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Abstract 

Death by stroke occurs every four minutes to human beings.  Strokes cause necrosis within the 

tissue of the brain due to deprivation of oxygen.  Perfluorocarbons have the ability to transport 

oxygen to tissue and in return decrease cell death.  Dodecafluoropentane (DDFP) is a volatile 

fluorocarbon and collection in vivo can be a challenge since this compound evaporates at room 

temperature.  There is currently not an efficient collection method in vivo for compounds that are 

volatile.  Without a method to collect DDFP it is impossible to be approved for clinical use since 

exact concentrations of the drug within the body will be unknown.  The current in vitro work 

demonstrates that microdialysis can collect volatile organic compounds, isoflurane (a standard 

inhalation anesthetic) and DDFP.  Different perfusion fluids and flow rates were tested for 

optimal analyte collection through the microdialysis membrane.  Instead of utilizing an aqueous 

perfusion fluid safflower oil and air was passed through the microdialysis probe.  The perfusion 

fluid and flow rate of choice for isoflurane sampling was safflower oil at 0.5 µL/min, 

respectively.  For DDFP there was no significance in flux between flow rates and air was a more 

suitable perfusate.  Since oil was a potential candidate as a perfusion fluid through the 

microdialysis probe, the oil/air partition coefficients (KOil/Air) were calculated.  KOil/Air was 

determined because the analyte in the air phase will partition into the oil phase that is being 

perfused through the microdialysis probe.  The average calculated KOil/Air for Isoflurane and 

DDFP was 10.62 and 0.53, respectively.  These values lead to isoflurane partitioning more into 

oil vs. air and DDFP partitioning more into air vs. oil. The new analytical method described here 

shows that VOC’s can be collected with microdialysis sampling technique and thus serves as a 

starting point for in vivo collections has been found.  
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Introduction   

Significance  

Dodecaflouropentane (DDFP) has been shown to be an excellent candidate for oxygen 

transportation by decreasing the infarct volume in rabbit brain after stroke.
1, 2

  DDFP is a volatile 

organic compound (VOC) that is hydrophobic with low boiling point (bp) of 29˚C.  With such a 

low bp this compound evaporates at room temperature making it challenging to analyze.  There 

is currently not a sufficient method to collect volatile organic compounds (VOC’s) in vivo.  By 

using the microdialysis sampling technique, a real time concentration profile may be determined 

for DDFP and other VOC’s allowing them to proceed to clinical trials.  Before in vivo sampling 

can begin in vitro microdialysis experiments need to be conducted to prove that DDFP and other 

VOC’s can be collected with this microdialysis sampling setup.  

Background  

There are numerous conditions that impair oxygen transportation to tissue.  The 

deprivation of oxygen eventually leads to tissue damage and or death.  Some of these ailments 

are caused by trauma and natural diseases.  A disease that has harshly impacted the world is 

stroke.  This disease has predominantly two forms - ischemic and hemorrhagic stroke.  The 

American Heart Association (AHA) defines a hemorrhagic stroke as when a blood vessel’s 

stability diminishes and causes a fissure in the blood vessel.
3
  The AHA defines an ischemic 

stroke as a blood vessel having a blockage.
4
  This vessel blockage does not allow adequate 

provisions of blood to the brain.  The World Health Organization (WHO) reported that stroke 

and ischemic heart disease was the number one leading cause of death in women in 2011 and it 

has been ranked as the number two cause of death in the world as of 2012.
5,

 
6
   In the United 

States stroke is ranked number four in the leading causes of death.
1
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Dodecafluoropentane Properties and Benefits 

Dodecafluoropentane has the ability to transport and deliver oxygen.  
7
  This fluorocarbon is also 

hydrophobic.  This allows for the fluorocarbon to pass primarily into tissues.
7
  DDFP has an 

average half-life in humans of 2.2±1.2 minutes in blood and a 98±19% recovery at 2 hours from 

the injection into the peripheral vein.
8
  Once DDFP has been injected intravenously it is exhaled 

from the lungs.
9
  The molecule also has a linear geometry allowing it to have a higher affinity for 

O2.
10

 Another interesting characteristic of DDFP is that it can exist as an emulsion.  These 

dodecafluoropentane emulsions (DDFPe) stabilize the compound and are much smaller than 

erythrocytes.
7
 The size of these emulsions range from 250 – 300 nanometers.

