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Abstract 

Clostridium histolyticum secretes collagenases ColG and ColH to cause extensive tissue 

destruction during myonecrosis. The collagenases are multi-domain enzymes consisting of a N-

terminal collagenase module, s1, polycystic kidney disease (PKD)-like domains (s2 in ColG; s2a 

and s2b in ColH) and collagen-binding domains (CBD) (s3a and s3b in ColG; s3 in ColH). The 

individual CBD and PKD-like domains chelate calcium to modulate stability and domain 

rearrangement. Though used by bacteria to break down collagen in the extracellular matrix 

during infection, therapeutic use of the enzyme to break down excess connective tissue has been 

approved by the FDA. Meanwhile, the use of the targeting segment to anchor therapeutics at the 

lesion site is currently underway. To better understand both the mechanism of collagenase during 

infection and facilitate its use in drug delivery, the high-resolution structures of the PKD-like 

domains and CBD of collagenases ColG and ColH were solved using X-ray crystallography. The 

structures of Ca2+-absent (apo)-s2 and s2a, as well as Ca2+-bound (holo)-s2a, s2b, s3a-s3b, and 

s3 are new structures, while the structure of holo-s3b was re-refined at higher resolution. 

Individually, the structures of the CBD are similar and share conserved Ca2+ and collagen-

binding pockets. In the tandem CBD, s3a-s3b, the domains are related by a pseudo two-fold 

symmetry that may allow tandem CBD to bind to separate collagen molecules. Furthermore, 

three aromatic residues that were identified to be crucial to collagen-binding are fully conserved 

in s3, but only partially conserved in s3a. Evolutionary pressure likely decreased collagen 

affinity of s3a to prevent s3a-s3b from binding too tightly on the surface of collagen fibril. 

Meanwhile, the structures of the PKD-like domains are similar, though surface exposed aromatic 

residues are found only on the ColH PKD-like domains. Furthermore, the change in Cα B-factors 

upon Ca2+-binding further suggests a divergence of function for ColH and ColG PKD-like 



domains. In each case, Ca2+-binding further stabilized the robust domains against denaturants 

heat, urea, and guanidium chloride. For s3a-s3b, the influence of Ca2+ was further explored using 

small angle X-ray scattering, which indicates the linker between domains gradually contracts in 

the presence of increasing Ca2+ concentrations. 
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Chapter 1: Introduction  

Collagen 

In animals, procollagen chains containing Xaa-Yaa-Gly repeats, where Xaa and Yaa are 

frequently proline and hydroxyproline respectively, can assemble into triple helical 

tropocollagen. Mammalian heat shock protein 47 (HSP47) is a collagen specific chaperone that 

associates with procollagen and assists with folding into tropocollagen (1). In the fibrillar 

collagens, this tropocollagen further assembles into microfibrils and fibrils that provide the 

structural support to tissues such as skin and bone. Overall, the different types of collagen can be 

grouped into subfamilies based on their supramolecular structure: fibril forming types I, II, III, 

V, and XI collagens; network forming types IV, VIII, and X collagens; anchoring fibril type VII 

collagen, transmembrane domain type XIII collagen, and FACIT type IX, XII, XIV, and XVI 

collagens that interact with beaded filament forming type VI collagen (2). As part of the 

processing into mature type I or type III collagen, non-helical flanking segments called 

propeptides are proteolytically removed, though a small, non-helical segment called the 

telopeptide is retained. The telopeptides are the location of intramolecular cross-links that help 

stabilize the fibril and improve tensile strength (3). Three dimensional structural characterization 

of collagen fibril and fiber is hindered by the size and heterogeneity of the molecule, though X-

ray fiber diffraction of type I collagen does suggest that the tropocollagen packs into a quasi-

hexagonal arrangement that exposes the C-terminus of the molecules in the fibril (4, 5). The tight 

packing of collagen in the fibril, as well as the triple helical confirmation of tropocollagen 

shields peptide bonds from common proteases, such as trypsin. In response, specialized 

collagenolytic proteases are have evolved to degrade collagen, either for remodeling of aged or 

damaged collagen, or as part of bacterial infection. In mammals, a variety of matrix 
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metalloproteinases (MMPs) are used to break down collagen as part of the tissue remodeling 

process. Bacteria utilize collagenases, which can break down a wider variety of collagens and 

digest the collagen into shorter fragments compared to the MMPs. 

Comparison of MMPs and bacterial collagenases 

Mammalian MMPs and the bacterial collagenases from Clostridium histolyticum, which 

are discussed in this dissertation, are multidomain enzymes that utilize contrasting mechanisms 

to degrade collagen. Likewise, the motif responsible for zinc binding is different. Bacterial 

collagenases utilize the HEXXH motif, while MMPs utilize an elongated HEXXHXXGXXH 

motif (6-9). The MMPs comprise a network of enzymes that each fill a specific role in 

dismantling of collagen (6). While MMP-2 acts on the collagen triple helix, it can also hydrolyze 

gelatin (denatured collagen) and therefore, is also considered a gelatinase (10). For type I 

collagen, which is composed of two α1 chains and one α2 chain, the MMP cleaves the Gly775-

Ile776 bond in the αI chain and the Gly775-Leu776 bond of the α2 chain (6).  Hydrolysis at this 

site results in a ¾ length, N-terminal fragment called the TCA fragment and a ¼ length, C-

terminal fragment called the TCB fragment. Conformational instability in these segments helps 

further unwind the collagen helix. The resulting gelatin can then be processed by MMP2. MMPs 

are multidomain enzymes that feature a catalytic domain that is connected to a four-blade β-

propeller hemopexin domain. The zinc coordinating motif is found in the catalytic domain.  

MMP is expressed as a zymogen called pro-MMP. Structures of pro-MMP-1 (PDB ID: 1SU3) 

and active MMP-1 (2CLT) are available. Comparison of the two reveals the inhibitory 

mechanism. In the pro-MMP-1 structure, the N-terminal inhibitory peptide not only blocks the 

catalytic site using a cysteine-switch interaction with zinc (7), but also draws the domains 

together by interacting with the C-D loop of blade 1 in the hemopexin domain (11, 12). 
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Comparison with active MMP-1 also indicates that cleaving the inhibitory peptide creates a 

groove that forms the collagen binding site (11, 12).  MMPs also feature “exosite” regions that 

are believed to be responsible for not only substrate recognition (13), but also unwinding 

collagen to allow only one chain in the catalytic site at a time (14).  Analysis of the E219A 

mutant of MMP-1 and collagenous peptide using hydrogen deuterium mass spectrometry 

suggested that exosites were located on blades one and four of the hemopexin domain, while 

mutagenesis identified Ile290 and Arg291 specifically as exosites (15).  Further mutagenesis 

studies identified Phe301 as the most vital residue in collagen binding (10).  The crystal 

structure, solved in the absence of collagen, suggest that this residue is buried within the 

interface between the domains.  Small angle X-ray scattering (SAXS) data, however, suggests 

that transient movement of the domains exposes this residue (10). 

Unlike the MMPs, each bacterial collagenase can rapidly hydrolyze multiple sites on 

collagen (16, 17), and are utilized to destroy the host extracellular matrix during infection. 

However, controlled applications of collagenases can be tailored to target therapeutics to their 

active site, remove excess connective tissue, isolate cell cultures from the extracellular matrix, 

and reduce environmental pollution during leather production (18). These collagenases comprise 

peptidase families M9, S1, S8, and S53, and U32 of the MEROPS database (19). The M9 

collagenases are zinc protease family and can be further divided into subfamilies M9A (secreted 

by Vibrio) and M9B (secreted by Clostridium). All enzymes in this family share an N-terminal 

catalytic unit. However, the remaining domain structure varies. In M9B, the C-terminus consists 

of one to three domains that are called the collagen-binding domain (CBD), and carry out the 

namesake non-covalent attachment of the enzyme to collagen. In between these domains are the 

polycystic kidney disease (PKD)-like domain. The role of the domain is not well defined, though 
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a potential division of roles in relationship to the number of CBD present is presented in chapter 

4. Except for ColT, the collagenase secreted by C. tetani, which has no PKD-like domains, the 

M9B collagenases contain one or two PKD-like domains. In M9A, the collagenases can be 

further divided into class II and class III proteases (class I proteases belong to the M4 family 

have no collagenolytic activity). Only the collagensase module is found in class II collagenases 

(20, 21), while class III collagenases have a PKD-like domain and C-terminal domains, which 

are classified as prepeptidase C-terminal domains, as it is currently not known if the domain is a 

collagen-binder (22-24). The collagenase from Grimontia hollisae is closely associated with 

M9A class III collagenase, though it does not have a PKD-like domain. The Grimontia genus 

was originally classified as a member of the Vibrio genus (25), though in 2003, the bacterium 

was reclassified as a member of Grimontia (26).  To date, no structural knowledge for the 

domains of M9A collagenase exists. The enzyme has commercial interest as its specific activity 

is four times greater than that of C. histolyticum (27). Like the class III collagenases, the enzyme 

from Grimontia can degrade soluble and insoluble collagen, as well as the and Pz-PLGPR 

peptide (28). Unlike these class III enzymes, the enzyme cannot degrade casein (27). To date, no 

structure of the M9A collagenase domains is available. 

The current structural knowledge of bacterial collagenases comes from ColG and ColH, 

which are secreted by C. histolyticum. As noted above, each contains a collagenase module, 

called s1, though ColG has one PKD-like domain, s2, and two CBDs, s3a and s3b, while ColH 

has two PKD-like domains, s2a and s2b, and only one CBD, s3. The first domain to be solved 

was ColG-s3b (29), which was solved both in the presence of calcium ions (PDB ID 1NQD), and 

in the absence of calcium ions (PDB ID: 1NQJ). In each condition, the overall structure has a β-

jelly roll conformation. The CBD each bind to two Ca2+, while the PKD-like domains bind to 
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one Ca2+. Ca2+-binding stabilizes s3b against denaturants (30) and is shown to stabilize s3 and 

the PKD-like domains in chapters two and three respectively. In chapter four, the role of Ca2+ in 

triggering domain rearrangement in s3a-s3b is shown and the potential implication for collagen-

binding by the segment is discussed. Though these domains do not possess collagenolytic 

activity, they make up the targeting segment of the collagenase and are necessary for the enzyme 

to dismantle insoluble collagen. Beyond applications of collagenase to desired removal of excess 

collagen, the targeting segments themselves are being evaluated as drug delivery vehicles. The 

structure-based contribution of either individual CBD, s2b-s3, or s3a-s3b is discussed in chapters 

two through four. Significant to the goal of targeted drug delivery, both collagen-binding and 

therapeutic activity are retained in fusion proteins of the drug and collagen-targeting segment.  

In 2011, the first structure of a collagenase module, from ColG, was solved (31).  Three 

structures were solved: apo (calcium and zinc absent) Se-Met substituted structure (PDB ID: 

2Y3U), the zinc containing structure (2Y50), and the structure inhibited by isoamyl-phosphonyl 

Gly-Pro-Ala (2Y6I).  The s1 structure resembles a saddle composed of an N-terminal activator 

domain and C-terminal catalytic domain connected by a nine residue linker (31).  Within the 

activator domain ten HEAT motifs are found.  These motifs may facilitate in substrate 

recognition, and may also help with catalytic turnover after hydrolysis. The overall domain is 

necessary to hydrolyze soluble collagen, though the catalytic domain itself is the minimal 

gelatinolytic segment (31). 

Given that the bacterial collagenases can each hydrolyze collagen fibril into small 

peptides, it would initially seem odd that C. histolyticum would invest in carrying two 

collagenases in its genome. Utilizing two collagenases, however, facilitates the bacterium’s goal 

to expose new nutrient sources in the host before the host immune system can respond. ColG and 
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ColH have been shown to work synergistically to degrade collagen (32), in part by initially 

acting on separate regions (17). Though the technique has not been applied to ColH, high-speed 

atomic force microscopy has been used to observe collagen fibril digestion by ColG in real time 

(33). ColG was initially observed anchoring onto disordered regions of the fibril and then 

processively moving towards the N-terminus of the fibril. Curiously, trimmed collagen 

molecules, during this movement were observed migrating onto and thickening neighboring 

fibrils. The structure of s3a-s3b presented in chapter four may help to explain these phenomena. 

Observation of rare cis-peptide bonds in proteins 

The structures of s3b and s2a contain a unique bond rarely found in protein, the non-

prolyl cis-peptide bond. The bond is extremely rare and energetically unfavorable, and thus, 

tends to be conserved in highly restrained environments where it fulfills key structural and 

functional roles (34). In s3b, the bond between N-terminal linker residues Glu901 and Asn902 

isomerizes into the cis confirmation upon Ca2+ binding (29). While stabilized by the ions, 

isomerization serves critical function to position s3a into the unique pseudo-two-fold 

arrangement described in chapter four. The peptide bond, unlike the phi and psi bonds that also 

make up a protein’s main chain, is rigid due to resonance-induced delocalization of electrons in 

the carbonyl π bond and nitrogen lone pair. Consequently, the peptide bond torsion angle can be 

characterized as either cis, where the Cα of the connected amino acids lie on the same face of the 

peptide bond (Cα-N-C-Cα torsion angle close to 0°), or trans, where the Cα atoms lie on 

opposite faces (torsion angle close to180°).  

The isomerization barrier from trans to cis varies. Prolyl peptide bonds connect any 

amino acid to proline (Xaa-Pro), while non-prolyl peptide bonds, the nitrogen comes from any 

amino acid that is not proline. For non-prolyl peptide bonds, the trans confirmation is 
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significantly favored as steric hindrance between Cα atoms in the cis confirmation is absent in 

the trans confirmation. Due to this steric strain, non-prolyl cis-peptides are extremely rare. A 

survey of 571 proteins revealed that only 0.03% of non-prolyl peptide bonds were in the cis 

confirmation (35). For prolyl peptide bonds, steric strain is also found in the trans confirmation 

since the Cδ essentially destabilizes the confirmation by taking the place of the Cα atom after 

isomerization. The trans confirmation is still favored, however. In the above survey, 94.8% of 

prolyl peptide bonds were found in the trans configuration (35). It is significant to note that in 

the above survey, the resolution of the crystal structures studied was 2.0 Å and above. A recent 

survey of non-prolyl cis-peptide bonds indicated that identified cis-peptide bonds were likely 

erroneously placed in lower resolution structures (36). The lowest resolution structure of s3b is 

1.65 Å, while the lowest resolution structure of s2a is 1.9 Å. Each structure is solved at 

sufficiently high resolution to justify the observation of non-prolyl cis-peptides. Due to their 

rareness and their implications for the structure and function of proteins, non-prolyl cis-peptides 

have emerged as a topic for theoretical and modeling studies. The role of Ca2+ in catalyzing the 

isomerization and stabilizing the subsequent non-prolyl cis-peptide bond in s3b has been studied 

using a combination of quantum mechanics and molecular mechanics (37). The results showed 

that the presence of two Ca2+ lowers the free energy barrier for isomerization by 11 kcal/mol and 

helps to initiate a hydrogen bonding network that stabilizes the region. The non-prolyl cis-

peptide bond is not induced by Ca2+ binding in s2a, but its role in replacing proline to form a β-

bulge could facilitate modeling studies on how the bond influences protein folding. 
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Chapter 2: Structural comparison of ColH and ColG collagen-binding domains from 

Clostridium histolyticum 

Abstract 

Clostridium histolyticum secretes collagenases, ColG and ColH that cause extensive tissue 

destruction in myonecrosis.  The C-terminal collagen-binding domain (CBD) of collagenase is 

required for insoluble collagen fibril binding and subsequent collagenolysis.  The high resolution 

crystal structures of ColG-CBD (s3b) and ColH-CBD (s3) are reported in this paper.  The new 

X-ray structure of s3 was solved at 2.0 Å resolution (R=17.4%, Rfree=23.3%), while the 

resolution of the previously determined s3b was extended to 1.4 Å (R=17.9%, Rfree=21.0%).  

Despite sharing only 30% sequence identity, the molecules resemble one another closely 

(r.m.s.d. Cα = 1.5 Å).  All but one residue whose sidechain chelates with Ca2+ are conserved.  

The dual Ca2+ binding site in s3 is completed by an unconserved aspartate.  Differential scanning 

calorimetric measurements showed that s3 gains thermal stability, comparable to s3b, by binding 

to Ca2+ (holo TM=94.1 °C, apo TM=70.2 °C).  Holo s3 is also stabilized against chemical 

denaturants, urea and guanidine HCl.  The three most critical residues for collagen interaction in 

s3b are conserved in s3.  The general shape of the binding pocket is retained by altered loop 

structures and side chain positions.  Small angle X-ray scattering data revealed that s3 also binds 

asymmetrically to mini-collagen.  Besides the calcium-binding sites and the collagen-binding 

pocket, architecturally important hydrophobic residues and hydrogen-bonding network around 

the cis-peptide bond are well-conserved within metallopeptidase subfamily M9B. CBDs were 

previously shown to bind to extracellular matrix of various tissues.  Compactness and extreme 

stability in physiological Ca2+ concentration possibly make both CBDs suitable for targeted 

growth factor delivery. 
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Introduction 

Clostridium histolyticum is one of the causative agents for clostridial myonecrosis.  The 

organism produces collagenases responsible for extensive tissue destruction. Although 

collagenases are harmful during infection, their ability to break down a wide variety of collagen 

types make them beneficial as a treatment for excessive connective tissue build up. The enzymes 

are approved by the Food and Drug Administration (FDA) to break down the tough cords in 

Dupuytren’s contracture (38). The two classes of collagenase, ColG and ColH, differ in domain 

structures (s1, s2, s3a, s3b for ColG; and s1, s2a, s2b, s3 for ColH). The s1 is the collagenase 

module that belongs to a metallopeptidase M9 subfamily B (M9B) of bacterial collagenases. The 

structure of ColG-s1 was recently solved, and revealed an overall saddle shape built up by an 

activator domain linked to a peptidase domain (31).  The amino acid sequences of s2, s2a and 

s2b resemble a polycystic kidney disease domain. The role of this domain is speculative. It was 

shown that the PKD-like domain of the serine protease from Pseudoalteromonas sp. SM9913 

could bind to and swell collagen microfibrils (39). The PKD-like domain has also been shown to 

enhance collagen binding (40). The C-terminal domains, s3a, s3b and s3 (swissprot: Q46085, 

pubmed: BAA34542) are homologues with approximately 120 amino acid residues, and are 

classified as bacterial pre-peptidase C-terminal domains (PPC super-family). The PPC domain is 

found in some members of metalloprotease families M4, M9 and M28 as well as in a serine 

protease family S8.  In silico work on the PPC domain suggests a distant relationship with the 

PKD-like domain (41). Moreover, the role of the PPC domain could be diverse.  Some of the 

domains are removed after secretion for certain protease activation (41), but others are retained 

in the mature enzymes (42). Both ColG-derived s3a-s3b and ColH-derived s3 bind to either 

insoluble collagen in vitro or to collagen fibrils in the extracellular matrix of various tissues (43, 
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44). Therefore, each of these PPC domains is sub-classified as a collagen-binding domain 

(CBD).  

