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Abstract 

Macrophages are versatile and highly adaptive cells that are involved in a wide range of 

physiological processes including host defense, homeostasis or regeneration, as well as 

pathogenesis. They react to their microenvironment, assuming various roles based on chemical 

and/or physical cues, and can reversibly shift between these so-called activation states. 

Concurrently, the technique of immunohistochemistry is used to gain spatial information on 

activated macrophages on tissue sections. The aim of this work was to find mass spectral 

biomarkers that allow the differentiation of activation states, and establish conditions that can be 

used in imaging mass spectrometry (IMS) experiments to investigate the spatial distribution of 

differently-activated macrophages within tissue sections. The immortalized macrophage line 

NR8383 (alveolar, rat) was used, and in vitro activated with the endotoxin lipopolysaccharide 

(LPS), or with the cytokine interleukin-4 (IL-4). In IMS, tissue sections are commonly prepared 

to be compatible with matrix assisted laser desorption/ionization (MALDI) mass spectrometry 

(MS) experiments. The tested combinations of MALDI preparation techniques and instrument 

parameters however remained unsuccessful at distinguishing activation states. Through lowering 

the complexity of the sample with a 30 minute high-performance liquid chromatography (HPLC) 

separation, a reproducible biomarker for LPS-activation could be found in electrospray 

ionization (ESI) MS experiments. The isolated biomarker was subjected to a tryptic digestion, 

and the resulting tryptic fragments analyzed by MALDI MS. A MASCOT database search 

suggested the macrophage-capping protein (CAPG) as source of the peptide, which could be 

validated through peptide sequencing through post-source decay experiments conducted on the 

tryptic fragments. 
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Figure 3.4: Representative mass spectra from a LC-MS experiment on quiescent macrophage 

lysate. The spectra are of the three prominent peaks (see Figure 3.3.) at minute 18.5 min (top), 

20.0 min( middle), and 21.5 min (bottom). The ion peaks are additionally labeled with the 

calculated charge states, and the deconvoluted masses are given as 8451.8 Da (top), 10815.9 Da 

(middle), and 3990.5 Da (bottom). ............................................................................................... 61 

Figure 3.5: Overlay of extracted ion chromatograms (EIC) obtained from lysate of quiescent 

(top) and LPS-activated macrophages (5 biological replicates each), demonstrating the absence 

of the molecule eluting at minute ≈21.5. The lysates were separated according to Table 3.1, and 

the EIC were constructed by integrating all displayed m/z (+/- 0.5 Da) in Figure 3.4. ................ 62 

Figure 3.6:MALDI mass spectra of macrophage lysate fractions collected at minute 18-19 
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dominant ESI-MS signal (Figure 3.4) are highlighted with a star in the respective spectrum. 
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(ToF in reflectron mode) MALDI mass spectrum of the corresponding dried fraction spotted in 

SA. The inset of the MALDI spectrum shows the enlarged range from 3974-3996 m/z, exhibiting 

the monoisotopic peak (3988.4 Da) of the base peak, and an adjacent peak at 3972.39 Da. The 

difference of 16.0 Da suggests the presence of an additional oxygen atom (=16.0 Da). Note: the 

mass spectra are of lysate from quiescent macrophages, but the absence of this signal serves as 
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Figure 3.8: Mass spectrum of tryptic fragments from the digestion experiment on the fraction 

containing the putative biomarker. The inset contains the sequence fragment (amino acid 

position 305-339) returned in the MASCOT database search of the depicted spectrum. The 
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Glossary 

1,5-DAN   1,5-diaminonaphthalene 

2,5-DHAB  2,5-Dihydroxyacetophenone 

2,5-DHB  2,5-Dihydroxy benzoic acid 

BPC  Base peak chromatogram 

CHCA  α-cyano-hydroxy cinnamic acid 

EIC  Extracted ion chromatogram 

ESI  Electrospray ionization 

IL-4  Interleukin-4 

ISD  In-source decay 

LPS  Lipopolysaccharide 

MALDI  Matrix assisted desorption/ionization 

M1   Classical activated macrophage phenotype 

M2   Alternatively activated macrophage phenotype 

M(IL-4)  Macrophage population treated with interleukin-4 

M(LPS)  Macrophage population treated with the endotoxin Lipopolysaccharide 

MeOH  Methanol 

RSD  Relative standard deviation 

SA   4-hydroxy cinnamic acid, “sinapinic acid” 

TIC  Total ion chromatogram 

ToF  Time-of-Flight (type of mass spectrometer) 

tof   time-of-flight (equation) 

TFA  Trifluoro acetic acid 



 

 

 

 

TLR-4  Toll-like receptor 4 

TNF-α  Tumor-necrosis factor alpha 
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Chapter 1:Background and Significance 

1.1. The Macrophage  

1.1.1. A cell type with many functions 

In mammals, the macrophage is a cell type that is widely distributed throughout the 

organism, and can be found in every organ, and in most tissues.
1,2

 The precursor cells, 

monocytes, are released into the circulatory system by the bone marrow, and differentiate into 

macrophages upon migration into tissue.
3
 The term “macrophage” (greek, from makros "large" 

and phagein "eat") was originally coined by Elie Metchnikoff based on his observation that 

many microorganisms could be engulfed and digested by large mononuclear phagocytic cells.
4
 

Though commonly regarded as only part of the innate immune system, it was later discovered 

that macrophages are highly adaptive, versatile cells involved in a wide variety of biological 

processes.
2
 These include host defense, immune regulation, as well as the orchestration of wound 

healing and other homeostatic tasks.
1,5

 In response to the local microenvironment, macrophages 

assume protective functions as in antimicrobial defense, in homeostatic or restorative roles as in 

the wound healing process, and also in pathogenic functions, e.g. in tumorigenesis, 

autoimmunity, or allergy and asthma.
3
  

1.1.2. Macrophage activation 

The distributed tissue-resident macrophages are remarkable in that they display a high degree 

of plasticity, i.e. they can change their physiology based on chemical and physical cues from 

their microenvironment.
1,6

 This process is called activation, and is defined as the perturbation of 

macrophages by exogenous agents other than via the basal tissue microenvironment exposure. 
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These cues include the broad category of signaling proteins called cytokines, as well as other 

modulators like the presence of cell debris and the phagocytosis of proximate cells.
7
 

The most prominent
1
 example of a microbial structure to trigger a physiologic response in 

macrophages is lipopolysaccharide (LPS), a cell-wall component of Gram-negative bacteria. It 

has been known since the late 1800’s
8
 to induce a strong reaction in affected organism.

4
 The 

presence of LPS is detected by a transmembrane receptor, the Toll-like receptor 4 (TLR-4), on 

the macrophage surface. The detection triggers an intracellular cascade leading to the formation 

and release of antimicrobial peptides, the secretion of signaling molecules (particularly the 

cytokine tumor-necrosis factor (TNF)), as well as to increased phagocytic activity and the 

efficient production of effector molecules (reactive oxygen and nitrogen intermediates). This 

particular stimulation of macrophages is referred to as classical activation.
4,9

 

In 1992, Stein et al. presented their work on an alternative activation state of macrophages 

induced through the treatment with the cytokine interleukin-4 (IL-4). They observed that, in 

contrast to classical activated macrophages, the secretion of proinflammatory cytokines was 

reduced and the capacity for endocytic clearance of mannosylated ligands was strongly 

enhanced.
10

 This activation through IL-4 was later associated with a wound healing macrophage 

phenotype.
11-13

 

To parallel the nomenclature of T helper cell polarization, the classical and alternative 

macrophage activation state are widely referred to as M1 and M2 respectively,
14

 whereas the 

category of M2 grew over time with the discovery of more, distinct activation states to be 

divided further into subcategories
9
 (activation states are sometimes also referred to as 

polarization states).
7
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Following a recent attempt in the field of macrophage activation to reorganize and clarify 

experimental conditions and results,
7
 this thesis will follow the suggested guidelines to label LPS 

treated macrophages as M(LPS) as well as the macrophages treated with IL-4 as M(IL-4). 

1.1.3. Plasticity and its continuous nature  

Not only do distinct states of macrophages exist, it could also be shown that the functional 

phenotype of activated macrophages can be reversibly shifted with the help of different 

stimuli.
15-19

 Expanding on the observation of this plasticity, Mosser et al. suggested that 

macrophages can exist along a continuum in between three fundamental functions: host defense, 

wound healing, and immune regulation. Illustrating this with a color wheel of macrophage 

polarization, they argue that the function of activated macrophages exist as shades in between 

these primary tasks.
13

 Consequently, the presence and quantity of biomarkers associated with 

macrophage phenotypes has to be determined to gain insight into the current, predominant 

function of the investigated macrophage population. 

1.1.4. Common techniques to investigate macrophage activation 

Macrophages have the ability to synthesize proteins to maintain cellular functions and to 

perform tasks associated with their activation state. Proteins, also known as polypeptides, consist 

in the simplest form of a chain of amino acids, and are produced in two major steps. During the 

first step, the transcription, the genes on the macrophage’s DNA are transcribed into 

corresponding RNA, which can be processed further to messenger RNA (mRNA). The encoded 

information in the mRNA is then used in the second step, the translation, as a template for the 

assembly of the polypeptide.
20

 These sequential steps are inherently tied to the synthesis of 
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proteins, and so the activation state of macrophages can be explored by targeting the RNA
21-24

 

and/or the polypeptide
25-29

 level of this process.  

Both approaches, targeting the products of transcription or those of translation, are referred to 

as the field of transcriptomics and proteomics, respectively, and have also been used to 

investigate macrophages.
30,31

 The ‘omics’ in both terms imply that the aim is to capture virtually 

all molecules of the respective category of an investigated organism under specified conditions, 

and the evaluation of these data sets can grant insights into the inner workings of biological 

processes.
32

 

1.1.4.1. Transcriptomics 

The expression of RNA, the transcriptome, is typically monitored and quantified using the 

high-throughput technique of DNA microarrays.
33

 In this procedure, the extracted and purified 

RNA sample is fluorescently labeled during reverse transcription, and then incubated on a chip 

containing thousands of counter strands of DNA representing genes from the investigated 

organism. During this incubation, complementary nucleic acid strands hybridize, and, after a 

washing step to remove the weaker, non-specific adsorbed analytes, the identity and the quantity 

of the analyzed RNA can be determined by the location and intensity of the fluorescent signal.
34

 

Some of the limitations of this technique include that the preparation of the counter strand DNA, 

the so-called probes that are applied to the chip during the manufacturing of the microarray, are 

very labor intensive in the preparation, and the sequence information for them should, at best, be 

derived from a complete genomic database of the investigated organism.
34
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1.1.4.2. Proteomics 

The polypeptides synthesized during the second step, the translation, are typically analyzed 

by high-performance liquid chromatography (HPLC or short LC) mass spectrometry (MS), in 

which a complex mixture of polypeptides is separated through the LC, and the eluting sample 

subjected to mass spectrometry. By choosing from a wide variety of separation columns and 

elution conditions, the LC can separate polypeptides according to inherent characteristics like 

mass, hydrophobicity, or biospecificity. The eluting analyte can either be directly subjected to 

mass spectrometric analysis through interfacing the LC with a MS through an electrospray 

ionization (ESI) interface, or the eluting fractions can be collected, and after further processing 

subjected to MS via matrix-assisted laser desorption ionization (MALDI).
35

 To render a large 

mass range accessible to the mass spectrometric analysis, the analyte mixture is commonly 

proteolytic digested to form peptide fragments,
36

 which are in a mass-to-charge range (<20 kDa) 

amenable to routine mass spectrometric analysis.
37

 Mass spectrometry is predominantly regarded 

as semi-quantitative in nature, since the ionization efficiency of the analyte is governed by 

inherent characteristics of the analyzed compound, and this efficiency is additionally confounded 

by suppressive/enhancing matrix effects. Hence, a widespread accepted method to obtain 

quantitative information is the use of isotope-labeled reference peptides as internal standard.
35,37

 

LC-MS based analysis employing the sample digestion step, however, suffer from inadequate 

identification of polypeptides arising from alternative splicing. These isoforms of polypeptides 

share a high percentage of amino acid sequence, and thus proteolytic fragments lose specificity 

in the identification process.
38,39
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1.1.4.3. Immunoassay-based method 

Another technique to investigate the activation state of macrophages is based on the highly 

specific antigen-antibody reaction. Cytokines that are released upon macrophage stimulation are 

routinely detected, and quantified through enzyme-linked immunosorbent assays (ELISA).
40

 The 

ELISA is a wet-lab based technique that uses the catalytic activity of an enzyme to convert a 

substrate into a product which can be spectrophotometric quantified.
41

 This enzymatic signal 

amplification allows for low detection limits, but the use of antibodies to capture specific 

analytes limits this technique to the detection/quantification of specified target molecules, so that 

no exploratory experiments with unknown biomarkers can be conducted with this technique.
1
 

1.1.5. Modulation of macrophage response 

Uncovering the many functions of macrophages in the body also revealed connections 

between diseases and macrophage subsets.
3,42,43

 Unrestrained macrophage activity can be linked 

to chronic inflammation,
44

 fibrosis,
45,46

 metabolic disease
47

 or the proliferation of cancerous 

tissue.
48,49

 A further, not disease-related field in which alteration of macrophage function is 

desirable, is the realm of medical implants and tissue regeneration after surgery. Here, the 

promotion of tissue repair as opposed to triggering foreign body reaction is the desired 

outcome.
50,51

 

Targeting the activation state of macrophages with effector molecules is a promising 

approach in resolving complications caused by dysregulated
13

 macrophage populations
18

 or to 

ameliorate the impact of surgery and medical implants.
51
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1.2. Investigating the spatial distribution of activated macrophages 

As described above, there are instances in which the modulation of the macrophage response 

is desired (e.g. to counter chronic inflammation, or to protect implants from encapsulation). As 

pointed out by Stein et al,
17

 the biological microenvironment of macrophage populations 

decisively influence the observed functional phenotypes, so it is desirable to conduct in vivo 

experiments where the modulation agent is administered locally into the investigated tissue. 

