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ABSTRACT 

 

 The bottom-up colloidal synthesis opened up the possibility of finely tuning and tailoring 

the semiconductor nanocrystals. Numerous recipes were developed for the preparation of 

colloidal semiconductor nanocrystals, especially the traditional quantum dots. However, due to 

the lack of thorough understanding to those systems, the synthesis chemistry is still on the 

empirical level. CdS quantum dots synthesis in non-coordinating solvent were taken as a model 

system to investigate its molecular mechanism and formation process, ODE was identified as the 

reducing agent for the preparation of CdS nanocrystals, non-injection and low-temperature 

synthesis methods developed. In this model system, we not only proved it’s possible to 

systematically study the formation procedure of semiconductor nanocrystals, the insight learned 

during the research but also enhanced our understanding to this delicate system and promoted the 

development of synthetic chemistry. Although quantum dots could be routinely prepared in the 

lab with mature recipes, the colloidal semiconductor quantum well type materials are still hard to 

fathom. CdSe quantum disks structure was thoroughly analyzed with polar axes as the growth 

direction along the thickness direction, with both basal planes ended with Cd atom layer, which 

was coordinated with carboxylate ligands. Besides, four different thickness CdS quantum disks 

were prepared, its size-dependent lattice dilation, extremely sharp band-edge emission, and two-

order of magnitude faster photoluminescence decay compared to quantum dots was investigated. 
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Chapter 1 Introduction 

“There’s Plenty of Room at the Bottom” 

 --Richard Feynman, Pasadena, 29 December 1959 

 

1.1 Historic moments and why nano? 

Richard Feynman envisioned the birth of the nanotechnology more than sixty years ago at the 

annual meeting of the American Physical Society. It was not until 1990, with the help of 

scanning tunnelling microscope (STM), as shown in Figure 1-1a, the IBM research scientists at 

 

Figure 1-1. STM image of xenon atoms on nickel (110) surface, each letter is 5 

nanometer (nm) from top to bottom (a); density functional theory (DFT)-calculated z-

component of the electric field above a free naphthalocyanine molecule at a distance 0.3 

nm from the molecular plane. Scale bars: 0.5 nm. The DFT-calculated atomic positions 

are overlaid in the upper halves of the image. Carbon, hydrogen and nitrogen atoms are 

grey, white and blue, respectively (b). 

a b
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San Jose spelled the “IBM” with 35 xenon atoms on nickel surface, 1 demonstrating the 

possibility of manipulating atoms with atomic precision. 2, 3 Recently, with the combination of 

STM, atomic force microscopy (AFM), and kelvin probe force microscopy (KPFM), IBM 

Research scientists at Zurich imaged the charge distribution in a single molecule (Figure 1-1b), 4, 

5 and opened up the possibility of observing the bonding formation/dissociation process, viz. the 

electron redistribution, which is the fundamental process during the chemical reactions. 

The temptation of miniature down to the nanoscale originates from the fundamentally electronic, 

optical, magnetic property change compared with corresponding bulk materials, 6 which was due 

to the increase of surface area, and quantum confinement of electron, leading to potential 

application in catalysis, 7-9 drug delivery, 10-12 biological labeling, 13-17 solar cells, 18-20 light 

emitting diodes (LED), 21-24 etc. One of the most famous applications of nanotechnology lies at 

the advancement of integrated circuits. The prestigious Moore’s Law predicted that “the number 

of transistors that can be placed inexpensively on an integrated circuit doubles approximately 

every two years.” 25-27 It would be definitely hard to imagine this without the development on the 

nanotechnology. 

 

1.2 Colloidal semiconductor nanocrystals 

Similar to the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular 

orbital (LUMO) frontier orbitals theory in the molecules, corresponding energy levels are called 

as valence band (VB) and conduction band (CB) in solid state physics. The energy difference 

between CB and VB are called as the bandgap. Generally, higher than 3.0 electron volt (ev) are 

considered as insulator, smaller than 0.5 ev are defined as metal, and bandgap between 0.5 and 
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3.0 ev are sorted into semiconductor. For the electron transition from VB edge to CB edge, there 

are two basic requirements: energy and momentum conservation. If the electron at the maximum 

 

Figure 1-2. Top: The energy of semiconductor electronic band edges relative to the vacuum 

level. The space between the bars represents the band gap between valence and conduction 

bands. Reduction potentials of most cations are marked with ×’s. From left to right, 

semiconductor groups are II-VI (pale blue), IV-VI (blue), III-V (green), and IV (gold). 

Bottom: Three type of semiconductor heterostructures band-edge alignment. 
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energy of VB has the same crystal momentum as the hole at the minimum energy of CB, the 

electron could be excited directly by photon, and corresponding semiconductor are called as 

direct semiconductor; if the electron at the maximum energy of VB has a different crystal 

momentum as the hole at the minimum energy of CB, the electron could only be excited 

indirectly by the photon, the assistance of phonon would be required, and corresponding 

semiconductor are called as indirect semiconductor. Common II-VI and III-V semiconductor 

such as cadmium/zinc chalcogenide, indium phosphide/arsenide are direct semiconductors; 

diamond, silicon, germanium, silicon carbide, boron nitride, and gallium phosphide are indirect 

semiconductors. 28  

Combining two different semiconductor materials could engineer the band-edge offset, making 

semiconductor heterostructures with novel properties not accessible from either of the 

components. 29 As shown in Figure 1-2 are the band edge positions of some common 

semiconductor materials, 30, 31 depending upon the band edge alignment, if the VB and CB of one 

component are enclosed in another component’s VB and CB, such as CdSe and ZnS, this is the 

straddling type-I heterostructure; for the components with staggered VB and CB band-edge 

offset, such as CdSe and ZnTe, this is the type-II heterostructure; and if one component’s VB 

minimum is higher than the CB maximum of another component, such as InSb and ZnO, this is 

the broken type-III heterostructure. In the following chapter, more discussions are concentrated 

on the effect of decreasing semiconductor size from bulk to nanometer scale. 

 

1.2.1 Boundary condition and quantum confinement 
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Colloidal semiconductor nanocrystals are nanometer sized fragments of corresponding bulk 

crystals synthesized in solution. It lies between the discrete molecular component and 

corresponding bulk materials, also called as “artificial atoms”. 32-37 The property change from 

bulk to nanometer size for semiconductor originates from two sides, the increase of surface atom 

ratio, 38 and the quantum confinement felt by the electrons. 39 

Taken CdSe nanocrystals as an example, and assuming a spherical shape, simple model 

calculation in Figure 1-3 shows that the decrease of nanocrystals size leads to fast increase of 

surface atom ratio, and the increase of relative chemical potential. 38 This indicate that we should 

treat semiconductor nanocrystals distinctly from corresponding bulk, since the bulk materials 

only have negligible surface atoms. 

 

Figure 1-3. Size-dependence of the surface atom ratio and the relative chemical potential of 

CdSe nanocrystals, assuming a spherical shape. 
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The quantum confinement of semiconductor nanocrystals was observed by pioneering work of 

Efros and Ekimov, 40, 41 Brus, 39, 42 and Henglein. 43 Classic quantum chemistry calculation of 

particle in a box model gave following results: 44 

 (1-1) 

Where E is the particle energy with quantum number n, h is the Planck constant, m is the particle 

mass, and L is the box size. Based on equation 1-1, one can deduce that the smaller the box, the 

higher the particle energy. The particle in a box model for equation 1-1 defined the particle in the 

vacuum, in order to better quantify the energy change for semiconductor nanocrystals, effective 

mass approximation model was proposed as following: 

 (1-2) 

Where Eg is bulk semiconductor bandgap, n is interband transition number, d is nanocrystals size, 

me is electron effective mass, mh is hole effective mass, e is elementary charge of the electron, ε0 

is the permittivity of free space, and ε is the dielectric constant of the solid. The middle term on 

the right side of equation 1-2 is the quantum confinement on electron and hole, and the third term 

on the right is the coulombic attraction between electron and hole. Since the increase of energy 

from quantum confinement are inversely proportional to the square of particle size, the decrease 

of energy from coulombic interaction are inversely proportional to the particle size, this led to 

the general trend that the decrease of particle size will induce higher energy. 

In order to conveniently define the boundary condition at which size certain semiconductor 

nanocrystals will show quantum confinement, following ideas were introduced: 

E = Eg + ( + ) ─ 
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a. Exciton was introduced as the hydrogen-like electron excited to the CB with the hole 

created at the VB, with coulombic attraction between electron and hole. 

b. Similar to hydrogen Bohr radius, which is the highest possibility of the distance between 

hydrogen electron and proton, exciton Bohr radius was introduced for every 

semiconductor nanocrystals based on following equation: 45 

 (1-3) 

Where aB is exciton Bohr radius, ε is the dielectric constant of the material, m* is the 

mass of the particle, m is the rest mass of the electron, and a0 is the Bohr radius of the 

hydrogen atom. For the exciton mass, it can be calculated as following: 

 (1-3a) 

c. When the nanocrystals radius is smaller than the exciton Bohr radius, the semiconductor 

nanocrystals gradually show the quantum confinement effects. 

Based on equation 1-3, we could deduce that the larger the semiconductor dielectric constant, 

and the smaller the exciton effective mass, the larger the corresponding exciton Bohr radius. 

According to the k•p theory, a larger semiconductor bandgap is correlated with a larger exciton 

effective mass, which would generally lead to a smaller exciton Bohr radius as shown in Figure 

1-4. 46 

The classic classification for quantum confinement based on dimension is as following: 47 

Bulk three-dimensional (3d) without quantum confinement, its density of states change as a 

function of energy is  
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D3d(E) ∞ √𝐸 (1-4a) 

Where D3d(E) is the density of states for 3d materials; 

Two-dimensional (2d) quantum well type materials with one-dimensional quantum confinement 

along thickness direction, its density of states change as a function of energy is 

D2d(E) ∞ 1 (1-4b) 

Where D2d(E) is the density of states for 2d materials; 

One-dimensional (1d) quantum rod type materials with two-dimensional quantum confinement 

along radial direction, its density of states change as a function of energy is 

 

Figure 1-4. The exciton Bohr radius as a function of the energy gap in several I-VII, II-VI, 

and III-V semiconductor materials. 
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D1d(E) ∞ 1/√𝐸 (1-4c) 

Where D1d(E) is the density of states for 1d materials; 

And zero-dimensional (0d) quantum dot type materials with three-dimensional quantum 

confinement, only discrete energy levels are allowed. 

The change of dimension and corresponding density of states are plotted in figure 1-5. 48-50 Since 

photon absorption are proportional to the density of states, absorption could be a direct probe for 

this unique system, and there are intriguing opportunities to tune the electron wavefunction 

distribution, viz. the electron wavefunction engineering. 

 

1.2.2 Optical characterization 

Since the absorption could easily be correlated with the energy states, and generally the 

semiconductor absorption energy are between 0.5 to 3.0 ev, which is in the ultraviolet and visible 

 

Figure 1-5. Density of states in one band of a semiconductor as a function of dimension. 
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range, UV-Vis absorption became the routine probe for the semiconductor nanocrystals. For the 

common semiconductor nanocrystals, CdSe are the most thoroughly investigated, and I’m going 

to take CdSe semiconductor nanocrystals as the model system to illustrate its band structure. 

For the common II-VI semiconductor materials, such as CdSe, the HOMO/VB are composed by 

the linear combination of the atomic orbitals of Se2-, which is the 4p state; and the LUMO/CB 

are made by the linear combination of the atomic orbitals of Cd2+, which is the 5s state. 51-53 And 

 

Figure 1-6. A linear (ground-state) absorption spectrum of CdSe nanocrystals with a mean 

radius of 4.1 nm. Arrows mark the positions of four well-resolved transitions that involve 

either the 1S or 1P electron states. 



 

11 
 

the photon absorption process is accompanied with the electron excitation from the VB to CB. In 

this case, the true quantum number is the total angular momentum, F, which is the sum of spin-

orbit coupled angular momentum from corresponding atomic orbitals, J, and angular momentum 

from corresponding particle-in-a-box orbital envelop function, L, F = J + L. It’s generally wrote 

in the form of nLF, as shown in Figure 1-6, a typical CdSe quantum dot nanocrystals UV-Vis 

absorption with characteristic peaks could be assigned with corresponding electron states. 54, 55 

Given the discrete energy state of quantum dots, the intraband transition energy would be much 

larger than the phonon energy, making the phonon-assisted intraband transition inefficient, 

phonon bottleneck was thus proposed. 56, 57 Later on, ultrafast spectroscopy studies indicate that 

there is no difference between bulk semiconductor and corresponding quantum dots. 58-60 The 

relaxation of hot exciton, which is the excited electronic state higher than band-edge exciton, to 

the band-edge is in the subpicosecond scale. The absence of phonon bottleneck was ascribed to 

the hole-assisted energy dissipation, since hole generally have larger effective mass, and hence 

larger density of states than the electron. 61-64 So the quantum dots still follow the Kasha’s rule, 

the intraband transition is much faster than the interband transition, and the observable photon 

emission at band-edge is still the only channel even though it may be excited to higher states, 

that is, the photoluminescence (PL) are independent of the excitation source wavelength. 

The intraband transition of semiconductor quantum dots was measured on the subpicosecond 

scale, and the interband photon emission was characterized with PL lifetime measurement, which 

turns out to be on the tens of nanosecond (ns) scale. This is the fundamental reason behind the 

phenomena that PL emission is independent of excitation source wavelength. At the same time, it 

was realized that the semiconductor quantum dots lifetime is much longer than corresponding 

bulk materials, which was around 1 ns. 65 At first, this phenomenon was explained in accordance 
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with the surface effect, viz. the increase of surface area ratio when decreasing the size from bulk 

to nanometer scale. It was considered that the excited exciton was localized at the interface, 

leading to decreased electron/hole wavefunction overlap, and corresponding increase of lifetime. 

However, it turns out this anomalously long lifetime in semiconductor quantum dots could be 

successfully explained by the exciton fine structure.  

Since the photon emission is always from the relaxation of band-edge exciton, in the case of 

CdSe quantum dots, it’s the 1S1/2(e)-1S3/2(h). The excited electron resides at the Cd 5s state, hole 

stays at the Se 4p state, and corresponding total angular momentum comes exclusively from the 

spin-orbital coupled angular momentum, with value J as 1/2 and 3/2, respectively. Generally the 

band-edge exciton state was treated as eightfold degenerate, however, in reality, some second-

order effects need to be considered. The first effect is the routinely observed prolate instead of 

perfectly spherical quantum dots shape, together with the possible hexagonal wurzite structure, 

this crystal field effect will lift the hole state of J = 3/2 into Jm = ± 3/2 (heavy hole) and Jm = ± 

1/2 (light hole) with corresponding crystal field splitting energy difference, where Jm is the 

projection of J. The second effect is the completely omitted electron-hole exchange interaction in 

the bulk case, which is proportional to the electron and hole wavefunction overlap, would 

become significant with the decrease of semiconductor volume from bulk to quantum dots. Since 

the total angular momentum for electron and hole at the band-edge are Fe = 1/2, Fh = 3/2, the 

band-edge exciton should be considered as the mixing between electron and hole, with totally 

angular momentum N = Fe ± Fh, that is, fivefold degenerate N =2, and threefold degenerate N = 1. 

The good quantum number after taking both effects into consideration would be Nm, the 

projection of total angular momentum N along the unique crystal axis. After taking these two 

effects into account, the initially eightfold degenerate band-edge exciton would be split into five 
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sublevels as shown in Figure 1-7 left. The total angular momentum N equal to 2 have lower 

energy than N = 1, in order to differentiate Nm with same value (|Nm| > 0 itself for each N value 

are twofold degenerate), it was labeled with Nm upper (U) or lower (L), corresponding to N =1 or 

N = 2. 

For CdSe quantum dots before photon absorption, the electronic states are closed shell 

configuration with total angular momentum of 0, and photon is spin 1 bosons, during the photon 

absorption/emission, the electronic transition between ground state and excited state should have 

maximum angular momentum difference of 1, based upon the conservation of angular 

momentum rule. This indicates that the band-edge exciton with total angular momentum of 2 are 

optical passive states since the direct photon absorption/emission are forbidden. At the same time, 

since the optical absorption could excite CdSe quantum dots from ground state to the optical 

active states such as the states with total angular momentum of 1, it would relax to the band-edge 

2 state following the Kasha’s rule before photon emission. The recombination of band-edge 

exciton through photon emission would need the assistance of phonon to carry away the 

 

Figure 1-7. Energy-level diagram describing the exciton fine structure (left). Single dot 

absorption (solid line) and emission (dotted line) structure for ~1.9 nm effective radius CdSe 

nanocrystals (right). 
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excessive angular momentum. Since this process is three-particle procedure and more inefficient, 

its recombination rates are much smaller, resulting with the experimentally observed longer PL 

lifetime. As shown in Figure 1-7 right, this is the classic dark exciton theory, investigating the 

band-edge exciton fine structure and explaining its related phenomena such as the long PL 

lifetime. 66-68 

There are three points need further emphasis over here: 

1. The crystal field splitting for the band-edge hole into heavy hole and light hole does not 

exist for zinc-blende and diamond lattices, since those two crystal structures are isotropic 

compared to the anisotropic wurzite structure. However, even take zinc-blende cubic 

CdSe as an example, the electron-hole exchange interaction still led to the splitting of 

eightfold degenerate band-edge exciton into similar dark exciton states 45 as detailed in 

the case of wurzite CdSe in the aforementioned paragraph, which means this phenomena 

is general in terms of crystal structures. 

2. Although the band-edge absorption was assigned as 1L in Figure 1-7 right, strictly 

speaking, its correlation with the total angular momentum of 2 should be treated as the 

optical passive states, and it was considered as only weakly allowed in small dots. 68 

3. The energy difference between states 1L and 2 is the origin of stokes shift. 

One of most promising applications of semiconductor quantum dots is the light emitting source, 

originating from its size-dependent quantum confinement and emission wavelength. Along this 

direction, tremendous efforts were devoted into the optimization of its PL quantum yield (QY), 

that is, the amount of photon emitted compared to the amount of photon absorbed. Detailed 

investigation discovered that semiconductor quantum dots emission property are highly 
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dependent upon its crystallinity and surface atoms, since the crystal defects and surface dangling 

bonds could form trapping sites, affecting its emission quality, and its quantum yield. In order to 

prepare single crystal semiconductor quantum dots, high temperature colloidal synthesis methods 

were developed to anneal away the crystal defects, into thermodynamically stable single crystals; 

69 and saturating the dangling bonds with appropriate organic surfactants turns out to be a 

feasible method to enhance semiconductor nanocrystals emission quality. Later on, epitaxially 

growing another layer of inorganic semiconductor materials with higher bandgap as the shell 

forming type-I heterostructure was considered as the most effective way to insulate the core 

electron and hole wavefunction from environmental influence, 70-72 resulting with optimized 

optical properties and QY. 

Although the semiconductor core matrix could be prepared with varied PL QY due to different 

synthesis protocol, there is generally one interesting phenomenon observed during the successive 

growth of shell materials. Taking classic type-I CdSe/ZnS as an example, during the increase of 

ZnS shell thickness, there is generally an increase of PL QY at the beginning of shell growth, 

and then the PL QY would gradually decrease with further shell growth. 71, 73-79 Intriguingly, this 

phenomenon could successfully be explained by following reasoning: 80-82 

For different core and shell composition, there would be lattice mismatch at the epitaxial 

interface. When the shell just started depositing on the core materials, it tends to contract/expand 

to align itself with the core lattice, however, when the shell became thicker and thicker, it starts 

returning to its original lattice constant. The tradeoff over here depends upon two factors: 

1. The strain energy when shell materials tend to align itself with the core, and this energy is 

proportional to the shell volume; 
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2. The dislocation energy when the shell keeps its original lattice constant, the lattice 

mismatch and the related dislocation energy are proportional to the interface area. 

Based upon the reciprocal energy interaction between the strain energy and dislocation energy, it 

would be reasonable to deduce that the shell materials tend to align the lattice with the core when 

the shell thickness is thin, and then gradually return to its intrinsic lattice constant with the 

increase of shell thickness. The thickness at which this transition occurs is the critical shell 

thickness. When the shell was thin, the shell tends to align its lattice with core, due to the 

increase of shell coverage to get rid of core dangling bonds and better insulate the core from 

environment, the PL QY would gradually increase; with further increase of shell thickness, the 

increase of shell volume would induce the shell lattice to maintain its intrinsic value, with the 

formation of lattice mismatch at the core/shell interface at the same time, which would be the 

defects sites quenching the PL emission, then the PL QY would gradually decrease. 

 

1.3 Spectroscopic identification and common artifacts 

For the chemical reaction going on at the molecular scale, spectroscopic probes are the most 

effective and efficient “eyes” for the chemists. Due to the limited experience and scope of my 

research, I’ll give a selective and brief introduction to some related spectroscopic methods, 

especially some common artifacts. 
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1.3.1 Nuclear magnetic resonance (NMR) 

The success of organic chemistry largely relies on the reliable and convenient NMR probe to 

study related systems. For the magnetic active nuclei (nuclei spin quantum number S ≠ 0), it 

could absorb specific wavelength radiofrequency radiation under certain magnetic field due to 

the Zeeman effect, not only each nuclei has its specific “fingerprint” radiofrequency range, most 

importantly, its absorption frequency was also influenced by the surrounding electrons, which is 

the chemical environment around each nuclei. In this way, the chemical environment around 

certain magnetic active nuclei could be conveniently detected by the NMR: generally speaking, 

the lower the electron density around the nuclei, the higher magnetic field the nuclei could feel, 

and higher corresponding resonance frequency. This is the famous chemical shift in the NMR 

axis to label the chemical species. 83-85  

Besides numerous advantage of NMR such as noninvasive, highly selective, etc. one merits of 

 

Figure 1-8. Quantitative proton NMR study on the high purity 1-Octadecene (99.5%), with 

methyl group integration normalized to 3 and varied recycle delay time. 
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this methods is that it could be used to quantitative analyze the chemical components, which is 

significant and fundamental to our understanding to chemical systems. However, the quantitative 

analysis could easily be overwhelmed by the time and artifacts during the process. Taken the 

most routine proton NMR as an example, we used it to quantitatively analyze high purity 1-

Octadecene (99.5%), its functional group could easily be identified by corresponding chemical 

shifts, and the amount could be calculated by the peak area integration. By normalizing the 

methyl group peak integration value to 3 for the CH3, we calculated the corresponding double 

bond CH and CH2 amount with value as around 0.78 and 1.70, which is far from the expected 

value of 1 and 2 based on the chemical formula.  

