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ABSTRACT  

Designed transmembrane peptides were employed for investigations of protein-lipid 

interactions by means of oriented solid-state deuterium NMR spectroscopy using isotope-

enriched alanine residues. Using the model GWALP23 sequence 

(GGALW(LA)6LWLAGA) as a host peptide having single interfacial tryptophan anchor 

residues, the effects of different guest mutations were explored. Replacements of glycine 

residues 2 and 22 to positively charged lysine or arginine on both termini had little 

influence on the peptide average orientation. Conversely, glycine to tryptophan 

substitutions had profound effects, manifested in the increased dynamics and altered tilt 

direction of the peptide. While the charged residues at the peptide termini did not cause 

significant changes relative to the GWALP23 sequence, leucine to arginine mutations 

close to the peptide center led to dramatic consequences. Thus GWALP23-R14 retained a 

transmembrane topology, with the orientation and dynamics largely governed by the 

arginine residue, while GWALP23-R12 adopted multistate behavior in DOPC, with both 

transmembrane and interfacial states being populated. Coarse-grained molecular 

dynamics simulations, performed by collaborators, yielded substantial agreement 

concerning the interactions among arginine, tryptophan and lipid bilayers. Further 

insights into the multistate behavior of GWALP23-R12 were acquired by altering the 

host sequence to the isomeric GW3,21ALP23, which offers a longer separation between 

the tryptophan anchor residues. Both the L12R and L14R mutants of this modified 

sequence retained transmembrane topology, suggesting that the unique arrangement of 

tryptophan and arginine residues in GWALP23-R12 is responsible for its multistate 

character. In addition to serving as a host sequence, GWALP23 itself was modified for an 



investigation of hydrophobic matching, by shifting the tryptophan residues outward 

toward the termini (GW3,21ALP23) or inward toward the center (GW7,17ALP23), leading 

to peptide isomers with identical amino acid composition, but different effective 

hydrophobic (inter-Trp) lengths. In addition to altered tilt angles, tryptophan side chain 

reorientation was investigated and was found to provide additional response to 

hydrophobic mismatch conditions. In selected cases the 2H NMR data were analyzed in 

conjunction with restraints from separated local-field 15N solid-state NMR spectra. The 

combined analysis of the 2H and 15N NMR data provided multiple constraints and proved 

advantageous for explicit modeling of the peptide dynamics. 
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INTRODUCTION 

Biological membranes represent complex, highly heterogeneous combinations of lipids 

and proteins of different types. Interaction of membrane-spanning proteins with lipid 

bilayers is a complicated process, driven by numerous factors, which are still 

incompletely understood. Investigating systems of such complexity requires systematic 

approaches, which in turn call for the use of less intricate model systems. Usually, the 

complex biological lipid bilayer membrane environment is substituted with individual 

synthetic lipids having a particular hydrocarbon chain length. Due to the large size of 

membrane proteins, smaller membrane-spanning α-helical peptides may typically be 

used for particular experiments. To minimize the interactions between transmembrane 

helices, single-span peptides, such as model WALP sequence (GWW(LA)nLWWA), 

have been employed to good advantage for systematic experiments (de Planque et al., 

1999; Killian et al., 1996; van der Wel et al., 2002). The overall theme of this dissertation 

is the development of “next generation” model transmembrane peptides that go “beyond 

WALP” and development of experimental methods which will enhance understanding of 

peptide/lipid interactions as well as peptide and/or lipid response to hydrophobic 

mismatch conditions. 

The response of the original WALP peptides to hydrophobic mismatch turned out to be 

fairly small, as shown by solid-state 2H NMR (Strandberg et al.; van der Wel et al.). 

Molecular dynamics simulations disagreed with experiments in predicting greater lipid 

dependence and consistently larger tilt angles with respect to the lipid bilayer normal 

(Kandasamy and Larson, 2006; Kim and Im, 2010; Ozdirekcan et al., 2007). To address 
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this apparent discrepancy, we have employed independent experimental methods, using 

oriented, hydrated peptide/lipid bilayer samples and based on solid-state 2H NMR 

spectroscopy and 15N separated local field NMR spectroscopy. Using a wide variety of 

new peptides, encompassing a wide range of the tilt angles and different regimes for the 

peptide dynamics, we have investigated the sensitivity and accuracy of different solid-

state NMR restraints, as well as different approaches to treat the whole-body dynamics. 

The results, described in Chapter 1, identify cases where the transmembrane peptide 

orientation and dynamics can be extracted from a single type of NMR restraint, and then 

move on to more complex scenarios that are found to require additional constraints that 

derive from multiple experimental NMR methods. 

Among the different peptides discussed in Chapter 1, the GWALP23 sequence 

(GGALW5(LA)6LW19LAGA) turned out to be sensitive to lipid bilayer acyl-chain 

composition and thickness, unlike the original WALP prototypes. Capitalizing on this 

aspect, we have adopted the GWALP23 peptide as a new primary reference standard for 

probing a variety of biophysical properties. In Chapter 2 we describe the application of 

the GWALP23 sequence to the investigation of different anchoring amino acids by 

employing XWALP23 sequences. These peptides were derived from GWALP23, by 

substituting both G2 and G22 with X = K or R or W. The behavior of positively charged 

X residues K or R was similar to the parent case when X = G; however, the case where X 

= W was very different. The WWALP23 peptide displayed extensive dynamics while 

adopting fairly small apparent tilt angles, with a preferred tilt direction nearly opposite 

from the rest of the XWALP23 series. The results with the XWALP23 peptides illustrate 
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directly the role of interfacial tryptophan residues as primary determinants of peptide 

orientation and dynamics. 

Hydrophobic matching, defined as the difference between peptide hydrophobic length 

and lipid bilayer hydrophobic thickness (de Planque and Killian, 2003; Harzer and 

Bechinger, 2000; Killian et al., 1996), is an important concept in the arena of protein-

lipid interactions. The GWALP23 sequence—with its single but not overly dominant 

tryptophan anchor residues that flank a hydrophobic helical core—is ideally suited for the 

investigation of hydrophobic mismatch conditions. The effective hydrophobic length of 

GWALP23 can be altered by shifting the tryptophan residues toward the center of the 

peptide to give GW7,17ALP23 (GG(AL)2W7(LA)4LW17(LA)2GA), or toward the termini 

to give GW3,21ALP23 (GGW3(LA)8LW21GA). Chapter 3 deals with the behavior of these 

peptides when incorporated in lipid bilayers of various thickness. Further investigations 

were performed using 2H labels in the Trp indole rings of the GWx,yALP23 peptides. In 

addition to the changes of peptide tilt angles, we observed alterations of tryptophan side 

chain orientations, further highlighting the role of Trp residues at a membrane-water 

interface. 

Multiple recent computational studies investigated the possibility of placing a charged 

amino acid in the hydrophobic region of a lipid bilayer (Li et al., 2008; MacCallum et al., 

2008), which is particularly interesting in scope of voltage gated ion channels (Jiang et 

al., 2003). In Chapter 4, an experimental approach to this problem is reported. Using once 

again GWALP23, this time as a carrier for a single arginine residue, we have created two 

sequence isomers by mutating either Leu12 or Leu14 to Arg. The behavior of these two 
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isomeric peptides was dramatically different: while GWALP23-R14 adopted a stable and 

well-defined transmembrane orientation, GWALP23-R12 exhibited multiple states. 

Coarse-grained molecular dynamics simulations of these peptides replicated the NMR 

results remarkably well and provided further insights into their interactions with the lipid 

bilayer, namely peptide translational displacement and bilayer deformation. 

In order to find an explanation for such different behavior of GWALP23-R14 and –R12 

peptides, we have switched the host peptide from GW5,19ALP23 to GW3,21ALP23, 

described in Chapter 3. This rearrangement of the tryptophan residues allowed for testing 

of whether the multistate behavior of GWALP23-R12 results solely from a central 

arginine location, or whether it is mediated by the anchoring Trp residues. Chapter 5 

describes the behavior of GW3,21ALP23-R12 and –R14 peptides incorporated in lipid 

bilayer membranes. Strikingly, both of these peptides adopt a unique transmembrane 

orientation, indicating that a single uncompensated arginine can be introduced at the 

center of the membrane-spanning peptide sequence in selected cases. 

Overall, the experiments to be described define an attractive new host transmembrane 

peptide framework for posing specific questions in the realm of protein/lipid interactions. 

The specific applications will illustrate the utility of the parent peptide framework for 

defining not only the preferred orientations of membrane-spanning peptides but also the 

peptide dynamics and the detailed responses to a wide variety of single-site mutations. 

Importantly, the GWALP23 framework will be suitable for many additional future 

applications, not limited to the particular examples described here. 
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CHAPTER 1 
On the Combined Analysis of 2H and 15N/1H Solid-State NMR Data for 
Determination of Transmembrane Peptide Orientation and Dynamics 

1.1 Abstract 

Knowledge of transmembrane α-helix dynamics is important for interpretation of solid-

state NMR observables. While precession of tilted peptides about the bilayer normal is 

commonly observed, additional dynamic features, such as anisotropic contributions from 

distributions of helix tilt or helix rotation, have the potential to influence the analysis. 

Previously, we compared independent analysis of 2H-alanine (“GALA”) and 15N/1H-

backbone data sets (“PISEMA”) as constraints for determining helix tilt. Here we report 

combined analysis of 2H quadrupolar splittings together with 15N/1H dipolar couplings, 

using two methods to treat the dynamics, for the systematic evaluation of several 

membrane-spanning peptides based on the GWALP sequence (acetyl-

GGALW(LA)6LWLAGA-amide), which tilt by 2°-30° in lipid bilayer membranes. 

By comparing individual and combined analyses of specifically 2H or 15N labeled 

peptides incorporated in mechanically or magnetically aligned lipid bilayers of differing 

thickness, we investigated the influence of data set size/identity, and of explicitly 

modeled dynamics, on the average apparent orientations of the peptides. We conclude 

that the peptides with small (less than ~10°) apparent tilt values can be fitted by extensive 

collections of solutions, which can be narrowed by incorporating additional 15N as well as 

2H restraints. Conversely, peptides that exhibit larger tilt angles have a narrower range of 

distributions of tilt and rotation that are consistent with the experimental data. The 
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resulting smaller range can then be fitted using smaller sets of experimental constraints, 

or even with 2H or 15N data alone. Importantly, for the peptides that tilt significantly more 

than 10° from the bilayer normal, the contribution from rigid body dynamics can be 

approximated by a simple scaling factor (principal order parameter), and the concomitant 

apparent peptide orientation remains reasonably accurate. 

1.2 Introduction 

Solid-state NMR provides a powerful means for deducing the structure and behavior of 

transmembrane helical domains of proteins in the native lipid environment (Bechinger et 

al., 2011). The ability to probe the structure in atomic detail makes NMR a method of 

choice for investigation of protein-lipid interactions. Solid-state NMR of oriented lipid-

bilayer systems offers a way to obtain the average orientation of membrane-spanning 

helical segments in the form of the magnitude (τ) and direction (ρ) of the helix tilt. 

Different NMR observables, nevertheless, have different sensitivities to the orientation of 

an α-helix, due to different respective directions of the interaction axes, different 

sensitivities, and different physical basis for each particular nuclear interaction with an 

external magnetic field. The reorientation of an isotope-labeled group over the NMR 

acquisition time poses another potential issue due to the inherent averaging of 

instantaneous signals. While the fast precession of individual transmembrane helices 

around the lipid bilayer (Lee and Im; van der Wel et al.) normal does not influence the 

NMR signals, oscillations around the average tilt and rotation angles will produce more 

drastic effects (Esteban-Martin et al., 2009; Strandberg et al., 2009). 
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The contributions of molecular oscillations to the NMR observables often are taken into 

account by multiplying the values for a hypothetical case of no molecular motion by a 

scaling factor (principal order parameter, Szz) between 0 and 1. The limit Szz = 0 

corresponds to isotropic motion of the helix, while the limit Szz

Among the conventional methods employed to deduce the transmembrane peptide 

orientation in lipid bilayers, separated local field (SLF) PISEMA or SAMMY 

experiments (Marassi and Opella, 2000; Nevzorov and Opella, 2003; Wang et al., 2000; 

Wu et al., 1994) and deuterium quadrupolar splitting measurements (Jones et al.; van der 

Wel et al.; Whiles et al.) have been used extensively. In the SLF method, the 

 = 1 corresponds to 

completely immobilized peptide. Such a scaling factor can be applied as an additional 

fitting parameter, although a fixed value of 0.8 has been extensively assumed (Doherty et 

al., 2010; Page et al., 2008; Park et al., 2006). An alternative way of describing the 

whole-body dynamics is to model explicit motions in the form of specific fluctuations in 

the tilt magnitude τ and tilt direction ρ (Bertelsen et al., 2011; Holt et al., 2010; 

Strandberg et al., 2009). In this treatment, the theoretical rigid-case NMR observables are 

multiplied by a normalized two-dimensional probability distribution generated for every 

possible (τ, ρ) combination. The sum of the elements of each resulting matrix yields a 

predicted motionally averaged value for each particular NMR signal. 

15N 

chemical shifts (CS) correlated with 1H-15N dipolar couplings (DC) result in 

characteristic spectra for the peptide backbone of a tilted α-helix, which are sometimes 

referred to as “PISA wheels.” The CS and DC principal interaction axes – namely, the 

σ33 CS tensor component and the NH bond, respectively – are aligned close to the 
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peptide’s helix axis (Figure 1A). These observables therefore undergo slight changes at 

small tilt angles (<10°) and more dramatic changes at larger tilt angles. The proximity of 

the interaction axes to the helix axis dictates that the CS and DC values typically undergo 

monotonic changes without changing sign or passing through the isotropic limit. The 

trends in CS and DC can be visualized on helical wave curves for the individual restraints 

(Figure 1, B). In practice the curves imply that a rough estimate of the tilt angle can be 

obtained with 2-3 15N-labeled sites.  

Deuterium NMR spectra of the methyl groups in Ala-d4 residues in conjunction with 

GALA analysis offers a highly sensitive metric of the transmembrane peptide behavior 

(Strandberg et al., 2004; van der Wel et al., 2002). The Cα-Cβ

The aforementioned restraints in principle can be used individually, or combined 

together. Several examples of a combined orientational analysis have been reported for 

the antimicrobial peptide distinctin (Resende et al., 2009) (CS and QS), the peptaibol 

alamethicin (Bertelsen et al., 2011) (CS, DC and QS) and the model peptide WALP23 

(Holt et al., 2010) (QS, 

 bond geometry dictates 

that the methyl quadrupolar splittings (QS) pass through the isotropic nodes twice for 

transmembrane helices and four times for a helix in the interfacial orientation. Such 

degeneracy of the QS helical curves combined with the inability to measure the sign of 

the QS interaction typically leads to a requirement of four or more data points for the 

orientation analysis. 

13C-15N DC as well as 13C and 15N CS anisotropies). Each of 

these studies was performed with only a few labeled sites, making it difficult to compare 
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the predictive value of the different types of individual restraints for molecular 

orientation and dynamics. 

In this paper we perform a systematic analysis of several transmembrane peptides, based 

on the GWALP23 sequence (Vostrikov et al., 2008) in lipid bilayer membranes. 

GWALP23, acetyl-GGALW(LA)6LWLAGA-amide, with single Trp interfacial anchor 

residues, has proven to show particularly systematic behavior in a series of lipid bilayer 

membranes (Vostrikov et al.). The peptides chosen for this investigation represent a 

variety of cases, covering different dynamic and orientation ranges (Table 1). Extensive 

isotope labeling (employing 5-11 restraints of an individual kind, and up to 29 total 

restraints) made it possible to experimentally compare the sensitivities of different 

individual restraints toward the dynamic averaging. We compare the semi-static (variable 

Szz) or explicit Gaussian (τ, ρ distributions) methods for treating the peptide dynamics 

and identify those cases where the methods converge to similar results or diverge to 

significantly different results. The goal of this work is to provide a framework for the 

orientation analysis of solid-state NMR data of oriented lipid/protein systems while 

identifying potential pitfalls. 

1.3 Materials and Methods 

Peptides were synthesized on the model 433A peptide synthesizer (Applied Biosystems 

by Life Technologies, Foster City, CA) using the established methods for GWALP23 and 

related sequences. Protected amino acids were from NovaBiochem (San Diego, CA) and 

the isotope enriched amino acids from Cambridge Isotope Laboratories (Andover, MA). 
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Peptide purification was accomplished by means of reversed phase HPLC utilizing 

previously published gradient conditions (Vostrikov et al., 2010a; Vostrikov et al., 

2010b). 

Mechanically aligned samples for the NMR spectroscopy were prepared with 80 µmol 

lipid (Avanti, Alabaster, AL) and 1.3 (GW3,21ALP23-R14) or 2 µmol of peptide 

(peptide/lipid ratio being 1/60 or 1/40 respectively). The peptide/lipid mixture in 95:5 

methanol:water was deposited on the glass slides (Marienfeld, Lauda-Konigshofen, 

Germany), dried extensively and hydrated to 45% w/w with 2

Magnetically aligned samples for NMR spectroscopy were prepared with 61 µmol 

DMPC, 19 µmol DHPC (q = 3.2) and 0.75 µmol of peptide (peptide/lipid ratio of 1/80). 

Peptide in trifluoroethanol and DHPC in chloroform were mixed and dried in vacuo for 

48 hours as well as the appropriate amount of DMPC (in a separate vial). DMPC and 

DHPC/peptide were hydrated with 100 µl and 75 µl of 

H-depleted water 

(Cambridge). 

2H-depleted water at 45 °C for 

three hours with intermittent vortexing. Mixture of DHPC/peptide was transferred to 

DMPC and the solution was cycled between 45 °C and 4 °C three times (15 min 

equilibration time for each temperature), gently vortexing the sample at the end of each 

cycle. The solution was transferred to a bicelle tube (New Era Enterprises, Vineland, NJ) 

after a 4 °C cycle using a pre-chilled pipette, as the sample had low viscosity at this 

temperature. For the samples with 15N labels ether analogues of DMPC and DHPC were 

used. For the majority of the peptides we observe very close signals between the bicelles 
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and glass slides at β=90° macroscopic orientation. To minimize potential discrepancies, 

we have used identical alignment methods between 2H and 15N sets for a given peptide. 

Solid-state NMR experiments were performed using Bruker Avance spectrometers 

(Billerica, MA), operating at proton frequency of 300 MHz (2H) or 500 MHz (15N). 

Deuterium NMR utilized quadrupolar echo pulse sequence with full phase cycling (Davis 

et al., 1976). Recycle delay was 90 ms, 90° pulse time of 3.2-4.5 µs (depending on the 

probe) and echo delay times of 80-110 µs. Separated local field experiments were 

accomplished with SAMMY pulse sequence (Nevzorov and Opella, 2003) using 7.5 s 

recycle delay, 5 µs pulse duration and 1 ms cross-polarization contact time. 

For data analysis purposes a poly-alanine α-helix was generated, using Swiss-PdbViewer 

4.0 (Guex and Peitsch, 1997). Backbone (Θ, Ψ, Ω) angles were set to (-65, -40, 180) 

(Page et al., 2008). The coordinates of Cβ, Hα and H atoms were translated to ensure the 

identical local geometry throughout the sequence, with the ε// and ε┴ angles (van der Wel 

et al., 2002) being 59.4 and -43.0 (Cα-Cβ vector), 122.0 and 55.0 (Cα-Hα) and 14.0 and 

131.0 (N-H). The helix was positioned such that the Cα

[ ] [ ]





 −






 −⋅= 1cos3

2
11cos3

2
1 22 βθzzSQCCQS

 carbon of residue 1 was placed 

on the positive direction of the X-axis, having Y coordinate of zero, providing the initial 

orientation identical to the one described by van der Wel et al. (van der Wel et al., 2002) 

NMR observables were calculated according to: 

    Eq. 1 
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    Eq. 2 

( ) ( ) isozzisostatic CSSCSCSCS +−⋅⋅−= 1cos3
2
1 2 β     Eq. 3 

In equations 1 and 2 QCC and DCC refer to quadrupolar and dipolar coupling constants 

(168 kHz and 10.22 kHz respectively; note that there is a further 1/3 reduction of QCC to 

56 kHz in the case of the methyl group), θ is the angle between the applied magnetic field 

and the bond vector in question, β corresponds to the macroscopic orientation of the 

aligned bilayers relative to the applied magnetic field (β = 0° for the aligned glass slides 

and β = 90° for bicelles). In equation 3 CSstatic corresponds to the chemical shift observed 

at the rigid limit. The reference frame for the 15N chemical shift was constructed 

according to Bertram et al. (Bertram et al., 2000) and its derivation is described in the 

Supporting Information. Isotropic chemical shift, CSiso

3
332211 σσσ ++

=isoCS

 in equation 3, was calculated 

according to: 

       Eq. 4 

The chemical shift tensor components were set to 64 ppm (σ11), 77 ppm (σ22) and 224 

ppm (σ33). For the case of WWALP23 we found minor improvements to the root mean 

squared deviation (RMSD) value if σ22 was lowered to 72 ppm, the fit results being 

identical to the case where 77 ppm was used. For calculation purposes 15N CS was 

converted from ppm to frequency scale according to: 
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H

N
H γ

γωσν ⋅=          Eq. 5 

Where σ is CS in ppm, ωH is the proton Larmor frequency and γN and γH are 

gyromagnetic ratios of 15N and 1H respectively. 

Semi-static analysis was performed in the fashion similar to GALA analysis (van der Wel 

et al., 2002) by rotating the poly-Ala structure by angles ρ = 0-359° and τ = 0-90°, and 

scaling the obtained rigid-case values with an order parameter Szz = 0-1 according to the 

equations 1-3. Global minimum was defined as the combination of Szz

( ) ( ) ( )

CSNHQS

N
CS

N
NH

N
QS

NNN
RMSD CSNHQS

++

∆∆+∆∆+∆∆

=
∑∑∑ 222 υυυ

, τ and ρ with the 

lowest RMSD: 

   Eq. 6 

Where ∆∆ν is the difference between the experimental and calculated values of QS, DC 

or CS and N is the number of the restraints of the given type. 

Explicit Gaussian dynamics analysis was performed in a way described by Strandberg et 

al. (Strandberg et al., 2009) Distributions of tilt and rotation around the average values 

were considered in the following form: 

( ) ( )
constxx

xxxP
=








 −−
=

0

2

2
0

2
exp

σ
      Eq. 7 

Where x0 (x = τ or ρ) is the average value, x = 0-359° and σx is standard deviation (note 

that the full width at half maximum of the Gaussian distribution equals to ~2.4σx). The 
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obtained P(τ) and P(ρ) for a given set of the average values were multiplied to yield the 

two-dimensional distribution (Equation 8), which was further normalized so that the sum 

of the elements resulted in unity (Equation 9): 
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For each of the residues in poly-Ala structure, two-dimensional matrices of the NMR 

restraints were obtained: 

( )
( ) ( )

( ) ( )














=

359,359...0,359
......
359,0...0,0

,
υυ

υυ
ρτυ      Eq. 10 

Where ν is either QS, DC or CS calculated according to the equations 1-3, using a fixed 

Szz value of 0.88 to account for the internal motion of the peptide (Strandberg et al., 

2009). Sample probability distributions (equation 8) and NMR observables (equation 10) 

are illustrated in Figure S2. 

The motionally averaged values of the NMR observables were calculated for a given τ0 

and ρ0 values: 
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ijijP ρτυρτυ      Eq. 11 

Note that the sign of the calculated NMR observables was discarded after this step, as it 

cannot be established experimentally. The calculated values from equation 11 were 

compared with the experimental ones according to the equation 6. The procedure 

described in the equations 7-11 was then repeated for the στ range of 0-30°, σρ range of 

0-200°, τ0 range of 0-90° and ρ0 range of 0-359° using 1° increments. Both semi-static 

and Gaussian analyses were implemented in the in-house program written in C♯.  

1.4 Results 

NMR observables for a transmembrane peptide helix parallel to the bilayer normal 

(having a zero tilt angle) would be identical for all residues: ~8 kHz (QS), ~8 kHz (DC) 

and ~202 ppm (CS) at the β=0° macroscopic orientation, when the bilayer normal is 

parallel with the external magnetic field. The corresponding values when β=90° 

(including the case of bicelles samples) are ~4 kHz (QS and DC) and ~82 ppm (CS). 

Extensive dynamics will have the effect of moving the signals toward their isotropic 

values: 0 kHz (QS and DC) and ~120 ppm (CS). Intermediate oscillations, which are 

likely to occur, will cause the reduction of the QS and DC, along with shift of the CS 

toward the isotropic value, which in severe cases can cause a peptide with a large average 

tilt angle to appear as if it has a smaller apparent tilt angle (Figure S3 of the Supporting 

Information). Below we discuss three categories, which we class according to the 
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maximum observable QS value when β = 0°. (Corresponding ranges of DC and CS can 

be deduced from Figure 1B.) 

Case 1: QSmax < 25 kHz (intermediate motion). Both GWALP23 and KWALP23 exhibit 

similar signals in DMPC bicelles, with the QS values of the latter being slightly larger 

(Figure 2, AB). The SAMMY spectra of both peptides are well dispersed, and can be 

easily assigned through the use of difference spectra (Vostrikov et al., 2008). The PISA 

wheel of GWALP23 is somewhat more crowded and marginally smaller than the one of 

KWALP23. Despite the lower resolution, the eleven peaks can still be assigned by using 

KWALP23 spectrum as a guide (both peptides have similar rotation angles (Vostrikov et 

al., 2010a)) and a high-field spectrum of GWALP23 (Figure S4). We also note that the 

2H spectra are virtually identical between DMPC/DHPC bicelles and DMPC glass slides 

at β = 90° orientation, indicating that the data between the two alignment methods can be 

used interchangeably. The observed values of QS, DC and CS are reported in Table 2. 

We begin the analysis using an alanine subset of GWALP23 (residues 7, 9, 11, 13, 15 and 

17) in order to have the same number of restraints of different kind, with the similar 

position on helical wheel projection (these positions are not strictly identical, due to the 

offset between the Cα and N atoms). Furthermore, the variations of the chemical shift 

tensor components within this subset should be minimal, since all the residues follow the 

repeating Leui-1 - 15N-Alai - Leui+1

The fits of the experimental data using individual restraints are shown in Figure 3. It can 

be seen that for all data sets there is a large area of the acceptable solutions for the case of 

 pattern (Poon et al., 2004). 
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Gaussian analysis (Figure 3, A). These areas though are not identical for the individual 

restraints: while DC and CS plots look similar, the QS one is different. These changes are 

especially apparent for the στ in the 10-20° range, as QS is more prohibitive to larger tilt 

oscillations. The order parameter analysis reports unique minima for the DC and CS 

restraints, and the two closely spaced ones for QS (Figure 3, B). It is of interest to note 

that the decrease of Szz has opposite effects on DC and CS. Lower Szz

The orientation of the peptide, corresponding to the global minima is similar for each of 

the restraints type, and for the both ways of treating the dynamics (Figure 3, CD). 

Nevertheless, the different sensitivities of QS, DC and CS toward the peptide tilt and 

rotation are immediately apparent. While the analysis using QS alone yields a single 

well-defined minimum, the acceptable solution area is much larger both for DC and CS. 

Notably, these sets have larger uncertainty in the average tilt angle, in particular when the 

dynamics are treated in a semi-static way (Figure 3, D). Additionally, due to a small 

dispersion between the smallest and the largest dipolar couplings (0.8 kHz at β=90°, 

Table 2), DC set does not differentiate well between the different ρ angles. Similarly, CS 

 values will bring 

the theoretical DC values below the experimental ones and consequently the fit with the 

lowest deviation between the theoretical and experimental sets will correspond to the tilt 

of zero degrees. Conversely, lower order parameter in the case of CS favors large tilt 

angles, since the center of the PISA wheel reaches the isotropic chemical shift value 

when the peptide tilt is at the magic angle, while the individual resonances are located 

both upfield and downfield. 
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fit is less well defined in terms of the rotation angle, due to the fairly flat helical wave 

curves (Figure 1, B). 

Combining the restraints in a pairwise fashion helps localizing the minimum in the case 

of Gaussian dynamics (Figure S5). It is particularly helpful when QS are combined either 

with DC or CS, since their acceptable solutions areas do not completely overlap (Figure 

3, A). Thus QS restraints provide a penalty against small oscillations in rotation, while 

DC or CS discriminate against the small oscillations in tilt. Combining DC and CS does 

not offer additional insights, due to nearly identical dynamics solutions. If the dynamics 

are treated in a semi-static way, the fit does not change significantly, since all the 

individual restraints converge to the similar Szz value. In this case combining the 

different restraints amounts to additional data points along the already well-defined 

helical wave curve, which can instead be achieved through the individual analysis of QS, 

DC or CS restraints with more labeled sites. 

