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Abstract 

 An improved synthetic method was developed for symmetric ruthenium(II) polypyridine 

complexes with the form L2Ru(diphen)RuL2. The scope of the reaction was investigated in 

regards to the ligands, bridging ligands, and starting materials. Several ligands were successful in 

the synthesis, including 2,2’-bipyridine (bpy), 4,4’-dimethyl-2,2’-dipyridyl (dmb), 1,10-

phenanthroline (phen), 4,7-diphenyl-1,10-phenanthroline (dpphen), and 3,4,7,8-tetramethyl-1,10-

phenanthroline (tmphen). Ligands that did not react to form symmetric dimeric complexes were 

2,2’-bipyrazine, bpz, and 2,2’-bipyrimidine, bpm.  

 Dpp, 2,3-bis(2-pyridyl)-pyrazine, effectively replaced diphen as the bridging ligand to 

produce (phen)2Ru(dpp)Ru(phen)2
4+. However, replacing the [Ru(CO)2Cl2]n with 

Ru(DMSO)4Cl2 did not prove successful. The newly developed synthesis was also applied to the 

synthesis of monomeric complexes with the form Ru(phen)L2  for comparison. The 

spectroscopic and electrochemical data collected for the dimeric complexes was similar to the 

data for the monomeric complexes indicating that the dimers are weakly coupled. 

 The photochemistry of the complexes was then studied to confirm that the dimers were 

weakly coupled. UV-vis tracking of the reaction of (phen)2Ru(diphen)Ru(phen)2
4+ implied a 

photosubstitution reaction took place in which a phen ligand was replaced by bromines. Several 

failed attempts were made to replace the bromines with a ligand that would allow the complex to 

be analyzed via ESI-MS. The photosubstitution products were never identified.  

 The photoredox reactions for the complexes were investigated as well. The effect of the 

oxidative quencher Fe3+ on the excited lifetimes of the complexes was analyzed. The kq values 

found for Ru(bpy)3
2+, Ru(phen)(bpy)2

2+, and (bpy)2Ru(diphen)Ru(bpy)2
4+ were all comparable. 

This supports the classification of the dimeric complexes used in this study as weakly coupled.  



 

 The back reaction that follows the quenching reaction and the yield of the oxidized 

ruthenium complexes were studied. The determined kback values for both quenchers, Fe3+ and 

Cu2+, were in the expected range and similar among both the monomers and dimers. This 

suggests that the dimeric complexes are weakly coupled. 
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1.1 Introduction 

 The conversion of solar energy into electricity and the reactions involved in biological 

respiration may seem to be completely unrelated, but to many inorganic chemists they share 

many common features. One such feature is the ruthenium(II) complex, Ru(bpy)3
2+. This 

complex has played a central role in these areas of research as well as many others for over four 

decades (Amouyal, 1995), (Creutz and Sutin, 1975) (Grätzel, 2003), (Millett and Durham, 2002). 

The fascination with this complex stems from a unique combination of properties. The complex 

is remarkably stable. For example, it shows no reaction after refluxing in concentrated 

hydrobromic acid for several hours. The corresponding Ru(I) and Ru(III) complexes retain the 

bipyridyl coordination sphere, which is rare among transition metal complexes. The complex is 

brightly colored and has a long-lived excited state capable of undergoing redox reactions with 

other reagents in solution. The complex is also amenable to a plethora of structural modifications 

(Krause and Krause, 1980), (Horváth and Stevenson, 1993), (De Cola, et al. 1990). 

 The long lived excited state is the feature that is the key to its utility in a variety of 

applications. Specifically, absorption of light results in the formation of the excited state which 

exists long enough to react with a potential oxidizing agent to produce Ru(bpy)3
3+ and the 

reduced oxidant. At this point, the energy from the light is stored as chemical energy in these 

redox products. The light can be from the sun, and the redox properties can be harnessed to form 

a battery. There are many technical issues to resolve before the system can actually be used on a 

commercial scale, but the basic reactions are well known. The early stages of photosynthesis are 

very analogous although ruthenium is not part of the chemistry. 

 Similar chemistry can be used to study the basic reactions involved in respiration. In this 

case, a short laser pulse is used to create the excited state in a few nanoseconds, and any reaction 
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slower than 50 nanoseconds can be readily monitored by measuring absorbance changes that 

follow the laser pulse. The technique is called laser flash photolysis. Fortunately, many of the 

proteins in the respiratory chain show absorption changes that are diagnostic for each reaction. 

These reactions are oxidation/reduction reactions, and ruthenium complexes have been 

developed that have allowed detailed analysis of the reactions of cytochrome c (Bechtold, et al., 

1986), cytochrome c oxidase (Zaslavsky and Gennis, 2000), (Durham and Millett 2012), and the 

bc1 complex (Havens, et al., 2011), which are three of the four major proteins in the respiratory 

chain. 

The development of ruthenium complexes for these investigation lead to a series of 

complexes containing two ruthenium centers. Among the restrictions that were followed during 

the development was a need to maintain a long excited lifetime. Two of the complexes that 

continue to be heavily used are (bpy)2Ru(diphen)Ru(bpy)2
4+, where bpy = 2,2’-bipyridine and 

diphen = 5,5’-bi-1,10-phenanthroline, and (bpy)2Ru(qpy)Ru(bpy)2
4+, where qpy = 

2,2’:5’,5”:2”,2’’’- quaterpyridine (Ahmed, 2010), (Barthram, et al, 1998), (Halpin, et al, 2009). 

These complexes are shown in Figure 1.1.1. 

                                                                                                                              

Figure 1.1.1. Structure for (bpy)2Ru(diphen)Ru(bpy)2
4+ (left) and (bpy)2Ru(qpy)Ru(bpy)2

4+ 

(right).  
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These complexes have excited state lifetimes that are equal to or greater than the 

corresponding mononuclear complexes. This is very surprising given the fact that the two 

ruthenium containing subunits are linked together through a single covalent bond. Such a linkage 

should have provided a pathway for rapid decay of the excited state via electron or energy 

transfer from one ruthenium center to the other. Subsequent studies suggest that the two 

ruthenium centers are very weakly coupled, and any type of deactivation pathway would be too 

slow to alter the lifetime (Njabon, 2013). 

The suggestions are convincing, but a more detailed study of the consequences is 

required. This is the subject of this thesis. Specifically, the following will describe a method of 

synthesizing homonuclear dimeric complexes which is efficient and does not suffer from the 

production of unwanted monomeric complexes that are spectroscopically similar to the dimeric 

complexes. This is particularly important because many of the potential mononuclear side 

products have properties that are nearly identical to the dimeric complexes and would make any 

detailed spectroscopic study impossible.   

 This thesis will also describe an investigation of the excited-state redox properties of the 

complexes. This was accomplished primarily through a series of quenching studies using Fe3+ 

and Cu2+. One specific question was of particular interest. Is it possible for the dimeric 

complexes to undergo a pseudo-two photon reaction resulting in both halves of the dimer in 

excited states? Furthermore, is it possible to oxidize or reduce both of the ruthenium centers 

photochemically? 

1.2 Ground and Excited State Chemistry of Ruthenium 

Ru(bpy)3
2+ has been intensely studied and is commonly used as the starting point when 

studying the excited states of other ruthenium polypyridine complexes. The complex is low spin 
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with a d6 electron configuration, and has D3 symmetry in the ground state. The bipyridines have 

both σ-donor orbitals on the nitrogen atoms and delocalized π-donor orbitals and π*-acceptor 

orbitals on the aromatic rings (Horváth and Stevenson, 1993). A simplified molecular orbital 

diagram for Ru(bpy)3
2+ is shown in Figure 1.2.1.  

 

 

 

 

 

 

 

 

 

Figure 1.2.1. Simplified molecular orbital diagram of Ru(bpy)3
2+.  

As can be seen from Figure 1.2.1, the HOMO in Ru(bpy)3
2+ is a set of three degenerate 

orbitals, labeled t2g, formed by the combination of three metal centered d-orbitals and π* orbitals 

on the bipyridine ligands. The LUMO, labeled t2g*, is formally the antibonding equivalent and is 

formed through the same combination. The molecular orbitals labeled eg* are very close in 

energy to the t2g* and are formed through a sigma interaction between the remaining d-orbitals 

and nitrogen lone pairs. 

Solutions of Ru(bpy)3
2+ exhibit a moderately strong absorbance band at 452 nm ( = 

14500 M-1 cm-1) and another strong band at 290 nm. An absorbance spectrum for Ru(bpy)3
2+ is 

shown in Figure 1.2.2. The band at 290 nm is commonly observed with bipyridine complexes, 

d 

t2g* 

eg* 

t2g 
Ligand  

σ-orbitals  

Ligand 

π*- orbitals 

eg 



5 

 

and all evidence indicates that it is a ligand-centered transition. The band at 452 nm is 

responsible for the strong orange-red color of the solutions. It is described as a metal to ligand 

charge transfer band (MLCT) and corresponds to a transition from the t2g orbital to the t2g* 

orbital. The band has some structure indicating that it is due to more than one electronic 

transition consistent with splitting of the electronic states associated with this electronic 

transition. The MLCT description derives from the fact that the HOMO is primarily metal in 

character and the LUMO is primarily ligand based. Electronic transitions to the eg* orbitals are 

expected to have energies slightly higher than the MLCT transitions. However, these transitions, 

sometimes referred to as d-d transitions, are formally forbidden and are expected to be very weak 

(Paris and Brandt, 1959), (Barigelletti, et al, 1987), (Treadway, et al., 1996), (Felix, et al., 1980). 

Figure 1.2.2. Absorbance spectrum for Ru(bpy)3
2+. 

 Figure 1.2.3 is a commonly used Jablonski diagram which provides a graphical 

representation of the states and associated transitions for Ru(bpy)3
2+.  

0

0.2

0.4

0.6

0.8

1

1.2

185 285 385 485 585

A
b

so
rb

a
n

ce
 (

A
U

)

Wavelength (nm)



6 

 

Figure 1.2.3. Jablonski energy diagram for Ru(bpy)3
2+. 

Since Ru(bpy)3
2+ is low spin and diamagnetic it has no unpaired electrons in the ground 

state and is therefore labeled as a singlet state S0. Upon absorption of a photon, the complex is 

excited to any of the available the singlet excited states, S1, S2 …indicated by the solid lines with 

arrows up. For the purpose of this discussion, S1 can be viewed as the collection of states 

associated with the HOMO to LUMO transitions. These states relax rapidly, and direct 

spectroscopic investigations of these states are very sparse. Direct excitation to the triplet state, 

T1, is spin forbidden; however, experimentally it has been shown that the intersystem crossing to 

the triplet state (dashed line between S1 and T1) occurs with nearly 100% efficiency. Ru(bpy)3
2+ 

exhibits an emission centered at approximately 600 nm in aqueous solution at room temperature.  

This emission corresponds to the T1 to S0 transition, and the rate of decay corresponds to an 

excited state lifetime of the T1 state of approximately 600 nsec at room temperature in aqueous 

solution.  
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Investigations of the rate of decay of the emission as a function of temperature reveal the 

following relation: 

𝑘𝑜𝑏𝑠 = 𝑘𝑛𝑟 + 𝑘𝑟 + 𝐴𝑒(∆𝐸/𝑅𝑇) 

             

The value for the radiative and non-radiative rate constants, knr + kr = 6.0 x 105 sec-1.  In 

order to fit the temperature dependence an additional state was required. This state appears to be 

in thermal equilibrium with T1 and very rapidly decays non-radiatively with  A = 4.0 x 1014 sec-1, 

and ΔE = 50 kJ/mol (Allsopp et al., 1978). This state has been interpreted as a d-d state based on 

the temperature dependence of the photosubstitution reactions of Ru(bpy)3
2+ and is responsible 

for the relatively low quantum yield for emission (Van Houten and Watts, 1975). 

1.3 Photoredox Reactions of Ru(bpy)3
2+ 

The relatively long excited state lifetime of the T1 state allows ample opportunity for the 

complex to under reactions with other reagents in solution. The vast majority of the studies to 

date have focused on the photoredox reactions that Ru(bpy)3
2+can undergo. This type of reaction 

can be explained by taking into account the fact that ruthenium is a d6 metal and has a full t2g 

orbital. The T1 state is formed by promoting an electron from the t2g orbital to a t2g* orbital. This 

results in a hole in the t2g orbital (the metal) and an electron in the t2g* orbital (the ligand) 

(Roundhill, 1994) and radically changes the redox properties of the complex. This is illustrated 

in Figure 1.2.1, which is located in the previous section. The standard reduction potential for 

Ru(bpy)3
2+/3+ is +1.29 V. The potential for Ru(bpy)3

2+/3+* is -0.81 V (Creutz and Sutin, 1976). 

 In the ground state Ru(bpy)3
2+ shows no tendency toward oxidation or reduction. Once 

the complex is excited, however, it is possible for Ru(bpy)3
2+* to be reduced by accepting an 

electron into the t2g orbital. It is also possible for the Ru(bpy)3
2+* complex to be oxidized by 
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donating the electron residing in the π* orbital. This is described in Equations 1 and 2, where Q 

is the species interacting with the Ru(bpy)3
2+* complex, commonly called a quencher.  

 

Ru(bpy)3
2+* + Q  Ru(bpy)3

3+ + Q-   (1) 

 

Ru(bpy)3
2+* + Q    Ru(bpy)3

+ + Q+   (2) 

 The excited state complex is oxidized in Equation 1 to Ru(bpy)3
3+, i.e., oxidatively 

quenched. Equation 2 shows the excited state complex being reduced to Ru(bpy)3
+, i.e., 

reductively quenched. 

1.4 Charge Transfer States Based Applications 

Many applications based on the charge transfer states of inorganic complexes have been 

developed over the years. One such application is solar energy conversion (O’Donnell, et al., 

2013), (Grätzel, 2003). Michael Grätzel is one of the leading researchers in dye-sensitized solar 

cells. The major components of a dye-sensitized solar cell are the mesoporous oxide wide band 

semiconductor and the charge transfer sensitizer. TiO2 is a commonly used semiconductor in the 

cells. The TiO2 is then covered with a layer of the dye, which contains the charge transfer 

sensitizer. The sensitizer absorbs sunlight, undergoes photoexcitation, and the charge is then 

transferred into the conduction band of the TiO2. The charge is carried through the conduction 

band to the charge collector. The dye is regenerated through electron donation from the analyte 

(Grätzel, 2003). 

The determination of the best charge transfer sensitizer to use has been a major area of 

study. Organic molecules often do not have broad absorbance bands, so inorganic complexes 

became promising candidates for charge transfer sensitizers. In order to be an optimal charge 
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transfer sensitizer, the complex must meet several criteria. These criteria include a broad range of 

absorbance, the ability to bond to carboxylate or phosphate groups in order to be anchored to the 

semiconductor surface, transferring the electron to the semiconductor with a quantum yield of 

unity, have a redox potential large enough to be regenerated by the solvent, and have an excited 

state energy level that matches the lower level of the conduction band (Grätzel, 2003).  

While many different inorganic complexes have been studied for use as a charge transfer 

sensitizer (Wenger, 2009), a ruthenium based complex has become the standard. The complex 

cis-RuL2(NCS)2, where L= 2,2’-bipyridyl-4,4’-dicarboxylic acid, meets the above outlined 

criteria for an optimized charge transfer sensitizer and is shown in Figure 1.4.1 (Nazeeruddin et 

al., 1993), (Fan, et al., 2009), (Schwarz, et al., 2000).  

 

Figure 1.4.1. Structure of RuL2(NCS)2, where L= 2,2’-bipyridyl-4,4’-dicarboxylic acid. 

The maximum absorbance of the complex is at 380 nm and 518 nm. This absorption is 

attributed to MLCT during which an electron is photoexcited from the metal to a π* orbital of the 

carboxylated bipyridyl ligand. The carboxylate acts as the anchor to the semiconductor allowing 

the electron to then be transferred into the conduction band of the semiconductor (Grätzel, 2003). 