It turns out that under routine proton NMR analysis, in order to get better signal to noise ratio, 

the recycle delay time, the amount of time waited after each excitation and data collection period 

was shortened to around 0.3 second. However, with such short time, the excited nuclei has not 

recovered from the excited states to the corresponding Boltzmann distribution, and continuous 

excitation would artificially make the detected signal smaller than the ideal value. 86 As shown in 

Figure 1-8, after elongating the recycle delay time gradually from 0.3 to 60 seconds, we could 

see that corresponding integration value for double bond CH and CH2 started to converge to 1 

and 2, the expected theoretical value under properly set NMR parameters. In this way, we could 

see that quantitative NMR studies are not only meticulous, but also time consuming, for each 

data collection cycle, the recycle delay time from 0.3 to 60 seconds would make routine 64 scans 

taking from around 5 minutes to 1 hour and 8 minutes. For other nuclei, since its relative signal 

sensitivity are generally lower than proton, and nuclear overhauser effect needs to be taken into 

account, making quantitative analysis projects even more frightening. 
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1.3.2 Photoluminescence (PL) and Photoluminescence excitation (PLE) 

In order to avoid excitation source scattering interference, the PL detection was set with 90 

degree angle with the excitation light path. There are two common artifacts need attention in 

routine measurement: 

1. Inner filter effect. The reabsorption of PL between molecules in the sample, that is, 

molecule with absorption range in the emission of other molecules could absorb its PL 

emission. This intermolecular energy transfer would generally make redder emission 

more advantageous than the high energy bluer ones from the reabsorption, at the same 

time, the final spectrum collected at the PL detector would reflect this fact. Especially, 

for the PL QY measurement, accurate and reliable results needs to be carried out under 

sufficiently low optical density to avoid inner filter effects, that is, through reducing 

particle concentration in the sample to decrease the possibility of intermolecular 

reabsorption. 87 

2. Second order diffraction. In order to differentiate the emission wavelength, generally 

monochromator was applied between the sample and detector in the emission light path. 

For the most monochromator, diffraction grating was set up to selectively diffract light 

with certain wavelength at specific angle according to equation 1-5: 

dsinθ = nλ (1-5) 

where d is distance between adjacent grating, θ is the angle between the diffracted ray 

and the grating's normal vector, n is an integer, and λ is light wavelength. 

For example, the diffraction grating was set to selectively diffract light with wavelength 

at 600 nm, based on equation 1-5, the light at 300 nm could possibly diffracted with n (λ 

= 300 nm) = 2 n (λ = 600 nm), that is the origin of second order diffraction. In this case, 
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the 300 nm light would be collected as if it’s the light with wavelength at 600 nm. In 

order to avoid this effect, especially the excitation light source with strong scattering, the 

parameter set up for the detection range during the experiments should be smaller than 

two times of excitation wavelength; however, if in certain case this could not be met, 

properly put bandpass excitation filter between the sample and monochromator could be 

used to avoid this effect. 87 Or else, this artifact could possibly mistakenly be treated as 

the signal from the sample. 88, 89 

PLE is complementary to absorption spectrum, on that the emission intensity at certain 

wavelength or range was detected by scanning through varied excitation wavelength. By 

comparing the PLE profile with corresponding absorption, the emission origin could be 

successfully identified. Besides, PLE could be used to resolve optical heterogeneity, that is, the 

red shifting of PLE detection wavelength, the corresponding PLE peak position could resolve 

sample homogeneity. 90-92 

 

1.3.3 Energy-dispersive X-ray spectroscopy (EDX) 

For the electrons at inner shell of the chemical compounds, it could be excited to escape from the 

compounds, forming ions with hole left at original shell, and the relaxation of electrons at higher 

energy states to the hole position could possibly generate X-rays to dissipate the excess energy 

during the relaxation process. Since every atom has its specific electron configuration, this inter-

shell electron transition and corresponding X-ray energy is the “fingerprint” of the nuclei, 

making EDX one of most adopted methods for elemental analysis. For the common excitation 
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source, it could be high energy electron or photon, which is the electron microscope coupled 

with EDX or X-ray fluorescence (XRF), respectively. 

During the routine elemental analysis for CdSe semiconductor nanocrystals with EDX coupled to 

(Environmental Scanning Electron Microscope) ESEM, there was one bizarre phenomenon 

observed: the seemingly random appearance of Si Kα signal on EDX as shown in Figure 1-9 left. 

Since there should not be any silicon in the aimed analyte, this ghost peak was really annoying 

and hard to explain. After carefully designed control experiments and analysis, this artifact could 

successfully be explained by following facts: 

In order to separate the sample chamber from the common Si(Li) detector, generally a Beryllium 

window with Si grid support was used to withstand pressure difference, during the travel path of 

emitted X-ray from sample to Si(Li) detector, there is a possibility that the X-ray was collided 

with the Si grid support instead of going through the “transparent” Be window. And the X-ray 

could possibly be absorbed by the Si grid with the sample X-ray as excitation source just as in 

 

Figure 1-9. EDX spectrum of the CdSe nanocrystals (left), EDX spectra of properly purified 

CdSe nanocrystals and CdSe standard (right). 
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the case of XRF, with emission from Si grid to the Si(Li) detector. 93 More importantly, there is 

possibility that the Si components in the Si(Li) detector itself would play similar role as the Si 

grid in the Be window, with the generation of Si X-ray, which is called as the Silicon internal 

fluorescence peak. 94 

Then the question comes to when would this silicon peak appear? Since the experimental results 

seems to be somehow random detection of silicon peak. This would highly dependent upon the 

Si mass absorption coefficient as a function of X-ray energy as shown in Figure 1-10 and 

equation 1-6. 95 

I = I0exp[-(𝜇
𝜌
)ρt] (1-6) 

Where I is transmitted intensity, I0 is the incident intensity, 𝜇
𝜌
 is the mass absorption coefficient 

(cm2/g), ρ is the density (g/cm3), and t is the thickness (cm) of the absorber. 

Since ρ and t is constant in this case, the absorption of Si is highly dependent upon the mass 

absorption coefficient, which is a function of X-ray energy as shown in Figure 1-10. The 

absorption coefficient has the peak value just pass Si K-edge (1.84 KeV), then decrease rapidly 

with the increase of X-ray energy. It’s reasonably to see that the element just after Si with K 

emission would have large absorption coefficient for Si, which is the P Kα emission with energy 

at around 2.01 KeV. And for the synthesis of colloidal CdSe nanocrystals, trialkylphosphine are 

generally used, and we did see the P Kα signal in Figure 1-9 left. Following the logic behind this, 

if the trialkylphosphine could be properly purified away, the Si ghost signal would disappear 

with the elimination of P elements, which is the case as seen in Figure 1-9 right for the properly 

purified CdSe nanocrystals, only trace amount of P signal was detected, and the Si ghost signal 
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was almost completely removed. Intriguingly, there are other elements such as Y (Lα1, 1.92 

KeV), Re (Mα1, 1.84 KeV), Os (Mα1, 1.91 KeV), and Ir (Mα1, 1.98 KeV) have the X-ray 

emission energy just pass the Si K-edge, which would induce significant absorption and emission 

from the Si. Preliminary literature research on this found out that Y related compound under 

EDX study did show considerable Si signal, which should not be observed from the analyte. 96 

In order to avoid this artifact, proper purification such as in the case of colloidal CdSe 

nanocrystals should be exerted. If the components could not be purified away such as in the case 

of Y related compound, using EDX with silicon drift detector would get rid of the internal 

fluorescence, or by switching to the higher energy resolution wavelength-dispersive X-ray 

spectroscopy would avoid this problem. 71, 94 Most importantly, this artifact should not be treated 

as the signal from the analyte. 

There is another minor point I’d like to mention over here: In order to get quantitative accurate 

elemental analysis results from EDX, reasonable amount of sample and properly arranged 

 

Figure 1-10. Si mass absorption coefficient as a function of X-ray energy. 
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control should be applied. Generally, scanning electron microscope (SEM) would be an ideal 

platform for this. However, since semiconductor nanocrystals are intrinsically not a good 

conductor for the electrons, how to avoid the charging from semiconductor nanocrystals sample 

became critical. Although traditionally applying gold sputter coating on the sample surface 

would guide the electron to the carbon conductive tape, the elemental analysis accuracy would 

be affected since the control would be more difficult and X-ray emitted from the sample with 

different energy has varied absorption possibility at the gold coating, affecting the final counting 

accuracy at the detector. Fortunately, the development of pressure controlled valve made it 

possible to have reasonable high pressure at the sample chamber, at the same time maintain 

enough low air pressure at the electron source to protect it from burning damage, which is the 

environmental-SEM. The benefit from this is that the air moisture in the sample chamber will be 

ionized into H+ and OH- at the sample and air interface, and transporting away the excess 

electron to avoid charging problem, at the same time making the traditional gold coating on 

sample unnecessary. 94 So the ESEM coupled with EDX would be the ideal platform for the 

elemental analysis of semiconductor nanocrystals. 

 

1.4 Dissertation Objective and Overview 

While synthesis of semiconductor nanocrystals has been in rapid development, the related 

molecular mechanism studies are rare, which leaves synthetic chemistry of colloidal nanocrystals 

at an empirical level. The objective of this dissertation is to illustrate that systematic and 

quantitative study of molecular mechanism for the formation of colloidal nanocrystals is possible, 

and the results will not only help us to understand formation mechanisms of colloidal 

nanocrystals but also advance their synthetic methods in chapter two.  
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At present, synthetic methods for colloidal semiconductor nanocrystals with three-dimensional 

quantum confinement (quantum dots) and two-dimensional confinement (quantum rods) have 

been reasonably developed. In chapter three, we will discuss formation of colloidal-stable disk-

shaped II-VI semiconductor nanocrystals as one-dimensional quantum confinement systems 

(quantum disks). Then in chapter four, some unique properties of these new quantum objects, 

such as size-dependent lattice dilation, extremely sharp band-edge photoluminescence, and two-

order of magnitude faster photoluminescence decay compared to quantum dots, shall be 

discussed. 
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Chapter 2 Correlation of CdS Nanocrystal Formation with Elemental Sulfur Activation 

and Its Implication in Synthetic Development 

 

Formation of CdS nanocrystals in the classic approach (with octadecene (ODE) as the solvent, 

elemental sulfur and cadmium carboxylate as the precursors) was found to be kinetically 

dependent on reduction of elemental sulfur by ODE, which possessed a critical temperature 

(~180 oC). After elemental sulfur was activated by ODE, the formation reaction of CdS followed 

closely. 2-tetradecylthiophene from the activation of S by ODE and fatty acids from the 

formation reaction of CdS were found to be the only soluble side products. The overall reaction 

stoichiometry further suggested that oxidation of each ODE molecule generated two molecules 

of H2S, which in turn reacted with two molecules of cadmium carboxylate molecules to yield 

two CdS molecular units and four molecules of fatty acids. In comparison to alkanes, octadecene 

was found to be substantially more active as a reductant for elemental sulfur. To the best of our 

knowledge, this is the first example on quantitative correlation between chemical reactions and 

formation of high quality nanocrystals under synthetic conditions. To demonstrate the 

importance of such discovery, we designed two independent and simplified synthetic approaches 

for synthesis of CdS nanocrystals. One approach with its reaction temperature at the critical 

temperature of S activation (180 oC) used the same reactant composition as the classic approach 

but without any hot injection. The other approach performed at an ordinary laboratory 

temperature (≤ 100 oC) and in a common organic solvent (toluene), which was achieved by 

addition of fatty amine as activation reagent of elemental sulfur. 
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2.1 Introduction 

Studies on formation mechanism of nearly monodisperse colloidal nanocrystals have attracted 

substantial attention in the field of chemistry because of their great potential as functional 

materials and interesting model systems for fundamental research. 1, 2 Although formation of 

nanocrystals should be a typical crystallization process, there are often some chemical reactions 

needed to take place prior to the crystallization process. This is so because the field is actively 

pushing towards “greener” synthetic chemistry, 3 which often requires synthesis starts with 

precursors that need to be converted to reactive “monomers” for the nucleation and growth of the 

targeted nanocrystals. For instance, for the most studied high quality chalcogenide nanocrystals 

(including II-VI, IV-VI, and I-III-VI semiconductor nanocrystals), elemental sulfur, selenium 

and tellurium dissolved in organic solvents (such as octadecene and organophosphines) are 

commonly used as the chalcogenide precursors. 4, 5 These elements (S0, Se0 and Te0) must be 

reduced into a certain form, and then they can bond with the necessary cations to form the 

targeted semiconductor nanocrystals. As a result, the mechanistic studies on formation of high 

quality semiconductor nanocrystals have been focused on two separated fronts. Along the first 

front, kinetics on formation of nanocrystals — especially their size and shape evolution — has 

been studied extensively in the past 20 years. 1, 2 On the second front, studies on the related 

chemical reactions and molecular mechanisms have become active recently. 6-27 Although 

molecular mechanism studies might be carried out with crystallization kinetics in the background, 

10, 19, 21, 28 the correlation between these two fronts has not been clearly identified yet. 

Understanding of such correlation is not only important for establishing much needed 

quantitative framework for crystallization, but also shall further shed new light on development 

of synthetic chemistry for high quality nanocrystals as to be demonstrated in this chapter. 
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II-VI semiconductor nanocrystals, especially CdSe and CdS, were established as the first 

examples of high quality colloidal nanocrystals among all types of colloidal nanocrystals. 4, 5 As 

fundamental model systems, their well-defined size dependent optical properties due to quantum 

confinement 29 offer convenient probes for the mechanistic studies on formation of nanocrystals. 

Equally important, active exploration of technical applications of colloidal nanocrystals in both 

academic and industrial settings has been mostly centered on II-VI semiconductor nanocrystals 

at present. 

The commonly adopted synthetic methods for high quality CdSe and CdS nanocrystals in the 

field are typically performed under temperatures roughly in the range between 200 and 300 oC. 5, 

30, 31 Studies on the molecular reaction mechanisms for CdSe nanocrystals in both coordinating 

solvents 9 and non-coordinating solvents 7, 9, 11, 19, 22 have been reported extensively in the past 

several years. Very recent reports further indicate that formation of high quality CdSe 

nanocrystals using Se dissolved in organophosphines as the Se precursor was largely 

associated/controlled by the structure and activation of the Se-phosphine precursors. 19, 21, 22 27 

These studies revealed that, in both types of media, the chemical reactions involved in formation 

of CdSe nanocrystals are quite different from what was originally hypothesized. Although such 

insights have not been incorporated into new synthetic development yet, they certainly helped us 

to understand the chemical complexity during formation of high quality CdSe nanocrystals. 

Conversely, to the best of our knowledge, molecular mechanisms for formation of high quality 

CdS nanocrystals has not been explored though the classic synthetic approach of high quality 

CdS nanocrystals was introduced into the field along with the non-coordinating solvent approach 

about ten years ago. 30 The different status between CdSe and CdS systems is partially because 

one might think that the molecular reaction mechanism for formation of CdSe and CdS 
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nanocrystals with similar precursors in a similar solvent system, such as the common non-

coordinating solvent — octadecene (ODE), would be similar. The results to be described below 

shall actually reveal that this was not the case. 

In this chapter, we chose CdS nanocrystals as the main model system to explore the correlation 

between formation of the nanocrystals and the key chemical reaction (or, the rate-determining 

reaction step). The chemical reactions involved and formation of nanocrystals shall both be 

explored quantitatively or semi-quantitatively for clarification of the correlation. The results 

described below shall reveal that the reduction of elemental sulfur by ODE, instead of nucleation 

of the nanocrystals, was likely the rate-limiting step for synthesis of high quality CdS 

nanocrystals. To verify this conclusion, a non-injection synthetic approach was designed and 

examined, which yielded CdS nanocrystals with similar quality. Furthermore, by activating 

elemental sulfur with fatty amines, formation of good quality CdS nanocrystals at much reduced 

reaction temperature, ~100 oC in comparison to ~250 oC in the classic approach, using a common 

organic solvent (toluene) was achieved. Success on growth of good quality CdS nanocrystals 

using typical laboratory temperatures and solvents not only further confirms the determining role 

of activation of the S precursor on formation of CdS nanocrystals, but also paves way for 

removing the high temperature requirement and exotic solvents in high quality colloidal 

nanocrystals synthesis. 

 

2.2 Experimental 

Materials. Cadmium oxide (CdO, Alfa), oleic acid (Aldrich), octanoic acid (Alfa), Sulfur (Alfa), 

lead (II) acetate (Alfa), silver nitrate (Alfa), zinc acetate (Alfa), octylamine (Alfa), tetradecane 



 

38 
 

(Alfa), 1-Octadecene (ODE, 90%, Alfa), 1-Octadecene (≥99.5%, Fluka), nitric acid (HNO3, 

Zhejiang Zhongxing Chemical Reagent Co), 1-(4-Nitrophenyl)-3-(4-phenylazophenyl) triazene 

(Cadion, Aladdin), triton X-100 (Alfa), cadmium acetate dihydrate (Alfa), butylamine (Alfa), 

potassium hydroxide (KOH, Tianjin Damao Chemical Reagent Factory), chloroform (Alfa), 

acetone (EM Science), toluene (EM Science), D-chloroform (Alfa), methanol, ethanol, hexanes 

(National Pharmaceutical Group Chemical Reagent Co) were used without further purification. 

All the cadmium fatty acid salts were prepared by the methods developed in our group. 

Sythesis of CdS nanocrystal was based on the literature. 30 For a typical synthesis (reactions 

shown in Figure 2-2), 0.0128 g cadmium oxide (0.10 mmol), 0.3390 g oleic acid (1.20 mmol) 

and 3.6 g ODE (90%) was heated to 300 oC under Ar protection until clear solution was formed, 

cooled down to designated temperature in Ar atmosphere, then 0.0016 g S (0.05 mmol) dissolved 

in 0.4 g ODE (90%) was injected. After the injection of sulfur precursor, small aliquots were 

taken out at different time, diluted in the toluene solution and measured by UV-Vis.  

The cadmium precursor conversion ratio (Cd yield) in Figure 2-2 D was determined by a two-

stage extraction technique. In the first stage, final products (0.5 ml) were mixed with 0.5 ml 

hexanes and 1 ml methanol at 50 oC to form two phases. The upper phase of this extraction 

system (non-polar phase) was kept. In the second stage, extraction was repeated three times. In 

each extraction step, the volume of remaining solution from the previous extraction step was 

increased to 1 ml by adding more hexanes, then, 20 μL butylamine and 1 ml methanol were 

added to form two phases at 50 oC. Kept the upper solution and repeated this procedure three 

times to complete the second stage extraction. FTIR spectra were applied to monitor the removal 

of Cd fatty acid salts (see Figure 2-1 as examples) and UV-Vis was employed to ensure the 

separation of CdS nanocrystals in the upper solution in each extraction step. To the final 
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heaxnes-ODE solution, acetone was added and the turbid mixture was centrifugated at 4000 

RPM for 15 minutes. The supernatant was decanted and 30 drops of concentrated nitric acid was 

added into the precipitate. The mixture was slowly heated to 300 oC to completely dissolve the 

sample and evaporate the remaining nitric acid. Subsequently, 20 drops of nitric acid was added 

and heated to 100 oC for 5 minutes, and DI-water was added to make a 25 ml solution. The 

cadmium concentration in each solution was identified by comparing to the calibration curve. 32 

The Cadion solution was prepared by dissolving 0.02 g Cadion into 100 ml 0.2 M KOH ethanol 

solution, forming a 0.2 g/l Cadion stock solution. 2 ml 0.2 g/l Cadion stock solution, 2 ml 10 wt% 

Triton X-100 water solution, and a known amount of cadmium acetate water solution (or the 

nitric acid treated sample solution, see Experimental for preparation of such a sample solution) 

was mixed together and adjusted the volume to 25 ml as the “measurement solution”. The 

“Cadion blank” spectrum (Figure 2-1 C) was taken using DI-water as the reference, with 

absorbance difference between 478 and 567 nm calculated as A1 = A478 - A567. The UV-Vis 

spectrum for each “measurement solution” (either in the calibration series or from a given 

sample series) was measured using “Cadion blank” as the reference, and the absorbance 

difference between 478 and 567 nm for each “measurement solution” spectrum was calculated as 

A2 = A478 - A567. To obtain A0 for each “measurement solution” needed for either the calibration 

curve or the determination of Cd concentration for a sample, A0 was calculated as the sum of A1 

from the common “Cadion blank” spectrum and A2  for the corresponding “measurement 

solution” (A0 = A1 + A2 ). More details are included in the caption of Figure 2-1. 
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Detection of H2S gas in Figure 2-2 E was followed by heating elemental sulfur and 1-

Octadecene without cadmium precursor under Ar protection, and the gas was collected with lead 

acetate paper by purging through Ar. The lead acetate paper strips were collected together and 

taken a digital picture in the same shot to ensure reliable grayscale values measured in Adobe 

Photoshop.  

 

Figure 2-1. (A): FTIR spectra of the reaction solutions before and after purification process. 

A fixed amount of methyl-stearate ester was added as reference (the carbonyl vibration is 

marked as “Ref” in the plot) to a fixed volume of the nanocrystals solutions (0.5 ml) before 

and after the two-stage extraction. The solutions with the reference dissolved in were casted 

onto a CdF2 IR substrate for measurements. Complete removal of the Cd fatty acid salt and 

free fatty acid was evidenced. (B): Calibration curve for determination of the cadmium 

concentration using the Cadion colorimetric method. (C) and (D): UV-Vis absorption spectra 

of the standard Cadion solution and a cadmium sample mixed with Cadion solution. 
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For the non-injection synthesis protocol, 0.0674 g cadmium oleate (0.10 mmol), 0.2825 g oleic 

acid (1.00 mmol), 0.0016 g S (0.05 mmol) and 4 g ODE (90%) was added into three neck flask, 

bubbled with Ar for 10 minutes, then heated to 180 oC under Ar protection with heating ramp at 

around 15 oC/min. 

In a typical low temperature synthesis, 0.0398 g cadmium octanoate (0.10 mmol) was mixed 

with 8 g toluene, after degassing at room temperature for 10 minutes with Ar, the solution was 

heated up to 100 oC under Ar protection, then 0.0008 g S (0.025 mmol) dissolved in 0.05ml 

octylamine was injected. 

The biased precursors/ODE ratio reactions used for quantitative NMR analysis, IR 

measurements, GC-MS etc were carried out as following. Equal molar amount (2 mmol) of 

cadmium octanoate (Cd(Oc)2), elemental sulfur and ODE (≥99.5%) were heated under Ar 

protection to designated temperature, once the solution was heated to the specified temperature, 

heating mantle was removed, then cooled down to room temperature in Ar atmosphere, and 20 

ml chloroform was added into the flask. After stirring the final products with chloroform solution 

for 10 minutes, 10 ml 6 M HCl solution was injected into the flask, the gas was collected by 

silver nitrate solution. The black precipitate in the AgNO3 solution was collected by 

centrifugation, washed through deionized water, dried under vacuum oven overnight. 

Corresponding Ag2S weight was recorded to calculate CdS yield. The CHCl3 layer in the flask 

was evaporated on a rotary evaporator, and then added into the D-chloroform to carry out the 

NMR measurement. Parallel experiments were carried out under the same reaction conditions to 

collect the final samples for IR characterization. 

