb/Si interface. 
 

 

            In conclusion, we have identified the growth mechanisms of highly mismatched 

AlSb on 5° miscut Si substrate.  Our analysis indicates that the 5º miscut allows the 

formation of a single 90º misfit dislocation per step thus resulting in the isolation of the 

misfit dislocations from each other, then the strain does not build up and the high strain 

energy due to large mismatch is relieved. 
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    3.4 Defect analysis and density measurement by TEM 

 

To verify the quality of the AlSb epilayer on 5° miscut Si substrate, we use TEM 

plan-view images to measure the dislocation density. The experimental results, shown in 

Figure 3.14 (a) and (b), indicate that the AlSb bulk layer grown on 5° miscut Si (100) 

substrate has very low density of APDs, compared to that grown on Si (100) substrate. 

The average surface roughness of AlSb bulk layer grown on 5° miscut Si (100) substrate 

is only ~0.6 nm, indicating a good surface quality. Similarly, plan-view TEM image, 

shown in Figure 3.15, displays also very low density of anti-phase boundaries (APBs) on 

the surface. This is attributed to the formation of double-atomic steps during the in-situ 

cleaning of the Si wafer in the case of 5° misorientations in the [110] direction, thus 

leading to suppress the APDs.  

 

 

 

 

 

 

 

 

Figure 3.14: AFM images of the 1 µm GaSb grown on AlSb on (a) Si (001) surface, (b) 5° miscut Si 
surface, indicating the use of misoriented substrates is essential for the suppression of antiphase 
domains. 
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Figure 3.15: Plan-view TEM image of the GaSb surface grown on AlSb on 5° miscut Si surface, 
indicating one of APBs on the surface, with very low APD density. 
 

 

 Surface analysis enables the calculation of dislocation and APD density in bulk 

GaSb grown on the AlSb/Si IMF under optimized growth conditions.  The dislocation 

density is best verified by plan-view TEM images.  Figure 3.16 (a) and (b) show plan-

view TEM images of GaSb bulk material (1 µm) on AlSb (50 nm)/ 5° miscut Si.  Figure 

3.16 (a) features visible defects at the surface.  This image, captured from an edge region 

where growth conditions are perhaps not optimum, indicate our characterization 

capability to capture defects if they exist.  Figure 3.16 (b) shows the center surface area 

with no defects. Based on scanning different areas of the center of the wafer we estimate 

our defect density to be ~ 7 ×105 defects/cm2. The images further show that the AlSb 

bulk layer grown on 5° miscut Si planes is APD free. This is also verified in Figure 3.17 

APB 



 72

which shows a 4 µm x 4 µm AFM image of the same sample, indicating no APDs visible 

in the scan. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.16: Plan-view TEM image of the GaSb surface grown on AlSb on 5° miscut Si surface, a) 
defect surface area, b) perfect surface area, indicating very low defect density. 
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Figure 3.17: AFM image of 1µm GaSb grown on AlSb on 5° miscut Si surface 
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    3.5 Applications of AlSb/Si IMF  

 

     Using IMF growth techniques, we demonstrated room temperature photopumped 

(PP) operation lasing of a GaSb quantum well (QW) based VCSEL monolithically grown 

on Si (100) substrate. The VCSEL epitaxial structure is shown in Figure 3.18.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.18: Schematic of monolithic VCSEL structure shows GaSb/AlSb QWs in half-wave cavity 
surrounded by AlGaSb/AlSb DBRs. 27 
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curve with peak threshold intensity, Ith = 0.1 mJ/cm2, and Figure 3.19 (b) shows spectra 

for different pump intensities from subthreshold to lasing at 0.4 × Ith , 1.0 × Ith and 1.1 × 

Ith. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.19: RT-PP VCSEL lasing at 1.65 µm, (a) L-L curve indicating threshold intensity at pump 
power of 0.1 mJ/cm2 per pulse, (b) Spectra at pump intensities – 0.4 × Ith , 1.0 × Ith and 1.1 × Ith. 27 
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    3.6 Summary 

 

We analyzed the growth processes of AlSb grown on Si (100) and 5° miscut Si 

(100) substrates. We demonstrated that the interfacial misfit (IMF) array in the growth of 

highly mismatched (∆a0/a0=13%) AlSb bulk layers can be formed on both of Si (100) and 

5° miscut Si (100) substrates. However, a 5° miscut Si (001) substrate can provide the 

effect of suppress of APDs. Under optimized growth conditions, strain energy from the 

