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Abstract 

 With the latest innovations in biological sciences, large quantities of biologically active 

polypeptides as well as high throughput screening methods to quickly evaluate if these 

biomolecules potentially have therapeutic, diagnostic, or industrial purposes are required. The 

synthesis and purification of peptides and small proteins continue to be demanding as the 

production of high yields through chemical synthesis can involve large costs.	On	the	other	hand,	

there	are	only	few	examples	of	acquiring	those	biomolecules	through	cloning	and	

expression	in	bacterial	systems	in	form	of	recombinant	fusion	proteins.	Glutathione S-

Transferase (GST) is not only a very commonly used affinity tag to increase expression yields, 

but is also known to enhance the solubility of the protein of interest making it a valuable tool in 

the pursuit of purifying recombinant proteins. Moreover, multidimensional NMR spectroscopy is 

a widespread technique to reveal the 3D solution structure of proteins. Yet, obtaining structural 

information of peptides and small proteins can be difficult. 

In this context, we have developed a rapid purification of peptides and small proteins by 

fusing them to GST. The method developed is advantageous over the other reported methods due 

to its easy one-step purification yielding large amounts of fusion protein. Subsequently, the 

fusion protein is cleaved enzymatically under mild conditions, and the cleavage products are 

separated using an efficient heat treatment process. Our results show, the peptide and small 

protein conformations are not disturbed by the heat treatment. Therefore, our method can be a 

valuable alternative for the production of various clinically significant small proteins and 

peptides.  

Furthermore, we have optimized a method, which allows collecting structural information 

on protein/ peptide(s) of interest by employing the GST-tagged target protein during the 



acquisition of NMR data. Our results demonstrate that the affinity tag GST does not affect the 

quality of NMR data of its fused partner but that the loss of signals in the 1H-15N HSQC 

spectrum corresponding to the affinity tag is due to the decrease in the T2 relaxation rate upon 

dimerization as well as the flexibility within the fusion protein caused by the linker located 

between GST and the target protein. 
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1. Introduction 

1.1. Protein purification 

 The study of proteins and their function is crucial to the understanding of both cells and 

organisms. These biomolecules are essential for many cellular processes, i.e. they can act as 

catalysts, structural elements, and are involved in signaling cascades, among many other 

responsibilities. Therefore, protein purification plays a vital part in the determination and 

characterization of the target molecule’s structure, function, and interaction mechanism. Results 

are used for industrial or pharmaceutical applications, such as the generation of antibodies that 

are capable of determining the location of the protein in vivo which can give significant support 

to interesting hypotheses and disprove incorrect theories. Decades of biochemical research have 

equipped investigators with a variety of ways to isolate a protein from a complex mixture with 

the objective of obtaining pure protein in its native conformation. The initial material, which is 

derived from tissue or cell cultures, can be separated into fractions by taking advantage of the 

different physical or biochemical properties of the protein of interest, for example by 

centrifugation in terms of size, by precipitation with salt, or binding to ionic or affinity columns. 

These methods assist in the removal of contaminating material as well as in the enrichment of the 

fraction with the protein of interest. Most of the time, affinity chromatography is the preferred 

technique because it can simplify the purification process due to its high specificity to the target 

molecule. Overall, the goal of any purification is to maximize enrichment while minimizing loss 

of activity. For that reason, it is much easier if a rich source is identified. Modern cloning 

technologies have made an avenue for artificial sources of proteins. They are referred to as 
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recombinant proteins and gives about 10% or more of the total protein in the extract, which 

represents a tremendous experimental advantage. 

1.2. Affinity and solubility tags 

With the advances in biological sciences, there is a prevalent demand for large quantities 

of biologically active polypeptides1. Previously, in 2004 to 2010, the market for drugs derived 

from proteins boosted considerably and it is expected for it to continue to grow2. Since a large 

variety of proteins could potentially have therapeutic, diagnostic, or industrial purposes, 

researchers in the fields of proteomics, genomics, and bioinformatics are in the need to assess 

those prospective candidates quickly and efficiently3. In this context, recombinant proteins have 

been the preferred way of production.  

 

Advantages and disadvantages of affinity and solubility tags  

The biggest advantage of using affinity tags, which “can be defined as an exogenous 

amino acid sequence with a high affinity for a specific biological or chemical ligand”2, in 

combination with the recombinant target protein is the ability to purify essentially any protein 

without having any prior knowledge of its biochemical properties2. In addition, the introduction 

of an affinity tag can have a positive affect on difficult-to-express protein or peptide of interest. 

It has been proven that in the presence of the carrier protein, the yield increased because the tag 

protected the protein of interest from degradation. In case of Rajan et al, the active N-terminal 

domain of the mouse tissue inhibitor of metalloproteinases-1 did only show stable expression 

when a polyhistidine -tag was present at the N-terminus4. However, even though one affinity tag 

works well for one protein that does not mean it also gives good yields for another. Sun et al 

were rather unsuccessful expression their target protein, human vasostatin 120-180, fused to 
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GST. Nevertheless, with the N-terminal His-tag, the yield of pure protein could be improved by 

3-fold5.  

Initially established to enable detection and purification, affinity tags also show other 

advantages. As insolubility is a major bottleneck for high throughput applications it was 

discovered that the Thioredoxin-tag (Trx), the Maltose-binding protein-tag (MBP-tag) or the N-

utilizing substance A protein-tag (NusA) influence the solubility of some to be overexpressed 

polypeptides, mammalian proteins, and green fluorescent protein respectively 6,7,8. When 

performing an overexpression, molecular crowding is possible and can be unfavorable for the 

goal of correctly folded target proteins, as it might result in the formation of so called inclusion 

bodies. To be considered a solubility-enhancing tag, the protein obviously has to be very soluble 

itself and it is thought that in turn it is able to extend that property to the fusion partner. 

Nevertheless, this characteristic is not the only factor that promotes the solubility of the target 

protein and it is still unclear how exactly solubility-enhancing proteins work. Theories such as 

the tag being a “chaperone-magnet” or even function as a chaperone itself have been speculated 

9,10. Furthermore, even if the fusion protein is mainly found in inclusion bodies, it has been 

shown that the presence of a His-tag assisted in the refolding after the target protein had been 

purified under denaturing conditions on NTA-resin. Due to the now physical separation of the 

target protein on the column, the refolding procedure was successfully performed11. Another 

advantage of purifying the protein of interest under denaturing conditions can be the decreased 

accessibility of the protein to proteolytic degradation. In case of the urokinase-type plasminogen 

activator, Tang et al were able to yield 25% more active pure His-tagged recombinant protein12. 

An additional advantage of fusion proteins is their use for detection, as it was shown that 

for example GST can easily be recognized by an enzyme assay and therefore was able to 
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increase the sensitivity of binding assays13,14. Another useful application of fusion proteins is the 

increased stability for structural analysis. Even though large affinity tags were thought to be 

disadvantageous in the attempt to form crystals of the fusion protein because of the experience of 

multi-domain proteins being less likely to form well-ordered and diffracting crystals as the 

protease cleavage site between the tag and the protein of interest acts as a flexible linker, 

multiple structures of MBP-fused proteins have been solved15. Nevertheless, in order to avoid 

conformational heterogeneity, which impedes crystal growth, it has been advised to use a rigid 

rather than a flexible linker between tag and the target protein16.  

On the other hand, introducing an affinity tag has also been reported to result in negative 

effects on the target protein. In theory, any tag can influence the native structure, fold and/or 

activity of the protein that it is attached to. In case of the trimeric cytokine tumor necrosis factor 

alpha (TNF), its cytotoxicity on the L-929 cell line was decreased when the N-terminal His-tag 

was present. As soon as the affinity tag was removed, TNF was fully active again17. It should be 

mentioned that the already flexible N-terminus of TNF can causes a steric obstruction and the 

additional amino acids due to the His-tag increase said hindrance resulting in the dramatic loss of 

biological activity. Moreover, in 2005 Chant et al showed that the His-tag caused a 

conformational change of the gene regulatory protein AreA. As their urea denaturation and 

binding studies showed, the His-tagged protein underwent a conformational change decreasing 

its capacity to bind DNA18. Fortunately, this effect is reversible when the affinity tag is removed. 

Likewise, the location of His-tag was proven to affect the binding properties of a tumor-

associated single chain Fv construct. When located at the C-terminus of the protein of interest, 

the tag interfered with the binding site which resulted in a lower binding capability of the target 

protein19. Finally, extreme overexpression of the target protein due to the more stable fusion 
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protein can render to being toxic for the host or a so called “metabolic burden” has also been 

observed in recombinant bacteria due to selective culturing conditions20.  

Even though affinity tags decrease the amount of time and resources necessary for a 

purification protocol, as one does not have to come up with an individualized procedure and 

resources for each target protein, it has to be mentioned that each choice of tag and isolation 

method requires to be well thought through and optimized. In the decision-making, factors such 

as binding capacity and buffer systems play a vital role. For one, it is desired to keep the bed 

volume of the resin low and to reuse the matrix multiple times. Moreover, the buffers should 

ideally be applicable for a wide range of proteins and downstream characterization experiments. 

Nevertheless, the choice of an appropriate fusion partner depends on the protein of interest as 

well as its applications later on. Affinity tags provide purification templates, but each construct 

of fusion protein might still demand detailed adjustments in order to gain the highest possible 

quality and quantity of protein of interest. Already established protocols are to be used as a guide 

rather than a definitive procedure since every protein behaves differently. 

 

Overview of expression hosts used for fusion proteins  

In order to perform studies to characterize the function, stability and structure of the 

protein of interest, it must be folded correctly and soluble. There are many different expression 

hosts available for protein overexpression, among them prokaryotes such as Escherichia coli 

(E.coli), or eukaryotes, i.e. yeast, insect, and mammalian cell lines. Deciding which expression 

host along with which affinity or solubility tag is suitable can be quite overwhelming, especially 

when there is only little known about the gene and the expressed protein. Most of the time 

generating more than a handful of constructs in various expression hosts is very labor intensive 
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and time consuming with regards to the screening and therefore rather impractical. For this 

reason, a more intuitive approach is usually made in which E.coli is the preferred system to start 

out with unless existing literature already established the need for a more complex expression 

system due to the need for post-translational modifications of the target protein. Subsequently, 

the different affinity tag constructs are analyzed and expression parameters re-optimized in order 

to identify the optimal growing conditions.  

E.coli leads as an expression host for the production of recombinant proteins due to its 

simple, efficient, and economical approach21. However, being a prokaryote it is missing any 

posttranslational modification pathways, such as glycosylation or phosphorylation that might be 

essential for the stability or function of the protein of interest. It has also been observed that 

proteins that are produced in very high yields in E.coli tend to aggregate22. Consequently, nearly 

50% are found in inclusion bodies when expressed in E.coli23,24. In addition, large proteins can 

be challenging to produce due to cytotoxicity and metabolic burden25. 

Yeast, specifically Pichia pastoris and Saccharomyces cerevisiae, offer a potent 

alternative for the secretion of recombinant proteins25. This expression system has been shown to 

obtain large quantities of expressed material. According to Braun et al, S.cerevisiae is valuable 

because of its reasonable cost along with its production in a timely manner26. Yet, its post-

translational modifications are similar but not the same as in mammalian cell lines. An example 

displays the degree of glycosylation, in which yeast utilizes high mannose compared to other 

eukaryotes22.   

 Being able to express recombinant proteins with their correct fold, including their post-

translational modifications, is a strong benefit of mammalian expression hosts compared to 

E.coli. Nevertheless, establishing a stable cell line via viral infection and chromosomal 
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incorporation can be quite time consuming, expensive, and hence requires a lot of effort27. A new 

method represents the transient system, which is dependent on DNA transfer into the mammalian 

cells and a production of up to 10mg/L have been reported. Its only drawback is that transfected 

cells cannot be propagated, so each batch of expression requires high purity plasmid DNA27.   

Another alternative are viral expression systems that have been developed using 

eukaryotic cells as hosts. In case of insect cells, overexpression of recombinant proteins is 

usually accomplished with the help of the baculovirus system, well-known for its high yields and 

its correctly executed post-translational modifications22
. Another prominent examples is vaccinia 

virus, a member of the poxvirus family28. Janknecht et al used this expression system to 

successfully obtain His-tagged human serum response factor (SRF). The fusion protein was 

purified and shown to be biologically active which requires SRF being both glycosylated and 

phosphorylated29. The downside of using vaccinia virus is the low yield during expression when 

compared to E.coli. 

 

Poly-histidine tag (His) 

In about 60% of fusion proteins the preferred affinity tag is the poly-histidine-tag, 

especially when structure determinations via X-ray crystallography is planned to be performed30. 

It usually consists of 5-15 histidine residues located at the N-terminus of the protein of interest, 

but can be fused to the C-terminus as well. This construct is quite feasible for structural and 

activity studies, as it usually does not interfere with the 3D structure, fold or activity of the target 

protein due to its small size, simple and robust structure, and low immunogenicity13. There are 

several examples of proteins and peptides that were isolated with the help of the His-tag that are 

part of clinical studies31. Another advantage of the His-tag is its low toxicity towards the 
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expression host32. It is purified because of the high affinity of the imidazole side chain of 

histidine to transition metal ions (Ni2+, Co2+, Cu2+, Zn2+), with nickel or cobalt most commonly 

used (immobilized metal-ion affinity chromatography, IMAC) under both native and denaturing 

conditions33,34. Specifically Ni (II)-nitrilatriacetic acid (Ni2+-NTA) was established by Hochuli et 

al in 198735. Janknecht et al summarizes that it is possible to remove the target protein by means 

of decreasing the pH, higher concentrations of chelating agent, or imidazole. The elution of the 

fusion protein is preferably achieved by applying a gradient of imidazole (20-500 mM) at 

physiological pH and ionic strength. Lowering the pH can denature the protein and chelating 

agents might lead to inactivity of the target protein when looking to isolate metal-containing 

proteins29. In order to perform structural characterization studies subsequent to the purification, 

imidazole has to be removed via dialysis. In their studies, Hefti et al mention that imidazole is 

not recommended to be present during NMR and X-ray crystallography experiments because it 

frequently leads to the aggregation of the protein36. Consequently, they prefer to perform an on-

column cleavage to retrieve their protein of interest instead of using imidazole for elution. 

Nevertheless, this affinity tag might not be suitable if the host already contains many proteins 

that are rich in histidines as those biomolecules could be present as impurities in the purified 

sample. However, using additional elution gradients at lower imidazole concentrations in the 

beginning stages of the purification process aid in the removal of such contaminants. 

 

Streptavidin binding tags (Strep-tag) 

Another example for affinity tags are the Streptavidin binding tags, which have been 

successfully used in bacterial, plant, yeast, and mammalian expression hosts37,38,39,40. The 

original octapeptide WRHPQFGG was constructed according to its affinity to the streptavidin 
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core, which is the shortened version of the tetrameric bacterial protein41. Streptavidin itself is 

isolated from Streptomyces avidinii and is noteworthy because of its strong affinity and 

specificity to bind biotin that is unique for any other type of non-covalent interaction42. However, 

Barrette-Ng et al mention in their studies the decreased binding capacity of the Strep-Tag if the 

carboxy-group is “protected” by the fusion partner as it is critical for the salt-bridge that forms 

between the tag and streptavidin. Therefore, they recommend to use it only as a C-terminal 

affinity tag43.  

In order to improve the existing tag, Strep-tag II (WSHPQFEK) was designed which has 

an increased affinity for Strep-Tactin, a derivative of streptavidin with higher peptide binding 

capacity13,32. Strep-tag II is advantageous because of its higher endurance against cellular 

proteases44. Moreover, the streptavidin-binding peptide (SBP) was constructed. This 38-residue 

peptide binds even more strongly to streptavidin than Strep II and the original octapeptide43. 

Once bound to the matrix any form of Strep-Tag can be eluted at physiological conditions with a 

biotin analogue40,45. However, it is not suggested to use this affinity tag for purification methods 

under denaturing conditions44. The reason why researches choose this tag is the fact that it is 

small in size in comparison to the His-tag and therefore should not interfere with the structure, 

fold, stability, or biological activity. Additionally, Strep II does not stimulate protein 

aggregation32. More important though is the lack of metal ions in the purification process, which 

can be relevant in studies of metalloproteins or downstream applications such as NMR2,45. This 

tag is also a valuable tool if the target protein is used with the intention to form functional 

complexes and purify them in one step rather than a tandem affinity purification40. Finally, this 

affinity tag is used often for detection purposes and employed in Western Blots or ELISAs45. 
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S-tag  

The S-tag is the truncated version of the S-peptide and is comprised of 15 amino acids 

that specifically interact with the S-protein (residues 21-124)13. Both the N-terminal S-peptide 

and protein originate from pancreatic ribonucleaseA (RNaseA) which catalyzes the cleavage of 

RNA32. Subtilisin cleaves RNaseA between residue 20 and 21. The two pieces can be 

reorganized, resulting in ribonuclease S (RNaseS), which comprises the S-tag and S-protein, and 

is comparable to RNaseA’s activity46. The residue composition of the S-tag contains both 

positively and negatively charged residues, as well as uncharged and polar amino acids resulting 

in an overall neutral charge and only little structure of the peptide. Studies have shown that the 

tag can be located on either termini of the protein of interest as well as within the target47. 

However, the binding of the two fragments is very reliant on pH, temperature, and ionic strength, 

so that its elution conditions are mostly too severe for the protein of interest (3 M NaSCN, 3 M 

MgCl2, or 0.2 M citrate pH 2)32. If the protein of interest is needed under native conditions, it is 

suggested to perform proteolytic digestion of the fusion protein while it is still bound to the S-

protein-matrix. Nevertheless, this tag is mostly used for detection purposes using either sensitive-

homogeneous assays or Western Blot. It has been reported that already 20 fmol can be made 

visible in solution or on Western blots47. The commercially available colorimetric based assays is 

able to support fast screening of soluble S-tagged proteins even before purification25. It is 

especially useful for high throughput applications as one can just use the lysate for the assay. 
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Thioredoxin A tag (TrxA)   

 Thioredoxin, along with Glutathione S-transferase, the Maltose binding protein and NusA 

are regarded as tags that are able to aid solubility of the fusion protein6,10,21. Thioredoxin A is an 

11.6 kDa E.coli oxido-reductase that is able to function as a reducing agent through the flexible 

oxidation of dithiol in its active center and thio-disulfide exchange reactions48. The thioredoxin 

system, which is comprised by TrxA and NADPH-thioredoxin reductase, is involved in many 

biochemical procedures, such as providing hydrogen for the ribonucleotide reductase, which in 

turn is necessary for the enzymatic synthesis of deoxyribonucleotides49. TrxA is thought to have 

evolved from a common ancestor and can be found in both prokaryotes and eukaryotes. 

However, TrxA from E.coli is the most studied and best characterized protein of them. 

Originally purified in 1964 it has been acknowledged for its high solubility and also displays 

high thermal stability, which has been shown to be transferred to the fusion proteins as well and 

consequently reduced the amount misfolded cytoplasmic aggregates25,50. Other theories propose 

that TrxA acts as a chaperone on the fusion partner, guiding it to its proper tertiary fold. Due to 

its structure in which both N- and C-terminus of TrxA are exposed, it can be attached to either 

amino- or carboxyl-terminus of the protein of interest51. In terms of purification methods one can 

either use an additional affinity tag in order to isolate the fusion protein or take advantage of 

TrxA’s thermal stability by incubating it at 80 °C for 10 minutes50. Moreover, La Vallie et al 

described TrxA’s unique feature of being secreted from the E.coli cytosol upon osmotic shock. 

Additionally, they inserted peptide sequences in the active loop region of TrxA and that way 

obtained high yields of these small biomolecules of interest52. Similar to other tags, TrxA needs 

to be removed prior to structural characterization studies, as it would interfere with the target 

protein’s solution structure due to its size.  
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Figure 1 Pymol illustration of the Trx-tag (PDB: 2TRX) 

 

Glutathione S-Transferase tag (GST) 

Literature shows that up until the late eighties, researchers had to depend on purification 

methods under denaturing conditions in E.coli1. With the introduction of the pGEX vectors, 

scientists were now able to express and purify large quantities under mild conditions21,53. Fusion 

proteins, especially with Glutathione S-Transferase (GST) as the carrier protein, have been 

shown to express well in yeast and mammalian cell lines54,55. GST is considered to not only be 

an affinity tag, but also a solubility tag2,10,21. Due to its simple way of isolating its fusion proteins 

it is a commonly used carrier protein53. GST binds with high affinity to glutathione, which is 

coupled to a Sepharose matrix. The interaction is reversible and is eluted competitively with high 

concentrations of reduced glutathione53. Undoubtedly, the GST-tag was considered the most 

extensively used affinity tag. The drawbacks of this tag are the slow binding kinetics of the tag to 

immobilized glutathione in case of scaling up the purification process and consequently it results 

to be rather time consuming25. In addition, when utilizing baculovirus-mediated insect cell 

expression, Hunt et al observed that GST host proteins were present as impurities in the purified 

protein sample. In some other cases, the elution process that is performed under reducing 
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conditions might be problematic. Furthermore, it is known that GST is a homodimer56,57, which 

could possibly also lead to oligomerization of the fusion protein. Nevertheless, when compared 

to the MBP-tag and His-tag, Dyson et al showed that for 32 different target proteins (17-110 

kDa), GST-fusion proteins yielded the highest amount of soluble protein7.  