1
  The DDFPe have 

been shown to be effective oxygen carriers with rabbit stroke models.
1, 2

  The model 

demonstrated that there was a reduction in the median infarct volume within the brain as shown 

in Figure 1.
1
  

 Stroke is not the only ailment that DDFP can aid.  DDFP has been tested for the 

radiosensitization of Morris 7777 hepatoma.  There was no significant sensitization with just 

DDFP alone but when combined with carbogen the tumor was no longer impervious to 

sensitization.
11

  DDFP has also been recognized as a relevant ultrasound contrast agent.
12

  In an 

in vitro study of DDFP as a contrast agent showed that 98±4% of the clot was almost entirely 

eradicated.
13

  In vivo studies with different thrombolysis in myocardial infarction (TIMI) flow 

grades also exhibited a considerable amount of recanalization when DDFP was combined with 

ultrasound.
13

  This fluorocarbon may also play a role in organ preservation and carbon monoxide 

poisoning in the future.
7, 14
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Fig. 1 demonstrates the infarct volume with triphenyltetrazolium chloride (TTC) staining of 

rabbit brain slices.  The control is shown on the left and the treated (DDFPe) is on the right.  The 

control shows a significant amount of tissue death (3.9%) whereas treated shows very little 

(0.86%). Springer and Molecular Neurobiology, 48, 2013, 364, Progress in Dodecafluoropentane 

Emulsion as a Neuroprotective Agent in a Rabbit Stroke Model, Woods et. al., Figure 1, 2013, is 

given to the publication in which the material was originally published, by adding; with kind 

permission from Springer Science and Business Media" 
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In order for this compound to proceed into clinical trials a real time concentration profile 

needs to be established within the brain tissue.  Current research has only allowed for recovery 

determination from intravenous blood samples and whole tissue sample analysis.  These methods 

lack the ability to produce a real time concentration profile for the brain.  A sampling technique 

that will allow for a real time concentration profile to be established within the brain is 

microdialysis sampling. Since microdialysis sampling will be utilized for collection of the 

analyte there are parameters that need consideration.  The first issue that will need to be 

addressed is the partition coefficient (K).  The analyte will partition between the matrix and the 

perfusion fluid.   To quantitatively determine the concentration of DDFP delivered to the brain 

via intravenous injection the, perfusion fluid/extracellular fluid (ECF) partition coefficients 

needs to be calculated.  Another aspect to consider when using microdialysis is the perfusion 

fluid.  The perfusion fluid or the perfusate is a fluid that is passed through the probe to collect the 

desired analyte.  The analyte will not have the same K value with different perfusion fluids and 

different ECF’s.  When choosing a perfusion fluid there must be thought based upon what tissue 

the sampling is occurring at as well as the properties of the analyte.  For in vitro work with 

DDFP different perfusion fluids (water, safflower oil, and air) were chosen solely on the analytes 

properties.   These perfusion fluids were tested to see if DDFP could be collected in dialysate.  

Water was tested and DDFP was not detected.  This was expected since this compound is 

hydrophobic.  The next perfusion fluid tested was safflower oil.  Safflower oil was tested 

because it is a lipid and DDFP is lipophilic.  The outcome was that safflower oil was able to 

collect DDFP.  The last perfusate tested was air.  Air was chosen under the assumption that 

DDFP would have a higher concentration in the gas phase.  Air also had the ability to collect 
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DDFP.  Once the perfusion fluid was chosen the partition coefficient between perfusate/air will 

be determined and the recovery of DDFP in vitro can be quantified via microdialysis. 

Microdialysis 

Microdialysis is a minimally-invasive diffusion based sampling technique that allows for 

the constant collection of unbound molecules in various matrices (Figure 2).  The ability for the 

continuous collection of a specific analyte is caused from the concentration gradient between the 

perfusate and the fluid at the sampling site.
15

  The perfusion fluid is pushed through the inlet of 

the probe by a syringe that is connected to a pump that controls varying flow rates (0.5-2.0 

µL/min)
16

.  Next the perfusate travels through the semi-permeable membrane of the probe.  The 

length of membrane is 4-10 mm with an outer diameter of 200-500 µm. 
17

  The semi-permeable 

membrane allows molecules from the fluid at the sampling site to diffuse to and from the 

perfusate.
18

 The analyte will then travel from an area of high concentration to low 

concentration.
19

 .  The semi-permeable membrane also comes with a determined molecular 

weight cutoff (MWCO) normally 20 or 100 kDa. The MWCO allows for the ability for only 

certain molecules with that set molecular weight to pass freely across the semi-permeable 

membrane.   After the molecules have traversed the membrane the perfusion fluid transports the 

analyte to a vial where the dialysate is collected.
20

  