CBD derived from ColG (s3b) has been extensively characterized. It is a β-sandwich 

fold, and a pocket formed on a β-sheet was identified to interact with the substrates by alanine-

scan mutagenesis and mini-collagen binding assays (29). The s3b binds to collagenous peptides 

with triple helical conformation but not to the similar peptides lacking triple helical conformation 

or to gelatin (denatured collagen), suggesting that the CBD-collagen interaction is conformation-

specific (40, 43). The most recent solution studies of s3b in complex with collagenous peptides 

by small angle X-ray scattering (SAXS), and heteronuclear single quantum coherence (HSQC) 

NMR titration of various spin-labeled collagenous peptides to 15N-labeled s3b showed that s3b 

binds unidirectionally to the C-terminus of collagenous peptides (45). 

In the presence of Ca2+, s3b shows shortened hydrodynamic radius, better stability and 

more efficient substrate binding (29).  The X-ray crystal structures of s3b were solved in the 

presence of Ca2+ (holo) as well as, in the absence of Ca2+ (apo) to show a secondary structure 

transformation of the linker at its N-terminus (29). The linker is coiled as an α-helix in the apo 

form, but is unwound to form a parallel β-strand in the holo form, which possibly resulting in 

domain rearrangement. Two Ca2+ bind cooperatively with macroscopic association constants of 

K1=5.01x105 M-1 and K2=2.28x105 M-1 to trigger the structural transformation (30). Two Ca2+ 

ions chelate to s3b in close proximity to each other (3.7Å). The N-terminal linker of s3b adopts 

an energetically unfavorable non-prolyl-cis-peptide in the presence of Ca2+. Simulations 

provided mechanical insights of calcium ions catalyzing the trans-cis isomerization of the non-

prolyl peptide bond (37). Previously, it was shown that ColG-s1 does not require the PKD-like 
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domain or CBDs to degrade gelatin (40) or soluble collagen (31). These domains, however, are 

necessary to degrade collagen fibrils. 

The s3 from ColH has been shown to anchor growth factors to extracellular matrix, and 

extend their half-lives. A fusion protein of basic fibroblast growth factor and s3 domain stayed at 

the site of injection for more than 10 days to promote cell proliferation (46). Although various 

preclinical applications are currently being examined (46-50), s3 has not been characterized in 

detail. The s3 and s3b share 30% sequence identity. Only three aromatic residues within nine 

residues in s3b involved in the substrate binding are conserved in s3.  Based on the sequence 

alignment, one of the Ca2+-chelating aspartates (Asp927) in s3b is replaced by serine (Ser896) in 

s3 (Note that in this manuscript, the sequence number for each CBD refers to the mature protein: 

the s3b sequence numbering reflects a 110-residue long secretion tag being cleaved, while s3 

numbering reflects a 40-residue long tag being cleaved). Each of the two sidechain oxygen atoms 

of Asp927 chelates with a different Ca2+ ion.  It was uncertain as to how Ser896 in s3 could 

construct the dual calcium-binding site in place of the bidentate Asp. To address its structure and 

function relationship applicable for various drug delivery applications (46-50), structural work 

on s3 was initiated.  The structures of dissimilar CBD molecules in metallopeptidase family 

M9B enabled us to compare and contrast their Ca2+ sites and collagen-binding mechanism. 

Methods 

Expression and purification of collagen-binding domain 

Expression and purification of collagen-binding domain as a glutathione S-transferase 

(GST) fusion protein was achieved using methods described by Matsushita (43). 

Crystallization and Structure Determination of s3 from ColH 
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Recombinant s3 (7.0 mg/mL in 10 mM Tris-HCl pH 7.5) crystals were grown by hanging 

drop vapor diffusion from 28% (w/v) PEG3350, 0.1 M Li2SO4 0.1 M Tris-HCl (pH 6.5), and 2 

mM CaCl2.  The crystals were subsequently flash frozen in liquid nitrogen without the need of 

additional cyroprotectant and stored in liquid nitrogen until data collection. In house X-ray 

diffraction facility (Rigaku 007, Osmic Blue confocal mirrors, Saturn CCD detector) was used to 

characterize the unit cell parameters for s3. The calcium bound s3 crystals belong to the 

orthorhombic space group P212121, with unit cell size a=62.0, b=66.2, and c=96.4 Å.  The data 

were collected at -164°C and diffracted to 2.6 Å resolution.  Single crystal diffraction data were 

then collected at the 19-ID beam line at the Advanced Photon Source at Argonne National 

Laboratories.  The crystals diffracted to 2.0 Å resolution.  Data were processed using HKL3000. 

Molecular replacement technique using PHASER on a data set truncated to 3 Å resolution 

located three molecules in an asymmetric unit (51). The Fo-Fc difference map clearly showed two 

calcium atoms that were omitted from the search model, and increased confidence in the phase 

information. Where possible, amino acid residues of molecule A were corrected to those of s3. 

Using the partially built molecule A as a search model, molecular replacement techniques were 

repeated yielding phases that allowed for building the complete s3. The models were refined 

using REFMAC to 2.0 Å resolution (52). In the strong difference map peaks (Fo-Fc with σ>3.5 

and 2Fo-Fc with σ>1.0), 326 solvent molecules were built. NCS restraints were not used during 

the refinement. PROCHECK was used to ensure the stereo-chemical quality of the protein. Data 

collection and refinement statistics are summarized in Table 1. 

Crystallization and structure refinement of s3b from ColG 

Recombinant s3b (5.5 mg/mL in 50 mM Tris-HCl pH 7.5) crystals were grown by 

hanging drop vapor diffusion from 25-27% PEG 3350, 100 mM sodium acetate pH 4.6 and 600 
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mM LiCl at 4°C. As it is known to exist in two structural forms, the s3b was supplemented with 

Ca(NO3)2 to a concentration of 50 mM in order to push the equilibrium towards the ion-bound 

form (29).  Crystals were dragged through 100% paraffin oil to remove excess solvent, and then 

frozen in liquid nitrogen. The initial conditions suitable to grow s3b crystals were identified by 

the sitting drop method using high throughput screen (Hampton Research Crystal Screen HT). 

Cryo-protection procedures resulted in a low mosaic spread, 0.46°, and extended our data to 1.35 

Å (unique reflections = 44,856) versus 1.65 Å resolution (unique reflections = 27,154) for our 

previously deposited structure (29).  The data were collected at BioCARS 14ID-B at Advanced 

Photon Source. All the data were indexed and scaled using Denzo and Scalepack from HKL2000 

(53). SHELX97(54) and REFMAC (52)  was used for refinement (Table 1). The holo structure 

(PDB code 1NQD) was used as a starting model. The manual adjustments were aided by the use 

of MIFit (55). Seven alternate confirmations for surface residues (919, 959, 968, and 976 of 

molecule A, 895, 968, and 976 of molecule B) were built. The positional and anisotropic B-

factor refinements were carried out using initially Shelxl97(54) then REFMAC (52). Hydrogen 

atom positions were constrained to the ideal position during the refinement. However neither 

non-crystallographic symmetry (NCS) restraints nor Ca…O bond restraints were applied. 

Positional refinement, manual adjustments, and anisotropic B factor refinement resulted in an 

R=17.9%, Rfree=21.0% (Table 1). The anisotropic temperature refinement is justified because 

Rfree dropped nearly 5%. Seventy percent of all atoms including water molecules are very well 

ordered (B-factor below 30 Å2), and their positional errors are less than 0.05Å. 

Small Angle X-ray Scattering Experiments 

The SAXS data were collected on solutions of s3, various collagenous peptides, and the 

CBD-collagenous peptide complexes (between 4 and 6 mg/mL) in 10 mM Tris-HCl (pH 7.5) 
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containing 100 mM NaCl and 20 mM CaCl2 at the XOR beamline of sector 12-ID at the 

Advanced Photon Source (APS) in the Argonne National Laboratory. The main advantage of X-

ray scattering is that it can be carried out in solution in nearly physiological conditions (13). The 

monochromatic radiation source (10keV, λ=1.2398 Å) was the APS Undulator A insertion 

device using a Si-111 monochromator, with 1:1 horizontal focusing and higher harmonic 

rejection from a Rh coated mirror, and beam defining slits set at 0.3 mm vertical and 0.25 mm 

horizontal.  A 1.6 mm diameter capillary flow-cell with a flow rate of 4 μL/second was used to 

capture four frames with exposure time of 10 seconds.  The SAXS detector used was a Mar165 

scintillator fiber-optic coupled CCD detector and covered the momentum transfer range 

0.005<q<0.198 Å−1, where q = 4π sinθ/λ (2θ is the scattering angle). The WAXS detector was a 

custom made Roper scintillator fiber-optic coupled CCD detector and covered 0.191<q<1.8 Å−1 

S (56). 

All scattering data were acquired at 10ºC. The four scattering patterns from each detector 

were averaged and merged with the rejection of outlying scans. For further analysis the program 

IGOR Pro 5.5A (WaveMetrics) was used. The scattering profiles of the protein, peptide and their 

complexes were obtained after subtracting the buffer profiles. The reduced scattering data were 

plotted as scattering intensity I(Q) vs. Q (Supplementary Fig. 1A). The radius of gyration, Rg, 

was obtained from the Guinier approximation by linear least squares fitting in the QRg < 1 

region, where the forward scattering intensity I(0) is proportional to the molecular weight of the 

protein complex. An indirect Fourier transformation of the I(Q) data, using GNOM (57), 

provided the pair-distance distribution function P(r) in the real space. Where P(r) intersects with 

x-axis represents the maximum diameter, Dmax (Supplementary Fig. 1B and table 2). The 

molecular envelopes were constructed from the SAXS data after ab initio calculation with the 

http://www.jbc.org/content/284/16/10868.full#ref-13
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program GASBOR (58). The P(r) ranges were varied to generate various (>10) molecular 

envelopes using GASBOR (58). No symmetry restraints were applied to any of the shape 

reconstructions. The ten highest scoring ab initio models were chosen and averaged using 

DAMAVER (59). Atomic models were docked into ab initio envelopes with the program 

SUBCOMB (60).  The theoretical scattering curves from the atomic models were calculated and 

compared with the experimental curves with the program CRYSOL (61).  Rigid-body modeling 

to the experimental scattering data was performed using SASREF (62). 

Docking Model  

The mini-collagen:CBD complex was generated from the CBD and 1K6F for the 

collagenous peptide. To obtain the complex, the soft docking algorithm BiGGER was used (63). 

The manual adjustments were aided by the use of MIFit (55). 

Fluorescence Spectroscopy Measured Equilibrium Denaturation of s3 

For s3, λmax for the native protein occurs at 310 nm while λmax for the denatured protein 

occurs at 350 nm.  The ratio of intensity at 350 nm versus the intensity at 310 nm was used to 

track the unfolding process. Fluorescence data were collected on a Hitachi F-2500 fluorimeter 

with excitation and emission bandwidths at 2.5 nm and 10 nm, respectively.  The excitation 

wavelength used was 280 nm, and fluorescence emissions were monitored between 300 nm and 

450 nm.  During thermal denaturation trials, temperature of the protein solution was maintained 

with a Neslab RTE-110 circulating water bath (Thermo Scientific, Newington, NH, USA). In the 

thermal denaturation trials, the protein concentration was 3µM. While in the chemical 

denaturation trials, the protein concentration was 1.5 µM. Holo-s3 was supplemented with 1 mM 

CaCl2, while apo-s3 was supplemented with 1 mM EDTA.  In all cases, the protein was diluted 

in 10 mM Tris-HCl and 100 mM NaCl, and the pH was maintained at 7.5. When urea was used 
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as the denaturant, the native s3 was exposed to concentrations of denaturant that increased 

linearly by 0.2 M intervals from 0.0 to 9.8 M.  When guanidine hydrochloride (GuHCl) was used 

as the denaturant, the s3 was exposed to concentrations of denaturant that increased linearly by 

0.2 M intervals from 0.0 to 5.8 M.  During thermal denaturation, the s3 was exposed to 

temperatures that linearly elevated by 2.5°C intervals from 7.5 to 100°C. GH2O and m values 

were calculated as described (30).  

Differential Scanning Calorimetry 

DSC was conducted using a Nano-Differential Scanning Calorimeter (NDSC) model 

CSC 6300 (Calorimetry Sciences Corporation). The s3 was dissolved in 10 mM Tris-HCl (pH 

7.5), and 1 mM CaCl2 for the holo form to a final concentration of 0.5 mg/mL. The apo-s3 was 

dissolved in 10 mM Tris-HCl (pH 7.5) to a final concentration of 0.5 mg/mL.  Following a scan 

of buffer vs. buffer to establish the baseline, samples were run as follows. Degassed samples 

were heated from 25°C to 130°C (1°C/min) and then cooled back to the initial temperature at the 

same rate.  A second heating scan was then performed to test the reversibility of the process.  

Unfolding was reversible if a difference in heat capacity was again observed during the second 

heating scan.  DSC analysis software (CpCacl1) provided by the instrument manufacturer was 

used to analyze the transition temperature after subtracting the baseline. 

Results and Discussion 

Structure Description of s3 at 2.0 Å Resolution 

The structure of s3 from ColH is similar to the structure of s3b from ColG. The s3 also 

adopts a β-sandwich ‘jelly-roll’ conformation composed of nine β-strands. Two calcium atoms 

per molecule are found between the linker (861-878) and the β-strand C. There are three 

molecules in the asymmetric unit. Molecule A consists of 117 amino acids (863-979), molecule 
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B consists of 120 amino acids (862-981) and molecule C consists of 121 amino acids (861-981).  

The backbone structures of the three molecules (A-C) are virtually identical. The root mean 

square deviations of C positions between molecules A and B, determined using Superpose from 

the CCP4 suite of programs, was 0.29 Å, that between B and C was 0.45 Å, and that between A 

and C was 0.43 Å. Three molecules were independently refined without NCS restraints. Inherent 

flexibility was observed at both the N-terminus (861-863) and C-terminus (977-981). Another 

deviation occurs only in molecule C at the loop between β-strands H and I (966-969) caused by a 

peptide flip between Ser967 and Tyr968.  Both calcium atoms are ordered (B-factor < 18 Å2).   

Structural Comparison of holo s3b and holo s3 

Here we present the first structure of a domain from ColH collagenase. The tertiary 

structures of the CBD molecules are very similar to one another (Cα r.m.s.d = 1.4 Å), despite 

being of low sequence identity. β-Sheet regions are the most similar. Even the linker residues 

898-910 of s3b and 867-879 of s3 adopt very similar structure. The Ser874–Thr877 segment of 

s3 adopts a short 310 helix as also observed in the Ser905-Lys908 segment of s3b. In both 

structures two calcium ions bind between the N-terminal linker and the β-strand C.  The s3 does 

not adopt β-strand A found in s3b, and the region adopts a random coil. Also, the solution 

structure of apo-s3b does not form β-strand A(64). The crystal structures of s3 and s3b are most 

divergent at the N-terminus and loops connecting the β-strands. For example a loop of 8 residues 

(Glu961-Ile968) between β-strands E and F in s3b are line broadened and non-assignable on 

NMR and the flexible loop is unobserved in the crystal structure (29, 45). In contrast, the 

equivalent loop in s3 (Glu930-Val935) is well ordered. Another significant deviation in loop 

structures occurred at a loop between strands B and C (924-928 in s3b; 894-899 in s3). The N-

termini of s3b (891-897) and s3 (861-868) adopt very different paths. It is possible that this 
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deviation can be explained by crystal packing restraining the position of the termini. Termini 

deviation as a result of crystal packing for example, was seen in the N-terminal linker of apo-s3b 

(29, 64). 

Coordinations around the two calcium atoms in s3 are virtually identical to those 

described in detail for s3b later. Seven oxygen atoms of five side chains and one main-chain 

form pentagonal-bipyramid coordination (Fig. 1). Eight oxygen atoms of four side chains and a 

main-chain and one water form square antiprismatic coordination. The average bond distances 

observed in s3 are similar to those in s3b (Supplementary Tables 2 and 3). There are some 

differences between the two CBD molecules.  Asp904 in s3b is replaced by Asn873 in s3; and 

therefore the net charge around the calcium sites in s3 is -4. Earlier sequence alignment of CBD 

molecules showed that Asp927 in s3b is replaced by Ser896 in s3 (29). However, serine is rarely 

found to chelate with Ca2+ (65). The crystal structure of s3 revealed that Asp897 is found in 

place to chelate with Ca2+ atoms and Ser896 is pointed away from the ions. In order for Asp897 

to chelate equivalently to Asp927 of s3b, a loop (894-898) of s3 meanders differently to position 

OD1 and OD2 atoms of Asp897. Two energetically unfavorable torsional strains were found in 

s3b (29). One of them is the peptide bond between residues Glu901 and Asn902 in s3b that 

adopts an uncommon and energetically unfavorable non-prolyl-cis-peptide conformation. OD1 

of Asn902 makes a hydrogen-bond with main-chain N of Asp904. The interaction is one of the 

important hydrogen-bonds in the stabilization of the transition state for the peptide isomerization 

(37).  In contrast, the structurally equivalent peptide bond between Glu870 and Pro871 in s3 

adopts a common prolyl-cis-peptide conformation (Fig. 2).  The second torsional strain was 

found in the side chain 1 angle of residue Tyr931 of s3b. Tyr931 adopts an energetically 

unfavorable angle of 64, which is stabilized by hydrogen- bonding with NE2 of His959 of s3b 
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(distance = 2.6 Å). The equivalent residue Tyr900 of s3 adopts a favorable 1 angle of -68 (Fig. 

3). The s3b is extremely thermostable (TM=93C) despite the torsional strains (30). The s3 is 

only slightly more stable (TM=94°C).  The stability of s3 is described in more detail in the 

following section. 

The collagen-binding surface in s3b was identified by binding assay of 32 surface 

mutants (29) and by HSQC-NMR titration (45). Three aromatic side chains critically involved in 

collagen-binding are positioned similarly in s3. Two tyrosine residues (Tyr970 and Tyr994) in 

the s3b are conserved in s3 (Tyr937 and Tyr962), but Tyr996 is replaced by phenylalanine 

(Phe964) in the s3.  Seven other residues identified to interact with the collagenous peptides are 

not conserved in s3. SAXS and NMR studies of s3b in complex with collagenous peptides 

showed that Ser928 and Arg929 interact with the C-terminus of collagenous peptide (45). 

Neither residue is conserved in s3.  In s3, main-chain carbonyl Thr895 occupies where Ser928 

side chain is found, and the three-dimensional space occupied by Arg929 in s3b is occupied by 

Gln898 and Tyr900 in s3 (Supplementary Fig. 2). Despite substitutions, the resulting collagen-

binding pocket in s3 closely resembles that of the s3b. Using SAXS of s3 in complex with 

[G(POG)7PRG]3 showed that s3 also binds asymmetrically to the collagenous peptide (Fig. 4). 