And in order to confirm that the final products from biased precursor ratio was indeed formed for 

routine reaction condition, following experiments were carried out for corresponding NMR 
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analysis in Figure 2-6: 0.0398g cadmium octanoate (0.10mmol), 0.0016 g S (0.05 mmol) and 4 g 

ODE (90%) was mixed in the three neck flask, bubbled with Ar for 10 minutes, then heated to 

220 oC and reacted under 220 oC for 1 hour. The control experiment was carried out exactly the 

same just without the addition of elemental sulfur. For the quantitative analysis, first, one batch 

of CdS nanocrystals was prepared as following: 0.796 g (2.0 mmol) cadmium octanoate, 0.064 g 

(2.0mmol) S mixed together with 40 g ODE, bubbled with Ar for 10 minutes, then heated up to 

200 oC under Ar protection and kept under 200 oC for 1 hour. The final products were digested 

for gravimetric analysis through weighing Ag2S just as in the experimental section, with 78.7 ± 

7.9% of initially added elemental sulfur converted into CdS nanocrystals. The organic products 

were extracted into chloroform, and then known concentration of thiophene in CDCl3 was added 

into the organic products as the internal standard for NMR quantitative analysis. In order to 

avoid the possible dynamic range problem of NMR since the excess amount ODE may saturate 

the signal detector, limited spectrum range with only interested signal on 1H NMR was recorded. 

Detailed setup is the same as in the experimental section except limited spectrum range selected. 

And 1H NMR quantitative analysis found out that 5.0 ± 0.3 % of initially added elemental sulfur 

was transformed into 2-tetradecylthiophene. By combining the results of CdS and 2-

tetradecylthiophene yield, around 13% CdS synthesized was due to the formation of 2-

tetradecylthiophene. 

NMR measurement. 1H and 13C NMR measurements were carried out on Bruker 300 and 400 

MHz instrument. For quantitatively integration of 1H spectra to calculate the ODE consumption, 

a recycle delay time of 60 s was set up to make sure that proton nuclei returned to the 

equilibrium Boltzmann distribution between pulses. 
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2-tetradecylthiophene: 1H NMR (300 MHz, CDCl3): δ = 7.10 [dd, 3J(H,H)=5.1 Hz, 4J(H,H)=1.1 

Hz, 1 H, 5-H], 6.91 [dd, 3J(H,H)=5.1 Hz, 3J(H,H)=3.4 Hz, 1 H, 4-H], 6.77 [tdd, 3J(H,H)=3.4 Hz, 

4J(H,H)=1.1 Hz, 4J(H,H)=1.1 Hz, 1 H, 3-H], 2.81 [t, 3J(H,H)=7.6 Hz, 2 H, α-CH2]. 

Optical Measurements. UV-Vis spectra were taken on an HP 8453 UV-visible 

spectrophotometer. Photoluminescence spectra were measured using a Spex Fluorolog-3 

fluorometer. 

Transmission Electron Microscopy (TEM). TEM images were taken on a JEOL 100 CX 

electron microscope using a 100 kV accelerating voltage. CdS nanocrystal was dispersed into 

toluene or hexane solution, then several drops of the solution were added onto a Formvar-coated 

copper grid, and the grid with the nanocrystals was dried in air. 

Fourier Transform Infrared Spectroscopy (FTIR). FTIR spectra were recorded on a Bruker 

Tensor 27 FT-IR spectrometer at room temperature by directly applying sample onto CaF2 salt 

plates. 

Gas chromatography-Mass Spectroscopy (GC-MS). The final products after digestion were 

measured by a Shimadzu QP5050A quadrupole GC/MS system interfaced with a GC-17A gas 

chromatography. The capillary column used was a Rtx-5 MS 30-m long X 0.25-mm i.d. X 0.25-

um film thickness. (Crossbond® 5% diphenyl/95% dimethyl polysiloxane, Restek, Bellefonte, 

PA). Temperature program, 50-300 °C at 20 °C/min. Column flow rate, 1.3 ml/min. Split ratio, 

1:1. Acquisition mass range, 50-450 Da. 

 

2.3 Results and Discussions 
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Three synthetic schemes. Three 

distinguishable but related reaction 

schemes were adopted/developed in 

this work. In the first synthetic 

system, CdS nanocrystals were 

formed by injection of elemental 

sulfur dissolved in octadecene (ODE) 

into a hot solution of cadmium fatty 

acid salts in ODE at a given reaction 

temperature (see details in 

Experimental Section). This scheme 

was introduced into the field in 2002 

30 and will be called as—the classic 

synthetic approach for the sake of 

presentation in this chapter.  

The second reaction scheme did not 

involve any hot injection but with 

the same precursors and solvent with 

the classic approach, which will be 

called as non-injection approach in 

this chapter. Such a non-injection 

synthetic approach was formulated after identification of the rate-determining step—activation of 

elemental sulfur at a given temperature range—in the first system. 

 

Figure 2-2. (A) Temperature dependence of formation 

of CdS nanocrystal, UV-Vis spectra taken at 40 

minutes for each reaction. (B) TEM image of CdS 

nanocrystal grown under 200 oC for 40 minutes. (C) 

Temperature dependent particle size of CdS 

nanocrystals at 40 minutes. (D) Cd precursor 

conversion ratio (Cd yield) for the reactions at 

different temperatures. (E) Images and grayscale plot 

of lead acetate (Pb(Ac)2) testing papers for H2S 

detection after 40-minutes exposure to the reaction 

atmosphere under different temperatures (no 

cadmium precursor in the reaction flask). 
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The third reaction 

system was designed to 

explore synthesis of 

CdS nanocrystals in a 

typical laboratory 

temperature (≤ 100 oC) 

in a regular solvent 

(such as toluene). This 

reduced temperature 

approach was also 

designed to further 

confirm the activation 

of elemental sulfur as 

the key chemical 

reaction in the formation of CdS nanocrystals by the addition of aliphatic amine which is known 

as a strong activation reagent for elemental sulfur.  

Temperature dependence of formation of CdS nanocrystals in the classic synthetic scheme. 

Experiments were carried out to identify temperature effects for formation of CdS nanocrystals 

using the classic synthetic approach in the temperature range between about 100 oC and 220 oC. 

The temperatures used here was somewhat lower than that used in the original synthetic scheme 

(typically > 250 oC). 30 Some preliminary results reported recently by us indicated that formation 

of high quality CdS nanocrystals comparable to the classic approach using the same reaction 

system could occur at a temperature below 250 oC, 28 and the preliminary data further implied 

 

Figure 2-3. (A) Evolution of FT-IR spectra of the mixture of 

Cd(Oc)2, ODE and elemental sulfur at different reaction 

temperatures. (B) Consumption of ODE determined by NMR 

measurements and CdS yield measured by the conversion ratio of 

elemental sulfur for a series of reactions (initial Cd(Oc)2 : ODE : 

elemental sulfur =1 : 1 :1) at different reaction temperatures. 
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that formation of CdS nanocrystals in this classic approach was likely controlled by a chemical 

kinetic process, instead of nucleation process. These preliminary results served as an initial base 

for us to design the experiments for this part of research. 

Figure 2-2 A illustrates the UV-Vis absorption spectra of the aliquots taken from the reaction 

mixtures carried out at a given temperature. All reactions were performed with identical 

chemical composition and the only difference between these reactions was the reaction 

temperature (marked in Figure 2-2 A). When the aliquots were taken for recording the spectra, 

each reaction proceeded for 40 minutes after injection of the sulfur solution. Results clearly 

revealed that, for the reactions with reaction temperature below about 170 oC, the absorption 

spectrum of the aliquots (see the spectrum for 160 oC reaction in Figure 2-2 A) resembled that of 

the mixture of the starting materials (see the spectrum marked as “control” in Figure 2-2 A). This 

indicates that, at this relatively low temperature range, no formation of CdS 

nanoclusters/nanocrystals was observable by UV-Vis spectra after the reactants aged for 40 

minutes.   

Conversely, when the reaction temperature was above 170 oC, formation of nearly monodisperse 

CdS nanocrystals was observed under the same reaction conditions, which was indicated by the 

sharp absorption features in each spectrum (Figure 2-2 A). The quality of the nanocrystals was 

about the same as that obtained in the classic scheme carried out in the temperature range 

between 250 and 300 oC, 30 with similar sharp absorption features, nearly pure bandgap 

photoluminescence, and narrow size distribution with dot-shape (see a transmission electron 

microscope (TEM) image in Figure 2-2 B as an example).  
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The average size of the CdS nanocrystals in the 40-minute aliquots for each reaction was 

determined using the absorption peak position, 33 which showed a sharp increase by increasing 

the reaction temperature in the range approximately between 170 oC and 200 oC (Figure 2-2 C). 

The Cd conversion ratio 

(Figure 2-2 D) from the 

Cd precursor to CdS units 

in nanocrystals (Cd yield) 

determined using the so-

called “Cadion” 

colorimetric method (see 

Experimental for details) 

showed a similar increase 

trend in this temperature 

range. A gravimetric 

analysis for CdS unit yield 

for a more concentrated 

reaction (Figure 2-3 and 

see details below) also demonstrated a similar trend seen in Figure 2-2 D.  

These results imply that formation of CdS nanocrystals occurred rather abruptly after the system 

reached a critical temperature, ~180 oC. The existence of a critical temperature in Figure 2-2 C 

might be due to a thermally activated chemical reaction at this temperature. This is consistent 

with the preliminary results reported recently by us, that formation of CdS nanocrystals in the 

classic approach was controlled by a chemical kinetic process instead of nucleation kinetics. 28 

 

Figure 2-4. 1H and 13C spectra of the final products at 220 oC 

after HCl digestion. The peak with asterisk on 13C spectrum 

comes from the carbon at 2 position of 1-octadecene. 
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The Cd yield data identified under synthetic conditions (Figure 2-2 D) are important to reveal the 

reaction stoichiometry for formation of CdS nanocrystals. The data sets presented in Figure 2-2, 

specifically including Figure 2-2 D, were collected for the reaction with oleic acid as the ligands 

for both Cd precursor and nanocrystals (see “typical synthesis” in Experimental). The results 

indicate that this trend was quantitatively reproducible with either oleic acid or a saturated fatty 

acid as the ligands. However, the accuracy of the Cd yields measured by the cadion method 

largely depended on the purification of the CdS nanocrystals from the other metal-containing 

impurities, i.e., Cd fatty acid salts in our case. Using a new purification procedure (see 

 

Figure 2-5. 1H (left, top) and 13C (left, bottom) spectra of the final products with Cd : S : 

ODE ratio being 1 : 1 : 1 at 220 oC after digestion by HCl acid. Enlargement and detailed 

coupling pattern (right) of proton at 3 position of thiophene ring. (Peak assignment: 1H 

octanoic acid -- 8.84 carboxylic proton, 2.35 α-H, 1.63 β-H; 1-ODE -- 5.82 2-proton, 4.95 1-

proton, 2.04 α-H. 13C octanoic acid -- 180.5 carboxylic carbon; 1-ODE -- 139.3 2-carbon, 

114.1 1-carbon. The peak at 0.07 ppm on 1H and 1.0 ppm on 13C spectra originated from the 

vacuum grease used during the synthesis. 
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Experimental), it was possible to remove unreacted Cd fatty acid salts quantitatively (see FTIR 

spectra in Figure 2-1). It should be mentioned that our results indicate that the Cd yields 

calculated using the extinction coefficients of CdS nanocrystals published previously 33 was only 

qualitatively correct, which is possibly due to two reasons, namely, the biased Cd ion 

concentration from unpurified Cd fatty acid salts in the measurements of the original extinction 

coefficients and the excess Cd ions on the surface of nanocrystals (see discussions below).  

Rate-determining chemical reaction in formation of CdS nanocrystals. Experiments were 

performed to identify possible chemical reaction(s) that might match the critical temperature 

discussed in the above paragraph. Cadmium fatty acid salts alone, pure ODE, and mixtures of 

cadmium fatty acids salts with the corresponding fatty acids and ODE, if no elemental sulfur 

existed in the solution, were found to be stable in the experimental temperature range. No 

changes were identified by UV-Vis, FTIR, and NMR measurements. Conversely, significant 

changes were detected by heating up the mixture of elemental sulfur and ODE, without any 

cadmium precursors, in the temperature range of interest by several experimental techniques.  

Figure 2-2 E shows the results of lead acetate (Pb(Ac)2) tests for H2S detection by applying 

Pb(Ac)2 testing paper strips to the reaction atmosphere above the mixture of elemental sulfur and 

ODE. It reveals that the testing paper strips were colorless at low temperatures and they turned 

black at temperature above 170 oC due to the formation of black lead sulfide. The general trend 

of the grayscale plot of this test matched well with the trend for the formation of CdS 

nanocrystals when the cadmium precursors—cadmium fatty acid salts— was in place 

(comparing Figure 2-2 C and 2-2 D with 2-2 E). The gas phase mixture from the reactions 

without cadmium precursors was also bubbled into silver nitrate and zinc acetate solutions 

separately. The colorless silver nitrate and zinc acetate solutions became black and white 
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suspensions, respectively, implying the formation of black silver sulfide and white zinc sulfide. 

These results all indicate the generation of H2S gas by reacting elemental sulfur with ODE.  

S + CH3(CH2)15CH=CH2 → H2S + side product(s)  (2-1) 

The nice correlation between the plots in the right panel of Figure 2-2 suggests that this reaction 

is likely the rate-determining step for the formation of CdS nanocrystals. This will be verified in 

the following sub-section. Furthermore, in Reaction (2-1), we did not specify the nature of side 

products, which 

will also be 

discussed in the 

following sub-

section. 

Chemical 

reactions 

involved in 

formation of 

CdS 

nanocrystals. 

Results in 

Figure 2-2 

imply that 

formation of 

CdS nanocrystals is likely initiated by the activation of elemental sulfur. To confirm this 

 

Figure 2-6. 1H NMR spectra of the final products under synthetic 

conditions with (top, accumulation number: 12,000) and without (bottom, 

accumulation number: 8,000) the addition of elemental sulfur. See Figure 

2-5 for assignment of the peaks. The sharp peak at 7.0 ppm is from 13C 

satellite signal of trace CHCl3 in CDCl3 with coupling constant as 209 Hz. 
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hypothesis and identify the reaction stoichiometry, reactions with an equal molar amount of 

cadmium octanoate (Cd(Oc)2), ODE and elemental sulfur were carried out (Figure 2-3). The 

results in the above sub-section indicate that ODE can react with elemental sulfur to generate 

H2S gas. When a sufficient amount of cadmium fatty acid salts were in the reaction mixture, 

however, H2S gas became not detectable using the same methods mentioned in the above sub-

section. Instead, formation of CdS nanocrystals was observed presumably by the rapid reaction 

of H2S with cadmium fatty acid salts presented in the reaction solution. If this reaction did take 

place, one of the side products should be fatty acid. FTIR measurements indeed revealed 

formation of fatty acid (Figure 2-3 A), which could not be observed without the presence of 

elemental sulfur as mentioned above. Furthermore, FTIR results revealed that formation of free 

fatty acid occurred in a similar temperature range (Figure 2-3 A) for the formation of H2S shown 

in Figure 2-2 E. In addition to formation of the fatty acid, a trace amount of the corresponding 

anhydride was also detected by FTIR (Figure 2-3 A), 34 which presumably should be the product 

of dehydroxylation of the fatty acids upon prolongated heating. If ignoring the existence of this 

trace amount of anhydride, one can write the main reaction for formation of CdS as follows 

(using Cd octanoate (Cd(Oc)2) as the cadmium precursor).  

H2S + Cd(Oc)2 → CdS + 2HOc (2-2) 

In principle, if Reaction (2-2) was fast enough, formation of CdS through Reaction (2-2) should 

follow (2-1) closely. To further verify the correlation between Reactions (2-1) and (2-2), 

quantitative studies were carried out at different temperatures with an equal molar amount of 

Cd(Oc)2, ODE and elemental sulfur, namely the ones shown in Figure 2-3. Here, Reaction (2-1) 

was measured by the consumption of ODE in the final products, which was determined using the 

α-H NMR peak of its C=C double bond. For a given final products, Reaction (2-2) was 
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quantitatively monitored using the unit yield of CdS in solid form through gravimetric analysis 

(see Experimental Section for details). The quantitative results are shown in Figure 2-3 B, which 

firstly confirmed that the temperature dependence of both reactions were consistent with the 

trend shown in the right panel of Figure 2-2. Secondly, for a reaction started with Cd(Oc)2 : 

ODE : S = 1 : 1 : 1 (molar ratio), the ultimate yield of CdS units was about twice of the 

consumption of the ODE (see the plateau values for two curves in Figure 2-3 B) , which means 

that: 

(Yield of CdS) : (Consumption of ODE) = 2 : 1 (2-3) 

Importantly, (Yield of CdS) : (Consumption of ODE) was found to be almost the same even if 

the reaction was proceeded for 60 minutes at a relatively high temperature, namely 220 oC. From 

 

Figure 2-7. Gas chromatography (GC) of the final products after digestion by HCl and the 

electron ionization-mass spectrum (EI-MS) of the third component in the GC trace. 
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the stoichiometry of the reaction mixture, because the ultimate consumption of ODE was about 

33% (See Figure 2-3 B), one can further calculate that: 

(Consumption of S) : (Consumption of ODE) = 3 : 1 (2-4) 

As discussed above, both ODE consumption and CdS yield showed an ultimate value, indicated 

by the plateau in both curves in Figure 2-3 B.  Two facts supported that the ultimate yield of CdS 

at relatively high temperatures in Figure 2-3 was likely due to the total consumption of elemental 

sulfur. Firstly, NMR measurements indicate that there was plenty of ODE left (see 13C NMR in 

Figure 2-4 and Figure 2-5) when the reactions reached plateau in Figure 2-3 B. Secondly, given 

the initial equal molar amount of ODE and S, consumption of elemental sulfur was about thrice 

as much as that of ODE (Equation (2-4) and Figure 2-3 B). 

 

Figure 2-8. 1H-13C HMQC spectrum (top, full frame; bottom, enlarged) of the final product 

with Cd : S : ODE ratio being 1 : 1 : 1 after digestion by HCl acid.  
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As ultimate yield of S in the form of CdS was only 2/3 of the initial elemental sulfur, some 

elemental sulfur should be consumed by formation of inactive side product(s) in Reaction (1). 

For the reaction with Cd(Oc)2 : ODE : S = 1 : 1 : 1, the final products were digested by using 

concentrated HCl to decompose CdS completely, and CdCl2 was removed by extraction (see 

Experimental Section for details). The oxidation product of ODE in organic phase could be 

divided into two portions. The first portion was typically black in color and not soluble in 

common organic solvents tested, and analysis of the chemical structure was not successful. The 

second portion was identified as 2-tetradecylthiophene (see the molecular structure as an inset in 

Figure 2-4). As the thiophene molecule has an S atom, the conversion ratio of elemental sulfur 

could not be 100%, supporting elemental sulfur as the limiting reagents. Further quantitative 

analysis reveals that this oxidation product of ODE in the second portion accounted for about 

 

Figure 2-9. Electron ionization-mass spectra (EI-MS) of the 1st and 2nd component in the GC 

trace. 
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~13% of total CdS yielded under a general synthesis condition (Figure 2-6 and its caption). With 

this result, we  write the following reaction at least as a part of Reaction (2-1). 

3S + CH3(CH2)15CH=CH2 → 2H2S + CH3(CH2)13(C4H3S) (2-5) 

It should be emphasized that Reaction (2-5) was based on the existence of the 2-

tetradecylthiophene as the only S-containing side product in the soluble portion of the organic 

residue. However, it is interesting to notice that, although Reaction (2-5) was established by the 

soluble portion of the oxidation products of ODE, it gave 3 : 1 consumption ratio between 

elemental sulfur and ODE. Evidently, this number is consistent with Equation (2-4), which was 

deduced with a different set of experimental evidences (see the text above Equation (2-4)). This 

led to a conclusion that the overall activation reaction of elemental sulfur by ODE, namely 

Reaction (2-1), should give a similar set of reaction coefficients for the reactants (ODE and S) 

although we could not identify the exact structure(s) of the side product(s) in the insoluble 

portion.  

The exact structure of 2-tetradecylthiophene was identified by NMR (Figure 2-4), gas 

chromatography-mass spectroscopy (GC-MS, Figure 2-7), and 1H-13C HMQC (Heteronuclear 

Multiple Quantum Correlation, Figure 2-8). The final products were analyzed using GC-MS after 

digestion by concentrated HCl and removal of water-soluble species including all inorganic ions. 

The GC trace in Figure 2-7 (top) indicates that there are three organic components in the reaction 

mixture. The identification of the chemical composition for each component was provided by the 

following electron ionization-mass spectrum (EI-MS). The first and second components were 

determined as octanoic acid — converted from cadmium fatty acid salt through either Reaction 

(2-2) or the digestion process — and ODE (see their EI-MS in Figure 2-9), respectively. 
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The EI-MS spectrum of the third component (Figure 2-7, bottom) is consistent with 

tetradecylthiophene. The molecular ion peak located at 280 confirmed the existence of 

tetradecylthiophene. 

The small peak at 

281 could be 

assigned as result of 

the natural 

abundance of the 

elements. The EI-

MS peaks at 111 and 

97 series with 14 

mass units apart for 

the third component 

could be assigned to 

the fragmented 

tetradecyl alkane 

chain with one CH2 

difference in mass. 

These results 

indicate that the GC-

MS experiments 

confirmed the 

assignment of the 

 

Figure 2-10. Normalized UV-Vis absorption spectra and 

corresponding digital pictures of CdS nanocrystals prepared in 1-

Octadecene and tetradecane. Reaction condition are as following: 

0.0567 g cadmium myristic acid salt (0.10 mmol), 0.2284 g myristic 

acid (1.0 mmol) and 3.6 g tetradecane was heated to 220 oC under Ar 

protection, 0.0016 g S (0.05 mmol) dissolved in 0.4 g tetradecane was 

injected. The synthesis of CdS in ODE was carried out in similar 

situation with the change of solvent to 1-ODE. And the spectrum was 

taken after reacting at 220 oC for 1 hour. The non-zero and tilted 

background for the spectrum corresponding to the synthesis in 

tetradecane is due to the scattering of largely sized particles which 

appeared to be black in the corresponding picture. 
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structure of tetradecylthiophene and supported the reactions involved in formation of CdS 

nanocrystals (Reactions (2-1), (2-2), and (2-5)). While GC-MS experiments offered molecular 

formula information about the molecule suspected to be tetradecylthiophene, 1H-13C HMQC and 

the analysis (Figure 2-8) indicate that its structure is consistent with the molecular structure of 2-

tetradecylthiophene. Due to the electronegativity of sulfur on thiophene ring, proton at 5 position 

has a relatively low density of electron cloud around it compared with proton at other positions, 

which resulted in a higher chemical shift at 7.10 ppm. Subsequently, a reduced inductive effect 

could be referred to the assignments of the chemical shifts for proton located at 4 and 3 positions 

in the thiophene ring with chemical shift at 6.91 and 6.77 ppm, respectively. All of these 

assignments are in good agreement with the literature. 35, 36 Correspondingly, 13C NMR (Figure 

2-4, bottom panel) confirmed the existence of four different carbon environments on the 

thiophene ring. Due to a long relaxation time and little NOE (Nuclear Overhauser Effect) 

enhancement of 

quaternary carbon at 

2 position in 

thiophene ring, this 

carbon has much 

lower signal intensity 

compared to the other 

three 13C signals. 