After years of intense research in the field, the ruthenium complex found by Nazeeruddin et al. is 

still considered the standard for charge transfer sensitizers. 
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Another application that takes advantage of charge transfer in inorganic complexes is 

their use as photoredox initiators for the study of electron transfer in proteins. Ruthenium(II) 

polypyridine complexes are popular choices for photoredox initiators. The unique properties 

mentioned previously apply in this application as well (Durham and Millett, 2012). In addition, 

the redox properties of the ruthenium complexes can be changed by simply changing the ligands. 

Cytochrome c oxidase (Zaslavsky et al., 1998), cytochrome bc1 (Sadoski et al., 2000), 

cytochrome c (Meade et al., 1989), and cytochrome b5 (Scott, et al., 1993) are a few of the 

proteins chosen for electron transfer studies. In a specific study of electron transfer in 

cytochrome c, a derivative of Ru(bpy)3
2+ is covalently bound to the protein of study. The 

bonding occurs between a cysteine attached to the cytochrome c and α-bromodimethylbipyridine 

ligand on the ruthenium complex. This is illustrated in Figure 1.4.2 (Durham and Millett, 2012).  

Figure 1.4.2. A derivative of Ru(bpy)3
2+ covalently bonded to a cysteine on the protein of study. 

 Protein HS 

 
Protein 
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A short laser pulse excites the ruthenium complex, and the Ru2+* MLCT excited state is 

formed. This excited state can then transfer an electron to become oxidized, which in turn 

reduces the heme iron. The ruthenium photoredox initiator is regenerated by a solution phase 

donor that reduces Ru3+ back to Ru2+. This process is shown in scheme 1.4.1. Later studies using 

dimeric ruthenium(II) polypyridine complexes with a 4+ charge showed improved yields while 

using lower concentrations of the complex (Durham and Millett, 2012). 

Scheme 1.4.1. Pathways of photochemical reduction reaction of heme in cytochrome c.  

 A third application that relies on the charge transfer state of inorganic complexes is their 

use as catalysts in several different types of organic transformation reactions. Recently visible 

light photoredox catalysis has become a major area of study in organic chemistry (Prier et al., 

2013). Ruthenium complexes are well suited for use as photoredox catalysts. Moreover, they 

absorb energy in the visible light region, so electron transfer can be initiated with visible light. 

Upon excitation, the inorganic complexes are able to transfer an electron to the organic substrate 

in a single-electron process (Prier et al., 2013). This differs from the traditional oxidants or 

reductants, which provide two electrons by way of an oxygen atom transfer process.  
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 Monomeric ruthenium(II) polypyridine complexes are often used as photoredox catalysts. 

The redox potentials of the complexes can be tuned by attaching various ligands to the ruthenium 

center. Numerous types of reactions can be carried out using the ruthenium complexes as 

photoredox catalysts. One such example is the intermolecular [3+2] cycloaddition of 

cyclopropylamines with olefins (Maity et al., 2012).  

 Ru(bpz)3
2+, seen in Figure 1.4.3, was chosen as the photocatalyst in this organic 

transformation reaction. A feasible catalytic cycle was proposed by the group, which starts with 

the excitation of the ruthenium complex with visible light to become Ru2+* through MLCT. The 

photoexcited state of ruthenium then oxidizes the cyclopropylamine to form a nitrogen radical 

cation and Ru1+. The ring associated with the nitrogen radical cation opens and creates a β-

carbon radical iminium ion. The ion then adds to the olefin to establish a stable radical and create 

a cyclopentane ring associated with the nitrogen radical cation. Ru1+ reduces the compound, and 

the cycle is complete (Maity et al., 2012). 

 

Figure 1.4.3. Structure of Ru(bpz)3
2+.  

1.5 Photosubstitution Reactions of Ru(bpy)3
2+ 

 In addition to the photoredox reactions described above Ru(bpy)3
2+ undergoes a 

photosubstitution reaction in which bipyridine is replaced by water. In acidic aqueous solution 

the quantum yield for the process is less than 0.001. Although the quantum yield is small, this 
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reaction will degrade the complex in time when used in some of the applications described above 

(Van Houten and Watts, 1978). 

In solvents with very low dielectric constants, such as dichloromethane, loss of bipyridine 

is followed by incorporation of the anions, such as chloride or bromide, that are present in the 

solution as counterions. In these solvents, the complex is present as an ion-pair formed with the 

counterions. Energetics of the reaction favors loss of the uncharged bipyridine over charge 

separation, and the quantum yield can be 0.02 or higher (Durham, et al., 1980). 

Photosubstitution in inorganic complexes generally results from the population of eg* 

orbitals, which are formally antibonding with respect to the ligands. Direct population of this 

orbital from the ground state is Laporte forbidden and masked by the charge transfer transition.  

In addition, it was noted above that the quantum yield for population of the triplet state is 1 

following absorption into any band. Thus population of states corresponding to population of the 

eg* orbital must occur through the T1 excited state. Currently, population of the eg* orbital is 

thought to occur by way of a thermal equilibrium with the T1 state as indicated in the Jablonski 

diagram shown in Figure 1.2.3 (Durham, et al., 1982). Some investigators have pointed out that 

the rate of decay of the thermally populated state is too fast to be consistent with an equilibrium 

process. 

1.6 Electronic Coupling in Dimeric Complexes 

The presence of more than one metal center in the same complex introduces at least one 

important new feature, namely the electronic coupling between metal centers. The electronic 

coupling is a measure of how much the presence of one metal center impacts the other metal 

center. For example, in a dimer a favorable interaction could result in a lowering of the redox 

potentials of the two metal centers or a lowering of the absorption energies. The lowering in 
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energy is a result of the formation of a molecular orbital that combines a small amount of the 

metal center orbitals with or without bridging ligand orbitals. There is likewise formation of an 

unfavorable combination, but this is normally not populated. These interactions can be very large 

or very, very small (D’Alessandro, et al, 2001), (Nelson, 2000), (D’alessandro and Keene, 2006), 

(Kreitner, et al, 2014), (Wang, et al, 1998), (De Cola, et al., 1990). 

In order to classify the degree of electronic coupling between the metal centers, three 

classes have been designated. A complex is designated as Class I when the electronic coupling is 

very weak and the two metal centers behave completely independently.  Class II complexes 

belong to an intermediate class with moderate to weak coupling. These complexes show an 

intervalence charge transfer band (IVCT) in the visible or IR region of the spectrum. This band 

corresponds to a transfer of an electron from one metal center to the other. The energy and band 

shape provides direct information about the magnitude of the electronic coupling. In Class III 

complexes, the metal centers are strongly coupled, and the metal centers cannot be treated 

separately (Emeléus and Sharpe, 1968). Oxidation in these cases, for example, can only be 

viewed as removing an electron from the pair of metals and not one or the other. Iron-sulfur 

proteins are Class III and contain redox centers composed of four iron atoms and four sulfur 

atoms with the valence electrons completely delocalized over the entire set of eight atoms. Class 

III complexes can also show an IVCT band. 

 The Creutz- Taube ion, (NH3)5Ru(pyrazine)Ru(NH3)5
5+, first reported in the 1970s 

(Creutz and Taube, 1973) is a Class III complex. The complex exhibits a narrow, intense IVCT 

band in the near IR region (Petrov et al., 1994) and has been extensively studied because of the 

insights it can provide about the interaction of the metal centers. 
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Figure 1.6.1. The structure of the Creutz-Taube ion. 

 These classes can also be characterized numerically based on a parameter, α, which is 

called the mixing coefficient. It is related to the magnitude of the interaction of the orbitals 

containing the valence electrons. Class I complexes are characterized by α ~ 0, in Class II 

complexes 0 < α < 0.707 and in Class III α  > 0.707 (Miessler and Tarr, 2004). 

1.7 Prior Investigations of (bpy)2Ru(diphen)Ru(bpy)2
4+ 

Prior to this work the synthesis of  (bpy)2Ru(diphen)Ru(bpy)2
4+ 

(dmb)2Ru(diphen)Ru(dmb)2
4+, where dmb = 4,4’-dimethyl-2,2’-bipyridine, and 

(dmb)2Ru(diphen)Ru(bpy)2
4+ was investigated (Njabon, 2013). The structures of 

(dmb)2Ru(diphen)Ru(dmb)2
4+ and (dmb)2Ru(diphen)Ru(bpy)2

4+ are seen in Figures 1.7.1 and    

1.7.2, respectively. (bpy)2Ru(diphen)Ru(bpy)2
4+ can be seen in Figure 1.1.1.  

Figure 1.7.1. Structure for (dmb)2Ru(diphen)Ru(dmb)2
4+. 
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Figure 1.7.2. Structure for (dmb)2Ru(diphen)Ru(bpy)2
4+.  

The electrochemistry of (bpy)2Ru(diphen)Ru(bpy)2
4+ was thoroughly investigated using 

cyclic voltammetry. For example, the E1/2 for the oxidation of (bpy)2Ru(diphen)Ru(bpy)2
4+ is 

1.30 V versus SCE in acetonitrile containing 0.1 M tetrabutylammonium hexafluorophosphate. 

The E1/2 for the oxidation of (dmb)2Ru(diphen)Ru(dmb)2
4+ is 1.190 V versus SCE. In both cases, 

the complexes are well behaved and show reversible electrochemistry with a peak to peak 

separation of approximately 60 mV. The difference in potentials of these two complexes is 

expected based on previous studies and is attributed to the electron donating properties of the 

methyl substituents.  

The cyclic voltammogram for the mixed dimer (dmb)2Ru(diphen)Ru(bpy)2
4+ is shown in 

Figure 1.7.3 (Njabon, 2013). It clearly indicates that the metal centers are present in a 1:1 ratio, 

and the metal centers have the same oxidation potentials as the corresponding homonuclear 

dimers after correction for the reference electrode potential. The result supports the view that the 

complexes are essentially independent of each other with little or no electronic coupling, i.e., 

Class I. 
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Figure 1.7.3. Cyclic voltammogram for (dmb)2Ru(diphen)Ru(bpy)2
4+ (Njabon, 2013). 

 Spectroscopic studies were also performed using the three complexes. Emission 

measurements were taken at either 77 K in a frozen glass or at room temperature. The solvent 

used was a 4:1 (v:v) ratio of EtOH/MeOH. The emission spectra collected at 77 K for the 

dimeric complexes are all similar in shape to the analogous monomeric complexes. Figure 1.7.4 

shows the emission spectra for the complexes at 77 K (Njabon, 2013). 
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Figure 1.7.4. Emission spectra of (bpy)2Ru(diphen)Ru(bpy)2
4+, (dmb)2Ru(diphen)Ru(dmb)2

4+, 

and (dmb)2Ru(diphen)Ru(bpy)2
4+ at 77 K (Njabon, 2013). 

 

 When the spectra of (bpy)2Ru(diphen)Ru(bpy)2
4+ and (dmb)2Ru(diphen)Ru(dmb)2

4+ were 

added together, the resulting spectra was virtually superimposable with the experimentally 

obtained (dmb)2Ru(diphen)Ru(bpy)2
4+ spectrum. This leads to the conclusion that the ruthenium 

metal centers emit independently at the experimental temperature (Njabon, 2013). This finding 

supports the classification of (bpy)2Ru(diphen)Ru(bpy)2
4+ as a class I complex. 

 Emission spectra were also collected at room temperature. It was observed that 

(bpy)2Ru(diphen)Ru(bpy)2
4+ emitted at 606 nm and (dmb)2Ru(diphen)Ru(dmb)2

4+ emitted at 629 

nm. The asymmetric dimer (dmb)2Ru(diphen)Ru(bpy)2
4+ emitted between these values at 618 nm 

which is consistent with emission from both ruthenium centers acting independently. 

 The temperature dependence of the excited state lifetimes provides more detailed 

information about the excited state energy manifold. A comparison of data obtained with 

0

500

1000

1500

2000

2500

3000

3500

550 600 650 700 750 800

Em
is

si
o

n
 I

n
te

n
si

ty
 (

co
u

n
t/

s)

Wavelength (nm)

bpy dimer

dmbpy dimer

mixed dimer



19 

 

(bpy)2Ru(diphen)Ru(bpy)2
4+ and data available in the literature for Ru(bpy)2(phen)2+ is shown in 

Figure 1.7.5. The best fit parameters are knr + kr = 6.0 x 105 sec-1, A = 4.0 x 1014 sec-1, and ΔE = 

50 kJ/mol (Allsopp et al., 1978). 

 

Figure 1.7.5. Plot showing the temperature dependence of the excited state decay for 

(bpy)2Ru(diphen)Ru(bpy)2
4+ compared to theoretical Ru(bpy)3

2+ values from the literature 

(Njabon, 2013), (Allsopp et al. 1978).  

 

 As can be seen from Figure 1.7.5, the temperature dependence of the lifetime values for 

the dimeric complex corresponds to the values for the monomeric complex. This, once again, 

indicates that the ruthenium centers are acting as independent units and strongly supports the 

classification of (bpy)2Ru(diphen)Ru(bpy)2
4+ as a class I complex. 

 After investigation of the spectroscopic and excited state properties of 

(bpy)2Ru(diphen)Ru(bpy)2
4+, it was concluded that the complex was class I and that there was no 

electronic coupling between the ruthenium metal centers. This was contrary to what was first 

believed based on what was known about the structure of (bpy)2Ru(diphen)Ru(bpy)2
4+, 

13.4

13.6

13.8

14

14.2

14.4

14.6

14.8

0.0031 0.0032 0.0033 0.0034 0.0035 0.0036 0.0037

ln
 K

o
b

s

Temperature (1/T) K

Bpy dimer

 Bpy monomer
(theoretical values)



20 

 

specifically the fact that the two phenanthroline subunits of diphen are coupled by a single 

covalent bond which should provide for a strong complex – complex interaction. These findings 

suggested that the diphen bridging ligand was having a much larger impact on the coupling than 

expected.  

 Previous studies have indicated that the angular orientation of the bridging ligand can 

affect the electronic coupling (Benniston, et al., 2004), (Benniston, et al., 2006). Calculations 

reveal that free rotation around the 5.5’ bond is severely restricted as shown in Figure 1.7.6. 

Figure 1.7.6. Plot of the degree of rotation about the 5,5’ covalent bond in the free diphen ligand 

versus the relative energy. 

 

 Based on these calculations, it is believed that the orthogonal orientation of the diphen 

bridging ligand is a major reason the ruthenium(II) dimeric complexes are weakly coupled. The 

two phenanthroline subunits cannot freely rotate around the 5,5’ covalent bond, which connects 

the units. The calculations performed on the free diphen ligand show that the two phenanthroline 

subunits have large barriers at 0° and 90° and have a torsion angle at about 40°. These findings 
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are supported by similar results for biphenyl in solution, which was found to have a dihedral 

angle of 37° ± 2° (Akiyama, et al., 1986). 

1.8 Synthesis of Ruthenium(II) Dimeric Complexes 

 The literature describing the synthesis of ruthenium(II) polypyridine complexes is 

enormous, and thus many avenues are potentially available for the preparation of dimeric 

complexes. In fact, there are many reports in the literature describing synthetic routes to these 

complexes (Toyota, et al, 2005), (Treadway and Meyer, 1999), (Griffiths, et al., 2000). However, 

the current research problem requires a careful choice in order to avoid contamination with 

monomeric complexes. The target complexes are very weakly coupled and therefore are nearly 

identical in many respects to corresponding monomers. With this in mind, synthetic procedures 

which minimize the formation of closely related monomeric complexes were sought. 

 Synthesis of dimeric complexes can in general be performed in two different ways. In 

one method, appropriate monomeric complexes are synthesized, and these are then reacted with 

the bridging moiety to form the target dimer. In the other method, an appropriate precursor is 

reacted with the bridging moiety to form a dimer. This dimer is then reacted further with 

appropriate ligands to produce the target complex. 

 Examples of the first approach are common. For example, many start with Ru(bpy)2Cl2, 

which is readily prepared in large quantities. Ru(bpy)2Cl2 has been used for several decades and 

its chemistry is well understood. The complex can be reacted with a bridging ligand, L-L, and 

dimeric complexes formed through the following series of reactions. Previous work has shown, 

however, that this procedure is often complicated by the presence of small amounts of 

Ru(bpy)3
2+ in the Ru(bpy)2Cl2, which will appear in the final product. 
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In the last decade, [Ru(CO)2Cl2]n has become a popular starting material for ruthenium 

complexes due to the ease of synthesis and its application in the synthesis of mixed ligand 

complexes. [Ru(CO)2Cl2]n  can be prepared by heating RuCl3·3H2O in a solution of HCl and 

HCOOH. The product is recovered by simple evaporation to dryness (Anderson, 2007), (Aguirre 

et al., 2001). The product is poorly characterized because it is reactive and not soluble in most 

common solvents. The IR spectrum has been investigated and does provide some insight into the 

structure. An IR spectrum for the polymeric material is shown in Figure 1.8.1. Peaks are seen 

~2027 cm-1, ~2075 cm-1, ~2088 cm-1, and ~2139 cm-1. 