In terms of the average orientation, the restraints paired with QS signals appear the most 

beneficial, because of a sharp minimum for the methyl groups (Figure 3, D). Average 

peptide orientation deduced from DC and CS combination is not defined better in 

comparison with DC or CS signals alone. Nevertheless, joint DC and CS fit can be 

particularly useful if the peptide topology is not initially known. In this case CS 

contribution in the combined fit can eliminate the possibility of an interfacially bound 

peptide, while DC restraints will impose a penalty against very large (40°-60°) tilt angles. 

RMSD contour maps for the paired restraints analysis are provided in Figure S5. 
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Can the broader minima of 15N-based restraints be narrowed by more extensive 

sampling? To answer this, we have analyzed the complete 11 15N labeled sites using DC 

or CS alone, combined together, or combined with QS, and finally using all three 

restraint types simultaneously (Table 3). The introduction of additional DC and CS data 

points did not have a significant effect on the quality of fit for the individual restraints 

analysis. Due to a good dispersion of six alanine residues on the helical wheel projection, 

these amino acids are sufficient to define a DC or CS helical wave with good accuracy, 

and the addition of five more leucine data points does not offer additional insights. 

Furthermore, in the case of CS the eleven experimental data points appear to have the 

largest deviation from the idealized case, suggesting that certain variations in the 

magnitude and/or orientation of the 15

Similar analysis was performed for KWALP23 in DMPC/DHPC bicelles, which was 

previously shown to exhibit a tilt angle slightly larger than GWALP23 (Vostrikov et al., 

2010a). This difference in the tilt angle can be observed in the individual or combined 

analyses of QS, DC and CS of KWALP23 (Table 3, Figure S6). As in the case of 

N chemical shift tensor are present between Leu 

and Ala. 

The results of the joint analysis of 6 QS, 11 DC and 11 CS restraints are presented in 

Table 3 and Figure 4. Notably, the average peptide orientation remains identical to the 

one obtained from the individual restraints, in particular QS. The rotation angle is 

different by ~25° from the fit of DC or CS alone, but this change does not cause a large 

rise of the RMSD value, which remains remarkably low. This further highlights the lower 

sensitivity of DC and CS towards the tilt direction angle. 
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GWALP23, the 15N NMR observables alone offer less precision in comparison with QS, 

the latter being a key restraint type in defining the orientation and the dynamics. 

While bicelles provide a convenient system for the sample alignment, it suffers from a 

small range of long-chain lipids that can be employed. Conversely, mechanical alignment 

of the lipids on the glass slides offers more flexibility for the selection of the lipid matrix. 

Similar considerations described above also hold for the case of KWALP23 incorporated 

in DLPC glass slides. Interestingly, one of its 2H spectra (Figure S7) contains a low 

intensity signal, arising from a backbone Cα

Case 2: QS

D group, providing an additional restraint 

similar in sensitivity to the alanine side chain QS. The semi-static and Gaussian analyses 

of this system for the individual or combined restraints (29 data points total) are provided 

in Figure S8. Similar to the magnetic alignment case, QS data offers the most well-

defined minima.. 

max < 15 kHz (extensive motion). Single-span peptides having more than two 

bulky aromatic groups (Trp or Tyr residues) typically exhibit a narrow range of QS 

values, consistent with a small tilt angle(Gleason et al.; Strandberg et al., 2004; van der 

Wel et al., 2002). However, this result can also be interpreted in terms of the extensive 

averaging of the NMR signal, leading to the “masking” of the larger average tilt 

(Kandasamy and Larson, 2006; Kim and Im, 2010; Ozdirekcan et al., 2007). Among such 

peptides, WWALP23 with four tryptophan residues has been shown previously to have a 

small apparent tilt angle in different lipid membranes using QS as a single restraint type 

(Vostrikov et al., 2010a). Here we complement the QS data set with the DC and CS 

restraints from five labeled residues (Table 1). While the 2H spectra do not exhibit any 
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unusual features in terms of lineshapes or peak widths, the SAMMY spectrum 

demonstrates a single cross peak for a peptide with the five labels (Figure 5). While a 

single DC or CS value for multiple labeled sites can be observed for a peptide with a tilt 

close to zero (see above), the positions of the WWALP23 resonances (3.2 kHz, 88 ppm) 

does not match the one calculated for τ=0° (4.1 kHz, 79.3 ppm; red circle in Figure 5B). 

Instead the WWALP23 signal is located close to the center of PISA wheels of GWALP23 

and KWALP23, an observation implying that the close values of DC and CS at different 

positions in WWALP23 arise largely due to the dynamics. 

The analysis of WWALP23 behavior using the individual restraints and the Gaussian 

dynamics does not produce a definitive answer. The low RMSD values throughout the 

[στ, σρ] space do not make it possible to reliably differentiate between the different 

solutions (Figure 6A). While a global minimum appears to be present for the QS 

dynamics plot, the difference between the adjacent contours is only 0.5 kHz, which is 

below the experimental error. Both DC and QS demonstrate similar dynamics patterns, 

when the best fit occurs if very large oscillations in tilt and/or rotation are introduced. 

Semi-static analyses of WWALP23 result in single minima, although the exact Szz

Unlike the GWALP23 case, the combination of QS, DC and CS sets for WWALP23 

offers a much better defined dynamics space. Deuterium data, that prohibits very large 

 values 

differ by 0.2. Notably, DC and CS data sets lead to the τ value of zero degrees with 

undefined ρ angle; however, the non-identical QS signals at different alanine positions 

make it possible to identify that the peptide is actually tilted and allow for establishing 

the tilt direction (Table 3). 
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and very small σρ, and 15N data that disfavors large στ and (small σρ + small στ) provide 

a well-defined elongated minimum (Figure 7A). The effects of the combined restraints of 

semi-static analysis (Figure 7B) are less dramatic, as the fit is still largely defined by QS, 

while DC and CS have the effect of fine-tuning the Szz value (Table 3). 

Despite the better defined range of acceptable dynamics in the case of the Gaussian 

analysis, some uncertainty is still present for the WWALP23 average orientation, in 

particular the tilt angle. Due to the elongated solution space, data can be equally well 

fitted with the large tilt angle (in the absence of tilt oscillations, but with extensive 

rotation around the peptide helical axis) or with the smaller tilt angle, approaching the 

one for the semi-static analysis (in the presence of vigorous στ and moderate σρ

Case 3: QS

 motion). 

Since these solutions result in the identical QS, DC and CS curves, it is not possible to 

differentiate between them (Table 3, Figure 7CD). The semi-static analysis of the 

combined restraints leads to the unique minimum with a small tilt angle, similar to the 

earlier observations with WALP19 and WALP23 model peptides (Strandberg et al., 

2004; van der Wel et al., 2002). Nevertheless, the tilt magnitude is some 5-7° lower in 

comparison with the smallest tilt angle obtained with the Gaussian dynamics. 

max > 35 kHz (minimal motion). An introduction of the charged residue close 

to the center of a GWALP23 peptide can be well tolerated in some cases (Vostrikov et 

al., 2010b). Recently, we have characterized a modified host peptide, GW3,21ALP23, that 

allows for two extra alanine labels in its hydrophobic core. The L14R mutation in this 

modified sequence has similar consequences on the peptide behavior as in the case of 

GWALP23-R14, namely a ~10° increase in the apparent tilt angle accompanied by a 
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rotation change. For the GW3,21ALP23-R14 peptide we observe some deviations between 

the 2H data in mechanically aligned glass slides and magnetically aligned bicelles, the 

latter system yielding a larger tilt angle (the direction of the tilt is identical). Additionally, 

the overall RMSD for the 2H data set is ~2.3 kHz in bicelles (vs. 1.2 kHz in glass slides), 

but is lowered to ~0.6 kHz when the most C-terminal data point Ala19 is excluded 

(eliminating other Ala data points one at a time with Ala19 present does not lead to 

RMSD reduction). Due to these considerations, we do not include any of the restraints 

from Ala19 in the fit. 

The large magnitudes of QS values imply that the tilt angle is fairly big, irrespective of 

the extent of the dynamics (Figure 8A). The range of the resonances in the 2D SAMMY 

spectrum is further indicative of the large tilt magnitude (Figure 8B). The large dispersion 

of the signals also suggests only minor variations around the average values. Indeed, all 

of the individual restraints result in a smaller range of acceptable στ and σρ values 

(Figure 9A). The reduction of oscillations around the average ρ angle is particularly 

prominent when compared with the GWALP23 peptide (Figure 3A). The average 

orientation of GW3,21ALP23-R14 is similar between the individual restraints and also 

between the Gaussian and semi-static ways of the dynamics treatment (Table 3). Due to 

the enhanced amplitude of the DC and CS helical curves, both tilt magnitude and 

direction from the 15N restraints have less uncertainty in comparison with the peptides 

described above (Figure 9CD). Nevertheless, the QS-derived orientation plot still has the 

best defined solutions. 
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A combination of the orientational restraints appears to lead to a minor improvement of 

the Gaussian dynamics, helping marginally to localize the minimum. The main 

contribution in the dynamics refinement is CS data; nevertheless, CS restraints have the 

largest deviations from the theoretical curve and therefore the apparent minimum 

localization should be treated with caution. The average orientation of the peptide is 

similar between the Gaussian and semi-static dynamics treatment and closely resembles 

the one based on the QS data exclusively. The addition of DC and CS restraints 

somewhat alters the shape of the global orientation minimum. While the QS data results 

in a minimum elongated in the τ0 direction, both DC and CS are less defined in ρ0

1.5 Discussion 

, 

making the combined fit more “circular”. 

Membrane-spanning proteins cover a variety of motion regimes, which are governed both 

by protein-protein and protein-lipid interactions. In this paper we have investigated 

several transmembrane α-helices, undergoing small, medium and large oscillations 

around the average tilt and rotation angles. Different solid-state NMR restraints were 

used individually or combined together to deduce the peptide behavior, and two methods 

to describe the peptide dynamics were compared. 

The orientation and dynamics of GW3,21ALP23-R14 peptide are largely governed by the 

central arginine residue, that must be positioned in a specific way in order to be able to 

snorkel to the membrane interface (Vostrikov et al.; Vostrikov et al., 2010b). This has an 

effect of a large tilt magnitude value and small oscillations around it (Table 3). Such 
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combination of the large tilt and minor dynamics makes it possible to use either of the 

QS, DC and CS restraints for the data analysis (Figure 9). The results of using the 

individual restraints are largely similar and the minute variations mostly result from the 

global minima shapes. The low extent of the dynamics-induced averaging makes it 

possible to use either the semi-static or Gaussian analyses, the result being nearly 

identical for the both methods. In addition to the case where the transmembrane segment 

behavior is dictated by the charged residues (Butterwick and MacKinnon, 2010), similar 

behavior can be expected from the helical bundles, where the motion is limited by the 

neighboring protomers (Hu et al., 2007) or in the presence of an interfacially bound 

domain (Traaseth et al., 2009), which can be expected to impose the restrictions on the 

membrane-spanning helix. 

Such restrictions are absent for the GWALP23 and KWALP23 peptides, leading to their 

orientation and dynamics being described by the tryptophan residues at the membrane-

water interface (Vostrikov et al., 2010a). The intermediate tilt accompanied by the 

medium oscillations can still be deduced by employing the individual QS, DC or CS 

NMR data (Table 3). Each of the individual restraints returns similar orientation angles; 

however, due to the lower dispersion of the 15N-based data, the DC and CS restraints 

result in broader minima. This leads to a larger ambiguity for the average τ and especially 

ρ values (Figure 3). This inherently lower sensitivity cannot be reduced by more 

extensive data sampling, and it would be highly beneficial to include the QS restraints in 

the analyses if higher sensitivity is desired. 
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While we do not find specific preferences of the individual restraints to under- or 

overestimate the tilt magnitudes as was proposed earlier, (Esteban-Martin et al., 2010; 

Esteban-Martin et al., 2009) we do observe the consistent 4-6° tilt offset between the 

semi-static and Gaussian ways of treating the dynamics for the XWALP23 peptides (X = 

G or K). This variation is fairly constant between the individual and the combined 

restraints analysis, but is reduced with the decreased dynamics of the system (Table 3, 

KWALP23 in DLPC vs. DMPC). While in many cases the knowledge of the tilt 

magnitude within the aforementioned offset is sufficient, it highlights the importance of 

using the identical dynamics treatment in cases where multiple systems are compared in 

order to avoid the results misinterpretation. 

Unlike the other peptides discussed above, WWALP23 has four tryptophan residues: two 

at the N-terminus and two at the C-terminus. While one Trp on each terminus is sufficient 

to promote the membrane anchoring of the peptide, multiple Trps appear to compete 

among themselves for the most favorable interfacial position, leading to the extensive 

dynamics of the system (Vostrikov et al., 2010a). The collapse of the PISA wheel to a 

single crosspeak for multiple labeled positions serves as an indicator of vigorous motion 

(Figure 5, B). Indeed, cases with the small tilt angle and moderate dynamics have been 

shown to produce resolved resonances (Froyd-Rankenberg et al.). In the absence of 15N 

data, low Szz value (<0.65) in the course of semi-static analysis may serve as an 

alternative sign of the extensive dynamics. Despite being a sensitive indicator of the 

dynamics, the 15N data alone is not capable of distinguishing the small tilt angles in the 
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presence of extensive signal averaging: a task that can be accomplished by employing the 

QS restraints (Table 3). 

The explicit Gaussian dynamics analysis of the combined QS, DC and CS restraints leads 

to a family of solutions with the average tilt angle of 10-22° (Figure 7). Conversely, the 

semi-static analysis of WWALP23 behavior leads to a unique solution with a fairly small 

average tilt angle of 4-6°. While the different solutions have identical RMSD values 

which do not allow distinguishing between them, it is reasonable to assume that the tilt 

magnitude from the semi-static analysis corresponds to the lower limit of the tilt angle, 

which can be some 10-15° larger. 

Irrespective of the motion model used, the helical wave plots for QS, DC and CS 

restraints retain nearly identical shapes for the peptides of transmembrane topology. The 

comparison of RMSD values between the semi-static and Gaussian methods for the 

identical systems indicates that the differences do not exceed 0.15 kHz, and typically are 

much lower (Table 3). While the Gaussian approach may provide unique helical wave 

plots for the interfacially bound helices (Strandberg et al., 2009), this does not appear to 

be the case for the transmembrane ones. 

Several arguments can be brought in favor of the semi-static or Gaussian analyses. Thus 

the semi-static approach is essentially model-free, as the total molecular motion effect is 

accounted for in a single scaling factor. Conversely, the Gaussian method provides 

additional insights into the nature of the motion, but forces to assume a particular model. 

While the molecular dynamics simulations of the XWALP23 transmembrane helices 

demonstrated the overall Gaussian profiles of both τ and ρ angles, (Vostrikov et al., 
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2010b) the ρ angle patterns for other peptides have been more complex (Monticelli et al., 

2010; Ozdirekcan et al., 2007). 

An additional benefit of employing the semi-static analysis is the minimum number of 

free parameters, each of them having the distinct effects on the helical wave curves, 

which allows deducing the peptide behavior from less data sampling. Gaussian approach 

introduces an additional free parameter due to decomposition of Szz into στ and σρ 

components, which calls for additional data points. While the latter is less of a problem 

with model Ala-rich GWALP23 analogues, it can pose difficulties for the investigation of 

biological systems. In certain cases QS of backbone deuterons can yield additional 

restraints similar in sensitivity to the QS of Ala methyl groups (Thomas et al., 2009; 

Vostrikov et al.; Vostrikov et al., 2010b). When using the CαD QS data, it is advisable to 

scale down their contribution by a factor of three, due to the very large resonance span of 

the signals and increased line widths. Within this scope, the variable Szz approach appears 

to be more robust, while the Gaussian method should be applied in cases where the 

highly anisotropic motion of the transmembrane segment is expected. 
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1.8 Tables 

Table 1. Peptide sequences for GWALP23 and derivatives. 

Peptide Sequence 

GWALP23 GGALWLALALALALALA

KWALP23 

LWLAGA 

GKALWLALALALALALA

WWALP23 

LWLAKA 

GWALWLALALALALALA

GW

LWLAWA 

3,21 GGWLALALALP23-R14 ALALARALALA

 

Deuterium labeled alanine residues were incorporated in each position between the 
innermost Trp. 

LWGA 

15N labeled Leu and Ala are underlined. 
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Table 2. Alanine CβD3 quadrupolar splitting (QS, kHz) and Ala/Leu 15N-1H dipolar 
couplings (DC, kHz) and 15

 

N chemical shifts (CS, ppm) for transmembrane peptides. 
Data corresponds to β=90° (bicelles) or β=0° (glass slides), for interconversion between 
the two refer to equations 1-3. 

 

GWALP23 KWALP23 KWALP23 
DMPCa DMPC DLPC 

 QC DC CS QCb DC CS QC DC CS 
5          
6          
7 10.0 2.6 85.7 11.4 2.5 86.4 28.6 5.6 193.5 
8  3.7 86.0  3.6 82.0  8.2 193.0 
9 5.1 3.4 99.3 5.9 3.5 99.5 22.2 7.9 175.5 
10  2.3 89.6  2.3 91.9  5.5 175.5 
11 10.1 3.1 84.3 10.3 2.8 83.8 26.2 6.6 200.5 
12  3.9 89.7  3.9 86.6  8.7 186.5 
13 4.0 3.0 100.7 4.3 3.1 101.4 13.7 7.4 173.5 
14  2.4 87.3  2.3 87.8  5.1 182.5 
15 8.5 3.4 85.0 8.3 3.2 83.0 20.2 7.5 201.5 
16  3.8 94.0  3.8 92.2  8.5 177.0 
17 0.4 2.8 97.0 1.2 2.7 99.5 5.0c 6.3 175.0 
18          
19          

 

Entries left blank were not measured. 

a. DMPC refers to DMPC/DHPC q=3.2 bicelles; DLPC refers to glass slides. 

b. Data from (Vostrikov et al. 2010a). 

c. Backbone CαD signal is 87 kHz. 

 

 

Continued on next page 
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Table 2 continued 

 WWALP23 GW3,21ALP23-R14 
DMPC DMPC 

 QC DC QC DC QC DC 
5    18.5   
6       
7 0.6   15.6   
8       
9 6.1   13.3 2.5 115.8 
10     0.9 98.2 
11 1.0   13.3 2.3 87.1 
12     3.5 103.6 
13 5.7 3.2 88.0 2.0 1.8 117.4 
14  3.2 88.0    
15 1.1 3.2 88.0 4.0 2.6 92.6 
16  3.2 88.0  2.7 115.2 
17 4.3 3.2 88.0 12.0 0.8 112.5 
18     1.1 91.5 
19    6.2d 3.2d 100.1d 
 

d. Data points not included in the fit. 
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Table 3. Peptide dynamics and orientation analysis based on the data from Table 2, using 
either individual restraints, or combined ones (identical weighing has been used between 
different restraint types). 

 
Gaussian Semi-static 

τ0 
deg 

ρ0 
deg 

στ 
deg 

σρ 
deg 

RMSD 
kHz 

τ 
deg 

ρ 
deg 

Szz RMSD 
kHz 

GWALP23, DMPC/DHPC bicelles 
QS 18 314 16 54 0.41 11 315 0.75 0.49 
DC 23 305 5 51 0.20 17 305 0.77 0.21 
CS 22 289 5 55 0.78 15 290 0.76 0.80 
QS + DC 18 314 16 54 0.42 12 314 0.71 0.45 
QS + CS 18 312 15 54 1.09 12 312 0.72 1.11 
DC + CS 23 291 0 58 0.60 15 292 0.76 0.62 
QS + DC + CS 18 311 15 54 0.72 12 312 0.72 0.90 
KWALP23, DMPC/DHPC bicelles 
QS 20 307 14 56 0.83 12 308 0.76 0.91 
DC 22 316 12 38 0.14 18 316 0.76 0.14 
CS 22 305 0 45 0.89 17 306 0.79 0.91 
QS + DC + CS 19 307 13 53 0.93 13 307 0.74 0.95 
KWALP23, DLPC glass slides 
QS 21 302 12 33 0.63 18 302 0.78 0.64 
DC 18 317 1 22 0.19 17 317 0.86 0.19 
CS 14 303 17 10 0.52 13 304 0.76 0.54 
QS + DC + CS 18 303 10 23 0.72 17 303 0.81 0.73 
QSa + DC + CS 21 300 3 37 0.95 18 300 0.83 1.10 
WWALP23, DMPC/DHPC bicelles 
QS -b 6 129 0.62 0.35 
DC -b 0 -b 0.68 0.01 
CS -b 0 -b 0.83 0.05 

QS + DC + CS 

22 135 0 140 0.52 

4 134 0.71 0.56 21 133 7 130 0.53 
17 134 14 115 0.52 
10 133 21 70 0.56 

GW3,21ALP23-R14, DMPC/DHPC bicelles 
QS 31 267 14 26 0.58 28 267 0.75 0.58 
DC 36 298 0 28 0.41 34 298 0.80 0.41 
CS 36 280 0 36 1.31 33 280 0.76 1.36 
QS + DC + CS 34 267 15 30 1.28 30 267 0.71 1.32 
 
a. Including CαD signal. 

b. Cannot be uniquely defined. 
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1.9 Figures 

Figure 1. Geometry of the orientation constraints. A: Primary interaction axes for Ala 
side chain, backbone NH bond and nitrogen chemical shift (left to right); B: Quadrupolar, 
dipolar and chemical shift helical wave plots for different tilt angles, indicated in the 
rightmost panel. Here and elsewhere the ranges are 0-55 kHz (QS), 0-10 kHz (DC), 120-
220 ppm (CS). 
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Figure 2. Deuterium and 15N spectra of GWALP23 and KWALP23 in DMPC/DHPC 
bicelles. A: 2H spectra of GWALP23; B: 2H spectra of KWALP23; C: SLF spectrum of 
GWALP23; D: SLF spectrum of KWALP23. Spectral assignments are indicated next to 
the corresponding resonances. 
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Figure 3. RMSD contour plots of orientation and dynamics of GWALP23 in 
DMPC/DHPC bicelles, using one type of restraints from 6 Ala residues. Restraints are 
QS, DC and CS (left to right). A: Gaussian distributions of tilt and rotation; B: Semi-
static dynamics using an order parameter; C: Average tilt and rotation from the Gaussian 
analysis; D: Average tilt and rotation from variable Szz analysis. Here and elsewhere the 
RMSD contours are plotted from 0 kHz (blue) to the maximum value (red) using 10 
contours for the dynamics and 15 contours for the orientation. 
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Figure 4. RMSD contour plots of orientation and dynamics of GWALP23 in 
DMPC/DHPC bicelles, using the combined QS, DC and CS restraints from Table 3. A: 
Gaussian distributions of tilt and rotation; B: Semi-static dynamics using an order 
parameter; C: Average tilt and rotation from the Gaussian analysis; D: Average tilt and 
rotation from variable Szz analysis; E: Helical wheel plots for QS, DC and CS (left to 
right). Here and elsewhere filled circles indicate Ala and hollow ones indicate Leu. 
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Figure 5. Deuterium and 15N spectra of WWALP23 in DMPC/DHPC bicelles. A: 2H 
spectra of WWALP23; B: SLF spectrum of WWALP23. Red circle in (B) indicates a 
resonance for a zero tilt angle in the absence of the dynamics. 
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Figure 6. RMSD contour plots of WWALP23 dynamics in DMPC/DHPC bicelles, using 
one type of restraints: QS, DC or CS (left to right). A: Gaussian distributions of tilt and 
rotation; B: Semi-static dynamics using an order parameter. 
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Figure 7. RMSD contour plots of orientation and dynamics of WWALP23 in 
DMPC/DHPC bicelles, using the combined QS, DC and CS restraints from Table 3. A: 
Gaussian distributions of tilt and rotation; B: Semi-static dynamics using an order 
parameter; C: Average tilt and rotation from the Gaussian analysis at point (c) in panel A; 
D: Average tilt and rotation from the Gaussian analysis at point (d) in panel A; E: 
Average tilt and rotation from variable Szz analysis; F: Helical wheel plots for QS, DC 
and CS (left to right). 
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Figure 8. Deuterium and 15N spectra of GW3,21ALP23-R14 in DMPC/DHPC bicelles. A: 
2H spectra of GW3,21ALP23-R14; B: SLF spectra of GW3,21ALP23-R14. 
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Figure 9. RMSD contour plots of orientation and dynamics of GW3,21ALP23-R14 in 
DMPC/DHPC bicelles, using one type of restraints: QS, DC or CS (left to right). A: 
Gaussian distributions of tilt and rotation; B: Semi-static dynamics using an order 
parameter; C: Average tilt and rotation from the Gaussian analysis; D: Average tilt and 
rotation from variable Szz analysis. 
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Figure 10. RMSD contour plots of orientation and dynamics of GW3,21ALP23-R14 in 
DMPC/DHPC bicelles, using the combined QS, DC and CS restraints from Table 3. A: 
Gaussian distributions of tilt and rotation; B: Semi-static dynamics using an order 
parameter; C: Average tilt and rotation from the Gaussian analysis; D: Average tilt and 
rotation from variable Szz analysis; E: Helical wheel plots for QS, DC and CS (left to 
right). 
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1.10 Supporting Information 

S1. Definition and derivation of the chemical shift reference frame. 

The general equation for the chemical shift is: 

2
3333

2
2222

2
1111 coscoscos θσθσθσ ⋅+⋅+⋅=staticCS      Eq. S1 

Where σii are the chemical shift tensor components and θii are the angles between the 

corresponding σii and the applied magnetic field. To obtain the latter values, we first 

define the orthogonal reference frame (Figure S1) for the i-th residue in the peptide plane 

according to: 
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      Eq. S2 

In order for the reference frame to be aligned with the chemical shift tensor components, 

it has to be rotated by the angle α = 352° around the ε22 axis, accomplished by the 

following rotation (note the εii have to be re-arranged to form a right-handed set): 
















⋅
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100
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σ ii       Eq. S3 

The detected components of the interaction with the magnetic field vector H0 = (0, 0, 1) 

can be written as series of dot products: 
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03333

02222

01111

cos
cos
cos

H
H
H

⋅=
⋅=
⋅=

σθ
σθ
σθ

        Eq. S4 

Finally, substituting equations S3-4 to equation S1, yields the relationship for the 

chemical shift: 

( )
( ) ( )2

1133
2

223322

2
223311

coscoscoscossin

cossincoscos

θσθαθασ

θαθασσ

⋅+⋅+⋅−⋅+

+⋅+⋅⋅=static    Eq. S5 

Equation S5 represents the static case, which can be modified to include the sample 

macroscopic orientation and the order parameter Szz – equation 3 in the main text. 
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Figure S2. Two-dimensional probability distribution (Eq. 8) and QS values for residue 1 
as a function of tilt and rotation (Eq. 10). The range of QS signals is from -37 kHz (blue) 
to +74 kHz red. Solid line is plotted at 0 kHz contour. 
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Figure S3. The effect of semi-static (Szz) and Gaussian (στ, σρ) dynamics on QS, DC and 
CS. The static case (dashed line) represents 20° tilt angle. 
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Figure S4. SLF spectrum of GWALP23 at 750 MHz. 
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Figure S5. Dynamics and orientation of GWALP23 in DMPC/DHPC for paired 
restraints. 
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Figure S6. Dynamics and orientation of KWALP23 in DMPC/DHPC for individual and 
combined restraints. 
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Figure S7. Deuterium and SLF spectra of KWALP23 in DLPC. 

 



 

55 

Figure S8. Dynamics and orientation of KWALP23 in DLPC for individual and 
combined restraints. Helical wave plots are for QS side chain, QS backbone (0-180 kHz 
range), DC and CS (left to right). 
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CHAPTER 2 
Charged or Aromatic Anchor Residue Dependence of Transmembrane Peptide Tilt 

This research was originally published in Journal of Biological Chemistry. Vostrikov, 

V.V., A.E. Daily, D.V. Greathouse, and R.E. Koeppe 2nd. Charged or aromatic anchor 

residue dependence of transmembrane peptide tilt. J Biol Chem. 2010; 285:31723-31730. 

© The American Society for Biochemistry and Molecular Biology 

2.1 Abstract 

The membrane-spanning segments of integral membrane proteins often are flanked by 

aromatic or charged amino acid residues, which may “anchor” the transmembrane 

orientation. Single spanning transmembrane peptides such as those of the WALP family, 

acetyl-GWW(LA)nLWWA-amide, furthermore adopt a moderate average tilt within lipid 

bilayer membranes. To understand the anchor residue dependence of the tilt, we 

introduce Leu-Ala “spacers” between paired anchors and in some cases replace the outer 

tryptophans. The resulting peptides, acetyl-GX2ALW(LA)6LWLAX22A-amide, have 

either Trp, Lys, Arg or Gly in the two “X” positions. The apparent average orientations of 

the core helical sequences were determined in oriented phosphatidylcholine (PC) bilayer 

membranes of varying thickness using solid-state 2H NMR spectroscopy. When X is K, R 

or G, the direction of the tilt is essentially constant in different lipids and presumably is 

dictated by the tryptophans (W5 and W19) that flank the inner helical core. The Leu-Ala 

spacers are no longer helical. The magnitude of the apparent helix tilt furthermore scales 

nicely with the bilayer thickness except when X is W. When X is W, the direction of tilt 

is less well defined in each PC bilayer and varies up to 70° among DOPC, DMPC and 
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DLPC bilayer membranes. Indeed the X = W case parallels earlier observations in which 

WALP-family peptides having multiple Trp anchors show little dependence of the 

apparent tilt magnitude on bilayer thickness. The results shed new light on the 

interactions of arginine, lysine, tryptophan and even glycine at lipid bilayer membrane 

interfaces. 