Our previous work demonstrated that both (POG)10 (hydroxylproline is represented as O) and 

G(POG)7PRG adopt a triple helical structure in solution. They are thus represented as [(POG)10]3 

and [G(POG)7PRG]3, respectively. The resulting atomic models for s3 and s3b fit very well into 

the ab initio SAXS envelopes.  The theoretical Rg values calculated from the complex models of 

s3 and s3b are in excellent agreement with the experimental values (Table-2).  The theoretical 

scattering curves calculated from the models using CRYSOL (61) are superimposable with the 

experimental curves with minimal discrepancy (Table-2).  Rigid body modeling to the 
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experimental scattering data was performed using SASREF (62).  Collagenous complexes with 

either s3 or s3b were fitted independently to the X-ray scattering data.  The simulations were 

repeated 10 times.  The model with the lowest value is shown (Fig. 3 and Supplementary Fig 3).  

S3b binds asymmetrically to the C-terminal (POG)3 repeats or C-terminal (POG)2PRG (45). 

Since critical aromatic residues are oriented similarly in both structures, it is likely that s3 also 

targets the C-terminal region. The respective collagenase could target common structural features 

in collagen fibril. C-terminal region of collagenous peptide is slightly untwisted (under-twisted).  

Our studies on s3b and s3 imply that the cleft-like shape of the binding pocket scans the collagen 

for under-twisted regions and conserved aromatic residues of the pocket intercalate to the triple-

helical collagen (66).  

Ca2+ Coordination of s3b at 1.4 Å Resolution  

The 1.4 Å resolution structure of the Ca2+ bound s3b showed excellent electron density 

for nearly all protein atoms and water molecules. The protein is crystallized as a non-

crystallographic symmetry (NCS) related dimer.  Since the structural features have already been 

described for s3b, the discussion will focus on calcium binding sites. Calcium associates with 

s3b in two coordination geometries, pentagonal bi-pyramidal and square antiprismatic (Fig. 1). 

Both calcium atoms were highly ordered (B-factor <14 Å2).  The pentagonal bi-pyramidal 

coordination is commonly observed in calcium chelating proteins, of which calmodulin’s EF 

hand motif is the classic example.  Five ligating atoms encircle the calcium ion as a near-planar 

pentagon and two remaining ligands sit at axial positions above and below.  As in the ligation 

pattern of EF hands, both carbonyl oxygen atoms of s3b’s Glu901 provide two of the five 

equatorial ligation positions.  The atoms describing the equatorial plane have an average 

deviation from planarity of 0.16 Å (Supplementary Table 2), which compares favorably to the 
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0.18 Å average deviations across calcium sites in calmodulin (PDB code 1OSA) (67). While 

calmodulin has a water molecule occupying one axial position, allowing for greater flexibility in 

ligand position, both axial positions in s3b are supplied by amino acid side chains (Asn903, 

Asp927). 

The s3b’s second calcium site with square antiprismatic coordination sits 3.7Å from the 

pentagonal bi-pyramidal site. The planar faces of calcium-bound s3b’s square antiprism deviate 

only slightly from flat geometry (Supplementary Table 3). One face shows an average out of 

plane deviation by a mere 0.03 Å for coordinated atoms, while the other face shows only 0.13 Å 

deviations.  These values vary from few other available protein structures with square 

antiprismatic bound ions (Supplementary Table 4). Square antiprismatic coordination is 

relatively uncommon among macromolecules (65), and few are currently found in the Protein 

Databank.  Ding et al., described a Zn2+ bound ribonuclease T1, at 1.8 Å resolution, in which six 

water molecules and a sole aspartate coordinate zinc (68). When defined as square antiprismatic, 

the carbonyl oxygen atoms of aspartate provide a ligand for each square face, creating significant 

distortions from planar geometry for these faces and a very short ion-to-plane distance. On 

further examination, the ion coordination in ribonuclease T1 is best described as trigonal 

dodecahedral, rather than square antiprismatic, which explains the high deviations from 

planarity. Potassium ions are found in square antiprismatic coordination in two structures, the 

KcsA potassium channel and an Oxytricha nova G-quadruplex (69, 70). Main chain carbonyl 

oxygens coordinate the KcsA potassium ions within the channel, and due to the four-fold 

crystallographic symmetry, the square faces are perfectly flat. In the G-quadruplex structure, an 

unusual DNA structure found in telomeric DNA, potassium ions sit similarly in the center of a 

channel created this time by nucleotides.  Thymine base O6 atoms coordinate the potassium and 
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provide near-planar square faces, with two cubic coordinations sandwiching a square 

antiprismatic coordination (Supplementary Table 4).  

In addition to the CBDs, two calcium-binding proteins that utilize square antiprismatic 

geometry are found in the literature.  Thermitase, an extracellular serine proteinase, when 

crystallized in 100 mM calcium revealed a square antiprismatic calcium site in addition to two 

pentagonal bipyramidal sites. At lower calcium concentrations the site exhibits pentagonal 

bipyramidal coordination (71). Secondly, alpha-amylase binds two calcium ions with CN=8 (72). 

One of these sites follows a square antiprismatic geometry with three water molecules acting as 

ligands, and the deviations from planarity are near that of the thermitase coordination 

(Supplementary Table 4). However, not all binding sites with CN=8 have square antiprismatic 

geometry.  The second site in alpha-amylase involves five waters and is best described as cubic. 

Proteinase K binds to one calcium ion with CN=8 (73), but coordination is dodecahedral in 

geometry. Four water molecules act as ligands.  

The bidentate ligating nature of aspartates and glutamates, often found in ion 

coordination, distort geometries from ideal, inorganic values. Therefore, square faces are rarely 

square, with the exception of proteins taking advantage of multimerization as in KscA. Previous 

publications showed that Ca2+ is involved in activation but not K+. However, Li+ was found in 

the Ca2+ binding site (29). Barring occupancy differences, Ca2+ and K+ would have identical 

electron density in an X-ray diffraction experiment.  For the proteins shown in Supplementary 

Table 4, the distance of calcium from the square faces formed in antiprisms averages 1.37 Å, 

while potassium distances are a longer 1.58 Å. Additionally, the average ion-to-ligand distance 

for calcium and potassium are 2.54 Å and 2.81 Å, respectively. The larger coordination radius 

observed for potassium is not surprising since its ionic radius is greater than that of calcium. 
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Based on the coordinate errors for oxygen atoms, the errors associated with the bond distances in 

this study (Supplementary Table 4) are estimated to be less than 0.03 Å even accounting for 10% 

underestimation (9).  Based on the analyses of bond distances, it is clear that two Ca2+ bind to 

s3b.  

Another novel aspect of the dual calcium site is that it contains the rare tridentate acidic 

side chains (Glu901 & Asp930). As far as we are aware, tridentate acidic side chain has never 

been observed. Previous analysis of 1,605 Ca2+ binding sites showed that bidentate oxygen atoms 

chelate with longer Ca2+-O distances than those found in monodentate (2.6 Å vs. 2.4 Å) (65). 

Indeed, Ca2+-O in bidentate residues (Glu899 & Asp927) is longer than that in monodentate 

(Asn903 & Asp904). We also note that the two bidentate residues chelate to Ca2+ differently. 

Two carbonyl oxygen atoms of Glu899 side chain chelate with one Ca2+ atom where as two 

carbonyl oxygen atoms of Asp927 chelate with two different Ca2+ atoms. Ca-O-C angles in 

Glu899 (89°, 94°) are similar to the values observed for bidentate glutamates in other Ca2+ 

binding proteins (93.6±11.3°) (65), but the angles observed for Asp927 (131° and 144°) are 

closer to angles observed in monodentate (140.4±15.2°) (65). In both tridentate residues (Glu901 

& Asp930) one of the three bond distances is significantly shorter (<2.36 Å) than other two.  Ca-

O-C angles (87°, 96°, and 159°) are virtually identical for both tridentate residues. Electrostatic 

repulsion between the cations is likely neutralized by the acidic residues. The coordination 

geometry reported here could be useful in predicting proteins that utilize acidic residues to 

chelate a cluster of divalent cations such as Ca2+, Mn2+, and Mg2+. 

Stability Contributions of Calcium Binding 

Both s3b and s3 are compact, and extremely stable in the presence of physiological Ca2+. 

This may prolong enzyme activity against insoluble collagen in the extracellular matrix. Calcium 
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bound holo-s3b was previously shown to be more stable than apo-s3b based on DSC and 

fluorescence spectroscopy monitored equilibrium denaturation data (29, 30). Similar to the 

observation in s3b, denaturation pathways obtained using either DSC (Fig. 5) or fluorescence 

(Fig. 6) showed that holo-s3 is more stable than the apo-s3 (Supplementary Table 5).  Stability 

data were compared with those of s3b. DSC data showed that holo-s3 (TM= 94°C) was slightly 

more stable than holo-s3b (TM= 93°C), though apo-s3 (TM= 70°C) was less stable than apo-s3b 

(TM=74°C) (Supplementary Table 5).  Whether, heat, urea, or guanidine hydrochloride (GuHCl) 

was used to denature the protein, the same trends were observed.  As a side note, the heat 

denaturation was reversible for apo-s3 but not for holo-s3. Based on fluorescence monitored 

thermal denaturation, neither holo-CBD fully unfolded at 100°C. Unfolding of s3 was monitored 

using the fluorescence of intrinsic Trp925 that is sandwiched between β-sheets. Whereas 

denaturation using urea or GuHCl on holo-s3 occurred as a cooperative transition from the native 

to the denatured protein, the unfolding transition of apo-s3 is abrupt (Fig. 6).  Apo-s3 begins to 

unfold even at initial levels of chemical denaturant or heat. Meanwhile, the TM value for apo-s3 

based on fluorescence data is significantly lower than that determined by DSC (Supplementary 

Table 5). The discrepancy in TM was also observed in s3b (30). Analysis of holo-s3 structure 

using NACCESS (74) demonstrated that Trp925 is solvent inaccessible. Also, crystal structures 

of holo-s3b exhibited tighter packing around the Trp than apo-s3b (30). The folding studies 

suggest that Trp in apo-s3 is much less tightly packed than apo-s3b.  

As observed for s3b, a locally stable, solvent inaccessible core around Trp925 in holo-s3 could 

explain the higher TM value observed using fluorescence data, while a locally unstable, solvent 

accessible core around Trp925 in apo-s3 could explain the lower TM value observed using 

fluorescence data. 
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Evolutionary Related CBD 

Both s3b and s3 molecules reported in this paper belong to the PPC super-family and are 

collagen-binding domains (CBD). Common structural features described in the previous sections 

enabled us to update the sequence alignment of the CBD in the M9B subfamily (Fig. 7). 

Conserved residues are important for one of four reasons: calcium chelation (red), cis-trans 

isomerization of the linker (yellow), collagen-binding (blue) or protein folding (green). 

Conserved residues in unsolved CBD structures will likely fulfill roles found in s3 and s3b. The 

dual calcium-binding site is formed by four chelating residues (Glu899, Glu901, Asn903, and 

Asp904) within the N-terminal linker, two chelating residues (Asp927 and Asp930) from the β-

strand C and invariant Tyr1002 hydrogen-bonds and orients Asp930. Residue numbers used in 

this paragraph are of s3b. Likewise other supporting cast such as Gly921 is conserved in the 

middle of β-strand strategically placed to make room for Glu899. The dual calcium chelation site 

is fashioned sometimes by a neighboring residue. As mentioned, Asp897 of s3 acts equivalently 

to Asp927 of s3b. Asp897 equivalents are tentatively identified in B. brevis s3a and s3b, C. 

botulinum A3 s3a and C. histolyticum ColG s3a. Tridentate and divalent Asp and Glu residues 

are conserved with only C. sordellii s3a as the exception. The monodentate Asp904 residue is 

sometimes substituted by Asn. For those substituted, the net charge of the dual calcium site is 

neutral rather than -1.   

A cis-peptide bond forms between residues 901-902 of holo-s3b and 870-871 of holo-s3 

(Fig 2). The residue equivalent to Asn902 in other CBD molecules is either Pro, Asp or Asn.  Pro 

frequently succeeds the peptide bond to ease trans-cis isomerization. In s3b, Asn902_OD1 and 

Asp904_N form a critical hydrogen-bond for the peptide isomerization (37). For CBD molecules 

where Asp succeeds the cis bond, side chain oxygen could play the same role as Asn902_OD1. 
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Other hydrogen-bonds identified by simulation studies important in stabilizing the transition 

states (37) are well conserved. The simulation study did not account for hydrogen-bonding via 

water mediated interactions involving Lys900_O, Asn902_O, Lys908_O, and Thr910_OG1 that 

are also conserved (Supplementary Table 6).  Calcium ions could catalyze the isomerization in 

all the CBD molecules and their transition states and catalytic mechanism may look very similar.  

Conserved residues are important in ensuring either proper folding or architectural 

stability. Hydrophobic residues packed between the β-sheets are better conserved if they are 

located in the vicinity of functionally critical residues. For example, invariant Trp956 of strand E 

is packed between the β-sheets. The residues flanking (Thr955 & Thr957) interact with mini-

collagen. Tyr932 is packed between the sheets and helps positioning Tyr1002. Residues at tight 

turns are conserved as well. Gly975 is well conserved to allow a type II’ turn in s3b (29). Gly942 

(Gly975 equivalent) in s3 allows Asp941 side chain to stabilize the reverse turn. A highly 

conserved six-residue stretch, 986-991 (PGKYYL), adopts a tight turn and precedes the 

functionally important strand H. The region is well ordered in the crystal structures with low B-

factors, and is the least dynamic based on NMR (45) and limited proteolysis MALDI-TOF MS 

(64). The main-chain carbonyl and amino groups of Arg985 hydrogen-bond with OH of Tyr989 

to stabilize the turn. Only Gly987 can make room for the bulky Tyr989 side chain. Tyr990 packs 

against the invariant Ala909 and conserved 310 helix. Ala909 is at the base of the linker that 

undergoes α-helixβ-strand transformation. The tight turn may ensure that collagen interacting 

Leu992, Tyr994, and Tyr996 would be correctly positioned. Tyr994 is the most critical residue 

in interacting with collagenous peptides (29). The strands adjacent to strand H, i.e. strands C and 

E, are very well conserved.  The three antiparallel strands mold the collagen-binding pocket.  

Strand F staples the β-sheets by interacting with both sheets. The β-strand first interacts in an 
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antiparallel orientation with strand E then breaks its direction at Gly971 to interact with strand G.  

In place of Gly971, Ala or Pro is found at the location where the strand switches its allegiance. 

The dual interaction of the strand helps positioning Tyr970 to interact with mini-collagen. 

Three residues (Tyr970, Tyr994, and Tyr996) shown to interact strongly with mini-

collagen (29, 45) are conserved. Tyr996 of s3b is a critical residue in binding mini-collagen, and 

is partially conserved. This residue is replaced with Phe in s3, though both side chains have 

identical orientation. In other CBD molecules, an aromatic residue, such as Phe or His, is 

sometimes found at the site. Meanwhile, either a -branched residue or Leu is found at the 

position equivalent to Thr957 in most of the CBDs. Six other residues identified by 15N-HSQC-

NMR titration to interact with mini-collagen are not well conserved.  Since divergent CBDs (s3 

and s3b) adopted a similar cleft-shaped binding pocket, other CBDs may also adopt a similar 

collagen-binding structure. 

Divergent CBD could target different collagen sequences and could possibly target 

different collagen types; however, this structural study suggests otherwise. Rather, all the CBD 

domains may bind similarly to an under-twisted region such as the C-terminus of a collagen 

fibril. The C-terminus of type I collagen is exposed in the fibril surface based on X-ray fiber 

diffraction experiments (5), and it is the most accessible site for the bacterial collagenase to 

initiate assaults. However, CBD binding only at the C-terminal region of tropocollagen is 

unfounded. Gold particle-labeled tandem ColG-CBD (s3a-s3b) labeled with gold particle bound 

to type I collagen fibrils exhibited no periodicity (44). In the collagen fibrils, the molecules are 

staggered from each other by about 67nm. Therefore CBD could target partially under-twisted 

regions in the middle of a tropocollagen that are also vulnerable for assaults (66). Both type I and 

II tropocollagen molecules are suggested to consist of triple helix with some relaxations (75). 
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Energetic requirement to unwind these regions could be much less than tightly wound helical 

regions. Both s3 and s3b bind similarly to a mini-collagen, thus M9B collagenase molecules 

could initiate collagenolysis from analogous structural features in various collagen fibrils. 

Some bacterial collagenases consist of up to three CBD molecules. The linker that 

induced structural transformation is a common feature found in M9B collagenase. It could act as 

Ca2+ sensor to trigger domain rearrangement as means of enzyme activation against the insoluble 

fibril. Physiological Ca2+ will likely trigger a domain rearrangement in these collagenases. 

Properly positioned tandem and triple CBDs should ensure collagenase to be anchored to the 

weakest region in fibril.  

The function of the PPC domain in M9A (PPC-M9A) is unknown.  Characterized M9A 

are collagenases and the PPC domain from V. vulnificus is thought to interact with type IV 

collagen (76). No structure of PPC-M9A has been reported. The crystal structure of PPC from 

serine protease S8 superfamily with a sequence identity of 15% (PDB accession code 1WME 

(77)) cannot offer additional insights either. The function of the PPC is not known, either, but 

PPC-M9A may adopt a similar tertiary fold to that of CBD. Like s3, strand A in PPC-M9A may 

not exist.  The capability to monitor the concentration change in Ca2+ by CBD is critical for the 

activation of M9B enzymes against insoluble collagen. Along with Zn2+ at the catalytic center, V. 

parahaemolyticus M9A enzyme uses Ca2+ as a cofactor (78). However, neither Ca2+ binding 

residues, nor collagen binding residues identified in CBD are found in PPC-M9A. The structures 

of s3 and s3b could only serve as a template to the general fold of PPC-M9A. 

