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ABSTRACT 

This work tested the hypothesis that oxidation of methionine 388 in thrombomodulin is 

higher in cigarette smokers, and thus a likely contributor towards the hypercoagulable state in 

smokers. Thrombomodulin, a protein cofactor found on endothelial cell surfaces, regulates the 

activity of thrombin. Thrombin bound to thrombomodulin no longer converts fibrinogen to 

fibrin, but instead activates Protein C which, in turn, stops the coagulation cascade by 

inactivation of clotting factors. The oxidation of methionine 388 of thrombomodulin has been 

shown in vitro to dramatically decrease the anticoagulant cofactor activity of thrombomodulin. 

The blood of cigarette smokers is more prone to clot than that of non-smokers, a major factor in 

their premature deaths from cardiovascular disease. Cigarette smoke consists of many oxidizing 

species that impose oxidative stress on the body. These species include organic radicals and 

hydrogen peroxide, which can oxidize methionine. The fact that smokers are in a 

hypercoagulable state has been established, however the molecular origins of such a state have 

not been elucidated. Techniques were developed to isolate thrombomodulin cleared from the 

blood stream in urine, proteolytically digest it, and identify using mass spectrometry the peptide 

containing methionine 388 in both its oxidized and reduced forms.  In many cases the oxidized 

version of the peptide was below the limits of detection in non-smokers and the reduced version 

was not detected in smokers. The intensity of these peaks in the mass spectra do not allow 

calculation of absolute percentages of oxidation because of differences in proton affinity of the 

two forms, but there is a very statistically significant difference (P=0.002 by Mann-Whitney 

Rank Sum test) in the apparent median reduced to oxidized ratios of >2.043 for non-smokers and 

of <0.308 for smokers.  The much greater degree of oxidation of thrombomodulin methionine 

388 in smokers should be examined for its contribution to smoking morbidity and mortality. 



 
 

 

This dissertation is approved for recommendation  

to the Graduate Council. 

 

 

Dissertation Director: 

 

 

 

 

_______________________________________ 

Dr. Wesley E. Stites 

 

 

Dissertation Committee: 

 

 

 

 

_______________________________________ 

Dr. Paul Adams 

 

 

 

 

_______________________________________ 

Dr. Dan Davis 

 

 

 

 

_______________________________________ 

Dr. Charles Rosenkrans, Jr. 

 

 

 

 

_______________________________________ 

Dr. Julie Stenken 

 

 

 

 

 

 



 
 

 

DISSERTATION DUPLICATION RELEASE 

I hereby authorize the University of Arkansas Libraries to duplicate this dissertation when 

needed for research and/or scholarship. 

 

 

 

 

 

Agreed __________________________________________ 

 

Samrat Bar Singh Thapa 

 

 

 

 

Refused __________________________________________ 

 

Samrat Bar Singh Thapa 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 



 
 

ACKNOWLEDGMENTS 

 
 

Firstly, I would like to express my deepest gratitude to my research advisor Dr. Wesley 

E. Stites for taking me under his wings. Thank you for advising and guiding me, providing me 

the room to grow as a scientist, and mostly for your patience and great attitude. Looking back, if 

I had to redo things, I can’t think of a scenario where I would not choose you as my advisor. I 

look forward to work with you on our elevator to Everest project.  

My dear parents, Santa Bar Singh Thapa and Tara Thapa, I could have never achieved 

this without your support, guidance and love. Thank you for sending me to great institutions of 

learning since I was child. Thanks to my father’s and mother’s side of family back in Nepal for 

your love all these years.   

Thanks to members of my committee for providing me with valuable feedback and 

suggestions. Thanks as well to Jack Lay and Jennifer Gidden for all their help with mass 

spectrometry.  

Thanks to my lab mates Jeffery Froude, Christopher Saunders, and Esra Seyran for your 

friendship and assistance. Thank you Nepali community of North West Arkansas, I will always 

cherish our friendship and the great times we shared. The last few years in Fayetteville I have 

met many other individuals, both within and outside the Chemistry and Biochemistry 

department, who made my life more enjoyable. There are far too many to mention all their 

names, but you know who you are.  Thank you all. 

 

 

 

 



 
 

DEDICATION 

This dissertation is dedicated to Dhruba Bar Singh Thapa LL.M. (McGill University, Montreal, 

Canada), Professor of International Law (Tribhuvan University, Kathmandu, Nepal), Visiting 

Scholar (Max Planck Institute, Heidelberg, Germany), Secretary of Ministry of Law and Justice 

(Government of Nepal), Dean of Institute of Law (Tribhuvan University, Kathmandu, Nepal), 

Election Commissioner (Government of Nepal), and my late grandfather. 

 

 

 

 

 

I wonder, if you were still around.... 

 

 

 

 

 
 

 

 

 

 

 

 



 
 

TABLE OF CONTENTS 

               Page  

ACKNOWLEDGMENTS               

DEDICATION                

LIST of TABLES                  

LIST of FIGURES        

CHAPTER 1: Does the oxidation of methionine 388 in thrombomodulin contribute 

towards the hypercoagulable state in cigarette smokers?  

General Introduction               1 

                

CHAPTER 2: Methods explored for quantification of methionine 388 oxidation in 

 human urinary thrombomodulin  

Introduction                22 

 Materials and Methods: Purification of thrombomodulin           24 

 Materials and Methods: Digestion of thrombomodulin         29 

 Materials and Methods: Quantification of methionine oxidation         33 

 Results and Discussion: Purification of thrombomodulin           39 

 Results and Discussion: Digestion of thrombomodulin         47 

 Results and Discussion: Quantification of methionine oxidation         56 

 Conclusion                68 

                 

 

 

 

 



 
 

 

                                                                                                                                                   Page 

CHAPTER 3: Is methionine 388 of thrombomodulin more oxidized in cigarette 

smokers? 

Introduction                74  

Materials and Methods               79 

Results and Discussion             83 

Possible Future Work            104 

Conclusion               109 

 

REFERENCES                    110 

APPENDIX                                      126 

 

 

  

 

 

 

 

 

 

 

 

 

 

 



 
 

LIST OF TABLES 

                        Page 

Table 3.1: Ratio of the reduced and oxidized peptides in different concentrations               88  

of synthetic peptide, acquired using a Waters Acquity UPLC. 

Table 3.2: The average MALDI spectra intensities of reduced and oxidized synthetic              96 

peptide in four different solutions. 

Table 3.3: MALDI spectra values of oxidized and reduced peptides in non smokers.              101 

Table 3.4: MALDI spectra values of oxidized and reduced peptides in cigarette smokers.      102 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

LIST OF FIGURES 

             Page 

Figure 1.1: Alignment of region of interest of thrombomodulin amino acid sequences           14 

from different mammals.  

Figure 1.2: Schematic diagram of TMEGF45.            15 

Figure 1.3: Structure of Methionine and Methionine Sulfoxide.          16 

 

Figure 2.1: Chemical structure of 1, 5-IAEDANS.            34 

Figure 2.2 A: Final purification of thrombomodulin by reverse phase HPLC.        44 

Figure 2.2 B: Final purification of thrombomodulin by reverse phase HPLC.        45 

Figure 2.3 A: HPLC chromatogram of purified thrombomodulin prior to chymotrypsin        49 

digestion. 

Figure 2.3 B: HPLC chromatogram of purified thrombomodulin prior to chymotrypsin        50 

digestion. 

Figure 2.4: Alkylation of cysteine using 1, 5-IAEDANS.           57 

Figure 2.5: Acquity UPLC chromatogram of IAEDANS labeled synthetic          59 

APIPHEPHRCQMF and APIPHEPHRCQMoxF. 

Figure 2.6: UPLC FLR chromatogram of IAEDANS labeled synthetic peptide                        60 

APIPHEPHRCQMoxF and APIPHEPHRCQMF. 

Figure 2.7: Acquity UPLC chromatogram of the commercial peptide mixture.        62 

Figure 2.8: UPLC chromatogram of chymotrypsin digested urinary thrombomodulin              64 

of 26 year old non smoker donor.   

 



 
 

 

             Page 

Figure 2.9: Overlay of UPLC chromatograms.            65 

Figure 2.10: MALDI-TOF spectra of chymotrypsin digested thrombomodulin purified           66 

 from urine 

 

Figure 3.1: MALDI-TOF mass spectra of chymotrypsin digested thrombomodulin                   85 

purified from urine. 

Figure 3.2: Acquity UPLC chromatogram of 25 µL injection of 1 mM synthetic peptide.        87 

Figure 3.3: Acquity UPLC chromatogram of the commercial peptide mixture.                         90 

Figure 3.4: UPLC chromatogram of chymotrypsin digested urinary thrombomodulin              92 

of a 26 year old Caucasian male non smoker. 

Figure 3.5: Overlay of UPLC chromatograms.             93 

Figure 3.6: MALDI-TOF spectra of chymotrypsin digested urinary thrombomodulin             100 

 of 25 year old caucasian male never smoker. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

 

 

 



1 
 

 

 

 

 

 

 

 

 

CHAPTER 1: DOES THE OXIDATION OF METHIONINE 388 IN THROMBOMODULIN    
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General introduction 

Proteins are susceptible to oxidation and there are several consequences of that.  

Oxidation can lead to modification of side chain properties, dimerization of the protein, 

conformational changes, unfolding of the protein or loss of activity, cleavage of the protein 

backbone [1], effects on expression and gene regulation, and affect cell signaling [2]. Studies 

have shown higher levels of oxidized proteins are found with aging, oxidative stress, also with 

diabetes, atherosclerosis and neurodegenerative diseases [3-6].  Amino acids liable to oxidation 

[7, 8] are cysteine, methionine, tryptophan, phenylalanine, tyrosine, histidine, arginine, lysine, 

proline, and threonine.  Cysteine and methionine stand out as the two amino acids that are most 

easily oxidized [3]. Cysteine can easily be converted to disulfide and methionine to methionine 

sulfoxide.  

Aerobic organisms rely on oxygen for the production of ATP during oxidative 

phosphorylation. Oxygen is the ultimate electron acceptor during this biosynthesis, and water is 

one of the byproducts of this reaction. However, transfer of single electron to a molecule of 

oxygen results in production of superoxide anion, a highly reactive radical. The protonated 

superoxide radical can react with another molecule of superoxide anion, which produces 

hydrogen peroxide. Superoxide radical falls under a category of compounds called reactive 

oxygen species (ROS). Physiological levels of ROS are important for cellular functions like gene 

expressions, signal transduction, apoptosis and immune response [9]. However, high 

concentrations of ROS can damage biomolecules like DNA, lipids and proteins.  Superoxide 

dismutase, an enzyme present in all aerobic organisms, along with catalase, a heme protein, 

converts the superoxide radical and hydrogen peroxide into water and molecular oxygen and act 
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as just one of the defense mechanisms against oxidative damage.  However, oxidation of proteins 

still occurs, often at methionine. 

Methionine is a non polar amino acid; along with cysteine they are the only two amino 

acids that contain sulfur.  The sulfur atom exists as a thioether linkage in methionine.  In the 

presence of reactive oxygen species (ROS), methionine is converted to methionine sulfoxide. In 

contrast to methionine, methionine sulfoxide’s side chain is polar. The conversion of important 

methionine residues to sulfoxide within a protein, can lead alteration of structure and 

functionality [10]. The sulfoxide form of methionine can be converted back to methionine by 

naturally occurring methionine sulfoxide reductases (MSRs) [4, 11, 12].  It has been shown in 

Alzheimer’s disease [13, 14] and aging, the physiological concentrations of MSRs are low, and 

they are unable to reduce all sulfoxides.  This has led to speculation that oxidative stress and 

methionine oxidation contribute to the development of Alzheimer’s disease [15]. 

Why might oxidation of a protein lead to such far-reaching consequences as 

Alzheimer’s?  Proteins are ubiquitous in all biological processes, and they play crucial roles in 

them. They are associated with enzyme catalysis, immune system, nerve impulses, motion, 

mechanical support, transport and storage among other processes that occur within a living 

organism. The remarkable range of activities proteins perform arises from their ability to fold 

into unique three-dimensional structures. This allows them to interact with wide range of 

molecules. Some of the noteworthy features of the native protein are: Polypeptides can fold in 

such a fashion, that distant amino acid residues on the polypeptide chain can be close in 

proximity to each other. Globular proteins are compact; they exclude almost all water from the 

inner hydrophobic core. The native protein is stabilized in the tertiary state by the following 

types of interactions.  There are hydrophobic interactions, where hydrophobic side chains are 
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brought into close proximity to each other. Electrostatic interactions occur between the ionic 

groups. Hydrogen bonding, where hydrogen bonds are formed between the side chains and also 

between the polypeptide backbones. Covalent bonds, disulfide bonds formed between the 2 

cysteine residues. If any of these interactions are disrupted, it could alter the structure of the 

protein, and consequently alters the functionality of the protein, which could lead to 

complications, or worse lead to development of diseases. Sickle cell anemia demonstrates how a 

substitution of single amino acid can have drastic effect on the functionality of a protein. In 

sickle cell anemia, body produces a variant of hemoglobin, where sixth position of the β-globin 

gene codes for valine, instead of glutamic acid [16].  Could high levels of oxidation of a single 

side chain in the right protein have similarly profound consequences? 

Cardiovascular diseases are the number one cause of death in the United States. The 

American Heart Association estimates that one out of three Americans die of cardiovascular 

death, and 80,700,000 people in the United States have one or more forms of cardiovascular 

disease [17, 18]. National Health and Nutrition Examination Survey (NHANES) reports 7.2% of 

Americans to have some type of cardiovascular diseases. This number comprised of 3.2% with 

coronary heart disease, 2.7% with stroke, and 2.0% with congestive heart failure, also many 

patients reported more than 1 condition [19].  

Annually 437,900 people are killed by diseases caused by smoking, and 35% of those 

deaths are cardiovascular related [20]. Cigarette smoke is the major cause of pulmonary 

emphysema [21], bronchitis, myocardial infarction, and stroke as well as lung cancer. Four 

million people die every year from tobacco smoking related diseases worldwide. It has been 

estimated that 2 billion people use tobacco products [22].  Approximately 64.5 million people in 
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the USA are active smokers, between 1995-1999 the estimate of deaths that resulted from 

smoking and exposure to secondhand smoke was approximately 440,000 annually [23].  

Cigarette smoke and oxidation 

Cells and tissues are vulnerable to oxidative damage; however due to the proximity and 

function of the lung epithelial tissues, the components of the cigarette smoke makes them more 

vulnerable to oxidative damage. The epithelial cells of the lungs can be damaged by cigarette 

smoke from direct interaction of its components [24, 25].  

Cigarette smoke is a complex mixture of over 4700 chemical compounds, including high 

concentrations of reactive oxygen species (ROS) and reactive nitrogen species (RNS) [26-30].  

Cigarette smoke contains epoxides, peroxides, nitric oxide (NO'), nitrogen dioxide, 

peroxynitrates, semiquinone, hydroxyl radical, and many other free radicals [29]. Besides the 

toxic components of cigarette smoke, lungs of cigarette smokers are further burdened by 

secondary oxidative stress triggered by ROS and RNS from cigarette smoke. It has been 

demonstrated that increased ROS and RNS levels leads to activation of transcription factors, 

signal transduction and gene expression of proinflammatory mediators which generates 

inflammation response. There are increased numbers of neutrophils and activated macrophages 

in the lungs of cigarette smokers [29, 30], and they are known to release large amount of 

hypochlorite, hydrogen peroxide and superoxide [31]. The inflammatory response and release of 

ROS under normal conditions is important in immune response. However, when the 

inflammation becomes chronic, the neutrophils and macrophages are perpetually activated, this 

creates severe oxidative damage to the cells and tissues of cigarette smokers [32], and that may 

predispose smokers to lung diseases.     
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Emphysema and cigarette smoke 

Pulmonary emphysema (PE) is disease characterized by progressive and irreversible 

destruction of the lung parenchyma; it is a cause for lot of morbidity and mortality. It belongs to 

class of disease clinically classified as a chronic obstructive pulmonary disorder (COPD) [33-

35].  In PE the air spaces distal to the terminal bronchiole are enlarged and alveolar walls are 

destroyed [36], as a result the lungs loses their elastic recoil force, which is required to drive the 

air out of the lungs. The volume airflow in the lungs is severely reduced due to loss of lung 

elasticity. PE can be subdivided into two types. Centrilobular emphysema, which is associated 

with cigarette smoke, is where there is dilation or destruction of bronchioles. Panlobular 

emphysema, which results from the deficiency of α1-antitrypsin [36], is characterized by dilation 

and destruction of acinus. Studies have shown that approximately 40% of heavy smokers 

develop PE over the span of four decades [37].         

α1-Antitrypsin is a 52-kDa glycoprotein that protects the lungs from elastic damage. It is 

the major antiprotease of alveolar region; it provides protease/antiprotease balance. Neutrophil 

elastase (NE), a serine protease, is capable of destroying structural components of the alveolar 

wall of the lungs, α1-Antitrypsin protects the lungs from NE.  In people with hereditary 

deficiency of serum antitrypsin have low concentration of α1-Antitrypsin in the blood, despite 

normal production by the liver. Due to low concentration of the enzyme in the blood, the 

required amount of α1-Antitrypsin is unable to reach the lungs, resulting in unopposed activity of 

protease, leading to systematic destruction of the lungs. People with this hereditary deficiency 

usually develop PE.    
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The relationship between smoking and PE has been established by many studies. In one 

study, elastase inhibitory activity between smokers and non smokers were compared based on 

the lung fluid obtained from the donors, the cigarette smokers had two fold reduction in their anti 

elastase ability compared to the non smokers [38].  The methionine residues are oxidized to 

methionine sulfoxides in α1-Antitrypsin  found in broncho alveolar lavage (BAL) fluid [39]. In 

order to understand the molecular basis of lowered anti elastase activity in cigarette smokers 

Taggard et al. studied the effect of hydrogen peroxide, found in cigarette smoke, on the 

methionine residues found in α1-Antitrypsin [40].  They found that the methionine residues were 

susceptible to oxidation. There are 9 methionine residues in α1-Antitrypsin, however only 2 

residues, methionine 351 and 358, are most susceptible to oxidation. Also, the oxidation of either 

Met351 or Met358 resulted in inactivation of α1-Antitrypsin. They produced recombinant α1-

Antitrypsins, where one or both met residues were substituted with valine. The recombinant 

proteins with single substitutions were not easily inactivated as the wild types, and the double 

mutant was resistant to oxidative damage.  They established that the oxidation of the 2 

methionine residues takes away the anti elastase capacity of α1-Antitrypsin. Combination of 

increased protease activity and proteases inactivation by oxidants have also been associated in 

diseases like cystic fibrosis, bronchopulmonary dysplasia, hyperoxia-induced lung damage, adult 

respiratory distress syndrome[40].  

Hemostasis and thrombomodulin 

The physiological process that stops bleeding, by formation of hemostatic plug, at the site 

of an injury while maintaining normal blood flow elsewhere in the circulation is referred as 

hemostasis [41]. The hemostasis can be divided into primary, secondary hemostasis and 

fibrinolysis [42]. Primary hemostasis is the primary response of the platelets towards an 
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endothelial injury.  In primary hemostasis, plugging of the injury results when platelets are 

activated and they bind to the site of injury and with each other. Platelets circulate in the blood 

for approximately 10 days and their concentration ranges from 100 to 400 million per milliliter 

of blood [43]. Under normal physiological conditions they do not aggregate with each other nor 

do they adhere to the surfaces. In the event of injury, several platelet receptors in presence of 

their corresponding ligands activate the platelets, which results in platelets aggregation and 

adherence to the injured site.     

