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Abstract  

This dissertation describes studies in the asymmetric synthesis of the C21 – C34 fragment of the natural 

product, antascomicin B.  Antascomicin B is structurally related to FK506, binds strongly to FKBP12, yet 

does not shown immunosuppressive activity.  Small ligand FKBP12 binding complexes were shown to 

have potent neuroprotective and neuroregenerative properties in mouse models of Parkinson’s disease.  

The highlighted chemical reactions include an asymmetric transfer hydrogenation (ATH), Ireland-Claisen 

rearrangement (ICR), directed hydrogenation and allylic diazene rearrangement.    
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Chapter 1 

1.1  Background and significance 

The antascomicins (A-E) are a small family of macrolides (Figure 1).  These compounds were first 

isolated by Sandoz Pharma in 1996 by fermenting a strain of the genus Micromonospora, that had been 

isolated from soil samples collected in China.
1
 This discovery was the result of an effort to uncover  

 

novel immunosuppressive metabolites from actinomycetes that might elicit similar biological activity to 

that of the macrolides rapamycin, ascomycin, FK506 and meridamycin.
2, 3

  These macrolides, such as 

rapamycin and FK506, are known to be a powerful group of drugs that bind with high affinity to the 

abundant intracellular binding protein FKBP12. The 12 kDa FK506-binding protein, FKPB12, is a cis-trans 

peptidyl-prolyl isomerase that catalyzes the cis-trans interconversion around peptidyl prolyl amide bonds 

in peptides and accelerates protein folding in proline containing proteins.
4
  Alone, rapamycin and FK506 

are not responsible for immunosuppression, but rather the complex formed between the respective 

macrolide and FKBP12 are believed to be responsible for the immunosuppressive activity.  For example, 

both FK506 and rapamycin bind to FKBP12 in a similar fashion but they differ in activating the 

mechanism for undermining T-cell function, which results in different modes of immunosuppressive 

action.  The FK506/FKBP12 complex binds to calcineurin, which is responsible for T-cell proliferation, and 

this ternary complex prevents the transcription of genes responsible for coding interleukin-2 (IL-2) and its 

receptor.
5
  The target of the rapamycin/FKBP12 complex is mTOR, a protein responsible for controlling 

cell growth and proliferation.  This ternary complex blocks entry of the lymphocytes into the cell by 
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interfering with a signaling pathway that is mediated by a lymphokine receptor, thus inhibiting cell 

proliferation.
6
   

Immunophilins are are endogenous cytosolic peptidyl-prolyl isomerases that interconvert between the cis 

and trans positions of proline containing proteins.  Based on the activity of the known immunophilin-

binding compounds, FK506 and rapamycin, a binding assay was conducted to identify active metabolites 

from actinomycetes.  The immunophilin FKBP12 was used and the degree of binding to substrates in 

competition with FK506 were measured.  Over 12,000 strains of bacteria were measured and the binding 

affinity was compared to the known immunophilin-binding compounds rapamycin and FK506.  From this 

assembly, only one strain displayed a binding affinity for FKBP12 to a comparable degree that 

FK506/rapamycin bind to FKBP12.  This strain produced five novel macrolides and were named 

antascomicins A-E.
1
 The antascomicins were found to bind FKBP12 to the same degree as FK506 and 

rapamycin (1.1 and 0.6 nm, respectively).  The antascomicins are structurally related to FK506, bind 

strongly to FKBP12, yet do not show immunosuppressive activity or inhibit proliferation of T-cells.
1
  In a 

1992 study published in Nature, it was discovered that FKPB12 exists at extraordinarily high levels in the 

brain, even more so than in the immune system.
7
  This evidence led researchers to investigate the roles 

of immunophilins in various areas of neural function.  It was shown that the FKBP12/rapamycin and 

FKBP12/FK506 complexes do in fact show neuroprotective properties in neuronal systems.
8 
 However, 

the immunosuppressive characteristics of these compounds limited their usefulness in the treatment of 

damaged nerves.  This encouraged research to find non-immunosuppressive FKBP12 binding ligands.
9
  

The small molecules that bind FKBP12 and do not cause immunosuppression lack the domain 

responsible for binding to calcineurin or mTOR, the effector domain.  The antascomicins are among the 

few naturally occurring molecules that lack the effector domain and have been identified to bind FKBP12, 

but not show immunosuppressive tendencies.
10

  Small ligand FKBP12 binding complexes that lack an 

effector domain were shown to have potent neuroprotective and neuroregenerative properties in mouse 

models of Parkinson’s disease.
11
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1.1.1  Retrosynthesis of antascomicin B 

Synthetic studies toward antascomicin A were published in 2004 by Fuwa
12

 et al, Chakraborty et al 

published two fragments of antascomicin A in 2006
13

 and most recently, the Ghosh group published the 

C17-C34 fragment of antascomicin A in 2014.
14

  The first total asymmetric synthesis of antascomicin B 

(Figure 2) was reported by Stephen Ley’s research group at Cambridge University in 2005.
15

   

 

In 2008, our group published a model study
16

 of the C22 - C34 fragment of antascomicin B, and later 

published the synthesis of the racemic fragment in 2011.
17

  For our studies, the planned synthesis of 

antascomicin B will conclude with esterification at C1 and the hydroxyl group of C26 of the late stage 

intermediates 1.1 and 1.2 (Scheme 1).  This will be followed by ring closing metathesis at C20-C21, and 

conclude with global deprotection. The synthesis of the C1-C21 fragment 1.2 of antascomicin B has been 

studied in our lab and its synthetic route includes an amino-Claisen rearrangement and an acid mediated 

lactonization.
18

  Efforts to construct the C21-C34 fragment 1.1 will be the focus of this thesis and the 

retrosynthesis is outlined below. 
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1.2  Retrosynthesis of the C21 – C34 fragment of antascomicin B 

Initially, our plan for the asymmetric synthesis of the C21–C34 fragment of antascomicin B (Scheme 2).  

The final stage of fragment 2.6 was to be completed by selective removal of the silyl protecting group at 

C21 of 2.5 to give the alcohol.  Grieco olefination would then be used to furnish the terminal alkene of 

2.6.
19

  This would follow simultaneous reduction of the C24–C25 alkene and removal of the C26 benzyl 

protecting group of compound 2.4 by catalytic hydrogenation.  Compound 2.4 would  

 

be the result of a substrate controlled 1,3-reductive transposition reaction to install the remote C23 

stereocenter by way of an allylic diazene rearrangement from hydrazone 2.3.  To this end, compound 2.2 
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would be obtained via directed hydrogenation using Crabtree’s iridium catalyst to install the stereocenter 

of C29 from Weinreb amide 2.1.  The pentenoic acid 3.4 (Scheme 3) would come from the highly 

congested allylic ester 3.3 by way of an Ireland-Claisen rearrangement.  Epoxy quinol 3.2 was envisioned 

to arise from an asymmetric transfer hydrogenation reaction in four steps from 1,4 –benzoquinone.  The 

following sections are intended to inform the reader of the recent literature of these highlighted reactions 

discussed in the retrosynthesis for the asymmetric C21–C34 fragment of antascomicin B. 

 

 1.3  Asymmetric transfer hydrogenation 

Transfer hydrogenation reactions consist of the transfer of hydrogen to a molecule from a source other 

than gaseous hydrogen.
20

  A common example and widely used asymmetric transfer hydrogenation 

reaction in organic chemistry was developed by Noyori for the reduction of aromatic prochiral carbonyl 

compounds 4.1 to form chiral alcohols, 4.3 (Scheme 4).
21

  This approach offers advantages over other  
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reduction methods, such as molecular hydrogen under catalytic conditions or metal hydride reductions, by 

the ease of reaction set up and safer reaction conditions.  Asymmetric transfer hydrogenation (ATH) for 

the reduction of carbonyls played a pivotal role in the efforts toward the asymmetric synthesis of the C21 

– C34 fragment of antascomicin B.  In 2011, the McIntosh group reported using Noyori transfer 

hydrogenative desymmetrization in route to an early intermediate 3 contained in the C29–C34 fragment of 

antascomicin B (Figure 3).
22

  This effort was significant in that the reported asymmetric route to the 

corresponding silyl ether of 3 required eight steps from benzoquinone, high enzyme loading and long 

reaction times (16 days).  The success of this method shortened the synthesis to four steps to epoxy 

quinol, 3.     

 

It was found that the precursor to the epoxyquinol 5.2a could be produced in 93:7 er at 85% yield on a 60 

mmol scale from the meso-epoxy diketone 5.1 (Scheme 5).  Furthermore, a 99.5:0.5 er could be achieved 

for 5.2b by way of a kinetic resolution of the minor enantiomer with longer reaction times, albeit with 

diminished yields.  The intrinsic enantioselectivity for the reaction was 82:18 at 4% conversion and was in 

agreement with other dialkyl ketone transfer hydrogenations.
23, 24
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The route to the epoxyquinol was completed using Taylor’s variation
25

 of the Lubineau procedure
26

 for the 

retro-Diels-Alder reaction to complete the synthesis of 5.3.  In 2012, this epoxyquinol and several other 

examples of ATH reactions and mechanistic details were reviewed in a thesis by a former McIntosh group 

member.
27 

 For the interested reader, a review on the advances of asymmetric transfer hydrogenation of 

ketones was published by the Yus group that covers the most recent literature.
28

 

1.4  Ireland-Claisen rearrangement  

In 1972, the utility of the newly introduced [3,3] sigmatropic rearrangement that converts an allylic ester to 

a -unsaturated carboxylic acid came to be known as the Ireland-Claisen rearrangement (Scheme 6).
29

  

The Ireland-Claisen rearrangement (ICR) advantages include the ease of preparation of the allylic esters, 

(the ability to perform reactions at low temperatures) and the capacity to induce stereochemical control 

due to the well-defined and highly ordered transition structure leading to the product.  The ICR has been 

extensively reviewed.
30-34

  The following sections are intended to bring the reader up to date on some of 

the more recent (2008-2016) aspects of the ICR used in synthetic chemistry.  
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1.4.1 Ireland Claisen rearrangement in total synthesis 

1.4.1.1 (-)-Perrottetinene 

In 1994, the bibenzyl cannabinol (-)-perrottetinene 4.1 was isolated as a natural component in the ether 

extract from a liverwort Radula perrottettii, by Asakawa and coworkers.
35

  The structure of 4.1 was 

elucidated by comparison to a synthesized bibenzyl trans-fused ring system 4.2 made by Crombie and 

coworkers, similar to (-)-
1
-trans-tetrahydrocannabinol (

1
-THC, 4.3) or commonly known as (

9
-THC), 

the principal psychoactive constituent of marijuana.
36

  The synthesis of the trans-4.2 and other 

cannabinoid analogs were made in part due to a connection between the bibenzyl and cannabinoid 

natural products at an early biogenetic stage.
36, 37

   

 

Though the trans-THC compounds have garnered the most attention from the synthetic community,
38-40

 

sparse consideration has been given to the cis-THC analogs.  This trend is likely due to the lack of 

psychoactivity in the cis-compounds.
41, 42

  Nevertheless, the stereoselective synthesis of (-)-perrottetinene 

is worth noting due to the key reaction of the cis-disubstituted cyclohexene ring by the diastereoselective 

Ireland-Claisen rearrangement (Scheme 7).
43

  Allylic alcohol 7.2 was made in three steps from 

commercially available 3,5-dimethoxybenzaldehyde (7.1).  Acylation of the secondary alcohol 7.2 with the 

known 5-methylhex-5-enoic acid 7.3 as the chiral building block gave the Ireland-Claisen ester precursor 
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7.4 in 98% yield.  The (Z)-silyl ketene acetal was required to achieve the desired stereoisomer of 7.6, if it  

occured through the expected chair-like transition state 7.5 (Scheme 7).  It was found that treatment of 

7.4 under the standard Ireland-Claisen conditions for Z-enolate stereoselectivity (LDA and TBSCl in 20% 

HMPA/THF at -78 
o
C), followed by gradual warming to room temperature resulted in the desired product 

7.6 in 60% yield with >20:1 diastereoselectivity.  Ring closing metathesis using Grubbs’ catalyst gave the 

desired cyclohexene derivative 7.8.  Catalytic amounts of TsOH in refluxing benzene gave the desired 

product in 55% isolated yield.     
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1.4.1.2 Palmerolide A 

