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Abstract 

 Affinity agents increase microdialysis protein relative recovery, yet they have not seen 

widespread use within the microdialysis community due to their additional instrumentation 

requirements and prohibitive cost. This dissertation describes new affinity agents for 

microdialysis that require no additional instrumentation to use, have nearly 100% particle 

recovery, are 7 times more cost efficient than alternatives, and have low specificity enabling their 

use for a wide variety of proteins. Initially gold nanoparticles were chosen as an affinity ligand 

support due to their high surface area/volume ratio and colloidal stability. Poly (N-

isopropylacrylamide) was immobilized to the gold nanoparticles, which served to sterically 

stabilize the particles and to act as a generic, reversible protein capture agent. A method was 

developed to reproducibly vary and quantify poly (N-isopropylacrylamide) graft density from 

0.09 to 0.40 ligands/nm2 on gold nanoparticles. During characterization of the polymer coated 

gold nanoparticles, irreversible particle agglomeration was observed at low polymer graft density 

in ionic solutions, which prevented further development as a protein capture agent. Poly (N-

isopropylacrylamide) nanogels, which have low nonspecific adsorption, low interparticle 

attractive forces owing to the low curvature of the particle, and a low Hamaker constant, were 

synthesized to overcome the agglomeration problem. A generic protein affinity ligand cibacron 

blue, was immobilized to the nanogels, which enabled rapid determination of particle recovery. 

The perfusion of the nanogels through a microdialysis probe was optimized yielding ~ 100% 

particle recovery using a combination of a syringe and peristaltic pump. The microdialysis 

collection efficiency of CCL2, a physiologically relevant cytokine, was increased 3-fold with 

addition of the nanogel to the microdialysis perfusion fluid. The reduction in instrumentation 



requirements, low cost, and low specificity obtained with the new affinity agents will lead to 

increased affinity agent use for microdiaylsis protein sampling. 
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Chapter 1 Introduction 

 

 

Cytokines and cytokine quantification 

 

Cytokines are signaling proteins with a molecular weight ranging from 7 to 80 kDa. 

Cytokines are produced within the cytoplasm of, basophils, eosinophils, lymphocytes, 

macrophages, and neutrophils.1-3 Cytokines are responsible for a wide range of cell 

communication such as regulating inflammation, and directing wound healing processes.4-8 Once 

produced, cytokines are excreted into the extracellular space (ECS). They initiate a signaling 

response by binding their respective cell-surface receptor, where the binding can stimulate the 

release of other cytokines, or stymie cytokine production in a complex network of interactions 

with other cytokines which can be additive, synergistic or antagonistic.9, 10 Cytokines can interact 

with the cells that secreted them (autocrine), the surrounding cells (paracrine), distant cells 

(endocrine), or remain bound to the cell (juxtacrine).11 An imbalance in cytokine concentrations 

is related to various inflammatory disease states such as arthritis, obesity, anxiety disorders and 

are commonly used as biomarkers for inflammation.12-14    

 Cytokines are potent molecules that exist at pM concentrations in the ECS.15, 16 Changes 

in cytokine concentration are indicative of changes in disease state, or a wound response.17-20 

Sensitive analytical methods with a low limit of detection are required to study cytokine 

concentration changes as it relates to disease state or wound healing.21 Optimally one would 

desire an assay with a low limit of detection (LOD), minimal sample volume requirements, low 

cost, low variance, high specificity, high reliability, high sensitivity and high throughput. 

Additionally, the ability to measure multiple cytokines within a single analysis as desired, as it 

enables the study of the complex network of cytokines and how they interact. These idealistic 
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traits would allow for an intricate study of the cytokine network, however no one technique to 

date allows for all. Commonly used methods to detect cytokine protein concentration include; 

bioassay, enzyme linked immunosorbent assay (ELISA), and the bead array. 

Cytokine bioassays allow for the quantification of biologically active protein. This is 

done by monitoring the proliferation/inhibition of cells due to cytokines,22 cytokine induced 

killing of cells,23 and cytokine stimulated production of other cytokines.24 As the bioassays are 

cell-culture based, they suffer from high variance with up to a 100% coefficient of variation 

(CV%) for inter-assay precision.25 Additionally, the lengthy time to culture cells impede high-

throughput analysis. 

 A routinely used method for quantifying cytokines is the sandwich ELISA. An ELISA 

relies on the immobilization of a specific capture antibody to the wells of a well plate. Protein 

from sample is captured by the immobilized antibody, while unretained material is washed away. 

An enzyme is attached to the complex through the addition of secondary antibody which 

recognizes a different epitope than the capture antibody. Detection is performed by adding the 

enzyme substrate to produce a signal which is proportional to the captured cytokine 

concentration. ELISAs are specific as they rely on the antigen-antibody specificity, have a wide 

analytical range (10 pg/mL to ng/mL), have excellent precision with coefficients of variation 

between 5-10%.26 However, ELISAs have a 50-100 µL volume requirement, take 6 hr to perform 

and do not allow for multiplexing. 

A bead array relies on similar principles as an ELISA, yet allows for multiplexing. This is 

accomplished using polymeric particles with immobilized antibodies. Different particles have a 

different immobilized capture antibody and the particles can be differentiated based on their size 

and ratio of two internally embedded fluorescent dyes. The signal from beads with different 
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capture antibodies can be distinguished by determining which particle group signal originates 

from. The bead arrays have a LOD in the pg/mL range, and require ~25 µL/mL sample 

volume.27 The commercially available kits are costly, ~10 times the price of an ELISA. A 

limitation with bead arrays is their CV,28, 29 with a reported inter- and intra- assay CV% 

exceeding 50% and 30% respectively.30 The CV is defined as the standard deviation over the 

mean. 

 

Microdialysis sampling  

 

Microdialysis is a diffusion-based sampling technique which allows for the continuous 

sampling from the ECS. Microdialysis relies on the implantation of a semi-permeable probe 

which is typically 0.5 mm outer diameter (O.D.) with a 1-10 mm membrane. The probe has a 

solution that enters the probe (perfusate), diffusion of analyte occurs across a semi-permeable 

membrane, and analyte containing fluid exits the probe (dialysate), as seen in Figure 1.1. 

Figure 1.1 Diagram of a microdialysis probe. Diffusion occurs through the water 

filled pores of the semi-permeable membrane. 
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Analytes that can diffuse through the water filled pores in the membrane are carried to the outlet 

of the probe. Once collected, analytes are detected with various on-line or off-line techniques.31-

34 The membrane rejects cells and high concentrations of abundant proteins from entering the 

dialysate, yielding an analytically clean sample that can be analyzed with minimal sample 

pretreatment. 

 Commercially available probe membranes are derived from kidney dialysis membrane. 

The molecular weight cutoff (MWCO) of these membranes describes the approximate mass at 

which 90% of analytes are rejected from traversing the membrane.35 However, the MWCO is 

determined by an equilibrium experiment where typically the perfusion fluid is continually 

recycled and perfused. Microdialysis sampling itself is not an equilibrium sampling technique, 

the perfusion fluid flows along the membrane a single time before collection.  

Microdialysis is routinely applied in vivo to a wide range of tissues including, brain,36 

spine,37 skin,38 eye,39 kidney,40 and is used in a diverse range of species, such as plants.41 The 

widespread use of microdialysis is driven from key advantages it has over comparable 

techniques. Microdialysis allows for continuous sampling from a single animal enabling local 

concentration changes to be studied for days.42 Microdialysis can be used to locally deliver drug 

while sampling.43, 44 Additionally, two probes, a control and drug delivering probe, may be 

implanted laterally within a single animal. The use of repeated measurements from a single 

animal, and implantation of both control and treatment probes within a single animal decreases 

animal use and minimizes experimental variance.45 Microdialysis requires minimal 

instrumentation, typically only requiring a syringe pump, probe, and tubing. Microdialysis has a 

temporal resolution on the minute to hour time scale, determined by the detection method 
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requirements.46-48 The spatial resolution of microdialysis sampling is limited by the size of the 

probe, which is typically 0.5 mm O.D. 

While initially developed as a technique to study small hydrophilic neurotransmitters, 

microdialysis has a growing interest in being applied to study peptides and proteins49-61. The 

interest in using microdialysis to sample these molecules is due to the inherent advantages 

microdialysis has, such as drug delivery with simultaneous sampling, and observing local 

concentration changes over time for a wide variety of analytes. Local drug delivery to the brain 

enables a broad class of drugs to be studied that normally do not cross the blood brain barrier.62, 

63 Quist et al. recently used microdialysis with a multiplexed analysis to study the kinetic profile 

of 15 cytokines following UV exposure to identify two separate cell recruitment phases involved 

in the wound healing process.64 Portnow et al. recently used a 100 kDa 10 mm membrane 

microdialysis probe to study the effect an anti-cancer drug has on 30 different cytokine 

concentrations peritumoral.65 Only 17 of the 30 cytokines were above the limit of detection in 

dialysate.  

 

Challenges for microdialysis sampling of cytokines 

 

The concentration of analyte collected with microdialysis is always lower than then ECS 

concentration, and the collection efficiency is quantified by the extraction efficiency (EE) as 

outlined in Eq. 1.1. 

𝑬𝑬 =
𝑪𝒅−𝑪𝒊

𝑪𝒐−𝑪𝒊
    Eq. 1.1 

Where Cd, Co, Ci represents the concentration of the analyte in the dialysate, the sampling 

medium, and the perfusion fluid, respectively. When no analyte is perfused the extraction 
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efficiency is termed the relative recovery (RR) and is the ratio of analyte concentration in the 

dialysate and in the sampling medium. 

Bungay et al. have developed a model to predict in vitro RR for microdialysis at steady 

state, as is seen in Eq 1.2-1.5.66 In this model, the RR is inversely proportional to the multiple of 

the volumetric flow rate of the perfusate (Qd) and the sum of the mass transport resistances the 

analyte crosses, namely the dialysate (Rd) , membrane (Rm), and the external sampling medium 

(Re). Figure 1.2 displays the regions and terms used in this model. 

𝑹𝑹 = 𝟏 − 𝐞𝐱𝐩(−
𝟏

𝑸𝒅(𝑹𝒅+𝑹𝒎+𝑹𝒆
) Eq. 1.2 

𝑹𝒅 =
𝟏𝟑(𝒓𝜷−𝒓𝜶)

𝟕𝟎𝝅𝑳𝒓𝜷𝑫𝒅
   Eq. 1.3 

𝑹𝒎 =
𝐥𝐧(

𝒓𝒐
𝒓𝜷
)

𝟐𝝅𝑳𝑫𝒎𝒆𝒎𝝋𝒎
   Eq. 1.4 

𝑹𝒆 =
𝟏

𝟐𝝅𝑫𝒆𝝋𝒆√𝟐𝒓𝒐𝑳
   Eq. 1.5 

Where rα, rβ, and ro are radius of the outer cannula, inner membrane, and outer membrane 

are respectively. L is the effective membrane length, Dd is the analyte diffusion coefficient in the 

dialysate, Dmem is the analyte diffusion coefficient through the membrane, De is the analyte 

diffusion coefficient through the external sampling medium, ϕm is the volume fraction of the 

membrane accessible to water, and ϕe is the volume fraction in the external sampling medium. 

One can increase the RR by decreasing the flow rate which increase the residence time, or 

reducing the resistance terms. Experimentally one can reduce the resistance terms by stirring the 

sampling medium (which minimizes the concentration boundary layer external the probe), 

increasing the membrane length, or increasing the pore size of the membrane. The dependence 

on RR with flow rate, and membrane length is displayed in Figure 1.3 in which a 10 kDa 
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dextran was sampled from a well stirred solution using a 100 kDa MWCO PES probe with a 4 or 

10 mm membrane. 

 

Microdialysis was initially pioneered as a method to sample small hydrophilic molecules 

such as amino acids, monoamines, and neuropeptides which have a RR of 30-40%, 22-30% and 

1.5-24% respectively using a 20 kDa MWCO 4 mm membrane at 2 µL/min.67 However when 

used for sampling macromolecules, a decrease in RR occurs. The in vitro RR of molecules with a 

molecular weight greater than 10 kDa at 1 µL/min flow rates using a 100 kDa MWCO 10 mm 

membrane from a well stirred solution is between 1-10%.68, 69 The decrease in mass transport 

with increasing MW is due to lower diffusion coefficients. As seen in Figure 1.3, the RR for a 

Figure 1.2 Parameters for predicting steady state relative recovery. 
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10 kDa dextran at 1 µL/min with a 4 mm 100 kDa MWCO membrane is 6.9 ± 0.4%, while the 

RR for a 20 kDa dextran under identical conditions is 1.3 ± 0.1%. The aqueous diffusion 

coefficients for 10 and 20 kDa as determined by dynamic light scattering are 1.47×10-6 and 

1.06×10-6 cm2/s, emphasizing how a subtle reduction in the diffusion coefficient affects the RR.68 

The aqueous diffusion coefficient of small molecules is typically an order of magnitude greater 

than proteins. The Daq for dopamine is 5.4×10-6 cm2s-1, while Daq for BSA a 66 kDa protein is 

5.38×10-7 cm2s-1.70, 71  

 

  

Figure 1.3 RR of 10 and 20 kDa dextran using a 100 kDa MWCO PES 

membrane with a 4 or 10 mm membrane. Avg ± 1 s.d., n=3. 
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The drastic reduction in RR with decreasing diffusion coefficient is due to each resistance 

term in Equations 1.3-1.5 being inversely proportional to a diffusion coefficient. For 

macromolecules, the Dm is particularly hindered. With increasing molecular weight the diffusion 

coefficient through the pores of the membrane decreases exponentially as the size of the 

molecule approaches the pore size. 

Cytokines exist in the ECS at pg/mL-ng/mL concentrations, and their RR is between 1.0-

13.1% when sampled at 1 µL/min using a 100 kDa MWCO 10 mm PES probe.72 The low RR 

when sampling cytokines and their dilute concentration in the ECS places extraneous strain on 

the ensuing analytical detection methods. Cytokine detection methods have LODs that are near 

the concentration of cytokines collected in dialysate, however the dialysate concentration is not 

always within the LOD. A method to increase cytokine dialysate concentration, i.e. enhance the 

RR of cytokines, is desired to ease detection method restraints. 

 

Affinity agent enhanced microdialysis sampling 

 

There are five ways to increase the RR of cytokines, 1) use lower flow rates, 2) increase 

membrane surface area, 3) change material properties, 4) increase membrane pore size, and 5) 

include the use of affinity agents. A decrease in flow rate reduces the temporal resolution of 

microdialysis, as both the bead arrays and ELISAs require 25-100 µL of sample. Increasing the 

membrane surface area is not always possible as there are limited commercially available probe 

sizes and, increasing the membrane area reduces the spatial resolution of microdialysis. A 

reduction in spatial resolution makes sampling from tissue spaces impractical, as the tissue may 

be smaller than membrane used to sample, i.e. specific brain structures. Modifying the material 

properties is commonly accomplished by including BSA in the perfusion fluid, as it adsorbs to 

the surfaces of the sampling system reducing nonspecific adsorption.73 The Dahlin group have 
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changed the membrane properties by adsorbing a triblock copolymer of poly(ethylene glycol) 

and poly(propylene) to the membrane in attempt to reduce nonspecific adsorption to the 

membrane. However, only mild increases in RR were observed for some of the proteins and 

peptides studied.74, 75 Increasing the pore size of the membrane causes a reduction in fluid 

recovery. The use of 100 kDa MWCO ultrafiltration membranes are currently employed for 

cytokine sampling, and fluid loss is prevented through the addition of high concentrations (0.05-

6% w/v) of osmotic agents to the perfusion fluid.73 However, the use membranes with a MWCO 

higher than 100 kDa have not been used until recently due to excessive ultrafiltration despite the 

use of osmotic agents. The recent development of push/pull microdialysis perfusion has led to 

the use of 1 MDa MWCO probes to sample macromolecules.76 Push/pull microdialysis consists 

of the perfusion fluid being pushed using a syringe pump, while the dialysate is pulled with a 

peristaltic pump reducing fluid loss. The use of 1 MDa MWCO probe with push/pull 

microdialysis has led to a twofold RR enhancement for IL-6 compared to 100 kDa MWCO.77 

Comparatively the use of affinity agents has seen up to a fourteen fold increase in cytokine RR 

using 100 kDa MWCO probes.78 

Affinity agent enhanced microdialysis relies on the perfusion of a high affinity ligand 

through the microdialysis probe. The addition of a chemical reaction on one side of a membrane 

is commonly used to facilitate mass transport in separation science, as it couples diffusion with a 

chemical reaction.79, 80 The flux of the analyte is increased as the concentration gradient of the 

unbound form in the dialysate is maximized,81 as derived by Kramov and Stenken in Eq 1.6.81 

(
𝒅𝑪𝑳

𝒅𝒓
) =

𝟐𝝅𝑫𝒎𝒆𝒎(𝑪𝒐−𝑪𝑳)

𝑸 𝐥𝐧(𝒓𝜶/𝒓𝜷)
−

𝝅𝑹𝒊
𝟐𝒌𝑪𝑳

𝑸
    Eq 1.6. 