Various 

characterization 

techniques including 

 

Figure 2-11. Digital picture of final products indicating temperature 

dependence for PbS reacted under same reaction condition except 

different temperature for 20 minutes. 
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NMR, FTIR and GC-MS did not show any sign of thiol, disulfide during the synthesis of CdS 

nanocrystals, although their counterparts were observed in the case of formation of CdSe 

nanocrystals using a similar reaction system. 22 Furthermore, the Se version of the identified 

oxidation product of S observed in this work (2-tetradecylthiophene) had not been reported for 

formation of CdSe nanocrystals using a similar reaction system. 9, 11, 22  

The existence of the double bond presumably made the α and β hydrogens reactive for oxidative 

elimination in ODE. With elemental sulfur in place, this further induced the formation of 2-

tetradecylthiophene as the final oxidation product in Reaction (2-5). Non-existence of other types 

of S containing side products as mentioned in the above paragraph further indicate that the 

saturated hydrocarbon chain of octadecene could not compete with the α and β hydrogens of the 

double bond. It should be pointed out that, reduction of S by hydrocarbons to form thiophenes as 

redox products was mentioned in some books. 37-39 

However, it is well known that elemental sulfur can react with alkane under elevated 

temperatures to generate many types of S containing and complex products. 37-40 Therefore, in 

order to examine the unique properties of the double bond in ODE for activating elemental sulfur 

in the classic synthetic approach of CdS nanocrystals, 30 experiments were attempted to use high 

boiling point alkane as the solvent. The results indicate that formation of CdS nanocrystals could 

be achieved in such a saturated hydrocarbon solvent. However, even if the resulting CdS 

nanocrystals were quite small, the resulting reaction solution was brown to black in color, instead 

of colorless (bright yellow for large CdS nanocrystals) reaction solution obtained in ODE (Figure 

2-10). Consistent with this, the typical UV-Vis spectra of the CdS nanocrystals formed in high 

boiling point alkane showed a significant scattering background (Figure 2-10). With these facts, 
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one could conclude that 

ODE, in comparison with 

saturated hydrocarbons, is 

a preferred reducing 

reagent (solvent) for 

elemental sulfur due to the 

existence of the double 

bond.  

Preliminary results on 

synthesis of PbS 

nanocrystals using a 

similar reaction system 

(Fugre 2-11) indicates a 

similar correlation pattern 

between activation of 

elemental sulfur by ODE and formation of PbS nanocrystals. Similar to the CdS nanocrystals 

system discussed above, formation of PbS colloidal nanocrystals was found to be abruptly 

activated in the temperature range between 160 and 180 oC (Figure 2-11).  

Consistency between the reactions in Figure 2-2 and the ones in Figure 2-3. The reactions in 

Figure 2-3 were performed with an equal molar amount of Cd(Oc)2, ODE and elemental sulfur, 

which made it possible to obtain a decent amount of side products for necessary characterization 

discussed in the above subsection. Comparing with the reactions carried out under common 

synthetic conditions (the ones in Figure 2-2), the reactions in Figure 2-3 were with biased high 

 

Figure 2-12. (A): Temporal evolution of UV-Vis absorption and 

photoluminescence of a non-injection reaction with the final 

reaction temperature as 180 oC. (B): TEM image of CdS 

nanocrystals sample of the reaction shown in (A). (C): Electron 

diffraction pattern of the same sample. 
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concentrations of Cd(Oc)2 and elemental sulfur and much less ODE. However, the results and 

analysis below shall reveal that the chemical reactions illustrated above are consistent for both 

sets of reactions. 

The CdS unit yield in Figure 2-3 B 

should be equal to the Cd yield for the 

given system because the resulting CdS 

was in the form of bulk and each CdS 

unit contains one Cd ion. For bulk CdS, 

the Cd to S ratio should be 1 to 1.  

Therefore, for the reactions shown in 

Figure 2-3, the corresponding Cd yield 

has an ultimate value at about 66%. 

Because the Cd to S precursor ratio was 

2 to 1 in Figure 2-2, instead of 1 to 1 in 

Figure 2-3, this should give us about 33% 

as the ultimate Cd yield for the reactions 

in Figure 2-2.  

The experimental value in Figure 2-2 is 

about 42% (Figure 2-2D). On the first 

sight, this value seemed to be 

contradictory to the value discussed in 

the above paragraph (33%). However, 

 

Figure 2-13. Temporal evolution of UV-Vis 

absorption spectra of an injection reaction 

carried out at 180 oC. Cadmium oxide (0.0128 

g ,0.10 mmol), 0.3390 g oleic acid (1.20 mmol), 

and 3.6 g ODE was heated to 300 oC forming 

clear solution, then cooled down to 180 oC in Ar 

atmosphere, 0.0016 g S (0.05 mmol) dissolved in 

0.4 g ODE was injected, and corresponding UV-

Vis absorption spectra were recorded. 
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because the only ligands in the reaction system were fatty acids, the surface of the nanocrystals 

and the ligands were connected by RCOO-Cd bonds. Consequently, this should give CdS 

nanocrystals with a Cd-rich surface, which is similar to that in the case of CdSe nanocrystals 

solely passivated with carboxylate ligands. 41 Noticed that the size of CdS nanocrystals formed at 

220 oC (Figure 2-2 A) was about 4.3 nm, one 

could estimate that a full monolayer of 

RCOO-Cd on the surface of these nanocrystals 

should increase the ultimate Cd yield from 33% 

to about 50%. This simple model obviously 

over estimated the amount of RCOO-Cd 

because the nanocrystals surface would be too 

crowded to accommodate a full monolayer of 

RCOO-Cd. With these considerations, it 

would be reasonable to conclude that the 

ultimate Cd yield based on bulk CdS (33%) 

and that calculated from the CdS nanocrystals 

(42%) are in good agreement. With the 

ultimate yields being consistent, we can see 

that the general trend in Figure 2-2 D and 

Figure 2B is very much similar to each other.  

As for the side products identified above through the high concentration reactions in Figures 2, 3, 

and 4, both fatty acids (Figure 2-1) and 2-tetradecylthiophene (Figure 2-6) were identified for the 

reactions under the regular synthetic conditions. Specifically, 2-tetradecylthiophene was 

 

Figure 2-14. Temporal evolution of UV-Vis 

absorption spectra of CdS nanocrystals 

grown at 100 oC in toluene. Inset is the 

photoluminescence (PL) spectrum of the 

CdS aliquots taken at 60 minutes. 
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identified as the oxidation product of S by ODE but there was no black insoluble substance 

observed under synthetic conditions.  

Non-injection synthetic approach in ODE. The results above strongly imply that synthesis of 

high quality CdS nanocrystals using the classic approach 30 involved the reduction of elemental 

sulfur by ODE as the rate-determining step. If this was true, the rather abrupt activation of this 

reaction in the temperature range between around 160 and 180 oC (Figures 1 and 2) would mean 

that the hot-injection step in the classic protocol 30 may not be necessary. This is so because the 

abrupt activation at elevated temperatures should play a similar role as a rapid injection, which 

should be similar to the phenomenon observed very recently for the case of Co nanocrystals. 42 

The results in Figure 2-12 verified the above hypothesis. All starting materials used in a typical 

classic approach by hot injection, namely ODE (4 g) with 0.0674 g cadmium oleate, 0.2825 g 

oleic acid, and 0.0016 g S, were loaded together into the reaction flask at room temperature. The 

mixture was heated to 180 oC at a rate approximately 15 oC/minute. The temporal evolution of 

the optical properties (Figure 2-12 A) followed a similar pattern as a hot-injection reaction at the 

same temperature (Figure 2-13). The sharp absorption features and photoluminescence peak of 

the final product imply that the resulting nanocrystals are nearly monodisperse and of high 

optical quality. The nanocrystals were dot-shaped as confirmed by TEM (Figure 2-12 B). The 

electron diffraction pattern (Figure 2-12 C) indicates that the crystal structure of the resulting 

CdS nanocrystals was zinc-blende.  

The results in Figure 2-12 firstly supported the temperature-dependent activation of elemental 

sulfur revealed by studying the classic approach (Figures 2-2 and 2-3). Secondly, the non-

injection approach could further simplify synthesis of high quality CdS nanocrystals. It should be 
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mentioned that non-injection synthesis of high quality CdS nanocrystals with zinc-blende 

structure was reported using two different types of sulfur precursors. 43, 44 Presumably one sulfur 

precursor was in place for nucleation and the other for growth. In addition, the reaction 

temperatures used in those reports were in the range of 220 and 300 oC, which was somewhat 

higher than the temperature used in this chapter. Also at 240 oC, a very recent report showed that 

high quality CdS 

nanocrystals could be 

synthesized using non-

injection approach in 

ODE. 45 

Reduced-temperature 

approach in toluene. 

The results obtained in 

both classic approach 

and non-injection 

approach discussed 

above indicate that, as 

long as elemental sulfur 

could be activated, 

formation of CdS 

nanocrystals would 

follow closely. It has been established that elemental sulfur could be activated by basic 

chemicals such as amines, presumably by opening the S8 ring. 40 Such an activation process 

 

Figure 2-15. (A): FTIR spectra of pure octylamine, mixture of 

octylamine and cadmium octanoate (Cd(Oc)2) at 25 oC, mixture of 

octylamine and Cd(Oc)2 at 100 oC, and pure Cd(Oc)2. (B): Picture 

of elemental sulfur in ODE and octylamine. (C) UV-Vis spectra of 

sulfur dissolved in ODE and octylamine.  
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could even occur at room temperature. These facts invited us to consider synthesis of CdS 

nanocrystals at a temperature range reachable with common organic solvents, such as toluene, by 

adding amine into a reaction system.  

The relatively sharp absorption spectra in Figure 2-14 illustrate that good quality CdS 

nanocrystals indeed formed at 100 oC by adding octylamine into the reaction system consisting 

of elemental sulfur, cadmium fatty acid salts, and fatty amine with toluene as the solvent (see 

details in Experimental Section). The temporal evolution of the UV-Vis spectra of the 

nanocrystals resembles a typical pattern using high temperature approaches in ODE (See Figure 

2-12 A as an example). The photoluminescence spectrum of one aliquot is shown in Figure 2-14 

as inset, which possesses a sharp band-edge emission with a weak deep trap emission tail to the 

long wavelength side (Figure 2-14, inset). The full-width-at-half-maximum (fwhm) for the band-

edge emission was found to be about 22 nm, which is comparable to a typical fwhm value of PL 

spectra for high quality CdS nanocrystals synthesized using classic approach. 

Except addition of amine, the chain length of both fatty amine and cadmium fatty acid salts were 

found to be important for synthesis of CdS nanocrystals in toluene. If oleylamine and cadmium 

stearate were used in place of octylamine and cadmium octanoate, growth of the CdS 

nanocrstyals was too slow to be appreciable. This was probably caused by a much reduced 

surface ligand dynamics on the surface of the nanocrystals at the reduced temperatures. 46 This 

implies that, although elemental sulfur could be activated at a common laboratory temperature, 

the controlled growth of high quality nanocrystals is still dependent on other parameters needed 

to be optimized for a successful synthetic scheme. It should be noticed that, in comparable 

temperature range, synthesis of CdS nanocrystals with somewhat lower optical quality was 

reported using relatively complex single precursors. 47, 48 Likely because of the high reactivity of 
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the single precursors, such as cadmium alkyl xanthates, 

cadmium thiocarbamates and cadmium thiocarbonates, 

ligands with long hydrocarbon chains were found to be 

effective. 

A series of experiments were carried out to further 

confirm that amines were indeed activating elemental 

sulfur, instead of activating the cadmium fatty acid salts. 

It is well documented that fatty amine does react with 

cadmium fatty acid salts in the case of CdSe synthesis 

under high temperatures (usually higher than 250 oC) to 

form the corresponding amides. 49 However, under much 

reduced reaction temperature in this work (≤ 100 oC), FTIR spectra clearly revealed that no 

reaction occurred between fatty amine and cadmium fatty acid salts. 

In Figure 2-15 A, the FTIR spectra of the mixture of octylamine and cadmium octanoate at two 

different temperatures, namely 25 oC and 100 oC, are presented. For the mixture at 100 oC, it was 

heated at this temperature in toluene (without elemental sulfur in place) for 60 minutes to ensure 

sufficient time for any possible reaction. Evidently, both spectra of the mixtures are the 

superposition of the standard spectra of octylamine (top curve) and cadmium octanoate (bottom 

curve). In the spectra of both mixtures, there was no sign of any amide formation (see Figure 2-

16 for a standard IR spectrum of amide).  

While reaction between amine and cadmium fatty acid salts in toluene did not occur, elemental 

sulfur easily reacted with amine. As shown in Figure 2-15 B, at room temperature, the ODE 

 

Figure 2-16. FT-IR spectra of N-

butyldodecanamide. 
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solution of elemental sulfur is colorless but the color of elemental sulfur dissolved in octylamine 

is brownish red. The color difference of two mixtures yielded two distinguishable UV-Vis 

spectra (Figure 2-15 C). The color and absorption features in UV-Vis spectrum of the elemental 

sulfur and amine mixture were assigned to the formation of sulfur radicals and open chain 

fragments of S due to opening of S8 ring. 50 Recently, the Ozin’s group has reported a detailed 

account of NMR analysis of amine and elemental sulfur. 26 Our preliminary analysis of the 

mixture of octylamine and elemental sulfur using NMR was found to be qualitatively similar to 

what reported by the Ozin’s group, with the formation of N'-octyl-2-thioketooctanamidine as 

possible activated products.  

Although activation of elemental sulfur by amine involves much more complicated side products 

26 than what was observed in sulfur activation solely by ODE—thiophene as the only detectable 

side product, generation of H2S during the activation did occur in this case. Using the same 

testing method in Figure 2-2 E, lead acetate testing paper also turned black for a mixture of 

octylamine and elemental sulfur at 100 oC, while the testing paper remained white for the 

octylamine without sulfur in place. Furthermore, at 100 oC, generation of H2S during the reaction 

conditions was quite rapid. As a result, prevention of H2S from evaporation was a key parameter 

to determine the reproducibility of this low-temperature approach. It should be pointed out that, 

although the proposed reaction processes between amine and elemental sulfur were complex, 

H2S also appeared as one possible product in the report by Ozin’s group. 26 

It should be noted that, “greener” synthesis for CdSe 51 and ZnSe 52 nanocrystals in quantum 

confinement regime through hot-injection schemes usually needed the addition of fatty amine as 

an active ingredient. On the contrary, using similar solvents and precursors (metal fatty acid salts 

and elemental chalcogens), synthetic schemes for high quality CdS 30 and ZnS nanocrystals 52 
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under high temperatures (usually above 250 oC) did not need the addition of amines. In fact, 

amines combined with high temperatures and using elemental sulfur often made the CdS and 

ZnS nanocrystals with poor optical performance, 53 typically with poor PL quantum yield and too 

large to observe quantum confinement for CdS and ZnS. The results shown here suggested that 

this might be a result of two related facts. One, elemental sulfur is a substantially stronger 

oxidant than the typical selenium precursor used, tributylphosphine-Se complex. Two, the 

reaction temperature used in the past for developing standard protocols for high quality II-VI 

semiconductor nanocrystals was high, usually in the range between 250 and 350 oC. 30, 52 As a 

result, if amine was in place, such high temperatures would cause elemental sulfur too reactive 

and result in a rapid growth of the sulfide nanocrystals with too large sizes to show any quantum 

confinement, although high temperature could be needed for activation of the selenium 

precursors. 

 

2.4 Conclusions 

In comparison to saturated hydrocarbons (alkanes), the α- and β-hydrogens in ODE were found 

to be sufficiently strong in a medium temperature range (~180 oC) for activation of elemental 

sulfur. Ultimately, there was only 2/3 of elemental sulfur could be found in the form of CdS 

nanocrystals, and the other 1/3 was believed to be converted into inactive organic compound, 

with 2-tetradecylthiophene as the only identified soluble sulfur-containing side product. The 

reaction stoichiometry further suggested that oxidation of each ODE molecule would generate 

two molecules of H2S. As long as activation of S was in place, formation of CdS nanocrystals 

would follow closely. While cadmium carboxylate salts were used as the cadmium precursor, the 

reactions in turn yielded carboxylic acid as the side product. Identification of the close 
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correlation between activation of elemental sulfur and formation of CdS nanocrystals in the 

classic synthetic scheme enlightened us to develop a successful non-injection synthesis of high 

quality CdS nanocrystals at about 180 oC, using identical reactants used in a classic synthetic 

approach. Furthermore, by applying fatty amine as the activation reagent for elemental sulfur, we 

demonstrated that good quality CdS nanocrystals could be synthesized at ordinary laboratory 

temperatures (≤ 100 oC) in common organic solvents (such as toluene). These synthetic 

successes not only broadened/simplified the existing protocols for metal sulfide nanocrystals, but 

also revealed the importance of understanding the relationship between the crystallization 

kinetics and the related molecular mechanisms. 
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Chapter 3 Size/Shape-Controlled Synthesis of Colloidal CdSe Quantum Disks: Ligand and 

Temperature Effects 

 

Size/shape-controlled colloidal CdSe quantum disks with zinc-blende (cubic) crystal structure 

were synthesized using air-stable and generic starting materials. The colloidal CdSe quantum 

disks were approximately square and their lateral dimensions were varied between 20 and 100 

nm with the thickness controlled between 1 and 3 nm, which resulted in sharp and blue-shifted 

UV-Vis and PL peaks due to one-dimensional quantum confinement. The quantum disks were 

grown with either <001> or <111> direction—polar directions in the single crystalline disks—as 

the short axis, and both basal planes were terminated with Cd ions. These surface Cd ions were 

passivated with negatively-charged fatty acid ligands to neutralize the net positive charges 

caused by the excess monolayer of Cd ions. The coordination of the Cd ions and carboxylate 

groups further enabled the close-packing monolayer of fatty acid ligands on each basal plane. 

The close packing of the hydrocarbon chains of fatty acids dictated the up temperature limit for 

synthesis of the colloidal quantum disks, and the low temperature limit was found to be related to 

the reactivity of the starting materials. Overall, a high Cd to Se precursor ratio, negative-charged 

fatty acid ligands with a long hydrocarbon chain, and a proper temperature range (approximately 

between 140 and 250 oC) were found to be needed for successful synthesis of the colloidal CdSe 

quantum disks. 

 



 

75 
 

3.1 Introduction 

Zero-dimensional 1, 2 and one-dimensional 3 colloidal semiconductor nanocrystals, respectively 

known as colloidal quantum dots and quantum rods, have been successfully synthesized about 

ten years ago with good control on size, shape, and size/shape distribution. 4-6 Their size/shape 

dependent properties coupled with excellent solution processability are being actively explored 

for applications in bio-medical labeling, 7, 8 solar cells, 9, 10 light emitting diodes, 11, 12 etc. 

Synthesis of colloidal two-dimensional semiconductor nanocrystals with one-dimensional 

quantum confinement, however, has not been well established yet. After synthesis of very thin 

CdSe nanoribbons was reported in 2006, 13 sheets and belts of semiconductors at least with one 

dimension in bulk size regime but with very small thickness showing one-dimensional quantum 

confinement have been reported, 14-19 but the colloidal processability/stability of those relatively 

large objects is usually not very good although it was mentioned that, upon sonication, 

nanosheets could be temporarily dispersed into organic solvents. 15 Although several examples of 

semiconductor nano-disks with their lateral dimensions below 100 nm have also been reported, 

20-24 the optical properties of those nanodisks typically did not demonstrate one-dimensional 

quantum confinement. Up to present, the most inspiring results were reported by the Dubertret’s 

group in their 2008 Communication. 25 Although the synthetic chemistry including size/shape 

control and characterization of the resulting nanocrystals was not well documented in the 

Dubertret’s report, CdSe nanocrystals with strong evidences of one-dimensional quantum 

confinement and with their lateral sizes in the order of tens of nanometers were clearly observed, 

which should possess good colloidal stability. The Dubertret group’s work further demonstrated 

that the CdSe 1D structures were in zinc-blende structure, and some interesting insights were 

offered on the formation of wurtzite CdSe 1D nanosheets. 15 These facts invited us to design 
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systematic experiments to establish reproducible and mechanism-driven synthetic schemes for 

size/shape controlled one-dimensional quantum confined and colloidal-stable nanostructures. 

Formation mechanism of colloidal quantum rods 26, 27 and quantum dots 28, 29 has been 

extensively studied in the recent years, which could shed some light on designing/refining 

synthetic chemistry of colloidal two-dimensional semiconductor nanocrystals. Using the most 

studied CdSe nanocrystal system as an example, the first requirement for formation of CdSe 

quantum rods is the existence of a unique axis for growth. For wurtzite and zinc blende crystal 

structures that are common for typical II-VI and III-V semiconductors, the polar axes 

conveniently acted as this role. As a result, when the monomer concentration in solution was 

sufficiently high, one-dimensional growth (1D-growth) occurred to form quantum rods. 

Formation of quantum disks, on the contrary, will need to suppress the 1D-growth. One way to 

substantially reduce the reactivity of the polar surfaces—more accurately, reverse the reactivity 

of polar surface and the other surfaces of the nanocrystals—presumably is to completely 

passivate the polar surfaces of CdSe with complementary charges. In general, synthesis of 

colloidal nanocrystals relies on ligands for cations only, and thus, both basal planes of a quantum 

disk with its short axis being a polar axis should be terminated with cations, such as Cd ions for 

CdSe. As a result, the disk should possess an excess monolayer of cations and the ligands should 

be negatively charged, such as the commonly used deprotonated fatty acids.  

The hypothesis presented in the above paragraph is some sort of “soft template” approach 

offered by the fatty acid ligands, which would require the surface ligands to be bonded onto the 

basal planes of the disks quite tightly. It was observed that, however, the surface ligands on 

colloidal nanocrystals could only act as “soft template” when the reaction temperature is 

substantially low, certainly below the boiling point of a ligand in its bulk form. 30 This is 
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understandable because high temperature would destroy the packing of ligands that is needed for 

formation of any “soft template”.  

Therefore, combining the analysis of above two paragraphs, one could reason that two key 

parameters for synthesis of colloidal quantum disks should be an appropriate choice of ligands 

and a suited reaction temperature range for synthesis of quantum disks. In addition, a low 

monomer concentration to prevent the 1D-growth and a high Cd to Se ratio for the growth of 

CdSe disks should be other parameters to watch.  

Experimental results to be described below confirmed that, within a defined temperature range, 

colloidal CdSe quantum disks with good control of both their thickness and lateral dimensions 

can be synthesized using generic and air-stable chemicals. The hydrocarbon chain length of the 

fatty acids was found to dictate the up temperature limit for the formation of quantum disks. The 

low temperature limit was most likely determined by the activation of elemental Se in the 

reaction system. Characterization of the nanocrystals verified that both top and bottom basal 

planes of CdSe quantum disks were polar facets with Cd ions as the out layer, and these Cd 

surface ions were terminated with carboxylate groups of the fatty acids used in the synthesis. The 

single crystalline colloidal CdSe quantum disks showed very sharp UV-Vis absorption and 

photoluminescence (PL) peaks due to one-dimensional quantum confinement. Experimental 

results strongly suggest that the resulting nanocrystals in the samples were quantum disks, 

instead of magic sized clusters. 
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3.2 Experimental 

Materials. Cadmium acetate dihydrate (Alfa), stearic acid (Alfa), decanoic acid (Avocado), oleic 

acid (Aldrich), octanoic acid (Alfa), oleylamine (Aldrich), myristic acid (Alfa), selenium (Alfa), 

1-octadecene (ODE, Alfa), tributylphosphine (TBP, Alfa), CdSe Microanalysis Compound 

Standards (EMS), ethanol (Pharmco), methanol (EM Science), hexanes (EM Science), 

chloroform (EM Science), acetone (EM Science), toluene (Mallinchrodt) were used without 

further purification.  