 Secondary hemostasis consists of the generation of thrombin and insoluble fibrin, and 

subsequent deposition of fibrin into and around the platelets on the site of injury. The fibrin 

forms a crosslinked mesh that strengthens and stabilizes the clot [41].  The initiation of 

secondary hemostasis involves coagulation cascade of serine proteases that results in cleavage of 

soluble fibrinogen by thrombin. The presence of anticoagulants like thrombomodulin and 

heparan sulfate proteoglycans prevents the activation of serine proteins cascade in normal blood 

vessels. In the event of injury to the blood vessels, the blood gets exposed to tissue factor, which 

activates factor VIIa [44], which subsequently activates factor X. The factor X can also be 

activated by factor IXa in presence of factor VIIIa.  Prothrombin is activated by factor Xa in the 

presence of cofactor factor Va resulting in generation of thrombin [45]. Thrombin cleaves 

fibrinogen to produce insoluble fibrin. The coagulation cascade or waterfall model of proteolytic 

reactions was proposed in 1960s, and they are based on two complementary blood clotting 

models [46, 47]. This cascade has received general acceptance. The steps in the coagulation 

cascade look like Y-shape, with intrinsic and extrinsic pathway converging to form a common 

pathway at factor Xa. The coagulation cascade has been shown to be insufficient to predict 

bleeding tendency in vivo [48, 49]. In the past decade a cell based model of coagulation has been 
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proposed for the secondary hemostasis [48, 49]. This model consists of three phases: initiation, 

amplification, and propagation. During initiation there is production of prothrombinase on the 

cell surface the cells that express tissue factor, followed by production of low amounts of 

thrombin. During the amplification step thrombin activates the platelets and cofactors V and VII. 

In the propagation step, other platelets in the bloodstream are recruited on the site of injury, 

which leads to generation of large amounts of thrombin, which amounts production of fibrin to 

stabilize the platelet.   

The third facet of hemostasis is fibrinolysis. The coagulant tendency of the primary and 

the secondary hemostasis is counteracted by fibrinolysis. Plasminogen circulating in the blood is 

cleaved to produce plasmin by endothelial bound tissue-type plasminogen activator. Plasmin 

subsequently degrades fibrin and destroys the fibrin-platelet plug [50, 51].   

Blood coagulation is a delicate balance between anti thrombotic and pro thrombotic 

components, so the fibrin deposition and removal is tightly regulated, and defects in any of these 

components can either lead to thrombosis or excessive bleeding. Central to hemostasis is 

thrombin, a serine protease, which has created significant research interest, owing its ubiquity in 

hemostasis. As previously discussed, the end product of coagulation cascade is production of 

active thrombin, which catalyses the formation of fibrin from fibrinogen. Thrombin regulates the 

coagulation cascade through feedbacks. Besides its role in secondary hemostasis, thrombin also 

plays a vital role in primary hemostasis as an activator of platelets. Also, thrombin has long 

reaching effects on inflammation, cell survival, and cell proliferation [52]. It is very important to 

regulate the production of thrombin to maintain homeostasis.    



10 
 

Thrombomodulin, as the name indicates, modulates the activity of thrombin. Thrombin 

when bound to thrombomodulin activates protein C. Activated protein C proteolytically destroys 

coagulation factors Va and VIIIa and suppresses further thrombin formation. The binding of 

thrombin to thrombomodulin also activates the carboxypeptidase thrombin-activatable 

fibrinolysis inhibitor (TAFI) [53]. The activation of protein C and TAFI inhibits coagulation and 

fibrinolysis, making thrombomodulin key protein for the regulation of coagulation and 

fibrinolysis. Thrombomodulin is a protein cofactor that is found on the endothelial cell surfaces, 

at an approximate density of 50,000-100,000 molecules per cell [54], and it modulates the 

activity of thrombin [55, 56]. It was discovered by Esmon and Owen in the 1960’s. The path to 

their discovery started with the evidence of circulating thrombin activated protein, activated 

protein C, and its precursor. Those findings led them to realize the necessity of a cofactor that 

activates thrombin mediated activation of protein C.  In rats, it is found predominantly in the 

lungs when compared with kidney and liver [57].  Thrombomodulin, purified from human lung 

endothelial membrane preparations, had an apparent MW of 78,000 Da [55]. Encoded by an 

intronless gene, the mature single-chain glycoprotein in the human is 557 amino acids long. 

Structurally it has 5 distinct domains. It has a short cytoplasmic tail at the C-terminus, which 

anchors thrombomodulin. There are several potential sites for phosphorylation sites in the C 

terminus, in spite of that this region is not well conserved across different species [58]. The 

deletion of this tail in mice does not have any effect in development, survival, coagulation and 

inflammation [58]. There is a well conserved membrane-spanning domain, followed by a 

serine/threonine-rich domain with four potential sites for O-linked glycosylation. The 

serine/threonine region supports the attachment of chondroitin sulfate, which has 20 repeating 

disaccharide units and a terminal trisaccharide unit [59]. Adjacent to the serine/threonine-rich 
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region is a domain that has 6 epidermal growth factors (EGF)-like repeats, this domain is the best 

characterized. This region shows disulfide bonding pattern that is seen in a typical protein-

protein interactions. The activation of protein kinase C and mitogen-activated protein kinase 

(MAPK) is linked to this domain for promotion of cell division on cultured vascular smooth 

muscle cells fibroblasts. The data shows that this domain is associated with atherogenesis and 

proliferation, although the clinical significance has not been established [60, 61]. The first two 

EGF- like repeats, which are furthest from the serine/threonine rich region, their function 

remains unknown. EGF-like repeats 3, 4, 5, and 6 [62-64] have been studied in detail by several 

groups and are essential for activation of Protein C by thrombin-thrombomodulin complex. The 

cofactor function for thrombomodulin requires the last three of six tandemly repeated EGF-like 

domains (EGF 4, 5, and 6), as well as a Ser/Thr-rich domain between EGF-like domain 6 and the 

transmembrane domain. The residues 1 through 222 comprises N-terminal region of 

thrombomodulin, which constitutes almost half of the extracellular portion of the protein. This 

region has two potential sites for N-linked glycosylation and it also shares similarities with C-

type lectins. This lectin like domain has a compact hydrophobic core, two alpha-helices, two beta 

sheets and two disulfide bonds based on computer models [65]. The lectin like domain of 

thrombomodulin lacks carbohydrate recoginition domain as well as Ca
2+

 binding site unlike 

other C-type lectins. The residues 155 through 222 of thrombomodulin might be associated with 

plasma membrane and this region is hydrophobic [66].  The lectin like domain is suggested to be 

globular and furthest from the plasma membrane making it in the prime position to interact with 

other molecules, this results are based on electron microscopy and computer models [67]. This 

region plays major role in cell adhesion, inflammation and cell proliferation but it lacks anti 

coagulant function.  
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Thrombin binds to thrombomodulin to activate Protein C which initiates the cascade that 

stops clotting, by inactivation of clotting factors Va and VIIIa [68]. The thrombin- 

thrombomodulin complex activates protein C 1,000-fold more when compared to activation of 

protein C by thrombin alone.  Deficiency in protein C or activated protein C is well established 

as increasing the risk of thrombosis [69]. Low levels of thrombomodulin are a well established 

risk factor for heart disease [70, 71]. Without a doubt, thrombomodulin plays a key role in 

slowing or stopping clotting. It has been shown that thrombomodulin in complex with thrombin 

activates thrombin activatable fibrinolysis inhibitor (TAFI) by 1250 fold [72-75].  Activated 

TAFI is  a plasma procarboxypeptidase B that stabilizes clot by down regulating fibrinolysis 

[76]. Activated TAFI catalyzes the removal of lysine residues from the C-terminal of fibrin [77, 

78], resulting in elimination of plasminogen binding site of fibrin, subsequently plasminogen is 

unable to activate and prevention of fibrinolysis [79, 80] .  This function of thrombomodulin 

might seem contradictory to its pro-fibrinolytic function previously discussed, but this highlights 

that thrombomodulin is a key regulator in coagulation, since it controls the formation and 

breakdown of clots.  

Thrombomodulin is anchored on the luminal surface of the endothelium and as 

previously indicated, thrombomodulin lacking the cytoplasmic domain appeared normal [58]. 

Thrombomodulin undergoes endocytosis and degradation, and a significant amount of it is 

cleaved off and it is found in blood. Thrombomodulin found in blood are heterogeneous in size, 

due to differences in glycosylation [81, 82]. Four different fragments have been isolated from 

blood and seven fragments ranging in size from 12 to 100kDa after reduction of disulfides [83] . 

The concentration of thrombomodulin in serum and plasma are reported to be between 3 to 300 

ng/mL [84]. In diseases like diabetes and lupus high levels of thrombomodulin in plasma have 
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been reported [85], this is believed to be a good marker for endothelial damage [53].  Studies 

have correlated high plasma thrombomodulin levels to be associated with a low risk of 

developing coronary heart disease [53]. 

As previously mentioned, thrombomodulin has 6 epidermal growth factor (EGF) like 

domains. Generally, EGF-like domains have 40 amino acid residues, and six cysteine resides that 

form three disulfide bonds [86]. Individual EGF like domains were synthesized and only the fifth 

domain bound to thrombin by itself [87]. The fourth and the fifth EGF like domains consists of 

81 amino acids, and the fifth domain contains most of the residues that bind to thrombin. The 

EGF like domain 4 and 5 (TMEGF45) bind to thrombin more tightly than EGF 5 alone. 

TMEGF45 is the smallest fragment of thrombomodulin that when bound to thrombin can 

activate protein C. Addition of fourth and the fifth EGF-like domains separately, do not activate 

protein C, suggesting they work together in activation of protein C [88].  The kcat values for 

protein C activation by the thrombin-TMEGF45 complex, calculated by binding kinetic studies 

and cofactor activity assays, shows TMEGF45 has full cofactor activity. The EGF like domain 

six increases the Km value of thrombomodulin for thrombin by factor of ten, despite not altering 

the Kcat value of  thrombin-thrombomodulin complex for protein C [89].   The EGF 4 and 5 of 

thrombomodulin is linked together by three residues, and one of them is methionine, which is the 

388
th

 residue in thrombomodulin (Met388) [90]. Figure 1.1 is thrombomodulin residues from all 

mammals sequenced as of the date of writing; Met388 is conserved in all the sequences. 
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Figure 1.1: Alignment of region of interest of thrombomodulin amino acid sequences from 

different mammals. Methionine 388 is conserved in all these organisms.  

 

 The mutation of Met388 to any other residues, except leucine, decreases the 

anticoagulant cofactor activity of thrombomodulin [91]. More importantly, there is 76-90% loss 

of activity when Met388 is oxidized using H2O2 [92].  There are four other methionines in 

thrombomodulin, but their oxidation does not disrupt the ability to activate protein C [92]. The 

Kd of thrombomodulin thrombin interaction increases to 10.9 from 4.4nM, when a full length 

thrombomodulin had oxidized Met388 [93]. TMEGF45 with oxidized Met388 has 3.5 fold lower 

Kcat, and 3.3 fold higher Km values when compared to wild type TMEGF45 based on protein C 

activation assays [94]. It must also be mentioned that clot stabilizing activation of TAFI by 

thrombin-thrombomodulin complex is unaffected by the oxidation of Met388 [95]. Since the 

activation of clot stabilizing activated TAFI, a procoagulant pathway, is unaffected by Met388 

oxidation, while activation of protein C, an anticoagulant pathway, is suppressed by oxidation of 

LNQTSYLCVCAEGFAPIPHEPHRCQMFCNQTACPADCDPNTQASCECPEG  Homo sapiens Human

LNQTSYLCVCAEGFAPIPHEPHRCQMFCNQTACPADCDPNTRGNCECPDG  Saimiri sciureus Squirrel monkey 

LNQTSYLCVCAEGFAPIPHEPHRCQMFCNQTACPADCDPNTQASCECPEG  Pan troglodytes Chimpanzee 

LNQTSYLCVCAEGFAPIPHEPHRCQMFCNQTACPADCDPNTQASCECPEG  Pan paniscus Bonobo

LNQTSYLCVCAEGFAPIPHQPHRCQMFCNQTACPADCDPNTQANCECPEG  Nomascus leucogenys Nor. white-cheeked gibbon 

LNQTSYLCVCAEGFAPIPHEPHRCQMFCNQTACPADCDPNTRGNCECPDG  Macaca mulatta Rhesus monkey

LNQTSYLCVCAEGFAPIPHEPHRCQMFCNQTACPADCDPNTRGNCECPDG  Papio Anubis Olive Baboon

LGQTSYRCICAEGFAPVPQQPHRCQMFCNQTACPADCDPNTKSNCECPEG  Callithrix jacchus Common marmoset

LGQTSYRCICAEGFAPVPQEPHRCQMFCNQTACPADCDPNTKSNCECPEG  Saimiri boliviensis Black-capped squirrel monkey

LNQTSYLCVCAEGFAPIPHEPHRCQMFCNQTACPADCDPNTRGNCECPDG  Macaca fascicularis Crab-eating macaque

VGQTDYHCICAEGFAPSPHDPHRCQMFCNQTACPADCDPNSPTSCQCPEG  Ailuropoda melanoleuca Giant Panda

LGHTGYRCVCAEGFAPNPLDPHRCQMFCNETACPADCDPNSLDSCQCPDG  Loxodonta africana African bush elephant

LNQTSYLCVCAEGFAPVPHEPHRCQMFCNQTACPAVCDSNTQANCECPEG  Pongo abelii Sumatran orangutan

VSQTDYRCICAEGFAPVPHDPHRCQMFCNQTACPADCDPNSPTSCQCPEG  Canis familiaris Dog

VGPTNYTCICAEGFVPKPQEPSRCQMFCNQTSCPADCDPNTPADCKCPEG Otolemur garnettii Greater galago

VGQTDYRCICAEGFAPSPHDPQRCLMFCNQTACPADCDPYSPTSCQCPEG Mustela putorius furo Ferret

VGQNDYRCICAEGFVPSPQAPHRCQMFCNQTTCPADCDPNNPDSCQCPDG Felis catus Cat

VGRTGYRCVCAEGFAPVPHAPHRCQMFCNQTSCPADCDPNKQDSCQCPDG  Sus scrofa Pig

VGRSEHKCICAEGFAPVPGAPHKCQMFCNQTSCPADCDPHYPTICRCPEG  Bos taurus Cow

VSPTDYRCICAPGFAPKPDEPHKCEMFCNETSCPADCDPNSPTVCECPEG  Mus musculus Mouse

VNSTHYNCICAEGFAPKLDDPDRCEMFCNETSCPADCDPNSPSFCQCPEG  Rattus norvegicus Rat

VSPTEYICICAEGFAPKPGEPHRCEMFCNESSCPADCDPNTPDFCHCPEG Cricetulus griseus Chinese hamster

LGQ-NYRCICAEGFAPVPDEPHRCQMFCNQTTCPADCDPNYPSTCLCPEG  Oryctolagus cuniculus Rabbit

VGRSEHQCICAEGFAPVPGAPHKCRMFCNQTSCPADCDPHNPAVCWCPEG Ovis aries Sheep

VGHTNYQCVCAEGFVPNAHDPHRCQMFCNTTSCPADCDPNNPATCQCPEG Pteropus alecto Black flying fox

VGTDKYECICAEGFIPNPKEPYRCQMFCNQTECPADCDPNNLNICYCPEG Heterocephalus glaber Naked mole rat

VGRSEHKCICAEGFAPVPGAPHKCRMFCNQTSCPADCDPHYPTICRCPEG Bos grunniens mutus Yak

VGQTDYRCICAEGFAPSLQDPHRCRMFCNQTSCPADCDPNTPGSCQCPEG Tupaia chinensis Tree shrew

LKET*YRCICAEGFAPVPHAQHKCQMFCNQTECPADCDPNYPDICRCPDG Myotis davidii David’s myotis

VGQNDYRCICAEGFAPIPQDPDRCQMFCNQTACPADCDPNNPSNCQCPEG  Equus caballus Horse
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Met388. Although effects oxidation of Met388 on activation of protein C and TAFI were 

demonstrated in vitro, it seems that oxidation of Met388 leads hemostasis towards pro 

coagulation, and higher rates of formation of clots when significant amounts of Met388 is 

oxidized.         

 

Figure 1.2: Schematic diagram of TMEGF45. It consists of 81 amino acids. The fifth domain 

contains most of the residues that bind to thrombin. TMEGF45 is the smallest fragment of 

thrombomodulin that when bound to thrombin can activate protein C. 
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The structures TMEGF45 and TMEGF456-thrombin complex have been investigated 

using NMR to understand the interactions of Met388 [94] in thrombomodulin. Met388 plays at 

least two structural roles. First, Met388 is important part of the fifth domain’s hydrophobic 

region, and there is disruption of the hydrophobic interactions when the methionine is oxidized 

to methionine sulfoxide. Second, the interaction between the fourth and the fifth domain of 

thrombomodulin is mediated by methionine, and conversion to methionine sulfoxide has 

potential to disrupt the orientation of the two domains. There is a significant structural difference 

between oxidized and non oxidized forms in the fifth domain of thrombomodulin. Phenylalanine 

376, located in the fourth domain, packs against the hydrophobic methionine but occupies a 

substantially different position when the hydrophilic sulfoxide form is present, making it a key 

part of the conformational switch.  These structural changes bury several residues which interact 

with thrombin in the structure of the thrombomodulin-thrombin complex [96].  

 

 

Figure 1.3: Structure of Methionine and Methionine Sulfoxide 
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Is a decrease in thrombomodulin activity biologically relevant? 

As mentioned previously, in vitro studies have shown that oxidation of Met388 leads to 

decrease of thrombomodulin anticoagulant cofactor activity. But is this decrease in activity 

biologically relevant? Could there be sufficient thrombomodulin in reserve, so that oxidation to 

some of the thrombomodulin is inconsequential? In a study conducted in mices, the intronless 

thrombomodulin gene was deleted to create a model for thrombotic disease [97]. The study 

found complete absence of thrombomodulin resulted in death of embryos at day 9.5, the death 

preceded before the functional cardiovascular system was assembled. In another study in mice, 

glutamate at position 387, which is the part of the linker region connecting EGF like domain four 

and five of thrombomodulin, was replaced with proline [98]. The Met388 is adjacent to 

glutamate 387, which make this study relevant to our hypothesis. This study found there was a 

decrease in the ability of mutant protein to activate protein C. The kcat was 37% of wild-type, Kd 

for thrombin was down by a factor of 45, and Km for protein C was increased by 1.6 fold. The 

amount of thrombomodulin purified, decreased by factor of three, possibly due to decreased 

amount of proteins expression on the cell surface or due to turnover increase. The cell culture 

experiments showed that mutant endothelial cells ability to activate protein C was reduced by 38 

fold when compared to wild type cells. Despite the significant decrease in the activation of 

protein C in the recombinant animals, they were viable and reproduced normally. However, these 

animals showed cardiovascular diseases reminiscent symptoms, they had fibrin deposition and 

small blood clots in lungs, spleen and the heart [99]. The fibrin deposition was tenfold more in 

the recombinant mice when compared with normal mice at three to 6 months of age [100]. 

Myocardial infarction is a common and potentially fatal consequence of thrombosis resulting 

from imbalance of fibrin deposition and removal [101].  In the follow up to the recombinant 
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thrombomodulin study, it was shown that the recombinant mice were in hypercoagulable state 

with a tendency towards sepsis and thrombosis. Such conclusion was inferred from accelerated 

rate of platelet dependent thrombus formation after FeCl3 induced endothelial injury was 

subjected to the carotid artery [102]. 80% of recombinant mice showed full thrombotic occlusion 

when subjected to FeCl3 treatment, alternatively only 27% of the wild type mice showed such 

symptoms [102].   The carotid arteries of recombinant and wild-type mice were permanently 

blocked near carotid bifurcation by ligation. These animals recovered from surgery without any 

complications. The recombinant mice showed severe thrombotic occlusion which spanned over 

the entire length of the artery, whereas wild type mice showed thrombotic occlusion within 1mm 

from the ligation site [102]. When injected with lipopolysaccharide to induce infection, in 

recombinant mice resulted in much higher fatality compared to the wild-type, also in the mutant 

mice fatality occurred much earlier when injected with lipopolysaccharide [102].    

