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ABSTRACT 

The energy barriers for SN2 ligand exchange reactions between the chloride anion and 

para-substituted benzyl chlorides were investigated both in water solution and in the gas phase 

by using quantum chemical simulations at the DFT and Hartree-Fock levels. The question 

addressed was the effect of the solvent (water) and of the substituent on the barrier height. The 

para substitutient groups included NH2, OH, OCH3, CH3, C(CH3)3, H, F, Cl, Br, I, CF3, CN,  

NO2, and SO3
- . The calculations in aqueous solution were carried out with the recently 

developed Ultrafast Monte Carlo method using the TIP3P explicit water model. The PQS 

program system was used for all calculations. The minimum energy reaction path was 

determined in the gas phase for each exchange reaction by optimizating all geometry parameters 

except the reaction coordinate which was defined as the difference of the C-Cl distances for the 

approaching and leaving chlorine atoms and the reaction center (the central carbon atom). This 

difference was varied in small steps from -11.0 a0 to +11.0 a0 (about -5 to 5 Å). These reaction 

paths were used in Monte Carlo simulations to determine the energy barriers in aqueous solution.  

The behavior of SN2 reactions in the water solution is different from the gas phase, 

particularly for substituents with high Hammett constants. These substituents make the central 

carbon atom more positively charged, resulting in shorter C-Cl distances at the transition state, 

and therefore less efficient screening of the atomic charges by the polar water molecules. 

Solvation alone is expected to increase reaction barriers because the solvation shells have 

to be partially broken up. However, solvation by polar solvents like water (which have high 

dielectric constants) greatly diminishes the energy required for ion pair separation. If the barrier 

is dominated by ion pair separation, as in the chloride exchange reaction of para-SO3
- benzyl 

chloride, then solvation diminishes the barrier and increases the reaction rate. 
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I. INTRODUCTION 

Water has unique physical properties, such as large heat capacity, unusual density, high surface 

tension, hydrogen bonds, fluidity, high dielectric constant, higher boiling and freezing 

temperatures than molecules of similar size and mass. These physical properties affect the life of 

human-beings on a daily basis. About 60 percent of the human body is comprised of water, and 

water is the most abundant liquid on Earth. 

 Chemical reactions using water as a solvent are crucial for life, the environment, and 

technology. Therefore, researching chemical reactions with computational modeling can give us 

valuable insight on the reactivity of water. Computational modeling of aqueous reactions has a 

long history. However, despite our knowledge about modeling of aqueous reactions, water is still 

one of the most difficult solvents to model because of its highly polar and strongly hydrogen-

bonding nature. The high dielectric constant of water has a profound influence on chemical 

reactions that involve charge separation or polar groups. In this thesis, comparisons will be made 

between the energy profiles and barriers in SN2 reactions in a vacuum and in aqueous solution.  

Computational chemistry can, in principle, provide information about reactions that are 

difficult to obtain experimentally. Chemical reactions in water solution behave differently from 

the chemical reactions in a vacuum because of hydrogen bonds and electrostatic interactions 

between water molecules and reactants. The barrier energies of chemical reactions in a water 

solution can show changes compared to those in a vacuum. According to the study of CCl4 + 

OH- which used combined quantum mechanical/molecular mechanics (QM/MM), the reaction 

barrier for the aqueous solution was 10.5 kcal/mol higher than the barrier in the gas phase (Chen, 

Yin,Wang, Valiev, 2012).  
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When reactants favorably interact with water molecules, they dissolve in water. 

Dissolving reactants in water molecules affects the chemical reactions energetically, so 

considering the dissolving process during the reaction pathway will give more information about 

potential energy surfaces of reactions. If the simple SN2 reaction between Cl- and CH3Br is 

considered in water, it can be seen that energy changes depend on the free energy change of the 

reactants in water. As an example, the rate constant of the Cl- +CH3Br reaction in water is 15 

orders of magnitude smaller than in the gas phase (Chen, Yin,Wang, Valiev, 2012), and the 

reaction rate for the SN2 reaction of Cl- + CH3Cl → ClCH3 + Cl- in the gas phase is 20 orders of 

magnitude higher than that in the aqueous solution (Mineva, Russo, Scilia, 1998). When two 

reactants come into direct contact in solution, the solvation shells have to be partially broken up. 

Thus, we can expect that solvated molecules react more slowly than in vacuum. However, other 

reactions are sped up in water. For instance, barriers of charge separation are greatly reduced in 

high dielectric constant solvents, and such reactions are faster in water. 

Computational chemistry has become an advantageous way to work on materials which 

are too expensive and too difficult to find before doing real experiments. This gives additional 

information that helps scientists better plan their experiments. That is, computational chemistry 

will help us save time and money. However, the calculations via computational chemistry must 

be fast and reliable, the latter meaning close to physical reality. 

II. BACKGROUND 

The SN2 reaction profile of Cl- + CH3Cl in the aqueous solution was first published with 

simulations explicity including 250 water molecules and thermal averaging by Jorgensen and his 

coworkers. They used ab initio 6-31G* calculations first to obtain the energy profile of this 
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reaction in the gas phase. This was followed by the calculation of the potential of the mean force 

in aqueous solution in the NPT ensemble at 1 atm and 25 ˚C (Chandrasekhar, Smith, Jorgensen, 

1984). The approaches for modeling the solvent effect have been further developed for the last 

30 years. These can be separated into two parts which are explicit models and implicit models. 

Explicit models are more accurate than implicit models.  

Explicit solvent models consider a large number (typically hundreds or thousands) of 

solvent molecules, such as water, placed around the simulated solute to resemble the physical 

reality. They have been the methods used for carrying out simulations in solvent when more 

accurate results have been desired. However, calculations with explicit models are expensive 

because of the large number of particles involved. Treating hundreds or thousands of solvent 

molecules at a high quantum mechanical level is nearly impossible even with the most powerful 

supercomputers. The usual strategy is to treat only the solute at the quantum mechanical (QM) 

level, and model the solvent with much less expensive Molecular Mechanics (MM) methods. 

This is permissible if the solvent is a small, rigid molecule which does not participate directly in 

the reaction. Essentially all accurate solution modelings are performed using such QM/MM 

methods. Even if inexpensive MM methods are used for the solvent, QM/MM calculations need 

orders of magnitude more CPU time than gas phase calculations on the same molecule, mainly 

because of the need to average over a large number of solvent configurations. The solvation shell 

around a molecule is very flexible, and is continuously rearranging even at room temperature. 

The observable data correspond to a Boltzmann average of the solvent configurations. 

Implicit models use the solvent as a continuous medium surrounding the solute outside of 

its van der Waals surface, with the average properties of the real solvent. A variety of continuum 

models have been described, such as the Surface Area (SA), and generalized Born (GB) models 
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(Zhou, 2003). However, implicit model does not completely reflect the physical reality, so 

calculations with implicit models may be less accurate or even misleading. 