Sythesis of CdSe quantum disks was carried out as following. For a typical reaction, 0.0533 g 

cadmium acetate dihydrate (0.20 mmol), 0.0040 g selenium (0.05 mmol), 0.0142 g stearic acid 

(0.05 mmol) and 4.0 g ODE was heated to designated temperature under Ar flow, small aliquots 

were taken out at different time intervals, diluted in toluene and measured by UV-Vis to monitor 

the reaction. The total amount of quantum disks from one synthesis reaction was on the 

milligram scale. 

Examples of quantum disks with different lateral dimensions were synthesized with different 

chain length/concentration of fatty acid and reaction temperature. For instance, 0.0533 g 

cadmium acetate dihydrate (0.20 mmol), 0.0040 g selenium (0.05 mmol), 0.0057 g myristic acid 

(0.025 mmol) and 4.0 g ODE was heated up to 170 oC and reacted for 30 minutes, corresponding 

to Figure 3-4 B; 0.0533 g cadmium acetate dihydrate (0.20 mmol), 0.0040 g selenium (0.05 

mmol), 0.0114 g myristic acid (0.05 mmol) and 4.0 g ODE was heated up to 170 oC and reacted 

for 30 minutes, corresponding to Figure 3-4 C; 0.0533 g cadmium acetate dihydrate (0.20 mmol), 

0.0040 g selenium (0.05 mmol), 0.0142 g stearic acid (0.05 mmol) and 4.0 g ODE was heated up 

to 170 oC and reacted for 15 minutes, corresponding to Figure 3-4 D. For lower temperature 

synthesis, more details were provided in Figure 3-5 and the related caption. 
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Synthesis of CdSe quantum disks with the addition of oleylamine under low temperatures was 

carried out in the following way. Cadmium acetate dihydrate (0.0533 g, 0.20 mmol), 0.0040 g 

selenium (0.05 mmol), 0.0142 g stearic acid (0.05 mmol), 0.05 g oleylamine (0.19 mmol) and 

3.95 g ODE was mixed together and then heated to 120 oC under Ar protection. Small aliquots 

were taken out at different time intervals, and diluted in toluene and measured by UV-Vis to 

monitor the reaction. 

The PL QY of CdSe quantum disks were measured by comparing fluorescence intensity of 

coumarin 460 in ethanol 31 with CdSe quantum disks in toluene, with the same absorbance value 

at excitation wavelength (333 nm) and similar fluorescence wavelength.  

Purification of CdSe quantum disks for different measurements. Purification of CdSe 

quantum disks was generally carried out by following procedure: TBP and EtOH mixture (10% 

volume ratio of TBP) was added into the final products, sonicated, then centrifugated at 14,000 

RPM for 15 minutes, precipitate was preserved, and repeated for another 2 times. The purified 

samples were dissolved into toluene or hexanes forming clear solution. 

Purification of CdSe quantum disks for XRD characterization was the same as the 

aforementioned procedure except that: centrifugation was carried out at 3,000 RPM for 15 

minutes, and EtOH was used to wash the precipitate one more time, the final precipitate was 

preserved and dried in vacuum oven overnight before grinding in mortar for XRD analysis. 

Purification of CdSe quantum disks for EDX analysis was carried out by the general procedure 

except following difference: all the centrifugation was carried out at 14,000 RPM for 5 minutes. 

The samples were first centrifugated to separate quantum disks from the solvent, supernatant 

decanted. And EtOH was applied to wash the samples for another three times. Final products 

were dried in vacuum oven overnight before applied to the conducting tape for EDX analysis. 
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Purification of CdSe quantum disks for FT-IR analysis was carried out by following procedure: 

the samples were centrifugated at 14,000 RPM for 15 minutes to separate quantum disks from 

the solvent, supernatant decanted. Precipitate was dissolved into hexanes, methanol was added 

into the solution, and analog vortex mixer was used to enhance extraction efficiency. The 

solution was set aside until forming separated layers, hexanes layer was carefully separately from 

methanol layer, and the hexanes layer was centrifugated at 14,000 RPM for 15 minutes. Then 

supernatant was decanted and the precipitate was dissolved into hexanes.  

Optical Measurements. UV-vis spectra were taken on an HP 8453 UV-visible 

spectrophotometer. Photoluminescence spectra were measured using a Spex Fluorolog-3 

fluorometer. 

Transmission Electron Microscopy (TEM) and High-resolution TEM (HRTEM). TEM 

images were taken on a JEOL X-100 electron microscope using a 100 kV accelerating voltage. 

High resolution TEM images were taken on Fei Titan 80-300 microscope with an accerlating 

voltage of 300 kV. Purified CdSe quantum disks were dispersed into toluene or hexanes solution, 

then several drops of the solution were added onto a Formvar-coated or carbon film copper grid, 

and the grid with the nanocrystals was dried in air. 

Fourier Transform Infrared Spectroscopy (FTIR). FTIR spectra were recorded on a Bruker 

Tensor 27 FT-IR spectrometer at room temperature by directly applying sample onto a KBr salt 

plate. 

X-ray powder diffraction (XRD) patterns were acquired using Philips PW1830 X-ray 

diffractometer operating at 45kV/40mA and Rigaku MiniFlex X-ray diffractometer operating at 

30kV/15mA. 
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Energy-dispersive X-ray spectroscopy (EDX) was used for elemental analysis using a Philips 

ESEM XL30 scanning electron microscope equipped with a field emission gun and operated at 

30 kV. 

X-ray photoelectron spectroscopy (XPS). XPS spectra were obtained on PHI 5000 VersaProbe 

instrument. 

 

3.3 Results and Discussions 

The synthetic system used in this work was similar to a regular “greener” approach for the 

synthesis of CdSe nanocrystals using octadecene (ODE) as a non-coordinating solvent, with 

elemental Se as the selenium precursor and cadmium fatty acid salts as cadmium precursor. 32, 33 

Fatty acids—either with the same hydrocarbon chain length or a different one with the cadmium 

fatty acid salts—might be added as additional ligands when needed. As pointed out above, the 

chain length of the fatty acids from the cadmium precursor and/or the additional ligands used 

was a key parameter varied during the study. 

 

Figure 3-1. Reaction Scheme for synthesis of CdSe quantum disks. Here, CdFa2 stands for 

cadmium fatty acid salts. The up reaction temperature limit depended on the fatty acids used 

in the system.  
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It should be pointed out that several different types of cadmium fatty acid salts, such as cadmium 

acetate (CdAc2), cadmium butanoate (CdBu2), and cadmium octanoate (CdOc2) were examined. 

Under proper conditions, all of these cadmium fatty acid salts yielded CdSe quantum disks. 

Furthermore, the cadmium fatty acid salts such as CdBu2, CdOc2, and additional corresponding 

 

Figure 3-2. UV-Vis absorption of the CdSe 1D structures prepared without cadmium acetate 

and corresponding TEM image (inset). For the synthesis using cadmium octanoate (left): 

reaction was carried out at 150 oC for 30 minutes with 0.20 mmol cadmium octanoate, 0.05 

mmol Se and 4 g ODE, UV-Vis absorption was taken after purification and background 

subtraction. For the synthesis using cadmium butanoate (right): at 150 oC for 30 minutes 

with 0.20 mmol cadmium butanoate, 0.05 mmol Se, 0.10 mmol stearic acid, and 4 g ODE. 

Probably because of the very thin thickness, curving of the 1D structures was observed by the 

TEM.  
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fatty acid ligands also led to the formation of 1D 

confined nanostructures (See Figure 3-2). Due to 

ready availability of cadmium acetate, we 

concentrated on optimization of the quantum 

disk synthesis using this generic cadmium 

precursor. Studies on using cadmium fatty acid 

salts with different hydrocarbon chain lengths 

shall be the subject of future research. 

The facts mentioned in the above paragraph 

seemed different from what reported by the 

Dubertret’s group. 25 They mentioned in their 

report that CdAc2 or other types of acetates were 

found to be necessary for the formation of two-

dimensional CdSe nanostructures.  

 

It was known that, for formation of CdSe and 

other types of II-VI quantum rods, monomer 

concentrations must be sufficiently high to 

promote 1D-growth 26, 27, 34 and maintain the 

stability of the thermodynamically unstable rod shape. To study the monomer concentration 

effect, we varied the initial precursor concentrations in the solution. However, the results (See 

Figure 3-3) did not show noticeable difference within the precursor concentration range tested. 

 

Figure 3-3. UV-Vis absorption of the 

CdSe quantum disks prepared with 

different monomer concentration. 

Original concentration (1X) as 0.20 mmol 

cadmium acetate, 0.05 mmol Se, 0.05 

mmol stearic acid and 4 g ODE, together 

with 2 times (2X) and 4 times (4X) 

cadmium acetate, Se, stearic acid 

concentration reacted at 200 oC for 30 

minutes. 
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We suspected that, since the Se powder was used directly in the synthesis without any activation 

reagents (see Figure 3-1), the active monomer concentration in the solution at the relatively low 

reaction temperatures employed in this work was never sufficiently high (see detail below for 

activation of Se precursor). Thus, future work would be needed to clarify this effect. 

It was further identified that formation of CdSe quantum disks did not require any injections. In 

other words, all of the reactants could be mixed at room temperature and heated to a designated 

reaction temperature (see 

Scheme in Figure 3-1). This 

was true for all types of 

cadmium fatty acid salts used. 

The designated reaction 

temperature range depended 

on the chain length of the 

fatty acids used, but generally 

it was between 140 oC and 

250 oC. Detailed results for 

identification of the reaction 

temperature range will be 

discussed systematically later.  

The one-dimensional 

quantum confinement of the 

two-dimensional quantum 

 

Figure 3-4. Panel A: UV-Vis(red curve) and PL (blue curve) 

of a typical CdSe quantum disks colloidal solution. Panel B, 

C, and D: TEM pictures of CdSe quantum disks with 

different lateral dimensions. Scale bar: 50 nm.  
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disks was confirmed 

with UV-Vis and PL 

measurements. In 

Figure 3-4 A, a typical 

quantum disks sample 

shows a significantly 

blue shifted 

absorption band edge 

in comparison to that 

of bulk CdSe that is 

known to be at around 

720 nm. The two 

sharp peaks in the 

UV-Vis spectra could 

be assigned to the 

excitonic absorption 

features of a two-dimensional CdSe nanocrystal sample with the thickness being around 2 nm. 25  

Similar to the sharp UV-Vis features, the PL peak of CdSe quantum disks was also sharp, with 

its full width at half maximum being around 0.05 eV (8 nm). For the sample shown in Figure 3-4 

A, the PL quantum yield was found to be around 1.6% but generally this value was observed to 

be extremely sensitive to the solution composition. The PL brightness was diminished by 

purifying away the free fatty acid ligands in the solution, indicating a relatively weak bonding of 

the surface ligands as expected.   

 

Figure 3-5. Large area TEM image of sample in Figure 3-4 C (A). 

Typical TEM images of CdSe quantum disks with smaller lateral size 

prepared at 160 oC (B) and 150 oC (C). Scale bar: 50 nm. The 

reaction condition for B and C are as following: 0.0533 g cadmium 

acetate dihydrate (0.20 mmol), 0.0040 g selenium (0.05 mmol), 

0.0142 g stearic acid (0.05 mmol) and 4.0 g ODE was heated to 160 

oC (B) or 150 oC (C) under Ar protection. 



 

86 
 

Colloidal CdSe quantum disks 

with their UV-Vis peaks at 392 

and 512 nm—corresponding to 

thickness as around 1.6 and 2.2 

nm 25 —were also obtained in 

this study although we 

concentrated on the ones with 

their UV-Vis and PL spectra 

shown in Figure 3-4. 

Size and shape control of the 

two-dimensional CdSe 

nanocrystals was achieved. 

The shape of Colloidal CdSe 

quantum disks was generally 

controlled to be 

square/rectangular (see 

representative transmission 

electron microscope (TEM) 

images in Figure 3-4). When 

the lateral dimensions were 

relatively large, the quantum disks were always found to be curved along one direction (See 

Figure 3-4 B and Figure 3-5 panel A as an example). On the contrary, the colloidal quantum 

 

Figure 3-6. HRTEM image of a quantum disk (top left), side 

view of a quantum disk (top right), x-ray diffraction pattern 

of a quantum disk sample (bottom) and the peak fit results 

for (220) and (311) peaks (bottom, inset). In the x-ray 

diffraction pattern (bottom), the standard diffraction peaks 

for wurtzite (blue lines, JCPDS card no. 77-2307) and zinc 

blende (red lines, JCPDS card no. 88-2346) are inserted as 

references. 
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disks with small lateral dimensions (Figure 3-4 D) would not appear to be curved on TEM 

images but they intended to stack on top of each other substantially.  

Thin sheets nanocrystals with their lateral dimensions above microns were found to be unstable 

as a colloidal solution in common solvents such as hexanes, toluene, chloroform etc. The 

temporary suspension in nonpolar solvents typically possessed a significant scattering tail 

extending into near infrared window in their UV-Vis absorption spectra. Sometimes, significant 

light scattering could be observed with bare eyes if the nanosheets were too large. As the 

emphasis of this work was colloidal stable nanocrystals with one-dimensional quantum 

confinement, we did not study the formation of those nanosheets in detail.  

The lateral dimensions of the quantum disks could be varied in the range between 20 and 100 nm, 

which still possessed good colloidal stability. The lateral dimensions were found to be mostly 

dependent on the concentration of fatty acids, the chain length of fatty acids, and the reaction 

temperature. A low concentration of fatty acid ligands resulted in large lateral dimensions if 

other reaction conditions were the same. For example, at 170 oC and in 4 g ODE, if myristic acid 

concentration was 0.025 mmol, the resulting quantum disks were the largest ones in Figure 3-4 

(Figure 3-4 B) , and when the ligand concentration was doubled, we obtained the quantum disks 

shown in Figure 3-4 C. Increasing the chain length of fatty acids had a similar effect as 

increasing their concentration. For instance, the small quantum disks in Figure 3-4 D were 

synthesized using 0.050 mmol stearic acid as the ligands under the same reactions as those for 

synthesizing the quantum disks in Figure 3-4 C. As for temperature effects, a low reaction 

temperature typically yielded quantum disks with small lateral dimensions (see Figure 3-5, Panel 

B and C and the related caption).  
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The crystal structure and single-crystal nature of 

the colloidal quantum disks were identified using 

high-resolution TEM (HRTEM) and x-ray powder 

diffraction (Figure 3-6). HRTEM image in Figure 

3-6 confirmed that the colloidal quantum disks 

were mostly square in shape (top left) and the 

thickness (top right) was similar to what estimated 

from the UV-Vis peak mentioned above. The 

corresponding Fourier transform (FT) of the red 

dotted area for the top view HRTEM image (top 

left, Figure 3-6) confirmed the zone axis as [001] 

direction of zinc blende CdSe. The side view 

HRTEM image (Figure 3-6, top right) with a 

quantum disk “standing up” verified the adjacent 

plane distance as 0.304 nm, in good accordance with the {200} plane distance in zinc blende 

structure. However, the {220} plane distance shown in the top view image (Figure 3-6, top left) 

was around 8 % larger than bulk value. These facts imply that there should be some distortion of 

the disks along different directions. It should be pointed out that, although we don’t have definite 

explanation for this lattice expansion, both lattice contraction 35, 36 and lattice expansion 37-39 of 

nanoparticles were reported in literature. Furthermore, as to be described below, the x-ray 

diffraction measurements also confirmed the lattice parameter difference between the {220} 

planes on the lateral direction and the short axis direction.  

 

Figure 3-7. HRTEM images of CdSe 

quantum disks with <111> as its short 

axis. 
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Another distinguishable feature between quantum disks and quantum dots/rods is the non-

uniform lattice fringes revealed by Figure 3-6, especially in the top view HRTEM image. This is 

likely due to the combination of a very thin thickness and relatively large lateral dimensions of 

the quantum disks. As revealed by low resolution TEM images in Figure 3-4, such distortion 

would become even more significant as the edges of the quantum disks with large lateral 

dimensions curved along one direction (see Figure 3-4 B and the related text). As a result, 

HRTEM experiments with those quantum disks with relatively large lateral dimensions were 

found to be very difficult. 

The growth directions of the CdSe quantum disks were determined mostly by x-ray diffraction 

with the support of HRTEM. From the HRTEM image shown in Figure 3-6 (top), one can 

identify that the short axis of that specific quantum disk is <001> direction. Based on broad (111) 

peak of XRD pattern, corroborated by surveying the quantum disks under HRTEM (see Figure 

3-7), one could also identify another short axis direction as <111>. The best way to identify the 

 

Figure 3-8. Atomic model showing the [111] (left) and [001] (right) zone axis, and 

corresponding {220} planes parallel to it. Cd, magenta; Se, lime green. 
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growth direction, however, is x-ray powder diffraction as demonstrated in the case of CdSe 

quantum rods. 3, 26, 27 This is because the width of a diffraction peak increases as the dimension 

of the periodic arrangement along the corresponding direction (commonly known as crystalline 

domain size) decreases. In principle, the domain size could be calculated quantitatively using the 

well-known Scherrer equation if no 

mechanical distortion in place.  

Compared with two typical reference 

patterns of bulk CdSe, i.e., wurtzite and 

zinc blende structure, it is evident that the 

quantum disks are face-centered cubic F-

43m structure, or zinc blende structure. 

This is consistent with the conclusion from 

HRTEM measurements as discussed above.  

For zinc blende (cubic lattice) structure, if 

the short axis directions of the quantum 

disks were <111> and <001> axes as 

suggested by HRTEM experiments, <110> 

and <100> could be the lateral directions 

perpendicular to the short axis direction 

(Figure 3-8). Considering the specific 

crystal structure, (220), (200) and (400) 

diffraction peaks should be the three main 

sharp diffraction peaks.  By inspecting the diffraction pattern (Figure 3-6, bottom) qualitatively, 

 

Figure 3-9. XRD pattern of CdSe quantum 

disks with small lateral dimensions and 

reference patterns of CdSe with zinc-blende 

(JCPDS card no. 88-2346) at the bottom. 

Typical TEM images are shown in Figure 3-5, 

panel C. 
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one could indeed identify (220), (200) and (400) peaks as three unusually sharp peaks in the 

pattern.   

Among three sharp peaks, the (200) peak overlapped with the strong (111) peak and was difficult 

to interpret. However, inspecting the (220) and (400) diffraction peaks carefully, each of them is 

most likely a superposition of 

one broad peak and one very 

narrow peak. Taking the (220) as 

the example, two contributions 

could be well separated using 

computer peak fit with Voigt 

function, 40 with a narrow “peak 

1” at 41.7 and a broad “peak 2” 

at 42.9 degree (Figure 3-6, 

bottom inset). As a comparison, 

the neighboring (311) peak was 

fitted well with a single Voigt 

function, “peak 3”.   

A single diffraction peak with 

two distinguishable width values for (220) is not surprising for the colloidal CdSe quantum disks 

reported here. This is because, as pointed out above, the colloidal quantum disks were in zinc 

blende crystal structure, which is a cubic lattice and possess multiplicity of Bragg planes with the 

same diffraction peak. For an isotropic structure, all of these Bragg planes would overlap with 

each other, with the same position and same peak width. For a very thin disk, however, the 

 

Figure 3-10. Schematic illustration of the atomic 

arrangement of CdSe zinc blende crystal with <001> 

direction (top panel) and <111> direction (bottom panel). 

The lime green and magenta balls represent Se and Cd 

ions, respectively.  
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Bragg planes perpendicular to the short axis would show a much narrower (200) peak than the 

Bragg planes parallel to the short axis.  

Overall, the entire diffraction pattern shown in figure 3-6 (bottom) matched well with the CdSe 

quantum disks with a mixture of <111> and <001> as their short axes (See more results in Figure 

3-8). Quantitatively, the crystalline domain size along the short axis calculated from the scherrer 

equation was around 2.3 nm, quite close to that estimated from UV-vis peak and TEM results 

(see above). The lateral dimensions estimated from XRD peak width was around 12.4 nm, which 

seemed to be far less than the values expected (around 50 nm for this specific sample based on 

TEM), although they were still much larger than that of the short axis dimension. This is likely 

due to the distortion of the lattice as observed by HRTEM. Presumably, lattice distortion would 

disturb the periodicity, which thus reduced the diffraction coherence. Furthermore, for those 

quantum disks with curved edges (see Figure 3-4 B and 3-4 C), the crystalline domain sizes 

along the lateral dimensions would be reduced significantly. The appearance of the forbidden 

(110) peak (Figure 3-6, bottom) is also likely due to the distortion of the lattice (Figure 3-9). 

The x-ray diffraction patterns showed some sign for lattice distortion directly, namely the 

unusual (110) peak (Figure 3-6, bottom). Based on the selection rule, the (110) peak of zinc 

blende CdSe should be forbidden. In order to rule out the possibility of λ/2 contamination of 

(220)λ/2 appearing as the (110)λ, 41 the same powder sample was tested on two different 

instruments with different X-ray source accelerating voltage, which yielded exactly the same 

pattern. Furthermore, the diffractometer used are coupled with scintillation counter, and thus the 

(110) peak of the colloidal CdSe quantum disks was unlikely an artifact. 42, 43 A reasonable 

hypothesis for the appearance of this forbidden (110) peak is that the curved edges of the 

quantum disks (Figure 3-4 B) deteriorated the group symmetry, which in turn broke the selection 
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rule of the structure. To confirm this hypothesis, a quantum disk sample with smaller lateral 

dimensions were examined with x-ray diffraction, which indeed showed similar diffraction 

pattern but with barely any (110) peak (Figure 3-9). 

It should be mentioned that existence of two growth directions is not in contradictory with the 

optical properties of the quantum disks (Figure 3-4 A). Based on the calculations, since the 

actual repeating equivalent atom planes are {111} and {200} along <111> and <100> direction, 

44 5 repeating {111} gave 1.754 nm compared with 1.823 nm of 6 repeating {200} and 0.069 nm 

difference; 6 repeating {111} gave 2.105 nm compared with 2.127 nm of 7 repeating {200} and 

0.022 nm difference. Given such small difference along these two directions, broadened instead 

of separate excitonic peak would be observed. The thickness difference along two growth 

directions would be extremely small, which should not lead to the appearance of distinguishable 

absorption and PL peaks due to different thickness.  

The basal planes of the CdSe quantum disks possess one feature in common for the CdSe 

quantum disks with both types of short axis orientations, either <111> or  <001> direction. 

Along <111> (or <001>) direction, a usual packing scheme for a neutral crystal shall be polar, 

 

Table 3-1. EDX analysis results of CdSe standard and the purified CdSe quantum disks. a: 

standard deviation. 