As mentioned, clinical applications using fusion proteins of CBD and various growth 

factors are underway. Fusion proteins of any CBD derived from M9B collagense and a growth 

factor should result in comparable clinical outcome.  
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Accession Codes 

 The full atomic coordinates of the CBDs and their corresponding structure factor 

amplitudes have been deposited in the Protein Data Bank (PDB accession codes 4HPK, 3JQW, 

and 3JQX assigned to Ca2+-bound s3b, Ca2+-bound s3, and Ca2+/Cd2+-bound s3).   
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Tables 

Table 1. Data collection and refinement statistics 

   Holo–s3b Holo-s3 

Data collection statistics (a)     

Wavelength (Å) 0.98045 0.97937 

Space group P21 P212121 

a, b, c (Å) 40.9, 59.2, 48.8  62.0, 64.2, 95.4 

beta() 100.4 90.0 

Unique Reflections 44,856 26,207 

Resolution (Å) (b) 16.61-1.35 28.50-2.00 

Completeness (%) (c) 99.8 (100) 99.4(99.9) 

I/σI (b) 26.3 (2.6) 16.7 (3.1) 

Rmeas (%) (d) 6.4 (65.9) 9.9 (56.6) 

 Redundancies  4.6 (3.2) 4.0 (4.1) 
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Table 1 (Cont.): Data collection and refinement statistics 

   Holo–s3b Holo-s3 

Refinement Statistics     

Resolution (Ǻ) 16.61-1.35 28.50-2.00 

R-factor (%) 17.9 (30.9) 17.4 (19.5) 

Rfree (%) 10% of data 21.0 (38.0) 23.3 (28.4) 

Average B-factor main chain in A (A2) 11.6 25.2 

Average B-factor side chain in A (A2) 14.2 27.5 

Average B-factor main chain B (A2) 15.8 21.4 

Average B-factor side chain B (A2) 17.8 23.8 

Average B-factor main chain C (A2) NA 23.4 

 Average B-factor side chain C (A2)  NA 26.2 

RMS Deviations from restraint target 

values 
    

Bond Lengths (Å) 0.01 0.02 

Angle (°) 1.2 1.7 

Distances form Restraint Planes 0.004 0.007 

      

Ramachandran Statistics     

Most favorable (%) 92.1 90.2 

Additionally allowed (%) 7.9 9.8 

Disallowed (%) 0.0 0.0 

(a) For more complete data collection statistics, see Supplementary Tables 7 and 8. 

(b) Highest resolution shell for holo-s3b: 1.40-1.35 Å.  Highest resolution shell for holo-s3: 

2.03-2.00 Å 

(c)  Data for the highest resolution shell are given in parenthesis 

(d) Rmeas = ∑ √
nh

nh−1
h ∑ |Ihl − 〈Ih〉|/ ∑ ∑ 〈Ih〉lhl  
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Table 2: SAXS derived molecular parameters 

Mini-collagen:CBD 

Complexes 

Small Angle X-ray Scattering (SAXS) Discrepancy 

Dmax (Å) Rg (Å) (expt) Rg (Å) (calc) χ2 

[(POG)10]3:s3 87 23.11 ± 0.09 24.43 0.47 

[(POG)10]3:s3b 93 22.62 ± 0.04 24.79 0.75 
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Figures 

 

Fig. 1: Ca2+ coordination in s3 and s3b. Comparison of Ca2+ coordination of s3 (A) and s3b (B): 

For both CBDs, the pentagonal base around Ca1 is indicated by gray dashes, while the axial 

positions are indicated by yellow dashes.  Seven oxygen atoms from six residues interact with 

this Ca2+.  For Ca2 of both CBDs, one square face is indicated by blue dashes, while the other 

face is indicated by green dashes. Seven oxygen atoms from five residues and a water molecule 

interact with this Ca2+. Each oxygen atom is labeled with residue type and residue number. D897 

of s3 fulfills the role of D927 of s3b. 
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Fig. 2: Linker of CBD. (A) Close-up view of linker in s3 (ColH).  The peptide bond between 

Glu870 and Pro871 adopts prolyl cis conformation.  Glu868, Glu870, Asn872 and Asn873 in the 

linker region chelate with Ca2+ ions (brown spheres).  (B) Close-up view of the linker in s3b 

(ColG).  The peptide bond between Glu901 and Asn902 adopts an energetically unfavorable 

non-prolyl cis conformation.  Glu899, Glu901, Asn903 and Asp904 in the linker region chelate 

with Ca2+ atoms (brown spheres).   
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Fig. 3: Collagen-binding cleft of CBD. (A) Collagen-binding cleft in s3 (ColH).  Conserved 

residues Thr924, Val926, Tyr937, Tyr962 and Phe964 may shape the binding cleft.  Tyr900 

adopts a favorable 1 and it is facing the binding cleft. (B) Collagen-binding cleft in s3b.  

Residues Ser928, Arg929, Thr957, Tyr970, Tyr994 and Tyr996 are the key residues shaping the 

binding cleft.  The collagen-binding cleft matches the width of collagen (~10Å).  Tyr931 adopts 

an atypical 1 angle.   
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Fig. 4: Structures derived from SAXS scattering profiles using ab initio simulated annealing 

calculations are shown as gray surface for s3-[G(POG)8]3 complex (A) and s3b-[G(POG)7PRG]3 

complex (B) Calcium ions are shown in red. 
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Fig. 5: DSC profile for both apo and holo s3 
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Fig. 6: Results of fluorescence measured equilibrium denaturation of s3 in its apo form (closed 

circles, and in its holo form (open circles). (A): Heat denaturation pathway of s3.  (B): Urea 

denaturation pathway of s3.  (C): GuHCl denaturation pathway of s3. 
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Fig. 7: Structure based sequence alignment of collagen-binding domains from M9B family. 

Calcium chelating residues, those critical for cis-trans linker isomerization, collagen-binding 

residues, and architecturally important residues are highlighted in red, yellow, blue and green, 

respectively. Sequences alignment was aided by the use of ClustalW2 (79). 
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Supplemental Material 

Crystallization and Structure Determination of s3-Form II from ColH 

The second form of s3 crystals were obtained by hanging drop vapor diffusion from 1.1-

1.4 M sodium acetate, 0.1 M HEPES (pH 7.5), 1 mM CaCl2 and 0.05 M CdSO4.  The crystals 

were flash frozen in liquid nitrogen without the need of additional cryoprotectant. This crystal 

form of s3 diffracted to 2.2Å resolution and was isomorphous to the first form.  We were 

planning to solve s3 structure by single isomorphous replacement method. Ca2+ ions and solvent 

molecules were deleted from the ColH model described above before refinement using 

REFMAC (52). The size of Fo-Fc difference peaks indicated that 12 of them are of cations.   Two 

cations per molecule were geometrically identical to Ca2+ bound to s3b and those of s3 in the 

form I.  Six peaks were therefore assigned as Ca2+.  Later it became clear that the B-factor of one 

of the two Ca2+ was too low (<5 Å2).  It was therefore reassigned as Cd2+.  The rest of the strong 

Fo-Fc difference peaks were assigned as Cd2+ ions.  Two Cd2+ ions are chelated with surface 

glutamic acids (Glu876 and Glu930), respectively in each of the three molecules. The main-

chain (Cα) root mean square deviation between Form I and Form II was only 0.35Å.   
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Tables 

Supplementary Table 1. Data collection and refinement statistics 

   Holo-s3 Form II 

Data collection statistics   

Wavelength (Å) 0.97937 

Space group P212121 

a (Å), b (Å), c (Å) 61.6,64.6, 96.0 

beta() 90.0 

Unique Reflections 19,933 

Resolution (Å) (a) 28.7-2.2 

Completeness (%) (b) 98.8(99.7) 

I/σI (b) 9.6 (2.4) 

Rmeas (%) (c) 15.2 (54.0) 

 Redundancies 13.9 (3.4) 
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Supplementary Table 1 (Cont.). Data collection and refinement statistics 

   Holo-s3 Form II 

Refinement Statistics   

Resolution (Ǻ) 20-2.2 

R-factor (%) 17.6 (20.4) 

Rfree (%) 10% of data 25.0 (27.2) 

Average B-factor main chain in A (A2) 19.6 

Average B-factor side chain in A (A2) 21.7 

Average B-factor main chain B (A2) 18.3 

Average B-factor side chain B (A2) 20.5 

Average B-factor main chain C (A2) 19.4 

 Average B-factor side chain C (A2) 22.0 

RMS Deviations from restraint target 

values 
  

Bond Lengths (Å) 0.02 

Angle (°) 1.9 

Distances form Restraint Planes 0.008 

Ramachandran Statistics   

Most favorable (%) 91.0 

Additionally allowed (%) 9.0 

Disallowed (%) 0.0 

(a) Highest resolution shell for holo-s3 form II: 2.24-2.20 

(b) Data for the highest resolution shell are given in parenthesis 

(c) Rmeas = Rmeas = ∑ √
nh

nh−1
h ∑ |Ihl − 〈Ih〉|/ ∑ ∑ 〈Ih〉lhl  
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Supplementary Table 2.  Calcium-oxygen atom distances and deviation from planarity in 

pentagonal bipyramid coordination. 

s3b Residue E901 E901 D904 R929 D930 

N903, 

axial 

D927, 

axial   

  Atom OE1 OE2 OD2 O OD1 OD1 OD1 Ca2+ 

O-Ca2+ 

distances 

(Å) (a) 

Average 

of 

Molecules 

A and B 2.56 (2) 2.41 (1) 2.34 (2) 2.36 (1) 2.35 (2) 2.35 (1) 2.43 (2) 3.75(1) 

Distance 

out of 

equatorial 

LSQ plane 

(Å) (ab) 

Average 

of 

Molecules 

A and B 0.29 0.32 0.21 0.19 0.15 NA NA 0.05 

s3-Form I Residue E870 E870 N873 Q898 D899 N872 D897   

  Atom OE1 OE2 OD1 O OD1 OD1 OD1   Ca2+ 

O-Ca2+ 

distances 

(Å)  

Average 

of 

Molecules 

A, B and 

C 2.56 (6) 2.45 (3) 2.34 (5) 2.39 (1) 2.38 (4) 2.34 (5) 2.28 (2)  3.77 (2) 

Distance 

out of 

equatorial 

LSQ plane 

(Å) (ab) 

Average 

of 

Molecules 

A, B and 

C 0.34 (5) 0.28 (9) 

0.27 

(12) 0.24 (8) 0.12 (6) NA NA 0.06 (4) 

s3-Form 

II Residue E870 E870 N873 Q898 D899 N872 D897    

  Atom OE1 OE2 OD1 O OD1 OD1 OD1   Ca2+ 

O-Ca2+ 

distances 

(Å)  

Average 

of 

Molecules 

A, B and 

C 2.62 (4) 2.55(10) 2.37 (5) 2.35 (6) 2.40 (4) 2.34 (5) 2.30 (1)  3.66 (3) 

A number within parenthesis represents an estimated standard deviation obtained after least 

square refinement (2.54 (2) means 2.540.02 Å). Measurements are for the distance of specific 

atom out of the plane created by the five members and do not include the axial members.  

Additionally, the distance of calcium from each plane was also calculated. 
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Supplementary Table 3: Calcium- oxygen atom distances and deviation from planarity in square 

antiprismatic coordination. 

s3b  Residue E899 E899 E901 H2O   S922 D927 D930 D930 

   Atom OE1 OE2 OE2 O Ca2+ O OD2 OD1 OD2 

O-Ca2+ 

distances 

(Å) (a) 

Average 

of 

Molecules 

A and B 

2.51 

(2) 

2.46 

(1) 

2.36 

(2) 2.44 

3.75 

(1) 

2.32 

(2) 

2.41 

(2) 

2.47 

(1) 

2.60 

(2) 

Distance 

out of 

square 

LSQ 

plane 

(Å) (ab) 

Average 

of 

Molecules 

A and B 0.10 0.16 0.08 0.05 NA 0.02 0.02 0.03 0.03 

s3-Form 

I  Residue E868 E868 E870 H2O   T891 D897 D899 D899 

   Atom OE1 OE2 OE2 O  Ca2+ O OD2 OD1 OD2 

O-Ca2+ 

distances 

(Å)  

Average 

of 

Molecules 

A, B and 

C 

2.64 

(10) 

2.46 

(7) 

2.26 

(4) 

2.41 

(5) 

3.77 

(2) 

2.29 

(6) 

2.50 

(1) 

2.54 

(5) 

2.52 

(3) 

Distance 

out of 

square 

LSQ 

plane 

(Å) (ab) 

Average 

of 

Molecules 

A, B and 

C 

0.05 

(3) 

0.05 

(4) 

0.03 

(2) 

0.04 

(3)  NA 

0.21 

(11) 

0.17 

(7) 

0.25 

(10) 

0.23 

(11) 

s3-Form 

II  Residue E868 E868 E870 H2O   T891 D897 D899 D899 

   Atom OE1 OE2 OE2 O   O   OD1 OD2 

O-Ca2+ 

distances 

(Å)  

Average 

of 

Molecules 

A, B and 

C 

2.57 

(13) 

2.49 

(6) 

2.36 

(8) 2.78 

 3.66 

(15) 

2.25 

(11) 

2.34 

(3) 

2.41 

(7) 

2.41 

(1) 

The two planar faces are listed separately.  Measurements are for the distance of specific atom 

out of the plane created the four members of each face.  Again, a number within parenthesis 

represents the standard deviation obtained after least square refinement. 
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Supplementary Table 4. Deviation from planarity in square antiprisms found in proteins.   

Protein s3b s3 2AAA 3TEC 2PRK 1JPQ 1K4C 

Resolution (Å) 1.4 2.0 2.1 2.0 1.5 1.6 2.0 

Ion Ca2+ Ca2+ Ca2+ Ca2+ Ca2+ K+ K+ 

Average planar 

deviation (Å) 
0.08 0.01 0.14 0.12 0.01 0.02 0.0 

Average ion-

to-ligand 

distance (Å) 

2.58 2.45 2.59 2.45 2.48 2.78 2.83 

PDB access codes are for proteinase K (2PRK), alpha amylase (2AAA), thermitase (3TEC), G-

quadruplex (1JPQ), and KcsA potassium channel (1K4C).  The planes for 1K4C are defined by 

crystallographic symmetry. 
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Supplementary Table 5: Stability information of apo and holo s3 

 Apo-s3 Holo-s3 

Parameters Heat Urea GuHCl Heat Urea GuHCl 

ΔGHOH (kcal*mol-1) 5.2 1.7 1.8 NA 9.6 8.1 

m (kcal*mol-1*M-1) 0.1 0.6 2.3 NA 1.5 4.2 

CM (M) NA 2.7 0.8 NA 6.5 1.9 

TM (°C) 70.2a 64.6b NA NA 94.1a >100b NA NA 

(a) Value represents TM for DSC data shown in Fig-5.   

(b) Value represents TM for denaturation curve shown in Fig-6A 
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Supplementary Table 6: Conserved water mediated hydrogen-bonds in s3 and s3b. 

HOH mediated H-bonds in s3b HOH mediated H bonds in s3 

K908_O...HOH...T910_OG1 T877_O...HOH...S87_OG1 

K900_O...HOH...T910_OG1 K869_O...HOH...S87_OG1 

K908_O...HOH...N902_O T877_O...HOH...P87_O 

A909_O…HOH…K900_O A878_O…HOH...K86_O 

K908_O…HOH…T910_OG1 indicates that a water molecule is found between carbonyl oxygen 

of K908 and side-chain alcohol group of T910. 
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Figures 

 

 

 

 

 

 

 

Supplementary Figure 1. SAXS data of s3-[G(POG)8]3 complex (blue) and s3b-[G(POG)7PRG]3 

complex (red).  (A) The scattering profile where the intensity, I(Q) is plotted against scattering 

vector Q. (B) Pair-distance distribution function P(r) in the real space. 
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Supplementary Figure 2. Superimposed structure of s3 (salmon) and s3b (green), showing that 

Y900 of s3 occupies the three-dimensional space of R929 of s3b and that T895 of s3 occupies 

the three-dimensional space of S928 of s3b. 
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Supplementary Figure 3. SAXS curves of s3-[G(POG)8]3 complex (A) and s3b-[G(POG)7PRG]3 

complex (B) are compared to the theoretical scattering durve.  The theoretical Rg values 

calculated from the models by using CRYSOL (61)are in excellent agreement with the 

experiemental curves (Table-2).  Rigid body model with lowest  value for s3-[G(POG)8]3 

complex (A) and s3b-[G(POG)7PRG]3 complex (B) are also shown. 
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Chapter 3: Structures of three polycystic kidney disease-like domains from Clostridium 

histolyticum collagenase ColG and ColH 

Abstract 

Clostridium histolyticum collagenases ColG and ColH are segmental enzymes that are thought to 

be activated by Ca2+-triggered domain reorientation to cause extensive tissue destruction. The 

collagenases consist of a collagenase module (s1), a variable number of polycystic kidney 

disease-like (PKD-like) domains (s2a and s2b in ColH; s2 in ColG), and a variable number of 

collagen-binding domains (s3 in ColH; s3a and s3b in ColG). The X-ray crystal structures of 

Ca2+ bound holo-s2b (1.4 Å resolution, R = 15.0%, R-free = 19.1%) and holo-s2a (1.9 Å 

resolution, R = 16.3%, R-free = 20.7%), as well as Ca2+ absent apo-s2a (1.8 Å resolution, R = 

20.7%, R-free = 27.2%) and two new forms of N-terminal truncated apo-s2 (1.4 Å resolution, 

R=16.9, R-free=21.2%; 1.6 Å resolution, R=16.2, R-free=19.2%) are reported. The structurally 

similar PKD-like domains resemble the V-set Ig fold. In addition to a conserved β-bulge, the 

PKD-like domains feature a second bulge that also changes the allegiance of the subsequent β-

strand. This β-bulge and the genesis of a Ca2+ pocket in the archaea PKD-like domain suggest a 

close kinship between bacterial and archaeal PKD-like domains. Different surface properties and 

indications of different dynamics suggest unique roles for the PKD-like domains in ColG and in 

ColH. Surface aromatic residues found on ColH-s2a-s2b, but not on ColG-s2, may provide the 

weak interaction in the biphasic collagen-binding mode previously found in s2b-s3. B-factor 

analyses suggest that in the presence of Ca2+, the midsection of s2 becomes more flexible, but the 

midsections of s2a and s2b stay rigid. The different surface properties and dynamics of the 

domains suggest that PKD-like domains of M9B bacterial collagenase can be grouped into either 

a ColG-subset or ColH-subset. Conserved properties of PKD-like domains in ColG and in ColH 
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concern Ca2+ binding. Conserved residues not only interact with Ca2+, but also position the Ca2+ 

interacting water molecule. Ca2+ aligns the N-terminal linker approximately parallel to the 

domain’s major axis. Ca2+ binding also increases stability against heat and guanidine 

hydrochloride, and may improve their longevity in ECM. The results of this study will further 

assist in developing collagen-targeting vehicles for various signal molecules. 

Introduction 

Clostridium histolyticum collagenases are causative agents for gas gangrene. The two 

classes of collagenase, ColG and ColH, differ in domain structures (s1, s2, s3a, s3b for ColG; s1, 

s2a, s2b, s3 for ColH) (43) (Fig. 1), and work synergistically to degrade collagen fibers (32). S1 

is the collagenase module that belongs to the metallopeptidase subfamily M9B.  The amino acid 

sequences of s2, s2a and s2b resemble the polycystic kidney disease domain (PKD) that was first 

identified in the polycystic kidney disease protein PKD1 (The International PKD Consortium, 

1995).  The C-terminal domains s3a, s3b and s3 are collagen-binding homologues that are a 

subclass of bacterial pre-peptidase C-terminal domains (PPC super-family) (29, 45, 66, 80). The 

collagen-binding segment composed of the PKD-like domain and CBD is not necessary to 

degrade gelatin (denatured, non-triple helical collagen) and acid solubilized collagen. The 

segment, however, is necessary to degrade insoluble collagen fibers.  

