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Abstract 

Alternative methods for the conversion of polyols into olefins, be it for carbon storage or 

hydrocarbon fuel production, have become prevalent in today’s chemical industry. One process 

in particular, deoxydehydration (DODH) has been proven effective in taking sustainable biomass 

derivatives and converting them through the utilization of various homogenous metal catalysts. 

While this process may show productive yields and material conversion, it is hindered by the 

need of a sacrificial reductant. This makes a novel process economically unviable and relatively 

unused outside of scientific research. That fact begs the question: Can the process be improved? 

It is proposed here that DODH catalysis and similar processes can be made more practical 

through the elimination of a sacrificial reductant and the utilization of a vanadium-centered 

proton coupled electron transfer (PCET). For this to be realized a known DODH catalyst, 

[tetrabutylammonium][dioxovanadium(V)2,6-pyridinedicarboxylate] (TBADVP),  must first be 

characterized electrochemically. 
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I. Introduction  

In today’s society the public is surrounded by numerous volatile markets. These markets not only 

influence our pocketbooks but also our collective, moral conscience. There’s one market that 

faces daily scrutiny and that is the fossil fuels market, specifically petroleum. Almost everything 

a person comes in contact with is directly related to petroleum and petroleum derivatives in one 

way or another. Be it the plastic cup that holds a child’s drinking water or the shoes on athlete’s 

feet none of it would be possible without current petroleum infrastructure. The largest form of oil 

consumption nationally (and worldwide) is gasoline. As a nation the United States consumes 

~20% of the world production of petroleum, 47% of which is gasoline. The other 53% is a 

combination of distillate fuel, gas liquids, kerosene, still gas, plastics, lubricants, and the list goes 

on. 
[15]

 Consumption of oil reserves is a building concern in today’s society as well as the 

environmental impact of extraction, refining, transportation, and consumption of petroleum 

products. While there is a debate about the impact the release of greenhouse gases (such as CO2) 

have on the environment the foot print still exists. CO2 emissions in the United States alone 

totaled 5.15 billion tons in 2015 (with a 5% uncertainty, this included all aspects of CO2 release 

such as industry, transportation, mining, and environmental impacts such as oil spills). 
[16]

 It is 

important that alternative pathways be found to replace petroleum based fuels and materials to 

offset the ever increasing economic and environmental impacts being experienced today.
 
One 

path in particular, the conversion of biomass into olefins, has the potential to reduce the impacts 

caused by petroleum and fossil fuels. Olefins, specifically C2 to C4, are the feed stocks for the 

chemical industry. While typically supplied through the fractionation of crude oil, these simple 

components can be made from a sustainable resource: biomass. Biomass is already abundant and 

can come in several forms; directly grown and supplied or recycled from remainder waste such 
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as corn stover and logging scrap. Step one is to take biomass and convert it through fermentation, 

gasification, or dehydrogenation to provide bio-intermediates that can then be transformed into 

bio-olefins through various chemical processes. 
[17][23]

 Deoxydehydration (DODH) is one such 

process that has shown extremely efficient conversion and yield results when assisted by 

homogeneous metal-oxo catalysts. 
[1] 

The process is hindered by the need for sacrificial 

reductants making olefin conversion potentially toxic, costly, and inconvenient. It is the goal of 

this research to take a metal-oxo catalyst capable of DODH 

[tetrabutylammonium][dioxovanadium(V)2,6-pyridinedicarboxylate] (TBADVP) and 

electrochemically characterizing it and show that DODH can be performed in the presence of 

only catalyst, polyols, and acidic protons.   

II. Background 

A. Deoxydehydration  

The process of DODH using transition metal catalysts was first reported by Cook and Andrews 

in 1996 using a Rhenium metal-oxo catalyst, (C5Me5)ReO3. The catalytic cycle, ran in 

chlorobenzene, featured a Re
VII

/Re
V
 couple and a triphenylphosphine (TPP) mediated oxygen 

abstraction to transform a diol into an alkene and water. 
[10]

 The DODH catalytic process in 

question, designed by Nicolas, et al. in 2013, is analogous to the Cook/Andrew method with its 

use of a metal-oxo catalyst and sacrificial oxygen abstraction reductant. The DODH catalyst, 

TBADVP, starts with glycol condensation, which is followed by oxygen abstraction using either 

TPP or sodium sulfite, and then finishes with an oxidative elimination to yield an olefin product 

and a regenerated metal-oxo catalyst. An alternative route being oxygen abstraction, 

condensation, and then olefin extrusion; see “Scheme (1)” below. 
[1] 

More recently, the Nicolas 
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group has found that hydrogen and carbon monoxide may also be used in the catalytic cycle as 

sacrificial reductants. 
[2]

 Experimental conditions for the TBADVP catalyst: benzene solvent and 

TPP reductant, conducted at 150-170 °C in either a thick-walled glass tube or stainless steel 

reactor. The experiment was allowed to run until completion (72 hours) to give one hundred 

percent conversion and an olefin yield of 95% 
[1]

 The vanadium V/III couple seen in the Nicolas 

DODH is of interest and is the focus of the work herein. 

 

“Scheme (1) Putative catalytic cycle for DODH catalyzed by TBADVP.” Figure taken from page 

8200, Chapman, G.; Nicholas, K. M. Vanadium-catalyzed deoxydehydration of glycols. Chem. 

Comm. 2013, 49, 8199-8201.  
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B. Proton Coupled Electron Transfer  

Proton coupled electron transfer (PCET) reactions surround us in our everyday lives: 

Photosystem II, enzyme systems such as DNA photolayse, and photocatalytic water splitting all 

rely on PCET pathways. While these systems have been thoroughly studied in the past the 

relationship PCET plays has yet to be fully understood. PCET is exactly what it sounds like, the 

transfer and addition of both a proton and an electron to a compound either one at a time (step-

wise) or at the same time (concerted proton electron transfer, CPET). In the case of metal-oxo 

species being reduced to a metal-hydroxo the overall process can be described as a hydrogen 

atom transfer (HAT), which is analogous to a CPET of 1H
+
/1e

-
. An additional term of “hydride 

transfer” may be used which describes the transfer of a single proton and two electrons in the 

form of H
-
. 

[4] 
The TBADVP species is believed to undergo PCET in a manner similar to HAT. 

