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ABSTRACT 

 

       Colloidal semiconductor nanocrystals (quantum dots) have received a great deal of attention 

due to their superior size tunable properties and promising applications in many areas. Some of 

the most practical areas of their applications include light emitting diodes (LED), photovoltaic and 

biological studies. Synthetic methods of these crystals is becoming more established with new 

strategies being reported every now and then. However, quantitative studies connecting the 

processes at the interface, namely core-ligand, core-shell and shell-shells, to the overall quantum 

dots fluorescence properties are not well understood. Specifically for cores, relating surface-atoms 

interactions, solvents, ligands nature, density and functional groups on quantum yields have not 

been exhaustively carried out. Furthermore, for the core/shell counterparts, the connection between 

the qualities of the starting core on its resulting core/shell quality have been left trivial without 

experimental back up. Here, we summarize the reports of experiments that have systematically 

investigated these effects on the properties of quantum dots. Combining systematic synthetic 

approach with characterization tools such as FTIR, X-ray photoelectron and diffraction together 

with time resolved visible spectroscopies, we observed that the density, nature and the orientation 

of the ligand functional groups play significant roles in determining the charge carrier dynamics 

that results on the various quantum yields and quality of the quantum dots. The experimental 

results also contradicted the trivial belief that starting with a high quality core material should 

result into high quality core/shell quantum dots. We further extended these studies by controlling 

both lattice mismatch and exciton confinement potential to design small, biologically friendly and 

highly stable core/shell/shell material. Blinking studies confirmed an interplay of both lattice strain 

and exciton confinement as the major factors responsible for the blinking dynamics of these 

core/shell/shell quantum dots. Therefore, by controlling these parameters, we were able to observe 



reduced blinking quantum dots with relatively moderate shell thickness. These observations will 

provide a useful insight while designing these particles and enhance their future applications. 
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Chapter 1. Introduction 

 

       Colloidal semiconductor nanocrystals also known quantum dots are tiny materials with their 

sizes ranging in a nanometer scale.[1] One of the unique feature of these crystals is that their optical 

and electronic properties can be tuned depending on the material, shape or the size.[2] Photo-

excitation of these materials with energy equal to or greater than their band gap energy (Eg), leads 

to the migration of electron to the conduction band leaving back the hole in valence band. This 

creates an electrostatically bound electron and hole pair with their lowest energy state known as 

exciton. 

1.1. Classification of semiconductor nanomaterials 

The number of confinement dimensions of excitons in these nanomaterials leads to three major 

classifications, as follows. 

1.1.1. Quantum well. A Quantum well is the structure whereby the electrons and holes are 

confined in only one dimension and are thus free to move in two dimensions. They are referred to 

as two dimensional nanomaterials (2D) 

1.1.2. Quantum wire. A Quantum wire is a nanomaterial in which the electrons and holes are 

confined in two dimension, leaving only one free dimension. They are hence called one 

dimensional materials (1D). 

1.1.3. Quantum Dot (QD). A Quantum dot is a structures in which the holes and electrons are 

confined in all the three dimensions leaving zero dimension of movement. They are hence called 

zero dimension (OD) or three dimension (3D). Typically the dimensions of QDs range between 1 

to 100 nm. This work will focus on this class of semiconductor nanocrystals. 
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 1.2. Quantum confinement effects 

        Photo-excitation of quantum dots, generates an exciton pair as explained above. For a material 

to experience quantum effects, it must be confined into a limited distance smaller than the Bohr 

exciton radius which is a constant specific to each type of material. For example, from table 1.1 

the most commonly studied quantum dots is CdSe with a Bohr exciton radius of 4.9 nm. This 

means that as the size of bulk CdSe is reduced towards nanometer regime, it only begin to undergo 

quantum confinement when its dimensions reach 9.8 nm, the Bohr Exciton diameter. Like a 

particle in a box, when the exciton is confined to this limited space, its energy exhibits discrete 

values that depends to the mass of the particle and the dimensions of the confining area according 

to equation 1.1: 

                                    𝐸𝑛 =
𝑛2ℎ2

8𝑚𝐿2                                                                                               1.1 

where n and L are the wave function quantum number of the particle in the box and the length of 

the box, respectively, and correspond to the mass and the diameter for the case of quantum dots.                                                     

At the same time, its band gap energy (Eg), which is the minimum energy needed to excite and 

electron from the valence band to the conduction band, increase as the size diminishes as shown 

in (figure 1.1a.). This effect is known as ‘quantum confinement’ and is the cause of the different 

optical and electrical properties exhibited by quantum dots as their sizes are varied. However, 

when the length of the material is greater than this constant, it exhibits bulk properties which are 

characterized by a continuum of bands with a corresponding smaller band gap energy. Therefore, 

quantum dots show properties that are neither of their molecular or bulk counterparts, but size-

dependent properties that lie in between. (figure1.1b)  

 



3 
 

 

Figure 1.1a: Evolution of quantum dots color, bands and band gaps as size decreases showing 

quantum confinement effect. 

 

 

Figure 1.1b: Differences in nature of band energies of bulk, nanomaterial and molecules.  

 

1.3. Optical Properties of quantum dots 

 

         Due to the quantum confinement effects, absorption and emission spectra can be tuned by 

the size of quantum dots. For example, quantum dots composed of the prototypical material 

CdSe[3] can be tuned to emit light from red to blue as the particle size becomes smaller (figure 

1.1a). Also, given that a typical quantum dot consist of about 102- 105 atoms, resulting in large 



4 
 

surface area to volume ratios, surface effects also contribute significantly to the optical properties. 

Therefore, for superior optical properties, both quantum confinement and surface effects must be 

optimized.  

     Different types of quantum dots have been classified depending on the position of the elements 

used in the periodic table (table 1.1). Therefore, type II-VI semiconductors include, CdE (E = Se, 

S, Te)[4] and type III-V include InP and InAs. Also, ternary types such as CuInE [5], I-III-VI, 

have been reported. Because of the different Bohr radius and band gap energy (table 1.1) each of 

these types of quantum dots undergo different degrees of exciton confinement resulting in different 

properties, which can be used for a variety of different applications. For instance, high chemically 

stable quantum dots with monodisperse size distribution, high photoluminescence quantum yields 

(QYs) for optimized brightness and narrow emission spectra are advantageous for biologically 

related applications.[6] Furthermore, the arrangements of atoms in each of these types of quantum 

dots into either hexagonally or cubic structures results into further classification as either wurtzite 

or zinc blende, respectively (table 1.1), which also affect their optical properties. [7, 8]  

        This dissertation was focused on type II-VI quantum dots, specifically CdTe and CdSe, since 

these are the most promising for bioimaging applications due to  their unique photoluminescence 

spectra.[9-12] Even though, quantum dot cores can be related to a particle in a box system, exciton 

confinement is never perfect due to their finite potential energy barrier leading to the possibility 

of quantum mechanical tunneling of the hole and/or the electron to the surface of the quantum dots 

upon excitation. The available dangling bonds from the ligands and atoms at the surface these 

materials act as surface trap states which require passivation to increase radiative pathways. 

Otherwise, these trap states act as non-radiative pathways through which excited electrons or holes 

decay thereby reducing their photoluminescence quantum yield.  
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             To reduce these surface trap states, the quantum dots are usually coated using a shell 

material resulting into a core/shell system. Furthermore, a proper choice of a shell material relative 

to the core may be used to further tune their properties for a specific application as the extent of 

exciton confinement varies. Currently, there are four major classes of core/shell systems (figure 

1.2) that can be engineered depending on the band gap position of the core relative to that of the 

shell material used. Type I e.g. CdSe/ZnS results when the valence and conduction bands of the 

shell are lower and higher, respectively, than those of the core, therefore, both electron and hole 

are confined within the core thus increasing their wave function overlap which results into high 

fluorescence quantum yield.[13] Type II e.g. CdTe/CdSe results when either the conduction or 

valence band of the shell is situated within the band gap of the core thus forming two staggered 

systems. 
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Figure 1.2. Schematic of band gap energy overlap in different types of core/shell quantum dots. 

The inner rectangular blocks represent the cores while the outer ones represent the shell band-gap 

energies, respectively. 

 

           This is where the electron and the hole are confined in the shell and hole, respectively or 

vice versa, lowering the energy required for the exciton recombination. The separation of charges 

lowers the fluorescence quantum yields but makes them more advantageous for application in solar 

cells.  On the other hand, reverse type I e.g. ZnSe/CdSe results when the valence and conduction 

bands of the shell are higher and lower, respectively, than those of the core, therefore, both electron 

and hole are confined within the shell. These systems are more useful as NIR emitters as the 

recombination energy is minimized, therefore, the electron and hole recombination leads to 

emission in longer wavelengths. Recently reported [14] is the Quasi-type II in whereby the 

conduction band energy of either the core or the shell are of the same energy while that of the 

valence varies. Similar to Type II, one charge carrier is delocalized over all the system while the 

other is confined in the core. Another interesting but rather challenging parameter that can also be 

used to tune the properties of quantum dots are the lattice constants of the core and shell [2] 

materials. Table 1.1 lists some of the common lattice constants. Similar to the band gap energy 

consideration, proper choice of materials with minimized lattice mismatch is critical to optimize 

the optical properties.[6, 15] In other words, a balance between confinement from the band gap 

offset and lattice mismatch is necessary when engineering both core/shell and core/shell/shell 

quantum dots.  
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Figure 1.3. Lattice mismatch and band gap overlap of semiconductor quantum dots as used in   

chapter 4. 

 

 

             For instance, among type II-VI quantum dots, coating CdSe core with several layers of 

ZnS shell is the most commonly studied core/shell system.[16, 17] Given the larger band gap of 

ZnS compared to CdSe (table 1.1 and figure 1.3), the charge carries are both confined within the 

core, thus improving their wavefunction overlap, and thus radiative rate. However, the lattice 

mismatch between CdSe and ZnS is ~ 12 % (figure 1.3) and significantly limits the thickness of 

the shell that can be grown on the core. As the shell grows thicker, the pressure between the core 

and the shell induce interfacial defects which consequently leads to deformation of the shape as 

shown in figure 1.4. Also, these defects may further act as trap states that promote nonradiative 

pathways that lead to a reduced quantum yield as the shell thickness increases as observed by 

several studies.[1, 16-18] Dabbousi et al, [1] reported on a dramatic increase in the 

photoluminescence quantum yield followed by a steady decline after ~ 1.3 monolayers of  ZnS shell  

thickness grown over a CdSe core.  
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Figure 1.4. TEM Images for CdSe/ZnS. The QDs shape deviates from the original spherical as the 

shell thickness increases probably due to accumulation of strain between CdSe and ZnS. (Scale 

bar is 10 nm) 

 

Here a monolayer thickness of ZnS refers to a shell of ZnS that is 3.1 Å long (the distance between 

consecutive planes along the [002] axis in bulk wurtzite ZnS).[1] Also, another feature observed 

was the elimination of a broad deep trap emission of bare CdSe upon ZnS shell growth. 

Furthermore, they observed a small red shift with shell thickness which is attributed to the partial 

tunneling of the exciton wavefunction into the ZnS shell 

       On other related studies, Talapin et al [18] reported on a maximum PL quantum yield of about 

66 % after ~ 1.6 ML of ZnS shell on CdSe core. Also, Nguyen et al [13] investigated the effect of 

shelling CdSe core with ZnS and found the same trend of increase in intensity followed by a steady 

decrease. Their study involved changes in PL quantum yield as a function of reaction time after 

annealing at 150oC.They observed that the best PL quantum yield was after 5 min reaction and 

longer times reduced the yield even though the size increased. This trend was also reported by 

Heyes et al [16] who found that their maximum QY was with 3.5ML ZnS.  

       On the other hand, adding a CdS shell instead of ZnS shell on CdSe core is known to minimize 

the lattice mismatch and provide better crystalline particles. The lattice mismatch between CdSe 

and CdS is ~ 4% (figure 1.4) and a thicker shell, even more than 5 nm (14 monolayers) can easily 
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be grown.[15, 19] However, since CdSe/CdS is a quasi-type II system, the electron wave function 

in CdSe/CdS core/shell system is delocalized in the whole core/shell structure, as explained above. 

Consequently, the degree of electron-hole wave function overlap is minimized, therefore reducing 

radiative recombination rates compared to the ZnS shell. Despite this limitation, a number of 

studies have focused on the smaller lattice mismatch to grow highly crystalline particles which 

consequently had almost unity fluorescence quantum yields, [6, 15, 20] highlighting the 

importance of controlling non-radiative pathways in core-shell quantum dots.  

        Recently, Peng et al [20] reported on zinc blende CdSe/CdS core/shell quantum dots with 

fluorescence quantum yield of 80 % at 4 monolayers shell thickness, and  Bawendi et al[6] reported 

up to 97 % fluorescent QY CdSe/CdS QDs. The latter report used the common Cd-oleate as the 

Cd precursor but used octanethiol as the source of S precursor. The low reactivity of the S 

precursor, induced by the strong carbon-sulfur bond, enabled them to grow high crystalline 

quantum dots. Both studies, observed a decline in quantum yield with increasing shell thickness 

after some optimum. This observation can be attributed to the generated trap states that results 

from the lattice strain at the interface between the core and the shell as the shell thickness increases. 

Burda et al[21] reported that, due to the coherency strain at the interface between the core and the 

shell, the shell material adopts the lattice parameters of the core when the shell is thin but,  as the 

shell thickness increases, it reverts to the lattice parameters of the shell material, resulting in 

dislocations between the shell and the core due to the lattice differences which act as trap states 

and lowers the fluorescence quantum yields. By extension, for core/shell/shell systems, without a 

proper strategy, it may result in quantum dots with compromised optical properties as the 

additional shell further spreads the defects. Therefore, considering the discussion above, this thesis 

is focused on systematically controlling these parameters, namely the band gap and lattice 
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mismatch to synthesize high quality quantum dots in various core, core-shell and core-shell-shell 

configurations. 

        Apart from the photoluminescence, the quality of quantum dots are also verified using their 

absorption features. In fact, the initial information about the quantum dots is revealed by the 

absorption spectra whereby well resolved peaks associated with the band-edge absorption signifies 

highly-crystalline particles.[3] It is well-known that the broad absorption spectra of quantum dots 

facilitates excitation at various wavelengths and offers more advantage over organic fluorescence 

dyes in bioimaging applications.[14] Furthermore, the size distribution of the quantum dots can be 

estimated using full-width at half maximum, calculated from the emission spectra. Similar to both 

absorption and emission, the quantum dots fluorescence lifetime (τ) is another measurable optical 

properties of quantum dots. Generally, the excited state lifetime of quantum dots tend to be longer 

(˃ 10 ns) than those of the organic fluorescence dyes and autofluorescence  [5, 14] which makes 

them better candidates for bioimaging applications. 

1.4. Structural Properties of quantum dots 

 

         In order to conclusively understand the nature of quantum dots, their structural 

characterization needs to be carried out effectively. Even though shelling of quantum dots has been 

shown to improve their optical properties, especially their photoluminescence quantum yields,[1, 

22] evidence also exits that the passivation provided by the shell material is not perfect[23] and 

sometimes results in completely dark particles.[24] 

        Several factors, such as reaction conditions, lattice mismatch and variation in reactivity of 

some crystal planes (facets) leads to uncontrollable shell distributions. For instance, it was reported 

that the most reactive facet in CdSe cores is the (001) plane and the proper choice of the initial 

shell layer, whether cationic or anionic, dictates the overall quality of the quantum dots. [25] Also 
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another study relating trap-states to the distribution of the shell material [26] emphasized that the 

growth of a simple ZnS shell on CdSe is not enough for optimal properties, as it leads to highly 

anisotropic shell growth.[26] Therefore, in order to obtain clear information about quantum dots 

shape, size and structure, further characterization tools such as transmission electron microscopy 

(TEM), high resolution-(HRTEM) and X-ray diffraction techniques are required. In fact, 

successful shell growth has been quantified using HRTEM in certain studies.[2, 20, 27-30] 

             On the other hand, the X-ray diffraction patterns or HRETEM images are usually used to 

study the crystallinity and structure of quantum dots. Nevertheless, limitations still exist to 

accurately verify the difference before and after the shell growth using TEM, which depends on 

the material used as well as the size distribution.[13] In such cases, more advanced techniques 

have proved more reliable. For instance, scanning transmission electron microscopy (STEM) 

coupled with electron energy loss spectroscopy (EELS) are more advanced techniques that are 

used to identify the elemental distribution across quantum dots.[27, 28, 30-33] Other useful 

techniques for quantification are energy dispersive x-ray spectroscopy(EDX) and x-ray 

photoelectron spectroscopy(XPS).While the former can give information about the core/shell 

structure, the latter is more sensitive to the surface structural properties and can also be used to 

investigate the shell thickness.[34] The details of operation for these instruments are discussed in 

chapters 2 to 5. 

1.5. Blinking 

 

      At the single particle level, quantum dots, under continuous illumination, show intermittency 

in their fluorescence emission, a behavior commonly known as blinking. They fluctuate between 

fluorescent and dark states, referred to as on and off, respectively. After its discovery in quantum 

dots by Nirmal et al in 1996,[35] this behavior was also reported in molecular dyes and fluorescent 
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proteins.[36] There is a general agreement so far that this limiting behavior is a consequence of 

charge carrier trapping, however, the exact mechanism is a big area of debate and still undergoing 

extensive research. Some groups[37, 38]  defend the charging model, which was the first model 

proposed, whereby the trapping of a charge carrier is believed to leave a charged quantum dot 

which undergoes fast non-radiative Auger recombination. On the other hand, other groups [15, 19] 

support the non-radiative recombination model in whereby a trapped charge carrier can recombine 

non-radiatively with its counter charge carrier promptly after each excitation event causing the low 

fluorescent quantum yield. 

       Klimov et al [39] recently reported two types of blinking, A-type (conventional) and B-type 

whereby the former is associated with the charging and discharging of the quantum dots core 

resulting into lower photoluminescence intensities which correlate with the shorter 

photoluminescence lifetimes. B-type on the other hand was attributed to the charge fluctuations in 

the electron accepting surface sites. By applying appropriate voltage, they were able to control and 

completely suppress blinking of the quantum dots. They found that even on the same quantum 

dots, B-type blinking can be eliminated by thicker shells while A-type could still blink even at 

shell thickness of about 19 ML implying that blinking phenomenon is a consequence of the nature 

of the physical mechanisms and not the variations from quantum dot to quantum dot.[39]  

        Cordones and Leone[40], recently summarized three ways of blinking analysis methods as 

namely: Change point detection, autocorrelation, and bin and threshold methods. The first one, 

which was originally reported by Watkins and Yang[41] uses the Bayesian information criterion 

(without thresholding). This method allocates each duration at a given intensity to an emissive 

state determined from the statistically-relevant intensity change points from individual photon 

arrival times (without binning). The second method uses the photon autocorrelation function, 
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which is commonly used when shorter timescale dynamics are of more interest. In the last method,  

blinking traces are obtained by integrating the fluorescence counts into 1-100 ms time bins. This 

is the most widely used method in blinking analysis and the method used in this thesis  in chapter 

4. Briefly, a blinking trace is binned in such a way that the signal to noise ratio is high followed 

by setting a threshold which separates the on and off events. From these events, a probability 

distribution is then calculated which is then plotted in terms of a probability distribution function 

( or probability density).[40] Off-state durations are usually found to follow an inverse power low 

distribution while the on –states are generally found to be inverse power law distributions but with 

an exponential decay cut off at longer timescales (usually several seconds), as described by 

equations 1.2 and 1.3, respectively. 