 

94 
 

with the dipole moment oriented exactly the same as <111> (or <001>) axis (Figure 3-10). Such 

dipole moment was caused by the alternating packing of Cd and Se layers along the given axis. 45, 

46 This means that the basic structures of the quantum disks are consistent with what speculated 

 

Figure 3-11. EDX spectra of the purified CdSe quantum disks averaged over 24 spectra and 

referenced with CdSe standard averaged over 8 spectra, with quantitative analysis results as 

Cd0.59Se0.41 for CdSe quantum disks and Cd0.5Se0.5 for CdSe standard. Inset: Overlaid 

enlarged EDX spectra and corresponding peak assignment. The peak at around 1.38, 3.14, 

11.2, 12.5 keV could be assigned to Se L, Cd L, Se Kα, Se Kβ, and small peaks at around 

0.26 and 0.52 keV came from the C Kα and O Kα, respectively. The carbon and oxygen 

signal on CdSe quantum disks was due to the residual ligands after purification, and the 

carbon signal of the CdSe standard was originated from the protective carbon coating on it. 

Besides, only trace amount of P Kα could be detected at around 2.02 keV on purified CdSe 

quantum disks, indicating the majority of TBP used during the purification process has been 

washed away. 
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in the Introduction Section: a quantum disk could be formed by stopping the 1D-growth along its 

polar axis in the lattice structure, which should thus turn a polar axis into the short axis of the 

disk.  

The schematic packing patterns shown in Figure 3-10, however, reveal that only one side of the 

polar basal plane should be terminated with Cd for both cases if the Cd:Se ratio was 1 : 1 in the 

quantum disks for both cases. The other basal plane opposite to the one terminated with Cd ions 

should be completely terminated by Se ions in such a neutral crystal (see the side view schemes 

in Figure 3-10). In fact, this structural feature was believed to be the reason why II-VI 

semiconductor quantum rods could be controllably synthesized under significantly higher 

temperatures and higher monomer concentrations through the 1D-growth mode. 27 

 

Figure 3-12. Close-up XPS survey scan for CdSe quantum disks. XPS spectra were 

calibrated with respect to C1s at 284.6 ev. Oxidation of Cd could be identified by the higher 

energy side shoulder on both 3d5/2 and 3d3/2 peak; and oxidation of Se would lead to the 

appearance of peak at around 59 ev. Both are absent for the spectra shown here. 
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The hypothesis mentioned in the 

Introduction Section, however, 

was to passivate both basal 

planes of the quantum disks 

with organic ligands, i.e., fatty 

acids. This would require the 

control of two basic parameters. 

The first one is a relatively low 

reaction temperature to retain 

the ligands bonding onto the 

basal planes, which will be 

confirmed in the next sub-

section. The second requirement 

is to have an additional Cd ion layer grown onto the basal plane terminated with Se ions in 

Figure 3-10 (the top basal plane in the side view schemes, Figure 3-10), which should then 

enable the bonding of fatty acid ligands onto both basal planes.  

Evidently, if the second requirement discussed in the above paragraph was realized, one would 

find the Cd to Se ratio significantly different from 1 : 1, given that there were only a few 

monolayers of CdSe along the short axis directions. Energy dispersive X-ray spectroscopy (EDX) 

coupled with x-ray photoelectron spectroscopy (XPS) were employed to accurately identify the 

Cd to Se ratio in colloidal CdSe quantum disks. Three batches of carefully purified colloidal 

quantum disks samples were analyzed parallel with a commercial CdSe microanalysis standard 

(see the EDX spectra in Figure 3-11) using carefully calibrated EDX setup. 47 Quantitative 

Figure 3-13. FTIR spectra of purified colloidal CdSe 

quantum disks formed with and without fatty amines 

added. For reference, the FTIR spectrum of cadmium 

stearate (CdSt2) is also provided.  
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analysis of the commercial standard using the EDX protocol gave a Cd : Se ratio being 1.0 : 1.0, 

with an error of ± 0.3 % for 8 different measurements for the same standard. On the contrary, the 

Cd : Se ratio was found to be 1.0 : 0.69 for the quantum disk samples, with an error being ± 1.4 % 

for 24 different measurements with three different batches of colloidal quantum disks (See 

detailed analysis results in Table 3-1).  

With the thickness of the quantum disks being around 2 nm, the number of repeating CdSe 

atomic layers should 

be approximately 5 to 

6 repeating layers 

along the thickness 

direction. Simple 

theoretical calculation 

using such a model 

gave us a Cd : Se ratio 

being around 1.0 : 

0.83. Considering the 

imperfection of the 

disk structures 

revealed by TEM 

studies (Figures 2 and 

3) and the simplicity 

of the model, we considered that the theoretical value and experimental values were in a good 

agreement.  

Figure 3-14. FT-IR spectra of cadmium stearate (CdSt2) before and 

after purification as control (left), the CdSe quantum disks formed 

with amine before and after purification, and the CdSe quantum 

disks formed without amine after purification (right). 
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The somewhat higher Cd : Se ratio in the experimental data could be a result of the residue of 

starting Cd precursors or oxidation 

products (such as CdO) formed 

during synthesis and purification. 

Under the given synthetic 

conditions, the Cd ions in all of 

these types of Cd containing 

compounds should have a 

distinguishable chemical 

environment in comparison to the 

Cd-Se bond in the quantum disks. 

Most likely, those Cd ions should 

be bonded with oxygen. XPS 

measurements, however, 

undoubtedly confirmed that all Cd 

ions were bonded with Se (Figure 

3-12), which excluded possible 

contamination of the starting 

materials and CdO. 

A related experimental observation 

should be mentioned. It was found 

that, for the formation of good 

quality CdSe quantum disks, the 

 

Figure 3-15. UV-Vis absorption of the precipitate after 

centrifugating at 3000 RPM for 5 minutes and 

corresponding supernatant. The absorbance spectra 

were taken quantitatively: 0.005 g precipitate was 

diluted by 17.166 g toluene, and 0.259 g supernatant 

was diluted by 3.129 g toluene. Corresponding 

absorbance value at peak position for precipitate and 

supernatant is 0.61 and 0.015, based on the dilution 

factor, normalized absorbance value for precipitate and 

supernatant is 0.61/(0.005/17.166)=2094.25 and 

0.015/(0.259/3.129)=0.18. This leads to the fact that 

(2094.25/(2094.25+0.18))*100% = 99.99% percentage 

of absorbance came from precipitate. 
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Cd and Se precursor ratio must be substantially higher than 1 : 1 (See details in Experimental 

Section). Such reaction conditions are considered to be consistent with a Cd-rich product and 

fatty acid ligand passivation for stopping the 1D-growth along the polar axes of the nanocrystals.   

The bonding nature between the ligands and the colloidal quantum disks was studied using 

FTIR. As shown in Figure 3-13, for the colloidal quantum disks formed either under typical 

reaction conditions or with the addition of fatty amines (the latter case to be discussed in detail 

later), the surface fatty acid ligands were in the form of negatively-charged carboxylate (-COO-) 

as expected. Based on the peak position 

of the asymmetric vibration of the 

carboxylate group, one could conclude 

that the bonding between the carboxylate 

group and the surface cadmium ions was 

“bridging”. 48-50 

In comparison to the standard spectrum of 

cadmium stearate (CdSt2), however, the 

asymmetric vibration band of –COO- 

group shifted noticeably to lower 

wavenumbers (Figure 3-13). This 

indicates that, in comparison to the 

standard bonding of free cadmium ions 

and deprotonated fatty acids, the 

carboxylate ligands bonded somewhat weaker to the surface Cd ions.  

 

Figure 3-16. TEM image of CdSe quantum disks 

without purification. Black dots are visible and 

the disks showed significantly more serious 

aggregation, both of which could cause difficulty 

to draw a correct conclusion. 
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It should be pointed out that, for reaction with amine in place, the concentration of the fatty 

amines could be several times higher than that of fatty acids. However, after careful purification, 

there was no sign of fatty amines in the IR spectrum of the colloidal quantum disks samples (See 

Figure 3-14), although it is well-known that both amines and fatty acids are common ligands for 

CdSe nanocrystals. This strongly supports the hypothesis that the negatively-charged carboxylate 

groups from the fatty acid ligands were needed to balance the charge of the CdSe quantum disks 

with an excess layer of Cd on 

one of the basal planes.  

Magic sized nanoclusters has 

been considered a possible 

explanation for the sharp UV-

Vis and PL spectra similar to 

those shown in Figure 3-4 A, 51, 

52 and to our understanding, the 

debate has not been well 

resolved. Based on the 

characterization results 

discussed above, magic sized 

nanoclusters could be excluded 

in our samples.  For example, 

the x-ray diffraction patterns and 

the TEM images must be 

associated with quantum disks, 

Figure 3-17. Temperature-dependent UV-Vis spectra of 

the nanocrystals synthesized using stearic acid (left) and 

decanoic acid (right). The reaction time for all cases was 

fixed to be 30 minutes, and the UV-Vis spectra were all 

normalized to the concentration. The inset in each series 

plots the absorbance of the first UV-Vis peak at 462 nm vs. 

the reaction temperature after background correction (see 

text for details).  
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instead of those tiny magic sized nanoclusters. Especially, the x-ray powder diffraction was 

performed with ensemble of the products, which offers strong evidences to exclude magic sized 

nanoclusters. The size of the magic sized nanoclusters should be around 2 nm to yield UV-Vis 

and PL spectra similar to those in Figure 3-4 A. Such tiny nanoclusters should only show 

extremely broad diffraction peaks, 53 and it would thus be very difficult to explain the sharp 

diffraction features in Figure 3-6 (bottom panel).  

To further exclude the contamination of magic sized nanoclusters, a systematic purification 

procedure was developed (see details in Experimental section). The general chemistry wisdom 

tells that molecular interaction for two molecules—in this case, nanoparticles—strongly depends 

on their size and the distance between the center of mass points of two molecules. Thus, the face-

face interaction for quantum disks should be much stronger than that between magic sized 

nanoclusters. Similar to size selective precipitation for size sorting of spherical nanocrystals, 1 

the quantum disks should be much easier to be precipitated out from their colloidal solution.  

For the reasons described above, centrifugation of a stable quantum disks solution was designed 

as a central step in purification. The nanocrystals dispersed in the ODE could be precipitated by 

a regular benchtop centrifuge (at 3000 rpm for 5 minutes). The precipitate could be completely 

dispersed back into a non-polar solvent and form a stable colloidal solution. UV-Vis 

measurements (Figure 3-15) revealed that at least 99.9% of the optical density was recovered in 

the re-dispersed solution and the supernatant only showed negligible UV-Vis signal similar to 

those in Figure 3-4 A. According to the analysis in the above paragraph, this set of experiments 

indicate that the nanocrystals given the sharp UV-Vis and PL spectra were largely sized and 

could be reversibly precipitated from the colloidal solution, which should thus be the colloidal 

quantum disks.  
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It should be further mentioned that all 

measurements discussed in this work except 

those mentioned specifically were all performed 

with the products purified using the procedure in 

the experimental section, which further support 

the conclusion that the resulting nanocrystals in 

this work were colloidal quantum disks without 

contamination of the magic sized nanoclusters. 

In fact, if the samples were not purified, some 

nanoparticles were often observed under TEM 

along with the two-dimensional nanostructures 

(Figure 3-16), which might cause some 

confusion in interpretation of the experimental 

results. However, those particulate impurities 

did not show any optical activities as mentioned 

above and could be removed readily using the purification procedure (see Experimental section).  

Temperature-dependence for the formation of quantum disks was studied for fatty acids 

ligands with different chain length. Figure 3-17 shows two series of such reactions. The spectra 

series on the left is for the nanocrystals synthesized with stearic acid as ligands and the one on 

the right is for the nanocrystals synthesized using decanoic acid as the ligands. To illustrate the 

temperature effect directly, the absorbance at 462 nm of the quantum disks normalized with the 

reaction mixture volume was plotted as an inset for both series with the reaction temperature as 

the x-axis (Figure 3-17, insets). The normalized absorbance of the UV-Vis peak at 462 nm for a 

 

Figure 3-18. Background fitting of CdSe 

quantum disks UV-Vis absorption. 



 

103 
 

sample was calculated by removing the background for those relatively high temperature 

reactions (See Figure 3-18). 

For both cases shown in Figure 3-17, the 

formation of the quantum disks did not 

appear when the temperature was 140 oC 

and below. The formation rate of the 

quantum disks picked up rapidly as the 

reaction temperature was higher than this 

low temperature limit, 140 oC. 

Simultaneously, as the reaction temperature 

was higher than a certain level, formation 

of regular nanocrystals—under TEM, they 

appeared to be irregular in shape and 

sizes—with broad absorption features 

started to show up (see 240 oC reaction for the stearic acid series and 180 oC reaction for the 

decanoic acid series in Figure 3-17). When temperature was higher than an up limit, the 

formation of those irregular nanocrystals dominated the formation of quantum disks (See the 260 

oC reaction for the stearic acid case and the 240 oC reaction for decanoic acid case in Figure 3-17 

and Figure 3-19), which gave the up limit temperature for each reaction series.  

The low temperature limit shall be discussed separately later. As expected, the up temperature 

limit was found to increase as the chain length of the fatty acids increased (Figure 3-17).  

Consequently, the temperature for appearance of those irregular nanocrystals was significantly 

earlier for the decanoic acid series. In addition, the maximum absorbance for the quantum disks 

 

Figure 3-19. TEM image of CdSe after heating 

up to 260 oC for 30 minutes. 
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was 180 oC for the decanoic acid series and 240 oC for the stearic acid one. This indicates that, 

although the hydrocarbon chain did not 

participate in the surface bonding, it greatly 

influenced the thermal stability of the two-

dimensional nanostructures, which is consistent 

with “soft-template” growth mechanism as 

speculated in Introduction Section.  

Though the temperature achieving the 

maximum absorbance of the colloidal quantum 

disks was found to be lower than the boiling 

point (b. p.) of corresponding fatty acid, it was 

substantially higher than its melting point (m. p.) 

temperature. On the contrary, formation of high 

quality CdSe quantum dots could be achieved in 

a temperature range slightly higher than the 

boiling point of a ligand. 30 This is again 

consistent with the “soft-template” mechanism 

proposed.  

The low temperature limit for formation of the quantum disks was found to be related to the 

reactivity of the precursors under the reaction temperature range studied. As pointed out above, 

for the reaction series shown in Figure 3-17, the low temperature limit for both series was 

approximately the same, i.e., ~140 oC, although the temperature dependence pattern was 

sensitive to the chain length of the fatty acids.  

Figure 3-20. The effects of fatty amine on 

the low temperature limit for the formation 

of CdSe quantum disks (top), and 

demonstration of insufficiency of fatty 

amine on the formation CdSe quantum 

disks (bottom). 
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Experiments were performed to confirm the relationship between the low temperature limit for 

the formation of the colloidal quantum disks and the reactivity of the precursors. Evidences 

revealed that fatty amines could activate the formation of chalcogenides nanocrystals when 

elemental chalcogens were used directly. 54 This led us to add fatty amines into the reaction 

system and inspect the response of the low temperature limit for formation of the colloidal 

quantum disks.  

The results in Figure 3-20 (top) clearly indicate that formation of two-dimensional quantum 

disks was possible at 120 oC if a significant amount of oleylamine was added into the reaction 

system. On the contrary, under the same reaction conditions except no amine in the reaction 

system, the control experiment did not show any sign of reaction for the same reaction duration. 

It should be pointed out that, if no long chain fatty acids was in the reaction system, formation of 

quantum disks would not occur for the reactions with amine added (Figure 3-20, bottom). The 

experimental results revealed that, the resulting nanocrystals would be quantum dots for the 

reaction only with fatty amines but without any long chain fatty acids added. Furthermore, as 

described above (See Figure 3-13 and the related text), the surface ligands of the CdSe quantum 

disks were identified as pure fatty acids for the reactions with both fatty amines and fatty acids in 

place. 

The experimental results shown in Figure 3-20 (bottom) not only excluded the possibility of fatty 

amines as ligands for the formation of CdSe quantum disks, but also imply that the existence of 

long chain fatty acids would be necessary for the formation of the quantum disks. On the 

contrary, given that the precursor for both reactions in Figure 3-20 (bottom) was cadmium 

acetate, acetates were likely too short to be the ligands for stabilization of the basal planes of the 

quantum disks. This observation is distinctively different from what reported by the 
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communication published by the Dubtret’s group, which speculated that acetate group should be 

necessary for the formation of two-dimensional CdSe nanostructures. 25 

The thermal stability of the colloidal CdSe quantum disks was briefly examined in the reaction 

solutions to further identify the nature of up temperature limit for formation of quantum disks. 

To do so, a sample of CdSe quantum disks was synthesized using the typical procedure at 170 oC, 

and the reaction solution stayed at this temperature for 30 minutes in total. As expected, the 

formation of CdSe quantum disks occurred, indicated by the appearance of sharp absorption 

peaks as shown in Figure 3-21 (top). At this temperature, a gradual intensity increase of the UV-

Vis absorption peaks associated with the quantum 

disks was also observed (Figure 3-21, bottom).   

The reaction solution containing quantum disks was 

subsequently heated to 260 oC rapidly and held at this 

temperature for 30 minutes, which is slightly higher 

than the up temperature limit for this type of quantum 

disks (see Figure 3-17 left and the related text). As 

shown in Figure 3-21, the quantum disks formed at 170 

oC was completely destroyed at 260 oC, indicated by 

the featureless absorption spectrum (Figure 3-21, top). 

In fact, the destruction of the quantum disks was rather 

fast at this temperature. As shown in Figure 3-21 

(bottom), the absorbance of the first excitonic 

absorption peak of the quantum disks disappeared 

within five minutes of heating at 260 oC.  

 

Figure 3-21. Thermal stability of 

the CdSe quantum disks at 170 oC 

and 260 oC. 
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The experimental results described in this sub-section indicate that the up temperature limit 

should be an intrinsic temperature limit for the stability of the quantum disks, instead of a kinetic 

temperature limit occurred in the growth of the quantum disks. One possible explanation would 

be that the fatty acid ligand monolayer on the basal planes became unstable at this temperature, 

which subsequently caused the destruction of the quantum disks. 

 

3.4 Conclusions 

The experimental results described above are consistent with the hypothesis that formation of 

colloidal CdSe quantum disks was a result of suppression of 1D-growth along the polar 

directions, i.e., either <111> or <001> direction, of the zinc blende lattice. These two directions 

are the polar axes for the structure, which enabled an alternating packing pattern of Cd and Se 

layers along the short axis of the quantum disks (Figure 3-10). Suppression of 1D-growth was 

made possible by terminating both basal planes of the quantum disks with a layer of Cd ions, 

which were passivated with deprotonated fatty acid ligands. The positive charges caused by the 

excess layer of Cd ions on the basal planes of each quantum disk were compensated with the 

negatively-charged carboxylate groups of fatty acid ligands (Figure 3-22).  

The thermal stability of such an inorganic-organic assembled nanostructure should be dominated 

by the relatively weak part of the entire structure, namely, the hydrocarbon monolayer of the 

fatty acids on both basal planes of a quantum disk. As a result, the growth of colloidal quantum 

disks would not occur if the temperature was above the up temperature limit for the close 

packing (Figure 3-22), which is consistent with “soft template” growth mechanism. 30  
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The bonding geometry between the fatty acid ligands and the surface Cd ions on the basal planes 

of the colloidal quantum disks, as described above, was the common “bridging” coordination 

between two Cd ions and a carboxylate group of deprotonated fatty acids (Figure 3-22).  This 

bonding could have several different functions for the inorganic-organic assembly. Firstly, it 

helped to saturate the surface dangling bonds of the Cd ions, which resulted in good PL 

properties of the quantum disks in solution (Figure 3-4 A). Secondly, it could balance the 

positive charges of the excess Cd ions on a CdSe quantum disk with the negative charges of the 

carboxylate groups of the deprotonated fatty acid ligands. Thirdly, it anchored the surface fatty 

acid ligands onto the relatively flat basal planes of the colloidal quantum disks, which in turn 

resulted in a reasonable spatial arrangement for an enhanced packing of the hydrocarbon chains 

of the fatty acid ligands needed for stability of the inorganic-organic nanostructures. 

 

 

Figure 3-22. Schematic illustration of the colloidal CdSe quantum disk formed through the 

synthetic scheme shown in Figure 3-1. 
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Chapter 4 Thickness-Pure and Colloidal-Stable CdS Quantum Disks with Tunable 

Thickness: Synthesis and Properties  

 

Thickness-pure and colloidal-stable CdS quantum disks were reproducibly prepared using 

cadmium acetate, elemental S, fatty acids and octadecene as the starting materials without any 

size/shape sorting. The thickness was varied between 1.2 and 2.2 nm, i.e, 4.5, 5.5, 6.5 and 7.5 

monolayers of CdS unit along the thickness direction. These single crystalline disks with lateral 

dimensions between 20 and 100 nm were found in zinc-blende crystal structure and with <100> 

(possibly mixed with <111> direction) as the thickness direction. The basal planes and side 

facets were terminated with cadmium carboxylates, which dictated the thicknesses to be half a 

monolayer more than an integer number. Formation of CdS quantum disks was likely through 

“nucleation-growth” mechanism, instead of aggregation of pre-formed magic clusters. 

Completion of a full monolayer along lateral direction was found to be rather fast if two-

dimensional nucleation was initiated on existing disks, which helped formation of atomic-flat 

and thickness-controlled disks. As disk thickness decreased, the crystal lattice was found to 

dilate gradually, which was not observed with CdS quantum dots. Compared with CdS quantum 

dots and rods, the disks displayed weakened quantum confinement and their photoluminescence 

lifetime (tens of picoseconds) was about 2-order of magnitude faster. 

 

4.1 Introduction 

Synthesis of colloidal semiconductor nanocrystals has achieved substantial success in the recent 

twenty years. 1, 2 Dot- 3, 4 and rod-shaped 5, 6 semiconductor nanocrystals (quantum dots and 

quantum rods) can be synthesized with reasonable size- and shape-control within their quantum 
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confinement size regime for many types of compound semiconductors. The existing synthetic 

schemes for quantum dots and quantum rods are not only relatively safe and inexpensive 

(“greener” synthesis), 1, 2 but also don’t require any additional size- and shape-sorting to achieve 

high optical quality. Conversely, synthesis of semiconductor nanocrystals with quantum 

confinement only along one dimension (colloidal 2D nanocrystals) in the shape of sheets, 7, 8 

platelets, 9, 10 belts, 11-14 and disks 15 with ultra-thin thickness falls far behind, especially when 

one considers necessary colloidal stability for solution-based manipulation. Although colloidal 

2D nanocrystals are not readily accessible at present, their properties are found to be unique in 

comparison to both quantum dots and quantum rods. For instance, the band-edge 

photoluminescence (PL) peaks of CdSe 2D nanocrystals were found to be extremely narrow (full 

width at half maximum is less than 10 nm), which is less than half of corresponding narrowest 

band-edge PL of CdSe quantum dots reported so far. 16 As one of the most promising new class 

of emitters, such narrow emission peaks are not only fundamentally interesting but also 

advantageous versus organic dyes for bio-medical labeling at multiple-target detections, 17, 18 

flexible light-emitting-diodes (LEDs) with high color purity, 19, 20 etc.  