Prolylcarboxypeptidase (PRCP) is an endothelial membrane-bound serine 

carboxypeptidase responsible for activation of bradykinin and angiotensin [103-105]. Both 

proteins regulate the vascular NO to provide protection from thrombosis. PRCP is indirectly 

involved in maintenance of normal blood pressure and reduction of thrombosis risk. PRCP 

polymorphism has been associated with hypertension and inflammation [106]. PRCP gene-

trapped mice are hypertensive and are prone to faster thrombosis [107]. These mice have 

increased in vivo vascular ROS and uncoupled endothelial nitric oxide synthase (eNOS) and 

reduced expression of vascular thrombomodulin in their aorta [108-110]. The hypertensive and 

prothrombotic state in PRCP gene trapped mice was abrogated by antioxidant treatment. This 

shows the hypertensive and prothrombotic state arose from high levels of ROS in PRCP gene 

trapped mice. More importantly, the knockdown of PRCP by silencing RNA (siRNA) in Human 
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umbilical vein endothelial cells (HUVECs) resulted in increased uncoupled eNOS and 90% 

reduction in Protein C activation. The data obtained from thrombomodulin antigen showed no 

significant change (p= 0.30) in expression of thrombomodulin in siRNA knockdowns of PRCP 

HUVECs [107]. The thrombomodulin was expressed but it was unable to activate Protein C. The 

paper speculates that the inactivation of Protein C could caused by ROS inactivation of critical 

methionine for functionality of thrombomodulin. This paper demonstrates that oxidation caused 

by high level of ROS prevents thrombomodulin from activation of Protein C in a semi in vivo 

environment (HUVECs).   

The most common cardiovascular diseases seen in smokers are myocardial infarction and 

stroke. The blood of smoker is more prone to clot than non smoker; they are in hypercoagulable 

state. The narrowing of the arteries resulting from atherosclerosis increases the possibility of 

cardiovascular diseases [111], equally important is the hypercoagulable state seen in smokers. 

The fact that smokers have a hypercoagulable state has been established; however, despite 

intensive research the molecular origin of such a state has not been shown. Free radical mediated 

oxidative damage to the endothelium is considered to be an important factor for the development 

of cardiovascular diseases in smokers. Most of the research in this area has been focused on 

nitric oxide signaling impairment caused by oxidation [112-114]. As in emphysema, where 

oxidation of key methionine residues is the molecular basis of the disease, it is our belief that 

similar oxidation is taking place in the methionine 388 of thrombomodulin in cigarette smokers 

from the oxidation that occurs from smoking. We strongly believe that oxidation of methionine 

388 in thrombomodulin is an important molecular factor leading to cardiovascular diseases in 

smokers.        
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As was mentioned earlier in this chapter, thrombomodulin is predominantly located in the 

lungs [115, 116] making it more vulnerable to oxidants found in cigarette smoke. The oxidants 

secreted by immune cells in the lungs in response to cigarette smoke, makes lung endothelium 

very oxidizing. It must be pointed out that oxidation of methionine in smokers and non smokers 

have not been measured so far, however the plasma levels of thrombomodulin in smokers and 

non smokers have been examined. 

It has been shown that high levels of cigarette smoke exposure causes decrease in 

activated protein C, and there was direct correlation between the levels of protein C with the 

degree of cigarette smoke exposure [117].  This study found that activated protein C circulating 

in the blood were 23.3% lower in smokers than in non smokers. There could be several factors 

that contribute towards the low level of activated protein C in smokers, but based on the 

evidences we have seen so far; it seems very likely that methionine oxidation of thrombomodulin 

causes lower activation of protein C in smokers. Venous thromboembolism has been strongly 

linked to low levels of activated protein C [118, 119], also low levels of activated protein C are 

considered to be a risk factor for ischemic stroke [120]. The comparison of protein C levels in 

smokers and non smokers, and relation between thromboembolism and ischemic stroke study 

strengthens our case for a link between thrombomodulin oxidation and cigarette smoke as an 

important molecular cause of cardiovascular diseases.  
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CHAPTER 2: METHODS EXPLORED FOR QUANTIFICATION OF METHIONINE 388 

OXIDATION IN HUMAN URINARY THROMBOMODULIN 
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Introduction  

In the first chapter we hypothesized that the methionine 388 of thrombomodulin is more 

oxidized in cigarette smokers than in non smokers. We speculated that this could be the key 

molecular mechanism behind the prothrombotic state seen in smokers, hence, an important 

contributor towards the development of cardiovascular disease in smokers. In order to quantify 

the oxidation of methionine in thrombomodulin isolated from urine, a rapid method of isolation 

of the protein is necessary to process a reasonable number of samples and minimize any 

oxidation during processing. In this chapter we will discuss the method we have developed to 

quantitate the methionine 388 oxidation in thrombomodulin, as well as the other methods that 

were attempted. 

Thrombomodulin is critically important for hemostasis [121-124]. As the name implies 

thrombomodulin serves to regulate the activity of thrombin. The thrombomodulin-thrombin 

complex activates protein C, and the activation results in degradation of the factors that promote 

clotting cascade [125]. The activated protein C or deficiency in protein C has been linked to 

increased risk of thrombosis [126-128]. Low levels of thrombomodulin have been established as 

a risk factor for heart diseases [71, 129, 130]. Thrombomodulin is also involved in activation of 

activatable fibrinolysis inhibitor (TAFI). Thrombin when complexed with thrombomodulin 

activates TAFI, activated TAFI stabilizes clot [76]. It is worth reflecting on this point that 

thrombomodulin controls the rate of formation of clot as well as its breakdown.    

Thrombomodulin is anchored on the luminal surface of the endothelium [131, 132]. It is 

found in at much higher levels at the lungs of rats compared in kidney or liver [115, 133, 134]. 

The trans membrane helix and the C-terminal cytoplasmic domain of thrombomodulin anchors 
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the protein and they have not been demonstrated to have direct functional role to hemostasis. 

Mice lacking the cytoplasmic domain appeared normal besides the elevated levels of 

thrombomodulin in the plasma [58, 135]. Significant amounts of thrombomodulin is cleaved off 

from the surface and it circulates in the blood [136, 137]. The thrombomodulin circulating in the 

blood is not homogenous in size partly due to the differences in glycosylation [138, 139] and 

mostly due to variation in proteolysis of thrombomodulin. Four different protein fragments have 

been isolated from plasma, and following reduction of disulfides, seven fragments that range 

from 12 to 100 kDa in size have been isolated [121, 140, 141]. These fragments are able to 

activate protein C when complexed with thrombin, however their activity drops to 16-50% when 

compared to the membrane bound intact thrombomodulin [142]. The literature values for 

thrombomodulin in serum and plasma has been reported to be between 3 to 300 ng/ml [84, 121, 

143, 144]. High concentrations of thrombomodulin are a good indicator of endothelial damage 

and have been reported in many diseases and conditions like lupus, preeclampsia, and diabetes 

[145].      

In vitro oxidation of methionine 388 of thrombomodulin has been shown to lower the 

ability of thrombin-thrombomodulin complex to active protein C [146]. When the methionine 

388 was substituted with leucine, the mutant was insensitive to oxidation and it activated protein 

C [147, 148]. The oxidation of methionine 388 in thrombomodulin has been shown to have no 

effect on TAFI activation by thrombomodulin-thrombin complex [149]. Since oxidation of 

methionine 388 promotes clotting by lowered activation of protein C and has no effect in the clot 

stabilizing by TAFI, methionine 388 oxidation of thrombomodulin in humans should be a factor 

promoting hypercoagulable state. 
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There is good reason to try to determine how much oxidation of this amino acid side 

chain actually occurs in vivo.  The quantification of urinary thrombomodulin methionine 388 

oxidation involves 3 three major steps: 1) purification of thrombomodulin from urine, 2) 

digestion of purified thrombomodulin 3) quantification of methionine oxidation. In this chapter 

we report several methods that were tested to arrive at a protocol to successfully perform the 

aforementioned three major steps.        

Materials and Methods:  

Purification of thrombomodulin    

Detection of thrombomodulin by ELISA 

The concentration of thrombomodulin in various fractions throughout the course of 

purification was followed using a commercially available sandwich enzyme linked 

immunoabsorbant assay (ELISA) kit for thrombomodulin (American Diagnostica, Greenwich, 

CT).   

Urine sample collection 

The University of Arkansas Institutional Review Board approved all experimental 

protocols using human subjects.  Samples of the first morning urinate were collected by 

volunteers in 400 mL centrifuge bottles. Thiodiglycol (5 mL) and 0.5 M EDTA (1 mL, pH 8.0) 

were added to containers before sample collection.  The collected samples were transported 

using an insulated bag containing an ice pack. The samples were generally transported to the 

laboratory within two hours of collection and stored at 4 °C for no longer than 2 hours before 

further processing to minimize the opportunity for oxidation. Typical volumes of the sample 
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from a donor ranged from 200-550 mL. Prior to processing, 1 mL of sample was removed and 

stored in -80°C for determination of the initial thrombomodulin concentration in the sample.   

Jumbosep spin filter 

Jumbosep spin filters were tested for the concentration of the urine sample. The 

Jumbosep centrifugal device (Pall) consists of sample reservoir, membrane filter insert, and the 

filtrate receiver. The sample reservoir has a maximum capacity of 60 mL. The membrane filters 

are constructed from modified polyethersulfone on polyethylene substrate, and they are low 

protein binding. A membrane filter with molecular weight cut off of 30 kd was used for 

purification. 60 mL of urine sample that was previously cooled at 4 °C, and centrifuged in 

Sorvall GS-3 rotor at 4,000 rpm for 30 min at 4 °C was added to the sample reservoir. The 

Jumbosep filter was centrifuged at 3500 rpm in a SH-3000 rotor for 30 minutes at 4 °C. After 

centrifugation for 30 minutes, the filtrate was removed and more urine sample was added to the 

sample reservoir and centrifuged. The previous step was repeated until entire urine sample was 

passed through the filter, and the final volume in the reservoir was 20 mL. Next, buffer exchange 

was performed to adjust pH and the ionic strength of the urine concentrate. 40 mL of 25 mM 

imidazole acetate at pH 5.5 was added to the sample reservoir, and the Jumbosep filter was 

centrifuged for 30 minutes. The buffer exchange was repeated two more times. The buffer 

exchanged concentrated urine sample was collected for downstream processing. Slurry of SP 

Sepharose FF was poured into a 12 mL Econo-Pac gravity-flow polypropylene column in a 

sufficient amount to pack a 1 ml bed volume. The column was equilibrated using 10 mL of 25 

mM imidazole acetate, pH 5.5. Urinary protein concentrate following Jumbosep was passed 

through the column, and the column was washed with 3 mL of 25 mM imidazole acetate, pH 5.5. 

The flow through and the wash from the SP Sepharose column was collected in 50 mL conical 
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flask. Slurry of Q Sepharose FF was poured into a 12 mL Econo-Pac gravity-flow polypropylene 

column in a sufficient amount to pack 2 ml bed volume. This column was equilibrated using 10 

mL of 25 mM imidazole acetate, pH 5.5. The pooled flow through and wash from the SP 

Sepharose was passed through the Q Sepharose column. The column was washed with 8 mL of 

25 mM imidazole acetate, pH 5.5. Thrombomodulin was eluted by passing 8 mL of 0.5 M NaCl, 

20 mM imidazole acetate, pH 5.5 through the column, elutes were collected in one mL fractions.  

The crude thrombomodulin typically eluted in the fourth through sixth fractions.  The fractions 

containing thrombomodulin, tested using ELISA, were flash frozen in liquid nitrogen and 

lyophilized. The dried samples were stored at -20 °C or immediately subjected to HPLC 

purification.    

Tangential flow filtration (TFF) system 

   Labscale Tangential Flow Filtration (TFF) System, manufactured by Millipore, was 

tested for the concentration of the urine sample. The Labscale TFF System has a graduated 

500 mL acrylic reservoir with a retentate backpressure valve, feed and retentate pressure 

indicators, and a stirrer assembly. A Pelicon XL filter with 30 kd MW cutoff Biomax membrane 

was attached to the TFF system. The urine sample cooled at 4 °C, and centrifuged in Sorvall GS-

3 rotor at 4,000 rpm for 30 min at 4 °C was poured into the TFF reservoir. The sample was 

concentrated until the urine sample was concentrated to the final volume of approximately 25 

mL. 400 ml of 25 mM imidazole acetate buffer pH 5.5 was added to the concentrate, and this 

solution was concentrated to 20 mL to exchange the salts from the urine. The buffer exchange 

was repeated until the sample was clear. Slurry of SP Sepharose FF was poured into a 12 mL 

Econo-Pac gravity-flow polypropylene column in a sufficient amount to pack a 1 ml bed volume. 

The column was equilibrated using 10 mL of 25 mM imidazole acetate, pH 5.5. Urinary protein 
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concentrate following Jumbosep was passed through the column, and the column was washed 

with 3 mL of 25 mM imidazole acetate, pH 5.5. The flow through and the wash from the SP 

Sepharose column was collected in 50 mL conical flask. Slurry of Q Sepharose FF was poured 

into a 12 mL Econo-Pac gravity-flow polypropylene column in a sufficient amount to pack 2 ml 

bed volume. This column was equilibrated using 10 mL of 25 mM imidazole acetate, pH 5.5. 

The pooled flow through and wash from the SP Sepharose was passed through the Q Sepharose 

column. The column was washed with 8 mL of 25 mM imidazole acetate, pH 5.5. 

Thrombomodulin was eluted by passing 8 mL of 0.5 M NaCl, 20 mM imidazole acetate, pH 5.5 

through the column, elutes were collected in one mL fractions.  The crude thrombomodulin 

typically eluted in the fourth through sixth fractions.  The fractions containing thrombomodulin, 

tested using ELISA, were flash frozen in liquid nitrogen and lyophilized. The dried samples were 

stored at -20 °C or immediately subjected to HPLC purification.    

Ion exchange chromatography  

The urine sample that was previously cooled at 4 °C was centrifuged in a Sorvall GS-3 

rotor at 4,000 rpm for 30 min at 4°C. The supernate was then filtered using a bottle-top 0.22 µm 

polyethersulfone (PES) membrane filter to remove remaining particulates and cellular debris. 

Sufficient 0.25 M imidazole buffer, pH 6.0 was added to the urine filtrate to bring to a final 

concentration of 25 mM imidazole acetate. Next, the pH of the sample was adjusted to 6.0 by 

addition of 2 M acetic acid or 6 M NaOH depending on the urine sample. Typically after the 

addition of 0.25 M imidazole buffer, the pH of the samples ranged from pH 5.5-6.4. The pH of 

the sample was measured using a pH electrode. A slurry of Q Sepharose FF (GE Healthcare) was 

poured into a 50 mL Bio-Rad Econo column in sufficient amount to pack a 20 ml bed volume. A 

Fluid Metering, Inc (FMI) pump was connected to the Bio-Rad column to pump buffer and urine 
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sample through the Q Sepharose column at a constant speed of 5 mL/min. The column was first 

equilibrated with 60 mL of 25 mM imidazole acetate, pH 6.0. Next, the urine sample was passed 

through the column. The column was washed with 50 mL of 25mM imidazole acetate, pH 6.0 

and then by addition of 20 mL of 25 mM imidazole acetate buffer, pH 6.0, 50 mM NaCl. 

Fractions containing thrombomodulin were eluted by addition of 50 mL of 25 mM imidazole 

acetate buffer, pH 6.0, 0.5 M NaCl. The 0.5 M NaCl fractions were collected in 15 mL conical 

tubes, 5 mL in each tube. The eluent after addition of 25 mL of 25 mM imidazole acetate buffer, 

pH 6.0, 0.5 M NaCl, tested positive for thrombomodulin. A solution of 0.2 M L-methionine 

(Sigma-Aldrich) was added to thrombomodulin containing fractions to a final concentration of 2 

mM methionine. The fractions were transferred to 1.5 mL microcentrifuge tubes, typically 14 

tubes, and flash frozen in liquid nitrogen. The frozen eluents in 1.5 mL microcentrifuge tubes 

were dried under vacuum in a SpeedVac concentrator system using medium heat (45°C).   

Multiple urine samples were collected from each donor since there was usually not 

enough thrombomodulin isolated from a single sample to reliably observe it by mass 

spectrometry.  Typically, three different urine samples were collected from each donor. These 

three samples were usually collected from each donor on consecutive days. Each sample was 

purified by ion exchange the very day it was collected. The thrombomodulin containing fractions 

were flash frozen, and were stored in -20 °C.  The thrombomodulin containing HPLC fractions 

from different samples were pooled before chymotrypsin digestion.    

Reverse phase HPLC purification. 

The dried samples from Jumbosep filtration, TFF, or ion exchange were dissolved in 

minimum volume, generally 5 mL of total volume, of 18.2 megohm deionized water. The 
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dissolved sample was passed through a 25 mm syringe filter with 0.2 µM PES membrane 

(VWR).  The 4 sets of 1.375 mL redissolved sample were injected into reverse phase Waters 

HPLC system. An Atlantis dC18, 5 μm particle, 4.6x250 mm column held at 58 °C and a 2996 

photodiode array detector monitoring 214 nm and 254 nm was used. Upon injection, a gradient 

was run at 1 mL/min from 10 to 29% acetonitrile, 0.1% trifluroacetic acid over 12 minutes, and 

then from 29% to 40% acetonitrile over the next 11 minutes, and then from 40% to 90% 

acetonitrile over the next 25 minutes. The eluents were collected in 1 mL fractions in 1.5 mL 

eppendorf tubes, to which were previously added 100 uL of 200 mM Tris buffer, pH 8.0. The 

thrombomodulin containing fragments, identified by ELISA, eluted at 30 minute. The HPLC 

method for purification of thrombomodulin was developed by Dr. Jeffery Froude, former 

graduate student in Stites Lab. His method was used as a template to develop the current method. 

The two methods differ in their gradient profile, the new method provides a better resolution of 

the thrombomodulin containing peak. The thrombomodulin containing 1.5 mL microfuge tubes 

were flash frozen in liquid nitrogen, dried under vacuum in a SpeedVac concentrator system 

using medium heat.  The HPLC Atlantis column was cleaned using 1.0 mL/min of 90% 

MeCN/0.1% TFA for 10 minutes, followed by equilibration to the starting conditions of 1.0 

mL/min of 10% MeCN/0.1% TFA in preparation for the next injection. 

 

Digestion of thrombomodulin 

Digestion using manufacturer’s protocol 

The thrombomodulin containing fractions from the reverse phase chromatography was 

pooled and dissolved in approximately 100 uL of 1X phosphate buffered saline (PBS; 1.46 mM 
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KH2PO4, 9.9 mM Na2HPO4, 2.68 mM KCl, 137 mM NaCl, pH 7.4). If the solution did not turn 

clear after the addition of the buffer, the sample was spun in a microcentrifuge (Galaxy 14D 

VWR) at 13K RPM for a minute. The supernatants were removed, and precipitates were 

dissolved in 75 µL of 1X phosphate buffered saline. Freshly prepared tris-

carboxyethylphosphine (TCEP) was added to make the final concentration of 50 mM TCEP. 10 

µL of 0.5 M sodium phosphate buffer pH 7.5 added to the sample, prior to addition of 500 units 

of PNGase F (New England Biolabs). The samples were incubated with gentle shaking at 37 °C 

for 2 hours to deglycosylate the sample. The protein was then digested at 30 °C for 8 hours after 

adding 4.1 μg of sequencing grade chymotrypsin (Princeton Separations) dissolved in 50 mM 

Tris-HCl, 1 mM CaCl2, pH 8.0. The chymotrypsin was inactivated by placing the samples in a 

100 °C dry bath for 30 seconds. The samples were immediately flash frozen, and stored in -20 °C 

until further processing.   