While it may appear that a step-wise electron transfer would be preferred, a concerted path is 

thermodynamically favored due to the step-wise intermediate being uphill in energy while the 

final product is of a lower energy. 
[5]

 The mechanism of PCET has been suggested to involve an 

outer sphere electron transfer based on redox kinetics but in the case of electrochemical analysis 

it is understood that it is a CPET of the inner sphere variety. This would require a heterogeneous 

component (electrode surface, e
-
 source), a solvated component (H

+
 source), and the transfer 

species to be coordinated before the transfer of both electron and proton may occur. Stepwise 

and concerted transfers can appear the same in some studies and can only be delineated through 

the study of reaction kinetics. Electrochemical analysis is the most popular technique to observe 

PCET but it can also be observed through indirect electrochemical analysis or photo 

induction/quenching techniques. 
[3]
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C. Electrochemical Analysis 

Cyclic Voltammetry: The Nernst Equation and the Pourbaix Diagram 

Cyclic Voltammetry is one of the most common electrochemical analyses that can be performed 

on a chemical compound in solution. The electrochemical cell experiences an induced potential 

that is then swept over a chosen potential range. The resulting current at each potential step is 

then recorded to give a plot of current (i, Amperes) versus potential (V, Volts). As the applied 

potential is scanned cathodically from open circuit, a species in solution may undergo an 

electrochemical reduction. The potential sweep may then be “turned around” and swept 

anodically allowing a solution species to be electrochemically oxidized to reveal a redox couple. 

The shape of the current-potential plot can reveal useful preliminary information about the 

molecular processes that are occurring in the electrochemical cell at the electrode surface. A 

Nernstian, one-electron redox wave will display a cyclic voltammogram, (CV) in which both the 

forward and backward scans are superimposable (having equal currents) and have a peak 

potential separation (ΔEp) of 59.06 mV (equal to 
     

  
 in Equation 1). In the case where the 

reducible species does not show appreciable interaction upon oxidation a superimposable CV 

with reversible 1e- dynamics is seen but with a peak potential separation of approximately 

35.6mV hinting at the combination of two separate 1e- transfers that occur at the same potential. 

Some step-wise 2e- redox couples will appear as two distinct reversible waves each with ΔEp = 

59.06mV (Equation 2) or as staggered waves that overlap with ΔEp > 120 mV. In cases where 

reversible behavior is seen but ΔEp > 59.06mV it is possible the electron transfer may be 

reversible but sluggish in nature, not exhibiting fast electron transfer kinetics. 
[6]
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(1) (Nernst Equation):        
     

  
   

         

          
  

(n= number of electrons transferred) 

 

(2):   
    

   (
     

 
)      

(k=2 [electrons]) 

Electron transfers can be evaluated further by varying the pH (donator-acceptor ratio) of the cell 

solution and observing a redox couple under constant experimental conditions. Plotting potential 

(E
0
) versus pH will give a Pourbaix diagram. In a system involving a solid (the electrode 

surface), a dissolved substance (homogenous catalyst), free electrons (applied potential), and 

hydrogen ions (acidic media) a Pourbaix diagram with a slope equal to  
         

 
  will be 

generated (n= number of electrons transferred, h=number of protons transferred, similar to the 

term seen in the Nernst equation above). 
[7]

 A slope of ~0.060V is indicative of systems with 

equal ratio of electrons and protons. While ~0.030V implies two electrons and one proton, 

~0.039V three electrons and two proton, and ~0.044V would imply the transfer of four electrons 

and three protons. 

Electrode Kinetics and Tafel/Butler-Volmer Equations 

The current of an electrochemical system is dependent on the ability of solution reactants to be 

transported to and from the electrode surface. This depends on interfacial dynamics rather than 

interfacial kinetics. In cases of solution stirring, or electrode rotation, mass-transport has little to 

no effect on the resulting electrode currents. The Tafel Equation (Equation 3) has shown that 

such current is exponentially related to the overpotential applied to the system. 
[6] 
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(3):       
 

    

(Analogous to           ) 

If a reaction has both a forward and backward path,  

     
  
→              

  
→      

The reaction rates ѵf / ѵb can be expressed as: 

(4):        (   )  
  

   
  and        (   )  

  

   
 

Taking the difference of both the forward and backward reaction rates yields: 

(5):                (   )      (   )  
 

   
 

Solving for ἰ yields the overall form of: 

(6):                 (   )      (   )   

Heterogeneous electrode kinetics must be expressed as cm/s as long as the concentration of 

substrate is expressed as mol/cm
3
. It must be noted that the kinetic rate is expressed as the 

concentration of substrate at the electrode surface which may not necessarily be the same as the 

substrate concentration in the bulk solution. 
[6]

 

Consider a simple one-step one electron process, where the same forward and backward redox 

path applies, and assume that the system is at equilibrium. In a state of equilibrium the forward 

and backward reaction rates are of equal values. If we take the equilibrium potential as the new 

reference potential, rather than the potential at a reference electrode, the anode and cathode 

reactions can be expressed as reaction coordinates much like Marcus Theory. If the potential is 

lowered by an amount ΔE the new relative energy of an electron at the electrode surface then 

changes a quantity: -FΔE = -F(E-E
0
) lowering the energy of the O + e

-
 curve in Figure (1), 
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effectively lowering the energy barrier for the oxidation of species R (    
 ).

[6]
 This lowering in 

anodic energy is equal to: 

(7):    
      

  (   ) (     ) 

 

Figure 1: Effects of potential on standard free energies. Figure taken from page 95: Bard, A. L.; 

Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications; Wiley: New York, 

1980. 
 

The lowering in cathodic energy can also be expressed in the same manner: 

(8):    
      

    (     ) 

Expressing the rates kf and kb in an Arrhenius form yields: 

(9):         ( 
   

 

  
)                   (10):         ( 

   
 

  
) 

Where substitution of (7) and (8) into (9) and (10) gives 

(11):         ( 
    

 

  
)     (

   (     

  
) (12):         ( 

    
 

  
)    (

(   ) (     )

  
) 
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In a situation where the concentration of both O in R in the bulk is equal then (E = E
0`

) and (kf = 

kb). Under these conditions the standard rate constant k
0
 can be used making equations (11) and 

(12): 

(13):         (
   (     )

  
)         (14):         (

(   ) (     )

  
) 

Substitution of (13) and (14) into (6) gives the current-potential characteristic, better known as 

the Butler-Volmer kinetic expression 
[6]

: 

(15):       (  (   ) 
   (     )

     (   ) 
(   ) (     )

  )  

If a solution is stirred at an appreciable rate (or the current is low enough to keep the substrate 

concentration difference at the electrode surface and the bulk negligible) the system can then be 

represented by the Butler-Volmer Equation: 

(16):     [ 
      (   )  ] 

A Tafel analysis involves plotting the log of current in the form of current density (log j) and 

plotting it against the overpotential, η. The slope of a Tafel plot will lead to two kinetic 

parameters; the slope allows for the calculation of the reaction transfer coefficient (α) (Equations 

17a, 17b) and the intercept of the line will equal the exchange current (i0, or exchange current 

density, j0). Since back reactions cannot be assumed as negligible, both the cathodic and anodic 

lines diverge from linearity as η approaches zero. Both linear-like representations will also be 

influenced by mass transfer at large overpotentials causing them to deviate further. 
[6]