Palmerolide A is a complex polyunsaturated macrolide isolated from a marine invertebrate (Synoicum 

adareanum) found in the Antarctic Ocean.  This compound contains five stereogenic centers and seven 

double bonds, figure 5.  It has been shown to have potent and selective antitumor activity toward 

melanoma cell lines relative to other cell lines tested.  An unprecedented variant of the Ireland Claisen 

rearrangement using an alkenylboronate as a masked hydroxyl forms the basis for a strategy for this 

synthesis.
44

  The design for this synthesis concluded with a macrolactonization and sp
2
-sp

3
 alkyl Suzuki 

cross coupling reaction of the fragments, 8.7 and 8.8 (Scheme 8).  This convergent plan began with the 

construction of fragment 8.8, but the highlight of this asymmetric total synthesis came from the 

construction of the fragment 8.7 of palmerolide A.  The synthesis began with a catalytic enantioselective 

hetero[4+2] cycloaddition catalyzed by Jacobsen’s chiral chromium complex, followed by in situ 

allyboration.
45

  Compound 8.1 conveniently served the dual functions of heterodiene, and the substrate 

for allylboration with the intermediate cycloadduct 8.2 to give the secondary alcohol, 8.3.  Acylation of the 

alcohol leads to the Ireland-Claisen precursor and formation of the Z-enolsilane 8.5 initiates the 

rearrangement to give 8.6 as the pentenoic acid.  The excess of LDA (2.1 equivalent) was likely needed 

due to coordination of the lithium to the boron.  The diastereoselectivity of the product was controlled by 

the conformation of the pyran ring at C8 in the chairlike transition structure shown (8.5).  Suzuki coupling 

of 8.7 and the left fragment 8.8, followed by Yamaguchi macrolactonization led to the asymmetric total 

synthesis of palmerolide A.    
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1.4.1.3 (+)-Psychotrimine 

The Malaysian rubiaceous plant is the source of psychotrimine 9.7, a trimeric tryptamine-related alkaloid 

(Scheme 9).  This alkaloid is the first known to have a tryptamine and a pyrrolidinoindoline unit contained 

in the same compound.  The compound was first isolated by Takayama et al. and they later completed 

the first total asymmetric synthesis by using an ICR as a key step in the synthesis.
46

  This work also 

allowed them to determine the absolute configuration of the natural product.  The synthetic plan for 

psychotrimine was derived from earlier efforts to construct the racemic natural product.  The key step in 

the asymmetric synthesis however, came from a chirality transfer process of the chiral allylic ester 9.4.  

The chiral ester was prepared by esterification of 2-bromophenylactic acid 9.1 followed by radical 
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bromination at the benzylic position, alkaline hydrolysis and coupling to a chiral allylic alcohol in 5 steps 

gave 9.2 in 65% overall yield.  With a point of chirality established, the indoline 9.3 was then installed to 

give the ICR precursor 9.4 as a diastereomeric mixture.  Based on extensive earlier work by Kazmaier in 

the chelate Ireland-Claisen rearrangement to prepare substituted -amino acids,
47

 studies found using 

ZnI2 and the combination of KHMDS/THF as base and solvent were optimal and provided 79% yield in 

74% ee.  Ketene acetal 9.5 produced by treating ester 9.4 with base and metal salt would have two chair-

like transition states, (Z)-enolate 9.5a and (E)-enolate 9.5b, both which favor the qseudo-equatorial 

position for the phenyl group.  Using Zn salts, it was presumed chelation between the nitrogen of the 

indoline and the oxygen of the (Z)-enolate takes place, which led to the new chiral center (S) in good 

optical purity of the pentenoic acid 9.5a.  The absolute configuration was determined by converting the 

ICR product to a  nitrile derivative that could be recrystallized to enantiomeric purity (99.9% ee, 

determined by chiral HPLC).  X-ray crystallographic analysis revealed the compound had the (S)-

configuration at the quaternary carbon center.  The first asymmetric total synthesis of (+)-psychotrimine 

was then completed by following a route that was developed in the racemic synthesis in 18% overall yield 

from the pentenoic acid product.  The spectral data ([]D, NMR, mass) of the synthetic compound was 

compared to that of the natural one and found to be identical and the absolute configuration was thus 

established. 
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1.4.1.4 (-)-Sessilifoliamide 

This natural product, 10.8 (Scheme 10), was isolated from the roots of the perennial herb, Stenona 

sessilifolia in 2003.  Extracts from these plants have been used for centuries for the treatment of various 

respiratory problems, such as bronchitis and tuberculosis.  These alkaloids possess a characteristic 

pyrolo[1,2-a]azepine core attached to a butenolide substituent.  In this synthesis the Ireland-Claisen 

rearrangement was used to install the adjacent C9-C10 stereocenters.  It was found the 
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diastereoselectivity of the reaction could be improved by increasing the steric bulk in the silyl ketene 

acetal substituent in the ICR.
48

  This convergent synthesis began with the construction of 10.1 from (S)-

pyroglutamic acid in five steps.  An enzymatic resolution strategy produced an allylic alcohol which was 

followed by iodination to give fragment 10.2.  The ICR precursor 10.5 was achieved by ring closing 

metathesis and acylation of the allylic alcohol 10.4.  It was discovered that changing the silyl group from 

TBS to TIPS increase the diastereoselectivity from a 2:1 to 6:1 (insert Scheme 10).  It was postulated that 

the silyl group would be positioned underneath the 7-membered ring during the C-C bond formation and 

prefer the boat transition state leading to the desired rearrangement product, 10.7a.  The natural product 

was completed in five additional steps that included Swern oxidation, addition of vinyl magnesium 

bromide and another ring closing metathesis to give (-)-sessilifoliamide C, 10.8. 
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1.4.1.5 (+)-Pinnatoxin A and G 

The 27-membered carbocycle core structure of pinnatoxins A and G (11.9 and 11.10) contains an AG-

spiroimine and BCD-dispiroketal fragment connected by an alkyl chain (C7-C11) and a bridged EF-ketal 

ring (Scheme 11).  The ICR was the chosen to install the quaternary stereocenter at C5 of the AG rings in 

this total asymmetric synthesis of the (+)-pinnatoxin A and G.
49

  The precursor of the ICR 11.4 came from 

the coupling of intermediates 11.1 and 11.2, which were prepared in 9 steps from (S)-citronellic acid and 

10 steps from D-ribose, respectively.  The diastereoselective rearrangement was achieved using the 

chiral lithium amide base, N-trifluoroethyl lithium amide (11.5).  The chirality transfer in the rearrangement 

is enabled by the stereoselective enolization of the acyclic -disubstituted ester 11.4 leading to the 

stereodefined (Z)-enolate, 11.6.  The chiral base controls the conformation in the transition state between 

the substrate and the chiral reagent before the proton transfer  It is this conformational control that 

translates into the geometrical selectivity for the (Z)-enolate formation.  This work marked the first general 

method for stereoselective generation of acyclic -disubstituted ester enolates according to the report.  

The fragment was further elaborated to an advanced intermediate 11.8 where both Pinnatoxin A and G 

could be accessed in six and four steps, respectively.   
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1.4.1.6 (+)-trans-Dihydronarciclasine 

This natural product 12.8 (Scheme 12) comes from the Chinese medical plant, Zephyranthes candida and 

has shown potent and selective anticancer activity.  The following asymmetric total synthesis includes the 

use of a N-Boc protecting group for both directing the stereochemical outcome of the ICR and to facilitate 

a highly selective Friedel-Crafts cyclization reaction to form the B ring of trans-dihydronarciclasine.
50

  The 

precursor to the ICR was prepared by Stille coupling of an aryl bromide and chiral vinylstannane to give 

the allylic alcohol, 12.1.  Acylation of the allylic alcohol with N-Boc protected glycine gave the chiral allylic 

amino ester 12.2 in excellent yield and set the stage for the ICR.  This was initiated by deprotonation with 

LHMDS and then formation of the (Z)-silyl ketene acetal intermediate, 12.3.  Trapping with TBSCl at -78 

o
C and gradual warming to room temperature was followed by treatment with TMS-diazomethane to give 

methyl ester 12.4 in excellent yield as a single diastereomer.  The two new adjacent stereocenters were 

assumed to be 4R and 10R by invoking the chair transition state, 12.3 (Scheme 12).  The assumption 

was ultimately confirmed upon completion of the natural product and comparing the spectral data.  

Progress to complete the asymmetric total synthesis of (+)-trans-dihydronarciclasine included an 

intramolecular Friedel Crafts-type cyclization of the N-Boc carbamate.  It was found the final B ring could 

be formed with high regioselectivity and good yield via an isocyanate intermediate, 12.6.  Demethylation 

and deprotection of 12.7 led to the completion of the total synthesis with spectral data matching those 

reported for the natural product.  
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1.4.1.7 (-)--Kainic acid 

Kainic acid 13.6 (Scheme 13) is a natural marine acid found in algae and is categorized in the kainoid 

family of non-proteinogenic amino acids.  This compound has been used in animal models for its 

neuroexcitotoxic and epileptogenic properties for screening CNS disorders such as Alzheimer’s disease 

and epilepsy.  This, and others in the kainoid family of amino acids, share the same relative configuration 

of trans-C2/C3, cis-C3/C4 around the common pyrrolidine framework.  The approach to this synthesis 

began with the differentially protected ynone, 13.1.
51

  Through a sequence which included a Noyori 

asymmetric reduction (>95% ee), partial reduction of the triple bond and an acylation, the Ireland Claisen 

precursor 13.2 was obtained in 57% overall yield for the three steps.  The allylic ester was then subjected 

to ICR conditions for the (E)-enolate and the rearrangement proceed with the expected chirality transfer 

to install the continuous C2-C3 stereocenters of the pentenoic acid.  This step was followed by 

methylation with diazomethane to give the ester, 13.3 in 79% yield for the two steps.  Further elaboration 

led to the azido epoxy alcohol 13.4 as a single diastereomer.  The 5-exo-tet cyclization was furnished by 

reduction to the amine that was trapped as the carbamate 13.5 as the final stereocenter was installed.  A 

series of oxidations and deprotections completed this asymmetric total synthesis in 47% yield over the 

next five steps.     
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1.4.1.8 (-)-Indoxamycins A - F 

This marine derived class of natural products was isolated in 2009 (see insert A - F Scheme 14) and 

introduced a highly congested and unique [5,5,6] tricyclic carbon framework.  Among this family, 

indoxamycins A and F showed growth inhibition of the HT-29 tumor cell line with IC values of 0.59 and 

0.31, respectively.  The asymmetric total synthesis and structure elucidation of these natural products 

were completed in 2014 by Ding and coworkers.
52

  The ICR was used to introduce two vicinal quaternary 

stereocenters at C(2a) and C(7b) from the allylic  ester, 14.3.  However, under the conditions shown 

(scheme 14), the rearrangement produced a modest 1.5:1 diastereoselectivity for the reaction.  The two 

new quaternary carbons of 14.4 were the consequence of a reductive cyclization carried out over the next 

four steps to give 14.5 as a single diasteromer.  The remaining three stereocenters were installed over  
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the next 6 steps to complete the highly congested core structure 14.6 of the indoxamycins.  Efforts to 

achieve a complete asymmetric total synthesis included the use of chiral Koga-type bases (see insert 

Scheme 15) used in the ICR developed by Zakarian and coworkers.
49

  However, only slight 

improvements in diasteroselectivity (2.6:1) were achieved under these conditions for 15.2a and 15.2b.  