The molecules collected from microdialysis sampling technique are most commonly 

small endogenous and hydrophilic molecules such as dopamine and glutamate.
21

 Microdialysis 

has been proven to not only collect endogenous molecules but to also collect exogenous 

molecules such as drugs that are administered into the body.
21

  Another benefit of microdialysis 

is that it can be implanted at various sites for instance, one can sample to a particular site in the 

brain or one can choose to sample in a section of subcutaneous tissue.
22
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Fig. 2 A diagram of microdialysis sampling technique for VOC’s showing the semipermeable 

membrane allowing free molecules to diffuse in and out and travel from high concentration to 

low concentration.  
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Microdialysis is a valuable sampling technique that allows for the collection of analyte at a 

particular site while the animal is awake and freely moving.
15

  

Although microdialysis excels at collecting low molecular weight hydrophilic molecules 

it is not well known for collecting VOC’s.  It has been shown that microdialysis can collect 

VOC’s but with low recoveries.
23

   In the Jones et al. paper, mentioned previously, the recoveries 

obtained from this method for toluene and ethanol were 1.28% and 0.054% respectively. 
23

  

Jones directly connected the inlet of a microdialysis probe to a Helium tank and the outlet of the 

probe was connected to a GC-FID (Gas Chromatography-Flame Ionization Detector) .
23

  Helium 

was Jones choice of perfusion fluid .
23

  Since the compounds for my research are both 

hydrophobic the common aqueous perfusion fluid will repel both DDFP and isoflurane and 

therefore cannot be used. Testing different perfusion fluids and different flow rates with DDFP 

and isoflurane are a necessity to obtain best recoveries and flux data (the amount of mass per unit 

area collected over time).   The flux of these molecules was obtained instead of recovery since 

different flow rates were tested.   

Figure 3 demonstrates how different perfusion fluids will affect mass transport with the specific 

VOC’s presented in this research.  Utilizing water as a perfusate, a polar compound, will cause 

non polar molecules to be repelled.   When working with hydrophobic molecules oil is an option 

because of DDFP and isoflurane are lipophilic.  When testing different perfusion fluids the 

partition coefficient will need to be calculated because there is a potential that there will be 

higher concentrations in the non-water phases as shown in Figure 4. 
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Fig. 3 Displays diffusion/mass transport of molecules with different perfusion fluids.  



9 
 

 

 

 

 

 

 

Fig. 4 When using oil as a perfusion fluid the partition coefficient could be greater than one 

causing an increase in the concentration of the analyte.  
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Partition Coefficient 

The partition coefficient is the distribution of an analyte between two immiscible phases 

as portrayed in Figure 5.  There are a variety of immiscible phases to choose from when 

determining the partition coefficient.  A few common phases are octanol and water, oil and 

water, tissue and blood, and blood and water.  The phases chosen for this research were 

safflower oil and air.  The phases were chosen because of both compounds being lipophilic and 

volatile.     This value can be established by a general partition coefficient Eq. (1).
24

 

  

  
     

     
                                      (1) 

K is the partition coefficient, Cs2 is concentration of solute in phase 2 and Cs1 represents the 

concentration of solute in phase 1. Since DDFP is an extremely volatile compound the detection 

method of choice is headspace gas chromatography with a flame ionization detector (HS-GC-

FID).
25

 Headspace sampling is a very common sampling technique for extremely volatile 

compounds and is applicable in many fields.  With headspace sampling the gas phase above the 

sample is analyzed  (Figure 6).
25
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Fig. 5 An illustration of the partition coefficient.  



12 
 

 

 

 

 

 

 

Fig. 6 A representation of headspace sampling.  A syringe is inserted into the septum of the 

headspace vial and the gas phase is pulled out and injected into the injector port of a GC.  
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When analyzing the partition coefficients of volatile compounds with (HS-GC-FID) other 

equations need to be incorporated.  In Eq. (2) below is the relationship between the partition 

coefficient and HS-GC.
24

  

 

     
  

   
                                 (2) 

 

The peak area is denoted by A which is proportional (α) to the concentration of the gas phase 

(CG), Co is for the initial concentration, and β is for the phase ratio. The phase ratio can be 

calculated from the volume of the gas phase divided by volume of the sample phase or liquid 

phase.  From this equation the partition coefficient can be solved. Now Eq. 1 can be rearranged 

to form Eq. 3 which will allow for the determination of the concentration of solute in phase 2, 

since the concentration in solute 1 is the same as CG.    