𝑃𝑜𝑓𝑓(𝜏) 𝛼  𝜏−𝛼                                                              1.2 

 

𝑃𝑜𝑛(𝜏) 𝛼  𝜏−𝛼𝑒−𝜏/𝜏𝑐                                                       1.3 

 

where, α is the power law exponent with typical values between 1 and 2. The cross-over time 

τc shows the characteristic time of the exponential cut off.  

 

 

1.6. Synthesis of quantum dots 

 

       Since the discovery of quantum dots, the two major methods of synthesis that have been 

reported involve deposition on a substrate or dispersion in a solution. The latter, which is famously 

known as colloidal synthesis is the most popular among chemists, since it offers exquisite 

processibility for a wide variety of applications.  It involves chemical reaction of precursors to 

form an inorganic material on nanometer scales. At an appropriate temperature specific to the 

material being synthesized, the precursor atoms nucleate, forming a seed material on which 
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continuous deposition of solid products results in an increase in the size and control over the shape 

of the quantum dots.  

1.6.1. Core synthesis 

 

          As briefly introduced above, the general colloidal synthesis of semiconductor quantum dots 

involves nucleation of ionic and cationic precursors. This happens in the presence of both 

coordinating and non-coordinating solvents to form an inorganic nanomaterial surrounded by 

organic ligands. Basically, the process begins by rapid chemical disintegration of the precursor at 

high temperature and forming a large number of nuclei once the solution becomes supersaturated. 

Once the concentration of precursors drops below the supersaturation condition, the precursors 

then continue to deposit on the nuclei until the size of the particles increase to the desired size, at 

which point, the temperature is quenched. The details of their synthesis are given in chapters 2 to 

4 but the general competing synthesis protocols involves the use of dimethyl cadmium and 

CdO/oleic acid (to form Cd-oleate) as the cadmium precursors. 

         Before the CdO precursor was introduced by Peng in 2001[10, 42], the main precursor of 

cadmium was dimethyl cadmium.[4, 11]  This precursor is known to produce high quality quantum 

dots with narrow size distribution,[43] a benefit that has seen it in still in use up to now among 

some groups despite its high cost, toxicity and sensitivity to air necessitating the use of a glove 

box. The friendlier CdO precursor is slowly taking over and has proved to also produce very high 

quality particles that are reproducible, once the synthetic chemist has gained some experience in 

the field.[43-45] Apart from the difference in the source of Cd precursor, the rest of the procedure 

is almost the same in most cases, whereby selenium powder is dissolved in either tributylphosphine 

(TBP) or trioctylphosphine (TOP) as the Se precursors or directly in octadecene (ODE). 

Trioctylphosphine oxide (TOPO) which is used as a reaction solvent is heated up to 300°C in an 
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oxygen-free environment followed by rapid injection of the liquid precursors in the reaction 

flask.[4] As explained earlier, CdSe quantum dots immediately begin to nucleate and grow to the 

desired size which can be monitored by the gradual change in the solution color or using a UV-

Vis light/spectrophotometer. 

1.6.2. Core/shell and core/shell/shell synthesis 

 

          Two approaches to shelling of quantum dots are the two-step and one-pot synthesis.[13] In 

the former method, the initial core synthesis is followed by purification before adding the shell 

precursors to grow the shell, while the latter involves a continuous injection of the shell precursor 

directly in the same pot after the core formation. For proper control of shell growth, two criteria 

must be taken into account. The first is that the shelling temperature must be lower than the one 

used during core formation to avoid nucleation of the shell material and uncontrolled ripening. 

Secondly, the shell precursors should be added slowly to enable for a uniform diffusion around the 

core as this is necessary to produce quantum dots with uniform size distribution. 

        In order to calculate the correct precursor amounts to grow a given shell thickness, it is 

necessary to know the concentration of the core material being used. The first excitonic absorption 

peak of quantum dots is measured using UV-vis spectroscopy and can be related directly to several 

parameters that leads to the calculation of the concentration. From the first excitonic peak 

wavelength, the size of quantum dots in diameter (D) can calculated using the empirically-derived 

equation 1.4 and then applying to equation 1.5 to calculate the molar extinction coefficient (ε). The 

example used here is specific to CdSe but similar equations are available in the same paper for 

other materials.[45] 

𝐷 = (1.6122 × 10−9)𝜆4 − (2.6575 × 10−6)𝜆3 + (1.6242 × 10−3)𝜆2 − (0.4277)𝜆 + (41.57)            1.4 
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                                    𝜀 = 5857(𝐷)2.65                                                                                                    1.5 

        Finally, by applying the ε to the Beer-Lambert law (equation 1.6) we can then calculate the 

concentration of the quantum dots which then enables us to accurately calculate the required shell 

precursor amounts.  

                                      𝐴 = 𝑐𝑙𝜀                                                                                                                  1.6 

where A is the absorbance, ε is the molar extinction coefficient (L mol cm-1), c is the molar 

concentration (mol L-1), and l is the cuvette path length (cm). While both precursors can be added 

simultaneously, which was the method used for several years (Hines, Guyot-sionnest and 

Daboussi, Bawendi Refs), successive ion layer adsorption and reaction (SILAR) and Thermal 

Cycling (CT) methods were introduced by Peng in 2003[44] and 2007[46], respectively, and are 

particularly useful techniques to optimize the quality of core-shell quantum dots. SILAR requires 

that an exactly-calculated shell precursor is added to grow one monolayer of shell at a time, with 

the cationic and anionic species alternately added in a sequential mannerand allowed to grow 

before the next precursors are added. It was later found that injection at a lower temperature 

followed by growth of the shell monolayer at higher temperature (usually 20-40 °C higher) allows 

for the diffusion of the precursors to the particle surface at the lower temperature before actual 

shell growth at the higher temperature, and called thermal cycling. 

1.6.3. Ligands 

 

       The use of organic ligands as capping agents in quantum dots synthesis dates back to 1980s 

when the word “quantum dots” was first coined by Reed at Texas Instruments when reporting on 

structures that were produced by lithographic method.[47] At the same time, Bard[48] and Brus 

[49] published the use methylviologen and phenyl-TMS as surfactants, respectively. While 
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methylviologen was capped around CdS suspension to act as electron acceptor (mediator) for 

photocoulometric studies, the phenyl groups that bonded to CdSe crystallites rendered them 

hydrophobic and facilitated their dissolution into an organic solvent, opening the way for colloidal 

quantum dots.[49] Several years later, the use of organic ligands such as tri-n-octylphosphine oxide 

(TOPO), tryoctylphosphine (TOP), hexadecylamine (HDA) and octadecylamine (ODA), among 

others, (figure 1.5) as both solvent and capping ligands during quantum dots synthesis became 

extremely popular.[50]  

         Besides providing colloidal stability to the quantum dots, some of this ligands have other 

benefits. For instance, because of the high boiling point of TOPO, it facilitates precursor 

decomposition and allowsnanoparticle annealing at high temperature. Furthermore, its long 

hydrophobic chains renders it completely compatibile with otherorganic solvents which allows 

further manipulation in different organic solvents. TOP and TBP on the other hand are commonly 

used both as surfactants and as Selenium or Tellurium delivery agents in the form of TOP-Se or 

TBP-Te. They have been shown to bind on the QDs surface at anionic sites, thus providing more 

passivated particles than the cationic-binding phosphine oxide and amine ligands alone.  

       Comparing the role of primary, secondary and tertiary amines as QDs ligands , Mulvaney et 

al[51] reported that primary amines significantly enhanced the emission of the QDs while both 

secondary and tertiary had no effect. This was attributed to the less steric effect by the primary 

amines and passivation of the electron trap sites by the lone pair of electrons from the amine. Work 

on amine ligands was expounded upon further on by Peng et al[52] who reported that among the 

primary amines, hexadecylamine (HDA) produces the highest quality particles with highest PL 

quantum yields.  
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Figure 1.5. Common ligands used as coordinating and non-coordinating ligands during synthesis   

and ligand exchange of quantum dots. 

 

When it comes to QDs morphology, phosphonic acid based ligands have been reported to play the 

lead role. For instance, the growth of nanorods was regulated by using different concentrations of 

hexyl-phosphonic acid (HPA).[53] 

       Furthermore, rods with aspect ratios of up to 30, as well as arrows, teardrops, and tetrapods 

morphologies were formed by controlling the ratio of HPA : TOPO injection rates and number of 

injections.[54] The current trend in literature is geared towards using specific ligands to control 

the growth of quantum dots to achieve desired structures and unity PL quantum yields. For instance 

in 2013, Using single-source precursor cadmium diethyldithiocarbamate (Cd(DDTC)2) which also 

acted as a surfactant ligand Peng et al[20] compared the properties of  CdSe/CdS core/shell 

nanocrystals with zinc blend or wurtzite structures and found that zinc blende showed higher-

quality. In the same year, Bawendi et al[6] used octanethiol ligands to slow the growth of shells at 
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higher temperature and produced QDs with high crystallinity and uniformity showing narrow 

emission linewidth and suppressed blinking.  

1.7. Purification and ligand exchange 

 

          One way of transferring quantum dots capped with organic ligands to aqueous medium for 

various application is by perform ligand exchange. Two common strategies employed in achieving 

these are polymer coating [55, 56] and ligand exchange. [12, 57-60] The former involves the 

coating of the original hydrophobic ligands with an amphiphilic polymer that renders them soluble 

in aqueous solution. The latter on the other hand, involves the substitution of the original 

hydrophobic ligand with new hydrophilic ligands.  

        One important step during ligand exchange and which applies to any other purification of 

quantum dots is to remove any unreacted precursors and loosely-bound ligands prior to the 

reaction. This is accomplished by several cycles of dispersion and centrifugation in two immiscible 

solvents of which one phase extracts the polar material leaving quantum dots dissolved in the 

nonpolar phase. Since the quantum dots are usually dissolved in either toluene[10] or hexane[9] 

after synthesis, the common extraction solvents are either methanol or acetone. For ligand 

exchange purposes, the quantum dots are further precipitated out of these solvents to enhance the 

removal of most of the ligands.  

     After purification and precipitation, quantum dots are re-dissolved into a solution containing 

the new hydrophilic ligands. Hydrophilic ligands such as MPA (figure 1.4) with thiol (-SH) group 

at one end of the molecule for binding to the surface of QDs and a carboxylic (-COOH) functional 

group on the other end to dissolve in polar solvents are commonly used.[57-59] Refluxing of the 

resulting quantum dots solution facilitates binding of the ligands to produce stable and water-

soluble quantum dots for biological applications. 
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1.8. Objectives and overview of the dissertation 

 

        This dissertation was divided into three parts with each part presenting the findings from the 

three major projects conducted. The first part (chapter 2) involves a controlled synthesis of CdTe 

core quantum dots which were prepared by varying the Cd:Te ratio from 5:1 to 1:5 resulting in 

quantum dots which are Cd-rich to Te-rich on the surface, respectively. CdTe quantum dots have 

unique characteristics that are promising for applications in photoluminescence, photovoltaics or 

optoelectronics. For example, given the position of the conduction band of CdTe relative to the 

HOMO of thiol ligand, CdTe is easily exchanged with thiol based ligands without the need for a 

shell unlike CdSe which is easily quenched by the thiol ligands. However, wide variations of the 

reported quantum yields exist and the influence of ligand-surface interactions that are expected to 

control the excited state relaxation processes remains unknown. It is important to thoroughly 

understand the fundamental principles underlying these relaxation processes to tailor the QDs 

properties to their application 

       The main aim of this project was to systematically investigate the roles of the surface atoms, 

ligand functional groups and solvent on the radiative and non-radiative relaxation rates. Combining 

a systematic synthetic approach with X-ray photoelectron, quantitative FT-IR and time-resolved 

visible spectroscopies, we found that CdTe QDs can be engineered with average radiative lifetimes 

ranging from nanoseconds up to microseconds. The non-radiative lifetimes are anticorrelated to 

the radiative lifetimes, although they show much less variation. The density, nature and orientation 

of the ligand functional groups and the dielectric constant of the solvent play major roles in 

determining charge carrier trapping and excitonic relaxation pathways.  

         The second part (chapter 3) discusses the effects of shelling a variety of CdSe core quantum 

dots that show various qualities of fluorescence quantum yield. Specifically, this study involved 
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synthesis of five sets of CdSe cores with photoluminescence quantum yields (PL QYs) ranging 

from 52% to 9 % resulting into quantum dots with different optical and structural properties. The 

fluorescence quality of the CdSe core is controlled by varying the ratio of the coordinating ligands, 

and using both thermal cycling (TC) and successive ion layer adsorption and reaction method 

(SILAR) in shelling, the CdS shell growth was monitored up to 8 monolayer (ML) for each set of 

the samples. Apart from the prominent absorbance spectral redshift monitored by both UV-Vis 

spectrophotometer and fluorometer, the shell growth was further proved by the TEM images and 

ligand exchange results. Surprisingly, the lower quality core samples (in terms of quantum yield) 

exhibited the general CdSe/CdS shelling trend whereby the initial quantum yield increases with 

addition of shell thickness then declined as the shell becomes thicker, on the other hand the higher 

PL QY (high quality core) showed a reverse trend whereby the initial shell thickness reduced the 

PL QYs before increasing but not exceeding that of the core. The quality, crystallinity and wurtzite 

structure of these particles were verified by both HRTEM and XRD. It was found from quantifying 

the radiative and nonradiative rates that nonradiative recombination pathways are more responsible 

for the observed trends in PL QY.  

         The last part (chapter 4) is an extension of the core/shell to a core/shell/shell system to design 

small, less toxic and reduced blinking quantum dots. A lot of effort has been directed towards the 

suppression and elimination of blinking of quantum dots. However, these reports rely on using 

either very thick[15, 19] or highly-crystalline, medium thickness CdS shells[6] or interfacial 

alloying,[61] while using only ZnS as a shell on CdSe does not suppress blinking.[16] Even 

though, there have been reports of blinking suppression with multishell configurations, particularly 

with CdS and ZnS,[19] the role that interfacial trap states play in these systems is not so well 

understood. Therefore, the project presented in this part was aimed at addressing the above 
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limitations while still focusing on the suppression of blinking on quantum dots. Briefly, we 

examined how increasing the outer shell (ZnS) thickness on CdSe/CdS/ZnS quantum dots leads to 

a reduction in blinking. Time resolved fluorescence, TEM and STEM/EELS were used to follow 

the shelling process. The different shells affect the radiative and non-radiative rates differently due 

to the competing effects of degree of charge carrier confinement and lattice mismatch. Using only 

a 3 monolayer (ML) CdS inner-shell, we find that we can greatly reduce blinking by adding just 

3ML of a ZnS outer shell – thereby maintaining a relatively small QDs. However, by making the 

ZnS shell thicker, blinking is increased again, which we attribute to induced lattice strain from the 

ZnS as discussed above. We anticipate that the reported QDs will be useful in bio-imaging 

applications due to their suppressed blinking, smaller size, and lower toxicity of the outer shell 

(compared to CdSe-CdS core-shells).  
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2.1. Abstract 

         CdTe quantum dots have unique characteristics that are promising for applications in 

photoluminescence, photovoltaics or optoelectronics. However, wide variations of the reported 

quantum yields exist and the influence of ligand-surface interactions that are expected to control 

the excited state relaxation processes remains unknown. It is important to thoroughly understand 

the fundamental principles underlying these relaxation processes to tailor the QDs properties to 

their application. Here, we systematically investigate the roles of the surface atoms, ligand 

functional groups and solvent on the radiative and non-radiative relaxation rates. Combining a 

systematic synthetic approach with X-ray photoelectron, quantitative FT-IR and time-resolved 

visible spectroscopies, we find that CdTe QDs can be engineered with average radiative lifetimes 

ranging from nanoseconds up to microseconds. The non-radiative lifetimes are anticorrelated to 

the radiative lifetimes, although they show much less variation. The density, nature and orientation 

of the ligand functional groups and the dielectric constant of the solvent play major roles in 

determining charge carrier trapping and excitonic relaxation pathways. These results are used to 

propose a coupled dependence between hole-trapping on Te atoms and strong ligand coupling, 

primarily via Cd atoms, that can be used to engineer both the radiative and non-radiative lifetimes.  

 

 

Keywords: Cadmium telluride, fluorescence lifetime, infrared spectroscopy, surface states, ligand 

exchange, quantum dot synthesis 
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2.2. Introduction 

        Colloidal semiconductor nanocrystals (also called quantum dots, QDs) are showing great 

potential for a range of applications including photovoltaics [1], lasers[2], pH[3] and chemical[4-

6] sensors and biophysical fluorescent probes.[7, 8] The commercialization of QDs as biological 

fluorescent probes is commonly based on CdSe, using a ZnS shelling procedure introduced in 

1996.[9] Shelling allowed subsequent water solubilization for biological labeling applications.[7, 

8, 10] In general, it is not possible to transfer CdSe to water using thiols and maintain a reasonable 

amount of fluorescence without using a shell.[11]  If particularly small QDs are needed, such as 

for labeling small proteins, imaging small intracellular or intercellular regions like mitochondria 

or neural synapses, or in quantitative FRET assays, CdTe may be a better choice, since they can 

retain their fluorescence in water using thiolated ligands without a shell.[12, 13] This effect was 

attributed to thiols acting as strong hole acceptors for CdSe but not for CdTe QDs.[14] 

Furthermore, to use CdTe in photovoltaic applications where interfacial charge carrier transfer is 

necessary, a shell may reduce its efficiency. 