From the paper “Solvent Effect on SN2 Reaction between Substituted Benzyl Chloride 

and Chloride Ion” by Ebrahimi and his coworker in 2012, the free energies of some SN2 

reactions, not all of which my study covers, were calculated by DFT and ab initio methods. 

However, they used the polarizable continuum model, which is an implicit water model. The 

focus of the study of Ebrahimi was the effects of solvent on SN2 reaction using the polarizable 

continuum model, so they did not deeply investigate the behaviors of the SN2 reactions in water. 

Therefore, researching SN2 reactions and their behaviors can give more detailed information by 

using explicit water models to enlighten scientists concerning its nature. Also, in the study 

“Water Assisted Reaction Mechanism of OH- with CCl4 in Aqueous Solution”, an approximate 

(averaged) polarization, which is a procedure similar to charge fitting, was used (Chen, 

Yin,Wang, Valiev, 2013). Overall, most previous work neglects the polarization. However, 

calculations with polarizabilities in solute will give more reliable results because molecules, in 

reality, have polarizations during the reaction time. One of the goals of this study is to assess the 

importance of the polarization of the quantum (QM) system for the barrier.  

To obtain good statistics for the free energy, explicit models require a large number of 

calculations (~106) for each point on the reaction path. In these calculations, the solvent 

configurations are different, and are averaged to obtain thermodynamic variables like free energy 

The main problem is that the quantum calculations have to be repeated many times, since the 

surroundings, mainly the electrostatic potential around the solute, are different for each solvent 

configuration. Even if a single quantum (QM) calculation takes only a few minutes, millions of 

them would take years or centuries. Therefore, in this study, the SN2 reactions have been 
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simulated in water using an ultrafast QM/MM model. Ultrafast QM/MM (Janowski, Wolinski, 

Pulay, 2012) can calculate energies and other properties of quantum systems in solutions much 

faster (by about four orders of magnitude or more) than traditional QM/MM. In this method, a 

single energy evaluation takes only ~0.01 seconds, while it preserves the full accuracy of 

QM/MM. This is achieved by pre-calculating the response of the system to the electrostatic field 

of the solvent molecules. It uses the fact that the principal effect of the polar solvent on the solute 

is electrostatic, and the response of the system to electrostatic field of the solvent can be 

evaluated from its response properties in advance, be determining its generalized polarizability 

(GP) components. Once the Generalized Polarizabilities are available, no quantum calculations 

are necessary to perform simulations with an arbitrary number of solvent configurations. 

III.  COMPUTATIONAL METHODOLOGY 

 The main methods used in this thesis are the Restricted Hartree-Fock (RHF, that is closed 

shell Hartree-Fock), and the Density Functional Theory (DFT) techniques. The results also 

depend on the atomic orbital basis sets chosen to describe the molecular orbitals. However, this 

effect saturates for larger basis sets, and for the relatively large basis sets used here is expected to 

be small. DFT also depends on the exchange-correlation functional used. However, most 

functionals give results which are similar. We employed the most widely used variant, the 3-

component Becke-Lee-Yang-Parr hybrid functional (B3LYP). For the vacuum calculations, we 

also used a higher level correlation method, second order Møller-Plesset perturbation theory. 

However, the programs to use MP2 in the solvation simulations are not yet available. 
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 Hartree Fock (HF) and Density Functional theories (DFT) are different methods to 

perform computational chemisty. HF theory is a wavefunction approach depending on the mean 

field approximation. In the Hartree-Fock theory, the energy has this form,  

Energy (HF) = h + J - K + Vnuc 

where h represents the one-electron (potential+kinetic) energy, J represents the classical 

Coulomb repulsion of electrons, K represents the exchange energy which arises from the 

quantum (fermion) nature of electrons, and Vnuc represents the nuclear repulsion energy.  

 The DFT method obtains the energies from the electron density rather than the more 

complicated wavefunctions. In the density functional theory, the exchange-correlation functional 

is used instead of the Hartree Fock exchange for a single determinant. This exchange-correlation 

functional can have terms giving exchange energy and the electron correlation as well. However, 

this electron correlation is omitted from the Hartree Fock method. In the DFT theory, the energy 

simply has this form below which is stated as a functional of the molecular electron density (ρ). 

Energy (DFT) = T[ρ] + Vne[ρ] + J[ρ] + Ex[ρ] + Ec[ρ] + Vnuc  

 

where T[ρ] represents the kinetic energy, Vne[ρ] represents the nuclei-electron interaction, Ex[ρ] 

and Ec[ρ] represent the exchange and correlation energy functionals respectively. 

 Using both DFT and Hartree-Fock theory allows us to estimate the errors in the 

calculations, as these methods often bracket the correct results. DFT is generally more reliable 

for molecular geometries, and it was used to obtain the molecular geometries for the Monte 

Carlo simulations (MC). 
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 In this study, SN2 halogen exchange reactions were studied between para-substituted 

benzyl chlorides and the chloride ion. The substituents were –NH2, -OH, -Cl, -F, -Br, -I, -OCH3, 

-NO2, -CF3, -CN, -CH3, -C(CH3), and the parent compound, benzyl chloride. The gas phase 

reactions are fairly straightforward on modern computers, and several different methods 

(Restricted Hartree-Fock = RHF), density functional theory with the B3LYP exchange-

correlation functional, and second-order Møller-Plesset perturbation theory (MP2) and basis sets, 

such as the 6-311G(d,p) and aug-cc-pVDZ were employed to explore the sensitivity of the 

results to electron correlation effects and basis set choices. All calculations were performed by 

the PQS program. However, with the exception of the Generalized Polarizabilities, a number of 

quantum chemistry packages have the capability of performing these calculations. The reaction 

coordinates have been scanned from -11.0 a0 to +11.0 a0 (Bohr radius or atomic unit of distance; 

1 a0≈0.529177 Å) of the value (a-b). The latter is the difference of the two C-Cl distances, from 

the central carbon (the reaction center) to the two chlorines. Then, the molecular configurations 

along the reaction path have been determined by optimizing the geometry under constraint of a 

fixed value of the reaction coordinate. These coordinates have been used in Monte Carlo 

simulations to obtain solvation energies. In principle, solvation may change the reaction path but 

in practice this effect is expected to be minor in our case. 

 

Step size is 0.05 ao for a-b,  
e.g 0.0, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 
0.40, 0.45, 0.50, so on 

X = NH2, OH, OCH3, CH3, C(CH3)3, H, F, Cl, Br, 
I, CF3, CN,  NO2, etc. 
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 The figure above helps visualize these quantities. The quantity a is the distance between 

the central carbon and the leaving Cl atom on the left above the figure. b is the distance between 

the approaching Cl atom and the C atom at the reaction center. The difference of the two, c, 

characterizes the progress of the reaction.  

 The gas phase reaction paths were used to obtain the energies and free energies of the 

SN2 reactions in water by QM/MM Monte Carlo simulations. 