  

(17a)              
(   ) 

     
           (17b)                
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Chronoamperometry, Linear Sweep Voltammetery, and Koutecky-Levich Analysis 

Chronoamperometry (CA) and linear sweep voltammetry (LSV) are similar to CV in that a 

potential is applied to the electrochemical cell and the resulting current is measured. The 

difference in CA and LSV is that the working electrode is represented by a rotating-disk 

electrode (RDE). In CA the RDE has a particular over-potential applied, usually one that is 

slightly past the reduction or oxidation potential of the electrochemical species. Alternatively, in 

LSV the potential is scanned through a set voltage window. The RDE is then rotated at various 

rates while the applied potential is held constant (or scanned); the rotation allows laminar flow to 

allow a greater concentration of the electrochemical species to react at the electrode surface. This 

increase in reactivity is due to a decrease in the mass-transport effect. As mass-transport 

becomes negligible the electrode rotation reaches its effective limitation and diffusion-limited 

current (idl) is achieved. A plot of inverse diffusion-limited current density (jdl
-1

) versus the 

inverse square root of rotation rate (ω
-1/2

) yields a Koutecky-Levich (KL) plot. The KL-slope 

can be used to determine the number of electrons (n) being transferred and the KL-intercept 

assists in the calculation of the kinetic-limiting current (jK) by using the following KL equations: 

[9] 

(18) 
 

 
 

 

  
 

 

  
 

 

(                    )
 

 

  
  

(19)                 
         

(20)           

Where jK/jL are the kinetic-/diffusion- limiting current densities  (mA/cm
2
), ω is the angular 

velocity of the rotating disk (ω = 2πf/60, f is the linear rotating speed in rpm), n is the overall 
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number of electrons transferred in the redox process, F is the Faraday constant, C0 is the redox 

species bulk concentration, DO is the diffusion coefficient of the electro-active species, ν is the 

kinematic viscosity of the electrolyte solution, and k
0
 is the electron transfer rate constant.  

Differential Pulse Voltammetry  

Differential pulse voltammetry (DPV) is a controlled-potential method in which pulse 

modulation programming is utilized to extract the faradaic current response from an 

electrochemical system. The waveform of DPV resembles that of staircase voltammetry with a 

staggered pulse pattern. 
[6]

 The current is first sampled after an initial resting period of time (τ′) 

and is followed by a potential pulse (ΔE) that is allowed to rest a period of time (τ) at the end of 

which the current is sampled a second time. The difference of the two current responses (δi = i(τ) 

– i(τ′)) is then taken and recorded against base potential. The potential is then stepped forward a 

set increment and another pulse modulation occurs until a predetermined number of increments 

have passed. 

 

Figure 2: The differential pulse voltammetry wavefrom.  
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The resulting bell-shaped polarogram is a representation of peak current output and is governed 

by equation (21) 
[6] [12]

: 

(21)    (
        

 
 

 ⁄ (    )
 

 ⁄
)  (

   

   
)             (

    

   
) 

Full width at half maximum of the corresponding peak can be used to determine the number of 

electrons transferred in some electrochemical systems when ΔE is less than 10 mV through the 

use of equation (22)
 [6] [12]

: 

(22)   
 ⁄

 
      

  
  

W
1/2 will equal 90.4 for a one electron transfer and subsequently: 45.2 (n=2), 30.1 (n=3), and 22.6 

(n=4). DPV is sensitive technique to provide detection limits as low as 5 x 10
-8

 M and can 

distinguish electro active components of homogeneous mixtures. 
[12]

 And while it was originally 

developed for the dropping mercury electrode it is a viable for use with stationary electrodes 

such as planar platinum and glassy carbon. 
[6]

 

Electrochemical Time of Flight (ETOF) 

Diffusion of an electrochemical species can be measured through the use of an electrode array 

that consists of alternating generation electrodes and corresponding collection electrodes 

separated by a gap of measurable distance. Once a potential is applied the species being observed 

undergoes an electron transfer and then immediately diffuses away from the electrode surface. 

This diffusion then carries the electrochemically generated species to the collector electrode 

where it is immediately reduced or oxidized. This reduction/oxidation event can be measured by 

observing the response signal and determining the amount of time between complete generation 
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and collection. A typical response can be seen in Figure 3 showing the ETOF generation and 

collection of ferricyanide. 
[26a-26c] 

 

Figure 3: an example ETOF response of the electrochemical reduction (red cureve) and oxidation 

(blue curve) of ferricyanide. Figure taken from H673, Paul, D., Meier, M., Moldenhauer, J. 

Rapid and Direct Determination of Diffusion Coefficients Using Microelectrode Arrays. J. 

Electrochem. Soc. 2016, 163, (8), H672-H678.  

 This time is then compared to the distance traveled, typically micrometers, to calculate the 

diffusion coefficient of the generated species (Equation 23).  

(23)    √     

The distance travelled (d) between the generator and the edge of the collector is proportional to 

the geometric constant for the electrode array (K) multiplied by the square root of the diffusion 

coefficient for the species (D) times the time of maximum collection tmc. Since this is the 

measurement of response only it is a concentration independent technique making it a useful tool 

for experimental comparison. Typical diffusion coefficient measurements fall within 10% of 

published values with a 95% confidence interval.
 [26a-26c]
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III. Synthesis of Catalyst and Conjugate Salts  

[Tetrabutylammonium][dioxovanadium(V) 2,6-pyridinedicarboxylate]  

[n-Bu4N]OH  - A 0.4 M solution was prepared by diluting 100 mL of [n-Bu4N]OH (40% wt. in 

H2O, Aldrich) to 1 liter with deionized water. 