At present, even for the best developed system—CdSe ones, at most two different thicknesses of 

colloidal CdSe 2D nanocrystals have been reported with substantial purity in thickness without 

size sorting. 14, 15 In preparation of this chapter, we noticed that the Dubertret’s group reported 

preparation of CdS and CdTe nanoplatelets along with CdSe ones. 21 In their report, though size- 

and shape-sorting did yield CdSe nanoplatelets with four different thicknesses, the CdS and 

CdTe ones were unfortunately mixtures of different thicknesses even after size- and shape-

sorting. Thus, one motivation of this work was, using CdS thickness-pure quantum disks 

covering the entire quantum confinement window as a model system, to demonstrate synthesis of 
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quantum disks at the level of standard “greener approach” for quantum dots and quantum rods 

established in literature. Such greener approaches should be simple, with inexpensive shelf 

chemicals, reproducible, without size- and shape-sorting, and yields colloidal-stable 

nanocrystals. 

Difficulties on synthesizing thickness-pure quantum disks with tunable thickness are at least 

partially due to lack of understanding on their formation mechanisms. The Weller’s research 

group reported an “oriented attachment” mechanism for formation of PbS nanosheets with their 

thickness in quantum confinement regime. 8 For the most developed CdSe 2D nanocrystals, there 

are two competitive mechanisms proposed. The Dubertret’s group suggested a typical 

“nucleation-growth” mechanism. 10 Our results indicated a similar nucleation-growth pathway 

for CdSe quantum disks and further revealed that the charged carboxylate ligands likely played a 

key role as soft-templates. 15 Conversely, the Buhro’s research group recently suggested a 

general mechanism which involves oriented attachment of CdSe magic sized clusters as a 

necessary step (“clusters-attachment” mechanism). 14 Prior to the detailed studies carried out by 

the Buhro’s group, the Hyeon’s group suggested that self-assembly of cadmium precursors into 

lamellar structures might have played a key role. 12 Meanwhile, our group showed oriented 

attachment indeed occurred in a synthetic system similar to the one used by the Buhro’s group 

although we failed to recognize the one-dimensional quantum confinement nature of the 

resulting nanostructures and assigned the resulting nanostructures as quantum wires with two-

dimensional quantum confinement. 22 With these facts in mind, our second motivation of this 

work was to combine the growth mechanisms study with development of synthetic strategy. The 

results shown below shall reveal that formation of CdS quantum disks followed a nucleation-

growth mechanism, instead of clusters-attachment mechanism. In addition, the results further 
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suggested that a two-dimensional nucleation process might have played an important role in 

controlling the thickness purity of the disks.  

Success on synthesizing a series of quantum disks with pure thicknesses in the entire quantum 

confinement regime allowed us to compare the quantum confinement of quantum disks with the 

corresponding quantum dots. As expected, the CdS quantum disks with a given thickness showed 

a significantly weaker quantum confinement in comparison to the quantum dots with the same 

dimension in size. This series of quantum disks further enabled us to study an interesting lattice 

dilation effect, which was identified to be thickness dependent. Conversely, CdS quantum dots 

coated with the same type of ligands did not show such lattice dilation, even for those relatively 

small quantum dots with their sizes similar to the thickness of the quantum disks. In addition to 

these two thickness-dependent properties, availability of a series of high quality quantum disks 

further allowed us to study the cation to anion ratio (Cd to S ratio) in the disks, which were found 

to increase significantly as the thickness of quantum disks decreased. This indicates that the 

surface of the disks was terminated with Cd ions. To understand the unique optical properties of 

the quantum disks, some preliminary time-resolved spectroscopy studies of the CdS quantum 

disks were carried out.  

 

4.2 Experimental 

Chemicals. Cadmium acetate dihydrate (99.999%, Alfa), melissic acid (TCI), myristic acid 

(98%, Alfa), oleic acid (90%, Aldrich), oleylamine (80-90%, Aldrich), stearic acid (90%, Alfa), 

sulfur (99.5%, Alfa), 1-octadecene (90%, ODE, Alfa), tributylphosphine (95%, TBP, Alfa), CdS 

(Aldrich), erythrosin B (Alfa), stilbene 420 (Exciton), coumarin 545 (Exciton), chloroform (EM 
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Science), ethanol (EtOH, Pharmco), hexanes (EM Science), methanol (EM Science), toluene 

(Mallinchrodt) were used without further purification. 

Synthesis of disks. S in ODE solution was prepared by dissolving 0.0320 g Sulfur (1.0 mmol) in 

20 g ODE by gentle sonication and stored in closed vial for use. Except the thinnest one with 

oleylamine added as the activation reagent for S at a relatively low reaction temperature (see 

below), the other three thicknesses could all be synthesized with cadmium acetate dihydrate, 

sulfur, fatty acids, and ODE as the starting materials. Among all fatty acids tested, myristic acid 

and stearic acid could only yield disks with two thinner ones, oleic acid worked for three thin 

ones but not the thickest one, and melissic acid was the only ligand which could yield all four 

types of disks. Considering the cost of fatty acids, typical synthesis for a specific thickness 

would be mostly with less expensive oleic acid as the ligands.   

Synthesis of CdS quantum disks with the first absorption peak at 328 nm: cadmium acetate 

dihydrate (0.0533 g, 0.20 mmol), S in ODE solution (1.0016 g, 0.05 mmol S) prepared using the 

method described above, oleic acid (0.0565 g, 0.20 mmol), oleylamine (0.05 g, 0.19 mmol), and 

2.95 g ODE was bubbled with Ar for 10 minutes, then heated to 170 oC in 9 minutes from room 

temperature under Ar flow, and kept under 170 oC for 5 minutes, small aliquots were taken out at 

different time intervals, diluted in chloroform and measured by UV-Vis to monitor the reaction. 

Synthesis of CdS quantum disks with the first absorption peak at 374 nm: cadmium acetate 

dihydrate (0.0533 g, 0.20 mmol), S in ODE solution (1.0016 g, 0.05 mmol S), myristic acid 

(0.0457 g, 0.20 mmol), and 3.0 g ODE was bubbled with Ar for 10 minutes, then heated to 180 

oC in 8 minutes from room temperature under Ar flow, and kept under 180 oC for 30 minutes, 
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small aliquots were taken out at different time intervals, diluted in toluene and measured by UV-

Vis to monitor the reaction. 

Synthesis of CdS quantum disks with the first absorption peak at 407 nm: cadmium acetate 

dihydrate (0.0533 g, 0.20 mmol), S in ODE solution (1.0016 g, 0.05 mmol S), oleic acid (0.0565 

g, 0.20 mmol), and 3.0 g ODE was bubbled with Ar for 10 minutes, then heated to 260 oC in 15 

minutes from room temperature under Ar flow, and kept under 260 oC for 1 minute, small 

aliquots were taken out at different time intervals, diluted in toluene and measured by UV-Vis to 

monitor the reaction. 

Synthesis of CdS quantum disks with the first absorption peak at 431 nm: cadmium acetate 

dihydrate (0.0533 g, 0.20 mmol), S in ODE solution (1.0016 g, 0.05 mmol S), melissic acid 

(0.0226 g, 0.05 mmol), and 3.0 g ODE was bubbled with Ar for 10 minutes, then heated to 250 

oC in 14 minutes from room temperature under Ar flow, and kept under 250 oC for 15 minutes, 

small aliquots were taken out at different time intervals, diluted in toluene and measured by UV-

Vis to monitor the reaction. Caution: Special care needed to be paid for the synthesis apparatus 

airtightness to avoid the possible formation of cadmium oxide for this specific reaction because 

of its relatively low fatty acid concentration.  

Purification of CdS quantum disks. For TEM measurements, purification of CdS quantum 

disks was generally carried out by following procedure. TBP and EtOH mixture (10% volume 

ratio of TBP) was added into the final products, sonicated, then centrifugated at 4,000 RPM for 5 

minutes. The precipitate was preserved, and repeated for another 2 times. Purified samples were 

dissolved into toluene or hexanes forming clear solution. For the HRTEM studies carried out in 

Figure 4-3, special care was taken to avoid the unintentional removal of small CdS quantum 
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disks seeds, the purification was carried out by adding methanol to the CdS quantum disks in 

hexanes solution, sonication and analog vortex was used to promote extraction efficiency. The 

solution was centrifugated at 4,000 RPM for 15 minutes, then set aside until clear phase 

separation appeared. The top hexanes layer was then carefully collected for HRTEM studies. 

Purification of CdS quantum disks for XRD and EDX characterization was similar with the 

aforementioned procedure except that centrifugation was carried out at 3,000 RPM for 15 

minutes. In addition, EtOH was used to wash the precipitate one more time and the final 

precipitate was preserved and dried in vacuum oven overnight before grinding in mortar for 

XRD analysis or applied to the conducting tape for EDX analysis.  

Optical Measurements. UV-vis spectra were taken on an HP 8453 UV-visible 

spectrophotometer. Photoluminescence spectra were measured using a Spex Fluorolog-3 

fluorometer. The quantum yield data reported in this work were obtained using stilbene 420 in 

methanol (95%), 23 coumarin 545 in EtOH (90%) 24 as the standard.  

Time-resolved photoluminescence (TRPL) on the picosecond scale were performed by using a 

Ti : sapphire mode-locked laser delivering 3 ps pulses at 76 MHz repetition rate with the samples 

dissolved in toluene at room temperature. The excitation wavelength was tuned to 375 nm which 

was provided by a second harmonic generator (1 mm thick beta barium borate). The 

luminescence was dispersed by a 0.24 m single monochromator coupled with a Streak Camera 

(Hamamatsu) operating in synchron scan mode, equipped with a two-dimensional charge-

coupled device. The system provided an overall time resolution of about 15 ps and an energy 

resolution of about 1 meV. The nanosecond time-resolved emission decay of the CdS quantum 

dot solution was measured using a FLS 920 photocounting system (Edinburgh Instruments Ltd., 

UK) at room temperature. The excitation light source was a 405 nm pump laser at 2 MHz. 
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Transmission Electron Microscopy (TEM) and High-resolution TEM (HRTEM). TEM and 

HRTEM images were taken on FEI Titan 80-300 microscope with an accelerating voltage of 300 

kV. Purified CdS quantum disks were dispersed into toluene or hexanes, then several drops of 

the solution were added onto a carbon coated copper grid and the grid with the nanocrystals was 

dried in air. 

X-ray powder diffraction (XRD) patterns were acquired using Rigaku MiniFlex II X-ray 

diffractometer operating at 30kV/15mA. 

Energy-dispersive X-ray spectroscopy (EDX) was used for elemental analysis using a Philips 

ESEM XL30 scanning electron microscope equipped with a field emission gun and operated at 

30 kV. 

 

4.3 Results and Discussions 

Choice of synthetic system. Although our recent work on synthesis of CdSe quantum disks only 

yielded one pure thickness, 15 the results provided us some hints on rational design of synthetic 

schemes for CdS quantum disks. The structural characterization of the CdSe quantum disks 

revealed that both basal planes of the disks were terminated with a monolayer of Cd ions. If CdS 

quantum disks to be synthesized possessed the same structure, the organic ligands should be 

negatively charged. This hypothesis indicates two key design parameters for the synthetic system 

of CdS quantum disks. The first implication is that fatty acids commonly used in nanocrystals 

synthesis should be a reasonable choice as the ligands and cadmium carboxylate salts could be 

used as the Cd precursor. The second implication is that the synthetic system should have a 

relatively high Cd to S precursor ratio.  
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Previous experiences on synthesis of high quality CdS quantum dots told us that non-

coordinating solvents could offer us tunable reactivity of the precursors, 25 which should be much 

needed for synthesizing thickness-tunable CdS quantum disks. A recent study indicates that 

elemental S dissolved in octadecene (ODE)—the most commonly used non-coordinating solvent 

in synthesis of colloidal nanocrystals—became substantially reactive at around 180 oC in a 

simple reaction system with ODE, cadmium fatty acid salts, fatty acid, and elemental S. 26 For 

such a reaction system, if the reaction needed to be carried out significantly below 180 oC, fatty 

amines could be used as activation reagents for elemental S. 26 

As mentioned above, our previous method could only yield CdSe quantum disks with one pure 

thickness. Some preliminary results on that system indicated that a higher reaction temperature 

would benefit the growth along the thickness direction. However, results on CdSe quantum disks 

revealed that those very thin quantum disks were thermally unstable under elevated 

temperatures, and thermal stability of the CdSe quantum disks was found to be associated with 

the chain length of the fatty carboxylate ligands. The longer the hydrocarbon chain, the more 

stable the CdSe quantum disks were. 15 This means that fatty acid ligands with long hydrocarbon 

chain might be needed to obtain thickness-pure CdS quantum disks within the entire quantum 

confinement window.  

It should be pointed out that the hypothesis mentioned in the above paragraph was partially 

supported by the results reported by the Yu’s group. 27, 28 They reported several sets of CdSe and 

CdS nanocrystals samples with sharp absorption spectra, which could be quantum disks although 

the Yu’s group considered them as “magic sized clusters”. Specifically for CdS system, they 

reported two sets of sharp absorption spectra, with the lowest absorption peak respectively at 324 

nm and 378 nm, although they used complex and expensive bis(trimethylsilyl)sulfide as the S 
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precursor. 28 If these two spectra were indeed from CdS quantum disks, they should be two 

relatively thin CdS disks within the series to be discussed below. 

Thickness control of CdS quantum disks. 

As shown in Figure 4-1, CdS quantum 

disks with four distinguishable thicknesses 

were synthesized without any size- and 

shape-sorting, which covered most part of 

the quantum confinement regime for CdS 

nanocrystals. It is well known that CdS 

quantum dots are typically with their first 

excitonic absorption peak between 320 nm 

and 450 nm. 25 The thickness of each 

sample was determined by measuring the 

disks with appropriate orientation under 

High Resolution Transmission Electron 

Microscope (HRTEM). Based on the 

structural parameters of zinc-blende CdS 

and composition analysis to be described 

below, these four samples corresponded to 

CdS with 4.5, 5.5, 6.5, and 7.5 monolayers of CdS units along thickness direction. Further 

confirmation of the thickness will be discussed together with the structural analysis and quantum 

confinement calculations.  

 

Figure 4-1. UV-Vis (blue curve) and PL (red 

curve) of four CdS quantum disk samples with a 

typical HRTEM image of a side-on disk (inset, 

scale bar: 5nm, see corresponding full-scale 

HRTEM images in Figure 4-2) for each sample. 
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It was found that, with melissic acid (CH3(CH2)28COOH) as the ligands, the whole series of the 

thickness-pure CdS disks shown in Figure 4-1 could be synthesized without any size- and shape-

sorting. Evidently, its unusually long hydrocarbon chain rendered the reaction temperature to a 

desired range, between 170 oC and 

260 oC (see details in experimental 

section). Experimental results 

further revealed that myristic acid 

and stearic acid could only yield 

disks with two thinner thicknesses, 

oleic acid worked for three thin 

ones but not the thickest one. The 

thickness purity of the CdS 

quantum disks with stearic acid and 

myristic acid as ligands would be 

compromised as the reaction temperature approached 240 oC. With these results, one could 

safely conclude that there is no direct correlation between the chain length of fatty acids and the 

thickness of the CdS disks. Instead, as long as a fatty acid could retain necessary stability for 

CdS disks under the reaction temperature necessary for growth of thicker disks, the fatty acid 

ligand could be used for growth of thinner ones.  

It was found that the thinnest one could only be synthesized with addition of fatty amine as the 

activation reagent for S. 26 This is so because the thinnest ones (Figure 4-1a) could be stable only 

when the reaction temperature was 170 oC or below. At this temperature, our recent report 

revealed that elemental S is not sufficiently active and addition of amine can enhance its 

 

Figure 4-2. Full scale HRTEM image of CdS quantum 

disks in Figure 4-1. 
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reactivity. 26 As shown below and demonstrated in the case of CdSe disks, 15 although amines 

were added into the reaction system, the resulting disks were still significantly Cd rich and 

coated with carboxylate ligands. 

Formation mechanism: “nucleation-growth” versus “clusters-attachment”. For zinc-blende CdSe 

system, as discussed in the introduction, previous results indicate that nanoplatelets or quantum 

disks were formed by growth of molecular unites onto pre-formed nuclei, namely a “nucleation-

growth” mechanism. 10, 15 Conversely, wurtzite CdSe 14 and cubic PbS system 8 (galena) 2D 

nanostructures were found to be formed by oriented-attachment of pre-formed magic sized 

clusters, to be called as “clusters-attachment” mechanism. The mechanism proposed by the 

Hyeon’s group was somewhat different from a pure clusters-attachment mechanism, which 

suggested that cadmium-amine complexes formed lamellar structure and Se precursors diffused 

into such lamellar structure and generated CdSe wurtzite nano-sheets. 12 Despite the difference, 

this mechanism and clusters-attachment mechanism had one feature in common, that is the 

formation of large sized aggregates to show substantial light scattering. Conversely, under 

controlled nucleation-growth mechanism for formation of high quality colloidal quantum dots 

and disks, largely size aggregates should not present.  

If the two-dimensional nanostructures were formed by clusters-attachment mechanism, in 

addition to light scattering in their UV-Vis spectra, one should also observe a noticeable spectral 

shift of absorption peaks. Because of the relatively strong three-dimensional quantum 

confinement, magic sized clusters with their sizes similar to the thickness of 2D nanocrystals 

should possess a substantially blue-shifted absorption spectrum 29 (see more discussions below). 

In the report by the Buhro’s group, the clusters-attachment in the wurtzite CdSe system studied 

did show some evidences of spectral shift. 14 In the system similar to that studied by the Buhro’s 
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group, we reported a significant red-shift in the temporal evolution of absorption spectra during 

the clusters-attachment process. 22 

Based on the spectral features 

discussed in the above two 

paragraphs, a significant red-shift and 

a scattering tail, were used as two 

initial guidelines in identification of 

the formation mechanism in the 

current system. UV-vis absorption 

spectroscopy coupled with HRTEM 

was used as the main experimental 

tools.  

Figure 4-3 a illustrates evolution of 

absorption spectra of a typical 

reaction as the reaction increased from 

200 oC to 260 oC (about 8 oC/minute). 

Figure 4-3 b shows a TEM picture of 

the sample taken at 210 oC with a 

false colored HRTEM image as inset. As shown in Figure 4-3 a, there was no noticeable spectral 

shift in the early formation stage of the quantum disks for this typical reaction and any other 

reactions studied. This indicates that clusters-attachment is unlikely associated with the current 

system. Consistent with this conclusion, TEM studies of early aliquots (Figure 4-3 b) revealed 

nanocrystals with their sizes in the range between ~2-12 nm. These nanocrystals should be CdS 

 

Figure 4-3. a: UV-vis absorption spectra of growth 

process for CdS quantum disks with the first 

absorption peak at 407 nm. b: TEM and HRTEM 

(inset) images of the sample at the early growth stage 

of 210 oC. c: Normalized UV-vis absorption peak 

intensity during the growth process. 260* 

corresponds to the spectrum of 1 minute at 260 oC in 

figure 4-3a. 
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quantum disks with small lateral dimensions because quantum dots with such sizes should 

possess a much red-shifted UV-Vis spectrum in comparison to the one shown in Figure 4-3 a 

(marked as “210 oC”).  

The exclusion of clusters-attachment mechanism was further supported by no significant 

scattering tail in the absorption spectra (Figure 4-3 a). It should be mentioned that, under certain 

conditions, reactions after a long time could yield crystalline CdS nanosheets with a significant 

scattering tail in the UV-Vis spectra. However, such scattering was considered to be different 

from that associated with clusters-attachment mechanism 14 and template mechanism. 12 In the 

clusters-attachment mechanism and template mechanism, scattering tail should appear early on, 

instead of appearing at the end of the reaction. Importantly, as we were targeting colloidal-stable 

quantum disks, our samples discussed in this chapter are all without a significant scattering tail 

except those stated specifically.  

The evidences discussed above are apparently consistent with nucleation-growth mechanism. If 

the reaction temperature was set at a specific value for the growth of CdS quantum disks with a 

relatively thin thickness, for instance at 180 oC for the quantum disks with its absorption peak at 

374 nm, one would observe a continuous increase of absorption peak intensity of the existing 

CdS quantum disks normalized to the reaction volume, which is similar to the case of CdSe ones. 

10 For the relatively thick ones, careful studies revealed a different mode of growth.  

Growth mechanism: thickness growth. As shown in Figure 4-3 a, the thicker CdS quantum disks 

with their UV-Vis peak at 407 nm appeared after the formation of the next thinner ones with their 

absorption peak at 374 nm along with the increase of reaction temperature. Quantitatively, at 260 

oC, while the volume-normalized intensities at 407 nm increased sharply, the volume-normalized 

intensity at 374 nm decreased simultaneously (Figure 4-3 c). Based on the results shown in 
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Figure 4-1, this corresponded to one-monolayer addition along the thickness direction. It should 

be pointed out that the Buhro’s group also observed growth of thicker CdSe wurtzite nanobelts 

from relatively thin ones in a similar manner although, as discussed above, the general growth 

mechanism was identified as clusters-attachment.  

The results shown in Figure 4-3 a and 4-3 c imply that the addition of one monolayer of CdS to 

the existing thin quantum disks was rather rapid. This is quite reasonable. According to existing 

crystallization theories, 30 when 

growth on a flat surface was initiated 

(often called two-dimensional 

nucleation), the following completion 

of the monolayer would usually be 

quite fast. Furthermore, this 

phenomenon is probably playing a 

determining role in formation of high 

quality quantum disks. Presumably, if 

a suited two-dimensional seed (or 

nucleus) was formed in the solution, 

the extension along the lateral 

dimensions could become the 

dominating growth mode, given that 

the difficult initiation and fast 

completion of a monolayer on the 

 

Figure 4-4. Top: from left to right are HRTEM 

image and FFT of 4.5-layer thick CdS disks, and 

TEM images of 5.5, 6.5, and 7.5-layer thick CdS 

quantum disks. Bottom: X-ray diffraction patterns of 

CdS quantum disks (thickness increases from bottom 

to top). The standard diffraction peaks of zinc 

blende structure (JCPDS card no. 89-0440) are 

inserted as red lines for reference. 



 

130 
 

basal planes. For the same reason, the resulting disks could readily be atomic flat on the basal 

planes.   

Above mechanism implies “addition” of solution monomers onto the top of existing thin disks in 

a layer-by-layer fashion. Consistent with this thickness growth model, if the reaction system was 

held at a lower growth temperature for a long time to allow the full growth of the thinner disks, 

conversion of thin disks to the next thickness in the series would become difficult. Presumably, 

full growth of the thin ones consumed reactive precursors in the system and the system could no 

longer offer sufficient amounts of precursors for the thickness growth. 

Lateral dimensions and colloidal-stability. The lateral dimensions of the CdS quantum disks 

could be controlled by the reaction time at a designated reaction temperature. By varying the 

reaction temperatures within the range for formation of the targeted thickness, the lateral 

dimensions could also be varied to a certain degree. Our aim was to obtain quantum disks with 

thickness-tunable and thickness-pure yet possessing good colloidal-stability. The typical lateral 

dimensions were thus controlled in the range between 20 and 100 nm (Figure 4-4, top panel). 

The TEM images in Figure 4-4 (top panel) further reveal that control of lateral dimensions still 

has significant room to improve, which is generally true at this stage for all two-dimensional 

semiconductor nanostructures with thickness in corresponding quantum confinement size 

regime.   

