
University of Arkansas, Fayetteville
ScholarWorks@UARK

Theses and Dissertations

8-2016

The Large-Scale Synthesis and Asymmetric
Hydrosilylations of CuIPhEt, a C2-Symmetric N-
Heterocyclic Carbene
Elizabeth Suzanne Spahn
University of Arkansas, Fayetteville

Follow this and additional works at: http://scholarworks.uark.edu/etd

Part of the Organic Chemistry Commons

This Dissertation is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by
an authorized administrator of ScholarWorks@UARK. For more information, please contact scholar@uark.edu, ccmiddle@uark.edu.

Recommended Citation
Spahn, Elizabeth Suzanne, "The Large-Scale Synthesis and Asymmetric Hydrosilylations of CuIPhEt, a C2-Symmetric N-Heterocyclic
Carbene" (2016). Theses and Dissertations. 1693.
http://scholarworks.uark.edu/etd/1693

http://scholarworks.uark.edu?utm_source=scholarworks.uark.edu%2Fetd%2F1693&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F1693&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F1693&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/138?utm_source=scholarworks.uark.edu%2Fetd%2F1693&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/etd/1693?utm_source=scholarworks.uark.edu%2Fetd%2F1693&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholar@uark.edu,%20ccmiddle@uark.edu


The Large-Scale Synthesis and Asymmetric Hydrosilylations of CuIPhEt, 
a C2-Symmetric N-Heterocyclic Carbene 

 
 
 

A dissertation submitted in partial fulfillment 
of the requirements for the degree of 
Doctor of Philosophy in Chemistry 

 
 
 

by 
 
 
 

Elizabeth Suzanne Spahn 
University of Arkansas 

Bachelor of Science in Chemistry 2010 
 
 

August 2016 
University of Arkansas 

 
 

This dissertation is approved for recommendation to the Graduate Council. 
 
 
 
 
__________________________________ 
Dr. Matt McIntosh 
Dissertation Director 
 
 
 
 
___________________________________            ____________________________________ 
Dr. Neil Allison     Dr. Feng Wang 
Committee Member     Committee Member 
 
 
 
 
__________________________________ 
Dr. Bill Durham 
Committee Member  



Abstract 

 CuIPhEt is a C2-symmetric N-heterocyclic carbene catalyst used in the asymmetric 

hydrosilylation of a variety of prochiral ketones with good yields and selectivities. The large-

scale, five-step synthesis of this carbene has been devised. The second step of the synthetic plan 

includes a double asymmetric hydrogenation of a 1,1-diaryl alkene—a traditionally difficult 

transformation. The procedure for the use of CuIPhEt in asymmetric hydrosilylations has been 

optimized and used on both the originally published substrate scope and new compounds. This 

protocol for the hydrosilylation has been applied in a 10 g reduction to create an intermediate for 

use toward the total synthesis of antascomicin B. A class of 2-ketoazoles was synthesized for use 

in asymmetric hydrosilylations, but only poor selectivities were observed.  
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Introduction 

 The field of organic synthesis is nearly two centuries old and has provided countless 

pharmaceuticals, agrochemicals, and various other necessary compounds. Despite the 

contributions of the field to the everyday lives of people, chemical syntheses are often vilified for 

depleting natural resources and creating large amounts of waste. 1 Some shortcomings have been 

addressed as more elegant synthetic methodologies have been developed over time. In order to 

set a target for which to aim, many efforts have been made to clearly outline a perfect total 

synthesis. 

 Hendrickson was one of the first chemists to attempt to explicitly state the parameters of 

an ideal total synthesis. 2 In a time where organic synthesis was developing quickly, he defined 

the archetype to be the following:  

“The ideal synthesis creates a complex skeleton … from available small 
molecules so functionalized as to allow constructions linking them together 
directly, in a sequence only of successive construction reactions involving no 
intermediary refunctionalizations, and leading directly to the structure of the 
target, not only its skeleton but also its correctly placed functionality.” 
 

 Trost first elaborated on the idea of atom economy, in which an ideal reaction would 

consist of a simple addition where all other reagents are needed in only catalytic amounts. 3 He 

notes that cross couplings, cycloadditions, and rearrangements are among some examples of 

atom economical reactions. Syntheses that require multiple protecting groups, excess equivalents 

of reagents, and stoichiometric metal catalysts leave room for improvement. 

 Wender introduced step economy to the total organic syntheses of complex natural 

products. 4 In one sense, step economy can be implemented by creating new reactions to access 

the desired complicated targets in fewer total steps. Avoiding functional group additions and, 

later, removals is an easy target for step economy. Another technique in step economy that is 
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being used by medicinal chemists with growing frequency is function-oriented synthesis (FOS). 

The key tenet to FOS is that the desired biological activity of these structures can be mimicked 

or even improved through scaffold modifications. Simpler targets with similar functionalities or 

easily accessible derivatives of target compounds can be used in FOS. 

 Redox economy, the avoidance of unnecessary refunctionalizations, was familiarized by 

Baran. 5 It is an effort to reduce the number of corrective or non-strategic (non-scaffold building 

or stereochemistry setting) oxidation and reduction steps. By fostering the redox economy in a 

synthetic plan, the overall atom and step economies are often increased as well. Also, traditional 

redox reactions tend to be difficult to scale up for industrial standards and lack chemoselectivity. 

Some strategic redox reactions, such as the Noyori hydrogenation, affect molecular scaffolds by 

installing stereocenters in economical ways and are not considered negative to the redox 

economy. 

 In 2010, Baran attempted to combine all of the above goals of an ideal synthesis into one 

quantifiable statistic. 6 He proposed the equation for the ideality of a synthetic plan to be the 

number of construction and strategic redox reaction divided by the total number of steps. 

Construction reactions are those that form the skeletal carbon-carbon and carbon-heteroatom 

bonds of the target compound. Strategic redox reactions are those that install the stereochemistry 

of the final molecule. Every other type of reaction, including functional group manipulations and 

interconversions, would negatively impact the percent ideality. 

%ideality =
#construction reactions + #strategic redox reactions

total #steps ×100 

 The Gawley lab developed CuIPhEt, an N-heterocyclic copper carbenoid. Before the 

work in this dissertation, it was synthesized on a small scale in 13% yield, due to a traditional 

resolution in the second step. 7 Now, a strategic reduction, specifically a double asymmetric 



 3 

hydrogenation, is employed in lieu of the resolution to give the catalyst on a much larger scale in 

52% overall yield (Scheme 1). 8 Technically, this new linear synthesis has 100% ideality 

according to Baran’s definition; although, some steps use stoichiometric amounts of reagents that 

do not contribute to the skeletal structure, which is not completely atom economical. 

 

Scheme 1. Synthetic outline of CuIPhEt 

 CuIPhEt is an asymmetric hydrosilylation catalyst that gives the desired silyl ether in 

high yields and selectivities (Scheme 2). 9 In an asymmetric hydrosilylation, a prochiral ketone is 

reduced in a stereoselective manner to afford a protected alcohol in one step. While protecting 

groups are ideally avoided for both atom and step economy, they are often times necessary. This 

reaction at least eliminates one of the extra steps involved in protecting group manipulations 

while installing a stereocenter with a strategic reduction reaction. Depending on the silane 

chosen, the protecting group can often be cleaved upon work-up. 

N N

Me

Me

Me

Me

Me

Me

Cu
Cl

NH2

+
5 steps

52% yield
single enantiomer
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Scheme 2. General hydrosilylation using CuIPhEt 

 The McIntosh group developed a new strategy for obtaining 2-ketoazoles (Scheme 3). 10 

The two-step synthesis does employ a fluorenyl leaving group, which despite its large 

appearance, weighs less than a tosyl group. Procedures do exist for converting the final fluorene 

byproduct back into the active 9-bromofluorene starting material, which helps increase the atom 

economy of the system. 

 

Scheme 3. McIntosh two-step formation of azolyl ketones 

 Many azoles are already recognized as commercially available, biologically relevant 

compounds. Modifications to these existing scaffolds could create new classes of more effective 

and/or anti-resistance drugs. Using the chemistry in Scheme 3, some of these pharmaceuticals 

could easily be modified without having to completely reinvent the synthetic plans (Scheme 4). 

In fact, fluconazole, an antifungal, has been modified using this chemistry as an example of a 

step economical FOS. 
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Scheme 4. Representative pharmaceutical azoles suitable for McIntosh keto-functionalization 

By considering the atom, step, and redox economies as well as the percent yield and 

ideality, one can begin to evaluate the elegance of a total synthesis. Very few syntheses are the 

epitome of perfection, but new techniques are allowing for the general improvement of synthetic 

organic chemistry. The various definitions of organic economies are complementary to each 

other and prove to be good guidelines for planning and assessing syntheses. While most chemists 

would agree that striving for these ideals is worthwhile, there will always be debates on the best 

ways to achieve it. Rarely are completely ideal syntheses attainable in reality. There are some 

cases in which undesirable reactions cannot be avoided with the current set of available chemical 

methodologies. 
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2. The Asymmetric, Large Scale Synthesis of CuIPhEt 

A. Introduction 

The importance of the field of N-heterocyclic carbene (NHC) catalysis has been 

established over the past two decades due in large part to the practical synthetic applications in 

numerous bond forming reactions. 1,2 Many NHCs have proven to be successful organometallic 

ligands with several attributes in common with phosphine ligands. 3  

A carbene is a neutral divalent carbon atom with two unshared valence electrons. They 

can exist as triplets with paramagnetic valence electrons or as singlets with spin-paired valence 

electrons. In general, the triplet or diradical carbene is considered the ground state, whereas the 

singlet carbene is considered the excited state with greater reactivity. The energy difference of 8 

kcal/mol between the two in hydrocarbon carbenes is explained by Hund’s rule, which says that 

high-spin states are of the lowest energies. 4   

Although carbenes were hypothesized as intermediates by Buchner and Curtius in 1885, 5 

their existence was not confirmed until 1968 by Wanzlick and Schönherr and, independently, 

Öfele. 6,7 When Arduengo synthesized the first isolable and crystalline NHC in 1991, 8 the 

interest of the scientific community was piqued. This appeal has not yet waned; over the past 

year, nearly 100 publications regarding NHCs were published in the Journal of the American 

Chemical Society alone. 

NHCs are applicable across a wide variety of catalyzed organic reactions. Some of the 

most successful applications of NHC transition metal catalysis have been Heck and Suzuki type 

palladium cross couplings, olefin metathesis, arylations, alkylations, hydrogenations, and 

hydrosilylations.9 
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There are two major classes of imidazole N-heterocyclic carbenes—those originating 

from imidazoliums and those from imidazoliniums. The imidazolium-derived category features a 

singlet carbene stabilized by two adjacent π-donating nitrogens in an unsaturated, aromatic ring. 

The carbene p-orbital is therefore available to act as a π-acid and exhibits strong backbonding 

when coordinated to a metal. The imidazolinium set contains NHCs with saturated rings that lack 

aromaticity, so the carbene is more likely to exist in the triplet state, which decreases the Lewis 

acidity of the carbene and making the ligands more labile. 10 The saturated backbone does, 

however, lend itself to two possible stereocenters, which upon functionalization may create a 

chiral ligand. Exploitation of the structural and electrical properties inherent to each class allows 

for efficient catalyst design. 

B.  Background and Significance 

One of the most explored and applied imidazolium NHC ligands is the air stable N,N’-

bis(2,6-diisopropylphenyl)imidazol-2-ylidine (IPr). The CuIPr NHC catalyst has been applied to 

the catalysis of many reactions including conjugate reductions of α,ß-unsaturated ketones and 

esters, aziridinations of olefins, cyclopropanations of terminal alkenes, olefinations, and 

hydrosilylations of ketones (Scheme 1). 11 
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Scheme 1. Selected applications of the CuIPr NHC catalyst 

 The X-ray crystal structure of CuIPr 1.1 emphasized the close proximity of the isopropyl 

methyls of the IPr imidazolium to the copper (3.840 Å) and chlorine (~4.8 Å) atoms. Analysis of 

1.1 inspired the design of the IPhEt ligand (I for imidazolium, PhEt for phenethyl) via 

incorporation of a stereogenic center at the location of the isopropyl methynes to induce a chiral 

pocket surrounding the catalytic reactive site. If an asymmetric compound could be synthesized 

to preserve the synthetic flexibility and stability of the achiral CuIPr, it could be a valuable 

contributor to the field of NHC catalysts. The crowded chiral pocket of CuIPhEt, an NHC 

organometallic catalyst designed to meet every criterion set above, is apparent in its space-filling 

model 1.2. A vast number of C2-symmetric NHCs have been reported throughout the brief 

history of the field; 12–19 however, before the IPhEt ligand, none contained a stereocenter γ to the 

imidazolium. 
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Figure 1. 3D structures of CuIPr and CuIPhEt 

The original synthetic route to CuIPhEt was accomplished in five steps (Scheme 2). 20 

The synthesis begins by employing Friedel-Crafts type chemistry with the dialkylation of 

toluidine 2.2 with excess phenylacetylene 2.1 originally laid out by Sartori. 21 The resulting diene 

2.3 was hydrogenated to give a statistical mixture of racemate and meso-2.4. Initially, a variety 

of asymmetric reductions were attempted, but none proved immediately successful, so the 

mixture of 2.4 was separated by stacked injection onto a semipreparative chiral stationary phase 

SFC to give a total of about 200 mg of each stereoisomer. Subsequent condensation of (S,S)-2.4 

with glyoxal gave the (S,S,S,S)-diimine 2.5 in quantitative yield upon recrystallization of the 

reaction mother liquor. Slight modifications were made to the Markó procedure for the 

cyclization to the (S,S,S,S)-imidazolium 2.6 with paraformaldehyde and zinc chloride. 22 Finally, 

deprotonation with an alkoxide base gave the carbene, which was metallated in situ to give a 

single enantiomer of the copper carbenoid CuIPhEt in 13% yield through the linear synthesis. 
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Scheme 2. First synthetic route to CuIPhEt 

C. Results and Discussion 

While the initial synthesis did afford enantiopure CuIPhEt, it was far from ideal. The 

hydrogenation in the second step greatly diminished the possible yield of the catalyst by splitting 

half of the yield to the meso diastereomer, which has no application in asymmetric catalysis. 