Digestion using urea  

The dried thrombomodulin containing HPLC fractions were redissolved in freshly 

prepared 150 µL 45 mM sodium phosphate buffer, 2.5 M urea pH 7.75. Freshly prepared 1 M 

TCEP was added to the final concentration of 10 mM. The sample was incubated in room 

temperature for 10 min. The sample was placed in a 65 °C heat block for 10 min, then 

immediately cooled on ice. 50 units of PNGase F (2 µL) was added to the sample and incubated 

at 37 °C for 4 hours. 5 µg of sequencing grade chymotrypsin was dissolved in 5 µL of 50 mM 

Tris-HCl pH 8.0, 1 mM CaCl2. The dissolved chymotrypsin was added to the sample and 

incubated in room temperature for 4, 12, or 36 hours.  
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   Alternatively, thrombomodulin digestion was conducted using minimal volume of 45 

mM sodium phosphate buffer, 8 M urea pH 7.75. The volume of buffer used ranged from 100 – 

150 µL.  Freshly prepared TCEP was added to the final concentration of 10 mM. The sample 

was placed on 100 °C heat block for 20 min, then immediately cooled on ice. The concentration 

of urea was decreased from 8 M to 4 M by addition of 45 mM sodium phosphate buffer, pH 7.75. 

50 units of PNGase F was added to the sample and incubated at 37°C for 4 hours. 10 µg of 

sequencing grade chymotrypsin was added to the sample and incubated in room temperature for 

24 hours. 

Digestion using acetonitrile 

The dried thrombomodulin containing HPLC fractions were resuspended in 100 µL of 

80% acetonitrile/20% 50 mM Tris-HCl/10 mM CaCl2 pH 8.0 buffer solution. Freshly prepared 

0.1 M TCEP was added to the final concentration of 10 mM. The sample was incubated in room 

temperature for 10 minutes. 50 units of PNGaseF was added and incubated at 37 °C for 1 hour. 5 

µL of fresh sequencing grade chymotrypsin (1µg/µL) was added and incubated for 4- 24 hours. 

This experiment was repeated with acetonitrile concentration at 20, 40, and 50%.  

Digestion using Invitrosol  

The Invitrosol LC/MS Protein Solubilizer (Invitrogen Corporation) was purchased to 

assist in thrombomodulin digestion. This proprietary surfactant blend claimed to solubilize 

hydrophobic proteins, not interfere with protease activity, and be compatible with reverse-phase 

high pressure liquid chromatography separations of digested peptides.  The dried 

thrombomodulin containing HPLC fragments were reconstituted in 90 µL of 25 mM ammonium 

bicarbonate, pH 8.0. 10 µL of 5X Invitrosol was added, and sonicated for 10 min. The solution 
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was heated for 15 min at 60°C, and then cooled to room temperature by placing it on ice. Freshly 

prepared 0.1 M TCEP was added to the final concentration of 10 mM. The solution was 

incubated for 20 min at room temperature. 50 units of PNGaseF was added and incubated at 37 

°C for 4 hour. 5 µL of fresh sequencing grade chymotrypsin (1µg/µL) was added and the sample 

was incubated for 12 hours at room temperature. The supernatant was removed and injected into 

the waters HPLC. 

Digestion using RapiGest  

RapiGest SF (Waters Corporation) is a reagent used to enhance the in-solution digestion 

of proteins. It enhances the digestion of proteins by making the proteins more soluble in solution.  

0.1 % (w/v) solution of RapiGest SF was prepared by dissolving 1 mg of lyophilized RapiGest 

SF in 1 mL of 50 mM ammonium bicarbonate buffer, pH 8.0. The dried thrombomodulin 

containing HPLC fragments were dissolved in 50 µL of 0.1 % RapiGest SF solution. Freshly 

prepared 0.1 M TCEP was added to the final concentration of 10 mM. The solution was heated 

for 10 min at 100°C, and then cooled to room temperature by placing it on ice. 50 units of 

PNGaseF was added and incubated at 37 °C for 4 hour. 5 µL of fresh sequencing grade 

chymotrypsin (1µg/µL) was added and the sample was incubated for 12 hours. TFA was added 

to the final concentration of 0.5%, and incubated at 37°C for 30 minutes to cleave the RapiGest 

SF. The sample was centrifuged at 13, 000 rpm for 10 minutes. The supernatant was removed 

and injected into the HPLC. 

Digestion using RapiGest and EDTA  

The dried thrombomodulin containing HPLC fractions were dissolved in 100 µL of 0.2% 

RapiGest in 50mM Bis-Tris, 4 mM EDTA, pH 6.0 buffer. The sample was sonicated for 1 hour. 
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Sufficient 0.35 M TCEP was added to make the final TCEP concentration of 20 mM. The sample 

was incubated at 60 °C for 30 minutes. 100 units of PNGaseF was added and incubated at 37 °C 

for 4 hours. 5 µL of fresh sequencing grade chymotrypsin (1µg/µL) was added and the sample 

was incubated for 12 hours at room temperature. The supernatant was removed and injected into 

the HPLC. The reaction was quenched and RapiGest decomposed with addition of TFA to final 

concentration of 25% TFA. The sample was injected into the HPLC.  

 

Quantification of methionine oxidation  

Alkylation of cysteine by fluorescent reagent 

The alkylation of cysteine by fluorescent reagent to thrombomodulin isolated from urine 

was performed for identification and quantification of our peptide. The three potential 

advantages of alkylation are increased sensitivity, fewer peaks detected by the fluorescent 

detector and, finally, alkylation prevents disulfide bond reformation. Synthetic peptide, 

APIPHEPHRCQMF, was alkylated with 5-((((2-iodoacetyl)amino)ethyl)amino)naphthalene-1-

sulfonic acid (1,5-IAEDANS)[150, 151]. 1, 5-IAEDANS has excitation wavelength of 336 nm 

and an emission wavelength of 490 nm.  
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Figure 2.1: Chemical structure of 1, 5-IAEDANS, molar mass is 434.25 g, excitation wavelength 

is 340 nm, and emission wavelength is 460 nm [152, 153].  

  

The 2 uL of 10 mg/mL synthetic peptide stock solution was dissolved in 198 µL 0.1 M 

Tris pH 8.0 that had 50 mM tris-carboxyethylphosphine (TCEP). The sample was incubated for 

10 minutes at room temperature. Next, 5 fold molar excess of 1,5-IAEDANS over total thiols 

was added. The samples were incubated for 8 hrs. 10 fold molar excess of 2-mercaptoethanol (2-

ME) over 1,5-IAEDANS was added to the sample after alkylation [154].  The sample was 

injected into the Waters ACQUITY UPLC System, BEH 130 C18 1.7 µm 2.1x150 mm column 

that was heated to 45°C, 0.4 mL/min flow rate. The PDA detector monitored at 214nm and 

fluorescence (FLR) detector excitation wavelength was 340 nm, and emission was monitored at 

460 nm). The initial solvent composition 10% MeCN/0.1% TFA, and it was transitioned to 20% 

MeCN/0.1% TFA in a convex curve gradient over two minutes.  Over the next 2.5 minutes, a 

linear gradient from 20% MeCN/0.1% TFA to 42% MeCN/0.1% TFA was run.  
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Determination of methionine 388 oxidation ratio by UPLC 

Following chymotrypsin digestion, the thrombomodulin fragments were injected into a 

Waters Acquity UPLC System with the detector monitoring 214 nm. The BEH 130 C18 1.7 µm 

2.1x150 mm reverse phase column was heated to 45 °C and a 0.2 mL/min flow rate was used to 

separate the peptide mixture. The eluent was started at 10% MeCN/0.1% TFA and transitioned to 

20% MeCN/0.1% TFA over two minutes.  Over the next 2.5 minutes, a linear gradient from 20% 

MeCN/0.1% TFA to 42% MeCN/0.1% TFA was run. The methionine and methionine sulfoxide 

forms of the peptide APIPHEPHRCQMF eluted at 11.5 and 22.2 minutes, respectively.  The 

peptide APIPHEPHRCQMF (synthesized by SIGMA Genosys) in the methionine and/or 

methionine sulfoxide forms was co-injected to confirm peak position.  After the run, the column 

was cleaned with 0.20 mL/min of 90% MeCN/0.1% TFA for 8 minutes followed by 5 minutes 

equilibration to 0.2 mL/min of 10% MeCN/0.1% TFA.  

Mass spectrometry analysis of methionine 388 oxidation 

The presence of oxidized and reduced forms of peptide in the chymotrypsin digested 

thrombomodulin was confirmed by matrix-assisted laser desorption/ionization (MALDI) mass 

spectrometry. The MALDI analysis was performed by the Statewide Mass Spectrometry Facility 

located at the University of Arkansas. The pure samples were mixed with the MALDI matrix, 2, 

5-dihydroxybenzoic acid (DHB) (Sigma Aldrich).  MALDI-TOF mass spectra were obtained on 

a Bruker Ultraflex II (Bruker Daltonic GMBH, Bremen, Germany) time-of-flight mass 

spectrometer operated in the positive-ion reflectron mode.  The accelerating voltage, delayed 

extraction time, and laser power were adjusted to optimize sensitivity and resolution for ions 

between m/z 500 – 4000. 
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Recombinant TMEGF 456 

To conduct a study of the oxidation of methionine in the thrombomodulin of smokers and 

non-smokers we were successful in purifying thrombomodulin from urine, however the 

quantities were not sufficient to study the oxidation occurring during individual steps and effects 

of additives to minimize oxidation occurring during the processing. Methionine 388 is found 

between EGF 4 and 5 of thrombomodulin, and this region is sufficient to activate protein C. 

Recombinant fragment EGF 456 of thrombomodulin was expressed using Pichia Pastoris to 

produce large quantity of recombinant protein. Fragments of human thrombomodulin were 

expressed in the Pichia pastoris expression system.  The construction of the P. pastoris 

expression system containing the gene TMEGF456 has been described by White et al. [62] and 

the expression system was the kind gift of Dr. Komives. The recombinant protein was produced 

using P. pastoris strain SMD1168, as this strain lacks protease A.  As a result of deficiency of 

protease A, this strain is deficient in carboxypeptidase Y and protease B1. Due to absence of 

proteases in this strain, the yield is typically much higher. The transformants of this strain can 

grow on the histidine deficient medium, since it is defective in dehydrogenase gene (his 4), this 

makes selection of transformants easier. The plasmid vector pPIC9K was used for insertion of 

synthetic gene for TMEGF456. Along with Met 388, the TMEGF456 fragment expressed in P. 

pastoris contains His and Met residues at the N-terminus. 

P. pastoris strains were typically grown on YPD-agar plates (2% (w/v) dextrose, 2% 

(w/v) peptone, 1% (w/v) yeast extract, and 2% (w/v) agar) or YPD medium (1% (w/v) yeast 

extract, 2% (w/v) dextrose, and 2% (w/v) peptone,). Single colony was selected from YPD-agar 

plate, and it was inoculated to a sterile flask which contained 10mL solution of YPD. This 

culture was placed in a shaker (300 rpm) for 24h at 30 ºC. The YPD solution was centrifuged for 
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10 min at 3000 rpm using Sorvall GS-3 rotor. The cells were collected and resuspended in YPD 

solution containing 15% glycerol, and aliquots of 1 mL were placed in sterile 1.5 eppendorf 

tubes. The tubes were flash frozen using liquid nitrogen and stored at -80 ºC, these ‘stocks’ were 

used to inoculate the fresh cultures. The selection of a single colony, inoculation of YPD 

solution, and preparation of storage of ‘stocks’ was done by Dr. Jeffery Froude, a former 

graduate student from our lab.     

 4 L of BMGY media was prepared. The BMGY media had composition of 1% (w/v) 

ammonium sulfate, 1% (w/v) casamino acids, 3.4 g/L yeast nitrogen base (without ammonium 

sulfate and amino acids), 2 mL/L biotin solution, 2% (v/v) 1 M potassium phosphate buffer pH 

6.0 and 1% (v/v) glycerol. The BMGY solution was sterilized by passing though the 0.2 µm 

bottle top filter. The 0.2 g/L of stock solution of biotin was prepared by dissolving in 0.02 M 

potassium hydroxide solution, and passing it through 0.2 µm PES filter, and were stored in -20 

ºC. 2 L culture flasks were covered with four layers of cheese cloth and two layers of aluminum 

foil, and were autoclaved for 30 min at 121 ºC. Approximately 320 mL of sterilized BMGY 

media were aseptically transferred to the 2 L sterile flasks.  

 A sterile 150 mL baffled flask was used to prepare the starter culture of P. pastoris. 10 

mL of sterile BMGY media and 2 mL of frozen stock culture was added to the flask, and was 

placed in a shaker (3000 rpm) at 30 ºC for 12 hrs. 1mL of starter culture was added to the 2 L 

culture flasks containing BMGY media. After 24 hrs of growth, the aluminum foil was removed 

from the culture flasks, cheese cloth was not removed, and was continued to incubate for 

additional 24 hrs. Following 2 days of incubation, the culture was transferred to 400 mL 

centrifuge bottles and centrifuged at 2500 rpm for 10 min using Sorvall GS-3 rotor. The 

supernatant was discarded, and the cell pellets were redissolved in BMMY media. BMMY media 
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composition is identical to BMGY, except 2 % methanol is used instead of 1 % glycerol. The 

BMMY suspended cells were placed in the culture flask and covered with four layers of 

cheesecloth. The flasks were incubated in the shaker (300 rpm, 30 ºC) for 36 hrs. Upon 

completion of the induction phase, the culture was centrifuged at 3000 rpm for 45 min. The 

supernatant was collected and disodium EDTA was added to make the final concentration 5 mM. 

The supernatant was passed through the 0.22 µm bottle top filter to remove the particulates. A 

prefilter was used along with the bottle top filter to prevent the premature clogging of the 0.2 µm 

filter.  

The purification of the supernatant was based on anion exchange chromatography using 

Q-sepharose FF. The pH of the supernatant was adjusted to 6.5 by addition of sodium hydroxide. 

This step is crucial for the TMEGF456 to bind to the anion exchange column. Two buffers were 

prepared for the ion exchange, buffer A (50 mM Tris, 1 mM EDTA) and buffer B (50 mM Tris, 

1M NaCl, and 1 mM EDTA).  The anion exchange column was prepared by packing q-sepharose 

FF into an empty 200 mL glass column. 40 mL bed volume of q-sepharose ff was loaded into the 

glass column. The column was attached to the FMI pump attached with solvent inline filter. The 

column was equilibrated with 5 bed volumes of buffer A. The flow rate was set to 5 mL/min. 

Following equilibration the filtered supernatant was passed through the column at the rate of 

5mL/min. Since this part of the procedure took several hours to complete, the ion exchange was 

performed in the cold room at 4 ºC. The column was washed with 3 column volumes of buffer A. 

The TMEGF456 was eluted by step gradient with buffer B through the column. The proteins 

eluted after the gradient was changed to 30% buffer B. The fractions containing TMEGF456 

were verified using protein C activation assay.  The active fragments were concentrated down to 

2 mL volume using Centricon plus-70 centrifugal filter units with 10 kDa molecular weight 
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cutoff (Millipore). The concentrated fractions were injected into a reverse phase Waters HPLC 

system. The HPLC system contained Vydac dC18, 5 μm particle, 300 Å 4.6x250 mm column 

held at 58 °C. Upon injection, a gradient is run at flow rate of 1 mL/min from 10 to 26% 

acetonitrile, 0.1 % trifluroacetic acid over 8 minutes, followed by 26% to 40% acetonitrile over 

the next 14 minutes and finally from 40% to 90% over the next 25 minutes.  

 

Results and Discussion:  

Purification of thrombomodulin   

Thrombomodulin is anchored on the luminal surface of the endothelium and as 

previously indicated, thrombomodulin lacking the cytoplasmic domain appeared normal. 

Thrombomodulin undergoes endocytosis and degradation, and a significant amount of it is 

cleaved off and it is found in blood. The concentration of thrombomodulin in serum and plasma 

are reported to be between 3 to 300 ng/mL [84]. The thrombomodulin is removed through urine.  

Several groups have previously developed methods to isolate thrombomodulin from urine. The 

methods they developed were not intended for repeated and rapid purification of 

thrombomodulin from urine. They also used large volumes of pooled urine sample to isolate 

thrombomodulin, for example, Jackson et al, started from 38 L of urine to isolate 

thrombomodulin. The previously developed methods were not applicable for our study, since we 

needed quick method of thrombomodulin isolation from urine. The need for rapid processing 

stems for our need to prevent oxidation occurring during processing and also to compare levels 

of oxidation occurring in different individuals.     
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Thrombomodulin concentration in urine was assayed by using IMUBIND 

Thrombomodulin ELISA kit by American Diagnostica Inc. This is a sandwich ELISA which 

employs two monoclonal antibodies, first antibody recognizes the EGF1-EGF2 region of 

thrombomodulin, and second antibody recognizes EGF5-EGF6 region. At the end of the assay, 

the concentrations of thrombomodulin were determined by measuring the solution absorbance at 

450 nm using a Safire microplate reader by Tecan. Typical volume of morning urine obtained 

from a donor was 200-500 mL. The urine from the morning was chosen since they have more 

volume, and they are higher concentration of thrombomodulin. The average concentration of 

thrombomodulin in urine before any processing was 3-8 ng/ml, based on ELISA assay.  

 As mentioned in the materials and methods section, several methods were tested for purification 

of thrombomodulin from urine prior to purification using HPLC. Regardless of the method, after 

collection, urine samples were cooled in 4 °C for no more than 2 hours, and centrifuged in 

Sorvall GS-3 rotor at 4,000 rpm for 30 min at 4 °C. The samples were stored at 4 °C because the 

cooling produces precipitate.     

Tangential flow filtration (TFF) System 

   Labscale Tangential Flow Filtration (TFF) System, manufactured by Millipore, was 

tested for the concentration of the urine sample. In regular filtration, particles that are too big to 

pass through the membrane are retained on the membrane surface, and small particles pass 

through the membrane. As the filtration progresses, the large particles accumulate on the surface 

of the membrane, this lowers the surface area of the membrane, and small particles do not pass 

through the membrane. In TFF system, solution is pumped tangentially along the surface of the 

membrane, unlike normal filtration where the flow of the solution is normal to the plane of the 
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membrane. The applied pressure forces the smaller molecules through the filter and the 

molecules that are too big to pass through the membrane are swept away by the tangential flow.    

Jumbosep spin filter 

Jumbosep spin filters were tested for the concentration of the urine sample. The 

Jumbosep centrifugal device (Pall) consists of sample reservoir, membrane filter insert, and the 

filtrate receiver. The membrane filters are constructed from modified polyethersulfone on 

polyethylene substrate, and they are low protein binding. A membrane filter with molecular 

weight cut off of 30 kd was used for purification. The urine sample that was previously cooled at 

4 °C was concentrated followed by buffer exchange, passed through SP Sepharose FF and Q 

Sepharose FF, and thrombomodulin was eluted. We compared the amount of thrombomodulin 

retained in the concentrate after the purification using Jumbosep and TFF system. The urine 

sample was split into two equal parts and they were run simultaneously. The ELSIA test showed 

that there was ten times higher concentration of thrombomodulin in retentate from Jumbosep 

compared to TFF system. We did not incorporate the concentration step in our final purification 

method, however if we incorporate a concentration step in the future, we will use Jumbosep.   