 

                                              (3) 

 

Cs represents the concentration in the sample phase.  

 The KOil/ECF of DDFP needs to be measured because there is no way to even be 

semi-quantitative when determining the concentration of the analyte in the ECF phase.  The 

KOil/Air can be calculated separately from the KECF/Air to give the final KOil/ECF.  For DDFP, no K 

values have been reported.   This value can show the distribution of DDFP throughout the body 

and it can show whether or not the molecule is lipophobic or lipophilic.
26,

 
27
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Gas Chromatography 

Gas chromatography is a technique used to separate compounds by means of an 

interaction with a stationary phase while being carried through a column by a gaseous mobile 

phase.  The sample must be volatilized before entering the column this can be done either from 

the compound already being completely volatile or by increasing the injector port temperature at 

or above the bp of the sample.
25

 If the sample is nonvolatile there are processes that the sample 

can undergo to make it volatile, such processes are derivitization or pyrolysis.
28

  Once the sample 

is injected, it will go through the column where the analytes will start to interact with the 

column’s stationary phase depending on the properties of the analytes and the column.  Some 

properties that account for the interaction with the stationary phase of the column are solubility 

and polarity. 
29

 These interactions cause a specific retention time (tR) for analytes.  The tR is the 

time the analytes spend from injection to detection.  Once the compounds leaves the column they 

are transported by the carrier gas directly to the detector.  When the analytes reach the detector a 

signal output is produced in the form of peaks.  The peaks must have good resolution.  

Resolution is the separation of peaks.
30

  A good resolution would be 1.0 and the best resolution 

would be 1.5.   Anything below 1.0 would have a poor resolution and may not be distinguishable 

from other peaks.
30

     A GC can be coupled with many detectors such as a thermal conductivity 

detector (TCD), an FID and electron capture detector (ECD).
28

  In Figure 7 is a schematic of a  

typical GC coupled with and FID.      
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Fig. 7 A GC coupled to an FID.  The sample is injected into the injector port (INJ).  Once in the 

INJ the carrier gas carries the analytes through the column where the analyte then interacts with 

the stationary phase.  Next the analyte is carried to the detector.  
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Methods 

Materials 

Perfluroro-n-pentane (DDFP), (99%, DDFP, CAS no. 678-26-2) was purchased from 

Exfluor Research Corporation, Round Rock, TX.  Isoflurane was obtained from Henry Schein 

Animal Health, Dublin, OH.  LouAna safflower oil (100%) was acquired from Ventura Foods, 

LLC Brea, Ca. Clear headspace vials (20.0 mL) and PTFE blue silicone magnetic screw caps 

(18.0 mm) were purchased from Thermo Fisher Scientific, Waltham, Massachusetts.  Gastight 

syringes (10.0 μL and 100.0 μL) purchased from Hamilton Company, Reno, Nevada.  

Microdialysis probes (CMA 20 Polyethersulfone (PES) membrane, membrane length 10 mm, 

100kDa molecular weight cut-off MWCO) purchased from CMA Microdialysis, Harvard 

Apparatus, Holliston, MA.  Syringe pumps (BASi Bee) were purchased from BASI, West 

Lafayette, IN.  

Detection of DDFP after Collection with Microdialysis  

For the creation of the DDFP samples nine 20.0 mL headspace vials were capped and then 

crimped.  The nine vials were then taken to the cold room (2.8˚C).  Once in the cold room DDFP 

was injected into the headspace vials using a 10.0 μL gas tight glass syringe through the septum. 

The first sets of triplicates were each injected with 2.5 μL of DDFP.  The second sets of 

triplicates were injected with 3.5 μL of DDFP.  The last set of triplicates was injected with 4.5 

μL of DDFP. Next a microdialysis setup was constructed for the detection of DDFP. The setup 

consisted of three pumps with three 1000.0 μL syringes as shown in Figure 8. The syringes were 

filled with the perfusion fluid (safflower oil, LouAna safflower oil (100%)  Ventura Foods, LLC 

Brea, Ca).  Three CMA 20 microdialysis probes with a molecular weight cutoff (MWCO) of 100 

kDa were used.  Each microdialysis probe was inserted into an individual headspace vial by 
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means of an introducer.  An introducer is displayed in Figure 9. After all three probes were 

inserted into the headspace vial the inlet of the microdialysis probe was connected to the needle 

of a 1.0 mL syringe with a connector.  