Understanding the interaction of Ca2+ is significant due to its role in regulating both 

stability and enzyme activity in the ECM (30, 80, 81). Full-length ColH has been shown to 

undergo Ca2+ dependent structural changes demonstrated using SAXS and limited proteolysis 

(81). In ColG, Ca2+ triggers the linker between s3a and s3b to undergo secondary structure 

transformation from an α-helix to a β-strand to increase collagen affinity (29, 64). Similar to the 

N-terminal linker structure of s3b (30), the N-terminal linker structure of the PKD-like domain is 
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also thought to be Ca2+ dependent, and thus, high-resolution structures of both apo and holo 

states for the PKD-like domains are needed in order to elucidate their activation mechanism. 

Thus far crystallographic methods have been used to describe apo-s1 from ColG (31), the holo-

peptidase sub-domains of ColH (82), apo- and holo-s2 (31, 82), apo- and holo-s3b of ColG (29), 

and holo-s3 of ColH (80). In the apo-s2 structure, however, the conserved Pro688 near the Ca2+ 

binding site was mutated to Thr. As a side note, we use amino acid sequence numbering for the 

mature enzymes. Numbering for s2b and s2a accounts for cleavage of a 40 amino acid prepro-

peptide present in ColH, while numbering for s2 accounts for cleavage of a 110 amino acid 

prepro-peptide present in ColG. In this paper, we describe crystal structures of ColG, and for the 

first time, ColH PKD-like domains. Thermal and chemical stability differences upon Ca2+-

binding for the PKD-like domains are also reported. 

 The collagenolytic mechanism between mammalian matrix metalloproteinases (MMP) 

and bacterial collagenase differ (18, 83). Unlike bacterial collagenases, MMPs are sequence 

specific and proposed to actively unwind the triple-helix (84-87). Meanwhile, each domain in 

bacterial collagenase is believed to play a unique role in collagenolysis (88).  The C-terminal 

CBD unidirectionally binds to under-twisted sites in the triple-helical collagenous peptide (66, 

80). The CBD does not unwind mini-collagen, and hence, targeting under-twisted regions of 

tropocollagen may circumvent the energy barrier required for unwinding the helix. Various roles 

for the PKD-like domains have been proposed. The PKD-like domain has been shown to swell, 

but not unwind collagen fibrils (39). Clostridial PKD-like domains do not bind tightly to 

collagen fibril (40, 43), though s2b has been shown to enhance s3’s ability to bind to the collagen 

fiber. S2b-s3 binding is biphasic; the initial low affinity (Kd = 2.11 x 10-6 M) leads into higher 

affinity (Kd = 3.39 x 10-7 M) (40). The N-terminal collagenase module, s1, has a two-domain 
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architecture that disbands the collagen microfibril into monomeric triple-helices, and then 

cleaves the exposed peptide bond preceding the Gly residue (31, 82). Crystallographic packing 

analysis of s2 suggested a side-by-side assembly of s1, s2, s3a and s3b that matched the width of 

the collagen microfibril (31, 89). The proposed holo-ColG structure is compact; s2 helps align 

the active site of s1 with the binding clefts of s3a and s3b. In contrast, the solution envelope of 

ColH resembled a tadpole (81), and thus, the role of its PKD-like domains of ColH could differ 

from that of ColG. The work presented here provides structural framework to better decipher the 

role of the PKD-like domain. 

Despite their detrimental role in bacterial infection, bacterial collagenases and their 

collagen-binding segments are investigated for therapeutic applications. A cocktail of C. 

histolyticum ColG and ColH is used in both the nonsurgical treatment of Dupuytren's contracture 

(38), and the isolation of pancreatic islets (90, 91). Other applications are in preclinical stages 

(18). Moreover, fusion proteins consisting of growth factors, cytokines, or hormones and the 

collagen-binding segment s2b-s3 are non-diffusing and long lasting at wound sites (46, 92-94), 

and hence, the binding segments are being developed as drug-delivery vehicles. Therapeutic 

strategies based on these results are proposed to enhance efficacy by minimizing the quantity of 

signal molecules necessary and reducing side effects. In contrast, bone distribution of the fusion 

protein of parathyroid hormone with s3 only (PTH-s3) was efficacious in bone mineral density 

increase in osteoporotic models, though fusion proteins of PTH-s2b-s3 demonstrated little 

efficacy (48-50, 95). When applied to skin, PTH-s3 was efficacious in hair follicle regeneration 

in alopecia models (47, 96). This study of PKD-like domains is necessary for commercialization 

and optimization efforts for various drug candidates.  
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Methods 

Expression and purification of s2a, s2b and s2  

Expression and purification of each PKD-like domain as a glutathione S-transferase 

(GST) fusion protein was achieved using previously described methods (43).   

15N-HSQC NMR characterization of apo-s2  

Though stably folded and monodispersed in solution, s2 with its N-terminal linker did not 

crystallize.  15N enriched apo-s2 was made to measure the dynamics of the protein using NMR. 

15N enriched s2 was prepared as described (97). NMR experiments were performed at 298 ± 0.5 

K on a Bruker 700 MHz spectrometer equipped with cryoprobeTM. The concentration of the 

protein used was 0.1 mM in 50 mM Tris-HCl (pH 7.5). In the HSQC spectra, thirteen residues 

could not be identified due to band broadening (Supplemental Fig. 1). Using the homology 

modeled s2 (based on PDB ID 2C4X (98)), we reasoned that unobserved HSQC peaks 

corresponded to a highly dynamic N-terminus that hindered crystallization. Guided by the 

solution data, thirteen residues were truncated from the N-terminus.  The truncated s2 

crystallized readily. 

Crystal structure determination of PKD-like domains 

Initial conditions suitable to grow apo-s2a, holo-s2b, and the two forms of apo-s2 

crystals were identified by the sitting drop method using a high throughput screen (Hampton 

Research Crystal Screen HT). Subsequent crystallization trials using the initial conditions were 

carried out using the hanging drop method. Apo-s2a (at a concentration of 30.5 mg/mL) was 

crystallized from 3 M (NH4)2SO4, 0.1 M MES (pH 4.5), and 15% (w/v) PEG 4000 at 290 K, 

whereas holo-s2a (4.8 mg/mL) was crystallized from 30% (w/v) PEG 4000, 0.2 M MgCl2, and 

0.1 M Tris-HCl (pH 8.5) at 17C. These crystals were subsequently soaked in 15% (w/v) PEG 
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4000, 0.2 M MgCl2, 50 mM CaCl2 and 0.1 M Tris-HCl (pH 8.5) before initial unit cell 

characterization and data collection. Meanwhile, holo-s2b (13.7 mg/mL) was crystallized from 

35% (w/v) PEG 5000, 0.2 M ammonium sulfate, and 0.1 M MES (pH 6.5) at 277 K. Both crystal 

forms of s2 (12.0 mg/mL) were grown from 41-49% 2-methyl-2, 4-pentanediol (MPD), 100 mM 

Bis-Tris (pH 5.5) and 0.1-0.3M ammonium acetate at 277 K. The in-house X-ray diffraction 

facility (Rigaku 007, Osmic Blue confocal mirrors, Saturn CCD detector) was used for initial 

characterization of each PKD-like domain crystal, and in the case of the s2a crystals, was also 

used for data collection.at 113 K. s2b and s2 crystals were cryo-cooled and subsequently stored 

in liquid nitrogen until data collection. Diffraction data were collected at 109 K, in the 19-ID 

beamline of the Advanced Photon Source at Argonne National Laboratory.  

Each s2a data set was indexed and scaled using d*trek (99) whereas each s2b and s2 data 

set was indexed and scaled using HKL-3000 (53). In each case, a data set truncated to 3 Å was 

used for molecular replacement using PHASER (51). The PKD-like domain from the 

carbohydrate-binding module (PDB code 2C4X) was used as the search model during structure 

determination of s2. s2 Form I was subsequently used as the search model during structure 

determination of s2a and s2b. Four molecules were found in the asymmetric unit (ASU) of apo-

s2a crystals, while eight molecules were found in the ASU of holo-s2a crystals. Meanwhile, two 

molecules were found in the ASU of holo-s2b and each form of apo-s2 crystals.  

The subsequent structure determination for each model was accomplished using an 

iterative process of manual adjustments aided by the use of MIFit (55) and refinement using 

REFMAC(52). During manual adjustments, ARP/wARP (100) was used to place water 

molecules. Rfree was lowered for s2 Form I, apo-s2a, and holo-s2a models by utilizing Babinet’s 

principle for bulk solvent scaling. In each s2a model, Rfree was also lowered by applying TLS 



57 

 

and tight NCS restraints. The s2a models were refined with isotropic B-factors, whereas s2-Form 

I and s2b models were refined with anisotropic B-factors. PARVATI (101) calculated the 

anisotropy of s2b and s2 to be 0.5 ± 0.1 and 0.4 ± 0.1 respectively. Isotropic B-factors would 

result in anisotropy of 1.0. Each model exhibited excellent geometry as analyzed by MolProbity 

(102). Full data collection and refinement statistics are summarized in Table 1 for s2a, s2b, and 

s2 Form I and in Supplemental Table 1 for s2-Form II. Alternate conformations are detailed in 

Supplemental Table 2. 

Fluorescence spectroscopy measured equilibrium denaturation of PKD-like domains 

 PKD-like domains share similar topology, and unfolding of each domain was monitored 

by the change in intrinsic fluorescence of a conserved Trp residue. All experiments were carried 

out at room temperature on a Hitachi F-2500 fluorimeter with excitation and emission 

bandwidths at 2.5 nm and 10 nm, respectively. The excitation wavelength used was 280 nm, and 

fluorescence emissions were monitored between 300 nm and 450 nm. For s2b, s2a, and s2, λmax 

for the folded state occurred at 325, 328, and 327 nm, respectively. For each domain, λmax for the 

denatured states occurred at 350 nm. The ratio of intensity at 350 nm verses the intensity at the 

native state λmax was used to track the unfolding process. During thermal denaturation trials, the 

temperature of the protein solution was maintained with a Neslab RTE-110 circulating water 

bath (Thermo Scientific, Newington, NH). In the thermal denaturation trials for s2b and s2, the 

protein concentration was 3 μM. In the chemical denaturation trials, the protein concentration 

was 1.5 μM. In case of s2a, protein concentration for both thermal and chemical denaturation 

was 5M. Each holo-PKD-like domain was supplemented with 2 mM CaCl2, while each apo-

PKD-like domains was supplemented with 2 mM EDTA. In all cases, the protein was diluted in 

10 mM Tris-HCl (pH 7.5) and 100 mM NaCl. When heat was used as the denaturant, each 
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domain was exposed to temperatures that linearly elevated from 280.5 to 363 K in 2.5 K 

increments. When guanidine hydrochloride (Gu.HCl) was used as the denaturant, each domain 

was exposed to concentrations of denaturant that increased linearly from 0.0 to 5.8 M in 0.2 M 

increments. ΔGHOH, CM, and m values were calculated as described previously (30, 80). 

Results and Discussion 

The X-ray crystal structures of Ca2+ bound holo-s2a (C2), Ca2+ absent apo-s2a (P61), 

Ca2+ bound holo-s2b (P21), and two new forms of N-terminal truncated wild-type apo-s2 (P21, 

P212121) are reported for the first time. Between the novel s2a and s2b structures, s2b was solved 

at higher resolution, and correspondingly, is described in the most detail. New insights into s2 

are subsequently reported.  

Overall structure descriptions of apo and holo-s2a  

In the following discussion, holo-s2a will be described first (Fig. 2A). The eight holo-s2a 

molecules are virtually identical (average RMSD = 0.2 Å ± 0.1 Å). Here, the molecules spiral 

along the crystallographic (1, 0, 1) axis. Along this axis, molecule pairs A and G, B and E, C and 

F, and D and H are related by NCS translation that results in an off-origin peak that is 63.9% of 

the origin peak in the Patterson map. 

Similar to the molecules in the holo-s2a crystal, the four apo-s2a molecules are similar (average 

RMSD = 0.5 Å ± 0.2 Å) with molecules C and D being the most similar (RMSD = 0.2 Å), and 

molecules A and D, being the most divergent (RMSD = 0.8 Å). Molecules A and B, as well as 

molecules C and D, are non-crystallographic two-fold related. Temperature factors for each 

structure are relatively high (Table 1), possibly as a consequence of the high solvent content in 

the crystal (61.8%).  
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The holo and apo structures resemble each other (RMSD = 0.6 Å ± 0.2 Å). As expected, 

the most notable difference between the structures occurs near the N-terminus, where Ca2+ 

reorients interacting residues Asn685 and Ser686. While neither structure could be refined using 

anisotropic B-factors, comparison of B-factors revealed that with the exception of N-terminal 

residues, no significant change in B-factor upon Ca2+ binding occurred. 

Unlike s2b or s2, s2a truncates β-strand A through an approximately 126° rotation of the 

ψ bond of Ile692. To accommodate the change, Tyr696 packs with Phe706 and is involved in a 

Δ4 Tyr corner, in which the side chain hydroxyl group hydrogen bonds with the backbone four 

residues prior to it (103). Interestingly, the Tyr corner also stabilizes the non-prolyl cis-peptide 

bond between Gly694 and Thr695 of s2a that forms the bulge that realigns β-strand A’ to interact 

with β-strand G (Fig. 2A and 2B). A second bulge between β-strands B and B’ is stabilized by a 

hydrogen bonding network that features a monodentate interaction between Asn735 and Ser708. 

Overall structure description of holo-s2b 

Similar to holo-s2a, the two NCS related holo-s2b structures are virtually identical 

(RMSD = 0.4 Å). In the structures, one Ca2+ was found near the N-terminal linker (Fig. 2C). 

Each holo-s2b structure begins from residue 766 and the last residue is 860. The PKD-like 

domain resembles a V-set Ig fold that lacks strand D (β-strand C’ of the Ig fold correspond to β-

strand D of the PKD-like domain fold). β-Strands, B and F in the PKD-like domain structures are 

shorter than the corresponding β-strands of a prototypical V-set Ig fold (PDB ID 1BRE (104)), 

while strands F and G in the PKD-like domains are longer than the corresponding β-strands in 

the V-set Ig fold. In the PKD-like domain structures, β-strands A, A’, B, B’, and E form one 

sheet, while strands C, D, F, and G form the opposing sheet. β-strands A’ and G form a parallel 

β-sheet, while the remaining strands form anti-parallel β-sheets. Meanwhile, β-strand B forms a 
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sheet with β-strand E, with the exception of Tyr796 which is aligned with β-strand A. Given the 

β-sheet sandwich fold, the PKD-like domain was predicted to resemble the CBD (41), though 

structural alignment of holo-s2b with holo-s3 (PDB ID 3JQW (80)) suggests little homology. 

Two prominent features are the conserved bulges in the domain that interrupt β-strands A 

and B and help to form a ridge along the ABE face (Fig. 2). The first bulge occurs when Pro784 

breaks β-strand A and pushes the subsequent Lys785 outward, which in turn leads to an 

approximately 127 angle between β-strands A and A’ that also changes the allegiance of β-

strand A’ to β-strand G. The second conserved bulge is introduced by Lys798 and Gly799. This 

bulge removes the backbone hydrogen bonding partner of Tyr780 of β-strand A. To help 

stabilize the bulge, the side chain hydroxyl group of conserved Thr800 hydrogen bonds with the 

backbone amide of the Tyr780. To further stabilize the bulge and position the hydroxyl group of 

Thr800, the carbonyl oxygen of Gly797 hydrogen bonds with the side chain hydroxyl group and 

main chain amide of Thr800. The bulge is also stabilized by conserved Asn825 hydrogen 

bonding with the amides of Gly797 and Lys798 (Fig. 2C). The second bulge helps form a 

prominent ridge. Surface exposed aromatic residues are found at both sides of the ridge and are 

discussed later.  

Temperature factors for both NCS related structures are low (average B-factor for 

molecule A = 11.7 Å2; that of molecule B = 9.9 Å2). Anisotropic B-factor analyses using the 

Anisotropic Network Model web server (ANM) (105) showed that the main-chain is mostly 

isotropic and potential correlated movement occurred exclusively at the N-terminal linker. The 

calcium coordination for both holo-s2b and holo-s2a is described in detail in a later section. 

Structure descriptions of apo-s2 



61 

 

Despite being solved in two crystal forms, the the crystal structures of Forms I and II of 

apo-s2 from ColG are similar. Each ASU contains two non-crystallographic two-fold symmetry 

related molecules. All four molecules are virtually identical to each other (RMSD < 0.5Å). Each 

structure begins from residue 685, though the first two residues (Gly-Ser) are remnants from 

GST-tag cleavage. The last residue is either 770 or 771. The NCS related molecules are 

stabilized by anti-parallel type inter-molecular interaction between β-strand A. Comparison of 

our apo-s2 structures to the previously solved apo-s2 (PDB code 2Y72), in which conserved 

Pro688 is mutated showed that the N-terminal mutation pushes the N-terminus out by 3 Å at the 

Cα of Ala687. Furthermore, while residues that make up the previously described bulges are 

conserved, the interaction pattern does slightly differ from the pattern found in s2a and s2b. 

Here, the hydroxyl group of Ser707 mediates the interaction between conserved Asn735 and the 

backbone amides of Gly708 and Lys709 (Fig. 2D).  

Structure based sequence comparisons of PKD-like domains  

The sequence comparison of divergent PKD-like domains revealed conserved residues 

that are essential for the overall fold and Ca2+ chelation. Residues involved in Ca2+ chelation will 

be discussed in the subsequent section. Peptidase M9 family members are all thought to be 

collagenase and consists of subfamily A (Vibrio) and B (Bacillus and Clostridium).  M9A 

enzymes lack CBD, and consequently may utilize different approaches to collagenolysis. 

Therefore, this section will discuss M9B derived PKD-like domains exclusively, and will utilize 

s2b numbering. PKD-like domain found in M9B enzymes share two conserved clusters of 

residues (Fig. 3). The first conserved stretch, 802DxDGxIxxYxWDFGDG817, contains β-strand C 

(Underlined residues adopt the β-strand). The stretch is conserved for its Ca2+-binding and 

architectural importance. The first two Asp residues chelate with Ca2+. Invariant Tyr810 is 
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accommodated by the second β-bulge. Asp813 is sometimes replaced with an acidic Glu residue. 

The side-chain of Glu may easily fulfill the role of the side chain of Asp813, which terminates β-

strand C and stabilizes the subsequent sharp turn by hydrogen bonding to the amide of Gly815. 