Consequently, unaltered tissue portions of the model organism can be investigated in a side-by-

side approach, and hence would serve as an internal standard that adjusts for biological 

variability observed in between subjects. Additionally, the spatial distribution (e.g. proximity to 

damaged tissue, or distance to the source of the modulator) of macrophage populations can be 

analyzed and interpreted within the biological context. 

To this end, the discussed transcriptomics and proteomic experiments, although yielding 

abundant information on macrophage activation states, are impracticable with respect to the 

amount of individual experiments that would have to be performed on small sections of a tissue 

section. To answer general questions regarding spatial distribution of specific target molecules 

on tissue samples, the well-established analytical tool of immunohistochemistry is commonly 

applied.
52

 

1.2.1. Immunohistochemistry –Common approach to investigate spatial distribution of markers 

Immunohistochemistry is an analytical tool that uses the high specificity of the antibody-

antigen reaction to locate and highlight (through conjugated fluorophores or via radio labeling) 

the location of target molecules on tissue sections. Several steps are necessary to prepare a 

sample for analysis: after explantation, the tissue sample is typically fixed through the use of 

formalin cross-linking of the present biomolecules, followed by embedding in paraffin to 
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conserve the structural integrity. After sectioning the tissue into 5-15 µm thick slices and 

transferring these to glass slides, the tissue sections are typically pre-treated to expose the analyte 

for the following labeling step. The pre-treatment step aims to reduce the initially induced cross-

linking, and thus make the sample more porous so that the labeling antibody can more easily 

diffuse into the tissue and bind to the detection region, the epitope, on the antigen. This reduction 

can be achieved through protease digestion, which can cleave proteins that are incorporated into 

the cross-linked network, or through a technique called antigen retrieval, in which the epitopes 

are rendered more accessible by heat-induced protein unfolding.  

After the preparation of the tissue section, the actual step of immunochemically targeting the 

analyte is performed. This is a two-step procedure, in which the tissue is first incubated with a 

primary antibody expressed in a certain host (e.g. mouse, rabbit, goat, etc.) to selectively bind to 

the molecule of interest, followed by the incubation with a secondary antibody targeting 

antibodies derived from certain species (i.e. targeting mouse, rabbit, goat antibodies). 

Additionally, the second antibody is conjugated to a reporter system like a fluorophore or an 

enzyme that can convert its substrate into fluorescent product. The fluorescence of either reporter 

system can then be used to obtain the spatial distribution of the targeted molecule with the help 

of fluorescence microscopy.
52

 

This method is widely accepted as tool in research and diagnostics, which is also reflected by 

an increasing number of available primary antibodies from various host animals, and it has also 

been used to investigate the distribution of activated macrophages.
53

 However, as Nuovo 

details,
52

 there are various challenges and pitfalls that affect the quality of the obtained data. 

Among these, it is emphasized that an optimized protocol for detecting a specific analyte in one 

tissue section may not give rise to any signal at all when investigating a different type of tissue 
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despite the presence of analyte. There is no a priori way to tell which tissue pre-treatment 

method will improve the observed signal, or, in the worst case, could even result in complete loss 

of it. During the lengthy multistep sample preparation, numerous steps are critical for the 

observed overall result, so that the obtained results are best interpreted in comparison to samples 

prepared side-by-side. Additionally, the commercial availability and specificity of primary 

antibodies may not be given for the molecule of interest. To exacerbate this situation, the 

inherent requirement of the employed two-antibody-system severely limits the amount of 

different analyte that can be detected simultaneously on one tissue section (i.e. the selection of 

species from which the primary antibodies are derived translates into what species-specific 

secondary antibodies can be used without confounding the observed results). A similar problem 

also arises from the requirement that the emitted fluorescence of the used reporter system cannot 

spectrally overlap. The availability of suitable absorption/emission wavelengths of laser-

fluorophore-systems that can be used adds a similar constraint like the two-antibody-system to 

the number of simultaneously detectable analytes. 

To this end, an emerging technology extending the technique of mass spectrometry to 

analyze spatial analyte distribution could overcome certain limitations of immunohistochemistry. 

1.3. Mass spectrometry 

1.3.1. Theory  

Mass spectrometry is a technique to determine the molecular mass of molecules and atoms 

by measuring the mass-to-charge (m/z) ratio of the respective ionized species. It can either 

directly provide the elemental composition of the analyzed material in the case that the 

determination of m/z is accurate enough so that only one combination of atomic masses (more 

exactly, of the isotopes) can lead to the observed m/z, or provide this information indirectly by 
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analyzing fragments of the (intentionally) fragmented ion of interest. Additionally, analyzing 

those fragments can provide structural information on the investigated substance. Conceptually, 

a mass spectrometer consists of an ion source, a mass-to-charge analyzer, and an ion detector. 

1.3.2. Ion sources – Matrix Assisted Laser Desorption/Ionization and Electrospray Ionization 

The task of the ion source is to generate charged analyte molecules. Additionally, these ions 

have to be in the gas phase so that they can be separated according to their m/z with the help of 

electrical and/or magnetic fields.
37

 

The technique called matrix assisted laser desorption/ionization (MALDI)
54

 enabled the 

production of mostly singly charged gas phase ions of large, nonvolatile, and potentially labile 

molecules with little or no fragmentation of the parent ion from solid analyte. This effect, called 

soft ionization, allowed the investigation of intact, non-volatile biopolymers of molecular 

weights >1500 Da. Although some fundamental aspects of the mechanism are still subject to 

research, a large body of experimental guidelines for successful MALDI experiments has 

emerged over time.
37,55

 Typically, the analyte is mixed with a large excess of an organic matrix 

compound, ranging from an empirical-derived molar analyte-to-matrix ratios of 1:100 to 

1:10,000,000, and is most commonly co-deposited on a metal target from solution. For most 

experiments, the dried co-crystal is then inserted into a medium to high vacuum (10
-7

 to >10
-9

 

mbar) mass spectrometer, and the sample is irradiated with short pulses of laser light to generate 

a plume containing ionized species that is then subjected to the mass spectrometric analysis. 

Typically, nitrogen lasers (wavelength of 357 nm) or Nd:YAG lasers (wavelength of 355 nm 

when the 3
rd

 harmonic is used) are used with ultra-violet light absorbing matrices, and CO2 lasers 

are used with matrices that absorb in the infrared range (bands of wavelengths around 9.4 µm 

and 10.6 µm). Although models attempting to predict ionization efficiency of certain analyte 



 

11 

 

 

classes, e.g. based on properties like gas-phase basicity, have been proposed, no model can 

capture the entirety of the this complex process.
56

 

The second major soft ionization technique is called electrospray ionization (ESI). In contrast 

to MALDI, it produces stable gas phase ions from dissolved analyte. The ions are generated by 

spraying a solution of analyte into an electric field. Only polar solvents are compatible, since 

non-polar solvents lack the required conductivity necessary to produce charges through 

electrochemistry. The initially generated charged, fine droplets disintegrate to smaller droplets 

through increasing repulsive columbic forces as the solvent evaporates. After complete 

desolvation of the non-volatile analyte, the resulting ion is typically multiply charged, which, in 

contrast to singly charged ions from MALDI, allow for the observed mass-to-charge ratio to fall 

into the range (< 20kDa) of most commonly used mass spectrometers, and thus allowing the 

analysis of larger molecules than MALDI.
37

 

1.3.3. Mass-to-charge analyzer – Time-of-flight and quadrupole ion trap mass spectrometer 

The ions produced in the ion source are then separated spatially and/or temporally in the 

mass-to-charge analyzer before they are detected. To illustrate this, both employed mass 

spectrometer will be briefly discussed. 

In a time-of-flight (ToF) instrument, the generated ions are extracted from the source into a 

field free drift tube by the application of a pulsed acceleration potential on the order of 25-35 

keV.  

Equation 1.1 shows how this potential, V, is related to the resulting velocity, v, through the 

number of charges, z, the elementary charge, e, and the ion mass, m: 
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Equation 1.1: Kinetic energy of ions after acceleration 

Re-arranging  

Equation 1.1 as in Equation 1.2 demonstrates the inverse quadratic relationship between the 

ion velocity and the m/z. 

2

1

2










m

Vez
v  

Equation 1.2: Re-arranged equation 1 to show inverse quadratic dependence of v to m/z 

To obtain the time-of-flight (tof), i.e. the time it takes the ions packages to travel from the 

source to the detector, the instrument-specific geometric factor L is used according to the 

definition of velocity as in Equation 1.3: 

2

1

2 









Vez

m
L

v

L
tof  

Equation 1.3: Relation of time-of-flight (tof) to the mass-to-charge (m/z) of the timed ions 

Ideally, all ions experience the same acceleration potential, and separate during their travel 

through the field free drift tube according to their m/z, and are detected after their respective 

time-of-flight (tof).
37

 

This basic concept of time-of-flight measurements, generally referred to as linear ToF mode, 

can be enhanced to address a spread in tof of ions of the same m/z caused by spatial and velocity 

distributions of the initial ion packet. The underlying distribution in kinetic energies can be 

compensated by reflecting the traveling ion packets with the help of an ion mirror onto a 

2

2
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secondary ion detector. In this so-called reflectron ToF mass spectrometer, ions of identical m/z 

but higher kinetic energy penetrate deeper into the ion mirror before being reflected, and hence 

travel a slightly longer distance. The instrument is constructed in way that the secondary detector 

is placed at the electronic focus plane of the mirror to benefit from the reduction in spatial 

distribution of the traveling ion packets.
37

 

Typically, a reflectron ToF mass spectrometer can be run in linear mode, in which the 

reflectron is deactivated and the ions are detected with a primary detector located behind the ion 

mirror, or in the reflectron mode, which allows for a lower spread in tof, and hence a better 

resolution of arriving ion packets. 