The morphology of the CdS quantum disks were found to be approximately rectangular as shown 

in Figure 4-4 (top panel). Similar to what observed in CdSe quantum disks, 15 some curved edges 

along one direction was observed (Figure 4-4, top panel) if the lateral dimensions of the 

colloidal-stable disks was relatively large. For the thickest disks in the current series, TEM 

measurements reproducibly revealed some relatively high contrast spots on the disks (Figure 4-4, 



 

131 
 

top panel) and could not be removed by all purification methods tested. This could be due to 

partial folding of the disks caused by the relatively high reaction temperature. 

CdS quantum disks within their lateral dimensions in the range between 20 and 100 nm 

synthesized using the current synthetic scheme were found to be generally colloidal-stable. For 

instance, the disks solution in CHCl3 was found to possess colloidal stability even with 4000 rpm 

centrifugation.  

Crystal structure and composition. The X-ray powder diffraction (XRD) patterns of the CdS 

quantum disks with different thicknesses are shown in Figure 4-4 (bottom panel). Similar to 

CdSe quantum disks, these diffraction patterns are consistent with a zinc-blende structure. A 

sharp peak superimposed on top of a broad feature for (111), (220), and (400) diffraction peaks is 

consistent with polar directions of the 

zinc-blende lattice as the thickness 

directions. This means that, as verified 

in our previous report for CdSe 

quantum disks, the thickness directions 

for CdS quantum disks should be 

<100> and (or) <111> of the zinc-

blende lattice. 

Based on XRD results, it was difficult 

to distinguish <111> axis from <100> 

axis as the thickness direction of the 

disks. However, there was evidence 

suggesting that <111> axis was at least not the dominating thickness orientation. The first 

 

Figure 4-5. XRD patterns of CdS quantum disks 

(red) and quantum dots (blue) with the same PL 

peak positions for comparison purpose. The 

standard diffraction peaks of zinc blende structure 

(JCPDS card no. 89-0440) are inserted as red lines 

for reference. 
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evidence was HRTEM results. As shown in Figure 4-1 and Figure 4-4, only lattice fringes 

matching <100> direction as the thickness direction were successfully observed under HRTEM 

with a limited number of disks measured. The second evidence was that thicknesses determined 

by quantum confinement calculations (to be discussed in details below) matched very well with 

the expected values for the thicknesses along <100> direction for all four disk samples (Table 4-

1), which were 4.5, 5.5, 6.5, 7.5 monolayers along <100> axis as revealed by HRTEM images in 

Figure 4-1. Again, the extra monolayer of Cd ions on one of two basal planes will be discussed 

below. 

The HRTEM image and the corresponding FFT (Fast Fourier Transform) in the red-dotted area 

(inset) of a quantum disk lying flat on the substrate are shown in Figure 4-4 (the first image in 

top panel). The results confirmed its zone axes as <001>, which is consistent with the growth 

direction identified by HRTEM with the side-on disk (Figure 4-1). However, two relatively thick 

samples were found to be difficult to obtain clear phase contrast for the lying flat disks. It should 

be pointed out that the lattice plane distance along thickness direction (Figure 4-1a) gave us a 

value of 0.299 nm, which 

is 2.4% greater than that 

for the {200} lattice planes 

of bulk zinc blende CdS 

(0.292 nm), and shall be 

discussed in details below.  

It was interesting to notice 

that the lattice of CdSe 2D 

nanostructures could be either compressed or expanded dependent on the crystal structure. The 

 

Table 4-1. Thickness calculation results along <200> direction 

and corresponding HRTEM measurement, theoretical 

calculation results based on heavy hole position. 

 

Monolayer 200 (nm) HRTEM (nm) Calculation (nm)
4.5 1.17 1.25 1.22
5.5 1.46 1.53 1.53
6.5 1.75 1.80 1.87
7.5 2.04 2.15 2.25
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Buhro’s group observed a noticeable lattice contraction for wurtzite CdSe nanobelts, 14 and our 

group reported lattice expansion for zinc-blende CdSe quantum disks. 15 Unfortunately, in both 

cases, the thickness-pure samples were limited to one or two thicknesses.  

A qualitative inspection of the XRD patterns in Figure 4-4 (bottom panel) told us that all four 

samples showed significant lattice dilation in comparison to the bulk values. Furthermore, CdS 

quantum dots with their size similar to the thicknesses of quantum disks did not show such 

dilation (Figure 4-5). Table 4-2 summarizes observed dilations determined by the XRD patterns 

in Figure 4-4 (bottom panel). To further illustrate this interesting phenomenon, the results for the 

(111) peak was plotted in Figure 4-6 (left). In comparison to the bulk value, as the thickness 

increased in the series, the lattice dilation value of 3.97%, 3.51%, 1.29%, and 0.07% from the 

thinnest to thickest sample was determined, with the thickest one very close to the bulk value.  

The lattice expansion and its thickness-dependence seemed to be reasonable, provided that the 

top and bottom basal planes were both terminated with Cd ions (see details below). The excess 

layer of Cd ions could offer significant lattice strain and such strain would increase as the 

 

Table 4-2. Comparison of d-values for different diffraction peaks between CdS quantum disks 

and bulk. For (220) peak, the sharp peak position was taken to calculate the corresponding 

lattice value. 

Peak Standard (Å) 4.5-layer (Å) Dilation (%) 5.5-layer (Å) Dilation (%) 6.5-layer (Å) Dilation (%) 7.5-layer (Å) Dilation (%)

111 3.366 3.500 3.97 3.484 3.51 3.409 1.29 3.368 0.07

200 2.915 2.979 2.19 2.987 2.48 2.956 1.42 2.951 1.22

220* 2.061 2.108 2.27 2.109 2.35 2.088 1.32 2.064 0.17

311 1.758 1.800 2.40 1.791 1.88 1.775 0.95 1.762 0.23

400 1.458 1.494 2.50 1.488 2.07 1.478 1.38 1.467 0.65
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thickness of the quantum disks decreased.  

It should be noticed that, by comparing the positions of the sharp peak to the broad feature of 

(220) diffraction, one would conclude that the lattice dilation along thickness direction differed 

from that along the lateral direction. The same trend could also be identified for the CdSe 

quantum disks studied previously. More studies are needed to fully understand this interesting 

phenomenon. 

As discussed above, the thickness directions of CdS quantum disks were polar directions, 

namely, most likely <100> direction but with small possibilities mixed with <111> direction. 

Furthermore, the basal planes of quantum disks should be close to atomic flat, given their sharp 

optical spectra and fast completion of 

a monolayer along lateral directions 

as discussed above (see Figure 4-3 

and the related text). In addition, the 

ligands of the CdS quantum disks 

were carboxylates. All these facts 

imply that both basal planes of CdS 

quantum disks should be terminated 

with a monolayer of Cd ions, which 

in turn should be bound by 

deprotonated fatty acid ligands. 15 To 

confirm this, the Cd to S atomic ratio 

(Cd/S ratio) of carefully purified CdS quantum disks was determined using quantitative Energy-

Dispersive X-ray (EDX) analysis. 

 

Figure 4-6. Left: Lattice expansion of the (111) peak 

in CdS quantum disks with different thickness. Right: 

Cd/S molar ratio of CdS quantum disks with different 

thickness. The blue diamonds linked by a blue line 

were calculated values considering one-monolayer of 

Cd ions on both basal planes. 
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Results in Figure 4-6 (right) indicate that all four samples were indeed Cd-rich (See Table 4-3 for 

more details). Though similar composition feature was observed for one thickness of CdSe 

quantum disks previously, 15 availability of a full series of thickness-pure CdS quantum disks 

allowed us to examine the thickness-dependence of the Cd/S ratio. Results in Figure 4-6 (right) 

revealed that the Cd/S ratio increased substantially as the thickness decreased, which seemed to 

be consistent with one-monolayer of extra Cd ions on one of the basal planes suggested for CdSe 

quantum disks. With these facts, one could reasonably conclude that the thicknesses of the disks 

could not be integer numbers of CdS repeating units. This is the reason we assigned the 

thicknesses of the disks to be 4.5, 5.5, 6.5, and 7.5 monolayers of CdS repeating unit along the 

 

Table 4-3. EDX analysis results of CdS standard and the purified CdS quantum disks. a: 

standard deviation. Four batches of carefully purified colloidal quantum disks samples were 

analyzed parallel with a commercial CdS bulk powder and each sample were measured 8 

times at random location. In order to further eliminate possible cadmium precursor pollution, 

control was carried out with pure cadmium stearate following exactly the same purification 

process, nothing but transparent colorless solution was observed even just after first time of 

three repeating purification and centrifugation processes. 
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thickness direction.  

If only considering one excess layer of Cd ions on one of the basal planes of the disks, however, 

the calculated Cd/S ratio was found to be generally lower than the experimental values (Figure 4-

6, right), especially for the relatively thin ones that were generally small in lateral dimensions. 

This discrepancy suggests that the side facets of the disks were also terminated with Cd, which 

ended up a higher Cd/S ratio than that calculated by only considering the basal planes. This 

explanation is reasonable as all facets of quantum disks should be bound by negatively-charged 

carboxylate ligands.  

Quantum confinement of quantum disks versus quantum dots. The one dimensional quantum 

confinement of CdS quantum disks was confirmed by their very sharp and significantly blue-

shifted UV-Vis absorption and photoluminescence (PL) peaks (Figure 4-1) in comparison to the 

bandgap of bulk CdS. The thickest one with its UV-Vis peak at 431 showed an interesting tail 

from the main peak to CdS bulk bandgap in both UV-Vis and PL spectra (Figure 4-1d), which 

could not be 

removed by all 

separation 

procedures applied. 

The origin of this tail 

is not clear at this 

moment. One 

possible reason 

could be the sharp 

 

Table 4-4. Thickness calculation results based on corresponding 

heavy hole and light hole absorption. λ: exciton absorption peak 

position; d: thickness; hh: heavy hole; lh: light hole. 

 

λ ( hh, nm) d (hh, nm) λ (lh, nm) d (lh, nm) 
328 1.22 292 1.20
374 1.53 347 1.53
407 1.87 379 1.81
431 2.25 404 2.11
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excitonic absorption and PL peaks for this specific thickness were very close to the bulk bandgap 

of CdS. 

Except the thinnest one with its absorption peak at 328 nm, the other three thicknesses (with their 

UV-Vis peak at 374 nm, 407 nm, and 431 nm) showed band-edge PL peak with a significant 

surface-trap emission tail to the low energy side of the band-edge PL. The Full Width at Half 

Maximum (FWHM) of the band-edge PL peaks was small, 0.06-0.08 eV (or 9-10 nm). Though 

their UV-Vis and band-edge PL peaks were as sharp as those observed for CdSe quantum disks, 

15 it is interesting to notice that the absorbance ratio between the main UV-Vis peak (supposedly 

from heavy hole-electron exciton) and the secondary peak (light hole-electron exciton) was more 

than ten times higher than that 

observed for the typical CdSe 

quantum disks with similar lateral 

dimensions. During the preparation of 

this chapter, we noticed that a report 

made a different assignment of the 

absorption peaks. 21 However, the 

calculations shown below indicate that 

this tentative assignment is consistent 

with a simple quantum confinement 

model proposed by the same group. 9  

Thickness calculation was carried out 

using the equation proposed by the 

Dubertret group. 9 The necessary parameters were found from literature and listed as following, 

Figure 4-7. Quantum confinement dimension versus 

the first excitonic peak for CdS quantum dots, rods, 

and disks. 
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CdS bandgap = 2.50 eV, 31, 32 electron effective mass = 0.205 m0 with m0 as the mass of free-

electron, heavy hole effective mass = 5.00 m0, and light hole effective mass = 0.54 m0. 33 

Calculations gave us the thickness values as following: 1.22 nm (UV-Vis peak at 328 nm), 1.53 

nm (UV-Vis peak at 374 nm), 1.87 nm (UV-Vis peak at 407 nm), and 2.25 nm (UV-Vis peak at 

431 nm), respectively. These values were reasonably close to the values determined by HRTEM 

(Figure 4-1). The thickness values calculated using the light hole and heavy hole absorption 

peaks were quite consistent (see Table 4-4).  

Figure 4-7 plots the first excitonic absorption peak energy versus the thickness of the CdS 

quantum disks, together with CdS quantum rods 34, 35 and quantum dots. 29 For convenience, we 

defined “quantum confinement dimension” as the diameter of a dot, the short-axis dimension of 

a rod, and the thickness dimension of a disk.  

Due to lack of appropriate control and data on CdS quantum rods, we were only able to get 

 

Table 4-5. TRPL analysis results of CdS quantum dots together with three different thickness 

CdS quantum disks and one CdSe quantum disk. A1, A2: amplitudes of the components; τ1, τ2: 

decay times; f1, f2: fractional contribution; 𝜏̅ : average lifetime; QY: quantum yield; τn: 

natural lifetime; kr, knr: radiative, nonradiative recombination rate. 
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several points from the current literature, 34, 35 which cannot generate a reasonable trendline 

although the data points are generally between the trendlines of quantum dots and disks. This 

means that, with limited data points, quantum rods exhibit medium strength of quantum 

confinement. Comparing to the CdS quantum dots and quantum rods, quantum disks possess 

much weaker quantum confinement because the exciton in a quantum disk could only be 

confined along the thickness direction. 36, 37 

PL decay lifetime of quantum disks versus quantum dots. Time-resolved Photoluminescence 

study was carried out on CdS quantum disks, which revealed a two-order of magnitude faster 

decay process for the CdS quantum disks in comparison to the quantum dots (Figure 4-8). The 

CdS quantum disks and quantum dots used for recording the data in Figure 4-8 had a similar PL 

emission peak position at around 418 nm. The measurements were firstly carried out using a 

streak camera. As shown in Figure 4-8 a, after the laser pulse, the CdS quantum disks showed a 

strong and sharp PL emission, then decayed to the background level completely in several 

hundreds picosecond. Conversely, CdS quantum dots showed continuous emission up to the scan 

time limit of the streak camera (Figure 4-8 b).  

Figure 4-8 c plots the PL decay profile of the CdS quantum disks obtained from Figure 4-8 a. In 

order to accurately measure the relatively slow PL decay process of the CdS quantum dots, we 

also carried out measurements for the CdS quantum dots on an FLS 920 spectrometer (Figure 4-

8 d) in addition to that using streak camera (Figure 4-8 b). The decay profiles of the CdS 

quantum disks and dots could both be fitted into double exponential decay, with average lifetime 

of CdS quantum disks at around 170 ps, and CdS quantum dots around 22 ns (See Table 4-5). 

The lifetime of CdS quantum dots agreed pretty well with results reported in literature. 38, 39  
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In the multi-exponential model, the intensity is assumed to decay as the sum of individual single 

exponential decays: 

I(𝑡) = 𝐼0 + ∑ 𝐴𝑖𝑒𝑥𝑝�− 𝑡 𝜏𝑖� �𝑛
𝑖=1  (4-1) 

here I0 is the background signal, Ai are the amplitudes of the components at t = 0, 𝜏𝑖 are the 

decay times, and n is the number of decay channels. 

The average lifetime 𝜏̅ and the fractional contribution fi of each decay time are given as: 

 

Figure 4-8. Streak camera images of fluorescence from (a) CdS quantum disks and (b) CdS 

quantum dots solutions. The temporal decay profile of CdS quantum disk (c) was obtained 

using the Streak camera data in (a). The fluorescence decay profile of CdS quantum dot (d) 

was measured by an FLS 920 spectrometer. 
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𝜏̅ = ∑  𝐴𝑖𝜏𝑖
2𝑛

𝑖=1
∑  𝐴𝑖𝜏𝑖𝑛
𝑖=1

= ∑ 𝑓𝑖𝜏𝑖𝑛
𝑖=1 , 𝑓𝑖 = 𝐴𝑖𝜏𝑖

∑  𝐴𝑖𝜏𝑖𝑛
𝑖=1

, 𝑎𝑛𝑑 ∑𝑓𝑖 = 1. (4-2) 

Natural lifetime, radiative/nonradiative recombination rate could be calculated based on 

following equations: 40, 41 

τn = 𝜏̅/QY (τn: natural lifetime, 𝜏̅: average lifetime, QY: quantum yield) (4-3a) 

kr = 1/ τn (kr: radiative recombination rate) (4-3b) 

knr = 1/𝜏̅ - kr (knr: nonradiative recombination rate) (4-3c) 

Control was carried out on the streak camera with the same setup (Figure 4-9) and the 375 nm 

laser pulse width (FWHM) are on the 20 ps scale, excluding the effect of system response and 

 

Figure 4-9. Streak camera images of (A) the 375 nm picosecond pump laser highlighted in 

red dashed circle and (B) fluorescence from erythrosin B in MeOH, and corresponding 

temporal decay profiles (C) and (D). 
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laser width on the lifetime measurements for CdS quantum disks. Besides, erythrosin B in 

methanol was used as the standard to test streak camera response, which gave a single-

exponential decay with lifetime of 455 ps, within the error range of reported value as 470 ± 20 ps 

for erythrosine B. 42  

CdS quantum disks samples with their first absorption peaks at 374 and 431 nm were also 

measured using the same setup on streak camera (Figure 4-10), with corresponding average 

lifetime as 54 and 46 ps (Table S4), in the same order of magnitude as the CdS quantum disks 

with their first absorption peak at 407 nm mentioned above. To further confirm the much faster 

lifetime of quantum disks, measurements using a CdSe quantum disks with quantum yield at 

about 40% were carried out using the same streak camera, which yielded a lifetime as 460 ps, 

which is also about two orders of magnitude faster than the typical values (~ 20 ns) reported for 

CdSe quantum dots in literature. 43, 44 

The faster PL decay process of the CdS quantum disks compared to CdS quantum dots could 

possibly be explained by referencing each to the bulk CdS, respectively. At present, the relatively 

long PL lifetime of II-VI quantum dots (around tens of naonsecond) 38, 39 in comparison to the 

bulk 45 was successfully explained using the “dark exciton” states in quantum dots structure. 46-48 

Although “bright exciton” could decay to the lowest energy dark exciton states in sub-

picosecond time scale, the radiative recombination of optical passive dark exciton back to the 

ground state requires phonon-assistance. As a result, this three-particle process is generally 

inefficient, which in turn caused a relative long lifetime in quantum dots.  

For the case of one-dimensional quantum confined nanostructures, there are possibly partial 

mixing between bright and dark exciton states. Accordingly, this should induce faster radiative 

recombination rate (See Table S4). 49, 50 Consistent with this explanation, in some cases, very 
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small stokes shift close to 4 meV 

or even zero between ensemble 

quantum disks UV-Vis and PL 

peaks was observed.  

Another possible explanation for 

the short PL lifetime of quantum 

disks could be formation of so-

called “free exciton”. 51, 52 It was 

reported that GaAs quantum wells 

grown by MBE (Molecular Beam 

Epitaxy) could possess PL lifetime 

on the picosecond scale, which 

was ascribed to the formation of 

free exciton. Interestingly, two characteristic features of free exciton, 53 namely a Lorentzian 

lineshape of PL and the mobility of exciton along the plane of quantum well, were both observed 

from independent reports on colloidal 2D nanocrystals. The Dubertret’s group reported that the 

PL lineshape of CdSe nanoplatelets could be better fitted into Lorentzian instead of Gaussian, 10 

and our results indicate similar fitting trend. The Buhro’s group found out that the exciton in 

CdSe ultra-thin nanobelts could effectively delocalize on a μm-scale along their lateral 

dimensions under epifluorescence studies with position-selective excitation. 13  

The above two explanations are only tentative. This interesting phenomenon deserves further 

detailed spectroscopic and theoretical studies to investigate its origin. In addition to its 

fundamental significance, the short PL lifetime of quantum disks compared to the corresponding 

 

Figure 4-10. Temporal decay profiles for three different 

thickness CdS quantum disks. The number in the legend 

corresponds to the sample first absorption peak 

position. 
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quantum dots would benefit several potential applications, such as time-gated luminescence 

microscopy, 54, 55 flow cytometry, 56 etc., since it offers orders of magnitude smaller radiation 

decay time and shorter cycle time from excited state to the ground state. Coupled with its better 

color purity, it might also benefit applications in biological labeling for multiple targets 17, 18 and 

light source based on LEDs. 19, 20  

 

4.4 Conclusions 

In summary, a series of thickness-pure colloidal CdS quantum disks covering nearly the entire 

quantum confinement optical window were synthesized using a simple approach with generic 

starting materials. Results support that formation of CdS quantum disks was most likely through 

“nucleation-growth” mechanism, instead of “clusters-attachment” mechanism. Thickness growth 

was found to be rather abrupt likely because of “two-dimensional nucleation”, which probably 

offered a pathway for obtaining thickness-pure and atomically-flat disks. All experimental results 

indicate that the CdS quantum disks were grown with the polar axes (most likely <100> direction 

with a small chance of some disks in <111> direction) as the thickness direction. The basal 

planes and side facets were likely all terminated with Cd ions that were in turn passivated with 

the carboxylate group of the deprotonated fatty acid ligands. The disks were confirmed in zinc-

blende lattice of CdS but the lattice constants were found to increase as the thickness decreased. 

This full series of CdS quantum disks rendered us an opportunity to compare quantum 

confinement between colloidal CdS quantum dots, rods, and disks. Time resolved PL decay 

results discovered about two-order of magnitude shorter PL lifetime for the quantum disks 

compared to the corresponding quantum dots, partial mixing between bright and dark exciton 

states and formation of free exciton were proposed as the possible explanations.  
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Chapter 5 Conclusion 

 

Through systematic mechanism study on the colloidal CdS quantum dots formation process in 

non-coordinating solvents, ODE was identified as the reducing agents for the transformation of S 

from elemental sulfur to CdS. Based upon the insight learned from the molecular mechanism 

investigation, non-injection and low temperature preparation recipes were developed for the CdS 

quantum dots synthesis. Colloidal CdSe quantum disks were taken as the model system to 

thorough characterize its structure. It turned out that the CdSe quantum disks were grown with 

polar axes along the thickness direction, with both basal planes composed by the Cd ions layers, 

which were coordinated with corresponding carboxylate ligands. The structure thermal stability 

was determined by the inorganic CdSe and organic carboxylate ligands interface, the longer the 

hydrocarbon chain, the higher the thermal stability was observed. Four different thickness 

colloidal CdS quantum disks covering the traditional quantum confinement region were prepared 

with uniform thickness. Its thickness dependent Cd/S molar ratio, lattice dilation were discovered 

together with shorter photoluminescence lifetime than CdS quantum dots. The quantum 

confinement for colloidal CdS nanocrystals was observed as the one, two, and three dimensional 

quantum confinement for CdS quantum disks, rods, and dots, respectively, in the order of 

increase of quantum confinement on the excitons. 
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Appendices 

Reprinted (adapted) with permission from (Li, Z.; Ji, Y.; Xie, R.; Grisham, S. Y.; Peng, X. 
Correlation of CdS Nanocrystal Formation with Elemental Sulfur Activation and Its Implication 
in Synthetic Development. Journal of the American Chemical Society 2011, 133, 17248-17256.). 
Copyright (2011) American Chemical Society. 
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Reprinted (adapted) with permission from (Li, Z.; Peng, X. Size/Shape-Controlled Synthesis of 
Colloidal CdSe Quantum Disks: Ligand and Temperature Effects. Journal of the American 
Chemical Society 2011, 133, 6578-6586.). Copyright (2011) American Chemical Society. 
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