         CdTe QDs can be synthesized directly in water but typically require long reaction times 

under reflux,[15-17] but can be shortened by the use of an autoclave[18] or by a microwave-

assisted procedure.[19] Some of the reports of CdTe synthesized by aqueous routes are very 

promising, although the reported properties can be variable – even for those prepared by essentially 

identical procedures.[16, 20] Organometallic-based synthetic procedures for CdSe are, by far, the 

most prevalent due to high reproducibility and particle quality[21] and have evolved to use more 

environmentally friendly and safer-to-handle  precursors.[22, 23] CdTe can be synthesized by 

these same routes but the details have not been optimized as they have for CdSe.[24] Wuister et 

al. did use an organometallic approach for CdTe and have reported that thiol ligand-exchanged 
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CdTe QDs in water can have higher luminescence than trioctylphosphine/dodecylamine-capped 

CdTe QDs in chloroform, while the opposite is true for CdSe.[12, 14] However, the degree of 

quantum yield (QY) enhancement for CdTe in water over organic solvents seems to be rather 

variable, which may be a result of different CdTe synthetic parameters.[12, 14, 25, 26]  

          Qu and Peng performed an in-depth study of synthesis parameters for the organometallic 

synthesis of CdSe, using CdO and elemental Se as precursors.[24] They found that using higher 

Se:Cd ratios in the reaction mixture resulted in a higher QY for organic-soluble QDs, which was 

attributed more to the organization of the passivating ligands on the surface rather than surface 

atomic stoichiometry. Jasienak and Mulvaney later found that post-preparative modifying of the 

surface atomic stoichiometry played a major role in determining the QY through the passivating 

ligands.[27] CdTe synthesized by Wuister et al. used the more difficult Cd(Me)2 approach and only 

one Cd:Te synthesis ratio of ~1.2:1 ,[12] but these QDs had high fluorescence after transferring to 

water. In all these reports, it has not been clearly identified if the QY variations arise from changes 

in the radiative or non-radiative relaxation rates. Furthermore, there is a general lack of 

quantification of how the ligands bind to the QD surfaces and, in particular, their effect on the 

charge carrier relaxation processes. 

         The aim of this study was to evaluate the details underlying how the coupling of surface 

atoms to ligand binding affects the radiative and non-radiative relaxation pathways. We use the 

more accessible CdO precursor approach to organometallic CdTe synthesis and subsequent water 

solubilization by ligand exchange. We determine how the Cd:Te synthesis ratio affects the 

resulting surface atom ratio and, in turn, how they determine the binding of different ligands and, 

consequently, control the optical properties. These properties are investigated first with their native 

phosphonic acid/phosphine ligands and upon exchange with hydrophobic thiols in the same 
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solvent, and then hydrophilic thiols in methanol and water. This systematic progression allows us 

to quantify the individual roles of the surface atoms, the coordinating and functional groups of the 

ligands, and the solvent in controlling the electronic relaxation pathways of CdTe QDs. Our results 

provide a deeper understanding of the relaxation pathways of the excited state so that one can 

optimize the synthetic conditions and ligand coupling to produce QDs tailored for specific 

applications. 

2.3. Experimental Section 

2.3.1. Chemicals. Cadmium oxide (CdO – Puratronic, 99.998%), 1-Tetradecylphosphonic acid 

(TDPA - 98%), 1-Octadecene (ODE – tech 90%), Tellurium powder (Te – 99.99%), Tri-n-

butylphosphine (TBP – 95%, 1-Propanethiol (PPT – 98%), 3-Mercaptopropionic acid (MPA – 

99%), and Tetramethyl ammonium hydroxyde pentahydrate (TMAH – 98%) were all purchased 

from Alfa Aesar. Hexanes, acetone and anhydrous diethyl ether were all ACS grade and purchased 

from EMD. Methanol was purchased from BDH through VWR Scientific. Fluorescein from the 

Reference Dye Sampler Kit (R14782, Invitrogen, Eugene, OR) was used for the 

photoluminescence quantum yield measurements. 

2.3.2. QD Synthesis. The nanoparticles were prepared using 5 different Cd to Te molar ratios: 5:1, 

2:1, 1:1, 1:2 and 1:5 by hplding Cd constant at 0.2 mmol. As an example of the synthesis protocol 

for 5:1 Cd:Te with 0.2 mmol Cd was prepared as follows: 0.0256 g (0.2 mmol Cd) of CdO was 

mixed with 0.114 g of TDPA (0.41 mmol) and placed in 3.93 g of ODE in a three neck round 

bottom flask. This mixture was vacuum purged for ~30 minutes then, after turning off the vacuum, 

was placed under argon flow, and heated to 300°C with a heating mantle. At this temperature, the 

tellurium was injected, consisting of a mixture of 1.90 g of ODE and 0.10 g of a Te stock solution, 
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prepared by dissolving 1.02 g of Te powder in 18.98 g tributylphosphine (0.04 mmol Te). After 

the Te was injected, the solution temperature was immediately reduced to 250°C and the 

nanocrystals grown to the desired size as monitored by their UV-Vis and PL spectra, usually within 

a couple of minutes. Once the nanocrystals had achieved the desired size, the heating mantle was 

removed and the reaction stopped by withdrawing a sample and dissolving into cold hexane. All 

synthesis times were controlled to produce similar sized QDs. 

2.3.3. QD Ligand Exchange. Each of the samples was then split into 3 different aliquots; one 

aliquot was left as-prepared, one aliquot was ligand exchanged with propanethiol (PT), and the 

other aliquot was ligand exchanged with mercaptopropionic acid (MPA). The PT ligand exchange 

was performed as follows: 2 mL of the as-prepared nanocrystal solution was added to a vial and 

diluted with 2 mL of hexanes. To extract the unreacted starting materials, 4 mL of methanol were 

added and vigorously agitated. Then, to achieve efficient phase separation, the sample was 

centrifuged for 5 minutes.  

        After centrifugation, the methanol layer containing the unreacted starting materials was 

removed from the hexane layer containing the QDs.  The extraction was repeated. The hexane QD 

solution was precipitated with acetone and the solution was centrifuged for ~15 minutes until a 

pellet was formed at the bottom of the vial and only clear, colorless liquid remained above. The 

liquid was decanted and excess solvent was removed from the pellet by tapping the vial upside 

down. Immediately, the ligand solution was added to the pellet, which consisted of 200 µL of PT 

dissolved in 10 mL of hexanes. Upon addition of the ligand solution to the pellet, the mixture was 

sonicated and placed in a three neck round bottom flask under argon and refluxed for 3 hours at 

~68°C. After reflux, the heating mantle was removed and the solution was allowed to cool to room 

temperature. The same procedure was repeated for MPA ligand exchange, except that the QD 
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sample was precipitated from hexanes with acetone, centrifuged to a pellet and decanted. Then a 

ligand solution, consisting of 200 µL of MPA dissolved in 10 ml methanol adjusted to pH ~10.5 

with tetramethylammonium hydroxide (TMAH), was added to the pellet. To obtain the MPA-QDs 

in water, a 2 mL aliquot of the MPA particles in methanol was precipitated by addition of diethyl 

ether and centrifuged for ~15 minutes until a pellet was obtained.  The liquid was decanted and 

the vial was inverted and lightly tapped to remove any remaining liquid.  Following this, 2 mL of 

18Mῼ Millipore water was added. The MPA-exchanged nanocrystals readily dissolved in the 

water. 

 

2.4. Instrumentation and measurements 

 

2.4.1. Absorption and Fluorescence Spectroscopy. To measure the spectra and 

photoluminescence quantum yield (QY) of the as-prepared QDs in hexane, PT-QDs in hexane, 

MPA-QDs in methanol and MPA-QDs in water, aliquots from each of the samples were diluted 

with their respective solvents to an optical density of 0.01 at a wavelength of 450 nm, measured 

by a Hitachi U-3900H UV-VIS absorption spectrophotometer. Their photoluminescence spectra 

recorded with a Perkin-Elmer LS 55 luminescence spectrometer from 470 to 800 nm upon 

excitation at 450 nm.  The QY was calculated by comparing the integrated area of the QD emission 

spectrum to that of a 0.01 O.D. (@450 nm) solution of fluorescein in 0.1M NaOH, which has a 

92% QY. 

2.4.2. Fluorescence Microscopy. To measure the fluorescence lifetime of the QDs, aliquots were 

diluted in their respective solvents to ~100 nM in a powder-coated stainless steel liquid cell into 

which a glass coverslip was sealed using a silicone O-ring seal. Time-correlated single photon 

counting (TCSPC) curves were obtained using a MicroTime 200 Confocal Fluorescence Lifetime 

Microscope (PicoQuant GmbH, Berlin, Germany), consisting of a 485 nm picosecond DPSS laser 
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(LDH-P-C-485, Picoquant), controlled by the Sepia II software with 5 µW power and 5 MHz 

repetition rate. The excitation laser was reflected from a dichroic mirror (DCXR500, Chroma) and 

passed through a water-immersion objective (Olympus UPLSAPO 60×w, 1.2NA). The emitted 

fluorescence was collected by the same objective, transmitted through the same dichroic mirror, a 

75 µm pinhole, and a 605/55m emission filter (Chroma, Bellows Falls, VT) onto an avalanche 

photodiode detector (PDM, Microphoton Devices, Bolzano, Italy). The detector passed the signal 

to the TCSPC card (Picoharp 300, Picoquant) onto 4096 channels with 64 ps per channel, and the 

data was collected and analyzed with the SymphoTime software package. The width of the 

instrument response function was determined to be less than 0.3 ns, which greatly facilitated data 

fitting. The data was fit to the minimum number of exponentials, i, required until the chi-squared 

value was no-longer reduced and the residuals showed no systematic deviation (3 components 

were needed), and the average fluorescence lifetime, τfl, determined by equation 2.1 as follows: 

   𝜏𝑓𝑙 =
∑ 𝑐𝑖𝜏𝑖

23
𝑖=1

∑ 𝑐𝑖𝜏𝑖
3
𝑖=1

                                                          2.1 

ci is the fractional amplitude of component i, and ∑ 𝑐𝑖 = 1𝑖  and τi is the lifetime of component i. 

2.4.3. FT-IR Spectroscopy. The FT-IR spectra were measured on a Bruker Vertex 70 FT-IR 

spectrometer equipped with a deuterated tri-glyceride sulfate (DTGS) detector, and the sample 

chamber purged with a steady stream of dry N2. After measuring the background spectrum of a 

clean, dry CaF2 window, 40 µL of a solution of QDs with an exact OD of 0.1719 at the λmax was 

placed in the exact center of the CaF2 window, resulting in a drop smaller in diameter than the 

probe beam to ensure that the same amount of sample was measured for each sample, and then left 

in a horizontal position to dry overnight in the N2-purged sample chamber. The FT-IR absorption 

spectrum was calculated by measuring and averaging 16 scans. 
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2.4.4. Transmission Electron Microscopy. TEM images were acquired on a JEOL 100cx 

transmission electron microscope (JEOL, Tokyo, Japan). QDs were washed of impurities by 

precipitating them from solution with methanol, centrifuging to a pellet and redissolving in pure 

hexane, which was repeated 2-3 times. A Formvar-coated copper TEM grid (Ted Pella, Redding, 

CA) was dipped into the well-washed QD hexane solution, and allowed to dry in air overnight. 

The acceleration voltage used during the measurement was 100 kV, and images were acquired on 

a CCD camera (low mount XR41, AMT, Danvers, MA). 

2.4.5. X-Ray Photoelectron Spectroscopy. To measure the X-ray photoelectron spectra, QDs 

were precipitated using the same method as for ligand exchange; extraction with methanol 3 times 

followed by addition of acetone and centrifugation. The precipitate was placed on a carbon sticky 

tab, dried in a vacuum oven overnight before being inserted into the load lock of the XPS (Phi 

Versaprobe, Physical Electronic Inc., Chanhassen, MN) and allowed to dry for a further 24-48 

hours prior to analysis.  The XPS is equipped with a monochromated Al-Kα source (1486.6eV), 

dual-beam charge compensation and a spherical capacitance analyzer operated in fixed analyzer 

transmission mode.  The Pass Energies used were 117eV and 23.5eV to 45eV for survey and 

quantification scans, respectively.   

           Data was collected at a 45° take-off angle relative to the analyzer lens with between 100-

500 ms collection time, depending on the peak. Data analysis was performed using Phi MultiPak 

(Physical Electronics Inc.). Charge referencing was made to the adventitious C1s peak.  Data were 

smoothed by the Savitzky-Golay method prior to background subtraction via the iterated Shirley 

model.  Peak areas were related to composition via the relative sensitivity factor method, which 

allows for multiple pass energies to be used in the same multiplex.  Nanoparticles were assumed 

to be equally dispersed throughout the analysis volume and as such compositions were treated 
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using the homogeneous quantification model. Data collection was performed using a collection 

angle of 45° is used to minimize errors associated with this assumption. 

2.5. Results and discussion 

        It has previously been shown that 2 Cd-complexing ligands are needed to solubilize CdO.[18, 

19, 28] We performed all reactions using a constant 0.2 mmol Cd, 0.4 mmol TDPA, and vary the 

Te precursor amount. The sizes of the various CdTe QDs were controlled to be as equal as possible 

during synthesis by monitoring the absorption spectra. Details of the syntheses are provided in the 

in section 2.2.2 above. The resulting absorption spectra of the samples with different Cd:Te ratios 

are overlaid in figure 2.1a. TEM images of three of the samples are shown in figure 2.1b, 

highlighting the similarity in size from Cd-rich to Te-rich, having an average of ~4nm and low 

size dispersion.  

       X-ray photoelectron spectra (XPS) of the Cd peaks for the 5:1 Cd:Te sample is shown in figure 

2.2a and the Te peaks for the 1:5 Cd:Te sample is shown in figure 2.2b, exhibiting excellent 

signal:noise ratios, thus allowing accurate integration of the peaks in figure 2.2c. Using a 5:1 Cd:Te 

ratio in the reaction mixture led to an observed Cd:Te ratio of ~4:1 by XPS.  With a 1:1 Cd:Te 

ratio, there observed ratio is ~1:1, and using 1:5 Cd:Te resulted in ~1:4 by XPS. It is important to 

note that these ratios are not absolute values of the surface composition, but provide comparisons 

between different samples of the same size.  
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Figure 2.1. (A) Absorption spectra of CdTe QDs with varying Cd:Te ratios. (B) TEM images of 

Cd-rich, CdTe neutral and Te-rich CdTe QDs  

   

       XPS is generally more sensitive to surface atoms than bulk atoms, although at these length 

scales, XPS does probe a significant fraction of the whole particle. However, if the particle bulk 

were significantly more Cd-rich or Te-rich, the bandgap energy, as measured from the absorption 

and emission spectra, would not be in agreement with their sizing curves as previously 

measured,[29] suggesting that the excess atoms lie preferentially on the QD surface. This is not to 

say that the excess atoms are exclusively at the surface, and there is likely a radial “shell” of Cd-

rich or Te-rich CdTe, as has been modeled for CdSe.[27]  Also, the possibility of forming some 

pure Cd or Te nanoparticles cannot be excluded. However, in general, the atomic ratios shown 

here are in reasonable alignment with what was expected and primarily highlight that the surface 

of the samples are indeed Cd-Rich, CdTe neutral or Te-rich depending on the synthesis ratios. 

       Upon ligand exchange, the samples exhibited shifts in the fluorescence maximum and QYs. 

The fluorescence spectra for the 5:1 Cd:Te samples upon ligand exchange are shown in figure 

2.3a. Upon exchange of the TDPA/TBP with PT, there is a red shift in the emission maximum, 

whereas upon using MPA there is a blue-shift. The solvent also played a role, with MPA showing 

a larger blue-shift in water compared to methanol.  
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Figure 2.2. (A) XPS spectra of Cd peaks from 5:1 Cd:Te QDs. (B) XPS spectra of Te peaks from 

1:5 Cd:Te QDs. (C) Integrated peak areas of Cd and Te, normalized to a total fraction of 1, for 5:1, 

1:1, and 1:5 Cd:Te. 

          The QY results as a function of surface atom ratio, ligand and solvent are summarized in 

figure 2.3b. The inset of figure 2.3b shows an image of the PL as a function of surface atom ratio 

for the as-prepared samples, with native TDPA/TBP ligands. For the native QDs, the highest QY 

obtained was ~20% for QDs synthesized with a 5:1 Cd:Te molar ratio. As the ratio of Cd:Te 

decreased, so did the QY, with a rapid decrease occurring from 2:1 to 1:1 in which the QY 

decreased from ~17% to 3%, where it remains as the surface becomes Te-rich. Upon ligand 

exchange with PT, there is an increase in the QY for all particles as compared to the as-prepared 

CdTe, reaching up to 80% with 5:1 Cd:Te and decreasing with decreasing Cd:Te ratio.  

         However, only when the surface becomes very Te-rich does the QY drop to negligible 

values; at 1:2, it is still at 30%. Upon exchange of the ligands with MPA, the QY is always smaller 

than for PT-QDs, but is higher than the original TDPA-QDs when the surface is Cd-rich. 

Interestingly, the solvent plays a significant role, where methanol quenches 5:1 Cd:Te less than 

water, but for 2:1 Cd:Te, methanol quenches them more than water does. However, we can obtain 

bright water-soluble CdTe QDs with QY between 45-50% by using either 5:1 or 2:1 Cd:Te ratios. 

We used quantitative FT-IR absorption spectroscopy to investigate how the surface atom ratio 

determines the amount and type of ligand bound to each sample. 
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Figure 2.3. (A) Fluorescence spectra of 5:1 Cd:Te QDs for as-prepared TDPA/TBP, and after 

ligand exchange with PT or MPA. The MPAQDs are shown in both methanol and water. (B) 

Quantum yield as a function of Cd:Te surface atom ratio, ligand, and solvent. Inset: fluorescence 

image of TDPA-QDs in hexanes under a 366 nm UV lamp with Cd:Te ratios varying from, left to 

right, 5:1, 2:1, 1:1, 1:2 and 1:5. 
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        We were extremely careful to remove excess ligands and to measure exactly the same 

concentration of QDs to allow quantitative comparisons of peak intensities to be made. The FT-

IR absorption spectrum of the as-prepared 5:1, Cd:Te samples is shown in figure 2.4a, and the 5:1 

Cd:Te MPA-exchanged QDs in figure 2.5a, together with peak assignments. For the as-prepared 

samples, the FT-IR spectra show strong sp3 hybridized C-H stretching peaks between 2750 and 

3000 cm-1, which come from all bound ligands. From the synthetic conditions, 3 possible ligands 

are present; TDPA, TBP and ODE. TDPA is easy to identify and quantify from the double peak 

of deprotonated PO3
2- between 1050 and 1250 cm-1.[30] 

        The peak at 1650 cm-1 is characteristic of C=C stretching and those at 990cm-1 and 910cm-1 

are characteristic of monosubstituted methylinic C-H bending modes (RHC=CH2), each 

identifying the presence of bound octadecene (ODE) on the CdTe QDs, which is quite surprising 

since ODE is generally considered to be a non-coordinating ligand.[31] TBP is more difficult to 

quantify due to the absence of characteristic peaks specific to this compound. However, the number 

of sp3 hybridized C-H bonds per TDPA, TBP and ODE are 29, 21 and 33 respectively, so can be 

indirectly inferred from the other peaks. Since the sp3 C-H peaks come from all these species, the 

integrated area between 2800 – 3000 cm-1 allows us to assess the relative amount of total ligands 

bound as a function of Cd:Te surface atom ratio. Comparing the change in the C-H area from 

sample-to-sample to the TDPA and ODE intensities allows us to determine how the surface atoms 

affect native ligand binding (figure 2.4b) and upon ligand exchange with PT (figure 2.4c)). The C-

H peak area increases by ~50% from 5:1 Cd:Te to 1:1. Concomitantly, The TDPA peak decreases 

by ~50% and the ODE peaks increase by ~70%. This implies that there are more TBP ligands 

bound in the 1:1 sample than the 5:1 sample, as one would expect. 
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Figure 2.4. (A) FT-IR absorption spectrum of as-prepared CdTe synthesized with a Cd:Te ratio of 

5:1. (B and C) Integrated peak areas of the sp3 C−H peak (black), PO3
2− peak from TDPA (red), 

and two peaks that are representative of ODE ligands, C=C (blue) and the sp2 C−H (magenta) for 

as-prepared and PT-exchanged CdTe, respectively, as a function of Cd:Te ratio.      