Next a small piece of fluorinated ethylene propylene (FEP) tubing was inserted into three 

different headspace vials by threading the tubing through the backside of a needle. The needle 

was then inserted into the septum of the headspace vials. The needle was then removed while 

leaving the FEP tubing in the septum as shown in Figure 10.   These headspace vials were used 

as the collection vials.  The FEP tubing was then connected to the outlet of the microdialysis 

probe by a connector.  Once the set up was complete the pumps were set at 2.0 μL/ minute.  Each 

sample was performed in triplicate conditions and ran for 30.0 minutes.  The samples were then 

immediately run on the HS-GC-MS (Varian 450-GC).  The column used was a Varian Factor 

Four VF-5ms capillary column with 5% phenylmethylpolysiloxane (length 30 m, 0.25 mm ID, 

and film thickness of 0.25 µm).  The detector utilized was a triple-quad mass spectrometer 

(Varian 320-MS).  The injector temperature was set to 240 °C, the column was set to 35 °C, and 

the detector temperature was set to 240 °C.  The HS-GC-MS was set to scan for a total ion 

chromatogram from 50-300 m/z with a complete run time of 3 minutes. 
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 Fig. 8 An example of an in vitro microdialysis setup. 
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 Fig. 9 Pictured above from left to right, an introducer, a needle placed into center of introducer, 

insertion of introducer, and insertion of the microdialysis probe into the headspace vials. 
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Fig. 10 From left to right.  The FEP tubing threaded through the backside of the needle, needle 

inserted into headspace vial, and needle removed only leaving FEP tubing in the septum.  

 

 

 

 



21 
 

Isoflurane and DDFP Absorption into Cap 

Three 20.0 mL glass headspace vials were capped.  These capped headspace vials were 

then taken into the cold room and injected with 10.0 µL of isoflurane.  The cold room (2.8 ˚C) 

was used to prevent any loss of isoflurane during the transition of isoflurane to the headspace 

vial.  The headspace vials were then taken back to sit at room temperature (20- 22 ˚C) for 30 

minutes to completely volatilize.  After the compound was had visibly evaporated the first 

injection of isoflurane was made into the injector port. Gas chromatography (GC-2014, 

Shimadzu Corporation) with a flame ionization detector (FID) was used.   All the injections of 

isoflurane into the injector port of the GC were 1.0 μL manual injections. The injector 

temperature was set at 280°C, the column at 60°C, and the detector at 280°C. The column used 

was a 5% phenyl polysilphenylene-siloxane column (SGE column, 30.0 m X 0.25 mm ID-BPX5 

X 0.25  m).  Samples were analyzed every hour from hour zero (initial creation of sample) to 

six.  This same procedure was performed for DDFP.  

Separation of Isoflurane and DDFP 

Nine 20.0 mL screw cap glass headspace vials were capped. Three glass headspace vials 

were injected with 10.0 µL of DDFP with a 10.0 µL glass gas-tight syringe. Three more glass 

headspace vials were injected with 10.0 µL of isoflurane with a 10.0 µL glass gas-tight syringe. 

The last three glass headspace vials were injected with 10.0 µL of DDFP and 10.0 µL of 

isoflurane with a 10.0 µL glass gas-tight syringe. The injections were all completed in the cold 

room (2.8˚C) to prevent any loss during the transition of DDFP and isoflurane to the glass 

headspace vials.  
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For the separation of DDFP and isoflurane the same GC-FID and the same parameters 

mentioned earlier were used.  The injection volume for the two pure compounds and for the 

mixture of the compounds was 1.0 µL with a 10.0 µL glass gas-tight syringe. 