IV.  GEOMETRY OPTIMIZATION 

Geometry optimization is a tool to obtain minimum energy structures and minima on the 

potential energy surface. Another name for geometry optimization is energy minimization of 

molecules. During geometry optimization, the coordinates of the atoms are modified to decrease 

its energy  until it hits a local minimum  which corresponds to the desired chemical species. 

 Geometry optimizations was performed by the PQS program for 440 values of the 

reaction coordinate c=a-b -11.0 a0 to +11.0 a0, in steps of 0.05 a0. As this is an exchange of 

identical atoms, the reaction paths are symmetrical to the origin, and c and –c should give the 

same energies. We decided to map the whole reaction path to check whether it is symmetrical, 

and identify possible problems or inaccuracies. The coordinates corresponding to c values 

between 0.0 a0 and 7.0 a0,were used in the Monte Carlo simulations. 

 Figures 1 and 2 show that all systems show a deep potential well in the gas phase at about 

c=2.8 a0 (about 1.5 Å), bound by 7-14 kcal/mol relative to infinite separation. This is common 

for both the Hartree-Fock and the DFT levels, and corresponds to a reactive complex of a 

substituted benzyl chloride with a chloride anion, held together by electrostatic forces. However, 

as I will show later, (Figures 12 to 37), the reaction complex is much less strongly bound in 
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aqueous solution. This is expected, as water strongly screens the electrostatic interaction between 

the molecule and the chloride ion at larger distances. The barrier to chloride exchange relative to 

the reaction complex increases with the electronegativity of the substituent but is in the 15 

kcal/mol range at the Hartree-Fock (RHF) level, in the 5-6 kcal/mol level at the B3LYP level, 

and the 10-11 kcal/mol level at the MP2 level in the gas phase. The last result should be the most 

reliable because Hartree-Fock theory generally overestimates reaction barriers, and DFT 

underestimates them.  Note that in the presence of water as a solvent, the differences in the 

barriers diminish, and Hartree-Fock is only 3-5 kcal/mol higher (in the 15-23 kcal/mol range) 

than DFT with the B3LYP functional (12-19 kcal/mol); see table 3. The accurate value is 

probably between these two. 

 Changing the –x axis as Hammett constant and the –y axis as free energies (kcal/mole), 

figures 3 through 5 were obtained for the barrier heights of SN2 reactions in the gas phase in 

order to compare the energy changes at RHF, B3LYP, and MP2 levels.  Hammett constants are 

scaled from -1 to +1 because this scale gives more insights to comment on reactions. The scale of 

-1 through 0 roughly shows that substituted groups behave as electron-donating, while the scale 

of 0 through +1 roughly shows that substituted groups behave as electron-withdrawing. 

Calculating reaction rates should not be logical because Cl exchanges with Cl. Also, to obtain 

more insights for the SN2 ligand exchange reactions between the chloride anion and para-

substituted benzyl chlorides in the gas phase, figures 33 through 38 were created. 

 From the figures 3 through 5 and 33 through 38, -NH2 and -OH substituent groups 

deviate from the correlations that the other substituent groups make, because C-C-N-H torsional 

bond was restricted to 120˚ and C-C-O-H torsional bond was restricted to 0˚ for the SN2 
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reactions with -NH2 and -OH substituent groups respectively in order to obtain symmetric 

reaction coordinates during the SN2 reaction.   

 In fact, geometry coordinates from the MP2 results were not obtained in this study. The 

reason to obtain a correlation from the MP2 calculations in this study is to verify the accuracies 

of the calculations for the SN2 reactions in the gas phase using the Hartree Fock theory and the 

DFT theory. 

 In the gas phase, nucleophiles, such as Cl-, which will make bonds with the central 

carbon with stronger electrostatic character cause lower energetic barriers because of decreased 

electron repulsion at the transition state (Uggerud, 2006). That is, the energy barriers of SN2 

reactions in this study decrease as the central carbon is made more electrostatic by the substituent 

groups. However, the interactions between substituent groups and Cl- anion should be considered 

as well. 

 In addition, these substituent groups affect the reaction rate. To illustrate, because of the 

CN group, which is an electron-attractor, the charge on the reactive carbon atom of Cl(CH2)nCN 

is decreased as the chain molecule gets shorter. This causes a higher reaction rate (Pagliai, 

Raugei, Cardini, & Schettino, 2003). 

 The reactions in this study were calculated in a vacuum by using the RHF method with 

the 6-311G(d,p) basis, the DFT method with the 6-311G(d,p) basis and the MP2 method with 

aug-cc-pvdz basis set. However, MP2 method was not used for Monte Carlo simulations. 

Actually, MP2 results were obtained for verifying the results with Hartree Fock and DFT 

methods, because calculating energy with the MP2 method at the Monte Carlo simulations in 

water would take too long, approximately up to 20 days for a calculation. It is known that DFT 
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calculations are a compromise between time and accuracy for calculations. Therefore, DFT and 

HF methods were used for all calculations in this work. 

V. MONTE CARLO SIMULATIONS 

The Monte Carlo (MC) method is a stochastic technique, which means that it is based on the 

random numbers and probability statistics to examine problems.The Monte Carlo method is very 

important for physical chemistry, computational sciences, and related applied fileds, such as 

weather forecasting where ensemble models are used (Weickmann, Whitaker, Roubicek &Smith, 

2001). 

 In this study, the energy behaviors of SN2 reactions between the chloride ion and the 

benzyl chloride with some para-substitutions have been examined by using a QM/MM model 

and Monte Carlo simulations. Two different calculations have been done for each SN2 reaction. 

While one calculation is with polarizability in solute system, the other is without polarizability. 

Both calculations have been achieved by applying the Hartree Fock (HF) theory and the density 

functional theory (DFT). 

A. Hartree Fock Results 

As seen in figure 6 through figure 18, the calculations have been obtained using the Restricted 

Hartree Fock method at the 6-311G(d,p) basis set and Monte Carlo simulation with explicit 

water model (TIP3P) with respect to infinite separations. In figure 6 through figure 18, X axis 

represents the difference (a0) between a value and b value, and Y axis represents the energies 

(kcal/mole) with respect to infinite separations. The calculations have been done from 0.00 a0 to 

7.00 a0 of the a-b values by taking 0.05 a0 of the step size. That is, 141 different calculations 
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have been done for each SN2 reaction using the Monte Carlo method with geometry coordinates 

obtained from the PQS program in the gas phase.  

 The figures from 6 to 18 show the half reaction coordinates for the SN2 reaction between 

the para-substituted benzyl chloride and the chloride ion in the gas phase and in water because all 

the reaction coordinates for SN2 reactions are symmetric. Also, two different calculations for 

these reactions have been done in water, which are with polarizability and without polarizability 

in solute in order to see the importance of the use of polarizabilities in solute in terms of energy 

changing. 