Also, the synthesis was carried out on a fairly small scale. 
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1. Asymmetric Hydrogenation 

In order to optimize the reduction of diene 2.3, an asymmetric hydrogenation method was 

needed. Disubstituted terminal alkenes are a challenging substrate class for asymmetric 

hydrogenation compared to the more widely studied trisubstituted olefins. 23–26 Although Marks 

and coworkers reported the asymmetric hydrogenation of 2-phenyl-1-butene in 98:2 er at –80 °C 

in 1992, the chiral organosamarium complex they used did not find further application due to the 

difficult preparation and high sensitivity of this catalyst system (3.1). 27,28 Iridium complexes 

based on chiral P,N ligands provided a more practical solution in this case, as they are less 

sensitive to air and moisture and are easy to handle. It was found that the enantioselectivity in the 

hydrogenation of 2-phenyl-1-butene strongly depended on the hydrogen pressure with best 

results achieved at 1 atm of H2. Under these conditions a range of 2-aryl-1-butenes was 

hydrogenated with high enantioselectivites of up to 97:3 er (3.2). 29  
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Scheme 3. Representative techniques to reduce 2-aryl-1-butenes by Marks (3.1) and Pfaltz (3.2) 

Until recently no examples of asymmetric hydrogenation of diaryl-substituted terminal 

alkenes were known. However in a combined effort the groups of Börner, Andersson, and 

Diéguez showed that excellent enantioselectivities could be obtained with substrates of this type, 

using very sterically demanding phosphite-oxazoline ligands (Scheme 4). 30  

 

Scheme 4. Asymmetric hydrogenation of a 1,1-diarylalkene by Diéguez 
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diphosphine complexes perform best with functionalized olefins bearing a coordinating group 

next to the double bond. A recent example of phenol-directed rhodium-catalyzed asymmetric 

hydrogenation of 1,1-diarylethenes was reported by Wang and coworkers (Scheme 5). 32 By 

analogy, because the amino group of diene 2.3 is a potential coordinating group, we included a 

series of rhodium-diphosphine catalysts in our study. 

 

Scheme 5. Asymmetric hydrogenation using DuanPhos 

 After initial screens with a variety of iridium catalysts with diene 2.3 and the N-acylated 

derivative did not provide both high diastereo- and enantioselectivity, we turned to rhodium 

based catalysts prepared in situ from bis(norbornadiene)rhodium(I) tetrafluoroborate and the 

corresponding P,P-chiral ligands (Figure 2). 33 The screenings for the double asymmetric 

hydrogenation were performed at 500 psi overnight with careful exclusion of air in a 96-well 

microtiter plate. 
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Figure 2. Chiral rhodium catalysts screened for the asymmetric hydrogenation  

Catalyst 2b, based on the diphosphine ligand (RC-SP)-DuanPhos developed by Zhang et 

al., 34 provided the highest dr and er of any system tested (Table 1). 
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Entry Catalyst Ligand Name meso : R,R : S,S 

1 2a (R,R)-QuinoxP* 3 : 3 : 94 

2 2b (RC,SP)-DuanPhos 1 : 0 : 99 

3 2c (P)-PipPhos 6 : 0 : 94 

4 2d (S)-Binapine 70 : 2 : 28 

5 2e (R,R)-Me-UCAP-DTBM 20 : 74 : 6 

6 2f (R,R)-Me-DuPhos 31 : 61 : 8 

7 2g SL-J005-1 4 : 0 : 96 

Table 1. Results of catalysts screened for diene reduction 

Upon identifying the Rh-DuanPhos catalyst 2b as the most selective system, we optimized the 

reaction conditions. We began by probing solvent options. Based on solvent studies (Table 2), 

methanol and ethyl acetate proved to be viable candidates for the reaction. We chose to proceed 

with methanol due to ease of use and solubility of the catalyst. In larger scale-ups, 10 vol% of 

methylene chloride was employed as a co-solvent to enhance the solubility of the starting 

materials.  

 

Me

NH2 NH2Me Me

MeOH, H2
500 psi, ON

Rh catalyst
NH2Me Me NH2Me Me

+ +

meso R,R S,S
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Solvent meso R,R S,S 

MeOH 1.2 0.2 98.6 

EtOH 5.6 0.3 94.1 

iPrOH 13.2 0.6 86.2 

TFE 33.1 1.4 65.4 

DCE 18.5 0.4 81.0 

PhCF3 4.9 0.2 94.9 

PhCl 6.1 0.3 93.6 

CyH 6.4 0.5 93.1 

PhMe 6.5 1.8 91.8 

EtOAc 3.3 0.2 96.5 

iPrOAc 4.0 0.2 95.7 

MEK 2.5 0.1 97.4 

THF 5.9 0.3 93.8 

MeTHF 6.3 0.3 93.4 

CPME 5.5 0.3 94.2 

DME 3.8 0.2 96.1 

Table 2. Solvent studies with DuanPhos at 500 psi overnight 

To further optimize the system, catalyst loading studies were performed on 0.1 M 

reactions (Table 3). Only 0.2% catalyst loading is needed to effectively reduce the starting 

material in a reaction at 500 psi overnight. Smaller loadings still exhibit high selectivity but 

conversion to product is attenuated. In practice, a catalyst loading of 0.5% was employed to 

ensure that potential catalyst poisons in the substrate lot and reaction vessel would not be as 

likely to affect the reaction. 



 18 

Load % Conversion meso R,R S,S 

5% 100.0 1.2 0.2 98.6 

2% 100.0 3.6 0.3 96.2 

1% 100.0 4.8 0.5 94.7 

0.5% 100.0 3.6 0.1 96.3 

0.3% 99.7 3.1 0.1 96.8 

0.2% 99.3 3.7 0.1 96.2 

0.1% 23.1 2.5 0.4 97.0 

.05% 9.3 2.5 1.4 96.1 

Table 3. Loading studies with DuanPhos at 500 psi overnight 

The asymmetric hydrogenation has now been conducted on over a six gram scale, with 

only small amounts of the meso diastereomer contaminating the enantiopure product (Figure 3). 

The small amounts of undesired stereoisomers are eliminated during condensation with glyoxal 

and subsequent crystallizations. 
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Figure 3. CSP-HPLC racemate/meso mixture and S,S enantiomer obtained in gram scale 
reduction. 

2. Large Scale Synthesis of CuIPhEt 

To begin the revised synthetic plan, the Friedel-Crafts dialkylation was performed on a 

larger scale (Scheme 6). P-Toluidene 6.2 was refluxed in excess phenylacetylene 6.1 in the 

presence of KSF Montmorillonite, an acidic clay, to give the diene 6.3 in 80% yield. The key to 

complete conversion to product is the careful cooling of a Dimroth reflux condenser. Aniline 6.3 

is purified via column chromatography to give a yellow solid. Multiple attempts to recrystallize 

the crude reaction mixture did not prove successful. 

To attempt to mimic the success of the screening reactions on a larger scale and 

circumvent the need for a glove box, we modified a Parr 5500 bench top reactor by removing the 

original gas relief valve and replacing it with Swagelok ® fittings to become a manifold with 

three needle valves designated as ports for N2, vacuum, and vent. The vessel was charged with a 

slurry of diene 6.3 and pre-formed catalyst in solution before quickly sealing the system from the 
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atmosphere and purging with nitrogen before beginning the hydrogenation. Under this 

procedure, no conversion to product was observed.  

Several potential problems were identified. Firstly, a catalyst poison could be present 

within the reactor. To remove any potential reactive metal traces from the stainless steel surfaces, 

10% nitric acid was boiled in the vessel until the solution remained clear. Still, no conversion 

was observed. Secondly, the rhodium metal precursor or the DuanPhos chiral ligand could have 

been oxidized from being stored outside of a glove box. Literature indicates that although the 

catalyst is bench stable, the chiral ligand is sometimes oxidized. 35 We established that both 

components of the catalyst were active by using our reagents at Merck facilities successfully, so 

the problem existed in the procedure. The catalyst and its precursors, while bench stable when 

isolated, are extremely sensitive to air when in solution. 

To accommodate this new knowledge, the Parr reactor was further modified by replacing 

the cooling loop with a Swagelok ball valve to allow for the injection of the catalyst solution 

under nitrogen. Using careful syringe techniques, the catalyst could successfully be prepared in 

an inert round bottom flask and transferred to the reactor.  

The collected diene 6.3 was approximately divided in half and hydrogenated in two 

batches to afford aniline 6.4 in near quantitative amounts. In order to maintain similar 

concentrations to the small scale screening reactions, the hydrogenation is limited to less than ten 

grams in the high-pressure Parr reactor. Future concentration studies could be attempted to 

increase this capacity. 

Aniline 6.4 was then condensed with glyoxal through overnight sonication to give the 

solid, bright yellow diimine 6.5 in 95% yield after re-concentrating and washing the filtrate three 

times. Paraformaldehyde was used in the presence of a zinc chloride and hydrochloric acid 
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solution give the cyclized imidazolium 6.6. The yield for these two steps was slightly lower than 

in the small-scale synthesis. 

Finally, deprotonation of C2 with either sodium or potassium tert-butoxide and in situ 

metallation with copper (I) chloride gave CuIPhEt in 87% yield. The key to increasing the yield 

of this step was careful purification of the copper (I) chloride, which is easily oxidized to copper 

(II) chloride on the benchtop—evident by a blue color. Pure, white CuCl is obtained by first 

dissolving in concentrated hydrochloric acid, then precipitating with water, and rinsing with 

diethyl ether and cold ethanol. 

The overall synthesis took five steps, with column chromatography only required in the 

first step. Just over five grams of CuIPhEt can be obtained in 52% overall yield. The new 

synthetic plan gives an overall percent yield four times higher than the original synthesis and 

affords nearly 36 times as much catalyst.  
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Scheme 6. Asymmetric synthesis of CuIPhEt 

D. Conclusion 

 CuIPhEt is a novel, asymmetric copper N-heterocyclic carbenoid based on the successful, 

achiral CuIPr catalyst. It was originally synthesized on a milligram scale utilizing a chiral 

resolution after a non-selective hydrogenation. 

The asymmetric hydrogenation of 1,1-diaryl-substituted terminal olefins is a challenge 

and a highly selective double asymmetric hydrogenation of functionalized dienes of this type are 

rare. We found that the Rh-DuanPhos catalyst is highly selective in reducing 2,6-di-(1-

phenylethenyl)-4-methyl aniline to provide a key intermediate in the synthesis of the NHC 
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carbenoid CuIPhEt. Through this discovery, CuIPhEt is now attainable on a five gram scale 

through a five step synthesis in 53% overall yield.  
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E. Experimental 

4-Methyl-2,6-bis(1-phenylvinyl)benzenamine: A 50 mL round 

bottom flask equipped with a stir bar was charged with toluidine (5.0 g, 47 mmol), KSF 

Montmorillonite (5.25 g), and phenylacetylene (20.6 mL, 187 mmol). The round bottom flask 

was fitted with a reflux condenser and the heterogeneous slurry was refluxed with vigorous 

stirring at 140 °C for 6 h. The reaction vessel was allowed to cool to room temperature before 

dilution with ethyl acetate and filtration. The solvent was removed from the mother liquor under 

reduced pressure and the resultant red oil was purified via column chromatography with 95:5 

hexanes: ethyl acetate. The product was obtained as a light yellow solid in 80% yield (11.6 g, 37 

mmol). 1H NMR (400 MHz, CDCl3) δ 2.3 (s, 3H), 3.4 (s, 2H), 5.4 and 5.8 (dd, 4H), 6.9 (s, 2H), 

7.2-7.4 (m, 10H). 13C NMR (400 MHz, CDCl3) δ 20.5, 116.2, 126.5, 127.8, 128.3, 128.7, 131.0, 

139.3, 139.9, 147.5. 