2.2 Introduction 

The lipid bilayer environment has a profound influence on the properties of peptides and 

proteins found within it. It is significant that many membrane-spanning proteins have 

bands of aromatic and/or positively charged residues at the membrane interface, which 

could serve as anchors for the protein orientation and promote favorable protein-lipid 

interactions. This anchoring is a widespread characteristic that is observed for a variety of 

proteins having both alpha and beta transmembrane folds (Chiang et al., 2005; Gibbons et 

al., 2006; Page et al., 2009; Stopar et al., 2006; Yau et al., 1998). Furthermore, polar 

amino acids influence the topology of membrane proteins, as the direction of insertion is 

driven by the asymmetric positioning of basic residues (Lys and Arg), giving rise to the 

“positive inside” rule for helical membrane proteins (von Heijne, 1986). Little is known, 

nevertheless, about the contributions of these residues in defining the orientations of the 

transmembrane segments within lipid bilayers (Granseth et al., 2005). 

Due to the inherent complexity of membrane proteins in the native biological membrane 

environment, model systems provide meaningful ways to address specific questions 

about protein/lipid interactions. In particular, model peptides of the “WALP” family, 

having the general sequence acetyl-GWW(LA)nLWWA-[ethanol]amide, have yielded 
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valuable information about peptide orientations, dynamics and lipid phase behavior 

(Killian et al., 1996; Kovacs et al., 2000; Nomura et al., 2005; White and von Heijne, 

2005). An original design of WALP and “KALP” peptides included four anchoring 

residues: two sequential Trp or Lys residues on each side of a core transmembrane -

helix (de Planque et al., 1998). Comparisons of similar peptides revealed that the lysine-

anchored peptides exhibit larger apparent tilt angles than their tryptophan counterparts 

(Ozdirekcan et al., 2005). Furthermore, the nature of the anchoring residue influences the 

tilt direction. The detailed factors responsible for the apparent magnitude and direction of 

tilt are nonetheless still unclear, since it is difficult to draw firm conclusions based upon 

four identical anchoring residues that are dispersed fairly evenly around a helical wheel 

projection. 

The similar behavior of XALP23 (Leu/Ala core) and XLP23 (all-Leu core) peptides 

having the same X residue suggests the importance of the anchor residue identity 

(Ozdirekcan et al., 2005). Magic angle spinning 1H NMR experiments with WALP and 

KALP peptides in DMPC bilayers furthermore indicate anchor-specific perturbations in 

lipid resonances (de Planque et al., 2003). It was concluded that aromatic residues (such 

as Trp) are localized primarily to the carbonyl region of phospholipids, while charged 

residues (Lys, Arg) tend to be positioned farther outside of the membrane, potentially 

interacting with the lipid phosphate moieties (de Planque et al., 1999) as well as with 

water. We seek now to address the different influence of aromatic versus charged 

residues upon the orientations of transmembrane domains, using model peptides as 

prototype examples. 
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Phosphorous (31P) NMR spectra of lipid bilayers incorporating WALP or KALP peptides 

show that the nature of the anchoring group also has a significant influence on the 

effective hydrophobic length. Both peptide series are capable of inducing isotropic and 

inverted hexagonal lipid phases—when the peptide length is too short compared to the 

membrane thickness. The detailed response is different, nevertheless: while KALP16 

does not affect the organization of DOPC bilayer vesicles, addition of WALP16 promotes 

the inverted hexagonal (HII) phase (de Planque et al., 1999). Similar effects have been 

noted for longer members of the series: Lys-anchored peptides affect lipid phase behavior 

in a manner that suggests that their effective hydrophobic length is less than that of 

corresponding Trp-anchored peptides. Interestingly, the arginine-flanked RALP23 has 

different influence on the lipid phase behavior than comparable lysine and histidine 

analogues, suggesting that charge delocalization on the Arg guanidium group could play 

a role (de Planque et al., 2002). 

A related study of XALP23 peptides in lipids prone to the formation of non-bilayer 

phases indicated that the chemical nature of the anchoring residue plays a smaller role for 

the phase modulation (Strandberg et al., 2002). The response of mixed 

phosphatidylethanolamine-phosphatidylglycerol membranes to transmembrane peptides 

is similar for charged and polar un-ionized X anchors. Somewhat unexpectedly, similar 

responses have been observed for positively and negatively charged X residues. 

To gain further insight into the molecular mechanisms that govern peptide-lipid 

interactions, several studies have addressed the apparent peptide orientations within lipid 

bilayers of varying thickness. WALP peptides in particular have been found to exhibit 
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quite small apparent average tilt angles, with relatively little dependence upon the lipid 

bilayer thickness, as observed by solid-state 2H and 15N NMR (van der Wel et al., 2002; 

Vostrikov et al., 2008). Importantly, the solid-state NMR methods are non-perturbing and 

allow investigations of the peptide orientations within the actual lipid environment (van 

der Wel et al., 2002; Vostrikov et al., 2008). The nature of WALP (or KALP) peptides, 

with four Trp (or Lys) residues occupying four radial locations, remains however less 

than ideal for assigning the effects of individual anchoring amino acid residues. To better 

understand the interplay between anchor residue identity and position, therefore, we have 

designed the “X2,22W5,19ALP23” series of peptides, bearing the sequence acetyl-

GX2ALW(LA)6WLAX22A-[ethanol]amide (Table 1). These sequences share the (Leu-

Ala)6.5 α-helical core of WALP19, yet the pairs of anchoring amino acids on either side 

of the core are separated by an additional short Leu-Ala spacer sequence. By keeping the 

inner anchor identity fixed (W5 and W19), while varying the outer anchor identity (X2 and 

X22), it becomes possible to examine the effects of different X residues on the peptide 

average orientation. As a control peptide, having just one obvious anchor on each side of 

the core helix, we employ the recently introduced GWALP23 sequence (Vostrikov et al., 

2008; Vostrikov et al.) in which the X residues are glycine. The model in Figure 1 

illustrates the relative positions of the X2, W5, W19 and X22 residues. 

The design of the XWALP23 peptides enables one to address important questions that 

have arisen in previous studies. Does the distance between the inner Trp anchors retain 

primary importance for the peptide behavior, as suggested by 31P NMR studies (de 

Planque et al., 2003)? Do the outer X anchors make significant contributions to the 
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apparent average peptide orientation? How do the properties vary with the identity of X? 

Is the charge on X a significant factor? When X is W, is it possible that the orientation of 

WWALP23 could be defined by the outer anchor positions? Finally, these peptides may 

help to promote understanding of a fundamental question: which amino acid residues 

serve as primary determinants of the transmembrane helix tilt magnitude and direction? 

2.3 Experimental Procedures 

N-Fmoc protected amino acids, Rink amide resin and Wang resin were purchased from 

NovaBiochem (San Diego, CA) and Advanced Chemtech (Louisville, KY). Commercial 

L-alanine, deuterated at Cα and Cβ carbons (Ala-d4), from Cambridge Isotope 

Laboratories (Andover, MA) was derivatized with an Fmoc protecting group as described 

previously (Greathouse et al., 1999; ten Kortenaar et al., 1986). DLPC, DMPC and 

DOPC were purchased from Avanti Polar Lipids (Alabaster, AL). Other reagents were 

from VWR Chemical (Irving, TX). All chemicals and reagents were of the highest grade 

available. Water was doubly deionized Milli-Q water. 

Peptides were synthesized on a model 433A solid-phase peptide synthesizer (Applied 

Biosystems; Foster City, CA) using modified FastMoc® chemistry, with extended 

deprotection and coupling times where needed. Two deuterium-labeled alanines at ~60% 

and 100% isotope abundance levels were incorporated in a single peptide, allowing the 

NMR signals to be distinguished and assigned based upon the relative intensities (Daily 

et al., 2008). GWALP23 and WWALP23 were synthesized without protecting groups and 

were cleaved from Wang resin using 20% ethanolamine in dichloromethane. KWALP23 
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and RWALP23 were synthesized with protecting groups (tert-butyloxycarbonyl [Boc] for 

Lys and Trp, and pentamethyl-2,3-dihydrobenzofuran-5-sulfonyl [Pbf] for Arg) (Isidro-

Llobet et al., 2009) and were simultaneously deprotected and cleaved from Rink amide 

resin using TFA:phenol:triisopropylsilane:water in a 85:5:5:5 ratio. Crude peptides were 

purified on a 9.4 × 250 mm octyl-silica column (5 µm, 80 Å) using a 96-100% (X = G, 

W) or 92-96% (X = K, R) methanol gradient over 24 min at a flow rate of 1.7 ml/min 

(~1100 PSI). Peptides were lyophilized multiple times from acetonitrile:water (1:1) to 

ensure complete removal of TFA. Purity of the peptides was verified by reversed-phase 

chromatography (see Fig. S1 in the Supplemental Data). Peptide identity was confirmed 

by means of MALDI mass-spectrometry (Fig. S2). The absence of TFA in peptide 

samples was verified by 19F NMR spectroscopy (Fig. S3). 

Circular dichroism measurements were performed on peptides incorporated into small 

unilamellar vesicles of DLPC at 1/40 (mol/mol) peptide/lipid (P/L), obtained by 

ultrasonic treatment. Spectra were recorded at 22 °C on a Jasco J-710 spectropolarimeter, 

using a 20 nm/min scan rate, 1.0 mm path length, 1.0 nm band width, and 0.2 nm step 

resolution. Five scans were averaged to enhance the signal-to-noise ratio. 

Solid-state NMR samples were prepared using macroscopically aligned lipid bilayers, as 

described previously (van der Wel et al., 2002). Briefly, peptide was dissolved in 

trifluoroethanol, and concentration was determined spectrophotometrically using ε280 of 

5600 M-1cm-1Trp-1. Peptide solution was added to 80 µmol of lipid in chloroform to 

achieve 1/40 P/L molar ratio. Solvent was removed under a stream of nitrogen and 

sample was dried under vacuum. The peptide-lipid mixed film was redissolved in 
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methanol:water 95:5 and distributed evenly among 40 glass slides (4.8 × 23 × 0.07 mm; 

Marienfeld; Lauda-Königshofen, Germany). Slides were dried under vacuum (< 1.5 Pa) 

for at least 48 h and hydrated with 2H-depleted water (Cambridge) to achieve 45% 

hydration (w/w). Slides were sealed in a glass cuvette using epoxy and left to equilibrate 

at 40 °C for at least 48 h before measurement. 

Solid-state NMR spectra were recorded at 50 °C using two Bruker (Billerica, MA) 

Avance spectrometers, each operating at a proton frequency of 300 MHz. Spectra were 

obtained with the membrane normal either parallel (β=0°) or perpendicular (β=90°) to the 

applied magnetic field. For a peptide with fast averaging around the lipid bilayer normal 

(but not the peptide axis) the 2H quadrupolar splittings (∆νq) observed at β=90° have 

absolute magnitude of ½ those at β=0° (Aisenbrey and Bechinger, 2004). Spectra were 

recorded using a quadrupole echo pulse sequence (Davis et al., 1976), with pulse lengths 

of 3.2-4.5 µs, echo delays of 110-125 µs and recycle delay of 90 ms. Typically, 700,000 

free induction decays were accumulated. Prior to Fourier transformation, an exponential 

weighting function resulting in a 100 Hz line broadening was applied. Proton-decoupled 

31P NMR spectra were obtained with the Bruker “zgpg” pulse program, using recycle 

delay of 5 s and pulse length of 6 µs. In 31P NMR spectra of aligned bilayers, peaks at 

β=0° and β=90° correspond to the σ// and σ┴ edges of a powder pattern (see Fig. S4).  

Deuterium NMR signals from CD3 groups of Ala-d4 residues in XWALP23 peptides 

were analyzed according to Geometric Analysis of Labeled Alanines (GALA) method, 

implemented in Microsoft Excel (Thomas et al., 2009; van der Wel et al., 2002). The 
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analysis is based on a relationship between the alanine CβD3 quadrupolar splitting (∆νq) 

and the angle θ between the alanine Cα-Cβ bond vector and the applied magnetic field: 

( ) ( ) ( )1cos3
2
11cos3

2
11cos3

2
1

2
3 222

2

−⋅



 −⋅



 −=∆ γβθυ

h
qQeSZZq  

The angle θ can be further expressed analytically in terms of peptide geometry and 

orientation, namely tilt magnitude (τ) and tilt direction (ρ, relative to Cα of Gly1), as well 

as the angle ε// between the helix axis and Cα-Cβ bond vector of a given alanine residue. 

Angle β represents the macroscopic sample orientation (defined above, with respect to 

Ho), and angle γ is the tetrahedral bond angle within a methyl group. Based upon earlier 

experience (van der Wel et al.; Vostrikov et al.), the value of ε// was set to 59.4°. The 

variables τ and ρ, and a global order parameter Szz, were treated as free parameters in 

order to minimize the RMSD between the observed ∆νq values and those calculated using 

Equation 1 (Strandberg et al., 2004; van der Wel et al., 2002). This analysis incorporates 

dynamics in manner similar to “model 3” of Strandberg et al. (Strandberg et al.). Further 

considerations were given to anisotropic molecular motions and to combined analyses of 

15N-1H dipolar couplings and 2H quadrupolar splittings (see Discussion). Due to the 

symmetry considerations, GALA analysis returns four combinations of [τ, ρ] values. 

Here we report the [τ, ρ] data in a [90°, 360°] space, as in previous studies on WALP 

peptides (Daily et al., 2008; Strandberg et al., 2004; van der Wel et al., 2002; Vostrikov 

et al., 2008). 
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2.4 Results 

The hydrophobic core of XWALP23, composed of alternating Leu-Ala residues, is 

expected to adopt an α-helical conformation. To check the secondary structures, we 

recorded CD spectra for the peptides having variable X residues and incorporated into 

hydrated DLPC bilayer membranes. All such peptides exhibited mean residue ellipticity 

profiles typical of an α-helix, characterized by minima at 208 and 222 nm and by the 

ratio ε222/ε208 between 0.74 and 0.86 (Fig. 2). When X is G, K or R, the CD spectra 

exhibit high degree of overlap, while there is a change of ~10% in ellipticity in the 205-

225 nm region when X is W. The spectral difference when X is W may be indicative of a 

different extent of helix formation at the peptide termini, but could also be caused by UV 

absorption by the side chains of the extra Trp residues (Chakrabartty et al., 1993; 

Stromstedt et al., 2009). 

Having confirmed the overall α-helical character of the XWALP23 peptides, we next 

introduced Ala-d4 close to the center of the sequence, in positions 11 and 13. Deuterium 

NMR spectra of these peptides in lipid bilayers of varying thickness are illustrated in Fig. 

3. If the peptides were not tilted in the membrane, the signals from all of the alanine CβD3 

groups would show the same quadrupolar splittings (van der Wel et al., 2002); however, 

two pairs of peaks are readily identified in each spectrum in Fig. 3. The pattern displayed 

by variations in the magnitudes of the alanine CβD3 quadrupolar splittings is related to the 

apparent tilt angle τ, defined between the membrane normal and the peptide’s helix axis 

(van der Wel et al., 2002). It can be seen that the particular Ala11 and Ala13 ∆νq 
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magnitudes undergo changes for different X residue identities, being smallest for X = W, 

intermediate for X = G and highest for X = K or R. There also exists a definite trend 

among the host lipids, with the largest ∆νq values being observed in DLPC bilayer 

membranes, which suggests that the peptides may be more tilted when shorter lipids 

compose the bilayer. 

For a detailed study of the orientations of the XWALP23 peptides in lipid bilayers, we 

incorporated Ala-d4 residues throughout the hydrophobic core (residues 7, 9, 11, 13, 15 

and 17) of each peptide, labeling two positions in each synthetic peptide. All of the 

respective 2H NMR spectra are presented as Supplemental Data (Figures S5, S6, S7, S8), 

and the observed quadrupolar splitting magnitudes are reported in Table 2. Errors in the 

observed values were estimated from duplicate samples and also by performing the 

experiments at β angles of both 0° and 90° for the sample orientation, since ∆νq for a 

given peptide-lipid system follows a ( )1cos3
2
1 2 −β  relationship. The standard deviation 

was found generally to be within ±0.5 kHz, although larger deviations up to ±1.2 kHz 

were observed for a few cases where the peaks are relatively broad and exhibit large |∆νq| 

values. 

For the KWALP23 peptide, we have revised a previous incorrect assignment of a ∆νq 

value. Due to peak overlap, the ∆νq for Ala9 in KWALP23, incorporated in DLPC, was 

interpreted as 13.6 kHz (Daily et al.), while the actual value is 22.2 kHz (Table 2 and Fig 

S7). We were able to clarify the situation using singly labeled peptides. With this newly 

revised assignment, the earlier suggestion of a kink (Daily et al.) disappears from the 



 

67 

GALA analysis of KWALP23 (see discussion). Also for GWALP23, small revisions to 

the ∆νq values (Table 2) and to the fitted value of Szz led to a moderately larger apparent 

magnitude for the tilt angle τ in DLPC than previously reported (19).  

The observed quadrupolar splittings were subjected to GALA analysis, at first 

incorporating dynamics by means of a straightforward isotropic variable Szz parameter, 

according to Equation 1. The quality of the fits was assessed by RMSD values, which 

typically are close to 1 kHz, or lower. Because overly high or low values of ε// are 

characteristic of poor fits (van der Wel et al.), the values of ε// representing the alanine 

side chain geometry was kept at 59.4°. The τ, ρ, Szz and corresponding RMSD values are 

provided as Table S1, while the theoretical ∆νq curves corresponding to the best-fit τ, ρ 

and Szz values are presented in Fig. 4, overlaid with the experimental data. The nearly 

constant phase of the sine wave amplitude curves, except when X is W (Fig. 4), illustrates 

that the screw rotation ρ is essentially constant when X is K, R or G. Furthermore, the 

magnitude of the apparent tilt τ scales with the lipid bilayer thickness when X is K, R or 

G (see Discussion). While the GALA analysis often is not especially sensitive to Szz (van 

der Wel et al.), the fits for the XWALP23 peptides nevertheless show trends toward 

lower Szz values (Table S1) when the host bilayer is DLPC, or when the identity of X is 

W in all of the lipid bilayers, suggesting increased molecular motion in these cases. The 

incorporation of more complex dynamics models did not substantially alter the results or 

conclusions (see Discussion).  
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To probe the effect of the peptide/lipid ratio on the peptide orientation, we have 

examined GWALP23 in DMPC at different values of P/L. When P/L is decreased from 

1/20 to 1/40 and then to 1/80, there are small yet consistent increases in the quadrupolar 

splittings throughout the hydrophobic core (Table 2). These changes lead to only minor 

effects on the apparent tilt angle τ (namely, a change of <1° when the peptide is diluted 

from 1/20 to 1/40, and about 1° upon further dilution to 1/80).  

The side chains of lysine and arginine have high pKa values in aqueous solution and are 

expected to be charged at the peptide-lipid interface. It is considered that the anchoring 

properties of lysine and arginine arise in part from electrostatic interactions with the 

phosphate groups of lipid molecules, in addition to the propensity of charged polar 

groups to be in or near the aqueous phase. To test whether the microenvironment of the 

XWALP23 peptides with ionizable X residues would influence the average peptide 

orientation, we prepared oriented samples hydrated with HEPES buffer (pH 7.4) in 2H-

depleted water containing 0.1 M NaCl. Deuterium NMR spectra of KWALP23 and 

RWALP23 incorporated in DMPC bilayers under these conditions were nearly identical 

to those where only water (unbuffered) was used for hydration (Fig. S9). The only 

notable effect is a small decrease in the signal-to-noise ratio for samples containing NaCl, 

which can be attributed to radio frequency power dissipation (Hautbergue and 

Golovanov, 2008). 

The transmembrane segments of proteins strongly favor secondary structures that 

maximize hydrogen bonding, to help to satisfy the energetic requirements associated with 

partitioning the peptide backbone polar carbonyl groups into the lipid acyl chain 



 

69 

environment (Page et al., 2008; White and von Heijne, 2005). Nevertheless, the 

requirements are less stringent for residues that are located near the lipid head group 

interfacial regions. With respect to the XWALP23 peptides, it is of interest therefore to 

know whether the α-helical conformation is retained throughout the peptide, including 

the Leu-Ala “spacer” segments between the inner and outer “anchor” residues, or 

whether the helical region might encompass only the core segment between Trp5 and 

Trp19? To address this question, we synthesized GWALP23 peptides having a single Ala-

d4 label incorporated at either Ala3 or Ala21. The ∆νq values from these peptides 

theoretically will indicate whether or not the secondary structure remains an essentially 

unbroken α-helix from Ala3 through Ala21. 

The 2H NMR spectra of GWALP23 with Ala3 or Ala21 labeled are shown in Fig. 5. These 

residues are located 18 amino acids apart, exactly five helical turns in an ideal α-helix 

model with 100° increment per amino acid, and could therefore give identical 2H 

quadrupolar splittings. However, the ∆νq values exhibited by alanines at these two 

positions are very different, with neither of the signals compatible with the quadrupolar 

wave plot for the core transmembrane helix of GWALP23 (Fig. 4, panel G). These results 

reveal that the transmembrane α-helix in GWALP23, and presumably in XWALP23 

peptides generally, is terminated at or near the innermost Trp residues, resulting in frayed 

edges outside of the core helix that is both flanked and defined by W5 and W19. This 

finding that the core helix terminates within or near each of the Leu-Ala spacers is 

consistent with an earlier statistical survey, which indicated that approximately two thirds 
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of the folded transmembrane structures were disordered in the interface region (Granseth 

et al., 2005). 

2.5 Discussion 

Time-honored experiments with model systems having multiple tryptophans per peptide 

terminal have demonstrated well the aggregate anchoring properties of Trp residues for 

gramicidin channels (O'Connell et al., 1990; Separovic et al.) and WALP peptides (de 

Planque et al.; Killian et al.) at membrane/water interfaces. The present studies with the 

XWALP23 series of peptides enable initial assessments of the anchoring properties of 

individual Trp, Lys and Arg residues near the ends of transmembrane peptide domains 

and segments. The present results concerning helix tilt furthermore complement earlier 

findings about interfacial side chain locations, namely that Lys side chains prefer 

anchoring positions that are about 3-4 Å farther from the lipid bilayer center than those of 

the Trp side chains (de Planque et al.). Indeed, a noteworthy feature for the XWALP23 

design is that the X residue α-carbons should be separated from the W residue α-carbons 

by about 4 Å along the bilayer normal (depending upon the secondary structure of each 

Leu-Ala spacer). Remarkably, the properties of XWALP23 peptides having Gly residues 

in the X2 and X22 positions are quite similar to those having Lys or Arg. When X2 and 

X22 are Trp, effectively giving rise to “extra” Trp residues, the direction of peptide tilt 

becomes less well defined, and the magnitude of tilt loses its tendency to scale with the 

lipid bilayer thickness. Indeed the peptide properties with “extra” Trp residues are present 

parallel earlier observations with WALP19 and WALP23 (Holt et al.; Strandberg et al.; 

van der Wel et al., 2002). These particular issues will be discussed in turn. 
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To visualize the anchor residue dependence of the apparent tilt, RMSD contour plots 

were constructed for the [τ, ρ] coordinates (Fig. 6). When fitted using an isotropic 

principal order parameter, the global minima for each of the XWALP23 peptides are well 

defined and generally encompass only a small range of apparent τ and ρ values. 

Reminiscent of WALP23, the largest allowed ranges for both τ and ρ are observed when 

X is W. Comparing the results in different lipids reveals that the apparent peptide tilt 

generally increases with decreasing hydrophobic thickness of the lipid bilayer; again the 

exception occurs when X = W (Fig. 6). GWALP23 and the peptides with positively 

charged K or R outer anchors undergo apparent tilt changes of ~4°-6° as the lipid acyl 

length increases by two methylene groups in each leaflet. The changes in the apparent tilt 

are presumably a consequence of hydrophobic (mis)matching, as was predicted for 

WALP family peptides. It is in this regard notable that the variation of apparent helix tilt 

angle with lipid bilayer thickness was much smaller for the original WALP series 

peptides: essentially nil for WALP19 (van der Wel et al.), and a difference of only ~4° 

for WALP23 between DLPC and DOPC (Strandberg et al.). By contrast, for the 

XWALP23 series, the mismatch-induced changes in the apparent peptide tilt can be as 

large as 16° between DLPC and DOPC (Fig. 6). These changes are likely not due to 

altered lipid packing or acyl chain order because the influence of WALP family peptides 

on bilayer properties is noticeably small (de Planque et al., 1998; Morein et al., 2002), 

even at somewhat higher P/L ratios than implemented here.  

It has been noted that the fits to the Ala 2H quadrupolar splittings of WALP23 in DMPC 

differ when Szz is decomposed into explicit motion parameters (∆τ and ∆ρ), which are 
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included in the analysis (Esteban-Martin and Salgado; Esteban-Martin et al.; Holt et al.; 

Ozdirekcan et al.; Strandberg et al.). We now surmise that this feature may be attributed 

to having “too many” interfacial indole rings, possibly competing with each other when 

the “extra” Trp residues are present in the interface region, as observed also in striking 

fashion with WWALP23 (compare panel W with the other panels in Fig. 6). With 

WALP23, the best combined fits to chemical shift anisotropies (13C and 15N), dipolar 

couplings (13C-15N) and quadrupolar splitting (2H) involve ∆ρ motions of ± ~80° about 

the helix axis, in addition to rapid rotational averaging about the bilayer normal (Holt et 

al.). Such large-amplitude ∆ρ motions would seem unrealistic when Arg and Lys side 

chains are present together with Trp (see also (Vostrikov et al., 2010)), yet the question of 

∆ρ motion remains pertinent for GWALP23 itself.  

The direction and magnitude of the apparent tilt for GWALP23 as well as KWALP23 

have been verified by independent 15N PISEMA experimental methods (Vostrikov et al., 

2009; Vostrikov et al., 2008). For both peptides, the GALA and PISEMA methods show 

excellent agreement when using a semistatic analysis with a (variable) principal order 

parameter Szz. Furthermore, combined analysis using eleven data points (2H quadrupolar 

splitting and 15N-1H dipolar couplings) also gives an excellent fit for GWALP23 in 

DLPC (see Table S2), whether or not a Gaussian approach is employed to treat ∆ρ and 

∆τ motions. (As noted, refinements of the ∆νq values (Table 2) and of Szz, indicating 

increased motion, led to a modest increase in the apparent τ for GWALP23 in DLPC, 

compared to a previous report (19).) Again we infer that the presence of only one Trp at 

each terminal of the GWALP23 core helix may limit ∆ρ motions.  
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Among these XWALP23 peptides, WWALP23 is the outlier. When outer tryptophans W2 

and W22 are present, the response of WWALP23 toward changes in the lipid environment 

again resembles that of the original WALP peptides. Indeed there is considerable overlap 

of [τ, ρ] solutions for WWALP23 in the three lipids investigated (Fig. 6, panel W). 

Conceivably the important common feature among WALP19, WALP23 and WWALP23 

is the presence of multiple – possibly competing – tryptophan anchors on both ends of the 

transmembrane peptide core helical sequence. The RMSD minima for WWALP23 also 

are broader compared to the other XWALP23 peptides, which reflects an increasing 

uncertainty in ρ as the “apparent” τ value diminishes, probably reflecting increased 

motion, including ∆ρ motion (Holt et al.). It is of further interest that the variation of ρ 

with lipid identity appears to be larger for WWALP23 (Fig. 6) than for WALP19 (van der 

Wel et al.), WALP23 (Strandberg et al.) or the other XWALP23 peptides (Fig. 6). 

Although the uncertainty in ρ is indeed quite large for WWALP23 in each of the lipid 

bilayers, the detailed influence of the short two-residue Leu-Ala spacers between the 

inner/outer Trps in WWALP23 may merit further investigation. It is in this regard 

noteworthy that the labels at spacer residues A3 and A21 (Fig. 4) indicate that the Leu-Ala 

spacer sequences in GWALP23 are not helical, although the spacer conformation remains 

unknown for WWALP23. The CD spectra (Fig. 2) suggest marginally increased helicity 

for WWALP23 compared to the other XWALP23 peptides, which may or may not 

pertain to the spacer sequences. (Interestingly, a longer helical segment with more rigid 

ends would be expected to show greater sensitivity to lipid hydrophobic mismatch, 

whereas the opposite is observed for WWALP23.) 
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For the case of KWALP23 in DLPC, the quadrupolar splitting magnitudes are closely 

similar for the alanine 7, 9 and 11 side chains; namely 28.6, 22.2, 26.2 kHz, respectively 

(Table 2). Also, in DMPC and DOPC the ∆νq values for the Ala7 and Ala11 side chains 

remain nearly indistinguishable (Table 2). These similarities cause peak overlap in the 

NMR spectra for multiply labeled peptides, which in turn led us to assign incorrectly the 

splittings for Ala9 in an earlier study (Daily et al., 2008). With the corrected assignments, 

the GALA fits for KWALP23 now are excellent (Fig. 6), and we dismiss an earlier 

suggestion of a kink in the transmembrane helix of KWALP23 (Daily et al., 2008). The 

similar fits for RWALP23 and KWALP23 (Figs. 4, 6) further make the case that these 

peptides are not kinked. 