Phe814 stacks against conserved His828 so that the imidazole ring can also form a salt-bridge 

with conserved Asp816. Gly817 allows Asp816 to also stabilize the turn by hydrogen bonding to 

the amide of Ser818. Though a sharp turn follows β-strand C in all PKD-like domains, the type 

of turn is different. In s2b, the insertion of Asp819 results in the region adopting an ω-loop 

(ii+10). Both s2a and s2 lack Asp819 in this stretch, and subsequently, each is involved in an 

α-turn (ii+4) that forms a β-hairpin. The second conserved stretch, 

825NPxHxYxxxGxYxVxLxVxDxxG847, forms β-strands E and F. Tyr830 and Tyr836 stack 

against each other to stabilize the interactions between the sheets. Tyr836 further stabilizes the 

sheets by forming a Δ4 Tyr corner. Asp844 is responsible for one of the axial interactions with 

Ca2+. The β-strands also wrap around the conserved turn and β-strand C to form the most unique 

feature of the PKD-like domain. Gly847 allows for β-strands F and G to be separated by a β-turn 

(ii+3). 

Ca2+ chelation in s2a and s2b 

Ca2+ coordination in s2a, s2b, and s2 are virtually identical to each other. Since holo-s2 

has been described, this section describes the binding sites on s2a and s2b in detail. One calcium-

binding site, consisting of pentagonal bipyramidal geometry, was identified near the N-terminus 

in each domain (Fig. 4). The pentagonal base is composed of OD1 of Asn685, the main chain 

carbonyl of Ser686, OD1 and OD2 of Asp713, and a water molecule, while the axial positions 

are filled by OD1 of Asp715 and OD2 of Asp754. Ca-O bond distances and planar deviations 

amongst oxygen atoms responsible for the pentagonal base (Table 2) are similar to values found 
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in clostridial CBDs (80). The Ca2+ coordination geometry in PKD-like domains has been 

described as octahedral (89, 98), though our results demonstrate that water is involved in forming 

a pentagonal base. The coordinating water molecule is positioned by OD1 of Asp755 (Fig. 4A). 

Calcium coordination in s2 (4AQO) (82) resembles that of s2a. Both the water and calcium ion 

are ordered (B-factor < 8.1 Å2). Based on the sequence alignment (Fig. 3) of PKD-like domains, 

residues contributing side chain interactions with calcium are strictly conserved. s2b chelates 

with a Ca2+ ion very similarly, except for the residues that position the water molecule (Fig. 4B). 

s2b utilizes OG from both Ser845 and Ser846 in lieu of Asp755 in s2a. 

Ca2+ induced structural change  

Ca2+ chelation appears to align the N-terminal linker approximately parallel to the 

domain’s major axis (Supplemental Fig. 2). In s2b, Ca2+ chelation by Asn774 and Lys775 could 

stabilize a 310 helix (residues 770-774) that aligns with the cylinder axis. In s2 and s2a, N-

terminal residues are positioned so that the N-terminal linker could also be positioned parallel to 

the domain’s major axis. The residues prior to Asn685 cannot be observed in the electron 

density, and consequently, the region’s secondary structure remains ambiguous. Structural 

comparison of the Ca2+-binding site between the apo- and holo-PKD-like domains revealed that 

Ca2+ has varied influence on the loop between β-strands B’ and C. Proline, positioned between 

aspartates equivalent to Asp802 and Asp804, restricts the loop flexibility so that minimal change 

occurs between apo and holo states. However, in s2, which does not have a proline positioned 

between Asp713 and Asp715, the Ca2+ interaction moves Asp715 2 Å from the binding site 

(Supplemental Fig. 2C). 

Overall, average B-factors of s2b and s2 are low, and average B-factors amongst apo- 

and holo-s2a are similar (Table 1). Despite different symmetry interactions, the B-factor per-
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residue trend of 18 PKD-like domains (eight holo-s2a molecules, four apo-s2a molecules, two 

holo-s2b molecules, and four apo-s2 molecules) are very similar to each other (Supplemental 

Figure 3A-D). Holo-s2, however, does not follow this trend (Supplemental Figure 3E). 

Comparison of holo and apo structures revealed a stark contrast between s2a and s2 in the 

influence of Ca2+ (Fig. 5A and 5C). Drops in Cα B-factor in the holo-s2 are found in three 

stretches (Gly698-I704, Gly708-Tyr721, and His738-Thr761) that are immediately preceded by 

stretches where the B-factor is higher (Lys691-Thr697, Glu705-Ser707, and Gly733-Val737). In 

the holo-s2 structure, the mid-section became more flexible, though both terminal regions 

became more rigid. Differences in crystal packing could account for the dynamics reversal, 

though it is possible that the crystal packing is a consequence of dynamic changes. Both termini 

of holo-s2 are pinned down by symmetry related molecules that could suppress their dynamics, 

while the mid-section of the barrel lacks the inter-molecular interactions observed in the apo-

state. In apo-s2, intermolecular anti-parallel β-sheet interactions involving β-strand A could 

suppress dynamics of the region. 

In contrast, comparison of holo-s2a and apo-s2a structures revealed that Ca2+ did not 

increase the B-factor of mid-section (Fig. 5A).  In the s2a structures, the termini are the most 

flexible. As mentioned, B-factor trends in all holo- and apo-s2a structures are similar despite the 

difference in crystal packing. Cα B-factors for the mid-section of holo-s2b are low (Fig. 5B), and 

suggest that s2b behaves similarly to s2a. Overall, the starkly contrasting dynamics between 

ColG and ColH derived PKD-like domains suggest diverging roles during collagenolysis. 

Ca2+ induced stability gain of PKD-like domains 

The apo-state of s2a, s2b, and s2 are thermally stable proteins (TM ~373 K), but they gain 

further stability in the presence of Ca2+. In s2b, the fluorescence of Trp812 was monitored, while 



65 

 

in s2a and s2, the fluorescence of Trp723 was monitored. During fluorescence monitored thermal 

denaturation, none of the PKD-like domains fully unfolded in the holo state (Fig. 6A-C). Such 

hyper-thermostability was also observed for holo states of s3 (80) and s3b (30). The stability of 

both PKD-like domains and CBD may allow prolonged collagenolytic activity in the ECM. Heat 

is thought to denature proteins by disrupting electrostatic interactions. As such, the conserved 

hydrogen bonding network around the bulges may play a strong role in overall stability of the 

domains, while the Ca2+-O interactions may contribute to increased stability in the holo-state.  

PKD-like domains consist of a conserved (shown in green in Fig. 3), well-packed core, and are 

likewise stable against Gu.HCl denaturation. Here, denaturation occurs through a cooperative 

transition from the folded state to unfolded states (Fig. 6D-F). In contrast to heat, Gu.HCl is 

thought to denature protein by predominately disrupting hydrophobic interactions (106). Of the 

three domains, s2b is the most stable (Table 3). The difference in ΔGH2O between apo and holo 

states (ΔΔGH2O) is approximately the same for all PKD-like domains.  In addition to reorienting 

the N-terminal linker, the proposed Ca2+-induced helical base of the N-terminal linker may have 

a partial capping effect that shields the core against Gu.HCl. It is also well documented that 

metalloproteins are more stable in the presence of their metal ligand (107). 

In the clostridial collagen-binding domain, Ca2+-induced stability could be partially 

accounted for by a reduction in void volume and an increase in hydrogen bonds (30). Analysis of 

void volume of PKD-like domains using CASTp (108) revealed a common cavity located near 

the N-terminus shrinks. The common cavity located near the C-terminus of the holo and apo 

pairs of both s2a and s2 curiously remains essentially unchanged upon Ca2+ binding. 

Furthermore, Ca2+ binding does not lead to a significant, change in hydrogen bond totals in any 

of the domains (Supplemental Table 3). For therapeutic applications, in vitro stability of s2b and 
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s3 may explain the prolonged activity of growth factors and signal molecules when fused to s2b-

s3 in vivo. 

Surface Characteristics of ColG and ColH PKD-like domains 

s2a and s2b, unlike s2, respectively contain two and four surface aromatic residues that 

are located on the ABE face (Fig. 7A and 7B). Interestingly, these residues are also located along 

the previously mentioned ridge. These residues could be involved in collagen binding given that 

aromatic residues are found at the hot-spot of the collagen-binding pocket in CBD. In s3b, 

mutations of Tyr970, Ty994, and Tyr996 to Ala greatly reduced binding to collagenous peptide 

as monitored by surface plasmon resonance (29). NMR studies also showed that these aromatic 

residues are involved in collagen binding (45). The structure-based sequence alignment of PKD-

like domains (Fig. 3), suggest that the PKD-like domain of collagenases consisting of only one 

CBD will likely contain surface aromatic residues. Conversely, the PKD-like domain of 

collagenases consisting of multiple CBDs, such as s2, appears to have no surface aromatic 

residues. Collagenases from B. brevis, C. botulinum, and C perfringens contain multiple CBDs. 

Their respective PKD-like domains lack aromatic residues, and hence, may not directly interact 

with collagen. 

A putative structure of holo-ColH can be built from the homology modeled activator 

domain of s1 and helical linker (residues 7-301 based on PDB ID 2Y50), and the crystal 

structures of the peptidase domain (residues 302-681, PDB ID 4AR1), s2a (residues 685-770), 

s2b (residues 766-860), and s3 (residues 861-981, PDB ID 3JQW). The overall dimensions 

(length = 133 Å, height = 36 Å, width = 88 Å) match the tadpole shape observed in the SAXS 

envelope of holo-ColH (81). In the model, the five-residue overlap between s2a and s2b 

structures was superimposed (RMSD = 1.0 ± 0.1 Å) to assist with formation of the s2a-s2b 



67 

 

segment. The aromatic residues mentioned are found on one side of s2a-s2b (Fig. 7C). In this 

model, the surface aromatic residues on s2a-s2b may either span across multiple tropocollagen 

molecules on the surface of the fibril or bind along one tropocollagen molecule when the binding 

surface of s3 is docked onto the collagen fibril surface. The interactions may serve to prevent the 

collagen-binding segment from diffusing away after the s3-collagen interaction is transiently 

broken. Likewise, the domains may provide loose contacts with the collagen fibril that allow the 

enzyme to scan the fibril surface for optimal regions for tight CBD interaction. In these roles, the 

PKD-like domain strengthens collagen avidity so that only one CBD is required for collagen 

binding. The zinc ion involved in activation of a water molecule is approximately 115 Å away 

from Tyr962 found in the collagen-binding pocket of s3. In this model, the PKD-like domains 

may also be critical in positioning the catalytic domain with respect to CBD.  

Potential role of PKD-like domains in synergistic collagenolysis  

The apparent differences between the ColG derived PKD-like domain and the ColH 

derived PKD-like domains may aid synergistic collagenolysis. The putative holo-ColH structure 

and the structure-based insights on the PKD-like domains allow us to begin to speculate on how 

ColG and ColH work together to degrade collagen. Currently, it is not known whether any of the 

clostridial PKD-like domains swell collagen fibers. Both s3 and s3b share a common preference 

for under-twisted regions of collagen (80), though ColG and ColH initially cleave different sites 

in collagen (17). When digesting the insoluble fiber, ColH is the workhorse (32). The higher 

collagen affinity observed for s2b-s3 may increase further by the addition of s2a. The increased 

affinity could hold ColH close to the collagen fibril so that it can slide along the fibril and find 

vulnerable regions. Meanwhile, the proposed structure of holo-ColG adopts a compact structure 

in which domains of the collagen-bonding segment are aligned by intermolecular β-sheet type 
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hydrogen bond interactions (31). ColG’s tandem CBDs may allow the enzyme to anchor itself to 

the most vulnerable region of the fibril. In this context, the spring-like dynamics of s2 may allow 

it to swell the fibril. The swelled fibril would then expose the interior of the fibril and expose 

new sites for ColH collagenolysis.   

PKD evolution 

Human PKD1 (1B4R (109)) and PKD-like domains from archaea and bacteria share a 

high degree of structural similarity that suggests the fold laterally transferred across the 

kingdoms. As expected, s2a, s2b, and s2 resemble the C. thermocellum endoglucanase PKD-like 

domain (2C4X) more closely than either the archaeal surface protein PKD-like domain (1L0Q 

(110)) or human PKD1. While the bulge between β-strands A and A’ appears to be well 

conserved only in bacterial PKD-like domains, the bulge between β-strands B and B’ is also 

conserved in the archaeal PKD-like domain, but is not conserved in PKD1. Correspondingly, 

residues Thr800 and Asn825, which are critical for stabilizing this bulge, are conserved in the 

archaeal PKD-like domain. Oddly, only Thr800 is conserved in the endoglucanase PKD-like 

domain. Normally, surface interactions are not well conserved, but surprisingly, the salt bridge 

formed between Asp816 and His828 in s2b is found in the archaeal PKD-like domain. 

Structurally equivalent residues in the endoglucanase PKD-like domain, Asp47 and Tyr60, 

utilize hydrogen bonding between OD1 and OD2 of Asp and OH of Tyr, in lieu of the salt 

bridge. In the domains, these interactions serve to stack the β-sheets together and stabilize the 

region where β-strand D of the Ig fold is deleted. The interaction is not found between the 

equivalent Asp and His residues in the NMR structure of human PKD1, though it should be 

noted that the NMR structure is derived from main-chain NOE restraints, and therefore the side-

chain orientations are not experimentally obtained.  Thus, these residues may also assist in the 
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interaction of β-strands C and E. Within the core, Trp812 and Phe795 are conserved throughout 

the three kingdoms. Our PKD-like domain structures suggest this Phe strengthen the interactions 

of β-strands B and C through packing with the strictly conserved Trp and Phe in strand D. The 

residue further supports the barrel architecture through hydrophobic packing with the C-terminal 

region of the barrel. 

Comparison of bacterial holo-PKD-like domains with either archaea or mammalian PKD 

suggests that the Ca2+ binding site in bacteria evolved from archaea. In addition to the overall 

structural similarity, five out of the seven oxygen atoms that coordinate to Ca2+ are present in the 

archaeal PKD-like domain. The archaeal domain lacks the initial asparagine residue and one of 

the axial aspartate residues required for Ca2+ binding. Ca2+ interacting residues Asn774 and 

Lys775 of s2b are replaced by Pro302 and Val303 in archaea. In addition to removing an oxygen 

atom responsible for the pentagonal base, Pro appears to constrain Val303_O to the position 

occupied by Ca2+ (Fig. 8). The archeal PKD-like domain possesses the bidentate Asp802 

equivalent. However, the loop is significantly shortened compared to the bacterial domains, 

which consequently removes the Asp804 equivalent. It should be noted that water positioning 

residues in s2b appear to be conserved in archaea (Ser845 is conserved, while Ser846 is replaced 

with asparagine). The mammalian PKD meanwhile, lacks all residues that interact with Ca2+. 

Comparison of clostridial PKD-like domain structures with V-set kappa light chain 

Bence-Jones protein (1BRE (104)) as well as with archaea PKD-like domain and human PKD 

suggests that the PKD1 domain fold in eukaryotes descended from the simpler Ig fold and then 

may have spread to archaea. From archaea, the fold laterally spread to bacteria. Characteristics of 

the V-set Ig fold that are shared with the PKD-like domain fold are: (1) The tertiary structure 

consists of a two-faced β-sheet architecture made up from a well-packed hydrophobic core. (2) 
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β-strand A is broken by a conserved bulge that changes the allegiance of the subsequent β-

strands A’. (3) β-strand C contains the conserved tryptophan, and along with β-strand C’ (β-

strand D of the PKD-like domain fold), forms a β-hairpin connected by an approximately ii+8 

ω-loop. (4) The turn leading into β-strand F is stabilized by a Δ4 Tyr corner. 

Conclusion  

Comparison of the crystal structures of ColG s2 with the crystal structures of ColH s2a 

and s2b, suggests that despite common tertiary folds, PKD-like domains could be grouped into 

two subsets. The subset containing ColH derived domains exhibits exposed aromatic residues 

and is found in M9B collagenases with a single CBD. The surface aromatic residues could be 

involved in secondary interactions that allow weak collagen binding. In contrast, the subset 

containing s2 is likely to be different; the lack of surface aromatic residues on s2 suggests that 

the domain is less directly involved in interactions with collagen. Overall, this subset is found in 

M9B collagenases with multiple CBDs. The unique differences in dynamics and surface 

characteristics between s2a-s2b and s2 may aid in synergistic collagenolysis.  

Meanwhile, the N-terminal linker structure of a PKD-like domain is described for the 

first time in the holo-s2b structure, and suggests that Ca2+ repositions the linker along the barrel 

axis. The helical structure of the linker upon Ca2+ binding may shorten the distance between s2b 

and s2a, and may help account for the previously described proteinase resistance (81). Lastly, 

our stability data show that the domains are extremely stable in the presence of physiological 

Ca2+. Structural and stability data are critical for the development of PKD-like domains as part of 

the site-directed delivery of signal molecules such as growth factors and cytokines.   

Accession Codes 

 The full atomic coordinates of the PKD-like domains and their corresponding structure 
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factor amplitudes have been deposited in the Protein Data Bank (PDB accession codes 4U6T, 

4U7K, 4JGU, 4TN9, and 4JRW assigned to apo-s2a, holo-s2a, holo-s2b, and forms I and II of 

apo-s2 respectively).   
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Tables 

Table 1: Data collection and refinement statistics. 

 

Holo-s2a Apo-s2a Holo-s2b Apo-s2 Form I 

Data Collection 

  

 

 X-ray wavelength (Å) 1.54 1.54 0.97937 0.919 

Space group C2 P61 P21 P21 

a (Å) 102.3 88.3 49.38 25.00 

b (Å) 87.6 88.3 38.87 71.76 

c (Å) 104.4 123.6 54.66 47.89 

β (°) 116.0 90.0 98.43 95.56 

γ (°) 90.0 120.0 90.00 90.00 

Resolution (Å) 93.8-1.9 76.5-1.8 22.19-1.42 47.67-1.40 

Highest resolution bin (Å) 1.98-1.91 1.81-1.76 1.44-1.42 1.44-1.40 

Number of reflections 224,470 252,508 137,190 124,611 

Redundancies (a) 3.6 (3.1) 4.7 (2.1) 3.5 (2.9) 3.3 (2.4) 

Completeness (%) (a) 96.4 (93.8) 99.4 (95.7) 96.7 (85.8) 92.5 (83.7) 

I/σI (a) 13.8 (3.0) 11.5 (2.3) 33.0 (3.1) 21.3 (2.0) 

Rmeas (%) (a, b) 5.4 (31.0) 7.5 (37.4) 4.6 (38.5) 8.1 (46.9) 
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Table 1 (cont.): Data collection and refinement statistics. 