Additional to the focusing effect of the reflectron, it can also be used to observe fragment 

ions from post-source decay (PSD). PSD refers to the behavior of ions to dissociate after the 

acceleration of the ion packages, during the travel in the field free drift tube, but before reaching 

the reflectron.
57

 The ions travel at a certain velocity based on their initial mass, but will separate 

according to their new, reduced m/z when a second acceleration potential is applied. The so-

called LIFT mode of the Ultraflex III ToF/ToF (Bruker Daltonics) is based on this principle, and 

thus allows analyzing desorbed ions further by exploring the fragments produced through PSD.
58

 

Another mass-to-charge analyzer is the 3D quadrupole ion trap (QIT). Here, the ions 

generated in the source are stored in a quadrupole electric field generated by applying a radio 

frequency (RF) potential to a ring electrode. The trapped ions are collisionally cooled through 

inert buffer gas like nitrogen to reduce the amplitude of their random displacement from the m/z 

specific orbit that they assume. The ions oscillate on concentric three-dimensional orbits 

according to their m/z and the applied RF potential. Through ramping the amplitude of this 

potential, ions of increasing m/z are sequentially ejected from the trap and are registered through 
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their impact on a detector. The m/z can be determined from the necessary RF amplitude for the 

ejection, and achievable separation of ions of different m/z is, among others factors, a 

combination of the scan speed of this amplitude and the detection speed of the detector. A 

constraint for the amount of ions that can be detected simultaneous is imposed by the so-called 

space-charge effect. This effect, in which the oscillating ion packets perturb each other’s orbit, 

limits the charge density that can be achieved in a QIT. This problem is addressed by measuring 

the ion flux in an initial pre-scan, followed by adjustment of the ionization time to produce a 

target amount of ions (depending on manufacture, this is called automatic gain control (AGC) or 

ion-current control (ICC)). 

1.4. Imaging Mass Spectrometry – The transition from 1 to 2 dimensions 

Imaging mass spectrometry (IMS) is the application of mass spectrometric methods to 

spatially distributed samples like thin biological tissue sections. This is essentially achieved by 

probing a surface in an x,y-fashion, and was driven by technological advancement of the mass 

spectrometric field with respect to acquisition speed of traditional mass spectra, as well as 

innovations aiming at conservation of information of spatial distribution of analytes.
59

 The major 

advantage of this approach lies in the ability of mass spectrometry to measure hundreds of 

different ions simultaneously without the need for molecular tags as in labeling for 

immunohistochemistry, and it is therefore also suited for exploring a sample without a priori 

knowledge of composition.
60

 Particularly, the combination of MALDI with IMS offers the 

advantage of providing information of spatial distribution of small molecules like drug 

metabolites up to large, intact proteins of up to 100 kDa.
61

 According to Goodwin is “[t]he upper 

limit for reasonably sensitive detection […] currently around 25-30 kDa”, since MALDI tends to 

generate only singly charged ions, but on-sample enzymatic digestion can provide indirect 
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information on larger proteins.
62

 Techniques like desorption electrospray ionization (DESI) 

additionally aim at combining the advantage of multiply charged ions as commonly observed in 

electrospray ionization with the ability to scan a surface under atmospheric conditions.
63

 

1.5. Approach 

The following chapter describes the experiments conducted with MALDI MS in preparation of 

MALDI IMS for macrophage activation studies. The scope of this work was to establish a robust 

method to distinguish the activation state of macrophages on explanted tissue sections. To this 

end, an in vitro activated immortalized macrophage culture was used as a readily accessible 

model to test combinations of lysis and sample preparation protocols to find suitable biomarkers 

that allow the unambiguous identification of the induced activation state. For this, the well-

established approach of mass spectral fingerprinting
37

 was employed, which has been 

demonstrated to allow reproducible identification of bacteria down to the strain level.
64

 Also 

mammalian cell lines, which exhibit a less stable MS fingerprint,
65

 could be rapidly 

characterized and cross-contamination of cultured cell lines could be readily distinguished with 

this technique,
66

 suggesting mass spectral fingerprinting to be a suitable approach. It should also 

be noted that Quedraogo et al. published data on MALDI-TOF MS of activated macrophages 

(human), claiming that “The fingerprints induced by the M1 agonists, IFN-γ, TNF, LPS and LPS 

+ IFN-γ, and the M2 agonists, IL-4, TGF-β1 and IL-10, were specific and readily identifiable.”.
67 

However, central claims, like the identification of peaks at m/z of 6827 or 6826 as related to the 

activation state M1, while peaks at m/z 6835 or 6833 are supposed to indicate activation state 

M2, are in contrast to the author’s criteria for similarity across spectra of a 2000 ppm m/z 

window, which would encompass all the claimed different m/z values. Further, none of the ions 

representing these biomarkers were identified, so supporting the claim of distinguishing 
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activation states cannot be placed into the biological context, which would give the claim more 

weight. Among other inconsistencies, the author further omits crucial information on the sample 

preparation process like the solvent that was used to prepare the MALDI matrix, as well as the 

matrix concentration, rendering this publication an unreliable source for own experiments. 
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Chapter 2:MALDI of in vitro activated macrophages – Preparation for MALDI IMS 

As discussed in Chapter 1, mass spectrometry-based proteomic experiments suggest an 

abundant array of biomarkers for macrophage activation states. However, these biomarkers were 

identified in elaborate experiments involving several steps that reduced the complexity of the 

investigated sample. The advantage of the MALDI approach, on the other hand, is its simplicity 

and reproducibility. As described above, though, the ionization efficiency of analytes cannot be 

predicted, so the majority of tested experimental conditions are based on loose guidelines derived 

from previous experiments reported in the literature. 

2.1. Experimental section 

2.1.1. Chemicals and equipment 

2,5–dihydroxybenzoic acid (2,5-DHB, 99% purity), 1,5- diaminonaphthalene (1,5-DAN, 97% 

purity), 2-hydroxy-5-methoxy benzoic acid (99% purity), 2,5-dihydroxyacetophenone (2,5-DHAB, 

98+% purity), diammonium hydrogen citrate (99+% purity), and trifluoroacetic acid (TFA, 99% 

purity) were purchased from Alfa Aesar (Ward Hill, MA, USA). 3,5-dimethoxy-4-hydroxy 

cinnaminic acid (sinapinic acid, SA, 98% purity), and α-cyano-4-hydroxycinnamic acid(CHCA, 97% 

purity) were purchased from Acros Organics (Geel, Belgium). The solvents acetonitrile (HPLC 

grade), and methanol (HPLC grade) were from EMD Millipore (Billerica, MA, USA), ethanol (USP 

grade) from Koptec (VWR, Radnor, PA, USA), and de-ionized water (HPLC grade) were purchased 

from Thermo Fisher Scientific (Waltham, MA, USA). The MALDI targets with non hydrophobic 

surface were purchased from Hudson Surface Technology (Fort Lee, NJ, USA). ZipTip® (OMIX 96 

C18, 100 µL) where obtained from Agilent Technologies (Santa Clara, CA, USA). 

For the cell culture, the immortalized macrophage cell line NR8383 (rat, alveolar, CRL-

2192), and the F-12 K medium (Kaighn's modification of Ham's F-12 medium) were purchased 



 

18 

 

 

from ATCC (Manassas, VA, USA). Fetal bovine serum (regular, heat inactivated) was purchased 

from Corning/Mediatech (Corning, NY, USA), and antibiotic antimycotic solution (100x, 

stabilized) was obtained from Sigma Aldrich (St. Louis, MO, USA). The cytokine interleukin-4 

(IL-4, recombinant, rat, 25 µg) was obtained from R & D systems, Inc. (Minneapolis, MN, 

USA), and lipopolysaccharide (LPS, salmonella typhimurium) was purchased from EMD 

Millipore (Billerica, MA, USA). 

2.1.2. Matrix selection, deposition, and general method development 

Matrices were chosen based on suggested
37

 application to investigate small (<10 kDa) 

proteins/peptides (α-cyano-hydroxy cinnamic acid, CHCA), and heavier (>10 kDa) proteins (3,5-

dimethoxy-4-hydroxy cinnamic acid, “sinapinic acid”, SA), as well as the all-round matrix 2,5-

dihydroxy benzoic acid. In an attempt to investigate potential larger molecules than the 

postulated sensitivity cut off of 25-30 kDa,
62

 two additionally matrices were investigated: 1,5-

diaminonaphthalene (1,5-DAN) is known to promote in-source decay (ISD),
68

 which allows 

identification of larger proteins through the detection specific fragments, and which was 

demonstrated in MALDI IMS experiments on tissue sections (parent ions up to 70 kDa).
69,70

 The 

matrix 2,5-dihydroxyacetophenone (2,5-DHAB) promotes the generation of multiply charged 

ions from MALDI,
71

 so it was tested for its ability to reduce the m/z of larger ions by increasing 

the charge. 

For the deposition of matrix/analyte onto the stainless steel MALDI target, three standard 

methods where investigated: The simple “dried droplet”,
72

 where the matrix and analyte are 

mixed in solution before spotting, along with the related “fast evaporation” technique,
73

 where 

the matrix is pre-spotted to form very fine crystals during solvent evaporation (seconds to a few 

minutes) prior to the application of dissolved analyte, and the “sandwich” technique, a 



 

19 

 

 

modification of the fast evaporation technique, wherein an additional layer of matrix solution is 

applied on top of the dried matrix-analyte layers. 

The method development was conducted in an iterative way, in which changes to the 

preparation protocol were tested side-by-side with previously established protocols. The 

resulting mass spectra were then compared and inspected for its information density (i.e. ion 

signal density of differing m/z), reproducibility, and for potential biomarkers (in case sample 

derived from differentially activated macrophages was investigated, see below). All tested 

combinations were usually spotted in three technical replicates, and in at least three analyte-to-

matrix-ratios. Since the sample here is generally a complex mixture without a known 

concentration of its individual components, the mixing ratio of analyte-to-matrix was varied by 

variation of proportion of mixed volumes of matrix and analyte solution. Further, new methods 

were tested with readily available non-polarized (i.e. quiescent) NR8383 macrophages, and, if 

MS spectra suggested that additional information (compared to the established procedure) could 

be obtained, the method was repeated with the lysate of polarized macrophages. Table 2.2 

displays a selection of preparation methods with the respectively, most commonly, used matrix 

concentrations, employed solvent system, and application techniques. 

2.1.3. Explored solvent systems for macrophage extraction 

In an attempt to investigate the impact of extraction solvent on the observed mass spectra, 

aliquots of approximately 1 x 10
6
 quiescent macrophages each were extracted with 100 µL of 

various solvent systems. The hypothesis was that molecules could be differentially extracted 

based hydrophobicity, and hence the observed mass spectra would be altered to display differing 

groups of analytes. All samples were prepared with 2,5-DHB (1M, 90% methanol, 0.1% TFA) in 

the dried droplet preparation. The choice of investigated solutions was loosely based on solvents 
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commonly employed in MALDI matrix preparations. Further, the impact of acidity of the solvent 

system on the extraction was explored by comparison of extractions performed with 0.1 % (v/v) 

TFA, and 2.1 % (v/v) TFA. Table 2.1 depicts the tested extraction solvents. 

Table 2.1:Overview of solvent systems explored for macrophage extraction 

Solvent Additive 

water n-octyl β-glucopyranoside (OβG), 0.1% (w/w) 

water trifluoro acetic acid (TFA), 0.1% (v/v) and 2.1% (v/v) 

methanol (50% (v/v) in water) TFA, 0.1% (v/v) 

methanol (90% (v/v) in water) TFA, 0.1% (v/v) 

acetonitrile (60% (v/v) in water) TFA, 0.1% (v/v) 

acetonitrile TFA, 0.1% (v/v) 

acetone (90% (v/v) in water) TFA, 0.1% (v/v) 
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Table 2.2: Selection of matrix molecules and preparation conditions investigated in the direct MALDI of macrophage lysate 

Matrix Concentration/solvent Application technique 

2,5-dihydroxy benzoic acid 
1 M in 90% methanol, 0.1% TFA 

dried droplet 
1 M in 33% (acetonitrile/H2O, 0.1% (v/v) TFA in H2O) 

"super" 2,5-dihydroxy benzoic acid 

(= 9:1 (w/w) ratio of  

2,5-dihydroxy benzoic acid  

to 2-hydroxy-5-methoxy benzoic acid) 

50 mg per mL in 50% (acetonitrile/H2O, 0.1% (v/v) TFA in 

H2O) 
dried droplet 

α-cyano-hydroxy cinnamic acid saturated, in 30% (acetonitrile/H2O, 0.1% (v/v) TFA in H2O) dried droplet 

3,5-dimethoxy-4-hydroxy cinnamic acid 

(“sinapinic acid”) 

0.1 M in 90% methanol, 0.1% TFA dried droplet 

target pre-spotted with saturated solution (in ethanol);  

sample mixed 1:1 with  

30% (acetonitrile/H2O, 0.1% (v/v) TFA in H2O) 

layer technique 

1,5-diaminonaphthalene saturated, in 50% (acetonitrile/H2O, 0.1% (v/v) TFA in H2O dried droplet 

2,5-dihydroxyacetophenone 

0.133 mol/L in ethanol, mixed 3:1  

with 0.08 mol/L diammonium hydrogen citrate 

(acidified with 2% TFA solution (1:1) prior to deposition) 

dried droplet 
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2.1.4. Sample preparation: Culturing, activation, and harvest of macrophages 

The immortalized macrophage cell line NR8383 (rattus norvegicus; alveolar) was obtained 

from the American Type and Culture Collection (ATCC), and the macrophages were cultured 

according to the protocol described by Helmke et al.
74

 Briefly, the macrophages were incubated 

at 37°C in a Ham’s F12K medium containing 15% fetal bovine serum and 1% 

antibiotic/antimycotic solution. The medium is changed about twice a week, and cultures are 

split occasionally when the culturing flask wall appeared to be covered with attached cells.  