Remarkably, considerations of ∆ρ motion do not in any known case influence 

conclusions about the mean peptide rotation ρ0 which defines the direction of tilt. The 

lack of influence on ρ0 is true in both molecular dynamics simulations (Esteban-Martin 

and Salgado; Esteban-Martin et al.; Ozdirekcan et al.) and fits to solid-state NMR data 

(Esteban-Martin et al.; Holt et al.; Strandberg et al.; Vostrikov et al.). The established 

definite ρ0 values are well illustrated using polar plots (Fig. 7) to view the best-fit 

apparent (τ, ρ) results. Indeed Figure 7 shows the remarkable consistency of the tilt 

direction ρ for XWALP23 peptides in each of the DLPC, DMPC and DOPC lipid bilayer 

membranes, and for each X residue identity except W. When X is W, by contrast, the 

preferred ρ values are altered – and unpredictably varied in the different lipids. At the 

same time, the apparent τ values for WWALP23 become quite similar, unexpectedly 

small, and rather insensitive to the bilayer hydrophobic thickness (Fig. 7). To be sure, the 
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situation for WWALP23 is reminiscent of earlier results for WALP19 (van der Wel et al.) 

and WALP23 (Strandberg et al.), each of which also contains multiple – and possibly 

competing – Trp residues near each peptide terminal. In these cases, it appears that the 

added outer tryptophans may preclude additional tilting, and that the preferred rotation 

angles and significant ∆ρ motion may arise from a compromise among the different Trp 

indole side chains that occupy different radial positions. These complexities may relate 

also to the now numerous comparisons among experimental observations and 

computational predictions for WALP23 (Esteban-Martin and Salgado; Esteban-Martin et 

al., 2009a; Holt et al.; Holt et al.; Ozdirekcan et al., 2007; Strandberg et al.; Strandberg et 

al.). It is further of note that tryptophans near the N- and C-terminals of transmembrane 

peptides exhibit different geometric and motional properties (van der Wel et al.). 

We observe additionally that the positively charged Lys and Arg residues generally 

increase the apparent tilt angle by small amounts, compared to the case when X is G (Fig. 

6-7), although conspicuously without changing the direction of the tilt of XWALP23 

peptides. Furthermore, Arg causes marginally larger tilts than does Lys in equivalent 

situations (Fig. 7).  

We conclude with a return to the anchoring properties of the Trp indole rings. An 

overview of Figures 6 and 7 highlights the importance of the inner tryptophans W5 and 

W19 for the direction of the tilt. The tilt direction then can change when a single arginine 

is inserted between W5 and W19 (Vostrikov et al.), and will change even more 

dramatically when there exist additional tryptophans more distant from the bilayer center 

(Fig. 7). The added outer tryptophans seem not only to introduce additional dynamics 
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(Holt et al.), but also to confuse the issue of the preferred tilt, namely in WWALP23, 

WALP19 and WALP23. Indeed the extra outer tryptophans not only modify the direction 

of peptide tilt, but also flatten the dependence of the apparent tilt magnitude upon lipid 

bilayer thickness. In summary, for those XWALP23 membrane-spanning peptides in 

which only one Trp anchor is present near each end, the residues W5 and W19 seem to 

determine the direction of the tilt; the magnitude of the apparent tilt away from the 

bilayer normal scales with the lipid bilayer thickness; and the identity of residues X2 and 

X22—whether G, K or R—exerts subtle influence upon the magnitude of the apparent tilt. 

When additional tryptophans W2 and W22 are present, the patterns of peptide behavior 

and response to lipid environment become not only altered but also less systematic. 
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2.8 Tables 

Table 1. Peptide sequences 

 

Peptide Sequence 

WALP23 GWW3LALALALALALALALALW21WA 

WALP19  GWW3LALALALALALALW17WA 

GWALP23 GGALW5LALALALALALALW19LAGA 

WWALP23 GWALW5LALALALALALALW19LAWA 

KWALP23 GKALW5LALALALALALALW19LAKA 

RWALP23 GRALW5LALALALALALALW19LARA 
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Table 2. Alanine CβD3 quadrupolar splitting (kHz) for XWALP23 peptides incorporated 
in different lipids. 

 

 

Peptide 

 

Lipid* 

Alanine position 

7 9 11 13 15 17 

GWALP23 

DLPC 26.4 25.5 26.9 14.6 20.7 3.4 

DMPC† 21.9 8.9 20.9 3.8 17.6 2.9 

DMPC‡ 22.6 12.4 21.7 7.4 19.0 2.4 

DOPC 16.6 1.7 16.7 1.5 15.4 2.6 

WWALP23 

DLPC 1.2 13.9 4.1 13.8 2.2 10.8 

DMPC 1.9 11.8 1.4 11.8 5.0 7.6 

DOPC 5.4 14.2 1.9 11.4 7.9 2.3 

KWALP23 

DLPC 28.6 22.2 26.2 13.7 20.2 5.0 

DMPC 24.6 14.7 23.6 8.6 18.5 4.0 

DOPC 19.1 4.9 18.6 2.4 15.3 3.7 

RWALP23 

DLPC 25.7 28.9 29.0 17.2 22.4 4.0 

DMPC 25.7 16.9 24.8 10.4 19.3 3.0 

DOPC 18.7 4.7 18.3 3.0 16.2 2.4 

 
*The peptide/lipid ratio was 1/40, unless noted otherwise. 
†Signal from Ala3 is 21.1 kHz. Signal from Ala21 is 6.0 kHz. 
‡Peptide/lipid ratio of 1/80. 
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2.9 Figures 

Figure 1. Ribbon model to represent XWALP23 peptides. The side chains of Trp5 and 
Trp19 (green) are roughly on the same side of the helix and are numbered in the lower 
view. The Cα atoms of residues X2 and X22 are shown as blue spheres. The core α-helix 
is intact between the Trp residues, but may unwind at the ends. The arrow shows the 
approximate direction of tilt when X is G, R or K (see text and Figure 6). 
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Figure 2. CD spectra of X2,22W5,19ALP23 peptides in DLPC. The color code is gray when 
X is W, or black when X is G or K or R. 
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Figure 3. Deuterium NMR spectra for Ala13 (full deuteration) and Ala11 (partial 
deuteration) as a function of X residue identity in X2,22W5,19ALP23 peptides at β=0° 
sample orientation. Peptides are incorporated at 1/40 (P/L) in DLPC, DMPC, or DOPC 
(left to right). The X residues are G, W, K, or R (top to bottom, as noted). 
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Figure 4. GALA quadrupolar wave plots for X2,22W5,19ALP23 peptides in DLPC (red 
triangles), DMPC (green circles) and DOPC (blue squares). The X residue identities are 
noted in each panel (G, W, K, or R). The quadrupolar splittings of Ala3 and Ala21 for 
G2,22W5,19WALP23 in DMPC (from Fig. 5) were not used in the fitting, but are shown as 
filled circles, far off the curve that fits the core α-helix. 

 



 

87 

Figure 5. Deuterium NMR spectra of G2,22W5,19ALP23, in DMPC (β=0° sample 
orientation), with Ala-d4 incorporated outside of the Trp-flanked core sequence. A. Ala-
d4 at position 3. B. Ala-d4 at position 21.  
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Figure 6. RMSD contour plots for X2,22W5,19ALP23 peptides in DLPC (red), DMPC 
(green) and DOPC (blue). Residue X is G, W, K or R, as noted in the panels. The 
identities of the bilayer lipids are also indicated by the labels in panel R. Contours are 
drawn at levels of 1, 2 and 3 kHz. 
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Figure 7. Polar plot of ρ and τ for X2,22W5,19ALP23 peptides in DLPC (circles), DMPC 
(squares) and DOPC (triangles). Residue X is G (black), K (green), R (blue), or W (red, 
open symbols). Note that ρ values are similar and τ values scale with bilayer thickness, 
except when X is W. 
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2.10 Supplemental Data 

Table S1. GALA fit results for X2,22W5,19ALP23 peptides, with ε// fixed at 59.4º. 
Peptide/lipid ratio was 1/40, unless noted otherwise. 

Peptide Lipid Fit parameters 

τ, degrees ρ, degrees Szz RMSD, kHz 

GWALP23 

DLPC 20.7 305 0.71 0.7 

DMPC 9.0 311 0.89 1.1 

DMPC* 11.7 311 0.86 0.9 

DOPC 6.0 323 0.87 0.6 

WWALP23 

DLPC 8.0 147 0.61 0.2 

DMPC 3.7 122 0.76 0.5 

DOPC 9.0 93 0.66 0.9 

KWALP23 

DLPC 18.0 303 0.78 0.7 

DMPC 13.0 306 0.81 0.5 

DOPC 7.3 312 0.86 0.6 

RWALP23 

DLPC 23.3 305 0.70 1.0 

DMPC 14.3 307 0.80 0.6 

DOPC 7.3 318 0.86 0.7 

 

*Peptide/lipid ratio of 1/80. 
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Table S2. Combined fit of six 2H quadrupolar splittings and five 1H-15N dipolar couplings 
to determine the orientation of GWALP23 in hydrated bilayers of DLPC. 

Residue QC (CD3) DC (15N-1H) 
 Observed (kHz) Fit (kHz) Observed (kHz)* Fit (kHz) 

A7 26.4 27.8   
L8     
A9 25.5 23.5   
L10     
A11 26.9 27.8   
L12     
A13 14.6 15.1 7.8 6.5 
L14   6.9 5.1 
A15 20.7 21.2 8.3 7.8 
L16   8.6 8.3 
A17 3.4 4.0 7.5 5.4 
L18     

     
Data Set # data points (τ, ρ) Szz RMSD (kHz) 
QC only 6 (20.7°, 305°) 0.71 0.7 
QC and 
DC 

11 (18.6°, 304°) 0.78 1.2 

 

QC denotes quadrupolar couplings (∆νq). DC denotes dipolar couplings.  
* Data from Vostrikov et al. 

RMSD was calculated according to: 

( ) ( )
NHCD

NHCD

NN
RMSD

+

∆∆+∆∆
=

∑∑
3

3

22 νν
 

 where ΔΔν is the difference between observed and fit parameter; N is number of data 
points. A Gaussian fit to the combined data set gave similar results, with (τ ο, ρο) of (18°, 
306°) and (στ, σρ) of (12°, 10°), and RMSD = 1.1 kHz. 
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Figure S1. HPLC elution profiles of X2,22W5,19ALP23 peptides. X identities are labeled. 
Elution time (m:ss) of the main peak is shown for each. 
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Figure S2. MALDI mass-spectra of X2,22W5,19ALP23 peptides, with X = G, W, K, or R. 
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Figure S3. 19F NMR spectra to check for residual trifluoroacetic acid (TFA) in peptide 
samples. Top to bottom: 0.01% TFA (positive control); solvent only (CD3OD, negative 
control); KWALP23 peptide in solvent. 
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Figure S4. 31P NMR spectra of DOPC with X2,22W5,19ALP23 peptides incorporated at 
1/40 peptide/lipid ratio. 
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Figure S5. Deuterium NMR spectra for labeled alanines in G2,22W5,19WALP23 in (left to 
right) DLPC, DMPC, DOPC. The alanine positions and per cent deuteration are shown. 
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Figure S6. Deuterium NMR spectra for labeled alanines in W2,22W5,19WALP23 in (left to 
right) DLPC, DMPC, DOPC. The alanine positions and per cent deuteration are shown. 
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Figure S7. Deuterium NMR spectra for labeled alanines in K2,22W5,19WALP23 in (left to 
right) DLPC, DMPC, DOPC. The alanine positions and per cent deuteration are shown. 
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Figure S8. Deuterium NMR spectra for labeled alanines in R2,22W5,19WALP23 in (left to 
right) DLPC, DMPC, DOPC. The alanine positions and per cent deuteration are shown. 
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Figure S9. Deuterium NMR spectra of labeled alanines 11 and 13 in: K2,22W5,19ALP23, 
or R2,22W5,19ALP23, hydrated with 2H-depleted water (top) or HEPES buffer, pH 7.4 with 
0.1 M NaCl (bottom). 
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CHAPTER 3 
Response of GWALP Transmembrane Peptides to Lipid Bilayer Hydrophobic 
Mismatch 

3.1 Abstract 

Recently we have developed a novel transmembrane peptide, termed GW5,19ALP23 

(acetyl-GGALW5LALALALALALALW19LAGA-ethanolamide), which proves to be a 

well behaved sequence for the systematic investigation of protein-lipid interactions [J 

Biol Chem, 285:31723]. Its roughly symmetric nature allows for shifting the anchoring 

Trp residues by one Leu-Ala pair inward (GW7,17ALP23) or outward (GW3,21ALP23), 

thus providing fine adjustments of the formal hydrophobic length in the range of 15-27 Å 

(between the tryptophan residues). Importantly, the amino acid composition of the 

resulting sequences remains identical and the radial separation between tryptophan 

residues on each side of an α-helix stays similar. These peptides were incorporated into 

mechanically oriented bilayer membranes composed of phosphatidylcholine lipids with 

various acyl chain length (~19-27 Å), and the peptide response to hydrophobic 

(mis)match was evaluated by means of solid-state 2H NMR. All of these sequence 

isomers adopt transmembrane orientations, even when hydrophobic matching conditions 

are not readily satisfied. Furthermore, the dynamics for each isomer are less extensive 

than for peptides that possess additional interfacial Trp residues. Interestingly, there 

appear to be low and high limits to the peptide tilt angle. We speculate that the interfacial 

positioning of tryptophan residues dominates over the hydrophobic matching 

requirement. Additionally we investigate the consequences of hydrophobic matching for 

the Trp side chain orientations. 
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3.2 Introduction 

The influence of a lipid bilayer membrane on protein organization and function is well 

documented. For example, the orientation (tilt) angles of virus protein “u” (Park et al., 

2006) and of the GABAA

In order to better understand the protein-lipid interplay with respect to hydrophobic 

match or mismatch conditions, systematic approaches are essential. It is in this regard 

useful to consider combinations of synthetic lipids and model peptides, which make it 

feasible to adjust systematically the lengths of a peptide and the lipid matrix (Davis et al., 

 receptor (Kandasamy et al., 2009) have been shown to vary in 

response to the thickness of the lipid bilayer. The lipid acyl chain identities furthermore 

influence the assembly of M2 tetramer proton channels (Schick et al., 2010) and alter the 

functional equilibrium of rhodopsin (Brown, 1994). 

A major parameter governing protein-lipid interactions and membrane protein function is 

the compatibility of the hydrophobic lengths of the membrane lipid acyl chains and the 

protein transmembrane domains, often referred to as hydrophobic matching. If the protein 

and lipid hydrophobic lengths are similar, the molecules may be expected to pack 

favorably into a membrane system with minimal disturbance of their respective 

conformations or orientations. Conversely, in the case of hydrophobic mismatch, some 

adaptation may be required to compensate for unfavorable interactions (reviewed in (de 

Planque and Killian, 2003; Holt and Killian, 2010)). Adaptations may involve molecular 

orientations or molecular dynamics, or both. Hydrophobic mismatch, defined as the 

difference between the peptide and lipid hydrophobic lengths, can be either positive or 

negative. 
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1983; Harzer and Bechinger, 2000; Killian et al., 1996; Krishnakumar and London, 

2007). Such model peptide sequences typically have been based on a repeating sequence 

unit, wherein the addition or removal of an extra hydrophobic block will alter the length 

of the transmembrane domain with minimal disruption of the other properties. 

Nevertheless, even such seemingly simple systems pose a number of issues. In addition 

to the length of the hydrophobic stretch, the identities of the polar or amphiphilic 

interfacial anchoring amino acid residues are capable of altering the response of the 

system (Vostrikov et al., 2010a). Furthermore, the geometry of the α-helix dictates that 

adding or removing core hydrophobic residues inevitably will change also the radial 

positions of the anchoring residues (Petrache et al.). A further potential issue concerns the 

overall hydrophobicity of the system in cases where small “blocks” of sequence are 

added or removed. The sequences with smaller numbers of amino acids thereby may 

become too polar to insert in a lipid bilayer or too short to form stable helices (Liu et al., 

2008), which could lead to oligomerization (Froyd-Rankenberg et al., 2009). 

Recently we improved the design of “WALP” family peptides (GWW(LA)nLWWA) 

(Killian et al., 1996; Strandberg et al., 2004; van der Wel et al., 2002) by replacing two of 

the tryptophans with glycines (Vostrikov et al.). Unexpectedly, the dependence of the 

WALP peptide apparent tilt angle on the lipid bilayer thickness is not straightforward. 

The relatively minor response of the original WALP peptides toward the hydrophobic 

mismatch conditions was later rationalized in terms of extensive dynamics (Holt et al., 

2010; Strandberg et al., 2009). The dynamics can be rationalized in terms of an excess of 

membrane-anchoring tryptophan residues, dispersed around a helical wheel (Petrache et 
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al.) and potentially competing among themselves (Ozdirekcan et al., 2005; Vostrikov et 

al., 2010a). 

To circumvent these limitations, we developed GW5,19ALP23 

(GGALW[LA]6LWLAGA), which proves to be a well behaved transmembrane peptide 

for the systematic investigation of protein-lipid interactions (Vostrikov et al., 2010a; 

Vostrikov et al., 2010b). In this study we further exploit its symmetric nature, which 

allows for shifting the remaining single Trp anchoring residues either inward or outward 

in pairwise fashion, thereby leading to sequences of the form GWx,yALP23, where the 

“x, y” pairs designate the Trp sequence positions, either “5, 19” (original 

GWALP23), “3, 21” (outer Trp) or “7, 17” (inner Trp). These sequences allow for 

fine-tuning the length of the hydrophobic core helix, while maintaining identical amino 

acid composition, identical hydrophobicity, and similar radial separation between Trp 

residues on one side of an α-helix (Table 1, Figure 1). The Trp residues on both ends of 

GWx,yALP23 have high propensity to reside at the lipid-water interface (O'Connell et al., 

1990; Yau et al., 1998). To maximize the anchoring effect, it is conceivable that the 

single indole rings may alter their side chain orientations (van der Wel et al.). Here we 

undertake a comprehensive solid-state NMR study to probe the response of the 

GWx,yALP23 transmembrane peptides to the conditions of hydrophobic mismatch. We 

employ deuterated Ala and Trp residues to investigate the peptide helix average 

orientations and dynamics as well as the Trp side chain adjustments. The intent is to 

provide enhanced understanding of lipid-protein hydrophobic mismatch by providing a 

better picture of how lipids influence the behavior of membrane-spanning peptides. 
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3.3 Materials and Methods 

All isotope enriched compounds were from Cambridge Isotope Laboratories (Andover, 

MA). Deuterium labeled alanine (Ala-d4) and tryptophan (Trp-d5; deuterons on the 

indole ring) were modified by manual synthesis to introduce an Fmoc group, using an 

identical protocol for both amino acids (ten Kortenaar et al., 1986). Partial 

hydrogen/deuterium exchange on the Trp indole side chain was accomplished by 

incubating commercial Fmoc-Trp (NovaBiochem, San Diego, CA) with deuterated 

trifluoroacetic acid (TFA-d1) at 10 °C for 3 hr (Koeppe 2nd et al., 2003). This procedure 

facilitates deuterium incorporation at positions 2 and 5 of the indole ring, which was 

confirmed by 1H NMR spectroscopy in DMSO-d6, by means of the intensity reduction at 

position 2 and changes in the multiplet pattern at position 5 (Figure S1 of the Supporting 

Information). The peptides synthesized with TFA-d1 treated Trp represent a mixture of 

GWx,yALP23-Trp-d0, GWx,yALP23-Trp-d1 and GWx,yALP23-Trp-d2. For brevity we 

further refer to them in the form of GWx,yALP23-Trp-d2

Peptides were synthesized utilizing a model 433A peptide synthesizer (Applied 

Biosystems by Life Technologies, Foster City, CA) in a similar manner to GWALP23 

(Vostrikov et al., 2010a), using Wang resin and Fmoc-protected amino acids 

(NovaBiochem). Deuterium-enriched alanines were introduced in pairs at different 

isotope abundance levels. Deuterium-enriched tryptophans were incorporated in separate 

peptides one at a time; namely, for each GW

. 

x,yALP23 sequence, four separate Trp-

labeled peptides were synthesized (having full or partial deuteration of the N- or C-

terminal Trp). Due to the mild conditions for peptide cleavage from the Wang resin (20% 
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ethanolamine in dichloromethane), no side chain protecting groups were required 

(Greathouse et al., 1999). Peptides were purified by reversed-phase HPLC (C8), using the 

previously established conditions for GWALP23 (Vostrikov et al., 2010a). Confirming 

HPLC chromatograms and mass spectra are provided in Supporting Information (Figures 

S2-S3). 

Circular dichroism (CD) spectra were obtained for peptides incorporated into small 

unilamellar vesicles (1/40, peptide/lipid) produced by ultrasonic treatment. Peptide 

concentrations were determined spectrophotometrically to be in the 100 µM range. CD 

spectra were collected using a 1 mm pathlength cell and a Jasco J710 spectropolarimeter 

(Easton, MD) operated at a 20 nm/min scan rate and 1.0 nm band width. Five spectra 

were averaged to enhance the signal intensities. Aliquots of the same samples were 

further diluted 50-fold for steady state fluorescence spectroscopy, using a Perkin Elmer 

LS-55 fluorescence spectrometer. The excitation wavelength was 284 nm, and emission 

was recorded between 300 and 500 nm at a rate of 200 nm/min. Ten spectra were 

acquired and averaged. An asymmetric cuvette was employed, having a 10 mm 

pathlength for excitation and a 1 mm pathlength for emission. 

Samples for solid-state 2H NMR were prepared by mechanical alignment, as described 

previously (van der Wel et al., 2002). A mixture of peptide and lipid (Avanti, Alabaster, 

AL) at 1/40 mol/mol was deposited on glass slides from methanol/water (95/5), dried in 

vacuo (10-3 torr) and hydrated with 2H-depleted water to a 45% level of hydration (w/w). 

Deuterium NMR spectra were recorded using two Bruker (Billerica, MA) Avance 300 

spectrometers operating at a magnetic field of 7.0 T, using a quadrupolar echo pulse 
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sequence with full phase cycling (Davis et al., 1976). The spectral width was 1,000,000 

Hz, recycle delay 90 ms, and pulse durations 3.2 or 4.5 µs (depending on the 

spectrometer probe). Approximately 700,000 transients were collected for Ala-d4 

peptides and twice that number for Trp-dx peptides. Spectra for Ala-labeled peptides 

were processed by zero filling the time domain to 5120 points, applying 100 Hz 

exponential apodization and Fourier transformation. The corresponding parameters for 

the spectra of Trp-labeled peptides were 2048 data points and 300 Hz. 

Geometric Analysis of Labeled Alanines (GALA; (van der Wel et al., 2002)) was 

performed by fitting a generalized order parameter Szz, and the apparent peptide tilt 

magnitude (τ) and direction (ρ), to a model of a tilted α-helical peptide, with an ε// angle 

between the alanine Cα-Cβ bond vector and peptide helix axis equal to 59.4° (van der 

Wel et al., 2002). Further, we refer to this Szz value as Spept to avoid confusion with the 

tryptophan side-chain order parameter (see below). Selected peptide/lipid systems were 

analyzed also by considering Gaussian distributions of tilt and rotation around average 

values (τ0, ρ0) with standard deviations (στ, σρ) (Strandberg et al., 2009). In these cases, 

the order parameter was fixed at 0.88 and a multidimensional grid search was performed 

by varying σρ between 0° and 200°, στ between 0° and 30°, τ0 between 0° and 90°, and 

ρ0

Deuterium NMR data from Trp-labeled peptides were analyzed by rotating the previously 

refined structure of 3-methyl-indole (Pulay et al., 2005) by two angles, ρ

 between 0° and 359°, using 1° increments. 

1 and ρ2 

(defined in Figure S4 of the Supporting Information), and considering the dynamics in 

the form of an order parameter, Szz (Koeppe 2nd et al., 2003; Sun et al., 2008), which 
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now would incorporate side-chain as well as backbone dynamics. Due to symmetry 

considerations, such analysis returns eight possible orientations of the indole ring; we 

report the values for one unique octet with 0°≤ρ1≤180° and 0°≤ρ2≤90° (Figure S8). 

While the fully deuterated Trp side chain has five deuterons, the C-D bond vectors at 

carbons 4 and 7 are nearly collinear (angle of 179.3°; (Pulay et al., 2005)), and therefore 

are generally not resolved. 

Indeed, it was assumed that deuterons at positions 4 and 7 are not resolved and produce 

identical signals, since none of the Trp-d5 spectra had five distinguishable peaks. Since 

the spectral assignments are not known, initially 4! = 24 possible assignment schemes 

were considered for each Trp. (The number was later reduced in systems where Trp-d2 

data were available). For estimating the root mean squared deviation (RMSD), we treat 

positions 4 and 7 separately, under the assumption that the corresponding NMR signal 

represents a superposition of these deuterons. Assignment schemes were selected based 

on the Szz

For the conversion of backbone-independent (ρ

 and RMSD values, as explained in Results. 

1, ρ2) angles to Trp side chain (χ1, χ2) 

angles, models of GWx,yALP23 were constructed using Swiss-PdbViewer 4.0 (Guex and 

Peitsch, 1997) using (Θ, Ψ, Ω) of (-65°, -40°, 180°) and rotated by angles τ and ρ 

according to Table 3 (see Results) to yield the coordinates of the tilted peptides. The side 

chain of a tryptophan residue in question was rotated around the (χ1, χ2) angles to yield 

the indole orientation matching to the previously obtained (ρ1, ρ2) angles of 3-methyl-

indole. Steric hindrance contours were generated by rotating the Trp side chains through 

the complete range of (χ1, χ2) angles. Steric clash was defined as the distance <2 Å 
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between any of the non-hydrogen atoms of the indole ring and any non-hydrogen atoms 

of the peptide backbone. 

3.4 Results 

Both leucine and alanine are considered to have high α-helix propensity, while 

tryptophan does not exhibit this property (Monera et al., 1995). A lipid bilayer typically 

offers a stabilizing environment for the transmembrane helices, which must adopt a 

secondary structure that maximally satisfies the backbone hydrogen bonding (White and 

von Heijne, 2008). Nevertheless, in the case of a lipid with a short acyl chain (DLPC), 

several residues at the peptide termini may protrude into the interfacial and/or aqueous 

phase, where the deviations from the helical structure can occur more easily. To assess 

the secondary structure of the GWx,y

All three GW

ALP23 peptides we have recorded circular dichroism 

(CD) spectra of the peptides in DLPC (Figure 2). 

x,yALP23 peptides exhibit the CD spectral signature of an α-helix, with a 

distinct minimum at 208 nm and a broad shoulder around 222 nm. Furthermore, the mean 

residue ellipticity values for GW7,17ALP23 are lower in comparison with the other 

peptides, suggesting reduced helical structure when the anchoring tryptophans are moved 

inward. It is widely accepted that due to their amphiphilic character the tryptophan 

residues prefer the membrane-water interface, which would position the terminal residues 

1-6 and 18-23 of GW7,17ALP23 in more polar regions, where some helix unwinding may 

be expected (Granseth et al., 2005). The spectral intensities of GW5,19ALP23 and 

GW3,21ALP23 overlap, indicative of similar helicity. Previously we have observed 
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fraying of the GW5,19ALP23 termini in DMPC (Vostrikov et al., 2010a); within this 

context the CD data suggest that the GW3,21ALP23 helix may terminate prior to the Trp 

residues in DLPC. 