Unlike the excellent acyclic stereocontrol, moderate results in similar cyclic esters were also reported by 

Zakarian et al.
53
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1.4.1.9 Transtaganolides C and D 

Ongoing synthetic studies by the Stoltz group and others have focused on the total synthesis of the 

natural products transtaganolides A-D.
54, 55

  Initial biological evaluation suggests that these natural 

products may inhibit SERCA, SERCA (sarcoendoplasmic reticulum Ca
2+

-ATPase), and is considered 

to be a target for new anticancer drugs.  The central theme to these synthetic endeavors has been 

utilizing an Ireland-Claisen/Diels-Alder cascade reaction.  Recent developments by Stoltz and coworkers 

have established a one-pot synthesis of transtaganolides C and D from an alkynyl pyrone.
56

  The 

synthesis of the ICR precursor began with coupling (Z)-methyl iodoacrylate 16.1 with commercially 

available 3-butyn-1-ol to provide methyl ester 16.2 (Scheme 16).  Treatment of the ester with ICl gave the 

desired cyclization product, 2-pyranone 16.3.   
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Jones oxidation followed by direct coupling with geraniol provided allyl ester, 17.1 (Scheme 17).  Earlier 

reports by Stoltz et al. used the allyl ester 17.1 at this point as the Ireland-Claisen/Diels-Alder precursor in 

studies for the synthesis of the transtaganolides, which would then require protection of the free 

pentenoic acid and coupling with stannylmethoxy acetylide.  It was found that coupling to the allyl ester 

first was much more accessible, and the enyne could be purified on silica gel without hydration or 

decomposition of the product.  This allowed for direct access to the transtaganolides C and D (17.6 and 

17.7) in a single step from the alkynyl pyrone ester 17.3 in 14% yield and as a 2:1 mixture of 

diastereomers.  Although the ICR product could be isolated, it was found to be susceptible to 

decomposition.  It’s postulated that the excess of transtaganolide C (2:1) is due to the preferential 

formation of the (Z)-enolate (17.3a) that places pyrone ring in the pseudo-equatorial position.  Lack of 

complete selectivity in the enolization could be due to the gauche interaction between the pyrone ring and 

the silyl ether.  This one-pot procedure forms three rings, two all carbon quaternary centers and four 

tertiary stereocenters from a simple monocyclic, achiral allylic ester precursor.  
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1.4.1.10 Barmumycin and Limazepine E 

Both of these natural products were isolated from marine bacteria.  Barmunycin was found to be cytotoxic 

against various human tumor cell lines and limazepine E is from a class of natural products whose 

antitumor antibiotic properties are due to their ability to covalently bind to the minor groove of DNA.  The 

total synthesis of barmumycin has been reported.
57

  However, this example illustrates the ability to control 

the geometry of the olefin ((E)-isomer) common to both Barmunycin 18.8 and Limazepine 18.9 by the ICR 

(Scheme 18).  The seven membered lactone 18.3 was derived in four steps from (S)-ethyl lactate by 

bromination, alkylation with PMB-protected glycine, deprotection and macrolactonization to give the ICR 

precursor 18.3.  After screening reagents for the ICR, it was found the dibutylboron triflates showed 

excellent selectivity (95:%) for desired (E)-isomer.  In contrast, the silyl triflates tested gave no selectivity 

and poor yields for the rearrangement.  The rationale offered by the authors suggested a boat-like 

transition state, 18.4 was responsible for the selectivity.  In this instance, they invoke coordination by the 

boron to the lone pair of electrons on the nitrogen atom that stabilizes the boat-like transition state leading 

to the (E)-isomer. In the case of the silyl ketene acetal the coordination does not occur and the transition 

state is believed to have a slight preference for the boat-like transition state, 18.6.  However, the 

precedence offered for chelation control with boron enolates offer a chairlike transition state.
58

  A simple 

analysis of a boat transition state with a model shows an unlikely distance that would allow for chelation 

to nitrogen.  If a boat transition state is responsible for the stereoselectivity, it seems unlikely boron 

chelation occurs.  With this core structure in hand, 18.5, both  Barmunycin 18.8 and limazepine E 18.9 

were accessed in three and five steps, respectively.      
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1.4.1.11 Deoxypumiliotoxin 193H 

Pumiliotoxins are a class of dendrobatid alkaloids and are compounds primarily found in skin secrections 

of amphibians.  This compound 19.7 (Scheme 19) was found in the extracts of the Scheloribates 

azunensis species of mites.  Many of the pumiliotoxins share the common structural features of a 

stereochically defined alkylidene substituent at C6 and an octahydroindolizine core.  The utility of the 

boron enolate ICR to control the geometry of the exocyclic Z-double bond and the configuration of the 

chiral center in the 4-ethylidene proline moiety is demonstrated in this synthesis.
59

  The starting point for 

this synthesis began with L-proline and was transformed in three steps to the homoproline tert-butyl ester 

19.1 (Scheme 19).  Alkylation to the fragment came after deprotection of the nitrogen by addition of 19.2, 

which was derived from L-valine.  The eight-membered lactone ring 19.4 was formed by cleavage of the 

ester group and macrolactonization with the alcohol to form the ICR precursor on a multigram scale.  

Several combinations of boron triflate and base were surveyed to carry out the ICR and give the desired 

ester 19.6.  It was found that the less hindered reagents Et2BOTf and Me2NEt gave the desired product 

with good stereoselectivity and yield.  After converting to the benzyl ether for column separation, the ester 

was converted to Deoxypumiliotoxin 193H, 19.7.  in three steps.  It was postulated the ICR   
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product was a result of the chair-like transition state 20.1 (Scheme 20) that provided 8-epi-(Z)-20.2 with 

the correct double bond geometry, but opposite configuration at the chiral center.  Although no 

precedence was provided, the authors speculated the final product was a consequence of an 

epimerization upon acidic workup to give the more thermodynamically stable isomer (Z)-20.3 shown in 

equation 1 (Scheme 20).  On the other hand, the transition state suggested in equation 2 could also lead 

to the desired (Z)-isomer without epimerization of the carboxylic acid.  In any event, after the benzyl 

protecting group was added the stereochemistry was assigned by 2D and NOE experiments.      
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1.4.1.12 (+)-Asenapine 

(±)-Asenapine is an FDA approved drug sold under the trade names Saphris and Sycrest.  It is used for 

the treatment of schizophrenia and acute mania associated with bipolar disorder.  The chemical structure 

of asenapine (Scheme 21) includes a tetracyclic framework with an N-methylpyrrolidine ring fused at the 3 

and 4 positions. The 3 and 4 positions are substituted with a chlorophenyl and phenyl ether in a trans-

geometry.  The (+)-isomer has been reported to have a higher plasma concentration even though the 

FDA has approved the racemic version of the drug.  The basis of the synthesis was to make one of the 

desired isomers and uncover a route to all four stereoisomers from an appropriate starting material that 

employs the same synthetic sequence.
60

  The synthesis begins with conversion of the commercially 

available (S)-ethyl lactate 21.1 to the allylic alcohol 21.2 in five synthetic steps (scheme 21).  The Ireland 

Claisen precursor was made using the Mitsunobu reaction between the allylic alcohol and the o-

bromophenylactic acid 21.3 in the presence of DIAD and PPh3 to give the ester 21.4 in 83% yield.  The 

ICR was achieved with the addition of LDA, TBSCl and HMPA followed by esterification to give a mixture 

of diastereomers 21.5 and epi-21.5. The additive HMPA is known to stabilize the (Z)-transition state, 

21.4a, to furnish the anti-product.  The diastereomers were separated by column chromatography, in a 

9:1 ratio and 85% yield.  The asymmetric synthesis of (+)-asenapine 21.6 was completed in 13% overall 

yield for the next six steps with 93.8% ee.  
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1.5  Allylic diazene rearrangement 

The parent allylic diazene rearrangement (ADR) is the retro-ene reaction of cis-1-diazo-2-propene to 

produce propene and molecular nitrogen (Scheme 22).
61

 

 

If the terminal carbon of the alkene of the allylic diazene is prochiral, a stereocenter can be installed via 

the ADR.  This reaction has been applied to many cyclic systems to establish an sp
3
 stereocenter.

62
  

However, this had not been applied to acyclic systems until the McIntosh group reported the 

diastereoselective reduction of an -unsaturated tosylhydrazone under the influence of an -alkoxy 

stereocenter (Scheme 23).
63

   

    

McIntosh et al. also applied this methodology to the model system
16

 and racemic synthesis
17

 of 

antascomicin B (Scheme 24).   
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Chapter 2 

2.1 Synthesis toward asymmetric transfer hydrogenation 

Ongoing efforts in our lab have been devoted to the synthesis of antascomicin B.
16, 17, 22

  Our most 

recently published synthesis of the C21-C34 fragment was limited by the lack of an efficient asymmetric 

route to one of the key early intermediates, trihydroxy cyclohexenone 5.1, Figure 5.
17

  At the time, the 

asymmetric routes available to make trihydroxy enone 5.1 included several steps, high enzyme loading, 

long reaction times and limited scale.
64-66

   

   

With that in mind, our group set out to develop an efficient asymmetric synthesis to mimic the racemic 

route to the trihydroxy cyclohexenone.
25, 26

  Our 2011 publication
22

 for the asymmetric synthesis of an 

early intermediate allowed us to apply the methodology of asymmetric transfer hydrogenation to the 

asymmetric synthesis of the C21-C34 fragment of antascomicin B.  Our asymmetric synthesis began with 

the large scale Diels-Alder reaction between 1,4-benzoquinone 25.1 and freshly cracked cyclopentadiene 

(Scheme 25).  The meso diketone product was then subjected to epoxidation conditions on a large scale 

to give the epoxy diketone 25.2.   The ability to execute this sequence on a large scale (100 grams) 

without suffering reduced yields allowed for the development of the large scale (25 grams) asymmetric 

transfer hydrogenation reaction that had been developed on a smaller scale in our lab. 
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2.2 Application of asymmetric transfer hydrogenation 

Using Noyori’s Ru(p-cymene)[(S,S)-TsDPEN] catalyst and a 1:1 mixture of formic acid and triethylamine 

we converted epoxy diketone 26.1 to the epoxy keto alcohol 26.2 in moderate yield (44%), but high 

enantiopurity (99.6:0.4) (Scheme 26).  The intrinsic enantioselectivity of the reaction was 82:18 er at 4% 

conversion of the starting material under optimized conditions, and a 93:7 er on a 60 mmol scale could 

also be achieved in 16 hours with 85% yields.  Longer reaction time (48 hours) resulted in a still greater 

kinetic resolution of the minor enantiomer and increased the er to 99.6:.4, albeit with diminished yields.  

From there, we implemented Taylor’s variant
25

 of the Lubineau procedure
25

 for the retro Diels-Alder to 

free epoxyquinol 26.3 in 80% yield on a 14 gram scale.  This step was also optimized to decrease the 

amount of diphenyl ether by half needed for the reaction compared to our earlier reports.  The ring 

opening of the epoxide was carried out in water at 90 
o
C and gave the trihydroxy cyclohexenone 26.4 in 

44 - 50% yields consistently.
67
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2.3 Synthesis toward Ireland Claisen rearrangement 

With an efficient asymmetric route to the trihydroxy cyclohexenone established, we turned our attention to 

the Ireland-Claisen rearrangement (ICR).  Following the course from our racemic synthesis of the C21-

C34 fragment, we next set out to protect the C30 and C32 hydroxyl groups of the triol to give 27.2, 

followed by alkene hydrogenation to give 27.3 (Scheme 27).  After attempts to repeat this sequence on a 

multi-gram scale, we were met with diminished yields compared with the racemic synthesis 

   

 (50% vs. 59% over two steps).  It was found that by reversing the hydrogenation and protection steps, 

we were able to improve the yield to 65% over the two steps without purification of the trihydroxy 

cyclohexanone intermediate (scheme 28).  Doing so, we eliminated a purification step and improved the 

overall yield by about 15%. 
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The addition of the propynyl Grignard to the -hydroxy ketone gave compound 29.2 in 80% yield (Scheme 

29).  Examples of highly diastereoselective reactions with organometallic nucleophiles to cyclohexanones 

bearing unprotected hydroxyl groups have been reported.
68-71

     

 

Mehta et al. made a 1,3-syn diol by allyl Grignard addtition to a substituted cyclohexanone and suggested 

chelation by the magnesium,  -hydroxyl and carbonyl oxygen, 30.3 (Scheme 30).
72
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Other examples from the literature showed selectivity for the syn-diol, but were substituted in such a way 

that the -hydroxy group was axial and the larger groups were in the equatorial position (Scheme 31).
69, 73

  

In the Podlech example, they suggested attack from the bottom did not occur due to steric hindrance 

 

and they did not invoke chelation by the magnesium.  During the racemic synthesis of the C21-C34 

fragment it was found that protection of the -hydroxyl group was unselective.  Indicating the all equatorial 

configuration is unselective.  In our case the uprotected -hydroxyl was selective to afford the syn-diol, 

presumably through an all axial conformation (Scheme 32). 

 

Regioselective protection of the secondary alcohol with t-Bu carbonate followed the Grignard addition in 

high yield to give 33.2 (Scheme 33) and allowed us to differentiate the protecting groups around the 

cyclohexyl ring for later manipulation of selective deprotection and directed hydrogenation.  This was 
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followed by acylation of the highly congested tertiary alcohol in a similar fashion with n-BuLi to make 

propargyl ester 33.3.  Partial reduction of the triple bond to the (Z)-alkene was carried out using 

Pd/BaSO4 to give the allylic ester 33.4.      
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2.4 Application of Ireland Claisen rearrangement 

The Ireland-Claisen rearrangement (Scheme 34) gave the desired anti-configuration at the C26-C27 

carbons (extended conformation) of the pentenoic acid product and is believed to proceed through the 

chair like transition state 34.2a.  This transition state is believed to be favored because the C30 carbon 

bearing the protected -hydroxyl adjacent to the quaternary carbon is in the pseudoequatorial position 

and avoids the 1,3-diaxial interaction with the silyl ketene acetal.
74

   After the addition of acetic acid, used 

to protonate any unused base and prevent enolization of the product, 34.3 was produced in good yield as 

a single diastereomer based on 
1
H NMR and 

13
C NMR analysis.        
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2.5 Synthesis toward allylic diazene rearrangement 

2.5.1 Initial approach 

The next step in our asymmetric synthesis toward the allylic diazene rearrangement was to convert the 

acid product 35.1 to the Weinreb amide 35.2 (Scheme 35). 