 

         However, the large increase in the amount of ODE means that the increase in TBP is only 

~30%.  For 1:5 Cd:Te, the total C-H peak area is about half the value of the 1:1 Cd:Te, almost 

fully accounted for by the same relative decrease in the ODE peak area. It appears as though there 

is little-to-no extra TBP bound for the 1:5 Cd:Te compared to the 1:1. Comparing 1:5 to 5:1, there 

are about half the number of TDPA ligands bound to 1:5 than 5:1 and about the same amount of 
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ODE, with about a 25% drop in the C-H peak area; the difference coming from TBP. Taken 

together, we can conclude that as the surface atom ratio moves from 5:1 to 1:1, ~50% less TDPA, 

~70% more ODE and up to ~30% more TBP is bound.  As the ratio moves from 1:1 to 1:5, about 

the same amount of TDPA, ~50% less ODE and about the same amount of TBP is bound. After 

the 5:1 Cd:Te sample is exchanged with PT, it was found that approximately 50% of the TDPA 

and ~30% of the ODE ligands remained on the QDs (figure 2.4c). The number of C-H bonds per 

PT molecule is far less than the native ligands, significantly lowering the extinction coefficient of 

this peak for PT. 

         Therefore, inferring the amount of TBP that remains is much more difficult. Since the 

integrated C-H peak area for PT samples is significantly lower for PT samples than the as-prepared 

samples, it highlights that a significant number or ligands have been exchanged for PT. As the 

surface stoichiometry moves from 5:1 to 1:1, little of the TDPA remains, although about the same 

amount of ODE remains. The C-H peak does decrease by about 20% suggesting less PT per QD. 

For 1:5 Cd:Te PT-exchanges samples, no TDPA or ODE remains and the C-H peak is again 

reduced by a further 20-30%, implying less PT per QD for 1:5 than 1:1, showing its preference for 

Cd atoms, as one would expect.    

         After the samples are exchanged with MPA ligands, the broad O-H stretch covers the C-H 

stretch region, making this peak difficult to quantify. However there are no peaks associated with 

TDPA or ODE, suggesting complete removal of these ligands by MPA. There are characteristic 

strong C=O stretches for COOH at 1677 cm-1 and COO- at 1582 cm-1 (asymmetric stretch) and at 

1390 cm-1 (symmetric stretch). The COOH peak is slightly lower in frequency than usually 

observed, which may indicate that the protonated COOH group is coordinated directly to the QD 

surface.  
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Figure 2.5. (A) FT-IR absorption spectrum of MPA exchanged CdTe in methanol, synthesized 

with a Cd:Te ratio of 5:1. (B and C) COOH (black) and COO− (red) for MPA-exchanged CdTe in 

methanol and water, respectively, as a function of Cd:Te ratio. 
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 The COOH and asymmetric COO- peak areas can be used to estimate the relative number of MPA 

ligands bound for 5:1, 1:1 and 1:5 Cd:Te QDs, as well as the protonation state of such ligands in 

each solvent; methanol and water. 

         We must be careful when comparing the two peaks (COOH and COO-) directly to each other, 

since the extinction coefficient of COOH is about half that of COO-.[32] In methanol, the COOH 

peak steadily decreases as the ratio of Cd:Te decreases, suggesting that they are bound primarily, 

although not exclusively, to the Cd atoms. The deprotonated COO- peak is about 30% greater for 

1:1 Cd:Te than 5:1, but reduces for 1:5, to about the same area as for 5:1. As the MPA-QDs are 

transferred to water, there is always a lower peak area of both COOH and COO- peaks for all 

Cd:Te ratios compared to the same samples in methanol. There is significant ligand removal of 

protonated COOH for the 5:1 ratio, which becomes less pronounced as the Cd:Te ratio reduces. 

This strongly supports the conclusion that the protonated COOH ligands are weakly bound to the 

Cd atoms, while COO- ligands are more strongly bound; implying that the deprotonated COO- 

ligands coordinate via the stronger thiol group to result in the charge groups protruding into the 

solvent. Both the COOH and COO- peaks decrease by about the same amount (~30-40%) for the 

1:5 Cd:Te. Interestingly, in water, the COO- peak area does not change as the Cd:Te ratio 

decreases, although the COOH peak does increase slightly for the 1:5 ratio. 

          In order to investigate how the surface atoms and ligands affect the electronic processes 

underlying the variations in quantum yield, we performed fluorescence lifetime measurements to 

determine the radiative and non-radiative relaxation rates. The fluorescence lifetime curve for the 

5:1 sample is shown in figure 2.6a. The lifetime data are fit to a series of exponentials until the 

residuals showed no deviation and the chi-squared value was reduced. Usually 3 were needed, and 

the average fluorescence lifetime, τfl, was calculated using equation 2.1 above. The average 
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fluorescence lifetime values are plotted in figure 2.6b, and shows a dependence that does not 

directly correlate with the QY dependence, highlighting the fact that both the average radiative 

and average non-radiative rates are changing. These two rates (plotted as lifetimes) are calculated 

as follows:[33, 34] 

                                    𝜏𝑟 =
1

𝑘𝑟
=

𝜏𝑓𝑙

𝑄𝑌
                                                    2.2 

and  

                                 𝑘𝑛𝑟 =
1

𝜏𝑛𝑟
=

1

𝜏𝑓𝑙
−

1

𝜏𝑟
                                      2.3 

where τr is the average radiative lifetime and τnr is the average non-radiative lifetime. Strictly, 

equations 2.2 and 2.3 provide relationships between the radiative and non-radiative lifetimes from 

a single process. In our experiments, we do not separate excitonic emission from shallow trap 

emission, which is only slightly red-shifted and difficult to distinguish from the excitonic 

emission,[34, 35] due to using an emission filter in the microscopy setup. Therefore, this analysis 

provides average radiative and average non-radiative lifetimes that contain contributions from both 

excitonic and trap states, each of which will be discussed in detail below.  

         The average radiative and non-radiative lifetimes are plotted in figures 2.6c and 2.6d, 

respectively. The average radiative lifetimes span at least 2 orders of magnitude as the surface 

atom ratio varies from Cd-rich to Te-rich and so the data are plotted on a logarithmic scale to more 

clearly follow the effects. It is clear that a Te-rich surface significantly increases the average 

radiative lifetime compared to a Cd-rich surface with all ligands, but is more pronounced for QDs 

with MPA ligands. The solvent also affects the radiative lifetime, with MPA-QDs in methanol 

having a significantly longer radiative lifetime than in water. While the radiative lifetimes vary by 
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2 orders of magnitude, the non-radiative lifetimes vary by about 1 order. They do show a 

systematic decrease as the surface becomes more Te-rich, but show less of a ligand or solvent 

dependence.   

         The much longer average radiative lifetime of Te-rich CdTe highlights that the reason for the 

QY change is due more to an average decrease in the electron-hole overlap integral than to an 

increase in non-radiative relaxation pathways. Phosphonic acid ligands bind very strongly to Cd 

atoms;[36, 37] in fact, phosphonic acid ligands are used to control the reactivity of Cd-monomers 

for better size and shape control during synthesis than phosphine oxides or amines.[38] The strong 

coupling of these ligands to the QD likely suppresses electron trapping at the Cd atoms, leaving 

hole trapping as the primary competing process. This suggests that the Te-atoms on the surface are 

less-passivated than Cd atoms, or Se atoms in the case of CdSe.[39] DFT calculations have shown 

that the trimethylphosphine-Te bond is about 70% the strength of the trimethylphosphine-Se bond, 

due to a smaller donation interaction energy involving less electrons per donation.[40] It is 

therefore more likely that Te-P bond would break during synthesis than Se-P to result in less-

passivated Te atoms on CdTe QDs.   

          This difference could explain the contrasting results observed between using chalcogenide-

rich precursor solutions when synthesizing CdSe[24] compared to CdTe, as shown here. If less 

ligand molecules are coordinated to the Te-rich QDs, it is reasonable to conclude that it would lead 

to increased hole trapping efficiency on the Te atoms due to the presence of dangling bonds. This 

conclusion is strongly supported by the FT-IR absorption spectra for the as-prepared CdTe, in 

which the integrated C-H peak area was lower for 1:5 than 1:1 and 5:1 Cd:Te ratio QDs.  
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Figure 2.6. (A) Fluorescence lifetime decay (TCSPC) curve of a typical QD (5:1 with native 

TDPA ligands shown here) with multiexponential fit (red) and residuals. (B) Average fluorescence 

lifetime measured by the fit to (A). (C) Radiative lifetime calculated using eq 2.2 as a function of 

Cd:Te surface atom ratio, ligand, and solvent. (D) Nonradiative lifetime calculated using eq 2.3 as 

a function of Cd:Te surface atom ratio, ligand, and solvent. 
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          The calculated increase in the amount of TBP bound for 1:1 Cd:Te compared to 5:1 (~30%) 

is far less than the increase in the number of surface Te atoms measured by XPS (up to 250%), 

highlighting an overall higher fraction of unpassivated Te which results in an increased radiative 

lifetime.As the Cd:Te ratio changes from 1:1 to 1:5, the amount of bound TBP does not increase, 

while the number of Te atoms does so significantly, leading to an even greater increase in radiative 

lifetime, as we observe. To explain these effects we propose a model that connects the structural 

properties of the QD surface to the energy levels, shown schematically in figure 2.7. The details 

of this model will be explained below. In addition to increasing the average radiative lifetime, 

there is a small but steady decrease in the non-radiative lifetime as the surface changes from Cd-

rich to Te-rich. While holes have been shown to generally relax faster than electrons,[41, 42] the 

complexity of electron and hole relaxation pathways in colloidal QDs has been recently 

highlighted.[43]  

            It was proposed that confining one of the charge carriers may enhance the ligand-induced 

nonadiabatic transition rate due to removing the Auger relaxation channel, which was used to 

explain the absence of a phonon bottleneck for both charge carriers. Recent TDDFT calculations 

also support this hypothesis.[44] For CdTe, it has been shown that the hole is trapped on the ~1ps 

timescale.[45, 46] Once trapped, it would be easier for the excess electronic energy to couple to 

the vibrations of the ligand molecule, resulting in a shorter non-radiative lifetime (faster rate).        

These processes are described in figure 2.7 as k3 and k2 (non-rad) respectively. We propose that it is 

the balance of the rates of these two processes that are responsible for the observed effects on 

theaverage radiative and non-radiative lifetimes shown in figure 2.6.  The rate of the surface 

trapping process, R3, is  
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Figure 2.7. Proposed model showing the relationship between surface structure and excitonic 

emission, trapping, and nonradiative processes in (A) Cd-rich and (B) Te-rich CdTe, respectively. 

(C and D) Energy level diagrams showing the various radiative and nonradiative processes for 

high-energy trap states such as from TDPA/TBP ligands and lower energy trap states such as from 

thiol ligands, respectively. Rates, Ri, and rate constants, ki, are related in eqs 2.4 and 2.5. 

 

 

𝑅3 = 𝑘3[𝑇𝑒]𝑠[ℎ𝑋
+]      2.4 

where [Te]S is the concentration of unpassivated surface Te atoms and [h+
X] is the density of holes, 

which at the (constant and low) laser power used in these experiments should be ~ 1 per QD. Since 

there are few Te atoms on Cd-rich QDs, this rate is relatively slow, and the competing process of 

excitonic radiative recombination (R1 (rad)) with the excitonic hole (h+
X) leads to a relatively high 

QY. Once the hole is trapped, the rate of non-radiative relaxation of the excess electronic energy 

via the ligand-induced nonadiabatic transition is given by the product of the trapping rate and the 

ligand density 
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         𝑅2(𝑛𝑜𝑛−𝑟𝑎𝑑) = 𝑘2𝑘3[𝑒−][𝑙𝑖𝑔𝑎𝑛𝑑][𝑇𝑒]𝑠[ℎ𝑋
+]                       2.5 

The concentrations [e-] and [h+
X] are equal at time = 0, since the absorption of 1 photon creates 1 

excitonic electron-hole pair. Since there is still some (although much reduced) overlap of the 

trapped-hole wave function with the electron, there is a competing radiative recombination 

process, R2 (rad), which is expected to be relatively slow. The faster average radiative lifetime 

observed for Cd-rich QDs would be a result of the larger contribution from the fast excitonic 

emission (R1 (rad)) rather than the slower R2 (rad) process). For Te-rich QDs, the larger [Te]S in 

equation 2.4 leads to a faster R3 process compared to R1(rad), resulting in a strong reduction in QY.   

            The R2(non-rad) process described in equation 2.5 depends on both the ligand density and the 

number of hole-trap states. Since the ligands are largely bound to the fewer Cd-atoms on the 

surface in Te-rich QDs, R2(non-rad) is low and there is a larger contribution of the slower R2(rad) to 

the observed average radiative lifetime. As the surface goes from Cd-rich to Te-rich, the decrease 

in the observed non-radiative lifetime (i.e. increase in R2(non-rad)) suggests that k3[Te]S increases at 

a faster rate than k2[ligand] decreases in equation 2.5. R2(rad) is determined by the overlap integral 

and is thus expected not to change. Additional non-radiative processes due to point defects within 

the crystal may also play a role, and will be investigated in future work. In any case, the proposed 

model in figure 2.7 is strongly supported by the FT-IR data; Cd-rich QDs are much more 

passivated by ligands than Te-rich QDs, especially by the strongly Cd-binding TDPA. The 

increased C-H peak area observed for 1:1 Cd:Te compared to 5:1 shows that some of the additional 

Te atoms are indeed passivated by ligands (most likely TBP).    

          It is not only the density of ligands that are important for the observed relaxation dynamics, 

but also their identity. This is evident from the strong dependence of ligand on QY. Upon ligand 
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exchange of the native ligands with PT ligands, the average radiative lifetime decreased for all 

surface atom ratios, suggesting that the trapping process is significantly reduced by the thiol, in 

agreement with previous observations.[12, 14] Even though thiols preferentially bind to Cd, they 

also bind to Te, as demonstrated by FT-IR; as Cd:Te varies from 5:1 to 1:5, the total intensity of 

the C-H peak of PT-QDs and the C=O peaks of MPA-QDs decease by only a factor of ~2. Due to 

the smaller footprint of PT over TBP, more of the Te atoms would likely be passivated compared 

to the as-prepared CdTe, resulting in less trap states and a reduced average radiative lifetime.   

         Furthermore, it has been proposed that the energy of thiol traps states is lower in energy than 

the valence band edge of CdTe.[14] This lowering of trap energy may open up a new pathway in 

which the trapped holes may be thermally de-trapped (R-3 in figure 2.7d), which competes with 

both R2(rad) and R2(non-rad) to increase the probability of excitonic recombination (R1(rad)), and thus 

increase QY, the process of delayed fluorescence. The relative rates of R-3 R2(rad), and R2(non-rad) 

would determine the overall contribution of delayed fluorescence vs the ligand-dependent non-

radiative pathways on quantum yield and average lifetime, but it is reasonable to assume that R-3 

would be faster than R2(rad).  This is supported by the fact that the average radiative lifetime of the 

PT-capped QDs is lower than the TDPA/TBP capped QDs for all Cd:Te ratios.  

         However, the trend of increased radiative lifetime with decreasing Cd:Te ratio is still evident, 

supporting the model of figure 2.7. Again this interpretation is supported by the FT-IR data, which 

shows a decrease in PT ligand binding between Cd-rich and Te-rich. The thiol group also increases 

the non-radiative lifetime compared to TDPA/TBP (i.e. decreases R2(non-rad) in equation 2.5, and 

the trend of non-radiative lifetime decreasing with increasing Te-richness persists. A weaker 

coupling of the ligand to the QD would serve to decrease k2 in equation 2.5 while a stronger 

coupling would increase it.      However, since thiol ligands are much smaller than TDPA or TBP, 
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one can expect that the density of ligands would be much higher for ligand-exchanged QDs, 

compared to the as-prepared samples.  

        Based on the observations of figure 2.6d, the increase in non-radiative lifetime (decrease in 

R2(non-rad)) of Cd-rich samples upon ligand exchange suggests that the decrease in k2 between thiol 

ligands and TDPA ligands is larger than the increase in [ligand]. The “noise” in the non-radiative 

lifetime trend may arise from variations in obtaining the same level of ligand exchange from 

sample-to-sample. It is common knowledge that the ligand exchange process is prone to 

variability.  Furthermore, the overall trend of decreasing non-radiative lifetime with increasing Te-

richness is stronger for PT ligands than for TDPA. Again, this can be explained as k3[Te]S 

increasing at a faster rate than k2[ligand] decreasing but, in addition to the ligand density, may also 

result from differences in k2 upon ligand exchange. TDPA is a strongly coordinated ligand whereas 

TBP is much weaker, therefore replacing TDPA with thiols would reduce k2 more than replacing 

TBP (on Te-rich QDs) with thiols.  

         The effect of the carboxylic acid group on the MPA ligand and the solvent also play 

significant roles in the charge carrier relaxation pathways, particularly for Te-rich surfaces, which 

seems to be additive to the effect of the thiol group. It was previously found that thiolated 

carboxylic acid ligands quench the fluorescence of CdSe-ZnS core-shell QDs more so than the 

hydroxyl analogues in water.[47] Here we have shown that the average radiative lifetime for Te-

rich CdTe increases to several microseconds for MPA-QDs in methanol, which we have suggested 

to result from increased hole-trapping, but the same QDs in water have radiative lifetimes similar 

to the as-prepared QDs. This longer radiative lifetime correlates to the FT-IR data showing that 

the both forms of the MPA ligand are bound far less efficiently to the QD in the more polar solvent. 

The FT-IR data also suggests that the MPA ligands coordinate to the QD not just with the thiol 
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groups (as is the case with PT), but also with their carboxylic acid groups, evidenced by the 

relatively low frequency of the COOH peak. This is particularly prevalent for the QDs in methanol.    

The carboxylic acid groups could increase the hole-trapping lifetime compared to the thiol (i.e 

compared to PT), to result in similar average radiative lifetimes as for the TDPA ligands. We 

envision this as a reduction in the R-3 process in figure 2.7d. This is reasonable considering the 

chemical similarity of the carboxylic acid to the phosphonic acid. Even though phosphonic acids 

bind stronger than carboxylic acids, the smaller size of the MPA relative to TDPA, may lead to a 

larger number of ligands on the QD in both orientations (coordinated by the thiol group or the 

carboxylic acid group).  