Q sepharose  purification  

The urine sample that was cooled at 4 °C and centrifuged in Sorvall GS-3 was passed 

through the polyethersulfone 0.2 µm bottle top vacuum filter from corning. These hydrophilic 

filters are low binding to proteins and they remove particulates during filtration. The removal of 

particulates is necessary prior to the downstream ion exchange; their presence will clog the Q 

Sepharose column and lower the column life. Ideally, buffer exchange would be an appropriate 

step for the urine sample to undergo so the ionic strength of the various samples is constant. 
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Buffer exchange with high volumes of samples would be time consuming; instead 0.25 M 

imidazole acetate at pH 6.0 was added to make final concentration 25 mM imidazole acetate. 

Thrombomodulin is a very acidic protein; the pI of the protein is approximately 4.8. The pH of 

the urine sample was adjusted to 6.0 to make the protein negatively charged. Next, the urine 

sample was passed through a 50 mL Bio-Rad column containing 20 mL bed volume of Q 

Sepharose FF using FMI pump. The column was previously equilibrated with 3 bed volumes of 

25 mM imidazole acetate at pH 6.0. The negatively charged proteins along with thrombomodulin 

bind to the ion exchange column. As previously mentioned, thrombomodulin is not found intact 

in urine, instead it is fragmented. Fortunately, all the thrombomodulin fragments are uniformly 

acidic throughout its length, making the ion exchange purification of its various fragments 

simple. The column is washed with 25 mM imidazole acetate at pH 6.0, and proteins are eluted 

using 25 mM imidazole acetate, 50 mM NaCl at pH 6.0, and 25 mM imidazole acetate, 0.5 M 

NaCl at pH 6.0. Eluents following the addition of 25 mM imidazole acetate buffer, pH 6.0, 0.5 M 

NaCl was collected in 15 mL conical tube, 5 mL in each tube. 15 mL eluent, after addition of 25 

mL of 25 mM imidazole acetate buffer, pH 6.0, 0.5 M NaCl, tested positive for thrombomodulin. 

Solution of 0.2 M L-methionine was added to thrombomodulin containing fractions to make final 

concentration 2 mM methionine. Methionine was added as a sacrificial molecule to absorb 

oxidants that might be occurring during the downstream processing. The thrombomodulin 

containing fractions dried using medium heat, under vacuum, using the SpeedVac concentrator 

system. The SpeedVac surface that was accessible to light was covered with aluminum foil to 

prevent photooxidation. The dried samples were reconstituted into 18.2 megaohm pure water.       
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 Reverse phase HPLC purification  

Thrombomodulin containing fragments from Q Sepharose were dried using SpeedVac 

under vacuum, and reconstituted in 18.2 megaohm pure water, passed though the 0.2 µM spin 

filter, and were injected into the HPLC. A shows the HPLC chromatogram obtained from the 

injection of 1.4 mL sample of 27 year old male donor. Figure 2.2 B is the magnification of 

Figure 2.2 A, and it spans the area where thrombomodulin elutes, namely at 30 minute. The total 

amount of thrombomodulin isolated from a single urine sample after the HPLC purification was 

0.05–0.1 µg, which is not sufficient to compare the relative oxidation of methionine 388 

oxidation. Multiple urine samples were collected from an individual donor to increase the 

amount thrombomodulin collected following HPLC purification. Typically 2-3 urine samples 

were collected from a donor within consecutive days, 0.15-0.25 µg thrombomodulin was 

collected after the samples were pooled.  
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B. 

 

 

Figure 2.2 A&B: Final purification of thrombomodulin by reverse phase HPLC.  The following 

sample, a final purification of a male non-smoker urinary thrombomodulin, contained 

thrombomodulin in the peak at 30 minute. Figure 2.2 B is a selected area from Figure 2.2 A.  
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Oxidation during processing 

Oxidation that could be occurring during the purification of thrombomodulin has always 

been a concern. Several steps were taken to minimize the oxidation that was occurring during 

processing. During the lyophilization step, the samples were shielded from light to prevent photo 

oxidation of methionine. The transparent regions of the speedvac were covered with aluminum 

foil. Thiodiglycol was added to the urine samples prior to collection. It was added as a scavenger 

molecule to prevent methionine oxidation. 5 mL of thiodiglycol was added to the centrifuge 

bottle before the samples were collected. 1 mL of 0.5 M EDTA pH 8.0 was added to the 

centrifuge bottles prior to urine collection. EDTA is a chelator[155], and it has been shown to 

slow Fenton oxidation[156, 157]. Following the elution of thrombomodulin from the Q-

sepharose FF column and reverse phase HPLC, free methionine was added to make the final 

concentration to 2 mM. This was added as sacrificial molecule to prevent oxidation of 

methionine 388 during processing.     

Final method for the purification of thrombomodulin 

 The urine sample was cooled at 4 °C, centrifuged in Sorvall GS-3, and passed through the 

polyethersulfone 0.2 µm bottle top vacuum filter. The pH of the sample was adjusted to 6.0, and 

the sample was passed through a column containing 20 mL bed volume of Q Sepharose FF. The 

protein was eluted using NaCl gradient, and dried under vacuum, and injected into the reverse 

phase HPLC. There was ten times the amount of thrombomodulin retained after the purification 

using Jumbosep compared to TFF system. The purification using 20 mL bed volume of Q 

Sepharose FF purified 1.5 fold more thrombomodulin compared to Jumbosep, however Q 

Sepharose FF was without any preconcentration step. Besides the low yield of thrombomodulin, 
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the concentration using Jumbosep or TFF was also accompanied by other drawbacks. The 

purification and buffer exchange of 400 mL of urine sample required on average 6 hours, which 

increased the likelihood of our protein being oxidized. Also, it required frequent buffer changes 

and manipulation of the sample, so was quite labor intensive. On the other hand, the processing 

time using Q Sepharose FF typically was just 2-3 hours and, equally importantly, gave a higher 

yield of thrombomodulin.    

 

Digestion of thrombomodulin 

The linear chains of amino acids fold into a specific structure to carry out their functions. 

The folded protein in its native state is stable under physiological conditions. The forces behind 

the 3D folded structure of proteins are following: 1) Hydrogen bonds [158]. 2) Van der Waals 

interactions. 3) Backbone angle preferences. 4) Electrostatic interactions. 5) Hydrophobic 

interactions [159-161]. Collectively these forces can be referred to as forcefields [162]. In order 

for a protein to undergo complete digestion, the forcefield associated with the folded protein 

must be disrupted to unfold the protein. The folded protein imposes steric hindrance to the 

protease, as a result the protease is unable to access and ultimately cleave the protein. In most 

proteomics studies it is assumed that the digestion of proteins is driven to completion, and such 

assumption is correct for most proteins. However, many proteins are resistant to proteolysis, and 

they do not undergo complete digestion. There are several factors that affect the protein 

digestion, including but not limited to ineffective denaturation due to poor protein solvation, lack 

of localization of enzyme, short reaction time, and the competing presence of other proteins in 

the digestion [163]. Effective digestion of purified thrombomodulin was crucial to quantify the 
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reduced and the oxidized peptides ratios to quantify the methionine oxidation. We monitored the 

degree of thrombomodulin digestion by chymotrypsin by injecting the digested sample into the 

HPLC. The degree of digestion was calculated by comparing the area of the peak occupied by 

thrombomodulin in HPLC chromatogram before and after chymotrypsin digestion (Figure 2.3).  

Digestion using manufacturer’s protocol 

Using the manufacturer’s protocol in which the HPLC purified dried thrombomodulin 

fraction was reconstituted in minimal volume of 200 mM Tris-HCl pH 8.0, reduced using TCEP, 

deglycosylated, and digested for 2 hrs using 4 Units of chymotrypsin dissolved in 50 mM Tris-

HCl, 1mM CaCl2, pH 8.0 only digested 15 % of the total thrombomodulin. Until this point, we 

were under the assumption that the digestion using chymotrypsin went to completion, hence we 

focused towards creating a method in the Acquity UPLC that would provide a PDA 

chromatogram that gave us resolved oxidized and the reduced peaks following digestion of 

thrombomodulin. Little did we know, only 15% of the thrombomodulin underwent complete 

digestion after 2 hr reaction with chymotrypsin (Figure 2.3). Following this discovery, the 

priority for this project was to create a digestion method that would effectively digest 

thrombomodulin to the extent that would allow us to detect the oxidized and the reduced forms 

of peptide using the quantification of methionine techniques that will be discussed further in this 

chapter.  
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A. 
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B. 

 

Figure 2.3 A&B: HPLC chromatogram of purified thrombomodulin prior to chymotrypsin 

digestion (A). HPLC chromatogram of 2 hr chymotrypsin digested thrombomodulin (B). Two 

chromatograms were used to monitor the extent of digestion. The efficiency of various digestion 

protocols were tested using this method.  
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Digestion using urea  

Protein digestion using urea is still the most widely used technique to solubilize proteins 

in a solution digestion. The mechanism of protein denaturation by urea is believed to begin with 

attachments of urea to histidine, and then to the amide groups and positively charged amino acid 

and, which results in disruption of the hydrogen bonds, followed by water and urea solvation 

[164, 165]. Over the time, urea in water releases isocynate, which can carbamylate primary 

amines, hence urea was freshly prepared. Also, upon heating, urea can degrade into ammonium 

cyanate, which can lead to the carbamylation of the primary amines. Based on the 

manufacturer’s manual, chymotrypsin retains 100% enzymatic activity in up to 4M urea. In the 

experiments where 8M urea was used, the concentration of the urea was halved by dilution using 

the appropriate buffer prior to addition of chymotrypsin. The thrombomodulin digestion using 

2.5 M and 8 M urea did not enhance the digestion compared to the initial method.  

Digestion using acetonitrile 

Changing the solvent in which the digestion is probably the most convenient way to 

facilitate the solubilization of the protein, and increased solubility can potentially increase the 

rate of digestion by protease. Trypsin digestion of protein in acetonitrile has been used in some 

proteomics studies [166, 167]. Trypsin digestion was conducted on myoglobin and chicken 

ovalbumin using organic solvent [167]. These proteins are resistant to proteolysis unless they are 

subjected to thermal or chemical denaturation prior to digestion. These proteins are easily 

digested in organic solvent, efficient digestion occurred within 5 min [167]. The autolysis of the 

protease is a concern when using organic solvents, but the proteolytic activity of trypsin is not 

affected even in 80% acetonitrile solution. Also, since these protocols did not use chaotropes or 
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surfactants, it makes downstream MS or HPLC analysis easier. The use of chymotrypsin to 

digest thrombomodulin in an organic solvent was attempted achieve complete digestion. 

Chymotrypsin in water miscible organic solvents like methanol, ethanol, 1-propanol, 2-propanol 

and acetonitrile shows enhanced stability and catalytic activity [168]. In the presence of 20% 

acetonitrile in buffer, the enzyme activity of chymotrypsin increased up to 6 fold. Accordingly, 

thrombomodulin was dissolved in acetonitrile in 50 mM Tris-HCl/10 mM CaCl2, pH 8.0 buffer. 

Multiple experiments where the concentration range of acetonitrile was varied between 20%-

50% were conducted. Unfortunately, this method did not enhance the digestion compared to the 

initial method.  

Digestion using Invitrosol 

Invitrosol is a proprietary surfactant from Invitrogen. It keeps hydrophobic proteins in the 

solution and it has no effect on the activity of protease. More importantly, it is compatible with 

HPLC and MS analysis, unlike most surfactants that interfere with such instruments. The use of 

Invitrosol to enhance the digestion of thrombomodulin from urine did not result in significant 

improvement in digestion. Experiments using organic solvent along with Invitrosol did not 

enhance the digestion compared to the initial method.  

Digestion using RapiGest  

RapiGest SF is an acid labile surfactant. It can be immediately be degraded from solution 

by addition of acid. It decomposes into dodeca-2-one and sodium-3-(2,3-dihydropropoxy) 

propanesulfonate. The first product is insoluble in water and second is highly soluble in water, so 

it is not retained in reverse phase HPLC. This feature makes the use of this surfactant attractive, 

since it does not interfere with the downstream analysis like HPLC and MS.  RapiGest SF 
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improves solubility of protein in a solution and is an enzyme friendly surfactant for in-solution 

protein digestion. Proteases are resistant to denaturation in RapiGest SF solution. Trypsin has 

100% activity in 0.1% RapiGest SF solution, and 87% activity in 0.5% RapiGest solution[169]. 

The proteins unfold in RapiGest SF solution and the proteolytic sites are exposed for digestion. 

The globular proteins, which are typically difficult to digest, can be digested within minutes 

using RapiGest SF [170]. This surfactant also aids in deglycosylation of proteins. However, the 

use of RapiGest SF to digest the thrombomodulin isolated from urine did not enhance the 

digestion compared to the initial method.  

Digestion using EDTA      

The thrombomodulin EGF domains 5 and 6 are the primary binding site for thrombin 

[171, 172], while EGF4 of thrombomodulin is necessary for the thrombin-thrombomodulin 

mediated protein C activation [173, 174]. In studies using recombinant thrombomodulin, the 

thrombin-thrombomodulin mediated activation of protein C shows a bell shaped dependence on 

Ca
2+ 

concentration. Ca
2+

 binds to EGF3 and EGF6 region of thrombomodulin, the binding 

affinity is almost 15 fold higher in the EGF6 region based on Ca
2+

 analysis of dialyzed 

recombinant thrombomodulin [175]. There is a higher proportion of β-sheet and more structured 

conformation seen in the EGF domains that are saturated with Ca
2+

. The ordered conformation 

resulted in decreased efficiency of trypsin to cleave the C-loop of EGF6. We alternatively 

hypothesized the partial digestion of thrombomodulin might be due to Ca
2+

 stabilization.  

Proteins can be converted into apoproteins by addition of chelators like EDTA and 

EGTA. Ca
2+

 binds to thrombomodulin EGF3 and EGF6, and the binding of Ca
2+ 

results in 

formation of secondary structures in these regions. The stabilization induced by Ca
2+

 binding is 
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known to make thrombomodulin resistant to protease digestion [175]. The simple method to 

expedite the digestion of thrombomodulin might be by removal of Ca
2+

. Thrombomodulin 

purified from urine was digested using chymotrypsin in presence of 10 mM EDTA. Upon 

completion of digestion, the digested sample was injected into reverse phase HPLC to assess the 

degree of digestion. The HPLC peaks corresponding to thrombomodulin were no longer seen in 

the chromatogram, indicating complete digestion of thrombomodulin. Sample of digested 

thrombomodulin in presence of EDTA was sent for MS analysis. The MS did not identify 

peptides corresponding to 1562 or 1578 m/z. The results were puzzling, HPLC indicated the 

digestion had gone to completion; however MS did not confirm the presence of the methionine 

388 containing peptide. The experiment were repeated several times, however the results 

consistently remained the same. The results were puzzling until we found the following paper, 

“The CBP/p300 TAZ1 domain in its native state is not a binding partner of MDM2” [176].  

Zinc-binding proteins comprise one of the largest classes of protein and they are very important 

for the gene expression. This class of protein includes transcription factors of the DNA, co-

activators, RNA polymerase and chromatin-modifying and -remodeling enzymes [177]. Many 

zinc-binding proteins need Zn
2+

 to fold into their 3D structure, and for participation in their 

intermolecular interactions. In the mentioned study [176], the zinc domain of transcriptional 

proteins CBP (CREB-binding protein) and p300 were studied. The zinc binding domain when 

treated with EDTA resulted in denaturation of the protein. They attempted to restore the native 

structure of the protein by addition of excess Zn
2+

  following EDTA denaturation, this did not 

result in refolding of the protein, suggesting irreversible denaturation by EDTA. More 

significantly, their results showed that under EDTA induced denaturation the proteins formed 

non specific interactions resulting in aggregation of proteins. They concluded that the EDTA 
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mediated denaturation leads to irreversible denaturation and aggregation of the proteins. Based 

on these findings, we believe that EDTA induced denaturation and aggregation resulted in 

disappearance of thrombomodulin peak in the HPLC chromatogram. The pursuit of 

thrombomodulin digestion using EDTA was discontinued.   

Final method for the digestion of thrombomodulin 

The dried thrombomodulin containing fractions from the reverse phase chromatography 

were pooled and dissolved in approximately 100 uL of 1X phosphate buffered saline (PBS).  The 

samples that were cloudy prior to digestion were spun in a microcentrifuge (Galaxy 14D VWR) 

at 13K RPM for a minute. This undissolved material proved to contain the bulk of the 

thrombomodulin.  Fortunately, after the supernatant was removed, the precipitate readily 

dissolved in 75 µL of 1X PBS. Fresh tris-carboxyethylphosphine (TCEP) was added to make the 

final concentration of 50 mM TCEP. 10 µL of 0.5 M sodium phosphate buffer pH 7.5 added to 

the sample, prior to addition of 500 units of PNGase F (New England Biolabs). The samples 

were incubated at 37°C for 4 hours to deglycosylate the sample. The protein was then digested at 

30°C for 8 hours after adding 4.1 μg of sequencing grade chymotrypsin (Princeton Separations) 

dissolved in 50 mM Tris-HCl, 1mM CaCl2, pH 8.0. The chymotrypsin was inactivated by 

placing the samples in a 100°C dry bath for 30 seconds. This method achieved thrombomodulin 

digestion which resulted in detection of both reduced and oxidized peptides by MALDI-TOF. 

This method was incorporated into the final purification and qualitative analysis of 

thrombomodulin.   
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Quantification of methionine oxidation  

The quantification of urinary thrombomodulin methionine 388 oxidation involves 3 three 

major steps: 1) purification of thrombomodulin from urine, 2) digestion of purified 

thrombomodulin 3) quantification of methionine oxidation. We have discussed the first two 

steps, in this section we will discuss the methods attempted to complete the final step.   

Alkylation of cysteine by fluorescent reagent 

Cysteine is the most reactive residue commonly found in proteins and peptides.  In its 

unprotonated state, the thiol group is strong nucleophile and will react with a wide variety of 

reagents.  The alkylation of cysteine side chain was attempted for two reasons. First, the 

alkylation of cysteine prevents reformation of disulfide bonds which subsequently prevents the 

formation of the secondary structure hence protein remains in the denatured state. And second, 

our hope was to introduce a fluorescent reporter group on the peptide APIPHEPHRCQMF. 

Several peptides are formed when thrombomodulin is digested by chymotrypsin, not all of these 

peptides have cysteine. Only the peptides that have cysteine will have the covalently bonded 

fluorescent reporter group, when the digested and alkylated sample is injected into an HPLC 

with fluorescent detector, only the fluorophores will be detected by the detector. The attachment 

of fluorophore eliminates the noise from non fluorophore peptides, and in theory would increase 

the resolution and sensitivity of detection of the oxidized and the reduced peptide.   

Reaction of the sulfhydryl group of cysteine with α-haloacids or their amide derivatives is 

the most common method used to alkylate cysteine. The iodo compounds is preferred over other 

halides since iodide is a much better leaving group, hence the reaction is much faster. 5-((((2-

iodoacetyl)amino)ethyl)amino)naphthalene-1-sulfonic acid (1,5-IAEDANS) [150] was used for 
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alkylation of cysteine in thrombomodulin. Reaction of a cysteine side chain with 1, 5 IEADANS 

produces dansylated cysteine on the protein (Figure 2.4). 1, 5-IAEDANS has a peak excitation 

wavelength of 336 nm and a peak emission wavelength of 490 nm. The extinction coefficient of 

the dye is 5700.  

 

Figure 2.4: Alkylation of cysteine using 1, 5-IAEDANS.  