 

In the racemic synthesis of the C21-C34 fragment we used directed hydrogenation after homologation of 

the remaining C21 – C24 carbons (Scheme 36, equation 1).  The problems we encountered were, 1) the 

yield for the reduction in the racemic synthesis was a modest 54%.  2) The racemic synthesis required an 

inefficiently high 40% catalyst loading, And 3) tedious protection/deprotection steps were required.  

Differing from the racemic synthesis however, in our asymmetric synthesis we decided to exploit the 

amide functionality of the Weinreb amide for directed hydrogenation using Crabtree’s catalyst.
75

  It has 

been shown that amides are good directing groups for homogeneous hydrogenation reactions.
76

  We 

believed the selectivity of the hydrogenation would be controlled by the stereocenter at C27, directing the 

coordination of the iridium catalyst to the desired face to avoid allylic 1,3 strain (Scheme 36, equation 2).  

By executing the reduction at this stage we gained several advantages, 1) we improved the yield to 97% 

for the hydrogenation. 2) we reduced the catalyst loading to 5%, and 3) we eliminated the need for the 

tedious protection/deprotection sequence.  In order to confirm the selectivity of the directed hydrogenation  
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reaction, we identified the proton of C30 as a diagnostic peak.  The directed hydrogenation reaction using 

Crabtree’s catalyst gave a single product in excellent yield.  Evidence for the expected trans-diaxial 

coupling (J = 9.44) between the C29-C31 protons were found at 3.1 ppm by 
1
H NMR (Figure 6).  
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Next, with the four stereocenters set around the cyclohexyl moiety and the desired anti-relationship 

between the C26-C27 carbon substituents, we turned our attention to homologation of the remaining 

carbons for the fragment.  The additional carbons would come by way of the synthesis described by Hall 

et al. (Scheme 37).
44

 Starting from commercially available 3-butyn-1-ol (37.1), carbometalation 
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followed by iodination gave (E)-4-iodo-3-methylbut-3-en-1-ol 37.2 as a single product.  Silylation of the 

hydroxyl group was then carried out with imidazole in DMF to give the silyl ether 37.3 in good yield.  The 

vinyl iodide compound 37.3 was then converted to the organolithium and added to Weinreb amide 38.1 

(Scheme 38).   

 

Our task following homologation was intended to lead to the 1,3-reductive transposition reaction by way 

of the allylic diazene rearrangement in order to set the remote stereocenter of the methyl group of C23 by 

our previously reported methodology.   Initially, we attempted the conditions (NH2NHTs, HOAc, CH2Cl2, rt) 

used for the hydrazone formation in the racemic synthesis for the C21-C34 fragment of antascomicin B 

(Scheme 39).
17

 



46 
 

   

This example differs in that the substrate of the racemic synthesis still had the exocyclic double bond 

intact at C28-C29.  This method proved ineffective on our substrate.  Two mechanisms under acidic 

condition were reported consistent with observed data for the formation the carbinolamine intermediate 

leading to hydrazone formation; 1) a process in which carbon-nitrogen bond formation and protonation of 

the oxygen are concerted, eq 1. And 2) a stepwise mechanism involving formation of an unstable 

zwitterionic form of the carbinolamine, which reverts rapidly to starting material unless it is trapped either 

by proton transfer from the acid or by proton transfer directly, eq 2 (Scheme 40).
77, 78

  Under slightly acidic 

conditions (pH = 1-5), formation of the carbinolamine intermediate is slow, reflecting either rate-

determining attack of the nucleophile or rate-determining protonation of the zwitterionic addition product.
77

  

We expected the acid  
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 catalyzed reaction would likely follow a similar path (Scheme 41).  One possible mechanism starts with 

nucleophilic attack of hydrazine to the carbonyl carbon of substrate 40.1 to form the tetrahedral 

zwitterionic intermediate 40.2.  Proton transfer leads to the carbinolamine intermediate 41.4.  Dehydration 

leads to 41.6, which is stabilized by hydrogen bonding to the neighboring oxygen of the benzyl ether.  

Deprotonation leads to the (E)-hydrazone, 41.7.  However, no hydrazonation occurred under these 

conditions in our experiments for the asymmetric synthesis.  

 

Next, we attempted the formation of the tosyl hydrazone using microwave radiation without the use of any 

catalyst.  This method was used with moderate success (47% yield) to form exclusively the E-hydrazone 

in our model study (scheme 42).
16

   

 

The mechanism we expected the microwave reaction would follow is outlined in Scheme 43.  Under 

neutral conditions the nucleophilic hydrazine attacks the carbonyl carbon of substrate 43.1 to form the 

zitterionic tetrahedral intermediate 43.2.  Proton transfer leads to the hemiacetal 43.4 which is stabilized 

by hydrogen bonding to the neighboring oxygen of the benzyl ether.  The loss of hydroxide in 43.4 is 
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believed to be the rate-determining step under these conditions.
77

  Hydrazonation is preceded by 

deprotonation which leads to the (E)-hydrazone, 43.6.   

          

We surveyed reaction conditions for the formation of the hydrazone from the enone (Table 1).  The CW 

pulse variable refers to a constant power and temperature throughout the experiment, similar to a 

conventional domestic microwave oven.  Dynamic pulse refers to a maximum temperature, maximum 

power, and maximum pressure the reaction will reach in short pulses of microwave energy.
79

  Once one 

of the maximum parameters is attained, the system will cool and vent, and then repeat the cycle

Entry TsNHNH2 

(equiv) 
Power 
(watts) 

Time 
(h) 

Temp (
o
C) Pressure 

(psi) 
Pulse result 

1 2 100 16 40 105 CW rsm 

2 2 200 25 100 110 CW Trace 

3 2 300 8 105 110 CW rsm 

4 2 125 16 60 247 dynamic rsm 

5 4 250 15 250 247 dynamic rsm 

6
*
 4 250 15 250 247 dynamic 55% rsm 

 7
** 

4 250 15 250 247 dynamic 0 

8 8 50 20 100 247 CW 0 

Table 1: Microwave reaction conditions.  *indicates addition of 4 Å molecular sieves **indicates addition 
of 0.5 equiv. AcOH and addition of 4 Å molecular sieves. 
 
when a minimum parameter is attained.  The dynamic pulse variable was explored based on a rate 

enhancement found by Ley et al. on the Claisen rearrangement of a propagylic enol ether.
80

  The 

dynamic pulse effect was studied in more detail by Stiegman et al. and they compared conventional 
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thermal heating to dynamic pulse heating by microwave.  In at least one instance, thermal conditions 

were ineffective while microwave heating was successful.
79

  However, the authors were unable to 

determine the source of the microwave rate enhancement.  Despite the precedence from our model study 

and attempts to vary reaction conditions, we were unable to form the hydrazone using microwave 

irradiation.  Various attempts at microwave heating seemed to have no effect on the hydrazone formation 

(Table 1, entries 1-5).  The 
1
H NMR of the crude reaction mixture of entry 2 showed evidence of the 

sulfonamide diagnostic proton at ca. 8.0 ppm.  The analysis of differentiating the NH proton was based on 

earlier work by our group in determining the E/Z geometry of -unsaturated trisubstituted Hydrazones 

(Scheme 43).  It was found the sulfonamide proton of E-hydrazone 43.1 is found at ca. 8 ppm 

 

while that of Z-hydrazone 43.2 is at ca. 10 ppm due to the hydrogen bonding in the Z-hydrazone.  

However, flash column chromatography produced no measurable amount of the product.  The addition of 

powdered molecular sieves in anhydrous solvent, with or without an acid catalyst also had no effect on 

the reaction outcome (entries 5-6).  An eight-fold excess of tosyl hydrazine for 20 hours also did not form 

any trace of the desired product.  Although the cause for our inability to form the tosyl hydrazone product 

from the enone was not clear, we were aware the tosyl hydrazone was also inaccessible with the 

exocyclic double bond reduced (C28-C29) in the model synthesis as well.  Although no molecular 

modeling or calculations were explored, the reason we were unable to form the tosyl hydrazone product 

when the exocyclic double was reduced is presumably due to an unfavorable conformation.  This 

rationale is due to the fact we were able to form the tosyl hydrazone in good yield for the racemic 

synthesis, with the exocyclic double in bond intact.
17

  The remote distance of the C28 – C29 double bond 

to the C25 carbonyl carbon does not suggest electronic influence.  So, only speculation by the author 
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could suggest the added degree of rotational freedom of the aliphatic side chain could orient the carbonyl 

carbon in such a way it is blocked from nucleophilic attack in this instance.          

2.5.2 Second generation approach 

After unsuccessful attempts at hydrazone formation, we pursued alternative approaches.   

To this end we proposed an alternate route to the northern fragment 44.5 by the allylic diazene 

rearrangement and partial hydrogenation of 44.4 (Scheme 47).  The tosyl hydrazone 44.4 would come 

from alkyne dimerization of 44.3.
81

  Starting from the reduced Weinreb amide 44.1, addition of a propynyl 

Grignard would allow for an alternative plan to progress the synthesis.  In route to this new synthetic plan 

for the allylic diazene rearrangement precursor 44.4, we chose to test the likelihood of the proposed 

methodology in a model system using a lactic acid derived substrate.     
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We made an analogous ynone starting from O-benzyl-(S)-lactic acid 45.1 in two steps by first converting 

the acid to the Weinreb amide 45.2.  This was followed by addition of the (E/Z) 1-bromo-1-propene to give 

ynone 45.3 (Scheme 45).   

 

Next, we successfully converted the ynone to the hydrazone 46.2 by the addition of tosyl hydrazide with 

acetic acid in dichloromethane in 86% yield (Scheme 46).  For homologation we followed the general 

conditions for the cross-coupling reaction by Trost and coworkers, but were unable to avoid the pyrazole 

cyclization product 46.3 and no dimerization product (46.4) was observed.
81

 

 

Unfortunately, increased catalyst loading, increased acceptor concentration and changes in the order of 

addition we were unable to avoid cyclization to form the pyrazole product.  The pyrazole product was 

evident as the only isolated product from the 
1
H NMR spectra (Figure 7).  
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To continue for proof of concept we decided it could still be a viable route if we followed ynone formation 

with alkyne dimerization and then move on with the hydrazone formation reaction.  A working hypothesis 

for the mechanism proposed by Trost et al. is adapted for this system in Scheme 47.
81

  It begins with the 

coordination of the triple bond with the Pd(2+) species followed by oxidative addition to give 47.3.  

Reductive elimination follows with the loss of acetic acid to give the intermediate 47.4.  Coordination of 

the acceptor alkyne 47.6 followed by migratory insertion gives the intermediate 47.7 which then is 

protonated to release the product and repeat the cycle.   
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.  

Coupling to the ynone directly also avoids the chance of pyrazole ring formation encountered in our 

previous attempt.  Fortunately, both 3-butyn-1-ol and O-TBS-hexyne were acceptable alkyne donors for 

the cross-coupling reaction to the acceptor ynone 48.1 in our model scheme to make compounds 48.2 

and 48.3 (Scheme 48).   

 



54 
 

After the success of the tosyl hydrazone precursor formation in the model synthesis, we decided to test 

likelihood of the actual fragment through this sequence of steps as well.  Although the formation of ynone 

49.2 was successful in the fully substituted series, the reaction was sluggish and only gave a modest 46% 

yield (Scheme 49).  Unfortunately, the alkyne dimerization to give enone 49.4 was not successful and 

returned only starting material using our more complex reacting partners, 49.2 and 49.3.  Although 

several substituted ynones coupled to terminal alkynes were reported by Trost and coworkers, this 

application would have been one of the more highly congested examples.        

 

2.5.3 Third generation approach toward allylic diazene rearrangement 

We were unsuccessful in our attempts of completing the new synthetic strategy by reducing the exocyclic 

double bond at C29 of the Weinreb amide (Figure 8) at an earlier stage in the synthesis.  Also, the 

altogether different synthetic strategy of exploring the alkyne dimerization approach proved ineffective 

when using the appropriately functionalized material compared to the success with the less functionalized 

model system. 
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Our efforts then turned to reproducing the path laid out in our racemic synthesis of the C21-C34 fragment 

of antascomicin B by homologation of the remaining carbons to the fragment, 50.1.  This was achieved by 

the addition of the vinyl iodide compound 50.2, converted to the lithium ion in situ, and added to the 

Weinreb amide to give the dieneone, 50.3 (scheme 50).   