Where r is any radial point in the membrane, CL is the unbound analyte concentration in 

the membrane, Co is the analyte sampling medium concentration, rα is the outer radius of the 
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membrane, rβ is the inner radius of the membrane, Dmem is the diffusion coefficient through the 

membrane, and k is the kinetic rate. Adding a chemical reaction to one side of the membrane 

reduces the unbound analyte concentration within the membrane. Maximizing the concentration 

gradient on the inside of the membrane increases flux. A depiction of the recovery with and 

without affinity agents in the perfusion fluid is displayed in Figure 1.4. Affinity agents have 

been used to enhance the RR of a wide range of analytes collected with microdialysis including 

proteins, metal ions, lipophilic drugs, prostaglandins, and neuropeptides.73, 81-84 A compilation of 

affinity agents, analytes and RR enhancements is shown in Table 1.1. 

  

Figure 1.4 Relative recovery enhancement due to affinity agent inclusion in 

perfusion fluid. 

Flux 



12 

 

 

 

Membrane 

Analyte 
Affinity Agent 

(AA) 

Ratio of 

AA 

enhanced 

RR to 

control 

RR 

Notes MWCO 

and length  

30 kDa  

Cu (II) 

poly-L-aspartic 

acid 
10 

Decrease in RR with 

increasing AA concentration 
10 mm82 

poly-L-

histidine 
7 

CMA20  
Alkyl parabens 

Intralipos® 

(lipid 

emulsion) 

2-390 

RR enhancement factor 

correlated with lipophilicity of 

the analyte 10 mm83 

30 kDa  
SB-265123 

Hydroxypropyl 

β-cyclodextrin 
36 

  

10 mm85 

20 kDa  

Ibuprofen β-cyclodextrin 

1.7 

Decrease in RR with 

increasing AA concentration 

4 mm81 

6 kDa  
1.3 

4 mm81 

29 kDa  
1.4 

4 mm81 

20 kDa  Imipramine 

β-cyclodextrin 

2.7   

4 mm86 Carbamazepine 1.4 

  Amitriptyline 6.3 

  Desipramine 3 

  Promethazine 10 

20 kDa  Carbamazepine 

β-cyclodextrin 

2.4   

10 mm87 Hydroquinone 1.2 

  Ibuprofen 4.5 

  4-Nitrophenol 2.3 

29 kDa  Prostaglandin B2 
β-cyclodextrin 

1.6   

4 mm84 Leukotriene B4 2 

 

  

Table 1.1 Analytes with enhanced relative recovery with the perfusion of affinity 

agents. 
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Membrane 

Analyte Affinity Agent (AA) 

Ratio of 

AA 

enhanced 

RR to 

control 

RR 

Notes MWCO and 

length  

20 kDa  Met-enkephalin 
β-cyclodextrin 

1.8   

4 mm88 Leu-enkephalin 1.9 

  Met-enkephalin Antibody 2.6   

100 kDa  
CCL2 Antibody 6.5 

  

4 mm89 

100 kDa  IL-4 

Heparin 

1.7   

10 mm90 IL-6 2.6 

  IL-7 3 

  CCL2 2 

  TNF-α 2 

100 kDa  TNF-α 

Antibody 

immobilized beads 

10 

Particle settling 

observed 

10 mm91 IFN-γ 14 

  IL-5 3 

  IL-4 8 

  IL-2 7 

20 kDa  FMRFamide 

Antibody 

immobilized beads 

1.6 

Particle settling 

observed 

4 mm92 
FMRFamide-like 

peptide I 
2.8 

  FMRFamide-like 

peptide II 
2.4 

  Substance P 41.7 

  Somatostatin-14 7.5 

100 kDa  aFGF 

Heparin immobilized 

bead 

3.5 

Particle settling 

observed 

10 mm93 VEGF 5 

  CCL2 2 

  CCL5 2.7 

Table 1.1 Analytes with enhanced relative recovery with the perfusion of affinity 

agents (Cont.). 
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When perfusing affinity agents with a molecular weight lower than the MWCO of the 

membrane, the affinity agent may cross the membrane and enter the sampling medium. This 

leads to escaped affinity agent interacting with analyte in the sampling medium, altering the 

diffusion coefficient of the complex, and reducing the unbound analyte concentration in the 

sampling medium, possibly lowering the RR. A reduction in RR with increasing affinity agent 

concentrations has been observed.81, 82 Additionally, the diffusion of affinity agents across the 

membrane may complicate in vivo studies. In vivo, a biological response may occur due to 

escaped affinity agent. To prevent affinity agents from cross the membrane, the affinity ligands 

can be immobilized to a solid support which is unable to cross the membrane pores. The 

manufacturer for the commonly used Harvard apparatus microdialysis probes reports that the 

pore size for a 100 kDa MWCO PES membrane is 9 nm, so affinity ligands are immobilized to 

particles with a diameter larger than 9 nm.90Additionally, the perfusion of large affinity ligands, 

such antibodies, which do not cross a 100 kDa MWCO membrane, can be used. However, 

perfusing antibodies is costly and the concentration of the antibody is not always known, 

possibly reducing the maximum RR enhancement due to saturation of antibodies. 

The use of solid support to immobilize the affinity ligand has seen use with the 

application of affinity agents to 100 kDa MWCO probes for macromolecule sampling. 

Previously used solid supports have consisted of 5-7 µm polystyrene microspheres and 100 nm 

iron oxide nanoparticles, both of which have been observed to settle in the syringe during 

perfusion. To hinder particle settling the Stenken and Li groups have used syringe agitators.92, 93 

The use of additional instrumentation slows the development of affinity agents to other groups 

which desire a method to increase cytokine RR. Additionally, no study has been conducted by 

either group to determine the length of time syringe agitators can maintain the affinity agent 
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suspension. For many studies, it is desired to sample continuously for hours to days to observe 

cytokine profile changes,64 and affinity agent settling during sampling increases the complexity 

of the experiment.  

Particle settling is due to gravitational forces overcoming Brownian forces, i.e. settling 

velocity overcomes diffusion velocity.94 Stoke’s law can manipulated to calculate the settling 

rate of a particle as seen in Equation 1.7.95 

𝒗 =
𝒅𝟐(𝝆𝟐−𝝆𝟏)𝒈

𝟏𝟖𝜼
   Eq. 1.7 

Where v is the settling rate, d is the particle diameter, ρ2 is the particle density, ρ1 is the 

density of the solution, g is acceleration due to gravity, and η is the solution viscosity. Equation 

1.7 displays that the increases in particle diameter, squares the settling velocity, and that the 

density of the colloid is correlated with settling velocity. The Overbeek criterion estimates 

particle diffusion velocity as 10 nm/s and is used to predict the settling diameters of particles 

based on material density and can be used to determine optimal particle sizes which will not 

settle during microdialysis perfusion.96 Figure 1.5a displays the predicted particle settling 

diameters based on this benchmark, and was used to guide the forthcoming research in 

determining optimal particle size of different materials.  
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Figure 1.5 (A)Particle settling diameters in water based on material 

density and a 1 mm/24 hr settling velocity cutoff. Displayed are the 

settling diameters for PNIPAM and AuNP with densities of 1100 kg/m3 

and 19300 kg/m3, respectively. (B) Particle settling occurs when settling 

velocity exceed diffusion velocity. 

PNIPAM 460 nm 

AuNP 34 nm 

Particle 

Settling 

velocity 

Diffusion 

velocity 

A 

B 
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Gold nanoparticles as an alternative support for affinity agent immobilization 

 

The settling of affinity agents immobilized to a support can be prevented by decreasing 

the diameter of the particle or decreasing the difference between density and medium. The 

diameter of the particle is exponentially proportional to the settling diameter, while the particle 

density is linearly proportional to settling diameter. This highlights the need to decrease particle 

support size and/or the particle density for the particles’ thermal motion to overcome 

gravitational forces. Gold nanoparticles (AuNPs) have a predicted settling diameter of 34 nm. 

AuNPs can be readily synthesized with diameters between 10-30 nm using the Turkevich 

synthesis.97 AuNPs also have high surface area which enables the exposure of a high density of 

ligands, display low toxicity, are the most stable aqueous noble metal nanoparticle, and have a 

wide variety of ligand immobilization chemistries.98-100 Owing to these properties AuNPs see 

widespread use for biomedical applications. 

The Turkevich synthesis relies on the reduction Au3+
(aq) by sodium citrate as displayed in 

Figure 1.6.97, 101 In this synthesis, the citrate also electrostatically repels adjacent AuNPs, 

preventing agglomeration which would occur during collisions between nanoparticles.102 When 

agglomeration occurs, the size of the particles grow until sedimentation occurs. The citrate 

ligand can be exchanged with another ligand that has a higher affinity for the gold surface, such 

as with a thiol, which enables facile grafting of new ligands to the nanoparticle surface.103 

Affinity ligands which have been grafted to AuNPs include aptamers, antibodies, metal 

complexing agents, small molecules and polymers.104-111 
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A complication with using citrate stabilized AuNPs in ionic solutions is there tendency to 

agglomerate when the charge of the citrate ion is screened at high ion concentrations. The Debye 

length (λD) is used to represent the range an electric force extends in solution as defined by 

Equation 1.8. The electric potential decreases by 1/e for each increment of the Debye length 

away from a surface. 

𝛌𝑫 = √
𝜺𝒓𝜺𝟎𝒌𝑩𝑻

∑(𝒛𝒊𝒆)
𝟐
𝑪𝒊
∗   Eq. 1.8 

Where εr is the dielectric constant of the solvent, ε0 is the vacuum permittivity, kB is 

Boltzmann’s constant, zi is the charge of the ion, e is the charge of an electron, ci
*

 is the number 

concentration of the ion. The Debye length is 0.7 nm at 150 mM ionic strength (µ). Charge 

screening in addition to the high Hamaker constant of gold (1.95 eV),112 is why citrate stabilized 

AuNPs agglomerate in salt solutions.113-115 The Hamaker constant describes the relative van der 

Waals body-body interaction strength. As particles agglomerate, an increase in particle diameter 

occurs, leading to and hastening particle precipitation. 

Grafting polymer ligands to the nanoparticle surface enables the application of  

Au
3+

 

Citrate 
Au

0

 

Au
0

 

1. Reduction 2. Seed 

formation 

Au Seed 

3. Seed growth 

AuNP 

Figure 1.6 Synthesis of AuNPs. Au3+ is reduced to neutral gold by citrate ions (blue), 

neutral Au monomers form seed particles, ionic gold is attracted to seed particles as a 

counter ion and reduced to form AuNP. 
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AuNPs to biological systems with high µ. When polymer ligands are grafted to a nanoparticle 

surface, a steric hindrance layer is introduced which prevents agglomeration in high ionic 

solutions. AuNPs need to be sterically stabilized to be used as affinity agent supports in 

microdialysis perfusion fluid which has a high ionic strength.  

 

Poly(N-isopropyl acrylamide) 

 

One polymer that is commonly used to sterically stabilize AuNPS is poly(N-isopropyl 

acrylamide) (PNIPAM).116-118 PNIPAM is one of the most studied thermoresponsive polymers in 

part because its lower critical solution temperature (LCST) is ~ 32 °C enabling its use for many 

potential biological studies119, 120. In water below the LCST, the polymer swells forming 

energetically favorable hydrogen bonds between the acrylamide group and water. Above the 

LCST, the polymer spontaneously desolvates to form inter- and intra- chain hydrogen bonds 

which leads to contraction from a coil to a globule and increases its hydrophobicity. Decreasing 

the separation distance between polymer grafting sites leads to steric hindrance in the polymer 

chains. The steric hindrance is observed as an increase in chain height, in other words the graft 

density (chain/nm2) determines the chain height in solution.121, 122 Figure 1.7 illustrates the 

increase in chain extended and collapsed polymer height with increasing grafting density.  

  



20 

 

 

The ability for the polymer to increase/decrease its hydrophobicity has lead to its study as 

a material for thermally stimulated adsorption/release of cells123, 124 and proteins.125-129 PNIPAM 

displays an ~ ten-fold increase in IgG and fribrinogen adsorption capacity at 40 °C relative to 25 

°C.125, 130 The Leckband group has explored the relationship between protein adsorption to 

PNIPAM above the LCST of polymer and polymer graft density. With decreasing polymer graft 

density (0.07/nm2) an increase in protein adsorption above the LCST is observed. At higher 

grafting densities (0.15/nm2) low nonspecific adsorption is observed to the polymer, both above 

and below the LCST of the polymer.131, 132 At low graft density a protein can penetrate the 

polymer network, maximizing polymer-protein interactions. When one extrapolates maximal 

protein adsorption data at low polymer graft density from flat surfaces to curved 20 nm AuNPs 

Figure 1.7 A) Extended below the LCST of thep polymer 

(top) and collapsed above the LCST of the polymer 

(bottom) with various grafting densities. Increasing graft 

density increases polymer thickness and decreases the 

number of citrate ions present on the gold surface. (B) 

Repeating unit of polymerized NIPAM. 
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with a 100 nM particle concentration, between 0.4-0.08 ng of protein may be captured in 1 µL 

sample volume above the LCST of the polymer.132, 133 

The citrate ligands on synthesized AuNPs can be exchanged using a thiol terminated 

PNIPAM chain, as the thiol has a higer affinity for the gold surface than the citrate. The 

PNIPAM will introduce a steric hindrance layer preventing AuNP agglomeration in ionic 

solutions, yet the polymer can be stimulated with a thermal response to capture hydrophobic 

molecules and/or proteins. PNIPAM coated gold nanoparticles (>20 nm diameter) with a low 

PNIPAM graft density could serve as affinity agents that would not settle during extended 

microdialysis sampling, not agglomerate in high ionic solutions below the LCST of the polymer, 

display an increase in protein adsorption above the LCST of the polymer which would occur 

during in vivo sampling conditions and release adsorbed proteins with a decrease in temperature. 

However, conflicting observations have been made as to whether AuNPs coated with PNIPAM 

(AuNP-PNIPAM) agglomerate above the LCST of the polymer.101, 134-136 The reversibility of 

AuNP-PNIPAM agglomeration has not been thoroughly studied, and there are no reports of 

variable graft densities of PNIPAM on AuNPs to date. 

 

Methods to characterize particle agglomeration 

 

The three most prominent means of studying nanoparticle agglomeration are: 1) 

monitoring the localized surface plasmon resonance (LSPR), 2) dynamic light scattering (DLS), 

and 3) electron microscopy. Each technique studies a different phenomenon and have inherent 

measurement biases that can affect the results.137 The LSPR is a cohesive oscillation of 

conduction band electrons that are excited by incident light as displayed in Figure 1.8. The 

LSPR is observed as a strong extinction peak (absorbance plus scatter), which occurs at ~520 nm 

for AuNPs giving them their red color. The SPR wavelength for AuNPs is blueshifted from bulk 
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metal as it requires more energy to polarize the AuNP than bulk material. The LSPR peak 

position is sensitive to the nanoparticle size, shape, composition, changes in local refractive 

index, and the separation distance between particles.138-141 As particle separation distance 

between adjacent particles decreases to less than five times the radius of the particle, coupling of 

their plasmon modes causes a redshift in the LSPR peak position.142 This shift in extinction peak 

position is commonly used to determine agglomeration of plasmonic nanoparticles.143, 144  

DLS measures scattered light intensity fluctuations of particles in solution undergoing 

Brownian motion.145 A laser passes through the sample and particles in solution scatter light 

proportional to the size of the particle. The scattered light is detected with a photo-detector and 

the signal is used to generate an intensity autocorrelation function. Fluctuations of the 

autocorrelation function at various decay times are related to the diffusion coefficient of the 

particles scattering light. The hydrodynamic diameters of particles is then calculated using the 

Stokes-Einstein equation. DLS is biased toward detecting larger particles and/or impurities in 

Electron cloud 

Figure 1.8 Localized surface plasmon resonance for AuNPs (red sphere). Incident light 

excites the conduction band electrons to oscillate in a cohesive manner. 