 

 

Figure 2 Pymol illustration of the GST-tag (PDB: 1Y6E) 

 

Maltose binding protein tag (MBP) 

The Maltose-binding protein (MBP) has a size of 42 kDa and is derived from the malE 

gene in E.coli58. It enables maltose to be transported across the cytoplasmic membrane13. It is 

purified by binding the tagged protein of interest to immobilized amylose and can readily be 

eluted under non-denaturing conditions at neutral pH using 10 mM maltose44. Nevertheless, it is 

more utilized due to its ability to improve solubility and folding8 as it has been shown that its 

specificity and binding capacity are low13. Still, it has been successfully used for the expression 

of many eukaryotic proteins in E.coli7,10. Due to its size and immunogenicity, the MBP should be 

removed for further downstream characterization or clinical applications respectively32. One of 
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Kapust and Waugh’s examples when comparing several tags for their ability to increase 

solubility of the target protein was TEV. When expressed as His-TEV, most of the protein was 

found not only inactive but also in the insoluble fraction. If produced as fusion protein with 

MBP-His-TEV with a TEV recognition site between the MBP- and His-tag, His-TEV seemed to 

be stabilized as it was found in the soluble fraction10. In an additional experiment, when MBP 

was co-expressed with His-TEV but not actually fused together, His-TEV was found in the 

insoluble fraction. This suggests that MBP was necessary to ensure proper folding of the target 

protein. There is no evidence of how MBP aids in the folding of its passenger protein. Kapust 

and Waugh propose a chaperone-like model in which MBP guides the not properly folded fusion 

partner towards its active shape through hydrophobic interactions10. Those hydrophobic 

interactions of MBP with its fusion partner are also favorable because they might inhibit 

aggregation of the not properly folded protein of interest9. However, this contact might also be 

the reason why certain fusion proteins do not bind as efficiently to the resin during purification59. 

 

 

Figure 3 Pymol illustration of the MBP-tag (PDB: 1ANF) 
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N-utilization substance A protein tag (NusA) 

N-utilization substance A is known to be one of the transcription termination factors and 

stimulates the RNA polymerase to take breaks from DNA transcription in E.coli60. Being 

considered a solubility tag, it has to be utilized in conjunction with an affinity tag. Even though 

there is only very little known about its ability to promote proper folding, this 55 kDa 

hydrophilic protein is a valuable tool in the expression of aggregation-prone proteins, as it is 

assumed that it reduces the translation speed allowing more time for the folding process to take 

place25,61. Another theory of how NusA facilitates higher yield of target protein is the assumption 

that expression levels are reliant on the stability of their mRNA62. Mah et al’s hypothesis entails 

that NusA supports the RNA stem-loop and is also able to directly bind to the alpha subunit of 

the RNA polymerase. Still, the actual role that NusA is playing has not been discovered yet63. 

Additionally, Nallamsetty et al showed that NusA has the ability to enhance the solubility of the 

protein of interest by 30—50%8. According to Nallamsetty’s and Waugh’s studies, NusA and 

MBP displayed similar abilities to promote solubility or folding of the fusion partner and both 

carrier proteins are understood to more likely play a passive role in the folding of their fusion 

partner8. Consequently, the folding performance, which was estimated by the fusion proteins 

presence in the soluble fraction, is thought to depend on the passenger protein rather than the 

carrier protein. Nallamsetty’s findings were confirmed by Marblestone et al’s studies, in which 

three different proteins were fused to several affinity and/or solubility tags. Among them TrxA, 

GST, MBP, SUMO and NusA were utilized, resulting in a considerably increased detectable 

yield of protein when attached to SUMO or NusA62.  
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Figure 4 Pymol illustration of the amino-terminal domain of NusA (PDB 2KWP) 

 

Small ubiquitin-related modifying protein tag (SUMO) 

The small ubiquitin-like modifying protein (SUMO) is a 100 residue eukaryotic protein, 

derived from Saccharomyces cerevisiae. It aids in the post-translational modification that are 

important for many cellular processes, among them protein activation, protein stability, and the 

cell cycle64,65,66. The 11 kDa SUMO is added at the N-terminus of a target protein in order to 

increase expression levels for prokaryotic expressions as it is possible that its own resistance to 

proteases protects to protein of interest from degradation from the N-end13. Another interesting 

aspect of its ability to shield the target protein from degradation is by removing it from the 

protease rich cytosol to the nucleus. In case of Kishi et al’s studies, pancreatic duodenal 

homeobox-1 (Pdx1) could only be localized in the nucleus when it was the sumoylated67. SUMO 

has also been shown to be helpful in promoting folding and therefore increased the stability of 

the fused protein of interest62,68,69. SUMO’s structure comprises a hydrophobic core and a 

hydrophilic surface, which is very comparable to the 76 residue protein ubiquitin, which is 

known to be the fastest protein to fold70
 and to act in a similar fashion as a detergent on 
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otherwise insoluble target proteins24. Yet, an affinity tag in series to SUMO is necessary to 

purify the fusion protein. Literature also suggests utilizing wild type SUMO only in the bacterial 

expression system as E.coli is lacking highly conserved SUMO proteases that are only present 

and highly conserved in eukaryotes2,13,44. These proteases, such as yeast SUMO protease-1 Ulp1, 

recognize the conformation of the ubiquitin partner at a Gly-Gly motif rather than a specific 

amino acid sequence and are able to cleave under a wide range of conditions, such as 

temperature, pH, and ionic strength24. Additionally, Ulp-1 is favorable due to its low ratios of 

protease that are required for the cleavage (1:5,000 molar ratio), which might make this protease 

promising for large-scale expressions. Butt et al also report about the new generation of SUMO 

proteases that only require 1: 100,000 molar ratio of protease to protein of interest24. Besides, 

LifeSensors, Inc. has designed a solubility-tag based on SUMO (SUMOstar) and a protease 

accordingly that can be utilized in any eukaryotic expression system44. 

 

 

Figure 5 Pymol illustration of SUMO (PDB: 1A5R) 
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Table 1 Common affinity and solubility tags for recombinant proteins 

Tag Size (aa, kDa) Comments 

polyHis-tag 5-15, 0.7-2 Most commonly used affinity tag  

Streptag II 8, 1 Does not stimulate protein aggregation 

S-tag 15, 1.7 Mostly used for detection purposes 

Small ubiquitin-like modifier 

(SUMO) 

100, 11 Increases stability of the fusion protein 

Thioreroxin (Trx) 109, 11.6 Purification methods via thermal stability 

or osmotic shock 

Glutathion S-transferase (GST) 201, 26 Increases solubility and yield, yet slow 

binding kinetics13 

Maltose binding protein (MBP) 396, 42 Enhances solubility8 

N-utilization substance A (NusA) 495, 54 Enhances solubility8 

 

 

1.3. Glutathione S-Transferase (GST) 

Glutathione S-Transferase embodies an important contributor in the phase II 

detoxification of endogenous and xenobiotic alkylating agents, among them environmental 

toxins or therapeutic drugs. Armstrong et al has described GST as one of the most important 

enzymes in the elimination of harmful electrophilic compounds, which is found in animals, 

plants, and many microorganisms71. While mainly cytochrome P450 monooxygenases oxidize 

xenobiotics in phase I of the breakdown of foreign and toxic compounds, GST among other key 

players is responsible for the catalysis of the conjugation reaction of electrophilic harmful 

substances to the reduced cellular tripeptide glutathione72,73,74. In addition, the GST enzymes 

protect against hydroperoxides that are byproducts during chemical and oxidative stress75.  
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When first studying this family of enzymes, it was uncertain from a biological point of 

view why GST forms a dimer to be fully active. Studies performed by Dirr and Reinemer 

demonstrate that being a dimer is beneficial for the thermostability, the fold, and overall tertiary 

structure of the protein as it was shown that the dissociation and unfolding reaction are carefully 

interconnected76. One would assume that oligomers would display a stable intermediate state in 

the unfolding process, but additional experiments done by Erhardt and Dirr confirm the absence 

of thermodynamically stable intermediates such as a folded monomer. In contrast their findings 

suggest a two-state transition from folded dimer to unfolded monomers77. Both hydrophobic and 

hydrophilic interactions have been found to stabilize the interface between the monomers. Each 

subunit in the protein dimer, meaning each GST, contains its own catalytic center and consists of 

two components. The N-terminal alpha/beta domain 1 is smaller and contains most of the 

residues that make up the G site, which is the specific binding site for GSH or analogues. Due to 

the specificity to GSH these residues in the binding site are highly conserved78. Alpha domain 2 

is larger and contains the H site, which binds the hydrophobic substrate that can display a great 

structural variance73. It has been shown that in the presence of foreign compounds the expression 

of GST was increased considerably79 suggesting that the more GST is present, the better the cell 

is prepared for a broad spectrum of toxic chemicals. Up until the mid nineties, already more than 

100 chemicals, some of them both substrates as well as inducers, have been identified that 

stimulate GST expression73. Furthermore, the vast variety of substrates, all of them displaying 

structural differences, that GST is able to metabolize is impressive80 which is probably the 

reason for the presence of numerous GST isozymes in most species81. In fact, in humans GST 

can make up 4% of the cytosolic proteins in the liver78. Nevertheless, species, strain, age, sex, 

and organ seem to impact the induction of the GST activity73. An important characteristic of 



 20 

most GST isozymes is that they are only active when they form dimers1. Moreover, glutathione 

seems to be restricted to aerobic organisms, which is why GST is not anticipated to occur in any 

anaerobic organisms80. 

 

Nomenclature of GST 

When first categorized, the different GSTs were sorted dependent on their substrate 

specificity and the molecular weight of the monomer71, but due to the overlap in the usage of 

substrates among the isozymes this approach did not have a solid foundation and was neglected 

soon74. Another method to organize the different isozymes was based on the composition of 

subunits to form the functional dimer. Mannervik et al showed that GST is able to arrange as 

either homo- or heterodimers, leading to an Arabic numeral annotation82. Up until now, reports 

of heterodimers indicate though that they are comprised of subunits from the same class78 

implying that there are explicit structural requirements for the subunit interactions. Since there is 

not enough evidence to date that the isozymes of different mammalian species match, the 

nomenclature is performed according to the same principle but independently. In cases of human 

GSTs, Greek letters were originally chosen for the categorization and the Arabic numerals have 

not been implemented yet. 

There are three major families of GSTs: cytosolic, mitochondrial and microsomal75. 

Cytosolic and membrane-bound GSTs are the most studied and found in all eukaryotic 

organisms and also in bacteria32,83. The cytosolic enzymes, which are found in higher organisms 

such as humans, do not share a common “ancestor gene” but are the product of five different 

gene families, hence designated class alpha, mu, pi, sigma and theta73.  Studies in the species rat, 

mouse, and human by Mannervik et al showed that the isoenzymes of cytosolic GSTs within a 
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group have similar structural characteristic, as they all form dimers, as well as related catalytic 

features and amino acid sequence similarities. The major representatives of human GST are the 

class alpha, mu and pi and were described by Mannervik et al as the basic, neutral, and acidic 

type respectively81.  

 

Class alpha GST 

In accordance with Mannervik’s classification, various GSTs belonging to class alpha 

exhibit an isoelectric point at a pH larger than 7.884. In humans, the genes coding for GSTs of 

this class are found on a cluster mapped to chromosome 685. Additionally, studies showed that 

they are the most abundantly expressed glutathione S-transferases in the liver. In contrast to the 

other GST classes, alpha GSTs exhibit a blocked N-terminal amino group86. This acylated serine 

residue is a usual modification found in proteins. Furthermore, it was shown that alpha isozymes 

share 55% sequence identity73 and exhibit glutathione peroxidase activity81. They process 

bilirubin and some anti-cancer drugs in the liver in order to defend the cells from reactive oxygen 

species and the products of peroxidation. Mutation studies on an alpha class GST performed by 

Board and Mannervik suggest that the C-terminus is responsible for the substrate specificity87. 

Once the residues located at the C-terminus were deleted or mutated, GST-2 lost most of its 

activity towards its substrate cumene hydroperoxide. In contrast to the majority of GSTs that are 

found in the cytoplasm, some mouse and human alpha GSTs have been discovered interacting 

with membranes and mitochondria88.  
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Class mu GST 

Class mu GSTs have been shown to share 65% sequence identity73. Furthermore, being 

classified as neutral GSTs their isoelectric point was confirmed at pH 6.684. With a dimer size of 

53,000 Da, mu GST proteins have a larger molecular weight than alpha or pi proteins (51,000 Da 

and 47,000 Da respectively). Interestingly, only 60% of tested adults, but no fetal tissue exhibit 

this class of GSTs84. This indicates that this group of proteins is stimulated later in life, maybe 

due to repeated contact to xenobiotics as class mu members have been found to interact mostly 

with epoxides84. Armstrong et al revealed that different residues in the H-site are responsible 

whether the enzyme is active predominantly regarding epoxides or halogenated benzenes89. 

As an example, GST that is used for the affinity tag, is a 26 kDa protein found in the 

parasitic worm Schistosoma japonicum53 and belongs to the mammalian class mu based on 

sequence homology90. The crystal structure exposes the C-terminus as a relatively free structured 

domain at the surface of the dimerized protein91. It is known that the N-terminal domain binds to 

glutathione, which is the reason that the GST-tag is always at the N-terminus of the fusion 

protein: the N-terminus of GST is still able to bind to the resin while the C-terminus is connected 

to the protein of interest91. Furthermore, it has been reported that GST exists as a homodimer21. 

According to Kaplan’s studies, whose results also show that GST is purified as a homodimer 

under non-reducing conditions, also demonstrates substantial amounts of 160 kDa and larger 

aggregates that are still catalytically active56. 

 

Class pi GST 

In agreement with Mannervik’s description of class pi GSTs being acidic, their isoelectric 

point was measured to be at pH 4.884 and is found in placenta and erythrocytes92. Another 
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characteristic of this category is that it displays high activity and specificity for ethacrynic acid80. 

Even though this substrate is not as hydrophobic as substrates from other classes, its recognition 

by pi GSTs is attributed to their slightly more open H binding site. Reinemeier et al call attention 

to the folding motif of domain 1 that is matching the pattern of thioredoxin in bacteriophage T4 

and is also very similar to thioredoxin found in E.coli93. Nevertheless, it is still uncertain whether 

this means these two proteins are evolutionary related. A popular representative of class pi GSTs 

is GST P1-1, which is the most predominant isozyme in mammalian cells94. Studies showed that 

the majority of human tumors and tumor cell lines have substantial quantities of class pi GST 

present due to higher expression levels, which is the reason for the particular interest for this 

protein73.   

 

1.4. GST as an affinity tag: Sj26GST 

Glutathione S-transferase, derived from Schistosoma japonicum (Sj26GST), belongs to 

the class mu GSTs due to its sequence homology and has found application as affinity tag in the 

late eighties56,90. In its original organism Sj26GST is important for the parasite’s detoxification 

pathway as it aids in the “S-conjugation between the thiol group of glutathione and an 

electrophilic moiety of xenobiotic toxic compounds”71. This parasite has only very few enzymes 

to assist in the cleansing process, i.e. superoxide dismutase, cytochrome P450, and catalase, 

leaving GST as one of its key protection mechanisms against electrophilic and oxidative 

damage95. Once the toxic molecule is attached to glutathione, the conjugates are more soluble in 

water which leads to the removal from the cell in order to be excreted56. Smith et al discovered 

that Sj26GST is also involved in the removal of insoluble hematin, which would otherwise 

accumulate in the parasite’s gut. Sj26GST binds to this reduced form of the heme prosthetic 
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group resulting in the secretion and therefore preventing the formation of large crystals90. In 

addition, they mentioned studies using antibodies directed against Sj26GST in order to inhibit its 

solubilizing function and therefore induce a lethal constipation of the worm rather than having 

the conjugate causing blockages in the host’s liver96.  

 

Crystal structure of Sj26GST, Dimerization and Ligand Binding  

The numbering of the residues are from the latest crystal structure of Sj26GST97, PDB 

code: 1Y6E, and differ slightly with regards to the other references. 

 McTigue et al solved the crystal structure for Sj26GST in the absence of its substrate 

gluthatione in 1995, while Lim et al had already elucidated the three-dimensional structure for 

the complex in 199498,99. They show that Sj26GST, consisting of 218 residues, is comparable to 

other members of the GST family and that there is no significant conformational change upon 

substrate binding. Each subunit of the homodimer consists of two domains. Domain 1 at the N-

terminus includes the residues 1-84, with residue 77-84 representing the short linker between 

domain 1 and 2, and shows a folding topology of bababb. The beta sheets are mainly arranged in 

an antiparallel order. The residues comprising domain 2 at the C-terminus are 85- 218 and form 

5 a-helices with a succeeding loop section (residues 195-218)98,99. Furthermore, unlike in the 

other classes, S26jGST exhibits a so-called mu loop located in domain 1 (residues 33-42)91. In 

order to be functionally active, the dimerization of this enzyme is essential. According to 

McTigue et al, the dimer dimensions for Sj26GST are 57Å × 47Å × 44Å and exhibits a two-fold 

rotation axis. It was revealed that the dimer interface for class mu GSTs is more hydrophobic 

than the one of the other categories but is also displaying a “lock-and-key” type interaction 

characteristic for alpha, mu, and pi GSTs93,98. Specifically for the Sj26GST, Phe51 of one 
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subunit is buried in a hydrophobic pocket formed by the residues 91-94 and 129-133 of the other 

GST99. Comparing results of McTigue, Lim, and Rufer, the residues in each GST involved in the 

dimer interface are 50-53, 63-70, 88-109, and 129-136. The key participants are the following: 

Phe51, Leu64, Ala69 of subunit 1 of one GST interact with Ala89, Met93, Leu94, and Phe132 

from subunit 2 of the partner GST98. In addition to the hydrophobic interactions, Lim et al found 

that a hydrophilic channel in close proximity to the hydrophobic dimer interface stabilizes the 

dimer. There is more flexibility to the hydrophilic interactions compared to the hydrophobic 

ones, but crucial residues include salt bridges between Asp 76 – Arg88 and Glu50 - Arg135, as 

well as Gln66 - Arg72, and Ser92 - Asp10098. These amino acids as well as their corresponding 

residues in subunit 2 are found on a-helices. Overall, the association of two GSTs constructs a 

40Å long and 6-10Å wide pocket with mainly polar residues, but also leucine and methionine are 

located in it99. 

In addition, Lim et al, among other groups, were able to identify the residues involved in 

the interaction with its substrate glutathione (GSH). Several interactions are necessary to have 

GSH attached to domain 1. First, the gamma-Glu of GSH needs to be aligned and stabilized. 

This is achieved through hydrogen bonds between the carboxyl group of Glu and Gln66 - Ser67 

of GST as well as a salt bridge established by the N-atom of Glu and Asp100 of domain 2. Next, 

hydrogen bonds forming from the GST residues Asn53 and Leu54 help in the process to orient 

the peptide backbone of GSH properly. Then, the carboxyl group of Gly in GSH needs to be 

stabilized through a hydrogen bond between the carbonyl oxygen on GSH with the indol ring of 

Trp7 in GST. This specific residue is crucial for the active side of Sj26GST. Mutational studies 

showed that the substitution with Phe lead to a decreased binding efficiency of GSH by two 

thirds as well as less than 2% remaining enzymatic activity of GST100. Last, the interaction with 
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the sulfhydryl group of GSH needs to be established to ensure enzymatic activation. However, 

the exact mechanism of creating the thiol anion is still not revealed.   

Next to the active site, which is also called G-site, there is also a nonsubstrate ligand-

binding site located at domain 2, also known as H-site because the residues associated with this 

region are mainly hydrophobic. Due to the range of hydrophobic substrates that exhibit structural 

variances, different amino acids of GST are involved in the interactions. Key residues, however, 

are Ile9, Leu12, Ser106, Tyr110, Gln203, and Gly204.  

 

pGEX vectors 

The plasmin pSj5 has been shown to synthesize Sj26, controlled by the IPTG-inducible 

tac promoter. Various changes of the plasmid resulted in 3 commercially available plasmids that 

were introduced in 1988: pGEX-1, pGEX-2T, and pGEX-3X make the expression of 

polypeptides fused to GST in E.coli possible. Literature shows that up until the late eighties, 

researchers had to depend on purification methods under denaturing conditions in E.coli1. With 

the introduction of the pGEX vectors, scientists were now able to express and purify large 

quantities under mild conditions53. Its success is shown in its more that 1,000 citations within the 

first 5 years1. The vectors contain a DNA sequence that signals for the origin of replication. 

Furthermore, the tac promoter101 is an important characteristic, followed by the nucleotide 

sequence coding for GST (Sj26). Instead of the termination codon for GST, one can find a 

polylinker including the restriction enzyme recognition sites of BamHI, SmaI, and EcoRI53. 