 

Figure 1.8.1. IR (KBr pellet) spectrum for [Ru(CO)2Cl2]n. 

The proposed structure is shown in Figure 1.8.2. The multiple carbonyl stretching peaks 

from 2027-2088 cm-1 indicate terminal cis-carbonyl groups (Spiccia et al, 2004), (Cleare and 

Griffith, 1969). The chlorides bridge the structure and exist in both the trans and cis geometry 

(Spiccia et al., 2004). The peak at ~2139 cm-1 is believed to be from an impurity, which is 

[Ru(CO)3Cl2]2 (Spiccia et al, 2004), (Anderson et al., 1995). This impurity does not seem to 

affect the products of the reactions in which [Ru(CO)2Cl2]n is used as a precursor. 
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Figure 1.8.2. Proposed structure for polymeric [Ru(CO)2Cl2]n.  

 [Ru(CO)2Cl2]n  reacts readily with a chelating ligand under very mild conditions to yield 

complexes of the general formula Ru(L)(CO)2Cl2 (Spiccia, et al., 2004). Further reaction with 

chelating ligands requires some means of removing CO. Reaction with Me3NO is perhaps the 

most common approach and results in the loss of CO in the form of CO2 (Treadway and Meyer, 

1999), (Spiccia, et al., 2004). Careful control of conditions and stoichiometry allow for the 

synthesis of complexes with the general formula Ru(L)(L’)COCl+ or Ru(L)(L’)2
+2. Use of 

[Ru(CO)2Cl2]n  offers a variety of avenues to the target dimers that avoid the contamination 

problem described above.  

There are very few reports in the literature describing the specific compounds of interest 

in the current work. The bridging ligand is typically prepared through a nickel(0) coupling 

reaction from chlorophenanthroline. This Ni(0) catalyzed coupling reaction has been used in 

organic syntheses for many years for coupling of aryl halides to produce biaryls (Iyoda, et al., 

1990). This method occurs under mild conditions and provides good yields in many cases.  

In 1993, Constable, et al. detailed a novel synthesis for coupling a ruthenium(II) 

polypyridine complex, which utilized a Ni(0) catalyzed coupling reaction. The general reaction is 

shown in scheme 1.8.1. 
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Scheme 1.8.1. A general Ni(0) catalyzed coupling reaction for a ruthenium dimeric complex. 

In 2000, Fanni, et al., claiming to be the first, used a very similar Ni(0) catalyzed 

coupling reaction to couple a ruthenium(II) polypyridine complex. Since these two studies, the 

method has been used by numerous other groups. 
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2.1 Experimental 

2.2 Materials 

 Ammonium hydroxide (NH4OH) was purchased from Macron Chemicals. 

Tetrabutylammonium bromide and 2-pyrazinecarboxylic acid was purchased from TCI. 

Copper(II) acetate monohydrate, 2-methoxyethanol, triphenylphosphine (PPh3), N,N-

dimethylformamide (DMF), tetraethylammonium iodide, 4,7-diphenyl-1,10-phenanthroline 

98+% (dpphen), 3,4,7,8-tetramethyl-1,10-phenanthroline 98+% (tmphen), 2,2’-bipyridyl 99% 

(bpy), and ammonium hexafluorophosphate (NH4PF6) were all purchased from Alfa Aesar. 

Ethanol was purchased from Koptec. Diethyl ether, hydrochloric acid (HCl), acetonitrile, and 

methanol were purchased from EMD. Ruthenium(III) chloride hydrate (RuCl3·XH2O) was 

purchased from Acros Organics. Formic acid (HCOOH) was purchased from Mallinckrodt 

Chemicals, and chloroform was purchased from BDH. The 5-chloro-1,10-phenanthroline (Cl-

phen) and 1,10-phenanthroline (phen) were purchased from GFS Chemicals. Trimethylamine N-

oxide (Me3NO), 2,3-Bis(2-pyridyl)-pyrazine (dpp), and 4,4’-dimethyl-2,2’-dipyridyl (dmb) were 

purchased from Aldrich. Nickelous chloride hexahydrate (NiCl2·6H2O) and potassium cyanide 

(KCN) were purchased from J.T. Baker. The zinc dust and ethylene glycol were purchased from 

Fisher Scientific. Acetonitrile-d3 (CD3CN) and chloroform-d (CDCl3) were bought from 

Cambridge Isotope Laboratories, Inc. 

 [Ru(phen)3](PF6)2 was synthesized using the microwave procedure for [Ru(bpy)3](PF6)2 

as detailed by Anderson in 2007. [Ru(bpy)3](PF6)2 and Ru(DMSO)4Cl2 samples were 

synthesized by previous group members. Purity of [Ru(bpy)3](PF6)2 was confirmed with ESI-

MS, and the purity of Ru(DMSO)4Cl2 was confirmed with 1H NMR spectroscopy. 2,2’-

bipyrazine was synthesized as described by Anderson, which was based on procedures used by 
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Lafferty and Rillema (Anderson, 2007), (Lafferty and Case, 1967),  (Rillema, et al., 1983). Purity 

was confirmed with NMR spectroscopy. 

Elemental analysis was performed by Atlantic Microlab, Inc. in Norcross, GA. 

2.3 Instrumentation and General Procedures 

 All electrospray ionization mass spectrometry (ESI-MS) experiments were performed 

using a Bruker Daltronics ultrOTOF -Q™ with a quadrupole mass filter. A flow rate of 3 

mL/min was used. Acetonitrile was used as the solvent. 

 For 1H NMR experiments, a Bruker 300 Ultra Shield™ NMR was used. CD3CN or 

CDCl3 were used as solvents. The Bruker TopSpin™ program was used to process the NMR 

spectra. 

 UV-visible spectrometry experiments were carried out using a Hewlett Packard 8453 

spectrophotometer. A quartz cuvette with a 1 cm path length was used, and the data was 

transferred to Excel for analysis. 

 A CH Instruments Electrochemical workstation was used for the cyclic voltammetry 

experiments. The counter electrode used was a platinum wire, and reference electrode was a 

saturated calomel electrode (SCE). The working electrode was a platinum disk electrode with a 1 

mm diameter, and the experiments were carried out in 0.1M tetrabutylammonium-

hexafluorophospate in acetonitrile. Data was analyzed using Excel. 

 Infrared (IR) spectroscopy was performed using a Perkin Elmer Spectrum 100 FT-IR 

Spectrometer equipped with a triglycine sulfate (TGS) detector. Samples were prepared in 

potassium bromide and pressed into pellets. Spectra were recorded over the range of 450-4000 

cm-1 with a 4 cm-1 resolution. Typically, 16 spectral scans were averaged to produce the final 
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spectrum. The spectra were processed using the Perkin Elmer Spectrum Express program and 

then transferred to Excel for analysis.  

 Microwave syntheses were carried out using a CEM Discover microwave synthesis 

system equipped with an Explorer auto sampler. A 10 mL microwave reaction vessel was used. 

The temperature was set at above 200 °C, and the pressure setting was 17 bar. The power was set 

at 200 watts, and the samples were irradiated for the times indicated. The samples were allowed 

to cool to room temperature before removing from the machine.  

2.4 Photochemical Procedures 

 Photolysis experiments were done using one of two different lamps. One lamp was a 300 

watt, 120 volt bulb “sunlamp” with no filtering.  The second lamp was 1000 watt Xe bulb. The 

reaction solutions were irradiated with the select lamp for various times while being stirred. The 

solution was kept at room temperature. The reactions were monitored with UV-vis analysis.  

 Quenching experiments were carried out using a flash photolysis system of traditional 

design. The excitation laser was a PhaseR flash lamp pumped dye laser with LD490 dye which 

provided a 500 nsec pulse of 480 nm light. The probe beam, at 90o relative to the laser excitation, 

was provided by a 100 watt tungsten lamp. A shutter protected the sample from irradiation by the 

probe prior to laser excitation. The sample was held in a 1 cm cuvette. After passing through the 

sample, the probe beam was passed through a monochromator and finally to a PMT detector. 

Transient absorbance changes were recorded on a LeCroy digital oscilloscope after passing 

through a summing amplifier which provided a variable offset potential. The transient 

absorbance changes were large and signal averaging was not required. Files collected with the 

digital oscilloscope were transferred to a PC for kinetic analysis.  
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All of the reported quenching studies were performed with solutions containing 0.5 M 

H2SO4, either 10 or 50 mM quencher and enough ruthenium complex to provide an absorbance 

of 0.28. Quenchers were Cu(SO4) or Fe2(SO4)3.  Experiments were performed with air saturated 

solutions and argon purged solutions. Typically the same solution was used, first air saturated 

then purged. 

The rate of back reaction following the quenching event was assumed to be second order 

and analyzed using the relation 

1

𝐴𝑡
−

1

𝐴0
= 𝑘𝑡 

where A0 is the concentration of oxidized ruthenium complex at time = 0, At is the concentration 

of oxidized ruthenium complex at time = t, and k is the second-order rate constant. In practice, 

the equation was rewritten as follows: 

𝐴𝑏𝑠𝑡 = 𝐴𝑏𝑠0 − (
1

1

∆𝐴𝑏𝑠0
−

𝑘𝑡

𝜖𝑏

) 

where Abst is the absorbance at time t, Abs0 is the absorbance prior to excitation, Abs0 is the 

initial change in absorbance following excitation,  is the extinction coefficient for the ruthenium 

complex, b is the path length, and k is the second-order rate constant. This form of the equation 

takes into account the fact that only a fraction of the ruthenium complex is oxidized by the laser 

pulse, and it converts the concentration units to absorbance. 

The second order rate constant was obtained by fitting the data to calculated absorbance 

values. The procedure requires a three parameter fit, Abs0, Abs0 and the second-order rate 

constant. The data was fit using either an Excel manual trial and error search to minimize the 

sum of the squares of the difference between the calculated values and the data or an automated 
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routine provided by GNOME Gnumeric. Both methods gave the same results when applied to 

the same data sets. 

Quenching yields were calculated by comparison to the yield of the reaction of 

Ru(bpy)3
2+ with Fe3+ which is known to have a yield of 100%. In practice, the maximum change 

in absorbance at 450 nm for a given complex was compared to the change in absorbance for 

Ru(bpy)3
2+ for each concentration of quencher under the same solution conditions. The 

absorbance changes were obtained from the same data sets used for the determination of the rates 

of the back reaction described above. This procedure was used in the early experiments reported 

by Sutin, et al. (Hoselton, et al., 1978), (Lin, et al., 1976).  

 Lifetime data was collected using a system built around a QuantaRay DCR Nd:YAG. 

Solutions, held in 1 cm semimicro glass cuvettes, were made with 0.5 M H2SO4, 0-5 mM 

quencher, and enough ruthenium complex to bring the absorbance to ~0.08. The solutions were 

purged for 15 minutes with ultrahigh purity argon. After 15 minutes of purging the emission 

decay rates were constant and further purging had no effect up to 24 hrs. The emitted light was 

collected with a 25 x 150 mm double convex lens and focused on a monochromator set to 600 

nm. The detector was a R928 PMT followed in close proximity with a Stanford Research 

Systems SR445 DC-300 MHz amplifier. Transient emissions signals were recorded on a LeCroy 

6054 digital oscilloscope. Approximately 100 emission events at a rate of 10 Hz were recorded, 

averaged and save as the final data file. Signal levels were held, by turning the laser power to 

near the minimum required for lasing, at relatively low levels to avoid ringing in the coaxial 

cables. The emission data were analyzed as single exponential decays using a successive 

integration fitting routine followed by a Leven-Marquardt based linear fitting algorithm (Press et 

al., 1992). The relative standard deviation (RSD) for the slope of the line for each data set was 
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found by using the Excel “linest” function to first get the standard deviation. The value for the 

standard deviation was then divided by the slope to get the RSD. 

2.5 Syntheses 

5,5’-Bi-1,10-phenanthroline (Hu et al., 2001). NiCl2·6H2O 

(0.152 g, 1.17 mmol), PPh3 (1.22 g, 4.65 mmol), and 10 mL 

dry DMF were placed in a 100 mL RBF. The solution was 

stirred and nitrogen purged for 30 min at 50°C (blue). 

Unpurified zinc dust (0.075 g, 1.15 mmol) was added to the 

solution. The solution was stirred under nitrogen atmosphere 

until it was dark red/brown. Cl-phen (0.248 g, 1.15 mmol) that was nitrogen purged in 5 mL of 

DMF was added to the RBF. The solution was then stirred under nitrogen overnight at 50 °C 

(dark green). The mixture was evaporated to dryness yielding a dark green solid. The dark green 

solid was then boiled in 40 mL of water for 2 hr. After boiling, the solution was cooled and 

filtered. Saturated NH4PF6 solution was added to the solution. A grey gummy precipitate was 

collected on a medium porosity fritted funnel, and then heated to reflux for 4 hr in a solution of 

KCN (0.750 g, 11.5 mmol) in 20 mL of a methanol and H2O (19:1. v:v). The solution was 

allowed to cool and filtered. The white solid was washed with H2O, ethanol, and then ether. The 

solid was dried in a desiccator. Yield: 49%. 1H NMR (300 MHz, CD3CN): δ 9.21 (q, 1H), 9.14 

(q, 1H), 8.45 (q, 1H), 8.06 (s, 1H), 7.84 (q, 1H), 7.80 (q, 1H), 7.51 (q, 1H).  

[Ru(CO)2Cl2]n (Anderson, 2007), (Aguirre et al., 2001). RuCl3·XH2O (1.01 g, 3.86mmol) was 

placed in a 100 mL RBF, and 50 mL of a 1:1 (v:v) solution of concentrated HCl and HCOOH 

were added (brown). While stirring, the solution was heated to reflux for 24 hr under nitrogen. 

The yellow solution was then filtered. The filtrate was evaporated to dryness using a hotplate. 
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The product, a yellow solid, was used in subsequent procedures with no further purification. 

Yield: 81%. 

(CO)2Cl2Ru(diphen)Ru(CO)2Cl2 

[Ru(CO)2Cl2]n (1.47 g, 6.45 mmol) was 

dissolved in 60 mL of hot 2-

methoxyethanol. Diphen (0.462 g, 1.29 

mmol) was dissolved in 35 mL of hot 2-

methoxyethanol in a separate beaker. Both solutions were filtered before adding the diphen 

solution to the [Ru(CO)2Cl2]n solution (orange to deep red, almost instantly). The solution was 

boiled for 7 min and cooled. The solution was filtered using a medium porosity fritted funnel, 

and the solid was put in the desiccator to dry (yellow with orange surface layer). Yield: 39%. 

[(phen)2Ru(diphen)Ru(phen)2](PF6)4 

(CO)2Cl2Ru(diphen)Ru(CO)2Cl2 (0.200 g, 

0.246 mmol), phen (0.426 g, 2.36 mmol), 

and Me3NO (0.187 g, 2.49 mmol) were 

added to 70 mL of nitrogen purged 2-

methoxyethanol (peach). The solution was heated to reflux for 2 hr (dark brown). After cooling, 

the solution was filtered. The solvent was removed via rotary evaporator, and 100 mL of water 

was added to dissolve the remaining oily substance. Saturated NH4PF6 aqueous solution was 

added to the solution. The precipitate was recovered by filtration through a medium porosity 

fritted funnel. Further purification was carried out by dissolving the orange solid in acetonitrile 

and dropping the solution into ether. The product was again collected using a medium porosity 
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fritted funnel. Yield: 88%. MS (ESI): m/z = 321.0 [M4+ - 4PF6]/4 = 320.34). Anal. Calcd for 

C72H46N12Ru2P4F24: C, 46.46; H, 2.50; N, 9.03. Found: C, 42.00; H, 3.01; N, 9.28. 