          Furthermore, the FT-IR data suggests that the protonated form preferentially binds to Cd 

atoms, as the peak was larger for Cd-rich CdTe in methanol, and it is this form that is more 

efficiently removed upon transfer to water. As the Te-rich QDs are transferred to water, there is a 

large decrease in average radiative lifetime, consistent with the view that the R-3 process may be 

largely recovered by the preferential removal of COOH-bound ligands.  As was the case for 

TDPA/TBP- and PT-functionalized QDs, the non-radiative lifetime for MPA-functionalized QDs 

decreases steadily as the Cd:Te ratio decreases, concomitant with the FT-IR data showing that 

[ligand] is reduced. Similar to the TDPA/TBP and PT ligands, it appears that k3[Te]S increases at 

a faster rate than k2[ligand] decreases in equation 2.5.  

         In addition to the effects of the ligand on the relaxation dynamics, the fluorescence spectra 

were red shifted for PT ligands, but blue-shifted for MPA ligands (figure 2.2a), suggesting 

electronic effects from both the thiol group and the carboxyl group, and further supporting the 

multi-functional-group binding observed by FT-IR. The red-shift for PT-QDs must be directly 

related to the thiol binding, since the solvent is unchanged between PT-QDs and TDPA-QDs. 
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However, the extent of blue-shifting for MPA-QDs was larger in water than in methanol. It may 

initially seem contradictory that the blue-shift is larger for MPA-QDs in water than in methanol, 

considering that there are less MPA ligands bound to the QD in water than in methanol. However, 

recent work has identified the role of the dielectric constant of the solvent on the spectral shifts in 

CdTe using both experimental and TDDFT calculations.[48] It appears that there are competing 

effects in play; roles involving the coordinating group of the ligands and roles involving the 

dielectric constant of the solvent.  

        Our systematic progression from hydrophobic thiol to hydrophilic thiol in methanol and then 

in water allowed us to separate some of these effects. The thiol group both helps to suppress hole 

trapping and causes a red-shift in the emission spectrum. Transfer of the QD into a higher dielectric 

constant medium is accompanied by a greater degree of deprotonation of the carboxylic acid, and 

so these effects cannot be directly uncoupled. However, as the QD is transferred from methanol 

into water, the additional blue-shift is mainly due to the increased dielectric constant. A previous 

report of thioglycolic acid (TGA)-capped QDs of similar emission peak position to ours and 

synthesized with a 5:1 Cd:Te ratio, identical to the QDs shown in figure 2.3 above, estimated an 

inverse dependence of wavelength shift with dielectric constant, with an ~7 nm blue shift as the 

dielectric constant changes from 40 to 68.[48] The blue shift observed here as the dielectric 

constant is changed from 32 (methanol) to 78 (water) is only ~3 nm, which may be due to the fact 

that MPA is a slightly longer ligand than TGA, thereby screening the solvent effect from the QD 

more. In any case, it appears that the dielectric constant of the solvent is responsible for reversing 

the red-shift caused by the thiol group. There may also be some effects from the solvent on the 

radiative and non-radiative rates between MPA-QDs in methanol and water and may not just be a 

result of differences in how many ligands are bound, and in which orientation, as we have 
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identified here, but other factors may come into play. Future work will attempt to decouple these 

factors.  

         We would like to point out that, while shell-free water-soluble quantum dots have strong 

advantages over core-shell quantum dots, especially concerning their size and ease of synthesis, 

adding a shell may still provide other advantages. For example, the shell material is usually less 

toxic than the core material, which reduces the fluorophore’s toxicity for in vivo applications. 

Furthermore, blinking is a problem for single molecule fluorescence applications and it has been 

shown that adding a thick shell reduces, or may even eliminate, this effect.[49, 50] However, it is 

important to pay close attention to the core-shell interface as shells with large lattice mismatches 

to the core do not appear to reduce the blinking.[51] Finally, adding a shell may reduce the effect 

of external conditions such as pH on the optical properties of cores,[15, 52] although pH effects 

have also been reported for core-shell QDs as well.[53-55]  

          More work is needed to fully understand the role of the external environment, especially 

aqueous environments, on shell-free QDs with different surface compositions to take full 

advantage of small and bright water-soluble QDs. It was previously shown that the coordinating 

group and the water-soluble functional group of the ligand plays an important role in fluorescence 

quenching of CdSe-ZnS core-shell QDs.[47] We have shown here that these effects depend on 

whether the surface is Cd-rich or Te-rich, which significantly affects the ligand binding and, in 

turn, can be used to engineer the radiative and non-radiative lifetimes. The underlying mechanisms 

for the lifetime variations are complex, being related to coupled effects of charge carrier trapping 

and ligand-induced nonadiabatic transitions affecting both radiative and non-radiative lifetimes 

and originating on different surface atoms. 
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2.6. Conclusion. 

         In summary, the brightest shell-free QDs that we have synthesized have ~80% QY, with a 

Cd-rich surface coated with propanethiol ligands. These conditions provide the optimal balance 

between surface atom passivation and ligand binding strength and are among the highest QY CdTe 

particles reported. The QY of the same QDs with MPA ligands in polar solvents such as methanol 

and water show ~70% and 50%, respectively, highlighting the consistent high brightness across a 

range of solvents. This result is promising as MPA ligands provide a route to water solubility that 

results in minimal size increase but provide bright, shell-free water-soluble quantum dots. The 

synthesis uses the cheap, easy to handle CdO and elemental Te as precursors, and has the ability 

to reproducibly synthesize them without long refluxing times and, using a simple ligand exchange 

procedure, can be completed in less than an hour. Most importantly, we can use these results to 

tune both solubility and the optical properties by knowing how the coupled relaxation processes 

affect both radiative and non-radiative lifetimes. We have quantified that a Cd-rich surface shows 

higher quantum yield than a Te-rich surface primarily because the radiative lifetime is significantly 

increased by uncoordinated Te atoms causing hole trapping processes. In addition, strongly 

coordinating ligands, primarily on the Cd-atoms, increases the non-radiative lifetime. We 

postulated a model in which a balance between trapping rate and subsequent ligand-mediated non-

radiative relaxation is controlled by surface atom stoichiometry and ligand density and coupling 

strength, which allows us to engineer both average radiative and non-radiative lifetimes. 

Quantitative FT-IR spectroscopy, together with systematic synthesis and ligand exchange, has 

provided strong support for this model. The implications of this study in gaining a deeper 

understanding of the connection between the ligand binding chemistry and the physics underlying 
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charge carrier relaxation processes will allow one to tailor QDs for a wide variety of applications 

by engineering these two lifetimes. For example, photovoltaic applications will likely benefit from 

a system with a long radiative lifetime combined with strong chemical coupling to conducting 

environments, while light emitting devices benefits from having a short radiative lifetime and weak 

external coupling. For near-field energy transfer processes, such as FRET, it is important to gain 

a more complete knowledge of how the local environment affects both the radiative and non-

radiative lifetimes in order to accurately calculate the energy transfer rate, and ultimately the 

distance between the donor and acceptor molecules.  
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3.1. Abstract 

      CdSe/CdS core/shell quantum dots with various optical and structural properties have been 

reported. Starting with a known quality of CdSe core obtained by varying the ratio of the 

coordinating ligands, and using both thermal cycling and successive ion layer adsorption and 

reaction method (SILAR) in shelling, we monitored the shell growth up to 8 monolayer (ML) for 

each set of the samples. The sample sets comprised of quantum dots core with different 

photoluminescence quantum yields (PL QY) ranging from 4- 50 % with their respective 

core/shells. Apart from the prominent absorbance spectral redshift, the shell growth was further 

proved by the TEM images and ligand exchange results. Surprisingly, the low quality core samples 

exhibited the general CdSe/CdS shelling trend as reported in most of the literature while the higher 

PL QY showed a reverse trend whereby the initial shell thickness reduced the PL QYs before 

increasing but not exceeding that of the core. The quality, crystallinity and wurtzite structure of 

these particles were verified by both HRTEM and XRD. Furthermore, radiative and nonradiative 

rates revealed that nonradiative recombination pathways are more responsible for the observed 

trends in PL QY. These results highlights the need for a specific choice of core material quality 

while performing core/shell synthesis. 
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3.2. Introduction 

 

      In less than six decades, studies in nanostructure fabrication and synthesis have received 

tremendous advances, particularly in the area semiconductor nanocrystals. The increasing interest 

in these materials are motivated by their promising applications in lasers,[1] photovoltaic 

devices[2] and biomedicine.[3, 4] Due to the size-tunable optical properties across the visible 

region, CdSe nanocrystals have become the most popular. Besides controlling their size 

distribution [5, 6] a lot of progress has been made on controlling their fluorescence brightness,[6, 

7] and photostability.[8] 

       Previously, by controlling the ratios of precursors and ligands, Peng et al [9] reported that 

using precursor amounts with a low Cd:Se ratio of 1:10 gave the highest PL quantum yiled (QY), 

above 70% with flat (broad) PL bright points while 1:1 resulted in QDs with about 40% QY and 

sharp PL bright points. Furthermore, a combination of primary amines such as octadecylamine 

(ODA) and tri-octylphosphine oxide (TOPO) are known to enhance the PL QY and control the 

crystal structure of these nanocrystals.[9] This has been attributed to the closer packing of the long 

chain primary amines together with the high boiling point of TOPO resulting in highly passivated 

particles that have annealed to high crystallinity at high temperature.[10] 

       However, passivating both anionic and cationic surface sites completely by organic ligands is 

difficult, and thus dangling bonds will remain on the surface to some extent, resulting in trap sites 

for the excitonic charge carriers.[11] In order to passivate these trap sites, a higher band gap shell 

material is required. For instance ZnSe, [12] CdS, [13-16] ZnS[17-21]and alloyed CdxZn(1-x)S[11] 

are the most commonly used shelling materials for CdSe cores. Due to the higher band gap of these 

shell materials compared to CdSe core, the excitons are confined to the CdSe core and away from 

the surface trap sites, reducing the non-radiative pathways and hence show improved optical 
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properties. Besides confinement, the lattice mismatch of the shell material plays a significant role 

in achieving highly crystalline core/shell materials. In fact, CdSe-cores with CdS-shells that have 

a small lattice mismatch of 3.9% were shown to favor epitaxial growth and result in extremely 

high crystallinity in the resulting core/shell quantum dots.[9, 11, 22] On the other hand, CdSe core 

with thin ZnS shell result in high PL QY due to better confinement by the larger band offset 

although they show high lattice mismatch and are bad for thicker shells.   Therefore, both band 

gap and lattice mismatch considerations in core/shell synthesis can be utilized to offer several 

benefits such as improved PL QY[19, 21, 23-25] reduced fluorescence lifetimes,[19]and stability 

against chemical degradation or photo-oxidation.[8]  

       Except for one study that compared shelling of CdS on amine or TOPO coated CdSe cores,[15] 

the majority of shelling reports have been performed on low quantum yields cores,[5, 17, 18, 21] 

probably to highlight how shelling significantly improves the fluorescence properties of the 

quantum dots. More recently, this line of research is focusing on proper selection of shell 

precursors control the structure of the core/shell quantum dots. For example, thin shell quantum 

dots with almost unity PL QYs were recently reported.[22] Here, the high crystallinity and 

uniformity, narrow emission linewidth and suppressed blinking of the nanocrystals observed were 

attributed to the optimal condition provided by the slow shell precursor infusion and relatively low 

reactivity of the   octanethiol which acted as both source of sulfur and ligand. The source of Cd in 

this experiment was cadmium (II) oleate. Contrary to the expected trend when shelling a core with 

a higher band-gap material, an initial drop in PL QY with shell growth observed was attributed to 

the quenching by the octanethiol. Also, high-quality CdSe/CdS core/shell nanocrystals with either 

zinc blend or wurtzite structure using single-source precursor cadmium diethyldithiocarbamate 

(Cd(DDTC)2) have been reported.[5] The key here was to reduce the reaction temperature by 
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applying primary amines as activation reagents and the use of dynamic ligands. As with the general 

trend of reports, the PL QY of the starting core used here was also very low, below 5 %, before 

increasing to over 80% with shell growth. 

       The general assumption in the literature is that a high quality core is very helpful for the growth 

of the core/shell structures.[8] The only contradictory study, to the best of our knowledge, was just 

recently published,[7], and is quite consistent with the results described later in this chapter. Taking 

CdSe cores with varying PL QYs, the correlation between the number of defective cores (as 

evidenced by high resolution TEM) and their PL QYs was found to be counterintuitive. In other 

words, high quality cores with little-to-no surface defects surprisingly resulted in low PL QY 

core/shell particles, while cores with more surface defects resulted in higher PL QY core/shells. 

To obtain varying quality of the starting cores, the concentrations and ratios of the surface ligands 

were varied, as well as changing the identity of the amine in some preparations. Higher quality 

cores were achieved by minimizing surface trap states, while lower quality cores were achieved 

by reducing the number of ligands on the surface of nanocrystals thereby availing traps states, 

translating to an observed decrease in average fluorescence lifetime.[7] In that study a relatively 

narrow range of core QYs were synthesized, varying only from 4-16%, in addition to having to 

change the identity of the amine ligand from oleylamine to octadecylamine (ODA) to obtain cores 

over 8%, which made a direct comparison of the low QY and high QY cores difficult. 

       In this study, we report on the effects of shelling 3.5 nm CdSe cores of different PL QYs and, 

using SILAR[15] and thermo-cycling [26, 27] methods, we grow epitaxial shell thickness up to 

~5.5 nm. Contrary to the aforementioned study,[7] we varied the quality of our cores by only 

varying the ratio of ODA to TOPO and not the identity, as well as maintaining the overall ligand 

concentration. Apart from varying the ligands ratio above, set 2 was obtained by simply 
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performing the reaction without degassing the solvents and precursors (table 2.1) as perfumed for 

all other sets. As expected, our highest PL QYs of the CdSe cores were observed with higher ratios 

of ODA to TOPO, and reached much higher QYs than in the previous study.[6] While our low QY 

particles showed a similar trend to the previous study of increasing QY upon shelling with CdS 

followed by a decrease as the shell becomes thicker[6] our high QY showed a decrease in QY for 

thin CdS shells before increasing for moderately thick CdS shells. The resulting core/shell 

nanocrystals were then compared to the original cores for their ability to[6] show fluorescence 

after their transfer into water. Our observations agree with this recent study[6] which contradicts 

the common belief that high quality cores are necessary for superior core/shell properties but 

extends the study to very high QYs cores. This allowed us to postulate that the shell can actually 

introduce interfacial defects at the core/shell interface if the core quality is too high that strongly 

decreases the average radiative decay rate, but that these defects recover as the shell grows to 

moderate thickness. These results provide further criteria to consider when preforming shelling of 

core QDs. 

3.3. Experimental Section 

3.3.1. Chemicals. Cadmium oxide (CdO, 90%, Sigma-Aldrich), selenium powder (Se, 99.99%, 

Alfa Aesar), zinc oxide (ZnO, 99%, Sigma-Aldrich), sulfur powder (S, 99.9%, Alfa Aesar), oleic 

acid (OA, tech. grade, Alfa Aesar), 1-octadecene (ODE, 90%, Alfa Aesar), octadecylamine (ODA, 

95%,  Acros Organics), tri-butylphosphine ( TBP, 95%, Alfa Aesar) 5-

carboxytetramethylrhodamine dye (5-CTMR dye, Invitrogen), and tri-octylphosphine oxide 

(TOPO, Sigma-Aldrich) were used as purchased without further purification. Solvents: methanol, 

hexane, and acetone were of pure grade and were all bought from VWR international. 
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3.3.2. CdSe core Synthesis. CdSe core samples were synthesized by modification of the literature 

methods.[28, 29] Briefly, 0.04 M cadmium (Cd) precursor was prepared by degassing under 

vacuum and then heating a mixture of 0.02565 g of CdO, 0.4452 g OA and 2 g ODE to 200oC 

under argon flow until the solution became clear. The temperature was then reduced to 50oC at 

which a calculated amount of ODA and TOPO, depending on the required ratio, was added, 

degassed if needed and heated to 300oC under argon flow. At this temperature, a pre-made solution 

of 0.04 M Se precursor (0.01579 g Se, 0.4653 g TBP and 1.37 g ODE) was swiftly injected and 

after a few seconds, the heating mantle was removed to stop the growth of the particles at a desired 

size. The solution was then allowed to cool to room temperature, and then purified by dissolving 

in approximately equal amounts of hexane and methanol.  The mixture was centrifuged at 4000 

rpm for about 5 min. The process was repeated 3 times or more depending on the purity of the 

sample and the final purified hexane solution was kept in a refrigerator at 4oC until the the shelling 

process was performed.  

3.3.3. CdSe/ CdSe core/shell synthesis. The shelling process was performed using a combination 

of thermal cycling[26, 27]and successive ion layer adsorption and reaction (SILAR) methods.[15] 

Typically, 0.04 M Cd precursors were prepared in the same way as for the core synthesis while 

0.04 M S precursor followed the same method as that of Se in the core, both described above. The 

starting CdSe core solution for the shelling process was prepared by mixing 2 mL of CdSe of 

known concentration as estimated from the UV-vis absorption spectra, 1 g ODA and 2 mL ODE 

in the reaction flask. Pre-calculated amounts of S and Cd precursors, enough for the growth of a 

single monolayer (ML) were injected individually at the lower temperature of 180oC, and allowed 

to equilibrate for 5 min each before raising the temperature to 210oC for an additional 20 min for 

the growth of a CdS shell. The S precursor was always injected first. Approximately, 1 mL aliquots 
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were taken out and dissolved in hexane for optical measurements prior to lowering the temperature 

for subsequent injection. In total, 8 cycles of S and Cd precursor injections were carried out before 

stopping the reaction. 

3.3.4. Ligand exchange.  Ligand exchange followed our earlier reports.[30, 31] Briefly, to each 

sample, an equal amount of methanol was added to the hexane quantum dots solution, agitated and 

then centrifuged at 4000 rpm for 5 minutes. The colorless bottom layer was discarded and more 

methanol added. This process was repeated 3 times followed by extraction using acetone at 7000 

rpm for 20 minutes. The pellets were then added in a ligand solution consisting of 200µL MPA in 

10 mL of methanol adjusted to pH ∼10.5 with tetramethylammonium hydroxide (TMAH),Upon 

addition of the ligand solution to the pellet, the mixture was sonicated and placed in a three-neck 

round-bottom flask under argon and refluxed for 3h at ∼68 °C. After reflux, the heating mantle 

was removed, and the solution was allowed to cool to room temperature. To obtain the MPA-QDs 

in water, a 2 mL aliquot of the MPA quantum dots in methanol was precipitated by addition of 

diethyl ether and centrifuged for ∼15 min until a pellet was obtained. The liquid was decanted and 

the vial was inverted and lightly tapped to remove any remaining liquid. Following this, 2 mL of 

18 MΩ Millipore water was added. The MPA-exchanged nanocrystals readily dissolved in the 

water. 
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3.4. Instrumentation and measurements 

3.4.1. Optical Measurements. UV- Vis and Photoluminescence (PL) spectra were measured using 

Hitachi U-3900H spectrophotometer and Perkin Elmer LS 55 luminescence spectrometer, 

respectively. The samples for PL measurements were excited at 500 nm, the wavelength at which 

their absorbances were normalized to 0.05 optical densities. PL percentage quantum yields (PL 

QYs) were measured by comparing the integrated area of each sample spectra to that of 5-CTMR 

dye dissolved in methanol to the same OD. Average fluorescence lifetime measurements were 

obtained using our previous procedure.[31] Briefly, they were taken using MicroTime 200 

confocal fluorescence lifetime microscope (PicoQuant, GmbH, Berlin, Germany) equipped with 

PicoHarp 300 TCSPC controller. The samples were excited by 485 nm picosecond DPSS laser 

(LDH-P-C-485,Picoquant), controlled by the Sepia II software with a 8 MHz repetition rate. 