 Holo-s2a Apo-s2a Holo-s2b Apo-s2 Form I 

Refinement 

  

 

 Unique reflections 58,720 50,932 35,993 28,786 

Rcryst (%) (a, c) 16.3 (25.5) 20.7 (26.8) 15.0 (25.4) 16.9 (28.3) 

Rfree (%) 5% of data (a, d) 20.7 (29.7) 

 

27.2 (32.0) 19.1 (33.2) 21.2 (35.6) 

Average B-factor: Main chain A (Å2) 18.9 17.6 9.6 12.5 

Average B-factor: Side chain A (Å2) 23.3 21.1 13.7 16.5 

Average B-factor: Main chain B (Å2) 18.9 17.9 8.3 12.5 

Average B-factor: Side chain B (Å2) 23.5 21.4 12.2 16.8 

Average B-factor: Main chain C (Å2) 18.9 18.9 N/A N/A 

Average B-factor: Side chain C (Å2) 23.6 22.0 N/A N/A 

Average B-factor: Main chain D (Å2) 18.7 19.3 N/A N/A 

Average B-factor: Side chain D (Å2) 

 

23.1 22.3 N/A N/A 

Average B-factor: Main chain E (Å2) 19.0 N/A N/A N/A 

Average B-factor: Side chain E (Å2) 23.5 N/A N/A N/A 

Average B-factor: Main chain F (Å2) 18.7 N/A N/A N/A 

Average B-factor: Side chain F (Å2) 23.0 N/A N/A N/A 

Average B-factor: Main chain G (Å2) 18.8 N/A N/A N/A 

Average B-factor: Side chain G (Å2) 23.1 N/A N/A N/A 

Average B-factor: Main chain H (Å2) 19.0 N/A N/A N/A 

Average B-factor: Side chain H (Å2) 23.5 N/A N/A N/A 

Average B-factor: Solvent (Å2) 46.1 42.2 25.6 31.1 

Ramachandran statistics 

  

 

 Favored (%) 98.5 99.4 98.9 99.4 

Additionally allowed (%) 1.5 0.6 1.1 0.6 

Outliers (%) 0 0 0 0 

(a) Data for the highest resolution shell are given in parenthesis 

(b) Rmeas = ∑ ∑ √
𝑁ℎ

𝑁ℎ−1𝑖ℎ |𝐼ℎ𝑖 − 〈Ih〉|/ ∑ ∑ 〈Ih〉ih  

(c) Rcryst = ∑ ||𝐹𝑜𝑏𝑠| − |𝐹𝑐𝑎𝑙𝑐||ℎ𝑘𝑙 / ∑ |𝐹𝑜𝑏𝑠|ℎ𝑘𝑙  for the 95% of reflection data used for 

refinement. 
(d) Rfree = ∑ ||𝐹𝑜𝑏𝑠| − |𝐹𝑐𝑎𝑙𝑐||ℎ𝑘𝑙 / ∑ |𝐹𝑜𝑏𝑠|ℎ𝑘𝑙  for the 5% of reflection data excluded from 

refinement. 
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Table 2: Ca-O bond distances and planar deviation for holo-s2b and holo-s2a. 

s2b Residue Atom Distance (Å) Planar Deviation (Å) 

Molecule A HOH O 2.49 0.09 

N774 OD1 2.39 0.20 

K775 O 2.41 0.27 

D802 OD1 2.42 0.38 

D802 OD2 2.44 0.22 

D804: axial OD1 2.34 NA 

D844: axial OD2 2.42 NA 

Molecule B HOH O 2.40 0.14 

N774 OD1 2.37 0.24 

K775 O 2.38 0.28 

D802 OD1 2.46 0.38 

D802 OD2 2.49 0.19 

D804: axial OD1 2.34 NA 

D844: axial OD2 2.39 NA 

s2a Residue Atom Distance (Å) Planar Deviation (Å) 

Average of 

Molecules 

A through 

H 

HOH O 2.53 (5) 0.03 (2) 

N685 OD1 2.52 (6) 0.10 (3) 

S686 O 2.43 (6) 0.14 (3) 

D713 OD1 2.51 (3) 0.15 (3) 

D713 OD2 2.50 (6) 0.09 (4) 

D715:axial OD1 2.42 (3) NA 

754: axial OD2 2.40 (5) NA 
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Table 3: Stability paramaters for Gu.HCl denaturation of PKD-like domains. 

 

holo-s2b apo-s2b holo-s2a apo-s2a holo-s2 apo-s2 

ΔG (kcal*mol-1) 9.8 6.9 7.8 4.9 6.0 4.3 

m (kcal*mol-1*M-1) 3.1 2.6 3.6 3.1 2.4 2.7 

CM (M) 3.2 2.6 2.2 1.6 2.5 1.6 
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Figures 

 
Figure 1: Domain map of collagenases ColG and ColH from Clostridium histolyticum. The 

prepro-peptide (gray dashes) is cleaved from the mature enzyme and indicated by sequence 

numbering N1-N110 (ColG) and N1-N40 (ColH). The collagenase module is composed of an 

activator subdomain (olive) and peptidase subdomain (dark olive) that is accompanied by a 

helper subdomain. The PKD-like domain(s) (yellow for ColG; cyan and green for ColH) connect 

the collagenase module to the C-terminal CBD(s) (red for ColG; salmon for ColH)  that are 

responsible for collagen-binding. 
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Figure 2: Structural comparison of holo-s2a (A), apo-s2a (B), holo-s2b (C), and apo-s2 (D). 

Hydrogen bonds and sharp turns that stabilize β-bulges are highlighted.  
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Figure 3: Structure based sequence alignment of PKD-like domains from M9B. Residues 

responsible for Ca2+ binding, for positioning the Ca2+ interacting water, architecturally critical 

residues, and surface aromatic residues are shown in red, orange, green and blue, respectively. 

Sequence numbering and secondary structure position for s2b is shown at the top of the figure. 

Secondary structure position for the s2 structure is similar, though the 310 helix is absent. 

Sequence numbering for s2a and s2, as well as secondary structure position for s2a is shown at 

the bottom of the figure. Sequence alignment was aided by the use of ClustalW2 (79). 
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Figure 4: Ca2+ coordination in s2a (A) and s2b (B). Seven oxygen atoms from five residues and 

one water molecule coordinate with Ca2+ in a pentagonal bipyramidal geometry. Pentagonal base 

interactions are indicated using brown dashes, while axial interactions are indicated using yellow 

dashes. Residue to water interactions are indicated with blue dashes. Either one aspartate (s2a) or 

adjacent serines (s2b) are responsible for positioning the water molecule along the pentagonal 

base. 
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Figure 5: Cα B-factor changes upon Ca2+ binding for s2a (A) and s2 (C). Cα B-factor of holo-s2b 

(B) is also shown.  
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Figure 6: Results of fluorescence-measured equilibrium denaturation of (A, D) s2a, (B, E) s2b, 

and (C, F) s2 in their apo-(open circles) and holo-forms (closed circles). 
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Figure 7: Surface aromatic residues in s2a (A) and s2b (B). The boxed in regions corrspond to 

residues Ala766-Asp770, which is observed in both s2a and s2b structures and was used to help 

assemble the full holo-ColH structure (C). This structure is assembled from the crystal structures 

of the peptidase domain of s1, s2a , s2b , and s3, as well as the homology modeled activator 

domain of s1. Homology modeling was accomplished using SWISS-MODEL (111). Surface 

exposed aromatic residues of the peptidase domain of s1 and s2a-s2b as well as the conserved 

collagen interacting aromatic residues of s3 are shown in yellow. Ca2+ is shown as orange 

spheres.  
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Figure 8: Proposed evolution of the Ca2+ binding pocket in bacterial PKD-like domains (holo-

s2b shown on the left) from the archaea PKD-like domain (1LOQ shown on the right).  
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Supplemental Material 

Tables 

Supplemental table 1: Data collection and refinement statistics. 
  apo-s2 Form I 

Data Collection   

X-ray wavelength (Å) 0.919 

Space group P212121 

a (Å), b (Å), c (Å) 45.0, 49.0, 70.9 

β (°) 90.0 

γ (°) 90.0 

Resolution (Å) 40.3-1.6 

Highest resolution bin (Å) 1.64-1.60 

Number of reflections 165,013 

Redundancies (a) 4.1 (3.6) 

Completeness (%) (a) 99.9 (99.6) 

I/σI (a) 30.9 (2.1) 

Rmeas (%) (a, b) 7.0 (69.2) 
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Supplemental table 1 (Cont.): Data collection and refinement statistics. 
  apo-s2 Form I 

Refinement   

Unique reflections 20,159 

Rcryst (%) (a, c) 16.2 (26.5) 

Rfree (%) 5% of data (a, d) 19.2 (30.6) 

Average B-factor: Main chain A (Å2) 11.2 

Average B-factor: Side chain A (Å2) 15.7 

Average B-factor: Main chain B (Å2)  11.6 

Average B-factor: Side chain B (Å2) 16.2 

Average B-factor: Solvent (Å2) 28.1 

Ramachandran statistics   

Favored (%) 100 

Additionally allowed (%) 0 

Outliers (%) 0 

 

(a) Data for the highest resolution shell are given in parenthesis 

(b) Rmeas = ∑ ∑ √
𝑁ℎ

𝑁ℎ−1𝑖ℎ |𝐼ℎ𝑖 − 〈Ih〉|/ ∑ ∑ 〈Ih〉ih  

(c) Rcryst = ∑ ||𝐹𝑜𝑏𝑠| − |𝐹𝑐𝑎𝑙𝑐||ℎ𝑘𝑙 / ∑ |𝐹𝑜𝑏𝑠|ℎ𝑘𝑙  for the 95% of reflection data used for 

refinement. 
(d) Rfree = ∑ ||𝐹𝑜𝑏𝑠| − |𝐹𝑐𝑎𝑙𝑐||ℎ𝑘𝑙 / ∑ |𝐹𝑜𝑏𝑠|ℎ𝑘𝑙  for the 5% of reflection data excluded from 

refinement. 
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Supplemental table 2: Alternate conformations of the PKD-like domains 

Domain Molecule Alternate conformations 

Apo-s2a Molecule A S720, K742, and S762 

  Molecule B D715 and K742 

  Molecule C K697, S720, and N732 

  Molecule D D715, S720, and N732 

Holo-s2a Molecule A S686, S759, and T763 

  Molecule B S720 and S759 

  Molecule C None 

  Molecule D S762 

  Molecule E S686 and S762 

  Molecule F S759 and S762 

  Molecule G S686 and S759 

  Molecule H S686 and S762 

Holo-s2b Molecule A 
K792, V793, S806, S822, S827, and 

M854 

  Molecule B S786, S806, S822, and S827 

Apo-s2 Form I Molecule A 
R702, K717, R732, S736, T761, and 

S763 

  Molecule B 
I689, K691, S720, T730, T749, and 

T761 

Apo-s2 Form 

II 
Molecule A E714, N747, T749, and T761 

  Molecule B K691, E714, V737, and S763 
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Supplemental table 3: hydrogen bond totals for PKD-like domains in presence and absence of 

Ca2+. 

 Domain Molecule NH…O OH…O NH…N CH…O total 

Apo-s2a Molecule A 45 8 19 95 167 

  Molecule B 38 8 19 87 152 

  Molecule C 37 7 18 93 155 

  Molecule D 39 8 20 92 159 

Holo-s2a Molecule A 45 7 18 86 156 

  Molecule B 43 6 18 90 157 

  Molecule C 42 7 19 91 159 

  Molecule D 46 6 18 88 158 

  Molecule E 47 6 18 86 157 

  Molecule F 41 7 18 95 161 

  Molecule G 40 6 18 89 153 

  Molecule H 40 7 18 84 149 

Holo-s2b Molecule A 45 12 20 73 150 

  Molecule B 47 6 20 85 158 

Apo-s2 Molecule A 46 5 18 77 146 

  Molecule B 48 4 18 82 152 

Holo-s2 Molecule A 45 6 17 70 138 
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Figures 

 
Supplemental figure 1: HSQC spectra for uniformly 15N labeled s2. In the spectra, thirteen 

residues could not be identified due to extensive band broadening. 
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Supplemental figure 2: Ca2+-induced structure rearraingment in the PKD-like domains. The N-

terminal loop of s2a (A) is re-oriented as indicated by the rotation along the ψ bond of Asn685. 

The N-terminal linker of s2b (B) is observed in the crystal structure and indicates that the linker 

forms a 310 helix (hydrogen bonding indicated by red dashes). Unlike s2a and s2b, the loop (713-

717) of s2 (C) moves out to accommodate Ca2+.  

 

 

 

 

 



90 

 

 
Supplemental figure 3: Per-residue B-factor trend for the PKD-like domains. The trends for holo-

s2a (A), apo-s2a (B), holo-s2b (C), and apo-s2 (D) are similar. Comparison of the averaged B-

factor of apo-s2 with holo-s2 (E) revealed the distinctly different influence Ca2+ has on potential 

dynamics.  
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Chapter 4: Activation and binding mechanism of a clostridial tandem collagen-binding 

domain with pseudo-two-fold symmetry 

Abstract 

Clostridium histoliticum secrets virulence factors, including highly active collagenases CollG 

(class I) and ColH (class II), which penetrate animal tissues. After the multi-domain ColG 

utilizes its tandem collagen-binding domain (CBD) to anchor itself onto insoluble collagen, 

subsequent degradation of the hierarchical substrate involves processive cleavage and 

rearrangement of fibrils.  In this work, the structure of the calcium bound tandem CBD is 

presented at 1.9 Å resolution (Rwork = 15.0%; Rfree = 19.6%). The pseudo-two-fold arrangement 

of CBD could allow ColG to wedge between collagen molecules that are 55 Å apart and 

subsequently aid in fibril rearrangement and processive cleavage. Indeed, between 0.1:1 and 

0.5:1 molar ratios of tandem CBD and collagen, it accelerated collagen fiber formation. At 1:1 

molar ratios and above, the tandem CBD retarded fibril formation. To toggle between collagen 

molecules, a tighter binding C-side CBD, may initiate binding. Subsequently, the weaker binding 

N-side CBD can latch onto a prone collagen molecule to provide the tightest known fibril 

binding. The conformational change of the tandem CBD is calcium dependent and cooperative as 

measured by size exclusion chromatography and by SAXS at pCa in the range of 3-6. At pCa > 

5, the tandem CBD adopts an extended structure that is easier to be secreted from the bacterium. 

In the host pCa2+ >3, the compact structure seen in the crystal structure is adopted. The binding 

and activation mode described here will help guide site-directed drug delivery vehicle 

development.  
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Introduction 

Fibrous collagen is resistant to most proteases due to its tightly packed structure, which 

shields the peptide bonds. Most clostridial collagenases possess multiple collagen-binding 

domains (CBD) (Supplementary Fig. 1). The evolutionary advantage for this redundancy is 

addressed by determining the structure of the tandem CBD segment of collagenase ColG from 

Clostridium histolyticum. The catalytic domain alone is capable of hydrolyzing solubilized 

collagen while C-terminal CBDs of ColG (s3a, s3b) are necessary for dismantling collagen fibril 

(29, 31).  

The C-terminal collagen-binding domains (CBDs) of ColG (s3a, s3b), and ColH (s3), are 

homologs consisting of approximately 120 amino acids. The domains bind to soluble and 

insoluble collagen structures. Their role in binding to collagen fibril is essential in dismantling its 

hierarchical structure (40, 43). Truncation of CBD from either full-length ColG or ColH 

incapacitates their abilities to degrade collagen fibril. Such enzymes can only degrade solubilized 

collagen or denatured collagen (gelatin). Mutagenesis and collagen-binding studies mapped the 

binding surface of s3b, while NMR and SAXS studies showed that s3b unidirectionally binds to 

under-twisted regions of mini-collagen (45, 66). High-speed atomic force microscopy has 

recently revealed ColG’s ability to dismantle collagen in real time (33). During degradation, 

ColG moves processively from the fibril’s C-terminus to its N-terminus to dismantle the fibril. 

ColG also initially targeted less ordered regions of the fibril.  

Bacterial collagenases require calcium to attain both full catalytic activity and collagen-

binding function. The activation of bacterial collagenase involves domain rearrangement 

triggered by the Ca2+ binding (29, 30, 64, 80, 112). The full-length ColG is expected to be 

relatively flexible inside the bacteria where Ca2+ concentration is low (0.2-0.3x10-6 M) allowing 
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the enzyme to be secreted easier (29).  Upon secretion, the linker chelates to Ca2+ (~1.2 mM) in 

the ECM to adopt a rigid structure. Though it has not been shown for ColG, Ca2+ chelation 

indeed triggers full-length ColH to adopt a compact, less flexible structure (81).  

The clostridial collagenases have been successfully used for years as a wound 

debridement. Recently the mixture of ColG and ColH was approved for use in the treatment of 

excessive connective tissue build up found, for example, in Dupuytren's disease (113). In 

addition to therapeutic use of full-length collagenase for removal of connective tissue, the non-

catalytic segments are used for targeted drug-delivery to reduce dosage and to minimize side 

effects. Initially, Nishi et al. developed fusion proteins of s2b-s3 and growth factors. When 

injected, the fusion proteins remained active at the site of injection for up to 10 days (46). While 

systemic applications utilize fusion proteins consisting of lower affinity collagen-binders (e.g. 

s3) to treat osteoporosis (48-50), and to prevent and to treat alopecia (47, 96, 114, 115), tighter 

collagen-binders (e.g. s2b-s3) are more efficacious in localized wound healing applications when 

applied at the site of injury with collagen-based bone graft material (116-118). Since tandem 

CBD bind to collagen even tighter than s2b-s3 (43), these results suggest a clinical significance 

for tandem CBD. 

Methods 

Production, Purification, Crystallization and Structure Determination 

 Individual s3a, s3b, as well as tandem CBD derived from the C. histolyticum ColG were 

expressed as glutathione S-transferase (GST)-fusion proteins using method as described 

previously (40). Initial conditions suitable to grow crystals of tandem CBD were identified by 

high-throughput screen (Hampton Research Crystal Screen HT). Subsequent crystallization trials 

using the initial conditions were carried out using the hanging-drop method. Crystals of tandem 
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CBD, obtained in the presence of 21-26% PEG 3350, 0.1 M HEPES pH 7.5, 3 mM calcium 

chloride, were orthorhombic (space group, P212121), with cell parameters a = 51.5 Å, b = 54.7 Å, 

c = 92.0 Å. The crystals grew within 24 hours in 37°C but did not grow at lower temperatures. 

The crystals were temperature sensitive and could not withstand cryogenic temperatures. 

Therefore, diffraction data were collected by means of in–house X-ray facility at room 

temperature to 1.9 Å resolution using a Rigaku 007 generator with Cu Kα radiation.  The data 

sets were processed with d*TREK (99) (Supplementary Table 1). The structure was solved with 

the molecular replacement program MolRep from the CCP4 package, by using s3b (PDB code 

2O8O) as the search model (52). One tandem CBD was found in an asymmetric unit; and 

therefore, VM was 2.5 Å3/Da and solvent content was 50% (119). Refinement of the tandem 

CBD was carried out using Refmac_6.1.13 (52). TLS restraints were applied to main chain 

atoms with each CBD acting as a TLS group. Babinet scaling was used for bulk solvent 

refinement. Five percent of the data were set aside to monitor Rfree. The models were manually 

adjusted between each refinement cycle using MIFit (55). Alternate confirmations were built for 

Lys818, Glu945, Tyr970, and Arg1005. The Ramachandran plot for the final structure obtained 

with the RCSB validation server (120) showed 91% of the residues in the core region and 9% in 

the additionally allowed region, with none in the generously allowed or disallowed regions. The 

final refinement statistics are shown in Table 1.  