[n-Bu4N][VO3]  - Approximately 4.0 g of solid V2O5 (≥98%, Aldrich) was added to 200 mL 

0.4M [n-Bu4N]OH in a 500 mL Erlenmeyer flask and left to stir for approximately 18 hours at 

room temperature. The solution changed from a transparent yellow to nearly colorless liquid with 

a very small amount of colorless solid floating on the top. The solid was vacuum-filtered from 

the solution using a Buchner funnel and the remaining filtrate loaded into a 250mL round bottom 

flask. The filtrate was then dried on a rotary evaporator for 1-2 hours at 46° C until the 

appearance of viscous, light-brown oil. The round bottom flask was placed on a Schlenk line and 

left overnight to evaporate to complete dryness, yielding a crude, white solid. The flask was then 

back-filled with nitrogen, sealed, and transferred to a glovebox under a nitrogen atmosphere for 

extraction of the air-sensitive intermediate. 14 g of solid [n-Bu4N][VO3] were obtained (93% 

yield, 15.089 g Theoretical Yield). 
[8]

 

[n-Bu4N][(pyridine-2,6-dicarboxylate)VO2]  - Approximately 1 gram [n-Bu4N][VO3], 0.5 g 2,6-

pyridine dicarboxylic acid (99%, Aldrich), and 3g 4 Å molecular sieves were placed in 15-20mL 

dichloromethane (99.8%, anhydrous, Sigma-Aldrich) and left to stir for ~45 minutes. The sieves 

and insoluble solid were vacuum-filtered using a fritted funnel and flask. The remaining filtrate 

was then pumped down to ~4 mL, layered with diethyl ether (dried, Sigma-Aldrich), and placed 

in the glovebox freezer for crystallization. After seven days the mother liquor was decanted and 
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the wet crystals dried under vacuum. The crystalline solid was then transferred to a clean vial, 

triturated with fresh diethyl ether, dried again under vacuum and then weighed. Typical final 

product yield: 0.88-0.92 g. 
[1] 

A 
1
HNMR spectrum can be found in the Appendix. 

[n-Bu4N][dichloroacetate] 

Synthesis adapted from procedures found in references 21 and 22. Equimolar amounts of 

dichloroacetic acid (3.198 mL, 1.563 g/mL, 128.94 g/mol., 5.0 g, 0.0388 mol., ≥ 99%, Sigma-

Aldrich) and 0.4M [n-Bu4N]OH (0.097 L, 0.0388 mol.) were placed in a round bottom flask and 

left to stir for approximately 90 minutes. Once fully dissolved the clear solution was gravity 

filtered through filter paper to remove any traces of unreacted solid and the mixing stir bar. The 

filtered solution was then dried on a rotovap yielding an oily white solid. The oil was then 

allowed to crystallize overnight at -5.0 °C. The white solid was placed on the rotovap a second 

time and dried yielding a white solid. 11.82 g of white solid were produced. The white solid was 

then moved to a nitrogen atmosphere and dissolved in 15 mL dichloromethane and further dried 

under 5 g of 4Å sieves. The solution was then filtered via glass frit and dried under vacuum 

resulting in 7.58 g of light brown crystalline solid; a yield of 53% (14.35 g theoretical yield). A 

1
HNMR spectrum can be found in the Appendix. 
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[n-Bu4N][trichloroacetate] 

Synthesis adapted from procedures found in references 21 and 22. Equimolar amounts of 

dichloroacetic acid (7.857 mL, 1.62 g/mL, 163.9 g/mol., 4.85 g, 0.0296 mol., ≥ 99.9%, Sigma-

Aldrich) and 0.4M [n-Bu4N]OH (0.074 L, 0.0296 mol., Aldrich) were placed in a round bottom 

flask and left to stir for approximately 90 minutes. Once fully dissolved the clear solution was 

gravity filtered through filter paper to remove any traces of unreacted solid and the mixing stir 

bar. The filtered solution was then dried on a rotovap yielding an oily white solid. The oil was 

then allowed to crystallize overnight at -5.0 °C. The white solid was placed on the rotovap a 

second time and dried yielding a white solid. 5.962 g of white solid were produced. Several 

grams were lost due to bump loss and were not recovered. The white solid was then moved to a 

nitrogen atmosphere and dissolved in 15 mL dichloromethane and further dried under 5 g of 4Å 

sieves. The DCM solution was then filtered via glass frit and dried under vacuum resulting in 2.8 

g of white crystalline solid; a yield of 23% (12.03 g theoretical yield). A 
1
HNMR spectrum can 

be found in the Appendix. 

[n-Bu4N][3,4-dichlorbenzoate] 

Synthesis adapted from procedures found in references 21 and 22. Equimolar amounts of 3,4-

dichorobenzoic acid (191.012 g/mol., 2.3972 g, 0.01255 mol., 99%, Aldrich) and 0.4M [n-

Bu4N]OH (0.097 L, 0.0128 mol., Aldrich) were placed in a round bottom flask and left to stir for 

approximately 90 minues. Once fully dissolved the clear solution was gravity filtered through 

filter paper to remove any traces of unreacted solid and the mixing stir bar. The filtered solution 

was then dried on a rotovap yielding viscous rose colored oil. The oil was then allowed to 
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crystallize overnight at room temperature. 4.244 g of pink solid was produced for a final yield of 

78% (5.453 g theoretical yield). A 
1
HNMR spectrum can be found in the Appendix. 

[n-Bu4N][2,4-dichlorbenzoate] 

Synthesis adapted from procedures found in references 21 and 22. Equimolar amounts of 2,4-

dichorobenzoic acid (191.012 g/mol., 2.559 g, 0.0134 mol.,  98%, Aldrich) and 0.4M [n-

Bu4N]OH (0.034 L, 0.0136 mol.,  Aldrich) were placed in a round bottom flask and left to stir 

for approximately 90 minutes. Once fully dissolved the clear solution was gravity filtered 

through filter paper to remove any traces of unreacted solid and the mixing stir bar. The filtered 

solution was then dried on a rotovap yielding viscous yellow colored oil. The oil was then 

allowed to crystallize overnight at room temperature. 5.16 g of white solid was produced for a 

final yield of 89% (5.795 g theoretical yield). A 
1
HNMR spectrum can be found in the Appendix. 

[n-Bu4N][benzoate] 

Synthesis adapted from procedures found in references 21 and 22. Equimolar amounts of benzoic 

acid (122.12 g/mol., 2.4424 g, 0.02 mol., ≥ 99.5%, Sigma-Aldrich) and 0.4M [n-Bu4N]OH 

(0.050 L, 0.02 mol.,  Aldrich) were placed in a round bottom flask and left to stir for 

approximately 60 minutes. Once fully dissolved the clear solution was gravity filtered through 

filter paper to remove any traces of unreacted solid and the mixing stir bar. The filtered solution 

was then dried on a rotovap yielding milky viscous white colored oil. The flask of oil was placed 

in the freezer at -5 °C until thickened and then dried on the rotovap again at 70 °C. The oil was 

then poured into a scintillation vial and allowed to crystallize at room temperature. 6.04 g of 
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white solid was produced for a final yield of 83% (7.272 g theoretical yield). A 
1
HNMR 

spectrum can be found in the Appendix. 