The process of changing the media consisted of retrieving the nutrient-depleted media from 

the culture flask, and replenishing the flask with fresh complete media. The retrieved media 

contains floating macrophages (approximately half of the present cell population),
75

 which are 

concentrated into a cell pellet by centrifuging at 140-250 g for 10 min (supernatant is decanted). 

These macrophages were either used for activation experiments as described in the following 

paragraph, or directly processed for experiments on quiescent macrophages (washed once with 

100 µL of HPLC grade water and further processed as described in the macrophage work-up 

protocol section). Either way, the macrophage counts were generally estimated with the help of 

an automated cell counter, Invitrogene Countess
TM

, based on the technique of staining with 

trypan blue.
76

 For this, a sample of 20 µL of the re-suspended pellet was mixed with 20 µL of the 

trypan blue dye, and the mixture was analyzed according to manufacturer’s instructions. In the 

case of activation experiments, the cell pellets were re-suspended in 5 mL of complete media, the 

macrophage count was established, and the sample were further diluted to yield approximately 5 

x 10
5

 macrophages/mL.  

These sub-samples of the harvested NR8383 macrophages were treated once with the 

endotoxin lipopolysaccharide (LPS) at a concentration of 200 ng per mL of cell suspension, 
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while for the induction of the M(IL-4) state, sub-samples of similar cell count were treated with 

the cytokine interleukin-4 (IL-4) at a concentration of 50 ng per mL of cell suspension.
77

 While 

the M(LPS) state is reached within 24h (detected by the release of the cytokine tumor necrosis 

factor alpha (TNFα)
78

), the cell culture had to be treated repetitively each day for 2 days to 

detectably form M(IL-4) (confirmed by the production of the cytokine interleukin-10 (IL-10), the 

absence of TNF, and low levels of IL-6, as detected in an ELISA assay). 

2.1.5. Macrophage work-up protocol – Overview and evolution of lysing technique 

Starting with a mass-spectrometry sample-preparation method for chicken macrophages,
79

 

the protocol was modified in a systematic way. Major changes (e.g. changing the lysing method) 

were evaluated based on reproducibility and information density of the obtained mass spectra, 

and new methods were compared with preparation procedures previously established. To 

minimize the impact of biological variability on this iterative process, previous and the new 

procedure were performed side-by-side on subpopulation of the same batch of harvested 

macrophages. Initially, the results on quiescent macrophages were evaluated, before polarized 

macrophages were investigated. Table 2.3 gives a chronological (top to bottom) overview of the 

explored sample preparation methods. 

The initial lysing technique consisted of trituration of macrophage cell pellets in a small 

amount (40-200 uL) of 0.01%-0.1% (w/v) n-octyl β-glucopyranoside solution (a non-ionic 

detergent).
79

 Based on the observation that the macrophage pellets could be extracted multiple 

times to obtain sample solution that would produce similar mass spectra, it was concluded that 

the cell lysis was incomplete, so a more rigorous and reproducible automatic mechanical lysing 

protocol  involving a bullet blender®
80

 was investigated. Further, two freeze-thaw protocols,
81,82

 

an ultra-sonication approach, and finally a lyophilization procedure were explored, and the 
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obtained MALDI spectra were compared to determine the most effective, reproducible procedure 

that maximized obtained signal intensity and amount of unique ions of differing m/z.  

As basis to evaluate new lysing methods, the generally well-established and preparation-

insensitive
83

 matrix 2,5-dihydroxy benzoic acid (c=1mol/L) in 90% methanol (0.1% (v/v) 

trifluoroacetic acid) was mixed with macrophage lysate at various mixing ratios (usually 3 

ratios, to reduce the chance that no ions where generated merely because of an analyte-matrix-

ratio mismatch), and spotted in the dried droplet technique. 

Additionally, while evaluating new lysing techniques, an already evaluated method was 

carried out side-by-side on an aliquot of the analyzed sample solution in order to have a direct 

reference, so that biological variation in the cultured macrophages, or instrument performance 

would not interfere with the evaluation process. Further, the cell count of each sample solution 

was taken into account with respect to solvent volumes, if possible, when the lysate solutions 

were constituted. 
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Table 2.3: Overview of macrophage lysing methods (in chronological order from top to bottom) 

Method Analyte Lysing technique Lysate preparation 

Mechanical lysis 

(manual) 

non-polarized NR8383 

(pelleted at 2000rpm (=250xg) 

for 10min) 

Triturated (ground with pestle) 

 in 200μL 0.01% (w/v) OβG 

centrifuged at 13500rpm 

(=12,225xg) for 10min 

to sediment cell debris 

Mechanical lysis 

(automated) 

polarized NR8383 

(pelleted at 2000rpm (=250xg) 

for 10min) 

Bullet blender® 

(Next>>>Advance)  

in 10 μL 0.01% or 0.1% (w/v) 

OβG 

with ZrO2 beads 

centrifuged intially at 

13500rpm (=12,225xg) 

then at 

10000rpm (=9056xg) 

  for 10min 

 to sediment cell debris 

Freeze-thaw 

non-polarized NR8383 

(pelleted at 2000rpm (=250xg) 

for 10min) 

Freeze-Thaw (frozen at -20°C, 

stored for 3 days) 

in 100μL H2O 

defrosted in lukewarm water 

(3min) 

10000rpm (=9056xg) for 10min 

Ultra-sonication 

non-polarized NR8383 

(pelleted at 1100rpm (=138xg) 

for 10min) 

Ultrasonic bath for 20min 

(cells in 40μL 0.1% (w/v) OβG) 
10000rpm (=9056xg) for 10min 

Freeze-thaw 

(modified) 

non-polarized NR8383 

(pelleted at 1100rpm (=138xg) 

for 10min) 

Snap-frozen (liquid N2) 

in 40μL FT lysing buffer or  

0.1% (w/v) OβG 

3x freeze-thaw cycles 

(defrosted on ice) 

10000rpm (=9056xg) for 10min 

Lyophilization 

polarized NR8383 

(pelleted at 1100rpm (=138xg) 

for 10min) 

Snap-frozen (liquid N2) 

(just the cell pellet) 

lyophilized for ~20h 

(pressure <50mbar) 

Re-suspension in solvent 

(mostly H2O) 

optional trituration 

sedimentation of cell debris by 

centrifugation 

n-octyl β-glucopyranoside (OβG), 2,5-Dihydroxy benzoic acid (2,5-DHB), Methanol (MeOH), trifluoro acetic acid (TFA) 
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2.1.6. Optional desalting of macrophage lysate 

The performance of matrices are generally regarded as quite sensitive to nonvolatile salts, 

which effectively prevent the ionization of analytes during the MALDI process.
37

 To probe for 

detrimental concentration of salts (remainder from culture media, as well as originating from 

cytoplasm released during cell lysis) were present and inhibited ion signals, macrophage lysate 

was additionally desalted by the use of ZipTip® pipette tips and investigated with 2,5-dihydroxy 

benzoic acid. Essentially, a ZipTip® is a pipette tip that has a bed of chromatography media 

actin as the stationary phase incorporated in the tip, C18 in the evaluated case, to adsorb/partition 

analyte during the loading step, retain it during washing steps, and should release it in the elution 

step (due to appropriate solvent strength) (see Table 2.4). In this manner, it ideally concentrates 

and purifies targeted analyte. 

Table 2.4: Employed ZipTip® (OMIX, 96 C18, 100 μL) desalting protocol 

Solvent/solution 
Up&Down pipetting 

(number of repetitions) 
Purpose 

100 µL 0.1% TFA in acetonitrile 20 
Pre-conditioning of ZipTip® 

100 µL 0.1% TFA in water 20 

Sample solution 30 Loading of ZipTip® 

100 µL 0.1% TFA in water 40 

Washing step;  

replaced washing solution 

after every 10 repetitions 

20 µL 0.1% TFA in 60% acetonitrile 35 
Elution/concentration of 

retained sample 

   

To check the retaining capability of the stationary phase, and for possible mass 

discrimination effects, the solution that was used to load the tip was analyzed by MALDI as well. 

2.1.7. MALDI-TOF MS system and settings for analysis of mass spectra 

The majority of the presented MALDI work on the activated macrophages was carried out on 

a Bruker Reflex III time-of-flight (ToF) instrument (Bruker Daltonics) equipped with a Nitrogen 
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laser (VSL-337 ND, LSI Laser Science, Inc), operating at 337 nm wavelength and laser shot 

frequency of 10 Hz. The mass spectrometer was used in positive ion mode, and both available 

configurations were investigated for their respective benefits: the linear mode, which permits a 

lower limit of detection, and the reflectron mode, in which an electrical ion mirror is used to 

compensate for a spread in the kinetic starting energies of the ions generated in the plume, and 

therefore allows for a higher resolution of the ion packages arriving at the detector. The ions 

were typically accelerated by the application of 26.5 kV (25 kV in reflectron mode) and focused 

by a potential of 14 kV applied to a focus lens. For the reflectron mode, the ion packages were 

deflected onto the detector by a potential of 26 kV applied to the ion mirror. Initially, methods 

were optimized to record spectra in reflectron mode (900 – 8000 m/z), and for the linear mode in 

the range of 2000 – 20000 m/z. The external calibration of the instrument was performed using a 

solution of peptide calibration standard II (Bruker Daltonics Inc., Billerica, MA,USA) containing 

Bradykinin fragment 1-7, angiotensin II, angiotensin I, , substance P, bombesin, Renin substrate, 

ACTH clip 1-17, ACTH clip 19-39, and Somastostatin 28 and 1 mol/L 2,5-DHB matrix solution 

{[M+H]
+
: 757.4, 1046.5, 1296.7, 1347.7, 1619.8, 1758.9, 2093.1, 2465.2, and 3147.5} for the 

reflectron mode, or protein calibration standard I (Bruker Daltonics Inc., Billerica, MA,USA) 

containing Insulin, Ubiquitin I, Cytochrom C, Myoglobin with 1 mol/L CHCA matrix 

solution{[M+H]
+
: 5734.51, 8565.76, 12360.97, 16952.30 [M+2H]

2+
: 6180.99, 8476.65} for the 

linear mode. 

The mass spectra were analyzed with FlexAnalysis 3.3 software (Bruker Daltonics). For 

spectra recorded in the linear mode, typically the baseline was subtracted (TopHat algorithm) 

and a SavitzkyGolay filter (10 m/z width, 2 cycles) was applied to smooth the spectra to aid in 

peak picking (centroid mode, 20 Da width at 80% height, signal-to-noise threshold of 100). For 
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spectra obtained in reflectron mode, the baseline was subtracted (TopHat algorithm) and the 

SavitzkyGolay filter (0.5 m/z width, 1 cycle) was applied to smooth the spectra to aid in 

automatic peak picking (centroid mode, 1 Da width at 80% height, signal-to-noise threshold of 

6). The intensity of all presented MALDI spectra is normalized in a way that the most intense 

peak is considered 100%, and the remaining peaks are relative to it in their depicted size. This is 

to emphasis the relevance of the exhibited fingerprint, and not the absolute signal intensity, 

which would be generally given in instrument-specific arbitrary units. It should further be noted 

that the shift of observed m/z in the mass spectra is mainly due to a combination of the difference 

in sample morphology (i.e. the thickness of the prepared matrix co-crystals, the following 

difference in distance of the generated ions to the acceleration electrode, and the resulting 

differential amount of absorbed kinetic energy upon acceleration) and the lacking ability to 

efficiently compensate for this in the linear ToF mode of the employed, dated instrument. A shift 

of the observed m/z by +/- 10 Da across the MALDI spectra generated in the linear mode was 

accepted as long as this trend was consistent within the spectrum. 