 4-Methyl-2,6-bis((R,R)-1-phenylethyl)benzenamine: All 

asymmetric hydrogenations carried out in Parr 5500 compact mini bench top reactor with the 

following modifications. The cooling loop was removed and replaced on one side with a 

Swagelok ball valve with septum and on the other side with a stainless steel plug. The original 

gas relief valve was modified with Swagelok fittings to become a manifold with three needle 

valves. The needle valves were designated as ports for N2, vacuum, or vent. The lower guide 

bearing that formerly braced the impeller shaft to the cooling loop was reconnected to the dip 

NH2

Me

NH2

Me

Me Me
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tube. A 1L Parr High Pressure Buret was connected to the reactor with a high-pressure hose. This 

buret was fitted with valves so that it can be sealed off from both the hydrogen supply cylinder 

and the reactor. Reactions were performed in a glass insert inside of the stainless steel reactor.  

A 25 mL round-bottom flask containing bis(norbornadiene)-rhodium(I) tetrafluoroborate 

(38 mg, 100 µmol; 0.5 mol % loading) and (SC, RP)-DuanPhos (47 mg, 120 µmol) was sealed 

with a septum and purged with anhydrous nitrogen. Dichloromethane distilled from CaH2 (5 mL) 

was added, and the solution was allowed to stir for 15 min. Aniline diene 6.3 (6.3 g, 20 mmol) 

and methanol dried over MgSO4 (60 mL, ∼0.25 M solution) were stirred in a round bottomed 

flask with stir bar to form a well-distributed slurry before addition to the glass insert for the Parr 

reactor. The hydrogenation chamber was assembled and then evacuated and flushed five times 

with nitrogen. The catalyst solution was introduced to the reactor under slight positive pressure 

of nitrogen via syringe through the ball valve. Upon filling three times and venting the system 

with hydrogen, the system was pressurized to 500 psi; the buret was closed to the hydrogen 

cylinder to minimize hydrogen loss in the event of a leak. After vigorously stirring overnight, the 

reactor was closed to the hydrogen buret, then vented and disassembled. The reaction mixture 

was filtered through a plug of silica gel (4 Å, ~1.5 cm) and concentrated to yield an orange solid 

in 95% yield (6.3 g, 19 mmol). The product mixture was analyzed by chiral stationary phase 

HPLC (Chiralpak OJ-RH 150 Å~ 2.1 mm, 5 µm, 0.1 mL/min isocratic, 65% CH3CN/35% 0.1% 

aq H3PO4) indicating complete conversion to a 98:0.2:1.8 mixture of R,R:S,S:meso products. 1H 

NMR (400 MHz, CDCl3) δ 1.6 (d, 6H), 2.4 (s, 3H), 3.1-3.4 (bs, 2H), 4.0 (q, J = 65, 2H), 7.1 (s, 

2H), 7.2-7.3 (m, 10H). 13C NMR (400 MHz, CDCl3) δ 20.5, 116.2, 126.5, 127.8, 128.3, 128.7, 

131.0, 139.3, 139.9, 147.5. 
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 N,N’-Bis-[4-methyl-2,6-bis((R,R)-1-phenylethyl)phenyl]-

ethane-1,2-diylidenediimine: To a 25 mL round bottom flask was added aniline 6.4 (6.3 g, 19 

mmol) in 10 mL absolute EtOH. To this was added 40% glyoxal (2.2 mL, 19 mmol) and one 

drop of formic acid. The reaction mixture was sonicated overnight at room temperature. The 

contents were then filtered to give a bright yellow solid. The mother liquor was concentrated and 

recrystallized from ethanol. These combined batches yielded the product diimine in 95% yield 

(6.2 g, 9 mmol) as a single diastereomer. 1HNMR (400 MHz, CDCl3) δ 1.5 (d, J = 6.3, 12H), 2.3 

(s, 6H), 4.0 (q, J = 6.5, 4H), 6.9 (s, 4H), 7.1-7.3 (m, 20H), 7.7 (s, 2H). 13CNMR (400 MHz, 

CDCl3) δ 21.4, 22.1, 39.1, 125.9, 126.2, 127.8, 128.6, 134.5, 146.6, 164.0. 

 1,3-Bis-[2,6-(R,R)-(1-phenyl-ethyl)-phenyl]-1H-

imidazolium chloride: A solution of zinc (II) chloride and paraformaldehyde in concentrated 

hydrochloric acid was prepared (ZnCl2:p-formaldehyde:HCl=1:1:2). A tube with a screw cap 

was charged with the diimine 6.5 (6.2 g, 9.5 mmol) in freshly distilled THF (40 mL) under inert 

atmosphere and was treated with the acid solution (11.4 mmol paraformaldehyde, 1.2 equiv). 

The reaction solution was then heated to 70 °C in a sealed tube for 1h before cooling to room 

temperature and removal of the solvent en vacuo. The resultant residue was then dissolved in 

dichloromethane and thrice washed with water and saturated NaHCO3 before drying over 

MgSO4, filtration and removal of the solvent en vacuo. The off white solid was then 
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recrystallized from diethyl ether and dichloromethane (5.3 g, 7.6 mmol, 80% yield). 1H NMR 

(400 MHz, CDCl3) δ 1.4 (d, J = 6.7, 6H), 1.6 (d, J = 6.7, 6H), 2.3 (s, 6H), 3.75 (q, J = 6.6, 2H), 

3.85 (q, J = 6.6, 2H), 6.5 (s, 2H), 6.7 (d, J = 7.5, 4H), 6.9 (s, 2H), 7.0-7.5 (m, 18H), 12.1 (s, 1H). 

13CNMR (400 MHz, CDCl3) δ 21.8, 21.85, 22.7, 38.5, 40.0, 124.3, 126.5, 126.8, 127.1, 127.6, 

127.8, 128.3, 128.5, 129.1, 141.3, 141.9, 142.8, 143.5, 145.6. 

 Copper carbenoid (R,R,R,R)-CuIPhEt: A 25mL round 

bottom flask equipped with a stir bar was charged with purified Cu(I)Cl ( 0.75 g, 7.6 mmol) and 

sodium tert-butoxide (0.72 g, 7.6 mmol). The reaction vessel was sealed under inert atmosphere 

and a solution of 6.6 (5.3 g, 7.6 mmol) in freshly distilled THF (25 mL) was added. The reaction 

was stirred overnight at room temperature before being filtered through a plug of celite. The 

celite was rinsed with dichloromethane and the combined organic layers were concentrated en 

vacuo. The resulting beige solid was recrystallized from dichlormethane and hexanes to give 

CuIPhEt as an off-white solid (5 g, 6.6 mmol, 87%). 1HNMR (400 MHz, CDCl3) δ 1.4 (d, J = 

8.0, 6H), 1.6 (d, J = 8.0, 6H), 2.35 (s, 6H); 3.85 (overlapping quartets, J = 5.3, 4H); 6.5 (s, 2H), 

6.9 (d, J = 4.0, 4H), 7.1-7.4 (m, 20H). 13CNMR (400 MHz, CDCl3) δ 21.7, 21.9, 22.7, 38.0, 39.6, 

123.0, 126.0, 126.5, 127.0, 127.5, 128.0, 129.1, 133.2, 140.5, 142.3, 144.0, 144.3, 145.9, 181.2. 
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3. Developing a Reproducible Procedure for Asymmetric Hydrosilylations 

A. Introduction 

Modified aluminum hydrides, borohydrides, boranes, and transition metal catalysts have 

been applied to the asymmetric reduction of carbonyls in an ongoing effort of over 50 years. 1–3 

Highly stereoselective and chemoselective Noyori-type transition metal catalyzed 

hydrogenations of ketones can be achieved; however, these reactions sometimes require harsh 

conditions of high temperatures, pressures, and reaction times. 4,5 The substrate scope of this 

method is also somewhat limited. Some classes of ketones, such as dialkyl ketones, are reduced 

with only moderate to low selectivities.  

1. Asymmetric Transfer Hydrogenations 

Asymmetric transfer hydrogenations (ATH) have met success as the field has developed 

over the past two decades. 6,7 In an ATH of a ketone, the equivalent of a molecule of hydrogen 

from a donor is added to a prochiral face of the carbonyl acceptor, in the presence of a metal 

catalyst, to give an enantioenriched alcohol. Its conditions are milder than traditional 

hydrogenations. The field began growing rapidly with Noyori’s work in 1995 that found a 

ruthenium-BINAP catalyst in the presence of a protic diamine donor and potassium hydroxide 

allowed for the efficient enantioselective reduction of acetophenone, which lacks a heteroatom 

for anchoring the metal. 8 Since this initial effort, Noyori’s lab has developed a novel class of 

ruthenium (II) catalysts that now dominates the field. Combined with the either enantiomer of 

the TsDPEN ligand in isopropanol or formic acid and trialkylamine mixtures, the system 

provides high enantioselectivies in the ATH of a variety of ketones, often in the presence of 

other reducible moieties (Scheme 1).7,9–13 
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Scheme 1. Asymmetric transfer hydrogenation of ketones with Ru-TsDPEN 

While the Noyori ATH conditions worked for many ketones, they did not provide high 

enantioselectivities for simple dialkyl ketones. Zhang et al. developed a rhodium-PennPhos 

catalyst that proved effective for the reduction of alkyl-aryl and alkyl-methyl ketones. 14 The 

dialkyl ketones were reduced with higher enantioselectivity as the steric bulk difference between 

the alkyl and methyl groups increased; however the highest selectivity with tert-butyl methyl 

ketone came at the cost of the yield (Scheme 2). 
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R Yield (%) er 

n-butyl 96 88:12 

isopropyl 99 92:8 

isobutyl 66 93:7 

t-butyl 51 97:3 

Scheme 2. The ATH of dialkyl ketones with Rh-PennPhos 

The Hidai group found similar results with their ruthenium (II) catalyst equipped with an 

oxazolinylferrocenylphosphine ligand (Scheme 3). 15 Simple, straight chain substituents did not 

afford high selectivities. As the steric size of one group increased, so did the er.  
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R Yield (%) er 

n-hexyl 99 63:37 

c-hexyl 68 76:24 

t-butyl 81 99:1 

Scheme 3. The ATH of dialkyl ketones with Ru-oxazolinylferrocenylphosphine 

Most recently, the McIntosh group was able to affect the asymmetric reduction of a 

dialkyl ketone on a multigram scale (Scheme 4). 16 Using the Noyori Ru(p-cymene)[(S,S)-

TsDPEN] as the catalyst and formic acid/triethylamine as the stoichiometric reductant, they 

identified the intrinsic selectivity of the reaction to be 88:12. However, upon long reaction times, 

a highly enantiopure product (>99:1 er) could be obtained in 44% yield through a kinetic 

resolution of the minor enantiomer. 
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Scheme 4. Noyori-type desymmetrization of a meso-diketone 

2. Hydrosilylations 

Another mild reduction alternative to high-pressure hydrogenations is hydrosilylations. 

The field of hydrosilylations has grown with the use of silanes as protecting groups for alcohols. 

The ideal asymmetric hydrosilylation of a ketone would afford an enantiopure, protected alcohol 

in one step. Both phosphine and NHC ligands are suitable choices in building a hydrosilylation 

catalyst due to the highly tunable electronic and steric properties.17,18 

Aside from serving as protecting groups for alcohols, silyl ethers can also participate in 

the intramolecular hydrosilylation or silylation of Csp2 bonds. 19–27 The resulting oxasilole can 

undergo a variety of functionalizations to C-C, C-O, or C-X bonds.19,20 

The Jeon group has contributed much to the field of intramolecular hydrosilylations. 24–28 

Using a racemic rhodium (I) BINAP catalyst, they developed a method to obtain a trans-

selective hydrosilylation of β,γ-unsaturated silylethers to give a variety of 1,3-anti-oxasiloles 
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(Scheme 5). 24,25 The BINAP ligand provided high regioselectivity for the formation of an 

oxasilacyclopentane through hydrosilylation of the internal position of the alkene. 

 

Scheme 5. Formation of 1,3-anti-oxasiloles by Jeon 

 Jeon continued working by developing a one-pot ketone hydrosilylation followed by an 

intramolecular aromatic C-H silylation (Scheme 6). 26,27 An in situ formed rhodium (I) catalyst 

with a monodentate phosphine ligand provides the hydridosilyl ether, which upon heating forms 

the oxasilole. A negative influence on the yield was observed when para-substituents were 
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employed. More sterically hindered systems such as ortho-substituted arenes and the isopropyl 

ketone gave excellent yield. 

 

Scheme 6. Ketone hydrosilylation and subsequent arene C-H silylation by Jeon 

 Hartwig reported an enantioselective application for hydrosilylated ketones. 20 His group 

was able to desymmetrize racemic hydridosilyl ethers through the use of a rhodium (I) catalyst 

with a variety of chiral ligands to silylate the ortho-position of an adjacent aromatic ring 

(Scheme 7). Unsubstituted and alkyl-substituted benzophenone derivatives containing meta and 

para substituents gave the oxasilole in good yields and selectivities through the use of the 

catASium family of ligands. Substrates exhibiting ortho-substituents provided lower yields and 
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selectivities and were reacted at higher temperatures in the presence of a Walphos ligand. The 

Walphos ligand family was used on compounds bearing a variety of electronic properties. 