AlSb/Si interface is accommodated by a 90° interfacial misfit dislocations resulting in 

very low defect density and the suppression of APDs, confirmed by plan-view TEM 

images. High-resolution TEM image indicates that the misfit array at the AlSb/Si 

interface has a period of ~ 3.46 nm, according to 8 AlSb atoms grown on 9 Si atoms. We 

attribute the success of AlSb growth on Si surface to both the step doubling-atom 

mechanism in combination with the strong Al-Sb atomic bond. The AlSb bulk materials 

with low dislocation density and strain-relieved properties generated by the growth 

conditions can provide a promising technology for the monolithic integration of III-V 

devices on Si substrate. 
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Chapter 4  

Interfacial misfit based GaSb QDs on GaAs substrate 

 

 4.1 Introduction 

 

Lattice-mismatched epitaxy of Sb-based materials on GaAs substrate has 

attracted considerable attention because of the lots of advances in optoelectronic 

devices, including detectors, integrated laser, solar cells, and transistors.1,2 

Especially, GaSb quantum dots (QDs) in a GaAs matrix have drawn recent 

attention for their potential ability to demonstrate QD-based emitters at the 

technologically important wavelength of 1.55 µm along with their unique 

electronic and optical properties caused by their staggered (type-II) band 

alignment and large valence band offset.3 The type-II staggered active region can 

be designed to work at different wavelengths by varying the matrix composition 

surrounding GaSb QDs. These types of active regions have been shown to work 

very effectively in the mid-IR (MWIR).4 GaSb/GaAs QDs can also be used for 

demonstrating similar results in the near-IR, where no type-II devices have yet 

been demonstrated. In these type-II QDs, holes can be confined within QDs, 

while electrons produce quantum shell around QDs by the Coulomb interaction. 

Thus, they could be also useful for single carrier, even unipolar storage devices 

such as optical memory due to their longer radiative recombination lifetime. 
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To date, several groups have reported formation and optical properties of type-II 

GaSb/GaAs QDs using the Stranski-Krastanov (SK) growth mode with demonstrations of 

light emission from QDs and their wetting layers.5,6,7,8 According to its definition, the SK 

growth mode of GaSb/GaAs leads to highly strained QDs, which is somewhat of a 

hindrance in device realization since it limits both peak wavelength (up to ~1.2 µm) and 

dense stacking.  

 

 The two-dimensional IMF, formed at the heterointerface between the epilayer and 

substrate, relieves strain energy due to high lattice mismatch and has been noted to form a 

wide range of surface phenomena from strain-free islands to highly planar strain-free, 

defect free bulk material.9,10 However, the strain-free properties of the IMF growth mode 

are extremely attractive for QD growth process since it becomes possible for dense QD 

stacking with a thinner spacer, compared to SK QDs. The growth of IMF GaSb QDs has 

not been as straightforward as that of conventional InAs/GaAs QDs due to the rather 

narrow V/III ratio window and therefore not as well studied.11 The possibility for dense 

stacking of IMF GaSb QDs can prove beneficial for QD sensors, emitters and solar cells. 

 

 In this chapter, we demonstrate the ability to grow GaSb QDs in IMF growth 

mode as well as the SK growth mode by varying V/III ratio, and study further the 

formation of IMF QDs within a narrow V/III ratio, along with electronic and optical 

properties of strain-relieved densely stacked IMF GaSb QDs. 
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 4.2 Formation of interfacial misfit array based GaSb QDs 

 

 In the GaSb/GaAs IMF QD formation, the samples are grown on semi-insulating 

GaAs (001) substrates by MBE VG80 reactor with a 100 nm GaAs buffer. The GaSb 

QDs are formed at 510 °C on the As-rich GaAs surface with a growth rate of 0.32 

monolayers (MLs)/s with V/III ratio = 10 for IMF mode. The samples for microscopic 

characterization are immediately cooled to room temperature. As for the PL 

characterization, the sample includes an Al0.9Ga0.1As/GaAs barrier surrounding the single 

GaSb QD layer active region and a GaAs capped layer without growth interruption. 

 

 Figure 4.1 shows an AFM image of GaSb IMF QD ensembles on GaAs substrate. 

The IMF QDs are elongated slightly along the [1-10] direction in comparison with the 

[110] direction. The QD dimensions are widely varied with an average length, width, and 

height of 50 nm, 30 nm, and 6 nm, respectively. The QD density is about 6 × 1010 

QDs/cm2.  