[2,6-dichloroanilinium][PF6] 

Synthesis adapted from procedures found in references 18 and 20. 11.91g of 2,6-dichloroaniline 

(≥ 98%, Aldrich) was purified through sublimation at 150-175 °C to yield a fine white crystalline 

solid. 10.95 g pure product was recovered (92% yield). 4.11g (1062.02 g/mol., 0.0254 mol.) of 

pure product 22 mL diethyl ether (anhydrous, Sigma Aldrich) were then placed in a round 

bottom flask and stirred for approximately 5 minutes to ensure that all of the aniline species was 

dissolved. 3.9 mL (1.651 g/mL, 145.97 g/mol., 6.428 g, 0.0242 mol.) hexafluorophosphoric acid 

(55 wt% H2O, Aldrich) was then added drop-wise to the mixture (to avoid boiling of the ether) 

and then allowed to stir for 30 minutes. A white crystalline solid immediately precipitated. The 

diethyl ether was removed via rotovap giving approximately 6 g of product (80% yield, 7.45 g 

theoretical yield). 
[18a-18f]

 A 
1
HNMR spectrum can be found in the Appendix. 

[4-cyanoanilinium][PF6] 

Synthesis adapted from procedures found in references 18 and 20. 6.462 g (118.14 g/mol., 

0.0547 mol.) of 4-aminobenzonitrile (98%, Sigma Aldrich) and 30 mL diethyl ether (anhydrous, 

Sigma Aldrich) were placed in a round bottom flask and stirred for approximately 15 minutes to 

ensure that all of the aniline species was dissolved. 7.64 mL (1.651 g/mL, 145.97 g/mol., 7.585 

g, 0.05196 mol.) hexafluorophosphoric acid (55 wt% H2O, Aldrich) was then added drop-wise to 

the mixture to avoid boiling of the ether and then allowed to stir for 90 minutes. A white 

crystalline solid immediately precipitated. The diethyl ether was removed via rotovap giving 
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approximately 6 g of white and yellow mixed product (50% yield, 12.651 g theoretical yield). 

The yellow impurity was then removed by dissolving the crude material in 100 mL acetonitrile 

(anhydrous, Sigma Aldrich) and reclaiming with diethyl ether (anhydrous, Sigma Aldrich). This 

process was repeated on additional time and the product dried via rotovap to yield a white 

crystalline solid. (5.9 g, 98% yield). 
[18]

 A 
1
HNMR spectrum can be found in the Appendix. 

IV. Electrochemistry Components 

Electrochemical Setup 

All electrochemistry performed occurs in a nitrogen-rich atmosphere using a custom, 4-probe 

electrochemical cell. The cell consists of a fritted counter compartment containing a platinum 

wire/mesh counter electrode (99.9999%, Alfa Aesar), non-aqueous silver/silver-cryptand 

reference electrode (BASi), and a working electrode. The working electrodes include gold, 

platinum, and glassy carbon materials either of the standard post variety (BASi) or quick change 

(rotating disk electrode, RDE) button variety (Pine Instruments). The RDE was controlled using 

a Metrohm Autolab RRDE. Data collection was done using a CH Instruments CH760E general 

purpose galvanostat and packaged CHI760E computer software.  All data was processed using 

OriginPro and Microsoft Excel software. All experiments utilize a tetrabutylammonium 

hexafluorophosphate (TBAPF6) electrolyte (electrochemical grade, ≥99%, Fluka) and 

acetonitrile solvent (anhydrous, 99.8%, Sigma-Aldrich) unless stated otherwise.  

Silver Cryptand Reference Electrode  

The silver/silver-cryptand reference was assembled using a kit purchased from Bioanalytical 

Systems, Inc. The electrode containment contains a silver wire, an acetonitrile solution of 2,2,2-
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crytand and silver nitrate, and sealed by porous CoralPor tip. The electrode solution consists of 

20 mL acetonitrile (anhydrous, Sigma Aldrich) 0.3025 g 2,2,2-crytand (376.49 g/mol., 2.13 

mmol., 0.1 M, Sigma), and 0.0336 g silver nitrate (169.88 g/mol., 0.198 mmol., 0.01 M, BASi). 

This solution also serves as the electrode storage solution. The electrode and solution were kept 

in a sealed glass jar wrapped in aluminum foil to prevent unwanted exposure to light. This 

reference is typically found at +0.5V versus Fc
+
/Fc and allows for accurate measurement of 

reference potentials without leakage or short-term potential drift. 
[19]

  

Electrode Treatment 

Each electrode used underwent a pre-polish sonication in acetone, water, and then isopropyl 

alcohol for approximately 30-60 seconds each to remove any residues left from previous 

experimentation. Each electrode then underwent a polish with fine alumina slurries of 1.0 μm, 

0.3 μm, and 0.05 μm. For each size of alumina slurry all electrodes underwent three hundred 

figure-eight pattern strokes and then were rinsed before undergoing sonication in type-II 

deionized water for approximately 90 seconds to remove residual alumina. The electrodes are 

then sonicated for 90 seconds in isopropyl alcohol to assist in the removal of water.  Finally, 

each electrode was left to dry atop an oven for approximately 25-30 minutes before experimental 

use. 

Electrochemistry Buffers 

All buffer systems consist of equal concentrations of acid or base and its conjugate salt. Buffer, 

pKa value 
[18] [20] [22]

, acid component, and base component are as follows: 
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2,6-dichloroanilinium: pKa 5.0, tetrabutylammonium 2,6-dichloroanilium (synthesized), 2,6-

dichloroaniline. 

4-cyanoanilinium: pKa 7.0, tetrabutylammonium 4-cyanoanilinium (synthesized), 4-

aminiobenzonitrile. 

Tosic acid: pKa 8.6, p-toluenesulfonic acid monohydrate (≥98.5%, Sigma-Aldrich), 

tetraethylammonium p-toluenesulfonate (97%, Aldrich). 

Trichloroacetic: pKa 10.7, trichloroacetic acid, trichloroacetate hexafluorophosphate 

(synthesized). 

Dichloroacetic: pKa 15.1, dichloroacetic acid, dichloroacetate hexafluorophosphate 

(synthesized).  

V. NMR Instrumentation 

All NMR analysis was performed using a 400 Mhz Bruker NMR and processed with the aid of 

Bruker Topspin computer software.  

VI. Results and Discussion 

It has been shown that the dioxovanadium species undergoes a two electron reduction during the 

catalytic deoxydehydration of glycols. 
[1]

 There are two questions at hand concerning this fact. 

First, will the same 2e
-
 transfer occur if induced electrochemically in the presence of a proton 

donor/acceptor species? Second, does that reduction and oxidation involve a step-wise or 



22 

 

concerted proton electron transfer? These two questions are assessed through voltammetry, 

Kouteck-Levich, Tafel, and DPV analysis. 