23 

 

polydisperse samples due to scattering intensity increasing to the sixth power relative to particle 

diameter (I  d6).146 Increases in the hydrodynamic diameter of particles is indicative of 

agglomeration.147  

Transmission electron microscopy (TEM) has been used to study nanoparticle 

agglomeration/aggregation structures143, 148 and has been used to study thermal agglomeration of 

nanoparticles.149 A benefit of TEM analysis for studying nanoparticle agglomeration is 

visualization of heterogeneous structures, as both DLS and LSPR are ensemble measurements, 

with biases towards measuring large agglomerates or decreasing separation distance between 

particles. 

 

Nanogels as an alternative support for affinity agent immobilization 

 

An additional alternative support material with which affinity ligands may be 

immobilized to are nanogels, hydrogels with size dimensions in the nm range. Nanogels are a 

three dimensional network of crosslinked polymers with a diameter below one micrometer.150 In 

water the nanogels swell due to the favourable inteeractions between hydrophillic functional 

groups in the nanogel and water. While nanogels tend to have sizes of 100-1000 nm, their 

density is lower than a solid particle. The low density of the polymer material is compounded by 

the fact that water swells the polymer which decreases the density difference between particle 

and water. Nanogels are a common platoform with which to embed affinity ligands,as they can 

be synthsized to contain a wide range of monomers with functional groups (such as-NH2, -OH, -

COOH), ease of preperation, tunable size, minimal toxicity, high dispersion stability and ability 

to entrap macromolecules preventing their degredation due to enzymes.151-154 

Nanogels have a high suspension stability as they have negligible van der Waals forces of 

attraction between them; they are hydrated carbonacious materials with low Hamaker 
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constants.155, 156 The three dimensional porous structure gives rise to a large area with which 

ligands can be immobilized. Additionally, responsive nanogels may have a stimuli applied to 

enhance drug/protein release from the particle.157, 158 Pan et al. has used PNIPAM nanogels to 

capture and release lysozyme, observing heightened release kinetics above the LCST of the 

polymer.159 Popova et al, has immobilized an affinity ligand within PNIPAM nanogels to 

separate cytokines from abundant proteins in complex solutions, and observed a 5-fold cytokine 

release rate at 37°C relative to 22°C. 

Nonspecific adsorption is dependent upon the surface area and functional groups of a 

material exposes to solution. However despite the high surface area of nanogels, PNIPAM 

nanogels have low nonspecific adsorption amounts. Bisacrylamide crosslinked PNIPAM 

hydrogels display a 16 mg BSA per gram of material nonspecific adsorption amount, which is 

comparible to the adsorption of BSA to poly (ethylene glycol) (PEG) nanogels of 4 mg/g.128 A 

high level of nonspecific adsorption would inhibit application of the nanogels as affinity agents. 

Nonspecifically adsorbed protein may undergo conformational changes on the particle surface 

decreasing the likihood of release (due to increased affinity to the surface occuring after 

denaturation) and/or possible damage to the epitope causing released protein to not be detected. 

Dissertation goals 

 

Cytokines play important roles in initiating and regulating intracellular communications. 

However the study of cytokines with microdialysis poses a signifigant challenges for the ensuing 

detection method due to the compounding effects of low extracellular conentrations and low RR. 

Previously developed affinity agents have been shown in to increase the RR of cytokines, 

however these affinity agents were insoluble and settled during perfusion unless additional 

instrumentation was employed. The interest in developing novel affinity agent supports to 
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enhance cytokine RR while decreasing the complexity of perfusing the affinity agents is the 

underlying goal of this work. 

The first goal of this disseration was to obtain different PNIPAM polymer graft density 

on AuNPs, which has not been reported prior. The stability of the synthesized AuNP-PNIPAM 

was studied above and below the LCST of the polymer. Irreversible particle agglomeration 

affects particle surface area, reactivity, as well as protein adsorption and release amounts. 

Therefore studying the reversibility of any agglomeration is warranted before AuNP-PNIPAM 

can be sudied as microdialysis affinity agents. 

The second goal of this disseration is to explore the feasibility of affinity ligands 

immobilized to nanogels synthesized from PNIPAM. A previously developed synthesis for 

PNIPAM nanogels yield particles with sizes between 700-1200 nm, above the 460 nm predicted 

settling diameter for PNIPAM. A method to rapidly separate synthesized particles based on 

settling diameter is used. An affinity dye ligand is immobilized to the nanogels enabling simple 

quantification of the nanogels (by measuring the absorabance of the immobilizd dye). Perfusion 

of the nanogels is studied using push and push/pull microdialysis and finally the RR of two 

cytokines was studied with inclusion of the newly developed nanogels in the perfusion fluid. 
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Chapter 2 Synthesis of gold nanoparticles with variable graft density and study of their 

agglomeration reversibility in a salt solution 

Introduction 

 

In this chapter, gold nanoparticles (AuNP) with a graft density of 0.09, 0.12, 0.30 and 

0.40 chains/nm2 of poly (N-isopropyl acrylamide) (PNIPAM) were reproducibly synthesized by 

varying the ratio of disulfide terminated poly (N-isopropyl acrylamide) to gold nanoparticle in 

attempt to study protein adsorption as a function of polymer graft density. Low graft densities of 

PNIPAM have the highest levels of thermally triggered protein adsorption on flat surfaces (0.07 

chain/nm2).131, 160 Agglomeration of AuNP-PNIPAM in ionic solutions was studied. The 

reversibility of the particle agglomeration with different graft densities was studied by 

measurements of their (LSPR), the hydrodynamic radius (Dh), and visualization using electron 

microscopy. The reversibility of agglomeration correlated with the graft density, with 

irreversible agglomeration occurring for lower graft densities. The graft density dependence on 

reversible agglomeration is due to changes in collapsed polymer steric effects. 

 

Experimental 

Reagents 

 

Tetrachloroauric (III) acid trihydrate ACS grade was purchased from Acros Organics 

(New Jersey, NY). Lipoic acid terminated neutral PNIPAM 13 kDa (n ~ 110) as determined by 

1HNMR was a gift from Guorong Sun at Texas A&M and used as received. Trisodium citrate, 

sodium chloride (99.5%) was purchased from Sigma Aldrich (St. Louis, MS). HPLC grade water 

was used for all experiments and was from Thermo Fisher Scientific (Waltham, MA), as was 

metal-free nitric acid and hydrochloric acid. Dimethyl sulfoxide (DMSO) was from Electron 
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Microscopy Sciences (Hatfield, PA) Solutions used for DLS studies were filtered using a 0.2 µm 

PES from GE Healthcare (Chicago, IL) before nanoparticle dilution.  

 

AuNP Synthesis 

 

All glassware was acid washed with aqua regia consisting of hydrochloric acid and nitric 

acid at a 3:1 ratio and thoroughly washed with water before use. Gold nanoparticles were 

synthesized using the Turkevich method as previously described.97 A total of 300 mL of aqueous 

tetrachloroauric (III) acid trihydrate (0.5 mg/mL) was brought to a boil with magnetic stirring 

and 30 mL 1% (w/v) trisodium citrate solution was quickly added. After 8 min, the particles 

were removed from heat and cooled to room temperature. 1HNMR of the polymer used was 

performed in deuterated DMSO using a 300 MHz NMR from Bruker (Billerica, MA). A 

spectrum of the polymer used is shown in Figure 2.1.  

 

PNIPAM Modification of AuNP 

 

Gold nanoparticle solutions were purged with nitrogen gas for 30 min, after which a 

concentrated lipoic acid terminated PNIPAM solution was added drop wise, until a final 

concentration of the disulfide PNIPAM in the nanoparticle solution was 100, 10, 2 or 1 µM, 

hereafter referred to as AuNP-0.40, AuNP-0.30, AuNP-0.12 and AuNP-0.09, respectively. The 

solutions were left sealed for 24 hr. at room temperature with stirring. Residual polymer was 

removed by centrifuging the solutions at 10 °C, removing the supernatant and suspending the 

particles in water for a total of three times. PNIPAM modification of the same initial stock of 

gold particles was repeated at the same polymer concentration on different days to test the 

reproducibility in obtaining the same graft density.  
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Figure 2.1 1HNMR spectrum of PNIPAM 13 kDa in DMSO. Integration of the 

peaks H from the RAFT agent and E from PNIPAM yielded a value of n=110 

corresponding to a calculated molecular weight of 12880 g/mol. 
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AuNP-PNIPAM characterization 

 

Particle concentration assuming spherical geometry was determined by atomic 

absorbance using a GBC 932 Plus from GBC Scientific Equipment (Hampshire, IL) 

Transmission electron microscope (TEM) images of AuNPs were taken using a JEOL-1011 and 

ImageJ was used to size the NPs. The extinction of AuNPs and AuNP-PNIPAM was measured 

with 1 nm increments using a Nanodrop 2000c from Thermo Fisher Scientific. The zeta 

potentials and intensity-weighted hydrodynamic diameter (Dh), or z-average, of the particles was 

determined using a 90Plus particle sizer from Brookhaven (Holtsville, NY). The source had a λ 

of 658 nm and the scattering angle was at 90°. The zeta potential was measured in a 1 mM KCl 

solution. Particles were allowed 10 min to equilibrate at each temperature before a measurement 

was made. Unless otherwise stated dynamic light scattering (DLS) measurements were made at 

23 ± 0.1 °C. 

 

Determination of graft density 

 

Thermogravimetric analysis (TGA) experiments were performed using a Q50 from TA 

Instruments (New Castle, DE) using a 10 °C/min ramp to 500 °C using lyophilized samples. The 

graft density was determined using a previously reported method according to Equations 2.1-

3.161 The molecular weight of a gold nanoparticle (MWAuNP) was first calculated by dividing the volume 

of a AuNP (VAuNP) with assumed spherical geometry by the volume of a gold atom (VAu=1.7 ×10-29 m3) 

and multiplying by the molecular mass of Au. Then the number of AuNPs (NAuNP) was determined by 

dividing the mass remaining at the end of the TGA (MAu), which is attributed to Au, by the MWAuNP and 

multiplying by Avogadro’s number (NA). Finally, δ in ligands/nm2, was determined by dividing the 

number of polymer ligands lost during heating from 300-425 °C by the surface area of a AuNP (SAAuNP) 

and the NAuNP. The particle size determined from TEM was used for graft density determination. 
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𝑴𝑾𝑨𝒖𝑵𝑷 =
𝑽𝑨𝒖𝑵𝑷

𝑽𝑨𝒖
×𝑴𝑾𝑨𝒖  Eq. 2.1 

𝑵𝑨𝒖𝑵𝑷 = 𝑵𝑨
𝑴𝑨𝒖

𝑴𝑾𝑨𝒖𝑵𝑷
   Eq. 2.2 

𝛅 =
𝑵𝑷𝑵𝑰𝑷𝑨𝑴

𝑺𝑨𝑨𝒖𝑵𝑷×𝑵𝑨𝒖𝑵𝑷
    Eq. 2.3  

 

AuNP-PNIPAM agglomeration studies 

 

Confirmation of AuNP-0.40 in ionic solutions was observed by diluting AuNP to an 

absorbance of ~0.3 AU at its LSPR peak in PBS and measuring the Dh of the solutions from 23-

37 °C with 2 °C intervals with three measurements made at each temperature, with 10 min 

intervals between measurements. Samples were equilibrated for 10 min before each 

measurement. 

The temperature at which agglomeration onset was determined by diluting AuNP-0.40 to 

1.08 ± 0.07 nM in water or 50 mM NaCl. The 50 mM NaCl concentration was chosen as a 

previous study reported sedimentation affecting DLS results when AuNP-PNIPAM were heated 

in higher salt concentrations.134 The Dh of the diluted AuNP-0.40 was measured from 14 to 37 

°C allowing 10 min to equilibrate between each increase in °C.  

To test the reversibility of the agglomeration of AuNP-PNIPAM in 50 mM NaCl, 

particles were diluted to 1.08 ± 0.07 nM in water or 50 mM NaCl and incubated at 37 °C above 

the LCST of the polymer for up to 6 hr. After heating, all samples were sonicated to disperse 

flocs, using a bath sonicator for 10 sec. After sonication, the extinction and hydrodynamic 

diameters of aliquots were measured. Then the solutions were placed at below the LCST of the 

polymer (~23 °C) to relax the contracted polymer. After 150 min of relaxation at room 
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temperature, the solutions were agitated by pipetting and the extinction and hydrodynamic 

diameters of the aliquots were measured in 50 mM NaCl. The change in Dh and in LSPR peak 

position was recorded with respect to their initial positions in 50 mM NaCl.  

Samples in 50 mM NaCl which had undergone a 2 hr heat treatment followed by 

sonication or remained at room temperature were drop-cast on TEM grids. The average area of 

AuNPs heated and unheated was determined using ImageJ. Only particles with an area above 67 

nm2 were included in the analysis. This 67 nm2 threshold was chosen because the smallest 

measured nanoparticle would have this area assuming circular geometry. Particulate with an area 

below this threshold is believed to be due to salt.  

Jones et al. have suggested a methanol wash procedure to remove residual polymer post 

modification.162 Residual polymer has been reported to induce thermal agglomeration of AuNP-

PNIPAM in water, where residual polymer serves to bridge particles when heated above the 

LCST of the polymer. To test to see if salt induced thermal agglomeration was caused by a 

residual polymer, AuNP-PNIPAM was washed for a total of three times in water, followed by 

washes in methanol. After the third wash in methanol the AuNPs were hydrated in water and 

lyophilized. The particles were reconstituted in 50 mM NaCl and their Dh measured after 10 min 

at 37 °C. 

 

Results 

AuNP-PNIPAM characterization 

Spherical AuNPs with a diameter of 20.5 ± 6.5 nm were synthesized with an initial LSPR of 

525 nm. The polydispersity index (PDI) for the synthesized particles was 0.107, which is lower 

for other reported synthesis.163 Figure 2.2 displays a representative TEM image and the 
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corresponding size histogram. Modification of these particles with PNIPAM was repeated for a 

total of three times for each graft density studied. The LSPR of the modified AuNPs redshifted to 

528 ± 1 nm, 529 ±1, 529 ± 1 and 529 ± 1 nm for AuNP-0.09, AuNP-0.12, AuNP-0.30 and 

AuNP-40, respectively, as shown in Table 2.1 and Figure 2.3. This red shift is due to an 

increase in refractive index from essentially water to a carbonaceous polymer, which is in 

accordance to the report by Zhang et al. in which their AuNPs shifted from 525 to 529 nm after 

PNIPAM modification.135 The dispersity of the particles increased upon PNIPAM modification, 

increasing from 0.103 to ~0.22. This increase in dispersity is likely due to dispersity in the 

polymer, as the dispersity increased similarly for all graft densities The Dh of the AuNPs 

increased from 31.3 ± 0.3 nm to 55.6 ± 4.6, 56.7 ± 9.1, 56.3 ± 0.9 or 53.7 ± 0.8 nm for AuNP-

0.09, AuNP-0.12, AuNP-0.30, and AuNP-0.40, respectively, displayed in Figure 2.4. Size 

analysis by TEM measures the nanoparticle metal core, while DLS measures the core and 

polymer coating. All graft densities of AuNP-PNIPAM were stable above the LCST in water 

There was no significant difference in Dh between the grafting conditions studied, and all had 

essentially the same LSPR peak position and shape. The similarity in Dh is not unexpected as on 

spherical surfaces the polymer density distribution is less sensitive to increasing graft densities 

relative to that of flat surfaces.164 There is an increasing volume the polymer can occupy with 

increasing distance from the spherical surface. 
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Figure 2.2 (Left) TEM image of the as-synthesized AuNPs, and (right) the corresponding 

size histogram. 
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Figure 2.3 Normalized extinction spectra for AuNPs and AuNP-PNIPAM 

displaying the LSPR peak position in 50 mM NaCl at 23 °C. 
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Figure 2.4 Hydrodynamic diameter (z-avg) for AuNPs and AuNP-PNIPAM in water at 23 °C. 
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Increasing the concentration of PNIPAM ligand while keeping the AuNP concentration 

the same, led to an increase in mass loss percentage from 300-425 °C as measured by TGA, 

corresponding to the loss of PNIPAM (Figure 2.5). The determined graft densities were 0.40, 

0.30, 0.12 and 0.09 chains/nm2 for AuNP-0.40, AuNP-0.30, AuNP-0.12 and AuNP-0.09, 

respectively. This is the first time that variable graft densities of PNIPAM have been quantified 

on AuNPs. Increasing the PNIPAM concentration to 500 µM yielded no observable increase in 

mass loss compared to 100 µM, indicating saturation of the AuNP surface is reached at 0.40 

chains/nm2. This graft density is lower than previous studies with AuNPs modified with a thiol 

terminated PNIPAM, which reported 0.9 chains/nm2.134 However in this study a lipoic acid 

terminated polymer (bidentate disulfide anchor) was used, rather than a monodentate thiol 

anchor, so the reduction in graft density is expected.165  
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Figure 2.5 TGA of AuNP, AuNP-PNIPAM, and PNIPAM using a 10 °C/min heating ramp.  
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The zeta potential of the particles increased with increasing graft density, reaching ~ 0 

mV at the highest polymer concentration used. The measured zeta potentials were -17.2 ± 2.1, -

2.1 ± 0.4 and 0.3 ± 0.3 mV for AuNP-0.09, AuNP-0.30 and AuNP-0.40, respectively. The 

increase in zeta potential with increasing graft density is expected as the citrate is displaced by 

the anchor group from the polymer chain. The neutralization in zeta potential displays an 

increase in polymer coverage and a change in forces that stabilize the particles. At a low polymer 

graft density and negative zeta potential, particles are stabilized with a combination of steric and 

electrostatic forces. During polymer collapse in water residual citrate ions on AuNP-0.09 

stabilize the particles against agglomeration. As the polymer saturates the particle surface all 

citrate ions are displaced and the particles are stabilized by steric forces. 