   

Before attempting to alkylate the cysteine residues in thrombomodulin, the alkylation 

using 1, 5-IAEDANS was attempted in the synthetic peptide APIPHEPHRCQMF.  The 2 µL of 

10 mg/mL synthetic peptide stock solution was dissolved in 198 µL 0.1 M Tris-Cl pH 8.0 

containing 50 mM freshly prepared tris-carboxyethylphosphine (TCEP). The sample was 

incubated, and 5 fold molar excess (over total thiols) of freshly prepared 1, 5-IAEDANS was 

added. Nitrogen was flushed over the surface of the liquid and the microcentrifuge tube was 

sealed. The sample was incubated for > 4 hrs at 37 °C. Following alkylation, 10 fold molar 

excess of 2-mercaptoethanol (2-ME) over 1,5-IAEDANS was added to the sample [154]. The 

sample was injected into the Waters ACQUITY UPLC System, BEH 130 C18 1.7 µm 2.1x150 

mm column, and Fluorescence (FLR) detector (excitation wavelength 340 nm, and emission 

wavelength 490 nm). The methionine and methionine sulfoxide forms of the peptide 

APIPHEPHRCQMF eluted at 2.25 and 2.5 minutes, respectively. The alkylated oxidized and 
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reduced peptides eluted at 2.35 and 2.6 minutes, respectively. Figure 2.5 is a UPLC 

chromatogram of 4 µL injection of 0.1 µg/µL synthetic peptide alkylated using 1, 5-IAEDANS 

for 16 hrs at 37 °C, and Figure 2.6 is UPLC FLR chromatogram of the same injection.    
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Figure 2.5: Acquity UPLC chromatogram of IAEDANS labeled synthetic APIPHEPHRCQMF 

and APIPHEPHRCQMoxF at 214nm. Two forms of non alkylated peptide APIPHEPHRCQMF 

eluted at 2.25 and 2.5 minutes, respectively. The alkylated oxidized and reduced peptides eluted 

at 2.35 and 2.6 minutes, respectively.  
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Figure 2.6: UPLC FLR chromatogram of IAEDANS labeled synthetic peptide 

APIPHEPHRCQMoxF and APIPHEPHRCQMF. The two peptides eluted at 2.35 and 2.6 

minutes, respectively. 
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The cysteine alkylation by 1,5-IAEDANS was attempted on urinary thrombomodulin 

purified by HPLC. The protocol used to alkylate the synthetic peptide was used to alkylate the 

purified thrombomodulin. The alkylated thrombomodulin was digested using chymotrypsin, and 

subsequently injected into the Acquity UPLC. Based on alkylation experiments performed using 

the synthetic peptide, the elution time of the alkylated oxidized and the reduced peptide was 

discovered. The FLR detector did not detect alkylated oxidized and the reduced peptide 

following alkylation using 1,5-IAEDANS and digestion using chymotrypsin. We hypothesized 

the absence of the alkylated peptides in FLR chromatogram resulted from ineffective alkylation, 

which was mostly likely due to stubbornness of thrombomodulin to denature. This method was 

not incorporated in quantification of methionine 388 oxidation, because significant alkylation of 

thrombomodulin could not be achieved that would produce alkylated peptide FLR signal.  In 

retrospect, the difficulty may have been the lack of digestion of thrombomodulin, so revisiting 

this labeling procedure may be worthwhile.        

Determination of methionine 388 oxidation by UPLC 

Acquity UPLC offers increased resolution, sensitivity and speed compared to HPLC. It 

uses small particle columns (1.7 µm – 1.8 µm), which improves system efficiency by producing 

better resolution, and also lowering the analysis time. This system is designed to minimize band 

spreading resulting from the column and also from the instrument. Several UPLC methods were 

developed to separate the synthetic peptide mixture (APIPHEPHRCQMoxF and 

APIPHEPHRCQMF). New methods were created by changing the gradient, temperature, flow 

rate, and column. After numerous experiments we developed our most effective UPLC method 

for purification. Using this method the oxidized and the reduced peptides in the synthetic peptide 
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mixture eluted at 12 and 21 minute respectively, they were 9 minutes apart from each other         

( Figure 2.7).  

 

Figure 2.7: Acquity UPLC chromatogram of the commercial peptide mixture. 

APIPHEPHRCQM(ox)F elutes at 12 min and APIPHEPHRCQMF elutes at 21 min.  
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The ratio of oxidized and reduced peptide within the synthetic peptide can be calculated 

using the UPLC chromatogram simply by the dividing the area occupied by the oxidized by area 

occupied by the reduced peptide. Using this approach we should able to calculate the ratio of the 

reduced and the oxidized peptide in a chymotrypsin digested thrombomodulin sample. The ratio 

of reduced and the oxidized peptide within a sample is equivalent to the ratio of reduced and the 

oxidized methionine in a sample of thrombomodulin purified from urine.      

The HPLC purified dried thrombomodulin following chymotrypsin digestion using was 

injected in the UPLC. The elution of the oxidized and the reduced peptide was mapped using the 

synthetic peptides, they elute at 12 and 21 min respectively. Figure 2.8 is UPLC chromatogram 

of 25 µL injection of chymotrypsin digested thrombomodulin of 26 year old non smoker donor.   
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Figure 2.8: UPLC chromatogram of chymotrypsin digested urinary thrombomodulin of 26 year 

old non smoker donor.   
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Figure 2.9: Overlay of UPLC chromatograms. Top chromatogram is of chymotrypsin digested 

urinary thrombomodulin of a 26 year old Caucasian male non smoker, and the bottom 

chromatogram is of synthetic peptide mixture. 
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Figure 2.9 is overlay of UPLC PDA chromatogram of chymotrypsin digested urinary 

thrombomodulin and synthetic peptide mixture. As seen in the figure the oxidized and the 

reduced peaks of the chymotrypsin digested urinary thrombomodulin is not resolved, especially 

the oxidized peptide.  Much time and resources were devoted to develop methods to resolve the 

two peaks, however the resolution necessary to calculate the relative area occupied by the 

reduced and the oxidized peaks could not be achieved.   

 

Figure 2.10: MALDI-TOF spectra of chymotrypsin digested thrombomodulin purified from 

urine. The sample was collected from a 28 year old male smoker. The oxidized and the reduced 

forms of peptide are present in this sample.   
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Mass spectrometry analysis of methionine 388 oxidation 

Matrix-assisted laser desorption ionization (MALDI) is a powerful technique for mass 

spectrometry of peptides and proteins [178]. This technique provides fast and accurate 

acquisition of molecular mass and purity. The digested thrombomodulin was sent for MALDI 

analysis in Mass Spectrometry Facility located at the University of Arkansas. Figure 2.10 is 

MALDI-TOF spectra of chymotrypsin digested urinary thrombomodulin from a 28 year old male 

smoker. The isotopically averaged mass of reduced (APIPHEPHRCQMF) and oxidized 

(APIPHEPHRCQMoxF) peptides is 1562.73 and 1578.74 Da respectively. Both forms of 

peptides were detected by MALDI-TOF, and the intensity of the oxidized peptide was three fold 

more compared to its counterpart. This technique can be used for semi-quantitative test for the 

two forms of peptide.   

Final method for the quantification of methionine 388 oxidation 

 The chymotrypsin digested thrombomodulin alkylation using 1,5-IAEDANS did not 

result in sufficient alkylation of the peptides, and they could not be visualized in the FLR 

detector. Separation of reduced and the oxidized peptides using Acquity UPLC could not 

produce sufficient resolution to quantify the oxidation of methionine. The MALDI TOF injection 

of digested thrombomodulin confirmed the presence of two forms of peptides and also provided 

their relative intensities. This intensity of the peptides was used for the quantification of the 

methionine oxidation, the details of this method will be covered in the following chapter.     
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Conclusion  

In this chapter we have discussed techniques that were used to for 1) purification of 

thrombomodulin from urine, 2) digestion of purified thrombomodulin 3) quantification of 

methionine oxidation. The cooled urine sample centrifuged in a Sorvall GS-3 rotor, filtered using 

0.22 µm PES membrane filter, passed through Q Sepharose FF, and reverse phase HPLC 

provided maximum yield. The digestion of purified thrombomodulin where the samples were 

washed in 1XPBS buffer prior to addition of chymotrypsin was the most successful compared to 

other methods. The fluorophore and Acquity UPLC system could not be used for quantification 

of methionine oxidation. MALDI-TOF was used for quantification of methionine oxidation; this 

topic will be discussed in detail in chapter 3. This procedure works well, but it is worth 

considering how it might be improved in the future.   

Oxidation that might be occurring during the purification of thrombomodulin would not 

invalidate a finding that one population had a higher level of oxidation than another, but would 

complicate comparison of absolute levels of oxidation.  Based on oxidation experiments using 

synthetic peptide, we believe significant oxidation is not occurring during processing. A 300 uL 

of synthetic peptide APIPHEPHRCQMF was divided into three 100uL aliquots, the first aliquot 

was control. The second aliquot was dried under medium heat (45°C) for 4 hours in SpeedVac, 

and upon drying the synthetic peptide was reconstituted in distilled water to make the final 

volume 100 uL. The third 100 uL aliquot was allowed to sit in room temperature for 4 hours, 

which is the time samples are subjected to chymotrypsin digestion and which is also 

approximately the time it takes for a sample to be centrifuged and passed through the Q 

Sepharose FF column. All three samples were separately injected into the Acquity UPLC and the 

ratio of oxidized and the reduced form of APIPHEPHRCQMF for each sample was calculated. 
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The ratio of reduced and oxidized peptide remained constant in all three samples. The calculation 

was performed comparing the relative area occupied by reduced and oxidized peak in the UPLC 

PDA chromatogram at 214nm.  

Although this experiment was reassuring, steps were taken to minimize oxidation of 

protein during processing. During the lyophilization step, the samples were shielded from light to 

prevent photo oxidation of methionine. Thiodiglycol was added to the urine samples prior to 

collection. Thiodiglycol was added as a scavenger molecule to minimize methionine oxidation 

[179, 180]; it was added to the urine sample container before collection. EDTA was also added 

to the sample container prior to urine collection. EDTA is a chelator [155, 181], and it has been 

shown to slow Fenton oxidation [156, 157], and would also inactivate any metal dependent 

proteases that might be present[182, 183]. Following the elution of thrombomodulin from the Q-

sepharose FF column and reverse phase HPLC, free methionine was added as a sacrificial 

molecule to minimize oxidation. None of these additives used to minimize oxidation were used 

for the synthetic peptide oxidation experiments. Oxidation of synthetic peptide dissolved in 

water may not mimic the behavior of protein in urine, because latter is a complex solution 

composed of cells, proteins and salts.  However, the methionine in the synthetic peptide is fully 

exposed to the solvent, and methionine 388 in thrombomodulin is partly buried in the protein’s 

hydrophobic core, which might make it less susceptible to oxidation than the synthetic peptide.  

While we are reasonably confident that oxidation of the protein is not occurring, experimental 

proof of this would be useful. 

In the future, experiments can be designed to test the competency of each of the 

mentioned steps to minimize oxidation during processing. It is possible to produce large 

quantities of the recombinant TMEGF 456 using Pichia pastoris. As previously mentioned, 
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methionine 388 is found between EGF 4 and 5 of thrombomodulin. The recombinant TMEGF 

456 could be subjected to the urine purification protocol. Recombinant TMEGF 456 could be 

purified containing only single additives, followed by purification using all additives. The 

recombinant TMEGF 456 purified without any additives would serve as the control.  Successful 

completion of this experiment will tell us the approximate oxidation that occurs during the 

processing of urine sample. It should be pointed out that the minimization of oxidation during the 

processing would be advantageous for this research; however, it is not critical for its success. 

Since all the urine samples are subjected to the same purification method, the oxidation that 

could be occurring during processing should be the similar for all of them. When the methionine 

oxidation levels in smokers and non smokers are calculated, the oxidation that occurred during 

their respective purification, assuming they are equal, cancels out each other.    

The thrombin affinity chromatography was the very first method used to isolate 

thrombomodulin and it has been used in some other studies [184-186]. Dr. Deepika Talla, a 

former graduate student in our lab, had examined a method based on thrombin affinity 

chromatography. However, this method failed to produce significant thrombomodulin from urine 

apparently due to the following reasons. First, papers using thrombin affinity used some other 

steps prior or after to finish cleaning up the thrombomodulin, so it was not as simple in practice 

as it appears in theory.  Second, depending upon the glycosylation state of thrombomodulin there 

is variance towards its affinity for thrombin column [187].  Third, and most importantly, 

Komives’ group confirmed that thrombomodulin oxidation reduces thrombin affinity by a factor 

of 10. [94]  In our preliminary work, thrombin affinity columns, even used in fairly large excess, 

“leaked” some thrombomodulin and this thrombomodulin was presumably more oxidized.  This 
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method was therefore abandoned.  However, might some other form of affinity purification 

work? 

Antibodies might work, and should be explored in the future.  Aptamers are in vitro 

selected oligonucleotides that have high affinity and specificity towards their target [188, 189]. 

They are selected in a process called systematic evolution of ligands by exponential enrichment 

(SELEX), selection process involves screening for single stranded oligonucleotides sequences 

based on its binding affinity towards the target of interest [189-193]. DNA aptamers that bind to 

thrombin have been developed to capture thrombin using affinity phase stationary phase 

chromatography [193]. Thrombin was captured on stationary phase that had thrombin aptamer 

covalently attached to it. Proteins were loaded into the column, the non specific proteins were 

washed and bound thrombin was eluted using 20 mM Tris buffer containing 8 M urea, pH 7.3, at 

50 °C.  Our current protocol requires 2-3 samples of urine to be collected from each donor to 

isolate sufficient thrombomodulin to detect the peptide of interest in MALDI-TOF. 

Thrombomodulin binding aptamers could be developed and covalently bound to the stationary 

phase to conduct affinity based chromatography.   However, the greatest promise of aptamers is 

to skip the purification of the protein entirely.   

It is possible that aptamer that are specific to each of the oxidized and the reduced forms 

of thrombomodulin could be developed.  Previously, our group attempted to raise antibodies 

specific for the reduced and oxidized forms of thrombomodulin.  This was unsuccessful, possibly 

because of the high homology in this region of thrombomodulin between different mammalian 

species. If successful in developing aptamers for the oxidized and reduced form of 

thrombomodulin, one can imagine using them in an ELISA-like test of the amounts of each form 
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in urine or blood.  Such a test would be a great timesaving device, minimize the chances of 

oxidation, and would require much less sample. 
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CHAPTER 3: IS METHIONINE 388 OF THROMBOMODULIN MORE OXIDIZED IN 

CIGARETTE SMOKERS? 
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Introduction 

The blood of a smoker is more prone to clot than a non smoker; they are in 

hypercoagulable state. The narrowing of the arteries resulting from atherosclerosis increases the 

possibility of cardiovascular diseases [111], equally important is the hypercoagulable state seen 

in smokers. Cardiovascular diseases are the most common cause of death in smokers. The most 

common cardiovascular diseases seen in smokers are myocardial infarction and stroke. The fact 

that smokers have a hypercoagulable state has been established [194-197]; however, despite 

intensive research the molecular origin of such a state has not been shown. Free radical mediated 

oxidative damage to the endothelium is suggested to be an important factor for the development 

of cardiovascular diseases in smokers [112]. We hypothesized that oxidation of methionine 388 

of thrombomodulin results from smoking. We further hypothesize that oxidation of methionine 

388 in thrombomodulin is an important molecular factor leading to cardiovascular diseases in 

smokers.        

To understand why we feel thrombomodulin oxidation is important, one must first 

understand the role of this regulatory protein.  Thrombin when bound to thrombomodulin 

activates protein C. Activated protein C proteolytically destroys coagulation factors Va and 

VIIIa, thus suppressing further thrombin formation. The thrombin- thrombomodulin complex 

also activates the carboxypeptidase thrombin-activatable fibrinolysis inhibitor (TAFI) [198]. The 

activation of protein C and TAFI inhibits coagulation and fibrinolysis, making thrombomodulin 

a key protein for the regulation of coagulation and fibrinolysis.  

Thrombomodulin is found on endothelial cell surfaces [55, 56]. It was discovered by 

Esmon and Owen in the 1960’s. In rats, it is found predominantly in the lungs when compared 
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with other vascular organs like kidney and liver [57].  Thrombomodulin, purified from human 

lung endothelial membrane preparations, had an apparent MW of 78,000 Da [55]. Encoded by an 

intronless gene, the mature single-chain glycoprotein in the human is 557 amino acids long. 

Structurally it has 5 distinct domains. It has a short cytoplasmic tail at the C-terminus, which 

anchors thrombomodulin [58]. The deletion of this tail in mice does not have any effect in 

development, survival, coagulation and inflammation [58]. There is a well conserved membrane-

spanning domain, followed by a serine/threonine-rich domain with four potential sites for O-

linked glycosylation. The serine/threonine region supports the attachment of chondroitin sulfate, 

which is has 20 repeating disaccharide units and a terminal trisaccharide unit [59]. Adjacent to 

the serine/threonine-rich region is a domain that has 6 epidermal growth factors (EGF)-like 

repeats, this domain is the best characterized. This region shows disulfide bonding pattern that is 

seen in a typical protein-protein interactions. The first two EGF- like repeats, which are furthest 

from the serine/threonine rich region, remain unknown as to their function. EGF-like repeats 3, 

4, 5, and 6 [62-64] have been studied in detail by several groups and are essential for activation 

of Protein C by the thrombin-thrombomodulin complex. The cofactor function for 

thrombomodulin requires the last three of six tandemly repeated EGF-like domains (EGF 4, 5, 

and 6), as well as a Ser/Thr-rich domain between EGF-like domain 6 and the transmembrane 

domain. The residues 1 through 222 comprises N-terminal region of thrombomodulin, which 

constitutes almost half of the extracellular portion of the protein. The residues 155 through 222 

of thrombomodulin might be associated with plasma membrane and this region is hydrophobic 

[66].   

Thrombin binds to thrombomodulin to activate Protein C, which stops clotting by 

inactivation of clotting factors V and VIII [68]. The thrombin-thrombomodulin complex 
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activates protein C 1,000-fold more when compared to activation of protein C by thrombin alone.  

Deficiency in protein C or activated protein C is well established as increasing the risk of 

thrombosis [69]. Low levels of thrombomodulin are a well established risk factor for heart 

disease. Without a doubt, thrombomodulin plays a key role in slowing or stopping clotting.  

It has also been shown that thrombomodulin in complex with thrombin activates 

thrombin activatable fibrinolysis inhibitor (TAFI) by 1250 fold [72].  Activated TAFI is  a 

plasma procarboxypeptidase B that stabilizes clot by down regulating fibrinolysis [76]. Activated 

TAFI catalyzes the removal of lysine residues from the C-terminal of fibrin, resulting in 

elimination of plasminogen binding site of fibrin, subsequently plasminogen is unable to activate 

and prevention of fibrinolysis [79, 80]. This function of thrombomodulin might seem 

contradictory to its pro-fibrinolytic function previously discussed, but this highlights that 

thrombomodulin is a key regulator in coagulation, since it controls both the formation and 

breakdown of clots.  

Thrombomodulin is anchored on the luminal surface of the endothelium and as 

previously indicated, thrombomodulin lacking the cytoplasmic domain appeared normal. 

Thrombomodulin undergoes endocytosis and degradation, but a significant amount of it is 

cleaved off and it is found in blood. Thrombomodulin found in blood is heterogeneous in size, 

due to differences in glycosylation [81, 82] and proteolysis. Four different fragments have been 

isolated from blood and seven fragments ranging in size from 12 to 100kDa after reduction of 

disulfides [83] . The concentration of thrombomodulin in serum and plasma are reported to be 

between 3 to 300ng/mL [84]. In diseases like diabetes and lupus high levels of thrombomodulin 

in plasma have been reported, this is believed to be a good marker for endothelial damage [198].  