 The reactions in water, without polarizability in solute, do not show smooth reaction 

paths energetically because they are still decreasing until 7.00 a0 of the a-b values; see figure 6 to 

18. To obtain the minimum energy values of the calculations in order to compare the energies in 

the gas phase, with polarizability in solute in water, and without polarizability in solute in water, 

the points beyond 7.00 a0 were calculated for the reaction between the chloride ion and the 

benzyl chloride with para-OH substitution in water; see the blue line in figure 7. However, the 

minimum energy is obtained around 9.0 a0, which is a long distance for atoms in water. After the 

point of 9.00 a0, the energy of the system for the reaction with para-OH substitution increases, 

where it is possible to see long range errors. Therefore, the elaborate comparison of these 

energies without polarizability in solute is difficult because the minimum energy point cannot be 

fixed to zero (kcal/mole). However, it can be easily seen that the reaction barriers for these 

reactions without polarizability in solute in water are dramatically higher than the reaction 

barriers for the reactions with polarizability in solute in water, and also in the gas phase; see 

figures 6 to 18. Consequently, it can be said that including polarizability in solute for Hartree 

Fock theory is necessary for calculations in water. 
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 The minima of the other two lines, representing the reactions with polarizability in solute 

in water and in the gas phase (see figures 6 to 18), were fixed to zero energetically in order to 

compare the energy changes between these reactions. Many reaction barriers in water in this 

study are higher than the reaction barriers in the gas phase because the solvation shells have to be 

partially broken for two reactants to come into direct contact in solution. Also, this can be 

explained, making an activated complex in aqueous solution is prevented by the solvation cluster 

around the para-substituted benzyl chloride and the chloride ion. To support this idea, it is 

difficult to form an activated complex of OH- and CH3Cl in aqueous solution because this is 

prevented by the solvation cluster around the OH-. This is caused by the increase in the HOMO 

volume of the excess charge during the approach of the OH- to CH3Cl (Hori, Takahashi, Nitta, 

2002). On the other hand, the interaction between the chloride ion and para-substituent for each 

reaction in this study should be taken into account because some substituents facilitate the 

making of an activated complex, such as para–NH3
+ group attracting the chloride ion towards the 

benzyl chloride molecule, while the others obstruct the making of an activated complex, such as 

para-SO3
- repulsing the chloride ion; seen in DFT calculations. 

 To obtain better insight in the para-substituent effect, it is useful to examine resonance 

forms of molecules. For instance, the OH group is an electron donating group; see figure A. 
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Figure A. Resonance form of the 4-hydroxy-benzyl chloride at the transition state 

From the resonance form of the molecule above, it is easy to see that the –OH group makes the 

central carbon atom partially negatively charged at the transition state. This causes the bond 

distance between the central carbon atom and the chloride ion to be longer during the transition 

state because of the repulsion between the central carbon atom (δ-) and the negatively charged 

chloride ion. This repulsion makes the bond lengths of each reaction in this study for the chloride 

ion and the central carbon atom longer during the transition states; see figure B on the next page. 

Overall, this affects the energy barriers in the gas phase and in water at the energetically different 

amounts. For example, two reactants will need more energy to get rid of the solvation cluster 

around the chloride anion and the central carbon until the bond length comes to a sufficient 

distance in order to form a new C-Cl bond during the transition state. That is, energy barriers 

increase in water, while the Hammett constants go up for the para-substituents. 
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Figure B. C-Cl bond lenghts at the transition statess at the RHF/ 6-311G(d,p) level. Hammett  
      constants increase from right to left. 

For a comparison of energy differences between the reactions in the gas phase and the reactions 

with polarizability in solute in water at the transition states, a table has been created representing 

energy differences versus Hammett constants; see table 1 on the next page. It is easy to see that 

energy differences between the reactions in the gas phase and the reactions with polarizability in 

solute in water generally increase, as does the Hammett constants. 

However, some deviations can be seen from electron donating groups in table 1. For 

instance, para-NH2 with the hammett constant of -0.660 shows a higher energy difference at the 

transition state than para-OH with the Hammett constant of -0.370; see table 1. Actually, the 

reaction with para-NH2 was anticipated to show a lower energy difference between in the gas 

phase and in water with polarizabilities in solute, compared to the reaction with para-OH. This is 

probably caused by the making of H bonds in water for para-OH and para-NH2. To clarify, an 
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OH group exhibits stronger bonding than a NH2 group when comparing amines to alcohols 

because oxygen is more electronegative than nitrogen. Therefore, the barrier height of the SN2 

reaction with para-OH in water is lower than that with para-NH2 because the stronger making of 

H bonds for para-OH in water stabilizes the reaction more compared to para-NH2.  

 
Energy differences 

approximately 
between in gas 

phase 
and in water with 

polarizabilities 

   
 

    

  Substituents 
Hammett 
Constants 

  para-OCH3 -0.268 0.7 kcal/mol 

Electron donating groups 
 
  

para-OH -0.370 1.0 kcal/mol 
para-CH3 -0.170 1.4 kcal/mol 
para-NH2 -0.660 2.0 kcal/mol 

  para-C(CH3)3 -0.197  2.1 kcal/mol 
   No-substitution para-H 0.000 2.4 kcal/mol 
  para-F 0.062 3.4 kcal/mol 
  para-Cl 0.227 4.2 kcal/mol 

Electron accepting groups  para-Br 0.232 4.6 kcal/mol 
  para-I 0.276 5.2 kcal/mol 
 para-CF3 0.540 5.6 kcal/mol 
  para-CN 0.660 6.8 kcal/mol 
  para-NO2 0.778 6.9 kcal/mol 

 
Table 1. The effect of water solvent on the barrier height for the SN2 chloride exchange between  
    para-substituted benzyl chloride and the chloride ion at the Hartree-Fock level. The  
    barrier in water minus the barrier in the gas phase is shown. The solute was treated at  
    the Hartree Fock/6-311G(d,p) level. The Monte Carlo simulations use the TIP3P water  
    model and include the polarizability of the solute. 

 

Moreover, the electron donating degrees to the central carbon, where SN2 reactions occur, 

change when para-substituents make H bonds with water molecules. This, also, affects the 

barrier heights of reactions. Furthermore, torsional angles may cause this unexpected results for 
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the SN2 reaction with para-OH and para-NH2 because we restricted these torsional angles to 

obtain symmetric paths. On the other side, steric effects of para-substitutional groups should be 

taken into account to compare reactions energetically because this, also, can affect the barrier 

height, such as para-CH3 and para-C(CH3)3 for HF method. 