Collection of Isoflurane and DDFP with Oil or Air as a Perfusion Fluid   

A microdialysis setup was created as shown in Figure 11.  The probe was flushed with 

safflower oil at 1.0 µL/min for 1 hour.  Three 20.0 mL glass headspace vials were capped and 

25.0 µL of isoflurane or 100.0 µL of DDFP was injected into the vials with a 100.0 µL gas tight 

glass syringe in the cold room (2.8˚C).  These samples were allowed to sit at room temperature 

(20-22˚C) to completely volatilize for 30.0 minutes.  These vials were labeled “sample vials” 1, 

2, and 3.  Nine 20.0 mL glass headspace vials were capped and labeled in three sets as 

“collection vials” hr 1, hr 2 and hr 3.  An introducer was placed into one of the collection vials 

labeled hr 1.  Another introducer was also placed into sample vial 1 and immediately the 

microdialysis probe was inserted into the vial.  The outlet tubing was also quickly inserted into 

the collection vial labeled hr 1 with an introducer.  Collection vial hr 1 was changed after the 

first hour and replaced with collection vial hr 2 for the second hour.  Finally the collection vial hr 

2 was replaced with collection vial hr 3 for the third hour.  The microdialysis probe was then 

removed and placed into sample vial 2 and the collection vials followed the same procedure for 

the collection vials for sample vial 1.This experiment was repeated with flow rates of 0.5 µL/min 

and 3.0 µL/min.  All collection vials were then analyzed by the GC-FID method.  From each 

sample 1.0 μL of sample from the headspace was removed and injected into the injector port of 

the GC.  A retention time and a peak area were obtained from the GC chromatogram.  .  A 

calibration curve was constructed according to peak areas obtained.  This experiment was also 

conducted with DDFP instead of isoflurane.  This same procedure was carried out for air as a 
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perfusion fluid except for only the first 40 minutes of sampling was taken for analysis and 

different flow rates were ran.  The flow rates chosen to use for air was 10.0 µL/min and 20.0 

µL/min.  These flow rates were chosen based upon a previous experiment.  This experiment 

consisted of placing the outlet of the microdialysis probe in a 10.0 mL beaker filled with water.  

Once the outlet of the microdialysis probe was submerged in the water different flow rates were 

tested to see if air bubbles were produced.  The visible appearance of air bubbles allowed for 

confirmation that we were able to perfuse air through the microdialysis probe.  Any flow rates 

lower than 10.0 µL/min was unable to produced sufficient air bubble production.  
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Fig. 11 A microdialysis setup for the different perfusion fluids, oil or air.  
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Partition Coefficient of Isoflurane and DDFP    

Six 20.0 mLglass headspace vials were filled with 5.0 mL of safflower oil. These glass 

headspace vials were then capped. Once capped the vials were taken into the cold room and 

injected with two different concentrations (10.0 µL and 20.0 µL) of isoflurane by inserting the 

needle of a glass gas tight syringe into the septum of the vials.  These samples were then 

immediately vortexed and left to sit at room temperature for two hours.  Equilibrium was 

determined once the peak areas remained constant at hour 5.  Once equilibrium was established, 

1.0 µL of the headspace from these vials was extracted by using a 10.0 µL glass gas tight 

syringe.  This 1.0 µL headspace sample was then injected into the GC-FID.  A calibration curve 

was created according to the peak areas obtained from the samples. This same procedure was 

also conducted for DDFP.   The partition coefficient was calculated from the average peak areas 

from the triplicate samples in the first hour.  

Results and Discussion  

Detection of DDFP  

In Figure 12 the GC-MS chromatogram shows DDFP with a retention time of 1.47 

minutes with an end run time of 3.0 minutes.  The mass spectrum obtained in Figure 13 displays 

the common fragments of DDFP. The common fragments for DDFP are 69 kDa and 118 kDa. 

The 69 kDa fragment represents CF3
-
. The 118 kDa fragment represents C2F5

-
.  A cross reference 

was done with the NIST/EPA/NIH mass spectral library (2005 version) to verify that indeed this 

was DDFP. The graph shown in Figure 14 demonstrates the linear relationship between the 

changes in concentration within the vial resulting in a specific peak area vs. the concentration 

external to the probe.  With the use of GC-MS DDFP has been identified from the collection 

samples when using microdialysis sampling.  