Earlier studies with the peptides of the WALP family demonstrated a peptide length-

dependent formation of non-bilayer phases of phosphatidylcholine membranes at high 

peptide/lipid ratio: in the case of negative hydrophobic mismatch, the lipid phase 

underwent transitions from lamellar to isotropic to inverse hexagonal (Killian et al., 

1996). To probe this possibility for GWx,yALP23 peptides, phosphorous NMR spectra of 

oriented samples were recorded. For all of the peptide-lipid combinations under 

investigation here, the 31

To gain insight into the behavior of GW

P NMR spectra were characteristic of bilayer lipids, with 

chemical shift anisotropy of ~42 ppm (Figure S5). 

x,yALP23 peptides in lipid bilayer membranes of 

various lengths, we introduced deuterium labeled alanine residues into the hydrophobic 

inter-tryptophan poly-(Leu-Ala) stretch. Previously we have demonstrated that 

GW5,19ALP23 readily incorporates into lipid bilayers composed of C12-C18 lipids, 

remains helical and adopts well-defined average orientations (Vostrikov et al., 2010a; 

Vostrikov et al., 2008). We find that the peptides with shorter or longer Leu-Ala core 

sequences exhibit similar responses (Figure 3). The Ala methyl 2H quadrupolar splittings 

(∆νq) of these peptides are dependent on the macroscopic sample orientation, indicating 

fast precession of the helix around the lipid bilayer normal (Aisenbrey and Bechinger, 

2004). A full set of 2H NMR spectra is provided in Figures S6-S8, and the ∆νq 

magnitudes are tabulated in Table 2. From the dependence of ∆νq on the Ala residue 
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position, it is apparent that the peptides are tilted in the lipid bilayers. It is notable that a 

peptide with only nine amino acids between the anchoring Trp residues (GW7,17ALP23) 

remains capable of adopting a transmembrane orientation. Studies on the translocon-

mediated insertion of hydrophobic helices suggest that the free energy of membrane 

insertion is close to zero in this case (Hessa et al., 2005). Nevertheless, even in the 

extreme case of negative hydrophobic mismatch, the “short” GW7,17

Deuterium NMR ∆ν

ALP23 still remains 

tilted in “long” DOPC. 

q magnitudes for the GWx,yALP23 series were subjected to GALA 

analysis, using implicit rigid-body dynamics in the form of a principal order parameter 

(Szz, denoted further as Spept) and peptide average orientation, namely magnitude (τ) and 

direction (ρ) of tilt as independent variables (van der Wel et al., 2002). The fit quality 

was assessed by means of the root mean squared deviation (RMSD) between the 

observed and back-calculated values. A fit is typically considered good when the RMSD 

value is less than the 2H peak linewidth (usually on the order of 1 kHz). It can be seen in 

Table 3 that this condition is fulfilled for each peptide-lipid system, with an exception of 

GW3,21ALP23 in DLPC, where the RMSD approaches 2 kHz. This situation can be 

understood in terms of partial helix unwinding, as mentioned above. Indeed, the 

exclusion of the most N-terminal data point (A5) reduces the RMSD to 1.5 kHz, while 

the exclusion of the most C-terminal point (A19) leads to RMSD of 1.0 kHz (Table 3). 

Conversely, excluding any individual central data point from A7 to A17 does not 

improve the fit quality, as the RMSD remains high, in the 1.9-2.1 kHz range when the 

data for A5 and A19 are present. Interestingly, introducing Arg12 or Arg14 in the 
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GW3,21ALP23 sequence leads to a large tilt and a good fit for the entire helix in DLPC 

(Vostrikov et al.). When the ∆νq for A19 is excluded, the average orientation and 

dynamics of GW3,21ALP23 in DLPC do not differ significantly from the ones obtained 

using all data points. 

Earlier we have demonstrated that the peptide helicity is not completely retained outside 

of the inter-Trp region in GW5,19ALP23 through 2H labels at alanine positions 3 and 21 

(Vostrikov et al., 2010a). While helix fraying near the water exposed termini can be 

expected, the question as to where the helix distortion begins to occur remains to be 

answered. To explore this, we have introduced Ala-d4 at positions 5 and 19 in 

GW7,17ALP23. These amino acids located outside the two Trp residues, but can be 

expected to be more buried in comparison with A3 and A21 in GW5,19ALP23. 

Additionally, both A5 and A19 are capable in participating in a more extensive 

intramolecular hydrogen bonding network due to the presence of i ± 4 residues. The ∆νq 

values for these two positions are indicated as filled symbols in Figure 4C. The signals 

from A5 differ by 5-10 kHz in comparison with the theoretical values, calculated for a 

central (Leu-Ala)4.5 stretch. On the other hand, the values for A19 appear to be closer to 

the predicted values in DMPC and DOPC, but not in DLPC. Such variation between the 

lipids as well as possible helix unwinding at A19 in GW3,21ALP23 suggest that A19 is no 

longer helical in GW7,17

As a way of visualizing the quality of GALA analysis, theoretical quadrupolar splittings 

were calculated and plotted as helical wave plots along with the observed ∆ν

ALP23. 

q values 

(Figure 4). Several points of interest emerge from examination of the GALA fits (Table 
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3, Figure 4). The tilt angles of the peptides fall within a relatively small range of 4-20°, 

although the theoretical hydrophobic mismatch spans a larger range of ~20 Å (from -12 

Å to +8 Å). The average orientations and their uncertainties can also be examined on 

RMSD contour plots, constructed as a function of the τ and ρ angles (Figure 5). The trend 

in the tilt angle magnitudes τ is not strictly linear; it rather appears that the tilt magnitudes 

reach limiting minimum and maximum values. Thus GW7,17ALP23 tilts by only ~4-6° in 

each of the lipids, while both GW5,19ALP23 and GW3,21ALP23 have 18-21° apparent tilt 

values in DLPC. In terms of peptide dynamics, GW3,21ALP23 exhibits a tendency toward 

lower Spept values, suggestive of larger amplitude motions of the long (Leu-Ala)8.5

Tryptophan residues used as membrane-anchoring groups in GW

 core. 

Furthermore, the conditions of positive hydrophobic mismatch (“long” peptide, “short” 

lipid) favor more extensive motions than is the case for negative hydrophobic mismatch. 

x,yALP23 peptides are 

known to reside preferentially at the interfacial region (Hessa et al., 2007; MacCallum et 

al., 2008; Yau et al., 1998). The region, nevertheless, does not have well-defined borders 

and spans several angstroms (Wiener and White, 1992). Tryptophan intrinsic 

fluorescence is a well-known metric of the polarity of the media in the vicinity of Trp, 

wherein more hydrophobic environments shift the emission maximum (λem) to lower 

wavelengths (blue shifts) (Lakowicz, 2006). This property of Trp has been used 

extensively to probe the hydrophobicity of its immediate environment (Krishnakumar and 

London, 2007). The GWx,yALP23 sequences have two Trp residues on each side of an α-

helix; therefore steady-state fluorescence may report the average polarity at the peptide 

termini (subject to considerations of the quantum yield). Despite this limitation, the λem 
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values of GWx,yALP23 in different lipids show a good correlation with the theoretical 

hydrophobic mismatch (Figure 6). The observed λem values span a range of 332-344 nm 

range, indicative of an environment whose polarity is intermediate between those of the 

aqueous phase and the hydrophobic core of the lipid bilayer, as expected for the 

interfacial region. 

The fluorescence spectra indicate that the average polarity of the environment around the 

peptide termini changes as a function of hydrophobic mismatch. This observation raises 

questions of how peptide tilting affects the orientations of the tryptophan side chains. One 

may speculate that reorientation of the helix axis may alter the indole ring spatial 

orientations. Alternatively, Trp side chains may have restricted sets of orientations such 

that the preferential positioning of the Trp indole rings could dictate the peptide tilt. To 

probe these questions, we have synthesized GWx,yALP23 peptides with deuterium labels 

on the indole rings, and have recorded solid-state 2H NMR spectra in different lipid 

bilayer membranes. Deuterium NMR spectra of partially (d2) and fully (d5) labeled 

indole rings of Trp residues of GW5,19ALP23 are shown in Figure 6. A complete set of 

spectra for the fully labeled Trps in GW3,21ALP23 and GW7,17ALP23 are included in 

Figure S9 (see Supporting Information), and spectra for selected partially labeled Trps 

are shown in Figure S10. Similar to the earlier observations for WALP peptides (van der 

Wel et al.), the larger quadrupolar splittings are observed at the N-terminus. Indeed, the 

largest ∆νq value observed among the N-terminal Trps of the GWx,yALP23 peptides is 

154 kHz, while the corresponding value for the set of C-terminal Trps is only 89 kHz. 
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Typically 3-4 resonances were observed for the d5 indole ring and 1-2 for the partially 

labeled d2 ring. Quadrupolar splitting magnitudes at β=0° and β=90° orientations were 

related by a factor of 1/2, similar to the ones of alanine residues. However, a large span of 

sometimes quite weak resonances made it hard to observe many of the signals at the β=0° 

orientation. For this reason, the reported data are derived from the spectra from samples 

oriented at β=90°. The values observed at β=90° were then multiplied by a factor of two 

to simulate all of the expected values for β=0° (Table 4). Partially labeled samples 

allowed the assignment of signals arising from the deuteron attached to carbon 2 and 

sometimes carbon 5. The assignments of these two signals were propagated to other 

samples where possible, using the least change principle. The rest of the resonances were 

matched by fitting different assignment permutations to a model for the rotated indole 

ring, and eliminating assignment schemes based on high values of RMSD or unrealistic 

order parameters. The order parameter reflects the overall motion experienced by a 

system, and in the case of Trp, it is feasible to deconvolute the Szz value into terms for 

peptide Spept and side chain Ssc motion, such that Szz = Spept × Ssc ]1 ,0[∈iS and . As 

reported above, the dynamics of GWx,yALP23 peptides encompass the Spept range of 0.6-

0.9 (Table 3). This range establishes upper limits for the tryptophan Szz. Conversely, the 

side chain dynamics within the interfacial region are likely to be restricted due to steric 

hindrance. The value of Ssc is therefore likely to be quite high, which would place a 

lower limit on the Trp Szz

Figure 8 shows RMSD as a function of S

 value. 

zz for GW5,19ALP23. Typically, for each 

peptide, a unique minimum was observed in such a plot for N-terminal tryptophans, 
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largely due to the high magnitude of ∆νq at carbon 5, which could not be fitted by lower 

values of Szz. The smaller range of quadrupolar splittings exhibited by the C-terminal 

tryptophans makes it possible to fit alternative ring orientations, manifest by several 

minima in the (Szz, RMSD) plots. Nevertheless, in some cases, such as W19 in DMPC 

(Figure 8, B) or W17 in all three lipids, only one global minimum was observed, with an 

Szz value close to that observed also for the N-terminal Trp. Based on this finding, when 

the C-terminal Trp has multiple minima, we consider the one closest to the corresponding 

N-terminal Trp to be the global minimum, even if alternative fits may have slightly lower 

RMSD (Table 5). The uncertainties of the ρ1 and ρ2 angles at the Szz global minimum 

can be visualized in a similar fashion to the peptide average orientation using RMSD 

contour plots (Figure 9). It can be seen that the orientations of N- and C-terminal Trp 

residues are distinct and differ primarily in the ρ2

In the case of W17 in GW

 angle. 

7,17ALP23, only three pairs of resonances can be identified in 

the spectra (Figure S9). As the ∆νq range for the C-terminal tryptophan residues is fairly 

small, it is conceivable that the missing signal is present, but not resolved due to a 

spectral overlap. To account for this possibility, in each of the lipids we performed three 

separate fits of the W17 data by entering one of the quadrupolar splittings twice. 

Solutions were rejected on the previously described principles; in addition, the best fits 

among the different lipids were compared, as the C-terminal Trp in GW5,19ALP23 has 

shown little variation in different bilayer membranes. A possible assignment with the 

intermediate ∆νq value involving overlap of deuterons 4/7 and 2 was discarded for 

reasons of largely different ρ1,2 angles (~70° and ~30°) in comparison with W19. 
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Conversely, the conditions were readily fulfilled if the outermost quadrupolar splittings 

resulted from an overlap between deuterons at positions 4/7 and 6, which led to similar 

orientation angles and Szz for W17 and W19. Furthermore, in 2H NMR spectra of W17-

labeled peptide, the outermost signals typically were strongest. While the intensity alone 

is hard to interpret in deuterium NMR spectroscopy (due to a number of factors, 

including radio frequency power profile, contributions from powder pattern, etc.), the 

consideration of peak intensity nevertheless provides additional confidence in 

combination with other factors. N-terminal W7 produced four signals in DLPC and 

DMPC, allowing the assignments, but only two resolved resonances in DOPC, which 

does not provide sufficient restraints for the analysis. 

For GW3,21ALP23, fits for both tryptophans were possible only in DLPC. Broad 

overlapped peaks of W3 in DMPC and DOPC make it hard to extract or assign ∆νq 

values. Uncertainties in peak positions and observation of fewer than four resonances 

complicate the analysis of W21. While combinations of plausible Szz, ρ1, ρ2

3.5 Discussion 

 that are 

similar to the N- or C-terminal Trps in other peptides can be obtained, it is not possible to 

exclude with confidence alternative assignments and consequently orientations. 

In this paper we have investigated the response of model peptides bearing the identical 

sequence, but different hydrophobic lengths toward the hydrophobic mismatch 

conditions. The peptides were able to incorporate in the lipid bilayer membrane under 

positive and negative mismatch conditions. In every case the peptides retained a well-
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defined tilt angle, even in the extreme case of negative hydrophobic mismatch, where 

tilting further reduces the effective hydrophobic length of the peptide. Such an effect has 

also been observed in umbrella sampling simulations of WALP peptides, and was 

explained in terms of favorable entropy contribution arising due to peptide precession 

along the lipid bilayer normal (Kim and Im, 2010).  

The analysis of GW3,21ALP23 behavior in lipid bilayers suggests that the longer (Leu-

Ala)8.5 stretch undergoes more extensive motion relative to its (Leu-Ala)6.5 counterpart in 

GW5,19ALP23 (Table 3). To gain additional insights into the nature of such motion, we 

have performed explicit dynamics analysis of 2H data of both peptides in DLPC, the 

system where the tilt angles of the two peptides are similar, but the Szz

The overall shape of the tilt and rotation distributions (σ

 values are varied. 

To facilitate direct comparison between the two systems the identical alanine positions 

for fitting the data were used (residues 7, 9, 11, 13, 15 and 17). 

τ and σρ respectively) is similar 

for both peptides, with moderate oscillations around the average values, the solution area 

for GW5,19ALP23 being more compact and shifted toward the lower στ range (Figure 10). 

The variations around the average ρ angle are close and fairly small for both systems, 

indicating that each of the peptides (with a single Trp residue at each terminus) does not 

undergo extensive reorientation around the helical axis (as was proposed for WALP 

peptides with two Trp at each terminus). Furthermore we note the close correspondence 

between the average orientation of GWx,yALP23 between the semi-static (variable order 

parameter) and explicit (Gaussian distributions of τ and ρ) ways of treating the whole 

body dynamics. The latter method should be used with caution, as it introduces additional 
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variables in the analysis procedure, requiring additional sampling of the data. We note 

that this limitation can be circumvented by combining the 2H methyl data with the 15N 

derived restraints, or, in selected cases, backbone deuteron signals (Vostrikov et al.). It is 

further of note that more extensive treatment of GW5,19ALP23 in DLPC—using 

combined 2H and 15

Earlier we have established that among different anchoring residues at the lipid bilayer – 

water interface, tryptophans act as major determinants of the transmembrane peptide 

orientation (Vostrikov et al., 2010a). The design of GW

N data with Gaussian dynamics—leads to the same tilt angle as found 

in a semi-static analysis (Vostrikov et al., 2010a). 

x,yALP23 offers a way to 

investigate this in further details, due to the similar projections of the N- and C-terminal 

Trp on the helical wheel. Furthermore, the radial positions of the two Trp in 

GW7,17ALP23 resemble closely the ones in GW3,21ALP23, while both Trp in 

GW5,19ALP23 project from a different face of the helix (Figure 1). Indeed, we find that 

both GW7,17ALP23 and GW5,19ALP23 have nearly opposite ρ angles (Table 3), with the 

peptide tilting approximately in the direction of both Trp. Due to the similar projections 

of the two tryptophans, it is not yet possible to say whether either of the N- or C-terminal 

Trp has the main role in the orientation determination, although the advantageous design 

of the GWALP23 peptide allows testing this in future. The situation is less clear though 

with GW3,21ALP23, which does not seem to follow this trend. It is feasible that one of the 

reasons is the close proximity of W3 and W21 to the peptide termini. The fraying of the 

termini may include either one or both of the tryptophan residues, which would alter the 

radial projections and therefore contribute to the change in the rotation angle. 
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Deuterium labeling of the tryptophan residues allowed for defining the orientation of the 

indole moieties with respect to the membrane normal in several cases (Table 5). Both N- 

and C-terminal Trp are tightly clustered, albeit in the different regions of conformational 

space. To visualize the indole position with respect to the tilted peptide, the [ρ1, ρ2] 

backbone-independent angles of 3-methyl-indole were converted to the Trp side chain 

[χ1, χ2] torsion angles (Figure 11). Similar to the backbone-independent analysis, there 

are eight possible combinations of the χ1,2 torsion angles resulting in the identical 

orientation of the indole with respect to the applied magnetic field. However, in order to 

serve as an anchor, Trp side chain has to be positioned so that the NεH bond vector points 

toward the membrane interfacial region. This restricts the number of the ρ1,2 (or χ1,2) to 

four possible combinations (Figure S4) as the NεH bond vector of N-terminal Trps has to 

be directed along the positive direction of the Z-axis, while the one of the C-terminal 

Trps toward the negative direction. Additionally, in cases where ρ2

The possible side chain angles of the N-terminal Trp fall into two major clusters (Figure 

11, ABC), with the indole carbon-carbon “bridge” (between the two ring systems) either 

co-aligned with the helix axis (negative χ

 angle is close to zero, 

the number of possible solutions is further reduced in half due to the symmetry collapse 

(Figure S4). 

1, positive χ2 cluster), or nearly perpendicular 

to it (positive χ1, negative χ2 cluster). Interestingly, both possible solutions are located 

close to the steric hindrance areas, suggesting that the further changes of the Trp 

orientation are unfavorable, as they would include the re-arrangement of the backbone 

atoms. On the other hand, the orientation of the C-terminal Trp can be described by four 
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possible combinations of χ1,2 angles, in each case the “bridge” being perpendicular to the 

helix axis so that the indole system lies in the membrane plane (Figure 11, DEF). While it 

appears that the Trps at the C-terminus are located further away from the steric hindrance 

regions, it should be noted that these areas are likely to change upon the deviations from 

the α-helical geometry, which were noted for the GWx,yALP23 peptides (see Results). 

While deuterium NMR alone does not allow for distinguishing between the four possible 

solutions, they can be refined in future through the distance measurements data obtained 

by solution or magic angle spinning NMR. 

The GW3,21ALP23 peptide is similar to the WALP sequence in terms of close tryptophan 

proximity toward the helix termini. It is notable that the Trp steric hindrance areas are 

less for this peptide, which is particularly manifest for W3 due to the directionality of the 

Cα-Cβ bond vector pointing toward the N-terminus, therefore effectively shifting the side 

chains closer to the N-terminus. Interestingly, for this particular peptide it was possible to 

assign the indole quadrupolar splittings only in DLPC, the resonances being broader and 

less well defined in other lipids. The steric hindrance pattern in the case of WALP 

peptides can be expected to be more complicated due to the two bulky Trp side chains 

located next to each other, meaning that the orientation of each indole moiety has to be 

viewed in the context of the adjacent tryptophan. 
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3.8 Tables 

Table 1. Sequences for GWx,yALP23 peptides.

Peptide 

a 

 

Sequence 

GW3,21 GGWLALALALALALALALALWGA ALP23 

GW5,19 GGALWLALALALALALALWLAGA ALP23 

GW7,17 GGALALWLALALALALWLALAGA ALP23 

 
aN-terminal Gly residue is acylated. C-terminal Ala residue is blocked with ethanolamide. 
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Table 2. Alanine CβD3 quadrupolar splittings for GWx,yALP23 peptides incorporated in 
DLPC, DMPC or DOPC bilayers.

 
Peptide 

a 

 

 
Lipid 

Alanine position 

5 7 9 11 13 15 17 19 

GW7,17

DLPC 

ALP23 

8.0 - 6.1 6.1 12.5 0.8 - 7.4 

DMPC 10.9 - 11.2 2.1 13.9 0.8 - 4.1 

DOPC 12.5 - 10.9 3.1 13.4 0.8 - 3.0 

GW5,19ALP23

DLPC 
b 

- 26.4 25.5 26.9 14.6 20.7 3.4 - 

DMPC - 21.9 8.9 20.9 3.8 17.6 2.9 - 

DOPC - 16.6 1.7 16.7 1.5 15.4 2.6 - 

GW3,21

DLPC 

ALP23 

19.6 23.8 15.7 18.7 0.9 9.6 11.4 0.8 

DMPC 6.4 17.9 5.2 13.6 6.7 6.7 12.2 0.8 

DOPC 0.8 13.1 2.1 9.3 6.6 6.6 12.3 1.3 

 
aValues in kHz. Entries left blank were not measured. 
bData from (Vostrikov et al. 2010a). 
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Table 3. GALA fit results 

Peptide (Lipid)  

S τ, deg pept ρ, deg RMSD, kHz 

(DLPC)  

GW7,17 0.79 ALP23 6.7 223 0.1 

GW5,19ALP23 0.71 a 20.8 304 0.7 

GW3,21ALP23 0.63 b 18.0 281 2.0 

(DMPC)  

GW7,17 0.82 ALP23 4.3 182 0.1 

GW5,19ALP23 0.88 a 9.1 310 1.1 

GW3,21 0.75 ALP23 9.0 268 1.1 

(DOPC)  

GW7,17 0.83 ALP23 4.0 186 0.1 

GW5,19ALP23 0.86 a 6.1 322 0.6 

GW3,21 0.80 ALP23 4.3 257 0.8 

 
aData from (Vostrikov et al. 2010a). 
bThe RMSD reduces to 1.0 kHz if the A19 data point is omitted and 1.5 kHz if A5 data 
point is omitted. The corresponding (Spept, τ, ρ) values are (0.60, 19.7, 277) with A19 
omitted or (0.68, 15.3, 283) with A5 omitted. Exclusion of both A5 and A19 leads to 
RMSD = 0.9 kHz, with the corresponding parameters of (0.63, 18.0, 279). 
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Table 4. Tryptophan side chain CD quadrupolar splitting magnitudes for GWx,yALP23 
peptides incorporated in DLPC, DMPC or DOPC.

 
Peptide 

a 

 

 
Lipid 

∆νq

N-terminal Trp 

, kHz 

C-terminal Trp 

2 4/7 5 6 2 4/7 5 6 

GW7,17

DLPC 

ALP23 

67 63 154 74 54 63 4 d 63

DMPC 

d 

54 81 b 154 85 49 67a 6d 67b 

DOPC 

d 

42 77c  c  55 67 8 d 67

GW

d 

5,19

DLPC 

ALP23 

43 8 b 105 76 61 30 a 6 85 b 

DMPC 54 58 b 142 85 54 43 a 33 89 b 

DOPC 39 86 b 137 88 b 58 39 b 8 78 

GW3,21

DLPC 

ALP23 

64 15 b 120 51 53b 36 b 4 58 

DMPC 64 42c 145c 50c 40bc 27bc  c 59

DOPC 

c 

62  c 141 52c 27b 19bc 7c 51c 

 

c 

aValues were obtained from the β=90° sample orientation and were multiplied by two. 
Entries left blank were not observed. 
bValue is also observed in a partially deuterated sample. 
cQuadrupolar splittings have not been assigned to labeled sites. 
dSignals not resolved. 
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Table 5. Tryptophan side chain free rotation fit values for GWx,yALP23 peptides 
incorporated in DLPC, DMPC or DOPC.

 
Peptide 

a 

 

 
Lipid 

Fit parameters

N-terminal Trp 

b 

C-terminal Trp 

S ρzz ρ1 RMSD 2 S ρzz ρ1 RMSD 2 

GW7,17

DLPC 

ALP23 

0.68 137 0 2.8 0.54 165 36 0.3 

DMPC 0.72 140 0 2.2 0.55 162 40 0.3 

DOPC     0.57 165 36 1.7 

GW5,19

DLPC 

ALP23 

0.70 133 30 0.9 0.65 158 44 1.6 

DMPC 0.71 138 15 1.2 0.66 143 59 1.4 

DOPC 0.68 142 4 1.0 0.61 160 42 0.5 

GW3,21

DLPC 

ALP23 

0.54 130 17 0.8 0.50 162 41 3.5 

DMPC         

DOPC         

 
aEntries left blank were not fitted. 
bSzz is a dimensionless entity, ρ angles are in degrees, RMSD is in kHz. 
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3.9 Figures 

Figure 1. Molecular models of GW3,21ALP, GW5,19ALP23 and GW7,17ALP23 (left to 
right). Black sphere indicates the Cα carbon of Gly1 Note that the GW5,19ALP23 model is 
rotated by 180°. 
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Figure 2. Circular dichroism spectra of GW3,21ALP (black), GW5,19ALP23 (red) and 
GW7,17ALP23 (blue) in DLPC. 
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Figure 3. Deuterium NMR spectra of peptides in DMPC. A-D: GW3,21ALP23; E-F: 
GW7,17ALP23. Labeled positions are: 5 and 7 (A), 9 and 11 (B, E), 13 and 15 (C, F), 17 
and 19 (D). Sample orientation is β=0°. A complete set of deuterium NMR spectra is 
provided in Supporting Information. 

 



 

135 

Figure 4. GALA helical wave plots of peptides in DLPC (red squares), DMPC (green 
circles) and DOPC (blue diamonds). A: GW3,21ALP23; B: GW5,19ALP23; C: 
GW7,17ALP23. Deuterium labeled alanine positions are indicated in A. 
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Figure 5. RMSD contour plots of GW3,21ALP23 (black), GW5,19ALP23 (red) and 
GW7,17ALP23 (blue) in lipids. A: DLPC; B: DMPC; C: DOPC. Contour levels are 
plotted every 1 kHz; outer contour corresponds to 3 kHz. 
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Figure 6. Steady-state fluorescence of GWx,yALP23 peptides. A: emission spectra of 
GW3,21ALP23 (black), GW5,19ALP23 (red) and GW7,17ALP23 (blue) in DLPC small 
unilamellar vesicles; B: Tryptophan emission maxima as a function of theoretical 
hydrophobic mismatch. Peptide hydrophobic length was defined as inter-Trp distance 
(1.5 Å per amino acid), lipids hydrophobic thickness is from (de Planque et al., 2003). 
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Figure 7. Deuterium NMR spectra of GW5,19ALP23 labeled at Trp side chain in DLPC, 
DMPC and DOPC (top to bottom). A: N-terminal tryptophan, full deuteration; B: C-
terminal tryptophan, full deuteration; C: N-terminal tryptophan, partial deuteration; D: C-
terminal tryptophan, partial deuteration. Sample orientation is β=90°. 
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Figure 8. RMSD of fitting the N-terminal (black) and C-terminal (gray) tryptophans of 
GW5,19ALP23 to the rotated indole model (note the logarithmic scale). A: DLPC; B: 
DMPC; C: DOPC. Angles ρ1, ρ2 were optimized at each Szz value to achieve lowest 
possible RMSD. Dashed lines indicate the order parameter of the peptide (Table 3) and 
correspond to the maximum possible value of the Trp Szz. 
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Figure 9. RMSD contour plots of the N-terminal (black) and C-terminal (gray) 
tryptophans of GW5,19ALP23 as a function of indole ring orientation. A: DLPC; B: 
DMPC; C: DOPC. Contour levels are plotted every 1 kHz; outer contour corresponds to 
5 kHz. Insets show one possible orientation of tryptophan side chains. 
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Figure 10. Explicit dynamics analysis of GW5,19ALP23 (A, C) and GW3,21ALP23 in 
DLPC (B, D), showing the standard deviations of Gaussian distributions (A, B) and their 
centers (C, D). Six alanine residues were used for the analysis (see text). Dashed lines in 
A and B indicate the best fit στ and σρ, which were used for generating the plots in C and 
D respectively. Color scale is identical between A and B (0 to 17 kHz, blue to red) and 
between C and D (0 to 22 kHz, blue to red). Color increments are at 1 kHz; solid line in 
C, D is drawn at 3 kHz level. Best fits (τ0, στ, ρ0, σρ) are (25, 16, 303, 36) for 
GW5,19ALP23 and (25, 20, 278, 48) for GW3,21ALP23. 
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Figure 11. Tryptophan side chain torsion angles. A: W3; B: W5; C: W7; D: W21; E: 
W19; F: W17. Gray regions indicate steric hindrance area. Lipids are DLPC (black), 
DMPC (red) and DOPC (blue). 
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3.10 Supporting Information 

Figure S1. Proton NMR spectra of Fmoc-Trp in DMSO-d6 before and after TFA-d1 
treatment. Protons of the indole ring are indicated with numbers. 
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Figure S2. Analytical HPLC of GW7,17ALP23, GW5,19ALP23 and GW3,21ALP. 
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Figure S3. MALDI mass spectra of GWALP23 (no deuterium labels), GWALP23-Trp-d2 
and GWALP23-Trp-d5. Note that since GWALP23-Trp-d2 represents a mixture of three 
peptides (see Materials and Methods) a change of the intensity pattern is observed. 
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Figure S4. A complete solution field for N-terminal tryptophan of GW5,19ALP23 in 
DLPC. Color range is 0-220 kHz, color increments are at 5 kHz, solid lines are drawn 
every 20 kHz. Dashed lines indicate the 8-fold symmetry of the solution space. 
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Figure S5. Phosphorus NMR spectra of GWx,yALP23 in DOPC. 
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Figure S6. Deuterium NMR spectra of GW3,21ALP23 in DLPC, DMPC and DOPC. 
Sample orientation is β=0°. 