77 
 

Studies have correlated high plasma thrombomodulin levels to be associated with a low risk of 

developing coronary heart disease [198]. 

The fourth and the fifth EGF like domains of thrombomodulin consists of 81 amino acids 

in together, and the fifth domain contains most of the residues that bind to thrombin [87]. The 

EGF like domain 4 and 5 (TMEGF45) bind to thrombin more tightly than EGF 5 alone. 

TMEGF45 is the smallest fragment of thrombomodulin that when bound to thrombin can 

activate protein C. Addition of fourth and the fifth EGF-like domains separately, do not activate 

protein C, suggesting they work together in activation of protein C [88].  The kcat values for 

protein C activation by the thrombin-TMEGF45 complex, calculated by binding kinetic studies 

and cofactor activity assays, shows TMEGF45 has full cofactor activity. The EGF like domain 

six increases the Km value of thrombomodulin for thrombin by factor of ten, despite not altering 

the Kcat value of  thrombin-thrombomodulin complex for protein C [89].    

 The EGF 4 and 5 of thrombomodulin is linked together by three residues, and one of 

them is methionine, which is the 388
th

 residue in thrombomodulin (Met388). Met388 in 

thrombomodulin is conserved in bovine, mouse and human. The mutation of Met388 to any 

other residues, except leucine, decreases the anticoagulant cofactor activity of thrombomodulin 

[91].  More importantly, there is 76-90% loss of activity when Met388 is oxidized using H2O2 

[92].  There are four other methionine residues found in thrombomodulin, but their oxidation 

does not disrupt the ability to activate Protein C [92]. The Kd of thrombomodulin thrombin 

interaction increases to 10.9 from 4.4nM, when a full length thrombomodulin had oxidized 

Met388 [93]. TMEGF45 with oxidized Met388 has 3.5 fold lower Kcat, and 3.3 fold higher Km 

values when compared to wild type TMEGF45 based on protein C activation assays [94]. It must 

also be mentioned that clot stabilizing activation of TAFI by thrombin-thrombomodulin complex 
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is unaffected by the oxidation of Met388 [95]. Since the activation of clot stabilizing activated 

TAFI, a procoagulant pathway, is unaffected by Met388 oxidation, while activation of protein C, 

an anticoagulant pathway, is suppressed by oxidation of Met388, there is no question that 

methionine oxidation favors coagulation. Although the effects of oxidation of Met388 on 

activation of protein C and TAFI were demonstrated in vitro, it seems likely that oxidation of 

Met388 in vivo would lead hemostasis towards coagulation.  

 Our hypotheses state that the oxidation of methionine 388 in thrombomodulin is higher in 

smokers when compared to non smoker. It is our belief that this oxidation is a key molecular 

cause of the prethrombotic state in smokers and thus a critical factor in the development of 

thrombosis and premature death in smokers. The case for relationship between smoking and 

oxidation of thrombomodulin as an important player in cardiovascular diseases has also been 

published by the Fernández group [117]. The circulating levels of protein C was compared in 

smokers and non smokers, activated protein C was 23% lower in smokers than nonsmokers. One 

of the possible causes of low levels of protein C could be due to the reduced thrombomodulin 

activity in smokers, probably due to methionine 388 oxidation.   We have successfully purified 

significant quantities of thrombomodulin from urine from multiple donors, both smokers and non 

smokers, and quantified the relative oxidation levels in them.    
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Materials and Methods 

The University of Arkansas Institutional Review Board approved all experimental 

protocols using human subjects.  Samples of the first morning urinate were collected by 

volunteers in 400 mL centrifuge bottles. Thiodiglycol (5 mL) and 0.5 M EDTA (1 mL, pH 8.0) 

were added to containers before sample collection. The collected samples were transported using 

an insulated bag containing an ice pack. The samples were generally transported to the 

laboratory within two hours of collection and stored at 4°C for no longer than 2 hours before 

further processing to minimize the opportunity for oxidation. Typical volumes of the sample 

from a donor ranged from 200-550 mL. Prior to processing, 1 mL of sample was removed and 

stored in -80°C for determination of the initial thrombomodulin concentration in the sample. The 

samples were centrifuged in a Sorvall GS-3 rotor at 4,000 rpm for 30 min at 4°C. The samples 

were then filtered using a bottle-top 0.22 µm polyethersulfone (PES) membrane filter to remove 

remaining particulates and cellular debris. Sufficient 0.25 M imidazole acetate buffer, pH 6.0 

was added to the urine filtrate to bring to a final concentration of 25 mM imidazole acetate. Next, 

the pH of the sample was adjusted to 6.0 by addition of 2 M acetic acid or 6 M NaOH depending 

on the urine sample. Typically after the addition of 0.25 M imidazole acetate buffer, the pH of 

the samples ranged from pH 5.5-6.4.The pH of the sample was measured using a pH electrode. A 

slurry of Q Sepharose FF (GE Healthcare) was poured into a 50 mL Bio-Rad Econo column in a 

sufficient amount to pack a 20 mL bed volume.  A Fluid Metering, Inc (FMI) pump was 

connected to the Bio-Rad column to pump buffer and urine sample through the Q Sepharose FF 

column at a constant speed of 5 mL/min. The column was first equilibrated with 60 mL of 25 

mM imidazole acetate buffer, pH 6.0. Next, the urine sample was passed through the column. 

The column was washed with 50 mL of 25 mM imidazole acetate buffer, pH 6.0 and then by 
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addition of 20 mL of 25 mM imidazole acetate buffer, pH 6.0, 50 mM NaCl. Fractions 

containing thrombomodulin were eluted by addition of 50 ml of 25 mM imidazole acetate buffer, 

pH 6.0, 0.5 M NaCl. The 0.5M NaCl fractions were collected in 15 mL conical tubes, 5 mL in 

each tube. The eluent after addition of 25 mL of 25mM imidazole acetate buffer, pH 6.0, 0.5 M 

NaCl, tested positive for thrombomodulin. A solution of 0.2 M L-methionine (Sigma-Aldrich) 

was added to thrombomodulin containing fractions to a final concentration of 2 mM methionine. 

The fractions were transferred to 1.5 mL microcentrifuge tubes, typically 14 tubes, and flash 

frozen in liquid nitrogen. The frozen eluent in 1.5 mL microcentrifuge tubes was dried under 

vacuum in a SpeedVac concentrator system using medium heat.   

Reverse phase HPLC purification 

The dried samples from ion exchange were pooled and dissolved in minimum volume, 

generally 5 mL of total volume, of 18.2 megaohm deionized water. The dissolved sample was 

passed through a 25 mm syringe filter with 0.2 µM PES membrane (VWR).  The redissolved 

sample was injected into a reverse phase Waters HPLC system. An Atlantis dC18, 5 μm particle, 

4.6x250 mm column held at 58°C and a 2996 photodiode array detector monitoring 214 nm and 

254nm was used. The maximum volume that could be injected into Atlantis dC18, 5 μm particle, 

4.6x250 mm column per run is 1.4 mL. The total volume of the sample to be injected into the 

HPLC was 5 mL, 4 different HPLC runs had to be performed to purify entire sample. Upon 

injection, a gradient was run at 1 mL/min from 10 to 29% acetonitrile, 0.1% trifluroacetic acid 

over 12 minutes, and then from 29% to 40% acetonitrile over the next 11 minutes, and then from 

40% to 90% acetonitrile over the next 25 minutes. Eluent was collected in 1 mL fractions in 1.5 

mL microcentrifuge tubes, to which were previously added 100 uL of 200 mM Tris buffer, pH 

8.0. The thrombomodulin containing fragments, identified by ELISA, typically eluted at 30 
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minute. Thrombomodulin containing 1.5 mL microfuge tubes were flash frozen in liquid 

nitrogen, dried under vacuum in a SpeedVac concentrator system using medium heat.  The HPLC 

Atlantis column was cleaned using 1.0 mL/min of 90% MeCN/0.1% TFA for 10 minutes, 

followed by equilibration for 15 minutes to the starting conditions of 1.0 mL/min of 10% 

MeCN/0.1% TFA in preparation for the next injection. 

Digestion of thrombomodulin 

The dried thrombomodulin containing fractions from the reverse phase chromatography 

were pooled and dissolved in approximately 100 uL of 1X phosphate buffered saline (PBS; 1.46 

mM KH2PO4, 9.9 mM Na2HPO4, 2.68 mM KCl, 137 mM NaCl, pH 7.4). Based on the previous 

attempts with chymotrypsin digestion of thrombomodulin after HPLC purification, we observed 

the samples that were cloudy did not undergo digestion with the protease. The samples that were 

cloudy prior to digestion were spun in a microcentrifuge (Galaxy 14D VWR) at 13K RPM for a 

minute. The supernatant was removed. The precipitate was dissolved in 75 µL of 1X phosphate 

buffered saline, and was used for digestion. Freshly prepared tris-carboxyethylphosphine (TCEP) 

was added to make the final concentration of 50 mM TCEP. 10 µL of 0.5 M sodium phosphate 

buffer pH 7.5 added to the sample, prior to addition of 500 units of PNGase F (New England 

Biolabs). The samples were incubated at 37°C for 4 hours to deglycosylate the sample. The 

protein was then digested at 30°C for 8 hours after adding 4.1 μg of sequencing grade 

chymotrypsin (Princeton Separations) dissolved in 50 mM Tris-HCl, 1 mM CaCl2, pH 8.0. The 

chymotrypsin was inactivated by placing the samples in a 100°C dry bath for 30 seconds. The 

samples were immediately flash frozen, and stored in -20°C until further processing.   
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Mass spectrometry analysis of methionine 388 oxidation 

The semi quantification of oxidized and reduced forms of peptide in the chymotrypsin 

digested thrombomodulin was conducted by matrix-assisted laser desorption/ionization 

(MALDI) mass spectrometry. The MALDI analysis was performed by the Statewide Mass 

Spectrometry Facility located at the University of Arkansas. The pure samples were mixed with 

the MALDI matrixes. The two types of matrixes used were alpha-cyano-4-hydroxycinnamic acid 

(CHCA) and 2,5-dihydroxybenzoic acid (DHB) (Sigma Aldrich).  MALDI-TOF mass spectra 

were obtained on a Bruker Ultraflex II (Bruker Daltonic GMBH, Bremen, Germany) time-of-

flight mass spectrometer operated in the positive-ion reflectron mode.  The accelerating voltage, 

delayed extraction time, and laser power were adjusted to optimize sensitivity and resolution for 

ions between m/z 500 – 4000. 

UPLC injections of synthetic peptide 

The stock solution of the synthetic peptide was diluted using 18.2 megohm water to make 

following concentrations: 100, 10, 1, and 0.1 mM. Injections of 25 uL of each of these solutions 

were performed on the Waters ACQUITY UPLC system, detector monitoring 214nm. A BEH 

130 C18 1.7 µm 2.1x150 mm, reverse phase column heated to 45°C, 0.2 mL/min flow rate was 

used to separate the peptide mixture.  The eluent was started at 10% MeCN/0.1% TFA and 

transitioned to 20% MeCN/0.1% TFA in a linear gradient over two minutes.  Over the next 25 

minutes, a linear gradient from 20% MeCN/0.1% TFA to 90% MeCN/0.1% TFA was run. 
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Results and Discussion 

This study was undertaken to quantify the relative oxidation of methionine 388 of 

thrombomodulin from smokers and non smokers. Cigarette smoke is a complex mixture of 

chemical compounds, including high concentrations of reactive oxygen species and reactive 

nitrogen species [12]. Also important is the secondary oxidative stress triggered by ROS and 

RNS from cigarette smoke. The lungs of cigarette smoker are exposed to primary and secondary 

oxidation from cigarette smoke. Since thrombomodulin is predominantly found in the lungs, we 

hypothesize that in smokers it is subjected to significant levels of oxidation from cigarette 

smoke.     

There are several challenges associated with quantifying the oxidation of 

thrombomodulin purified from urine. The thrombomodulin is cleaved into fragments prior to its 

circulation in the urine and combined with the heavy mass of the fragments make direct 

quantification impossible. Also, the thrombomodulin is heterogeneous in size due to differences 

in glycosylation [81, 82]. Peptide mass fingerprinting provides a significantly easier alternative 

compared with working with bigger protein fragments. In this technique the protein of interest is 

cleaved, and the mass of the resulting fragments is measured using mass spectrometer.  

Chymotrypsin digestion of thrombomodulin results in the fragmentation of the protein 

into several peptides. Among the peptides of digest, the peptide APIPHEPHRCQMF is the prime 

interest for the purposes of this study. This peptide is composed of residues 377-389 of 

thrombomodulin. The second to the last methionine residue corresponds to the 388
th

 residue. In 

the naturally occurring thrombomodulin this peptide can exist in two different forms; 

APIPHEPHRCQMF and APIPHEPHRCQMoxF. The former is a relatively non polar peptide and 
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its isotopically averaged mass is 1562.73 Da. The latter is more polar than its counterpart, and its 

mass is 1578.74 Da.  

Depending on the state of methionine 388 of thrombomodulin, the chymotrypsin 

digestion should result in differences in the resulting peptides. If the methionine 388 is 

exclusively present in the reduced state, the digestion will only produce APIPHEPHRCQMF. In 

the case of methionine completely oxidized to methionine sulfoxide, the digestion results in 

exclusive presence of APIPHEPHRCQMoxF. If the methionine 388 is partially oxidized the 

resulting digest will have presence of both oxidized and the reduced forms of the peptide. The 

presence of either forms of the peptide can be confirmed by MALDI-TOF. The MALDI-TOF 

measurement also provides the relative signal intensity of the peptides in the sample. The 

intensity of the signal from each peptide is proportional to its concentration in the sample.  

Comparing the intensity of different peptides can be problematic though, because each peptide 

has a different tendency to ionize and thus be detected.  Nevertheless, the intensity of reduced 

and oxidized peptide in MALDI-TOF measurement can be used to calculate the approximate 

ratio of oxidized and reduced forms of APIPHEPHRCQMF in thrombomodulin. Figure 3.1 is 

MALDI-TOF spectra of digested thrombomodulin purified from urine. This urine sample was 

collected from a 28 year old male smoker.  The intensity of the signal from the reduced peptide 

is approximately three fold higher than that of the oxidized form in this particular sample.  
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Figure 3.1: MALDI-TOF mass spectra of chymotrypsin digested thrombomodulin purified from 

urine. Urine sample was collected from a 28 year old male smoker. 

UPLC injections of synthetic peptide 

Acquity UPLC offers increased resolution, sensitivity and speed when compared to 

HPLC. It uses small particle columns (1.7 µm – 1.8 µm), which improves system efficiency by 

producing better resolution, and also lowering the analysis time. This system is designed to 

minimize band spreading resulting from the column and also from the instrument. The stock 

solution of the synthetic peptide APIPHEPHRCQMF (Sigma) was diluted with 18.2 megohm 

water to make 100, 10, 1, and 0.1 mM solutions. The commercial peptide is mixture of both 

oxidized and reduced peptides, APIPHEPHRCQMoxF and APIPHEPHRCQMF. 25 uL of each of 
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the diluted solutions were injected into the Waters ACQUITY UPLC System. This system is 

much more suitable for quantitative analysis than MALDI. The accurate ratio of reduced and 

oxidized peptide in each of the solution can be obtained by using the UPLC. The relative area 

occupied by the reduced and the oxidized peptide in the UPLC chromatogram can be used to 

calculate the ratio of the peptides in each solution. Figure 3.2 is the Acquity UPLC 

chromatogram of 25 µL injection of 1 mM synthetic peptide. The ratio of reduced and oxidized 

peptide in 0.01 M synthetic peptide solution is 3.26.  
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Figure 3.2: Acquity UPLC chromatogram of 25 µL injection of 1 mM synthetic peptide. The 

oxidized and reduced peptide elute at 11.2 and 18.7 min respectively. The area occupied by the 

oxidized and the reduced peptide is 23.47% and 76.53%. The synthetic peptide purity was >85%, 

hence the presence of other peaks in this chromatogram.  
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Peptide 

concentration(mM) 

Area of reduced 

peak (%) 

Area of oxidized 

peak (%) 

Ratio of 

peptides 

100 76.49 23.51 3.25 

10 76.46 23.54 3.25 

1 76.53 23.47 3.26 

0.1 76.58 23.42 3.27 

 

Table 3.1: Ratio of the reduced and oxidized peptides in different concentrations of synthetic 

peptide, acquired using a Waters Acquity UPLC.  

    

Table 3.1 shows the ratio of the reduced and oxidized peptide in 100, 10, 1, and 0.1 mM 

solutions of the synthetic peptide. The ratio of reduced and oxidized peptide in each solution was 

calculated using the relative area occupied by each peptide in the UPLC chromatogram at 214 

nm absorbance. Since sulfoxide does not absorb significantly at this wavelength, the amount of 

material present in each peak should be directly proportional to the peak areas.  In the UPLC 

chromatogram of 100 mM synthetic peptide, the reduced and oxidized peptide occupied 76.49% 

and 23.51% area respectively. Based on that information, the ratio of reduced and oxidized peak 

in the 100 mM solution was calculated to be 3.25. The mean ratio for the four different solutions 

was 3.25 with a standard deviation of 0.01.    
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We attempted to use Acquity UPLC to directly quantify the oxidation of methionine 388 

of thrombomodulin purified from urine. The synthetic peptide mixture was injected into the 

UPLC to map the peptide. Under these conditions, the oxidized and reduced peptide elute at 12 

and 21 min respectively (Figure 3.3).  
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Figure 3.3: Acquity UPLC chromatogram of the commercial peptide mixture. 

APIPHEPHRCQM(ox)F elutes at 12 min and APIPHEPHRCQMF elutes at 21 min. 
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The chymotrypsin digested urinary thrombomodulin was injected into the UPLC system. 

Unfortunately, there were several contaminating peptides that eluted very near or even co-eluted 

with the peptide of interest. Despite trying numerous elution profiles, the resolution necessary to 

calculate the relative area occupied by the oxidized and the reduced peptide often could not be 

achieved using the UPLC.  The digested samples had slightly different elution times from the 

synthetic peptides and co-injected samples had slightly different elution times still.  These 

problems were exacerbated when of the two peaks was only minimally present.  It was, in those 

cases, difficult to be sure which peak was the one of interest. It is possible that a good UPLC-MS 

system could overcome these difficulties, but attempts to interface our UPLC directly with a 

mass spectrometer failed because none of the mass spectrometers available to us had high 

enough scan rates.  Peaks were often not detected by MS.  The use of UPLC to calculate the 

methionine oxidation was therefore discarded.    
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Figure 3.4: UPLC chromatogram of chymotrypsin digested urinary thrombomodulin of a 26 year 

old Caucasian male non smoker. The two forms of peptide elute at 12 and 21 min respectively, 

notice the contaminating peaks at those times.   
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Figure 3.5: Overlay of UPLC chromatograms. Top chromatogram is of chymotrypsin digested 

urinary thrombomodulin of a 26 year old Caucasian male non smoker, and the bottom 

chromatogram is of synthetic peptide mixture. 

     



94 
 

Accuracy of quantification by MALDI 

Matrix-assisted laser desorption ionization (MALDI) is a powerful technique for mass 

spectrometry of peptides and proteins [178]. This technique provides fast and accurate 

acquisition of molecular mass and purity. Some of the advantages offered by this instrument are 

follows: It is very easy to operate and it is tolerant towards the presence of buffers, salts and 

other additives. It can be used for analysis of compounds with a MW over 300 KDa [199]. It 

ionizes the analytes very softly; usually only M+H
+
 and a small amount of M+2H

+
 ions are 

generated making analysis of mixtures feasible. Briefly, solution of analyte is mixed with the 

matrix (2,5-dihydroxybenzoic acid) directly on a target, and evaporation produces crystals which 

are a mixture of the analyte and matrix. The laser UV pulse is directed on the matrix/analyte 

crystals, matrix ionizes and transfers charge to the analyte, and the ionized matrix and analyte 

vaporize and expands into gas phase. Despite its popularity with analysis of proteins and 

peptides, this technique is considered impractical for the analysis of analytes that have low mass 

and for quantitative analysis [200]. The presence of excess matrix can blanket the low m/z signal 

in the spectrum that corresponds to the analyte with low mass.  