[(dpphen)2Ru(diphen)Ru(dpphen)2](PF6)4 

[(dpphen)2Ru(diphen)Ru(dpphen)2](PF6)4 

was synthesized  and purified using the 

procedure described above for 

[(phen)2Ru(diphen)Ru(phen)2](PF6)4. Yield: 

55%. MS (ESI): m/z = 472.58 [M4+ - 4PF6]/4 

= 472.53). Anal. Calcd for 

C120H78N12Ru2P4F24: C, 58.30; H, 3.20; N, 6.80. Found: C, 57.22; H, 3.85; N, 7.85. 

[(tmphen)2Ru(diphen)Ru(tmphen)2](PF6)4 

[(tmphen)2Ru(diphen)Ru(tmphen)2](PF6)4 

was synthesized and purified using the 

procedure described above for 

[(phen)2Ru(diphen)Ru(phen)2](PF6)4. Yield: 

71%. MS (ESI): m/z = 376.6 [M4+ - 4PF6]/4 

= 376.47). 

[(bpy)2Ru(diphen)Ru(bpy)2](PF6)4 

(CO)2Cl2Ru(diphen)Ru(CO)2Cl2 (0.0549 

g, 0.067 mmol), bpy (0.0953g, 0.610 

mmol), and Me3NO (0.0470 g, 0.626 

mmol) were dissolved in 20 mL of 2-

methoxyethanol that had been nitrogen purged. The solution was heated for 1 hr, and additional 
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Me3NO (0.0258 g, 0.343 mmol) was added. The solution was heated for 1 hr and cooled. It was 

then filtered. Most of the solvent was removed via rotavap, and the oily substance was then 

dissolved in H2O. Saturated NH4PF6 solution was added, and the solution was filtered using a 

medium porosity fritted funnel to collect the solid (orange). The solid was then dissolved in 

acetonitrile, added drop-wise to diethyl ether, and filtered. Yield: 63%. MS (ESI): m/z = 296.52 

[M4+ - 4PF6]/4 = 296.32). 

[(dmb)2Ru(diphen)Ru(dmb)2](PF6)4 

Synthesis and purification of 

[(dmb)2Ru(diphen)Ru(dmb)2](PF6)4 was 

done using the same procedure reported 

for the synthesis of 

[(bpy)2Ru(diphen)Ru(bpy)2](PF6)4. Yield: 

84%. MS (ESI): m/z = 324.6 [M4+ - 4PF6]/4 = 324.38). 

Ru(CO)2Cl2(phen) [Ru(CO)2Cl2]n (0.4657 g, 2.04 mmol) 

was dissolved in 60 mL of hot 2-methoxyethanol. Phen 

(0.4676 g, 2.59 mmol) was dissolved in 20 mL RT 2-

methoxyethanol. The two solutions were mixed together and 

heated to a boil for 25 min. The solution was cooled and then 

filtered. A yellow solid was collected on a medium porosity 

fritted funnel. Most of the filtrate was evaporated using a 

rotary evaporator. The yellow solid was again collected on a medium porosity fritted funnel. 

Both yellow solids appeared to be identical based on the IR spectra which contained the two 

carbonyl bands expected for the complex. Yield: 59% 
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[Ru(phen)(dpphen)2](PF6)2 Ru(CO)2Cl2(phen) (0.1003 g, 

0.246 mmol), Me3NO (0.1301 g, 1.73 mmol), and dpphen 

(0.2473 g, 0.740 mmol) were added to 35 mL N-purged 2-

methoxyethanol. The solution was heated to reflux under 

nitrogen for 2 hr. The solution was cooled, and most of the 

solvent was removed via a rotary evaporator. About 100 

mL of DI H2O was added to RBF. The solution was filtered 

before adding 10 mL of saturated NH4PF6 solution. The 

orange solid was filtered out using a medium porosity 

fritted funnel. To further purify the sample, the solid was dissolved in acetonitrile, added drop-

wise to ether, and collected on a medium porosity fritted funnel. Yield: 77% 

[Ru(phen)(tmphen)2](PF6)2 [Ru(phen)(tmphen)2](PF6)2 

was synthesized and purified using the same procedure as 

that used for [Ru(phen)(dpphen)2](PF6)2. Yield: 100% 
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[Ru(phen)(bpy)2](PF6)2 Ru(CO)2Cl2(phen) (0.1022 g, 

0.250 mmol), bpy, (0.1167 g, 0.747 mmol), and Me3NO 

(0.1127 g, 1.5 mmol) were added to 35 mL of N-purged 2-

methoxyethanol. The solution was heated to reflux for 1 hr 

under nitrogen. At this point, additional Me3NO (0.0580 g, 

0.772 mmol) was added to the solution. The solution was 

heated for another 2.5 hr. The solution was cooled, and 

most of the solvent was evaporated on a rotary evaporator. About 100 mL of DI H2O was added, 

and the solution was filtered. Approximately 10 mL of saturated NH4PF6 solution was added, 

and the orange solid was collected on a medium porosity fritted funnel. After dissolving the solid 

in acetonitrile and dropping the solution into ether, the solid was collected by a medium porosity 

fritted funnel. Yield: 34% 

[Ru(phen)(dmb)2](PF6)2 [Ru(phen)(dmb)2](PF6)2 was 

synthesized and purfied using the same procedure as that 

used for [Ru(phen)(bpy)2](PF6)2. Yield: 51% 
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(CO)2Cl2Ru(dpp)Ru(CO)2Cl2 [Ru(CO)2Cl2]n 

(0.7370 g, 3.23 mmol) was dissolved in 30 mL of hot 

2-methoxyethanol. Dpp (0.1535 g, 0.655 mmol) was 

dissolved in 30 mL of RT 2-methoxyethanol. The 

two solutions were filtered and then mixed together. 

The solution was then heated to a boil for 20 min. The solution was allowed to cool, and then an 

olive green solid was filtered out using a medium porosity fritted funnel. Yield: 30% 

[(phen)2Ru(dpp)Ru(phen)2](PF6)4 

(CO)2Cl2Ru(dpp)Ru(CO)2Cl2 (0.1235 g, 

0.178 mmol), phen (0.3533 g, 1.96 

mmol), and Me3NO (0.1540 g, 2.05 

mmol) were dissolved in 35 mL of N-

purged 2-methoxyethanol. The solution 

was heated to reflux under nitrogen for 1 hr. More Me3NO (0.0797 g, 1.06 mmol) was added, 

and the solution was heated for an additional 1 hr. The solution was cooled and filtered. Most of 

the solvent was removed by using a rotary evaporator. DI H2O (100 mL) was used to dissolve the 

remaining solvent. About 10 mL of saturated NH4PF6 solution was added. The brown precipitate 

was collected on a medium porosity fritted funnel. For further purification, the solid was 

dissolved in acetonitrile. The solution was added drop-wise to ether, and the solid was collected 

with a medium porosity fritted funnel. Yield: 89% 
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3.1 Results 

3.2 Synthesis of Symmetric Ruthenium(II) Dimeric Complexes 

A series of dimeric complexes with the general formulation L2Ru-bridge-RuL2
4+ was 

required for the investigations described in this work. The bridging ligand, diphen, appeared to 

be a key component contributing to the photochemical properties of interest and thus was the 

focus of the synthetic work. Preparation of the target complexes that were free from monomeric 

complexes was critically important and synthetic routes tailored to that end were developed.  

As indicated, diphen was a focal point of this work, and it was prepared in better yield 

that previously reported using the following reactions. The product was characterized by 1H 

NMR, and the aromatic region of the spectrum is shown in Figure 3.2.1.  The relative chemical 

shifts and the splitting are consistent with the expected molecule reports found in the literature. 
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Figure 3.2.1. 1H NMR spectrum for diphen showing the aromatic region. (300MHz, CD3CN). 
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 The dimeric ruthenium complexes were prepared according to the following reactions. 

Eq1 

 

Eq2 

 

 The trimethylamine N-oxide was used to remove the carbonyl groups through the 

formation of CO2. The carbonyl containing intermediates obtained with these reactions were not 

sufficiently soluble in commonly used solvent to allow any spectral characterization. IR 

spectroscopy of the solid products, because of the presence of the strongly absorbing carbonyl 

stretching bands, proved invaluable in following the reactions. The IR spectrum of the starting 

material, [Ru(CO)2Cl2]n is shown in Figure 3.2.2. Four peaks due to CO stretching are seen at 

2053 cm-1, 2075 cm-1, 2088 cm-1, and 2138 cm-1. 

Figure 3.2.2. IR spectrum (KBr pellet) for [Ru(CO)2Cl2]n showing peaks due to CO stretching at 

2053 cm-1, 2075 cm-1, 2088 cm-1, and 2138 cm-1.  
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[Ru(CO)2Cl2]n and diphen were reacted together to produce 

(CO)2Cl2Ru(diphen)Ru(CO)2Cl2. The IR spectra of [Ru(CO)2Cl2]n and 

(CO)2Cl2Ru(diphen)Ru(CO)2Cl2 are compared in Figure 3.2.3. Figure 3.2.3(b) shows 2 peaks at 

1987 cm-1 and 2058 cm-1 from CO stretching in (CO)2Cl2Ru(diphen)Ru(CO)2Cl2 consistent with 

the expected symmetric and asymmetric stretching bands normally found in complexes 

containing 2 carbonyl groups in a cis geometry. 

Figure 3.2.3. IR spectra comparison for (a) [Ru(CO)2Cl2]n and (b) 

(CO)2Cl2Ru(diphen)Ru(CO)2Cl2. 
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The first ligand chosen to react with (CO)2Cl2Ru(diphen)Ru(CO)2Cl2 was 1,10-

phananthroline (phen). Spectroscopic and electrochemical techniques were utilized to 

characterize the expected product [(phen)2Ru(diphen)Ru(phen)2](PF6)4. IR confirmed the 

absence of peaks due to CO. The spectrum over the range expected for CO bands is shown in 

Figure 3.2.4.  

Figure 3.2.4. IR spectrum (KBr pellet) for [(phen)2Ru(diphen)Ru(phen)2](PF6)4 showing the 

absence of CO stretching peaks.  

 

The UV-vis spectrum can be seen in Figure 3.2.5 showing a λmax value of 448 nm. 

Ru(phen)3
2+, a very analogous compound has a similar spectrum with maxima at 446 nm and 264 

nm. 
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Figure 3.2.5. UV-Vis spectrum for [(phen)2Ru(diphen)Ru(phen)2](PF6)4 in acetonitrile.  

Figure 3.2.6 shows the cyclic voltammogram of [(phen)2Ru(diphen)Ru(phen)2](PF6)4. 

The redox potential for the complex was found to be 1.308 V vs SCE which identical to 

Ru(phen)3
2+ with a redox potential of 1.309 V vs SCE.  

Figure 3.2.6. Cyclic voltammogram for [(phen)2Ru(diphen)Ru(phen)2](PF6)4. (0.1M TBAPF6 in 

acetonitrile, SCE). 

 

0

0.5

1

1.5

2

2.5

3

3.5

190 290 390 490 590 690

A
b

so
rb

a
n

ce

Wavelength (nm)

-4.00E-06

-2.00E-06

0.00E+00

2.00E-06

4.00E-06

6.00E-06

8.00E-06

-0.5 0 0.5 1 1.5 2

C
u

rr
en

t 
(A

)

Potential (V)



44 

 

ESI-MS was also used to analyze the sample, and the spectra are shown in Figures 3.2.7 

and 3.2.8. Ruthenium complexes exhibit a distinct isotope pattern with ESI-MS analysis. The 

isotope pattern for a complex with one ruthenium differs from the isotope pattern for a complex 

with two ruthenium centers. The expected peak for (phen)2Ru(diphen)Ru(phen)2
4+ is seen at 

321.0 m/z. Other peaks seen are due to the ionization technique used. 

(phen)2Ru(diphen)Ru(phen)2
3+ is present, as indicated by peak 427.7 m/z. Additional peaks for 

4+ are seen at 338.8 and 358.0 m/z and at 452.0, 475.7, and 500.4 m/z for 3+. These could 

indicate the further fragmentation of (phen)2Ru(diphen)Ru(phen)2
4+ and 

(phen)2Ru(diphen)Ru(phen)2
3+ due to collision-induced dissociation in the quadrupole system 

used. The peaks increase by ~70 g/mol compared to the previous peak. No evidence of 

monomeric ruthenium(II) complexes is seen. 
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Figure 3.2.7. Full ESI-MS spectrum for [(phen)2Ru(diphen)Ru(phen)2](PF6)4. 
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Figure 3.2.8. Enlarged portion of ESI-MS spectrum for [(phen)2Ru(diphen)Ru(phen)2](PF6)4. 
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 After the successful synthesis of [(phen)2Ru(diphen)Ru(phen)2](PF6)4, the additional 

dimeric complexes produced were [(dpphen)2Ru(diphen)Ru(dpphen)2](PF6)4, 

[(tmphen)2Ru(diphen)Ru(tmphen)2](PF6)4, [(bpy)2Ru(diphen)Ru(bpy)2](PF6)4, and 

[(dmb)2Ru(diphen)Ru(dmb)2](PF6)4. The IR spectra, UV-vis spectra, and the cyclic 

voltammogram collected for the additional dimeric complexes were all similar to the spectra and 

voltammogram shown above for [(phen)2Ru(diphen)Ru(phen)2](PF6)4. The spectroscopic and 

electrochemical data for the complexes are collected in Table 3.4.1.  

 The ESI-MS spectra for [(dpphen)2Ru(diphen)Ru(dpphen)2](PF6)4 are seen in Figures 

3.2.9 and 3.2.10. The peak at 472.6 m/z is as expected for (dpphen)2Ru(diphen)Ru(dpphen)2
4+. 

The peak at 333.1 m/z is as expected for the dpphen free ligand.  

 The ESI-MS spectra for [(tmphen)2Ru(diphen)Ru(tmphen)2](PF6)4 are seen below in 

Figures 3.2.11 and 3.2.12. The peak at 376.4 m/z is as expected for 

(tmphen)2Ru(diphen)Ru(tmphen)2]
+, and the peak at 501.9 m/z is expected for 

(tmphen)2Ru(diphen)Ru(tmphen)2
3+. Other peaks seen are possibly additional fragmentation of 

the dimeric complex, such as the peak at 394.6 m/z, which differs by 72.62 g/mol from 

(tmphen)2Ru(diphen)Ru(tmphen)2
4+.  

 [(dmb)2Ru(diphen)Ru(dmb)2](PF6)4 ESI-MS spectra are seen in Figures 3.2.13 and 

3.2.14. The peak expected for (dmb)2Ru(diphen)Ru(dmb)2
4+ is seen at 324.6 m/z. The peak at 

433.1 m/z is the (dmb)2Ru(diphen)Ru(dmb)2
3+ peak. Additional peaks are due to further 

fragmentation of the complex. 

 Figures 3.2.15 and 3.2.16 show ESI-MS spectra for [(bpy)2Ru(diphen)Ru(bpy)2](PF6)4. 