Electron withdrawing substituents such as chloro groups were well tolerated. 
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Scheme 7. Hartwig asymmetric arene silylation employing chiral rhodium catalysts 

B. Background and Significance 

1. Asymmetric Hydrosilylations with Ru and Rh Catalysts 

Nishiyama pioneered the field of asymmetric hydrosilylations with a series of rhodium 

(III) bis(oxazolinylpyridine) (Rh-PYBOX) catalysts reducing alkyl aryl ketones. Acetophenone 

was hydrosilylated in 90% yield with a 97:3 er. 29 More recently, Fu and Tao employed the use 

Fe

O Si
Et Et

H
O Si

EtEt

*

O Si
EtEt

O Si
EtEt

Me

Me

O Si
EtEt

O Si
EtEt

Cl Cl

[Rh(cod)Cl2], L*

norbornene, THF, 50 °C

L* = A
85%
>99:1

L* = B
85%
>99:1

L* = C
78%
86:14

L* = D
88%
>99:1

Me

Me Me Me

MeMe
P

S

Me

Me

P

Me

Me
Me

Me

Me

MeMe
P

S

Me

Me

P

Me P
Me

P

Fe
P

Me

P

A B C D

L*:



40 

of a rhodium (II) planar-chiral ferrocenyl P,N-ligand to achieve high selectivities in the 

hydrosilylation of a variety of dialkyl and alkyl-aryl ketones (Scheme 8).30 

 

Scheme 8. Representative product scope of Fu and Tao 

In addition to amine and phosphine ligands, a few chiral N-heterocyclic carbene (NHC) 

catalysts have been employed successfully in asymmetric hydrosilylations.31–35 The four 

examples highlighted (Scheme 9) were able to reduce acetophenone with good to high 

selectivities.  
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Scheme 9. NHC catalysts applied to the hydrosilylation of acetophenone 

While all examples above were able to reduce alkyl-aryl ketones with good selectivities, 

only Gade’s catalyst was able to facilitate the asymmetric hydrosilylation of dialkyl ketones 

(Scheme 10). The rhodium complex reduced 2-octanone with a 90:10 selectivity; however, the 

hydrosilylation of 2-butanone proceeded with only 83:17 er.34,35 
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Scheme 10. Representative dialkyl ketones used by Gade 

2. Copper Catalyzed Hydrosilylations 

As seen in all of the examples listed thus far, transition metal catalyzed hydrosilylations 

are most frequently developed from complexes of group 8 and 9 metals such as ruthenium, 

rhodium, and iridium, but recently there have been reports of using group 11 metals as less 

expensive, yet effective, alternatives. 36  

Specifically, copper hydride sources are powerful reducing agents for many reactions, 

including the hydrosilylation of ketones. 37–41 The well-established CuIPr NHC complex was 

shown to be an efficient hydrosilylation catalyst of both dialkyl and alkyl aryl ketones (Scheme 

11).42 
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Scheme 11. Representative ketone scope for the hydrosilylation using CuIPr 

The catalytic cycle for hydrosilylations using copper NHCs proposed by Leyssens et al.43 

His group employed kinetic and computational DFT studies to validate their proposed 

mechanism. Scheme 12 begins with the NHC copper chloride 12.1 undergoing a ligand 

exchange with a Lewis base, usually sodium or potassium tert-butoxide, to give the copper 

alkoxide 12.2. A σ-bond metathesis of 12.2 with the Lewis base activated silane 12.5 gives the 

active copper hydride 12.3. The copper hydride coordinates to a ketone in the rate-limiting step 

to give copper alkoxide 12.4. The pentavalent hydridosilicate 12.5, formed by simple 

nucleophilic attack of the alkoxide base to the silane reagent, and intermediate 12.4 proceed 

through the four-center transition state 12.6. Another σ-bond metathesis regenerates the active 

copper hydride 12.3 and produces the hypervalent silicon species 12.7, which quickly reforms 

the original alkoxide base and the desired hydrosilylated product 12.8. 
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Scheme 12. The catalytic cycle for copper NHC catalyzed hydrosilylations 

3. CuIPhEt Hydrosilylations 

Because of the success of Cu-NHCs in the field of hydrosilylations, 42 the Gawley group 

applied CuIPhEt toward the reduction of an assortment of ketones. In the initial paper regarding 

the scope of CuIPhEt, ten examples are reported with good yields and excellent 

enantioselectivities (Scheme 13). 44 In the presence of CuIPhEt, the hydrosilylation of 

acetophenone, the benchmark test for catalysts in this category, gives a 99:1 er in 90% yield after 

45 minutes at room temperature. The hydrosilylation of 2-butanone occurred with a 98:2 er—

meaning the chiral pocket of CuIPhEt can differentiate between a methyl and ethyl substituent. 

The record hydrosilylation on this substrate before this application was achieved with Gade’s 

bisoxazoline rhodium catalyst giving an 83:17 er (Scheme 10).34 
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Scheme 13. Silyl ethers formed from the asymmetric hydrosilylation with CuIPhEt 

There is no other asymmetric hydrosilylation catalyst as of yet that can match CuIPhEt in 

its enantioselectivity when reacting with dialkyl ketones. A typical CuIPhEt reaction is 

performed under mild conditions at room temperature in THF for less than 60 minutes with only 

2 mol% catalyst loading. 44 Gawley proposed that the reaction times are shorter than CuIPr (3-4 

hours) due to the increased steric bulk around the copper and decreased propensity to dimerize.  

To develop a post hoc rationale for the selectivities observed, DFT calculations (B3LYP 

3-21g-d) were performed. The copper-coordinated ketone intermediate had a 3.6 kcal/mol 

difference between the energies of the orientation of acetophenone in the configuration shown 

and the orientation with the methyl (S) and phenyl (L) reversed (Figure 1). Because of the 

symmetry in the catalyst, the hydride should always be delivered to the Re face of prochiral 
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ketones in which the larger substituent is oriented in the quadrant away from the (R,R,R,R)-

CuIPhEt phenyl substituent. 

  

Figure 1. 3D model showing the delivery of the hydride to the Re face of a prochiral ketone by 
(R,R,R,R)-CuIPhEt 

C. Results and Discussion 

1. Finding a Reproducible Procedure 

Reproducing previous work involving the hydrosilylation of alkyl-alkyl and alkyl-aryl 

ketones using CuIPhEt proved to be a challenge. Initial efforts focused on both acetophenone 

and butanone (Table 1). As seen in the first two entries, following the published procedure did 

not reliably give either hydrosilylation product. Distilling the silane and subliming the potassium 

tert-butoxide immediately before the reaction  or use of fresh reagents also did not afford the 

desired products regularly (entries 3-6). Interestingly, one attempt (entry 3) did provide the 

product in excellent yield; however none of the other attempts in entries 3 and 4 gave any 

product. 
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Entry Substrate Conditions Attempts Results 

1 acetophenone Published procedure 45 4 Complex mixture 

2 butanone Published procedure 3 
First attempt gave some 
product, the other two 

decomposed 

3 acetophenone 
Purified all reagents 
immediately before 

reaction 
3 One attempt gave product, the 

other two decomposed 

4 butanone 
Purified all reagents 
immediately before 

reaction 
3 Complex mixture 

5 acetophenone New silane, base, and 
ketone 2 Complex mixture 

6 butanone New silane, base, and 
ketone 1 Complex mixture 

Table 1. Attempts to reproduce hydrosilylations using CuIPhEt and check the reagents 

 These tests led us to believe that the reagents were not the source of failure, so the issue 

must remain within the procedure. Also, the volatility of butanone made it difficult to tell if 

starting material was indeed consumed, so we switched our focus to solely to acetophenone. In 

the published procedure for hydrosilylations, CuIPhEt and the base are dissolved in THF and 

stirred for five minutes before the addition of the silane. This is designed to allow for the ligand 

exchange of the chloride and alkoxide and the subsequent formation of the active copper hydride 
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(Scheme 12). After ten more minutes of stirring, the ketone is finally introduced. Modifying the 

time scale of the additions did not provide a route to a more reproducible procedure (Table 2). 

Eliminating any gaps in the addition only accelerated the reaction failure (entry 1). Increasing the 

stirring time between additions did not hamper the decomposition. 

 

Entry Conditions Results 

1 Did not wait between reagent additions Complex mixture 

2 Waited one hour between additions Complex mixture 

3 Waited 6 hours between base and silane additions Complex mixture 

4 Used PhMe as solvent Complex mixture 

Table 2. Attempts to modify the procedure of CuIPhEt hydrosilylations 

After the previous attempts, an average reaction success rate of 5% was achieved. We 

feared that the benzylic position of the carbonyl and eventual siloxane in the acetophenone 

reductions could be the source of further complications. At this point, we changed to the meso-

diketone used in an ATH by the McIntosh lab (Scheme 4). While this ketone did not 

immediately give good results, it did give cleaner reactions, so we chose to proceed with it. 
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Entry Conditions Attempts Results 

1 Published Procedure 3 Complex mixture 

2 Purified all reagents immediately before reaction 3 Complex mixture 

Table 3. Attempts to reduce the meso-diketone with CuIPhEt 

 Efforts were then focused on the catalyst and base loading of the reaction (Table 4). 

Decreasing the catalyst loading did not clean up the complex mixture of the reaction. Increasing 

the amount of catalyst caused over-reduction in one case. Decreasing the base loading still 

afforded an inseparable mixture of products; however, the 1H-NMR analysis of the crude 

reaction showed fewer byproducts. Decreasing the base loading further (entry 4) provided the 

desired product once and allowed for the recovery of the starting material in the other two trials. 
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Entry Conditions Attempts Results 

1 Catalyst loading 1% 1 Complex mixture 

2 Catalyst loading 3% 2 Over-reduced ketone 4.2 obtained once, 
complex mixture in other 

3 Base loading 6% 3 Mixture 

4 Base loading 2% 3 Reaction worked once, starting material not 
consumed in others 

Table 4. Catalyst and base loading studies 

Suspecting that atmospheric oxygen could be the culprit, the reactions were performed in 

a glove box with oxygen levels well below 0.3 ppm (Table 5). No product was ever detected 

under these careful conditions. The reaction would only work, on occasion, when performed in 

the hood under nitrogen (entry 3). Any intentional introduction of air greater than 3 µL caused 

immediate reaction failure, but reaction success was not guaranteed below those levels.  
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Entry Conditions Attempts Results 

1 Entire reaction and work up in glovebox 1 Starting material not 
consumed 

2 Reaction in glovebox, work up in hood 2 Starting material not 
consumed 

3 Set up in glovebox, reaction and work up in 
hood 5 Reaction worked once 

4 Injected 1 µL air 1 Complex mixture 

5 Injected 2 µL air 1 Reaction succeeded 

6 Injected 3 µL air 1 Complex mixture 

7 Injected 5 µL air 1 Complex mixture 

Table 5. Modifying the atmospheric conditions 

A conversation with Don Watson brought to light a possible source for the limited 

reproducibility of the hydrosilylations. He suggested that moisture, not air could be the crucial 

component to the reaction. We hypothesized that the base, potassium tert-butoxide, is actually 

too bulky to perform the ligand exchange with the chloride on CuIPhEt as its suggested role in 

the catalytic cycle. In the original reports, our group used sublimated KOtBu stored in a bench-

top desiccator. Due to the extreme hydroscopic nature of the base, it likely converted at least 

partially to KOH upon brief exposure to the atmosphere. This much smaller hydroxide could 

potentially allow for proper hydrosilylation catalysis. It was suggested to perform an in situ 

exchange of the tert-butoxide for a smaller alkoxide such as a methoxide or ethoxide through the 

CuIPhEt, 2 mol%
KOtBu, 2 mol%
Et2SiH2, 3 eq

THF, rt
O

O

O

O

O

O SiEt2H
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use of the corresponding alcohol as a co-solvent. This particular method was not successful, but 

the thought process proved to be fruitful. 

Initially, solid sodium methoxide stored in the glovebox was used. Reproducibility was 

still somewhat limited due to difficulties in weighing milligram quantities of a fine powder in a 

static filled environment. Often times, the over-reduced disilane 4.2 was produced. Changing to a 

0.5 M solution of sodium methoxide in methanol provided a way to both accurately measure the 

base loading and circumvent the need for a glovebox. To get consistent results, the base loading 

was decreased to a 1:1 ratio with the catalyst (Figure 2). The silane was cleaved to afford the 

alcohol with a 97:3 er in 93% yield.  
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Figure 2. The asymmetric reduction of a meso-diketone with CuIPhEt 

2. The Large-Scale Reduction of a meso-Diketone 

 When compared to the original McIntosh method (Scheme 4), the CuIPhEt 

hydrosilylation of the meso-diketone time is much faster, the yield is greater, and the selectivity 

is much improved.  