 

 

 

 

 

 

Figure 4.1: AFM image of GaSb IMF QDs on GaAs substrate after 3 ML deposition. 

500 nm[110]
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 Figure 4.2 shows a cross sectional TEM image of single IMF GaSb QD and the 

characteristic array of misfits at the GaSb/GaAs interface. The shape of IMF QD is very 

flat and broad. The QD height and width are 5 nm and 30 nm, respectively, in agreement 

with the results of AFM image shown in Figure 4.1. The dark line in Figure 4.2 shows the 

native oxide formed on the sample between growth and analysis. The characteristic array 

of misfits can be observed at the GaSb/GaAs interface, where the spacing between the 

misfit dislocations is ~ 5.6 nm, corresponding to 13 GaSb lattice sites or 14 GaAs lattice 

sites.  

 

 

 

 

 

Figure 4.2: XTEM image of 3 ML GaSb IMF QDs on GaAs substrate. 

 

 

 

 

 

 

 

 

Figure 4.3: Plan-view TEM image of 3 ML GaSb IMF QDs on GaAs substrate. 
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Figure 4.3 displays the [001] bright field plan-view TEM image of GaSb IMF 

QDs on GaAs after 3 ML deposition. The misfit dislocations form at both [110] and [1-

10] directions simultaneously, which indicates the presence of IMF array at the 

GaSb/GaAs interface. 

 

 4.3 Formation of Stranski-Krastanov GaSb QDs 

 

 In the GaSb/GaAs SK QD formation, the growth conditions are the same as that 

of IMF growth mode, with exception of the V/III ratios during the QD formation. The 

samples are grown on semi-insulating GaAs (001) substrates by MBE VG80 reactor with 

a 100 nm GaAs buffer followed by the QD ensemble. The GaSb QDs are formed at 

510°C with a total coverage of 3 ML, a growth rate of 0.3 MLs/s with V/III ratio = 1 for 

SK growth mode. Figure 4.4 shows an AFM image of GaSb SK QD ensemble on GaAs 

substrate. The SK QD ensemble shows typical characteristics for SK QDs with an 

average width and height of 10 and 5 nm, respectively. The QD density is about 3 × 1010 

QDs/cm2. 

 

 

 

 

 

 

Figure 4.4: AFM image of GaSb SK QDs on GaAs substrate after 3 ML deposition. 
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Figure 4.5 shows a high-resolution cross sectional TEM image of SK GaSb QD 

on GaAs substrate, indicating a highly crystalline SK QD with height and width of 7 nm 

and 10 nm, respectively, and a domelike shape typical of SK-formed QDs. This images 

also clearly shows that the GaSb/GaAs interface is abrupt and no indication of misfit 

dislocations exist at the heteointerface.  

 

 

 

 

 

 

Figure 4.5: XTEM image of GaSb SK QDs on GaAs substrate after 3 ML deposition. 

 

 

 

 

 

 

 

 

 

Figure 4.6: [001] bright field plan-view TEM image of 3 ML GaSb SK QDs on GaAs substrate. 
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Figure 4.6 indicates the [001] bright field plan-view TEM image of 3ML GaSb 

SK QD on GaAs substrate. This plan-view image shows the absence of misfit 

dislocations at the GaSb/GaAs interface, indicating that these SK QDs are highly 

strained. The QDs base is roughly circular, and the QD size is ~10 nm. 

 

 

 4.4 Optical properties of IMF QDs and SK QDs 

 

 Firstly, we study the effect of V/III ratio on the optical properties of GaSb QDs. 

The RT PL spectra for both IMF and SK ensembles with a total coverage of 4 ML are 

collected using a conventional PL setup with an excitation by either a He-Ne or Ar+ laser 

with a 2 mm spot size. Figure 4.7 shows the RT PL spectra of GaSb QDs with an 

excitation by a He-Ne laser at V/III ratios of ranging from 1 to 6.5. When the V/III ratio 

of GaSb growth is ~1, PL spectra show weak light emission near 1.14 µm with a FWHM 

of 64 meV from highly-strained SK QDs. Emission from large bulk-like GaSb islands at 

1.66 µm is also measured due to the coalescence of neighboring dots by an excess of 

GaSb materials. When the V/III ratio is more than 2, the PL peak of GaSb QDs shifts 

abruptly towards 1.3 µm (FWHM of  ~ 53 meV) due to the transition from strained SK to 

unstrained IMF growth mode. Moreover, by further increasing the V/III ratio from 2 to 

6.5, the PL peak shifts towards longer wavelength from 1.34 µm to 1.39 µm, and the PL 

intensity decreases dramatically. The reason is that an excess of Sb atoms during the 

formation of GaSb QDs increases Sb intermixing from GaSb QD layers into GaAs 

matrices, resulting in the extended wavelength, increased lattice mismatch and strain in 
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the barriers. Therefore, the Sb-rich growth condition leads to strain related defects and 

reduces PL intensity. 