Quantitative analyses are not generally attempted in MALDI because there is not a 

uniform distribution of the sample and the matrix on the surface of the target. This creates a 

variability of the analyte within the matrix, and as a result there is significant variability in the 

peak intensities, baseline, and noise level seen in MALDI spectra from the same sample [200]. 

Another challenge in conducting quantitative studies of complex sample using MALDI is the 

competitive ionization and ion suppression. Some analytes have greater affinity for charge than 

others and they are more competitive in obtaining available proton. For example, peptides that 

terminate in arginine have higher affinity in charge when compared to peptide that ends with 
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lysine [201]. However, for our purposes the difference in ionization efficiency of different 

components in the sample is less important, since we are only interested in two versions of a 

single peptide. Also, to enhance the quantitative ability of MALDI, alpha-cyano-4-

hydroxycinnamic acid (CHCA) was used as a matrix to produce an ultrafine homogenous 

sample-matrix composition.  It showed better sensitivity and reproducibility compared to 

traditional dried droplet preparations using 2,5-dihydroxybenzoic acid (DHB) [202, 203].     

The accuracy and the precision of MALDI-TOF can be directly tested using synthetic 

peptide APIPHEPHRCQMF. The commercial peptide is mixture of both oxidized and reduced 

peptides, APIPHEPHRCQMoxF and APIPHEPHRCQMF. The stock peptide was diluted using 

18.2 megohm water to prepare 100, 10, 1, and 0.1 mM solution of the synthetic peptide. These 

solutions were sent for MALDI analysis. For each sample, three different sample-matrixes were 

prepared, and each of the sample/matrix was subjected to approximately 5000 shots. Table 3.2 

shows averaged intensity values from these 5000 shots for reduced and oxidized peptide in 100, 

10, 1, and 0.1 mM solutions of the synthetic peptide. MALDI of 1 µL (5 pmol) of 0.01 mM 

synthetic peptide did not produce a detectable signal for oxidized peptide. 
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Peptide 

concentration 

(mM) 

Intensity of Reduced 

Peptide (A.U) 

Intensity of Oxidized 

Peptide (A.U) 

Ratio of 

Intensities 

(red/ox) 

100 14000 1000 14 

10 12500 1500 8.3 

1 5400 1000 5.4 

0.1 2300 250 9.2 

 

Table 3.2: The average MALDI spectra intensities of reduced and oxidized synthetic peptide in 

four different solutions. Three sample-matrixes were mixed for each solution, and each sample-

matrix was subjected to approximately 5000 shots. The table provides average values from these 

shots (A.U = arbitrary units).  The fourth column is the ratio of the second and the third column. 

MALDI of 1 µL of 0.01 mM solution of peptide did not produce a signal for oxidized peptide. 
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The 100, 10, 1, and 0.1 mM solutions of the synthetic peptide were prepared by serial 

dilution of the stock solution of the synthetic peptide. The ratio of reduced and oxidized peptides 

in each of the solutions should be same even after the dilutions. The fourth column on Table 3.2 

provides the ratio of the two forms of peptides in each of the solutions, the mean of the ratios is 

9.2, and standard deviation is ± 3.6. Clearly, the Acquity UPLC system is much more suitable for 

quantitative analysis compared to MALDI and, when it was used to measure the mean ratio of 

reduced and oxidized peptide in each solution (Table 3.1), the calculated mean was 3.25. With 

such low accuracy and precision, the use of MALDI for quantification of two forms of peptide in 

a sample is challenging. MALDI overestimates the amount of the reduced form and the 

measurement is much more variable.  However, if the differences in thrombomodulin methionine 

388 oxidation in cigarette smokers and non smokers are large enough, these weaknesses do not 

prevent detection of dissimilarities. 

Relative methionine oxidation in smokers and non smokers   

There are a few definitions we use to classify our donors. A cigarette smoker is someone 

who has been smoking for at least the past six months, smokes a minimum of 5 cigarettes per 

day, and does not smoke anything other than tobacco (e.g. marijuana).  A non-smoker is 

someone who has not smoked in over six months and does not use any other form of tobacco and 

is not heavily exposed to secondhand smoke. A never-smoker is a non-smoker that has never 

smoked. A secondhand smoker is an otherwise non-smoker who is heavily exposed.  A former 

smoker is someone who has not smoked for least six months. 

 We wanted to minimize the variables that are linked with oxidation in this research. For 

example, a donor who has diabetes would be under increased oxidative stress, and such condition 
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would increase the uncertainty of our results. The donors were carefully screened to eliminate 

the ones who could be under greater oxidative stress than normal. Potential donors with known 

history of cardiovascular diseases, diabetes, high blood pressure, hyperhomocysteinemia, severe 

arthritis, renal failure, current use of anti-coagulants, recent surgery, extreme use of over-the-

counter anti-oxidant vitamins, chronic allergies or infection, and pregnancy were excluded from 

this study.  

In this study a smoker donor was matched with non-smoker control, and the difference in 

methionine 388 oxidation between the two was measured. It was very important to minimize the 

variables that affect oxidation in the smoker and the control. In our study smokers were matched 

with controls based on age, gender, and race. We understand that the oxidation of 

thrombomodulin could be affected by multitude of factors such as diet, differences in expression 

of repair proteins, variability in expression of thrombomodulin, and many other possibilities, and 

it would be impossible to eliminate all variables between the smokers and the control.     

The oxidation of methionine 388 of thrombomodulin was studied in six non smokers (Table 3.3) 

and 13 smokers (Table 3.4). In the two out of six non smokers the MADLI spectra did not report 

the presence of oxidized peptide. The average ratio of reduced and oxidized peptides in four non 

smokers was 1.5. The concentration of reduced peptide was higher. Conversely, six of the 

thirteen smoker subjects did not have reduced peptide in the MALDI spectra (Table 3.4). The 

average ratio of reduced and oxidized peptide for the seven smokers was 0.58. The ratio of 

oxidized peptide was higher in cigarette smokers. The reduced/oxidized ratio and percent 

oxidation in Tables 3.3 and 3.4 must not be taken literally.  We know that MALDI tends to either 

overestimate the level of reduced peptide or underestimate the level of oxidized peptide or some 

combination of both.  In other words both non-smokers and smokers are likely to be actually 
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much more oxidized than the values in the two tables indicate.  However this systematic error is 

similar for both populations.  While we cannot say exactly how much the oxidation levels differ, 

we can examine whether the differences observed are statistically significant. 

The presence of completely reduced peptides in two non smokers, and presence of 

completely oxidized peptide in six smokers and the relative ratio of the two forms of peptides in 

smokers and non smokers clearly indicate that the methionine 388 of thrombomodulin in 

cigarette smoker is significantly oxidized in smokers. In order to perform the t-test, we revisited 

each of the MALDI spectra of digested thrombomodulin and recorded the noise level. The noise 

level was multiplied by the factor of 2.5. This value was assigned for the peptide which was not 

detected in the MALDI spectra.  This, of course, is a very conservative estimate for the amount 

of the peptide that was not detected and most of the actual values are likely much less than this.    

The ratio of the reduced to oxidized peptide MALDI data from smokers and non smokers passed 

the Shapiro-Wilk test for normality (P=0.068) and an equal variance test (P=0.111). Statistical 

comparisons were performed using Student's t-test (t= 3.72, P=0.001). Thus, there is a very 

statistically significant difference between thrombomodulin methionine 388 oxidation in 

smokers and non smokers, despite using very conservative estimates.  
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Figure 3.6: MALDI-TOF spectra of chymotrypsin digested urinary thrombomodulin of 25 year 

old caucasian male never smoker (Donor code: NS 36, Table 3.3). The spectrum shows presence 

of both reduced and oxidized peptides. The signal to noise ratio is greater than 10 for both forms 

of peptide.  

 

 

 

 

 

 



101 
 

.  

 

Table 3.3 : MALDI spectra values of oxidized and reduced peptides in non smokers. NS = Non 

smoker, ND = Not Detected, Red = Reduced, Ox= oxidized, A.U. = arbitrary units, M = male, F 

= female, C = Caucasian 
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Table 3.4: MALDI spectra values of oxidized and reduced peptides in cigarette smokers. CS = 

cigarette smoker, ND = not detected, Red = reduced, Ox= oxidized, M = male, F = female, A.U 

= arbitrary units, C = Caucasian, SEA = South East Asian. Daily intake is the number of  

cigarettes smoked per day.  Noise is the background noise of the spectra. % oxidized is the 

percentage  of oxidized peptide. 
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 It is necessary to consider what the effects are of assuming that the amount of any peak 

that is not detected is equal to 2.5 times the noise level.  Again, this is a conservative assumption 

that has the effect of making the average non smoker seem more oxidized and the average 

smoker less oxidized.  This moves the two averages toward each other, but also tends to make 

them more normally distributed.  If we assume that the peak that is not detected is present in the 

same amount as the noise level (data not shown), the data are no longer normally distributed, 

failing the Shapiro-Wilk test.  However, using the non-parametric Mann-Whitney Rank Sum test 

we discover, unsurprisingly, that the difference in the median values of the two groups (Red/Ox 

median non smoker 2.043; smoker 0.308) is still greater than would be expected by chance 

(P=0.002).   

In a few cases a peak was detected which was greater than the noise level but not 2.5 

times larger.  We examined the effect of excluding these individuals entirely if both peaks were 

below this cut-off while if just one of the two peaks was detected, but below 2.5, increasing it to 

2.5 the noise level.  The data passed the Shapiro-Wilk test (P=0.516) but failed the equal 

variance test, presumably because only three values were left for the non smokers.  However, the 

Mann-Whitney test still showed that the difference (Red/Ox median non smoker 2.498; smoker 

0.310) between the two groups was quite significant (P=0.015). Clearly, there is a stastically 

significant difference between the two populations. 
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Possible Future Work  

In the future we would like to expand this study to greater numbers of participants to 

determine how oxidation varies for the many permutations of smoking behavior.   We plan to 

recruit smokers with a wide range of cigarette consumption habits.  We expect a relationship 

between higher levels of smoking and higher oxidation, and our hypothesis would be further 

supported if we can establish there is a dose dependent curve. While conducting this study, we 

expect some donors to display variably that would not be consistent with dose dependent curve.  

Determining the degree to which there is variability which is not explained by the amount of 

smoking is very important. It is possible that some individuals resist the oxidation of 

thrombomodulin better than others.  This could be due to multitude of factors some of which 

could be diet, environment, differential expression of repair proteins, and differential expression 

of thrombomodulin. Identification of such individuals offers extension of this research project. 

Firstly, we would identify the factors that make them vary from normal smoking behavior. Next 

steps would be identifying how influential individual factors are by themselves, and eventually 

their effects in myriad permutations and combinations.    

Pipe and cigar smokers typically do not inhale the smoke, and that differentiates them 

from cigarette smokers. We are interested to see how pipe and cigar smoke affects 

thrombomodulin. Since these smokers typically do not inhale the smoke this offers a very useful 

avenue for testing the hypothesis that the bulk of thrombomodulin oxidation in cigarette smokers 

is localized to the lungs.  It would be informative to recruit smokeless tobacco users, and 

compare the thrombomodulin oxidation levels. 
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The American Heart Association has concluded that passive smoking is an important risk 

factor for heart disease in both adults and children [204]. AHA estimates 22,700 to 

69,600 annual premature deaths from heart and blood vessel disease are caused by passive 

smoking [205]. We would like to examine the effects of secondhand smoke on non-smokers, by 

recruiting donors who live with smokers or donors working in a bar.  It is difficult predict 

whether we will be able to detect a measurable, and statistically significant oxidation in 

secondhand smokers, but in light of our research findings, we believe it will be worthwhile to 

quantitate thrombomodulin methionine oxidation in second hand smokers. The degree of 

cigarette smoke is measured by counting the number of cigarettes smoked in a day, however for 

the second hand smoke study we need a quantitative test to record cigarette smoke inhaled by the 

donor. The self reported method by the non smokers are going to be inaccurate due to multiple 

factors some of which are proximity of nonsmokers to smokers, ventilation of the room, and 

individual differences in exposure sensitivity. Nicotine  would be an ideal biomarker for this 

study, however it has a half life of 2 hours making it unsuitable [206]. Nicotine from tobacco 

smoke when taken into the lungs enters into the bloodstream. When nicotine in the blood stream 

reaches liver it is processed into cotinine, which is the principle metabolite of nicotine from 

tobacco smoke.  Cotinine and has been documented to be a sensitive and specific marker for 

tobacco exposure [207]. It is found in saliva, plasma and urine [208].  Urinary cotinine 

concentration has been shown to be accurate biomarker for tobacco exposure [208-210]. The 

degree of cigarette smoke exposure of the passive smoker can be measured using cotinine 

ELISA. The thrombomodulin methionine 388 oxidation is passive smokers can be studied using 

our current protocol combined with cotinine as a biomarker.    
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The MALDI spectra of chymotrypsin digested thrombomodulin from non smokers and 

smokers gave us insight into methionine 388 oxidation. We have established that methionine 388 

of thrombomodulin in smokers is more oxidized, and we propose that the oxidation of 

methionine 388 in thrombomodulin could be one of the key molecular causes for cardiovascular 

diseases in cigarette smokers. The immediate extension of this research would be to find 

treatment that would reduce the oxidized methionine 388 of thrombomodulin. Since cigarettes 

are the ones imposing oxidative stress the first step towards treatment would be for a smoker to 

quit smoking cigarettes. We could set up an experiment where a smoker is willing to quit 

smoking. The urine samples will be collected at frequent intervals before and after the donor 

quits. The samples would be collected for six months from the date the smoker quits smoking, 

with cotinine tests to verify abstinence. The MALDI data collected over that span will be 

analyzed to see if there are any changes to the oxidation levels of methionine. We speculate that 

the oxidation levels to decrease. Six months ago we found a donor who volunteered to quit 

smoking cigarettes for this study. Urine samples were collected for a span of 1 month before the 

donor quit smoking, and samples have been collected at a frequency of 3 weeks interval. The 

urine samples have undergone reverse phase HPLC step of purification, and are currently stored 

in -20˚C. When the donor completes 6 six months without smoking, the stored samples will be 

subjected to chymotrypsin digestion and will be sent for MALDI analysis. We are actively 

looking for donors who plan on quitting smoking. In the past few months we have found three 

donors who planned on quitting, and two of them did quit, but only for the span of 1-2 weeks. 

We could approach smoking cessation clinics to recruit smokers trying to quit.  The state of 

Arkansas has chosen to use some of its tobacco settlement money to subsidize the cost of 

clinically proven programs, which means that there are a number of fairly popular and successful 
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programs working in the area. Experiments where many permutations of donors who quit 

smoking could be designed based on age, sex, race and degree of smoking, and compare each 

factor towards recovery. For comparison, if we could find a donor who intends to pick up 

smoking would provide us insight on rate at which cigarette smoke oxidizes methionine 388 of 

thrombomodulin.  

Annually 437,900 people are killed by diseases caused by smoking, and 35% of those 

deaths are cardiovascular related [20]. Cigarette smoke is the major cause of pulmonary 

emphysema [21], bronchitis, myocardial infarction, and stroke as well as lung cancer. Four 

million people die every year from tobacco smoking related diseases worldwide. It has been 

estimated that 2 billion people use tobacco products [22].  Approximately 64.5 million people in 

the USA are active smokers, between 1995-1999 the estimate of deaths that resulted from 

smoking and exposure to secondhand smoke was approximately 440,000 annually [23]. Cigarette 

smoking ranks number one in the list of preventable disease and death worldwide. In 2004, 

cigarette smoking cost the United States over $193 billion, this number includes $97 and $96 

billion from loss in productivity and in direct health care expenditures respectively [211]. The 

average cost to the government was $4,260 per adult smoker [211]. As we have mentioned 

previously, we propose methionine 388 oxidation is one of the key molecular mechanism for 

development of cardiovascular diseases in smokers. Treatment to mitigate or regress methionine 

388 oxidation in smokers has potential to minimize or prevent morbidity and fatality in cigarette 

smokers. We could design experiments where mice are subjected to cigarette smoke for a period 

that would induce cardiovascular like symptoms. Following the development of disease, they are 

treated with antioxidants like apocynin or Tempol [212-214], and the effectiveness of the 

antioxidants is monitored.  
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Prolylcarboxypeptidase (PRCP) is an endothelial membrane-bound serine 

carboxypeptidase responsible for activation of bradykinin and angiotensin [103-105]. Both 

proteins regulate the vascular NO to provide protection from thrombosis. PRCP is indirectly 

involved in maintenance of normal blood pressure and reduction of thrombosis risk. PRCP 

polymorphism has been associated with hypertension and inflammation [106]. PRCP gene-

trapped mice are hypertensive and are prone to faster thrombosis [107]. These mice have 

increased in vivo vascular ROS and uncoupled endothelial nitric oxide synthase (eNOS) and 

reduced expression of vascular thrombomodulin in their aorta [108, 110]. The hypertensive and 

prothrombotic state in PRCP gene trapped mice was abrogated by antioxidant treatment using 

mitoTEMPO, apocynin, and Tempol [107]. The paper demonstrates that the hypertensive and 

prothrombotic state arose from high levels of ROS in PRCP gene trapped mice, and this state 

was reversed by antioxidant treatment. The potential of antioxidants treatment in cigarette 

smokers to suppress smoking related cardiovascular disease is worth exploring.  

Shifting from urinary thrombomodulin, we are also interested in plasma thrombomodulin. 

The level of plasma thrombomodulin has been associated as an indicator of endothelial damage 

in patients with disseminated intravascular coagulation syndrome, pulmonary thromboembolism, 

adult respiratory distress syndrome, chronic renal failure, acute hepatic failure, atherosclerosis 

[121, 215-217]. In one study, plasma thrombomodulin concentrations of smokers and non 

smokers were studied [218]. They found the plasma levels of cigarette smokers was 15% lower 

than the mean. We would like to see if there is any correlation between the concentration of 

plasma thrombomodulin and methionine 388 oxidation in cigarette smokers.   

 



109 
 

Conclusion  

We have shown that methionine 388 is significantly more oxidized in smokers than non-

smokers.  Oxidative damage to the endothelium from the oxidants in cigarette smoke has been 

suggested to be an important factor for the development of cardiovascular diseases in smokers. 

Smokers are in a hypercoagulable state, but this is the first evidence for a specific molecular 

origin of this state. Methionine 388 oxidation has been shown in vitro to have large effects on the 

activity of the thrombomodulin. The mutation of thrombomodulin methionine 388 to any other 

residues, except leucine, decreases the anticoagulant cofactor activity of thrombomodulin [91].  

More importantly, there is 76-90% loss of activity when Met388 is oxidized [92]. We believe 

oxidation methionine 388 of thrombomodulin is one of the key molecular causes of the 

prothrombotic state in smokers and thus a critical factor in the development of thrombosis and 

premature death in smokers. In this chapter we have shown a method allows the semi 

quantitative analysis of methionine 388 oxidation in the thrombomodulin isolated from urine 

sample. This method offers a useful way to compare thrombomodulin oxidation in cigarette 

smokers and non smokers.  In this study we report that methionine 388 of thrombomodulin is 

more oxidized in cigarette smokers than in non smokers, and we propose that one of the 

molecular causes for prethrombotic state seen in smokers is from oxidation of methionine 388 of 

thrombomodulin.    
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