(bpy)2Ru(diphen)Ru(bpy)2
4+ is expected at 296.5 m/z, and (bpy)2Ru(diphen)Ru(bpy)2

3+ is seen 
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as expected at 395.7 m/z. Other peaks are small in comparison, and possibly due to continued 

fragmentation of (bpy)2Ru(diphen)Ru(bpy)2
4+.  
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Figure 3.2.9. Full ESI-MS for [(dpphen)2Ru(diphen)Ru(dpphen)2](PF6)4. 
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Figure 3.2.10. Portion of ESI-MS spectrum for [(dpphen)2Ru(diphen)Ru(dpphen)2](PF6)4. 
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Figure 3.2.11. Full ESI-MS for [(tmphen)2Ru(diphen)Ru(tmphen)2](PF6)4. 
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Figure 3.2.12. Portion of ESI-MS spectrum of [(tmphen)2Ru(diphen)Ru(tmphen)2](PF6)4. 
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Figure 3.2.13. Full ESI-MS spectrum for [(dmb)2Ru(diphen)Ru(dmb)2](PF6)4. 
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Figure 3.2.14. Portion of ESI-MS for [(dmb)2Ru(diphen)Ru(dmb)2](PF6)4. 
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Figure 3.2.15. Full ESI-MS spectrum showing the peaks for [(bpy)2Ru(diphen)Ru(bpy)2](PF6)4. 
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Figure 3.2.16. Portion of ESI-MS spectrum for [(bpy)2Ru(diphen)Ru(bpy)2](PF6)4. 
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3.3 Investigation of Bridging Ligands in Improved Synthetic Route for Dimeric 

Ruthenium(II) Complexes 

 In order to test the generality of the procedure, a bridging ligand commonly used in the 

literature was examined. Dpp, 2,3-Bis(2-pyridyl)-pyrazine, was reacted with [Ru(CO)2Cl2]n to 

produce (CO)2Cl2Ru(dpp)Ru(CO)2Cl2. The IR spectrum was compared to the IR spectrum for 

[Ru(CO)2Cl2]n. This is shown in Figure 3.3.1 below. Figure 3.3.1(b) shows 2 peaks at 2010 and 

2065 cm-2 from CO stretching in (CO)2Cl2Ru(dpp)Ru(CO)2Cl2. These two peaks are consistent 

with the expected asymmetric and symmetric stretching bands typically seen in complexes 

containing two carbonyl groups. 
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Figure 3.3.1. IR spectra (KBr pellet) comparison for [Ru(CO)2Cl2]n and 

(CO)2Cl2Ru(dpp)Ru(CO)2Cl2. 

 

 (CO)2Cl2Ru(dpp)Ru(CO)2Cl2 was then reacted with phen. The expected product, 

[(phen)2Ru(dpp)Ru(phen)2](PF6)4, was analyzed via spectroscopic and electrochemical 

techniques. IR analysis confirmed the absence of peaks due to CO. The spectrum in Figure 3.3.2 

is over the range expected for CO bands. 
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 Figure 3.3.2. IR spectra (KBr pellet) for [(phen)2Ru(dpp)Ru(phen)2](PF6)4, which shows the 

absence of CO stretching peaks. 

 

 The λmax value for [(phen)2Ru(dpp)Ru(phen)2](PF6)4 was at 446 nm, and can be seen in 

Figure 3.3.3. This value matches exactly with the λmax value of the similar monomeric complex 

Ru(phen)3
2+.  

Figure 3.3.3. UV-vis spectrum for [(phen)2Ru(dpp)Ru(phen)2](PF6)4 in acetonitrile. 
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 The cyclic voltammogram for [(phen)2Ru(dpp)Ru(phen)2](PF6)4 is Figure 3.3.4. The 

redox potential for the complex was found to be 1.304 V vs SCE. This value was very close to 

the redox potential of 1.309 V vs SCE for Ru(phen)3
2+. It is also similar to an averaged redox 

potential for (bpy)2Ru(dpp)Ru(bpy)2
4+ reported in the literature, 1.34 V vs SCE, which was 

adjusted to SCE from Ag/AgCl reference electrode (Seneviratne, et al., 2002). Spectroscopic and 

electrochemical data can be seen in Table 3.4.1. 

Figure 3.3.4. Cyclic Voltammogram for [(phen)2Ru(dpp)Ru(phen)2](PF6)4 (0.1M TBAPF6 in 

acetonitrile, SCE). 

 

3.4 Dimeric Complex Synthesis Applied to Monomeric Complexes 
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Ru(CO)2Cl2(phen). The IR spectra for [Ru(CO)2Cl2]n and Ru(CO)2Cl2(phen) are compared in 
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Figure 3.4.1. IR spectra (KBr pellet) comparison for [Ru(CO)2Cl2]n and Ru(CO)2Cl2(phen). 

The monomeric complexes were synthesized for comparison to the dimeric complexes, 

so [Ru(phen)(dpphen)2](PF6)2, [Ru(phen)(tmphen)2](PF6)2, [Ru(phen)(bpy)2](PF6)2, and 

[Ru(phen)(dmb)2](PF6)2 were synthesized by heating Ru(CO)2Cl2(phen) with the desired ligand.  

The products were analyzed using spectroscopic and electrochemical techniques. IR 

spectra showed the absence of the carbonyl group for [Ru(phen)(dpphen)2](PF6)2 and 

[Ru(phen)(tmphen)2](PF6)2. The spectrum for [Ru(phen)(dpphen)2](PF6)2 is shown over the 

range expected for CO bands in Figure 3.4.2.  
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Figure 3.4.2. IR spectrum (KBr pellet) for [Ru(phen)(dpphen)2](PF6)2. 

IR spectra for [Ru(phen)(bpy)2](PF6)2 and [Ru(phen)(dmb)2](PF6)2 revealed that there 

was still a carbonyl group present on some of the product. Figure 3.4.3 is the IR spectrum for 

[Ru(phen)(bpy)2](PF6)2, and a peak at 1963 cm-1. This is band is consistent with symmetric and 

asymmetric stretching band normally found in complexes containing a carbonyl group. 

Figure 3.4.3. IR spectrum (KBr pellet) for [Ru(phen)(bpy)2](PF6)2. 
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 The UV-vis spectrum for [Ru(phen)(dpphen)2](PF6)2 is shown in Figure 3.4.4 and had a 

λmax at 456 nm. The shift from the Ru(phen)3
2+ maxima value of 446 nm is expected due to the 

added phenyl groups. 

Figure 3.4.4. UV-vis spectrum for [Ru(phen)(dpphen)2](PF6)2 in acetonitrile. 

 The cyclic voltammogram in Figure 3.4.5 for [Ru(phen)(tmphen)2](PF6)2 shows an redox 

potential of 1.107 V vs SCE. This value differs from 1.309 V vs SCE for Ru(phen)3
2+, which is 

expected due to the phenyl groups. Spectrocopic and electrochemical data for all monomeric 

complexes, including [Ru(phen)3](PF6)2, is compiled in Table 3.4.1. 
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Figure X. Cyclic voltammogram for [Ru(phen)(tmphen)2](PF6)2 (0.1M TBAPF6 in acetonitrile, 

SCE). 

 

Table 3.4.1. Spectroscopic and electrochemical data for ruthenium(II) polypyridine complexes. 

Complex λmax  

(nm) 

2+/3+ vs 

SCE 

(V) 

0 

(nsec) 

0.5 M 

H2SO4 

CH3CN 

Ru(bpy)3
2+ 452 1.29 590 --- 

Ru(phen)(bpy)2
2+ 450 1.269 690 --- 

(bpy)2Ru(diphen)Ru(bpy)2
4+ 452 1.297 1000 --- 

Ru(phen)(dmb)2
2+ 454 1.161 930 --- 

(dmb)2Ru(diphen)Ru(dmb)2
4+ 458 1.200 1000 --- 

Ru(phen)3
2+ 446 1.309 1000 1120 

(phen)2Ru(diphen)Ru(phen)2
4+ 448 1.308 1470 960 

Ru(phen)(tmphen)2
2+ 427 1.107 1130 --- 

(tmphen)2Ru(diphen)Ru(tmphen)2
4+ 432 1.152 1000 --- 

Ru(phen)(dpphen)2
2+ 456 1.236 --- --- 

(dpphen)2Ru(diphen)Ru(dpphen)2
4+ 460 1.282 --- --- 

(phen)2Ru(dpp)Ru(phen)2
4+ 446 1.304 --- --- 

 

3.5 Photosubstitution Reactions of Dimeric Ruthenium(II) Polypyridine Complexes  

 Photochemistry was first carried out using a 300 watt, 120 volt bulb “sunlamp” with no 

filtering. The photochemical reaction of [(phen)2Ru(diphen)Ru(phen)2](PF6)4 in a solution of 

dichloromethane and tetrabutylammonium bromide was monitored via UV-vis spectroscopy. The 

-8.00E-06

-6.00E-06

-4.00E-06

-2.00E-06

0.00E+00

2.00E-06

4.00E-06

6.00E-06

-0.5 0 0.5 1 1.5 2

C
u

rr
en

t 
(A

)

Potential (V)



75 

 

spectra can be seen in Figure 3.5.1. The peak at 448 nm, which is correlates to the 

(phen)2Ru(diphen)Ru(phen)2
4+ concentration, decreases over time. This is the expected result of 

a photosubstitution reaction where a phen ligand on (phen)2Ru(diphen)Ru(phen)2
4+ is removed 

and replaced by bromines, which decreases the (phen)2Ru(diphen)Ru(phen)2
4+ concentration. 

The peak in Figure 3.5.1 at 550 nm increases over time. This is also an expected peak due to the 

photosubstitution reaction. This is consistent with the phen ligand being replaced by bromines, 

and the concentration of the new product increasing.  

Figure 3.5.1. UV-Vis spectrum for [(phen)2Ru(diphen)Ru(phen)2](PF6)4 taken at intervals during 

UV irradiation with a 300 watt, 120 volt bulb “sunlamp”. 

 

 Reproducible results were seen when [(phen)2Ru(diphen)Ru(phen)2]Br4 in 

dichloromethane was irradiated by a 300 watt, 120 volt bulb “sunlamp”. The reaction was 

tracked using UV-vis spectroscopy, which can be seen in Figure 3.5.2. Again, the peak at 448 

nm decreases, and the peak at 550 nm increases. 
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Figure 3.5.2. UV-Vis spectrum for [(phen)2Ru(diphen)Ru(phen)2]Br4 taken at intervals during 

UV irradiation with a 300 watt, 120 volt bulb “sunlamp”. 

 

 In order to determine the product of the photosubstitution reaction, the product was 

reacted with water and then the bpy ligand. The series of reactions was monitored using UV-vis 

spectroscopy and is shown in Figure 3.5.3. As expected, after irradiating 

[(phen)2Ru(diphen)Ru(phen)2]Br4 in dichloromethane, the (phen)2Ru(diphen)Ru(phen)2
4+  peak 

at 448 nm decreases, and the photosubstitution reaction product peak at 550 nm increases. The 

dried photosubstitution reaction product was heated in water. The peak at 448 nm stays the same. 

This indicates that the concentration of (phen)2Ru(diphen)Ru(phen)2
4+ does not change, which 

was expected. The peak at 550 nm decreases, also as expected, indicating that the bromines on 

the reaction product are replaced by water. Bpy was then added to the reaction mixture. After 

heating, The peak at 448 nm increased as predicted with the formation of the expected product 
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(phen)2Ru(diphen)Ru(phen)(bpy)4+. The resulting product was sent for ESI-MS, but the results 

were inconclusive. 

Figure 3.5.3. UV-vis spectrum for a series of reactions starting with 

[(phen)2Ru(diphen)Ru(phen)2]Br4. Irradiation was performed using a 300 watt, 120 volt bulb 

“sunlamp”. 

 

 A 1000 watt Xe bulb was also used for photochemical reactions. The reaction mixture 

consisted of [(phen)2Ru(diphen)Ru(phen)2]Br4 in dichloromethane, and the reaction was 

monitored with UV-vis spectroscopy. Figure 3.5.4 shows the results. The results were not 

consistent with the usage of the 300 watt, 120 volt bulb “sunlamp. The peak at 448 nm decreases 

over time, but a distinct peak at 550 nm does not form over time. This is thought to be due to a 

different reaction taking place and different products being formed due to the increased power of 

the 1000 watt bulb. 
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Figure 3.5.4. UV-Vis spectrum for [(phen)2Ru(diphen)Ru(phen)2]Br4 taken at intervals during 

UV irradiation with a 1000 watt Xe bulb. 

 

3.6 Photoredox Reactions of Ruthenium(II) Polypyridine Complexes  

 In order to investigate the photoredox reactions of the dimeric complexes, a series of 

quenching reactions were performed. These investigations mirrored previous studies of the 

monomeric complexes and provided substantial basis for comparison. Again, the focus of the 

investigation is a comparison of monomers to weakly coupled dimers which should show similar 

behavior. All of the studies were performed in 0.5 M H2SO4 at room temperature.   

  The impact of the oxidative quencher, Fe3+, on the excited lifetimes of Ru(bpy)3
2+, 

Ru(phen)(bpy)2
2+, and (bpy)2Ru(diphen)Ru(bpy)2

4+ was investigated. Ru(bpy)3
2+ was included 

for validation. In the absence of the quencher, the excited state lifetimes were 590, 670, and 1000 

nsec, respectively. The Stern-Volmer plots of the relative excited state lifetimes (τo/τ) as a 
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function of quencher concentration were linear over the range 0 – 5 mM Fe3+ and relative 

lifetime of 1 to 12. The Stern-Volmer plots are combined in Figure 3.6.1. The quenching rate 

constants, τo, and relative standard deviation (RSD) are summarized in Table 3.6.1. To get the 

RSD, the standard deviation of the slope for each set of data was first determined using the Excel 

“linest” function. This value was then used to find the RSD for the slope by using the equation,  

𝑅𝑆𝐷 =  
𝑠

�̅�
∗ 100 

where s = standard deviation and �̅� = mean. The RSD for all three data sets were low, ranging 

from 3% to 6%. 

Figure 3.6.1. Stern-Volmer plots for Ru(bpy)3
2+ (■), Ru(phen)(bpy)2

2+ (♦), and 

(bpy)2Ru(diphen)Ru(bpy)2
4+ (▲) with Fe3+ quencher. 
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Table 3.6.1. Quenching rate, lifetimes, and error data for Ru(bpy)3
2+, Ru(phen)(bpy)2

2+, and 

(bpy)2Ru(diphen)Ru(bpy)2
4+. 

Complex 0  kq RSD 

Ru(bpy)3
2+ 590 nsec 2.5 x 108 M-1s-1 6% 

Ru(phen)(bpy)2
2+ 690 nsec 2.6 x 108 M-1s-1 3% 

(bpy)2Ru(diphen)Ru(bpy)2
4+ 1000 nsec 2.3 x 108 M-1s-1 5% 

Excited state lifetimes in the absence of quencher were collected for the other complexes, 

as well. When collected in 0.5 M H2SO4, the dimeric complex lifetimes were longer than the 

monomeric complex lifetimes. This was contrary to the results previously obtained by the group 

for bpy based complexes, where the monomer lifetimes were longer than the dimer lifetimes. 

Acetonitrile had been used in those trials, so lifetimes were retaken for Ru(phen)3
2+ and 

(phen)2Ru(diphen)Ru(phen)2
4+. The resulting lifetimes were as expected with 1120 nsec for 

Ru(phen)3
2+ and  960 nm for (phen)2Ru(diphen)Ru(phen)2

4+. These results indicate solvent 

reorganization is occurring. Excited state lifetime values are shown in Table 3.4.1. 

The rate constants for the back reaction that follows the quenching reaction and the yields 

of oxidized ruthenium complexes were investigated using laser flash photolysis. Cu2+ and Fe3+ 

were studied. A representative absorption transient showing the rapid formation of Ru(III) and 

the subsequent slow back reaction that returns the system to the initial state is shown in Figure 

3.6.2. The back reaction follows second order kinetics, and the rate constants are summarized in 

Table 3.6.2 for Fe3+ solutions and Table 3.6.3 for Cu2+ solutions. Where possible, comparison of 

the rate constants with literature values was made and agreement in all cases was excellent. 
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Figure 3.6.2. Representative absorption transient for Ru(bpy)3
2+ (50 mM Fe3+). 

As expected, the kback values for both 10 mM and 50 mM Fe3+ are comparable. This 

suggests that the monomeric and dimeric complexes act similarly. Values of kback for Cu2+ are 

also as expected and comparable in the data set collected. The cage escape yields were extremely 

low for both 10 mM and 50 mM Cu2+. It was concluded that the laser system used was not 

providing enough flux for the quenching reaction, and the Cu2+ studies were not analyzed 

further. The Cu2+ data can be seen in Table 3.6.3. 

The cage escape percent yields of oxidized ruthenium complexes for the Fe3+ quencher 

were also much lower than expected. Again, this is due to the laser not providing enough flux to 

excite a majority of the ruthenium complexes. These values can be seen in Table 3.6.2. The 

efficiency, η, which takes into account that only a fraction of ruthenium centers are excited by 

the laser, was then determined for Ru(phen)3
2+ and (phen)2Ru(diphen)Ru(phen)2

4+ with 50 mM 

Fe3+. The equation 

𝜂 = 𝑘𝑞[𝑄]/(𝑘𝑞[𝑄] +  𝑘0) 
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where kq = rate constant for excited state quenching, k0 = rate constant for unquenched decay of 

excited state, and [Q] = quencher concentration was used (Kalyanasundaram, 1991). For 50 mM 

Fe3+, the efficiency of Ru(phen)3
2+ was 93% and 95% for (phen)2Ru(diphen)Ru(phen)2

4+. The 

similar efficiency values for the monomer and dimer imply that both ruthenium centers are 

acting independently.   