 

The desired hydrazone formation followed smoothly by reacting the enone 51.1 with tosylhydrazide and 

0.7 equivalence of acetic acid in dichloromethane for 2 days to give the (E)-tosyl hydrazone 51.2 in 77% 

yield, determined by 
1
H NMR (Scheme 51).  
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2.6 Application of allylic diazene rearrangement 

The earliest example of the allylic diazene rearrangement used to install sp
3
 stereocenter in an acyclic 

system comes from McIntosh’s work in 2008.
63

  In this paper it was found that diastereoselective 

reduction of -unsaturated tosylhydrazone could be achieved under the influence of an -alkoxy 

stereocenter (see scheme 23). 

 A demonstrative example of this work using a lactic acid derivative is shown is (Scheme 52).  The 

conditions used for the transformation were adapted from earlier work by Kabalka’s group with the 

exception of the additional 2 weight equivalent of silica gel that was found to greatly accelerate the 

reaction.
82

   

     

This methodology developed by our group was applied to our model synthesis of the C22-C34 fragment 

and the racemic C22-C34 fragment of antascomicin B (Scheme 53).  Although the role of the silica gel 

was not fully understood at the time, both examples gave excellent to good yields for the allylic diazene 

rearrangement (ADR).   
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Following the publication of the examples listed above, former group member, Maha Laxmi Shrestha, 

investigated several aspects related to the allylic diazene rearrangement in her thesis titled, Further 

studies on the allylic diazene rearrangement.
83

  First, the mechanism was studied and it was 

hypothesized that the 1,4-syn product 54.3 obtained in the ADR would likely go through a 1,2-anti isomer 

54.2 produced in the hydrazone reduction step (Scheme 54).  The chelation controlled model was used to 

rationalize the 1,2-anti product of the reduction.  After the hydride attacks from the less hindered side, the 

subsequent 1,4-syn product is formed by suprafacial delivery of the hydrogen atom to the alkene.   
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This was shown in contrast to Felkin-Ahn model that would likely result in a 1,2-syn intermediate 54.4 and 

produce a 1,4-anti alkene 54.5 that was not observed following the ADR.  Evidence was also found by 

spectroscopic experiments that a chelation model best supports the reduction step of the hydrazone.  The 

coupling constant found by Shrestha
83

 for 54.2 was (3-5 Hz) for the 1,2-anti product.  This was in 

agreement with the 1979 report by Rosini and coworkers using sodium cyanoborohydride and p-

toluenesulfonic acid in THF for hydrazone reduction that gave isolated hydrazine products.  In this report, 

Rosini et al. reported coupling constant values for 1,2-anti and 1,2-syn hydrazine diastereomers as (3-5 

Hz) and (8-11 Hz), respectively.
84

  

The role of silica gel in the reduction of tosy hydrazones was also investigated.  It was hypothesized that 

the silica gel served as a proton source and would likely facilitate the formation of a 5-membered chelate 

intermediate 55.2 so the hydride would attack the iminium ion to afford the 1,2 anti-product 55.3 by 

reduction (scheme 55).     
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Although the yield and diastereoselectivity when using silica gel in both the model and racemic synthesis 

gave good to excellent results, replacing silica gel with a protic acid offers some advantages.  1)  

Replacing the insoluble silica gel with a soluble, well-defined protic acid is preferable.  2)  Stoichiometric 

quantities of silica gel were required to affect the rate of the reaction, making it impractical for large scale 

application.  When the silica gel was replaced with acetic acid (6-10 eq) the trisubstituted alkene (E)-

hydrazone 56.1 gave good yields for the reduction to give 56.2 (Scheme 56).  Additionally, the amount of 

the costly catecholborane ($491.06/mol) required for the reaction was reduced by half and the scale of 

the reaction was doubled when conditions were optimized without any difference in product yield.    

      

The problems encountered from the racemic synthesis were the reduction of the hydrazone required 

significantly higher loading of catecholborane than was needed in the model and simpler systems.  Three 

charges of 6 equiv each were required to effect the reduction.  This excess of catecholborane also 

demanded an intermediate wash with saturated sodium thiosulfate after the reduction to decompose the 
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excess borane.  After considering some of the drawbacks encountered when executing the 

reduction/ADR in the racemic synthesis, we decided to use the conditions discussed above for our 

reduction/ADR in the asymmetric synthesis.
17

   

Gratifyingly, the hydrazone reduction was successful when the silica gel was replaced with acetic acid 

and the ADR followed in-situ upon the addition of sodium acetate and refluxing (scheme 57).  The acetic 

acid likely served as a proton donor to the 5-membered chelate intermediate 57.1a so the hydride from 

catecholborane could attack from the less hindered side to give the 1,2-anti product 57.2 (not detected).  

The 1,4-syn product 57.3 is then formed as a result of the allylic strain induced conformation shown in 

compound 57.2a.         
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2.7 Conclusion  

A 16 step longest linear sequence asymmetric synthesis has been completed for the C21-C34 fragment 

of the natural product antascomicin B.  During the course of the study improvements were made to 

increase the scale of early intermediates and improve yields of the intermediate steps.  The allylic 

diazene rearrangement (see section 2.6) for the C21-C34 fragment was optimized from the racemic 

synthesis by replacing the silica gel with acetic acid.  The amount of costly catecholborane was reduced 

and the step needed for a Na2S2O3 wash to decompose excess catecholborane was eliminated.  A 

directed hydrogenation reaction using Crabtree’s iridium catalyst was successful in the installation of the 

C29 stereocenter.        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



62 
 

Chapter 3 

3.1 Experimental 

Diketone 25.2. A 2 L round bottom three necked flask, equipped with a mechanical stirrer 

and thermometer was charged with CH2Cl2 (800 mL) and p-Benzoquinone (99.00 g, 0.92 mol). The flask 

was then cooled to 0 
o
C with a methanol and ice bath. Freshly cracked cyclopentadiene (Note 1) (40 mL, 

0.46 mol) was added over a period of 30 min. A second 38 mL portion of cyclopentadiene was added in a 

similar fashion (Note 2). The mixture was then stirred in the ice bath for 1 h and then stirred at rt for 30 

min. The solvent was removed in vacuo and the crude red oil material was purified by recrystallization 

from hexanes. The pale-yellow crystals were washed with cold hexanes, air dryed, and then dried 

completely under high vacuum to give diketone 25.2 as pale-yellow crystals (102.2 g, 59%): spectral data 

matched those previously reported.
85

 

Note 1: To prepare cyclopentadiene, dicyclopentadiene was placed in a single necked round bottom flask 
with a stirring bar. The flask was then equipped with a vigreux column which was attached to a condenser 
with recirculating ice water. The flask was then heated to 220 

o
C.  The point of condensation was 

monitored by thermometer to make sure that the collection did not occur above 42 
o
C which is the point at 

which dicyclopentadiene distills. The cracked cyclopentadiene was collected at -78 
o
C.  

 
Note 2: The cyclopentadiene was added in two portions to mitigate the dimerization that occurs upon 
warming to rt. 
 

Epoxide-Diketone 25.3. To a 2 L round bottom three necked flask, equipped with a 

mechanical stirrer, diketone 25.2 (108.15 g, 0.62 mol) was dissolved in THF (1300 mL) while stirring. 

H2O2 (35%, 120 mL) was added dropwise via addition funnel over approx. 1 h. To the solution, NaHCO3 

(sat., 133 mL) was added dropwise via addition funnel approx. 1 h. The mixture was then stirred for 2 h 

until now starting material remained by TLC. The solvent was removed in vacuo and the crude material 
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(pale-white solid) was purified by recrystallization (pure-white solid) from ethanol to give 25.3 (83.7 g, 

71%). spectral data matched those previously reported. 

Ru(p-Cy)TsDPEN was prepared by dissolving (1.00 g, 1.63 mmol) and (S,S)-

TsDPEN (1.20 g, 3.27 mmol) in CH2Cl2 (23 mL) and allowing to stir for 5 minutes. KOH (1.31 g, 2.3 mmol) 

and water (23 mL) was then added and the mixture was allowed to stir for an additional 5 minutes. 

Reaction was complete when the color turned from orange to deep purple. Reaction was extracted in 

CH2Cl2, dried over CaH2, and then concentrated in vacuo to give Ru(p-Cy) TsDPEN as dark purple 

crystals (quant. yield). Data matched that previously reported.
86

 

 

 

Monoreduced epoxyketo alcohol 26.2. Ru(p-cymene)(S,S-TsDPEN) (0.42 g, 0.68 

mmol, 0.65 mol %) and epoxy diketone 25.3 (20.0 g, 0.11 mol) were added to a solution of formic acid 

(6.75 mL), triethylamine (25.0 mL) and acetonitrile (1000 mL) at -10 °C. The reaction mixture was allowed 

to slowly warm to rt and stirred for ca. 48 h. The mixture was concentrated in vacuo and then stirred for 

ca. 16 h in 30/70 ethyl acetate/hexanes (300 mL) with activated charcoal (1 g). The mixture was filtered 

through a plug of Celite with 30/70 ethyl acetate/hexanes and concentrated in vacuo. At this point, the 

residue could be purified by flash chromatography (20/80 ethyl acetate/hexanes) to give keto alcohol 26.2 

as colorless crystals (8.10 g, 40%, er 99.6:0.4). Spectral data matched those previously reported.
22
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Epoxyquinol 26.3. A solution of monoreduced epoxyketo alcohol 26.2 (20 g, 0.104 mol) in 

diphenyl ether (200 mL) was dissolved and stirred at rt while degassed with nitrogen for 30 minutes. The 

reaction mixture was then heated to 180 
o
C (still gently bubbling through with nitrogen) until 

decomposition product became a significant spot as monitored by TLC. After cooling to room 

temperature, the reaction mixture was poured onto a column of silica gel using hexane to elute diphenyl 

ether solvent.  After elution with hexane, the reaction mixture was eluted with 1/99-10/90 MeOH/CH2Cl2 

1% gradient followed by recrystallization with diethyl ether to yield pure epoxyquinol 26.3 as white cyrstals 

(9.98 g, 76%).  Spectral data matched those previously reported.
22

   

Trihydroxy cyclohexenone 26.4. Epoxyquinol 26.3 (12 g, 79.30 mmol) was distributed in 

1 gram aliquots to 12 parallel synthesizer tubes and DI H2O (12 mL) with stir bar. Each tube was heated 

to 90 
o
C for 3.5 days on the heating mantle. H2O was then co-evaporated with MeCN and the brown 

residue was adsorbed on silica gel. The silica gel/residue was added to a silica gel column using CH2Cl2. 

Mixture was eluted with 0/99-10/90 MeOH/CH2Cl2 at 1% gradient. The second fraction was collected and 

recrystallized in EtOH to give trihydroxy cyclohexanone 26.4 (6.03 g, 41.84 mmol, 44%) as colorless 

crystals.  M.P. 136-138 
o
C; [α]

23
D -0.885 (c 0.437 1:1 MeOH:CH2Cl2); IR (film) 3400, 2835, 1693 

1
H NMR 

(400 MHz, CD3OD) δ 3.58 (dd, J = 10.87 Hz, 8.28 Hz, 1H), 4.03 Hz (d, J = 10.88 Hz, 1H), 4.36 (m, 1H), 

6.04 (dd, J = 10.33 Hz, 2.56 Hz, 1H), 6.92 (d, J = 10.33 Hz, 1.94 Hz, 1H); 
13

C NMR (400 MHz, CH3OD) δ 

70.12, 75.17, 76.99, 124.57, 150.36, 197.21. Anal Calcd for C6H8O3: C, 50.00; H, 5.59. Found: C, 49.89; 

H, 5.65. 
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Disilyl ether 27.2.  A solution of TBSCl (18.18 g, 120 mmol) and imidazole (10.96 g, 161 

mmol) in dry DMF (40 mL) was added to trihydroxy cyclohexenone 26.4 (5.8 g, 40.2 mmol) in dry DMF 

(25 mL). After stirring at room temperature for 4 h, the reaction mixture was quenched with ice water, 

extracted with ether, dried over MgSO4, and concentrated in vacuo. The crude product was purified by 

flash column chromatography on silica gel using 5/95 ethyl acetate/hexane, followed by recrystallization 

with cold hexane to give the disilyl ether 27.2 (8.55 g, 23 mmol, 57%) as white crystals. M.P. 101-103 
o
C; 

[α]
23

D = -0.11 (c 0.24 CH2Cl2); IR (film) 3394, 1647 cm-1; 
1
H NMR (400 MHz, CDCl3) δ 0.11 (s, 3H), 0.19 

(s, 6H), 0.24 (s, 3H), 0.94 (s, 9H), 0.96 (s, 9H), 2.56 (d, J = 1.72 Hz, 1H), 3.77 (m, 1H), 4.03 (d, J = 10.55 

Hz, 1H), 4.46 (dt, J = 7.96 Hz, 2.16 Hz, 1H), 5.98 (dd, J = 10.36 Hz, 2.41 Hz, 1H), 6.70 (dd, J = 10.36 Hz, 

1.91 Hz, 1H); 
13

C NMR (400 MHz, CDCl3) δ -5.40, -4.91, -4.46, -4.13, 18.15, 18.61, 25.76, 25.94, 72.68, 

78.55, 78.70, 126.86, 150.71, 196.78. Anal Calcd for C18H36O4Si2: C, 58.02; H, 9.74. Found: C, 58.15; H, 

9.93. 