B. DFT Results  

As seen in figure 19 through figure 32, the calculations were obtained from the Density 

Functional Theory (DFT) at the 6-311G(d,p) basis set and from Monte Carlo simulation with 

explicit water model (TIP3P) with respect to infinite separations. In figure 19 through figure 32, 

X axis represents the difference (a0) between a value and b value, while Y axis represents the 

energies (kcal/mole) with respect to infinite separations. The calculations were done from 0.00 

a0 to 7.00 a0 of the a-b values by taking 0.05 a0 of the step size. This means that 141 different 

calculations for each point, at the same number as HF calculations, were done for each SN2 

reaction using the Monte Carlo method with geometry coordinates obtained from PQS program 

in the gas phase.  

 The figures from 19 to 32 display the half reaction coordinates for the SN2 reaction 

between the para-substituted benzyl chloride and the chloride ion in the gas phase and in water 

since all the reaction coordinates for SN2 reactions are symmetric. Similar to HF calculations, 

two different DFT calculations for these reactions were done in water, which are with 

polarizability and without polarizability in solute in order to see the importance of the use of 

polarizabilities in solute in terms of energy changing. 

 Similar to HF calculations, DFT calculations need polarizability in solute in water 

because the SN2 reactions without polarizability in solute in water do not show smooth reaction 
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paths energetically, which are still decreasing until 7.00 a0 of the a-b values; see figure 19 to 

figure 32. Therefore, polarizability in solute is essential for both DFT and HF calculations. 

 The minimum points of the two lines, representing the half SN2 reaction paths with 

polarizability in solute in water and in the gas phase (see figures 19 to 31), were fixed to zero 

energetically in order to compare the energy changes between these reactions in terms of energy 

barriers. These energy barriers of the reactions with polarizability in solute in water are higher 

than the energy barriers of the reactions in the gas phase, which is similar to Hartree Fock 

calculations. The reason for the reaction barriers in water being higher than those in the gas 

phase is caused by the solvation shells which are able to be partially broken for two reactants to 

come into direct contact in water. 

 While two reactants are coming into direct contact in water, each SN2 reaction with 

different para-substituents in this study needs different bond lengths at their transition states, 

which depend on para-substituent groups; see figure C. If para-substituent groups make the 

central carbon partially negatively charged, a repulsion between Cl anions and the central carbon 

occurs; see the resonance form of the 4-hydroxy-benzyl chloride at the transition state in figure 

A. At the transition state, this repulsion makes the bond lengths between the central carbon and 

Cl anions longer. Moreover, an attraction between Cl anions and the central carbon can happen 

by making partially positively charged on the central carbon at the transition state  when the 

electron accepting groups are used for the para-substituent group of benzyl chloride. Unlike the 

repulsion between Cl anions and the central carbon, the attraction between Cl anions and the 

central carbon makes the bond lengths between the central carbon and Cl anions smaller at the 

transition state. Therefore, it can be concluded that electron donating groups at the para position 

of  benzyl chloride cause the bond lengths between Cl anions and the central carbon longer than 
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those for benzyl chloride without any substitution group, while electron accepting groups at the 

para position of  benzyl chloride cause the bond lengths between Cl anions and the central 

carbon shorter than those for benzyl chloride without any substitution group; see figure C below. 

 
 
Figure C: C-Cl bond lenghts at the transition states at the RHF/ 6-311G(d,p) level. Hammett  
       constants increase from right to left except for the para-SO3

- with Hammett constant  
       of 0.09.  
 

 The energy barriers of these SN2 reactions in water are affected with a large amount of 

energy (the range of 6.40 kcal/mole because of the substituent groups changing the distances of 

the bond lengths between Cl anions and the central carbon at the transition states, while the 

energy barriers of these SN2 reactions in the gas phase are affected with a small amount of 

energy; such as the highest energy change is 0.80 kcal/mole; see table 3. That is, two reactants in 

water need more energy, compared to two reactants in the gas phase, to get rid of the solvation 
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cluster around the Cl- anion and the central carbon until the bond length comes to a sufficient 

distance in order to form a new C-Cl bond during the transition state.  

 To obtain better insight, table 2 was created which shows the energy behaviors of the SN2 

reactions in this study by comparing their Hammett constants to the energy differences at the 

transition states between the reactions in water, which has polarizability in solute and the 

reactions in the gas phase. From table 2 calculations using the DFT method, it is easy to see that 

energy differences between the reactions in the gas phase and the reactions with polarizability in 

solute in water generally increase, as does the Hammett constants. 

   Energy differences 
approximately 

between in the gas 
phase and in water 
with polarizabilities 

   
 

    

  Substituents 
Hammett 
Constants 

  para-OCH3 -0.268 6.2 kcal/mol 

Electron donating groups 
 
  

para-OH -0.370 6.8 kcal/mol 
para-C(CH3)3 -0.197  7.6 kcal/mol 
para-CH3 -0.170 7.9 kcal/mol 

   No-substitution para-H 0.000  8.0 kcal/mol 
   Electron donating group para-NH2 -0.660 8.3 kcal/mol 
  para-F 0.062 8.9 kcal/mol 
  para-Cl 0.227 9.6 kcal/mol 
Electron accepting groups  para-Br 0.232 9.7 kcal/mol 

  para-I 0.276 9.8 kcal/mol 

 para-CF3 0.540 10.6 kcal/mol 
  para-CN 0.660  12.0 kcal/mol 
  para-NO2 0.778 13.2 kcal/mol 

Table 2. The effect of water solvent on the barrier height for the SN2 chloride exchange between  
    para-substituted benzyl chloride and the chloride ion at the B3LYP density functional  
    theory level. The barrier in water minus the barrier in the gas phase is shown. The  
    solute was treated at the B3LYP/6-311G(d,p) level. The Monte Carlo simulations use  
    the TIP3P water model and include the polarizability of the solute.  
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 Table 2 and figure C show similar results in that electron donating groups decrease the 

energy barriers of these SN2 reactions compared to hydrogen, while electron accepting groups 

increase the energy barriers in water. This is caused by the resonance form of the para-

substituted benzyl chloride; see figure A. To clarify, electron donating groups make the central 

carbon partially negatively charged. This causes the bond lengths between the central carbon and 

Cl anions for the SN2 reactions with an electron donating group at the para position to be longer 

than the bond lengths between the central carbon and Cl anions for the SN2 reactions without any 

groups at the para position; see figure C. That is, SN2 reactions with electron donating groups at 

the para position in water have lower energy barriers than those without any substituent groups 

in order to come into sufficient bond lengths between the central carbon and Cl anions at the 

transition states by breaking the solvation shells. In contrast, the SN2 reactions with electron 

accepting groups at the para position in water have higher energy barriers compared to those 

without a group at the para position. 

 Generally, the energy differences between the reactions in water, which has polarizability 

in solute, and the reactions in the gas phase increase for the SN2 reaction between the para-

substituted benzyl chloride and the chloride ion at the transition states when Hammett constants 

of para-substituents go up. However, there are some deviations caused by electron donating 

groups. These deviations probably come from the making of hydrogen bonds between water 

molecules and para-substituents; such as –OH and –NH2. Another possibility of these deviations 

could be torsional restrictions. To obtain symmetrical reaction coordinates, the torsional angles 

of para-OH benzyl chloride and para-NH2 benzyl chloride were restricted to 120˚ for C-C-N-H 

torsional bond and 0˚ for C-C-O-H torsional bond. 
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 So far, all of the reactions in water show higher barrier heights  than those in the gas 

phase, but some SN2 reactions for the para-substituted benzyl chloride and the chloride ion 

behave differently when the para-substituent group change with charged substituent group; such 

as –SO3
- and -NH3

+.  