2.2. Results and discussion 

2.2.1. Impact of matrix selection on observed mass spectra 

With the exception of 1,5-diaminonaphthalene (1,5-DAN), all investigated matrices (Table 

2.2) yielded spectra of the macrophage lysate in the investigated range of 2000-20000 m/z (see 

Figure 2.1). 2,5-dihydroxybenzoic acid (2,5-DHB) prepared in 90% methanol with 0.1% TFA 

was under the investigated conditions the most reproducible matrix with respect to observed 

unique ions, and relative ion intensities. 3,5-dimethoxy-4-hydroxy cinnamic acid (“sinapinic 

acid” SA) resulted in equally information-dense spectra. In the case of SA, only the dried droplet 

preparation was initially employed, which exhibited a relative high fluctuation in observed 
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relative ion signal strength (see comparison of 2,5-DHB vs SA, Figure 2.2), which lead to the 

preferential use of 2,5-DHB. At a later stage, though, the layer preparation of SA was tested, and 

found to be of advantage based on the identical amount of observed ions (when compared to 2,5-

DHB), but increased homogeneity of the applied sample.
73

 Figure 2.3 depicts spectra recorded in 

the reflectron mode (top), and the linear mode (bottom) of macrophage lysate spotted in the dried 

droplet method with an equal volume of 2,5-DHB dissolved in 90% methanol/0.1% TFA. The 

inset shows the most conserved fingerprint region of the sample in the range of 3900 – 6500 Da 

m/z in an overlay of the reflectron and the linear mode. This display further demonstrates the 

enhanced peak resolution of the reflectron mode compared to the linear mode, which was used to 

investigate potential unresolved, unique ion signals. This fingerprint, especially the most intense 

peak around 4960 Da, was observed with every tested matrix (with the exception of 1,5-DAN) 

with differing relative intensities of the observed peaks. This prominent peak was found to be 

thymosin beta-4, an actin-binding peptide, typically abundantly present and characteristic for 

monocytes/macrophages, by Kannan et al. in chicken macrophage.
79
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Figure 2.1: Overview of mass spectra produced from macrophage lysate spotted with matrices according to Table 2.2. From 

top to bottom: in 2,5-DHB, “super” DHB, CHCA, SA (dried droplet preparation), and DHAP. The spectra were analyzed as 

described in 12.1.7. , so only signals with S/N > 100 are labeled (with m/z, or with tick marks), and in this way serve as 

indicator for spectra quality. 
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Figure 2.2: Comparison of reproducibility of cell lysate spotted with sinapinic acid (SA, dried droplet preparation, left), and 

with 2,5-dihydroxy benzoic acid (2,5-DHB, right). Both sides represent technical replicates prepared with the same sample.  
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Figure 2.3: Mass spectra of macrophage lysate (NR8383 cells) spotted with 2,5-dihydroxy benzoic acid (1M in 90% methanol, 

0.1% trifluoroacetic acid). Spectra recorded in reflectron mode and displayed in the m/z mass range of 900 – 7000 Da (top), 

and spectra recorded in the linear mode with the m/z range of 1900 – 135000 Da displayed (bottom). The inset depicts an 

overlay of both modes to demonstrate difference in obtained peak resolution, and to show the preserved fingerprint region, 

3900 – 7000 Da, of the NR8383 macrophages. 
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2.2.2. 2,5-DHB: Macrophage cell dilution experiment and desalting effect 

Investigating the performance of the matrix 2,5-DHB further, the required minimum amount 

of macrophage cells to obtain similar fingerprints as depicted in Figure 2.3 was explored, as well 

as the impact of nonvolatile salt.  

In a dilution experiment, in which macrophage lysate was diluted and prepared at decreasing 

concentrations with 2,5-DHB (1M, dissolved in 90% methanol, 0.1% TFA, dried droplet) it 

could be observed that, by the calculated dilution factor, lysate corresponding to approximately 

900 macrophages would suffice to produce the observed fingerprint (Figure 2.4). However, this 

number can be seen as upper limit, since this experiment was carried out with the initial lysing 

technique that could be optimized in later experiments (see below). 

The application of the ZipTip® protocol did not improve the observed signal intensity or 

produce additional peaks. Instead, strong mass discrimination were observed (Figure 2.5). While 

the sample that was eluted as the purified product was enriched in signals representing ions up to 

≈1350 m/z, and depleted in signals representing higher m/z ions, the solution that was used in the 

loading step exhibit the opposite behavior. This indicates an analyte retention problem, which 

could possibly be alleviated through adjustments in the protocol (e.g. less concentrated loading 

solution, different solvent systems for washing/eluting, general variation in step order/repetition). 

However, it does not seem necessary to desalt the sample, since 2,5-DHB seems tolerant enough 

for the trace levels of salt in the analyte solution, so the additional step of desalting was omitted 

in the work-up protocol, as it would also be impracticable to apply to tissue sections.
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Figure 2.4: Amount of macrophage cells needed to produce typical mass spectral fingerprint. Lysate was produced by initial 

mechanical lysis protocol (trituration), and the resulting lysate was spotted with 2,5-DHB (1M in 90% methanol/0.1% TFA, 

dried droplet). The lysate was produced from 2.6 x 106 quiescent macrophage cells, and diluted accordingly so that lysate of 

≈4400 cells (top), lysate of ≈2200 cells (2nd), lysate of ≈1400 cells (3rd), and lysate of ≈900 cells (bottom) were applied per 

dried droplet preparation. The arrow indicates the S/N of the most intense peak in each spectrum. 
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Figure 2.5: Result of ZipTip® extraction/desalting. Purified macrophage lysate (top), analyte remaining in the extracted lysate 

(middle), and reference spectra of lysate without ZipTip® extraction.  
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2.2.3. Effect of extraction solvent and acidity 

Surprisingly, all but acetonitrile/0.1% TFA, which did not produce any signal at all, of tested 

solvent systems (Table 2.1) produced mass spectra (see Figure 2.6) exhibiting the dominant 

fingerprint region in between 3900 – 6500 Da m/z, with only minor variation of unique, low 

intense peaks in the remaining m/z range. This result could indicate that the ions representing this 

fingerprint region are very efficiently ionized, and hence scavenge most of charges present in the 

MALDI plume,
84

 almost independently of how well they are extracted based on their respective 

hydrophobicity. In contrast, extracting the macrophages with 2.1 % (v/v) TFA drastically 

changed the observed mass spectra (Figure 2.7) compared to Figure 2.3. Approximately two 

times more unique ions could be observed within the range of 1500 – 6000 m/z, while, at the 

same time, the observed relative signal intensity of the fingerprint region seemed to become less 

reproducible. A close investigation of this phenomenon, however, revealed that the obtained 

spectra are not reproducible, exhibiting differing unique ions almost each repeated experiment. 

This may indicate that molecules of higher mass, especially proteins, could be randomly 

hydrolyzed to produce fragments of very unsteady nature, which excludes the approach of 

increasing the content of TFA to 2.1 % (v/v) in the preparation protocol.
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Figure 2.6: Mass spectra of macrophage cell pellets extracted with differing solvent systems, but producing almost identical 

mass spectral fingerprint. Extractions solvents were 0.1% n-octyl β-glucopyranoside (OβG) (top), 50% methanol/0.1% TFA 

(2nd), 90% methanol/0.1% TFA (3rd), 60% acetonitrile/0.1% TFA (4th), and 90% acetone/0.1% TFA(bottom). All extracts 

were spotted in dried droplet with 2,5-DHB from 90% methanol/0.1% TFA 
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Figure 2.7: Mass spectra of macrophage cell pellets extracted with 2.1% TFA, and spotted in dried droplet with 2,5-DHB from 

90% methanol/0.1% TFA. Each spectra represents and individual extraction. It is noticeable that about 2 times more unique 

peaks (in contrast to Figure 2.3) are present, but the comparison of the independently extracted cell pellets exhibits the lack of 

reproducibility of these extra peaks. 
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2.2.4. Impact of lysing method on observed mass spectra 

Figure 2.8 shows a comparison of spectra obtained from macrophages subjected to three 

different lysing techniques involving the bullet blender, freeze thaw lysis, and the sonication 

approach (see Table 2.3). All samples were prepared from approximately 2 x 10
5
 quiescent 

macrophages and were spotted in the dried droplet technique with an equal volume of 2,5-DHB 

dissolved in 90% methanol, 0.1% TFA. It can be noted that the observed fingerprint is 

independent of the employed lysing method. However, the sonication approach was found to 

provide the most intense signal based on the observation that sample spots could be probed 

longer, and at different spots, for more overall signal. 

Ultimately, the lyophilization approach was accepted as standard. It provided comparatively 

strong signal as the sonication approach, but would also inhibit sample degradation by removal 

of solvent, provide a long shelf life (lyophilized samples would exhibit identical LC-MS spectra 

even after storage for >2 months at -20°), and would be compatible with future tissue section 

preparation. 

2.2.5. Mass spectra of differing activation states in 2,5-DHB 

Figure 2.9 depicts representative mass spectra of macrophage lysate of quiescent, LPS-

activated, and IL-4 activated macrophages prepared with 2,5-DHB (1 M in 90% MeOH / 0.1% 

TFA) in dried droplet technique. Lysates of eight independent activation experiments (for each 

activation state, and control macrophages) were analyzed (three technical replicates of each 

sample), but no reproducible mass spectral fingerprint was found that would allow identification 

of activation state. 
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Figure 2.8: Overview of three differing lysing techniques: bullet blender (top), freeze thaw (middle), and sonication (bottom). 

The lysate produced with each technique was spotted with 2,5-DHB in 90% methanol/0.1% TFA, and the obtained spectra 

exhibit an identical mass spectral fingerprint. 
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Figure 2.9: Representative mass spectra of macrophage lysate of quiescent (top), LPS-activated (middle), and IL-4 activated 

(bottom) cells prepared with 2,5-DHB (1 M in 90% MeOH / 0.1% TFA) in dried droplet technique. All mass spectral 

fingerprint appear indistinguishable from each other. 
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2.3. Need for separation – transition to LC-MS 

Although the mechanism of MALDI has been subject of extensive research for the past 30 

years, the desorption/ablation and the ionization process are still poorly understood. No unifying 

model for analyte ion formation could be established so far, but both currently proposed models 

consider charge transfer between the gas phase ions/molecules in the plume following the laser 

irradiation a central mechanism of charge distribution.
55

 This dynamic process, however, is 

influenced by numerous parameters,
56

 so the essential aspect, the reproducibility of observed ion 

signal from complex mixtures, in the mass spectral fingerprint approach (as described in 1.5. ) is 

of pure experimental nature. 

In the case of the macrophage lysate, the mass spectral fingerprint, especially in the range of 

4000 – 6500 m/z (compare inset Figure 2.3), appears to be well conserved across differing 

activation states (Figure 2.9), differing extraction solvents (Figure 2.6), and, to a certain degree, 

across different employed matrices (Figure 2.1). This could indicate the dominant and relative 

strong ionizability of the corresponding molecules, and the concomitant suppression of other ion 

signals that could potentially differentiate the activation states. To test this hypothesis, the next 

chapter presents experiments on the separation of the complex mixture with the help of high-

performance liquid chromatography, and resulting mass spectra of the eluting sample of lower 

complexity.  
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Chapter 3:HPLC-MS of in vitro activated macrophages 

The transition to a protocol involving the separation step of liquid chromatography, and the 

subsequent mass spectrometric analysis of the dissolved analyte through an electrospray (ESI) 

source made it necessary to reconsider the MALDI MSI approach. Fortunately, liquid extraction 

based methods for the analysis of tissue sections have been proposed as alternatives,
85-87

 and 

automated, semi-continuous techniques were demonstrated to be compatible with HPLC.
88-90

 

3.1. Experimental section 

3.1.1. Chemicals and equipment 

In addition to the chemicals and equipment used in chapter 2: ultra-pure water was obtained 

through filtering (Milli-Q purified, resistivity of 18 MΩ per cm, Millipore Corporation, Billerica, 

MA, USA). Microsampling vials, 0.25 mL C/T PP, and the appropriate caps, 11mm orange snap 

PTFE/Sil, for the LC-autosampler were obtained from Sun-Sri (Rockwood, TN, USA). The 

desalting/concentration tip (NuTip® C18, 10 µL) where obtained from Glygen Corporation 

(Columbia, MD, USA). 