Trihydroxy ketone 28.2. A mixture of trihydroxy cyclohexenone 27.2 6.13 g, 42.5 mmol) 

and 10% Pd/C (1.2 g, 11.2 mmol Pd) in dry methanol (200 mL) was stirred under an H2 atmosphere (1 

atm) overnight. Following completion of the reaction, the mixture was filtered through celite and 

concentrated. The crude product was used without further purification.   

 Hydroxy ketone 27.3. A solution of TBSCl (5.82 g, 38.6 mmol) and imidazole (3.50 g, 

51.4 mmol) in dry DMF (30 mL) was added to trihydroxy cyclohexanone 28.2 (1.88 g, 12.9 mmol) in dry 

DMF (10 mL). After stirring at room temperature for 4 h, the reaction mixture was quenched with ice 
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water, extracted with ether, dried over MgSO4, and concentrated in vacuo. The crude product was purified 

by flash column chromatography on silica gel using 3/97 ethyl acetate/hexane, followed by 

recrystallization with cold hexane to give ketone 27.3 (3.13 g, 8.34 mmol, 65% over 2 steps).  

Alternatively, a mixture of disilyl ether 27.2 (1.9 g, 5.1 mmol) and 10% Pd/C (0.20 g, 0.11 mmol Pd) in dry 

methanol (30 mL) was stirred under an H2 atmosphere (1 atm) for 7 h. Following completion of the 

reaction, the mixture was filtered through celite and concentrated.  The crude product was purified by 

flash column chromatography on silica gel using 1/99-3/97 gradient of ethyl acetate/hexane, followed by 

recrystallization with cold hexane to give hydroxyl ketone 27.3 (4.67 g, 12.47 mmol, 88%) as white 

crystals. M.P. 76-78 
o
C; [α]

23
D = +0.084 (c 0.26 CH2Cl2); IR (film) 3414, 1736 cm-1; 

1
H NMR (400 MHz, 

CDCl3) δ 0.06 (s, 3H), 0.14 (s, 3H), 0.16 (s, 3H), 0.17 (s, 3H), 0.92 (s, 9H), 0.94 (s, 9H), 1.60 (m, 1H), 

2.04 (m, 1H), 2.37 (m, 2H), 2.53 (d, J = 2.53 Hz, 1H), 3.47 (td J = 9.96, 1.54, 1H), 3.87 (ddd, J = 11.21, 

8.67, 4.69, 1H), 4.07 (d, J = 9.77 Hz, 1H); 
13

C NMR (400 MHz, CDCl3) δ -5.33, -4.49, -4.44, 18.10, 18.59, 

25.78, 25.84, 29.65, 34.67, 35.72, 72.84, 79.71, 205.66. Anal Calcd for C18H38O4Si2: C, 57.70; H, 10.22. 

Found: C, 58.39; H, 10.55.          

Diol 29.2. Propynyl magnesium bromide (41.0 mL, 0.5 M in THF, 20.5 mmol) was 

added dropwise to a solution of hydroxyl ketone 27.3 (2.17 g, 5.8 mmol) in THF (80 mL) at -10 
o
C. After 

warming to room temperature over 5 h, the reaction mixture was quenched with cold NH4Cl (aq) solution, 

extracted with ether, dried over MgSO4, and concentrated in vacuo. The crude product was purified by 

flash column chromatography on silica gel using 3/97-5/95 ethyl acetate/hexane gradient to give diol 29.2 

(1.9 g, 4.58 mmol, 79%) as white crystals.  M.P. 50-52 
o
C; [α]

23
D = +0.031 (c 0.26 CH2Cl2); IR (film) 3540, 

2113 cm-1; 
1
H NMR (400 MHz, CDCl3) δ 0.11 (s, 3H), 0.12 (s, 3H), 0.14 (s, 3H), 0.17 (s, 3H), 0.91 (s, 

9H), 0.95 (s, 9H), 1.49 (td, J = 13.48 Hz, 3.85 Hz, 1H), 1.71 (dddd, J = 17.06 Hz, 14.18 Hz, 10.91 Hz, 

3.58 Hz, 2H), 1.86 (s, 3H), 1.91 (dt, J = 12.97 Hz, 3.38 Hz, 1H), 2.21 (s, 1H), 2.56 (s, 1H), 3.29 (d, J = 

9.25 Hz, 1H), 3.42 (m, 2H); 
13

C NMR (400 MHz, CDCl3) δ -4.70, -4.53, -4.24, - 3.83, 3.62, 18.10, 18.43, 
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25.86, 26.02, 29.38, 33.23, 72.65, 74.50, 77.71, 79.36, 80.27, 82.41; Anal Calcd for C21H42O4Si2: C, 

60.82; H, 10.21. Found: C, 60.81; H, 10.35. 

Propagyl alcohol 33.2.  n-BuLi (3.22 mL, 2.8 M in Hexanes, 9.02 mmol) was added 

dropwise to a solution of diol 29.2 (3.50 g, 8.44 mmol) in ether (140 mL) at -78 
o
C. After 30 min, Di-tert-

butyl-dicarbonate (2.40 g, 11.0 mmol) dissolved in ether (30 mL) was added dropwise and the reaction 

mixture was allowed to slowly warm to room temperature over 7 h. Following completion of the reaction 

as monitored by TLC, reaction mixture was quenched with cold NH4Cl (aq) solution, extracted with ether, 

dried over MgSO4, and centrated in vacuo. The crude product was purified by filtration through a silica gel 

plug using 10/90 ethyl acetate/hexane, followed by recrystallization with cold hexane to give propargyl 

alcohol 33.2 (4.03 g, 7.82 mmol, 93%) as white crystals. M.P. 126-128 
o
C; ; [α]

23
D = +0.080 (c 0.196 

CH2Cl2); IR (film) 3580, 1752 cm-1; 
1
H NMR (400 MHz, CDCl3) δ 0.07 (s, 3H), 0.08 (s, 3H), 0.11 (s, 3H), 

0.12 (s, 3H), 0.88 (s, 9H), 0.92 (s, 9H), 1.49 (s, 9H), 1.78 (m, 2H), 1.88 (s, 3H), 1.92 (t, J = 3.55 Hz, 1H), 

2.40 (s, 1H), 3.40 (d, J = 9.64 Hz, 1H), 3.56 (td, J = 9.80 Hz, 5.85 Hz, 1H), 4.71 (t, J = 9.34 Hz, 1H). 
13

C 

NMR (400 MHz, CDCl3) δ -4.73, -4.48, -4.47, -4.20, 3.68, 17.94, 18.16, 25.80, 25.87, 28.01, 29.76, 33.20, 

72.41, 72.96, 78.29, 78.62, 80.99, 81.61, 83.35, 152.98; Anal Calcd for C26H50O6Si2: C, 60.66; H, 9.79. 

Found: C, 60.92; H, 10.03. 

Glycolate ester 33.4. n-BuLi (4.51 mL, 2.8 M in Hexanes, 12.63 mmol) was 

added dropwise to a solution of propargyl alcohol 33.2 (4.33 g, 8.41 mmol) in ether (110 mL) at -78 
o
C. 

After 20 min, the acid chloride (3.25 mL, 20.9 mmol) was added dropwise and the reaction mixture was 

allowed to slowly warm to room temperature over 9 h. When the reaction ceased as observed by TLC, 
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reaction mixture was quenched with cold NH4Cl (aq) solution, extracted with ether, dried over MgSO4, 

and concentrated in vacuo. The crude product was purified by flash column chromatography on silica gel 

using 1/99- 3/97 ethyl acetate/hexane gradient giving glycolate ester 33.4 (3.52 g, 5.30 mmol, 63%, 97% 

brsm) as a colorless oil.  [α]
23

D = +0.314 (c 1.42, CH2Cl2); IR (film) 2266, 1747 cm-1; 
1
H NMR (400 MHz, 

CDCl3) δ 0.04 (s, 3H), 0.07 (s, 3H), 0.07 (s, 3H), 0.07 (s, 3H), 0.87 (s, 9H), 0.88 (s, 9H), 1.39 (m, 1H), 

1.49 (s, 9H), 1.80 (m, 2H), 1.92 (s, 3H), 2.83 (dt, J = 13.08 Hz, 3.55 Hz, 1H) 3.55 (td, J = 9.18 Hz, 7.48 

Hz, 1H), 3.64 (d, J = 9.44 Hz, 1H), 4.04 (d, J = 2.45 Hz, 2H), 4.63 (q, J = 11.52 Hz, 11.53 Hz 2H), 4.76 (t, 

J = 9.33 Hz, 1H), 7.34 (m, 5H); 
13

C NMR ( 400 MHz, CDCl3) δ-4.75, -4.56, -4.49, -4.14, 3.90, 17.94, 

18.17, 25.73, 25.79, 28.01, 29.28, 30.22, 67.36, 71.86, 73.34, 73.99, 76.41, 80.74, 80.97, 81.84, 86.35, 

128.02, 128.20, 128.46, 136.97, 152.83, 186.28; Anal Calcd for C35H58O8Si2: C, 63.40; H, 8.82. Found: C, 

61.16; H, 8.66. 

Allylic ester 33.5. A mixture of the alkyne 33.4 (0.84 g, 1.27 mmol), 

pyridine (0.05 mL, 0.63 mmol), and 5% Pd/BaSO4 (0.53 g, 0.25 mmol) dissolved in ethyl acetate (20 mL) 

was shaken in a Parr bottle under an H2 atmosphere (90 psi) for 7 h. The reaction mixture was filtered 

through celite and concentrated. The crude product was purified by flash column chromatography on 

silica gel using 0/100-5/95 ethyl acetate/hexane gradient to give allylic ester 33.5 (0.74 g, 1.11 mmol, 

88%, 94% brsm) as a colorless oil. [α]
23

D = -0.278 (c 0.88 CH2Cl2); IR (film) 1751 cm-1; 
1
H NMR (400 

MHz, CDCl3) δ 0.03 (s, 3H), 0.07 (s, 3H), 0.07 (s, 3H), 0.09 (s, 3H), 0.85 (s, 9H), 0.87 (s, 9H), 1.31 (m, 

1H), 1.48 (s, 9H), 1.55 (m, 1H), 1.82 (d, J = 6.72 Hz, 3H), 1.91 (m, 1H), 2.75 (dt, J = 13.16 Hz, 3.43 Hz, 

1H), 3.64 (ddd, J = 11.05 Hz, 9.02 Hz, 5.04 Hz, 1H), 4.02 (d, J = 2.13 Hz, 2H), 4.08 (d, J = 9.50 Hz, 1H), 

4.57 (t, J = 4.56 Hz, 1H), 4.63 (m, 2H), 5.78 (m, 2H), 7.32 (m, 5H); 
13

C NMR (400 MHz, CDCl3) δ - 4.66, -

4.58, -4.36, -4.21, 15.18, 17.93, 18.15, 25.80, 25.95, 28.01, 28.18, 29.35, 30.95, 67.56, 71.95a, 73.26, 

75.66, 77.24, 80.37, 81.81, 86.76, 124.26, 127.96, 128.06, 131.11, 137.14, 153.05, 168.90; Anal calcd for 

C35H60O8Si2: C, 63.64; H, 9.34. Found: C, 63.75; H, 9.18. 
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Pentenoic acid 34.3.  n-BuLi (2.25 mL, 1.6 M in Hexanes, 3.6 

mmol) was added dropwise to a solution of diisopropylamine (0.5 mL, 3.50 mmol) in THF (40 mL) at -78 

o
C. After 20 min, this solution was cannulated to a solution of allylic ester 33.5 (1.20 g, 1.80 mmol) and 

TMSCl (0.68 mL, 5.38 mmol) in THF (20 mL) at -78 
o
C. After 10 min AcOH (0.124 mL, 2.20 mmol) was 

added and the reaction mixture was allowed to slowly warm to rt. After 3 h, the reaction mixture was 

quenched with cold saturated NH4Cl (aq) solution, extracted with ether, dried over MgSO4, and 

concentrated in vacuo. The crude product was then dissolved in ether (5 mL), treated with NEt3 (0.30 mL, 

2.15 mmol), and purified by flash chromatography over silica gel eluting with 1% NEt3 in ether, then 1% 

HCO2H in ether. Removal of excess formic acid in vacuo gave pentenoic acid 34.3 (0.973 g, 1.46 mmol, 

81%, 99% brsm) as a colorless oil. [α]
23

D = +0.424 (c 1.32 CH2Cl2); IR (film) 3414, 1750, 1651 cm-1; 
1
H 

NMR (400 MHz, CDCl3) δ -0.01 (s, 3H), 0.04 (s, 3H), 0.05 (s, 3H), 0.08 (s, 3H), 0.85 (s, 9H), 0.90 (s, 9H), 

1.05 (d, J = 6.81 Hz, 3H), 1.29 (m, 1H), 1.47 (s, 9H), 1.56 (m, 1H), 1.86 (m, 1H), 2.50 (d, J = 13.63 Hz, 

1H), 2.98 (m, 1H), 3.65 (ddd, J = 11.28 Hz, 8.89 Hz, 5.14 Hz, 1H), 3.85 (dd, J = 6.41, 3.08, 2H), 4.38 (t, J 

= 9.16 Hz, 1H), 4.47 (d, J = 11.50 Hz, 1H), 4.73 (d, J = 11.50 Hz, 1H), 5.61 (d, J = 10.49 Hz, 1H), 7.34 (m, 

5H). 
13

C NMR (400 MHz, CDCl3) δ -4.96, -4.90, -4.86, -4.39, 8.50, 17.89, 18.19, 23.31, 25.773, 25.929, 

28.01, 33.78, 35.40, 72.54, 72.93, 73.95, 81.16, 83.34, 83.96, 123.74, 127.69, 127.99, 128.33, 136.96, 

137.60, 153.12, 175.83. Anal calcd for C35H60O8Si2: C, 63.21; H, 9.09. Found: C, 61.29; H, 9.52. 