  

Table 3.6.2. Back reaction rate constants and yields for ruthenium(II) complexes in 10 mM and 

50 mM Fe3+ solutions. 

 10 mM  

Fe3+ 

 50 mM  

Fe3+ 

 

Complex kback
 a Φ kback Φ 

Ru(bpy)3
2+ 9.95 x 106 M-1s-1 25% 9.95 x 106 M-1s-1 32% 

Ru(phen)(bpy)2
2+ 1.08 x 107 M-1s-1 30% 1.12 x 107 M-1s-1 28% 

(bpy)2Ru(diphen)Ru(bpy)2
4+ 1.08 x 107 M-1s-1 30% 1.11 x 107 M-1s-1 30% 

Ru(phen)(dmb)2
2+ 3.00 x 106 M-1s-1 37% 2.59 x 106 M-1s-1 37% 

(dmb)2Ru(diphen)Ru(dmb)2
4+ 4.35 x 106 M-1s-1 12% 3.16 x 106 M-1s-1 21% 

Ru(phen)3
2+ 9.97 x 106 M-1s-1 24% 1.27 x 107 M-1s-1 22% 

(phen)2Ru(diphen)Ru(phen)2
4+ 1.17 x 107 M-1s-1 15% 1.13 x 107 M-1s-1 22% 

Ru(phen)(tmphen)2
2+ 2.70 x 106 M-1s-1 30% 8.47 x 106 M-1s-1 36% 

(tmphen)2Ru(diphen)Ru(tmphen)2
4+ 7.83 x 106 M-1s-1 13% 2.76 x 106 M-1s-1 21% 

a  kback values for the same sample were within 15% of each other. 
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Table 3.6.3. Back reaction rate constants and yields for ruthenium(II) complexes in 10 mM and 

50 mM Cu2+ solutions. 

 10 mM 

Cu2+ 

 50 mM 

Cu2+ 

 

Complex kback Φ kback Φ 

Ru(bpy)3
2+ 1.05 x 109 M-1s-1 3% 8.53 x 108 M-1s-1 9% 

Ru(phen)(bpy)2
2+ 9.80 x 108 M-1s-1 4% 1.03 x 109 M-1s-1 8% 

(bpy)2Ru(diphen)Ru(bpy)2
4+ 5.03 x 108 M-1s-1 7% 7.69 x 108 M-1s-1 8% 

Ru(phen)(dmb)2
2+ 3.83 x 108 M-1s-1 8% 2.57 x 108 M-1s-1 15% 

(dmb)2Ru(diphen)Ru(dmb)2
4+ 5.49 x 108 M-1s-1 4% 2.47 x 108 M-1s-1 9% 

Ru(phen)3
2+ 1.02 x 109 M-1s-1 6% 1.03 x 109 M-1s-1 8% 

(phen)2Ru(diphen)Ru(phen)2
4+ 9.47 x 108 M-1s-1 3% 9.68 x 108 M-1s-1 8% 

Ru(phen)(tmphen)2
2+ 2.60 x 108 M-1s-1 10% 1.41 x 108 M-1s-1 13% 

(tmphen)2Ru(diphen)Ru(tmphen)2
4+ 2.46 x 108 M-1s-1 3% 4.34 x 107 M-1s-1 5% 
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4.1 Discussion 

4.2 Ni(0) Catalyzed Coupling Reaction for Symmetric Dimeric Ruthenium(II) Polypyridine 

Complexes 

 When this research project began, a nickel (Ni(0)) catalyzed coupling reaction was used 

for the synthesis of the symmetric dimeric ruthenium(II) polypyridine complexes. This synthesis 

had been used regularly for the synthesis of complexes such as 

[(bpy)2Ru(diphen)Ru(bpy)2](PF6)4 and [(phen)2Ru(diphen)Ru(phen)2](PF6)4. The synthesis is 

comprised of several steps. The first step was the synthesis of [Ru(CO)2Cl2]n based on the 

reaction described by Aguirre et al. in 2001. The reaction is shown in Scheme 4.2.1.  

 

Scheme 4.2.1. Synthesis of [Ru(CO)2Cl2]n (Aguirre, et al. 2001).  

[Ru(CO)2Cl2]n was used without further purification in the synthesis of Ru(CO)2Cl2(Cl-

phen), which is shown in Scheme 4.2.2. This reaction was described by Thomas et al. in 1989. 

 

Scheme 4.2.2. Synthesis of [Ru(CO)2Cl2(Cl-phen)] (Thomas, et al. 1989).  

 Ru(CO)2Cl2(Cl-phen) was used without further purification for the synthesis of [Ru(Cl-

phen)(phen)2](PF6)2. This procedure was based on the procedure used by Anderson for [Ru(Cl-

phen)(phen)2]Cl2 with some modifications (Anderson, 2007), (Thomas et al., 1989). The 2-

methoxyethanol, Ru(CO)2Cl2(Cl-phen), phen, and Me3NO were prepared and heated to reflux for 

2 hours, just as outlined in the procedure used by Anderson. However, after heating, 10 mL of 

saturated NH4PF6 aqueous solution were added to the solution. This caused [Ru(Cl-

phen)(phen)2](PF6)2 to form, and the solution was cooled to RT. The bright orange precipitate 

was filtered and stored. This synthesis is shown in Scheme 4.2.3.  

RuCl
3
 + HCl + HCOOH                              [Ru(CO)
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Cl

2
]
n
 

[Ru(CO)
2
Cl

2
]
n
 + n(Cl-phen)                                  n[Ru(CO)
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2
(Cl-phen)] 

2-methoxyethanol 
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Scheme 4.2.3. Synthesis of [Ru(Cl-phen)(phen)2](PF6)2 (Thomas et al., 1989).  

 In this step of the synthesis, [Ru(Cl-phen)(phen)2](PF6)2 was confirmed via ESI-MS. 

[Ru(Cl-phen)(phen)2](PF6)2 was used without further purification to synthesize 

[(phen)2Ru(diphen)Ru(phen)2](PF6)4. This was done following the procedure outlined by Toyota 

et al. in 2005. The general reaction is shown in Scheme 4.2.4. 

Scheme 4.2.4. General Ni(0) catalyzed coupling reaction for ruthenium(II) dimeric complexes.   

 The product was confirmed with ESI-MS; however, several drawbacks were found with 

the synthesis described above. One drawback was found when the synthesis of 

(dmb)2Ru(diphen)Ru(dmb)2](PF6)4 was attempted using the method described above. The 

monomeric complex, [Ru(dmb)2(Cl-phen)](PF6)2, was synthesized, and the zinc coupling 

reaction was carried out. However, the desired dimeric complex was not produced. ESI-MS 

analysis revealed that the chlorines had, in fact, been removed from the [Ru(dmb)2(Cl-

phen)](PF6)2 complex, but the complexes had not coupled. 

Another major drawback of the zinc coupling reaction is that monomeric complexes are 

also present. The dimeric complexes used in this study are very weakly coupled. Thus, the 

dimeric complexes will have properties that are almost identical to the monomeric complexes 
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making spectroscopic analysis of only the dimeric complexes in the mixture impossible. It is 

crucial that only dimeric complexes are present. Due to these drawbacks with the Ni(0) catalyzed 

coupling reaction for dimeric ruthenium(II) complex synthesis, a new synthesis was developed. 

4.3 Synthesis of Symmetric Ruthenium(II) Dimeric Complexes 

Several different reactions were explored when searching for an improved synthetic route 

for synthetic Ruthenium(II) dimeric complexes. The successful route used [Ru(CO)2Cl2]n and 

diphen as starting materials. [Ru(CO)2Cl2]n was synthesized as previously described in both the 

“2.5 Syntheses” and the “4.2 Ni(0) Catalyzed Coupling Reaction for Symmetric Dimeric 

Ruthenium(II) Polypyridine Complexes” sections (Aguirre et al., 2001), (Colton and Farthing, 

1967). The synthesis was simple, and had a relatively high yield of 80%. The IR spectrum for 

[Ru(CO)2Cl2]n shown in Figure 3.2.2 was used for comparison of subsequent reactions. CO 

stretching peaks are seen at 2053 cm-1, 2075 cm-1, 2088 cm-1, and 2138 cm-1.  

Diphen was the second starting material chosen for the dimeric ruthenium(II) complex 

synthesis. The diphen used in this research was 5,5’-bi-1,10-phenanthroline and was synthesized 

following a procedure used by the Hu group to synthesize 2,2’-bi-1,10-phenanthroline (Hu et al, 

2001). The procedure coupled 5-chloro-1,10-phenanthroline via a Ni(0) catalyzed coupling 

reaction. There was a moderate average yield of 49%, and the 1H NMR spectra for the samples 

were consistent with what is in the literature.  

After the starting materials were synthesized, they were reacted to produce 

(CO)2Cl2Ru(diphen)Ru(CO)2Cl2. [Ru(CO)2Cl2]n  and diphen were dissolved separately in 2-

methoxyethanol. The two solutions were mixed and boiled for ~7 minutes. The product 

precipitated out during heating. Initially, the monomer (CO)2Cl2Ru(diphen), was also a target 
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complex. However, after countless trials using different ratios of [Ru(CO)2Cl2]n to diphen, only 

the dimer was produced.  

Absolute confirmation of the expected product (CO)2Cl2Ru(diphen)Ru(CO)2Cl2 was not 

possible, mostly due to the fact that it had low or no solubility in solvents suitable for UV-vis, 

ESI-MS, and CV analysis. IR spectroscopy was conducted on the sample, mostly for comparison 

with the starting material, [Ru(CO)2Cl2]n. For [Ru(CO)2Cl2]n, peaks due to CO stretching are 

seen at 2053 cm-1, 2075 cm-1, 2088 cm-1, and 2138 cm-1. Only two peaks are seen for 

(CO)2Cl2Ru(diphen)Ru(CO)2Cl2, which are at 1987 cm-1 and 2058 cm-1. Based on the symmetry 

of the polymeric material and dimeric complex, these IR spectra results were expected. The IR 

comparison is shown in Figure 3.2.3. 

(CO)2Cl2Ru(diphen)Ru(CO)2Cl2 was then used without further purification. Phen, 1,10-

phenanthroline, ligands were added to the complex to yield [(phen)2Ru(diphen)Ru(phen)2](PF6)4. 

(CO)2Cl2Ru(diphen)Ru(CO)2Cl2, phen, and Me3NO were heated to reflux for 2 hours in 2-

methoxyethanol. The solvent was removed, and water was added to dissolve the remaining oily 

substance. Saturated NH4PF6 aqueous solution was then used to precipitate 

[(phen)2Ru(diphen)Ru(phen)2](PF6)4. 

 Various methods were used to identify the product. Figure 3.2.4 shows the IR spectrum 

for [(phen)2Ru(diphen)Ru(phen)2](PF6)4. The key feature of the IR spectrum is the absence of the 

CO stretching peaks in the 1900 cm-1 to 2200 cm-1 range. UV-Vis analysis was also performed 

on the complex, as shown in Figure 3.2.5. The λmax due to MLCT in the ruthenium dimeric 

complex is seen at 448 nm. In comparison to an analogous monomeric complex, this is slight 

shift from the λmax value of 446 nm for Ru(phen)3
2+. CV analysis, as shown in Figure 3.2.6, 
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revealed a redox potential of 1.308 V vs SCE for [(phen)2Ru(diphen)Ru(phen)2](PF6)4. This 

value was very close to the redox potential of 1.309 V for Ru(phen)3
2+.  

The product was also confirmed via ESI-MS, as seen in Figures 3.2.7 and 3.2.8. The peak 

at 321.0 m/z is indicative of (phen)2Ru(diphen)Ru(phen)2
4+. The peak at 321.0 m/z is the 

expected peak for (phen)2Ru(diphen)Ru(phen)2
4+. There is a peak seen at 427.7 m/z indicating 

(phen)2Ru(diphen)Ru(phen)2
3+ is present and is due to the ionization technique used. Additional 

4+ and 3+ species are seen at peaks 338.8 and 358.0 m/z for 4+ and at 452.0, 475.7, and 500.4 m/z 

for 3+. These could be caused by further fragmentation of (phen)2Ru(diphen)Ru(phen)2
4+ and 

(phen)2Ru(diphen)Ru(phen)2
3+ caused by collision-induced dissociation in the quadrupole 

system used. Each subsequent peak increases by ~70 g/mol compared to the previous peak. This 

suggests uniform fragmentation is taking place. The peak indicative of a monomeric complex 

formed is not seen. The spectroscopic and electrochemical data collected is presented in Table 

3.4.1. The scope of the reaction was tested by varying the ligands used.  

4.4 Scope of Ligand Addition to (CO)2Cl2Ru(diphen)Ru(CO)2Cl2 

To determine the scope of the reaction using (CO)2Cl2Ru(diphen)Ru(CO)2Cl2 to produce 

symmetric dimers, several ligands were employed. Dpphen, 4,7-diphenyl-1,10-phenanthroline, 

was reacted with (CO)2Cl2Ru(diphen)Ru(CO)2Cl2 using the same procedure as detailed above 

for the phen ligand. [(dpphen)2Ru(diphen)Ru(dpphen)2](PF6)4 was first analyzed using IR 

spectrometry to verify there were no carbonyl ligands on the complex.  

The sample was then analyzed using UV-vis spectroscopy. The λmax is was found to be 

460 nm, which was a shift from the λmax of 456 nm for Ru(phen)(dpphen)2
2+. There was also a 

shift in the λmax compared to [(phen)2Ru(diphen)Ru(phen)2](PF6)4, which had a λmax of 448 nm. 

A shift was expected due to the added phenyl groups on the ligand. The sample was also 
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analyzed with CV. The redox potential obtained was 1.282 V vs SCE for 

(dpphen)2Ru(diphen)Ru(dpphen)2
4+, which differs slightly from the redox potential of 1.236 V 

vs SCE for Ru(phen)(dpphen)2
2+.  

The sample was lastly submitted for ESI-MS analysis, which is shown in Figures 3.2.9 

and 3.2.10. A peak at 472.58 m/z due to (dpphen)2Ru(diphen)Ru(dpphen)2
4+ is present. There is 

also a peak at 333.1 m/z, which is expected for the dpphen free ligand. The ESI-MS spectra are 

exceptionally clean for the (dpphen)2Ru(diphen)Ru(dpphen)2
4+ sample. All data collected for the 

complex is shown in Table 3.4.1. 

The next ligand used was 3,4,7,8-tetramethyl-1,10-phenanthroline (tmphen), and the 

procedure used was the same as those used to add the other phen based ligands to 

(CO)2Cl2Ru(diphen)Ru(CO)2Cl2. The verification of the expected product 

(tmphen)2Ru(diphen)Ru(tmphen)2
4+ was carried out in the same sequence as the previous 

dimeric complexes. IR confirmed CO stretching peaks were absent. The UV-vis spectrum 

revealed the λmax was at 432 nm for (tmphen)2Ru(diphen)Ru(tmphen)2
4+, which was shifted 

compared to Ru(phen)(tmphen)2
2+ with a λmax of 427 nm. There was also a shift due to the added 

four methyl groups on each ligand compared to [(phen)2Ru(diphen)Ru(phen)2](PF6)4 with a λmax 

of 448 nm. The CV voltammogram for (tmphen)2Ru(diphen)Ru(tmphen)2
4+ showed a redox 

potential of 1.152 V vs SCE, which was slightly higher than the redox potential of 1.107 V vs 

SCE for Ru(phen)(tmphen)2
2+.  

ESI-MS was the final method used to confirm the identity of the complex, and the spectra 

can be seen in Figures 3.2.11 and 3.2.12. The peak seen at 376.6 m/z is due 

to[(tmphen)2Ru(diphen)Ru(tmphen)2
4+. The peak at 501.9 m/z is indicative of 
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(tmphen)2Ru(diphen)Ru(tmphen)2
3+. Additional peaks seen could be due to continued 

fragmentation similar to the ESI-MS spectrum for (phen)2Ru(diphen)Ru(phen)2
4+. 