Finally, translation will be stopped due to the termination codon TGA. In case of pGEX-2T, the 

polylinker is comprised and codes for the cleavage recognition sequence for the protease 

thrombin, while in pGEX-3X it encodes for the recognition site of factor Xa. In order to ensure 
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the ability to grow under selective conditions, the vector contains the β-lactamase-coding gene 

ApR. Overexpression of the protein of interest needs to be able to be controlled. For this reason, a 

fragment of the lac operon is introduced. It is comprised of the lacIq allele of the lac repressor as 

well as part of lacZ. The introduction of the pGEX vectors has been proven a very successful and 

valuable tool in the production of biological active proteins, mainly due to its mild conditions 

necessary during the purification of the fusion protein. 

 

1.5. Versatility of the GST-tag 

The GST-tag is a highly soluble protein and is found in the cytoplasm53. Due to this fact 

and because of its large size (26 kDa) it is anticipated that it extends its solubility to its fusion 

partner21. In case of the expression of antimicrobial peptides, in more than 25% GST and 

Thioredoxin are the preferred fusion partners102. It has been reported that proteins as big as 97 

kDa have been expressed with GST as its fusion partner1. Frangioni and Neel adjusted the 

purification protocol to still be able to obtain pure samples of large GST fusion proteins103. They 

confirmed that the larger the protein of interest, the more difficult the fusion protein is expressed 

as well as its reduced efficiency to bind to the chromatography resin. In addition, the insolubility 

of some fusion proteins is influenced by the presence of extremely hydrophobic or charged 

residues1. Nevertheless, the fact that most proteins fused to GST can be isolated without using 

denaturants or detergents is advantageous for downstream applications and eliminates the need 

for lengthy purification protocols. Furthermore, the GST-tag is often referred to as solubility tag 

as it assists in protein folding21. Besides, it helps avoiding intracellular digestion if fused to the 

target protein and preserves the recombinant protein in the soluble fraction98, 104. 
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Single-step Purification of GST –fused proteins 

Glutathione- agarose beads are able to bind roughly 8 mg of fusion protein per 1ml of swollen 

resin53. GST fused proteins can easily be purified from the bacterial crude lysate in a timely 

fashion using a single step purification under non-denaturing conditions by absorption onto 

immobilized glutathione, followed by competitive elution via reduced glutathione53,81. 

Procedures such as the batch-binding mode or low-pressure columns that utilize either gravity 

flow or a peristalitic pump make this type of purification very feasible for the laboratory21. The 

yield ranges from 15-60 mg fusion protein per 1 liter bacterial culture1,21,53. However, if the 

fusion protein is toxic to the cell, yields could potentially be much lower.  The purity of this 

purification technique has shown to be greater than 90%. The fact that it requires only one 

chromatography step shows its competitiveness in comparison with other affinity tags. The 

economical and practical benefits of a time and resource-saving purification procedure are 

significant aspects for consideration. In case there is a problem of more contaminating bacterial 

proteins, the addition of Triton X-100 during the absorption of the fusion protein to the 

glutathione- agarose resin has been shown to reduce such impurities53. Nevertheless, Triton X-

100 might impair biological assays later on; therefore minimizing the cycles of sonication could 

be of more advantage. Furthermore, a low yield of purified fusion protein is most likely due to 

insolubility. There are many factors that can influence the solubility of the overexpressed protein 

of interest. Increased degradation of the target protein can be overcome by adding protease 

inhibitors, such as 1mM EDTA (ethylenediaminetetraacetic acid) or 1mM PMSF 

(phenylmethylsulfonyl fluoride) to the cell lysate. In addition, it is suggested to test several 

strains of bacterial host as the stability of the overexpressed protein can vary greatly53. Another 

tactic to improve the yields is to alter the growth conditions. In some cases changing the 
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concentration of the inducing agent IPTG (Isopropyl β-D-1-thiogalactopyranoside) as well as the 

growth temperature has been shown to impact the amount as well as the stability of the target 

protein102. Another advantage next to the well-established purification protocols is the ability of 

using this tag in various expression hosts. Even though E.coli is probably the most common host 

for recombinant proteins105, yeast54, insect106, and mammalian107 cell lines have also been used to 

express GST-fusion proteins. By expressing in eukaryotic expression systems, researchers are 

able to obtain post-translational modified target proteins even when produced as fusion proteins. 

 

1.6. Usages of GST-fused proteins  

 GST-fusion proteins have found usage in various biological applications. Due to the high 

yields and simple purification method, this construct is often used for structure determinations of 

the protein of interest. Even though the tag needs to be removed for NMR studies due to its size, 

several crystal structures of fused proteins exist. Zhan et al showed that especially when trying to 

crystallize certain parts of a protein, such as the regulatory domain, it is very beneficial to use the 

GST-fusion protein as this domain is generally very challenging to form crystals individually108. 

The structure of GST has already been fully revealed, therefore making it easy to find the 

conformation of the target molecule through the phase information in a molecular replacement 

method. Another example for the success of this approach is the elucidation of the structure of 

small domains or peptides as described by Lim et al, in which they were able to crystallize a 

peptide fused to GST. It is usually difficult to grow crystals of peptides or specific parts of a 

protein but when fused to GST the researchers could acquire structural information98. When 

comparing the structure of GST in the fusion proteins with individually crystallized Sj26GST, 

Zhan et al confirmed that they were very similar. Moreover, they discovered that the linker 



 30 

between GST and the fusion partner as well as the fusion partner are in an extended 

conformation. In case of pGEX-1, in which a protease cleavage site is missing, the fusion partner 

closed back towards GST. Nevertheless, the folding back did not seem to have an effect on the 

structure of the fused peptide108. Interestingly, Lally et al grew good crystals of their peptide of 

interest fused to GST but could not yield valuable diffraction data. Nevertheless, they were able 

to use electron microscopy to confirm the intact fusion protein. More intriguingly though, their 

results imply that the GST part of the fusion protein dimerizes while the attached peptides was 

extended and possibly quite flexible109. 

GST fusion proteins are also relevant in protein- protein interactions, which involve the 

detection of GST fusion proteins using an enzymatic assay or immunoassay. The GST pull-down 

assay is probably the most prominent technique for this purpose, in which the GST fusion protein 

is immobilized and resembles the “bait” of the protein-protein interaction110. In addition, GST-

fusion proteins are valuable tools in the studies of DNA-protein interactions. In a similar way to 

the GST pull-down assay, the DNA-binding protein is expressed and purified as a GST fusion 

protein. Due to the tag, the fusion protein can be immobilized and the specific conditions for 

DNA-protein interactions, such as transcription factors can be studied111. Another way to apply 

GST-fusion proteins is their efficient use in the production of vaccines. Yip et al composed a 

fusion protein, comprised of GST and the ErbB-2 peptide epitope. Mice were injected multiple 

times with this construct and antibodies were assayed via ELISA112. In comparison to other 

carriers, GST provoked the strongest antibody response. Besides, this approach is quite 

beneficial due to its straightforward and economical means of production of the GST-fusion 

construct. 
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1.7. Removal of affinity tags 

The removal of the affinity tag is often viewed as the weak link of this purification 

strategy. Most of the time small affinity tags, i.e. His-tag or Strep II do not need to be removed 

because of their small size. They are assumed to not interfere with the 3D solution structure, 

fold, and/or biological activity of the target protein. Nevertheless, the excision of the carrier tag 

can be achieved but requires the careful selection of a protease.  

 

Chemical vs. enzymatic cleavage of fusion proteins 

The fusion partners can be separated from their counter parts either via chemical 

treatment or an enzymatic method. Even though very effective, chemical treatments are usually 

negatively associated with their complexity and their expensive procedures113. When selecting 

chemical reagents for cleavage, one will most likely choose from CNBr, formic acid, or 

hydroxylamine. In most scenarios, CNBr is ill advised as it recognizes methionine, which might 

be present the sequence of the target protein. Furthermore, all of the once mentioned above are 

attributed with harsh conditions, such as dramatic pH changes, which usually are unfavorable in 

biological systems as they denature proteins or induce modifications of the side chains2.  

In contrast, the enzymatic cleavage using proteases such as thrombin, factor Xa, or TEV 

can be accomplished under mild conditions and are economically introduced through DNA 

technology. Moreover, the use of recombinant fusion proteases brings additional advantages. For 

one, the expression and purification in lab can be more economical and the removal of the fusion 

protease can be handled along with the removal of the cleaved tag114. Lastly, recombinant fusion 

proteases are valuable, especially because the purity of commercially available enzymes, such as 

thrombin, can be problematic at times115. However, those endoproteases are also associated with 



 32 

drawbacks such as the demand for high ratios of enzymes with regard to the fusion protein, 

which can be quite expensive in case of up scaling the protein production2. Secondary cleavage 

sites in which the protease is active at locations other than the intended position also represent a 

serious disadvantage when using for instance thrombin116,115. In most cases this is due to a 

prolonged incubation time, which can also be seen as uneconomical. In some examples an 

inefficient and incomplete digestion can also be related to steric hindrance, in which the cleavage 

site is too close to a folded structure of the protein of interest25. In order to circumvent this issue 

the introduction of additional residues, for example five glycine residues, might be able to 

enhance the cleavage efficacy44. Besides, the considerable time it might take to cleave the fusion 

protein, the protein of interest might not be folded correctly anymore, functionally inactive, or 

even instable after cleavage and precipitate117. Some enzymes also leave residues at the N-

terminus of the protein of interest. This might be unfavorable for target proteins with therapeutic 

applications, in which case an additional cleavage step using exogenous proteases might be 

necessary2. 

 

Thrombin  

Up until today, thrombin is isolated from bovine plasma as there has yet to be described a 

suitable method of expressing and purifying recombinant thrombin. Young et al mention that the 

purification process can be difficult, which leads to contaminated thrombin preparations in some 

cases44,115. Nonetheless, this trypsin-like serine protease is considered cost effective compared to 

factor Xa and the PreScission protease. Being a heterodimer, it is interconnected through 

disulfide bonds. These three intramolecular disulfide bonds ensure the stability of the protein118. 

Its ideal conditions are described to be a pH range of 5-10 with an optimum at pH 9.5 in the 
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absence of NaCl and 8.3 in the presence of 1M NaCl116. Additionally, thrombin is resistant to 

several detergents and shows optimal activity at a temperature of 45 °C. It can be disabled by 

PMSF (phenylmethysulfonyl fluoride) or AEBSF (4-(2-aminoethyl) benzenesulfonyl fluoride 

hydrochloride).  The cleavage site for thrombin that is used in fusion proteins is LVPR | GS, 

which is related to the natural cleavage site of thrombin in human factor VIII (LVPR | GF). Like 

any trypsin-like serine protease it breaks the peptide bond on the carboxyl side of the basic 

residue arginine32,115. Surprisingly, the first one is cleaved with a better efficiency and was 

modified due to the need for a BamHI restriction enzyme recognition site53. However, even 

though the thrombin cleavage is considerably specific, it is not absolute. Multiple studies showed 

that it mistakenly hydrolyzed peptide bonds after the residue lysine119. Jenny et al compared 

several cleavage experiments and there seems to be a trend of secondary cleavage sites with 

prolonged incubation times115. In case of using GST as the carrier and in case there is any 

uncleaved fusion protein still present, both can be removed in a similar fashion by affinity 

chromatography to glutathione- agarose resin53 which is the reason for its popularity. In addition, 

it has been reported that thrombin can be separated via benzamidine sepharose44. 

Enteropeptidases and viral proteases are lacking an affinity tag in order to be removed 

subsequent to the digestion116. In addition, due to the issue of having inefficient cleavage 

experiences with thrombin, some researches revised their clones by inserting a 

GlyGlyGlyGlyGly motif near the cleavage recognition site120. 

 

Factor Xa 

Similar to thrombin, factor Xa is a blood-clotting enzyme, is considered a trypsin-like 

serine protease, and cleaves at the peptide bond at the carboxyl side of the basic amino acid 
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arginine but in the specific arrangement of I(D/E)GR | X. This linker sequence originated from 

the sequences in prothrombin, because factor Xa alters prothrombin to thrombin115. Two 

disulfide-linked subunits, 17 and 16 kDa, make up the active protein. Hence, reducing agents in 

the cleavage buffer will decrease the efficiency of this enzyme. It is an advantage this 

glycoprotein can be expressed recombinantly and secreted from mammalian cells121 as well as 

isolated from blood plasma122. Even though Factor Xa has a higher specificity than for example 

thrombin does, its drawbacks are the high ratios of enzyme to fusion protein to ensure a 

successful, effective cleavage and the associated high costs. Nevertheless, there are no additional 

residues left at the N-terminus of the protein of interest when using Factor Xa, which is 

especially crucial for recombinant proteins or peptides that are intended to be used in clinical 

studies. Furthermore, this calcium binding protein is only affected by a few detergents but still 

not as tolerant towards them compared to thrombin123. 

 

PreScission Protease 

The PreScission protease is a 46 kDa protein that was genetically engineered and is only 

available at GE Healthcare. It is derived from human rhinovirus (HRV 3C) that is responsible for 

diseases such as polio and hepatitis A. The protease specifically recognizes the amino acid 

sequence LFQ | GP, cleaving between glutamine and glycine. The optimal cleavage buffer is 50 

mM Tris-HCl, containing 150 mM NaCl, 1 mM EDTA and 1 mM DTT at pH 7 according to the 

vendor. Under these conditions one unit of protease can separate 90% of 0.1 mg fusion protein at 

5 °C within 16 hours. Moreover, Zn2+ can be used to inhibit the enzyme. PreScission protease’s 

advantages are the low operating temperature (5 °C) and it is constructed as a GST- fused 

protein, which makes it possible to remove the protease and for instance the GST-tag at the same 
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time. According to Hunt et al, this protease seems to be strategically better as it has minimal non-

specific cleavage sites25.  

 

TEV Protease 

Recently, viral proteases have become increasingly more popular. It has been shown that 

they exhibit a more strict sequence specificity116. The tobacco etch virus (TEV) protease is 

possibly the best-illustrated enzyme of this type as William Dougherty et al initially described in 

1989. Its optimum recognition site is a linear epitope comprised of seven residues (ENLYFQ | 

G/S) and the separation occurs between glutamine and glycine/serine.  Many attempts in 

producing large quantities of recombinant TEV protease result in the need of solubility-

enhancing fusion partner. His-tagged TEV protease is the most common clone with a yield of up 

to 400 mg/l, but it was also constructed with a GST-, MBP- or Streptag II124,10,125. The self-

digestion of the catalytic domain near the C-terminus proofs to be problematic as it dramatically 

decreases the protease efficiency124. However, autolysis can be sidestepped by creating mutants 

with substituting residues close to the internal cleavage site126. It is 100-fold more unwilling to 

undergo self-cleavage and still shows moderate catalytic activity compared to the wildtype44. 

This S219V mutant is commercially available at Invitrogen, the so-called Ac-TEV. The TEV 

protease is active at a pH ranging from 6-9 and is reported to be most active in the absence of a 

monovalent salt. Although its optimal operating temperature is at 30-34 °C it still preserves 

considerable efficiency at 4 °C127. The TEV protease cannot be inactivated by PMSF or AEBSF, 

but is disabled by 0.01% SDS and temperatures above 37 °C116. Compared to thrombin and 

factor Xa, this protease has yet to report an instance in which it cleaves a fusion protein other 

than at its designed cleavage site.  
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Separation of cleaved fusion proteins 

There are several ways to separate the protein of interest from the affinity tag. An easy 

and effective method is “on-column cleavage” in which the tag is cleaved off while the fusion 

protein is still bound to the resin. The advantages are that one does not have to introduce another 

chromatography step to remove the cleaved tag. In addition, one does not have to worry if the 

cleaved tag will completely bind to the resin as it is already interacting with the matrix. 

Therefore, the tag will be removed in the same step. Also any uncleaved fusion protein, which 

would be considered a contaminant would stay attached to the column1. However, the amount of 

protease necessary to completely separate the target protein from the tag is slightly higher than in 

off-column cleavages making the on-column approach less efficient.  

In case of an off-column cleavage the isolation of the protein of interest from the affinity 

tag can be accomplished by re-chromatography to eliminate the cleaved tag and any un-cleaved 

fusion protein. Other ways of tag removal include gel filtration or other chromatography steps 

depending on the affinity tag used and the protein of interest, for example for highly charged 

target proteins ion exchange chromatography can also be an alternative102. In cases of the target 

molecule being a peptide, which has initiated high demands due to their vital roles in various 

biological signaling processes, high performance liquid chromatography (HPLC) has been the 

preferred method of purification post cleavage. Yet, the disadvantage of introducing another 

purification step for the tag removal is the possible loss of product with each additional 

chromatography technique. In a competitive market where production costs are high, the 

development of a more economical, sound purification process would add substantial benefits 

and may be a “trend to follow”.  
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2. Rapid and efficient purification of recombinant peptides and low molecular weight 

proteins 

 

2.1. Abstract  

The synthesis and purification of peptides of importance in the fields of research and 

medicine continue to be a challenging task. Chemical synthesis of oligopeptides, especially those 

greater than 25 amino acids, is cost prohibitive. On the other hand, several bottlenecks exist in 

the production of recombinant short peptides in heterologous expression hosts such as 

Escherichia coli (E.coli). 

In this study, a rapid, cost-effective, and reliable method for the production and single-

step-purification of peptides and small proteins was developed. Peptides/ proteins were 

overexpressed in E.coli as GST-fusion products in high yields. The recombinant peptides/ 

proteins were successfully purified after enzymatic cleavage followed with selective heat-

induced precipitation of the GST-affinity tag. Qualitative and quantitative analysis using SDS-

PAGE and mass spectrometric methods suggest that the recombinant peptides/ proteins were 

purified to >95% homogeneity. Results of biophysical experiments, including multi-dimensional 

NMR spectroscopy, show that the purified proteins/ peptides retain their native conformation. 

Isothermal titration studies indicate no significant change in the binding affinity of the heat 

treated purified product to their interacting partner(s) compared to the recombinant peptides 

purified by conventional chromatographic procedures without subjecting to heat treatment. In 

our opinion, the results reported are expected to render the purification of recombinant proteins/ 

peptides of biomedical relevance easy and reliable.  
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2.2. Introduction  

 Peptides and small proteins are known to play a key role in various biological processes. 

They can be hormones and neurotransmitters1,2, or  growth and differentiation factors3,4, which 

trigger signaling cascades upon interaction with the cell surface receptors1,5. Other peptides and 

small proteins are also commonly used as inhibitors for targeting enzymes6, biomarkers for the 

early prediction of several diseases7,8,9 and also act as therapeutics and anti-microbial 

agents10,11,12,13,14,15,16. Current recombinant production procedures for the peptides and small 

proteins do not protect them completely from proteases present in the host expression platforms 

due to their small size or and the presence of highly charged residues17,18,19. Overexpression of 

recombinant peptides and small proteins with a larger affinity tag seem to give them greater 

stability and an increased proteolytic resistance20. These affinity tags also contribute to enhanced 

expression yields and accelerate the purification process21,22,23. 

 Chemical synthesis of peptides was first introduced to the research community after du 

Vigneaud’s synthesis of oxytocin in 195424,25. Yet, factors such as coupling efficiency and steric 

hindrance of larger side chains or protective groups limit this process.  Moreover, the peptides’ 

tendencies to aggregate can often result in low yields26,27. For that reason, the recombinant 

protein production can be the preferred, more expandable, and viable method for target 

biomolecules, especially if larger than 25 amino acids28,29.  In addition to experimental 

restrictions, the economic and environmental impacts of chemical peptide synthesis including 

disposal costs and complying with safety regulations should be considered30. Another 

shortcoming is the production of isotope labeled peptides. These “heavy” peptides can be 

valuable to acquire complete information on the protein structure and dynamics or for the 

elucidation of peptide-protein binding interactions. However, obtaining 15N-labeled peptides 



 50 

through chemical synthesis is expensive, less environment friendly, and more difficult with 

increasing length30. The use of recombinant proteins might be a better way for the production of 

15N-labeled peptides as their labeling process is very effective and genetically controlled with 

high fidelity31. 

Glutathione S-transferase (GST) is one of the most popular affinity tags used as fusion 

partner for expressing diverse proteins in both prokaryotic and eukaryotic expression 

systems32,33,34. It is well recognized to stabilize the fusion protein due to its high solubility in the 

E.coli cytosol35,36 and can be purified using a single-step affinity chromatographic procedure37. 

In this research study, the overexpression and one-step purification of GST-tagged small proteins 

and peptides has been successfully demonstrated. Subsequently, the tagged protein/ peptide 

products were subjected to enzymatic cleavage and the cleavage products were purified to 

homogeneity by using a simple heat treatment. This purification procedure did not show any loss 

in biological activity of the target peptides/small proteins. Furthermore, there were no changes in 

the conformation of the biomolecule detected when compared to the versions purified by the 

conventional method and therefore can be used in a variety of physiological assays. Based on the 

diverse examples that were examined, we believe that this method can be generically used to 

purify peptides and proteins, whose Tm is greater than 65 °C. 

 

2.3. Materials and Methods 

LB Broth (Miller) and Amicon ultrafiltration centrifugal concentrators were purchased 

from EMD Millipore. Ampicillin, NaCl, KCl, Na2HPO4, Tris-HCl were purchased at J.T. Baker 

Chemicals, Isopropyl-1-thio-β -D-galactopyranoside (IPTG) at OMNI Chemicals. Reduced 
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glutathione and thrombin were obtained from Sigma Aldrich. The secondary anti-mouse IgG 

antibody conjugated with alkaline phosphatase is a product of Genescript Inc. 