Weinreb amide 35.2.  Freshly distilled MsCl (0.12 mL, 1.55 

mmol) was added dropwise to a solution of pentenoic acid 34.3 (0.67 g, 1.01 mmol) and NEt3 (0.42 mL, 

3.01 mmol) in THF (30 mL) at 0 
o
C. After 30 min, HN(OMe)Me (0.15 mL, 2.04 mmol) was added dropwise 

and the reaction mixture was allowed to warm to rt over 6 hours. The reaction mixture was quenched with 

saturated NH4Cl (aq) solution, extracted with ether, dried over MgSO4, and concentrated in vacuo. The 

crude product was purified by filtration through a silica gel plug with 1% NEt3 in ether. Starting material 
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was recovered with 1% formic acid in ether. After removal of solvents under vacuum, Weinreb amide 35.2 

was isolated (0.55 g, .776 mmol, 77%, 97% brsm) as clear oil. [α]
23

D = +0.234 (c 0.74 CH2Cl2); IR (film) 

1633, 1732 cm-1; 
1
H NMR (400 MHz, CDCl3) δ -0.02 (s, 3H), 0.00 (s, 3H), 0.03 (s, 3H), 0.08 (s, 3H), 0.83 

(s, 9H), 0.91 (s, 12H), 1.25 (m, 1H), 1.48 (s, 9H), 1.54 (td, J = 14.25 Hz, 13.93 Hz, 2.91 Hz, 1H), 1.76 (m, 

1H), 2.62 (d, J =13.39 Hz, 1H), 2.99 (m, 1H), 3.21 (s, 3H), 3.54 (s, 3H), 3.63 (ddd, J = 11.31, 8.88, 5.13 

Hz, 1H), 3.87 (dd, J = 9.41, 1.63 Hz, 1H), 4.13 (d, J =8.20 Hz, 1H), 4.40 (d, J =11.80 Hz, 1H), 4.47 (t, J = 

9.10 Hz, 1H), 4.59 (d, J = 11.79 Hz, 1H), 5.48 (d, J = 10.22 Hz, 1H), 7.26 (m, 5H); 
13

C NMR (MHz, CDCl3) 

δ -4.89, -4.82, -4.83, -4.39, 14.10, 17.87, 18.25, 23.48, 25.77, 25.95, 28.03, 29.71, 33.71, 35.46, 61.17, 

71.98, 72.57, 73.98, 79.15, 81.06, 83.98, 125.18, 128.02, 128.23, 128.37, 137.38, 137.65, 153.08, 

173.19. Anal Calcd for C37H65NO8Si2: C, 62.76; H, 9.25; N, 1.98. Found: C, 62.08; H, 9.24; N, 1.93. 

Reduced Weinreb amide 36.2. A mixture of Weinreb amide 7.2 

(0.40 g, 0.565 mmol) and Crabtree’s catalyst (0.023 g, 0.0282 mmol) in CH2Cl2 (100 mL) was shaken in a 

Parr bottle under H2 (90 psi) overnight. The reaction mixture was concentrated in vacuo and purified by 

flash column chromatography on silica gel using 20/80 ethyl acetate/hexane to afford reduced amide 8.2 

(0.39 g, 0.55 mmol, 97%) as a colorless oil. [α]
23

D = +0.053 (c 1.32 CH2Cl2); IR (film) 1675, 1748 cm- 1; 

1
H NMR (400 MHz, CDCl3) δ 0.05 (s, 3H), 0.05 (s, 3H), 0.06 (s, 3H), 0.09 (s, 3H), 0.88 (s, 9H), 0.90 (s, 

9H), 0.92 (m, 2H), 1.27 (m, 1H), 1.50 (s, 9H), 1.73 (m, 2H), 1.90 (d, J = 13.60 Hz, 1H), 2.07 (m, 2H), 3.12 

(t, J = 9.44 Hz, 1H), 3.22 (s, 3H), 3.47 (ddd, J = 11.32 Hz, 9.20 Hz, 4.96 Hz, 1H), 3.60 (s, 3H), 4.14 (dd, 

7.14 Hz, 1H), 4.38 (d, J = 11.21 Hz, 1H), 4.48 (t, J = 9.10 Hz, 1H), 4.56 (d, J = 11.24 Hz, 1H), 7.35 (m, 

5H); 
13

C NMR (400 MHz, CDCl3) δ -4.62, -4.47, -3.91, -3.56, 17.92, 18.01, 18.08, 25.61, 25.82, 26.12, 

28.06, 29.68, 32.24, 32.97, 33.55, 39.12, 39.12, 41.81, 61.07, 71.91, 72.92, 76.34, 81.20, 81.40, 83.68, 

127.79, 128.19, 128.35, 137.51, 153.20, 173.19; Anal Calcd for C37H67NO8Si2: C, 62.58; H, 9.51; N, 1.97. 

Found: C, 62.78; H, 9.60; N, 1.92. 

 (E)-4-iodo-3-methylbut-3-en-1-ol 37.2. To a stirred solution of zirconocene 

dichloride (1.04 g, 3.56 mmol) in anhydrous CH2Cl2 (65 mL) at -25 °C was added trimethylaluminum (44.2 
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mL, 44.2 mmol) dropwise. After stirring the resulting yellow mixture for 10 min at -25 °C, water (0.39 mL, 

21.67 mmol) was cautiously added dropwise (Caution: exothermic reaction!). After an additional 10 min 

stirring, commercially available 3-butyn-1-ol (1.00 g, 15.4 mmol), pretreated with trimethyl aluminum (4.42 

mL, 4.42 mmol) in anhydrous CH2Cl2 (20 mL) at 0 °C, was added drop-wise via cannula. The reaction 

mixture was allowed to warm to ambient temperature and the resulting yellow thick slurry was stirred 

overnight. The reaction mixture was then cooled to -25 °C and a solution of I2 (5.43 g, 21.4 mmol) in 

anhydrous Et2O (35 mL) was added dropwise via cannula. The mixture was allowed to warm to ambient 

temperature and was stirred for an additional 3 h. The reaction mixture was slowly quenched with a 

saturated aqueous solution of potassium tartrate (20 mL). The aqueous phase was extracted with Et2O 

and washed with Na2S2O3 and brine, dried over MgSO4, filtered and concentrated in vacuo. Purification of 

the residue by flash chromatography on silica gel  using 15/85 ethyl acetate/hexane provided the desired 

vinyliodide 37.2 (1.42 g, 6.70 mmol, 47%) as a yellow oil.  Spectral data matched those previously 

reported. 

  Iodide 37.3.  A solution of TBSCl (0.70 g, 4.64 mmol) and imidazole (0.64 g, 9.4 

mmol) in anhydrous DMF (5 mL) was added to (E)-4-iodo-3-methylbut-3-en-1-ol 37.2 (0.8 g, 3.77 mmol) 

in anhydrous DMF (5 mL). After stirring at room temperature for 2 h, the reaction mixture was quenched 

with ice water, extracted with ether, dried over MgSO4, and concentrated in vacuo.  . Purification of the 

residue by flash chromatography on silica gel using 10/90 ethyl acetate/hexane provided the desired 

vinyliodide (0.98 g, 3.00 mmol, 80%) as a yellow oil.  
1
H NMR (400 MHz, CDCl3) δ 0.06 (s, 6H), 0.91 (s, 

9H), 1.88 (s, 3H), 2.44 (t, J = 6.56 Hz, 2H), 3.71 (t, J = 6.62 Hz, 2H), 5.94 (s, 1H); 
13

C NMR (MHz, CDCl3) 

δ -5.31, 18.23, 24.28, 25.91, 42.67, 61.34, 76.39, 145.14. 
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Enone 32.3.  n-BuLi (0.54 mL, 1.19 mmol) was added dropwise to a 

solution of iodide 152 (0.39 g, 1.2 mmol) in anhydrous ether (12 mL) at -78 
o
C and stirred for 30 minutes.  

The solution was then cannulated dropwise to amide 149 (0.42 g, 0.59 mmol) in ether (12 mL) at -78 
o
C.  

The solution was stirred at -78 
o
C for 4 h until no starting material remained by TLC analysis.  The 

reaction was quenched with AcOH (0.07 mL, 1.22 mmol), washed in saturated NH4Cl (aq), extracted in 

ether, dried with MgSO4 and concentrated in vacuo.  The oily residue was purified by flash 

chromatography on silica gel using 10/90 ethyl acetate/hexane provided the enone 153 (0.26 g, 0.31 

mmol, 52%) as a clear oil. 
1
H NMR (400 MHz, CDCl3) δ 0.04 – 0.08 (m, 18H), 0.87 (m, 21H), 0.89 (s, 6H), 

1.24 (m, 2H), 1.27 (m, 3H), 1.36 (m, 1H), 1.50 (s, 9H), 1.66 (m, 2H), 1.77 (m, 3H), 1.98 (m, 2H), 2.10 (m, 

1H), 2.27 (s, 3H), 2.40 (t, J = 6.48 Hz, 2H), 2.52 (m, 1H), 3.12 (t, J = 9.52, 1H), 3.46 (d, J = 7.20 Hz, 1H), 

3.51 (m, 1H), 3.78 (t, 6.48 Hz, 2H), 4.34 (d, J = 11.28 Hz, 1H), 4.48 (m, 2H), 4.51 (m, 1H), 6.48 (s, 1H), 

7.35 (m, 5H);  
13

C NMR (400 MHz, CDCl3) δ -4.95, -4.47, -3.87, -3.57, 17.94, 19.98, 25.84, 28.08, 33.08, 

33.47, 38.16, 41.95, 44.76, 61.38, 72.39, 72.92, 81.21, 83.63, 90.97, 120.64, 128.14, 128.36, 137.65, 

153.15, 158.65, 202.29  

Lactic acid derived  Weinreb amide 45.2.  Freshly distilled mesyl chloride (1.43 g, 

12.5mmol) was added to a solution of O-benzyl-(S)-lactic acid 45.1 (1.50 g, 8.3 mmol) and Net3 (2.56 g, 

9.8 mmol) in THF (40 mL) at 0 
o
C.  After 30 min, HN(OMe)Me (1.01 g, 1.38 mmol) was added dropwise 

and the reaction mixture was allowed to warm to rt overnight. The reaction mixture was quenched with 

saturated NH4Cl (aq) solution, extracted with ether, dried over MgSO4, and concentrated in vacuo. The 

crude product was purified by filtration through a silica gel plug with 1% NEt3 in ether. Starting material 
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was recovered with 1% formic acid in ether. After removal of solvents under vacuum, Weinreb amide 45.2 

was isolated (1.39 g, 75%) as a colorless oil. Spectral data matched those previously reported.
63

 

 ynone 45.3.  To a dry 2 neck round bottom flask was added (E/Z)-bromopropene (42.0 

mL, 4.9 mmol) in THF (5 mL). After 20 min. at -78 
o
C, n-butyl lithium (0.35 mL, 0.77 mmol in hexane) was 

added dropwise over 30 min. The reaction temperature remained at -78 
o
C for an additional 1 h before 

amide 45.2 dissolved in THF (2 mL) was added dropwise over 30 minutes and mixed an additional 1 hr. 