Cyclic Voltammetry  

The electrochemical characterization begins with the evaluation of several CV backgrounds to 

review the activity of the individual species being used: the TBAPF6 electrolyte, the TBADVP 

catalyst, and the 2,6-pyridinedicarboxylic acid (dipic ligand) used to synthesize the vanadium 

species. The results of all three experiments can be seen in Figure 4a below. It can be clearly 

seen that the TBAPF6 electrolyte is inert. The dipic ligand on the other hand shows two clear 

reduction waves; one at -1.66 V and another at -1.9 V. These events are assumed to be an 

irreversible two electron transfer to the pyridine ring, the first being a short-lived radical. After 

the potential switches, an oxidation wave appears at -1.975 V and is assumed to be the removal 

of the electron that was added at the -1.9 V. The vanadium species shows similar activity at 

cathodic potentials with a few exceptions. First, the reduction of the pyridine ring occurs at the 

same onset potential and shows two oxidation waves. Second, hydrogen evolution reaction 

(HER) appears at -2.35 V. Finally, reversible one electron transfers to the vanadium center are 

present at -1.4 V and at +0.38 V which are in close agreement with literature values. 
[24] 

The 

reduction wave at -0.97 V is unknown but assumed to be associated with the oxo- groups 

attached to the vanadium center as typical oxygen reduction occurs at approximately the same 

onset potential in acetonitrile. 
[6]

 The oxidation waves present from -0.6 V to +0.1 V are assumed 

to be associated with the dipic ligand as they are seen in both complex and ligand CVs. The 

oxidation wave at +0.87 V is also unknown but is assumed to be associated with the metal since 

it is absent in the dipic CV.  
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Figure 4a: Background CVs of vanadium catalyst, electrolyte, and dipic ligand in acetonitrile on 

a glassy carbon electrode at a scan rate of 0.1 V/sec. 

The next step was to introduce the vanadium catalyst to a proton source. Tosic acid was 

arbitrarily chosen since it is a good proton source and buffered easily with its conjugate 

tetraethylammonium salt. Using a complex:buffer ratio of 1:3 led to the best experimental 

responses. The resulting CV with species backgrounds overlaid can be seen below in Figure 4b.  
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Figure 4b: CVs of vanadium complex (blue) in the presence of tosic acid buffer with 

corresponding backgrounds (green and maroon) on a glassy carbon electrodeat scan rates of 0.1 

V/s. All CVs performed in an acetonitrile solution containing 0.05 M TBAPF6.  

The reversible one electron transfers to the vanadium center remain present at -1.4 V and at 

+0.38 V but have heavily augmented currents due to the presence of tosic buffer. The oxidation 

wave at +0.319 V is additive with the oxidation of the tosic buffer system which explains the 

difference between peak oxidation and reduction currents. The peak current for the two electron 

reduction of pyridine at -1.88 V is not as prevalent due to an overlap with the reduction of tosic 

acid. Under these conditions the reduction appears to have visibly separated into two redox 

waves. The HER redox couple has larger currents as expected due to the presence of free protons 

in solution. It must be noted that upon introduction to free protons a color change from clear to 

transparent yellow was observed. This is an indication that the vanadium species is protonated; 

similar to what has been seen in literature. 
[25]
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To evaluate the effect of proton concentration on the redox couple at 0.38 V the buffer ratios 

were varied to apply an effective pH change. An electrochemical cell containing 35 mL 

acetonitrile, 0.05 M TBAPF6, 0.001 M TBADVP, and 0.003 M tosic acid buffer was assembled 

for the analysis. CV sets were performed with Au, Pt, and gC post working electrodes at scan 

rates of 0.1, 1.0, and 10.0 volts per second. A potential window of 0.4 to 1.15 V, sample interval 

of 0.001 volts, and a sensitivity of 1.0 E -05 A/V were utilized. At a buffered pH of 8.6 a 

reversible couple appears at approximately 0.3 V (Figure 5a). A plot of peak current density for 

the redox couple versus the root of the scan rate (Figure 5b) results in a linear relationship; 

indicating that the redox is diffusion based and not a surface event.  

Between each set of experiments the buffer pH was varied by 0.2 pH units through a pH range of 

6.8 to 10.0 with respect to the tosic acid pKa of 8.6 in acetonitrile 
[18]

. This variation in pH was 

used to construct a short window pourbaix diagram to evaluate the number of electrons 

transferred in an electrochemical manner through the redox event in question. Below are the CVs 

and corresponding pourbaix diagrams for all three electrode substrates (Figure sets 6, 7, and 8). 

When the linear portion of each pourbaix diagram (pH 7.5 to pH 9.0) is taken a slope of 

approximately 44 mV per decade is observed (Figure 9). This value corresponds to a 3 proton, 4 

electron transfer to the vanadium species.   
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Figure 5a: CV of 0.001 M TBADVP, 0.003 M Tosic acid buffer (pH 8.6), 0.05 M TBAPF6, in 

acetonitrile on a glassy carbon post electrode scanned at 0.1 V/sec.  

 

 

Figure 5b: Plot of peak current density versus the square root of scan rate.  

Scan 
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Figure 6a: CV set for the effect of pH on potential on a glassy carbon post electrode.   

 

 

Figure 6b: Truncated CV set for the effect of pH on potential on a glassy carbon post electrode. 

Scan 

Scan 
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Figure 6c: Pourbaix diagram for effect of pH on potential on a glassy carbon post electrode. 

 

 

Figure 7a: Truncated CV set for the effect of pH on potential on a platinum post electrode. 

Scan 
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Figure 7b: Pourbaix diagram for the effect of pH on potential on a platinum post electrode 

 

 

Figure 8a: Truncated CV set for the effect of pH on potential on a gold post electrode. 

Scan 
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Figure 8b: Pourbaix diagram for the effect of pH on potential on a gold post electrode. 

 

 

Figure 9: Averaged E1/2 values versus pH for each electrode substrate. 
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To further observe the behavior of the vanadium species the proton environment (subsequently 

the pH of the electrochemical experiments) must be changed further. This was achieved by 

selecting buffer systems with pKa values both above and below that of the tosic acid system 

(pKa 8.6). A literature search turned up numerous possibilities but in the end single protic 

acid/base systems were chosen based upon their availability and ease of synthesis. 
[18a-18f] 

Once 

decided upon, the chosen systems were initially probed by checking the electrochemical activity 

of each acid/base species in the absence of its conjugate salt. Figure 10 shows an overlay of CVs 

for species possessing pKa values between 10 and 20 in the absence of buffer using a glassy 

carbon post electrode. From this data it was determined that only a pKa of 10.7 (trichloroacetic 

acid) showed an appreciable redox response in the absence of buffer and was set as the upper-

limit of the pKa studies.  