Additional used equipment includes the HPLC-MS system consisting of Hewlett Packard 

1100 liquid chromatography (now Agilent Technologies, Santa Clara, CA, USA), with the 

Discovery BIO wide pore C18 column (15 cm x 4.6 mm, 5 µm, obtained from Sigma-Aldrich 

(St. Louis, MO, USA)) and the internal variable wavelength detector (G1314A) with a deuterium 

lamp (G1314-60100), and a semi-micro flow cell (G1315-60011, 6 mm path length, 5 µL 

volume) installed. The hyphenated mass spectrometer was an Esquire ion trap (Bruker Daltonics, 

Billerica, MA, USA), and a fraction collector Model 2128 (Bio-Rad Laboratories, Hercules, CA, 

USA) for the alternative setup. Additionally, the Ultraflextreme (Bruker Daltonics Billerica, MA, 

USA) was used for MALDI ToF/ToF experiments. For sample preparation, the bench-top 
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centrifuge VWR minifuge (VWR, Radnor, PA, USA), and the vacuum centrifuge CentriVap 

DNA Centrifugal Concentrator (Labconco, Kansas City, MO, USA) were used. 

3.1.2. Preparation of macrophage lysate extract 

Macrophages were cultured and activated as described in chapter 2 (see 2.1.4.  For reasons 

described above (2.2.4. ), the harvested cell pellets of approximately 1-1.5 x 10
6
 macrophages 

each were lyophilized in a 1.5 mL Eppendorf tube to yield dry, powdered sample.  

Each sample was extracted by re-suspending the powdered macrophages in 100 µL of 

HPLC-grade water through up and down pipetting, followed by brief, vigorous vortexing to form 

a slightly cloudy suspension. The solution was then centrifuged at 2000 g for 2 min to sediment 

out the floating matter. After repeating this vortexing and centrifuging step once, 90 µL of the 

supernatant was carefully removed with a pipette, and transferred to a 250 µL sample vial. All 

prepared extracts were immediately analyzed by LC-MS to minimize any potential degradation. 

3.1.3. LC-MS – Settings and evaluation of system 

The liquid chromatograph was set up to run in binary gradient elution (Table 3.1) with 0.1 % 

(v/v) formic acid in ultra-pure water as running solution A, and acetonitrile with 0.1 % (v/v) 

formic acid as organic phase, B. Typically, 30 µL of sample was injected through the 

autosampler, and the sample was separated at a flow rate of 0.5 mL per minute through the 

reverse phase C18 wide pore column with a 30 min gradient elution. The eluting compounds 

were either directed into the Esquire ion trap through the electrospray interface, or the eluting 

solution was collected by the fraction collector (see below, 3.1.5. ). 

In the case of direct infusion into the mass spectrometer, 4.2 kV were applied to the 

electrospray needle, the solution was nebulized at 32 Psi (N2), and the solvent evaporation was 
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enhanced by heated (300 °C) N2 sheath gas at a flow rate of 12 L per minute. The mass range 

was set to 375 – 2000 Da m/z, the ion polarity was set to positive, the ion charge control (ICC) to 

50000, and the ion scan rate to 2000 Da per second (lowest limit-of-detection, regular 

resolution). 

To evaluate signal stability of the LC-MS system, 30 µL aliquots (n = 3) of macrophage 

lysate (extract from quiescent, and one from LPS-activated macrophages) were analyzed 

consecutively (remaining lysate was stored in the fridge for the duration of each LC-MS run), 

and the resulting spectra were analyzed as described below (3.1.6. ). Using actual lysate imposed 

the constraint of limited sample volume (100 µL), but was deemed necessary to evaluate the 

system stability under experimental conditions. 

3.1.4. Development of HPLC elution protocol 

In liquid chromatography, the analytes continuously partition between the stationary phase 

(hydrophobic in the present case of the employed reversed-phase column), and the mobile phase 

(relative hydrophilic due to the share of H2O in the running buffer).
35

 If other factors influencing 

this partitioning like temperature, or column material are kept constant, the time it takes for the 

molecules to traverse the column, i.e. the retention time, is a function of elution volume and 

solvent composition. In the case of polypeptides, however, a “hydrophobic foot” can be the 

result of sequences of hydrophobic amino acids, which then adsorbs to the hydrophobic column 

material, resulting in complete retention. These molecules can only desorb and elute if a specific 

number of organic modifiers, called ‘Z’ by Geng and Regnier,
91

 is reached. This desorption is 

complete and instant once the very narrow concentration window of the organic modifier is 

reached.
92

 Based on this, and on further considerations by Carr,
92

 the elution protocol was 
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developed from a simple gradient elution (ramping from 2 % to 100 % acetonitrile within 30 

min), to the stepwise protocol in Table 3.1. 

Table 3.1: HPLC-gradient elution protocol 

Time range 

[min] 

Increase in 

acetonitrile-% 

Change rate 

[% per min] 
Comment 

0 – 25 12 – 40 1.12 investigated range 

25 – 30 40 – 95 11 
cleaning step to avoid carry-over 

30 – 35 95 (constant) - 

35 – 40 12 (constant) - equilibration of column for next injection 

Used for separation of macrophage extract with Discovery BIO wide pore (C18) column  

3.1.5. Preparation of collected fractions for MALDI 

In the alternate set up, where the HPLC was attached to the fraction collector, samples of 1 

min intervals were collected in 1.5 mL Eppendorf tubes. To confirm that the injected sample was 

producing a similar LC-MS fingerprint in this situation, a regular LC-MS run on an aliquot of a 

macrophage lysate was always performed right before fractions were collected, and, additionally, 

the UV trace recorded at 254 nm by the internal detector of the HPLC was compared of both 

successive runs to confirm correct timing of collection. Following the collection, fractions were 

loaded without delay into the centrifugal concentrator to evaporate the solvent to dryness under 

reduced pressure (< 20 mbar) and at elevated temperature (60 °C). Depending on the number of 

simultaneously dried fractions, this took 2 to 6 hours. 

The resulting residues were re-suspended by adding 7 μL of 15% acetonitrile/0.1% TFA (half 

saturated with SA) to each dried fraction, followed by brief, vigorous vortexing to visibly cover 

the inside walls of the respective Eppendorf tube. The liquid was collected at the bottom of the 

container by centrifuging for 30 sec at 2000 g. 1.5 μL of the resulting analyte/matrix solution 

was applied to a MALDI target pre-spotted with SA (Table 2.2, layer preparation) in technical 

triplicates. 
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3.1.6. Spectra processing, analysis and evaluation 

LC-MS spectra were analyzed with DataAnalysis (version 4.0 SP 4 Build 281, Bruker 

Daltonics). The default display mode is total ion chromatogram (TIC), in which the sum of the 

signal intensities across the investigated m/z range of each recorded mass spectrum is plotted 

against the elution time. However, increasing the percentage of acetonitrile leads to a general 

enhancement of observed signal in ESI-MS with traditional columns (4.6 mm diameter),
37

 which 

confounds the TIC by amplifying the chemical noise (see Figure 3.1), which was also 

documented by the column manufacturer (organic modifier was 0.1 % TFA in methanol in the 

described case).
93

 To address this, LC-MS spectra were visualized by base peak extracted 

chromatograms (BPC), in which the most intense ion signal of each mass spectrum (integrated in 

the range of +/- 0.5 Da) is plotted against the elution time. However, this display method was 

always validated by manually evaluating the mass spectra (apex peak finder with S/N > 10 as 

criteria) obtained during each individual chromatogram, and observed differences in signal 

intensities were further explored by analyzing the corresponding mass spectrum for multiply 

charged ions. To quantify ion signals, all charge states belonging to a molecule (e.g. the 

annotated ion signals in Figure 3.4) were extracted (integrated +/- 0.5 Da of peak) and summed 

up. This was displayed in extracted ion chromatogram (EIC) mode, and the resulting peaks in 

EIC were integrated for quantification purpose. To compensate for observed performance drift of 

ion signal intensities, as well as slight differences in extracted cell counts, the integrated ion 

signals of each run were normalized by the sum of all ion signals observed within the same 

experiment.
94

 Thus, the spectra are transformed from an absolute to a relative intensity scale, 

allowing comparisons of molecular fingerprints obtained in the LC-MS experiments (an 

alternative normalization based on the most intense peak at minute 10 resulted in the same 

trend). 
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To evaluate the standard deviation in observed signal introduced by the LC-MS system, 30 

μL aliquots (three) of lysate from quiescent macrophages were consecutively analyzed (extract 

was prepared immediately before the initial run, and kept at -20° in between injections). The EIC 

of 10 multiply charged ions were integrated and the average, weighted, relative standard 

deviation of these technical replicates was determined to evaluate reproducibility of the 

performance of the employed LC-MS system. 
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Figure 3.1: LC-MS chromatograms of experiments following the same gradient elution protocol (see Table 3.1) and displayed as total 

ion chromatogram (TIC, top and middle), and as base peak extracted chromatogram (BPC, top and bottom). The top chromatogram is 

an overlay of the TIC (rising line) and the corresponding BPC (flat line). This TIC (water injected as sample) demonstrates the raise 

of the baseline with the increase of acetonitrile in the elution buffer. The chromatograms depicted in the middle (TIC) and at the 

bottom (BPC) are differential display methods of the same raw data representing a typical LC-MS chromatogram obtained by 

injecting quiescent macrophage lysate. The insets display a magnified version (minute 11 to 22) of the respective chromatograms 

Note: scale difference  
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3.1.7. Tryptic digestion of collected fractions containing the potential biomarker and preparation 

for MALDI experiment 

After confirming (see Figure 3.1) that the potential biomarker would elute under the 

employed elution protocol (Table 3.1) after ≈21.5 min, four fractions (minutes 21-22, 22-23, 23-

24, and 24-25) were collected. To increase the amount of sample for the digestion, a total of 

three lyophilized, quiescent macrophage cell pellets (≈1.5 x 10
6
 macrophages each) were 

extracted with 100 µL each (as described above in 3.1.2. ), and 75 µL of each extract was 

injected for LC-fraction collection. The combined (each elution interval combined separately), 

dried fractions (as described above under 3.1.5. ), were each subjected to the in-solution 

digestion protocol
95

 described in Table 3.2. 

Table 3.2: Digestion protocol employed to digest collected, dried LC fractions of quiescent 

macrophages 

Description of step Comment 

Re-suspension of dried fraction in a total volume of 100 µL 

of 50 mM NH4HCO3 

 

 Addition of 5 µL 200 mM dithiothreitol solution 

(prepared in 100 mM NH4HCO3) 

 Boil for 10 min on a hot water bath 

 Spin down (≈10 s at 2000 g) 

 Incubation at room temperature for 1 h 

Reduction of any present disulfide 

bonds to form thiol (-S-H) groups. 