As described earlier, the Ni(0) catalyzed coupling reaction failed to yield 

[(dmb)2Ru(diphen)Ru(dmb)2](PF6)4. Thus, 4,4’-dimethyl-2,2’-dipyridine (dmb) was chosen for 

use with the new synthesis. Initially the procedure used for the synthesis of 

[(dmb)2Ru(diphen)Ru(dmb)2](PF6)4 was the same as the method used for the phen based ligands. 

However, the IR spectrum for the final product of the reaction revealed a single peak at 1977 cm-

1. This indicated that there was still one CO group attached to the ruthenium center. From this IR, 

it was theorized that [(dmb)2Ru(diphen)Ru(dmb)(CO)Cl](PF6)3 was present.  

To confirm the identity of the product of the synthesis, the sample was submitted for ESI-

MS analysis. A peak at 392.4 m/z indicated that (dmb)2Ru(diphen)Ru(dmb)(CO)Cl3+ was 

present. A peak was also seen at 324.6 m/z, which indicated that (dmb)2Ru(diphen)Ru(dmb)2
4+ 

was produced as well. 

 In order to synthesize only [(dmb)2Ru(diphen)Ru(dmb)2](PF6)4, the procedure was 

modified by adding two portions of Me3NO. To begin, (CO)2Cl2Ru(diphen)Ru(CO)2Cl2, dmb, 

and Me3NO were dissolved in nitrogen purged 2-methoxyethanol. After heating the solution to 

reflux for 1 hr, additional Me3NO was added to the solution. The solution was heated for another 

hr. After cooling and filtering, most of the solvent was removed. The remaining substance was 

dissolved in H2O. Saturated NH4PF6 solution was used to precipitate the orange product.  

The IR spectrum for [(dmb)2Ru(diphen)Ru(dmb)2](PF6)4 confirmed the absence of CO 

peaks. UV-Vis analysis was also performed on the sample, and the λmax due to MLCT is at 458 

nm. This is a slight shift from the λmax value of 454 nm for Ru(phen)(dmb)2
2+. CV analysis 
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showed a redox potential of 1.200 V vs SCE, which is a little higher than the redox potential of 

1.161 V vs SCE for Ru(phen)(dmb)2
2+. 

Lastly, ESI-MS was used to positively identify the product, as seen in Figures 3.2.13 and 

3.2.14. The peak at 324.6 m/z indicates (dmb)2Ru(diphen)Ru(dmb)2
4+ was successfully 

produced. Further fragmentation of the complex is seen, which is similar to results for the 

previously analyzed complexes. Data collected for both (dmb)2Ru(diphen)Ru(dmb)2
4+ and 

Ru(phen)(dmb)2
2+ is in Table 3.4.1. 

 Bpy, 2,2’-bipyridine, was also a ligand chosen for the synthesis. The first procedure 

attempted was the same as the one used to attached the phen based ligands. Just as with the dmb 

ligand, the IR spectrum for the product showed that there was still one carbonyl group on at least 

some of the complexes with one peak at 1973 cm-1. It was assumed that 

[(bpy)2Ru(diphen)Ru(bpy)COCl](PF6)3 was present. 

 To confirm the product identity, ESI-MS analysis was performed. A peak at 364.34 m/z 

indicated that (bpy)2Ru(diphen)Ru(bpy)COCl3+ was present, a peak at 499.96 m/z showed that 

(bpy)COClRu(diphen)Ru(bpy)COCl2+ was produced, and a peak at 296.5 m/z showed that 

(bpy)2Ru(diphen)Ru(bpy)2
4+ was also synthesized. 

 To ensure only [(bpy)2Ru(diphen)Ru(bpy)2](PF6)4 was produced, the modified procedure 

used to synthesize was [(dmb)2Ru(diphen)Ru(dmb)2](PF6)4 was used. Again, two portions of 

Me3NO were added. IR was initially used to confirm the absence of carbonyl groups. The UV-

Vis spectrum for [(bpy)2Ru(diphen)Ru(bpy)2](PF6)4 showed the λmax at 452 nm, which matches 

the value for Ru(bpy)3
2+. This value is shifted compared to the λmax at 458 nm for 

[(dmb)2Ru(diphen)Ru(dmb)2](PF6)4, which was due to the added methyl groups on the dmb 

ligand. The λmax for [(bpy)2Ru(diphen)Ru(bpy)2](PF6)4 was also shifted compared to the λmax 
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value of 450 nm of Ru(phen)(bpy)2
2+. While the last two procedures presented some difficulties, 

they have also provided a good means for producing some mixed dimeric complexes by reacting 

the remaining CO with a different ligand. 

CV analysis revealed a redox potential of 1.297 V vs SCE for 

[(bpy)2Ru(diphen)Ru(bpy)2](PF6)4. This is a slightly higher value than that for both 

[(dmb)2Ru(diphen)Ru(dmb)2](PF6)4, 1.200 V vs SCE, and  Ru(phen)(bpy)2
2+, 1.269 V vs SCE. 

Figures 3.2.15 and 3.2.16 are the ESI-MS spectra for [(bpy)2Ru(diphen)Ru(bpy)2](PF6)4. The 

peak at 296.5 m/z is as expected for [(bpy)2Ru(diphen)Ru(bpy)2](PF6)4. The peak at 395.7 m/z is 

expected for (bpy)2Ru(diphen)Ru(bpy)2
3+. Other small peaks could possibly be due to additional 

fragmentation by the quadrupole system used. Data is shown in Table 3.4.1 for 

(bpy)2Ru(diphen)Ru(bpy)2
4+ and Ru(phen)(bpy)2

2+.  

It was determined that the dimeric complexes were free of monomeric complex 

contamination. In most cases, the dimeric complexes were submitted for ESI-MS analysis before 

being further purified. Thus, improved purity could have been seen if subsequent ESI-MS 

analysis was performed. The spectroscopic and electrochemical data collected was in the 

expected range for the complexes being studied. The five ligands reported above were 

successfully reacted with (CO)2Cl2Ru(diphen)Ru(CO)2Cl2 to create a symmetric dimeric 

complex. However, there were additional ligands that were not successfully reacted with 

(CO)2Cl2Ru(diphen)Ru(CO)2Cl2. 

4.5 Failed Ligand Addition to (CO)2Cl2Ru(diphen)Ru(CO)2Cl2 

 Bpz, 2,2’-bipyrazine was synthesized for use in the newly developed synthetic route for 

symmetric dimeric complexes. The procedure was rather lengthy, but a better procedure was not 

found. First, 2-pyrazinecarboxylic acid was dissolved 15 M NH4OH. The solution dried, and the 
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solid was dissolved in a saturated copper(II) acetate aqueous solution. It was then stirred for 1 

hour without heating. The blue solid was filtered, washed, and dried. A sublimator was used to 

pyrolize the solid, and the product was collected. The 1H NMR spectrum was in agreement with 

the literature.  

 Bpz was then used in the newly developed synthesis for symmetric dimeric complexes. 

The first procedure employed was the same as the one used to attach the phen based ligands. The 

Me3NO was added all in one portion. The largest amount of solid fell out during heating, and it 

was a black/purple color. Very little solid fell out with addition on saturated NH4PF6 solution. It 

was found via IR spectroscopy that all of the CO groups were not being replaced. The procedure 

was modified by adding two portions of Me3NO. Again, the largest amount of solid fell out 

during heating, and a small amount precipitated with addition of saturated NH4PF6 solution.  IR 

spectroscopy again indicated that all of the CO groups were not being replaced. Due to the peaks 

at 1966 cm-1 and 2067 cm-1, it was theorized that (bpz)COClRu(diphen)(bpz)COCl2+ was being 

produced. However, further identification was not pursued since it was not the desired complex. 

Bpm, 2,2’-bipyrimidine, was another ligand used in the synthesis. The 1H NMR spectra 

for bpm samples available in the lab were in agreement with the literature. The procedure 

followed to react bpm with (CO)2Cl2Ru(diphen)Ru(CO)2Cl2 was the same outlined for the 

addition of phen based ligands. The behavior of the bpm ligand was very similar to that of the 

bpz ligand. The largest amount of solid fell out of solution during heating. A very small amount 

came out with the addition of saturated NH4PF6 solution. The reaction was modified by adding 

two portions of the Me3NO, but a large amount of solid fell out during heating. Addition of 

saturated NH4PF6 solution precipitated out a very small amount of solid. IR analysis of the 

product when bpm was used as the ligand resulted in peaks at 2006 cm-1 and 2064 cm-1. This 
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indicated that (bpm)COClRu(diphen)(bpm)COCl2+
 was produced, but identification was not 

carried out since it was not the desired complex. 

 Ethylenediamine (en) was also used as a ligand. The first procedure used was the same as 

the one used for attaching phen based ligands. The product fell out during heating. IR 

spectroscopy showed that all of the CO groups were not replaced, so the procedure was 

modified. Instead of using 2-methoxyethanol as the solvent, ethylenediamine was used as 

solvent. Most of the product fell out during heating. Again, all of the CO groups were not 

replaced, as revealed by IR analysis. The peak at 1961 cm-1 was indicative of 

(en)2Ru(diphen)Ru(en)(CO)Cl3+ being synthesized. Product identification was not carried out 

since it was not the target complex. 

 One last modification of the procedure was attempted. Since the products of the reaction 

using bpz, bpm, and en as ligands kept falling out during heating, a solvent with a higher boiling 

point was used. The hope was that the intermediate would stay in solution long enough to react 

completely with the ligands. The boiling point of 2-methoxyethanol is 124 °C, so it was replaced 

with ethylene glycol, which has a boiling point of 197 °C.  

 Phen was the first ligand used to ensure the reaction would work in ethylene glycol. 

(CO)2Cl2Ru(diphen)Ru(CO)2Cl2, phen, and Me3NO were put in nitrogen purged ethylene glycol. 

The solution was heated for 2 hours, cooled, and filtered. Most of the solvent was removed, and 

water was added. Saturated NH4PF6 solution was used to precipitate out the product. The IR 

spectrum of [(phen)2Ru(diphen)Ru(phen)2](PF6)4 confirmed that no carbonyl groups were 

present. UV-vis spectroscopy was performed on the sample, and the λmax at 448 nm was in 

agreement with values found when 2-methoxyethanol as the solvent. 
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Based on the success with the phen ligand, the procedure using ethylene glycol as the 

solvent was used with the bpz ligand. However, the dark purple solid continued to fall out of 

solution during heating, so the addition of bpz and bpm to (CO)2Cl2Ru(diphen)Ru(CO)2Cl2 was 

no longer pursued. The scope of the reaction was investigated further by varying the bridging 

ligand used in the reaction with [Ru(CO)2Cl2]n. 

4.6 Investigation of Bridging Ligands in Improved Synthetic Route for Dimeric 

Ruthenium(II) Complexes 

The scope of the newly developed synthesis was investigated further by differing the 

bridging ligand used in the reaction. Dpp, 2,3-bis(2-pyridyl)-pyrazine, was chosen as the second 

bridging ligand. [Ru(CO)2Cl2]n and dpp were dissolved in 2-methoxyethanol and heated for 20 

minutes. The olive green product fell out during heating and was collected by filtering. The 

product was analyzed using IR. Figure 3.3.1 shows the IR comparison for [Ru(CO)2Cl2]n and 

(CO)2Cl2Ru(dpp)Ru(CO)2Cl2. Peaks due to carbonyl groups are seen at 2053 cm-1, 2075 cm-1, 

2088 cm-1, and 2138 cm-1 for [Ru(CO)2Cl2]n and at 2010 and 2065 cm-2 for 

(CO)2Cl2Ru(dpp)Ru(CO)2Cl2. The decrease from four CO stretching bands to two CO stretching 

bands is consistent with CO groups being replaced during the reaction. 

 The product was used without further purification and reacted with the phen ligand. The 

synthesis used was the same as that described for the addition of the phen based ligands to 

(CO)2Cl2Ru(diphen)Ru(CO)2Cl2. IR spectroscopy was used to confirm the absence of carbonyl 

groups. UV-vis spectroscopy showed a λmax of 446 nm for [(phen)2Ru(dpp)Ru(phen)2](PF6)4, and 

the spectrum is shown in Figure 3.3.3. This was a slight shift compared to the λmax of 448 nm for 

[(phen)2Ru(diphen)Ru(phen)2](PF6)4, but matched the λmax value of Ru(phen)3
2+. From the cyclic 

voltammogram seen in Figure 3.3.4, a redox potential of 1.304 V vs SCE was found. This value 
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was extremely close to the redox potentials of both [(phen)2Ru(diphen)Ru(phen)2](PF6)4, 1.308 

V vs SCE, and Ru(phen)3
2+, 1.309 V vs SCE. Data for [(phen)2Ru(dpp)Ru(phen)2](PF6)4 is 

included in Table 3.4.1.  

 The reaction involving dpp and [Ru(CO)2Cl2]n to create (CO)2Cl2Ru(dpp)Ru(CO)2Cl2 

was successful. Further investigation of bridging ligands was not pursued, but the scope of the 

reaction involving the use of [Ru(CO)2Cl2]n as a starting material was explored. 

4.7 Investigation of Starting Materials in Synthetic Route for Dimeric Ruthenium(II) 

Complexes 

 To investigate the range of starting materials Ru(DMSO)4Cl2 was reacted with diphen 

with the goal of synthesizing (DMSO)2Cl2Ru(diphen)Ru(DMSO)2Cl2. Ru(DMSO)4Cl2 samples 

were synthesized by previous group members. Purity was confirmed via 1H NMR. 

Ru(DMSO)4Cl2 and diphen were heated under nitrogen for 1.5 hr in chloroform. The solution 

was cooled and a yellow solid was collected. After most of the chloroform was removed via 

rotavap, the oily substance was dissolved in acetonitrile. A yellow solid was collected via 

filtration. The filtrate was added drop-wise to ether. A third brownish yellow solid with oily 

patches and low yield was collected on a filter. The first two solids had identical IR spectra, and 

both were used in subsequent reactions. 

 The expected product, (DMSO)2Cl2Ru(diphen)Ru(DMSO)2Cl2, was then used without 

further purification and reacted with the phen ligand to produce 

[(phen)2Ru(diphen)Ru(phen)2](PF6)4. After heating under nitrogen for 3 hrs in dry DMF, the 

solution was cooled. Most of the DMF was removed via rotavap. DI H2O was used to dissolve 

the small amount of filtrate, and saturated NH4PF6 solution was then added. An orange solid was 

collected, dissolved in acetonitrile, and then dropped into ether. The final product was collected 
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via filtration. The product was submitted for ESI-MS analysis. However, 

[(phen)2Ru(diphen)Ru(phen)2](PF6)4 was not seen on the ESI-MS spectrum. The procedure was 

attempted several times, but [(phen)2Ru(diphen)Ru(phen)2](PF6)4 was never confirmed. In 

addition, the yield was low and inconsistent. Thus, the goal of synthesizing 

[(phen)2Ru(diphen)Ru(phen)2](PF6)4 using (DMSO)2Cl2Ru(diphen)Ru(DMSO)2Cl2 as the 

starting material was then abandoned.  

The most likely route of failure to produce [(phen)2Ru(diphen)Ru(phen)2](PF6)4 was due 

to (DMSO)2Cl2Ru(diphen)Ru(DMSO)2Cl2 not being produced in the first reaction. 

(DMSO)2Cl2Ru(diphen)Ru(DMSO)2Cl2 is not detected via ESI-MS, so IR analysis was relied 

upon to show a change in peaks compared to Ru(DMSO)4Cl2. A change was seen, so the 

complex was reacted with phen ligands. When the reaction product was submitted for ESI-MS 

analysis only complexes containing one ruthenium were detected. Other starting materials were 

not examined. The newly developed synthesis for dimeric complexes was next applied to the 

synthesis of monomeric complexes. 

4.8 Dimeric Complex Synthesis Applied to Monomeric Complexes 

 Monomeric analogues of the dimeric complexes were synthesized for comparison. The 

synthesis developed for the dimeric complexes was used to make the monomeric complexes. 