 

Figure 10: CVs for chosen acids in acetonitrile on a glassy carbon post electrode at scan rates of 

0.1 V/sec. Conditions: 0.05 M TBAPF6, 0.001 M TBADVP, and 0.003 M acid species. 

Scan 
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The lower limit for pKa was dependent on the ability to synthesize conjugate acid salts and the 

short list of suitable buffers available to use. After assessing these limitations, conjugate salts 

were chosen and then synthesis attempted. Only two were successful 2,6-dichloroanilinium and 

4-cyanoanilinium. Going forward electrochemistry was performed using a stationary quick 

change glassy carbon RDE out of convenience. Figure 11 is the comparison of the four selected 

buffer systems. The known, reversible one electron reduction at -1.5 V of the vanadium center 

stays constant.
 [24] 

The catalytic current for this redox event appears to increase as the buffer 

system is shifted toward neutral conditions and then decrease as the system goes into a more 

acidic regime (5.0 pH) although it maintains its reversibility. 

 

Figure 11: Full window CV comparison for chosen buffer systems on a glassy carbon electrode 

at 0.1 V/s. 0.001 M TBADVP, 0.003 M Total Buffer, 0.05 M TBAPF6. 

The redox couple seen at +0.38 V appears to become irreversible and unexpectedly more 

cathodic as the buffer system becomes more acidic. A closer look at the 4-cyanoanilinium/4-

tosic acid 
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aminobenzonitrile buffer system turned up something fascinating. At faster scan rates (Figure 

12a) the CVs show two oxidation waves. When the electrolyte and buffer background is 

subtracted the events become a little clearer (Figure 12b). The first wave at 0.13 V appears to be 

coupled to the reduction wave seen at 0.046 V implying reversible electron transfer.  The second 

oxidation wave at 0.379 V shows a large diffusion event that lacks a well-defined reduction on 

return scan. 

 

Figure 12a: 4-cyanoanilinium/4-aminobenzonitrile system at different scan rates. 0.05 M 

TBAPF6, 0.001 M TBADVP, 0.003 M Buffer, in acetonitrile on a glassy carbon electrode. 
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Figure 12b: Buffer and electrolyte background (red), 4-cyanoanilinium system as observed 

(green), system with background subtracted (blue).   

Differential Pulse Voltammetry 

To get a better idea of the reversibility of electron transfer to the vanadium complex, DPV 

techniques were implemented for each buffer system. This enables to detection of electron 

transfers that may not have been detected (observed) using cyclic voltammetry. Parameters used 

to obtain all DPVs are as follows: Initial E -2.0 V to -1.65 V, Final E 1.25 V to 2.0 V, Increment 

E 0.002 V, Pulse Amplitude 0.050 V, Pulse Width 0.5 seconds, Sample Width 0.167 seconds, 

Pulse Period 1 second, Quiet Time 2 seconds, and Sensitivity of 0.001 A/V. The first buffer 

system to be approached in this manner was the tosic acid system. Background DPVs were 

obtained for the electrolyte, electrolyte with buffer, and electrolyte with vanadium species 

(Figure 13a). DPVs of the entire electrochemical system were then obtained in triplicate at a pH 

of 8.6 (Figure 13b). 0.05 M TBAPF6, 0.003 M tosic buffer, and 0.001 M TBADVP. The 

experiment was performed in acetonitrile on a glassy carbon RDE.  



35 

 

 

Figure 13a: Background DPVs for each component of the pH 8.6 tosic buffer experiment. 

 

While background DPVs show activity for each component of the experiment they are all at very 

low current densities (5 e-05 A/cm
2
) which is near the baseline for an “all in” experimental DPV. 

Despite this fact the activity for the TBADVP is clearly seen: two reversible electron transfers 

associated with the pyridine ligand (-2.0 V and -1.9 V), a reversible one electron transfer to the 

metal ligand at -1.5V, and a reversible one electron transfer at 0.25 V. The same characteristic 

peaks can be seen in the experimental DPVs with a couple additional signals due to electrolyte 

(the shoulder at 0.03 V) and buffer (the peak seen at approximately -0.6 V). The peak potentials 

are shifted approximately 40 mV cathodically which is a typical occurrence. 
[6]

 



36 

 

 

Figure 13b: DPVs for the pH 8.6 tosic buffer experiment. 

 

The next route was to change the buffer system to see if any experimental change could be 

observed; the 4-cyanoanilinium buffer system was chosen first.  Experiments were performed in 

acetonitrile and consisted of 0.05 M TBAPF6, 0.001 M TBADVP, and 0.003 M buffer. A 

stationary glassy carbon RDE electrode was used for all analysis. A background comparison of 

each component can be seen in Figure 14a. The 4-cyanoanilinium/4-aminobenzonitrile buffer 

system is heavily active at potentials over 0.6 V. Two large reversible signals appear in the 

background but well outside the activity window for TBADVP. There is a shoulder band in the 

buffer activity window from -0.25 V to 0.5 V that only appears if the potential is allowed to 

surpass 0.6 V. The DPV scans for the entire system (Figure 14b) shows the transfer of multiple 

electrons to the vanadium species in the potential window of 0.0 V to 0.6 V. The one electron 

transfer to the vanadium center appears at -1.5 V and the electron transfer to the pyridine ring 

appears as a broad wave at approximately -1.8 V. 
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Figure 14a: DPV backgrounds of 0.05 M TBAPF6, 0.001 M TBADVP, and 0.003 M 4-cyano 

buffer in acetonitrile on a glassy carbon electrode. 

 

 

Figure 14b: DPVs in triplicate of 0.05 M TBAPF6, 0.001 M TBADVP, 0.003 M 4-cyano buffer 

in acetonitrile on a glassy carbon electrode.  
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The trichloroacetic acid and 2,6-dichloroanilinium buffer systems did not yield substantial DPV 

results. The signals of both buffer systems dwarfed any TBADVP activity that could be detected.   

Koutecky-Levich Analysis 

To assess the number of electrons transferred electrochemically KL analysis was implemented 

during most experiments. RDE rotation sets were 250 RPM-2000 RPM by steps of 250 RPM 

(and occasionally 2250 RPM). To prove working knowledge and equipment technique the 

determination of the diffusion coefficient for ferrocene was first tackled. For this analysis 

published techniques were followed. 
[28][29] 

The area used for all calculations was the 

predetermined 0.19635 cm
2
. The kinetic viscosity used in all determinations was the same as 

literature values for the solvent and electrolyte used (2.46 cm
2
/sec). 