26 
 

 

 

 

 

 

 

 

  

Fig. 12 GC-MS chromatogram of DDFP having a retention time of 1.47. 
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Fig. 13 This is an electron impact (EI) MS of DDFP with a retention time of 1.47 minutes.  This 

was determined to be DDFP because of the two fragments 69.0 and 118.9 m/z which are the two 

most common fragments for DDFP. 
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Fig. 14 Three different concentrations of DDFP were analyzed by GC-MS to determine whether 

or not collection of DDFP was possible with oil as a perfusion fluid.  The peak areas increased 

with the larger concentrations that were external to the probe. N=3  
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Isoflurane and DDFP Absorption into Cap 

From this point on all experiments were performed using a GC-FID instead of the GC-

MS mentioned previously.  The experiment with the GC-MS was not reproducible even with 

same sample injections.  This was believed to be due to the automatic injection lacking a gas 

tight syringe.  When working with VOC’s it is imperative to work with gas tight syringes to 

prevent loss of sample.  VOC’s have been known to absorb into plastics.
31

  To clarify whether or 

not isoflurane or DDFP were leaking out of the headspace vial or absorbing/adsorbing into the 

cap or glass of the headspace vials a time experiment was conducted.  This experiment was 

performed over a time course of six hours. At each hour the same vial was sampled.   Figure 15 

shows a plot of the output (peak area) vs. time for both solutes.   There was no difference in the 

peak area with respect to time as determined by a repeated measures ANOVA (analysis of 

variance) with a 95% confidence interval.   
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Fig. 15 represents peak area vs. time. The peak areas were obtained from a GC-FID.  Peak area 

displayed no significant change with respect to time determined by a repeated measures 

ANOVA at a 95% confidence interval between hours.  N=3   
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Separation of Isoflurane and DDFP 

The ability to clearly separate isoflurane from DDFP was accomplished by a GC-FID.  

The injector temperature was set at 280°C, the column at 60°C, and the detector at 280°C using 

the software GC solutions.  In Figure 16A, the chromatogram shows that DDFP has a retention 

time of 3.5 and in Figure 16B isoflurane has a retention time of 3.7.  In Figure 17 the two 

compounds are shown to be separated. The calculated resolution for the two compounds was 1.2. 

Since isoflurane is the most common anesthetic for animals it will be expected that isoflurane 

will be collected and detected simultaneously in vivo with DDFP.  The ability to separate these 

two compounds with good resolution allows for the proper determination of concentration of 

these two compounds and the continuation of in vivo work         
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Fig. 16 A GC chromatogram of DDFP and isoflurane A) neat DDFP with a retention time of 

3.5 B) neat isoflurane with a retention time of 3.7.  
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The Flux of Isoflurane and DDFP with Oil as a Perfusion Fluid  

When using oil as a perfusion fluid, the flux obtained for isoflurane at 0.5 µL/min for 

hour 1 was165±10 nmol/min, hour 2 was 124±40 nmol/min, and hour 3 was 73±40 nmol/min.  

When the flow rate was switched to 1μL/min the flux for hour 1 was 38±10 nmol/min, hour 2 

was 26±3 nmol/min, and hour 3 was 16±6 nmol/min.  With a flow rate of 3.0 µL/min the flux 

was 50±10 nmol/min at hour 1, 35±10 nmol/min at hour 2 and 27±10 nmol/min at hour 3.  

(Figure 18)  It was determined that there was a significant difference with isoflurane with respect 

to time and flow rates by a two factor ANOVA at a 95% confidence interval.  The significance 

was found between the flow rates, 3.0 µL/min and 1.0 µL/min, at hour 1 and hour 2.  There was 

significance between the flow rates, 3.0 µL/min 0.5 µL/min, at hour 1 and hour 2.  This 

significance of flux between flow rates can be identified with a lower flow rate a higher 

concentration of isoflurane can be obtained.  The fact that at 3.0 µL/min is higher than 1.0 

µL/min can be explained because at higher flow rates a higher mass recovery is obtained.  There 

is also significance between hour 1 and hour 3 for flow rate of 0.5 µL/min.  This is most likely 

due to the gradual depletion of the sample from the headspace vial.    