The AuNP-0.40 contracted/extended reversibly in water as seen in Figure 2.6. 

Additionally, all AuNP-PNIPAM returned to their initial Dh following a 30-min application of 

heat at 37 °C (>LCST) and sonication as seen in Figure 2.7.  

Previous reports have observed salt induced thermal agglomeration of AuNP-PNIPAM. 

The salt induced thermal agglomeration of AuNP-0.40 was confirmed in PBS as seen in Figure 

2.8.  The sample decreased in Dh from 23 to 25 °C, and agglomeration onset 27 °C with an 

increase in Dh. The Dh of AuNP-0.40 continued to increase with time heated at 27 °C, indicating 

continued agglomeration. With further increases in temperature and time, flocculant was 

observed, complicating DLS due to particles settling outside of the laser path. A similar 

observation was made by Yusa et al. who observed particle settling at 37 °C in solutions with an 

ionic strength greater than 100 mM.134 Due to this complication, further studies of the 

agglomeration were conducted in 50 mM NaCl. 
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Figure 2.6 Hydrodynamic diameter (z-avg) for AuNP-0.40 in water with increasing temperature 

(black) and decreasing temperature (red). Samples equilibrated for 10 min at each temperature 

before measurements were made. Avg ± 1 s.d., n=5 
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Figure 2.7 Change from initial Dh for AuNP-PNIPAM in water after heating for 30 min at 37 °C 

followed by sonication at RT. Avg ± 1 s.d., n=5. 
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Figure 2.8 Dh of AuNP-0.40 in PBS with varied temperature and times at each temperature. 

Samples were measured after the first 10 min at each temperature (red), after 20 min (green) and 

after 30 min (blue). The number above each bar corresponds to Dh at the respective measurement 

interval. 
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All particles were stable in the salt solution prior to heating as there was no shift in 

LSPR, the Dh was the same as in water, and TEM images displayed primary particles as seen in 

Figure 2.9A, 2.9B and Table 1. However, when heated in a 50 mM NaCl solution 

agglomeration onset at ~ 29 °C as seen in Figure 2.10. When heated in 50 mM NaCl, the Dh of 

the particles decreases similarly to those in water, until 28 °C is reached. Any further increases in 

temperature onset agglomeration. At 15 °C the Dh for AuNP-0.40 was 51.7 ± 0.5 nm and 51.6 ± 

Figure 2.9 TEM image of A) AuNP-0.40 treated with 50 mM NaCl. B) AuNP-0.09 

treated with 50 mM NaCl, C) AuNP-0.40 treated with 50 mM NaCl and heated for 120 

min, D) AuNP-0.09 treated with 50 mM NaCl and heated for 120 min.   
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0.6 nm in water and 50 mM NaCl, respectively. At 27 °C the Dh contracted to 49.2 ± 0.4 nm and 

49.2 ± 0.3 nm in water and salt, respectively. At 30 °C in water the Dh continued to contract to 

46.7 ± 0.3nm while in 50 mM NaCl an increase in Dh occurred to 75.9 ± 0.3 nm.  It is known that 

PNIPAM grafted on AuNPs, has two different polymer collapse regions.117, 166, 167 When grafted 

to a surface, the polymer adjacent to the surface is less hydrated (due to a high polymer local 

concentration) and has an LCST that is lower than the outer region. The outer polymer region 

has more interactions with water. The DLS data display a contraction from 15 to 27 °C in both 

water and in 50 mM NaCl, which is indicative of polymer collapse at the dehydrated particle 

core. The particles remained stable at this temperature for 10 min, with no observable 

agglomeration. However, when further contraction in water was observed at 30 °C, 

agglomeration onset in 50 mM NaCl. This leads to the conclusion that agglomeration occurs due 

to a lack in particle stability when the second brush region, which is more hydrated at the water 

polymer interface, contracts, and/or due to polymer bridges forming as the outer polymer layer 

form entanglements between polymer chains on adjacent particles.  

It has been recently observed that AuNP-PNIPAM agglomeration above the LCST of the 

polymer occurs in water due to residual polymer from the grafting process bridging 

nanoparticles.162 This agglomeration in water has been prevented by removing the residual 

polymer using a methanol washing procedure. However, the suggested wash procedure did not 

prevent agglomeration in 50 mM NaCl as seen in Figure 2.11. 
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Figure 2.10 Dh of AuNP-0.40 in water (black) and 50 mM NaCl (red). Samples were 

equilibrated for 10 min before each measurement was taken. Avg ± 1 s.d., n=5. 

 



46 

 

AuNP-0.30 AuNP-0.40

100

200

D
h
 (

n
m

)

 

 Water Washed

 Methanol Washed

 

Figure 2.11 Comparison of AuNP-PNIPAM agglomeration in 50 mM NaCl with additional 

washes in methanol. Samples were washed in water three times and lyophilized. Methanol 

washed samples underwent an additional three washes in methanol before lyophillization. Gold 

particles were heated at 37 °C for 10 min before measurements were taken. Avg ± 1 S.D., n=5. 
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AuNP-PNIPAM agglomeration reversibility studies 

 

Protein adsorption to PNIPAM is highest at low polymer graft densities. All AuNP-

PNIPAM were observed to agglomerate above LCST of the polymer hindering protein 

adsorption studies, as particle surface area would be unknown during agglomeration. 

Additionally, it is desired to decrease the temperature and release the adsorbed protein. If protein 

is adsorbed between agglomerated particles its release will be hindered. Therefore, the 

reversibility of agglomeration as a function of polymer graft density was studied. It should be 

noted that AuNP-0.12 was excluded from further studies due to sample loss during TGA, a 

destructive technique. 

The reversibility of agglomeration was dependent upon the PNIPAM graft density and 

the length of time the solution was exposed to 37 °C. The agglomeration of AuNP-0.09 was 

irreversible despite sonication and the 150-min relaxation period. Both the LSPR peak position 

and Dh remained significantly different relative to the initial positions for all heating times 

(p<0.05) as shown in Figure 2.12. The LSPR peak position redshifted with increasing heating 

times, up to 107 nm after undergoing a 6 hr heat treatment in 50 mM NaCl as seen in Figure 

2.13. This occurs due to further contraction of the polymer layer, decreasing the particle 

separation distance, which couples the plasmon modes. After 150 min at room temperature, the 

LSPR peak position remained redshifted 78 nm.  
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Figure 2.12 Shift from initial hydrodynamic diameter (ΔDh) for AuNP-0.09 (red), AuNP-0.30 

(blue) and AuNP-0.40 (purple) after heating and sonication (filled) and after the relaxation 

period (unfilled), measurements made in 50 mM NaCl. Avg ± 1 s.d. n=3 experimental replicates.  

  



49 

 

0 100 200 300

0

30

60

90


L

S
P

R
 (

n
m

)

Heating Time (min)

 AuNP-0.09

 AuNP-0.30

 AuNP-0.40

 

Figure 2.13 Shift from initial localized surface plasmon resonance position (ΔLSPR) for AuNP-

0.09 (red), AuNP-0.30 (blue) and AuNP-0.40 (purple) after heating and sonication (filled) and 

after the relaxation period (unfilled), measurements made in 50 mM NaCl. Avg ± 1 s.d. n=3 

experimental replicates. 
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A slight redshift in LSPR peak position of 2-5 nm during collapse of polymer is predicted 

due to an increase in polymer density which changes the refractive index.168 A further redshift is 

due to decreasing separation distance between particles, with a 57 nm redshift reported for 15 nm 

AuNP agglomerated using 8 nm DNA spacers.169 Interestingly the Dh had no appreciable change 

after the relaxation period. This constant Dh with a blueshift in LSPR is interpreted as 

agglomerated particles separating during chain rehydration, increasing separation distance 

between particles. The representative TEM image of heated AuNP-0.09 revealed heterogeneous 

agglomerated AuNPs surrounded by primary AuNPs with an increase in average particle area 

and variance as seen in Figure 2.9D and Table 2.2. It is worth noting that several of these 

agglomerated nanoparticle cores appear adjacent to one another; this is suggestive of attractive 

particle-particle interactions.  

Increasing the polymer graft density lead to less substantial increases in Dh
 and LSPR 

peak position after sonication. The increase in Dh and LSPR peak position for AuNP-0.30 was 

between AuNP-0.09 and AuNP-0.40. The Dh for AuNP-0.40 after 30 min of heat treatment and 

sonication was significantly different, (p<0.05). The increase in Dh for AuNP-0.40 remained 

significant after the 150-min relaxation period for heating times greater than 30 min. Chain-chain 

interactions between particles may persist over the relaxation period that was studied. The LSPR 

peak position for AuNP-0.40 after heating for 6 hr and sonication was redshifted 3 nm. This 

LSPR peak position returned to its initial value during the 150-min relaxation at room 

temperature. For AuNP-0.40, the separation distance between AuNP surfaces is sufficient to no 

longer induce coupling of the plasmon modes (as the LSPR peak position returns to its initial 

position). LSPR monitoring is insensitive to chain entanglements far from the particle surface 

that are observable with DLS. The TEM images of AuNP-0.40 heated for 120 min revealed only 
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primary particles, with no increase in particle area as seen in Figure 2.9C and Table 2.2, 

suggestive of polymer entanglements that are not seen with TEM, or a reversible agglomeration 

process during the drying process. 

Saturation of the AuNPs was reached at a graft density of 0.40 chains/nm2, indicating the 

footprint of the disulfide head is ~ 2.5 nm2. A 20 nm diameter AuNP with a graft density of 0.09 

chains/nm2 would leave ~ 78% of the AuNP surface area without ligand head groups. This has 

the repercussion of allowing PNIPAM to collapse against the particle surface, reducing polymer 

thickness and allowing van der Waals forces to become pertinent.  

Table 2.2. Area of AuNPs before and after thermal agglomeration in 50 mM NaCl at 37 °C. 

Particle Name Area (nm2) 

AuNP-0.09 440 ± 530 

AuNP-0.09 Agglomerated* 830 ± 3180 

AuNP-0.40 430 ± 200 

AuNP-0.40 Agglomerated 440 ± 270 

The area as determined by ImageJ analysis is reported for at least 250 particles. Error bars 
represent ± 1 s.d. * indicates significant difference as determined by a t-test assuming unequal 
variance, p<0.05. 

 

To shed light on the cause for graft density dependent reversibility, a soft sphere model is 

used to calculate the total potential energy (Etot) between particles that are sterically stabilized.170 

This soft sphere model has been used to study the agglomeration of AuNPs stabilized with 

various molecular weights of poly(oxypropylene)diamine.171 In this model the Etot is the sum of 

the steric (Est) and van der Waals forces (EvdW), equation 2.4. A negative Etot indicates attraction 

between particles. 

 𝑬𝒕𝒐𝒕 = 𝑬𝒔𝒕 + 𝑬𝒗𝒅𝑾   Eq. 2.4 
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The van der Waals force of attraction (Eq. 2.5) arises due to the high polarizability of the 

gold cores while the steric repulsion (Eq. 2.6) is due to the polymer coating on the particles. 

Electrostatic stabilization is neglected as citrate stabilized AuNPs agglomerate in 50 mM NaCl; 

the Debye length in 50 mM NaCl is 1.36 nm. 

 𝑬𝒗𝒅𝑾 = −
𝑨

𝟏𝟐
[

𝒅𝟐

𝑪𝟐−𝒅𝟐
+

𝒅𝟐

𝑪𝟐
+ 𝟐 𝐥𝐧 (

𝑪𝟐−𝒅𝟐

𝑪𝟐
)]  Eq. 2.5 

 𝑬𝒔𝒕 =
𝟓𝟎𝒅𝒍𝟐

(𝑪−𝒅)𝝅𝝈𝒂𝟑
𝒌𝑩𝑻𝒆

(
−𝝅(𝑪−𝒅)

𝒍
)
   Eq. 2.6 

Where C is the center to center distance between particles, A is the Hamaker constant 

(1.95 eV for Au particles),112 d is the diameter, l is the brush thickness, σa is the diameter of the 

area occupied by the disulfide on the particle (~ 1.6 nm). Graft density determines extended and 

collapsed polymer thickness. As seen in Figure 2.14, an attractive van der Waals force well 

develops with decreasing polymer thickness. The brush thickness was varied from 12 to 3.5 nm 

as the hydrodynamic radius of the AuNP increases 12 nm upon polymer modification, which 

contracts to 3.5 nm with polymer collapse at 37 °C in water. The AuNP-0.09 have a -17 mV zeta 

potential, stabilizing the particles during thermal collapse in water.  

Particles with a high polymer graft density have a thick collapsed polymer layer that 

prevents van der Waals forces from becoming applicable during polymer collapse in salt 

solutions. With decreasing graft density, the collapsed polymer thickness decreases, giving rise 

to attractive van der Waals force between particles. The van der Waals forces inhibit the 

reversibility of their agglomeration. The TEM images of the AuNP-Low agglomerates show 

groupings of overlapping particles, which in addition to the dramatic increase in LSPR peak 
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position suggests AuNP-0.09 surfaces are brought near one another (<10 nm) while AuNP-0.40 

are not. 

  

Figure 2.14 Variation in Etot with decreasing C at various polymer 

thicknesses from 12 nm (black) to 3.5 nm (green).
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Summary  

 

Before AuNP-PNIPAM can be applied to an environment, a predictable response in the 

environment both above and below the LCST must be known. Agglomeration changes 

nanoparticles surface area, toxicity, and biodistribution. In salt solutions above the LCST of the 

polymer, AuNP-PNIPAM with a low graft density agglomerate irreversibly. Reversibility is 

approached by increasing the polymer graft density to 0.40 chains/nm2, however an increase in 

Dh is observed for graft densities studied in this work. The irreversible agglomeration of AuNP-

PNIPAM at low graft density complicates the development of AuNP-PNIPAM as protein 

capture/release agents for microdialysis. Thermally stimulated protein adsorption to PNIPAM 

only occurs at low polymer graft densities where polymer/protein interactions are maximized (as 

the protein can diffuse into the polymer chain network).131, 172, 173 Adsorbed protein may not be 

readily released from the agglomerates. 