 

Expression and Purification of the GST-fused peptide/ proteins 

LB broth containing ampicillin (100 μg/ml) was inoculated with 5% (v/v) of freshly 

grown bacterial culture under aseptic conditions and incubated at 37 °C and 250 rpm. Once the 

OD600 reached 0.6, the cells were induced with 1mM IPTG and further incubated for four hours. 

Cells were harvested at 6,000 rpm for 20 minutes at 4 °C and the pellets were washed with 1x 

PBS buffer (137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 2mM KH2PO4; pH 7.2) either for 

immediate use or for storage at -20 °C. 

E.coli cells containing the recombinant GST-fusion protein was resuspended in 20 ml 1x 

PBS (pH 7.2) and subjected to cell lysis by ultrasonication (Mirsonic Inc). Insoluble cell debris 

were removed by centrifugation at 19,000 rpm for 30 minutes. The clear cell lysate was loaded 

onto a pre-equilibrated GSH-Sepharose column (GELifeSciences MA, USA) at a flow rate of 1 

ml/min, followed by washing with 1x PBS buffer until a flat baseline was reached to eliminate 

all contaminating bacterial proteins. The GST-fusion protein was eluted with 10 mM reduced 

glutathione in 1x PBS buffer. For subsequent off-column thrombin cleavage, the eluted fraction 

was subjected to ultrafiltration using centrifugal spin concentrators (EMD Millipore MA, USA) 

with a molecular weight cut off of 10 kDa. Protein concentration was estimated by measuring the 

absorbance at 280 nm. Samples monitoring the purification were resolved on 15% SDS–PAGE 

under reduced conditions according to the method of Laemmli38. 
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Enzymatic cleavage and purification of peptides/proteins by heat incubation 

The GST-tag was cleaved by subjecting it to thrombin at the ratio of 1U of enzyme for 

every 0.25 mg of fusion protein. The pure small protein/ peptide was separated from the cleaved 

mixture by incubating the sample at 65 °C for 20 minutes, and then followed by two-time 

centrifugation at 13,000 rpm for 10 minutes.  

In comparison, the conventional purification method involves off-column thrombin 

cleavage and reloading the sample onto a pre-equilibrated GSH-Sepharose column. While the 

GST-tag binds to the resin, the small recombinant protein or peptide of interest is found in the 

flow through fraction. Protein concentrations were estimated by measuring the absorbance at 280 

nm, while peptide concentrations were assessed by using the Brij method39.  

 

Determination of the temperature of precipitation/ aggregation of GST 

 In order to establish the appropriate temperature for the heat treatment, cleavage products 

consisting of the GST-tag and the target recombinant protein were subjected to 20 minute 

incubations at temperatures ranging from 40-85 °C, followed by centrifugation to separate the 

aggregated protein in the pellet from the soluble component(s) in the supernatant fraction. 

Subsequently, to determine the fate of GST during the heat treatment process, the absorbance of 

pure GST-tag at 350 nm was monitored aggregation at temperatures ranging from 40-80 °C. 

Furthermore, it was verified that the selective removal of GST is feasible at various buffer 

conditions. The intrinsic fluorescence spectra of heat-treated GST were monitored at different 

salt concentrations (0 mM, 137 mM, 500 mM and 800 mM NaCl) as well as different pH 

conditions ranging from 6-8 to confirm that GST was still removed from the supernatant due to 

heat under those buffer conditions. Intrinsic tryptophan fluorescence spectra of the samples were 
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collected at 25 °C using a Hitachi F-2500 spectrofluorometer at 2.5 nm resolution, with an 

excitation wavelength at 280 nm. 

 

Western Blot analysis using anti-GST antibodies to verify the purity of samples 

In order to examine if the cleaved GST was completely removed during the heat 

treatment procedure, a Western Blot with monoclonal antibodies raised against the GST-tag was 

performed. Samples of purification were resolved on a 12% SDS-PAGE under reduced 

conditions and the protein bands were transferred onto a nitrocellulose membrane with 100 V 

and 75 mA for 90 minutes. Subsequently, the membrane was blocked in 5% skim milk 

(dissolved in 1x TBS-T: 10 mM Tris, 100 mM NaCl, 0.05% Tween-20; pH 7.4), washed, and 

then incubated overnight in 0.2% BSA in 1x TBS-T containing the primary antibody (titer 

1:2500). After washing the membrane three times, the membrane was incubated for 2 hours with 

0.2% BSA in 1x TBS-T including the secondary AP-conjugated antibody (titer 1:2500). After 

washing the blot, bands were visualized using NBT/BCIP (Thermo Fisher Scientific Inc., MA, 

USA) as a substrate for the alkaline phosphatase (AP). 

 

Comparison of the Secondary Structure using Circular Dichroism (CD) 

CD data were recorded as an average of 3 accumulations at 25 °C using a Jasco J-720 

spectropolarimeter. Far UV CD spectra of CD2 and AlbM4 (100 μM) in 1x PBS pH 7.2 were 

recorded using a quartz cell of 0.1 mm path length in the standard sensitivity mode with a scan 

speed of 50 nm per minute. Appropriate blank corrections were made in the CD spectra. The CD 

data are expressed as molar ellipticity (deg x cm2 x dmol-1). 
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Binding Studies by Isothermal Titration Calorimetry 

Isothermal titration calorimetric experiments were performed using the 

ITC200 (MicroCal Inc., Northampton, MA) at 25 °C to examine the functionality of the 

recombinant proteins/ peptides purified using the heat treatment method. Chloroplast signal 

recognition particles (cpSRP) function as a heterodimer, which consists of subunits cpSRP43 and 

cpSRP54.  Particularly the CD2 domain of cpSRP43 binds to a 10-residue peptide fragment of 

cpSRP54. CD2 was dialyzed against 1× PBS pH 7.2. Samples were subjected to centrifugation to 

remove any aggregated or precipitated material and were degassed before the titration. 

Concentrations of synthetic 54-peptide (Peptides International, Louiseville, KY) to CD2 were 

maintained at a molar ratio of 10:1. The contents of the syringe (54-peptide) were added 

sequentially in 1.3 μL aliquots to the cell (CD2) with a 12 second interval between injections. 

Using Origin Version 7.0 software, heats of reaction per injection (μcalories/s) were determined 

by the integration of peak areas. Thermodynamic values were derived after fitting the data using 

a one-site of binding model available in Origin 7.0. The fit provides values of the heat of binding 

(ΔH°), the stoichiometry of binding (n), and the dissociation constants (Kd) from plots of the heat 

evolved per mole of ligand injected versus 54-peptide/ CD2 ratio. 

 

Comparison studies using Differential Scanning Calorimetry and thermal denaturation using 

intrinsic fluorescence 

Heat capacities of the heat-treated CD2 and the fusion protein GST-CD2 were measured 

as a function of temperature at pH 7.2 using NANO DSCIII with a ramping temperature of 1 

°C/min from 15-90 °C. Thermal denaturation scans were performed using a protein 

concentration of 1 mg/mL. The protein solution was degassed prior to acquisition of DSC data. 
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Both the heating and cooling cycles were recorded to examine the reversibility of the thermal 

unfolding process. 

 In case of the conventionally purified CD2, the intrinsic fluorescence of the protein was 

monitored at increasing temperatures ranging from 40-95 °C using a Hitachi F-2500 

spectrofluorometer at 2.5 nm resolution, with an excitation wavelength of 280 nm. All 

fluorescence measurements were conducted at a protein concentration of 100 μg/ml in 1× PBS 

pH 7.2. Appropriate blank corrections were made to subtract for background noise.  

 

Monitoring the backbone conformation of the target recombinant protein by 1H-15N HSQC 

 Multidimensional nuclear magnetic resonance spectroscopy (NMR) is a very powerful 

technique, which is regularly used for the characterization of 3D structure and backbone 

dynamics at atomic resolution. This technique allows the comparison of the 3D solution structure 

of heat-treated and conventionally purified CD2 through the acquisition of 1H-15N HSQC spectra 

of the heat-treated and conventionally purified CD2. 15N enriched protein samples were prepared 

by growing the E.coli cells in M9 minimal medium supplemented with vitamin solutions. 1H-15N 

HSQC spectra of protein samples in 1x PBS were acquired at room temperature and at a 

concentration of 0.5 mM.1H-15N cross-peaks were assigned in the spectra of CD2 and a 1H-15N 

chemical shift perturbation plot was generated. NMR experiments were carried out on Bruker 

700 MHz and 500 MHz spectrometers, which are equipped with cryo-probes.  

 

MALDI-MS Analysis of WAP and HB peptide  

MALDI-MS was performed to analyze the purity and size of the recombinant peptides. 

Prior to MALDI-TOF (Bruker Daltonics) analysis, the recombinant WAP and HB-peptide (~50-
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100μg) samples were desalted by passing through “ZIPTM” tips (C-18 matrix). The theoretical 

molecular weight of WAP and the HB peptide were calculated using the ProtParam tool from 

Expasy40 and was found to be 7315Da and 3767Da, respectively, and was compared with the 

experimental value. 

 

Binding studies of WAP and HB-peptide by ITC 

ITC experiments monitoring WAP and the HB-peptide’s ability to bind heparin were 

performed as stated earlier. WAP and HB-peptide were dialyzed against 1x PBS pH 7.2 or 10 

mM Phosphate Buffer containing 100 mM NaCl respectively. Concentrations of heparin to WAP 

or heparin to HB-peptide were maintained at 10:1 and 20:1 respectively. 

 

 

2.4. Results  

Purification of the GST-fusion protein products and cleavage using thrombin 

 Glutathione-based affinity chromatography of GST-tagged fusion proteins is one of the 

most popular purification techniques and can undoubtedly be scaled up to generate milligram or 

gram quantities of recombinant proteins32. CD2 (6 kDa Chromo-domain 2 of chloroplast signal 

recognition particle 43) was purified to homogeneity (> 95%) using this well-established affinity 

chromatography method yielding 40 mg per 1 liter culture (Figure-1b lane 5).  Furthermore, 

complete cleavage of the fusion proteins with thrombin was successfully achieved, as can be 

observed in the SDS-PAGE gel stained with Coomassie blue to monitor the purification of CD2 

(Figure-1b, lane 7).  
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Purification of the cleaved fusion product using heat procedure  

The cleaved fusion protein mixture was subjected to 65 °C for 20 minutes, precipitating 

the GST-tag. Subsequently, the affinity tag was efficiently separated from the supernatant by 

high-speed centrifugation leaving recombinant CD2 in solution. Coomassie stained SDS-PAGE 

gels clearly show the purity of fusion protein GST-CD2 (Figure-1b, lane 5) and the heat-treated 

recombinant target protein CD2 (Figure-1b, lane 9) as well as the complete cleavage of the 

fusion protein using thrombin. Results of the more sensitive Western Blot show that the 

contaminating GST was completely removed as GST was not detected by the monoclonal 

antibodies raised against the affinity tag (Figure-1c, lane 3). As panel A of Figure 1 shows, the 

alternative of the heat treatment method requires the introduction of another chromatography in 

order to isolate the protein of interest. While the affinity tag binds to the GSH-Sepharose 

column, the protein of interest elutes in the flow through. Due to the large volume of this 

fraction, it probably needs to be concentrated in order to use it for subsequent experiment. When 

comparing the yields of CD2 from these two purification methods, our method provides a more 

time-efficient and economic. Approximately 97% of the pure target molecule CD2 was 

recovered using the heat treatment compared to about 88% when reloading the cleavage mixture 

back onto the GSH- Sepharose column. 
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Figure 6: a) Flow chart comparing conventional purification method and heat treatment 

method. b) SDS-PAGE of Purification of CD2 (6kDa) using heat treatment method: lane-1 pre-

stained protein marker, lane-2 pellet post cell lysis, lane-3 supernatant post lysis, lane-4 flow 

through, lane-5 eluted GST-CD2, lane-6 8M urea, lane-7 cleaved GST-CD2 using thrombin, 

lane-8 pellet after heat treatment, lane-9 supernatant after heat treatment.  c) Western Blot of 

heat treatment method: lane-1 GST-CD2, lane-2 cleaved GST-CD2, lane-3 supernatant post heat 

treatment, lane-4 pellet post heat treatment, lane-5 pre-stained protein marker.   

 

GST aggregates under the influence of heat 

As one can observe in the heat treatment experiments, GST partly precipitates at a 

temperature of 50 and 55 °C. This is consistant with Kaplan et al’s observations of GST’s loss of 

enzyme activity and melting temperature, which was found to be at 51 °C41. At 65 °C, the GST-

tag denatured and was found in the pellet (Figure-2, lane 11) while CD2 was still detected in the 

supernatant (Figure-2, lane 12). Consequently, we are able to conclude that this temperature is 
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required to completely remove the GST-tag from the supernatant. Moreover, by monitoring the 

absorbance of GST at 350 nm at increasing temperatures, a decrease in absorbance at 280 nm but 

an increase in turbidity was observed. Hence, we can conclude that GST aggregates during to the 

heat treatment process. These observations are independent of salt concentrations or pH of the 

buffer.   

 

Figure 7 SDS-PAGE of Heat treatment: Lane-1 pre-stained protein marker, lane-2 GST-CD2, 

lane-3 cleaved GST CD2, lane-4 supernatant 45 °C, lane-5 pellet 50 °C, lane-6 supernatant 50 

°C, lane-7 pellet 55 °C, lane-8 supernatant 55 °C, lane-9 pellet 60 °C, lane-10 supernatant 60 

°C, lane-11 pellet 65 °C, lane-12 supernatant 65 °C, lane-13 pellet 70 °C, lane-14 supernatant 

70 °C, lane-15 pellet 75 °C, lane-16 supernatant 75 °C, lane-17 pellet 80 °C, lane-18 

supernatant 80 °C, lane-19 pellet 8 5°C, lane-20 supernatant 85 °C. Circle represents 

temperature at which for the first time GST was completely removed from the supernatant. 

 

Comparison studies of the heat treated and conventionally purified small protein or peptide 

 The proposed heat treatment technique has shown to yield pure protein of interest. 

However, this method is only valuable if the recombinant target protein is alike to its 

conventionally purified counterpart in terms of structure, stability, and biological functionality. 

 

Spectroscopic characterization of the secondary and tertiary structure of recombinant CD2 

 Far UV CD spectra measurements between 190 nm – 250 nm were used to observe 

changes in the secondary structure of the proteins or peptides. When overlaying the far UV CD 
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spectra of the heat treated as well as the conventionally purified CD2 shown in Figure 3a, it can 

be concluded that heat treatment did not disrupt the secondary structure of the recombinant CD2, 

as they are the same for both CD2 samples. Their CD profiles show similar secondary strcutural 

conformations of predominantly α-helical structures with the minima centered at 208 nm and 222 

nm. Intrinsic steady-state tryptophan fluorescence gives insight on the tertiary structure of the 

protein of interest. An overlay of the emission spectra of both heat-treated and conventionally 

purified CD2 (Figure-3B) indicates that the tryptophans are located in a partially solvent exposed 

environment as indicated by the emission maximum at 341 nm. In order to elucidate that the heat 

treatment process did not disorganize the 3D solution structure, the 1H-15N HSQC spectra of 

heat-treated and conventionally purified CD2 were acquired. Superimposition of both 1H-15N 

HSQC spectra and the insignificant 1H-15N chemical shifts show that the heat treatment did not 

cause any changes in the solution structure of CD2 (Figure 3C).   
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Figure 8 A) Far UV Circular Dichroism spectra. B) intrinsic fluorescence emissions spectra and 

C) overlay of 2D 1H15N-HSQC spectra and chemical shift perturbation plot of heat treated and 

conventionally purified CD2.  

 

 

Studies on the stability of the purified proteins 

DSC and thermal denaturation experiments, based on intrinsic fluorescence, are able to 

directly measure and compare the thermal stability of heat-treated and conventionally purified 

CD2. The DSC profiles and thermal denaturation plot in Figure 4 show that the melting 

temperatures (Tm, the temperature at which 50% of the protein population exists in its folded 

conformation while the rest is in the unfolded conformation) of the recombinant CD2 purified by 

heat treatment are very similar to the protein purified by conventional GSH-Sepharose 

chromatography  (83 °C). Therefore, it can be verified that the heat treatment method does not 
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significantly change the thermodynamic stability of the protein of interest. Interestingly, DSC 

experiments of the fusion protein give a Tm of 56 °C. This indicates that in case of an incomplete 

thrombin cleavage of the fusion protein, the contaminating fusion protein would also precipitate 

during the heat treatment procedure, leaving only the protein of interest in solution. 

 

 

Figure 9 Differential Scanning thermogram of heat treated CD2 and GST-CD2 and thermal 

denaturation of conventionally purified CD2. 

 

Comparison of the Functionality of the purified recombinant CD2 

ITC experiments are a resourceful tool, which can directly measure the binding affinity, 

stoichiometry, and thermodynamics of an interaction. Chloroplast signal recognition particles 

(cpSRP) function as a heterodimer, which consists of subunits cpSRP43 and cpSRP54.  

Particularly the CD2 domain of cpSRP43 binds to a 10-residue peptide fragment of cpSRP54. 

The ITC profiles of the interaction between the CD2-domain of cpSRP43 with the 54-peptide 

motif are shown in Figure-5. Both heat-treated and conventionally purified CD2 display the 

characteristic one-site binding model with similar binding affinities (1.27 μM for heat-treated 

CD2 vs. 54-peptide in Figure-5A and 1.42 μM for conventionally purified CD2 vs. 54-peptide in 

Figure-5B). This correlates with results that have already been reported in previous studies by 
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the Kumar group42. This indicates that the heat treatment did not affect the biological interaction 

of recombinant CD2. 

 

Figure 10: Isothermal Titration Calorimetry of A) heat treated CD2 vs. 54 peptide (Kd= 

1.27uM) and B) conventionally purified CD2 vs. 54 peptide (Kd= 1.42uM). 

 

Other examples of protein and peptide purified using the heat treatment method 

In an attempt to expand this method, several diverse recombinant proteins and peptides 

were purified by this new method under the same conditions that were applied to CD2. The 

results of this study show that the heat treatment method is especially convenient when purifying 

recombinant peptides. AlbM4 is a 10-residue peptide motif of the protein cAlb, which is a ligand 

of the chloroplast signal recognition particle 43. This 1.5 kDa peptide is prone to aggregation 

during expression due to its highly positively charged character. By fusing the peptide to GST 

and applying the heat treatment method, the AlbM4 peptide was successfully isolated to 

homogeneity (Figure 6A). Moreover, an additional chromatography step was bypassed with the 
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heat treatment method, which prevented challenges such as reduced recovery of the target 

peptide due to the introduction of a secondary chromatography step. The far UV CD spectrum of 

AlbM4 (Figure-6B) displays a similar profile to the synthetic AlbM4 that was used in previous 

studies from the Kumar group. The CD profile (Figure-6B) shows a minimum at 205 nm, which 

is characteristic for a random coil structure and distinctive for most peptides.  

 

 

Figure 11 A) Purification of AlbM4 peptide (1.5kDa). Lane-1 pellet after lysis, lane-2 

supernatant after lysis, lane-3 flow through, lane-4&5 GST-AlbM4, lane-6 cleaved, lane-7 pellet 

after heat treatment, lane-8 supernatant after heat treatment, lane-9 pre-stained ultra low 

protein marker. B) Far UV CD spectrum confirms characteristic random coil secondary 

structure. 

 

The WAP-domain (7 kDa) of Anosmin-1 and the constructed heparin-binding (HB) 

peptide (3.7 kDa), which both have been shown to interact with heparin, represent more 

examples for the usefulness of the heat treatment method. MALDI-MS analysis of the small 

protein and the peptide confirm the size of product gained(Figure-7B and Figure-8B). The 

abubndace of the impurities present as additional peaks in the Mass Spectrum need to be 

quantified, for example by HPLC. Nevertheless, after applying just one chromatography step and 

the heat treatment method one can obtain a highly homogenous peptide or small protein sample 

as the ITC experiments confirmed similar binding capabilities. Both WAP and the HB-peptide 

retained their ability to interact with heparin. WAP and its ligand heparin display a characteristic 
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one-site binding model with a moderate binding affinity (Kd) of 590 μM and a binding 

stoichiometry of 1:1 (Figure 7C).  This data confirms previously published work suggesting that 

WAP is a heparin-binding domain of Anosmin-143. Furthermore, the affinity of the Hb-peptide to 

heparin was displayed, giving a Kd of 170 nM (Figure-8C). 

 

 

Figure 12 A) Purification of WAP: Lane-1 pellet after lysis, lane-2 supernatant after lysis, lane-

3 GST-WAP, lane-4 cleaved, lane-5 pre-stained protein marker, lane-6 WAP. B) Mass Spectrum 

confirms size of WAP. C) ITC of WAP vs. heparin.  

 

 

Figure 13 A) Purification of the HB-peptide: Lane-1 pellet after lysis, lane-2 supernatant after 

lysis, lane-3 flow through, lane-4 GST-HB, lane-5 cleaved, lane-6 pellet after heat treatment, 

lane-7 HB-peptide, lane-8 pre-stained protein marker. B) Mass Spectrum confirms size of HB-

peptide. C) ITC of HB-peptide vs. heparin. 