The reaction mixture was quenched with saturated NH4Cl (aq) solution, extracted with ether, dried over 

MgSO4, and concentrated in vacuo. The crude product was purified by Flash chromatography and 

provided ynone 45.3 (0.27 g, 78%) as clear oil. 
1
H NMR (400 MHz, CDCl3) δ 1.43 (d, J = 6.92 Hz, 3H), 

2.07 (s, 3H), 4.02 (q, J = 6.84 Hz, J = 6.88, 1H), 4.47 (d, J = 11.64 Hz, 1H), 4.70 (d, J = 11.63 Hz, 1H), 

7.37 (m, 5H); 
13

C NMR (400 MHz, CDCl3) δ 4.38, 17.82, 72.07, 78.30, 80.77, 93.75, 127.95,128.48, 

137.53, 189.83. 

 hydrazone 46.2.  To a solution of ynone 45.3 (0.33 g, 1.63 mmol) in CH2Cl2 was 

added tosyl hydrazide (0.61 g, 3.27 mmol) and AcOH (0.093 mL, 1.63 mmol) and stirred overnight at rt. 

The crude reaction mixture was concentrated in vacuo, purified by flash chromatography on silica gel 

using 20/80 ethyl acetate/hexane to give hydrazone 46.2 (0.52 g, 86%) as a white solid. M.P. 67 – 70 
o
C; 

1
H NMR (400 MHz, CDCl3) δ 1.33 (d, 6.48 Hz, 3H), 2.16 (s, 3H), 2.39 (s, 3H), 4.06 (q, 6.46 Hz, 1H), 4.13 

(d, 11.76 Hz, 1H), 4.21 (d, 11.72 Hz, 1H), 7.16 (m, 2H), 7.31 (m, 5H), 7.84 (d, 8.20 Hz, 2H), 8.36 (s, 1H); 

13
C NMR (400 MHz, CDCl3) δ 4.95, 19.22, 68.27, 70.42, 103.48, 127.91, 129.67, 135.33, 137.72, 141.02, 

144.36. 
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 enone 48.2. A mixture of palladium acetate (14 mg, 0.062 mmol) and 

TDMPP (27 mg, 0.061 mmol) in THF (2 mL) was stirred 15 min at room temperature. A solution of ynone 

45.3 (0.250 g, 1.24 mmol) and 3-bytyn-1-ol (0.14 mL, 1.85 mmol) was added. After 6 h of stirring at room 

temperature, the reaction was concentrated in vacuo and the residue was purified by flash 

chromatography 15/85 ethyl acetate/hexane to give 48.2 (0.18 g, 84% yield). 
1
H NMR (400 MHz, CDCl3) 

δ 1.35 (d, J = 6.92 Hz, 3H), 2.33 (d, J = 1.40 Hz, 3H), 2.68 (t, J = 6.26 Hz, 2H), 3.81 (t, J = 6.28, 2H), 3.94 

(q, J = 6.86 Hz, 1H), 4.44 (d, J = 11.68 Hz, 1H), 4.59 (d, J = 11.64 Hz, 1H), 6.77 (s, 1H), 7.73 (m, 5H); 
 

13
C NMR (400 MHz, CDCl3) δ 17.96, 20.93, 23.99, 60.87, 71.89, 81.14, 92.74, 125.61, 127.89, 137.9, 

140.00, 202.12. 

Ynone 49.2. To a dry round bottom flask was stirred Weinreb amide 36.2 (0.14 

g, 0.2 mmol) in ether (10 mL) at -78 
o
C. After 20 min., propynyl magnesium bromide (1.92 mL, 0.96 mmol) 

was added dropwise and the reaction temperature remained at -78 
o
C for an additional 3 h. The reaction 

mixture was quenched with saturated NH4Cl (aq) solution, extracted with ether, dried over MgSO4, and 

concentrated in vacuo. The crude product was purified by Flash chromatography on silica gel using 10/90 

ethyl acetate/hexane and provided the ynone 49.2 (0.062 g, 46%) as clear oil. 
1
H NMR (400 MHz, CDCl3) 

δ 0.04 (s, 3H), 0.06 (s, 6H), 0.08 (s, 3H), 0.88 (d, J = 1.52 Hz, 18H), 0.94 (d, J = 6.56 Hz, 3H), 1.28 (m, 

3H), 1.49 (s, 9H), 1.60 (s, 2H), 2.07 (s, 3H), 2.12 (m, 1H), 3.12 (t, J = 9.42 Hz, 1H), 3.49 (m, 1H), 3.62 (d, 

J = 5.56 Hz, 1H) 4.36 (d, J = 11.36 Hz, 1H), 4.46 (t, J = 9.10 Hz, 1H), 4.66 (d, J = 11.36 Hz, 1H), 7.37 (m, 

5H); 
13

C NMR (400 MHz, CDCl3) δ -4.60, -4.48, -3.88, -3.63, 4.49, 18.00, 25.83, 26.09, 28.07, 33.08, 

33.70, 36.94, 41.82, 72.60, 72.87, 79.39, 81.28, 83.55, 89.04, 93.52, 128.28, 128.38, 137.41, 153.20, 

189.88. 
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Dieneone 50.3.  n-BuLi (0.80 mL, 0.69 mmol) was added dropwise to a 

solution of iodide 37.3 (0.40 g, 1.2 mmol) in anhydrous ether (12 mL) at -78 
o
C and stirred for 30 minutes.  

The solution was then cannulated dropwise to amide 35.2 (0.43 g, 0.61 mmol) in ether (12 mL) at -78 
o
C.  

The solution was stirred at -78 
o
C for 4 h until no starting material remained by TLC analysis.  The 

reaction was quenched with AcOH (0.07 mL, 1.22 mmol), washed in saturated NH4Cl (aq), extracted in 

ether, dried with MgSO4 and concentrated in vacuo.  The oily residue was purified by flash 

chromatography on silica gel using 10/90 ethyl acetate/hexane provided the dieneone 50.3 in 77% as a 

clear oil; IR (film) 3441, 1724 cm
-1

; 
1
H NMR (400 MHz, CDCl3) δ; -0.01 – 0.08 (m, 18H), 0.86 (m, 18H), 

0.90 (d, J = 1.41 Hz, 2H), 0.92 (d, J = 1.53 Hz, 9H), 0.97 (d, J = 6.78 Hz, 3H), 1.27 (s, 1H), 1.30 (d, J = 

1.65 Hz, 1H), 1.34 (s, 1H), 1.48 (s, 9H), 1.58 (s, 1H), 1.78 (d, J = 9.67, 1H), 2.23 (s, 3H), 2.46 (m, 3H), 

2.80 (m, 1H), 3.55 (d, J = 5.73 Hz, 1H), 3.78 (t, J = 6.48 Hz, 2H), 3.80 (d, J = 9.42 Hz, 1H), 4.30 (m, 1H), 

4.41 (d J = 11.77 Hz, 1H), 4.61 (d, J = 11.58 Hz, 1H), 5.63 (d, J = 10.56 Hz, 1H), 6.51 (s, 1H), 7.35 (m, 

5H);  
13

C NMR (400 MHz, CDCl3) δ -5.37, -5.30, -4.91, -4.04, 1.02, 17.81, 18.14, 20.19, 23.24, 25.95, 

27.52, 28.00, 33.52, 35.59, 37.96, 44.70, 61.43, 62.25, 72.42, 72.50, 72.58, 73.82, 80.92, 83.96, 89.62, 

89.80, 120.53, 120.75, 124.02, 127.53, 127.65, 127.73, 128.31, 136.43, 137.89, 152.86, 159.38, 160.64, 

203.22.  HRMS (m/z): [M]
+
 calcd. for C46H82O8Si3, 846.5317; found, 846.5316. 



76 
 

.  Tosyl hydrazone 51.2.  To a solution of dieneone 50.3 (0.15 g, .177 

mmol) in CH2Cl2 was added tosyl hydrazide (0.165 g, 0.877 mmol) and AcOH (7.00 l, 0.184 mmol) and 

stirred overnight at rt. The crude reaction mixture was concentrated in vacuo, purified by flash 

chromatography on silica gel using 20/80 ethyl acetate/hexane to give tosyl hydrazone 51.2 (0.11 g, 63%) 

as a white solid.  IR (film) 3473, 1750 cm
-1

  
1
H NMR (400 MHz, CDCl3) δ -.03 (m, 6H), 0.03 (s, 3H), 0.08 

(s, 9H),  0.12 (m, 2H), 0.70 (t, J = 6.74 Hz, 3H), 0.83 (s, 9H), 0.87 (s, 3H), 0.90 (s, 15H), 0.92 (s, 3H), 1.27 

(s, 3H), 1.39 (s, 1H), 1.49 (s, 9H), 1.66 (s,3H), 1.90 (s, 1H), 2.06 (m, 1H), 2.19 (s, 3H), 2.33 (m, 3H), 2.37 

(m, 2H), 2.45 (d, J = 4.41 Hz, 1H), 2.58 (m, 1H), 3.60 (m, 2H), 3.77 (t, J = 5.97 Hz, 2H), 3.85 (m, 2H), 

4.01 (d, J = 11.35 Hz, 1H), 4.43 (m, 1H), 5.45 (d, J = 10.02 Hz, 1H), 5.49 (s, 1H), 7.05 (m, 2H), 7.21 (m, 

2H), 7.71 (s, 1H), 7.83 (m, 2H); 
13

C NMR (400 MHz, CDCl3) δ -5.32, -4.90, -4.85, -4.45, 17.13, 17.32, 

17.86, 18.19, 18.35, 18.54, 20.51, 21.48, 21.50, 22.77, 23.37, 25.76, 25.96, 26.00, 26.22, 28.04, 33.53, 

35.12, 35.21, 42.46, 60.18, 61.09, 71.17, 72.50, 73.84, 81.05, 83.88, 86.88, 87.29, 114.47, 115.61, 

125.49, 125.56, 127.51,127.91, 128.02, 128.08, 128.29, 129.45, 129.53, 135.47, 135.81, 136.39, 136.50, 

137.72, 137.77, 144.07, 146.73, 147.61, 153.03,154.96.  HRMS (m/z): [M]
+
 calcd. for C53H90N2O9Si3, 

1014.5675; found, 1014.5675 

 Diene 57.3.  To a mixture of hydrazone 51.2 (0.087 g, 0.085 mmol) 

and CH3CO2H (0.04 mL, 0.69 mmol) in freshly distilled CHCl3 (2 mL), catecholborane (0.055 mL, 0.513 
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mmol) was added dropwise at -42 °C. After 2 h, NaOAC.3H2O was added and the reaction mixture was 

heated up to 55 °C for 16 h. After completion of the reaction, the mixture was poured into water and 

extracted with ether. The crude material was purified by flash chromatography over silica gel with 95:5 

hexane/EtOAc to obtain pure diene 57.3 as colorless oil (yield 67 %).  
1
H NMR (400 MHz, CDCl3) δ -0.01 

– 0.07 (m, 18H), 0.84 – 0.89 (m, 27H), 0.87 (m, 3H) 1.05 (d, J = 6.75 Hz, 3H), 1.26 (m, 2H), 1.48 (s, 9H), 

1.57 (dd, J = 1.95 Hz, J = 2.01, 3H), 1.79 (m, 1H), 2.34 (quint, J = 6.9 Hz, 1H), 2.53 (m, 2H), 2.60 (m, 1H), 

3.43 (t, J = 7.49 Hz, 1H), 3.63 (m, 1H), 3.87 (d, J = 9.60 Hz, 1H), 4.30 (d, J = 11.97 Hz, 1H), 4.46 (t, J = 

9.12, 1H), 4.52 (d, J = 11.97, 1H), 5.29 (dd, J = 15.6 Hz, J = 8.2 Hz, 1H), 5.48 (d, J = 11.70 Hz, 1H), 5.54 

(dd, J = 15.40 Hz, J = 7.40 Hz, 1H), 7.32 – 7.33 (m, 5H); 
13

C NMR (400 MHz, CDCl3) δ -5.24, -4.86, -

4.38, 1.03, 17.24, 17.89, 18.20, 18.33, 20.65, 23.37, 25.78, 25.97, 28.03, 33.05, 33.83, 37.00, 39.78, 

61.38, 69.21, 72.67, 73.94, 81.05, 83.97, 84.16, 126.04, 126.94, 127.24, 127.84, 128.29, 135.77, 138.85, 

140.87, 153.06.  HRMS (m/z): [M]
+
 calcd. for C46H84O7Si3, 832.5525; found, 832.5519 
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