 



 

149 

Figure S7. Deuterium NMR spectra of GW5,19ALP23 in DLPC, DMPC and 
DOPC(Vostrikov et al. 2010a). Sample orientation is β=0°. 

 

 



 

150 

Figure S8. Deuterium NMR spectra of GW7,17ALP23 in DLPC, DMPC and DOPC. 
Sample orientation is β=0°. 
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Figure S9. Deuterium NMR spectra of GWx,yALP23 labeled at Trp side chain (d5). 
Sample orientation is β=90°. 
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Figure S10. Deuterium NMR spectra of selected GWx,yALP23 labeled at Trp side chain 
(d2). Sample orientation is β=90°. 
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CHAPTER 4 
Changes in Transmembrane Helix Alignment by Arginine Residues Revealed by 
Solid-State NMR Experiments and Coarse-Grained MD Simulations 

Reproduced with permission from Vostrikov, V.V., B.A. Hall, D.V. Greathouse, R.E. 

Koeppe 2nd, and M.S.P. Sansom. Changes in transmembrane helix alignment by arginine 

residues revealed by solid-state NMR experiments and coarse-grained MD simulations. J 

Am Chem Soc. 2010; 132:5803-5811. © 2010 American Chemical Society 

4.1 Abstract 

Independent experimental and computational approaches show agreement concerning 

arginine/membrane interactions when a single arginine is introduced at selected positions 

within the membrane-spanning region of ac-GALW5LALALAL12AL14ALALW19LAGA-

ethanolamide, designated GWALP23. Peptide sequence isomers having Arg in position 

12 or position 14 display markedly different behaviors, as deduced by both solid-state 

NMR experiments and coarse-grained molecular dynamics (CG-MD) simulations. With 

respect to the membrane normal of DOPC or DPPC lipid bilayer membranes, 

GWALP23-R14 shows one major state whose apparent average tilt is ~10° greater than 

that of GWALP23. The presence of R14 furthermore induces bilayer thinning and 

peptide displacement to “lift” the charged guanidinium toward the bilayer surface. By 

contrast, GWALP23-R12 exhibits multiple states that are in slow exchange on the NMR 

time scale, with CG-MD simulations indicating two distinct positions with different 

screw rotation angles in the membrane, along with an increased tendency to exit the lipid 

bilayer. 
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4.2 Introduction 

Membrane proteins play a major role in a range of biological processes, as they represent 

about 25% of encoded gene products (Wallin and von Heijne, 1998) and ~40% of drug 

targets (Terstappen and Reggiani, 2001). The structure and function of membrane 

proteins may be modulated by interactions with their lipid bilayer environment (Lee, 

2004). The understanding of how membrane proteins interact with lipid bilayers (Killian 

and von Heijne, 2000) has been aided by studies of “simple” model transmembrane (TM) 

α-helices such as the WALP series of peptides. These peptides consist of a variable 

length poly-alanine/leucine core capped at either end with tryptophan residues that favor 

the membrane/water interface (de Planque et al., 2003; de Planque and Killian, 2003; de 

Planque et al., 1999; Killian, 2003; Killian and Nyholm, 2006; Ozdirekcan et al., 2007; 

Strandberg et al., 2004; van der Wel et al., 2002). WALP peptides have been employed to 

study a wide range of transmembrane helix behaviors, including hydrophobic mismatch, 

variation of helix tilt with varying peptide and lipid lengths, and helix dimerization, 

amongst others. Recently, a novel related peptide was described, GWALP23 (acetyl-

GGALW(LA)6

The role and behavior of arginine residues in membrane proteins is the subject of ongoing 

debate. Arginine residues in TM helices have an important biological role in the voltage 

LWLAGA-ethanolamide), (Vostrikov et al., 2008) which differs from the 

WALP family in having only a single tryptophan residue near each terminus. The defined 

orientation and dynamics (Vostrikov et al., 2008) of GWALP23 provide exceptional 

opportunities for investigating the influence of guest residues such as arginine upon the 

properties and lipid interactions of membrane-spanning peptide helices. 
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sensor domains of voltage activated channels and enzymes (Swartz, 2008) and have been 

especially studied in the context of voltage-dependent potassium channels (Bond and 

Sansom, 2007; Freites et al., 2005; Hessa et al., 2005; Sands and Sansom, 2007) and cell-

penetrating peptides (Schmidt et al.; Su et al.). Due to its high pKa

To understand the influence of R14 and R12 upon lipid bilayer membrane-incorporated 

GWALP23, solid-state NMR experiments and molecular dynamics (MD) simulations 

were undertaken. Circular dichroism spectra will show that the peptides remain helical in 

the lipid environments. The introduction of 2H-labeled alanines into the helical sequences 

, the arginine side 

chain retains a positive charge over a wide range of environmental pH and dielectric 

constant. The interactions of arginine with lipid bilayers have gained considerable 

attention, within a context that interactions with the membrane interior are quite different 

from those at the membrane/solution interface (Dorairaj and Allen, 2007; Johansson and 

Lindahl, 2009; Li et al., 2008; MacCallum et al., 2008; Roux, 2007). 

In this article we present experimental and computational approaches to probe the 

arginine interaction with lipid bilayer membranes by employing GWALP23 and 

derivatives. Substitution of leucine (L) with arginine (R) at position 14 or 12 (L14R or 

L12R) results in peptides having one single Arg placed close to the center of the 

membrane-spanning segment of GWALP23 (Figure 1). Since the radial separation 

between the Trp side chains is small, an Arg can be positioned so that it will project 

either from the same side as both Trp indole rings (R12), or from a different face of the 

helix (R14). Figure 1 depicts both atomic and coarse-grained (CG) representations of the 

Arg and Trp side chains projecting from the GWALP23 helical backbone. 
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enables the helix orientations with respect to the DOPC bilayer membrane normal to be 

assessed using the “Geometric Analysis of Labeled Alanines” (GALA) method (van der 

Wel et al., 2002). In parallel, the application of coarse-grained molecular dynamics (CG-

MD) simulations (Bond et al., 2007; Marrink et al., 2004; Nielsen et al., 2004) allowed us 

to assess the behavior of these peptides in DPPC or DOPC lipid bilayers. CG-MD 

overcomes the typical time-scale limitations of atomistically detailed simulations of 

membrane proteins (Lindahl and Sansom, 2008) by combining ~4 non-hydrogen atoms to 

form a single CG particle. The experiments and simulations give fundamental agreement, 

with both methods showing markedly different behavior between the R12 and R14 

derivatives of GWALP23. 

4.3 Results 

The 2H NMR spectra of labeled alanines (Figure 2) reveal obvious differences between 

bilayer-incorporated samples of the GWALP23-R12 and -R14 peptide sequence isomers. 

GWALP23-R14 exhibits distinct pairs of signals for the CD3 methyl side chains of all six 

core alanines, with spectral quality comparable to that of native GWALP23 (Vostrikov et 

al., 2008). The pattern of 2H quadrupolar splittings suggests dynamic averaging about a 

single predominant state, which is a tilted transmembrane (TM) helix for GWALP23-

R14. Conversely, spectra of the R12 variant are characterized by poor signal-to-noise 

ratio, even though twice as many free induction decays were collected. Multiple low-

intensity broad peaks are observed for each labeled Ala in GWALP23-R12, suggesting 

two or more states for this peptide, in slow exchange with respect to the lipid bilayer 
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membrane. Tabulated quadrupolar splittings (∆νq) for the core 2H-alanines in 

GWALP23-R12 and -R14 are provided in Table 1. 

Given the differences in the 2H NMR spectra it is important to consider whether the 

GWALP derivatives remain helical. Indeed, circular dichroism spectra (Figure S1 of the 

Supporting Information) indicate that GWALP23-R12 and GWALP23-R14 retain the 

primarily α-helical secondary structure observed for GWALP23 in DOPC. Although the 

far-UV region (<203 nm) is not accessible due to strong absorption by the DOPC double 

bond, the features of an α-helix (a minimum at 208 nm and a shoulder at 222 nm) are 

readily recognized in each of the spectra. The three peptides exhibit similar mean residue 

ellipticity values, with comparable ε208/ε222 ratios. It is significant that the GWALP23-

R12 helix does not appreciably unwind when interacting with the DOPC bilayers. 

To estimate the charged state of the Arg guanidinium side chain, selected samples were 

prepared using buffer at either pH 7.4 or pH 4.5, to maintain a constant 

microenvironment for the arginine. The buffer samples at both pH levels yield spectra of 

similar quality and identical ∆νq values to the buffer-free samples prepared with 2H-

depleted water (Figure 3). Because the R14 and R12 side chains undoubtedly both carry a 

positive charge at pH 4.5, the similar results at pH 7.4 and 4.5 indicate that the 

guanidinium groups remain charged in all of the samples and experiments reported here. 

Variations in peptide/lipid ratio from 1/40 to 1/80, or in temperature (30-50 °C), also 

yielded no significant spectral changes. 
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Individual signals in the spectra for GWALP23-R14 were assigned and then were 

analyzed using the GALA method, while incorporating a variable order parameter Szz for 

the peptide and keeping the ε// angle fixed at 59.4° (Strandberg et al.; Thomas et al.; van 

der Wel et al., 2002). The best fit for the tilt of GWALP23-R14 (Table 2; Figure 4) 

occurs for a relatively high Szz value of 0.94, compared to 0.86 for GWALP23 itself. 

Introduction of R14 caused the apparent average tilt of the GWALP23 helix axis to 

increase ~10° (relative to the DOPC bilayer normal). Furthermore the direction of the tilt, 

relative to the G1 reference point, (van der Wel et al., 2002) changed by ~75°. Despite 

the presence of Arg near the helix center, the peptide retains predominantly a TM 

orientation. (One is unable to resolve NMR signals representing minor populations.) The 

2H NMR spectra of GWALP23-R14, in addition to strong Cβ-D3 peaks, furthermore 

exhibit some weaker signals from backbone C-D (Figure 2). This observation is 

noteworthy, since Cα-D signals have been observed also when proline is introduced near 

the center of WALP19, (Thomas et al.) but otherwise not in WALP family peptides, 

including GWALP23 (Ozdirekcan et al., 2005; Strandberg et al., 2004; Vostrikov et al., 

2008). The result could signify that the motional regime of GWALP23-R14 is different 

from other WALP family peptides that lack Arg or Pro. The ∆νq values of both the 

GWALP23–R14 and –R12 alanines, recorded at β=90°, are half of the corresponding ∆νq 

values recorded at β=0°, indicating that both peptides undergo rapid reorientation (faster 

than ~4×104 s-1) about the DOPC bilayer normal (Luo et al., 2009). The peptide tilt and 

this “precession” motion (Lee and Im, 2008) together define a cone angle of about 17° for 

GWALP23-R14 in DOPC. 
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For the case of GWALP23-R12, multiple peaks are observed in samples with two Ala 

labels (Figure 2B), or even when only one Ala is labeled (Figure S2 of the Supporting 

Information). (Control experiments with DOPC alone show that the central pair of very 

sharp signals—also present in Figure 2A—is from the lipid background (Figure S3). The 

other peaks from GWALP23-R12 are notably broad and cannot be attributed to natural 

abundance deuterium in DOPC.) As noted above, CD spectra indicate that the helical 

secondary structure is largely maintained even with the L12R substitution (Figure S1). 

With the alanine CD3 signals being broadened and showing reduced intensity, it is very 

unlikely that any backbone Cα-D signals for GWALP23-R12 could be observed in these 

spectra. We therefore attribute the multiple NMR signals to multiple states for the helical 

backbone that holds the Ala side chains. It is remarkable that some quadrupolar splittings 

as large as 55 kHz are observed for GWALP23-R12 Ala methyls. For alanine CD3 

groups to exhibit such high ∆νq values, the helix axis would be nearly perpendicular to 

the membrane normal, corresponding to an interfacial orientation of the peptide. Multiple 

signals from each labeled alanine (Figures 2-3; Table 1) imply that several distinct 

populations of GWALP23-R12 co-exist and exhibit slow exchange. (In principle, 

GWALP23-R14 also “could” have multiple populations, but they would have to be in fast 

exchange, since they yield one set of signals.) Together, the experimental data suggest 

that GWALP23-R12 is present in DOPC as an α-helical peptide which assumes several 

orientations, at least one of which is a surface bound (interfacially oriented) helix. While 

slower dynamic averaging is likely responsible not only for distinct populations but also 

for line broadening, still the dynamics within an individual state are not so slow as to 
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eliminate the signal averaging that gives rise to the pairs of peaks when samples of 

GWALP23-R12 are oriented at β=90°. 

To gain further insight into the interactions of these peptides with lipid bilayers, we 

performed CG-MD simulations. In these simulations, a model helix and randomly 

positioned lipid (DPPC) molecules and waters were used to self assemble to form a 

helix/bilayer system. Previous applications of this simulation method (which uses a 

forcefield derived from the MARTINI (Monticelli et al., 2008) forcefield) for a number 

of membrane peptides (Bond et al., 2007) and proteins (Scott et al., 2008) have yielded 

good comparisons with experimental data. For each peptide an ensemble of 100 

individual self-assembly simulations, each of duration 100 ns (Figure 5), was performed 

in order to provide adequate sampling of peptide/bilayer interactions. For each ensemble 

of simulations, the results were analyzed in terms of three key metrics describing the 

orientation relative to the lipid bilayer: (i) the displacement of the helix relative to the 

center of the bilayer; (ii) the tilt of the helix axis relative to the bilayer normal; and (iii) 

the screw rotation of the helix (about its long axis). The parent GWALP23 helix is seen 

to adopt a TM orientation (Figure 6), with a mean tilt angle of ~15° and its center of mass 

close to the center of the bilayer (i.e. displacement ~0 Å). The GWALP23-R14 peptide, 

in which the Arg side chain is on the opposite side of the α-helix from the two Trp side 

chains, also adopts mainly (82% of the time) a TM orientation. However, there is a clear 

increase in the tilt angle of GWALP23-R14 by ~10° relative to the parent GWALP23 

helix, in good agreement with the NMR experiments. The GWALP23-R14 helix is also 

displaced by ~5 Å towards the leaflet adjacent to the C-terminus of the helix. 
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Visualization of the simulations indicates furthermore that the R14 side chain snorkels to 

the interfacial region, adjacent to the C-terminus of the helix. The presence of 

GWALP23-R14 also creates a local thinning of the bilayer (by 2.5 Å) relative to 

unmodified GWALP23, as well as increasing contacts of the peptide with water and 

phosphate particles. There is also a change of ~70° in the screw rotation of the 

GWALP23-R14 helix relative to GWALP23, again in good agreement with NMR data, 

and a narrowing of the distribution of rotation angles observed. By calculating the 

absolute rotation angles we are able to confirm close agreement between the rotation 

angles of the peptides adopted in the CG-MD simulations and the GALA analyses (Table 

2), confirming that the CG tryptophans are correctly oriented in the bilayer. There 

remains a small difference (~8°) between the absolute tilt values calculated from the 

different methods, but this may arise from differences in the algorithms used to calculate 

these angles in the experimental and simulation systems. In addition, the distributions of 

rotation and tilt angles closely resemble the distributions observed in contour plots of 

rotation and tilt from GALA analysis (Figures 4, S4 and S5). HELANAL analysis also 

reveals that as expected the secondary structure restraints in the coarse grain model 

prevent any significant difference in bending being observed between GWALP23 and 

GWALP23-R14, which would agree with CD data indicating that helicity is maintained. 

The behavior of GWALP23-R12 in CG-MD simulations is quite different. The helix 

adopts three different orientations, two TM and one interfacial (labeled INT in Figure 6). 

In the TM orientations there are two different snorkeling regimes, in which the R12 side 

chain snorkels either N-terminally or C-terminally. Additionally, for a significant 
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proportion of the simulation time (35%), the helix adopts an interfacial orientation 

(Figure 6). This frequency of the INT orientation is significantly higher than for either 

GWALP23 (~10%) or GWALP23-R14 (~20%). This is unlikely to arise from sampling 

effects within these simulations, as wider sets of data on the insertion of helical peptides 

in CG-MD demonstrate expected behaviors for artificial TM and interfacial peptides, and 

that these behaviors are not altered by extending the simulations (data not shown). 

Analysis of the screw rotation angle of the helix TM regime also demonstrates a bimodal 

distribution, occupying two distinct directions each ~50° away from the GWALP23 

position. Visualization of the simulations reveals quite clearly these three orientations of 

the GWALP23-R12 helix (Figure 7). The somewhat higher frequency of C terminal 

snorkeling may be explained by a higher energetic cost for moving the two glycines at 

the N terminus into the membrane core, as compared to the alanine/glycine residues at 

the C terminus. 

The CG-MD simulations described above were repeated using a CG model of DOPC. 

The results (Figure 8) were similar in terms of tilt and rotation of the peptides, namely 

GWALP23-R12 exhibited a shift to an interfacial location. In terms of displacement, R14 

again induced a smaller shift towards an interfacial orientation, yet only a single TM peak 

was seen. Thus, the observation of a shift from a TM orientation (GWALP23, 

GWALP23-R14) towards an interfacial location (GWALP23-R12) is robust with respect 

to changes in the lipid bilayer. 

The CG models of the three orientations of GWALP23-R12 in a DPPC bilayer (at 323 K) 

were converted to atomistic (AT) models using a fragment based approach (Stansfeld et 
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al., 2009). Each system was then simulated for 50 ns using AT-MD. In each case the 

peptide retained a largely α-helical conformation, and remained stably in its starting 

orientation. Thus, AT-MD simulations confirm that GWALP23-R12 may adopt multiple 

conformations relative to a phospholipid bilayer. Examinations of the atomistic 

GWALP23-R12 simulations also highlight the role for water penetration, as water 

molecules can be seen to enter the bilayer early in the simulation and then to remain in 

contact with the arginine side chain throughout the simulation (Figure 9). Examinations 

of the AT simulations reveal how water molecules and lipid phosphate groups interact 

closely with the arginine side chain. 

4.4 Discussion 

We have used a model TM helix (GWALP23) as the hydrophobic “host” for an arginine 

residue in order to unmask some of the complexities of the interactions of Arg-containing 

α-helices with lipid bilayers. This is a topic of relevance for the biosynthetic mechanisms 

and mode of action of voltage-sensor domains which are based upon an Arg-containing 

S4 helix (Swartz, 2008). Specifically, we have explored the effects on helix orientation 

within a bilayer of two particular arginine modifications of GWALP23 using both NMR 

and CG-MD to identify the distinct properties of the individual peptides. GWALP23-R14 

is shown to undergo the same changes in helix tilt and rotation relative to GWALP23 in 

both simulation and experiment, indicating the likely accuracy of the simulation protocol 

and CG forcefield (Monticelli et al., 2008). The relatively small changes when R14 is 

introduced most likely reflect a competition of effects from tryptophan and arginine. In 

unmodified GWALP23, the tryptophans alone determine the helix orientation, with both 
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Trp side chains lying close to the plane of the membrane interfacial region. The 

introduction of R14 alters the relative Trp positions by means of helix displacement. At 

the same time, side-chain snorkeling, in combination with helix displacement and tilt, 

will permit the R14 guanidinium to interact with the interfacial region, thereby allowing 

the helix to retain a TM orientation despite introduction of a positively charged side chain 

near the center of the bilayer-spanning hydrophobic region. The combined helix 

displacement and side chain snorkeling can be viewed schematically as a positively-

charged arginine “cork” making its way toward the bilayer interface (Figure 10). 

To estimate the dynamics, (Esteban-Martin and Salgado, 2007; Strandberg et al., 2009) 

we have employed essentially “model 3” described by Strandberg et al., (Strandberg et 

al.) which incorporates a variable principal order parameter Szz for the peptide. A value 

of 0.88 for Szz gives a good fit for both GWALP23 and GWALP23-R14, with RMSD 

values between 0.6 and 1.0 kHz for both peptides (Table 2). If lower values of Szz are 

tried, the apparent tilt τ increases slightly (Figure S4), the direction of tilt ρ does not 

change, and the RMSD increases, indicating poorer fits. While Szz of 0.86 is “best” for 

GWALP23, the rmsd for GWALP23-R14 falls slightly (to 0.9 kHz) if Szz is increased 

still more to 0.94. The GALA method, with dynamics, indicates ∆τ of about 10° and ∆ρ 

of about -75° when R14 is introduced into GWALP23 (Figure 4; Table 2). Additionally, 

the independent 15N PISEMA and 2H GALA algorithms, with the latter incorporating Szz, 

have shown good agreement concerning the tilt of GWALP23 (Vostrikov et al.). The 

further specific agreement here between NMR and CG-MD methods, concerning the 

changes in tilt as well as rotation between GWALP23 and GWALP23-R14, despite the 
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small difference in the absolute tilt values (Table 2), highlights in this case a convergence 

of independent computational and experimental methods. 

It is important to consider the possible limitations of the CG model used, which employs 

the MARTINI (Monticelli et al., 2008) parameters for lipids and peptides. As has been 

noted (Vorobyov et al., 2008) CG models such as MARTINI do not fully reproduce the 

thermodynamics of Arg insertion. Nevertheless, detailed comparison using a MARTINI-

derived CG model (Bond et al., 2008) suggested just a ca. 2-fold underestimation of the 

free energy barrier for burying a single Arg side chain in the bilayer core. Furthermore, 

comparisons of CG (Bond and Sansom, 2007) and atomistic (Freites et al., 2005) 

simulations of the S4 helix from Kv channels (which contains multiple Arg side chains) 

suggest that CG simulations are capable of (qualitatively) reproducing the local bilayer 

distortions caused by Arg insertion into a bilayer. 

Furthermore, CG simulations of the Trp-containing WALP peptide helix (Bond et al., 

2008; Bond et al., 2007; Monticelli et al., 2008) suggest that such CG simulations are 

capable of correctly capturing the interaction of Trp side chains with lipid bilayers. We 

also are reasonably confident that the observed difference between the R12 and R14 

peptides is not simply a kinetic effect, as comparison with a wide range of TM and 

interfacial membrane peptides (Hall and Sansom, in preparation) indicates that there 

exists sufficiently good sampling in the current studies to capture such a difference. 

The combined results from the NMR and simulations reveal the subtle interplay of Trp 

and Arg side chains in orienting an α-helix relative to a lipid bilayer (Killian and von 

Heijne, 2000). Thus the two tryptophan residues of GWALP23 and GWALP23-R14 
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determine the tilt of the helix relative to the bilayer normal; R14 dictates the rotational 

preference of the helix due to its tighter interaction with the interfacial region. The R14 

snorkeling causes some bilayer deformation as observed in the CG-MD simulations, such 

that the bilayer is ~2.5 Å thinner in the presence of GWALP23-R14. This distortion is 

accompanied by water particles penetrating into the bilayer, as has been observed also in 

atomistic simulations (Freites et al., 2005; Li et al., 2008; MacCallum et al., 2008; 

Monticelli et al., 2004; Sands and Sansom, 2007). It should be noted that the arginine 

side chain is indicated by the NMR experiments to be protonated (Figure 3), as has been 

suggested also by a number of calculations (Li et al., 2008; MacCallum et al., 2008). 

It is encouraging that the relatively small difference in behavior of GWALP23-R14 

relative to unmodified GWALP23 is highly consistent between NMR data and CG-MD 

simulations. The results suggest that the two methods are capable of reporting correctly 

on the effects of Arg residues on membrane/helix interactions. In GWALP23-R14 there 

seems to be cooperation between Trp and Arg to enable maximal access to the headgroup 

region; furthermore it is likely that W5 and W19 prevent further tilt by anchoring the 

peptide tips to the headgroup regions.  

The behavior of GWALP23-R12 is strikingly different, arising from competition between 

the tryptophan and arginine side chains for access to the same lipid/water interfacial 

region. This dynamic competition leads to three different states being significantly 

populated: two TM orientations and one interfacial orientation. Thus, whether or not an 

arginine side chain may be accommodated within a hydrophobic TM helix is seen to 

depend on the sequence context in a non-linear fashion, which in turn reflects a 
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competition for lipid headgroup and water interactions between the basic and the 

amphipathic aromatic side chains. 

That the GWALP-R12 helix may adopt (meta-stable) TM state(s) in addition to an 

interfacial state is of interest as it may indicate a potential role for such multi-state 

behavior in biological as well as synthetic systems, providing thereby a potential 

orientational “switch” which could respond to changes in the helix/bilayer environment. 

Such changes may reflect the action of voltage-gated channels and cell-penetrating 

peptides, amongst others. 

In summary, our combined experimental and computational approaches reveal that the 

introduction of a single arginine residue into a hydrophobic TM helix may result in either 

(i) a small reorientation of the helix relative to the bilayer interface (R14), or (ii) a 

dynamic switching between TM and interfacial orientations of the helix (R12). The 

identification of the charge status of arginine in the membrane through the use of 

different solution pH values clearly favors models in which the protonated form of the 

arginine side chain may insert into the membrane by inducing deformation of the bilayer. 

Further studies may reveal more details, including the role of adjacent TM helices in 

modulating such behavior in biological membranes (Johansson and Lindahl, 2009). 

4.5 Materials and Methods 

Protected amino acids and “Rink” amide resin were purchased from NovaBiochem (San 

Diego, CA). Commercial L-alanine-d4 from Cambridge Isotope Laboratories (Andover, 

MA) was modified with an Fmoc group, as described previously (Thomas et al.) and 
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recrystallized from ethyl acetate:hexane, 80:20. Solid-phase peptide synthesis was 

performed on 0.1 mmol scale using a Perkin-Elmer / Applied Biosystems 433A 

synthesizer (Foster City, CA). Two Ala-d4 residues were incorporated per peptide, at 

different isotope abundance levels, achieved by mixing appropriate amounts of Fmoc-L-

Ala and Fmoc-L-Ala-d4

Mechanically aligned samples for solid-state NMR spectroscopy (1/60, peptide/lipid) 

were prepared using DOPC (Avanti Polar Lipids, Alabaster, AL) and deuterium-depleted 

water (Cambridge; 45% w/w hydration), as described previously.(van der Wel et al., 

2002) Deuterium NMR spectra were recorded on a Bruker Avance 300 spectrometer, 

utilizing a quadrupolar echo pulse sequence(Davis et al., 1976) with 90 ms recycle delay, 

3.2 µs pulse length and 115 µs echo delay. Between 750,000 (GWALP23-R14) and 

1,500,000 (GWALP23-R12) transients were accumulated. An exponential weighting 

function with 100 Hz line broadening was applied prior to Fourier transformation. An 

enhanced GALA analysis (van der Wel et al.) was performed, using essentially model 3 

of Strandberg et al. (Strandberg et al.) to estimate the dynamics. This model employs a 

variable order parameter S

. Peptides were cleaved from resins using trifluoroacetic acid, 

resulting in amidated C-termini. Solvents were of the highest available purity. Peptides 

were purified by reversed-phase HPLC on an octyl-silica column, using a gradient of 92-

96% methanol over 24 min. Analytical HPLC results and MALDI-TOF analysis are 

provided in Figure S6 of the Supporting Information. 

zz which can be divided (conceptually) into components Si and 

Sr (Strandberg et al.). We utilized the helix and alanine geometry described previously 



 

169 

and implemented an interactive grid search programmed in Microsoft Excel (Thomas et 

al.; van der Wel et al., 2002). 

Coarse-grained molecular dynamics (CG-MD) simulations of the peptides in ~128 lipid 

DPPC bilayer were performed. CG-MD overcomes the typical limitations of 

atomistically detailed simulations of biomolecules by combining ~ 4 non-hydrogen atoms 

to form a single CG particle. In the current study we have used the latest version of the 

MARTINI forcefield with protein parameters, (Marrink et al., 2007; Monticelli et al., 

2008) running simulations using Gromacs v3 (Lindahl et al., 2001) on a 56-processor 

Mac OS X cluster. Long range electrostatics were treated using a cut-off value of 12 Å 

and ε = 20 (additionally, results are robust at ε = 15). Temperature and pressure were 

coupled at 323 K and 1 Bar using the Berendsen (Berendsen et al., 1984) weak coupling 

algorithm (τT = 1 ps and τP = 10 ps). The compressibility was 3 × 105 (1/bar). In each 

simulation the bilayer is allowed to self assemble around the peptide (Figure 5) to reduce 

potential sources of bias in the simulation. We have performed CG-MD simulations 

within a high throughput framework which enabled 100 × 0.1 µs simulations to be run 

(Hall & Sansom, in preparation) for each peptide helix, yielding good sampling of the 

helix/bilayer interactions. 
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4.8 Tables 

Table 1. Quadrupolar splittings, ∆νq in kHz, for 2H-labeled core alanines of GWALP23-
R14 and GWALP23-R12.