Fluorescence filters (580/60 and 605/55, Chroma, chosen depending on the emission wavelength 

of the samples) were placed in front of Single Photon Avalanche Diode Detector (SPAD, MPI, 

Microphotonic devices, Bolano, Italy) to reject background fluorescence and scattered laser light. 

3.4.2. Transmission Electron Microscopy. Both transmission electron microscope (TEM) and 

high resolution-transmission electron microscope (HR-TEM) images were taken in Tecnai G2 

TF20 transmission electron microscope (FEI) with acceleration voltage of 200kV using ultrathin 

carbon film on 400 mesh copper grids as the substrate.  

3.4.3. Powder X-ray Diffraction (XRD). XRD patterns were obtained using Rigaku, MiniFlexII 

x-ray diffractometer operating at 30kV and 15 mA using Cu Kα radiation. Samples were purified 

by 3 cycles of centrifugation as explained above followed by precipitation using acetone. The 

pellets were then applied onto a glass slide and allowed to air dry before measurement.  
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3.5. Results and discussion 

       The five sample sets as presented here were basically synthesized by maintaining similar 

reaction conditions but varying the ligand ratio, specifically the ratio of ODA to TOPO except for 

set 2 where purging was not performed. The resulting core samples with varying PL QY are shown 

table 3.1. By decreasing the ratio and maintaining the total concentration of these ligands, we 

gradually decreased the percentage PL QY from 52 to 9 %. The advantages of using TOPO and 

ODA as ligands in quantum dots synthesis had been elaborated by several groups [9, 10, 32] Apart 

from high boiling points and solubility in organic solvents which is facilitated by their long alkyl 

chains, they are also responsible for the passivation of the electronic surface sites, therefore, 

minimizing non-radiative charge carrier recombination.[10] 

       Comparing the effect of different ligands on CdSe core, Ning et al[32] concluded that both 

the ligands are suitable for passivation the electron trap sites, however, TOPO having a relatively 

closer HOMO energy to that of CdSe valence band, lowers the PL QY by extracting the hole, 

therefore, reducing the degree of overlap between the hole and electron wave functions. On the 

other hand, ODA, being a primary amine, has been shown to yield high PL QYs CdSe quantum 

dots with nearly perfect wurtzite structure.[9] Our results here, were therefore modeled to control 

the surface trap states by either passivating most of the electron trap sites using more ODA to give 

higher PL QYs or using more TOPO by reducing the extent of exciton wave function overlap and 

yield low PL QY samples. 
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Table 3.1: Reaction conditions explored in synthesizing various CdSe core samples used in this 

experiments and respective results 

Sample ODA:TOPOa      Purging PL QY of core (%)b λmax(nm)c 

Set 1 

Set 2 

Set 3 

Set 4 

Set 5 

4:1 

4:1 

  1.5:1 

1:2 

1:5 

Yes 

           No 

Yes 

Yes 

Yes 

52 

42 

32 

18 

                9 

559 

560 

565 

552 

555 
aRatio of octadecylamine (ODA) to triocylphosphine oxide (TOPO). bPercentage 

Photoluminescence quantum yields used to classify the samples into various sets 1-5. cAbsorbance 

λmax of the cores. 

 

         Most recently, Saha et al[7] reported a similar trend in the PL QYs, however, in their case 

the surface defects were generated by reducing the number of total surface ligands therefore 

leaving more trap sites unpassivated. Absorption spectra of three of the sample sets are shown in 

figure 3.1(a-c). In each spectra, a steady redshift of the first exciton absorption peak was observed 

with increase in shell thickness as shown more clearly with the respective inset figures. Systematic 

with all samples, the extent of these redshift is larger with earlier shells and reduces as the shell 

thickness increases.(figure 3.2a) Furthermore, the absorption features corresponding to transitions 

at different electronic states other than the band edge were also eminent, especially below 470 nm 

for increasing CdS shell thicknesses. The redshift with increasing shell thickness is well discussed 

in the literature,[5-8, 20, 21, 27] and is generally attributed to the exciton delocalization into the 

shell material, and signifies shell growth as opposed to alloying.[5] The larger relative red shift 

with thin shells has been discussed before [28] and is attributed to extensive delocalization of an 

electron into the surrounding shell material which then diminishes as the shell becomes thicker.       

The full width at half maximum (FWHM) of all sample sets are given in figure 3.2b. Interestingly, 

there is a small but steady decrease as the shell thickness increases indicating monodisperity as 

consistent with the other previous reports [5, 6] 
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Figure 3.1. Absorbance spectra as a function of shell thickness (number of monolayers) for 

samples sets 1(A), 3(B) and 5(C). For each of these samples there is a steady redshift shown by 

the arrows depicting shell growth.  

 

           A comparative study[5] showed that the trend of FWHM for wurtzite structures, as are 

synthesized here (vide infra), may be unpredictable. The gradual decrease measured for our 

samples may imply that our shelling process gradually minimized the exciton separation, 

consistent with the observed decrease in the extent of redshift, as the monolayer number increases. 

The PL decay results of three samples sets 1, 3 and 5 cores are given in figure 3.3a showing the 

decrease of the average lifetime from higher quality sample set 1 to 3 followed by an increase for 

the set 5.  Figure 3.2b shows the PL QY of all the sample sets as a function of monolayers of shell. 

As explained above, and shown in table 3.1, the number of different sets were assigned from the 

PL QYs of the cores where the higher PL QY sample is referred to as set 1 and the numbering goes 

down as the PL QYs decreases. Looking at sets 1, 2 and 3, with PL QYs of 52%, 42% and 32% 

respectively, there is a uniform initial decrease in PL QYs with shell thickness up to ML 3 followed 

by an increase to ML 5 before a final decrease. However, the extent of the increase after ML 3 

depends on the original core QY, of which the increase in set 1 and 2 (the highest QY cores) did 

not go beyond that of the original core.  
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Figure 3.2. (A) Absorbance λmax as a function of number of monolayers for the sample sets 1-5 

illustrating the extent of redshift as the shell grows thicker. (B) Full width at half maximum 

(FWHM) as a function of the number of monolayers for the sample sets 1 – 5 showing a constant 

distribution in size before and after shelling.  
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          On the other hand, the increase in set 3 slightly exceeded the original core before the final 

drop. In a systematic manner, set 4, with a PL QY of 18%, increased upon adding 1 ML of CdS 

then followed the same trend of decreasing with thicker shells. Finally, set 5 with the lowest PL 

QY of 9% showed an initial increase in PL QY as the shell thickness increases up to the bright 

point of 3 ML of shell, followed by a decrease, in agreement with normal expectations. It is worth 

mentioning here that sample sets 1-3 cores may be considered of high quality when the PL QY is 

compared to other CdSe cores in the literature [12, 33, 34] and also supported by high crystallinity 

as shown later by their TEM images and XRD. High PL QYs may be a consequence of surface 

defect-free quantum dots as recently reported.[7] Given that our synthesis protocol for these first 

three sets employed higher ODA than TOPO ratio as the main ligands to passivate the electron 

trap sites, we may relate these high PL QY values to the reduced nonradiative recombination 

pathways on the surface of the quantum dots. Most often, shelling is carried out on low PL QY 

cores and is known to significantly improve the quality of the quantum dots. Recently, the only 

group that did a quantitative study in this area[7] observed the same trend by growing relatively 

thicker shell on a high PL QY cores. Their observations concurred with the ones reported here that 

starting with poor PL QY cores is more suited for obtaining high quality core/shell quantum dots, 

contrary to the general intuitive belief. 

          The average lifetime for each sample (figure 3.3c) was obtained by fitting to a given number 

of exponential until the residuals showed a straight line and the chi-squared value is minimized as 

we reported earlier.[31] For almost all of our samples the fitting met the above criteria after 3 

exponential fit from which the average fluorescence lifetimes values were derived. The general 

trend observed with all the samples was that the average decay lifetime (τFl) gradually decreased 

as the shell thickness increased (figure 3.3c).  
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Figure 3.3. (A) Photoluminescence decay spectra of sample sets 1, 3 and 5 showing a multi-

exponential decay kinetics. (B) Photoluminescence quantum yields (PL QY) as a function of 

increasing number monolayer for all the sample sets 1 -5. (C) Average fluorescence lifetime for 

all the sample sets 1-5 demonstrating a steady decrease with increasing number of monolayers. 

(D) and (E) Nonradiative and radiative rates, respectively calculated from equation 2.2 and 2.3 

using the values from figures 3.3 (B) and (C). (F) An overly of sample set 5 from figure 3.3(B) 

and 3.3 (E) to illustrate the similar trend. 
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         This may be attributed to an increase in either or both the radiative and nonradiative rates. 

Furthermore, the average fluorescence lifetimes of sets 2 and 3 each showed an increase in average 

lifetime after ML 1 followed by a decrease to ML 8 while sets 1, 4 and 5 show gradual decrease 

from ML 1 to Ml 8. In order to investigate in detail the processes responsible for the calculated PL 

QYs and the average lifetimes, we separated the nonradiative (knr) and radiative (kr) rates using the 

equations 2.2 and 2.3 (chapter 2) and plotted them in figures 3.3d and e respectively. The kr of all 

the samples (figure 3.3 e) follows closely the PL QYs trend (figure 3.3b) suggesting that kr is the 

primary process controlling the PL QY rather than knr as is expected for interfacial defects in 

core/shell systems. This is further illustrated (figure 3.3f) by overlaying the kr and PL QY of 

sample set 5 to highlight this similarity in trend. It is known that shelling passivates the surface 

trap sites hence eliminating the nonradiative recombination pathways consequently, improving the 

PL QYs and the overall quality of the QDs.[5-7] The small lattice mismatch of 3.9% at the interface 

between CdSe and CdS especially for thin shell quantum dots is known to promote high crystalline 

growth. [6] However, for the results reported herein, we observed that the PL QYs for the sets 1-

3 with high initial core quality decreases with increase in shell thickness contrary to the 

expectation. A similar observation  that Saha et al[7] recently referred to as counterintuitive 

behavior.  

        The initial decrease in PL QYs while the knr increases with shell thickness for the high quality 

samples sets 1-3, may be related to some rearrangements of both incoming and present atoms and 

ligands at the surface which is already been highly passivated hence generating trap sites that 

increases the nonradiative pathways. But as the intermediate shelling process continues, these 

generated pathways are gradually eliminated resulting into the observed subsequent increase in 

both PL QYs even though the high crystallinity is not easily recovered. For the case of the low 
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quality samples sets 4 and 5, however, the initially shelling process passivates the available trap 

sites thus increasing the observed PL QYs. As the shell becomes thicker in all the sets, some 

defects due to the small lattice mismatch emanates between the core and the shell which lowers 

the PL QYs but not strong enough to distort the crystallinity of the final core/shell sample. This 

argument however, may need to be investigated further. 

       To verify the quality of the samples as shown by the PL QYs, TEM images and high resolution 

TEM images were taken as shown in figure 3.4a. For each set, the core and ML 8 sample is shown 

highlighting the overall increase in size with shell thickness. Furthermore, the average diameter 

and narrow size distribution is clearly visible across all the sample sets. The The measured 

diameters of set 1 core and the core/shells after the last injection are 3.6±0.5 nm and 8.7±1.2 nm, 

respectively, while that of set 5 are 3.8±0.5 nm and 8.7±1.5 nm, respectively. Since these values 

agree with the calculated monolayer injections, we are to refer to the last monolayer as ML 8. 

         The measured size histograms are plotted in figure 3.4b, however, show that shelling slightly 

increased the size distribution of these samples in contrast to the narrower FWHM discussed 

earlier, suggesting that the narrower FWHM is not the result of size distribution, as often assumed, 

but due to electronic effects. As the shell becomes thicker, the exciton separation is minimized 

which leads to a lower FWHM, even though the size distribution may increase. Interestingly, the 

respective HRTEM images inset in in each TEM image sample confirms the observed trend 

whereby the high quality cores results into poor quality core/shell quantum dots, while the low 

quality cores results in higher core/shell quality. The crystallinity of sets 1-3 cores show high 

crystallinity, consistent with their high PL QYs values, but worsens after shell growth. On the 

other hand, the crystallinity of sets 4 and 5 cores which are poor at the beginning, improved 

significantly after shell growth.  
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Figure 3.4. (A) TEM images of CdSe core and corresponding CdSe/8ML CdS core/shell quantum 

dots for all the sample sets 1- 5. Inset is the respective HRTEM image of each sample revealing 

high crystallinity of the samples. (B) Size distribution histograms of sets 1 and 5 for both core and 

ML 8 core/shells, showing the average diameter and size dispersity of the quantum dots. 

        

        Several groups [5, 35] have shown that CdSe quantum dots with zinc blende structures exhibit 

superior quality with high PL QYs than their wurtzite counterparts. We therefore performed XRD 

measurements on the two samples showing the largest PL QY difference, Set 1 core with highest 

PL QY and high crystallinity and set 5 with lower PL QY as shown in figure 3.5, to investigate 

whether high quality samples were the result of zinc blende rather than wurtzite sturecture. The 

results, however, revealed that both our samples exhibit wurtzite structures, highlighting that the 

reason for the QY difference was due to core crystallinity and/or surface trap states. 
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Figure 3.5. X-ray powder diffraction pattern measured from the CdSe core of the samples sets 1 

and sample with PL QY 13.The diffraction peak patterns corresponds to those of wurtzite bulk 

CdSe showing that both the samples sets exhibit wurtzite structures.    

 

          It would have been surprising to see zinc blende even with our highest PL QY sample, given 

that the method used for synthesis is known to provide wurtzite structures, but the cores 

synthesized here are among some of the highest QYs reported for this method, so it was necessary 

to verify this assumption.  
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Figure 3.6. (A and B) Photoluminescence spectra of the sample set 3 for both the core and ML 8, 

respectively, before (hexane) and after ligand exchange (water). Photoluminescence quantum 

yields histograms before (C) and after ligand exchange using 3-mercaptopropionic acid (MPA) 

(D) for the sample sets 1- 5. There is a complete quenching of the core samples after ligand 

exchange compared to their ML 8 counterparts.  

 

      Most of the groups that have reported zinc blende CdSe cores [5, 35] have employed specific 

synthetic strategy either by utilizing appropriate ligands or temperatures. Besides the distinct 

diffraction peak positions corresponding to the wurtzite planes  as shown by the XRD spectra, their 

resolution and intensity further confirmed on the quality of the samples. 
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In order to verify the effects of phase transfer on PL QYs or core and core/shell CdSe/CdS QDs, 

we performed ligand exchange and subsequent dissolution in water using 3-mercaptopropionic 

acid on both cores and ML 8 samples as shown in figure 3.6. Figures 3.6a and b, shows the PL 

spectra of the core and ML 8, respectively, for the sample set 3. Complete quenching of the core 

was observed,  as seen before[11], as well as reduced PL QY of the core/shell, which has also 

previously been reported[6]. The results given in figure 3.6c shows all the PL QYs of the sample 

sets 1-6 both core and ML 8 dissolved in hexane while 3.6d shows the respective samples after 

ligand exchange and dissolution in water. Similar to the spectra 3.6a and b, the cores of all the 

samples were completely quenched compared to ML 8 consistent with observation reported.[11] 

The trend, however, is not systematic as set 4 was quenched the least followed by set 2. However, 

all CdSe/CdS core/shell samples showed significant reduction in PL QY, although not as much as 

the core-only CdSe. For the CdSe cores, the excited electron resides at the surface of the quantum 

dots and easily trapped during ligand exchange, particularly using thiol ligands. 

          However, as the shell thickness increases, the charge carriers are confined away from the 

surface and thus less accessible during the ligand exchange. The degree of confinement depends 

on the bandgap overlap with CdSe/CdS, which is small for this system , therefore experiencing 

less confinement of the exciton. The conduction band offset is particularly small between CdSe 

and CdS [29] which results in the electron wavefunction penetrating to the shell surface, with a 

reasonable probability of being trapped,  resulting in the observed decrease in PL QYs, even after 

the growth 8 monolayers shell thickness. This is a major disadvantage to using only CdS as a shell 

material. While they result in good core/shell materials in organic solvents, they are not ideal for 

transfer into water with thiol ligands. For this reason, we explore the addition of adding a secondary 

ZnS shell in the next chapter.   
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3.6. Conclusion 

 

        CdSe core quantum dots with low quality i.e. low PL QY and poor crystallinity are likely to 

result in high quality CdSe/CdS core/shell material, while high quality cores show poor core/shell 

quality. The TEM images confirms this nontrivial observation, whereby the less crystalline cores 

resulted in highly crystalline quantum dots after shelling. The constant kr across all the samples 

sets as a function of shell thickness suggests that the observed variation in PL QYs is mainly 

controlled by the kr. We have also shown that PL QYs of bare CdSe cores are completely quenched 

through ligand exchange and phase transfer compared to their CdSe/CdS core/shell counterparts, 

although they show much higher quenching than ZnS shells.  
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4.1. Abstract 

      A lot of efforts towards the suppression and elimination of blinking in quantum dots have been 

reported, however, these reports rely on using either very thick or highly-crystalline, medium 

thickness CdS shells or interfacial alloying, while using only ZnS as a shell on CdSe does not 

suppress blinking. Even though, there have been reports of blinking suppression with multishell 

configurations, particularly with CdS and ZnS, the role that interfacial trap states play in these 

systems is not so well understood. Here, we examined how increasing the outer shell (ZnS) 

thickness on CdSe/CdS/ZnS quantum dots leads to a reduction in blinking. Time resolved 

fluorescence, TEM and STEM/EELS were used to follow the shelling process. The different shells 

affect the radiative and non-radiative rates differently due to the competing effects of degree of 

charge carrier confinement and lattice mismatch. Using only a 3 monolayer (ML) CdS inner-shell, 

we find that we can greatly reduce blinking by adding just 3ML of a ZnS outer shell – thereby 

maintaining a relatively small QDs. However, by making the ZnS shell thicker, blinking increased 

again, which we attribute to induced lattice strain from the ZnS as discussed above. We anticipate 

that the reported QDs will be useful in bio-imaging applications due to their suppressed blinking, 

smaller size, and lower toxicity of the outer shell (compared to CdSe-CdS core-shells). 