 

 

 

 

 

 

 

 

 

Figure 4.7: RT PL spectra of single layer of GaSb QDs at different V/III ratios ranging from 1 to 6.5.  
The PL peak and FWHM of GaSb QDs at V/III ratios of 1, 2, 4, or 6.5 are 1.14 µm and 64 meV; 1.34 
µm and 53 meV; 1.38 µm and 56 meV; and 1.39 µm and 53 meV, respectively. 12 
 

 

Secondly, we analyze the effect of GaSb coverage on the optical properties of 

GaSb QDs. Figure 4.8 shows the PL spectra of GaSb QDs with a V/III ratio of 2 with an 

excitation by Ar+ lasers (0.58 W) at total GaSb coverage ranging from 2 to 6 ML at RT. 

When the GaSb coverage is 2 ML, very weak PL can be observed at 1.12 µm. By 

increasing the GaSb coverage, the PL peak shifts towards longer wavelength over 1.3 

µm, and the peak intensity increases dramatically. In addition, we observed the excited 

state of GaSb QDs at 1.13 µm which grows with higher pump powers as the lower states 

fill.13 Meanwhile, light emission from large bulk-like GaSb islands at 1.66 µm is also 

observed here. We also note a second order GaAs peak that is visible at 1.75 µm at higher 
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excitation by Ar+-lasers. However, increased GaSb coverage results in planar growth and 

semi-two-dimensional GaSb layers using the IMF. 

 

 

 

 

 

 

 

 

 

 

Figure 4.8: RT PL spectra of single layer of GaSb QDs with V/III ratio of 2 at a total coverage 
ranging from 2 to 6.  The PL peak of GaSb QDs at a total coverage of 2, 3, 4, and 6 ML are 1.12 µm, 
1.28 µm, 1.33 µm, and 1.35 µm, respectively. 12 
 

 In order to grow dense QDs and increase the density of QDs in the active region 

of devices, the formation of multistacked GaSb QDs is a good choice. We grew ten 

stacked GaSb QD layers separated by 15 nm GaAs spacer layers with V/III ratio of 2 and 

6.5. Figures 4.9 (a) and (b) show the cross sectional TEM images of the stacked structure 

with V/III ratio of 2 and 6.5, respectively. Figure 4.9 (a) indicate that low V/III ratio has 

the effect of suppressing Sb segregation, and produces smooth morphology and low 

defect density. The inset of Figure 4.9 (a) shows the high resolution TEM image of the 

first stacked QD layer, indicating a good quality of GaSb QD on GaAs. On the other 
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hand, high V/III ratio results in high Sb segregation, rough morphology at the interface, 

and threading dislocations, as shown in Figure 4.9 (b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9: Cross sectional TEM images of 10 stacked GaSb QDs with V/III ratio of (a) 2, and (b) 6.5 
at a total coverage 4 ML.   
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4.10 shows the PL spectra of ten stacked GaSb QDs with V/III ratios of (i) 2 and (ii) 6.5. 

The PL spectrum with a higher V/III ratio shows very low PL intensity because an excess 

of Sb adatom within stacked ensembles causes the formation of large defects, resulting in 

surface undulations after stacking QDs or the formation of threading dislocations. On the 

other hand, the PL spectrum with a low V/III ratio displays improved PL intensity due to 

the improved crystalline quality of stacked QD ensembles by the suppression of Sb 

segregation, reduced defect formation and threading dislocations. Strong PL at 1.34 µm 

from ten stacked GaSb QDs is obtained at RT with a FWHM of 104 meV. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10: RT PL spectra of 10 stacked GaSb QDs at different V/III ratios (2 and 6.5). The spacer 
thickness between each QD layer is 15 nm. 12 
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Figure 4.11 shows XRD spectra from ten stacked GaSb QDs with V/III ratios of 

(i) 2 and (ii) 6.5 using symmetric scans around (004) reflection in ω/2θ geometry. 