 Larger scale reactions went smoothly with only small changes necessary to the procedure 

(Table 6). As we began multiplying the amount of starting material from 200 mg to 1 g, a 

noticeable exotherm was observed. The heat generated in the reaction seemed to accelerate the 

reaction rate, thus giving more disilylated product in the 45 minute reaction time. We decided to 

begin simultaneously decreasing the catalyst loading while increasing the substrate loading. This 

worked well giving high yields and selectivities all close to 97:3 er. In typical small-scale 

reactions, the ketone is added last to a mixture of the catalyst, base, and silane. On reactions 

[1] CuIPhEt, 2 mol%
NaOMe, 2 mol%

Et2SiH2, 3 eq
THF, rt, 45 min

[2] HF, MeCN

O

O

O

O

O

OH
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larger than 4 g, better yields were achieved when this order of addition was reversed and the 

catalyst, base, and silane were slowly cannulated into the dissolved ketone. This did slightly 

increase reaction times (to two hours), but it completely eliminated any disilylated byproducts. 

Attempting to cool the reaction mixture did not improve selectivity and decreased the yield. 

  

 

Entry Catalyst Loading (mol%) Amount meso-diketone (g) Yield (%) 

1 2 0.2 93 

2 2 1 60 

3 1 2 90 

4 0.5 4 90 

5 0.25 7.5 93 

6 0.24 10 93 

Table 6. Scaling up the hydrosilylation of a meso-diketone 

3. Further Expanding the Substrate Scope 

 To prove the hydrosilylation procedure is now fully optimized and reproducible, the 

original published substrate scope of CuIPhEt hydrosilylations was revisited. The new protocol 

was used to effectively reduce 2-octanone (Figure 3). The product was recovered in 95% yield 

and with over 99:1 selectivity. This is both higher yields and selectivity than the previously 

published Gawley method. 

CuIPhEt, x mol%
KOtBu, x mol%
Et2SiH2, 3 eq

THF, rt
O

O

O

O

O

O SiEt2H
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Figure 3. The asymmetric reduction of 2-octanone with CuIPhEt 

In an effort to expand the substrate scope of CuIPhEt hydrosilylation beyond simple 

ketones, we began investigating α,β-unsaturated ketones—specifically carvones. This class of 

ketones is interesting because both 1,2 and 1,4-reductions are possibilities. Buchwald observed 

1,4 reductions on both α,β-unsaturated cyclic ketones and acyclic esters using the achiral NHC 

CuIPr. 46 Regrettably, no conditions were found to afford a clean reaction (Table 7). Inseparable, 

complex mixtures were obtained even at decreased catalyst loading. GC/MS of the reaction 

mixture indicated the starting material was likely silylated at multiple positions.  

O OH

[1] CuIPhEt, 2 mol%
NaOMe, 2 mol%

Et2SiH2, 3 eq
THF, rt, 45 min

[2] HF, MeCN
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Entry Conditions Results 

1 R-Carvone, 2 mol% loading Complex mixture 

2 S-Carvone, 2 mol% loading Complex mixture 

3 R-Carvone, 1 mol% loading Complex mixture 

4 S-Carvone, 1 mol% loading Complex mixture 

Table 7. Attempts to hydrosilylate carvone 

We next investigated 2-acetylburtyolactone, an interesting substrate to test both the 

chemoselectivity of CuIPhEt and to explore the possibility of a dynamic kinetic resolution with 

the stereocenter α to the carbonyl. Despite longer reaction times and higher catalyst loading, no 

conversion of the starting material was ever observed (Table 8). 

 

Entry Conditions Results 

1 1 mol% loading, 1 hr Starting material recovered 

2 1 mol% loading, 19 hr Starting material recovered 

3 2 mol% loading, 19 hr Starting material recovered 

4 4 mol% loading, 19 hr Starting material recovered 

Table 8. Attempts to hydrosilylate 2-acetylbutryolactone 

 We next turned our attention to the commodity chemical levulinic acid, a keto acid used 

as a precursor for many cosmetics, pharmaceuticals, and herbicides. 47 This substrate would test 

O [1] CuIPhEt
NaOMe

Et2SiH2, THF, rt

[2] HF/MeCN

OH

O

O

Me

O

O

OH

Me

O
[1] CuIPhEt

NaOMe
Et2SiH2, THF, rt

[2] HF/MeCN
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the ability of CuIPhEt to reduce a carbonyl in the presence of a carboxylic acid. Once 

asymmetrically reduced, a lactonization could occur to give a single enantiomer of γ-

valerolactone, which costs over $80 per 100 mg from Sigma Aldrich. Attempts to reduce the 

unprotected keto acid resulted in no recovered compounds except for CuIPhEt regardless of 

which silane was used (Table 9). 

 

Entry Silane Results 

1 Diethyl silane Nothing recovered 

2 Diphenyl silane Nothing recovered 

Table 9. Attempts to reduce unprotected levulinic acid 

 We then converted the carboxylic acid (Scheme 14) into an ester via a Fisher 

esterification. Heating the acid in absolute ethanol at reflux in the presence of p-toluenesulfonic 

acid gave the ethyl ester quickly and in good yields. 

 

Scheme 14. Esterification of levulinic acid 

 Once the ethyl ester was formed, the CuIPhEt hydrosilylation was attempted. Through 

minor reaction modifications, the optimized conditions were found to be 1 mol% catalyst and 

base loading in toluene (Scheme 15). The reaction proceeded smoothly with good yields and 

excellent enantioselectivity. 

OH

O

O
CuIPhEt, 3 mol%
NaOMe, 3 mol%

Silane, 3 eq

THF, rt
OH

O

OSiR2H

OH

O

O pTsOH

EtOH, 80 °C, 1 h
81%

O

O

O
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Scheme 15. The asymmetric hydrosilylation of levulinic ethyl ester 

D. Conclusion 

 The asymmetric reduction of ketones has been a recurrent theme in organic chemistry. 

Noyori-type hydrogenations and asymmetric transfer hydrogenations have been the golden 

standard for the past two decades. N-Heterocyclic carbenes have been successfully employed in 

the asymmetric hydrosilylations of various ketones. CuIPhEt was reported to be an efficient 

hydrosilylation catalyst of both alkyl-aryl and dialkyl ketones. Reproducing the work on the 

original substrate scope, however, proved to be a challenge. Through modifying the procedure to 

include a less sterically hindered base at lower loadings, excellent yields and selectivities have 

been achieved on 2-octanone, a ketone from the original scope, and on a meso-diketone, a new 

application for CuIPhEt. The meso-diketone is an early stage intermediate in the McIntosh 

synthesis of a natural product, so the reduction was carried out on a 10 g scale to prove its 

feasibility in total synthetic endeavors. The ethyl ester of levulinic acid, a commodity chemical, 

was also asymmetrically reduced using CuIPhEt. 
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E. Experimental 

General Procedure for CuIPhEt Hydrosilylation: To an oven dried round bottom flask fitted 

with a septum was added CuIPhEt (2 mol%, 0.02 mmol, 15.3 mg). The flask was evacuated and 

flushed with N2 three times. Dry THF (2 mL) was added and stirred until the CuIPhEt dissolved. 

NaOMe in MeOH (0.5 M, 2 mol%, 40 µL) was added and stirred for 5 min. Freshly distilled 

silane (3 eq, 3 mmol) was added. An immediate color change to bright yellow was observed and 

the reaction was stirred for an additional 5 min before addition of the ketone (1 eq, 1.0 mmol, in 

concentrated THF solution if solid). The reaction progress was monitored using TLC. If the 

silane was cleaved, 2 mL 5% HF/MeCN was injected and stirred for 5 minutes. Upon completion 

the reaction solution was concentrated under reduced pressure. The residue was purified via 

Kugelrohr distillation. 

 ((S)-1-phenylethoxy)triethylsilane: 1H NMR (400 MHz, CDCl3) δ 0.65 (q, J = 

7.84 Hz, 2.35 Hz, 4H), 0.95 (t, J = 7.87 Hz, 3H), 1.03 (t, J = 7.87 Hz, 3H), 1.51 (d, J = 6.41 Hz, 

3H), 4.47 (q, J = 2.44 Hz, 1H), 4.92 (q, J = 6.44 Hz, 1H), 7.23-7.41 (m, 5H). 13C NMR (400 

MHz, CDCl3) δ 5.46, 6.70, 26.43, 72.44, 125.37, 127.00, 128.18, 145.94. 

 ((S)-sec-butoxy)diphenylsilane: 1H NMR (400 MHz, CDCl3) δ 0.82 (t, J = 7.52 Hz, 

3H), 1.11 (d, J = 6.49 Hz, 3H), 1.46 (m, 2H), 3.82 (sextet, J = 5.92 Hz, 1H), 5.38 (s, 1H), 7.25-

7.37 (m, 6H,), 7.51-7.61 (m, 4H). 13C NMR (400 MHz, CDCl3) δ 10.11, 22.75, 32.02, 72.34, 

127.95, 130.16, 134.68, 134.70. 

Me

OSiEt2H

OSiPh2H
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Mono-hydrosilylated epoxyketoalcohol: 1H NMR (400 MHz, CDCl3) δ 0.69 

(m, 4H), 0.97 (m, 6H), 1.21 (d, J = 8.24 Hz, 1H), 1.34 (d, J = 8.17 Hz, 1H), 2.87 (m, 2H), 3.03 

(br s, 1H), 3.09 (br s, 1H), 3.22 (d J = 4.36 Hz, 1H), 3.42 (dd, J = 4.28 Hz, 3.36 Hz, 1H), 4.45 (s, 

1H), 4.66 (m, 1H), 5.99 (ddd, J = 2.60 Hz, 5.03 Hz, 16.21 Hz, 2H); 13C NMR (400 MHz, CDCl3) 

δ 5.37, 6.78, 42.75, 43.62, 45.26, 49.15, 50.91, 54.72, 59.29, 68.50, 132.59, 136.34, 208.7. 

Di-hydrosilylated epoxyketoalcohol: 1H NMR (400 MHz, CDCl3) δ 0.66 (m, 

8H), 0.99 (m, 12H), 1.21 (d, J = 8.24 Hz, 1H), 2.29 (s, 3H), 2.84 (s, 2H), 3.40 (p, J = 2.58 Hz, 

2H), 4.73 (s, 2H), 6.00 (7, J = 1.92 Hz, 2H); 13C NMR (400 MHz, CDCl3) δ 5.25, 6.48, 42.71, 

50.54, 54.72, 59.29, 68.76, 134.59. 

Large-Scale CuIPhEt Hydrosilylation: To an oven dried round bottom flask fitted with a 

septum was added CuIPhEt (0.24 mol%, 0.13 mmol, 99.7 mg). The flask was evacuated and 

flushed with N2 three times. Dry THF (2 mL) was added and stirred until the CuIPhEt dissolved. 

NaOMe in MeOH (0.5 M, 0.16 mol, 0.31 mL) was added and stirred for 5 min. Freshly distilled 

diethylsilane (3 eq, 156 mmol, 20.2 mL) was added. An immediate color change to bright yellow 

was observed and the mixture was cannulated into the meso-diketone (1 eq, 54 mmol, 10.4 g) 

dissolved in THF (~100 mL). The reaction progress was monitored using TLC. After 2 hours, 

5% HF/MeCN (75 mL) was injected and stirred for 5 minutes. Upon completion the reaction 

O

O

O H
Si

O

OSiEt2H

OSiEt2H
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solution was concentrated under reduced pressure. The residue was purified via recrystallization 

in hexanes/Et2O. 

Epoxyketoalcohol: 1H NMR (400 MHz, CDCl3) δ 0.99 (d, J = 9.54 Hz, 1H), 1.31 

(d, J = 8.38 Hz, 1H), 1.45 (dt, J = 8.39 Hz, 1.88 Hz, 1H), 2.97 (ddd, J = 11.20, 5.75, 3.21, 1H), 

3.03 (br s, 1H), 3.09 (br s, 1H), 3.17 (dd J = 11.0 Hz, 3.43 Hz, 1H), 3.29 (d, J = 4.36, 1H), 3.57 

(m, 1H), 4.65 (ddd, J = 9.35 Hz, 5.73 Hz, 3.39 Hz, 1H), 6.22 (ddd, J = 3.05 Hz, 5.53 Hz, 16.55 

Hz, 2H); 13C NMR (400 MHz, CDCl3) δ 42.60, 44.88, 45.06, 49.58, 51.44, 54.75, 59.59, 67.47, 

135.51, 136.15, 208.1. 

 ((S)-octan-2-yloxy)diethylsilane: 1H NMR (400 MHz, CDCl3) δ 0.67 ( q, J 

= 7.9 Hz, 4H), 0.90 (3H, m), 1.01 (t, J = 7.39 Hz, 6H), 1.18 (d, J = 6.59 Hz, 3H), 1.23-1.51 (m, 

10H), 3.80 (sextet, J = 5.75 Hz, 1H), 4.44 (p, J = 2.34 Hz, 1H). 13C NMR (400 MHz, CDCl3) δ 

5.58, 6.724, 14.09, 22.64, 23.41, 25.75, 29.32, 31.87, 39.40, 70.57. 

 (S)-2-octanol: 1H NMR (400 MHz, CDCl3) δ 0.99 (t, J = 7.21 Hz, 3H), 1.18 

(d, J = 6.35 Hz, 3H), 1.20-1.58 (10H, m), 3.85 (sextet, J = 5.75, 1H). 13C NMR (400 MHz, 

CDCl3) δ 15.09, 21.99, 23.61, 25.25, 29.01, 31.23, 39.90, 69.87. 