 Addition of 4 µL 1 M iodocacetamide (prepared in 

100 mM NH4HCO3) 

 Brief vortexing, spin down (≈10 s at 2000 g) 

 Incubation at room temperature for 1 h 

Alkylation of each present thiol to 

form a carbamidomethyl group 

 Addition of 20 µL 200 mM dithiothreitol solution 

(prepared in 100 mM NH4HCO3) 

 Brief vortexing, spin down (≈10 s at 2000 g) 

 Incubation at room temperature for 1 h 

Stops alkylation by neutralizing 

remaining iodoacetamide 

 Addition of 5 µL of a 40 ng per µL trypsin solution 

 Incubation at 37 °C for 18 h 

Tryptic digestion of sample 

 

Each digested solution was acidified by the addition of 1 µL formic acid, and extracted with 

a modified tip (NuTip®, C18, 10 µL) according to the protocol
96

  described in Table 3.3. 
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Table 3.3: Employed NuTip (NT1C18, 10 µL) protocol to desalt and concentrate tryptic digests 

of collected fractions 

Solvent/solution 
Up&Down pipetting 

(number of repetitions) 
Purpose 

10 µL acetonitrile 3 Pre-conditioning of NuTip® 

Solvent discarded after each repetition 10 µL 0.1% formic acid 3 

Sample solution 10 Loading of ZipTip 

10 µL 0.1% formic acid 6 
Washing step;  

Solvent discarded after each repetition 

4 µL 0.1% formic acid 

in 60% acetonitrile 
10 

Elution/concentration of retained 

sample 

   

The concentrated and purified samples were spotted with CHCA in dried droplet (Table 2.2), 

and analyzed with the Ultraflex III ToF/ToF instrument. The system was used in the reflectron 

mode to obtain overview spectra of the tryptic digest fragments, and, additionally, molecules of 

abundant ion signals were fragmented in the LIFT mode to elucidate ion composition.
58

 

3.1.8. Identification of putative biomarker through peptide sequence database search 

As discussed in the introduction, a common approach to identify proteins is based on the 

analysis of peptide fragments of the target molecule(s) which are in a m/z range (<20 kDa) 

amenable to routine mass spectrometric analysis. The peptide fragments for this so-called 

“bottom-up” approach are obtained through proteolytic digestion of the sample.
36

 The enzyme 

trypsin is widely employed for its stability under a wide range of conditions, and its high 

selectivity to cleave polypeptide chains at the C-terminal side of the amino acids arginine (R) 

and lysine (K).
97

 This specificity of cleavage sites allows the prediction of fragments from 

protein sequences, so that matching the experimentally observed mass of the intact and the 

tryptic fragments can lead to the identification of the polypeptide. For this, however, the mass 

spectral data has to be searched against a peptide sequence data base that already contains 

protein sequence information of the investigated organism.
37

 In this work, the search engine 

MASCOT
98

 was used to match the mass spectral data against protein sequences from the UniProt 
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database.
99

 To gain additional information on the analyte, and hence increase the confidence in 

the assignment, the PSD fragments of the tryptic peptides were investigated with the Ultraflex 

ToF/ToF in the LIFT mode, and this combined information was used in the data base search. The 

search criteria were set to “taxonomy: Rattus”, “enzyme: Trypsin”, “global modification: 

carbamidomethyl (C)” (fixed modification introduced in the digestion protocol), “variable 

modification: oxidation (M)”, “Mass tol. MS: 0.5 Da”, “Charge state: +1”, “monoisotopic”, and 

as instrument: “MALDI-TOF-TOF”. 

3.1.9. Interpretation of PSD spectra – nomenclature and systematic 

In the PSD of peptides, the majority of the formed fragment ions are the result of cleavage 

along the peptide’s backbone.
100

 The mass spectral data on these can be used to elucidate 

information on the sequence of the intact parent peptide, as well as on potential modifications of 

the constituting amino acids.
37

 Figure 3.2 uses Biemann’s modified version
101

 of the Roepstorff 

nomenclature,
102

 displaying the generic polypeptide sequence of Alanine(A)-Glutamic acid(E)-

Leucine(L)-Serine(S) to illustrate C- and N-terminal fragments produced by cleavage along the 

peptide bond. If the proton remains on the N-terminal fragment, b-type ions are produced, while 

remaining on the C-terminal fragment, y-type ions are observed. The index on each series further 

indicates how many amino acids the respective ion contains. Additional to this nomenclature, 

Figure 3.2 also indicates the molecular composition of E and L along with the monoisotopic 

mass. It should be noted that, as opposed to the mass of individual amino acids, these masses are 

reduced by the mass of H2O. This so-called residual mass is due to formation of the peptide 

bonds within the polypeptide chain, and the concomitant elimination of one H-group at the N-

terminus, and the OH-group at the C-terminus of the amino acids within the chain. 
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Consequently, the mass of an intact, protonated peptide is the sum of all the residual amino 

acid masses plus the mass of H2O (from both termini) and of one proton, [MH + H2O]
+
 (M 

represents the sum of amino acid residues). Further, this explains that protonated ion fragments 

from the y-series would comprise [MH + OH]
+
, while b-ions would be composed of [MH + H]

+
, 

each representing the contribution of the related terminal group. The underlying polypeptide 

sequence can, ideally, be deduced by considering the mass difference of two ion fragments 

produced from cleavage of adjacent peptide bonds. So, in the depicted example, the mass 

difference of y3 and y2 fragment ions is the residual mass of E (129.04 Da), which is exactly 

what the comparison of b1 and b2 fragment ions would reveal. Thus, the sequence can be “read” 

from the mass spectrum through either fragment ion series, provided individual ion fragment 

intensity permits the assignment. Important here is that, in the interpretation, the difference is 

denoted as [M], [M + OH], or [M + H], without the proton and its charge.
37

 

 

Figure 3.2: Polypetide sequence of Alanine(A)-Glutamic acid(E)-Leucine(L)-Serine(S), 

illustrating b- and y-type ions produced by cleavage of peptide bonds. Brackets are used for E 

and L to indicate the composition comprising the residual mass of each amino acid along with 

the respective monoisotopic masses. 
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According to these rules, the PSD spectra produced from the LIFT mode were analyzed for 

y- and b-type ion series to confirm tryptic peptide fragment sequences obtained in the database 

search. Mass differences were annotated when observed difference where within +/- 0.05 Da of 

the respective residual mass, and for ambiguous identifications, both residues were presented. 
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3.2. Results and discussion 

Figure 3.3 depicts an overview of base peak chromatograms (BPC) in the range of 0 to 25 

minutes of lysates from quiescent (top), LPS activated (middle), and IL-4 activated (bottom) 

macrophages. Lysates were prepared as described above under 3.1.2. and separation was 

according to elution conditions in Table 3.1. As described above in 3.1.6. , the mass spectra 

constituting each chromatogram were individually investigated for the presence of reproducible 

ion signals (S/N < 5, and a minimum of 3 charge states per molecule).  

In general, it should also be noted that the employed workflow is targeting hydrophilic 

molecules, which could be extracted from the sample with distilled water. 

3.2.1. Reproducibility of LC-MS signal intensity 

Table 3.4 summarizes the results of testing the LC-MS system for the reproducibility of ion 

signal intensity. For each eluting molecule, the average peak area of the respective EIC was 

calculated, and the corresponding relative standard deviation (RSD) is given. The tendency of 

increased RSD with lower relative peak area can be observed, indicating that more intense 

signals would serve as more robust indicator for the purpose of distinguishing activation states 

based on molecular fingerprints. The weighted RSD of 6.0% was calculated according to 

Equation 3.1, and illustrates the reproducibility of the employed LC-MS system with respect to 

ion signal intensity. 

                                                             

 

   

 

Equation 3.1: Formula used to calculate the weighted RSD of n integrated peak areas 
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Figure 3.3: Representative base peak chromatograms (BPC) in the range of 0 to 25 minutes of lysates from quiescent (top), LPS 

activated (middle), and IL-4 activated (bottom) cells. Lysates were prepared according to 3.1.2. and separation was according to 

elution conditions in Table 3.1. 
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Table 3.4: Resulting relative standard deviations of ion signal obtained in LC-MS experiments on 30 µL aliquots (three) of quiescent 

macrophage lysate. 

Average retention time 

[min] 
Area [a.u.] 

Average area 

[a.u.] 

Relative peak 

area 

Relative standard 

deviation 

8.6 7.50E+05 8.23E+05 8.29E+05 8.00E+05 0.48% 5.5% 

10.0 8.26E+07 8.49E+07 8.86E+07 8.54E+07 50.79% 3.6% 

11.3 1.16E+06 1.31E+06 1.75E+06 1.40E+06 0.83% 21.9% 

13.1 7.55E+05 4.27E+05 6.47E+05 6.10E+05 0.36% 27.4% 

13.7 2.64E+06 2.90E+06 2.91E+06 2.82E+06 1.68% 5.4% 

14.9 1.98E+06 2.92E+06 3.12E+06 2.67E+06 1.59% 22.8% 

16.6 6.45E+06 6.42E+06 5.58E+06 6.15E+06 3.66% 8.0% 

18.8 2.91E+07 2.87E+07 3.16E+07 2.98E+07 17.73% 5.2% 

20.4 2.50E+07 2.93E+07 2.63E+07 2.69E+07 15.99% 8.3% 

21.3 1.06E+07 1.32E+07 1.10E+07 1.16E+07 6.90% 12.1% 

weighted relative standard deviation: 6.0% 

For each of the 10 eluting peaks, the EIC of all related charge states (ion signal in mass spectra S/N > 5, minimum of 3 charge 

states) in each technical replicate was integrated, and the relative standard deviation (RSD) of the average area was calculated. The 

relative peak area was calculated (average area of peak divided by sum of all average areas) and used to obtain the weighted RSD 

(sum of RSDs multiplied by relative peak areas) to account for the tendency of less intense signal to have a higher RSD. The 

weighted RSD illustrates the reproducibility of the ion signal intensities of the employed LC-MS system 
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3.2.2. Analysis of ion signals present under quiescent, IL-4 and LPS-induced condition 

A statistical treatment of the data on IL-4 was not feasible, since only 4 biological replicates 

of this condition were analyzed, of which only two would have had a strong enough signal of the 

observed, eluting molecules, so only the quiescent and the LPS-induced condition were 

compared. Table 3.5 gives an overview of all 9 common molecules detected by LC-MS of lysate 

from quiescent (white background) and LPS-induced (grey background) macrophages. The 

average relative areas and the related standard deviation for of each ion signal pair (quiescent 

and LPS-induced) were evaluated using t-tests (unpaired, two-tailed, equal variance or unequal 

variance (based on individual F-test). In each case, the difference was significant at the threshold 

level of p=0.01, suggesting that the obtained molecular fingerprint can be used to differentiate 

between lysates from quiescent and LPS-induced cell cultures. 

3.2.3. Molecule eluting at minute 21.5 as strong indicator for LPS-induction of macrophages 

Visually comparing the LC-MS chromatogram of quiescent and LPS-induced macrophages 

revealed one ion signal (eluting after ≈21.5min) that was only present (at the threshold of S/N > 

5) in lysate from quiescent macrophages, but not from lysate obtained from LPS-induced ones. 

Figure 3.4 displays a representative mass spectrum of this molecule, along with the mass spectra 

representing the other two prominent peaks (see Figure 3.3.) at minute 18.5 (top) and 20.0 

(middle). The ion signals could be deconvoluted to obtain the ion masses of 8451.8 Da (top), 

10815.9 Da (middle), and 3990.5 Da (bottom), which could be also confirmed through the 

fraction collection experiment, and the following MALDI experiment on the dried fractions 

(Figure 3.6, corresponding ions marked with a star). 

Using the m/z of each charge state of each molecule highlighted in Figure 3.4, an extracted 

ion chromatogram (EIC) was generated for each LC-MS experiment on lysate from quiescent 
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and LPS-induced macrophages. Figure 3.5 displays an overlay of EIC constructed this way of 

each 5 biological replicates lysate from quiescent (top) and LPS-induced macrophages (bottom), 

demonstrating the absence of the molecule eluting at minute 21.5 after activation with LPS. 
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Table 3.5: Summary of the relative peak areas of all 9 common molecules detected by LC-MS of lysate from quiescent (white 

background) and LPS-induced (grey background) macrophages. 

m/z 

[Da] 

Average RT 

[min] 

Average, relative peak areas of signals found in lysate 

from quiescent (white background) and LPS-induced 

(grey background) macrophages [n = 10] [%] 

Standard 

deviation 
F-test t-test 

2664.7 
7.5 1.80 0.51 

8.75 x 10
-5

 9.80 x 10
-6

 *
 

7.5 0.44 0.11 

4964.0 
9.9 46.94 6.76 

8.65 x 10
-3

 4.73 x 10
-4

 *
 

9.9 35.94 2.59 

3790.9 
11.2 1.06 0.20 

4.55 x 10
-2

 8.53 x 10
-10

 
 11.2 0.26 0.10 

4356.9 
13.1 0.50 0.16 

2.11 x 10
-3

 2.82 x 10
-4

 *
 

13.1 0.22 0.05 

4971.0 
13.7 2.20 0.44 

7.83 x 10
-2

 1.08 x 10
-7

 
 13.7 0.87 0.23 

5199.4 
14.9 2.24 0.57 

1.08 x 10
-3

 1.71 x 10
-6

 *
 

14.9 0.47 0.16 

7886.7 
16.6 2.20 0.55 

7.88 x 10
-1

 1.51 x 10
-3

 
 16.6 3.17 0.61 

8453.3 
18.7 25.91 5.04 

9.85 x 10
-1

 2.07 x 10
-3

 
 18.7 34.04 5.07 

10816.9 
20.4 17.15 1.88 

1.25 x 10
-3

 4.85 x 10
-3

 * 

20.4 24.59 6.36 

Experiments performed on 10 biological replicates each. The variance of each average relative peak area was compared (quiescent 

vs LPS-induced) with the F-test, and the means were accordingly evaluated using t-tests (unpaired, two-tailed, equal or unequal 

variance (based on the corresponding F-test, * denotes unequal variance at p = 0.01)). For each molecule, the difference was 

significant at the threshold level of p=0.01. 
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Figure 3.4: Representative mass spectra from a LC-MS experiment on quiescent macrophage 

lysate. The spectra are of the three prominent peaks (see Figure 3.3.) at minute 18.5 min (top), 