The graft density dependent agglomeration reversibility results seek to relate the 

importance of collapsed ligand structure on nanoparticle stability, and guide future design of 

AuNP-PNIPAM to be used in salt solutions. Additionally, when characterizing the 

agglomeration of plasmonic nanoparticles, DLS and LSPR monitor different phenomenon which 

yield complimentary information. 
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Chapter 3 Synthesis of Protein Binding Nanogels with High Dispersion Stability 

Introduction 

 

In this chapter, a modified synthesis for porous nanogels is described. The stability of the 

nanogel suspensions was studied both above and below the lower critical solution temperature 

(LCST) of the nanogel, as well as the nanogel’s ability to capture/release the proteins, bovine 

serum albumin (BSA) and lysozyme. Crosslinked poly(N-isopropyl acrylamide) (PNIPAM) was 

chosen for the nanogel support as it displays low nonspecific adsorption (~16 mg/g), and has a 

previously published synthesis which requires no complex instrumentation.128, 174 Additionally, 

the thermal response of PNIPAM gels has been used to release captured dextran and proteins 

including BSA and VEGF.175-177  

Cibacron blue 3G-A(CB) is a commonly studied triazine dye that allows for protein 

purification by affinity chromatography.178 CB was chosen as the ligand to immobilize to the 

nanogel due to the simple coupling chemistry, via a substitution reaction, CB is chemically 

stable, commercially available and binds a wide range of proteins including cytokines through a 

combination of ionic and hydrophobic interactions.179-183 The ionic interactions between CB and 

proteins can be weakened by increasing the ionic strength of the solution and high salt gradients 

are used to dissociate protein from CB.184 Additionally, the immobilization of a colorimetric dye 

to the nanogel enables rapid determination of nanogel concentration. 

The synthesized nanogels have the desired characteristics of being water soluble, form 

stable suspensions, have high surface area, are stable for extended storage periods, have low 

nonspecific adsorption, and contain amine functional groups allowing for ligand coupling. The 

hydrodynamic diameters (Dh) of the nanogels was found to decrease from 465 to 261 nm with 

increasing temperatures above the LCST of the nanogels. The nanogels did not agglomerate in 
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ionic solutions, or solutions containing protein above the LCST of the nanogel. Nanogels 

embedded with CB adsorbed and released lysozyme, while BSA bound nonspecifically to the 

nanogel. These results suggest that nanogels embedded with protein binding ligands may be an 

alternative support material for microdialysis affinity agents. 

 

Experimental 

Reagents 

 

Monosodium phosphate, disodium phosphate, sodium chloride, sodium azide, potassium 

persulfate (KPS) and NIPAM were purchased from Sigma (St. Louis). Cibacron blue 3G-A was 

purchased from Abcam (Cambridge, MA). Allylamine (AA) and N, N methylenebisacrylamide 

(BIS) were purchased from Alfa Aesar (Haverhill, MA). HPLC grade water was used for all 

experiments and was purchased from Thermo Fisher Scientific (Waltham, MA). Bovine serum 

albumin (BSA) fraction V was purchased from Rockland (Limerick, PA). Phosphate buffered 

saline (PBS) solution consisted of 147 mM sodium chloride, 4.7 mM disodium phosphate, 7.3 

mM monosodium phosphate, pH adjusted to 7.2 with sodium hydroxide. This solution was used 

for early studies to test the nanogels in a solution with relatively high ionic strength, 174 mM, 

which contains kosmotropic salts that are known to affect PNIPAM chain conformations (by 

dehydrating the polymer), and has been used in microdialysis experiments.185, 186 The 

kosmotrope was chosen as due to its ability to buffer the solution, and in attempt to test the 

nanogel suspension in conditions likely to induce agglomeration.  The bicinchoninic acid assay 

(BCA) kit was purchased from Millipore (Billerica, MA). Lysozyme was purchased from MP 

Biomedical (Solo, OH). 
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Synthesis of affinity nanogels 

 

All glassware was acid washed with aqua regia consisting of hydrochloric acid and nitric 

acid at a 3:1 ratio and thoroughly washed before use. NIPAM was recrystallized in hexane to 

remove inhibitor prior to use. The synthesis procedure used is a slight modification of previously 

described synthesis.174 In brief, 0.89 g of NIPAM and 30 mg of BIS were dissolved in 30 mL of 

water and syringe filtered using a 0.2 µm filter. The solution was sealed and purged with 

nitrogen for 15 min. Then 66 µL of AA was added; the solution was purged with nitrogen and 

heated to 75 °C. Upon reaching 75 °C, precipitation polymerization was initiated with the 

addition of 1 mL of a 10 mg/mL KPS solution and the solution was stirred for 3 hr.  

A separate solution of 0.99 g NIPAM, 30 mg BIS in 30 mL of water was purged with 

nitrogen for 30 min, and was added dropwise to the initial solution after it had reacted for 3 hr. 

This combined solution was removed from heat after a further 3 hr and stirred overnight at room 

temperature.  

The synthesis was repeated two times, however one of the nanogel solutions was 

subjected to an additional centrifugation process to remove aggregate particles. The solution that 

was subjected to additional was cycles was centrifuged at 5000 relative centrifugal force (RCF) 

at 8 °C for 5 min and the supernatant recovered, while the precipitate discarded. RCF is reported 

instead of RPM as RCF relates the force acting on the solution to that of earth’s gravitational 

force and is independent of different rotor sizes. This process was repeated until no further 

precipitate was observed. This nanogel solution that underwent additional wash steps is denoted 

as Nanogel 400, and the nanogel solution that did not undergo the additional 5000 RCF 

centrifugation cycles is denoted as Nanogel 1200. Finally, both nanogel solutions were washed 
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three times by pelleting the particles at 17,000 RCF at 8 °C for 20 min and suspending the pellet 

in water. Figure 3.1 displays the synthesis for the nanogel solutions.  

 
Figure 3.1 Synthesis of Nanogel 1200 and Nanogel 400. Nanogel 400 underwent additional low 

RCF centrifugation washes before CB modification to remove large agglomerates. 

 

Incorporation of the CB was achieved by adding 0.32 g sodium carbonate to the nanogel 

solution followed by purging with nitrogen for 30 min. A CB solution was prepared containing 

1.5 g CB in 30 mL of 0.1 M sodium carbonate, a 25 µL aliquot was taken to determine the initial 

CB concentration. The CB solution was added to the nanogel solution and allowed to react at 

room temperature for two days. The nanogel particles were washed by pelleting the particles at 

17,000 RCF at 8 °C for 20 min and suspending the pellet in water, this process was repeated 

three additional times after the absorbance of the supernatant at 610 nm was zero. Finally, the 

pellet was suspended in 0.05% (w/v) sodium azide for storage. The supernatant was collected in 

a volumetric flask, diluted to the mark with water, and the moles of CB in the solution 

determined by measuring the absorbance at 610 nm, the absorbance peak of CB, using a 

Nanodrop 200c Thermo Fisher Scientific (Waltham, MA). The moles of CB immobilized into 

the nanogels was determined by mass balance. Figure 3.2 displays the wash steps used to 

differentiate Nanogel 1200 from Nanogel 400 and the CB immobilization. 
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Figure 3.2 CB immobilization process for Nanogel 1200 and Nanogel 400.  

 

Characterization of nanogels 

 

The polymerization procedure used to synthesize Nanogel 400 and 1200 was the same; 

however Nanogel 400 underwent wash cycles at 5000 RCF to remove large particles. To test 

what impact additional centrifugation steps had on the stability of nanogel dispersions, both were 

washed into a PBS with 0.1% (w/v) BSA solution three times to a final concentration of 2 

mg/mL nanogel. The solutions were left undisturbed for 8 hr at 21 °C, while monitoring the 

absorbance at 610 nm every 60 min.  

Transmission electron microscope (TEM) images of nanogels were taken using a JEOL-

1011 from Jeol (Peabody, MA). TEM images were analyzed using ImageJ. The hydrodynamic 

diameter of the nanogels at 24 °C was measured with dynamic light scattering (DLS)in water 



60 

 

using a 90Plus particle sizer from Brookhaven (Holtsville, NY), with λ (658 nm) and scattering 

angle of 90°. To observe thermal collapse of Nanogel 400, DLS measurements were performed 

on Nanogel 400 in water from 16°C to 40 °C allowing 10 min to equilibrate at each temperature.  

To test for nanogel agglomeration above the LCST of PNIPAM, Nanogel 400 was 

washed into PBS with or without 0.1% (w/v) BSA three times to a final nanogel concentration of 

2 µg/mL. This solution was heated to 37 °C for 10 min, after which the z-average (intensity 

based) hydrodynamic diameter was measured using DLS at 37 °C with 30 s intervals for 10 min. 

All hydrodynamic diameter (Dh) reported are the z-average. The concentration of nanogels was 

determined by mass balance after lyophilization. It should be noted that the PBS solution used 

for these experiments has an ionic strength of 174 mM and contains ionic kosmotropes. This 

ionic strength is higher than commercially available artificial cerebral spinal perfusion fluid from 

CMA which has an ionic strength of 155 mM.187 Agglomeration of PNIPAM nanoparticles is 

induced with high ionic strength solutions and salt induced collapse of the polymer follows the 

Hofmeister series.166, 188-190 As no agglomeration was seen in the PBS solution it is unlikely it 

will be observed in commercially available perfusion fluids used for microdialysis sampling.  

 

Binding of lysozyme to the nanogels 

 

Nanogel 400 and a nanogel with no cibacron blue incorporated into it (acting as a 

control) were washed into a PBS solution three times to a final concentration of 8 mg/mL 

nanogel. The nanogel solution was added to various concentrations of lysozyme in PBS at a 1:1 

volume to volume ratio. This solution was incubated for 30 min at 21 °C. After incubation, the 

solutions were centrifuged at 17,000 RCF at 8 °C for 20 min, the supernatant was collected. This 

supernatant collected after protein capture is hereafter referred to as the capture supernatant. The 
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remaining pellet was washed two times with water and suspended to its initial volume in 2 M 

NaCl. The pellet suspension was incubated for 30 min at 21 °C, after which it was centrifuged 

and the supernatant collected. This supernatant collected after release is hereafter referred to as 

the release supernatant. Lysozyme was quantified in the initial solution, the capture supernatant 

and the release supernatant by a BCA assay. The amount of protein adsorbed (Ca) was 

determined by mass balance, subtracting the capture supernatant concentration (C1) from the 

initial concentration (C0) as seen in Eq 3.1. The percent of lysozyme released (R%) was 

determined by the ratio of lysozyme in the release solution (Cr) and Ca following Eq 3.2. 

Eq 3.1 𝑪𝒂 = 𝑪𝟎 − 𝑪𝟏 

Eq 3.2𝑹% =
𝑪𝒓

𝑪𝒂
×𝟏𝟎𝟎 

To test lysozyme capture over time, Nanogel 400 was washed into a PBS solution three 

times to a final concentration of 4 mg/mL nanogel. The nanogel solution was added to a 0.5 

mg/mL lysozyme in PBS solution at a 1:1 volume to volume ratio. This solution was incubated 

for 30, 90, or 180 min at 21 °C. After incubation, the solutions were centrifuged at 17,000 RCF 

at 8 °C for 20 min, and the supernatant was collected. Figure 3.3 displays the various steps used 

for protein binding and release experiments. 
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Figure 3.3 Flow diagram for protein capture/dissociation experiments.  

 

BSA exclusion from the nanogels 

 

Nanogel 400 and a control nanogel with no CB were washed into a PBS solution three 

times to a final concentration of 4 mg/mL. The nanogel solution was added to a 2 mg/mL BSA in 

PBS solution at a 1:1 (v/v) ratio. This solution was incubated for 30 min at 21 °C. After 

incubation, the solutions were centrifuged at 17,000 RCF at 8 °C for 20 min, the capture 

supernatant was collected. The remaining pellet was washed two times with water and suspended 

to its initial volume in 2 M NaCl. BSA was quantified in the initial solution, the capture 

supernatant and the release supernatant by the BCA assay. Additionally, a solution containing 2 

mg/mL BSA or BSA and lysozyme was added 1:1 with Nanogel 400 or a control nanogel (2 

mg/mL) to a final volume of 200 µL. After 30-min the solutions were centrifuged and the 
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supernatant discarded. The pelleted nanogel was washed two times with water. The concentrated 

pellet of 40 µL (a fivefold concentration) was then dispersed using a pipette. A SDS-PAGE 

running gel was made by pipetting 2.25 mL of 40% (w/v) acrylamide, 0.9 mL of a 1% (w/v) BIS, 

1.25 mL 1.5 M tris(hydroxymethyl)aminomethane hydrochloride (TRIS) pH 8.5, 25 µL 20% 

(w/v) sodium dodecyl sulfate (SDS), 0.6 mL of water into a side arm flask. A vacuum was pulled 

for ~20 min to degas the solution. Polymerization was initiated by adding 25 µL 

tetramethylethylenediamine (TEMED) and 25 µL of 10% (w/v) ammonium persulfate (APS). 

The solution was mixed and pipetted into a Bio-Rad casting frame and allowed 45 min to set. 

The stacking gel was prepared by adding 150 µL of 40% (w/v) acrylamide, 200 µL of 1% BIS 

(w/v), 375 µL of 0.5 M TRIS pH 6.8, 7.5 µL of 20% (w/v) SDS and 750 µL of water. A vacuum 

was pulled for ~ 20 min after which, 15 µL of TEMED and 15 µL of 10% (w/v) APS was added. 

The solution was pipetted into the casting frame and allowed 45 min to set. To the stacking gel, 

20 µL of the concentrated nanogel solution was added. The electrophoresis cell was filled with a 

solution containing 50 mM TRIS pH 8.5, 0.38 M glycine, 8 mM SDS. Electrophoresis was 

initiated using a mini-Protean from Bio-Rad (Hercules, CA) at 150 V for 90 min. The gel was 

removed and stained with Coomassie blue for 2 hr, and then destained with 40% (v/v) methanol, 

10% (v/v) acetic acid for 1 hr. 

 

Determination of the nanogel viscosity 

 

Diffusion coefficients are inversely proportional to solution viscosity. To confirm that the 

2 mg/mL concentration of Nanogel 400 does not significantly increase the viscosity of the 

perfusion fluid, Nanogel 400 was washed into PBS with 0.1% (w/v) BSA three times. A B89 

Canon-Fenske viscometer from Cole-Parmer (Vernon Hills, IL) was calibrated using DI water at 
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21 °C. Three measurements were made to determine the viscosity of the PBS with 0.1% (w/v) 

BSA and the 2 mg/mL Nanogel 400 in PBS with 0.1% (w/v) BSA solution at 21 °C. 

 

Results 

Characterization of the nanogels 

 

Two nanogel solutions of PNIPAM crosslinked with BIS containing AA in the core were 

initially synthesized in an identical fashion by free radical precipitation polymerization. Nanogel 

1200 had a hydrodynamic diameter of 1240 ± 90 nm. While Nanogel 400 underwent additional 

centrifugation steps to remove large agglomerates after synthesis and had hydrodynamic 

diameter of 422 ± 6 nm. The amount of cibacron blue loaded into Nanogel 1200 and 400 was 

found to be 0.93 ± 0.03 mmol/g and 1.8 ± 0.3 mmol/g respectively, which is similar to that of 

Patanarut et al. which reported a loading of 0.74 to 1.74 mmol/g.174 The difference in cibacron 

blue loading between the two groups is not unexpected, as the Nanogel 400 solution had fewer 

particles with which CB could be immobilized to (due to removal of large agglomerates prior to 

CB loading). The Nanogel 1200 solution had a total particle mass of 360 mg while Nanogel 

400’s total particle mass was 185 mg.  

It should be noted that the temperature which the nanogels are centrifuged can induce 

irreversible agglomeration. When Nanogel 1200 was centrifuged at ambient temperature it would 

agglomerate irreversibly, as seen in Figure 3.4. The particles remained agglomerated despite 

repeated sonication and a two hr relaxation at 4-8 °C. Compaction of polymer chains tethered to 

a support by centrifugation is not always reversible, as multiple polymer bridges form particles 

between particles.191 It is likely the temperature in the centrifuge exceeded the LCST of the 

polymer, and chains on adjacent particles collapsed together, irreversibly bridging particles. 
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However, this agglomeration was not studied further as centrifuging the particles at 8 °C did not 

initiate irreversible agglomeration.  

 

Figure 3.4 Nanogel 1200 centrifugation at 8 °C (A) and ambient temperature (B), before 

centrifugation (top) and after centrifugation followed by sonication (bottom). 