 

 

Keywords: colloidal semiconductor, interfacial trap-states, lattice mismatch, core/shell/shell 

materials, and quantum dots. 
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4.2. Introduction  

        Core-shell colloidal semiconductor nanocrystals, also known as quantum dots (QDs), are one 

of the most researched nanomaterials because of their unique structural and optical properties. 

Coating of a core material with a higher band-gap shell material, for example coating CdSe with 

ZnS not only improves the fluorescence quantum yield of the core by passivating the surface trap-

states, but also isolates the core from the effects of the external environment.[1-3] This advantage 

is particularly prevalent for CdSe/ZnS core/shell materials, due to the strong electron and hole 

confinement brought about by the higher band gap energy offset of ZnS compared to CdSe.[2] 

However, it has also been reported[2] that this material combination is imperfect due to the large 

lattice mismatch of 12% and, in fact, generates additional defects at the interface that act as trap-

states and contribute to the non-radiative pathways known to lower quantum yields and promote 

blinking besides distorting the shape of the QDs. A study relating these trap-states to the 

distribution of the shell material[4] emphasized that the growth of a simple ZnS shell on CdSe is 

not enough for superior properties as it leads to non-uniform spherical shells. They suggested[4] 

that a major reason for this anisotropic distribution in CdSe/ZnS core/shell may be due the large 

difference in lattice constants (a = 3.81 Å and c = 6.26 Å for ZnS compared to a = 4.30 Å and c = 

7.01 Å for CdSe) for the two materials.   

          QD blinking has been extensively studied[5-13] and reviewed,[14, 15] and is generally 

attributed to the trap states, which can be due to the crystal imperfections of the CdSe core, the 

interface between the core and the shell, the shell/shell interface for core/shell/shell QDs as well 

as the external surface at the inorganic/organic interface. Therefore, one of the most common ways 

towards suppressing blinking is to eliminate these trap states. Growing a thicker multishell material 
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up to ~19 MLs of a on CdSe core was reported to suppress blinking.[6] This thickness of ~19 MLs 

was found to be useful in confining the excitation away from surface trap states. The smaller lattice 

mismatch of 3.9 % between these core and shell enabled for the growth of thick shells with minimal 

interfacial defects, eventhough the exciton wave functions are more separated resulting in reduced 

radiative rates. Also, following the same strategy, a 14ML shell thickness grown on the CdSe core 

was reported to result in about 68% of the quantum dots studied to be non-blinking.[11] More 

recently, a slow shell growth method generated exceptionally high crystalline shells and reduced 

blinking quantum dots with only 7 MLs of CdS onto CdSe core.[5] Here, the high crystallinity and 

uniformity, narrow emission linewidth and suppressed blinking of the nanocrystals observed were 

attributed to the slow growth at higher temperature facilitated by the low reactivity of octanethiol 

as the shell precursor ligand.  

            Contrary to the reduced blinking observed in CdSe/CdS core/shell quantum dots, growing 

7 ML s of ZnS shell on CdSe core [10] had been reported to have no effect on the blinking. This 

effect was attributed to the larger lattice mismatch, which is also known to limit the growth of very 

thick ZnS shell [2] unlike the CdS shell counterpart.[6] To circumvent the challenges common in 

CdSe/CdS and CdSe/ZnS core/shells materials, a different class of quantum dots, core/shell/shell 

systems are becoming more popular. Some of the superior properties of this class of quantum dots 

are the elimination of the toxic cadmium from the surface and maximizing the optical properties 

of quantum dots simply by choosing a proper material combination. Furthermore, proper control 

of the exciton confinement and defects (tap states) generation by the higher band gap ZnS and 

smaller lattice mismatch CdS shells, respectively, should enable higher quality particles that 

remain smaller than using only CdS. For instance, Mews et al [16]  reported on high crystalline 

and almost perfectly spherical quantum dots with about 70-85% PL quantum yield obtained by 
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gradually changing the shell composition from CdS to ZnS in the radial direction. Using the same 

materials, Talapin  et al [17] and Hai et al, [18] independently minimized the interfacial strain and 

exciton confinement to engineer very photo-stable quantum dots by growing a CdS as a buffer 

shell between the CdSe core and the outer ZnS shell. The former group reported PL quantum yield 

of up to 80 %. Also Fitzmorris et al [19] who reported on CdSe/ZnSe/ZnS core/shell/shell observed 

an increased fluorescence lifetime which was attributed to the elimination of the nonradiative 

recombination components by minimizing the strain in core/shell/shell quantum dots. Furthermore 

Xu et al [20] observed stability of their quantum dots both in different physiological conditions in 

PBS buffer and under continuous UV radiation.  

        However, a systematic study on blinking of these core/shell/shell systems have not been 

extensively carried out. Here, we particularly focus on varying the core/shell and shell/shell strain 

by varying the outer ZnS shell thickness and correlate it to the fluorescence blinking of 

CdSe/CdS/ZnS QDs. We show that both the degree of exciton confinement and the defects caused 

by lattice strain induced by the addition of the outer shell plays very important roles in blinking. 

Our strategy is to increase the confinement potential of the electron and hole wave functions by 

the ZnS shell, while at the same time minimizing the defect formation at the interfaces to produce 

high quality but still small quantum dots. Using only a 3 monolayer (ML) CdS inner-shell, we find 

that we can greatly reduce blinking by adding just 3ZnS outer shell – thereby maintaining a 

relatively small overall QD diameter, and are amongst the smallest reduced-blinking QDs 

reported.We found that by making the ZnS shell thicker, blinking increased again, which we 

attribute to induced lattice strain from the ZnS. We anticipate that the reported QDs will be useful 

in bio-imaging applications due to their suppressed blinking, smaller size, and lower toxicity of 

the outer shell. 
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4.3. Experimental Section 

4.3.1. Chemicals. Cadmium oxide (CdO, 90%, Sigma-Aldrich), selenium powder (Se, 99.99%, 

Alfa Aesar), zinc oxide (ZnO, 99%, Sigma-Aldrich), sulfur powder (S, 99.9%, Alfa Aesar), oleic 

acid (OA, tech. grade, Alfa Aesar), 1-octadecene (ODE, 90%, Alfa Aesar), octadecylamine (ODA, 

95%,  Acros Organics), tri-butylphosphine ( TBP, 95%, Alfa Aesar)5-

carboxytetramethylrhodamine dye (5-CTMR dye, Invitrogen), poly(methyl methacrylate) 

(PMMA, Sigma-Aldrich) and tri-octylphosphine oxide (TOPO, Sigma-Aldrich) were used as 

purchased without further purification. Solvents: methanol, hexane, and acetone were of pure 

grade, except toluene which was of high purity grade for HPLC and were all bought from VWR 

international. 

4.3.2. CdSe Core Synthesis. CdSe core samples were synthesized by modification of the literature 

methods.[2, 21-23] Briefly, 0.04 M cadmium (Cd) precursor was prepared by degassing under 

vacuum and then heating a mixture of 0.02565 g CdO, 0.4452 g OA and 2 g ODE to 200oC under 

argon flow until the solution became clear. The temperature was then reduced to 50oC at which 

point 1.5092 g of ODA and 0.5026 g of TOPO was added, degassed and heated to 300oC under 

argon flow. At this temperature, a pre-made 0.04 M Se precursor solution (0.01579 g Se, 0.4653 

g TBP and 1.37 g ODE) was swiftly injected and after a few seconds, the heating mantle was 

removed to stop the growth of the particles. The solution was then allowed to cool to room 

temperature, and then purified by dissolving in approximately equal amounts of hexane and 

methanol.  The mixture was centrifuged at 7K rpm for about 5 to 10 min depending on the purity 

of the sample. The process was repeated 3 times and the final purified solution was kept in a 

refrigerator at 4oC for storage until the the shelling process was performed.   
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4.3.3. Core/shell/shell synthesis. The shelling process was performed using a combination of 

thermal cycling (TC)[21] and successive ion layer adsorption and reaction (SILAR) methods.[22] 

Typically 0.04 M Cd or zinc (Zn) precursors were prepared in the same way as the Cd precursor 

while 0.04 M S precursor followed the same method as that of Se, both described in the previous 

section. The starting CdSe core solution for the shelling process was prepared by mixing 1.5 mL 

of CdSe in hexane, 1.5 g ODA and 4 mL ODE in the reaction flask. A pair of pre-calculated 

amounts of sulfur and either cadmium or zinc precursors, enough for the growth of a single 

monolayer (ML) were injected individually at a lower temperature of 180oC and allowed to 

equilibrate for 5 min each before raising the temperature to 210oC for an additional 20 min for the 

growth of a CdS shell and to 230oC for a ZnS shell. The S precursor was always injected first. 

Approximately 1 mL aliquots were taken out and dissolved in hexane for measurements prior to 

lowering the temperature for subsequent injection. The first 3 ML injections were for the CdS shell 

while the last 5 ML injections were for the ZnS shell. Transmission electron microscope (TEM) 

image measurements were performed to confirm the actual thickness, as reported under the results 

and discussion section.  

4.4. Instrumentation and measurements 

4.4.1. Fluorescence and Absorption Spectroscopy. Photoluminescence (PL) and absorbance of 

the aliquots were measured with a Perkin Elmer LS 55 luminescence spectrometer and Hitachi U-

3900H spectrophotometer, respectively. PL percentage quantum yields (PL QYs) were measured 

by comparing the integrated area of each ML spectra to that of 5-CTMR dye dissolved in methanol 

to the same optical density of 0.05 at the excitation wavelength of 500 nm.  

4.4.2. Transmission Electron Microscopy. Transmission electron microscopy (TEM) and high 

resolution TEM (HRTEM) images were performed on a Titan TEM (FEI Company) operating 
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with an acceleration voltage of 300kV. Z-contrast scanning TEM (z-STEM)  coupled with electron 

energy loss spectroscopy (EELS) results were also obtained with the same Titan instrument, but 

in energy-filtered  mode whereby a nanoscale probe of the beam is focused at one point as it is 

scanned across the survey region. TEM samples were prepared by depositing ~ 200 µL of 

thoroughly purified samples on a thin film of carbon-coated copper grids. The measurements of 

the QDs diameter was carried out using the image J program and the EELS spectral analysis was 

performed using the digital micrograph software.  

4.4.3. Fluorescence Microscopy. Average fluorescence lifetime and blinking measurements were 

carried out MicroTime 200 fluorescence microscope (PicoQuant GmbH, Berlin, Germany) which 

is based on an Olympus IX71.2[8, 24] and equipped with PicoHarp 300 TCSPC controller. It uses 

a 485 nm laser (PDL 485, Picoquant) to excite the quantum dot samples using a dichroic mirror 

(500dcxr, Chroma) to send the beam through a water immersion objective (Olympus, Apochromat 

60x, NA 1.3) to achieve a diffraction-limited laser focus. The fluorescence is collected by the same 

objective and passed through the dichroic mirror and a 100 μm diameter pinhole. A fluorescence 

filter (605/55, Chroma) is placed in front of Single Photon Avalanche Diode Detector (SPAD, 

MPI, Microphotonic devices, Bolano, Italy) to reject background fluorescence and scattered laser 

light. 
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Figure 4.1. (A) The comparisons of fluorescence intensities of single QDs in PMMA matrix from 

cw laser or pulsed laser excitation. (B) The fluorescence lifetimes of single QDs decrease slightly 

over the laser power range of 5-50 µw. 

 

The objective is positioned on a subnanometer precision 3D piezo scanning stage (PI, Berlin, 

Germany) and fluorescence images of 20×20 µm were recorded. For fluorescence blinking 

experiments, 50 µl of highly diluted quantum dot (QD) solution containing ~3% (W/V) 

Poly(methyl methacrylate) (PMMA) in Toluene was spin coated onto a clean No.1 glass coverslip 

to make a thin film for immobilizing single QDs in the PMMA matrix. 
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             By focusing the diffraction-limited laser focus onto the individually well-isolated bright 

spots in the recorded fluorescence images, 5 minutes long fluorescence traces with the time 

resolution of 10 ms were obtained for single QDs. The fluorescence intensities of single QDs in 

PMMA matrix from the laser operating in either cw pulsed mode were found to be very similar to 

each other between 0 µw to 10 µw excitation power. Above 10 μw laser power, the average 

fluorescence intensity of single QDs from cw laser is higher than those for pulsed laser excitation 

(figure 4.1a). Furthermore, the dependence of fluorescence intensity on laser power becomes very 

non-linear, suggesting photophysical effects such as multiphoton absorption and multiexciton 

generation that may lead to Auger recombination and/or enhanced blinking plays a major role 

above 10 μw. The fluorescence lifetimes of single QDs were also found to decrease slightly with 

the laser power in the range of 5-50 µw (4.1b), in agreement with the possibility of laser-induced 

Auger processes.  

       Therefore, to minimize non-linear photophysical effects, the laser power was set to be ~10 μw 

for fluorescence blinking experiments, where QDs show minimal non-linearity but at the same 

time the signal-to-noise ratio of the obtained fluorescence traces is high enough for subsequent 

analysis. The SymPhoTime software was used for controlling the MicroTime 200 microscope and 

exporting the fluorescence traces of single QDs, which are then analyzed by a home-written Igor 

program for obtaining distributions of on-times, off-times, on-time fractions, as well as the relative 

fluorescence brightness (average fluorescence intensity of on-time events) from individual QDs. 

By recording the fluorescence traces with both cw and pulsed laser excitation, we are able to 

compare how the laser mode and particularly how multiphoton excitation affects the blinking 

behavior of the synthesized CdSe/CdS/ZnS core/shell/shell QDs.      
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4.5. Results and Discussion 

4.5.1. Optical properties. The ensemble photoluminescence (PL) measurements were all 

performed at the same optical density of 0.05 and excited at 500 nm. The PL intensities steadily 

increased with each addition of CdS shell thickness with the maximum observed after the first ZnS 

addition followed by a steady decline as the number of ZnS shell increases as shown in figure 4.2a. 

Furthermore, the PL spectra indicated a uniform particle size distribution as confirmed by the small 

full width at half maximum (FWHM) value below 32 nm, as given in figure 4.2b. The absorbance 

spectral redshift observed (figure 4.2c) was plotting in terms of the first exciton absorption and PL 

λmax (figure 4.2d) to highlight the gradual increase in wavelength as well as the constant stoke shift 

as the shell grows. The increase was observed to be larger with CdS shells compared to the ZnS 

shell counterparts. 

          It is known that the conduction band offset between CdSe and CdS is very small and this 

enables electron to leak more easily from the core into the shell while on the other hand, the same 

band offset for CdSe and ZnS is higher, confining the electron more strongly to the core, thus 

reducing the degree of the redshift. This redshift strongly supports that the resulting particles are 

core/shell/shells and not alloyed at any level, otherwise, a blue shift would be observed.[25] The 

aforementioned features of these material combination explains well the observed trend in the PL 

quantum yields (PL QYS) and lifetimes as given in figure 4.3a.We attribute the initial increase in 

PL QY to the passivation of the surface trap states and the confinement of the exciton by the higher 

band gap shell materials. However, as the shell thickness increases, strain is developed between 

the different materials resulting into dislocation of the atoms at the interface, generating defects 

[26] which act as trap states. 
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Figure 4.2. (A) Photoluminescence (PL) spectra of selected samples and their respective full width 

at half maximum (FWHM) (B) plotted as a function of shell thickness. (C) Absorbance spectra of 

the same samples together with their respective 1st exciton peak of absorption and PL as a function 

of shell thickness (D).Figures 4.2 (A-C) are plotted in both nm and eV units and are the same 

samples investigated at single particle level. 

      

 The observed decrease in PL QYs as the shell becomes thicker is, therefore, ascribed to these trap 

states through which non-radiation exciton combinations occur. These defects are expected to be 

more pronounced in CdS/ZnS than in CdSe/CdS interfaces due to the different lattice mismatch of 

7.8% and 3.9%, respectively.  
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Figure 4.3.(A) PL quantum yields of CdSe/8ML CdS core/shell (red) and CdSe/3CdS/5ZnS 

core/shell/shell (black) as a function of shell thickness. (B) Average fluorescnec lifetime of 

CdSe/8ML CdS core/shell (red) and CdSe/3CdS/5ZnS core/shell/shell (black). (C) PL quantum 

yield and average lifetimes histogram as function of shell thickness (D) Comparison of radiative 

and non-radiative rates extracted from figure 4.3(C) and plotted as a function of shell thickness. 

         

  Figure 4.3a and b show the PL QYs and average fluorescence lifetimes, respectively, of two 

different samples, CdSe/8 ML CdS core/shell and CdSe/3CdS/5ZnS core/shell/shell samples 

overlaid together to highlight the overall similar trend as he shell thickness increases. Relating the 

PL QYs to the average lifetimes of the core/shell/shell samples (figure 4.3c) suggests that the 

observed trends may be as a result of changes in either or both the radiative and non-radiative rates. 

Therefore, we separated these two process using equations 4.1 and 4.2 where τfl is the average 
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fluorescence lifetime, kr is the radiative decay rate constant and knr is the non- radiative decay rate 

constant respectively, and plotted as shown in figure 4.3d. 

𝑄𝑌 = 𝜏𝐹𝑙𝜅𝑟𝑎𝑑                                                                      4.1 

                            𝑘𝑛𝑜𝑛𝑟𝑎𝑑 =
1

𝜏𝐹𝑙
− 𝑘𝑟𝑎𝑑                                                            4.2 

An increase in the radiative rate (kr) with the first few shell monolayers shows a good passivation 

of the surface trap states by the shell material. This also results in an initial decrease in non-

radiative rate (knr) as the trap sites through which nonradiative recombination would be enhanced 

through are eliminated. As discussed above, the increase in shell thickness increases interfacial 

trap states that further promotes non-radiative decay pathways, as observed by the increase in non-

radiative rate (figure 4.3d) as the shell increases after 3ML of CdS and 1ML of ZnS. A closer look 

at the rates, shows that radiative rate closely follows the same trend as that of the PL QYs 

indicating that the overall observed PL QYs are more controlled by kr pathways than the radiative 

ones, highlighting the importance of controlling lattice strain to improve the fluorescence 

properties of core/shell and core/shell/shell QDs.  

4.5.2. Quantum dots sizes and distributions. A better way of confirming the actual size of QDs 

besides absorption and PL spectroscopy information is by analyzing TEM images. The TEM 

images of all the samples described here, therefore, were recorded to confirm the growth and size 

distribution observed from their optical properties. As shown in figure 4.4a, the increase in 

quantum dots’ size from the CdSe core to CdSe/3CdS/5ZnS samples, further re-affirms the 

shelling process as observed by redshift in both the absorbance and photoluminescence spectra. 

Furthermore, the shape of the particles remained spherical even in the largest sample, confirming 

a well-controlled synthesis when a multi-shell layer is grown.[18] Figure 4.4b shows the size 
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distribution histograms of the selected quantum dots that were also studied at single molecule level 

as discussed below. The average diameters of each of the measured samples were agreeable to the 

expected monolayer definition, whereby, the CdS thickness is 0.34 nm and that of ZnS is 0.31 

nm.[27] An interesting observation was on the size distribution of the QDs. As the shell thickness 

increased, the size distribution relatively remained uniform illustrating a systematically controlled 

synthesis as explained earlier.  