 Levulinic acid ethyl ester: 1H NMR (400 MHz, CDCl3) δ 1.26 (t, J = 7.1, 

3H), 2.20 (s, 3H), 2.57 (t, J = 6.6, 2H), 2.75 (t, J = 6.5, 2H), 4.13 (q, J = 7.1, 2H), 13C NMR (400 

MHz, CDCl3) δ 14.18, 28.03, 29.91, 37.97, 60.65, 172.77, 208.15. 

O
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OH

OSiEt2H

OH

O

O
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((S)-ethyl γ-valeryloxy)diethyl silane : 1H NMR (400 MHz, CDCl3) δ 0.65 

(m, 4H), 0.99 (t, J = 7.7 Hz, 6H), 1.19 (d, J = 6.1 Hz, 3H), 1.27 (t, J = 7.1 Hz, 2H), 1.78 (m, 2H), 

2.39 (m, 2H), 3.85 (p, J = 6.1 Hz, 1H), 4.14 (q, J = 7.1 Hz, 2H), 4.42 (p, J = 2.3 Hz, 1H) 13C 

NMR (400 MHz, CDCl3) δ 5.89, 6.68, 14.24, 23.26, 30.52, 34.15, 60.27, 69.37, 207.56. 

[𝛼]!!" = −5.6 (c = 2.5, CHCl3) 
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4. Literature Review: The Radical Formation of Azolyl Ketones 

A. Introduction 

Carbon-hydrogen bonds are ubiquitous within organic molecules. The archetypal, 

targeted approach to functionalization of these “un-functional” groups would allow for a flexible 

synthetic plan and would create much less waste and fewer byproducts—ideally only hydrogen 

gas. The abundance of carbon-hydrogen bonds that are energetically similar and the strong bond 

dissociation energy have historically limited the applicability of the reaction. While the field of 

C-H activations is not new, it has certainly gained in popularity within the last few decades 

possibly due to improvements on the bond selectivity and to innovative bond forming reactions. 1  

In general, the term C-H functionalization (and especially C-H activation) implies the use 

of an organometallic complex due to huge contributions from the field. 2  More recently, 

advances have been made to include selected metal-free C-H functionalization techniques. 

B. Background and Significance 

Charles Friedel and James Crafts first described the acylation of aromatic rings, a specific 

example of a C-H functionalization, in 1877. 3  An electron-rich aromatic ring reacts with the 

electrophile formed by an acyl chloride or acid anhydride and a Lewis acid. Because a double 

bond in the arene acts as the nucleophile, deactivated aromatic compounds are not tolerated 

within this system. Despite multiple advances in the field, heteroaromatic rings are not often 

employed in Friedel-Crafts acylations. 4  Unprotected nitrogens, oxygens, and sulfurs are often 

more reactive than the C-C double bond, resulting in the competing acylation of heteroatoms.  

Acyl derivatives of heteroarenes, especially azoles, are useful synthetic targets. Azoles 

are central components in numerous natural products, medicines, and biologically relevant 
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compounds. 5  Described below is the direct access to acylated azoles through efficient and 

functional group tolerant pathways. 

C. Minisci Reaction 

Minisci reported the first direct acylation of a thiazole ring in 1969 through umpolung 

reactivity of the Friedel-Crafts reaction. 6  He observed the regioselective radical C-H 

functionalization of benzothiazole 1.1. A threefold excess of the aldehyde was employed under 

acidic conditions in the presence of two stoichiometric equivalents of tert-butyl hydroperoxide 

(TBHP) and iron (II) sulfate radical initiators (Scheme 1). 7  Simple aliphatic aldehydes, such as 

acetaldehyde 1.2, gave moderate yields. Benzaldehyde 1.3 gave slightly higher yields 

presumably due to the increased stability of the acyl radical due to resonance. Electron donating 

groups in the para position on the phenyl ring increased the nucleophilic character of the 

subsequently formed radical and consequently increased the yields, as seen with p-anisaldehyde 

1.4. Electron withdrawing substituents like p-chlorobenzaldehyde 1.5 had little effect on the 

yield. The use of salicylaldehyde 1.6, however, resulted in a decrease in conversion to product. 

Heteroaromatic aldehydes, such as 2-furaldehyde 1.7 were well tolerated.  
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Scheme 1. Homolytic acylation of benzothiazoles described by Minisci 

Although yields were not reported, Minisci claims similar results for quinoline, pyridine, 

acridine, isoquinoline, pyrazine, pyrimidine, and quinoxaline. The use of secondary and tertiary 

aliphatic aldehydes with any of the tested azoles resulted in decarbonylation of the aldehydes and 

successive alkylation, rather than acylation, of the heteroarene. 

The rate of the acetylation of 6-nitrobenzothiazole in this system was double that of the 

benzothiazole indicating that electron deficient heteroarenes are more reactive to the nucleophilic 

acyl radical. Minisci noted this reaction is opposite to traditional Friedel-Crafts acylation both in 

reactivity and regioselectivity. 

This Minisci reaction likely proceeds through a radical mechanism (Scheme 2). The 

TBHP oxidizes the iron sulfate to give the tert-butoxy radical 2.1 and iron (III) hydroxide 2.2. 

The tert-butoxy radical 2.1 can then abstract a hydrogen atom from the aldehyde 2.3 to give tert-

butanol 2.4 and the acyl radical 2.5. Benzothiazole 2.6 is likely protonated by the acidic solution 

to give the thiazolium 2.7, which reacts with radical 2.5 to give the radical cation 2.8. A 
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subsequent hydrogen atom abstraction rearomatizes the compound giving the 2-

ketobenzothiazole 2.9. 

 

Scheme 2. The proposed mechanism of the Minisci Reaction 

Christensen et al. acylated cyclic guanosine monophosphate (cGMP) 3.1 in low to 

moderate yields after modifying the Minisci conditions (Scheme 3). 8  Initially, the iron (II) 

sulfate and TBHP system described above was tested, but 8-methylguanosine 3’,5’-cyclic 

phosphate was isolated due to the decomposition of the TBHP to a methyl radical. In order to 

circumvent alkylation competing with hydrogen atom abstraction from the aldehyde, the radical 

source was changed to ammonium persulfate. In these reactions, cGMP is dissolved in an acidic 

solution before the introduction of over forty equivalents of the aldehyde and nine equivalents of 

the iron sulfate and ammonium persulfate.  The straight chain aliphatic aldehyde, 

propionaldehyde 3.2, gave moderate yields. Increasing the chain length, as seen with 

butyraldehyde 3.3, caused a decrease in yield. The branched chain isobutyrylaldehyde 3.4 had 

high yields; however, 8-isopropyl cGMP was also formed in 22% yield due to the 

decarbonylation of the aldehyde. Aromatic benzaldehyde 3.5 gave the lowest reported yield. 
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Attempts to acylate cyclic adenosine monophosphate (cAMP) did not provide any detectable 

conversion to products. Cyclic inosine monophosphate (cIMP) did afford acylated derivatives 

but in very low yields. Christensen found that the library of acylated cGMP derivatives showed 

high affinity for a cGMP-dependent protein kinase and were not hydrolyzed by 

phosphodiesterase. This indicated that the compounds might be exploited to study biological 

responses concerning cGMP. 

 

 

Scheme 3. Christensen’s acylation of cGMP 

D. Metal-Free Acylation Techniques 

Matcha and Antonchick developed a metal-free strategy employing hypervalent iodine 

and trimethylsilyl azide at ambient temperature to acylate a variety of N-heterocycles. 9  In order 

to investigate the scope of the reaction, they began reacting isoquinoline 4.1 with various 

aldehydes (Scheme 4). Benzaldehyde 4.2 was used to optimize the oxidant and additive choices 

HN

N N

N
O

H2N

O
O

P OO
OH

OH

HN

N N

N
O

H2N

O
O

P OO
OH

OH

H

O

R
+

R

FeSO4 • 7H2O
(NH4)2S2O8

HOAc, H2SO4
H2O, 10 °C

O

H

O

H

O

H

O

H

O

3.2
43%

3.3
34%

3.4
47%

3.5
14%

3.1



 72 

to [bis(trifluoroacetoxy)iodo]benzene and azidotrimethylsilane, respectively. The position of an 

electron donating substituent on the phenyl ring of the aldehyde had no noticeable effect on the 

yields, as seen with p-anisaldehyde 4.3. Electron withdrawing substituents, however, give the 

best results when at the para position (4.5-4.6). Multiple substituents did not affect the yield 

(4.4), signifying that steric effects had little influence in this system. Aliphatic aldehydes, such as 

acetaldehyde 4.7, worked as well. In fact, 4.7 was successfully used in a gram scale reaction in 

an open flask. More sensitive aldehydes were also tested in the system. 

Cyclopropanecarboxaldehyde 4.8 gave high yields of product with no noticeable decomposition. 

Thiophenecarboxaldehyde 4.9 was converted in good yield to product without any over-

oxidation to a sulfoxide or sulfone. 

 

Scheme 4. Characteristic scope of aldehydes used with isoquinoline by Matcha and Antonchick 

Equipped with a scope of compatible aldehydes, Matcha and Antonchick explored the 

range of N-heterocycles with p-tolualdehyde 5.1 (Scheme 5). Isoquinoline 5.2 gave the product 
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in high yield. The addition of electron donating groups, as seen in 5,6,7-trimethoxyisoquinoline 

5.3, seemingly did not decrease the electrophilic character of the N-heterocycle or the yield. The 

presence of a strongly withdrawing group in 5-nitroisoquinoline 5.4, however, did decrease the 

yield. Quinoline afforded a mixture of mono- and disubstituted products, but blocking the 2-

position with a substituent as in quinaldine 5.5 avoided this problem. A variety of other 

heterocycles, such as quinoxaline 5.6 and benzothiazole 5.7, also gave good yields. 

 

Scheme 5. Representative scope of N-heterocycles used by Matcha and Antonchick 

A series of experiments were undertaken to investigate the mechanism (Scheme 6). 

When isoquinoline 6.1 and p-tolylbenzaldehyde 6.2 were reacted in the presence of the TEMPO 

radical trap 6.3, no desired product was formed. Just mixing the aldehyde 6.2  and TEMPO 6.3 

under the reaction conditions gave the isolable adduct 6.5 confirming the formation of an acyl 

radical in situ. The kinetic isotope effect was measured to be 5.7 by using [D6]-benzaldehyde 6.7 

in a competition experiment with benzaldehyde 6.6—possibly indicating the rate limiting step is 

the formation of the acyl radical.  
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Scheme 6. Experiments to probe the reaction mechanism by Matcha and Antonchick 

The proposed mechanism (Scheme 7) involves the formation of intermediate 7.2 from 

the ligand exchange between [bis(trifluoroacetoxy)iodo]benzene 7.1 and azidotrimethylsilane. 

The weak I-N bond in intermediate 7.2 experiences thermal homolytic cleavage to yield the 

trifluoroacetoxy iodobenze radical 7.3 and an azide radical. The azide radical abstracts a 

hydrogen atom from the aldehyde to give the acyl radical 7.4. The radical 7.4 attacks the 

electrophilic position of the protonated N-heterocycle 7.5 to give the radical cation intermediate 

7.6 under thermodynamic control. A subsequent hydrogen atom abstraction and rearomatization 

produces the final product 7.7. 
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Scheme 7. Matcha and Antonchick’s proposed mechanism for acylations utilizing hypervalent 
iodine and trimethylsilyl azide 

Khemnar and Bhanage were able to acylate 4,5-dimethylthiazole 8.1 with a variety of 

aldehydes in a reaction heating with tert-butyl hydroperoxide (TBHP) at 100 °C (Scheme 8). 10  

The reaction was optimized using four equivalents of both benzaldehyde 8.2 and TBHP in open 

air to give the desired product in 70% yield. Adding steric bulk near the aldehyde, as seen with 

2,6-dimethylbenzaldehyde 8.3, did not negatively impact the reaction. Both electron-rich p-

anisaldehyde 8.4 and electron-poor p-chlorobenzaldehyde 8.5 were well tolerated. The use of 

heteroaromatic thiophene carboxaldehyde 8.6 succeeded without modifying the procedure, albeit 

with slightly lower yield. The aliphatic acetaldehyde 8.7 also afforded moderate amounts of the 

azolyl ketone. 
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Scheme 8. Acylation of 4,5-dimethylthiazole described by Khemnar and Bhanage 

The proposed reaction mechanism is initiated by the homolysis of TBHP. The authors 

then suggest concomitant hydrogen atom abstraction from both the thiazole 9.1 and aldehyde 9.2 

to give the C-2 thiazolyl radical 9.3 and acyl radical 9.4 respectively. Simple recombination of 

9.3 with itself yields dimer 9.5, which was observed in trace amounts. Cross-reaction of the two 

free radicals would give the desired ketone 9.6. An alternative, and more plausible, mechanism 

would be for the reaction to proceed through the Minisci pathway (Scheme 2), which 

circumvents the simultaneous formation of the two higher energy radical intermediates 9.3 and 