Small Angle X-ray Scattering 

Suitable buffer conditions for small angle X-ray scattering (SAXS) measurements were 

identified using Native-PAGE. For the pCa (-log [Ca2+]) analysis the tandem CBD was initially 

equilibrated into 100 mM NaCl and 2% glycerol. Measured quantity of CaCl2 and 0.2 mM total 

EGTA achieved pCa values to 3, 4, 5 and 6. The amount of Ca2+ needed to reach a given pCa 
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was determined using MAXCHELATOR (121). Measurements were completed for three 

concentration series per sample. For the pCa series, the concentration of tandem CBD used at 

pCa 4 and 5 and 6 was 1, 3, and 5 mg/mL. At pCa 3, the concentration series used was 2, 4, and 

6 mg/mL. All SAXS data were collected at 10°C at the Advanced Light Source at Berkley 

National Lab (SIBYLS beamline, 12.3.1) (122, 123) using a Pilatus 2M detector. Sample to 

detector distance was 1.5 m, and X-ray wavelength was 1.127 Å. All data processing was 

accomplished using primusqt from the ATAS 2.6.1 software package. For CBD at each pCa and 

the complex with mini-collagen, exposure data from the concentration gradient that were not 

affected by either aggregation or detector saturation were extrapolated to infinite dilution. 

Determination of the radius of gyration (Rg), maximum diameter (Dmax) as well as ab initio shape 

reconstruction of the extrapolated data for each model in the pCa series was carried out using the 

dammif function in primusqt. The χ values calculated at the end of each run indicated the 

agreement between the calculated scattering curve and the experimental scattering curve. The Rg, 

Dmax, and χ values for each model are summarized in Table 2.  

Collagen Fibril Formation 

The impact of addition of tandem CBD, S3a and S3b on self-assembly of collagen 

molecules was monitored by measuring turbidity as an increase in optical density at 450 nm, at 

37ºC (Supplementary Fig. 2). On ice, a solution of 2 mg/ml of rat collagen was diluted with 40 

mM HEPES buffer pH 7.5, with addition of 300 mM NaCl, 2 mM CaCl2, to final concentration 

of 0.5 mg/ml (2.4 µM). In the next step collagen binding domain was added in ratios: 0.1 to 1; 

0.2 to 1; 0.3:1; 0.5 to 1; 1 to 1; 2 to 1; 3 to 1; 5 to 1 of molar concentration. The turbidity 

measurement was taken in 96 well plates with 1-minute intervals with spectrophotometer Filter 

Max F5 (Molecular Devices). From the turbidity curve the following parameters were estimated 
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tlag-time at the end of lag phase, maximum turbidity, and V the maximum fibril growth rate 

(Supplementary Table 1). Retardation of collagen fibril formation by s3b (C-side CBD) was as 

expected (124).  

Analytical Size Exclusion Chromatography 

Size exclusion chromatography was performed at room temperature on a HPLC system 

equipped with a Superdex 75 column (1 × 30 cm, Pharmacia) at a flow rate of 0.5 ml/min as 

described (29). The following proteins were used as molecular mass standards: bovine serum 

albumin, 67.0 kDa; chicken ovalbumin, 43.0 kDa; and ribonuclease A, 13.7 kDa (Pharmacia). 

The measurement was carried out in triplicate. For every apparent mass measured for the tandem 

CBD at different pCa, standard deviation was less than 0.06 kDa.  

Results and Discussion 

Structural description of tandem CBD 

The crystal structure of tandem CBD consists of s3a, which is described for the first time 

in this paper, and the previously described s3b (29). Both s3a and s3b adopt similar β-sandwich 

‘jelly-roll’ folds composed of ten β-strands. The CBDs are related by a pseudo two-fold 

rotational symmetry that is stabilized by salt-bridges and hydrogen-bonding interactions. The 

pseudo symmetry axis, which is perpendicular to the plane of the page in Fig. 1a, positions the 

collagen-binding pockets in the tandem CBD to be ~55 Å apart. Each domain chelates to two 

Ca2+ as described (29, 80). Overlay of 110 equivalent Cα atoms showed that s3a and s3b share a 

root mean square deviation (r.m.s.d.) of 0.9Å and most significantly deviate at loops with 

r.m.s.d. of approximately 2.5 Å.  

Influence of Ca2+ on domain rearrangement 
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Calcium ions are thought to trigger domain rearrangement that can enhance ColG’s 

efficiency in digesting fibril. The domain rearrangement of tandem CBD triggered by Ca2+ 

binding is examined here. Hydrodynamic radius change monitored by size exclusion 

chromatography demonstrated that Ca2+-induced domain rearrangement is cooperative. 

Molecular shape transformation was visualized by small angle X-ray scattering (SAXS, Fig.1b). 

The SAXS derived envelope for tandem CBD at pCa 6 (1 µM) adopts an elongated, rod-like 

shape. The protrusion from the envelope resembles the α-helical linker from the molecular 

envelope of apo-s3b (64). Increasing Ca2+ concentration compacts the tandem CBD. At pCa 4 

(100 µM) the shape resembles the crystal structure with the exception of a bulge that suggests 

the N-terminal linker remained dynamic. At pCa 3 (1 mM) the shape agrees well with the crystal 

structure. The difference in Ca2+ concentration inside Clostridium, which is likely similar to the 

concentration inside Escherichia coli (0.2–0.3 × 10–6 M; pCa~7)(125), and host ECM (~1.2 mM; 

pCa~3) (126) could be exploited by the bacteria to facilitate rapid secretion into the host. 

Unique influence of tandem CBD on collagen fibril formation 

Previously, s3b was shown to bind collagen unidirectionally (45). The pseudo-two-fold 

arrangement of tandem CBD would allow the domain to bind to two parallelly oriented 

tropocollagen molecules. Individually, s3a or s3b, retards collagen fibril self-assembly 

(Supplementary Fig. 2) similar to other collagen-binders (124). However, since tandem CBD 

could facilitate aligning collagen molecules, we tested its potential to promote fibril self-

assembly by monitoring the turbidity of mixtures of tandem CBD and collagen at 450 nm (Fig. 

2a). Here, we observed the first instance where a collagen-binder accelerates fibril formation.  In 

the absence of tandem CBD (control), the lag time for fibril formation is 19 min as previously 

observed (124). The lag time progressively shortens as tandem CBD concentration increases 
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from 0.1:1 (tandem CBD:collagen) to 0.5:1. At a 0.5:1 ratio of tandem CBD to collagen, the lag 

time is reduced to 15 min. At low concentrations, tandem CBD indeed aids in collagen fibril self-

assembly. As concentration of tandem CBD increases, the lag time also correspondingly 

increases. At a tandem CBD to collagen ratio of 5:1, the lag time is 30 min. The dual role of the 

tandem CBD on collagen fibril assembly may provide an important clue to understand how full-

length ColG dismantles insoluble fibril. High-speed atomic force microscopy visualized ColG’s 

processive movement and its rearrangement of collagen fibrils (33). ColG initiates collagenolysis 

from disordered regions. Here, the tandem CBD’s role is to intercalate into the niche provided in 

the disordered region and to anchor the collagenase onto the fibril. The subsequent C-terminus to 

N-terminus processive cleavage could then be facilitated by tandem CBD correctly positioning 

the catalytic domain. ColG also isolates collagen fibrils and rearranges them to thicken 

neighboring fibrils. The tandem CBD’s ability to facilitate collagen fibril formation may allow 

ColG to rearrange collagen fibril.  

Collagen-binding mode 

The opposing positions of the collagen-binding clefts on tandem CBD present unique 

modes for the domain to latch onto collagen fibril. Whereas collagen fibril is built from a 

staggered array of triple-helical tropocollagen, and is water insoluble, synthetic mini-collagen, 

which mimics the tropocollagen structure, is water soluble and also allows solution-based 

analysis of CBD-collagen interaction. Measured dissociation constants for the interaction 

between the CBDs and either mini-collagen or fibril tend to agree (43). Tandem CBD is the 

tightest binder to collagen fibril, and is able to bind tighter than the sum of s3a and s3b 

individually. However tandem CBD binds mini-collagen about as tightly as s3b alone (43). 

Corroborating this, the SAXS-derived shape of the CBD:mini-collagen suggests only one CBD 
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bound to mini-collagen, even when two-fold excess of mini-collagen was used (Supplementary 

Table 2). The binding affinities of s3a and s3b to mini-collagen suggest s3b initiates collagen 

binding. Furthermore, the sequence alignment of multiple CBD binding segments suggests this 

binding strategy is conserved amongst the collagenases possessing tandem CBDs. The three 

most critical tyrosine residues for collagen-binding in s3b (970, 994, and 996) are conserved 

amongst C-side CBDs, while only tyrosine residues 970 and 994 are conserved amongst N-side 

CBDs (Supplementary Fig. 1b). Apparently, gene duplication of CBD required reduced 

functionality in the N-side CBD in order to prevent tandem CBD from binding too tightly to 

collagen fibril. The tighter binding s3b initiates binding and serves the central role, while s3a 

plays an auxiliary, yet pivotal role in intercalating between collagen molecules in collagen fibril.  

The 5.5 nm spacing of binding clefts in tandem CBD excludes the segment from reaching 

tropocollagen molecules within tightly packed hierarchical arrangements. However, the spacing 

would allow it to seek either interfibrous spaces or crevices on the surface of damaged collagen 

fibril (Fig. 2b). The median surface-to-surface distance between fibers in normal skin is only 

~3.2 nm. However, the interfibrous space widens to ~6 nm in regenerating skin (127). 

Meanwhile loss of two micro-fibrils from the surface of fibril could also generate an ~6 nm gap 

(33). Bacterial collagenase equipped with tandem CBD could initiate destruction from these 

most vulnerable regions. 

Application of tandem CBD to localized drug delivery 

The binding segments can converge fused growth factors to the site of lesion, which 

minimizes dosage and side effects in rodents (46, 116-118). The fusion protein of basic FGF and 

tandem CBD yielded the highest efficacy in healing bone fracture (128). Our results present the 

structural support for use of tandem CBD in localized therapeutic delivery. 
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Accession codes 

 The full atomic coordinates of the tandem CBD and its corresponding structure factor 

amplitudes have been deposited in the Protein Data Bank (PDB accession code 5IKU). SAXS 

data and corresponding ab initio models have been submitted to the Small Angle Scattering 

Biological Data Bank (SASBDB accession codes CL2, CM2, CN2, CP2 assigned to envelopes 

for tandem CBD at pCa 3, 4, 5, and 6 respectively). 
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Tables 

Table 1. Data collection and refinement statistics 

Data collection statistic   

Wavelength (Å) 1.5419 

Temperature (K) 298 

Resolution range (Å)a 19.7-1.90 (1.97-1.90) 

Space group P21 21 21 

Unit cell dimension (Å) 
 

a (Å) 51.5 

b (Å) 54.7 

c (Å) 92.0 

Unit cell angle (°) α, β, γ = 90 

Total reflections 89,473 

Redundancy  4.47 (4.27) 

Completeness (%)a  94.8 (94.2) 

Rmeas (%)a, b 7.1 (49.2) 

I/σIb 11.2 (2.9) 
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Table 1 (Cont.): Data collection and refinement statistics 

Refinement statistic   

Unique reflections  18,987 

Solvent molecules 211 

Rwork (%) 15.0 (25.5) 

Rfree (%)b, c 19.6 (26.8) 

Average B value (Å2) 37.68 

Coordinates ESU based on Rfree (Å) 0.13 

Root mean square deviations 
 

Bond distance (Å) 0.011 

Bond angles (°) 1.87 

Chiral centers  (Å3) 0.17 

Planar groups (Å) 0.01 

B-factor restrains 
 

Main - chain bond (Å2) 3.81 

Main-chain angle (Å2) 4.72 

Side- chain bond (Å2) 6.84 

Long range B-factor (Å2) 12.3 

Ramachandran statistic  
 

Most favored region (%) 90.9 

Allowed region (%) 9.1 
a Rmeas = hkl (N(hkl)/N(hkl)-1)1/2

 iIi(hkl) -I(hkl)   (hkl)iIi(hkl) 

bData for highest resolution shell are given in parentheses 
c 5% of data excluded from refinement 
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Table 2: Small Angle X-ray Scattering Statistics for the tandem CBD at different pCa. 

pCa Rg (Å) Dmax (Å) χ 

3.0 24 75 0.8 

4.0 25 76 1.0 

5.0 25 94  0.8 

6.0 27 128 1.2 
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Figures 

 
Fig 1. Crystal structure of tandem CBD and Ca2+ induced transformation. (a) The N-side CBD 

(s3a) and the C-side (s3b) are drawn in green and orange, respectively.  Four Ca2+ (red) are 

chelated by the CBDs. Aromatic residues (blue) were previously identified to interact with mini-

collagen (29, 45). (b) Size exclusion chromatography and SAXS experiments were carried out in 

HBS-based calcium buffers of varying pCa. 
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Fig 2. Putative binding mechanism for tandem CBD.  (a) Promotion (red) and retardation (blue) 

of collagen fibril formation by tandem CBD. (b) Schematic drawing of putative collagen niches 

preferred by tandem CBD. 
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Supplemental material 

Table 

Supplementary Table 1: Turbidity parameters of self-assembly of collagen in a presence of 

collagen binding domain 

 Tandem CBD to collagen molar ratios 

 collagen 0.1:1 0.2:1 0.3:1 0.5:1 1:1 2:1 3:1 5:1 

tlag (min) 19.0 19.0 18.0 17.0 15.0 21.0 24.0 27.0 30.0 

V 

(turbidity/min) 

0.019 0.022 0.022 0.021 0.019 0.017 0.014 0.010 0.005 

ΔA (turbidity) 0.284 0.266 0.271 0.277 0.268 0.274 0.287 0.291 0.331 

 

 s3a to collagen molar ratios 

 collagen 0.1:1 0.2:1 0.3:1 0.5:1 1:1 2:1 3:1 5:1 

tlag (min) 11.6 15.3 13.6 15.9 11.2 17.0 19.0 21.6 15.6 

Vmax 

(turbidity/min) 

0.014 0.027 0.013 0.014 0.016 0.024 0.016 0.022 0.011 

ΔA (turbidity) 0.256 0.336 0.282 0.246 0.249 0.270 0.276 0.272 0.293 

 

 s3b to collagen molar ratios 

 collagen 0.1:1 0.2:1 0.3:1 0.5:1 1:1 2:1 3:1 5:1 

tlag (min) 19.9 20.3 20.6 20.4 20.5 25.1 32.9 42.6 68.3 

Vmax 

(turbidity/min) 

0.041 0.035 0.034 0.033 0.030 0.027 0.018 0.013 0.008 

ΔA (turbidity) 0.289 0.281 0.283 0.278 0.264 0.289 0.314 0.337 0.341 
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Figures 

 
Supplementary Fig. 1 (a) Phylogenic tree of M9B collagenases (InterPro 002169). (b) Sequence 

alignment of tandem collagen binding domains in M9B collagenases from Clostridium 

sporogenes, C. botulinum A3, C. perfringens, Bacillus. brevis, Paenibacillus dendritiformis, C. 

sordellii and C. histolyticum. N-side CBD molecules are aligned on the top rows, and C-side 

CBDs are aligned on the bottom rows. Calcium-binding residues (chelator in red and spotter of 

chelator in orange), structurally important residues (green) are conserved. Based on biophysical 

studies completed for s3b (29_ENREF_29, 45, 66), residues that conjectured to interact with 

mini-collagen are highlighted in blue. One of the most well conserved and critical residues for 

collagen interaction in s3b is Tyr996. Tyr996 equivalent is conserved in the C-side CBD but not 

in the N-side CBD.   
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Supplementary Fig. 2 (a) Retardation of collagen fibril formation by s3a (N-side CBD). (b) 

Retardation of collagen fibril formation by s3b (C-side CBD).  
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Chapter 5: Conclusion 

 The crystal structures of Ca2+-bound s2a, s2b, s3, s3a-s3b and Ca2+-absent s2a and s2 

facilitate understanding of the division of labor utilized by collagenases ColG and ColH to 

degrade collagen. Over time, evolutionary pressure appears to have tuned the role of homologous 

domains to maintain Ca2+-triggered activation, yet also initially recognize unique regions on 

collagen. Initiating collagen degradation at unique regions would allow the collagenases to 

synergistically work towards collagen dismantling. The novel crystal structure of the Ca2+-bound 

(holo)-s3 closely resembles the higher resolution, re-refined structure of holo-s3b, and shares 

both Ca2+-induced stabilization as well as the architecture of the collagen-binding cleft. 

However, charge differences on the surface of the collagen-binding cleft may allow the domains 

to initiate binding at different regions. The PKD-like domain s2b is not a collagen-binder, but it 

has been shown to tighten the interaction between s3 and collagen. Curiously, the role of s2b as a 

source of secondary, weak interaction that improves binding to collagen is analogous to the role 

of s3a. While s3a is a CBD, its collagen-binding cleft lacks a key tyrosine found in s3b. Both s2b 

and s3a allow the main CBD to bind tighter, but not become locked into a single site. The 

tandem CBD structure represents the first structure of two domains from collagenase. With this 

structure, the Ca2+-induced domain rearrangement could be evaluated using SAXS. The 

molecular envelopes obtained using this technique indicate the domain transforms from an 

elongated, flexible confirmation to the compact, pseudo-two-fold arrangement seen in the crystal 

structure. In correlation with SAXS studies of ColH, the domains of the apo-collagenase inside 

the bacterium appear to be connected by flexible linkers that can facilitate secretion from the cell 

into the host extracellular matrix. Here, the enzyme must resist proteases secreted by the host 

immune system. The domains therefore likely utilize the higher Ca2+ concentrations of the 
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extracellular matrix to trigger domain rearrangement into the compact holo-enzyme, which is 

expected to minimize protease targets.  

 Development of applications of the targeting segments of ColG and ColH are aided by 

structural and functional studies that identify the role of targeting segment domains. Systemic 

delivery of a therapeutic, for example, in the treatment of ostroporosis could benefit from use of 

collagen-binders that do not bind ultra-tight to collagen. Localized delivery, which would be 

used in the treatment of ailments such as bone fracture, necessitates minimal collagen-binder 

distribution. The work described in this dissertation indicates that CBD, PKD-CBD, and tandem 

CBD are extremely stable proteins that are capable of withstanding in vivo conditions. Moreover, 

these domains are likely to target the damaged regions of collagen that are induced by the 

ailment. Selection of collagen-binding segment for the therapeutic delivery can be guided by 

binding affinity of the segment. 
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