 

Dispersions of Nanogel 400 were found to be completely stable for up to 8 hr in PBS 

containing 0.1% (w/v) BSA (no particle precipitation), while Nanogel 1200 precipitated as seen 

in Figure 3.5. After 8 hr at 21 °C, only 42.4 ± 9.8% of Nanogel 1200 remained suspended in 

solution. Generally, colloids are able to maintain a stable suspension in solution due to 

A B 
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gravitational forces being overcome by Brownian forces.94 Stoke’s law can be used to calculate 

the settling velocity of a particle.95 

𝒗 =
𝒅𝟐(𝝆𝟐−𝝆𝟏)𝒈

𝟏𝟖𝜼
   Eq. 3.1 

Where v is the settling rate, d is the particle diameter, ρ2 is the particle density, ρ1 is the density 

of the solution, g is acceleration due to gravity, and η is the solution viscosity. Equation 3.1 

displays that the increases in particle diameter, square the settling velocity. Additionally, the Δρ 

parameter inhibits usage of dense nanoparticles as 100 nm affinity agent immobilized iron oxide 

particles precipitate in a microdialysis syringe.92  
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Figure 3.5 Nanogel suspension stability in PBS at 21°C. n= 3. Avg ± 1 S.D. 
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The Overbeek criterion concludes that particles with a predicted settling velocity less 

than 1 mm/24 hr will never settle as Brownian motion exceeds gravitational settling.96 This 

emphasizes the desire to synthesize small, porous nanoparticles in order to obtain stable 

dispersions. Using the Overbeek criterion and the viscosity of water, the settling diameter of 

dense PNIPAM nanogels is 460 nm. However NIPAM-BIS hydrogels form core-shell particles 

where the shell is less dense than the core,192 so the settling diameter for PNIPAM nanogels will 

be larger than this approximation. 

Representative TEM images and corresponding size histograms of Nanogel 1200 and 400 

are shown in Figure 3.6 and Figure 3.7.  
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Figure 3.6 TEM images and size histogram for 100 particles of Nanogel 1200. 
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Figure 3.7 TEM images and size histogram for 100 particles of Nanogel 400 
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The diameters of the dense particle cores as measured by TEM were 297 ± 36 and 298 ± 

26 nm for Nanogel 1200 and 400 respectively. Two different TEM’s were used to image the 

particles. The light polymer halo surrounding the core was not included in the TEM size 

measurements due to poor contrast between the polymer and underlying grid. The TEM images 

reveal nanogels that are bridged together by polymer, forming aggregates. The degree of 

bridging appears greater in the Nanogel 1200 sample, owing to its lower dispersion stability. The 

high degree of particle bridging and extended polymer shell is why the hydrodynamic radius is 

of Nanogel 1200 is greater than that of Nanogel 400 despite the two particle groups having the 

same particle core size. Bridged particles accounted for 64% of the total particles in Nanogel 

400, as seen in Figure 3.8. Nanogel 400 was chosen for further study with the objective to create 

microdialysis affinity agents that maintain a stable suspension for extended sampling times, as 

dispersions of it were stable for up to 8 hr. 
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Figure 3.8 Number of particles in a cluster Nanogel 400. n=250 particles. Particles were 

analyzed using ImageJ with manual counting of bridged particles. Bridged particles are defined 

as particles with observable polymer contacting an adjacent particle.  

 

Nanogel 400 was found to be stable for up to 3 months when stored at 4 °C. The Dh did 

not significantly change over three months, 422 ± 6 nm initially and 423 ± 12 nm after 3 months 

of storage. Additionally, no CB was found in the supernatant after 3 months of storage at 4 °C.  

Thermal collapse of Nanogel 400 was found to occur over a broad temperature range 

from 24 °C to 36 °C as shown in Figure 3.9. The hydrodynamic diameter decreased from a 

maximum of 465± 14 nm at 16 °C to 261 ± 3 nm at 36 °C. The broad temperature collapse for 

PNIPAM nanogels has been observed and, is due to the dense particle core having fewer 
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interactions with water molecules. As there are fewer water molecules in the core its LCST is 

lower than the outer shell.117, 193 
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Figure 3.9 Hydrodynamic diameter of Nanogel 400 in water. Avg ± 1 S.D. n=5. 

 

The thermal stability of the nanogels in PBS and PBS with 0.1% (w/v) BSA was studied 

and no agglomeration was observed at 37 °C, as see in Figure 3.10. The CMA 20 10 mm PES 

microdialysis probe has a 1.2 µL volume, meaning that the particles will not agglomerate in vivo 

at 37 °C in the probe at 1 µL/min, as the perfusion fluid will only be in contact with elevated 

temperatures for 72 s. The average hydrodynamic diameter after heating for 20 min at 37 °C was 

305 ± 8 nm in PBS and 247 ± 12 in PBS with BSA. The smaller Dh observed in PBS with BSA 

versus in PBS without BSA is curious. One would expect protein adsorption onto the nanogel 
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which would yield an observable increase in Dh. DLS is commonly used to study adsorption of 

proteins onto the surface of nanoparticles by observing an increase in hydrodynamic diameter,194-

197 and has also been used to study temperature triggered protein adsorption onto 

thermoresponsive nanoparticles.198 It is possible that BSA adsorbed to the outer polymer layer 

and prevented bridged particles from interacting. A 10 μM concentration of cetyl-

trimethylammonium bromide, which is below its critical micelle concentration, have been show 

to adsorb to PNIPAM nanogels and prevent thermal agglomeration of PNIPAM nanogels.199 

Adsorption of BSA to gold nanoparticles has been shown to stabilize the nanoparticles by adding 

a combination of steric and electrostatic barriers in ionic solutions, even in a 200 mM ionic 

strength solution.197 It is likely that BSA adsorbs to the PNIPAM nanogels and prevents the 

bridged particles from interacting in ionic solutions, as the 305 nm Dh in PBS is larger than that 

observed in water at 37 °C.  
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Figure 3.10 Nanogel 400 hydrodynamic diameter at 37 °C in PBS supplemented with or without 

BSA. n=3. Avg ± 1 S.D. Samples were heated for 10 min at 37 °C before measurements were 

taken. 
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Binding of lysozyme to the nanogels 

 

The ability for the nanogels to bind lysozyme was dependent on the inclusion of CB, as 

nanogels without CB displayed poor lysozyme binding as seen in Figure 3.11. The nanogels 

containing CB adsorbed 79.5 ± 7.1 mg/g lysozyme in 30 min at room temperature in PBS, 

compared to 9.7 ± 2.6 mg/g for nanogels without CB. This capture amount is similar to 

crosslinked nanogels containing CB from another study which reported 80 mg/g lysozyme 

capture with a CB immobilization of 3-5 µg/g.200  

A low affinity between CB and lysozyme was observed in PBS with 42.0 ± 0.8% of 

lysozyme captured over 30 min as seen in Figure 3.12, possibly due to the high ionic strength 

reducing the strength of electrostatic interactions. The Debye length in a 150 mM NaCl solution 

is 0.55 nm. No significant increase in lysozyme binding occurred with increasing incubation 

time, up to 180 min, p>0.05 as determined by a one-way ANOVA. This indicates equilibrium 

binding for dilute lysozyme concentrations (0.25 mg/mL) is achieved within 30 min.  
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Figure 3.11 Lysozyme captured by Nanogel 400 and a control nanogel in PBS over 30 min. n= 

3. Avg ± 1 S.D. Co is the initial protein concnetation. 
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Figure 3.12 Lysozyme captured by Nanogel 400 with an initial protein concentration of 0.25 

mg/mL in PBS. n= 3. Avg ± 1 S.D. 

 

When 0.6 mg/mL of lysozyme was captured with Nanogel 400, only 57.4 ± 4.2% was 

released with a single release cycle using 2 M NaCl as seen in Figure 3.13. This hindered 

dissociation of a relatively high concentration of lysozyme in a high salt solution is not wholly 

unexpected, as lysozyme expresses reduced solubility with increasing NaCl concentration.201 At 

pH 4.5, where lysozyme displays the highest solubility, its solubility is below 1 mg/mL in 2 M 

NaCl.202 The 2 M NaCl release solution was chosen as it has previously been shown that 

lysozyme-CB interaction is weakened with high ionic strength,203, 204 and that the predominant 

interaction between proteins and CB is between positively charged amino acids and the sulfonate 

group on CB. However, there is also hydrophobic interactions between CB and a variety of 
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proteins with importance placed on location of the aromatic rings relative to the sulfonate 

groups.205 The addition of a second 30 min release cycle of 2 M NaCl increased the cumulative 

release of lysozyme to 81.3 ± 4.8%, while increasing the release time to 90 min increased the 

release percent to 74.6 ± 3.8%. No CB was detected in the supernatant after incubating Nanogel 

400 with 2 M NaCl, confirming no CB dissociation occurs from the nanogels under this 

condition. 
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Figure 3.13 Lysozyme released from Nanogel 400 with repeated release cycles of 2 M NaCl for 

30 min at room temperature. n= 3. Avg ± 1 S.D. 
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BSA exclusion from the nanogels 

 

BSA is commonly added to microdialysis perfusion fluid at concentrations of 0.25 to 3.5 

mg/mL to enhance the recovery of lipophilic compounds,206, 207 neuropeptides,208 and proteins.73, 

209 BSA has been shown to reduce nonspecific adsorption.73 However BSA is known to bind CB 

with and KD of 2.2 µM and CB is routinely used for albumin depletion.210-213 The BSA-CB 

interaction must be restricted if Nanogel 400 is to be included in microdialysis perfusion fluid 

containing BSA to prevent the high concentration of BSA from saturating CB binding sites. 

Core-shell PNIPAM nanogels have previously shown that the addition of the crosslinked shell 

can restrict diffusion of large proteins (albumin) into the core of the nanogel, while still allowing 

diffusion of small proteins such as cytokines.174, 214, 215 This restricted diffusion of large proteins 

into the nanogel is similar to restricted access media which prevents proteins from interacting 

from packing material by size exclusion in solid phase extraction and HPLC. 216, 217 

BSA showed little/no binding to Nanogel 400,the concentration of BSA in the 

supernatant of Nanogel 400 was found to be 92.5±10.0% of the initial 1 mg/mL concentration, 

n=2 independent experiments with three separate samples in each experiment measured in 

duplicate. BSA was not detected in release supernatants. This implies that BSA’s interaction 

with the CB is hindered by the outer polymer layer which does not contain CB.  

Figure 3.14 displays a SDS-PAGE result in which BSA adsorbed onto a control nanogel 

with no CB bound, while both lysozyme and BSA were captured by Nanogel 400. Confirming 

BSA adsorbs nonspecifically to the outer PNIPAM shell, and lysozyme capture is due to the 

immobilized CB. It is interesting that the protein band for BSA in lane D (Nanogel 400 and 

BSA) appears thinner than the BSA band for Lane C and E, control nanogel plus BSA and 

Nanogel 400 plus lysozyme and BSA. This is likely due to charge repulsion from the sulfonate 
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groups in CB which have been shown to hinder BSA diffusion at low ionic strength and/or high 

CB densities.213, 218 Figure 3.15 displays lysozyme capture and release to/from CB in the interior 

of the nanogel, while BSA is excluded from the CB. 

Figure 3.14 SDS-PAGE of BSA and Lysozyme eluted from nanogels. A) 1 mg/mL BSA and 

Lysozyme in water, B) control nanogel incubated with BSA, C) control nanogel incubated with 

BSA and Lysozyme, D) Nanogel 400 incubated with BSA, E) Nanogel 400 incubated with BSA 

and Lysozyme. 
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Figure 3.15 Size dependent capture/dissociation to Nanogel 400. CB is immobilized on the 

interior of the nanogel. The soft porous shell hinders large protein from binding the CB. 

 

CB has affinity for a wide variety of proteins,184, 219, 220 so a suitable concentration of 

nanogel must be selected which will be able to capture all protein in the dialysates. For future 

protein binding experiments a 2 mg/mL nanogel concentration was chosen. This concentration 

was chosen as it would allow for the capture of 160 µg/mL of protein in dialysates. The total 

protein content collected from injured human frontal lobe at 0.3 µL/min using a 20 mm 

membrane length, 100 kDa MWCO probe has been reported to range from 50 to 1520 µg/mL 

with an average of 234 ± 21 µg/mL.221 When a 10 mm 100 kDa MWCO probe was perfused at 

0.3 µL/min through human subcutaneous tissue, the total protein content ranges from ~2000 to 

100 µg/mL with an average of ~500 µg/mL.222 It should be noted that microdialysis probes used 

for humans are typically perfused at low flow rates. Both low flow rates and increasing 

membrane length increase the perfusates residence time with the membrane, thereby increasing 



82 

 

recovery. Additionally the total protein content measured in dialysate from human skin collected 

at 3 µL/min with a 300 kDa MWCO probe is reported to be ~60-80% albumin.223 The 2 mg/mL 

concentration should be sufficient to capture all small protein collected in animal dialysates, as 

larger albumin is hindered from the CB binding site. However, this will need to be tested in vivo 

by varying the particle concentration and confirming that saturation of the nanogels is not 

reached.  

 

Viscosity of the nanogels 

 

The viscosity of the PBS with 0.1% (w/v) BSA was found to be 9.36 ± 0.008 ×10-4 Pa × s 

while the with the 2 mg/mL Nanogel 400 in the same solution was found to be 9.40 ± 0.008 ×10-

4 Pa × s. No significant difference in viscosity was found between the two perfusion fluids, 

meaning no significant reduction in analyte diffusion coefficient is expected.  

Summary  

 

A nanogel solution with CB immobilized to the nanogel was synthesized. The nanogel 

dispersion was stable for up to 8 hr in an ionic solution with no agitation. The nanogels did not 

agglomerate in solutions mimicking microdialysis perfusion fluids after 20 min at 37 °C. By 

selectively loading the CB into the interior of the nanogel, the BSA-CB interaction was 

prevented. Nonspecific BSA adsorption occurred to the exterior of the nanogel, while lysozyme 

capture was due to CB immobilization to the nanogel. Adsorbed lysozyme was released from the 

nanogel, reaching a cumulative release of 81.3 ± 4.8% with two cycles of 2 M NaCl. The 

nanogels were found to be stable over a three-month storage period. These preliminary data 

suggest that nanogels may serve as a novel support platform with which to explore as 

microdialysis affinity agents. 
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Chapter 4 Water dispersible affinity nanogels enhance microdialysis protein relative 

recovery  

Introduction 

 

In this chapter, the nanogels synthesized in chapter three are studied as affinity agents for 

microdialysis sampling. The perfusion of the nanogels through a microdialysis system was 

studied, and compared to previously used affinity agent support material. The recovery of the 

nanogels was optimized with the use of a syringe push and peristaltic pump. The binding 

between nanogels and two rat cytokines, CCL2 a 13.1 kDa protein and KC/GRO a 7.8 kDa 

protein was studied. These two cytokines were initially studied as the mouse and human analog 

have been shown to have high affinity for CB, and the rat cytokines have been recovered in vivo 

using microdialysis probes.47, 182 Various dissociation buffers and temperatures were screened to 

optimize protein dissociation from the nanogels. Finally, nanogels were included in perfusion 

fluid, and their effect on RR for CCL2 and KC/GRO studied. 

 

Experimental 

Reagents 

 

Monosodium phosphate, disodium phosphate, sodium chloride, sodium azide, potassium 

persulfate (KPS), NIPAM, and fluorescein isothiocyanate dextran with an average molecular 

weight of 10 kDa (FITC-dextran 10) were purchased from Sigma (St. Louis). Cibacron blue 3G-

A was purchased from Abcam (St. Louis). Allylamine (AA) and N,N methylenebisacrylamide 

(BIS) were purchased from Alfa Aesar (Haverhill, MA). HPLC grade water was used for all 

experiments and was purchased from Thermo Fisher Scientific (Waltham, MA). Bovine serum 

albumin (BSA) fraction V was purchased from Rockland (Limerick, PA). Phosphate buffered 
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saline (PBS) solution consisted of 147 mM sodium chloride, 4.7 mM disodium phosphate, 7.3 

mM monosodium phosphate, pH adjusted to 7.2 with sodium hydroxide. MagPlex 5.6 µm 

carboxyl functionalized microspheres were purchased from Luminex (Austin, TX). Rat CCL2 

ELISA kit was purchased from BD Biosciences (San Jose, CA). Rat KC/GRO ELISA kit was 

purchased from R&D Systems (Minneapolis, MN). 