 

 
Figure D.  The SN2 reaction between the para-SO3

- benzyl chloride and the chloride ion. 
 

As seen in figure D, SO3
- repulses the Cl anion during the reaction, which makes the energy 

barrier for this SN2 reaction in the gas phase dramatically higher than the energy barrier for this 

SN2 reaction in water; see figure 32. Water molecules stabilizate this repulsion by covering SO3
- 

and the chloride anion. Therefore, the energy barrier for this SN2 reaction in water is lower than 

the barrier for this SN2 reaction in the gas phase. Also, we can conclude that the percentage of 

this reaction occuring in the gas phase is low, while the percentage of this reaction occuring in 

water is considerably high when considering their energy barriers. 

SO3
- repulses the Cl-, which increases the 

barrier height during the reaction in the 
gas phase. 

In water, H2O molecules decrease the 
repulsion between SO3

- and Cl- by covering 
around the reactants and making hydrogen 
bonds. 
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 Unlike -SO3
- substituent group, -NH3

+ attracts the Cl anion during the SN2 reaction 

between the para- NH3
+ benzyl chloride and the chloride ion in the gas phase, and this reaction 

ends up with para-NH2 benzyl chloride and HCl. That is, SN2 reaction occurring for this reaction 

in the gas phase is almost impossible, while a SN2 reaction occurring for this reaction in water is 

noticeably possible. 

VI. CONCLUSIONS 

In the gas phase and in water solution, I calculated the SN2 reactions of the chloride ion and the 

benzyl chloride with different groups at the para position using an ultrafast QM/MM model for 

PQS program and MC simulations, and these calculations took a much shorter time than 

traditional calculations. With this ultrafast QM/MM model (Janowski, Wollinski, Pulay, 2012), a 

single energy evaluation takes only ~0.01 seconds, while it preserves the full accuracy of 

QM/MM. 

This study proves that the SN2 reactions in water solution behave differently from those 

in the gas phase because of electrostatic interactions and hydrogen bonds between water 

molecules and reactants. In the gas phase, nucleophiles, such as Cl-, which will make bonds with 

the central carbon with stronger electrostatic character cause lower energetic barriers because of 

decreased electron repulsion at the transition state, while, in water solution, nucleophiles which 

will make bonds with the central carbon with stronger electrostatic character cause higher 

energetic barriers because the solvation shells have to be partially broken up for two reactants to 

come into direct contact in water.  

 The calculations using both Hartree Fock theory and Density Functional theory show that 

energy barriers for the SN2 reactions of the para-substituted benzyl chloride and the chloride 

anion in water increase, as do the Hammett constants of para-substituent groups; see table 3. The 
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DFT calculations for the reactions in this study are generally consistent with the HF calculations, 

although DFT and HF are different methods. Also, these calculations demonstrate that adding 

polarizability in solute in water to the calculations is necessary in order to obtain reliable results 

from Monte Carlo simulation because molecules, in reality, have polarizations during the 

reaction time. 

 
  

Barrier heights (kcal/mole) 
 
    

Para 
Substituents 

RHF/6-311G(d,p) 
in the gas phase 

B3LYP/6-311G(d,p) 
in the gas phase 

RHF/6-311G(d,p) 
with polarizability 
in solute in water 

B3LYP/6-311G(d,p) 
with polarizability 
in solute in water 

 
    

OCH3 14.09 5.75 14.80 11.95 
OH 14.02 5.72 15.04 12.52 
CH3 14.75 5.90 16.20 13.80 
NH2 14.95 5.88 16.95 14.18 

C(CH3)3 14.91 5.87 17.04 13.47 
H 15.12 5.97 17.52 14.00 
F 14.63 5.73 18.03 14.63 
Cl 15.05 5.58 19.25 15.18 
Br 15.17 5.57 19.77 15.27 
I 15.24 5.54 20.44 15.34 

CF3 15.42 5.45 20.82 16.05 
CN 15.31 5.18 22.11 17.18 
NO2 15.40 5.16 22.30 18.36 

Table 3. The barrier heights for the SN2 chloride exchange between para-substituted benzyl  
    chloride and the chloride ion both in the gas phase and in water at the Hartree-Fock  
    level and B3LYP density functional theory level. The Monte Carlo simulations use the  
   TIP3P water model and include the polarizability of the solute. 
 
 While electron donating groups make the central carbon partially negatively charged, 

electron accepting groups make the central carbon partially positively charged. This affects the 

bond lengths of the central carbon and Cl anions at the transition states. For two reactants to 
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come into direct contact in water, the solvation shells have to be partially broken up. However, 

electron accepting groups at the para position for the SN2 reaction in this study raise the barrier 

heights because the chloride anion has to approach the central carbon to initiate the reaction until 

the direct contact in water; see table 3. Thus, solvated molecules react more slowly than in 

vacuum. However, other reactions are sped up. For example, barriers of charge separation are 

much reduced in high dielectric constant solvents, and such reactions are faster in water; such as 

SO3
-. 

 The significant inference from this study is to speed up the SN2 reactions in water using 

different para-substituent groups with low Hammett constants because these substituent groups 

make the central carbon more negatively charged during the transition states. More negatively 

charged central carbon decreases the energy barrier of the SN2 reaction in water by causing the 

bond between the central carbon and the chloride anion to be longer during the transition state. 

Therefore, the reaction rate of the SN2 reactions in water can be increased by making the central 

carbon negatively charged because the tunneling probability across the barrier increases with 

decreasing barrier height. 

 On the other side, the repulsions emerged from the interaction between other groups 

(such as SO3
-) and nucleophiles (such as Cl-)  during the SN2 reaction do not have to be ignored 

because these interactions increase the barrier heights in the gas phase dramatically, while their 

barrier heights are decreased by water molecules covering the charged groups to stabilizate in 

water. Moreover, some SN2 reactions in the gas phase are almost impossible, while the chance of 

these reactions occuring is highly possible in water. For instance, NH3
+ attracts the chloride ion 

during the SN2 reaction between the para-NH3
+ benzyl chloride and the chloride ion in the gas 

phase, and this reaction ends up with para-NH2 benzyl chloride and HCl. However, the SN2 
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reaction between the para-NH3
+ benzyl chloride and the chloride ion in water is more possible in 

water compared to in the gas phase. 