The flux obtained for DDFP with a flowrate of 0.5 µL/min was 16±7 nmol/min for hour 

1, 16±2 nmol/min for hour 2, and 16±7 nmol/min for hour 3.  With a flowrate of 1.0µL/min the 

flux was 22±2 nmol/min, hour 2 was 26±20 nmol/min, and hour 3 was 13±9 nmol/min.  With a 

flowrate of 3.0 µL/min the flux was 14±2 nmol/min for hour 1, 21±9 nmol/min for hour 2, and 

13±3 nmol/min for hour 3.  (Figure 19)  There was no significant difference with DDFP with 

respect to time and flowrate by a two factor ANOVA at a 95% confidence interval.  These low 

fluxes could be due to the fluorinated ethylene propylene (FEP) tubing.  Organic molecules are 

notorious for absorbing into plastics.
31

 The perfusion fluid may not have been the correct option 
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for DDFP.  Another option is that this compound could be absorbing/adsorbing to the membrane 

of the microdialysis probe. 
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Fig. 18 The flux of Isoflurane at different flow rates and time.  There was a significant difference 

between hour 1 and 3 for the 0.5 μL/min flow rate.  At flow rates of 1.0 μL/min and 3.0 μL/min 

the flux was significantly different from 0.5 μL/min at hours 1 and 2.  The significance was 

determined by a two factor ANOVA at a 95% confidence interval. N=3 
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Fig. 19 The flux of DDFP at different flow rates vs time.  There was no significant difference 

with flux with respect to time and flowrate for DDFP as determined by a two factor ANOVA at a 

95% confidence interval. N=3 
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The Flux of Isoflurane and DDFP with Air as a Perfusion Fluid   

When substituting air as a perfusion fluid the flux at 10 μL/min was163±50 nmol/min 

and at 20 μL/min 353±80 nmol/min for isoflurane.  (Figure 20)  There was a significant 

difference between flow rate 10 µL/min and 20 µL/min as determined by a t-test (p<0.025) at a 

95% confidence interval.   

The flux for DDFP at 10 μL/min was 99±9 nmol/min and at 20 μL/min was 148±4 

nmol/min. (Figure 19)  There was a significant difference between  the flow rates of 10 µL/min 

and 20 µL/min as determined by a t-test (p=0.001) at a 95% confidence interval. The higher the 

flow rate the higher the flux obtained for both compounds.  This might be a factor of obtaining 

higher mass recovery at higher flow rates.      
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Fig. 20 The flux of isoflurane and DDFP with air as a perfusion fluid at different flow rates. 

There was a significant difference in flux with increased flow rates for both compounds as 

determined by t-test at a 95% confidence interval. N=3   
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Oil/Air Partition Coefficient of Isoflurane and DDFP   

Equilibrium of DDFP and isoflurane were determined before the partition coefficient was 

calculated by observing shift in peak area at Hr 1 and Hr 5.  In Figure 21 and Figure 22 the peak 

areas remain consistent for DDFP and isoflurane.  This consistency denotes that the compounds 

have reached equilibrium.  The KOil/Air of isoflurane at 25˚C was calculated to be 10.62 from the 

average peak areas from the two concentrations (16.22 mM and 32.43 mM) as shown in Table 1.  

This partition coefficient was reported in the literature value as 98. 
32

  This can most likely be 

explained by not using the same temperature as in the literature (37˚C) and also not using olive 

oil. This value still agrees that isoflurane partitions more into oil vs. air. The oil air partition 

coefficient of DDFP at 25˚C was determined to be 0.53 from the average peak areas from the 

two concentrations (11.31 mM and 22.64 mM) as shown in Table 2.  There is currently no oil/air 

partition coefficient for DDFP in the literature. This K value denotes that DDFP partitions more 

into air vs. oil.  
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Fig. 21 DDFP’s peak area remains consistent from hour 1 to hour 5 for two different 

concentrations. N=3 
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Fig. 22 Isoflurane’s peak area remains consistent from hour 1 to hour 5 for two different 

concentrations. N=3 
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Conclusion 

 VOC’s can be collected via microdialysis sampling technique in vitro.  The fluxes of 

these compounds were calculated from different flow rates.  The microdialysis setup 

needs to be optimized due to possible loss of analyte.  For instance the use of FEP tubing 

could be a cause of loss of analyte.  By replacing this tubing with a fused silica tubing 

could increase sample recovery.  Also finding a viable perfusion fluid to collect these 

VOC’s is important.  Oil seemed to be an option for isoflurane but not for DDFP.  Air 

was a better choice for DDFP hinting that DDFP would have a lower partition coefficient. 

There are many parameters that can be changed within the microdialysis setup presented 

here.  Microdialysis can collect these compounds but further investigation needs to be 

continued.  The oil/air partition coefficients for isoflurane and DDFP have been identified 

at 25˚C.   DDFP has currently no reported value for an oil/air partition coefficient.  
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