 

Recovery of Nanogel 400 and microspheres through a microdialysis probe 

 

Nanogel 400 or microspheres were washed into a PBS with 0.1% (w/v) BSA three times 

to a final concentration of 2 mg/mL or 1×106 beads/mL. The syringe containing microspheres 

was placed in a BASi syringe pump which was attached to an in house custom rotator to agitate 

the microsphere suspension (10 rotations/min). The syringe containing the nanogels was placed 

in a syringe pump on top of the SFC Fluidics push/pull pump. A CMA 20 from Harvard 

Apparatus (Holliston, MA) with a 10 mm PES 100 kDa MWCO membrane was placed in water 

and connected to the syringe containing the particles. To account for dead volume in the system, 

two flushes were discarded before collections were made at each position. A 10-min flush at 3 

μL/min was performed and followed by another flush at 1 μL/min for 30 min. Following flushes, 

collections were made at 1 μL/min with three collections made at each position (15 

μL/collection). Collections were made at positions depicted in Figure 4.1. A newly dispersed 

solution was prepared and placed in the syringe when changing sampling positions. This was 

done to prevent possible particle settling from biasing results during extended sampling. When 

sampling from position 4 with microspheres, the outlet was connected to dialysate collection unit 

one, a push/pull peristaltic pump from SFC Fluidics (Fayetteville, AR) or a MAB 20 peristaltic 

pump from SciPro (San Francisco, CA). Particle recovery was determined relative to the 

concentrations in the syringes. Microspheres were quantified using a hemocytometer, while 
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nanogels were quantified by measuring the absorbance of the solutions at 610 nm using a 

Nanodrop 200c from Thermo Fisher Scientific (Waltham, MA).  

Particle recovery during extended sampling times was studied using a CMA 20 10 mm 

PES 100 kDa MWCO probe and a flush procedure as previously described. Following the flush 

collections were made at 1 µL/min every 60 min, for 5 hrs using the syringe rotator for the 

microspheres or the SFC Fluidic push/pull pump for Nanogel 400, as these were found to give 

the highest particle recovery for the microspheres and Nanogel 400. 
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Figure 4.1 Particle recovery was determined at the syringe outlet (1), at the tubing adaptor 

(2), at the probe outlet (3), and at the peristaltic pump outlet (4). 
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Protein binding to Nanogel 400 

 

Initial experiments were conducted to confirm CCL2 binding to Nanogel 400, and 

confirm the binding is not inhibited by BSA, which is added to microdialysis perfusion fluid to 

act as a blocking agent. A 4 ng/mL CCL2 (standards from the ELISA kit) in PBS with 0.1% 

(w/v) BSA and without BSA was added 1:1 (v/v) with 4 mg/mL of Nanogel 400 in a protein 

LoBind centrifuge tube from Eppendorf. The solutions were incubated for 30 min at room 

temperature, after which the solutions were centrifuged and the supernatant collected. The 

amount of CCL2 captured was determined by mass balance.  

Confirmation that protein binding was due to the immobilization of CB to the nanogel 

was performed by adding 4 ng/mL CCL2 in PBS with 0.1% (w/v) BSA was added 1:1 to PBS 

with 0.1% (w/v) BSA, a control nanogel with no CB immobilized, or Nanogel 400. The solutions 

were incubated for 30 min at room temperature, after which the solutions were centrifuged and 

the supernatant collected. The amount of CCL2 captured was determined by mass balance. 

Confirmation of KC/GRO binding to Nanogel 400 was performed in the same fashion, using a 2 

ng/mL KC/GRO concentration. 

To test for CCL2 saturation of the nanogels, solutions of CCL2 ranging from 10 ng/mL to 

250 pg/mL in PBS with 0.1% (w/v) BSA were mixed 1:1 (v/v) with a 4 mg/mL solution of 

Nanogel 400 in PBS with 0.1% (w/v) BSA. The solutions were incubated for 30 min at room 

temperatures, after which they were centrifuged at 17,000 RCF at 8 °C for 20 min, the capture 

supernatant was collected and the amount of CCL2 captured was determined by mass balance. 

To obtain a KD value for the CB -protein interaction a 4 ng/mL CCL2 or 2 ng/mL KC/GRO in 

PBS with 0.1% (w/v) BSA was added 1:1 (v/v) with concentrations of Nanogel 400 from 8 

mg/mL to 400 ng/mL in PBS with 0.1% (w/v) BSA and incubated at room temperature for 30 



87 

 

min. After incubation, the solutions were centrifuged and the supernatant collected. The amount 

of CCL2 captured was determined by mass balance. The KD was determined at 50% free ligand 

using a Klotz plot.224 

 

Protein dissociation from Nanogel 400 

 

Nanogel 400 was washed into PBS with 0.1% (w/v) BSA three times to a final 

concentration of 4 mg/mL. A 4 ng/mL CCL2 or 2 ng/mL KC/GRO solution in PBS with 0.1% 

(w/v) BSA was added 1:1 to Nanogel 400. The mixed solutions were incubated at room 

temperature for 30 min, after which the solutions were centrifuged at 17,000 RCF at 8 °C for 20 

min, the capture supernatant and an aliquot of the initial protein solution were collected and 

stored at -20 °C for no more than three days. The nanogel-protein pellet was washed two times 

with water, and suspended in a release solution for up to twelve hr. The released protein was 

detected via an ELISA, and the percent dissociated determined by mass balance. 

 

In vitro microdialysis sampling 

 

The push/pull syringe/peristaltic pump used for Nanogel 400 perfusion was a prototype 

provided by SFC Fluidics. Verification that steady state conditions were reached using the SFC 

Fluidics push/pull pump, a 30 μM FITC-dextran 10 solution in PBS was sampled. A CMA 20 

with a 10 mm PES 100 kDa MWCO membrane was connected to the SFC Fluidics push/pull 

pump. A 20-min flush at 3 μL/min was performed, after which collections were made at 1 

μL/min, 60 min/collection for 5 hr. An aliquot of the FITC-dextran sampling medium was taken 

to create standards. The RR of the dialysates was determined by measuring the absorbance of the 

solutions and standards at 495 nm using a Nanodrop 200c from Thermo Fisher Scientific. The 
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dead volume of the microdialysis probe and SFC Fluidics push/pull pump was estimated by 

measuring the time it took for FITC-dextran 10 to be detected in the dialysate. 

In vitro microdialysis sampling was performed at room temperature, from a 10 ng/mL 

CCL2 solution in PBS with 0.1% BSA. A CMA 20, 10 mm PES 100 kDa MWCO probe was 

perfused using PBS with 0.1% (w/v) BSA supplemented with or without Nanogel 400 at 2 

mg/mL. Flow was initiated at 3 μL/min for 20 min, followed by 60 min at 1 μL/min. Both 

samples were not analyzed, as previous FITC-dextran 10 sampling experiments displayed steady 

recovery occurred after these collections. Then four collections were made at 1 µL/min with 60 

min/collection. An aliquot of the sampling medium was taken before sampling, in the middle of 

sampling and after sampling. The average CCL2 concentration of these aliquots was used to 

determine protein RR. After collection, dialysates without nanogels were stored at -20 °C until 

analysis, which was performed within two days. Collections made with nanogels were washed 

twice with water and suspended in 2 M NaCl, 10 mM NaH2PO4 pH 7 and left to dissociate at 37 

°C for 12 hr. Released samples were centrifuged, the supernatant collected and stored at -20 °C 

until analysis, which was performed within 24 hr. Samples were measured using a reduced 

volume ELISA (50 µL) for both sample and standards. 

Results  

Recovery of Nanogel 400 and microspheres through a microdialysis probe 

 

Immobilizing affinity ligands to support materials can lead to affinity agent settling. This 

is due to the size of the support material and its density. Affinity agent precipitation complicates 

continuous sampling. As the affinity agent precipitates, its concentration in the syringe will 

decrease, allowing for unpredicted saturation of protein binding sites to the affinity agents as 



89 

 

their suspended concertation decrease over time. Saturation of the protein binding sites on the 

particle will reduce the RR enhancements observed. It is not uncommon for microdialysis to be 

applied for lengthy sampling periods up to 12 or 24 hr.60, 74, 225 In order to reduce affinity agent 

precipitation during continuous perfusion, the Stenken and Li group have used syringe rotators 

which agitate the solution during sampling.92, 93 However, particle recovery over time was not 

studied in these previous works. In this work, the recovery of 5.5 µm polystyrene microspheres 

over 5 hr was compared to that of Nanogel 400. The microspheres used were identical to those 

used for previous affinity agent immobilization.93 No microspheres were found in dialysate when 

they were perfused at 1×106 beads/mL using a push syringe pump, while Nanogel 400 had a 

particle recovery of 87.6 ± 3.5 %, as seen in Figure 4.2. The high recovery of Nanogel 400 

without the use of instrumentation that agitates the particles is an advantage over microsphere 

supports. 

The particle recovery was studied at various positions in the microdialysis system, as 

denoted in Figure 4.1. The loss of Nanogel 400 occurred at the syringe tip when using a syringe 

pump as seen in Table 4.1. Particle loss at the syringe tip agrees with a previous particle 

perfusion study.93 When a push/peristaltic pull system was employed, 100% of the nanogels 

could be collected at a1 µL/min flow rate. Microspheres were unable to be collected using a 

push/pull system. Microsphere adsorption to small inner diameter tubing has been reported, and 

their loss during the contraction of tubing using a peristaltic pump is expected.226 Particle 

concentration is modeled to be highest at the walls of the compressed peristaltic tubing.227-229 

The particle concentration is highest in the middle of the tubing where the flow rate is faster than 

at the walls. Compression of the tubing shifts the tubing wall boundaries while the particle 

concentration positions unperturbed for short compression time scales. Microsphere recovery 
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was reestablished by disconnecting the peristaltic pump, indicating it as the source for particle 

loss either due to adsorption or restriction of passage in the compressed tubing. A different 

peristaltic pump (MAB 20 from SciPro) was also tested for microsphere recovery, and no 

particles were recovered using either peristaltic pump.  
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Figure 4.2 Particle recovery at 1 µL/min flow rate using PBS sampled from position 3. Avg ± 1 

S.D., n=3. 
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Table 4.1 Particle recovery at various sampling positions at 1 µL/min flow rate. 

Position 

Number 

Nanogel Recovery  

 (%) 

Microsphere 

Recovery (%) 

Fluid Drive 

Mechanism 

1 85.5 ± 3.9 69.4 ± 8.9 Push 

2 79.1 ± 5.5 80.7 ± 5.3 Push 

3 84.7 ± 5.3 66.0 ± 2.2 Push 

4 99.8 ± 2.9* ND Push/Pull 

* Indicates significant difference from the other positions in column, p<0.05 as determined by a 

one-way ANOVA with Tukey HSD post hoc test, ND indicates no recovery observed, avg ± 1 

S.D., n=3 

The addition of a syringe rotator hinders particle settling; however, in this work 

microsphere settling was observed during extended sampling using a syringe rotator, as seen in 

Figure 4.3. The microsphere recovery decreased from 65% to 35% over 3 hr despite using a 

syringe rotator. Interestingly the particle recovery for hours 3-5 remained constant. This may be 

due to particle precipitation occurring at the walls of the syringe, while the particles in the center 

of the syringe maintained suspension over the time studied. The maximum diameter for a stable 

polystyrene microsphere suspension is 720 nm; further increases in particle diameter hasten 

particle settling. Nanogel 400 was found to have a consistent particle recovery that did not 

decrease over time with the use of a syringe push and peristaltic pull pump. The average particle 

recovery for Nanogel 400 using push/pull perfusion at 1 µL/min for 8 hr was 100.1 ± 1.7 %.  
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Figure 4.3 Particle recovery at 1 µL/min flow rate in PBS using optimized sampling conditions. 

Samples taken from position 3 for microspheres or 4 for Nanogel 400. Microspheres were 

perfused using a syringe rotator, while Nanogels were perfused using a push/peristaltic pull 

pump. Avg ± 1 S.D., n=3. 

 

Protein binding to Nanogel 400 

 

BSA is commonly included in microdialysis perfusion fluid to act as a blocking agent. 

BSA has an affinity for a wide range of proteins and acts as a carrier protein for small molecules, 

and was found to nonspecifically bind to Nanogel 400 in chapter 3.230, 231 However, inclusion of 

BSA in PBS did not inhibit the binding between CCL2 and Nanogel 400, as 95.1 ± 0.3% of a 2 

ng/mL CCL2 solution was captured in the absence of BSA and 95.1 ± 1.0 % of CCL2 was 

captured in the presence of BSA.  
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The ability for CCL2 to bind the nanogel was due to the immobilization of CB. After a 

30-min incubation with 5 ng/mL CCL 4810 ± 360 pg/mL CCL2 remained in a control centrifuge 

tube with no nanogel, 4445 ± 205 pg/mL remained in the supernatant with a control nanogel 

(with no CB immobilized), while 1015 ± 370 pg/mL CCL2 remained uncaptured when Nanogel 

400 was used as seen in Figure 4.4. The KD for CB and CCL2 was estimated to be 110 µM as 

seen in Figure 4.5.  

Control Nanogel Nanogel 400

2000

4000

6000

[C
C

L
2
] 
(p

g
/m

L
)

 

Figure 4.4 CCL2 supernatant concentration following a 30-min incubation in PBS with 

additional PBS added as control, a 2 mg/mL nanogel solution without CB, or 2 mg/mL Nanogel 

400 solution. Avg ± 1 S.D., n=3. * indicates signifigant difference from control and nanogel, 

p<0.01 as determined by a one-way ANOVA with a Tukesy HSD post-hoc test. 

* 
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Figure 4.5 Binding isotherm for CCL2 and CB immobilized to Nanogel 400 in PBS. Avg ± 1 

S.D., n=3. 

 

KC/GRO was found to have a low affinity for Nanogel 400 with a KD of 720 µM as seen 

in Figure 4.6. A previous report displayed CB has a KD of 0.4 µM for human IL-8, the human 

analog for rat KC/GRO.182 However rat KC/GRO has a 46% identity match with human IL-8. 

Additionally, the positive amino acid residues are believed to play an important role in protein 

binding to CB; human IL-8 has 16 positive amino acids while rat KC/GRO has 11. Protein 

information was obtained using uniprot software.232 The concentration of KC/GRO in a control 

centrifuge tube was found to decrease by 29% over a 30 min incubation, possibly due to 

nonspecific adsorption. This occurred despite the inclusion of BSA as a blocking agent. When 

Nanogel 400 (2mg/mL) was added to the KC/GRO solution, 51.1 ± 1.1% of KC/GRO was not 
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detected as seen in Figure 4.7. This implies that the KD between KC/GRO and CB is higher than 

720 µM as ~60 pg of the KC/GRO was lost not to Nanogel 400. It is unlikely that the loss of 

KC/GRO is due to solely degradation as many studied cytokines remain stable for 6 hr at room 

temperature, and KC/GRO standards left at room temperature for 1 hr yield the same signal as 

those freshly made.233 Nonspecific adsorption of dilute analytes and/or its degradation are 

persistent complications when determining KD by measuring free analyte concentrations.234, 235 

The low KD between CB and KC/GRO emphasizes the complexity in predicting protein affinity 

to affinity dyes a priori. 
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Figure 4.6 Binding isotherm for KC/GRO and CB immobilized to Nanogel 400 in PBS. Avg ± 1 

S.D., n=3. 
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Figure 4.7 KC/GRO supernatant concentration following a 30-min incubation in PBS with 

additional PBS added as control, a 2 mg/mL nanogel solution without CB, or 2 mg/mL Nanogel 

400 solution. Avg ± 1 S.D., n=3. 

 

Protein dissociation from Nanogel 400 

 

It is desired to develop affinity agents that can capture and release protein, so the protein 

may be diluted to a concentration within working the range of an analysis. To this end batch 

dissociation experiments were performed screening various dissociation buffers. Table 4.2 lists 

the various dissociation buffers/conditions and the percent CCL2 released. Initial experiments 

using a 2 hr dissociation step were performed comparing organic dissociation solutions to ionic 

solutions. In previous work, a 30% acetonitrile solution was found to dissociate 92% of CCL2 

from heparin, a sulfonated glycosaminoglycan using a batch process.93 However for this work 

only 21.5% of bound CCL2 was found to dissociate from Nanogel 400 using the 30% 
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acetonitrile solution. This low dissociation is likely due to the poor solubility of the nanogel in 

acetonitrile, and a more ionic interaction between CCL2 and CB. The insoluble nanogel would 

have collapsed pore structure hindering diffusion. The performance of the CCL2 immunoassay 

was compromised when standards were made in 2 M NaCl pH 4, the signal of standards made 

under these conditions was significantly different from controls as determined by a Student T-

test, p<0.01. Cibacron blue did not dissociate from the nanogel under any of the dissociation 

conditions. 

Table 4.2 Protein dissociation from Nanogel 400. 