 

Likewise, the feasibility of this method to purify larger proteins was examined by 

applying the heat treatment procedure to the calcium-binding protein S100A13 (11.5 kDa) and 

the copper-binding domain C2B (18 kDa), both of which are important for the secretion of the 

fibroblast growth factor 1 (FGF1). It was discovered that while the 11.5kDa S100A13 is still 
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present in the supernatant  (Figure-9A, lane 4), the 18kDa C2B precipitates along with GST upon 

being heated and were detected in the pellet (Figure-9B, lane 8). This might indicate the possible 

limitation as a function of protein molecular weight of this novel technique. 

 

Figure 14 A) SDS-PAGE depicting purification of S100A13. Lane-1 GST-S100A13, Lane-2 

cleaved, Lane-3 pellet after heat treatment, Lane-4 supernatant after heat treatment, Lane-5 pre-

stained protein marker. B) SDS-PAGE of the purification of C2B. Lane-1 pre-stained protein 

marker, Lane-2 pellet after lysis, Lane-3 supernatant after lysis, Lane-4 flow through, Lane-5 

eluted GST-C2B, Lane-6 8M urea, Lane-7 cleaved, Lane-8 pellet after heat treatment. 

 

2.5. Discussion    

The current study is mainly focused on the overexpression and purification of 

recombinant peptides and small proteins using the GST-affinity tag as a fusion partner. GST is 

known to dictate and improve the solubility of the fusion partner. In addition, because of its large 

size, the fused peptide is less susceptible to proteolytic degradation. Therefore, this is a 

commonly used affinity tag in the fields of molecular biology and is identified to express in very 

large quantities resulting in high yields of the fusion protein in diverse expression platforms. A 

rapid and efficient purification of various small proteins and peptides, which were expressed 

with the GST-tag and cleaved with thrombin, were successfully demonstrated. While chemical 
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treatments, such as CNBr, formic acid or hydroxylamine are very effective, they are also related 

to fairly harsh cleavage conditions, i.e. dramatic pH changes, which most likely are not useful 

due to their ability to denature proteins or induce modifications of the side chains30,35. 

Furthermore, in most cases CNBr is not preferred because most proteins contain methionine in 

their amino acid sequence. On the other hand, an enzymatic cleavage, like a thrombin cleavage, 

can be performed under mild, physiological conditions44. This is especially desired for the 

production of biologically active proteins and clinically important peptides. The cleavage 

recognition site can be readily engineered during the cloning process or is already located on the 

cloning vector of choice.  

The heat treatment procedure successfully separated the digested fusion protein by 

exclusively eliminating the tag. Our studies confirm that the GST-tag completely precipitates 

when heat (65 °C) is applied. In 1997, Kaplan et al showed that Sj26GST can undergo thermal 

inactivation with a melting temperature at 52 °C41. In contrast, the small protein CD2 is resistant 

to this temperature. Our results show that this method does not significantly affect the 3D 

solution structure, stability, or biological activity of CD2. Moreover, the higher yield of recovery 

(97%) of the small molecule after thrombin cleavage that was obtained from the heat treatment 

method was demonstrated. Therefore, this new method is a valuable alternative purification 

approach for recombinant peptides and small proteins. Other methods described above require an 

additional time-consuming chromatography step. In addition, it was concluded that the heat 

treatment can be extended to the gain large quantity of various other proteins and peptides of 

clinical interest as well as other proteins that are known to be thermally stable at 65 °C. Another 

significant benefit of this new method is the practical and widely accessible production of 

isotope labeled peptides and small proteins because of using recombinant protein expression. 
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3. Application(s) of GST-affinity tag in NMR 

3.1. Abstract 

With the advances in biological sciences, there is a consistent demand for structural 

information of biologically active polypeptides. High throughput screenings are necessary in 

fields such as proteomics, genomics, and bioinformatics as they provide valuable clues on 

proteins, which can have therapeutic, diagnostic, and industrial applications. In this context, 

recombinant protein expression is a good approach to obtain large amounts of the target protein 

and thus has become a commonly used way of production. A very commonly used affinity tag is 

Glutathione S-Transferase (GST, 26kDa), which is known to increase expression yields by 

enhancing the solubility of the protein of interest and therefore making it a valuable tool for the 

purification of recombinant proteins. Multidimensional NMR spectroscopy is a popular 

technique to elucidate the 3D structure of proteins in solution. However, obtaining the structural 

information of peptides and small proteins can be challenging. In this study, we show that 

multidimensional NMR data can be successfully acquired on recombinant proteins even without 

removing the GST-affinity tag. Our results show that the GST-affinity tag does not appear to 

have an effect on the quality of NMR data of its associated recombinant target protein. It is well 

known that GST isozymes exist as dimers, but there has been little research on the oligomeric 

state of GST-fused proteins. Our results also suggest that the GST-tag and the fused partner can 

be observed as two separate entities in multidimensional NMR spectra. Furthermore, small angle 

X-ray scattering (SAXS) is employed to study the low-resolution structure and flexibility of 

GST- fusion proteins. The results of the SAXS experiment support that GST-fused proteins 

predominantly exist as dimers in solution. We predict the loss of signals in the 1H-15N HSQC 
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spectrum corresponding to the GST-tag is primarily due to the decrease in the T2 relaxation rate 

upon the symmetric dimerization of GST. Additionally, the six residues located between the 

GST-tag and the target protein, which represent the recognition site for the enzymatic thrombin 

cleavage, act as a flexible linker and may play an important role in this observation. Furthermore, 

we were able to optimize the effects of the thrombin linker by introducing 12 glycine residues, 

which increased the flexibility between the GST-affinity tag and the protein of interest. As a 

result we were able to obtain better quality NMR data and are optimistic that these findings can 

be used to extend this application to larger proteins.  

 

3.2. Introduction 

Glutathione S-transferase represents a critical component in the phase II detoxification of 

xenobiotic agents, including environmental toxins and therapeutic drugs. According to 

Armstrong et al, GST acts as one of the most essential enzymes in the removal of electrophilic 

toxins in animals, plant, and many microorganisms1. The family of GST includes isozymes in 

prokaryotes and eukaryotes. However, each species’ GSTs are categorized separately, for 

example in case of human cytosolic GSTs, Greek letters are used to classify them. Crystal 

structures are accessible for each group of human cytosolic GST and show that the 3D 

conformation is homologous among these different classes of human GST2. In the late eighties, 

GST derived from the helminthic parasite Schistosoma japonicum (Sj26GST), which is 

categorized as a mammalian class mu GST, has been found to be an efficient affinity tag for the 

expression and purification of recombinant proteins3,4,5. One of its main advantages is the high 

solubility of GST, which in-turn is expected to be extend to the fused target protein6. 

Furthermore, GST is not toxic for the host and can be isolated using an easy one-step purification 



74 

 

procedure, thus this protein is one of the most commonly used affinity tags7,8. In comparison to 

the Maltose-binding-protein-tag and the polyhistidine-tag, Dyson et al showed that among 32 

different target proteins with molecular weights ranging from 17-110 kDa, GST-fusion proteins 

generated the largest amount of soluble protein9.  

Another important characteristic of Sj26GST, along with soluble GSTs from other 

classes, is the formation of dimers. The dimerization has been shown to be important for GST’s 

enzyme activity5,10. McTigue et al and Lim et al solved the crystal structures for Sj26GST in the 

absence and in the presence of its substrate glutathione, respectively11,12. The interface of the two 

GST monomers has been described to be comprised of a GST specific “lock-and-key” type 

interactions in addition to hydrophobic contacts that are stabilized by several salt bridges and 

electrostatic interactions11,12,13,14. Mutational studies performed by Sayed et al and Hornby et al 

suggest though that the phenylalanine that has been indicated to be crucial for the “lock-and-key” 

type interaction is more critical for the tertiary structure than the dimerization process15. 

Moreover, Abdalla et al’s results demonstrate that rather 10 site-specific mutations are necessary 

for preventing the dimer formation of pi class GSTP1-116. In addition, Dirr and Reinemer 

discovered that the dimerization of class pi GST is advantageous because of the increased 

thermostability of the enzyme. Their findings also demonstrated that the separation of the GST 

dimer and the unfolding of the protein are intricately connected17. Erhardt and Dirr’s results also 

suggest the absence of a folded monomer intermediate and therefore the researchers advocate the 

direct transition from a folded dimer to unfolded monomers18. On the other hand, the debate of 

the conformation state in the transition of dimers to monomers is continued with experimental 

data presented by Aceto et al. In stead of a direct transition they propose a multi-step process 

based on their studies on pi-class GSTs19. Aceto et al revealed that at low concentrations of 
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detergent the GSTP1-1 dimer separates into enzymatically inactive monomers. Fabrini et al also 

support the presence of a folded intermediate2.  

Studying GST-fusion proteins, Lally et al found that GST also dimerizes when it is fused 

to a peptide20. By using electron microscopy it was shown that the attached peptide, which was 

subject of their analysis, is extended away from the GST dimer. Furthermore, when Lim et al 

acquired crystal structures for a GST-fusion peptide, they experienced high temperature factors 

for the residues representing the thrombin cleavage recognition side that was placed between the 

affinity tag and the peptide of interest. The increase of this parameter indicates higher mobility of 

the six-residue peptide while attached to the C-terminus of GST, leading other researchers to 

remove the GST affinity tag when growing crystals in order to avoid these inter-domain 

movements21. Nevertheless, in GST-pull down assays, Vikis Harris and Guan portrayed how 

essential this flexibility between the affinity tag and the protein of interest is. It ensures that the 

GST-tag does not interfere with the fusion partner’s ability to interact with its substrate7. Both 

research groups attribute this capability to the extendable linker region at the C-terminus of GST.   

In our studies, we confirm the observation of the loss of cross-peaks corresponding to the 

structure of GST in the fusion protein that was reported by Liew and colleagues22. We further 

explored this phenomenon by employing multidimensional NMR spectroscopy, size exclusion 

chromatography, and small angle X-ray scattering. Experiments performed by Liew et al already 

indicated the loss of NMR signals corresponding to GST due to the dimerization of GST and the 

resulting increase in T2 relaxation times for GST22. In addition, we hypothesize that the 6 amino 

acids, representing the thrombin cleavage recognition site and located between the affinity tag 

and the protein of interest, is imperative for the phenomenon as they act as a flexible linker. This 

allows the fusion protein to be seen as two separate entities, therefore not affecting each other’s 
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3D solution structure. In the following, GST-CD2 (CD2 6kDa), GST-CD2CD3 (CD2CD3 11 

kDa), and the control GST were investigated to elucidate the rationale of the circumstance of 

disappearing GST peaks in the 1H-15N HSQC spectrum of the fusion protein. 

 

 

Figure 1: A) Schematic illustration explaining the rationale for the non-appearance of the 1H-15N 

cross-peaks representing the amide protons of the GST-affinity tag. B) Pymol illustration 

depicting GST-dimer (PDB: 1Y6E). 

 

As described by Liew et al, a limit for the feasibility of this phenomenon can be expected 

in terms of molecular weight of the fusion partner. Larger proteins are more likely to interact 

with the residues in the linker region or with GST, which can result in a different 3D solution 

structure or the disappearance of such residues along with GST’s cross-peaks22. In order to 

extend the applicability of this method to larger proteins, we introduced 12 additional glycine 

residues after the thrombin linker region. We expect that the now more extended thrombin linker 

increases the flexibility of the fusion protein and allows us to obtain structural information on a 

wider range of proteins without having to remove the affinity tag.  

 

GST	

A B 
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3.3. Materials and Methods 

Expression and Purification of GST-CD2 and GST-CD2CD3 

LB broth (Miller; EMD Millipore, MA) containing ampicillin (J.T. Baker Chemicals, PA, 

100 μg/ml) was inoculated with 5% (v/v) overnight culture under sterile conditions and 

incubated at 37 °C and 250 rpm. When the OD600 of 0.6 was reached, the cells were induced with 

1mM isopropyl-1-thio-β-D-galactopyrannoside (IPTG, OMNI Chemicals, IN), and further 

incubated for four hours. Later, the cells were harvested at 6,000 rpm for 20 minutes at 4 °C 

using a Beckman JA-10 rotor. The collected pellets were washed using 1x PBS (137 mM NaCl, 

2.7 mM KCl, 10 mM Na2HPO4, 2 mM KH2PO4; pH 7.2; J.T. Baker Chemicals) and were used 

immediately or stored at -20 °C. 

E.coli BL21 (DE3) cells containing the expressed recombinant fusion protein(s) were 

resuspended in 25 ml 1xPBS pH 7.2 and lysed by sonication. Cell debris was removed by 

centrifugation at 19,000 rpm for 30 minutes. The supernatant containing the soluble GST-CD2 or 

GST-CD2CD3 was loaded onto a pre-equilibrated GSH-Sepharose column at a flow rate of 1 

ml/min. Subsequently, unbound E.coli protein contaminants were removed by washing the 

column with 1x PBS until a flat baseline was reached. The fusion protein was eluted with 10 mM 

reduced glutathione (Sigma Aldrich, MO) dissolved in 1x PBS. Glutathione had to be removed 

for the following structure elucidation studies by concentrating and buffer exchanging using an 

Amicon concentrator (EMD Millipore, MA). Protein concentration of the pure fusion protein 

was evaluated by measuring the absorbance at 280 nm and its specific molar extinction 

coefficient. Samples obtained while monitoring the purification were resolved on 15% SDS–

PAGEs under reduced conditions according to the method of Laemmli23. 
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Cleavage and separation 

The pure fusion partner CD2 or CD2CD3 was obtained by off column thrombin cleavage. 

Complete cleavage was standardized in previous studies to 1U for every 0.25 mg of fusion 

protein. The GST-tag was removed from the cleavage product mixture by reloading on a pre-

equilibrated GSH-Sepharose column. While the GST-tag binds to the resin, the small proteins 

are found in the flow through fraction, which subsequently was concentrated using an Amicon 

concentrator. Protein purity was monitored by SDS-PAGE and the target proteins concentrations 

were calculated using their absorbance at 280 nm and specific molar extinction coefficients. 

 

Acquisition of 1H-15N HSQC spectra 

Multidimensional nuclear magnetic resonance spectroscopy (NMR) is a technique 

capable of elucidating the 3D structure and backbone dynamics of a protein at atomic resolution. 

This technique allows comparing the 3D solution structure of the fusion proteins and just the 

target molecules. 1H-15N HSQC spectra were acquired using 15N isotope enriched proteins. The 

concentration of the protein(s) was in the range of 0.4-0.5 mM, in 1x PBS buffer (90% H2O + 

10% D2O, pH 7.2). All experiments were conducted at 298 K using the Bruker Avance 700 MHz 

or Bruker 500 MHz NMR spectrometer.  The chemical shifts of the assigned peaks of CD2 were 

visualized by using the 1H-15N chemical shift perturbation plot.   

 

Size Exclusion Chromatography of GST-CD2 

Gel filtration experiments were performed using an AKTA FPLC on a Superdex 75 

column (GE Healthcare, Pittsburgh, PA) in a running buffer of 1x PBS, pH 7.2, and at a flow of 

1 ml/min and 22 °C. The protein peak of GST-CD2 was detected by its 280 nm absorbance. 
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Under the experimental conditions used, no shrinkage of the resin was observed. A standard plot 

of the logarithm of the molecular mass versus the elution time was constructed using standard 

proteins in the molecular mass range of 17−66 kDa. Experimental conditions used for the elution 

of standard proteins were the same as those for GST-CD2. 

 

Analysis of Small angle X-ray scattering (SAXS) data acquired for GST, GST-CD2, and GST-

CD2CD3   

A dilution series of GST, GST-CD2, and GST-CD2CD3 was created in the range of 

10 mg/ml to 1 mg/ml. The Cornell High Energy Synchrotron Source (CHESS) was used as the 

source of high-energy X-rays and hutch G1 was set up with a robotic sampling unit24. For each 

sample, 10 spectra were acquired by exposing for 2 seconds and scattering was collected while 

oscillating samples to reduce X-ray damage. The spectra were averaged and blank samples of 1x 

PBS buffer were subtracted from each sample. The concentration of each sample was measured 

before beam exposure and using a Guinier fit [I (q) versus q2], it was possible to determine 

aggregation and estimate the radius of gyration for each sample. The distance distribution was 

calculated using the Primus program from the ATSAS package (Europäisches Labor für 

Molekularbiologie, Hamburg)25. In the Primus shape wizard, the DAMMIF algorithm was 

employed to predict 10 envelope structures for GST26. The computed envelopes were then 

aligned to overlap using the program set DAMAVER to compare and test the similarity of the 

structures27. Of the 10 envelopes predicted for GST, 9 were predicted to be probable. In the 

following, DAMMIN refined the shape of the model through simulated annealing using a single-

phase dummy atom model28. In case of the fusion proteins GST-CD2 and GST-CD2CD3 an all 

atom program, developed by a member of the Kumar lab, was used due to their flexible 
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character. 10,000 random conformers of the protein of interest were built and sub-ensembles of 

isomers co-occurring in solution were chosen based on their fit to the experimental SAXS data. 

The optimized ensembles were then compared to the pool of 10,000 random structures in a size-

distribution plot. Furthermore, the molecular weight was determined using the software RAW24 

based on the scattering intensity and the measured concentrations of the analyzed samples, and 

the standard lysozyme of known concentration (c= 4.12 mg/mL).  

 SAXS data can provide several indicators for the presence of flexibility within a protein. 

Customarily, the Kratky plot gives a qualitative assessment of disordered states within a protein 

and is able to distinguish them from globular, compact proteins29. The Kratky illustration is a 

transformation of the scattering profile (q2 x I (q) as a function of q) that allows an easier 

visualization of the degree of flexibility within a protein. Another tool to detect flexibility within 

biopolymers and macromolecules is the Porod-Debye Law30. Here, the scattering data is 

transformed as q4 x I (q) vs. q or q4 x I (q) vs. q4, which should display a curve asymptotically 

approaching a constant value as q approaches infinity for globular, compact proteins. Moreover, 

the scattering data was transformed using an indirect Fourier transformation in PRIMUS to 

obtain the distance distribution function31. It is defined to be a positive curve that ends at the 

maximum linear dimension in the scattering particle (Dmax) and therefore to equal 0 at p(0) and 

p(r>Dmax). 

 

PCR-based cloning of GST-G12-CD2CD3 

The pGEX-KG vector  (GE Healthcare) was used for the expression of GST-G12-

CD2CD3. The fusion protein can be cleaved with thrombin (cleavage sequence Leu-Val-Pro-Arg 

| Gly-Ser). The gene of interest G12-CD2CD3 was amplified by using gene specific primers (FP: 

5’ATGCACGGATCCGGTGGTGGTGGTGGTGGTGGTGGTGGTGGTGGTGGTCAAG 
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TGTTCGA–3’, BP: 5’ATGCACCTCGAGTCGACCCGGccCTATTCATTCATTGGTTGTTGT 

TGTTGGTAGA-3’) and the Taq polymerase (NEB). The conditions for the PCR were as 

described in the vendor’s protocol at an annealing temperature of 69 °C. The PCR product was 

monitored by agarose gel electrophoresis and purified from unused nucleotides, primers, and 

polymerase using the QIAGEN PCR purification Kit (QIAGEN, CA) according to the 

manufacturer’s instructions. The pGEX-KG vector and PCR product were subjected to double 

digestion using the restriction enzymes BamHI and XhoI (NEB). The double digested products 

were purified using the QIAGEN PCR purification Kit, ligated at a molar ratio of 8:1 (insert: 

vector) and transformed into DH5α chemical competent cells (NEB). Recombinant plasmids 

were isolated from bacterial colonies using the QIAGEN Miniprep Kit and subjected to both 

DNA sequencing and restriction analysis to confirm its identity. 

 

Expression, purification, and analysis of GST-G12-CD2CD3 

 Recombinant plasmids containing the gene of interest were transformed into E.coli BL21 

(DE3) cells. The expression, purification, and NMR analysis was performed in a similar fashion 

as described earlier. The SAXS data was acquired at different protein concentrations (1.25 

mg/ml -10 mg/ml) at the Sybils Beamline, Lawrence Berkeley National Lab, CA. This work was 

conducted at the Advanced Light Source (ALS), a national user facility operated by Lawrence 

Berkeley National Laboratory on behalf of the Department of Energy, Office of Basic Energy 

Sciences, through the Integrated Diffraction Analysis Technologies (IDAT) program, supported 

by DOE Office of Biological and Environmental Research. Additional support comes from the 

National Institute of Health project MINOS (R01GM105404). 
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3.4. Results 

Purification of GST-CD2 and CD2 

 All fusion proteins (GST-CD2, GST-CD2CD3, GST-G12-CD2CD3) as well as CD2 and 

CD2CD3 were purified to homogeneity using Glutathione- Sepharose affinity chromatography 

(Figure 2). GST-CD2, which was recovered from the affinity column (Figure 2, lane 5), was 

subjected to thrombin cleavage. It was observed in earlier studies that 1U of thrombin is 

sufficient to effectively cleave 0.25mg of the fusion protein. The purified fusion protein (Figure 

2, lane 5 and target protein (Figure 2, lane 9) migrated as a single band according to their 

expected molecular masses on a SDS-PAGE under reducing conditions. 