Ala position 

a 

GWALP23-R14 GWALP23-R12

5 

b 

26.6 kHz 3; 22; 32; 55 

7  5.5 

9 16.0 2; 14; 22; 39 

11 13.1 

13  1.3 2; 12; 21; 31 

15 28.0 

 

aThe quadrupolar splittings, ∆νq, are measured in kHz. The sample orientation is β = 0° 
in hydrated DOPC bilayer membranes (peptide/lipid ratio 1/60; sample temperature 50 
°C). 
bDue to poor signal-to-noise, the values for GWALP23-R12 are approximate. 
Additionally, since multiple weak signals are observed for each double-labeled sample of 
GWALP23-R12, it is not possible to complete the individual assignments. Singly labeled 
samples of GWALP23-R12 (Figure S2 of the Supporting Information) also show 
multiple peaks; for these cases it still is not possible to correlate the assignments for the 
different alanines in the different peptide states. 
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Table 2. Comparison of average tilt and rotation angles of GWALP23 and GWALP23-
R14 from GALA fits in DOPC and CG-MD simulations in DPPC and DOPCa

Peptide 

  

Method S rmsdzz τ b ∆τ ρ c ∆ρ

GWALP23 

c 

GALA 0.7 1.7  7.5°  318°  

GWALP23-R14 GALA 0.7 2.1 22.8° 15.3° 247° -71° 

GWALP23 GALA 0.8 0.8  6.5°  321°  

GWALP23-R14 GALA 0.8 1.4 18.6° 12.1° 247° -74° 

GWALP23 GALA 0.88 0.6  5.9°  323°  

GWALP23-R14 GALA 0.88 1.0 16.2° 10.3° 247° -76° 

GWALP23 CG-MD 
/DPPC 

d   15°  315°  

GWALP23-R14 CG-MD 
/DPPC 

d   25° 10° 245° -70° 

GWALP23 CG-MD 
/DOPC 

d   13°  293°  

GWALP23-R14 CG-MD 
/DOPC 

d   22°  9° 249° -44° 

aThe modified GALA analysis was based upon “model 3” of Strandberg et al., 
(Strandberg et al.) with variable order parameter Szz, such that 0 < Szz <1. The angle ε// 
between an alanine Cα-Cβ bond and the helix axis was 59.4° (van der Wel et al.). 

bThe rmsd, in kHz, refers to the root mean squared deviation between observed 2H 
quadrupolar splittings and those predicted by a particular GALA fit.  

cThe values ∆τ and ∆ρ refer to the differences in tilt and rotation, respectively, when 
comparing GWALP23-R14 and GWALP23 using the same method and same value of 
Szz.  

dThe absolute rotation values were calculated based on the rotation angles of the 
backbone particles of all residues in the helix over the course of the simulation, and 
converted to the common reference used in the NMR calculations (the backbone particle 
of glycine 1). Tilt values were calculated from fitting a Gaussian distribution to the TM 
region of the graph. 
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4.9 Figures 

Figure 1. Model structures of (A) GWALP23-R14 and (B) GWALP23-R12. In each case 
the atomistic side-chain model is shown on a ribbon helix above and the CG model 
below, with arginine (blue) and tryptophan (green) side chains. Note that the side chain of 
R14 is on the opposite side of the helix (A) from the tryptophan side chains, whilst the 
side chain of R12 is on the same side of the helix (B). 
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Figure 2. Deuterium NMR spectra of (A) GWALP23-R14 and (B) GWALP23-R12 in 
hydrated, oriented bilayers of DOPC (peptide/lipid ratio 1/60; β=0° sample orientation; 
temperature 50 °C). The 2H-labeled alanine residues are (top to bottom): 7 and 9; 11 and 
13; 15 and 17. 
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Figure 3. Selected deuterium NMR spectra for two labeled alanines (7 and 9) in 
GWALP23-R12 (A, B) and GWALP23-R14 (C, D) in DOPC bilayers, hydrated with 
water, or with buffer at pH 7.4 or pH 4.5 (top to bottom), showing β = 90° (A, C) and β = 
0° (B, D) sample orientations. Samples at pH 7.4 also contain 0.1 M NaCl. The 
peptide/lipid ratio is 1/60 at a temperature of 50 °C. 
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Figure 4. GALA analysis of GWALP23-R14 average tilt in DOPC bilayer membranes, 
with variable Szz and ε// = 59.4°. (A) Quadrupolar wave plot with Ala positions indicated. 
(B) RMSD plot (contoured at 1, 2 and 3 kHz) for tilt τ and rotation ρ of peptides in 
DOPC: GWALP23 itself (gray); GWALP23-R14 (black). The global minima correspond 
to (Szz, τ, ρ) of (0.86, 5.9°, 323°) and (0.94, 16.2°, 247°) respectively. 
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Figure 5. Progress of CG simulation for GWALP23 in a DPPC bilayer. (A) Initial state (t 
= 0 ns) of the simulation system consisting of a GWALP23 α-helix (gray backbone, green 
Trp side chains) with randomly orientated phospholipids (purple spheres = phosphate 
particles) and waters (not shown). (B) Final state (t = 100 ns) of the system showing the 
GWALP helix tilted in a TM orientation with the Trp side chains close to the lipid 
headgroups. 
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Figure 6. Helix displacement relative to the DPPC bilayer center, tilt relative to the 
bilayer normal and rotation relative to that of GWALP23 in DPPC. Each curve is derived 
from analysis of an ensemble of 100 × 100 ns of CG simulations (analyzing the complete 
100 ns simulations in each case). (A) Helix displacement, defined as the difference 
between the center of mass of the helix backbone and the center of the lipid bilayer. A 
displacement >10 Å is indicative of an interfacial (INT) orientation. Small negative 
displacements indicate moving a TM helix towards the C terminal facing leaflet; small 
positive displacements indicate moving a TM helix towards the N terminal facing leaflet. 
(B) Helix tilt, defined as the angle between the helix axis and the bilayer normal. A tilt of 
90° is indicative of an interfacial location. (C) Helix rotation, referenced to 0° as the tilt 
direction of GWALP23. 
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Figure 7. Three orientations of the GWALP-R12 helix seen in CG simulations. The helix 
may adopt a TM orientation with the R12 side chain (blue) snorkeling towards either the 
N-terminal (A) or the C-terminal (B) face of the membrane. Alternatively, an interfacial 
orientation may be adopted (panel C). Trp side chains are green, Arg blue, and the bilayer 
surface (as defined by the phosphate particles) is a grey mesh. 
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Figure 8. Helix displacement and tilt in DOPC. Each curve is derived from analysis of an 
ensemble of 100 × 100 ns of CG simulations. (A) Helix displacement. (B) Helix tilt. (C) 
Helix rotation. The definition of terms is the same as in Figure 6. 
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Figure 9. Snapshots taken from atomistic simulations of (A) GWALP23 and (B) 
GWALP23-R12. Water and phosphate groups are in spacefill representations (red/white, 
and brown), the peptide backbone is shown with tryptophan and arginine residue side 
chains in stick representation. Bilayer deformation and water penetration can be clearly 
seen in the GWALP23-R12 simulation but not in the GWALP23 simulation, reflecting 
the effect of incorporating a charged arginine residue in the bilayer core. 
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Figure 10. (A) Model to illustrate the orientation of GWALP23-R14 tilted at ~17° with 
respect to the bilayer normal of DOPC. Side chains were constructed using a rotamer 
library and do not represent experimental data. (B) Schematic “cork” model for vertical 
displacement of GWALP23-R14 toward its C-terminal in a lipid bilayer membrane, as 
observed in the CG-MD simulations. Together the displacement and snorkeling, along 
with membrane thinning, allow the charged guanidium side chain to reach the bilayer-
water interface. 
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4.10 Supporting Information 

Figure S1. Circular dichroism spectra for GWALP23 (A), GWALP23-R12 (B) and 
GWALP23-R14 (C) in DOPC. Note that the far-UV (<203 nm) region is not accessible 
due to strong absorption by the DOPC double bond. 
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Figure S2. Selected deuterium NMR spectra (β = 0º sample orientation) for singly labeled 
alanines in GWALP23-R12 in DOPC. Isotope labels were introduced in position 7 (top) 
or 15 (bottom). Note that even a single alanine gives rise to multiple pairs of peaks in 
each spectrum. 
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Figure S3. Natural abundance 2H NMR spectrum of DOPC, β=90° orientation. 
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Figure S4. Tilt-rotation RMSD contour plots for GWALP23 (A) and GWALP23-R14 (B) 
in DOPC, fit with different values for the principal order parameter Szz: 0.7 (red), 0.8 
(green), 0.88 (blue). The contour lines are plotted at RMSD of 3 kHz. The value of ε// for 
the alanine side chains was fixed at 59.4º. 
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Figure S5. Tilt-rotation contour plots for GWALP23 (A) and GWALP23-R14 (B) from 
CG simulations in DPPC. 
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Figure S6. Physical data for GWALP23-R12, including HPLC chromatogram (A) and 
mass spectrum (B). Predicted monoisotopic mass of the non-deuterated peptide is 2302.4 
a.m.u.  The isotopic distribution pattern is seen for the [MH+ + 4D] and [MH+ + 8D] 
peptides. 
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CHAPTER 5 
“Rescue” of a Central Arginine in a Transmembrane Peptide by Changing the 
Placement of Anchor Residues 

5.1 Abstract 

Both Trp and Arg in transmembrane protein domains make important interactions with 

lipids at the membrane/water interface, but at different depths. Derivatives of the 

designed peptide GWALP23, acetyl-GGALW5LALALALALALALW19LAGA-amide, 

with single Trp anchors, have proven to be useful for characterizing such interactions. 

Indeed previous work has revealed quite different effects emanating from Arg 

substitutions at positions 12 and 14 within GWALP23, with the R12 peptide exhibiting 

multiple positions and orientations with respect to DOPC bilayer membranes. To seek 

further understanding of the multi-state behavior, we have moved the Trp “anchor” 

residues to more outer positions 3 and 21 in GWALP23 itself, and in the R12 and R14 

derivatives. Selected alanines were deuterated during chemical synthesis of these 

peptides. The locations and orientations of the peptides with respect to lipid bilayer 

membranes of differing thickness were then investigated by means of solid-state 2H NMR 

spectroscopy and coarse-grained molecular dynamics simulations. Interestingly, in these 

experiments, we were able to use 2H quadrupolar splittings not only from the Ala side 

chains but also from selected backbone Cα deuterons. With the Trp anchors now 

relatively far from the peptide and bilayer center, the results indicate significantly large 

apparent tilt angles, for example close to 30° for the new R12 and R14 peptides with 

respect to the bilayer normal of DLPC membranes. The R12 side chain indeed is 

“rescued” to a stable position when the Trp anchors are moved farther out and to another 
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face of the helix. At the same time, the R14 side chain of GW3,21

5.2 Introduction 

ALP23 also retains a 

stable favored position.  

Ionizable amino acid residues usually are poorly tolerated in non-polar surroundings, 

whether the hydrophobic core of a protein or the acyl-chain interior of a lipid bilayer. In 

cases where charged residues are present in such environments, the residues often are 

highly conserved and essential for protein function. The “buried” charged side chains 

also may be stabilized by formidable networks of protein-protein interactions (Bartlett et 

al., 2002; Doyle et al., 1998). In other cases the presence of polar or charged residues in 

unfavorable, hydrophobic regions can have detrimental consequences for protein stability 

and/or function (Loladze et al., 2001; Sine et al., 2002). Furthermore, many of the 

permissible mutations which place an ionizable residue in the hydrophobic core of a 

protein are accompanied by pKa

Numerous investigations have addressed the question: How difficult is it to incorporate 

an uncompensated charged residue in a lipid bilayer membrane? While an ultimate goal 

is discovery of principles or “rules” that govern the behavior of transmembrane proteins, 

many intermediate goals call for the testing of specific hypotheses. For example, a 

 shifts which render side chain non-charged (Karp et al., 

2010; Takayama et al., 2008). In similar fashion, burying a polar amino acid in the 

hydrophobic interior of a lipid bilayer is a challenging task. Selected examples do exist, 

such as for example the voltage-sensing S4 domains that regulate selected cation 

channels by means of multiple Arg residues; yet their accommodation in the membrane 

could involve extensive charge compensation (Swartz, 2008). 
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profound effect of the charge state on the membrane insertion has been demonstrated for 

the case of an isolated α-helix with four histidine residues. At high pH a model peptide 

was capable of spanning the membrane, but His protonation under acid conditions caused 

an alteration of peptide topography and resulted in its exclusion from the lipid bilayer 

(Aisenbrey et al., 2006; Bechinger, 1996). Such pH-dependent behavior is manifest both 

for acidic and basic ionizable residues, for example by a sequence derived from 

bacteriorhodopsin, termed pH low insertion peptide (pHLip). Such peptides contain 

aspartic acid residues within a hydrophobic stretch which, when protonated at low pH, 

allow the peptides to incorporate into lipid bilayer membranes (Andreev et al., 2007; 

Hunt et al., 1997). 

Another important factor will be the sequence position of a charged residue. A 

comprehensive study of translocon-mediated insertion of α-helices coupled with a 

glycosylation assay produced Gaussian-shaped free energy profiles for the charged 

residues, with maxima close to the bilayer center (Hessa et al., 2007). Hydrophilic amino 

acids with flexible side chains nevertheless are capable of “snorkeling” toward the more 

polar membrane-water interfaces, thus allowing such residues to “bridge” nonpolar and 

polar environments. Additionally, an entire peptide or domain may be “lifted” toward the 

interface of one leaflet to satisfy some of the polarity preferences (Krishnakumar and 

London, 2007; Vostrikov et al.). 

Previously, we examined a single arginine incorporated near the center of GWALP23 

(GGALW5[LA]6LW19LAGA) – a designed transmembrane peptide, derived from the 

“WALP” sequences (Killian et al., 1996; Vostrikov et al., 2008), but importantly having 
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only one Trp residue flanking each end of a hydrophobic [LA]6.5

To better understand the control of the topography of membrane-associated peptides, and 

to gain additional insights concerning Arg, Trp and lipid bilayer interactions, we have 

tested the influence of changing the GWALP23 Trp residue locations, both with and 

without R14 or R12 being present. By moving each of the anchoring Trp residues a 

distance corresponding to one Leu-Ala dipeptide segment toward the respective peptide 

terminals, an isomer of GWALP23 with an effectively longer hydrophobic helical core 

was constructed, namely GGW

 core helix. Two 

peptides having identical amino acid composition and a single Arg at either position 12 or 

position 14 within GWALP23 (Table 1) displayed markedly different behavior. While 

GWALP23-R14 adopted a transmembrane orientation, the R12 sequence isomer 

populated both transmembrane and interfacial states in DOPC (Vostrikov et al., 2010b). 

The position of Arg, relative to the two tryptophans, is different on a helical wheel 

projection of these peptides (Figure 1A), such that R12 is between the Trp indole rings, 

while R14 is on a different face of the projection. Several factors could contribute to the 

variable membrane topography of GWALP23-R12. The proximity of R12 to the bilayer 

center is likely to impose an energetic penalty for membrane insertion, and it also is 

plausible that the positions of the Trp side chains could play a significant role, for 

example by blocking water access to the R12 guanidinium group (Vostrikov et al., 

2010b).  

3(LA)8LW21GA, designated GW3,21ALP23 (Table 1). The 

rationale for the sequence modification can be seen in the idealized helical wheel 

projection of the sequence (Figure 1B). Switching Trp5 to position 3 alters its radial 
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projection by –200°, while moving Trp19 to position 21 alters its radial projection by 

+200°. As a result, the two Trp residues in GW3,21ALP23 again project from one side of 

the helix (in similar fashion to GW5,19ALP23)—but now the tryptophans are located on 

the helix face close to R14 instead of R12 (compare Figure 1A and 1B). Substitutions of 

L12→R12 or L14→R14 in this new sequence context reverse the respective Arg 

positions relative to the Trp residues. Residue 12, which was between the two Trp rings 

in GW5,19ALP23 (Vostrikov et al.), is no longer “sandwiched” in the modified sequence. 

In contrast, residue 14, which was far from Trp5 and Trp19, now becomes placed radially 

near Trp3 and Trp21

5.3 Materials and Methods 

. 

It is of further interest to note that the Trp-Arg separation distances are 7 residues 

between R12 and either W5 or W19, as well as between R14 and W21. Residue R12 

retains the truly central location, both in terms of the overall sequence and its position 

relative to the two tryptophans within each sequence. Consequently, the new and 

expanded peptide design will enable incisive investigations into the root causes of the 

multistate behavior. Together these new sequences will provide significant insights into 

the adaptation of peptide orientation with respect to lipid bilayer membranes. 

Lipids were purchased from Avanti Polar Lipids (Alabaster, AL). Peptides were 

synthesized on a model 433A peptide synthesizer (Applied Biosystems by Life 

Technologies, Foster City, CA) and cleaved from Rink resin as described previously 

(Vostrikov et al.). Protected amino acids were obtained from NovaBiochem (San Diego, 

CA). Deuterium-enriched alanines (Ala-d4 or Fmoc-Ala-d3) were purchased from 
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Cambridge Isotope Laboratories (Andover, MA). The Ala-d4 was manually derivatized 

with an Fmoc group as reported earlier (ten Kortenaar et al., 1986). Typically, two 2H-

labeled alanines were incorporated per peptide at a different isotope abundance levels. If 

necessary to resolve ambiguities among spectral assignments, selected peptides were 

prepared with only one Ala-d4

Samples (1/60, peptide/lipid ratio) for solid-state NMR spectroscopy were prepared by 

mechanical alignment utilizing previously reported procedures (van der Wel et al., 2002). 

The peptide/lipid mixture was deposited on glass slides (Marienfeld; Lauda-Königshofen, 

Germany) from methanol:water (95:5), dried extensively and hydrated with 

 label. Peptides were purified on an octyl silica column 

(Zorbax Rx-C8, 9.4 × 250 mm, 5 µm particle size; Agilent Technologies, Santa Clara, 

CA) in a 92-96% methanol gradient (with 0.1% trifluoroacetic acid) over 24 min, with 

detection based on absorbance at 280 nm. Analytical HPLC and mass spectral data are 

shown in Figures S1 and S2 of the Supporting Information. 

2H-depleted 

water (Cambridge) to achieve 45% hydration (w/w). Deuterium NMR spectra were 

obtained with a quadrupolar echo pulse sequence (Davis et al., 1976) at β=0° and β=90° 

macroscopic sample orientations using two Bruker Avance 300 spectrometers (Billerica, 

MA) operated at 46.1 MHz, for detection of 2H resonances. The pulse time was 3.2 µs or 

4.5 µs; echo delay was 110 µs or 125 µs; and the recycle delay was 90 ms. Typically 

700,000 transients were acquired, with the exception that 1,500,000 transients were 

acquired for GW3,21ALP23-R12 in DMPC and DOPC. Data were collected in a 32,768 

point time domain, zero filled to 5,120 points and left shifted to the echo maximum. 

Fourier transformation was accomplished using exponential apodization with 100 Hz line 
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broadening. Resonances were assigned based upon the relative peak intensities in relation 

to the respective isotope enrichment levels used for different alanines in the sequence. 

Difference spectra between double- and single-labeled peptides were sometimes 

employed to complete the assignments (see Figure S3 of the Supporting Information). 

Deuterium NMR spectra were analyzed according to the “GALA” formalism, using the 

peptide rotation ρ, tilt τ and principal order parameter Szz as variables (Strandberg et al., 

2009; van der Wel et al., 2002). Angle ε//, defining the Ala side chain geometry in the -

helix (van der Wel et al.), was fixed at 59.4°. The quadrupolar coupling constant (QCC) 

was set to 168 kHz (backbone CαD signals) or 56 kHz (side chain CβD3 signals). 

Dynamics were estimated using a variable Szz parameter (Strandberg et al.), which 

provides a suitable treatment for GWALP23 and many membrane-associated peptides 

(Vostrikov et al.), particularly when a single arginine is present (Vostrikov et al.). Due to 

variations in the preferred order parameter to fit backbone as opposed to side chain 

signals (see Results), a two-step procedure was implemented: (i) Szz, τ and ρ were first 

varied to fit CβD3 data; (ii) τ and ρ were then fixed to the best-fit values for the side 

chains, and a separate backbone Szz was varied to fit Cα

In the case of GW

D data. 

3,21ALP23-R12 in DLPC lipid bilayers, a more explicit treatment of 

dynamics, based upon “Model 6” of Strandberg et al. (Strandberg et al., 2009), was 

considered. In this case, rigid body motion of the peptide is modeled as Gaussian 

distributions of the τ and ρ angles, centered at the average values τ0 and ρ0 with standard 

deviations of στ and σρ respectively. A fixed order parameter Szz value of 0.88 was used 
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to account for the internal motion (the resulting product QCC×Szz therefore being fixed 

to 49.3 kHz). A grid search was performed by varying στ in the 0-30° range, σρ in the 0-

200° range, τ0 from 0° to 90° and ρ0 from 0° to 359°. Due to a larger solution field, τ0, 

ρ0, στ and σρ were incremented at 1° intervals during the grid search. 

Samples for CD spectroscopy were prepared using small unilamellar vesicles (1/60, 

peptide/lipid) obtained by ultrasonic treatment. The peptide concentrations were in the 

100 µM range and were determined by UV spectroscopy, using ε280=5600 M-1cm-1Trp-1

Coarse-grained molecular dynamics simulations (CG MD) were performed using the 

Sidekick high throughput software (Vostrikov et al., 2010a). Coarse grained simulations 

are run with the MARTINI forcefield (Monticelli et al., 2008). In this representation, a 

4:1 mapping of non hydrogen atoms to CG particles is used, with Lennard Jones 

interactions between particles based on 4 classes (polar, apolar, mixed polar and apolar, 

and charged, with subtypes describing polarity and hydrogen bonding capabilities) and a 

. 

Five scans were acquired and averaged, utilizing a Jasco J710 spectropolarimeter 

(Easton, MD) using 1.0 mm path length, 1.0 nm band width and 20 nm/min scan rate. 

Steady state fluorescence spectra were recorded on a Perkin Elmer LS-55 fluorescence 

spectrometer. Samples were prepared by 50-fold dilution of the samples that were used 

for CD spectroscopy. The excitation wavelength was set to 284 nm, and the emission 

range was 300-500 nm. Excitation and emission pathlengths were 10 mm and 1 mm, 

respectively (Ladokhin et al., 2000); slit widths were 7.5 nm. Ten scans were acquired at 

200 nm/min and averaged. 
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lookup table. Lennard Jones interactions shifted to zero between 9 and 12 Å and 

electrostatic interactions were shifted to zero between 0 and 12 Å. Simulations were 

performed with Gromacs 3.3 (www.gromacs.org). Temperature was coupled using a 

Berendsen thermostat at 323 K (τT = 1 ps), and pressure was coupled anisotropically at 1 

bar (compressibility = 3×10-5 bar-1, τP = 10 ps). 100 × 200 ns were performed for each 

peptide. 

5.4 Results 

To investigate changes in peptide/lipid interactions caused by shifting the positions of the 

Trp “anchor” residues in the GW5,19ALP23 framework, we have employed solid-state 

NMR spectroscopy using peptides specifically labeled with 2H-alanine residues. Due to 

the fast rotational averaging of methyl deuterons in the alanine side chain, the primary 

axis of the quadrupolar interaction is directed along the Cα-Cβ bond, which can be 

further related to the orientation of the peptide itself (Strandberg et al., 2004; van der Wel 

et al., 2002). The technique known as “GALA” (Geometric Analysis of Labeled 

Alanines) provides a way of deducing an apparent magnitude (τ) and direction (ρ) of the 

peptide tilt with respect to the lipid bilayer normal, as well as a measure of dynamic 

behavior in the form of a principal order parameter (Szz

Here we employ the previously introduced approach of labeling two sequential Ala 

residues (separated by one leucine, or about 200° around a helical wheel projection) at 

different isotope abundance levels, which gives rise to two pairs of signals that usually 

), which does not assume a 

particular motion model, or more detailed molecular motions (Strandberg et al.). 
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are distinguishable and often can be assigned based upon their relative intensities. 

Compared to the original GW5,19ALP23 sequence, GW3,21ALP23 has an extended central 

core region, which provides two additional alanine residues for labeling and analysis 

(Figure 1). To verify that the peptides retain their α-helical character upon the arginine 

incorporation, CD spectra were recorded (Figure S4 of the Supporting Information). In 

similar manner to GW5,19ALP23, GW3,21ALP23 and also its derivatives incorporating 

single arginines remained substantially helical. Each Leu-to-Arg substitution leads to a 

small increase of the ε222/ε208

To further enhance understanding of the complex balance among the peptide tilt, 

displacement and arginine position, we have investigated the properties of the R12 and 

R14 peptides in lipids of varied hydrophobic length, namely bilayers composed of DLPC, 

DMPC and DOPC lipids. Remarkably, both of the GW

 ratio from ~0.80 to ~0.84, while the overall mean residue 

ellipticity is either the same (R14) or somewhat diminished (R12). 

3,21ALP23-Arg peptides in all 

three lipids exhibit strong unique pairs of 2H resonances for each of the A17 and A19 side 

chains (Figure 2), characteristic of one conformation and one dominant average 

orientation of the peptide. Indeed the results for GW3,21ALP23-R12 contrast sharply with 

those for GW5,19ALP23-R12, which produced multiple low intensity signals in DOPC 

(Vostrikov et al.). A similarity with other GWALP peptides is that the spectra in Figure 2 

also are consistent with fast rotational averaging around the bilayer normal (peptide 

“precession”), as can be seen by the two-fold reduction in the 2H ∆νq value for each 

alanine side chain when the macroscopic sample orientation is changed from β=0° to 
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β=90° (Figure 2). Such averaging is usually observed for monomeric transmembrane 

peptides and is possible also for some interfacial orientations (see (Vostrikov et al.)). 

Also evident in Figure 2D is one additional pair of 2H resonances for GW3,21ALP23-R14 

in DLPC and DMPC. These resonances, which have a large |∆νq| magnitude and likely 

arise from a backbone C deuteron, were later assigned to A17 (see below). These 

particular C-D resonances are much less intense in DOPC or when the sample 

orientation is β=90° (Figure 2); we do not yet understand the reasons for the dependence 

upon lipid identity and macroscopic alignment with respect to H0. While the three-site 

jump motion of Ala side-chain methyl group deuterons results in a three-fold reduction of 

the effective QCC, such averaging is absent for the aliphatic Cα-D groups, making 

possible a wider range of ∆νq values. In the case of a low mobility peptide (having Szz ~ 

0.9, for example), the backbone signals therefore could span a range of ~220 kHz, 

compared to only ~75 kHz for the methyl group signals. The larger ∆νq span and the 

absence of local bond rotational averaging are also associated with increased line 

broadening and decreased intensity of the backbone signals (see also (Killian et al.)). To 

verify that the “new” resonances with large |∆νq| values indeed arise from backbone 

deuterons, we synthesized GW3,21ALP23-R12 with either Ala-d3 or Ala-d4 present in 

residues A13 and A15 (Ala-d3 labels only Cβ and not Cα). Deuterium NMR spectra of 

these peptides (Figure 3) show that the signals having |∆νq| of 110 kHz are present only 

with Ala-d4 and not with Ala-d3 labeling. The signals which are absent for the case of 

Ala-d3 labeling therefore indeed arise from a Cα-deuteron. 
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The 2H quadrupolar splitting magnitudes were measured for the side-chain methyl groups 

of all eight core alanine residues in GW3,21ALP23-R12 and GW3,21ALP23-R14; each in 

DLPC, DMPC and DOPC bilayer membranes. The corresponding NMR spectra are 

included as Supplementary Material (Figures S5-S7). Many of the alanines also produced 

readily detectable backbone Cα deuterium signals (Figures S5-S7). The measured 2H 

quadrupolar splitting magnitudes for Ala CβD3 and CαD groups in GW3,21ALP23-R12 

and GW3,21ALP23-R14 in each lipid bilayer system are summarized in Table 2. 

Previously (Vostrikov et al.), we reported the 2H NMR data for labeled alanines in 

GW5,19ALP23-R14 in DOPC; now in Table 2 we include also the measured ∆νq values in 

DLPC and DMPC. Data for GW5,19ALP23-R12 are not included in Table 2 because the 

peptide was found previously to exhibit multi-state behavior in DOPC (Vostrikov et al.), 

and we find similar behavior in shorter DMPC and DLPC lipid bilayers. 

An increase of the number of observed backbone 2H signals makes it possible for the first 

time to incorporate this additional information for the determination of the peptide 

apparent orientations in the lipid membranes. The ensemble of both the Cα-D and Cα-Cβ

To begin a combined analysis, we sought to examine the apparent orientation of 

GW

 

bond vectors from the alanines is expected to provide high sensitivity concerning the tilt 

of a particular peptide’s helix axis with respect to a given bilayer normal. 

3,21ALP23-R12 in DLPC, since the backbone signals in this system are observed for 

five alanine positions (Table 2). The joint analysis of eight methyl and five backbone 2H 

|∆νq| values initially gave a poor fit for the backbone signals, due primarily to the 

remarkably large |∆νq| values associated with the Ala11 and Ala5 backbone signals. The 
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combined fit nevertheless improves if the principal order parameter for the backbone 

deuterons is increased (arbitrarily) to a value ~0.1 higher than that of the methyl groups 

(Figure 4B). 