 In the future, for many SN2 reactions in water, different ways could be used to make the 

central carbon partially more negatively charged, which will cause the barrier height of the 

reaction to be lower. By decreasing barrier heights of the reactions, a high percentage of major 

products can be obtained in a shorter time than usual. This will provide extra time and prevent 

wasting money for all manufacturing companies and related places.  
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FIGURES 

 

 

Figure 1. Energies (relative to infinite separation, in kcal/mole) versus the reaction coordinate 

(c=a-b a0) of the SN2 reaction between para substituted benzyl chlorides with different para  

substitutions and  the chloride ion in the gas phase at  the RHF/6-311G(d,p) level 
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Figure 2. Energies (kcal/mole) versus the reaction coordinate (c=a-b a0) of the SN2 reaction 

between para-substituted benzyl chlorides and the chloride ion in the gas phase with different 

para-substitutions at the B3LYP/6-311G(d,p)level relative to infinite separation 
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Figure 3. Barrier heights (relative to the minimum energy, in  kcal/mole) versus Hammett 

constants for the SN2 reaction between para substituted benzyl chlorides with different para-

substitutions and the chloride ion in the gas phase at the RHF/6-311G(d,p)level. 
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Figure 4. Barrier heights (relative to the minimum energy, in  kcal/mole) versus Hammett 

constants for the SN2 reaction between para substituted benzyl chlorides with different para-

substitutions and the chloride ion in the gas phase at the B3LYP/6-311G(d,p)level. 
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Figure 5. Barrier heights (relative to the minimum energy, in  kcal/mole) versus Hammett 

constants for the SN2 reaction between para substituted benzyl chlorides with different para-

substitutions and the chloride ion in the gas phase at the MP2/6-311G(d,p)level. 
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Figure 6. Hartree-Fock energies (kcal/mole) versus the reaction coordinate (a0) of the SN2 

reaction between the para-OCH3 benzyl chloride and the chloride ion in water and in the gas 

phase The red line corresponds to the reaction in water, which has polarizability in solute, while 

the blue line corresponds to the reaction in water, which does not have polarizability in solute. 

The green line represents the reaction in the gas phase. 
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Figure 7. Hartree-Fock energies (kcal/mole) versus the reaction coordinate (a0) of the reaction 

between the para-OH benzyl chloride and the chloride ion in water and in the gas phase. The red 

line corresponds to the reaction in water, which has polarizability in solute, while the blue line 

corresponds to the reaction in water, which does not have polarizability in solute. The green line 

represents the reaction in the gas phase. 
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Figure 8. Hartree-Fock energies (kcal/mole) versus the reaction coordinate (a0) of the SN2 

reaction between the para-CH3 benzyl chloride and the chloride ion in water and in the gas 

phase. The red line corresponds to the reaction in water, which has polarizability in solute, while 

the blue line corresponds to the reaction in water, which does not have polarizability in solute. 

The green line represents the reaction in the gas phase. 
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Figure 9. Hartree-Fock energies (kcal/mole) versus the reaction coordinate (a0) of the SN2 

reaction between the para-NH2 benzyl chloride and the chloride ion in water and in the gas 

phase. The red line corresponds to the reaction in water, which has polarizability in solute, while 

the blue line corresponds to the reaction in water, which does not have polarizability in solute. 

The green line represents the reaction in the gas phase. 

38 
 



 

 

Figure 10. Hartree-Fock energies (kcal/mole) versus the reaction coordinate (a0) of the SN2 

reaction between the para-C(CH3)3 benzyl chloride and the chloride ion in water and in the gas 

phase. The blue line corresponds to the reaction in water, which has polarizability in solute, 

while the green line corresponds to the reaction in water, which does not have polarizability in 

solute. The red line represents the reaction in the gas phase. 
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Figure 11. Hartree-Fock energies (kcal/mole) versus the reaction coordinate (a0) of the the SN2 

reaction between the benzyl chloride and the chloride ion in water and in the gas phase The red 

line corresponds to the reaction in water, which has polarizability in solute, while the blue line 

corresponds to the reaction in water, which does not have polarizability in solute. The green line 

represents the reaction in the gas phase. 
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Figure 12. Hartree-Fock energies (kcal/mole) versus the reaction coordinate (a0) of the SN2 

reaction between the para-F benzyl chloride and the chloride ion in water and in the gas phase. 

The red line corresponds to the reaction in water, which has polarizability in solute, while the 

blue line corresponds to the reaction in water, which does not have polarizability in solute. The 

green line represents the reaction in the gas phase. 
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Figure 13. Hartree-Fock energies (kcal/mole) versus the reaction coordinate (a0) of the SN2 

reaction between the para-Cl benzyl chloride and the chloride ion in water and in the gas phase 

The red line corresponds to the reaction in water, which has polarizability in solute, while the 

blue line corresponds to the reaction in water, which does not have polarizability in solute. The 

green line represents the reaction in the gas phase.  
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Figure 14. Hartree-Fock energies (kcal/mole) versus the reaction coordinate (a0) of the SN2 

reaction between the para-Br benzyl chloride and the chloride ion in water and in the gas phase. 

The red line corresponds to the reaction in water, which has polarizability in solute, while the 

blue line corresponds to the reaction in water, which does not have polarizability in solute. The 

green line represents the reaction in the gas phase. 
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Figure 15. Hartree-Fock energies (kcal/mole) versus the reaction coordinate (a0) of the SN2 

reaction between the para-I benzyl chloride and the chloride ion in water and in the gas phase. 

The red line corresponds to the reaction in water, which has polarizability in solute, while the 

blue line corresponds to the reaction in water, which does not have polarizability in solute. The 

green line represents the reaction in the gas phase. 
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Figure 16. Hartree-Fock energies (in kcal/mole) versus the reaction coordinate (a0) of the SN2 

reaction between para-CF3 benzyl chloride and the chloride ion in water and in the gas phase. 

Because of symmetry, only half of the reaction path is shown.The red line corresponds to the 

reaction in water, which has polarizability in solute, while the blue line corresponds to the 

reaction in water, which does not have polarizability in solute. The green line represents the 

reaction in the gas phase. 
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Figure 17. Hartree-Fock energies (kcal/mole) versus the reaction coordinate (a0) of the SN2 

reaction between the para-CN benzyl chloride and the chloride ion in water and in the gas phase. 

The red line corresponds to the reaction in water, which has polarizability in solute, while the 

blue line corresponds to the reaction in water, which does not have polarizability in solute. The 

green line represents the reaction in the gas phase. 
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Figure 18. Hartree-Fock energies (kcal/mole) versus the reaction coordinate (a0) of the SN2 

reaction between the para-NO2 benzyl chloride and the chloride ion in water and in the gas 

phase. The red line corresponds to the reaction in water, which has polarizability in solute, while 

the blue line corresponds to the reaction in water, which does not have polarizability in solute. 