 

 

Figure 2: SDS-PAGE depicting the purification of GST-CD2 and CD2: Lane-1 pre-stained 

protein marker, Lane-2 pellet after lysis, Lane-3 supernatant after lysis, Lane-4 flow-through, 

Lane-5 GST-CD2, Lane-6 8M urea, Lane-7 cleaved GST and CD2, Lane-8 GST, Lane-9 CD2. 

 

1H-15N HSQC spectra of GST-CD2 and CD2 

Multidimensional NMR experiments were performed to elucidate the 3D solution 

structure of GST-CD2 and the target protein of interest CD2. Two-dimensional 1H-15N HSQC 

spectra yield a fingerprint of the backbone conformation of proteins. Each cross- peak in a 1H-

15N HSQC spectrum represents an amino acid in a particular backbone conformation of the 

protein. The 1H-15N HSQC spectra of GST-CD2 and CD2 are interesting for two reasons. First, 
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the peaks found in the 1H-15N HSQC of GST-CD2 overlay well on the peaks of CD2 (Figure 

2A). Careful inspection of the spectra revealed that the 1H-15N chemical shift perturbations are 

insignificant (Figure 2B). Therefore, the 3D solution structure of CD2 is the same whether it is 

acquired individually or as fusion protein. Second, having the peaks of the GST-CD2 spectrum 

identified as residues corresponding to CD2 means in turn that the cross-peaks corresponding to 

GST have disappeared. 

 

 

Figure 3: Panel A: Overlay of 1H-15N HSQC spectra of GST-CD2 (red) and recombinant CD2 

(blue); Panel B: 1H-15N chemical shift perturbation plot of CD2. 

 

GST-fusion proteins form dimers 

Both gel filtration chromatography and SAXS analysis were employed to confirm the 

multimeric state of GST and its fusion proteins in solution. When comparing the elution time of 

GST-CD2 (Figure 4) to the molecular weight standard proteins during the size exclusion 

chromatography it can be inferred that GST-CD2 forms a dimer in solution. In consummation 

with these findings, the SAXS results in Table 1 are in agreement with the results of the gel 

filtration experiments. Both these data suggest that the proteins have a molar mass that correlates 

with the size of a dimer (theoretical molecular mass of the monomers of GST, GST-CD2 and 
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GST-CD2CD3 are 26 kDa, 32 kDa, and 37 kDa respectively). It needs to be mentioned that the 

accuracy of determination of molecular weights using SAXS data lies within a systematic 

deviation error of 10%32. 

 

 

Figure 4: Size-Exclusion Chromatogram of GST-CD2. 

  

Table 1 Estimated molecular mass obtained from SAXS data 

Sample Theoretical molecular weight  Experimental molecular weight  

GST 26 kDa 57 kDa 

GST-CD2 32 kDa 70 kDa 

GST-CD2CD3 37 kDa 76 kDa 
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GST-fusion proteins are flexible due to thrombin linker 

The normalized Kratky plots of GST, GST-CD2, and GST-CD2CD3 are depicted (Figure 

5). The curve representing GST displays a typical bell-shape characteristic for this globular 

protein. For GST-CD2 and GST-CD2CD3, the peak amplitude does not decrease and the bell-

shape is mostly intact, indicating that there are folded portions of the protein present. The folded 

portions are attributed to GST and CD2/CD2CD3 based on the acquired 1H-15N HSQC spectra. 

Only when GST is properly folded, it dimerizes resulting in the loss of cross-peaks in the 1H-15N 

HSQC spectrums. In a similar fashion CD2 shows its native conformation state in GST-CD2 as 

the cross peaks of the 1H-15N HSQC spectrum of GST-CD2 superimpose well on the cross-peaks 

of the 1H-15N HSQC of CD2 (Figure 3A).  Furthermore, when comparing the normalized Kratky 

plot of GST and the GST-fusion proteins, the fusion proteins are identified to have more 

flexibility than the individual GST-protein. The Kratky plot of the GST-fusion proteins exhibits a 

broadened bell-shape curve as well as a plateau at q x Rg > 5 instead of reaching to the x-axis of 

the plot. We believe the flexibility stems from the thrombin recognition site that is positioned 

between GST and the target protein. These results are in agreement with observations made 

based on the GST-pull down assays of other fusion proteins7. CD2 is fused to the C-terminus of 

GST with the thrombin recognition site (linker) introducing enough flexibility to view the two 

partners as separate physical entities. In addition to the thrombin linker, the fusion partner is 

attached to a flexible loop region that is found at the C-terminus of GST. This loop can also 

contribute to the inter-domain flexibility as it can be extended21. However, it was shown that 

without a fusion partner, the loop is folded more compactly11.  
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Figure 5: Dimensionless Kratky- Plot of GST, GST-CD2, and GST-CD2CD3. 

 

In comparison, the Porod-Debye law is another useful tool for revealing flexibility within 

macromolecules from SAXS data. Rambo and Tainer claim it to be more powerful and 

conclusive than the Kratky analysis, especially when comparing protein flexibilities and needing 

to look for more confined flexibility30. A globular protein demonstrates a plateau when 

transforming the scattering profile to q4 x I(q) vs. q4, while fully flexible particles will show a 

characteristic plateau when the SAXS data is converted to q2 x I(q) vs. q2. The Porod exponents 

for GST, GST-CD2, and GST-CD2CD3 are calculated and are listed in Table 2. GST forms a 

compact, globular dimer, giving it a characteristic Porod exponent of almost 4. Both fusion 

proteins, however, have a lower Porod value but not as low as 2, which would be indicative for 

an intrinsically disordered protein. Therefore, it can be concluded that the decreased Porod 

exponent of GST-CD2 and GST-CD2CD3 reveals local flexibility within the fusion protein, 

GST-CD2, GST-CD2CD3 

GST 



87 

 

which can be attributed to the short linker sequence between the affinity tag and the protein of 

interest.  

 

Table 2 Porod- Exponents for GST, GST-CD2, and GST-CD2CD3 

Sample Porod- Exponent 

GST 3.7 

GST-CD2 3.1 

GST-CD2CD3 3.2 

 

In a further attempt to analyze the SAXS data, a low-resolution model of GST-CD2 was 

generated based on the scattering profile and using an all-atom algorithm. Out of a pool of 

10,000 possible structures, 4 were highlighted as very likely based on angular and distance 

constraints and their fit to the experimental SAXS scattering. Both the pair distance distribution 

plot (Figure 6) and the Pymol illustration of the most probable ab initio models (Figure 7A, C) 

are in agreement that CD2 is predominantly extended away from the GST dimer. The shape of 

the distance distribution plot can also be used as an indicator for the structural properties of the 

sample31. In particular, globular compact particles exhibit a symmetrical bell shaped curve, 

whereas unfolded particles have a stretched tail. In case of GST, the pair distance distribution 

function is consistent for a globular protein, while GST-CD2 still shows features of the compact 

folded GST and CD2 but also displays a tail that could be accredited to the extended 

conformation and the flexibility because of the thrombin linker (Figure 6). 
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Figure 6: Pair distance distribution plot of GST-CD2. 
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Figure 7: Panel A: Ensemble model of GST-CD2 obtained from SAXS data. Panel B: 

Calculated SAXS scattering profile (green) of GST-CD2 model fits the experimental SAXS data 

(red). Panel C: Size-distance distribution of comparing Dmax of random pool and ensemble 

models for GST-CD2.  

 

Engineering of a more flexible linker 

 When comparing the 1H-15N HSQC spectra of GST-CD2CD3 and CD2CD3 (Figure 8), 

one would expect the same overlay as it was observed for GST-CD2 and CD2. However, the 

fingerprint of the backbone confirmation is different for the fusion protein GST-CD2CD3 and 

the individual CD2CD3. It is possible that the target protein interacts with the linker or the GST 

dimer with the result of shifted peaks or loss thereof in the 1H-15N HSQC of GST-CD2CD3. 

Nevertheless, this result is surprising when viewing the Kratky plot and Porod exponent of GST-

CD2CD3 (Figure 5a, Table 2). The results of the SAXS analysis of GST-CD2CD3 and GST-

CD2 are quite similar. Therefore, one would expect that the peaks corresponding to GST in the 

1H-15N HSQC spectrum of GST-CD2CD3 should disappear and the peaks resulting from 

CD2CD3 should overlay with the backbone confirmation of the acquisition of the 1H-15N HSQC 
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which compares the maximal diameter found in the ensemble models and the pool of 10000 

random structures, into consideration, both indicate two states. Especially in case of the size 

distribution plot, the two maxima indicate an enclosed and a more extended conformation 

(Figure 9C). The ab initio model (Figure 9A) suggests that the fused partner CD2CD3 is often 

located in close proximity to the GST dimer, which could lead to interactions between CD2CD3 

and GST and therefore to the loss of signal for those CD2CD3 residues in the 1H-15N HSQC or 

the association with the linker region which could explain the shift of peaks for some residues. In 

an attempt to increase the inter-domain flexibility of the fusion partner, 12 glycine residues were 

introduced after the recognition site for the enzymatic thrombin cleavage. It is also assumed that 

this extension of the linker will lead to CD2CD3 predominantly protruding away from GST. 

Therefore, there should be lesser interactions of the protein of interest with the affinity tag or the 

linker allowing the acquisition of the 1H-15N HSQC spectrum of the native conformation of the 

target protein while still fused to GST. Through PCR-based sub-cloning, 12 additional glycine 

residues were incorporated following the thrombin cleavage recognition site and upstream of the 

protein of interest. The yield and purification method is similar to the other GST-fusion proteins 

as described earlier. Interestingly, the 1H-15N HSQC of GST-G12-CD2CD3 overlays better with 

CD2CD3 than GST-CD2CD3 did in earlier studies (Figure 10A). With the new fusion protein 

clone, there are no peaks missing when comparing the 1H-15N HSQC spectrum of GST-G12-

CD2CD3 to the one of CD2CD3. The amount of shifted peaks that was observed in the spectrum 

of GST-CD2CD3 is also less when acquiring the HSQC spectrum of GST-G12-CD2CD3. The 

few additional cross-peaks of GST-G12-CD2CD3 are located in the center and might resemble 

residues from the extended linker. Moreover, an increased flexibility for the engineered GST-
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G12-CD2CD3 clone was observed in the Kratky plot (Figure 10B) and its Porod exponent was 

calculated to be 3.1 both supporting the hypothesis. 

 

 

Figure 8: Overlay of 1H-15N HSQC spectra of GST-CD2CD3 (red) and recombinant CD2CD3 

(turquois).  
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Figure 9: Panel A: Model of GST-CD2CD3 obtained from SAXS data. Panel B: Calculated 

SAXS scattering profile of GST-CD2CD3 model fits the experimental SAXS data. Panel C: 

Size-distance distribution of random pool and ensemble models for GST-CD2CD3. 
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Figure 10: Panel A: Overlay of 1H-15N HSQC spectra of GST-G12-CD2CD3 (blue) and 

recombinant CD2CD3 (green). Panel B: Dimensionless Kratky- Plot of GST, GST-CD2, and 

GST-CD2CD3. 

 

3.5. Discussion 

The GST-affinity tag is a very versatile molecule and has found use in various biological 

applications5,7,33,34,35. All soluble GSTs that have been studied so far are found to form dimers 

implying the importance of this quaternary structure for the enzyme’s function and activity36. 

This is also verified as engineered monomers lose their ability to bind to GSH and cannot be 

purified via GSH-Sepharose column but require the introduction of another affinity tag or using 

different chromatography methods16. Moreover, due to GST’s high solubility and easy 

purification it is a popular affinity tag for the expression and production of recombinant proteins 

in high yield5. GST-fusion proteins are also useful in studies on protein-protein interaction using 

enzymatic assays or immunoassays. The GST pull-down assay is probably one of the most 

prominent techniques for the detection of proteins of interest and their interaction partners37. 

Besides, the GST-affinity tag has aided in the determination of structures of proteins, which were 
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difficult to crystallize, with the help of GST in a protein-driven crystallization and subsequently 

the structure of the target protein could be determined by molecular replacement methods12,21. 

The conditions for the crystallization of GST-fusion proteins have proven to be similar, while 

one would have to spend more time and effort to optimize the crystallization settings for the 

individual target proteins38. Nevertheless, crystallization can only give a static picture, which is 

why NMR is often employed to elucidate the 3D solution structure of a protein of interest as well 

as to give insights on target protein’s backbone dynamics. This study demonstrates that a GST-

fusion protein can be a tool of elucidating the structural details of the target protein without 

having to remove the affinity tag. It is believed that the explanation for this observation of non-

appearance of the cross-peaks corresponding to GST is two-fold. First, it has already been shown 

and this study confirms that just like GST individually, the fusion protein forms a dimer in 

solution. Consequently, the increased size due to dimerization leads to a decreased tumbling 

relaxation rates of GST portion compared to the target protein on a NMR timescale. Therefore, 

the cross-peaks corresponding to the GST residues broaden and disappear. Moreover, the results 

in this study indicate that internal flexibility and extended position, which have already been 

reflected by high temperature factors and crystal structures, are equally important as it allows 

viewing the two fusion partners as separate entities. Therefore, GST does not have an effect on 

the solution structure of CD2. Zhan et al and Vikis et al have also described the impact of such 

inter-domain flexibility. GST-fusion proteins with a thrombin cleavage site were crystallized and 

showed that the fusion partner protruded from the GST domain21. Moreover, GST-fusion 

proteins are used in GST pull-down assays because the fusion partner and affinity tag are 

”separated” by a linker that ensures full accessibility for both protein partners7.   
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SAXS data gave better insight on the oligomeric state of GST-fusion proteins and the 

inter-domain flexibility of the two fusion partners. The determination of molecular weight based 

on the SAXS data confirmed results of the size exclusion chromatography, in which it was found 

that GST-CD2 forms a dimer in solution. On the other hand, the Kratky representation only 

showed a shift of the curve rather than a transformation in the profile. This suggests that once 

there is a fusion partner attached to GST, the thrombin linker helps the target protein to protrude 

from the structure of GST as well as also allows the target protein a certain degree of flexibility. 

The all atom-model generated for GST-CD2 visualized the multiple possible conformations, in 

which CD2 can occupy more than one specific location. In addition, the pair distance distribution 

function is in agreement with the extended state of the fusion protein GST-CD2. For a more 

discrete differentiation, the Porod-Debye Law was employed. It also confirms an increase in 

flexibility of the target protein within the fusion protein. The application of GST-fusion proteins 

for the structure determination of the target protein seems to work well for smaller proteins and 

peptides. Therefore, this approach could be applicable for the study of peptide-protein 

interactions and help in the elucidation of the binding interface of both interaction partners. 

However, when trying to extend it to larger proteins, the examples used in this study, CD2CD3 

(11kDa), showed inconsistencies with previous observations. The overlay revealed that the 

backbone conformation of CD2CD3 when fused to GST was not the same when acquired 

individually. Even though SAXS indicated that this fusion protein was still flexible as the Porod 

exponent and Kratky plot indicated, the smaller GST-CD2 is well extended. Further, GST-

CD2CD3’s size distribution function suggests that the fusion protein can exist in both an 

extended or enclosed conformation. The computed models indicate that CD2CD3 can also fold 

back towards the GST dimer. It is therefore possible that the target protein interacts with GST 
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allowing for those residues to disappear along with GST or bind to the linker causing a different 

backbone conformation of CD2CD3. We successfully improved the applicability of this 

phenomenon for larger proteins by introducing 12 glycine residues into the linker that led to 

greater flexibility within GST-CD2CD3. The extension of the linker also appeared to prevent any 

associations with the GST dimer or linker as now the 1H-15N HSQC spectrum overlaid better 

with the spectrum for CD2CD3.  

In summary, we believe that the use of GST-fusion proteins is a valuable alternative high 

throughput method in the elucidation of the 3D solution structure of the target protein without 

having to remove the affinity tag and can also be employed in the study of protein-peptide 

interactions. 
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3.6. Supplement 

 

 

Supplemental Figure 1: Panel A: 1H-15N HSQC spectra of GST-CD2. Panel B: 3D HNCA of 

GST-CD2. 

 

Supplemental Figure 2: Overlay of 1H-15N HSQC spectra of the urea denaturation of GST-

CD2. Panel A: 0 & 1 M urea, Panel B: 0 & 2.5 M urea, Panel C: 1 & 2.5 M urea, Panel D: 0 & 1 

& 2.5 M urea) 
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Supplemental Figure 3: 1H-15N HSQC of temperature-induced denaturation of GST-CD2 at 

295 K (Panel A), 305 K (Panel B), 310 K (Panel C), and 315 K (Panel D). 
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4. Conclusion 

GST is an effective affinity tag to purify recombinant proteins and to investigate the 3D 

solution structure as well as protein-protein interactions of the fusion partner. Literature on the 

GST-tag suggests that this affinity tag can be utilized in both eukaryotic and prokaryotic 

expression systems and can easily be detected by means of antibodies. Moreover, this affinity tag 

yields large quantities of homogenous pure fusion protein in a timely manner. 

In summary, we were able to develop a cost-effective alternative for the production of 

small proteins and peptides. We exploited the already established purification procedure for the 

fusion protein of this valuable solubility tag. Our studies showed that GST aggregates and can 

therefore specifically are removed by subjecting it to heat. Subsequently, we demonstrated the 

quick separation of the tag from the target peptide or small protein via ultracentrifugation. 

Experiments comparing the stability, secondary and tertiary structure, and biological activity 

suggested that our novel heat treatment method does not impair the small protein or peptide of 

interest. We are confident that this procedure saves time and resources and makes isotope 

enriched labeling of peptides now more realistic. A future direction of this method is the 

scalability of the process. Larger expression volumes lead to larger amounts of fusion protein 

that needs to be cleaved by thrombin, which in turn could be seen as cost-ineffective.  An 

improvement of the existing procedure could be the use of chemical cleavage instead of 

employing enzymes in order to avoid high costs due to thrombin. However, due to the 

unfavorable cleavage conditions (i.e. dramatic pH changes), this adjustment might only be useful 

for the purification of peptides that are unstructured. Protein structure, stability, or biological 

activity could be disrupted under these harsh conditions associated with chemical cleavage. Also, 

in order to avoid cleavage within GST, one would need to mutate putative residues that would 
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represent a recognition site of the chemical reagent used and ensure that those alterations in the 

GST would not affect the affinity tags expression or purification. 

In addition to developing a new purification method, we also optimized a technique for 

the acquisition of multidimensional NMR data for peptides and proteins by using the GST-fusion 

protein. This could be useful for the mapping of protein-peptide interaction interface without 

having to remove the affinity tag. Due to the flexibility that is introduced by the linker that is 

placed between the tag and the protein of interest, and the symmetrical dimerization of GST, we 

found that GST does not significantly affect the 3D solution structure of the fusion partner and 

the peaks corresponding to GST disappear. Extending the linker, by introducing 12 glycine 

residues, the flexibility was increased and better quality NMR spectra were obtained. In order to 

be able to use this method on larger proteins, the linker sequence would need to be optimized 

further. Not only does the linker provide flexibility that is important for the acquisition of NMR 

data, but also represents a spacer to ensure that GST does not interfere with the interaction of the 

target protein/peptide with its reaction partner. 
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5. Appendix – Towards the characterization of Anosmin-1 

5.1. Abstract 

Anosmin-1 is a secreted extracellular matrix associated glycoprotein that is encoded by 

the KAL1 gene1. It assists in the growth of olfactory and Gonadotropin- releasing hormone 

(GnRH) secreting neurons, which originate in the nasal compartment. Absence or damage of the 

protein has been shown to cause Kallmann Syndrome (KS), manifesting itself in the loss of 

olfactory bulbs and GnRH secretion most likely resulting from the unsuccessful embryonic 

migration of GnRH- synthesizing neuron2. Consequently, it leads to anosmia and 

hypogonadotropic hypogonadism respectively.  

To date, the structure of the full-length Anosmin-1 has not been fully determined. 

However, it has been demonstrated that Anosmin-1 interacts with the fibroblast growth factor 

receptor 1 (FGFR1). It was concluded that it might be able to interfere with the fibroblast growth 

factor (FGF) signaling, which is known to play a vital role in cell growth and cell proliferation. 

The protein consists of a N-terminal cysteine-rich domain, a whey acidic like- protein domain 

(WAP) forming a so called four-disulfide core, followed by four fibronectin type III (FnIII) 

domains and a histidine-rich domain located at the C-terminus. Interestingly, both Anosmin-1 

and FGFR1 interact with heparan sulfate to maximize their activity; this could be the linking 

feature to explain their relationship to each other. 