4.5.3. Structural analysis. Elemental distributions of atoms across these QDs was investigated 

using an annular dark field (ADF) scanning transmission electron microscopy(STEM) coupled 

with electron energy loss spectroscopy (EELS) techniques. This ADF-STEM technique is based 

on z- contrast[4], with z referring to the atomic number, so that the denser the nucleus of the atom, 

the greater the scattering of the beams of electrons which results in brightness being related to the 

elemental structure. Figure 4.4c and d show the ADF-STEM images of CdSe/3CdS/5ZnS sample 

where the Cd-rich regions at the centers appear brighter than the Zn-rich regions, as expected given 

their atomic numbers and further supports the structural quality of the shell. This observation was 

further evidenced by the EELS spectra from which the collected Cd signal from the center of the 

QD was greater than from the outer region (figures 4.4d and e), and the opposite for the Zn signal 

(figures 4.4d and f). Figures 4.4g and h are the histogram plots of the integrated area of the EELS’ 

spectra highlighting this observation. 
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Figure 4.4. (A) TEM images of the selected samples together with their respective size distribution 

histogram (B), (C and D) Annular dark field (ADF)-STEM images of the CdSe/3CdS/5ZnS 

core/shell/shell sample. (E and F) are the electron energy loss spectra (EELS) of Cd and Zn signals, 

respectively, collected at positions indicated in figure 4.4D. (G and H) are the integrated area 

histograms calculated from the spectra in figures E and F, respectively. 
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          It is worth clarifying here that the recognizable amount of Cd at the shell and Zn at the center 

is caused by the beam spot overlap within those regions, together with the possible drift during 

measurements and does not mean that alloying took place. If there was alloying then we would 

expect to see more equal levels of Cd and Zn in the EELS spectra in addition to a blueshift in the 

absorbance spectra.[25] In fact, since the inner shell is CdS, it is expected that the outer region, 

point 1, of the QD would show more Cd that is observed for Zn in the inner region, point 2. Since 

the STEM image is a 2-D projection of a 3-D particle, there will necessarily be shell material 

observed even in the inner region, which accounts for the small Zn signal at point 2, since the beam 

must pass though the upper ZnS shell before reaching the CdS shell and finally the CdSe core. The 

ADF-STEM images coupled with EELS spectra satisfactory confirmed the elemental distribution 

in these particles to be mainly core/shell/shell in structure. Each of the QDs used in this analysis 

were randomly selected and all agreed to the same distribution of the atoms. 

       4.5.4. Blinking Studies. Fluorescence blinking experiments can provide valuable insights into 

the trapping mechanisms of the charge carriers as well as the nature and distribution of charge 

trapping sites[14], which can be used for guiding the development of brighter and non-blinking 

QDs for optical imaging applications, as well as for more efficient light sources and photovoltaic 

power generation. As mentioned earlier, for the case of core/shell QDs, it has been suggested that 

the shell coated onto the core results in lattice strain at the core/shell interface generating defects 

when the lattice strain energy is being released [17-19]. The defects at the interface will serve as 

very important trapping sites for the charge carriers, which may play an important role in blinking. 

Here, we study the blinking behaviors of CdSe/CdS/ZnS core/shell/shell QDs by fixing the 

CdSe/CdS core/shell size, and growing step-wise the outer ZnS shell from 1ML to 5ML.  
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Figure 4.5. (A) Schematic structures of CdSe/CdS/ZnS core/shell/shell QDs with 0, 1, 3, and 5 

ML ZnS outer shell. (B) The corresponding 300-s fluorescence traces of the synthesized 

CdSe/CdS/ZnS under cw laser excitation. (C) Photon counting histograms (PCHs) for the 

fluorescence traces shown in (B). (D) Zoomed in 20-s fluorescence traces showing the details of 

the fluorescence blinking behaviors of the QDs.  

 

We probe the mentioned lattice strain effect at the CdS/ZnS shell/shell interface, which has lattice 

mismatch of ~7.78%, by systematically studying the role of the outer ZnS shell thickness on the 

fluorescence blinking properties of CdSe/CdS/ZnS QDs. In order to study the blinking properties, 

fluorescence traces on immobilized single CdSe/CdS/ZnS core/shell/shell QDs embedded in a 

PMMA matrix were recorded as shown in figure 4.5, which typically give high quality on-and-off 

two-state fluorescence traces with a signal to noise ratio of ~7.  
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Figure 4.6. Log-log plots of 𝑃𝑜𝑛 (A and C) and 𝑃𝑜𝑓𝑓 (B and D) distributions for ~30 CdSe/CdS/ZnS 

as a function of ZnS shell thickness under cw (A and B) and pulsed laser (C and D) excitation, 

respectively.  

The two states are indicated by the two well-separated peaks in the photon counting histograms 

(PCHs) of the fluorescence traces. The excellent separation of the fluorescence signal from the 

background allows us to directly apply a fluorescence threshold to the fluorescence traces to 

obtaining on-time and off-time distributions (𝑃𝑜𝑛 and 𝑃𝑜𝑓𝑓), as well as determining the on-fraction 

(fraction of QDs that are on at any given time) and the relative fluorescence brightness (average 

fluorescence intensity of the on state) for individual QDs. 
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      Figure 4.6 shows the 𝑃𝑜𝑛 and 𝑃𝑜𝑓𝑓 distributions for ~30 CdSe/CdS/ZnS QDs upon varying the 

ZnS shell thickness from 0 to 5 MLunder both cw and pulsed laser excitation. It is clear that CdSe 

cores with 3ML CdS and 3ML ZnS shells shows the slowest decrease in𝑃𝑜𝑛, meaning that longer 

on-time events are more probable for these QDs compared to those QDs having thinner or thicker 

ZnS shells. This trend remains the same under both cw and pulsed laser excitation .The 𝑃𝑜𝑓𝑓 

distributions, as shown in figures 4.6b and d, are similar for all of the QDs, appearing as straight 

lines with only small curvature at long off-times in the log-log plots. These  results clearly 

demonstrate that theouter ZnS shell thickness does not affect the off-times, but significantly affects 

the on-times of the synthesized CdSe/CdS/ZnS core/shell/shell QDs, with 3ML of ZnS showing 

significantly reduced blinking compared to the other samples. The fact that increasing the ZnS 

thickness from 3ML ZnS to 5ML ZnS increases blinking rather than further reducing it strongly 

suggests that, besides the exciton confinement role of the outer ZnS shell[2], the CdS/ZnS 

shell/shell interfacial lattice strain generates defects that can trap the charge carriers and result in 

more frequent QD fluorescence blinking.   

      Figure 4.7 is the proposed model showing the schematic of conduction and valence bands of 

CdSe/CdS core/shell and CdSe/CdS/ZnS core/shell/shell QDs together with the trap states on the 

surfaces of the QDs as well as at CdS/ZnS shell/shell interfaces. Since the lattice mismatch 

between CdSe and CdS is relatively small (~3.8%), the blinking contributions from defects 

generated by lattice strain at this interface is assumed to be negligible compared to those from the 

CdS/ZnS interface, which has ~7.8% lattice mismatch. The surface trap states are from the surface 

sites with unbound ligands and proposed to be approximately the same for CdSe/CdS core/shell 

and CdSe/CdS/ZnS core/shell/shell QDs.  
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Figure 4.7. The proposed blinking model showing the conduction and valence bands of (A) 

CdSe/CdS core/shell and (B) CdSe/CdS/ZnS core/shell/shell QDs together with the trap states on 

the QD surfaces as well as at CdS/ZnS shell/shell interfaces. The number of trap states at the 

CdSe/CdS interface is proposed to be negligible due to the much smaller lattice mismatch between 

CdSe and CdS (~3.8%). 
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Only the exciton electron delocalization is considered, since the valance band energy of CdSe is 

higher than that of the CdS, so that the hole is well confined within the CdSe core compared to the 

electron. 

        Figure 4.7b shows that, with increasing the thickness of the outer ZnS shell, the number of 

trap states at the CdS/ZnS interface increases due to the defects generated from releasing lattice 

strain energy caused by the lattice mismatch between CdS and ZnS layers, resulting in more 

frequent QD blinking. The lattice strain at the CdS/ZnS interface will become stronger when the 

outer ZnS shell becomes thicker, so that more defects at CdS/ZnS interface are generated for QDs 

having very thick ZnS shells. However, for a few monolayers of ZnS, it is possible that much 

fewer defects are generated at the CdS/ZnS interface because the lattice strain energy at the 

interface is not high enough for it to be released.  

         For CdSe/CdS/ZnS QDs, there is the possibility that an exciton electron can tunnel to the 

CdS/ZnS interface defects sites or, if the ZnS shell is thin, to the surface trap sites.The blinking 

behavior of CdSe/CdS/ZnS QDs reported here should be determined by the total number of trap 

states at the CdS/ZnS interface and/or on the QD surface, depending on the ZnS shell thickness, 

as well as the exciton electron accessibilities which are determined by the rate constants[28] 

kinterface trap and ksurface trap, respectively. Since ZnS has much higher band gap energy than CdS, it 

will provide stronger confinement to exciton electron than CdS, thus reducing electron 

accessibility to the surface trap sites. In other words the rate constant kinterface trap becomes larger 

than  ksurface trap, particularly when the ZnS shell becomes thicker. When the ZnS shell thickness 

increases, the accessibility of trap states on the QD surface will decrease, due to the strong 

confinement potential of the ZnS shell, even though the number of trap states at the CdS/ZnS 

interface will increase. 
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Figure 4.8. On-fraction distributions for CdSe/CdS/ZnS QDs having 3 monolayers of CdS and 

different thickness of ZnS shells. (A) under cw laser excitation and (B) under pulsed laser 

excitation. 
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As highlighted in figure 4.7b, for the case of CdSe/3CdS/3ZnS QDs, the total number of effective 

trap states is the smallest. This is to say that the accessibility of the surface states has been reduced 

but the lattice strain is not yet high enough to significantly increase the number of trap states at the 

CdS/ZnS interface, thus leading to longer on-times , as shown by 𝑃𝑜𝑛 distributions in figure 4.6a 

and c and by the on-fraction distributions in figure 4.8.  

           The distributions of on-fraction for CdSe/CdS/ZnS QDs which is calculated by diving the 

total time at which a quantum dots is on by the total time the blinking trace is collected for each 

quantum dots  having different thickness of ZnS shell are shown in figure 4.8. QDs with 3ML of 

ZnS shows an average ~40% on-fraction with significant number of QD particles showing ~60% 

on-fraction and the highest on-fraction is close to 80%. The on-fraction distribution is generally 

narrow, except for the 3ZnS QDs, indicating that CdSe/3CdS/3ZnS QDs have a large heterogeneity 

in terms of the probability of accessing trap states .We attribute this either to the time dependent 

properties of the rate constants kinterface trap and ksurface trap for trap state accessibility or probably ~3 

ZnS outer shell thickness is the critical thickness at which lattice strain energy starts to be released 

at the CdS/ZnS interface, leading to some QDs with many trap states, and other with only a few.  

             Figure 4.9 shows that the average brightness of single QDs in the on-state as a function of 

outer ZnS shell thickness is very similar, which suggest that the single QD radiative and 

nonradiative rate constants kr  and knr in the on-state do not change very much as ZnS shell 

thickness is increased. This is also supported by the ensemble fluorescence lifetime results 

showing that kr is not changing very much with increasing ZnS shell thickness. However, the knr 

from ensemble measurements increases when ZnS increases, which suggests that the variation in 

knr at the ensemble level is the result of dark particles, i.e. the permanent dark fraction or the 

blinking particles in the off-state. However this possibility needs to be investigated further. 
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Figure 4.9. Distributions of the brightness of single QDs with different outer ZnS shell 

thicknesses. (A), (C), (E), (G) are under cw laser excitation, and (B), (D), (F), (H) are under pulsed 

laser excitation, suggesting that the mode of excitation does not affect the single QD fluorescence. 

 

4.6. Conclusions 

         The quantum yield and fluorescence lifetime of core/shell/shell QDs were found to be related 

to trap states, which could either be at the interface between the core and the shell and/or at the 

surface of the quantum dots at the shell-ligand interface. Elemental distribution data, together with 

the absorbance and PL spectral redshift, confirmed the growth of core/shell/shell rather than 

alloyed materials. For the first time, the outer ZnS shell thickness was correlated to the 

fluorescence blinking of the synthesized CdSe/CdS/ZnS core/shell/shell QDs. Our ensemble 

fluorescence spectroscopy and single QD fluorescence blinking experimental results suggest that 

the outer ZnS shell affects CdSe/CdS/ZnS QD fluorescence blinking in two opposite ways, by 

better confining the exciton away from the outer surface that reduces blinking and by generating 

CdS/ZnS shell/shell interface defects that increase blinking. Therefore, there is a trade-off between 

the two roles and there is a balanced ZnS thickness where one can optimize both effects and 
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achieve significantly reduced QD fluorescence blinking. It can be expected that the strategy of 

multishell synthesis with better confinement and much less lattice mismatch at each interface can 

be useful for developing less interface defects and non-blinking QDs, such as CdSe/CdS/ZnSe/ZnS 

QDs, having relatively small QD sizes with less cytotoxic (i.e. Cd-free) surfaces.  
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Chapter 5. Conclusion 

 

        This thesis has been developed to better understanding the influence of interfacial chemistry 

in core, core/shell and core/shell/shell quantum dots on their fluorescence properties. In chapter 2, 

the processes that take place at the interface between the quantum dot cores and the ligands were 

investigated. Here, the resulting surface atom stoichiometry was controlled by varying the 

synthetic precursor ratio of Cd and Te to investigate their effect on the radiative and non-radiative 

relaxation rates, which were found to be anticorrelated. It was found that the density, nature and 

orientation of the ligand functional groups and the dielectric constant of the solvent play major 

roles in determining charge carrier trapping and excitonic relaxation pathways which consequently 

affects the PL QYs and lifetimes of quantum dots. In Chapter 3, the effect of shell growth on 

different quality quantum dots cores contradicted the traditional belief that higher quality cores 

result in higher quality core/shells. Starting with five different qualities of CdSe cores, the change 

in trend of both optical and structural properties with increase in CdS shell thickness up to 8ML 

were systematically followed and quantified.  

          In chapter 4, the effect of the outer shell in core/shell/shell quantum dots on both ensemble 

fluorescence properties and single particle blinking was investigated upon increasing its thickness. 

This enabled us to control both the lattice strain and exciton confinement effects. It was found that 

the tradeoff between lattice mismatch and exciton confinement, brought about by the different 

lattice parameters and band gap energy of the core and shelling semiconductor materials results 

into different effective trap states which affect the quantum dots blinking differently. In this case, 

3ML of ZnS outer shell on CdSe cores with 3ML CdS inner shell was observed to be the best 

compromised thickness which showed less blinking.  
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        Toxicity of cadmium (Cd) results into many complications depending on the amount and 

route through which it is exposed.[1]The distribution of Cd is mainly through the blood followed 

by rapid deposition while at the tissue and can stay as long as 29 days as was observed in the liver 

and kidney showing that they can pass through the kidney.[2] Their distribution especially in form 

of quantum dots was reported to depend on the size whereby those with sizes below 10 nm can be 

excreted by the kidneys, but those with approximately 50 nm size penetrate through the endothelial 

pores, enter the mesangium and accumulate inside mesangial cells.[2] 

          Comparing the cytotoxicity of different forms of Cd namely, CdCl2, CdO and CdS micro 

and nano, Ohayon-Courtès et al [3] reported that CdS nano appeared to be approximately hundred 

times less cytotoxic than CdCl2 or CdO, whereas intracellular Cd content in LLC-PK1 was similar 

for all forms.[3]Since the toxicity results from the release of Cd2+ into cells during dissolution, 

they hypothesized that the cytotoxic effects of Cd are strongly correlated with the intracellular Cd 

content and that both CdO and CdCl2 with higher content are more soluble. However, the higher 

toxicity observed for the CdS nano than the micro was attributed to the higher diffusion rate of the 

nano form compared to the micro.  

         Several other groups have also reported the cytotoxicity of cadmium based quantum dots.[3-

8] For instance, Guo et al [4]proved that surface modified CdSe QDs with low cytotoxicity have 

good potential in biological applications. The quantum dots surface were modified using Fluronic-

68 (F 68), cetyltrimethyl ammonium bromide (CTAB) and  sodium dodecyl sulfate (SDS) resulting 

in to samples with nonionic, positive and negative quantum dots, respectively, which were 

subsequently evaluated for their viability in HepG2 model cells using MTT viability assay.[4]Both 

of 68 and CTAB surface modified quantum dots showed less cytotoxity while the SDS showed 

significant cell damage. Fluorescence images obtained by intravenously injecting the F-68 surface 
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modified quantum dots in to a mice further confirmed on their possibility for biological 

applications.  

       Fan et al[8]also evaluated the toxicity of CdTe, CdTe/CdS and CdTe/CdS/ZnS quantum dots 

directly synthesized in aqueous media. They reported that the CdTe QDs are highly toxic for cells 

due to the release of cadmium ions while the growth of a CdS layer reduced the cytotoxicity of 

QDs to a small extent. However with ZnS shell on CdTe/CdS, the cytotoxicity was greatly 

minimized even at very high concentration and over longtime exposure. Almost similar in 

composition arrangements to our quantum dots as reported in chapter 4 above, these quantum dots 

were found to be highly biocompatible [8] thus offering quantum dots with better quality for 

biological applications. Furthermore, the smaller size ~ 8 nm and reduced blinking of our 

core/shell/shell quantum dots specifically CdSe/3CdS/3ZnS as discussed above further provides 

promising quantum dots for biological labelling and imaging.  

       Future work in this area of quantum dots therefore, should incorporate the use of less toxic 

material basically designed as given in details in section 4.2 for labelling biomolecules. The use 

of quantum dots in labelling biomolecules is not new [9-12] even though it is still faced with a lot 

of challenges. For instance, Bawendi et al [10] compared the in vivo suitability of their high 

crystalline CdSe/CdS quantum dots (new generation) with the conventional  quantum dots by first 

modifying the surface through ligand exchange using methoxy-polyethylene-glycol thiol followed 

by intravenous injection in Tie2-GFP transgenic mice bearing dorsal skinfold chambers. The 

intravital multiphoton microscopy showed that their new generation quantum dots were ~ 4.7 times 

brighter than the conventional quantum dots. As discussed earlier, quantum dots with CdS outer 

shell are relatively toxic which still hinders the aforementioned quantum dots for proper biological 

applications.  
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        Therefore, designing a similar experiment but using core/shell/shell quantum dots with 

compositional arrangements as we have reported here may provide an ideal breakthrough to the 

labelling of biomolecules using quantum dots. For instance, bioconjugating a given protein such 

as fibroblast growth factor receptor (FGFR) or cpSRP43, as used in our laboratory, with these 

quantum dots and studying their FRET may provide a better understanding of their behavior.  
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