The green line represents the reaction in the gas phase. 
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Figure 19. B3LYP energies (kcal/mole) ) versus the reaction coordinate (a0) of the SN2 reaction 

between para-OCH3 benzyl chloride and the chloride ion in water and in the gas phase. The blue 

line corresponds to the reaction in water, which has polarizability in solute, while the green line 

corresponds to the reaction in water, which does not have polarizability in solute. The red line 

represents the reaction in the gas phase. 
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Figure 20. B3LYP energies (kcal/mole) ) versus the reaction coordinate (a0) of the SN2 reaction 

between the para-OH benzyl chloride and the chloride ion in water and in the gas phase. The 

blue line corresponds to the reaction in water, which has polarizability in solute, while the green 

line corresponds to the reaction in water, which does not have polarizability in solute. The red 

line represents the reaction in the gas phase. 

49 
 



 

 

Figure 21. B3LYP energies (kcal/mole) versus the reaction coordinate (a0) of the SN2 reaction 

between the para-C(CH3)3 benzyl chloride and the chloride ion in water and in the gas phase. 

The blue line corresponds to the reaction in water, which has polarizability in solute, while the 

green line corresponds to the reaction in water, which does not have polarizability in solute. The 

red line represents the reaction in the gas phase. 
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Figure 22. B3LYP energies (kcal/mole) versus the reaction coordinate (a0) of the SN2 reaction 

between the para-CH3 benzyl chloride and the chloride ion in water and in the gas phase. The 

blue line corresponds to the reaction in water, which has polarizability in solute, while the green 

line corresponds to the reaction in water, which does not have polarizability in solute. The red 

line represents the reaction in the gas phase. 
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Figure 23. B3LYP energies (kcal/mole) versus the reaction coordinate (a0) of the SN2 reaction 

between the benzyl chloride and the chloride ion in water and in the gas phase. The blue line 

corresponds to the reaction in water, which has polarizability in solute, while the green line 

corresponds to the reaction in water, which does not have polarizability in solute. The red line 

represents the reaction in the gas phase. 
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Figure 24. B3LYP energies (kcal/mole) versus the reaction coordinate (a0) of the SN2 reaction 

between the para-NH2 benzyl chloride and the chloride ion in water and in the gas phase. The 

blue line corresponds to the reaction in water, which has polarizability in solute, while the green 

line corresponds to the reaction in water, which does not have polarizability in solute. The red 

line represents the reaction in the gas phase. 
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Figure 25. B3LYP energies (kcal/mole) versus the reaction coordinate (a0) of the SN2 reaction 

between the para-F benzyl chloride and the chloride ion in water and in the gas phase. The blue 

line corresponds to the reaction in water, which has polarizability in solute, while the green line 

corresponds to the reaction in water, which does not have polarizability in solute. The red line 

represents the reaction in the gas phase. 
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Figure 26. B3LYP energies (kcal/mole) versus the reaction coordinate (a0) of the SN2 reaction 

between the para-Cl benzyl chloride and the chloride ion in water and in the gas phase. The blue 

line corresponds to the reaction in water, which has polarizability in solute, while the green line 

corresponds to the reaction in water, which does not have polarizability in solute. The red line 

represents the reaction in the gas phase. 
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Figure 27. B3LYP energies (kcal/mole) versus the reaction coordinate (a0) of the SN2 reaction 

between the para-Br benzyl chloride and the chloride ion in water and in the gas phase. The blue 

line corresponds to the reaction in water, which has polarizability in solute, while the green line 

corresponds to the reaction in water, which does not have polarizability in solute. The red line 

represents the reaction in the gas phase. 
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Figure 28. B3LYP energies (kcal/mole) versus the reaction coordinate (a0) of the SN2 reaction 

between the para-I benzyl chloride and the chloride ion in water and in the gas phase. The blue 

line corresponds to the reaction in water, which has polarizability in solute, while the green line 

corresponds to the reaction in water, which does not have polarizability in solute. The red line 

represents the reaction in the gas phase. 
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Figure 29. B3LYP energies (kcal/mole) versus the reaction coordinate (a0) of the SN2 reaction 

between the para-CF3 benzyl chloride and the chloride ion in water and in the gas phase. The 

blue line corresponds to the reaction in water, which has polarizability in solute, while the green 

line corresponds to the reaction in water, which does not have polarizability in solute. The red 

line represents the reaction in the gas phase. 
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Figure 30. B3LYP energies (kcal/mole) versus the reaction coordinate (a0) of the SN2 reaction 

between the para-CN benzyl chloride and the chloride ion in water and in the gas phase. The blue 

line corresponds to the reaction in water, which has polarizability in solute, while the green line 

corresponds to the reaction in water, which does not have polarizability in solute. The red line 

represents the reaction in the gas phase. 
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Figure 31. B3LYP energies (kcal/mole) versus the reaction coordinate (a0) of the SN2 reaction 

between the para-NO2 benzyl chloride and the chloride ion in water and in the gas phase. The 

green line corresponds to the reaction in water, which has polarizability in solute. The red line 

represents the reaction in the gas phase. 
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Figure 32. B3LYP energies (kcal/mole) versus the reaction coordinate (a0) of the SN2 reaction 

between the para-SO3
- benzyl chloride and the chloride ion in water and in the gas phase. The 

green line corresponds to the reaction in water, which has polarizability in solute. The red line 

represents the reaction in the gas phase. The Hammett constant of para-SO3
- is 0.09. 
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Figure 33.  Transition state energies (relative to infinite separation, in kcal/mole) versus 

Hammett constants of the SN2 reaction between para-substituted benzyl chlorides with different 

para substitution and  the chloride ion in the gas phase, at the  RHF/6-311G(d,p)level 
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Figure 34. Transition state energies (relative to infinite separation, in kcal/mole) versus 

Hammett constants of the SN2 reaction between para-substituted benzyl chlorides with different 

para substitutions and  the chloride ion in the gas phase, at the B3LYP/6-311G(d,p)level 
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Figure 35. Transition state energies (relative to infinite separation, in kcal/mole) versus 

Hammett constants of the SN2 reaction between para-substituted benzyl chlorides with different 

para substitutions and  the chloride ion in the gas phase, at the MP2/6-311G(d,p)level 
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Figure 36.  Energies of the reaction complex (relative to  infinite separation, in kcal/mole) 

versus Hammett constants for the SN2 reaction between para-substituted benzyl chlorides with 

different para-substitutions and the chloride ion in the gas phase at the RHF/6-311G(d,p)level.  
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Figure 37. Energies of the reaction complex (relative to  infinite separation, in kcal/mole) versus 

Hammett constants for the SN2 reaction between para-substituted benzyl chlorides with different 

para-substitutions and the chloride ion in the gas phase at the B3LYP/6-311G(d,p)level. 
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Figure 38. Energies of the reaction complex (relative to  infinite separation, in kcal/mole) versus 

Hammett constants for the SN2 reaction between para-substituted benzyl chlorides with different 

para-substitutions and the chloride ion in the gas phase at the MP2/6-311G(d,p)level.      
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