In this context, the main goal in this study is to characterize and elucidate the 3D solution 

structure of Anosmin-1 in order to understand its role in the regulation of the activity of the FGF 

receptor. 
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5.2. Introduction 

Anosmin-1 – its role in the development of sex organs 

Anosmin-1 is an extracellular matrix associated glycoprotein that is encoded by the 

KAL1 gene1. It assists in the growth of olfactory and Gonadotropin- releasing hormone (GnRH) 

secreting neurons, which originate in the nasal compartment. Anosmia and hypogonadotropic 

hypogonadism are the defining symptoms of Kallmann Syndrome (KS), a rare disease acting 

rather on males than on females. Approximately 1 in 8,000 males and 1 in 40,000 females are 

affected 3,4,5. Source of the disorder is very likely the unsuccessful embryonic migration of 

GnRH- synthesizing neurons in the olfactory bulb. Usually, these cells “migrate from the 

olfactory epithelium to the forebrain along the olfactory nerve pathway” as early as in the 6th 

embryonic week6,7,8. However, upon the deletion of KAL1 symptoms such as anosmia (lack of 

smell) due to deficiency of the olfactory bulb and dislocated GnRH neurons were observed7. It 

has been discussed that the deficit in GnRH is due to the failure of embryonic migration as 

described by Dode and Hardelin. In consequence, hormones important for gonadal maturation 

and function will not be released, providing the most common phenotype with delayed 

puberty7,8. Hence, it can be concluded that Anosmin-1 is involved in neurite outgrowth and axon 

branching and acts as an extracellular adhesion molecule9.   

Structural domains in Anosmin-1 

KAL1 encodes for 680 amino acids, which have a theoretical molecular weight of 74 

kDa; posttranslational modifications include N-glycosylation resulting in an observed molecular 

weight of 85-100 kDa3,10. Nevertheless, it is still unknown which of the possible glycosylation 

sites are actually implicated. Interestingly, Anosmin-1 does not contain a transmembrane domain 

or a glycosyl phosphotidyl inositol anchorage domain3,11. Structurally, the protein of interest 
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comprises of a N-terminal signal peptide, a cysteine-rich domain (CR), a whey acidic protein-

like domain (WAP), four continuous fibronectin-like type III domains (FnIII), and a histidine-

rich domain (HR) at the C-terminal region.  

 

 

Figure 15 Structure of Anosmin-1 depicting the different structural domains 

 

The WAP domain, evolutionary conserved, shows four disulfide core motives, a 

characteristic that is found in proteins associated with the primary immune defense, cell 

proliferation, and wound healing by inhibition of protease activity3,9. The exact disulfide bond 

pattern has not been described yet. Nevertheless, C151-C163 and C157-C172 have been 

identified to be essential for the stability of the protein10.  

 

 

Figure 16 Possible motif of conserved disulfide bonds in the WAP domain of Anosmin-1 

(Jayanthi et al 2011) 

 

Similar to the WAP domain, the FnIII.1 domain is conserved, which implies its vital role 

in the function of the protein. The FnIII domains display significant similarity to the cell 

adhesion molecule (CAM) family which are usually related not only to cell-cell interactions but 

 SP 
 CR  WAP       FnIII-1 FnIII-2 FnIII-3 FnIII-4  HR 
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also to migration during neural development3. Interaction studies have shown that of all the 

Anosmin-1 domains, the FnIII.1 domain’s affinity to bind heparan sulfate is maximal, most 

likely due to its relatively large positively charged surface10. The WAP domain has also been 

demonstrated to have the ability to bind to heparan sulfate10,12. Nevertheless, it was described 

that the combination of WAP, FnIII.1 and CR domains has the highest affinity to interact with 

heparan sulfate1.  

According to Choy and Kim, mutational studies made it possible to recognize the most 

common modification causing loss-of-function of Anosmin-13. Most of them are missense 

mutations, for example as can be found upon frame shifts and deletions. The WAP domain as 

well as the FnIII.1 domain seem to play a major role as 10 missense mutations were localized in 

these regions3. Moreover, most of these mutations were identified of being near proposed 

heparan sulfate binding sites. Examples are N267K13,14 in FnIII.1 and E514K14 in FnIII.3, which 

have been identified for X-linked KS patients. The N267K mutation leads to the loss of binding 

capability to FGFR, possibly due to changes in the protein conformation12,15. It is argued that the 

later alteration (E514K) increases the interactions with heparan sulfate due to the fact that the 

usual neutral or negative residues are now positively charged. Consequently, the electrostatic 

binding of the negatively charged heparan sulfate is promoted. Yet, as a result of this favored 

binding, Anosmin-1 seems to be more rigid and therefore moves less in the ECM than the 

wildtype protein3. Other mutations, like C172R and C163Y in the WAP domain have also been 

shown to hinder its activity. It is believed that the disruption of the disulfide core motif likely 

causes the destabilization of the protein10. These mutations have also been found in KS patients. 

Mutational studies have identified some common sites that affect the activity of Anosmin-1. 
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Still, little is known about the effects on the structure and function of the protein of these 

mutations10. 

FGF signaling 

The Fibroblast Growth Factor (FGF) signaling plays an essential role in a wide range of 

cellular responses, such as cell proliferation, migration and differentiation, but is also important 

for tissue repair and tumor genesis16,17. There are 22 human FGF analogues, ranging in size from 

17 – 34 kDa18. FGF has two types of molecules to interact with: on the one hand FGF binds to 

heparan sulfate. On the other hand it interacts with the five types of FGF Receptors (FGFR), an 

integral membrane protein consisting of a cytoplasmatic tyrosine kinase domain, a single 

transmembrane helix, and three extracellular immunoglobulin-like domains17,19. The binding of 

heparan sulfate of both FGF as well as FGFR is viewed as a necessary step for the modulation of 

cell activity. It has been reported that FGF interactions with the extracellular domain of its 

receptor induce the receptor tyrosine kinase and the intracellular signaling cascades that regulate 

various cellular processes8. This extracellular domain includes 3 immunoglobulin-like domains 

called D1-34. The areas of D2 and D3 are said to be the FGF ligand-binding site, while D2 can 

interact with both FGF and heparin4. Once bound to the receptor, receptor dimerization and 

autophosphorylation of certain tyrosine residues are triggered. Moreover, more signaling 

processes, such as the phosphoinosidtide 3-kinase, phospholipase Cy and the classic mitogen-

activated protein kinase are induced12. Important in this case is that FGFR activation can be 

controlled by the assembly of the extracellular signaling complex or by the intracellular signaling 

arrangement12. It has been shown that this is achieved by extracellular receptor modulators, for 

instance neuronal cell adhesion molecules, which are necessary for axon growth and neuronal 

migration12. 
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FGFR- Anosmin-1 connection – Regulation of FGFR 

Recent studies have indicated that in cases of a disrupted FGF signaling symptoms as in 

KS were observed.  Anosmin-1, the first molecule to be implicated in the development of X-

linked KS, is believed to interact with heparin and regulate the activation of the FGFR6,9. 

Extensive work has already been performed on the interaction of FGFR1 with heparin17. As 

mentioned earlier, the D2 domain of FGFR has the ability to bind heparin. Thus, it has been 

anticipated that it also can offer an interaction site for Anosmin-1. Hu et al suggested that certain 

domains in Anosmin-1, including the CR, the WAP, and the FnIII.1 domain, are able to directly 

interact with the FRFR and therefore might quite possibly play an active role in FGF signaling18. 

GST-pull down assays showed that individually WAP or FnIII.1 are reported to not bind to 

FGFR11. Nevertheless, in combination they interact with the receptor1. Choy and Kim 

demonstrated that Anosmin-1 binds directly to FGFR1 through the FnIII.1 domain20. In addition, 

both domains, WAP and FnIII.1, have been shown to interact with heparin6,9. Moreover, it was 

observed that when Anosmin-1 modulates the initiation of FGFR1 signaling, neurite outgrowth 

and cytoskeletal rearrangement in human embryonic GnRH olfactory neuroblasts was 

stimulated9,12. However, it is still questionable, whether Anosmin-1 acts as the antagonist to FGF 

or supports its function. It is also unclear how the complexes are formed. It has been shown that 

Anosmin-1, when interacting with heparin, assists FGFR in the binding of its ligands FGF and 

thus helps in the dimerization of the receptor via heparan sulfate, while when bound to FGFR 

Anosmin-1 prevents the complex formation of FGFR with its substrates12,18. 
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Rubredoxin from Pyrococcus furiosus  

Rubredoxin is a small iron-sulfur protein and is considered to be a hyperthermostable 

protein21,22,23. Its molecular weight is 7.2 kDa and auto-oxidizes in the presence of air23. 

Understanding its ability to keep its proper fold at temperatures when other proteins already are 

denatured has been a challenging task.  Hydrophobic packing interactions, van der Waals 

interactions, hydrogen bonding, and/or salt bridges have all been mentioned to be features that 

contribute to its thermostability22.    

 

Purification and Refolding of Proteins forming Inclusion Bodies 

The formation of inclusion bodies during expression is more likely with increasing 

molecular weight which in turn means higher complexity of its fold24 and has been considered 

unwanted in the effort of producing soluble recombinant proteins25,26. Inclusion bodies are 

attributed to impurities such as membranes, cell debris, membrane bound proteins and even still 

viable cells that can be found after cell lysis27.  These accumulations of insoluble proteins are not 

suitable for applications such as characterization and any attempts to refold the proteins present 

in the inclusion bodies are quite challenging. Still, several isolation strategies of those clusters of 

insoluble proteins have been published as inclusion bodies show certain advantages. It is said 

that there is less proteolytic degradation in the inclusion bodies so that the expression yields can 

be up to 30% higher than that for cellular proteins28.  

In the past, the traditional method of purifying protein trapped in inclusion bodies consisted 

of several steps. First, one separates the inclusion bodies from the cellular debris, which is 

mostly done through centrifugation after cell lysis. The next step is to solubilize the cleaned 

protein aggregates using chaotropic reagents such as urea, guanidine hydrochloride, or detergents 
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(i.e. SDS). In the following, the solubilized proteins are refolded by removing said reagents27. 

Both of those steps are very critical for a satisfactory recovery of the protein of interest. Finally, 

the refolded protein of interests needs to be purified from any other contaminants. 

More recently though new strategies have been proposed that focus on dilution, dialysis, or 

solid-phase separation as aggregation has become quite problematic27,29. The main idea is to 

physically separate partially folded protein in order to reduce intermolecular interactions and 

therefore decreasing aggregation. Dilution is especially used for the refolding of small-scale 

recombinant proteins. Even though it is problematic when trying to scale it up, it is still one of 

the most commonly used methods for refolding. 
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5.3. Materials and Methods 

5.3.1 Cloning, overexpression and purification of Anosmin-1 and its subdomains into different 

expression systems 

 

Cloning of His-Anosmin-1 and its subdomains in Pichia pastoris  

The purchased pPICZ(α)B-Anosmin-1 clone was single and double digested with EcoR1 

and Xba1 (NEB, New England Biolabs, MA) and the digestion products were separated on a 

0.8% Agarose gel (Sigma-Aldrich, MO). The internal EcoR1 site was mutated via site-directed 

mutagenesis (Agilent Quik Change II XL SDM Kit, Agilent Technologies, CA) to avoid 

digestion of EcoR1 within Anosmin-1 during the cloning of His-Anosmin. Then the N-terminal 

His-tag was introduced through PCR amplification using the Taq-Polymerase (NEB). The 5’ 

primer contains the nucleotide sequence for the His-tag. Both the PCR amplified insert and the 

vector were double digested with EcoR1 and Xba1 and ligated at a ratio of 1:8 (vector: insert). 

The clone was verified by colony PCR, single and double digestion with EcoR1 and Xba1, and 

gene sequencing. In the following, multiple constructs of shortened versions of the full-length 

Anosmin-1 were created by introducing Stop-codons via site-directed mutagenesis  (Agilent 

Quik Change II XL SDM Kit) creating the clones CR (HC), CR-WAP (HCW), CR-WAP-FnIII.1 

(HCWF1), CR-WAP-FnIII.3 (HCWF3). 

Growth curve of HSA and Overexpression of His- Anosmin-1 

Human Serum Albumin (HSA) was supplied as a control protein for the overexpression 

in Pichia pastoris (EasySelect Pichia Expression Kit, Invitrogen, life technologies, CA). It was 

expressed according to the provided protocol in BMGY/BMMY medium (Buffered media with 
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glycerol as carbon source during cell growth and methanol as carbon source during induction; 

EasySelect Pichia Expression Kit,). 

In order to transform Anosmin-1 or the other constructs in to the Pichia host strains 

(GS115, KM71H) the plasmid containing the DNA of interest was linearized via a single 

digestion with Pme1 (NEB). Then, it was transformed either via electroporation or via Kit 

“EasyComp” (Invitrogen, CA) and plated on YPDS-plates containing 100 μg/ml Zeocin 

(Invitrogen, CA). A single colony was expressed according to the provided protocol (EasySelect 

Pichia Expression Kit) in BMGY/BMMY.  

Subcloning and Overexpression of aB-CWF1 

The gene coding for CR, WAP, and FnIII.1 domain (CWF1) was amplified via PCR then 

both the amplified insert and the vector were double digested followed by ligation at a ratio of 

8:1 (insert: vector). As described before, the new clone was confirmed by gene sequencing and 

double digestion to release the insert, linearized with Pme1 and transformed into GS115 using 

electroporation.  The transformants were grown selectively on YPDS plates containing 100 

μg/ml Zeocin. Once colonies were formed, they were streaked out again on YPDS plates 

containing 100 μg/ml Zeocin to confirm their antibiotic resistance due to incorporation of our 

gene of interest. 

A single colony was then picked and inoculated in BMGY medium. After 2 days, the cell 

density was high enough, so that the cells were removed from the BMGY medium by 

centrifugation. The cells were resuspended in the induction medium BMMY containing 0.5% 

methanol upon the first induction, followed by 1% and 3% methanol for the subsequent 

inductions every 24 hours to maintain a constant expression pressure on the cells. Samples of 

broth, as well as pellet and supernatant after cell lysis were taken every 24 hours and run on a 
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Novex 4-20% Tris-Glycine mini gels (ThermoFisher Scientific, CA), followed by Western Blot. 

Furthermore, due to the large amount of samples, dot blots were performed in order to quickly 

spot check the samples and narrow down the samples used for Western Blot. 

 

Subcloning, Expression and Purification of Anosmin-1’s structural domains in E.coli 

 

WAP 

The vector pGEX-KG (GE Healthcare, MA) was used for the expression of WAP as a 

fusion protein with a N-terminal sequence coding for Glutathione S-transferase (GST). The 

affinity tag can be removed via thrombin cleavage (cleavage sequence Leu-Val-Pro-Arg-|| Gly-

Ser) to obtain the recombinant protein of interest. The gene coding for WAP was PCR amplified 

from the E.coli codon optimized human full-length Anosmin-1 (GeneArt, Life Technologies, 

CA). Both pGEX-KG and the PCR product were double digested with Nco1 and Xho1 and 

ligated using Ligase (NEB). The plasmid holding the recombinant protein was transformed into 

BL21 (DE3) competent cells. A single colony was picked and grown in 10 ml LB medium (100 

μg/ml Ampicillin) at 37 °C, 250 rpm, overnight. LB medium, containing ampicillin at the same 

concentration, was inoculated with 5% (v/v) overnight culture and induced with 1 mM IPTG for 

four hours once the OD600 had reached 0.6-0.8. The cells were harvested by centrifugation (20 

minutes, 4 °C, 6,000 rpm) and washed with 1x PBS (pH 7.2).  

A cell pellet from a 1 liter culture was resuspended in 20 ml 1x PBS (pH 7.2) and 

subjected to the French press for three passes at 1,000 psi pressure. After centrifugation of the 

lysate (20 minutes, 4 °C, 20,000 rpm) the supernatant was loaded onto the pre-equilibrated GSH-

Sepharose column. Subsequently, the column was washed with 1x PBS (pH 7.2) until the 

baseline was reached and the protein was cleaved on-column with thrombin. For complete 
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cleavage 1U of thrombin for every 0.2 mg fusion protein was used. The reaction mixture was 

incubated for 24 hours on the rocker at room temperature. After cleavage, the protein of interest 

was eluted in 1x PBS (pH 7.2) and concentrated using Millipore concentrators. The molecular 

weight of the protein is 7.4 kDa and its yield is approximately 4 mg per 1 liter culture. 

 

Rd-FnIII.1 

Both pGEX-KG-FnIII.1 and pET22b-Rd-D2 were double digested with BamH1 and 

Xho1 (NEB) to release FnIII.1 and D2 respectively. Antarctic Phosphatase removed the 5’ -

phosphate group of the gel extracted vector pET22b-Rd, and the FnIII.1 insert and the pET-22b-

Rd vector were ligated at a ratio of 3:1. To confirm the colonies as positive clones, the plasmid 

was double digested to release the newly inserted FnIII.1, checked using colony PCR, and the 

gene was sequenced. The plasmid holding the recombinant Rd-FnIII.1 was transformed into 

Rosetta competent cells. A single colony was picked and grown in 10 ml Terrific Broth medium 

(100 μg/ml Ampicillin and 100 μg/ml Chloramphenicol) overnight at 37° C, 250 rpm. TB 

medium, containing both antibiotics at the same concentration, was inoculated with 5% (v/v) 

overnight culture and grown at 32 °C, 250 rpm until the OD600 reached 0.5. Subsequently, the 

cultures were induced with 0.5 mM IPTG and incubated for 14 hours at 16 °C, 250 rpm. The 

cells were harvested by centrifugation (20 minutes, 4°C, 6,000 rpm) and washed with 1x PBS 

(pH 7.2).   

A cell pellet of a 1 liter culture was resuspended in 20 ml 1x PBS (pH 7.2) and subjected 

to the French press for four passes at 1,000 psi pressure, followed by 10 cycles of sonication. 

After centrifugation of the lysate (30 minutes, 4 °C, 18,000 rpm) the supernatant was loaded onto 

a pre-equilibrated Ni-NTA column. Then, the column was washed with 1x PBS (pH 7.2) until 
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the baseline was reached. An imidazole gradient, consisting of 20 mM, 50 mM, 100 mM, 250 

mM, and 500 mM was used to elute the protein of interest to purity. The molecular weight of Rd-

FnIII.1 is approximately 20 kDa. The purification protocol was monitored by SDS-PAGE as well 

as Western Blot, which utilized antibodies raised against the His-tag.  

 

Isolation and refolding of His-FnIII.1 from inclusion bodies 

 A cell pellet of 2 liter culture was resuspended by vortexing in 15ml 10 mM Phosphate 

buffer (PB buffer) and 100 mM NaCl (pH 7.2), sonicated, and centrifuged for 10 minutes at 

13,000 rpm. After discarding the supernatant, the previous steps were repeated with 5 ml 10 mM 

PB buffer (10 mM EDTA, 0.5% TritonX-100, pH 7.2), 5ml 10 mM PB buffer (1M NaCl, pH 

7.2), 5 ml 10 mM PB buffer (2 M urea), and finally 5 ml 10mM PB buffer (1% sodium lauroyl 

sarcosinate). Subsequently, the pellet was resuspended in 3 ml solution buffer (50 mM Tris 

buffer, 25% sucrose, 1 mM EDTA, 0.1% sodium azide, 10 mM DTT), sonicated, and lysozyme 

(0.4 mg per ml solution buffer) and magnesium chloride (final concentration 2 mM) were added. 

In the following, 3 ml of lysis buffer (50 mM Tris buffer, 1% TritonX-100, 1% deoxycholate, 

100 mM NaCl, 0.1% sodium azide, 10 mM DTT) were added, and incubated for 30 minutes at 

room temperature. EDTA (final concentration 7 mM) was pipetted to the mix, flash frozen in 

liquid nitrogen, and thawed for 30 minutes at 37 °C. More magnesium chloride (final 

concentration 1 mM) and EDTA (final concentration 7 mM) were added to the mixture, 

incubated for 30 minutes at room temperature, and then centrifuged for 15 minutes at 13,000 

rpm. Finally, the newly formed pellet was washed twice with wash buffer (50 mM Tris buffer, 

100 mM NaCl, 1 mM EDTA, 0.1% sodium azide, 1 mM DTT). For the first round of washing, 

0.5% of TritonX-100 was also added to the buffer. 
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5.3.2 Identification and Characterization of the Heparin-Binding regions in Anosmin-1 

 

Binding affinity of the WAP domain to Heparin 

The binding affinity of the WAP domain to heparin was observed and measured by 

Isothermal Titration Calorimetry using the ITC-200 (Microcal Inc, MA). The experiments were 

conducted at room temperature, at a protein concentration of 100 μM vs. 2 mM heparin in the 

presence and absence of 500mM NaCl. WAP was dialyzed against 1× PBS pH 7.2. Samples 

were centrifuged to remove any aggregated or precipitated protein and were degassed before the 

titration. Heparin was added sequentially in 1.3μL aliquots to WAP with a 12-s interval between 

injections. The heats of reaction per injection (μcalories/s) were determined by the integration of 

peak areas by the Origin Version 7.0 software. The dissociation constant Kd was derived after 

fitting the data using a one-site of binding model.  

 

Studies on the Structure of the WAP domain of Anosmin-1 

 

Secondary Structure of the WAP domain 

Left and right polarized light are differentially absorbed due to optically active chiral 

molecules giving insight in the secondary structurural changes of the WAP domain upon binding 

to heparin. 145 μM WAP in 1x PBS (pH 7.2) were analyzed in the presence and absence of 5 

mM DTT or 725 μM heparin in a far-UV CD spectrum under standard sensitivity mode. 10 

accumulations of each sample were acquired at room temperature, a path length of 0.2 mm and a 

scan speed of 50 nm/min and averaged. The spectra were corrected by subtracted buffer blanks 

and plotted as molar ellipticity. 
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HSQC of the WAP domain  

In order to elucidate the 3D solution structure of the WAP domain at atomic resolution 

NMR experiments were performed on the Bruker 500MHz spectrometer, which is equipped with 

a cryo-probe. GST-WAP was expressed in 15N enriched M9 minimal media and the protein of 

interest was purified to homogeneity.  The 1H-15N HSQC was acquired of a 0.5 mM WAP 

sample and gives the fingerprint of the backbone conformation of the protein of interest. 