[28][30] 
After several runs the 

diffusion coefficient was calculated to be 2.23E-05 cm
2
/sec, which is well within agreement of 

literature values. 
[6]

 KL analysis then moved to that of TBADVP. All figures are on glassy 

carbon unless stated otherwise. All KL analysis was performed for each buffer system although 

the electron transfer behavior does not agree between systems. The primary buffer system used 

to evaluate electron transfer at 0.25 V was determined to be tosic acid as it is the only system to 

have exhibited dependence on donor/acceptor ratio. The kinetic viscosity used for calculations is 

2.15 cm
2
/sec, a value determined through the use of a glass capillary viscometer. A primary 

example of consistency can be seen in Figure 15a in which CA was used to achieve diffusion 

limiting current in a tosic system of pH 8.6 at 0.4 V. This shows a slope that represents a one 

electron transfer to the vanadium species with an average molecular diffusion of 3.36E-06 

cm
2
/sec. The intercepts show an average kinetic current density that equals 1.98 mA/cm

2
. A 

similar comparison and conclusion can be seen in Figure 15b in which a KL analysis is 
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performed using LSV current densities at the same 0.4 V potential. The slopes achieved 

represent a one electron transfer to the vanadium species with an average molecular diffusion 

equaling 3.95E-06 cm
2
/sec. The resulting intercepts yield an average kinetic current density of 

0.83 mA/cm
2
. The LSV-KL being half the concentration it is expected that the resulting kinetic 

currents are half of those seen in the CA-KL analysis. The two calculated diffusion coefficient 

values imply a molecular weight around the vicinity of 481.0 g/mol. 
[31] 

Such a weight points to 

the electrochemical generation of a TBADVP dimer through the overall transfer of two 

electrons.   

 

Figure 15a: CA-KL of 0.05 M TBAPF6, 0.002 M TBADVP, and 0.006 M tosic buffer (pH 8.6). 
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Figure 15a: LSV-KL of 0.05 M TBAPF6, 0.001 M TBADVP, and 0.003 M tosic buffer (pH 

8.6). 

 

Tafel Analysis 

Tafel analysis was performed on the TBADVP/tosic buffer system at pH 8.6. The initial three 

trials are plots shown in Figure 16a (uncorrected) and 16b (corrected cathodic branches only) are 

individual diffusion limited current density values taken at 2000 RPM. The potential was stepped 

+5 mV and held for twenty-five seconds for each current determination. The calculated transfer 

coefficient (α) values were calculated to be an average of 0.25 (assuming a one electron transfer). 

This value is representative of a species that favors oxidation. The cathodic branch tafel slopes 

correspond to a value of approximately 250 mV. The kinetic current density values (j0) for round 

1, 2, 3 are 0.088, 0.067, and 0.083 mA/cm
2
 respectively. This gives an average j0 value of 0.078 

mA/cm
2
 which results in an electron transfer rate constant (k

0
) of 4.03E-04 cm/sec, which is 

quite slow. These Tafel results hint at a more complicated multi-step electron transfer that is rate-
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limited by the initial electron transfer to the vanadium species and a second (possibly faster) 

transfer in which a dimer is formed.  

 

Figure 16a: Tafel Plots (uncorrected to η).  

 

 

Figure 16b: Tafel plots (Corrected to η) 0.05 M  TBAPF6, 0.002 M TBADVP, 0.006 M tosic 

buffer (pH 8.6) on a glassy carbon electrode. All points taken at 2k RPM.  
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ETOF Analysis 

To verify diffusion coefficient calculations, the TBADVP-tosic buffer system was evaluated 

using electrochemical time of flight analysis. The experiment was conducted on a platinum 

electrode array in an acetonitrile solution containing 0.066 M TBAPF6, 0.015 M total tosic 

buffer, and 0.005 M TBADVP. The reduced species was generated at 0.4 V and subsequently 

oxidized at a potential of 0.8 V. An iteration total of n=10 was used resulting in a diffusion 

coefficient value of 3.9E-06 ±0.2 vcm
2
/sec. This value is in close agreement and confirms 

previously calculated values. 

VII. Conclusion 

The TBADVP species shows robust electrochemical activity. It undergoes multiple reversible 

electron transfers to the metal center. While the transfer at -1.5 V is clearly a reversible one 

electron transfer the redox event at +0.25 V is much more complicated and hard to define. CV 

studies indicate that the transfer is reversible, albeit slow, that is diffusion controlled. A change 

in proton concentration results in a Pourbaix slope that indicates multiple electrons and protons 

are involved, specifically four electrons and three protons. DPV studies, while difficult to 

quantify, tell a different story: a reversible one electron transfer. KL studies, backed up by an 

ETOF verified diffusion coefficient, have the same one electron assessment. The final technique 

utilized, Tafel analysis, sheds some light on the situation. The cathodic transfer coefficient of 

0.25 and Tafel slope of 240+ mV imply one of two things either the species is oxidized easily or 

the electron transfer is two events. CV scans show a single reversible electron transfer at slow 

scan rates but a second oxidative wave comes out at faster scan rates. This separation of one 

oxidation into two points (possibly two separate events). It is believed that these two events are a 
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rate-limited electron transfer followed by the transfer of a second electron and the creation of a 

dimer that slowly diffuses away from the electrode surface. Both the heterogeneous electron 

transfer rate constant and diffusion coefficient point to such a species that possesses a molecular 

weight of approximately 481 g/mol. More evidence to a likely dimer is that the species starts out 

protonated while in acidic solution, making a good starting point for dimerization to occur. 

While this mechanism is completely up in the air, a postulated structure with a molecular weight 

similar to that predicted is shown in Figure 17.  

 

Figure 17: Possible structure for the electrochemically generated TBADVP dimer.  

While not out the realm of possibility, this structure could be confirmed through chemical 

reduction and recrystallization. In vitro IR-analysis of the disappearance of metal-oxygen signals 

would also be an appropriate means of detection. Further study of TBADVP, such as bulk 

electrolysis, will be necessary to assess its ability to catalytically perform DODH in the absence 

of sacrificial reductants. 
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Appendix 

 

1
HNMR Spectrum of Tetrabutylammonium dioxovanadiumdipicolinate (TBADVP)  
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1
HNMR Spectrum of Dichloroacetic Acid 
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1
HNMR Spectrum of [n-Bu4N][dichloroacetate]  
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1
HNMR Spectrum of Trichloroacetic Acid 
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1
HNMR Spectrum of [n-Bu4N][trichloroacetate]  
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1
HNMR Spectrum of 3,4-dichlorobenzoic Acid 
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1
HNMR Spectrum of [n-Bu4N][3,4-dichlorbenzoate]  
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1
HNMR Spectrum of 2,4-dichlorobenzoic Acid 
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1
HNMR Spectrum of [n-Bu4N][2,4-dichlorbenzoate]  
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1
HNMR Spectrum of Benzoic Acid 
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1
HNMR Spectrum of [n-Bu4N][benzoate]  
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1
HNMR Spectrum of 2,6-dichloroaniline (sublimed) 

 



59 

 

 

1
HNMR Spectrum of [TBA][2,6-dichloroanilinium] (sublimed) 
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1
HNMR Spectrum of 4-aminobenzonitrile 

 



61 

 

       

         

[4-cyanoanilinium][PF6] 