Improved crystalline quality is evident in the narrowing FWHM of the zero-order peak 

from (i) 330 arcsec to (ii) 103 arcsec by decreasing the V/III ratio during the growth of 

GaSb QDs, which elucidates the reduction of the formation of threading dislocations or 

defects. 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.11: Symmetric 004 x-ray diffraction pattern for ten stacked GaSb QDs at different V/III 
ratios (2 and 6.5). 12 
 

 

 4.5 Summary 

 

 We have demonstrated the ability to select either an IMF or a SK growth mode to 

grow GaSb QDs on GaAs substrates by varying the V/III ratio. A high V/III ratio such as 

1

10

102

103

104

105

106

1

10

102

103

104

105

106

-8000 -4000 0 4000-8000 -4000 0 4000
Ω/2θ (arcsec)

V/III: 6.5

V/III: 2

V/III: 6.5

V/III: 2Intensity (a.u.)



 91

10:1 leads to IMF growth mode, while a low V/III ratio of 1:1 favors the SK growth 

mode. Both AFM and TEM images have verified the structural contrast in the two growth 

modes. 

 

 In the growth of GaSb/GaAs QDs, a moderate V/III ratio (2≤V/III<6.5) produces 

strained-relieved QDs by IMF emitting at over 1.3 µm. Further increases in the V/III ratio 

lead to Sb segregation with the associated defects and threading dislocations. 

 

We have formed high crystalline quality of 10 stacked, strain-relieved, and 

densely packed GaSb QDs by optimizing the V/III ratio of GaSb QD growth. 
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Chapter 5  

Conclusions 

 

 

An interfacial misfit (IMF) array based growth mode has been demonstrated 

between GaSb and GaAs, and AlSb on Si substrate. This growth mode has resulted in 

epilayer materials with extremely low defect density grown on GaAs, GaSb and Si 

substrates. 

 

 Not only have we demonstrated that a periodic array of 90° misfit array can be 

formed under optimized growth parameters to fully relieve strain energy for compressive 

GaSb epilayer on GaAs, but also verified that a period 90° misfit dislocation array can be 

formed in the tensile GaAs epilayer on GaSb once the reaction of the As2 with GaSb 

surface is suppressed. While the single As atomic layer seems to form on the Ga atomic 

layer by ambient As overpressure, it appears to lack long-range uniformity.  This leads to 

a higher defect density than what can be realized in the compressive growth mode. To 

achieve the higher quality tensile GaAs epilayer on GaSb, a non-reactive atom can be 

used either as a surfactant or catalyst.  A thin buffer of AlSb, with greater bond strength 

compared to GaSb, may also reduce the As/surface reactivity enabling long-range 

uniform IMF formation. Therefore, control of both tensile (GaAs on GaSb) and 

compressive (GaSb on GaAs) can lead to new devices based upon the novel integration 

schemes. 
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The IMF growth mode has also been applied for obtaining high quality III-Sb 

epilayers monolithically on Si substrate. We demonstrated that the IMF array in the 

growth of highly mismatched (∆a0/a0=13%) AlSb bulk layers can be formed on both of Si 

(100) and 5° miscut Si (100) substrates. Moreover, a 5° miscut Si (001) substrate can 

provide the effect of suppress of APDs. Under the optimized growth conditions, strain 

energy from the AlSb/Si interface is accommodated by a self-assembled 2D array 90° of 

interfacial misfit dislocations resulting in very low defect density and the suppression of 

APDs. We attribute the success of AlSb growth on Si surface to both the step doubling-

atom mechanism in combination with the strong Al-Sb atomic bond. The AlSb bulk 

materials with low dislocation density and strain-relieved properties generated by the 

growth conditions can provide a promising technology for the monolithic integration of 

III-V devices on Si substrate. 

 

 Finally, We have demonstrated the ability to control either an IMF or a SK 

growth mode to grow GaSb QDs on GaAs substrates by varying V/III ratio. A high V/III 

ratio such as 10:1 produces IMF growth mode, while a low V/III ratio of 1:1 favors SK 

growth mode. The experimental results indicate that low V/III ratio has the effect of 

suppressing Sb segregation, which produces smooth morphology and low defect density, 

while a high V/III ratio results in high Sb segregation, rough morphology at the interface, 

and threading dislocations. 

 