20.0 min( middle), and 21.5 min (bottom). The ion peaks are additionally labeled with the 

calculated charge states, and the deconvoluted masses are given as 8451.8 Da (top), 10815.9 Da 

(middle), and 3990.5 Da (bottom). 
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Figure 3.5: Overlay of extracted ion chromatograms (EIC) obtained from lysate of quiescent (top) and LPS-activated 

macrophages (5 biological replicates each), demonstrating the absence of the molecule eluting at minute ≈21.5. The lysates were 

separated according to Table 3.1, and the EIC were constructed by integrating all displayed m/z (+/- 0.5 Da) in Figure 3.4. 
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Figure 3.6:MALDI mass spectra of macrophage lysate fractions collected at minute 18-19 (top), minute 20-21 (middle), and 

minute 21-22 (bottom). Ion signals corresponding to the dominant ESI-MS signal (Figure 3.4) are highlighted with a star in 

the respective spectrum. Lysate fraction were prepared in SA, as described above (3.1.5. ) 
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3.2.4. Identification of putative biomarker for LPS-activation as macrophage-capping protein 

Figure 3.7 gives an overview of the information obtained on the intact molecule eluting at 

minute ≈21.5. Since the absence of this molecule indicates LPS-activation, the presented data is 

on lysate from quiescent macrophages where the molecule is detectable. The bottom right 

displays an ESI mass spectrum, while the bottom left depicts the MALDI mass spectrum of the 

corresponding dried fraction. The ESI signal deconvolutes to the average molecule mass of 

3990.5 Da, while the MALDI data shows the monoisotopic mass of 3988.4 Da. This slight 

difference in mass is based on the mathematical nature of averaging the m/z signal in the case of 

the ESI signal (i.e. unresolved isotopic pattern) vs the isotopically resolved MALDI spectrum 

(ToF instrument was used in reflectron mode). Further, the MALDI spectrum exhibits another 

peak lower in mass with the difference in mass matching the atomic mass of one oxygen atom 

(=16.0 Da), suggesting that the base peak contains one oxidized group. 

Figure 3.8 depicts the mass spectrum obtained on the tryptic digest of the biomarker 

containing fraction. The inset further presents the sequence of the protein fragment (amino acid 

position 305-339, which represents 7% of the entire protein sequence) of the protein 

“macrophage-capping protein”, which was the only significant (p < 0.05) result of the data base 

search. The theoretical, protonated, and oxidized mass of this sequence, 3988.1 Da, is in very 

good agreement with the experimentally observed mass of 3988.4 Da (Figure 3.7). The two 

predicted tryptic fragments of 1375.7 Da and 1601.8 Da, which cover 77% of the depicted 

sequence, are both present in the spectrum (1375.7 Da and 1601.7 Da, respectively). To confirm 

this assignment, the PSD spectra of both tryptic fragments were analyzed based on the suggested 

sequence. 
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Figure 3.9 depicts the PSD spectrum of the ion isolated at 1375.7 Da (isolation window +/- 

3%). The sequence elucidated from the annotated b-ion series supports the assignment, and is 

further backed by the prominent peak at 579.1 Da representing the y5 fragment ion. Additionally, 

the theoretical ion mass differences are in excellent agreement (within 0.2 Da error) of the 

observed mass differences. It has to be noted that the amino acids lysine (K) and glutamine (Q), 

with a residual mass difference of 0.03 Da, cannot be unambiguously assigned, nor the stereo 

isomers leucine (L) and isoleucine (I). 

Figure 3.8 depicts the PSD spectrum of the ion isolated at 1601.7 Da (+/- 3%). The sequence 

elucidated from the annotated y-ion series supports the suggested sequence, and the theoretical 

ion mass differences compare very well (within 0.7 Da error) with experimentally observed 

differences.  

In conclusion, the identification of the putative biomarker as part of the macrophage-capping 

protein can be supported on multiple levels. Through the excellent agreement of the theoretical 

and observed intact and tryptic fragments masses. Further, through the presence of these tryptic 

fragments with specificity of each fragment as being the product of the cleavage of each C-

terminal arginine (R), and the total sequence coverage of 77% through both tryptic fragments. 

The postulated sequence is further validated through the presence of the annotated sequence-

specific fragments in the PSD experiments. 

The sequence of the complete protein was originally obtained from a large-scale cDNA 

project,
103

 and the human ortholog was described by Dabiri et al. to be abundantly expressed 

only by macrophages.
104

 Further, the observed behavior of this molecule being absent within the 

macrophages upon activation with LPS is demonstrated through complimentary results from 

Eichelbaum et al.
31

 In their study targeting the protein synthesis and secretion during 
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macrophage activation of RAW 264.7 (mouse macrophage), they could show that the mouse 

ortholog of the macrophage capping protein was not newly synthesized upon stimulation with 

LPS (within 8 h after stimulation), but that it was released from the macrophages into the culture 

medium (8 h after stimulation, LPS stimulated media contained approximately 5.5 times more of 

the compound identified as macrophage capping protein than the quiescent control 

macrophages).
31

 If similar behavior of the investigated rat macrophages can be assumed, this 

confirms the observation of this study that upon LPS stimulation, the peptide related to the 

macrophage capping protein is not found (below level of detection) within the macrophage 

lysate. 
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Figure 3.7: Overview of representative mass spectra collected on the putative biomarker. The top displays an EIC of lysate 

from quiescent macrophages with the signal corresponding to the molecule eluting at minute ≈21.5 highlighted. The bottom 

right displays the ESI mass spectrum with the deconvoluted m/z of 3990.5 Da, while the bottom left depicts an isotopically 

resolved (ToF in reflectron mode) MALDI mass spectrum of the corresponding dried fraction spotted in SA. The inset of the 

MALDI spectrum shows the enlarged range from 3974-3996 m/z, exhibiting the monoisotopic peak (3988.4 Da) of the base 

peak, and an adjacent peak at 3972.39 Da. The difference of 16.0 Da suggests the presence of an additional oxygen atom 

(=16.0 Da). Note: the mass spectra are of lysate from quiescent macrophages, but the absence of this signal serves as 

indication for LPS-activation. 
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Figure 3.8: Mass spectrum of tryptic fragments from the digestion experiment on the fraction containing the putative biomarker. 

The inset contains the sequence fragment (amino acid position 305-339) returned in the MASCOT database search of the depicted 

spectrum. The theoretical masses of the entire sequence, as well as of both tryptic fragments are indicated. 
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Figure 3.9: LIFT spectrum of ion 1375.7 Da (isolation window of +/- 3%) exhibiting mainly b-ion series fragments. The spectrum 

is annotated with amino acids corresponding to observed mass differences along with the theoretical values of the respective 

sequences in the inset. Additionally, the dominant peak at 579.1 Da is labeled as the y5 ion. Ambiguity in assignment is indicated 

by providing both potential amino acids. The obtained sequence information supports the proposed sequence for this tryptic 

fragment. 
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sequences in the inset. The obtained sequence information supports the proposed sequence for this tryptic fragment.  



 

71 

 

Chapter 4: Summary and future direction 

Macrophages are versatile and highly adaptive cells that are involved in a wide range of 

physiological processes ranging from host defense, over homeostasis or regeneration, to 

pathogenesis.
3-5,12,31,32,44,45,47

 They react to their microenvironment, assuming various roles based 

on chemical and/or physical cues.
1,3,6,7,16

 It has been proposed that macrophages exist along a 

continuous spectrum in between these so-called activation states,
13

 and it was shown that 

macrophages can be reversibly shifted between activation states.
15-17,19

 Since the 

microenvironment is significant to macrophage activation, it is desirable to obtain information on  

spatial distribution along with the activation state of macrophages on tissue sections. This 

information is currently predominantly obtained through an immunohistochemistry approach.
50

 

The aim of this work was to explore the application of mass spectrometry to the task of 

distinguishing macrophage activation states. The assumption that significant differences in 

molecular composition correlates with observed activation states is based on high-throughput 

proteomics experiments, revealing distinct protein levels attributed to activation with LPS.
30,31

 

The intention was to investigate whether MALDI MS conditions could be found that permit 

identification of macrophage activation states within tissue sections.  

In Chapter 2, the sample preparation technique of matrix-assisted laser desorption/ionization 

(MALDI) was explored to evaluate its use for MALDI imaging mass spectrometry (IMS) 

experiments, which could reveal activation state, spatial distribution, and concentration of 

macrophages within tissue sections. As model, the immortalized macrophage cell line NR8383 

(rat, alveolar) was cultured and in vitro activated with either the cytokine IL-4, or the endotoxin 

LPS. Despite varying core parameters like the employed matrices, sample preparation 

techniques, and employed solvents for sample extraction, no reproducible mass spectral 
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fingerprint of macrophage was observed that could indicate a difference in the induced activation 

state. It could be observed that the mass spectral fingerprint, especially in the range of 4000 – 

6500 m/z (compare inset Figure 2.3), appeared to be well conserved across differing activation 

states (Figure 2.9), differing extraction solvents (Figure 2.6), and, to a certain degree, across 

different employed matrices (Figure 2.1). It was concluded that, despite the reported differences 

in molecular composition correlating LPS activation, the signals from these biomarkers were 

suppressed by the relative strong ionizability of the molecules constituting this conserved mass 

spectral fingerprint. 

Chapter 3 describes the introduction of high-performance liquid chromatography (HPLC) as 

a mean to reduce the molecular sample complexity, as well as electrospray ionization (ESI) as an 

alternative to MALDI as the mass spectrometry source. Comparison of normalized signal 

intensities obtained on macrophage lysate from quiescent and LPS-induced in the LC-ESI-MS 

experiments revealed reproducible differences in the relative intensities of the eluting 

compounds. Within 10 biological replicates of the LPS-activated vs the quiescent state separated 

under identical elution conditions, the relative ion intensities of 9 common ions were compared. 

A significant (p < 0.01) difference was observed for each common ion, suggesting that the 30 

min separation protocol would allow distinguishing quiescent from LPS-activated macrophages 

based on the relative abundance of the investigated signal (Table 3.5). However, a molecule 

eluting after 21.5 min could be recognized as strong indicator for LPS activation. In lysate from 

quiescent macrophages, the corresponding signal contributed 9 % (+/- 1% standard deviation) of 

relative ion signal, while the signal upon LPS activation was absent (Figure 3.5). The average 

molecular mass of this putative biomarker was measured by ESI MS to be 3990.5 Da, and 

confirmed by the monoisotopic mass of 3988.4 Da measured in a MALDI experiment of the 
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corresponding, collected, and dried fraction (Figure 3.7). MALDI experiments on the tryptic 

digest containing the putative biomarker supports the identification of it as peptide corresponding 

to the amino acid sequence (position 305-339) of the macrophage-capping protein. This finding 

is conclusive with the observations made in a proteomics experiment on LPS-induced 

macrophages (RAW 264.7, mouse). 

Based on the identification of this peptide, further work could include its use as an alternative 

indicator for LPS-activation of macrophages. For this, the presence of this marker in 

macrophages harvested from various tissues and organisms would have to be established, as well 

as its absence under LPS-activation. Based on the observation that the peptide is soluble in water 

(as used for the extraction), but will adhere to the column material (ø 5 µm particles, modified 

with C18, and containing 300 Å micro pores), and will only elute after reaching approximately 

36% acetonitrile content, could be used to concentrate and detect it from media with the help of 

accordingly modified pipette tips.
105

 

Further, based on the high specificity of this biomarker for macrophages,
104

 it could be used 

for mapping of the spatial distribution of quiescent macrophages on tissue sections. For this, 

liquid extraction based mass spectrometry methods have been proposed as alternative for the 

analysis of tissue sections,
85-87

 as well as automated, semi-continuous techniques compatible 

with HPLC
88-90

 could be used. 
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