Dissociation Solution 2 hr Percent CCL2 Dissociated Percent KC/GRO Dissociated 

30/70 Acetonitrile/PBS 4 

°C 

21.5 ± 2.3  

2 M NaSCN 4 °C 23.3 ± 0.4  

2 M NaCl 4 °C 49.8 ± 3.0  

2 M NaCl 37 °C 60.7 ± 4.2  

   

2 M NaCl 10 mM Phosphate 37 °C  

pH 10, 2 hr 47.2 ± 4.0  

pH 7, 2 hr 75.7 ± 2.9  

pH 4, 2 hr* 73.3 ± 10.1  

pH 7, 12 hr 90.2 ± 6.2 79.3 ± 1.8 

*Indicates performance of the immunoassay was compromised. Avg ± 1 S.D., n=3. 

 

During the initial screening of dissociation buffers, the highest percent CCL2 dissociation 

was observed using 2 M NaCl pH 7 solution at 37 °C (above the LCST of PNIPAM). Further 

experiments revealed a time dependent dissociation with an increase dissociation occurring when 

the dissociation was performed above the LCST of PNIPAM, as seen in Figure 4.8. A maximum 

release was observed with a 12 hr dissociation time reaching 90.2 ± 6.2% of CCL2 dissociated of 

using 2 M NaCl pH 7. KC/GRO reached 79.3 ± 1.8% dissociation during a 12 hr release at 37 °C 
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in 2 M NaCl pH 7. The lower percent dissociation for KC/GRO may be attributed to protein 

irreversibly bound to the centrifuge tube/nanogel, or the interaction between KC/GRO and CB 

has additional nonionic interactions. 
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Figure 4.8 Percent CCL2 dissociated from Nanogel 400 in 2 M NaCl pH 7. Avg ± 1 S.D. n=3, 

except 25 °C at 120 min in which n=2. 
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In vitro microdialysis sampling 

 

The dead volume of the microdialysis probe attached to the SFC Fluidics push/pull pump 

must be accounted for when changing perfusion fluid. Sampling begun before this volume has 

been accounted for, is performed using a previous perfusion fluid. The determined dead volume 

of this space with 30 cm of fluorinated ethylene propylene tubing (0.12 mm I.D. 1.2 µL/10 cm) 

attaching the probe to the pump is ~30 µL. To account for this volume a 3 µL/min flow rate for 

20 min was performed before sampling. After the initial flush, the flow rate was decreased to 1 

µL/min and steady state sampling of FITC-dextran 10 was reached 60 min later, as displayed in 

Figure 4.9. The first collected sample was significantly different from the four succeeding 

collections, p<0.01 as determined by a one-way ANOVA and Tukey HSD post hoc test. The 

relative recovery is lower in the first sample collected as a portion of this perfusate had a lower 

residence time as a portion was perfused at a 3 µL/min. Flow rate is inversely proportional to 

relative recovery.236 As the first sample collected using the SFC pump was not indicative of 

steady state sampling, it was discarded in protein sampling experiments.  
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Figure 4.9 FITC-dextran 10 RR at 1 µL/min using SFC push/pull pump. Collections were made 

at 1 µL/min. Avg ± 1 S.D., n=3 

 

With the inclusion of Nanogel 400 in the perfusion fluid, the RR for CCL2 was 

enhanced, while it was not for KC/GRO. The control and Nanogel 400 enhanced RR are 

displayed in Table 4.3. The RR for CCL2 at 1 µL/min increased from 1.2 ± 0.3% to 4.0 ± 0.6% 

with inclusion of Nanogel 400, n=3 where n is the number of probes from the same lot. The RR 

for CCL2 is statistically different between control and Nanogel 400 (p<0.05). The control RR for 

CCL2 using a CMA 20 microdialysis probe at 1 µL/min is in close agreement with previously 

reported CCL2 RR of 1.0 ± 0.3% using the same probe model.237 The RR for KC/GRO at 1 

µL/min decreased from 31.2 ± 2.5% to 9.2 ± 1.7%. The decrease in RR is likely due to a 
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combination of the low affinity between KC/GRO and CB, and nonspecific adsorption to the 

nanogels at time periods that were not studied. Previous experiments that tested for nonspecific 

adsorption to the nanogels were performed using a 30-min incubation time, while the during 

microdialysis experiment protein remained in solution with the nanogels for up to 2 hrs after 

encountering the nanogels. The nonspecific adsorption over a longer incubation period may 

enable the protein to irreversibly adsorb to the nanogels. 

Table 4.3 Protein RR at 1 µL/min. 

 

CCL2 RR (%)  KC/GRO RR (%) 

Control 1.2 ± 0.3 31.2 ± 2.5 

Nanogel 400 4.0 ± 0.6* 9.2 ± 1.7  

Average ± S.D., n=3 experimental replicates for CCL2, while n=4 technical replicates for 

KC/GRO. * indicates significant difference as determined by a Student’s T-test, p<0.01. 

 

Lot to lot variation in commercially available microdialysis probes can cause probes to 

have variable relative recoveries for the same molecule. An example of this lot to lot variation 

was observed when a microdialysis probe was perfused under identical control conditions as 

those used earlier, yet the RR for CCL2 was 7.1 ± 1.2%. The RR for CCL2 collected with this 

probe was enhanced to 12.7 ± 1.8% with the inclusion of Nanogel 400, which returned to 7.5 ± 

0.7% when Nanogel 400 was removed from the perfusion fluid, as seen in Figure 4.10. There 

was no significant change in the control CCL2 RR before and after Nanogel 400 was perfused 

indicating that the increase in RR is due to the nanogel in the perfusion fluid, and that the 

nanogel does not irreversibly adsorb to the membrane or block pores, which would hinder 

transport into the dialysate during extended sampling. 
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Figure 4.10 CCL2 RR without Nanogel 400 (control) and with Nanogel 400 in the perfusion 

fluid. Avg ± 1 S.D., n=4 one hr collections using 1 probe. Perfusion fluid was changed between 

bars to include or remove the affinity agent. *indicates significant difference between Nanogel 

400 and both Control sampling periods as determined by one-way ANOVA and Tukey HSD post 

hoc test,  p<0.01.  

 

Previously developed affinity agents have ranged in cost, from $136/mL of perfusion 

fluid for free antibodies to $0.01/mL of perfusion fluid for free heparin as seen in Table 4.4. 

However, the addition of a support material, which prevents free affinity ligands exodus from the 

probe, increases the cost of affinity agents. The nanogels used in this chapter cost $2.40/mL of 

perfusion fluid, with 97% of the cost associated with the affinity ligand used, CB. The as 

synthesized nanogels have amine functional groups which are amenable to a range of common 

coupling chemistries such as substitution reaction (used in chapter 3), reductive amination and 
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carbodiimide crosslinking (EDC/NHS). The use of heparin in lieu of CB would reduce the cost 

of the nanogels, and there is a wide range of known physiologically relevant heparin binding 

proteins with nM KD’s.238-243 The use of heparin could serve to increase the affinity between the 

protein and nanogel, and reduce the trial and error aspect of determining which proteins bind to 

CB.  
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*Cost of working solution accounts for commercial cost from reported venders of materials 

required for synthesis or direct use for a single analyte.  

  

Affinity 

Agent 

Particle 

Diameter 

Analytes Working 

Concentration 

Cost/1 mL 

of Working 

Solution* 

($) 

Ratio of 

AA 

enhanced 

RR to 

control 

RR 

SPE 

packing 

material244 

90 µm Kemptide, Leu-

enkephalin, Met-

enkephalin, 

oxytocin, 

[Arg8]vasopressin, 

LHRH 

6.2 mg/mL 0.45 1-10 

Flow 

Cytometry 

Antibody 

Beads78 

7 µm TNF-α, IFN-γ, IL-

2, IL-4, IL-5 

1:1 or 1:4 

dilution of 

stock 

100-40 2.4-13.6 

Heparin-

immobilized 

beads93 

5.5 µm aFGF, VEGF, 

CCL2, CCL5 

2.25×107 

beads/mL 

18.10 1.6-4 

Cibacron 

Blue 

Nanogels 

(this work) 

400 nm CCL2 2 mg/mL 2.40 3.3 

Antibody88 molecule Met-enkephalin 0.15 µM 136.5 2.5 

Heparin90 molecule IL-4, IL-6, IL-7, 

CCL2, TNF-α 

0.1 µM 0.01 2-3.9 

Table 4.4 Comparison of affinity agent RR enhancement factors and cost. 
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Summary 

 

In vitro affinity microdialysis is described by including nanogels immobilized with CB in 

the perfusion fluid. The RR of CCL2 was enhanced with the inclusion of the nanogels, and not 

enhanced for KC/GRO. A 100% nanogel recovery over 8 hr was obtained by adding a peristaltic 

pump to the microdialysis system. CCL2 displayed specific capture to CB embedded nanogels. 

CCL2 and KC/GRO were capable of being dissociated from the nanogels which could then be 

detected by commercially available ELISAs. The cost associated with the nanogels is 7.5 times 

lower than that for previously developed heparin-immobilized microspheres, while yielding 

similar RR enhancement factors for CCL2. This work displays that nanogels can serve as a novel 

support material for affinity ligands to be immobilized to, for affinity enhanced microdialysis 

sampling. 
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Chapter 5 Conclusion and Future Work 

 

Microdialysis sampling of proteins and peptides is of growing interest. In recent years, 

microdialysis has continued to be used by a wide number of labs to collect cytokines, tau 

proteins, and amyloid beta oligomers.58, 60, 61 Appropriate methods to increase the relative 

recovery of large/dilute molecules collected with microdialysis are desired, as this would reduce 

the complexity placed on the ensuing detection method. The low recovery can be offset by 

increasing the residence time of the perfusion fluid in the probe or increase the surface area of 

the probe. However, in vivo these alterations will decrease the temporal resolution, as common 

analysis methods have 25-100 µL volume requirements, or increase the trauma due to surgical 

implantation of a large probe. Recent improvements to the design of microdialysis probes have 

allowed for the use of 1-3 MDa molecular weight cutoff probes to be developed, which has seen 

rapid commercialization by microdialysis probe manufacturers.77 The new high molecular 

weight cut off probes typically display a two-fold increase in RR, while affinity agent enhanced 

sampling has seen up to a 14-fold increase in relative recovery.91 The high RR enhancements 

observed with affinity agents warrants their further development. Previously developed affinity 

agents have relied on perfusable affinity ligands, however if the ligands are small enough to pass 

through the semipermeable membrane they may alter in vivo results. To prevent this, ligands 

have been immobilized on support materials that do not cross the membrane. Formerly 

developed support materials have consisted of costly microspheres or dense iron oxide 

nanoparticles, both which readily precipitate. The precipitation of these agents increases the 

complexity of their use. This dissertation developed a cost-effective affinity agent support that 

does not precipitate. This would allow for the simple perfusion of affinity agents immobilized to 

the new nanogel support and broaden their use in microdialysis studies. 



107 

 

In chapter two gold nanoparticles were initially chosen to study as a support material due 

to the simple synthesis of <20 nm diameter particles, high surface area, long term stability, and 

simple immobilization strategies. Poly (N-isopropyl acrylamide) (PNIPAM) was initially chosen 

as generic to immobilize to the gold nanoparticles as it would act as both a stabilizing ligand and 

capture ligand. PNIPAM can switch hydrophobicity with subtle changes in temperature, thereby 

allowing for the capture and release hydrophobic molecules with a temperature change.245 Gold 

nanoparticles immobilized with various PNIPAM graft densities were synthesized. The graft 

densities studied were similar to those studied for protein capture and release on flat surface.160 

Rapid agglomeration of the particles was observed during the thermal response in salt solutions. 

To elucidate the reversibility of the agglomeration three complimentary techniques were used, 

dynamic light scattering, monitoring the localized surface plasmon resonance and electron 

microscopy. The agglomeration was determined to be irreversible for low polymer graft density; 

thermally triggered protein adsorption to PNIPAM occurs only at low graft densities. The cause 

for agglomeration in salt solutions was studied and evidence suggests the agglomeration onsets 

due to a second brush layer that collapses. However further studies using differential scanning 

calorimetry and nanoparticle tracking analysis need be performed to confirm this observation. 

Differential scanning calorimetry can be used to identify two separate brush regions that 

collapse, while nanoparticle tracking analysis can determine agglomerate size distribution 

without a particle size bias. The cause for the irreversible agglomeration at low graft densities 

was determined to be due to polymer collapsing to the particle surface, causing a low collapsed 

polymer thickness and/or screening of residual surface charge at high ionic strength. These 

compounding issues develop a secondary van der Waal’s energy well which inhibits the 

reversibility of agglomeration. The rapid and irreversible agglomeration of low polymer graft 
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density particles where protein adsorption is highest inhibited protein adsorption studies by 

causing changes in surface area, and particle precipitation. Due to these complexities, a new 

support platform was sought. 

Cibacron blue is a ligand commonly used in affinity separations owing to its affinity with 

a large number of proteins, and nanogels immobilized with cibacron blue are being developed as 

cytokine delivery agents due to its µM to nM dissociation constant with cytokines.183 In chapter 

three nanogels with embedded Cibacron blue were synthesized. Cross linked PNIPAM was 

chosen for as the support material due to its low density, simple polymerization, low nonspecific 

adsorption, low cost and it has a thermal response which hastens protein dissociation. 

Centrifugation was used to rapidly remove large particles yielding a monodisperse stable 

suspension. The stability of the thermoresponsive nanogels was studied in perfusion fluids with 

high ionic strength and high protein concentrations at temperatures above the lower critical 

solution temperature of the polymer. No agglomeration was observed under the conditions 

tested, and the particles were found to be stable for up to three months. The nanogels were used 

to capture, release and concentrate lysozyme, acting as a model protein. BSA was excluded from 

interacting with cibacron blue, however BSA nonspecifically adsorbed to the nanogel. 

The recovery of perfused nanogels through a 10 mm PES 100 kDa MWCO microdialysis 

was 88% at 1 µLmin-1 over a 5 hr period without the use any additional instrumentation. A 

consistent 100% particle recovery was obtained using a combination of push/pull pumps. 

Optimized conditions for microspheres, through constant rotation of the syringe, did not prevent 

particle precipitation, hindering their use as affinity agent supports. The dissociation constant 

between the nanogels and two rat cytokines, CCL2 and KC/GRO were determined and found to 

be higher than previously reported for the human and mouse analogs.182 Previous studies on the 
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interaction of cibacron blue and cytokines were performed using human/mouse proteins, 

however in this work the interaction was studied using rat proteins. Rat proteins were chosen 

with the goal to develop affinity agents to be used for sampling from rat. Captured proteins were 

efficiently dissociated (>80%) from the nanogels using 2 M NaCl pH 7. Dissociated protein was 

detected using commercially available ELISA’s. The dissociation conditions did not affect the 

performance of the ELISAs. The RR of CCL2 was enhanced three-fold with the inclusion of the 

nanogels, while the RR of KC/GRO decreased, possibly due to nonspecific adsorption to the 

nanogels. The mass recovery KC/GRO decreased with the use of the nanogel, and further 

experiments to verify the cause are warranted. Further in vitro studies of the nanogels needs be 

performed to validate use at enhancing protein RR with a multiprotein sample. In vivo use of the 

nanogels needs to be studied to confirm that the nanogels are not saturated with proteins, as 

many collected proteins are likely to interact with cibacron blue. 

Further work to immobilize heparin, a glycosaminoglycan, to the nanogels in lieu of 

cibacron blue should be performed. A wide range of rat cytokines have a known nM KD with 

heparin. The lower KD between heparin and cytokines relative to cibacron blue will lead to lower 

required concentrations of nanogels to efficiently capture cytokines. Heparin has previously been 

used as a free and immobilized ligand to enhance cytokine RR.93 The as synthesized nanogels 

have primary amines due the allyl amine which enables carbodiimide crosslinking between a 

primary amine and a carboxyl functional group on heparin. Additionally, reductive amination 

can be used to attach heparin via the aldehyde to the both primary and secondary amines 

(secondary amines from PNIPAM). A comparison between heparin immobilization strategies 

and protein dissociation constants, adsorption amounts, and RR enhancements is a desired study. 

Additionally, a study determining maximum cytokine RR by combining high MWCO probes 
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with affinity agents is warranted using nanogels which can be collected using a peristaltic pump. 

The compounding enhancements between affinity agents, and high MWCO probes may lead to 

dialysate samples that can be diluted before detection, which would increase the temporal 

resolution of cytokine sampling. 

In conclusion, this dissertation describes a method to vary PNIPAM graft density on gold 

nanoparticles, and synthesize monodisperse nanogels that form a stable suspension. The 

thermoresponsive gold nanoparticles were found to be unsuitable to the ionic environments 

encountered with microdialysis. The nanogels were found to be cost efficient support material 

which form a stable suspension and enhanced the RR of CCL2. 
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