 

Studies on the Stability of the WAP domain of Anosmin-1 

 

Thermodynamic Stability of the WAP domain 

Heat capacities of the WAP domain were measured during the thermal denaturation using 

the NANO DSCIII in order to understand the stabilization of WAP in the presence and absence 

of heparin. WAP was dialyzed against 1x PBS (pH 7.2), centrifuged to remove any aggregated or 

precipitated protein, and degassed before the obtaining the DSC data. The scans were performed 

at a ramping temperature of 1 C/min from 15-80 °C. The concentration of WAP was 1 mg/ml. 

 

Limited Trypsin Digestion of the WAP domain in presence and absence of heparin 

In this experiment changes in the stability of WAP upon binding to heparin were 

explored. It was conducted at a protein concentration of 15 μM in the presence or absence of 150 

μM heparin. Moreover, 0.01mg/ml of trypsin were used and its digestion over 20 minutes was 

monitored via SDS-PAGE.   
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5.4. Results and Discussion 

5.4.1 Cloning, overexpression and purification of Anosmin-1 and its subdomains into different 

expression systems 

 

Cloning of His-Anosmin and combinations of its subdomains in Pichia pastoris 

 

In figure 3, the purchased pPICZ(α)B-Anosmin-1 clone was 

single and double digested with EcoR1 and Xba1 in order to confirm its 

authenticity. Lane 1 shows the undigested sample. The characteristic 

bands for the supercoiled plasmid can be seen. In Lane 2 Anosmin was 

incubated with EcoR1. We only expected the linearized band. However, 

this lane shows that the internal EcoR1 site was not mutated, giving 

us an 800 bp band and a 4.5 kb band. Lane 3 depicts the almost 

completely linearized sample with Xba1. Double Digestion with 

EcoR1 and Xba1 was performed for the sample in lane 4. Again, we 

can see the vector band at 3.5 kb, and the released insert, which is 

digested due to its internal EcoR1 site giving us the 1200 bp and 800 bp bands. Other ways to 

establish the authenticity of the clones can be done by transformation and expression. For one, 

colony PCR should show the 2 kb band of the insert and Western Blot can specifically display 

the protein bands due to their His-tag.  

In Figure 4, the SDS-PAGE and Western Blot of the expression of Anosmin-1 is 

depicted. Even though this is the secretory clone, the protein of interest seems to be detected in 

Figure 17 Single and 

Double Digestion of 

Anosmin. Lane 1 

undigested, Lane 2 

digested with EcoR1, 

Lane 3 digested with 

Xba, Lane 4 double 

digested 



120 

 

the pellet. Moreover, it does not show the expected molecular weight. The reason for this 

observation could be that the protein is already degraded and only the part with the His-tag is 

detected. Therefore, expression conditions need to be optimized.  

 

For the sub-cloning, a N-terminal His-tag was introduced for purification purposes. 

Authenticity of this clone was verified by colony PCR.  The amplified product with its expected 

size of 2 kb can be observed in lane 4 and 6 of Figure 5. 

 

 

 

 

 

 

 

 

Figure 18 SDS-PAGE (left) and Western Blot (right) of pPICZ(a)B-Anosmin in 

KM71H. Lane 1 positive control, Lane 2 pellet after cell lysis, Lane 3 supernatant after 

lysis, Lane 4 prestained protein marker 

Figure 20 Single and Double Digestion of 

pPICZaB-His-Anosmin. Lane 1 1kb Ladder, Lane 

2 undigested, Lane 3 and 4 Single digestion with 

EcoR1 or Xba respectively, Lane 5 double 

digestion with EcoR1 and Xba 

 

Figure 19 Colony PCR of His-

Anosmin; Lane 1 1kb ladder, Lane 

2 neg. control, Lane 3 pos. control, 

Lane 4-7 colony 1-4 



121 

 

 In addition, the new clone was subjected to single and double digestion (Figure 6). Lane 

2 depicts the undigested plasmid containing His-Anosmin-1. The characteristic bands for the 

supercoiled plasmid can be seen. In lanes 3 and 4 the plasmid was single digested with EcoR1 

and Xba respectively. The bands in lane 3 and 4 migrate at their expected size of 5.6 kb (vector: 

3.6 kb, inserted gene: 2 kb). Lane 5 shows the bands of the double digestion with EcoR1 and 

Xba, with a vector band detected at 3.6kb and the released insert at 2kb.  

In the following, site directed mutagenesis was performed to introduce a stop codon, 

shortening the full-length protein from the back. The following clones were created in pPICZaB: 

 His-CR (HC) 

 His-CR-WAP (HCW) 

 His-CR-WAP-FnIII.1 (HCWF1) 

 His-CR-WAP-FnIII.3 (HCWF3) 

 

Again, the new clones were confirmed by sequencing. All constructs and the full-length 

protein were transformed into the yeast strain GS115, which requires linearization of the plasmid 

by PmeI (Figure 8). After transformation into the yeast host, their integration into the 

chromosomal DNA was verified by colony PCR. For this purpose, the genomic DNA of the 

yeast colonies was isolated using the ZymoResearch YeaStar Genomic DNA Kit. All constructs 

and the full-length protein were confirmed. The expected size of the amplified product for each 

clone, using the provided AOX primers, is 2 kb (Figure 7). In case of the positive control, the 

genomic DNA of the control protein HSA was isolated and subjected to PCR, giving an intense 

band at the expected size of 2.1kb.  
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Growth curve of HSA and Overexpression of His- Anosmin-1 

 

Based on this result, the media was changed to the induction medium after 16-17 hours of 

incubation during its exponential growth phase (Figure 9). In Figure 10 is the expression of the 

control strain Human Serum Albumin (HSA) pictured. HSA has a molecular weight of 66 kDa. 

Being a secreted protein it was, as expected, detected with good yield in the broth (Figure 10, 

lane 2). Important for this expression is aeration, which can be achieved with baffled flasks. 

During induction, 0.5% Methanol was added every 24 hours, creating a stress on the cells. As a 

consequence, the promoter of AOX (alcohol oxidase) was induced and the gene coding for the 

protein of interest, which was integrated after the AOX promoter, is translated, and due to its 

signal sequence was secreted into the broth.  

Figure 21 Colony PCR of His-Anosmin 

in GS115; Lane 1 neg. control, Lane 2 

pos. control HSA, Lane 3 His-Anosmin 

GS115, Lane 4 1kb ladder 

Figure 8 Single Digestion with Pme. 

Lane 1 undigested, Lane 2 single 

digestion with Pme, Lane 3 1kb ladder 
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Figure 9 Growth Curve of HCWF1 in GS115 

 

 

The secreted (Figure 11, lane 4-6) and 

the intracellular (Figure 11, lane 2/3) clones 

of Anosmin-1 were expressed. Both hosts, 

GS115 and KM71H were examined. The 

advantage with the later cell line is that in 

this strain the gene, coding for AOX, was 

genetically disrupted. Both AOX, a 

homooctomeric protein with 8 80 kDa 

subunits, and Anosmin-1 (~74 kDa) have 

about the same molecular weight. This posed 

to be difficult to see Anosmin-1 in GS115.  
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Figure 11 SDS-PAGEs showing the 

overexpression of Anosmin-1. Lane1 protein 

marker, Lane2 pellet after lysis, Lane3 

supernatant after lysis, Lane4 supernatant after 

lysis, Lane5 pellet after lysis, Lane6 broth 

 

Figure 10 10% SDS-PAGE of expression of 

HSA. Lane 1 prestained protein marker, 

Lane 2 broth, Lane 3 or 4 pellet or 

supernatant after cell lysis respectively 
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Subcloning and overexpression of aB-CWF1 

Due to the problems with the full length Anosmin-1 expression, we chose to focus on the 

combination of CR-WAP-FnIII.1. It has been sown that these domains are crucial for Anosmin-

1’s biological activity14,20. However, the N-terminal His-tag might be problematic during 

transformation or secretion. Therefore, CR-WAP-FnII.1 was subcloned without said N-terminal 

tag that was introduced at the beginning (Figure 12 and 13). Moreover, the empty vector 

pPICZaB and the control protein prolactin, which was already been shown to express in Pichia 

pastoris, were also transformed and expressed. 

 

   

 

Even though the control protein prolactin was expressed after 24 and 48 hours (Figure 14, 

Lane 2 and 3) and could be confirmed by Western Blot and Dot blot against both cmyc epitope 

and His-tag (Figure 15), the protein of interest could not be detected using those same expression 

conditions.  

Figure 12 PCR amplification 

of aB-CWF1. From left to 

right: 1kb DNA ladder, PCR 

product, 100bp ladder, plasmid 

pPICZaB 

Figure 13 Double Digestion of 

transformants to check to positive clones. 

From left to right: 1kb ladder, undigested 

pPICZaB, undigested transformant, double 

digested transformant 
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Subcloning, expression and purification of the individual WAP and FnIII.1 domain in E.coli 

 

Overexpression and purification of the WAP domain  

Of all the recombinant constructs only the WAP domain expressed in the soluble fraction 

in E.coli. In figure 16 a 15% SDS-PAGE of the overexpression of the protein of interest is 

shown. The WAP domain was successfully overexpressed (Figure 16, lane3). Its expected 

molecular weight is about 33kDa, which combines the GST-tag (26kDa) and WAP (7kDa). Lane 

5 depicts that after cell lysis, the protein is mainly found in its soluble form in the supernatant. 

The fusion protein was purified to homogeneity (Figure 17, lane3) and completely cleaved by 

thrombin. After on-column cleavage, WAP eluted in the flow through (lane7) yielding 

approximately 4 mg of the 7 kDa protein of interest per 1 liter culture.  

Figure 14 SDS-PAGE of Overexpression of 

control protein prolactin and empty vector 

pPICZaB. Lane1 Prolactin 0 hr, Lane2 Prolactin 

24 hr, Lane3 Prolactin 48 hr, Lane4 Prolactin 72 

hr, Lane5 prestained protein marker, Lane6 

pPICZaB 0 hr, Lane7 pPICZaB 24 hr, Lane8 

pPICZaB 48 hr, Lane9 pPICZaB 72 hr 

Figure 15 Dot Blot against His-tag: 

left pos. control His-Rd-FnIII.1, right 

Prolactin broth 48hr 
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Cloning of Rd-FnIII.1 

Due to its tendency to form inclusion bodies when expressed in E.coli an attempt was made 

to clone FnIII.1 as a fusion protein with His-tagged Rubredoxin (Rd). Rd has a molecular weight 

of 7.2 kDa and is known to be able to keep its native fold at extreme temperatures. It is expected 

to extend its thermostability to the protein of interest by stabilizing FnIII.1 in the soluble fraction 

for subsequent purification. 

Both pGEX-KG-FnIII.1 and pET22b-Rd-D2 were double digested with BamHI and Xho 

to release FnIII.1 and D2 respectively. FnIII.1 with the size of 315 bp and pET22b-Rd, 5.6 kb, 

were excised (Figure 18), ligated, and transformed into DH5α competent cells. Both colonies 

were analyzed by double digestion of their plasmid DNA and show vector and insert bands at the 

expected sizes, 5.6 kb and 315 bp respectively (Figure 19). In case of the colony PCR 

experiment, the T7 promoter and terminator were used. Therefore, the positive controls Rd-D2 

(Figure 20, lane 3) are expected to migrate with a size of 600 bp and Rd-FGF (Figure 20, lane 4) 

Figure 16 Lane1 Pre-stained 

proteinmarker, Lane2 uninduced, 

Lane3 induced, Lane4 pellet after 

Lysis, Lane5 supernatant after lysis 

Figure 17 Lane1 supernatant, Lane2 flow 

through, Lane3 fusion protein, Lane4 

cleaved fusion protein, Lane5 pre-stained 

protein marker, Lane6 empty, Lane7 on-

column cleaved WAP 
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with 300 bp. The two colonies, which were analyzed via double digestion (Figure 20, lane 5 and 

6), show the expected size of 715bp. Therefore, they were confirmed to be positive clones.  

     

Figure 20 Colony PCR to verify Rd-

FnIII.1 clones. Lane1 1kb ladder, 

Lane2 neg. control, Lane3 and 4 pos. 

controls, Lane 5 and 6 colony 1and 2 

  

 

 

The purification procedure was monitored by SDS-PAGE (Figure 21A) and the protein of 

interest was detected by Western Blotting using antibodies against the His-tag (Figure 21B). A 

portion of the expressed Rd-FnII.1 is found in the soluble fraction after cell lysis (Figure 21B, 

lane 3). Significant amount of protein is still found in the pellet (Figure 21B, lane 2). The target 

protein mainly elutes at an imidazole concentration of 250 mM and is also detected in the 500 

mM fraction (Figure 21B, lane 8 and 9). Nevertheless, some protein is lost as it precipitates on 

the column and therefore elutes with guanidine hydrochloride (Figure 21B, lane 10). Moreover, 

the SDS-PAGE shows that both the 250 mM as well as the 500 mM imidazole fraction do not 

contain pure protein, but have high molecular contaminants. This can be due to inappropriate 

buffer conditions and pH differences in the elution buffers. Moreover, the yield of Rd-FnIII.1 is 

Figure 18 Double 

digestion products of 

pGEX-KG-FnIII.1 

(Lane1) and pET-22b-

Rd-D2 (Lane2) 

Figure 19 Double 

digestion of colonies 

to verify authenticity 

of Rd-FnIII.1  
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still considerably low. Careful cell lysis is imperative in order to keep the majority of the protein 

of interest in the solution.  

 

Figure 21 Panel A) SDS-PAGE depicting the purification of His-Rd-FnIII.1 and Panel B) 

corresponding Western Blot; Lane1 positive control for Western Blot, Lane2 pellet after lysis, 

Lane3 supernatant after lysis, Lane4 flow through, Lane5 20 mM imidazole, Lane6 50 mM 

imidazole, Lane7 100 mM imidazole, Lane8 250 mM imidazole, Lane9 500 mM imidazole, 

Lane10 6M GdnHCl 

 

Isolation and refolding of FnIII.1 from inclusion bodies 

Due to poor yields using the Rd-FnII.1 clone, a protocol was 

optimized using a combination of three approaches: cleaning, 

solubilizing, and refolding of inclusion bodies. Firstly, the inclusion 

bodies were isolated and solubilized from cell debris and other 

contaminating proteins using various buffers containing either 

chaotropic reagents or detergents. To further isolate FnIII.1, the 

inclusion bodies are treated with deoxycholate (Figure 22, lane 2) 

and then refolded via flash dilution (ratio 1:10) into a refolding 

buffer containing both oxidized and reduced glutathione (Figure 

22, lane 4). Figure 22 depicts the SDS-PAGE monitoring the 

A
1       2       3      4        5      6       7      8       9     10              1      2     3     4        5      6      7      8      9   

B

Figure 22 SDS-PAGE 

depicting the isolation and 

refolding of FnIII.1. Lane1 

prestained protein marker, 

Lane2 pellet post 

deoxycholate cleaning, 

Lane3 pellet after refolding, 

Lane4 supernatant post 

refolding 
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procedure that was optimized to clean, solubilize, and refold FnIII.1. The bands in lane 3 and 4 

appear to be clean isolated protein. As both the bands move very close to the expected molecular 

weight of FnIII.1, a Western Blot was performed identifying both bands as the target protein. 

FnIII.1 is also present in the pellet lane 3. Probably one can make further attempts in the future to 

refold this protein by further diluting to avoid aggregation and consequently increasing the yield.  
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5.4.2 Identification and Characterization of the Heparin-Binding regions in Anosmin-1 

 

It has been reported that Anosmin-1, especially its FnIII.1 domain and WAP domain, 

bind to heparin. A more detailed characterization in terms of stability, structure, and functionality 

is presented on the WAP domain. 

 

Binding affinity of the WAP domain to Heparin 

The binding affinity of the WAP domain to heparin was observed and measured by ITC. 

Moderate binding affinity of WAP to heparin was detected, with a Kd value of 590 μM. 

Moreover, it was revealed that binding disappeared in the presence of 500 mM NaCl, confirming 

that the interaction of WAP with Heparin is of electrostatic nature (Figure 23). 

 

  

Figure 23 ITC Profiles of 0.1 mM WAP vs. 2 mM Heparin in the absence (left) and presence 

(right) of 500 mM NaCl 

 

Studies on the Structure of the WAP domain of Anosmin-1 

 

Secondary Structure of the WAP domain 

Circular Dichroism was employed in order to investigate the secondary structure and 

possible structural changes in the protein upon binding to its interaction partner. As one can 
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observe in Figure 24, WAP’s far UV spectrum displays a minimum at 205 nm and therefore 

exhibits a mix of secondary structural motifs characteristic for a random coil and α-helix.  Upon 

binding to heparin, the target protein’s far UV spectrum shifts. The minimum is now observed at 

209 nm, concluding the WAP gains α-helical character when interacting with heparin. Moreover, 

the addition of the strong reducing agent DTT (dithiolthreitol) disturbs the network of disulfide 

bonds, upon which WAP’s structure transitions to a random coil. This was detected by the shift 

of the minimum to 200 nm, even further than was shown for apo WAP. This implies that these 

disulfide bonds are important to maintain the structure of the protein.  

 

 

Figure 24 Far-UV CD Spectra of WAP in the presence and absence of 5 mM DTT or heparin 

 

3D solution structure of the WAP domain  

Multidimensional nuclear magnetic resonance spectroscopy (NMR) is a useful technique 

to elucidate the 3D solution structure and backbone dynamics at atomic resolution. Figure 25 

depicts the 1H-15N HSQC spectrum of WAP. The cross-peaks are spread-out and well dispersed 

indicating that the WAP domain is structured. Nevertheless, there are more peaks visible than the 

protein of interest has residues. As each peak represents one residue in a particular backbone 
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conformation of WAP, this observation suggests the there are multiple populations of WAP are 

present in the analyzed sample. Moreover, the possibility of contaminants can be ruled out as the 

SDS-PAGE confirmed a pure preparation of the WAP-sample. 

 

 

Figure 25 1H-15N HSQC spectrum of 0.5 mMWAP 
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Studies on the Stability of the WAP domain of Anosmin-1 

 

DSC experiments are able to measure and compare the thermal stability of the WAP 

domain in the presence and absence of heparin. The 

profiles in Figure 26 depict the melting temperatures 

(Tm), the temperature at which 50% of the protein 

population exits in its folded conformation while the 

rest is unfolded, of apo WAP and heparin bound 

WAP. WAP is only marginally stabilized in the 

presence of heparin, which can be observed in the 

slight increased Tm of 3 °C. 

The serine protease trypsin cleaves the peptide bond at the carboxyl side of the amino 

acids lysine and arginine. As indicated by the performed ITC experiments, WAP’s interaction 

with heparin is of electrostatic nature. Therefore, the positively charged residues arginine and 

lysine of WAP are assumed to bind to the 

negatively charged heparin. Consequently, 

they are masked by heparin and protected 

from the proteolytic degradation by trypsin. 

As expected, heparin shields the trypsin 

digestion sites resulting in a faster digestion of 

WAP in the absence of heparin than in its 

presence (Figure 27).

Figure 26 DSC Profiles of WAP in the 

presence and absence of heparin 

Figure 27 Limited Trypsin Digestion of WAP 

in the presence and absence of heparin 
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5.5. Conclusion 

Unfortunately, the heterologous expression of full-length Anosmin-1 as well as it 

shortened constructs in Pichia pastoris was unsuccessful. A potential pitfall in the method could 

be that it is not known, if the linearized DNA encoding for Anosmin-1 was integrated into the 

yeast genome. Even though colonies grew upon antibiotic selection pressure, it only confirms the 

presence of the plasmid in the cell. Furthermore, PCR experiments with gene specific primers for 

Anosmin-1 showed amplification, which confirms the presence of the DNA in the cell. In order 

to shed light on the question of proper incorporation of the gene of interest into the host genome, 

PCR experiments with primers that anneal up- and downstream of the Anosmin-1 gene within 

the yeast genome need to be performed. 

 In another attempt, collaborators at the Department of Plant Science, University of 

Arkansas, explored the possibility of expressing Anosmin-1 in tobacco plants. Again, the 

transient expression of the protein of interest was unsuccessful due to cloning issues. Although 

Anosmin-1 was cloned into the E.coli vector, the agro bacterium rejected the DNA. Possible 

reasons could be RNA or protein impurities, unfavorable secondary structures within the foreign 

plasmid DNA, or the growth phase of the competent agrobacterium cells that were prepared for 

electroporation30,31.  

 Expression in mammalian cells could be the solution for the production of full-length 

Anosmin-1. Studies performed in the past employed Chinese Hamster ovary (CHO) cells13, D2 

Schneider cells32 that both only yielded little amounts of protein (μg quantities). Therefore, the 

human embryonic kidney cell line HEK293, which has been shown to be a suitable expression 

host due to more effective transfection rates and high protein yields, might be the appropriate 

host for subsequent characterization studies33.  
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