Due to a decreased signal-to-noise ratio, only two backbone deuterons can be assigned 

unambiguously for GW3,21ALP23-R12 in DMPC or DOPC. Since these signals for A9 

and A13 are furthermore observed in the plateau region of the backbone quadrupolar 

wave plot, they prove not to contribute useful information for the GALA fits. 

Nevertheless, three useful backbone signals are observed for GW3,21ALP23-R14 and four 

or five for GW5,19ALP23-R14 in all three lipids, making it possible to employ these data 

within the analysis. Once again, the best fits for each of the –R14 peptides in each lipid 

are obtained when the backbone apparent Szz

From the magnitudes of quadrupolar splittings, it is apparent that the peptides are 

significantly tilted with respect to the lipid bilayer normal. Indeed, the GALA analysis of 

quadrupolar splittings returns tilt angles as large as 30° (Table 3). Visual inspection of the 

best-fit quadrupolar curves for GW

 value is somewhat higher than the side-

chain methyl value (Table 3; Figures 4-5). 

3,21ALP23-R14 and GW3,21ALP23-R12 reveals that 

the R12 peptide has higher apparent tilt (larger ∆νq values) and somewhat different tilt 

direction, as the curves for R12 and R14 are some 20-40° out of phase. Conversely, the 

best-fit curves for both –R14 peptides nearly overlap, indicating highly similar peptide 

orientations. Due to the shallow RMSD minimum as a function of Szz, the apparent τ and 

ρ angles for GW5,19ALP23-R14 in DOPC differ marginally from a previous report 

(Vostrikov et al., 2010b). 
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Several general trends can be observed when examining the GALA curves for the 

arginine-containing peptides. As the lipid bilayer thickness increases, there is a rise in the 

best-fit value of Szz, suggesting, lower amplitude motions for the peptides in DOPC. 

Furthermore, for the –R14 peptides in DOPC, the RMSD function does not reach a 

minimum over the whole range of Szz but rather would fit best at Szz values close to 

unity. The tilt direction does not change significantly with lipid identity for either the –

R14 or –R12 series; and both –R14 peptides exhibit similar apparent tilt angles in 

corresponding lipids. 

As the hydrophobic length of the membrane increases, there is a marked decrease in the 

spectral quality for GW3,21ALP23-R12. Nevertheless, the positions of peaks in the spectra 

for GW3,21ALP23-R12 in DMPC and DOPC for both sample orientations can be nearly 

superimposed over those in DLPC, suggesting that the peptide’s apparent orientation 

does not change significantly with lipid bilayer thickness. On the other hand, the –R14 

analogue retains good signal-to-noise ratio in each of the lipids regardless of thickness, 

and significant changes in the |∆νq| magnitudes are evident (Table 2; Figures S5-S7). 

GALA analysis reveals that in DMPC and DOPC a transmembrane topography is 

retained for both GW3,21ALP23-R14 and GW3,21

The differences in orientation among the single-Arg GW

ALP23-R12 (Figure 5). The tilted 

transmembrane orientations furthermore are fitted with excellent RMSD values that are 

below 1.5 kHz, attesting to highly helical structures (Table 3). 

5,19ALP23-R14 and 

GW3,21ALP23-R14 and –R12 peptides are apparent in RMSD contour plots, graphed as a 

function of the apparent τ and ρ angles for each peptide in DLPC, DMPC and DOPC 
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lipid bilayer membranes (Figure 6). One notes that GW3,21ALP23-R12 has the most 

centrally located arginine and exhibits very similar tilt angles in all three lipids, as can be 

seen by the contour levels clustered in a narrow range. Conversely, GW3,21ALP23-R14 

and GW5,19ALP23-R14 are sensitive to the membrane hydrophobic thickness, with both 

of the R14 peptides adopting apparent tilt angles that span a range of 10° or more. When 

the host lipid is changed, the direction of the tilt does not change much for any of the 

peptides, as the tilt is most likely dictated by the radial position of the single Arg residue. 

Indeed, the tilt direction of both –R14 variants is essentially identical for each of the 

lipids tested. The tilt direction for GW3,21ALP23-R12 also does not change with the lipid 

thickness. Visualization of the tilted peptides yields models where Arg12 seems to snorkel 

toward the N-terminal leaflet, while the Arg14

The NMR methods are sensitive to peptide orientation but not to translocation. To probe 

this possibility for GW

 side chain may adopt a conformation 

which favors C-terminal snorkeling (Figure 7).  

3,21ALP23-Arg peptides we performed CG MD simulations in 

DLPC bilayer membranes. Both the –R12 and –R14 substituted GW3,21ALP23 peptides 

adopted transmembrane orientations in 80-85% of the runs. The trends for GW3,21ALP23-

R14 are similar to those observed with G5,19WALP23-R14 (Vostrikov et al., 2010b). Both 

R14 peptides undergo vertical displacement toward the C-terminal leaflet (Figure 8) by 2-

4 Å, which may be explained if side-chain snorkeling alone is not sufficient for the 

positively-charged Arg guanidinium group to reach the aqueous interface, causing also 

the peptide to alter its center of mass. The rotation angle for GW3,21ALP23-R14 is well 

defined with a sharp maximum (Figure 8D), and indeed is very close to that of 
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GW5,19ALP23-R14 obtained by CG MD (Vostrikov et al., 2010b). The CG-MD 

simulations show a single orientation of GW3,21ALP23-R14 in the membrane, with a tilt 

of ~36° in DLPC and ~25° in DPPC, in agreement with the experimentally observed 

sensitivity of the peptide to membrane thickness. 

On the other hand, GW3,21ALP23-R12 adopts a bimodal distribution in DLPC (Figure 8), 

with C- and N-terminal peptide center-of-mass shifts and Arg snorkeling orientations 

displaying similar populations. The behavior resembles that of GW5,19ALP23-R12 in 

DOPC or DPPC, although the distributions are now narrower and better defined when the 

tryptophans are farther removed from the arginine. While CG MD reports two 

orientations of GW3,21ALP23-R12, it can be seen from the intensities of the rotation plot 

(Figure 8C) that one of the rotation angles is more prevalent. This particular population, 

corresponding to arginine snorkeling toward the N-terminal, is the one observed by 2H 

NMR (see Discussion). Considering that this CG model does not reproduce the known 

preference of arginine residues to snorkel N terminally (Vostrikov et al., 2010b), we 

would expect increased preference for N terminal snorkeling. The tilt of GW3,21ALP23-

R12 is measured from the simulations to be ~35° in DLPC and ~28° in DPPC. Both of 

the W3,21 peptides induce deformations in the bilayer through the arginine snorkeling, and 

allow limited water access, as previously observed in GW5,19

In order to probe experimentally the peptide asymmetric position in lipid bilayers, we 

have measured intrinsic Trp fluorescence (Figure 9), a notably sensitive indicator of the 

environment polarity (Lakowicz, 2006). The interpretation of fluorescence data is 

ALP23-R12 and -R14 

(Vostrikov et al., 2010b). 
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complicated by the presence of two tryptophans in GWALP23 peptides. Qualitative 

comparisons indicate that the emission maximum (344 nm) is similar for GW3,21ALP23 

itself and the –R12 analog in DLPC, but some 3 nm higher for the –R14 analog, 

suggesting that the latter peptide adjusts its transverse position for R14 to reach toward an 

aqueous phase, similar to CG MD observations (Figure 9B). The bimodal distribution, 

observed by CG MD for GW3,21ALP23-R12, would suggest little net peptide 

displacement, on average, in agreement with the fluorescence results. In thicker DOPC 

membranes GW3,21ALP23 yields λmax of 340 nm, while both the –R12 and –R14 

derivatives exhibit much higher values (347 and 349 nm, respectively), which approach 

λmax

The full width at half maximum (FWHM) for the fluorescence emission provides 

additional insight into the peptide behavior, as peptide “lifting” with respect to the lipid 

bilayer center would essentially move one Trp deeper into the bilayer, while transferring 

the other one to more polar media. The net result would be an expected broadening of the 

spectra. Indeed the FWHM values (Figure 9C) suggest heterogeneous environments for 

the Trp residues in GW3,21ALP23-R(12 or 14) peptides, in comparison with the native 

sequence when no Arg is present. Such behavior is particularly manifest in DOPC, where 

the FWHM for both Arg-containing peptides is ~5 nm larger than for the parent 

GW3,21ALP23. For comparison, a CG MD simulation of GW3,21ALP23-R14 in DLPC 

shows an asymmetric distribution of the Trp residues, suggesting “lifting” of the peptide, 

along with bilayer deformation to accommodate water access to the R14 residue in the 

tilted peptide (Figure 9D). 

 of Trp in water (Figure 9A). 
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5.5 Discussion 

Previously reported substitutions of Leu to Arg at position 12 or 14 in the model 

GW5,19ALP23 sequence had dramatic consequences for the peptide orientation: the R14 

variant remained transmembrane with a larger tilt angle in a different direction, while the 

R12 analogue populated multiple states with respect to a DOPC bilayer membrane. Here 

we have examined structurally isomeric GW3,21ALP23-R12 and –R14 peptides, with the 

aim of elucidating the reasons for such behavior. Remarkably, both of the new sequences 

adopt well-defined transmembrane orientations, contrasting sharply with multiple 

populations that were observed for GW5,19ALP23-R12. The transmembrane topography 

of GW3,21ALP23-R12 indicates that a single arginine residue indeed can be tolerated in 

the central position of the peptide sequence, under certain conditions, although not within 

GW5,19ALP23-R12. A notable structural feature of GW5,19ALP23-R12 is the spatial 

arrangement of the Trp and Arg side chains. With the large W5, R12 and W19 side 

chains all projecting from the same face of an α-helix, the R12 guanidinium group is 

effectively sandwiched between the two bulky aromatic groups of tryptophan. Removal 

of this motif by shifting the Trp residues from W5,19 to W3,21 is sufficient to “rescue” the 

arginine from a tryptophan “cage.” Furthermore, with GW3,21ALP23-R14, the Trp and 

Arg side chains again project from the same side of a helix; but now the increased 

spacing between the Trp residues effectively enlarges the cage, apparently allowing 

sufficient access of Arg to a polar environment, such that the peptide once again can 

adopt a major transmembrane orientation. 
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Both approaches—opening or enlarging the “cage”—seem to work fine in lipid bilayers 

of different thickness, a noteworthy feature here because the decrease of lipid acyl chain 

length alone did not promote formation of a dominant state for GW5,19ALP23-R12. 

Indeed, the analysis of the GW3,21ALP23-Arg orientations suggests that in these 

sequences the R12 or R14 guanidinium group can reach the aqueous phase by 

preferentially adjusting the magnitude and direction of the helix tilt. Due to an arginine 

residue being close to the peptide center, Arg side-chain snorkeling to the surface 

requires large tilt angles, which indeed were deduced from the solid-state NMR spectra 

(Figure 6, Table 3). The tilt angles are largest for GW3,21ALP23-R12, presumably due to 

the truly central location of the arginine. Notably, for this peptide the tilt magnitudes do 

not differ significantly among the different lipid bilayer membranes, suggesting that 

alternative mechanisms of adaptation take place. It is important to note that although the 

major driving force defining the tilt of GWx,y

The situation is somewhat different for the GW

ALP23-Arg peptides arises from the Arg 

residue, the anchoring Trp residues also contribute. Tryptophans have preferences for the 

membrane-water interface, and their displacement away from this region imposes a 

penalty on the system. It is possible that the maximum observed tilt value of 30° may 

approach an upper limit for a 23-residue peptide with single Trp anchors near each end, 

and that further adaptation is therefore achieved by translating the peptide along the 

bilayer normal (Krishnakumar and London, 2007; Vostrikov et al., 2010b). 

5,19ALP23-R14 and GW3,21ALP23-R14 

peptides, which exhibit large tilt angles only for the thinner lipid bilayer membranes. 

Unlike GW3,21ALP23-R12, the R14 peptide tilt magnitudes do scale with the lipid bilayer 
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thickness, displaying values of 15-25°. R14 is located closer to the peptide C-terminus; 

however, due to the helix geometry dictating that all of the Cα-Cβ

It is intriguing that the Arg-containing analogues of GW

 bond vectors point 

toward the N-terminus, the R14 side chain has to reorient to enable its snorkeling toward 

the C-terminus. It follows from the identical tilt directions of both –R14 peptides that the 

responses are similar, irrespective of which helix face is occupied by the Trp residues. 

The strikingly identical rotation angles also imply that oscillating motion around the 

peptide helix axis would be highly restricted, and therefore does not average the NMR 

observables for these particular peptides. 

x,yALP23 display prominent 

backbone CαD signals at selected alanine positions. Although Ala-d4 labels have been 

used routinely for many experiments, backbone Cα-D resonances nevertheless have 

generally not been observed for WALP-like peptides, except when Pro or Arg is present 

in the sequence (Thomas et al.; Vostrikov et al.). Here we have employed the 

orientational constraints from these additional signals together with the Ala CβD3 

constraints to deduce the orientations of the peptides. Interestingly, we deduced 

somewhat different dynamic descriptions of these two groups, namely a somewhat higher 

Szz value for fitting the backbone CαD signals. As noted earlier, little variation from the 

average orientation is expected for GWx,yALP23-Arg peptides. The high Szz values 

(Table 3) further attest to this display of minimal peptide dynamics. The apparent 

variations in order parameter between the Ala methyl and backbone groups may suggest 

that more motion is allowed for the β-carbons. Additionally, a higher apparent Szz value 

may reflect actual differences in the quadrupolar coupling constant for aliphatic Cα-D 
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groups. While the value of 167±1 kHz has been reported for methyl groups in proteins 

(Mittermaier and Kay, 1999), a somewhat larger value of 171±3 kHz has been observed 

for deuterated Cα sites (Sheppard et al., 2010).  

The high values for the Szz order parameter indicate that the motion of the GWx,yALP23-

Arg peptides in lipid bilayer membranes is restricted. To provide further estimates of the 

individual components of this motion, we have completed an explicit dynamics analysis 

of GW3,21ALP23-R12 in DLPC. The calculations were performed in two ways: first, 

using only the side-chain CβD3 ∆νq values; and second, using a full combination of eight 

side-chain and five backbone CαD backbone signals, using the same Szz

( ) ( )

CDCD

N
q

N
q

NN
RMSD CDCD

+

∆∆⋅+∆∆

=
∑∑

3

3

22 3.0 υυ

 = 0.88 for both. 

In the latter case RMSD was calculated according to: 

 

In the above equation, ∆∆νq is the difference between the observed and calculated values, 

and N is the number of data points. We scaled the error associated with the backbone 

signals by the factor of 0.3 to account for uncertainty due to the Cα-2

The results of the explicit dynamics analysis (Figure 10) show widespread agreement 

with the GALA analysis. Irrespective of whether or not the backbone signals are included 

in the calculations, the overall orientation and dynamics are nearly identical. Small 

oscillations about the average τ

H peak broadening. 

0 and ρ0 values give the best fits (Figure 10), consistent 

with an order parameter not much below 0.88. Importantly, considering explicit dynamics 
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does not lower RMSD or change the deduced values of τ0 and ρ0 when the CαD data are 

included. Furthermore, the semi-static GALA analysis of either backbone or side-chain 

signals is sufficient to determine the τ0 and ρ0 values for the peptides considered here. 

While the reasons for “unmasking” of selected backbone resonances are incompletely 

understood, we note that a major enhancement of the Cα-D signal intensity at β=0°, 

accompanied by line narrowing, occurs over a fairly small frequency range of ∆νq

The CG MD simulations offer an opportunity for detailed views of the systems under 

examination. Of major importance is the observation that the simulations closely 

reproduce the peptide orientations deduced from solid-state NMR. Furthermore, CG MD 

offers valuable insights into significant other aspects, such as peptide lifting from the 

center of the lipid bilayer, membrane deformations and water defects. For both arginine 

containing peptides, a thinning of ~3 Å was observed in simulations (relative to 

unmodified GW

 

between 95 and 115 kHz, corresponding to angle θ of 38.5° ± 1.5°. Outside of this range, 

the backbone signals are either not detectable or are observed only as broad, low-intensity 

peaks for samples oriented with β=90° and not β=0°. 

3,21ALP23), increasing the number of contacts between the peptide and 

phosphate and water particles. In the case of GW3,21ALP23-R12, CG MD predicts a 

multi-state response of the system, which was not detected by solid-state NMR. Detailed 

yet unknown features of the system dynamics, spectral overlap or equilibrium between 

the states all could contribute to one population not being detected. Nevertheless, the 

reduced signal/noise ratio for GW3,21ALP23-R12 could suggest the presence of minor 

population(s), possibly in fast exchange with the major state. 
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While the solid-state NMR experiments do not provide direct information on peptide 

transverse shifts in the membrane, such data can be obtained by alternative techniques. 

Nevertheless, the design of GWALP23 peptides means that the overall fluorescence 

spectra will result from superposition of contributions from the individual tryptophans. 

For this reason, the spectral comparisons among the different peptides may be more 

informative than any one individual spectrum. In this context, the Arg-containing 

peptides exhibit a red shift in the Trp emission λmax, indicating a more polar environment 

for at least one of the two Trp residues. The increase in the spectral width further 

indicates heterogeneous environments of the two tryptophans, as expected for a peptide 

positioned asymmetrically in the membrane. In addition to the red shift, the more polar 

exposed Trp may also have a higher quantum yield, which could then cause a shifting of 

the “average” λmax

The single, central, Arg residue in GWALP23-R12, acetyl-

GGALW5LALALAR12ALALALW19LAGA-amide displayed multi-state behavior and 

induced the peptide to exit from a bilayer membrane of DOPC (Vostrikov et al., 2010b). 

In the present article, we report that the Arg can be “rescued,” with restoration of a stable, 

tilted transmembrane orientation for the peptide when the Trp anchors are moved from 

residues (5, 19) to residues (3, 21). The results reinforce the concept of multiple 

mechanisms by which Arg can “escape” or exit from the bilayer center. Coarse-grained 

molecular dynamics simulations and solid-state NMR experiments show substantial 

agreement on these principles—although a difference remains to be resolved (with future 

work) concerning whether only one or possibly two peptide rotation and Arg snorkeling 

 , in addition to broadening the spectra. 
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states remain dominant for GW3,21ALP23-R12. The corresponding R14 analogues, 

regardless of having Trp anchors at (5, 19) or (3, 21), display single-state transmembrane 

behavior in DLPC, DMPC and DOPC; as deduced by both NMR experiment and CG MD 

simulation, with a tilt magnitude that scales with the bilayer thickness. The relative 

positions of the Trp and Arg residues are therefore crucial for the detailed protein/lipid 

interactions, as reflected by the properties of the transmembrane helices. 
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5.8 Tables 

Table 1. Peptide sequences for GWALP23 and derivatives.* 

Peptide Sequence 

GW5,19 GGALWLALALALALALALWLAGA ALP23 

GW5,19 GGALWLALALARALALALWLAGA ALP23-R12 

GW5,19 GGALWLALALALARALALWLAGA ALP23-R14 

GW3,21 GGWLALALALALALALALALWGA ALP23 

GW3,21 GGWLALALALARALALALALWGA ALP23-R12 

GW3,21 GGWLALALALALARALALALWGA ALP23-R14 

 

*Sequence positions 12 and 14 are underlined, for emphasis. The parent GWALP23 
sequence included tryptophans (W) at positions 5 and 19. 
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Table 2. Alanine CβD3 and CαD quadrupolar splitting (kHz) for selected GWx,yALP23-Rz 
peptides incorporated in DLPC, DMPC or DOPC. 

 
Peptide 

 
Lipid 

CβD3 position 
5 7 9 11 13 15 17 19 

GW3,21ALP23-R12 
DLPC 30.4 29.3 6.8 7.9 29.8 27.6 35.1 43.0 
DMPC 29.1 28.1 6.4 6.4 30.3 30.3 35.1 41.8 
DOPC 26.8 26.8 7.2 6.4 29.6 26.6 35.8 38.2 

GW3,21ALP23-R14 
DLPC 37.7 33.1 22.2 24.7 7.6 7.6 28.9 24.2 
DMPC 26.8 28.1 13.2 20.7 12.2 0.7 27.5 21.0 
DOPC 17.9 26.6 9.9 18.4 10.6 1.2 25.4 17.1 

GW5,19ALP23-R14 
DLPC − 33.0 21.1 25.7 9.3 6.8 30.8 − 
DMPC − 30.6 14.1 21.3 10.3 3.7 29.1 − 
DOPCa − 26.6 5.5 16.0 13.1 1.3 28.0 − 

  CαD position 
5 7 9 11 13 15 17 19 

GW3,21ALP23-R12 
DLPC 106  110 169 110  89  
DMPC   114  113    
DOPC   117  112    

GW3,21ALP23-R14 
DLPC   103   114 103  
DMPC   106   94 102  
DOPC   100   84 97  

GW5,19ALP23-R14 
DLPC −  107 106 115 148 106 − 
DMPC −  100 94 111 130 104 − 
DOPC −  92 82 105  96 − 

 

a. Data from (Vostrikov et al., 2010b). 

b. Entries left blank were not observed in the 2H NMR spectra. 
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Table 3. GALA fit results* 

 

Peptide GALA fit results 

Szz τ, deg ρ, deg RMSD, kHz 

CβD3 CαD CβD3 CαD 

DLPC  
GW3,21ALP23-R12 0.84 0.94 29.7 225 1.1 8.8 
GW3,21ALP23-R14 0.82 0.94 26.0 262 1.2 8.3 
GW5,19ALP23-R14 0.83 0.97 26.7 260 1.6 6.4 
DMPC  
GW3,21ALP23-R12 0.84 – 29.3 223 1.4 – 
GW3,21ALP23-R14 0.83 0.99 20.3 253 1.1 11.0 
GW5,19ALP23-R14 0.78 0.91 25.3 252 1.3 6.6 
DOPC  
GW3,21ALP23-R12 0.87 – 26.3 223 1.4 – 
GW3,21ALP23-R14 0.89 1.0 15.3 253 1.2 15.5** 
GW5,19ALP23-R14 0.93 1.0 15.0 247 0.9 12.9** 

 
*Alanine methyl group 2H quadrupolar splittings were used to obtain the apparent tilt and 
rotation angles as well as Szz. Backbone quadrupolar waves were calculated using τ and ρ 
obtained from the methyl group fits, and using backbone Szz as the only free parameter. 
Angles ε// and ε┴ (van der Wel et al., 2002) were fixed at 59.4° and –43° respectively for 
CβD3; the corresponding values for CαD were 122.0° and 55°.  
**RMSD falls if the “apparent” Szz for backbone groups is allowed to rise above 1.0. 
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5.9 Figures 

Figure 1. Helical wheel projections of GWx,yALP23-Rz: A. X = 5, Y = 19; B. X = 3, Y = 
21. (Z = 12 or 14 both in A and B). Trp residues are shown in green, and 2H-labeled 
alanines are grey. The possible locations for a single Arg are blue, with only one Arg 
being present in each peptide. When residues 12 and 14 are not Arg, they are Leu; see 
also Table 1. 
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Figure 2. Deuterium NMR spectra of GW3,21ALP23-Rz peptides labeled at alanines 17 
(full deuteration) and 19 (partial), incorporated in: A. DLPC (Z = 12); B. DLPC (Z = 14). 
C. DLPC, DMPC and DOPC (top to bottom; Z = 12); or D. DLPC, DMPC and DOPC 
(top to bottom; Z = 14). Sample orientation is β=90° (A and B) or β=0° (C and D). Note 
that the kHz scale is expanded by a factor of two in A and B. 
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Figure 3. Deuterium NMR spectra of GW3,21ALP23-R12 labeled at positions 13 (full 
deuteration) and 15 (partial deuteration) in DLPC. A. Ala-d4 label; B. Ala-d3 label. Note 
that two methyl signals at ~28 kHz are not resolved. 
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Figure 4. GALA quadrupolar wave plots for methyl and backbone groups of 
GW3,21ALP23-Rz and GW5,19ALP23-R14 in DLPC. A. Methyl signals for Z = 12 (red), Z 
= 14 (blue) and GW5,19ALP23-R14 (green). B. Backbone signals for Z = 12 (red), Z = 14 
(blue) and GW5,19ALP23-R14 (green). Alanine positions are indicated. Order parameter 
was 0.82-0.84 for methyl groups and 0.94-0.97 for backbone groups (Table 3). 

 

 



 

232 

Figure 5. GALA quadrupolar wave plots for methyl groups of GW3,21ALP23-Rz and 
GW5,19ALP23-R14 in: A. DMPC; B. DOPC. Z = 12 (red), Z = 14 (blue) and 
GW5,19ALP23-R14 (green).  
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Figure 6. RMSD contour plots for GWx,yALP23-Rz in DLPC (red), DMPC (green) and 
DOPC (blue). A. X = 3, Y = 21, Z = 12; B. X = 3, Y = 21, Z = 14; C. X = 5, Y = 19, Z = 
14. Contours are plotted at 1, 2 and 3 kHz.  
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Figure 7. Molecular models of tilted GWx,yALP23-Rz in DLPC. 
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Figure 8. CG MD simulations. A. Displacement of GW3,21ALP23-R12 relative to DLPC 
bilayer center. B. Same as A, but for GW3,21ALP23-R14. C. Distribution of rotation 
angles of GW3,21ALP23-R12 in DLPC. D. Same as C, but for GW3,21ALP23-R14. 
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Figure 9. Steady state fluorescence. A. Fluorescence spectra of GW3,21ALP23-Rz in 
DLPC; B. Emission maxima; C. Full width at half maximum values. Grey line in A is 
tryptophan in water. Other colors are consistent through panels A-C. WT refers to the 
host GW3,21ALP23 peptide without arginine substitutions. Panel D illustrates a CG MD 
simulation result for GW3,21ALP23-R14 in DLPC, suggesting not only that W3 is more 
buried than W21 but also that membrane deformation allows water access to R14 in the 
tilted peptide. 
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Figure 10. Explicit dynamics analysis of GW3,21ALP23-R12 in DLPC, showing the 
standard deviations of Gaussian distributions (A, B) and their centers (C, D). Analyzed 
data included either both CβD3 and CαD signals (A, C) or CβD3 signals alone (B, D). 
Dashed lines in A and B indicate the best fit στ and σρ, which were used for generating 
the plots in C and D respectively. Color scale is identical between A and B (0 to 28 kHz) 
and between C and D (0 to 31 kHz). Color increments are at 1 kHz; solid line in C, D is 
drawn at 5 kHz level. Best fits (τ0, στ, ρ0, σρ) are (31, 4, 224, 6) for combined CβD3 + 
CαD set and (30, 7, 224, 11) for CβD3 set alone. 
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5.10 Supporting Information 

Figure S1. Analytical HPLC of GW3,21ALP23-Rz. 
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Figure S2. MALDI mass spectra of GW3,21ALP23-Rz, containing two 2H-labeled alanine 
residues. 
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Figure S3. Difference spectra between double and single labeled peptides were used to 
assign the overlapping peaks. Sample is GW3,21ALP23-R12 in DLPC, β=90°. 
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Figure S4. Circular dichroism of GW3,21ALP23 and -ArgZ peptides in DLPC. Black: 
native sequence; Red: Z = 12; Blue: Z = 14. 
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Figure S5. Deuterium NMR spectra of GW3,21ALP23-R12 in DLPC, DMPC, DOPC. 

Sample orientation is β=0°. 
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Figure S6. Deuterium NMR spectra of GW3,21ALP23-R14 in DLPC, DMPC, DOPC. 
Sample orientation is β=0°. 
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Figure S7. Deuterium NMR spectra of GW5,19ALP23-R14 in DLPC, DMPC, DOPC. 
Sample orientation is β=0°. 
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CONCLUSIONS 

Membrane proteins and lipids are major players in a multitude of vital processes for the 

living cell, such as signal transduction, cell metabolism and transport. Despite their 

importance, relatively little is known about their fundamental interactions between 

protein domains and the lipid bilayer membrane. In this context, model systems may 

provide a relatively convenient means for the testing of specific hypotheses. 

Nevertheless, some model systems may suffer particular limitations, an example being 

the extensive dynamics and nonsystematic behavior of peptides in the original WALP 

series. Even seemingly “simple” peptide sequences may exhibit complex behavior, 

highlighting the importance of model systems for fundamental understanding (Chapter 

1). The novel design of the GWALP23 sequence, with a single tryptophan residue near 

each terminus, proved to be highly advantageous for the investigations of diverse 

phenomena, such as anchoring amino acids (Chapter 2), hydrophobic matching (Chapter 

4) and the interaction of a lone charged residue with a lipid bilayer (Chapters 3-5). In this 

way, model systems prove to be powerful tools for probing important aspects of the 

complex interplay between lipids and proteins. Future applications of lessons learned 

from designed sequences for the understanding of biological systems is the ultimate goal. 



 

 

 

 

 
 
 
 

 

 

 
 

 