9.4. 
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Scheme 9. Proposed mechanism by Khemnar and Bhanage 

Prabhu et al. achieved the acylation of a variety of N-heterocycles using potassium 

persulfate and substoichiometric quantities of tetrabutylammonium bromide (TBAB). 11  The 

scope of applicable aldehydes is best represented with isoquinoline (Scheme 10). These 

reactions usually proceeded with poor to moderate yields, presumably due to decomposition of 

isoquinoline under the reaction conditions. Aliphatic aldehydes such as butanal 10.1 and the 

more bulky isovaleraldehyde 10.2 provided the 1-substituted isoquinoline product. Testing p-

tolualdehyde  10.3 in the system did not increase the yield. The more electron rich p-

anisaldehyde 10.4 did perform slightly better, likely due to the increased nucleophilic character 

of the subsequent radical. This particular example was scaled to using one gram of the 

isoquinoline with similar yields. Adding an electron-withdrawing group caused a drop in yield 

(10.5). 
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Scheme 10. Representative aldehyde scope for the acylation of isoquinoline by Prabhu 

 Although the unsubstituted isoquinoline faced decomposition, many 4-substituted 

isoquinolines were well tolerated under these reaction conditions. Anisaldehyde 11.1 underwent 

smooth coupling with 4-phenylisoquinoline to give the product 11.2 in good yields. Increasing 

the electron density of the isoquinoline reduced the yields, which fits with Minisci’s original 

hypothesis that the N-heterocycle is the electrophile in these reactions. The product 11.3 from 4-

(4-methoxyphenyl)-isoquinoline was afforded in good yet slightly lower yields. Other 

heterocycles, such as quinoxaline, were well tolerated (11.4). Aldehyde 11.1 reacted well with 

5,6,7-trimethoxyisoquinoline to give the natural product thalimicrinone 11.5, which is isolated 

from thalictrum, or meadow-rue flowers. 
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Scheme 11. Prabhu’s representative N-heterocycle scope using p-anisaldehyde 

 Prabhu et al. propose the following radical mechanism for the metal free acylation 

(Scheme 12). Persulfate 12.1 is known to provide the sulfate radical 12.2 through either a single 

electron transfer (SET) or through a self-sustaining radical chain mechanism upon heating. 

Radical 12.2 abstracts a hydrogen atom from the aldehyde to give acyl radical 12.3. Addition of 

12.3 onto the N-heterocycle 12.4 gives the 1-substituted isoquinoline radical 12.5. Deprotonation 

at the acidic α-position affords the radical anion 12.6, which transfers a single electron (SET) to 

persulfate regenerating 12.2 and giving the product 12.7. A simpler alternative to this proposed 

mechanism could include a hydrogen atom abstraction, rather than deprotonation, at the α-

position of 12.5 to allow for the rearomatization to the ketoazole 12.7. 
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Scheme 12. Proposed mechanism for the acylation of isoquinoline in the presence of potassium 
persulfate and TBAB by Prabhu et al. 

Chen et al. discovered a method for the preparation of either acylated benzothiazoles or 

phosphonated benzothiazoles depending on the radical initiator used. 12  For the scope of this 

chapter, only the use of TBHP, which led to 2-acylbenzothiazoles, will be discussed. Several 

dialkyl phosphites were employed to generate the desired products, although the yields slightly 

decreased with the length of the carbon chain. Many substituted benzothiazoles were also tested 

in the system (Scheme 13). Benzothiazole and dimethylphosphite gave product 13.1 in good 

yields. Adding electron-donating groups to the benzothiazole gave higher yields (13.2) in 

comparison to the unsubstituted benzothiazole. Weakly electron-withdrawing groups, such as a 

bromo group, gave the resulting 2-acetyl product 13.3 in reduced yields. Introducing a nitro 

substituent, a strongly withdrawing group, dramatically reduced the amount of product 13.4 
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recovered. In fact, only dimethyl phosphite afforded any product at all with this starting material. 

Thiazole and benzoxazole did not produce any desired ketoazoles in this system. 

 

Scheme 13. Chen’s representative scope of benzothiazoles with dimethyl phosphite 

 The proposed mechanism is depicted below (Scheme 14). TBHP undergoes homolysis to 

give the tert-butoxide radical 14.1 and hydroxide radical 14.2, which subsequently abstract 

hydrogen atoms from both the C-2 of the benzothiazole 14.3 and the α-carbon of the phosphite 

14.4 to give the heteroaryl radical 14.5 and phosphite radical 14.6, respectively. Radical 

recombination affords 14.7, and subsequent hydrogen atom abstraction gives the tertiary radical 

14.8. Coupling of 14.8 with hydroxyl radical 14.2 provides the hemiacetal 14.9, which quickly 

undergoes an energetically favorable elimination to yield the acylated product 14.10 and alkyl 

hydrogen phosphonate 14.11. The simultaneous formation of the two high-energy radicals 14.5 

and 14.6 is implausible and unnecessary. Instead, the reaction might proceed more similarly to 

the Minisci mechanism (Scheme 2) and phosphite radical 14.6 could add directly to 

benzothiazole 14.3. 
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Scheme 14. Proposed reaction mechanism of benzothiazole with dialkyl phosphite and TBHP by 
Chen et al. 

E. Conclusion 

 This literature review describes the various methods used for the C-H functionalization 

N-heteroarenes with acyl radicals. The groundwork laid by Minisci in the late 1960s was an 

alternative approach to traditional Friedel-Crafts methods that did not succeed for azoles. All of 

the reported conditions avoid strong bases and cryogenic temperatures, which allows for high 

functional group tolerance within the azoles and acyl sources. Also, the evaluated literature 

employs commercially available azoles, aldehydes, and other reagents in these transformations, 

making the large library of possible products easily accessible to most chemists. Recent efforts 

have even progressed toward completely metal free conditions by using alternative radical 
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initiators and/or heat in the reactions. Overall, the radical acylation of azoles provides a clear 

pathway to aromatic ketones and, thus, a variety of biologically relevant molecules. 
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5. The Formation and Reduction of Aryl Thiazolyl Ketones 

A. Introduction 

 The McIntosh lab has reported the [3,3] Claisen rearrangement of Breslow intermediates 

formed from N-allyl benzothiazolium bromide and aromatic aldehydes. 1  When the same 

reaction conditions were applied to N-cinnamyl benzothiazolium salts, the major product resulted 

from a [1,3] stepwise rearrangement (Scheme 1). 2  

 

Scheme 1. N-Substituent effects on the rearrangement of benzothiazoles 

 In order to exploit this new reaction pathway and exclude the chance of [3,3] 

rearrangement products, non-allylic N-substituents were explored. Benzaldehyde and 4,4’-

difluorodiphenylmethyl thiazolium bromide were reacted in the presence of DBU in methanol to 

give good yields of the [1,3] product. 3  It was hypothesized that this rearrangement was 

proceeding through a radical mechanism. 
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Scheme 2. [1,3] Rearrangement of 4,4'-difluorodiphenylmethyl thiazolium bromide with 
benzaldehyde 

 The radical-stabilizing fluorenyl group was then tested as an N-substituent. When N-

fluorenyl thiazolium bromide was subjected to benzaldehyde under the aforementioned reaction 

conditions, the [1,3] product precipitated albeit at lower yields. Column chromatography of the 

remaining mixture gave the phenyl thiazolyl ketone, fluorene, and fluorenone. 

 

Scheme 3. McIntosh observed products formed from N-fluorenyl thiazolium bromide and 
benzaldehyde 

 Oka et al. observed similar fragmentation patterns in 1970 with thiamine and 

benzaldehyde in the presence of triethylamine. 4  Low yields of the [1,3] rearrangement product 

were observed with higher yields of the ketone, pyrimidine, and benzoin. Oka proposed a 

questionable mechanism for the transformation, 5  but despite that, the fragmentation products 

remained consistent with the McIntosh findings. 
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Scheme 4. Products observed by Oka from thiamine and benzaldehyde 

Efforts to optimize the N-fluorenyl thiazolium system for the formation of the [1,3] 

product never consistently gave more than moderate yields. Heating the product in refluxing 

methanol confirmed that it was indeed unstable under the reaction conditions because it gave 

fluorene and the diaryl ketone. 6  

 

Scheme 5. Decomposition of the [1,3] rearrangement product to the thiazolyl ketone and 
fluorene 

B. Background and Significance 

These attempts led to a simple two-step streamlined procedure for access to a wide 

variety of aryl azolyl ketones. After studying a variety of bases (DBU, Cs2CO3, K2CO3, TMG, 

and Et3N) and solvents (MeOH, DMF, THF and MeCN), the optimal reaction conditions were 

found to involve adding 1.2 eq of the DBU to a mixture of the salt and 1.2 eq aldehyde in either 

0.15 M MeOH or THF at 65 °C for 3-5 hours. 6   

Thiazole, triazole, thiadiazole, and thiamine thiazoles were all successfully alkylated with 

bromoflorene to provide N-fluorenyl salts. These salts were then reacted with a variety of 

aromatic and aliphatic aldehydes to give the desired 2-ketoazoles (Scheme 6). The gentle 

reaction conditions are highlighted through the tolerance of unprotected hydroxyl groups on both 
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the aldehyde and the azole. A wide variety of electron donating and withdrawing substituents 

also gave good results. 

 

Scheme 6. Representative product scope of various thiazole salts with aromatic aldehydes 

In the proposed mechanism (Scheme 7), N-fluorenyl thiazolium bromide 7.3 is formed 

from a simple SN2 attack of thiazole 7.1 on 9-bromofluorene 7.2.  

 

Scheme 7. Proposed SN2 mechanism for the formation of N-fluorenylthiazolium bromide 

Following the generally accepted mechanism for the reaction of NHCs and aldehydes 

(Scheme 8), deprotonation of 8.1 by DBU gives the carbene 8.2, which subsequently attacks the 
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aldehyde to give adduct 8.3. Another deprotonation gives the Breslow intermediate 8.4. 

Homolysis of the N-fluorenyl bond gives stable radical intermediates 8.5 and 8.7. DFT 

calculations (B3LYP/6-31g*) predict the ΔH for the C-N bond homolysis to be 8.3 kcal/mol. 

EPR experiments support the radical pathway. Hydrogen atom abstraction from the alcohol 8.6, 

which is the resonance form of 8.5, gives the two major products 8.8 and 8.9. If instead a simple 

radical recombination occurred, then the [1,3] product would be obtained. 
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Scheme 8. Proposed radical mechanism for the formation of thiazolyl aryl ketones 

 Asymmetric alcohols bearing azoles are enticing targets in the pharmaceutical 

community. A simple route to these desirable targets is the asymmetric reduction of the prochiral 

azolyl aryl ketones described above. Chen et al. used 1 mol% loading of a commercially 

available ruthenium BINAP DAIPEN catalyst to effectively hydrogenate a variety of 5-

benzoylthiazoles with good selectivities (Scheme 9). 7  When applied to a 2-substituted thiazolyl 

aryl ketone, the system gave only a modest er. The procedure did perform better for a variety of 

S

NBr
H DBU

S

N
H

O

R

S

N

R

OH
H

+ +

8.1 8.2

8.3

H O Me

DBU
S

N

R

OH

8.4

S

N

R

O H

S

N

R

O H
+

8.5 8.6 8.7

S

N

R

O

8.8 8.9

+



91 

2-substituted pyridinyl aryl ketones. The best selectivities were achieved when an obvious steric 

difference between the two ketone substituents existed. 

 

Scheme 9. Asymmetric hydrogenation of azolyl aryl ketones by Chen et al. 

 Recently, Zhang and Lv et al. more deeply explored the asymmetric hydrogenation of 2-

ketoazoles. 8  By using a rhodium BINAPINE catalyst at 1 mol% loading, every example of 

diaryl ketone tested was reduced with complete conversion to the desired chiral alcohol with 

very high selectivities (Scheme 10). No effects of substituent placement, electronics, or steric 

bulk were noted in the 2-pyridinyl examples. A 2-benzothiazolyl ketone was also reduced with a 

high er by the system. 
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Scheme 10. Asymmetric hydrogenation of 2-azolyl aryl ketones by Zhang and Lv et al. 

C. Results and Discussion 

 We desired to try CuIPhEt in the asymmetric hydrogenation of these 2-ketoazoles. In 

order to synthesize the targets, we followed the two-step McIntosh procedure (Scheme 11). The 

N-fluorenyl thiazolium bromide 11.3 was easily prepared by simply mixing the thiazole 11.1 and 

9-bromofluorene 11.2 in a pressure tube and heating at 75 °C. The bromofluorene melts to give a 

homogenous reaction mixture, which solidifies upon formation of 11.3. Simple trituration with 

diethyl ether gives the pure salt in good yields. The reaction is easily scalable as well. In only 

two hours, 8.6 g of product were obtained in 88% yield. 
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Scheme 11. Large-scale formation of N-fluorenyl thiazolium bromide 

With the salt in hand, a variety of azolyl ketones were made on a larger scale than the 

initial McIntosh screenings (Scheme 12). One equivalent of the N-fluorenyl salt was mixed with 

a slight excess of the aryl aldehyde in THF. Upon reaching 75 °C, 1.2 eq of base was added to 

eventually afford the ketone in low to moderate yields. Benzaldehyde 12.1 was the aldehyde of 

choice for optimizing this large-scale reaction due to its simplicity. The only modification 

needed was changing the solvent to THF, which provides a much cleaner reaction TLC and 

ensuing column—possibly due to the precipitation of the protonated DBU. A variety of ortho-

substituted aryl aldehydes were used to create the eventual substrate scope for the CuIPhEt 

hydrosilylations. Salicylaldehyde 12.2, despite a potentially reactive unprotected hydroxyl group, 

was well tolerated in the acylation reaction. In case the free hydroxyl group did not work in the 

forthcoming hydrosilylation system, the sterically similar o-tolylaldehyde 12.3 was utilized. 