[Ru(CO)2Cl2]n was reacted with phen to produce Ru(CO)2Cl2(phen). The IR spectrum for the 

product was obtained to compare to [Ru(CO)2Cl2]n. It can be seen in Figure 3.4.1 that 

Ru(CO)2Cl2(phen) has CO stretching peaks at 1973 cm-1 and 2054 cm-1, which is consistent with 

symmetric and asymmetric stretching bands for a complex containing two carbonyl groups. 

 Ru(CO)2Cl2(phen) was used without further purification. Dpphen was reacted with 

Ru(CO)2Cl2(phen)  and Me3NO in 2-methoxyethanol to produce [Ru(phen)(dpphen)2](PF6)2. IR 
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analysis confirmed the absence of carbonyl groups, as can be seen in Figure 3.4.2. UV-vis 

analysis showed a λmax value of 456 nm, as seen in Figure 3.4.4. The phenyl groups cause a shift 

compared to Ru(phen)3
2+, 446 nm. The redox potential for [Ru(phen)(dpphen)2]

2+ was 

determined to be 1.236 V vs SCE and is slightly lower than 1.309 V vs SCE for Ru(phen)3
2+. 

 Tmphen was the next ligand chosen for the reaction. The reaction was carried out as 

described above for [Ru(phen)(dpphen)2](PF6)2. The [Ru(phen)(tmphen)2](PF6)2 sample was first 

analyze with IR and showed the carbonyl groups were no longer on the complex. The λmax value 

found via UV-vis spectroscopy was 427 nm. Again, there was a shift due to the methyl groups 

from the λmax of 446 nm for Ru(phen)3
2+. CV analysis showed a redox potential of 1.107 V vs 

SCE for [Ru(phen)(tmphen)2]
2+ , as shown in Figure 3.4.5. This value is lower than the redox 

potential for Ru(phen)3
2+, 1.309 V vs SCE. 

 Bpy was the next ligand reacted with Ru(CO)2Cl2(phen). Initially the same procedure 

used for the dpphen and tmphen ligands was used. However, the IR spectrum revealed that there 

were still carbonyl groups on the complex, as shown in Figure 3.4.3 with a peak at 1963 cm-1 for 

[Ru(phen)(bpy)2](PF6)2. A modified procedure was then adapted to synthesize 

[Ru(phen)(bpy)2](PF6)2. Ru(CO)2Cl2(phen) was again heated with bpy and Me3NO. The 

procedure was modified by adding more Me3NO halfway through the reaction time. Unlike with 

the dimeric ruthenium(II) complexes with dmb and bpy ligands, this procedure was not 

successful. The IR spectrum showed a CO stretching peak again at 1963 cm-1. From the UV-vis 

spectrum, the λmax of the sample was determined to be 450 nm. This value is in the expected 

range and comparable to the (bpy)2Ru(diphen)Ru(bpy)2
4+ λmax of 452 nm. The redox potential of 

1.269 V vs SCE was also in the expected range for the complex and close to the value of 1.297 V 
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vs SCE for (bpy)2Ru(diphen)Ru(bpy)2
4+. The sample was used in further studies as a 

comparison.  

 Dmb was the last ligand reacted with Ru(CO)2Cl2(phen). The same procedure used with 

the dpphen and tmphen ligands was first employed. As with the bpy ligand, the IR spectrum 

showed a carbonyl stretching peak at 1965 cm-1. The modified method used with the bpy ligand 

was attempted. Again, a carbonyl stretching peak was a seen at 1965 cm-1 on the IR spectrum for 

the sample. The λmax was found to be in the expected range for the complex with a value of 454 

nm. The redox potential was 1.161 V vs SCE was also in the expected range for the complex. 

The product was used as a comparison in subsequent studies. Spectroscopic and electrochemical 

data collected for the monomeric complexes, including [Ru(phen)3](PF6)2, is shown in Table 

3.4.1. Photochemical trials were first researched using the dimeric complexes. 

4.9 Photosubstitution Reactions of Dimeric Ruthenium(II) Polypyridine Complexes  

 Preliminary photochemical experiments were performed using 

[(phen)2Ru(diphen)Ru(phen)2](PF6)4. The first trials were carried out using 

[(phen)2Ru(diphen)Ru(phen)2](PF6)4 and tetrabutylammonium bromide in dichloromethane. The 

yellow solution was stirred while being irradiated with a 300 watt, 120 volt bulb “sunlamp” with 

no filtering. The solution was cooled by using a condenser hooked to a cold water circulator. 

UV-Vis spectroscopy was performed on the solution at intervals during the irradiation. The 

solution turned from yellow to a golden color during irradiation. The compiled UV-Vis spectra 

for [(phen)2Ru(diphen)Ru(phen)2](PF6)4 is shown in Figure 3.5.1. 

 It can be seen from Figure 3.5.1 that the peak at 448 nm decreases in intensity during 

irradiation. This peak correlates to the (phen)2Ru(diphen)Ru(phen)2
4+ concentration. After a 

period of UV irradiation a second peak appears around 550 nm, which indicates a product is 
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being formed due to a photochemical reaction. The decrease in the peak at 448 nm and 

appearance and increase over time of the peak at 550 nm is as expected for a photosubstitution 

reaction where a phen ligand on (phen)2Ru(diphen)Ru(phen)2
4+ is removed and replaced by 

bromines. 

 Additional trials were performed on [(phen)2Ru(diphen)Ru(phen)2]Br4, which was 

produced from [(phen)2Ru(diphen)Ru(phen)2](PF6)4 using ion exchange resin. The procedure 

was the same as with [(phen)2Ru(diphen)Ru(phen)2](PF6)4, only tetrabutylammonium bromide 

was not added. The results were reproducible when compared to the photochemical reaction 

using [(phen)2Ru(diphen)Ru(phen)2](PF6)4, and the UV-vis specta for the reaction over time are 

shown in Figure 3.5.2.  

 In an attempt to identify the product of the photochemical reaction, the solvent was 

evaporated from the [(bpy)2Ru(diphen)Ru(bpy)2]Br4 solution, and the solid was sent for ESI-MS 

analysis. ESI-MS analysis was inconclusive. It was thought that the bromine displaced some of 

the ligands during the photochemical reaction, so several attempts were made to replace the 

bromines with a ligand that would enable ESI-MS analysis.  

One attempt began with evaporating the dichloromethane from the photochemical 

reaction product and heating the product with water. The progress of the reaction was monitored 

by UV-vis spectroscopy and is seen in Figure 3.5.3. Upon irradiating 

[(phen)2Ru(diphen)Ru(phen)2]Br4 in dichloromethane, the 448 nm 

[(phen)2Ru(diphen)Ru(phen)2]
4+ peak decreased, and the product peak at 550 nm appeared and 

increased. After heating the product with water, the peak at 448 nm did not change, which 

indicated that the concentration of [(phen)2Ru(diphen)Ru(phen)2]
4+ also did not change. The 
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peak at 550 nm decreased as expected when the bromines on the reaction product were replaced 

by water. 

 Next, bpy was added and the solution was again heated. In Figure 3.5.3, it is seen that 

after heating with bpy, the peak at 448 nm increased. This indicated that the H2O ligands were 

replaced by bpy ligands to form (phen)2Ru(diphen)Ru(phen)(bpy)4+. The sample was sent for 

ESI-MS analysis, but the results were inconclusive. 

 A 1000 watt Xe bulb was also used to irradiate a [(phen)2Ru(diphen)Ru(phen)2]Br4 

sample. Upon irradiation, the peak at 448 nm decreased. However, the peak at 550 nm was not 

seen. The baseline is raised over time in the 550 nm region, but a distinct peak is not seen. Figure 

3.5.4 shows the results. The differing reactions between the 300 watt, 120 volt bulb “sunlamp” 

and the 1000 watt Xe bulb were more than likely caused by the increased power of the 1000 watt 

Xe bulb. Due to the inability to easily identify the photosubstitution reaction products for the 

dimeric complexes further studies were not conducted. The focus then turned to the investigation 

of the photoredox reactions for the dimeric complexes as compared to the analogous monomeric 

complexes.  

4.10 Photoredox Reactions of Ruthenium(II) Polypyridine Complexes 

 The photoredox reactions of the dimeric complexes were studied through a series of 

quenching reactions. The analogous monomeric complexes synthesized in this work were used 

as comparisons. When possible, the results were compared to literature values. The dimeric 

complexes used in this study are weakly coupled and should behave similarly to the monomeric 

complexes.  

 Fe3+ was used as an oxidative quencher, and the excited lifetimes of Ru(bpy)3
2+, 

Ru(phen)(bpy)2
2+, and (bpy)2Ru(diphen)Ru(bpy)2

4+ were studied. Solutions were made in 0.5 M 
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H2SO4. The lifetime value in the absence of the quencher, τo, was first determined for each 

complex. The values were determined to be 590 nsec for Ru(bpy)3
2+, 690 nsec for 

Ru(phen)(bpy)2
2+, and 1000 nsec for (bpy)2Ru(diphen)Ru(bpy)2

4+. These values are tabulated in 

Table 3.6.1. Lifetimes for the complexes were then determined for quencher concentrations over 

a range of 0-5 nM Fe3+. The relative excited state lifetimes, τo/τ, were plotted as a function of the 

quencher concentration, and the resulting linear Stern-Volmer plots can be seen in Figure 3.6.1. 

The relative standard deviation of the slope, RSD, was determined to be relatively low with 

values between 3 and 6%.  

 For each complex, the slope of the line was then divided by the lifetime to find kq, since 

slope = τokq. The kq value for Ru(bpy)3
2+ was 2.5 x 108 M-1s-1, which was comparable to the kq 

values for Ru(phen)(bpy)2
2+, 2.6 x 108 M-1s-1, and (bpy)2Ru(diphen)Ru(bpy)2

4+, 2.3 x 108 M-1s-1. 

Thus, the monomeric complexes and the dimeric complexes behave similarly. The kq values are 

presented in Table 3.6.1. When possible, the experimental rate constants were compared to 

values reported in the literature, and the results were in agreement. 

 Excited state lifetimes in the absence of quencher were obtained and compared for the 

other complexes. Values collected using 0.5 M H2SO4 resulted in higher excited state lifetimes 

for the dimeric complexes than the monomeric complexes. This was not expected based on 

previous results for the bpy based complexes obtained by the group. Looking back at the 

previously obtained data, acetonitrile was used in the trials in which the monomer lifetime was 

longer than the dimer lifetime. Excited state lifetimes for Ru(phen)3
2+ and 

(phen)2Ru(diphen)Ru(phen)2
4+ were then collected in acetonitrile. As expected, the lifetimes 

found were 1120 nsec and 960 nsec for Ru(phen)3
2+ and (phen)2Ru(diphen)Ru(phen)2

4+, 

respectively. This difference in lifetimes between solvents indicates there is solvent 
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reorganization taking place. Excited state lifetime values for the complexes are shown in Table 

3.4.1. 

 Flash photolysis was used to study the back reaction following the quenching reaction 

and the yields of the oxidized ruthenium complexes. Cu2+ and Fe3+ in 0.5 M H2SO4 were the 

chosen quenchers. The back reaction follows second order kinetics, and the kback values were 

determined by fitting the data with the GNOME Gnumeric program. These values are assembled 

in Table 3.6.2 for the Fe3+ solutions and in Table 3.6.3 for the Cu2+ solutions. The yields for the 

oxidized ruthenium complexes are also included in the tables. When possible, values were 

compared to the literature and were found to be in agreement.  

 In both 10 mM and 50 mM Fe3+, the kback values are comparable for the same complex. 

The same is seen for 10 mM and 50 mM Cu2+ kback values. For both quenchers, comparison of 

the kback values between the dimer and the analogous monomer shows the values are similar. 

This is expected for monomeric and dimeric complexes that are acting similarly.  

 The cage escape yields are extremely low for both the 10 mM and 50 mM Cu2+ solutions. 

From this it was decided that the laser system could not provide enough flux to allow adequate 

quenching for the studies. The cage escape yields for Fe3+ are increased compared to those for 

Cu2+, but the values are still lower than expected. Again, this is due to the laser not providing 

enough flux to excite most of the ruthenium centers. 

To account for the inadequate flux, the efficiency, η, was determined for Ru(phen)3
2+ and 

(phen)2Ru(diphen)Ru(phen)2
4+ with 50 mM Fe3+. The efficiency takes into account the fact that 

only a fraction of the ruthenium centers are being excited by the laser (Kalyanasundaram, 1991). 

The calculated efficiencies were 93% for Ru(phen)3
2+ and 95% for 
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(phen)2Ru(diphen)Ru(phen)2
4+. The comparable efficiency values for the monomeric and 

dimeric complexes indicate that both ruthenium centers are acting as independent units. 
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5.1 Conclusions 

 An improved synthetic method for dimeric ruthenium(II) polypyridine complexes was 

developed, and the photochemistry of the complexes was studied. When developing the new 

synthetic method, the range of reaction was investigated. The first aspect researched was the 

scope of ligands. Phen, dpphen, tmphen, bpy, and dmb were all successfully reacted with 

(CO)2Cl2Ru(diphen)Ru(CO)2Cl2 to produce symmetric dimers. Conversely, when bpz and bpm 

were reacted with (CO)2Cl2Ru(diphen)Ru(CO)2Cl2, the symmetric dimer was not produced. 

Even after increasing the amount of Me3NO and trying a different solvent, the bpz and bpm 

ligands would not replace the last carbonyl group.  

The second range of the reaction examined was the bridging ligand. Dpp was 

successfully reacted with [Ru(CO)2Cl2]n to produce (CO)2Cl2Ru(dpp)Ru(CO)2Cl2, from which 

[(phen)2Ru(dpp)Ru(phen)2](PF6)4 was synthesized. The third range of the reaction studied was 

the starting material. Ru(DMSO)4Cl2 failed to react with diphen to create 

(DMSO)2Cl2Ru(diphen)Ru(DMSO)2Cl2. The successful complexes with the form 

L2Ru(diphen)RuL2 were found to be free from monomeric complex contamination via ESI-MS, 

and these were chosen for use in photochemical studies.  

The improved synthetic method for dimeric complexes was applied to monomeric 

complexes. Phen was successfully reacted with [Ru(CO)2Cl2]n to create Ru(CO)2Cl2(phen). 

Dpphen, tmphen, bpy, and dmb were then reacted with Ru(CO)2Cl2(phen) to create monomeric 

complexes of the form Ru(phen)L2. The spectroscopic and electrochemical data for the dimers is 

comparable to the data for the analogous monomers. This implies that the dimeric complexes are 

weakly coupled and each ruthenium unit is acting independently. 
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The first photochemical investigation involved photosubstitution reactions. When 

(phen)2Ru(dpp)Ru(phen)2
4+  was irradiated with a 300 watt, 120 volt bulb “sunlamp”, over time 

a decrease in the reactant peak was seen, as well as the appearance and increase of a product 

peak. The results were reproducible when using the same lamp. Several failed attempts were 

made to replace the bromines on the photosubstitution reaction product with ligands that would 

allow the complex to be detected via ESI-MS. Thus, the photosubstitution product was never 

successfully identified.  

 Additional photochemical investigations looked at the photoredox reactions of the 

dimeric complexes. The influence of the oxidative quencher Fe3+ on the lifetime of the dimers 

and monomers was investigated. The kq values determined for Ru(bpy)3
2+, Ru(phen)(bpy)2

2+, and 

(bpy)2Ru(diphen)Ru(bpy)2
4+ were all comparable. This implies that the dimeric complex is 

weakly coupled.  

 The back reaction that takes place after the quenching reaction and the yield of the 

oxidized ruthenium complexes were studied. Fe3+ and Cu2+ were the chosen quenchers. The kback 

values for both quenchers were as expected and comparable among the complexes. This is 

consistent with the dimeric complexes acting similarly to the monomers. The cage escape yields, 

however, were much lower than expected due to inadequate flux from the laser used to excite the 

samples. The efficiencies found for Ru(phen)3
2+ and (phen)2Ru(diphen)Ru(phen)2

4+ were similar 

and support the assertion that both ruthenium centers are acting independently. Thus, it was 

found that both ruthenium centers in the dimeric complex can be excited and both centers can be 

oxidized. 
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