Electron withdrawing o-bromo 12.4 and o-chloro 12.5 benzaldehydes gave the desired ketones in 

lower yields. 
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Scheme 12. Product scope for the large-scale formation of thiazolyl aryl ketones 

The CuIPhEt hydrosilylation of azolyl ketones was optimized on the benzyl thiazolyl 

ketone. It was found that 3 mol% of catalyst and base were necessary to achieve conversion to 

the reduction product in under an hour without heating. In order to separate the racemate formed 

from a simple NaBH4 reduction on a chiral GC, the silane was cleaved to the alcohol in work-up 

with 5% HF in MeCN. A Kugelrohr distillation of the crude reaction mixture gave the desired 

alcohols in low to excellent yields. 

Unfortunately, CuIPhEt did not provide good selectivities in the reduction of azolyl aryl 

ketones (Table 1). In the case of the thiazolyl benzyl ketone (entries 1-3), the selectivity did 

increase as the reaction temperature was lowered, but at best, only moderate selectivities similar 

to those found by Chen et al. above were observed. Hoping a more sterically demanding 

substituent could influence the selectivity, we tried the thiazolyl salicyl ketone (entries 4-5). 

Neither cryogenic nor room temperatures afforded any isolable product. The o-tolyl thiazolyl 
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ketone did provide the desired alcohol in good yields, but again, only a low er was observed 

(entry 6). Reducing the reaction temperature in this instance gave no conversion to product 

(entry 7). Electron withdrawing substituents gave both extremely low yields and selectivities 

(entries 8-9). 

 

Entry R Temperature (°C) % Yield er (R:S) %ee 

1 H 23 90 54:46 8 

2 H 0 92 58:42 16 

3 H -78 53 65:35 30 

4 OH -78 0 - - 

5 OH 23 0 - - 

6 Me 23 90 56:44 12 

7 Me -78 0 - - 

8 Br 23 10 51:49 2 

9 Cl 23 12 54:46 8 

Table 1. Attempts toward the asymmetric hydrosilylation of thiazolyl aryl ketones with CuIPhEt 

D. Conclusion 

 Thiazolyl aryl ketones and alcohols are useful and desired synthetic targets. The 

McIntosh lab designed a new, efficient radical pathway to access these ketoazoles through 

modifications to their Claisen chemistry. The two-step synthesis consists of a formation of an N-

fluorenyl salt followed by a reaction with an aryl aldehyde to give the ketone. These ketones 
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were made on 2 g scale and reduced by CuIPhEt. The best selectivity was achieved on the benzyl 

thiazolyl ketone at -78 °C but with only a modest 65:35 er. 
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E. Experimental 

N-Fluorenyl thiazolium bromide: Thiazole (29.7 mmol, 2.1 mL) was mixed 

neat with a 1.1 eq of 9-bromofluorene (32.6 mmol, 8 g) and the mixture heated to 75 °C until the 

reaction mixture solidified (2 hours). The resulting solid was then washed three times with 

diethyl ether. The solvent was decanted and the solid dried under nitrogen to yield the pure salt 

(8.6 g) in 88% yield. 1H NMR (400 MHz, DMSO-d6) δ 7.21 (s, 1H), 7.42 (td, J = 7.5, 1.1 Hz, 

2H), 7.60 (m, 4H), 8.04 (m, 3H), 8.28 (dd, J = 3.8, 2.4 Hz, 1H), 10.53 (s, 1H). 13C NMR (101 

MHz, DMSO) δ 161.1, 140.9, 140.1, 135.2, 131.1, 129.1, 128.8, 126.1, 121.7, 67.7. 

General procedure for the formation of the aryl azolyl ketones: To a mixture 

of N-fluorenylthiazolium bromide (1 eq, 6 mmol, 2g) and aldehyde (1.2 eq, 7.3 mmol) in THF 

(0.15M, 40 mL) at 75 °C was added DBU (1.2 eq, 7.3 mmol, 1.1 mL). The reaction was stirred 

for 4 hours or until aldehyde consumption ceased by TLC. The solvent was removed en vacuo 

and the residue was purified via column chromatography with 95:5 hexanes/EtOAc. 

Phenylthiazolyl ketone: Red solid, 63% yield. 1H NMR (400 MHz, CDCl3) δ 

7.53 (t, J = 7.5 Hz, 2H), 7.65 (m, 1H), 7.74 (d, J = 3.0 Hz, 1H), 8.11 (d, J = 3.1 Hz, 1 H), 8.47 

(dd, J = 1.5, 8.8 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ 126.3, 128.4, 131.1, 133.6, 135.2, 

144.9, 167.9, 184.2.  
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Salicylthiazolyl ketone: Orange solid, 67% yield. 1H NMR (400 MHz, CDCl3) 

δ 7.06 (m, 2H), 7.57 (td, J = 1.6, 9.9 Hz, 1H), 7.77 (d, J = 3.0 Hz, 1H), 8.15 (d, J = 3.1 Hz, 1H), 

9.19 (dd, J = 1.7, 8.2 Hz, 1H) 12.18 (s, 1H); 13C NMR (100 MHz, CDCl3) δ 118.0 (Ar C), 118.4 

(Ar CH), 119.4 (Ar CH), 126.5 (Ar CH), 133.9 (Ar CH), 137.2 (Ar CH), 144.9 (Ar CH), 164.1 

(Ar C), 167.9 (SC=N),186.5 (C=O). IR (CH2Cl2) υmax: 3086 (br), 2922, 1620, 1585, 1440, 

1477, 1388.   

o-Tolylthiazolyl ketone: Red solid, 60% yield. 1H NMR (400 MHz, CDCl3) δ 

2.49 (s, 3H), 7.34 (m, 2H), 7.44 (m, 2H), 7.74 (d, J = 3 Hz, 1H), 7.88 (d, J = 8.5 Hz, 1H), 8.08 (d, 

J = 3 Hz, 1H) ; 13C NMR (100 MHz, CDCl3) δ 20.5, 125.3, 126.5, 130.7, 131.4, 131.7, 135.6, 

138.5, 145.1, 168.3, 188.2 

 o-Bromophenylthiazolyl ketone: Orange solid, 40% yield. 1H NMR (400 

MHz, CDCl3) δ 7.42 (td, J = 2, 9.6 Hz, 1H), 7.47 (td, J = 1.2, 8.8 Hz, 1H), 7.64 (dd, J = 2, 7.6 

Hz, 1H), 7.70 (dd, J = 0.8, 8.0 Hz, 1H), 7.80 (d, J = 2.8 Hz, 1H), 8.08 (d, J = 3.2 Hz, 1H); 13C 

NMR (100 MHz, CDCl3) δ 120.2, 127.0, 127.1, 130.2, 132.2, 133.6, 138.4, 145.5, 166.3, 187.0 

o-Chlorophenylthiazolyl ketone Orange solid, 30% yield. 1H NMR (400 MHz, 

CDCl3) δ 7.33 (m, 1H), 7.48 (d, J =8.8 Hz, 1H), 7.64 (dd, J = 2, 7.6 Hz, 1H), 7.77 (m, 1H), 7.80 
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(d, J = 2.8 Hz, 1H), 8.08 (d, J = 3.2 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 118.2, 125.1, 126.1, 

129.2, 132.0, 132.6, 136.4, 141.5, 164.4, 185.0 

General procedure for the reduction of the aryl azolyl ketones: CuIPhEt (3 

mol%, 12 µmol, 9 mg) was weighed into an oven dried flask with stir bar and septum. The flask 

was evacuated and flushed with N2 three times. Dry THF (0.5 mL) was added and stirred until 

the CuIPhEt dissolved. NaOMe in MeOH (0.5 M, 3 mol%, 24 µL) was added and stirred for 5 

min. Freshly distilled diethyl silane (3 eq, 1.2 mmol, 0.15 mL) was added and stirred for 5 min. 

Aryl azolyl ketone (1 eq, 0.4 mmol) was dissolved in THF (0.5 mL) and added to the reaction 

mixture. The reaction was stirred for 45 minutes before adding 5% HF/MeCN (1 mL). The 

solvent was removed en vacuo and the residue was purified via Kugelrohr distillation. 

Phenylthiazolyl alcohol: White needles, 90% yield. 1H NMR (400 MHz, 

CDCl3) δ 4.07 (d, J = 3.5 Hz, 1H), 6.06 (d, J = 3.2 Hz, 1H), 7.35 (m, 4H), 7.45 (d, J = 7.1 Hz, 

2H), 7.70 (dd, J = 0.8, 3.2 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 73.9, 119.6, 126.6, 128.5, 

128.8, 141.5, 142.3, 174.4. 

o-Tolylthiazolyl alcohol: Yellow solid, 92% yield. 1H NMR (400 MHz, CDCl3) 

δ 2.40 (s, 3H), 4.19 (br s, 1H), 6.25 (s, 1H), 7.25 (m, 3H), 7.55 (m, 2H), 7.70 (d, J = 3.2 Hz, 1H); 

13C NMR (100 MHz, CDCl3) δ 19.3, 73.9, 119.9, 125.6, 128.3, 128.9, 142.5, 143.3, 179.3. 
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o-Bromophenylthiazolyl alcohol: Yellow oil, 10% yield. 1H NMR (400 MHz, 

CDCl3) δ 4.29 (br s, 1H), 6.35 (s, 1H), 7.45 (m, 2H), 7.63 (m, 2H), 7.90 (m, 2H); 13C NMR (100 

MHz, CDCl3) δ 70.2, 117.7, 120.6, 128.9, 133.5, 145.5, 162.7, 174.3. 

o-Chlorophenylthiazolyl alcohol: Orange oil, 12% yield. 1H NMR (400 MHz, 

CDCl3) δ 4.50 (br s, 1H), 6.30 (s, 1H), 7.35 (m, 2H), 7.45 (m, 3H), 7.51 (d, J = 3.5 Hz, 1H); 13C 

NMR (100 MHz, CDCl3) δ 74.9, 118.7, 127.9, 128.1, 128.8, 140.5, 142.5, 175.3. 
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6. Conclusion 

Aromatic N-heterocyclic carbenes (NHCs) are an important class of molecules in organic 

chemistry. Since the confirmation of their existence in 1968, the field has steadily grown. NHCs 

are employed today as ligands for metal catalysts, as organocatalysts, and as useful synthetic 

compounds. In this work, we have synthesized and applied CuIPhEt, an N-heterocyclic copper 

carbenoid, on large scales. In addition, we employed the use of NHC derived Breslow 

intermediates as key intermediates in the synthesis of azolyl ketones. 

Our catalyst, CuIPhEt, was designed as a chiral analog to the well established achiral 

CuIPr. The original synthesis of CuIPhEt was completed on a 140 mg scale and involved a 

traditional resolution. In order to complete a scalable, asymmetric synthesis, a double 

asymmetric hydrogenation employing the chiral ligand DuanPhos was developed. Now, CuIPhEt 

is attainable as 5 g of a single enantiomer with 52% overall yield. This provides nearly 36 times 

more catalyst in quadruple the yields when compared to the original synthesis. 

CuIPhEt was found to be an effective asymmetric hydrosilylation catalyst for a variety of 

alkyl aryl and dialkyl ketones; however, the procedure was not reproducible. An effort was 

undertaken in order to make the desired results more attainable. The solution to the 

reproducibility lay in exchanging to the less sterically hindered sodium methoxide base. The new 

procedure was used to asymmetrically reduce examples from the originally published substrate 

scope as well as new compounds. A meso-diketone used as a key intermediate toward the total 

synthesis of antascomicin B was reduced on a 10 g scale. Levulinic acid, a commodity chemical 

containing a ketone and carboxylic acid, was protected to the ethyl ester and reduced efficiently 

as well. 
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Azolyl ketones are important synthetic targets in the pharmaceutical and agrochemical 

fields. Several radical synthetic methods have been developed since Minisci’s seminal work in 

the late 1960s. Efforts have been made to develop metal free and more functional group tolerant 

procedures. The McIntosh group developed a two-step synthesis to form these ketoazoles using 

only a weak base. The mechanism is thought to proceed through an NHC attacking an aldehyde 

to give the Breslow intermediate. Using this procedure, a variety of thiazolyl aryl ketones were 

synthesized on a 2 g scale—almost ten times more than the original screenings. These ketones 

were tested as possible substrates for the CuIPhEt hydrosilylations but gave only poor 

selectivities. 

 
 


